sched: Move code around
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
316c1608 493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
76751049
PZ
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
c24d20db 569/*
8875125e 570 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
8875125e 576void resched_curr(struct rq *rq)
c24d20db 577{
8875125e 578 struct task_struct *curr = rq->curr;
c24d20db
IM
579 int cpu;
580
8875125e 581 lockdep_assert_held(&rq->lock);
c24d20db 582
8875125e 583 if (test_tsk_need_resched(curr))
c24d20db
IM
584 return;
585
8875125e 586 cpu = cpu_of(rq);
fd99f91a 587
f27dde8d 588 if (cpu == smp_processor_id()) {
8875125e 589 set_tsk_need_resched(curr);
f27dde8d 590 set_preempt_need_resched();
c24d20db 591 return;
f27dde8d 592 }
c24d20db 593
8875125e 594 if (set_nr_and_not_polling(curr))
c24d20db 595 smp_send_reschedule(cpu);
dfc68f29
AL
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
598}
599
029632fb 600void resched_cpu(int cpu)
c24d20db
IM
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
05fa785c 605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 606 return;
8875125e 607 resched_curr(rq);
05fa785c 608 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 609}
06d8308c 610
b021fe3e 611#ifdef CONFIG_SMP
3451d024 612#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
6201b4d6 621int get_nohz_timer_target(int pinned)
83cd4fe2
VP
622{
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
6201b4d6
VK
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
057f3fad 630 rcu_read_lock();
83cd4fe2 631 for_each_domain(cpu, sd) {
057f3fad
PZ
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
83cd4fe2 638 }
057f3fad
PZ
639unlock:
640 rcu_read_unlock();
83cd4fe2
VP
641 return cpu;
642}
06d8308c
TG
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
1c20091e 653static void wake_up_idle_cpu(int cpu)
06d8308c
TG
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
67b9ca70 660 if (set_nr_and_not_polling(rq->idle))
06d8308c 661 smp_send_reschedule(cpu);
dfc68f29
AL
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
664}
665
c5bfece2 666static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 667{
53c5fa16
FW
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
c5bfece2 674 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
53c5fa16 677 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
c5bfece2 686 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
687 wake_up_idle_cpu(cpu);
688}
689
ca38062e 690static inline bool got_nohz_idle_kick(void)
45bf76df 691{
1c792db7 692 int cpu = smp_processor_id();
873b4c65
VG
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
45bf76df
IM
706}
707
3451d024 708#else /* CONFIG_NO_HZ_COMMON */
45bf76df 709
ca38062e 710static inline bool got_nohz_idle_kick(void)
2069dd75 711{
ca38062e 712 return false;
2069dd75
PZ
713}
714
3451d024 715#endif /* CONFIG_NO_HZ_COMMON */
d842de87 716
ce831b38
FW
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
1e78cdbd
RR
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
3882ec64
FW
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
541b8264
VK
742 if (this_rq()->nr_running > 1)
743 return false;
ce831b38 744
541b8264 745 return true;
ce831b38
FW
746}
747#endif /* CONFIG_NO_HZ_FULL */
d842de87 748
029632fb 749void sched_avg_update(struct rq *rq)
18d95a28 750{
e9e9250b
PZ
751 s64 period = sched_avg_period();
752
78becc27 753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
18d95a28
PZ
763}
764
6d6bc0ad 765#endif /* CONFIG_SMP */
18d95a28 766
a790de99
PT
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 769/*
8277434e
PT
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 774 */
029632fb 775int walk_tg_tree_from(struct task_group *from,
8277434e 776 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
777{
778 struct task_group *parent, *child;
eb755805 779 int ret;
c09595f6 780
8277434e
PT
781 parent = from;
782
c09595f6 783down:
eb755805
PZ
784 ret = (*down)(parent, data);
785 if (ret)
8277434e 786 goto out;
c09595f6
PZ
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
eb755805 794 ret = (*up)(parent, data);
8277434e
PT
795 if (ret || parent == from)
796 goto out;
c09595f6
PZ
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
8277434e 802out:
eb755805 803 return ret;
c09595f6
PZ
804}
805
029632fb 806int tg_nop(struct task_group *tg, void *data)
eb755805 807{
e2b245f8 808 return 0;
eb755805 809}
18d95a28
PZ
810#endif
811
45bf76df
IM
812static void set_load_weight(struct task_struct *p)
813{
f05998d4
NR
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
dd41f596
IM
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
c8b28116 821 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 822 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
823 return;
824 }
71f8bd46 825
c8b28116 826 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 827 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
828}
829
371fd7e7 830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 831{
a64692a3 832 update_rq_clock(rq);
43148951 833 sched_info_queued(rq, p);
371fd7e7 834 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
835}
836
371fd7e7 837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 838{
a64692a3 839 update_rq_clock(rq);
43148951 840 sched_info_dequeued(rq, p);
371fd7e7 841 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
842}
843
029632fb 844void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
371fd7e7 849 enqueue_task(rq, p, flags);
1e3c88bd
PZ
850}
851
029632fb 852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
371fd7e7 857 dequeue_task(rq, p, flags);
1e3c88bd
PZ
858}
859
fe44d621 860static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 861{
095c0aa8
GC
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
095c0aa8
GC
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 894 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
095c0aa8 901 rq->prev_steal_time_rq += steal;
095c0aa8
GC
902 delta -= steal;
903 }
904#endif
905
fe44d621
PZ
906 rq->clock_task += delta;
907
095c0aa8 908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
aa483808
VP
912}
913
34f971f6
PZ
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
aab03e05
DF
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
b29739f9
IM
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
36c8b586 979static int effective_prio(struct task_struct *p)
b29739f9
IM
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
1da177e4
LT
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
e69f6186
YB
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 997 */
36c8b586 998inline int task_curr(const struct task_struct *p)
1da177e4
LT
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
67dfa1b7 1003/*
4c9a4bc8
PZ
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
67dfa1b7 1009 */
cb469845
SR
1010static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
da7a735e 1012 int oldprio)
cb469845
SR
1013{
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
da7a735e 1016 prev_class->switched_from(rq, p);
4c9a4bc8 1017
da7a735e 1018 p->sched_class->switched_to(rq, p);
2d3d891d 1019 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1020 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1021}
1022
029632fb 1023void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1024{
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
8875125e 1034 resched_curr(rq);
1e5a7405
PZ
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
da0c1e65 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1045 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1046}
1047
1da177e4 1048#ifdef CONFIG_SMP
5cc389bc
PZ
1049/*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063/*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
1068static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
1069{
1070 struct rq *rq = task_rq(p);
1071
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088}
1089
1090struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093};
1094
1095/*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
1103 *
1104 * Returns non-zero if task was successfully migrated.
1105 */
1106static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1107{
1108 struct rq *rq;
1109 int ret = 0;
1110
1111 if (unlikely(!cpu_active(dest_cpu)))
1112 return ret;
1113
1114 rq = cpu_rq(src_cpu);
1115
1116 raw_spin_lock(&p->pi_lock);
1117 raw_spin_lock(&rq->lock);
1118 /* Already moved. */
1119 if (task_cpu(p) != src_cpu)
1120 goto done;
1121
1122 /* Affinity changed (again). */
1123 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1124 goto fail;
1125
1126 /*
1127 * If we're not on a rq, the next wake-up will ensure we're
1128 * placed properly.
1129 */
1130 if (task_on_rq_queued(p))
1131 rq = move_queued_task(p, dest_cpu);
1132done:
1133 ret = 1;
1134fail:
1135 raw_spin_unlock(&rq->lock);
1136 raw_spin_unlock(&p->pi_lock);
1137 return ret;
1138}
1139
1140/*
1141 * migration_cpu_stop - this will be executed by a highprio stopper thread
1142 * and performs thread migration by bumping thread off CPU then
1143 * 'pushing' onto another runqueue.
1144 */
1145static int migration_cpu_stop(void *data)
1146{
1147 struct migration_arg *arg = data;
1148
1149 /*
1150 * The original target cpu might have gone down and we might
1151 * be on another cpu but it doesn't matter.
1152 */
1153 local_irq_disable();
1154 /*
1155 * We need to explicitly wake pending tasks before running
1156 * __migrate_task() such that we will not miss enforcing cpus_allowed
1157 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1158 */
1159 sched_ttwu_pending();
1160 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
1161 local_irq_enable();
1162 return 0;
1163}
1164
1165void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166{
1167 if (p->sched_class->set_cpus_allowed)
1168 p->sched_class->set_cpus_allowed(p, new_mask);
1169
1170 cpumask_copy(&p->cpus_allowed, new_mask);
1171 p->nr_cpus_allowed = cpumask_weight(new_mask);
1172}
1173
1174/*
1175 * Change a given task's CPU affinity. Migrate the thread to a
1176 * proper CPU and schedule it away if the CPU it's executing on
1177 * is removed from the allowed bitmask.
1178 *
1179 * NOTE: the caller must have a valid reference to the task, the
1180 * task must not exit() & deallocate itself prematurely. The
1181 * call is not atomic; no spinlocks may be held.
1182 */
1183int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1184{
1185 unsigned long flags;
1186 struct rq *rq;
1187 unsigned int dest_cpu;
1188 int ret = 0;
1189
1190 rq = task_rq_lock(p, &flags);
1191
1192 if (cpumask_equal(&p->cpus_allowed, new_mask))
1193 goto out;
1194
1195 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1196 ret = -EINVAL;
1197 goto out;
1198 }
1199
1200 do_set_cpus_allowed(p, new_mask);
1201
1202 /* Can the task run on the task's current CPU? If so, we're done */
1203 if (cpumask_test_cpu(task_cpu(p), new_mask))
1204 goto out;
1205
1206 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1207 if (task_running(rq, p) || p->state == TASK_WAKING) {
1208 struct migration_arg arg = { p, dest_cpu };
1209 /* Need help from migration thread: drop lock and wait. */
1210 task_rq_unlock(rq, p, &flags);
1211 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1212 tlb_migrate_finish(p->mm);
1213 return 0;
1214 } else if (task_on_rq_queued(p))
1215 rq = move_queued_task(p, dest_cpu);
1216out:
1217 task_rq_unlock(rq, p, &flags);
1218
1219 return ret;
1220}
1221EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1222
dd41f596 1223void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1224{
e2912009
PZ
1225#ifdef CONFIG_SCHED_DEBUG
1226 /*
1227 * We should never call set_task_cpu() on a blocked task,
1228 * ttwu() will sort out the placement.
1229 */
077614ee 1230 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1231 !p->on_rq);
0122ec5b
PZ
1232
1233#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1239 * see task_group().
6c6c54e1
PZ
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
0122ec5b
PZ
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246#endif
e2912009
PZ
1247#endif
1248
de1d7286 1249 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1250
0c69774e 1251 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1252 if (p->sched_class->migrate_task_rq)
1253 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1254 p->se.nr_migrations++;
86038c5e 1255 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1256 }
dd41f596
IM
1257
1258 __set_task_cpu(p, new_cpu);
c65cc870
IM
1259}
1260
ac66f547
PZ
1261static void __migrate_swap_task(struct task_struct *p, int cpu)
1262{
da0c1e65 1263 if (task_on_rq_queued(p)) {
ac66f547
PZ
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
1269 deactivate_task(src_rq, p, 0);
1270 set_task_cpu(p, cpu);
1271 activate_task(dst_rq, p, 0);
1272 check_preempt_curr(dst_rq, p, 0);
1273 } else {
1274 /*
1275 * Task isn't running anymore; make it appear like we migrated
1276 * it before it went to sleep. This means on wakeup we make the
1277 * previous cpu our targer instead of where it really is.
1278 */
1279 p->wake_cpu = cpu;
1280 }
1281}
1282
1283struct migration_swap_arg {
1284 struct task_struct *src_task, *dst_task;
1285 int src_cpu, dst_cpu;
1286};
1287
1288static int migrate_swap_stop(void *data)
1289{
1290 struct migration_swap_arg *arg = data;
1291 struct rq *src_rq, *dst_rq;
1292 int ret = -EAGAIN;
1293
1294 src_rq = cpu_rq(arg->src_cpu);
1295 dst_rq = cpu_rq(arg->dst_cpu);
1296
74602315
PZ
1297 double_raw_lock(&arg->src_task->pi_lock,
1298 &arg->dst_task->pi_lock);
ac66f547
PZ
1299 double_rq_lock(src_rq, dst_rq);
1300 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1301 goto unlock;
1302
1303 if (task_cpu(arg->src_task) != arg->src_cpu)
1304 goto unlock;
1305
1306 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1307 goto unlock;
1308
1309 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1310 goto unlock;
1311
1312 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1313 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1314
1315 ret = 0;
1316
1317unlock:
1318 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1319 raw_spin_unlock(&arg->dst_task->pi_lock);
1320 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1321
1322 return ret;
1323}
1324
1325/*
1326 * Cross migrate two tasks
1327 */
1328int migrate_swap(struct task_struct *cur, struct task_struct *p)
1329{
1330 struct migration_swap_arg arg;
1331 int ret = -EINVAL;
1332
ac66f547
PZ
1333 arg = (struct migration_swap_arg){
1334 .src_task = cur,
1335 .src_cpu = task_cpu(cur),
1336 .dst_task = p,
1337 .dst_cpu = task_cpu(p),
1338 };
1339
1340 if (arg.src_cpu == arg.dst_cpu)
1341 goto out;
1342
6acce3ef
PZ
1343 /*
1344 * These three tests are all lockless; this is OK since all of them
1345 * will be re-checked with proper locks held further down the line.
1346 */
ac66f547
PZ
1347 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1348 goto out;
1349
1350 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1351 goto out;
1352
1353 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1354 goto out;
1355
286549dc 1356 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1357 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1358
1359out:
ac66f547
PZ
1360 return ret;
1361}
1362
1da177e4
LT
1363/*
1364 * wait_task_inactive - wait for a thread to unschedule.
1365 *
85ba2d86
RM
1366 * If @match_state is nonzero, it's the @p->state value just checked and
1367 * not expected to change. If it changes, i.e. @p might have woken up,
1368 * then return zero. When we succeed in waiting for @p to be off its CPU,
1369 * we return a positive number (its total switch count). If a second call
1370 * a short while later returns the same number, the caller can be sure that
1371 * @p has remained unscheduled the whole time.
1372 *
1da177e4
LT
1373 * The caller must ensure that the task *will* unschedule sometime soon,
1374 * else this function might spin for a *long* time. This function can't
1375 * be called with interrupts off, or it may introduce deadlock with
1376 * smp_call_function() if an IPI is sent by the same process we are
1377 * waiting to become inactive.
1378 */
85ba2d86 1379unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1380{
1381 unsigned long flags;
da0c1e65 1382 int running, queued;
85ba2d86 1383 unsigned long ncsw;
70b97a7f 1384 struct rq *rq;
1da177e4 1385
3a5c359a
AK
1386 for (;;) {
1387 /*
1388 * We do the initial early heuristics without holding
1389 * any task-queue locks at all. We'll only try to get
1390 * the runqueue lock when things look like they will
1391 * work out!
1392 */
1393 rq = task_rq(p);
fa490cfd 1394
3a5c359a
AK
1395 /*
1396 * If the task is actively running on another CPU
1397 * still, just relax and busy-wait without holding
1398 * any locks.
1399 *
1400 * NOTE! Since we don't hold any locks, it's not
1401 * even sure that "rq" stays as the right runqueue!
1402 * But we don't care, since "task_running()" will
1403 * return false if the runqueue has changed and p
1404 * is actually now running somewhere else!
1405 */
85ba2d86
RM
1406 while (task_running(rq, p)) {
1407 if (match_state && unlikely(p->state != match_state))
1408 return 0;
3a5c359a 1409 cpu_relax();
85ba2d86 1410 }
fa490cfd 1411
3a5c359a
AK
1412 /*
1413 * Ok, time to look more closely! We need the rq
1414 * lock now, to be *sure*. If we're wrong, we'll
1415 * just go back and repeat.
1416 */
1417 rq = task_rq_lock(p, &flags);
27a9da65 1418 trace_sched_wait_task(p);
3a5c359a 1419 running = task_running(rq, p);
da0c1e65 1420 queued = task_on_rq_queued(p);
85ba2d86 1421 ncsw = 0;
f31e11d8 1422 if (!match_state || p->state == match_state)
93dcf55f 1423 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1424 task_rq_unlock(rq, p, &flags);
fa490cfd 1425
85ba2d86
RM
1426 /*
1427 * If it changed from the expected state, bail out now.
1428 */
1429 if (unlikely(!ncsw))
1430 break;
1431
3a5c359a
AK
1432 /*
1433 * Was it really running after all now that we
1434 * checked with the proper locks actually held?
1435 *
1436 * Oops. Go back and try again..
1437 */
1438 if (unlikely(running)) {
1439 cpu_relax();
1440 continue;
1441 }
fa490cfd 1442
3a5c359a
AK
1443 /*
1444 * It's not enough that it's not actively running,
1445 * it must be off the runqueue _entirely_, and not
1446 * preempted!
1447 *
80dd99b3 1448 * So if it was still runnable (but just not actively
3a5c359a
AK
1449 * running right now), it's preempted, and we should
1450 * yield - it could be a while.
1451 */
da0c1e65 1452 if (unlikely(queued)) {
8eb90c30
TG
1453 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1454
1455 set_current_state(TASK_UNINTERRUPTIBLE);
1456 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1457 continue;
1458 }
fa490cfd 1459
3a5c359a
AK
1460 /*
1461 * Ahh, all good. It wasn't running, and it wasn't
1462 * runnable, which means that it will never become
1463 * running in the future either. We're all done!
1464 */
1465 break;
1466 }
85ba2d86
RM
1467
1468 return ncsw;
1da177e4
LT
1469}
1470
1471/***
1472 * kick_process - kick a running thread to enter/exit the kernel
1473 * @p: the to-be-kicked thread
1474 *
1475 * Cause a process which is running on another CPU to enter
1476 * kernel-mode, without any delay. (to get signals handled.)
1477 *
25985edc 1478 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1479 * because all it wants to ensure is that the remote task enters
1480 * the kernel. If the IPI races and the task has been migrated
1481 * to another CPU then no harm is done and the purpose has been
1482 * achieved as well.
1483 */
36c8b586 1484void kick_process(struct task_struct *p)
1da177e4
LT
1485{
1486 int cpu;
1487
1488 preempt_disable();
1489 cpu = task_cpu(p);
1490 if ((cpu != smp_processor_id()) && task_curr(p))
1491 smp_send_reschedule(cpu);
1492 preempt_enable();
1493}
b43e3521 1494EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1495
30da688e 1496/*
013fdb80 1497 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1498 */
5da9a0fb
PZ
1499static int select_fallback_rq(int cpu, struct task_struct *p)
1500{
aa00d89c
TC
1501 int nid = cpu_to_node(cpu);
1502 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1503 enum { cpuset, possible, fail } state = cpuset;
1504 int dest_cpu;
5da9a0fb 1505
aa00d89c
TC
1506 /*
1507 * If the node that the cpu is on has been offlined, cpu_to_node()
1508 * will return -1. There is no cpu on the node, and we should
1509 * select the cpu on the other node.
1510 */
1511 if (nid != -1) {
1512 nodemask = cpumask_of_node(nid);
1513
1514 /* Look for allowed, online CPU in same node. */
1515 for_each_cpu(dest_cpu, nodemask) {
1516 if (!cpu_online(dest_cpu))
1517 continue;
1518 if (!cpu_active(dest_cpu))
1519 continue;
1520 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1521 return dest_cpu;
1522 }
2baab4e9 1523 }
5da9a0fb 1524
2baab4e9
PZ
1525 for (;;) {
1526 /* Any allowed, online CPU? */
e3831edd 1527 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1528 if (!cpu_online(dest_cpu))
1529 continue;
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 goto out;
1533 }
5da9a0fb 1534
2baab4e9
PZ
1535 switch (state) {
1536 case cpuset:
1537 /* No more Mr. Nice Guy. */
1538 cpuset_cpus_allowed_fallback(p);
1539 state = possible;
1540 break;
1541
1542 case possible:
1543 do_set_cpus_allowed(p, cpu_possible_mask);
1544 state = fail;
1545 break;
1546
1547 case fail:
1548 BUG();
1549 break;
1550 }
1551 }
1552
1553out:
1554 if (state != cpuset) {
1555 /*
1556 * Don't tell them about moving exiting tasks or
1557 * kernel threads (both mm NULL), since they never
1558 * leave kernel.
1559 */
1560 if (p->mm && printk_ratelimit()) {
aac74dc4 1561 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1562 task_pid_nr(p), p->comm, cpu);
1563 }
5da9a0fb
PZ
1564 }
1565
1566 return dest_cpu;
1567}
1568
e2912009 1569/*
013fdb80 1570 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1571 */
970b13ba 1572static inline
ac66f547 1573int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1574{
6c1d9410
WL
1575 if (p->nr_cpus_allowed > 1)
1576 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1577
1578 /*
1579 * In order not to call set_task_cpu() on a blocking task we need
1580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1581 * cpu.
1582 *
1583 * Since this is common to all placement strategies, this lives here.
1584 *
1585 * [ this allows ->select_task() to simply return task_cpu(p) and
1586 * not worry about this generic constraint ]
1587 */
fa17b507 1588 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1589 !cpu_online(cpu)))
5da9a0fb 1590 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1591
1592 return cpu;
970b13ba 1593}
09a40af5
MG
1594
1595static void update_avg(u64 *avg, u64 sample)
1596{
1597 s64 diff = sample - *avg;
1598 *avg += diff >> 3;
1599}
5cc389bc 1600#endif /* CONFIG_SMP */
970b13ba 1601
d7c01d27 1602static void
b84cb5df 1603ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1604{
d7c01d27 1605#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1606 struct rq *rq = this_rq();
1607
d7c01d27
PZ
1608#ifdef CONFIG_SMP
1609 int this_cpu = smp_processor_id();
1610
1611 if (cpu == this_cpu) {
1612 schedstat_inc(rq, ttwu_local);
1613 schedstat_inc(p, se.statistics.nr_wakeups_local);
1614 } else {
1615 struct sched_domain *sd;
1616
1617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1618 rcu_read_lock();
d7c01d27
PZ
1619 for_each_domain(this_cpu, sd) {
1620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1621 schedstat_inc(sd, ttwu_wake_remote);
1622 break;
1623 }
1624 }
057f3fad 1625 rcu_read_unlock();
d7c01d27 1626 }
f339b9dc
PZ
1627
1628 if (wake_flags & WF_MIGRATED)
1629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1630
d7c01d27
PZ
1631#endif /* CONFIG_SMP */
1632
1633 schedstat_inc(rq, ttwu_count);
9ed3811a 1634 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1635
1636 if (wake_flags & WF_SYNC)
9ed3811a 1637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1638
d7c01d27
PZ
1639#endif /* CONFIG_SCHEDSTATS */
1640}
1641
1642static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1643{
9ed3811a 1644 activate_task(rq, p, en_flags);
da0c1e65 1645 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1646
1647 /* if a worker is waking up, notify workqueue */
1648 if (p->flags & PF_WQ_WORKER)
1649 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1650}
1651
23f41eeb
PZ
1652/*
1653 * Mark the task runnable and perform wakeup-preemption.
1654 */
89363381 1655static void
23f41eeb 1656ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1657{
9ed3811a 1658 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1659 trace_sched_wakeup(p, true);
9ed3811a
TH
1660
1661 p->state = TASK_RUNNING;
1662#ifdef CONFIG_SMP
4c9a4bc8
PZ
1663 if (p->sched_class->task_woken) {
1664 /*
1665 * XXX can drop rq->lock; most likely ok.
1666 */
9ed3811a 1667 p->sched_class->task_woken(rq, p);
4c9a4bc8 1668 }
9ed3811a 1669
e69c6341 1670 if (rq->idle_stamp) {
78becc27 1671 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1672 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1673
abfafa54
JL
1674 update_avg(&rq->avg_idle, delta);
1675
1676 if (rq->avg_idle > max)
9ed3811a 1677 rq->avg_idle = max;
abfafa54 1678
9ed3811a
TH
1679 rq->idle_stamp = 0;
1680 }
1681#endif
1682}
1683
c05fbafb
PZ
1684static void
1685ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1686{
1687#ifdef CONFIG_SMP
1688 if (p->sched_contributes_to_load)
1689 rq->nr_uninterruptible--;
1690#endif
1691
1692 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1693 ttwu_do_wakeup(rq, p, wake_flags);
1694}
1695
1696/*
1697 * Called in case the task @p isn't fully descheduled from its runqueue,
1698 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1699 * since all we need to do is flip p->state to TASK_RUNNING, since
1700 * the task is still ->on_rq.
1701 */
1702static int ttwu_remote(struct task_struct *p, int wake_flags)
1703{
1704 struct rq *rq;
1705 int ret = 0;
1706
1707 rq = __task_rq_lock(p);
da0c1e65 1708 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1709 /* check_preempt_curr() may use rq clock */
1710 update_rq_clock(rq);
c05fbafb
PZ
1711 ttwu_do_wakeup(rq, p, wake_flags);
1712 ret = 1;
1713 }
1714 __task_rq_unlock(rq);
1715
1716 return ret;
1717}
1718
317f3941 1719#ifdef CONFIG_SMP
e3baac47 1720void sched_ttwu_pending(void)
317f3941
PZ
1721{
1722 struct rq *rq = this_rq();
fa14ff4a
PZ
1723 struct llist_node *llist = llist_del_all(&rq->wake_list);
1724 struct task_struct *p;
e3baac47 1725 unsigned long flags;
317f3941 1726
e3baac47
PZ
1727 if (!llist)
1728 return;
1729
1730 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1731
fa14ff4a
PZ
1732 while (llist) {
1733 p = llist_entry(llist, struct task_struct, wake_entry);
1734 llist = llist_next(llist);
317f3941
PZ
1735 ttwu_do_activate(rq, p, 0);
1736 }
1737
e3baac47 1738 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1739}
1740
1741void scheduler_ipi(void)
1742{
f27dde8d
PZ
1743 /*
1744 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1745 * TIF_NEED_RESCHED remotely (for the first time) will also send
1746 * this IPI.
1747 */
8cb75e0c 1748 preempt_fold_need_resched();
f27dde8d 1749
fd2ac4f4 1750 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1751 return;
1752
1753 /*
1754 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1755 * traditionally all their work was done from the interrupt return
1756 * path. Now that we actually do some work, we need to make sure
1757 * we do call them.
1758 *
1759 * Some archs already do call them, luckily irq_enter/exit nest
1760 * properly.
1761 *
1762 * Arguably we should visit all archs and update all handlers,
1763 * however a fair share of IPIs are still resched only so this would
1764 * somewhat pessimize the simple resched case.
1765 */
1766 irq_enter();
fa14ff4a 1767 sched_ttwu_pending();
ca38062e
SS
1768
1769 /*
1770 * Check if someone kicked us for doing the nohz idle load balance.
1771 */
873b4c65 1772 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1773 this_rq()->idle_balance = 1;
ca38062e 1774 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1775 }
c5d753a5 1776 irq_exit();
317f3941
PZ
1777}
1778
1779static void ttwu_queue_remote(struct task_struct *p, int cpu)
1780{
e3baac47
PZ
1781 struct rq *rq = cpu_rq(cpu);
1782
1783 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1784 if (!set_nr_if_polling(rq->idle))
1785 smp_send_reschedule(cpu);
1786 else
1787 trace_sched_wake_idle_without_ipi(cpu);
1788 }
317f3941 1789}
d6aa8f85 1790
f6be8af1
CL
1791void wake_up_if_idle(int cpu)
1792{
1793 struct rq *rq = cpu_rq(cpu);
1794 unsigned long flags;
1795
fd7de1e8
AL
1796 rcu_read_lock();
1797
1798 if (!is_idle_task(rcu_dereference(rq->curr)))
1799 goto out;
f6be8af1
CL
1800
1801 if (set_nr_if_polling(rq->idle)) {
1802 trace_sched_wake_idle_without_ipi(cpu);
1803 } else {
1804 raw_spin_lock_irqsave(&rq->lock, flags);
1805 if (is_idle_task(rq->curr))
1806 smp_send_reschedule(cpu);
1807 /* Else cpu is not in idle, do nothing here */
1808 raw_spin_unlock_irqrestore(&rq->lock, flags);
1809 }
fd7de1e8
AL
1810
1811out:
1812 rcu_read_unlock();
f6be8af1
CL
1813}
1814
39be3501 1815bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1816{
1817 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1818}
d6aa8f85 1819#endif /* CONFIG_SMP */
317f3941 1820
c05fbafb
PZ
1821static void ttwu_queue(struct task_struct *p, int cpu)
1822{
1823 struct rq *rq = cpu_rq(cpu);
1824
17d9f311 1825#if defined(CONFIG_SMP)
39be3501 1826 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1827 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1828 ttwu_queue_remote(p, cpu);
1829 return;
1830 }
1831#endif
1832
c05fbafb
PZ
1833 raw_spin_lock(&rq->lock);
1834 ttwu_do_activate(rq, p, 0);
1835 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1836}
1837
1838/**
1da177e4 1839 * try_to_wake_up - wake up a thread
9ed3811a 1840 * @p: the thread to be awakened
1da177e4 1841 * @state: the mask of task states that can be woken
9ed3811a 1842 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1843 *
1844 * Put it on the run-queue if it's not already there. The "current"
1845 * thread is always on the run-queue (except when the actual
1846 * re-schedule is in progress), and as such you're allowed to do
1847 * the simpler "current->state = TASK_RUNNING" to mark yourself
1848 * runnable without the overhead of this.
1849 *
e69f6186 1850 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1851 * or @state didn't match @p's state.
1da177e4 1852 */
e4a52bcb
PZ
1853static int
1854try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1855{
1da177e4 1856 unsigned long flags;
c05fbafb 1857 int cpu, success = 0;
2398f2c6 1858
e0acd0a6
ON
1859 /*
1860 * If we are going to wake up a thread waiting for CONDITION we
1861 * need to ensure that CONDITION=1 done by the caller can not be
1862 * reordered with p->state check below. This pairs with mb() in
1863 * set_current_state() the waiting thread does.
1864 */
1865 smp_mb__before_spinlock();
013fdb80 1866 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1867 if (!(p->state & state))
1da177e4
LT
1868 goto out;
1869
c05fbafb 1870 success = 1; /* we're going to change ->state */
1da177e4 1871 cpu = task_cpu(p);
1da177e4 1872
c05fbafb
PZ
1873 if (p->on_rq && ttwu_remote(p, wake_flags))
1874 goto stat;
1da177e4 1875
1da177e4 1876#ifdef CONFIG_SMP
e9c84311 1877 /*
c05fbafb
PZ
1878 * If the owning (remote) cpu is still in the middle of schedule() with
1879 * this task as prev, wait until its done referencing the task.
e9c84311 1880 */
f3e94786 1881 while (p->on_cpu)
e4a52bcb 1882 cpu_relax();
0970d299 1883 /*
e4a52bcb 1884 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1885 */
e4a52bcb 1886 smp_rmb();
1da177e4 1887
a8e4f2ea 1888 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1889 p->state = TASK_WAKING;
e7693a36 1890
e4a52bcb 1891 if (p->sched_class->task_waking)
74f8e4b2 1892 p->sched_class->task_waking(p);
efbbd05a 1893
ac66f547 1894 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1895 if (task_cpu(p) != cpu) {
1896 wake_flags |= WF_MIGRATED;
e4a52bcb 1897 set_task_cpu(p, cpu);
f339b9dc 1898 }
1da177e4 1899#endif /* CONFIG_SMP */
1da177e4 1900
c05fbafb
PZ
1901 ttwu_queue(p, cpu);
1902stat:
b84cb5df 1903 ttwu_stat(p, cpu, wake_flags);
1da177e4 1904out:
013fdb80 1905 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1906
1907 return success;
1908}
1909
21aa9af0
TH
1910/**
1911 * try_to_wake_up_local - try to wake up a local task with rq lock held
1912 * @p: the thread to be awakened
1913 *
2acca55e 1914 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1915 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1916 * the current task.
21aa9af0
TH
1917 */
1918static void try_to_wake_up_local(struct task_struct *p)
1919{
1920 struct rq *rq = task_rq(p);
21aa9af0 1921
383efcd0
TH
1922 if (WARN_ON_ONCE(rq != this_rq()) ||
1923 WARN_ON_ONCE(p == current))
1924 return;
1925
21aa9af0
TH
1926 lockdep_assert_held(&rq->lock);
1927
2acca55e
PZ
1928 if (!raw_spin_trylock(&p->pi_lock)) {
1929 raw_spin_unlock(&rq->lock);
1930 raw_spin_lock(&p->pi_lock);
1931 raw_spin_lock(&rq->lock);
1932 }
1933
21aa9af0 1934 if (!(p->state & TASK_NORMAL))
2acca55e 1935 goto out;
21aa9af0 1936
da0c1e65 1937 if (!task_on_rq_queued(p))
d7c01d27
PZ
1938 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1939
23f41eeb 1940 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1941 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1942out:
1943 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1944}
1945
50fa610a
DH
1946/**
1947 * wake_up_process - Wake up a specific process
1948 * @p: The process to be woken up.
1949 *
1950 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1951 * processes.
1952 *
1953 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1954 *
1955 * It may be assumed that this function implies a write memory barrier before
1956 * changing the task state if and only if any tasks are woken up.
1957 */
7ad5b3a5 1958int wake_up_process(struct task_struct *p)
1da177e4 1959{
9067ac85
ON
1960 WARN_ON(task_is_stopped_or_traced(p));
1961 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1962}
1da177e4
LT
1963EXPORT_SYMBOL(wake_up_process);
1964
7ad5b3a5 1965int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1966{
1967 return try_to_wake_up(p, state, 0);
1968}
1969
a5e7be3b
JL
1970/*
1971 * This function clears the sched_dl_entity static params.
1972 */
1973void __dl_clear_params(struct task_struct *p)
1974{
1975 struct sched_dl_entity *dl_se = &p->dl;
1976
1977 dl_se->dl_runtime = 0;
1978 dl_se->dl_deadline = 0;
1979 dl_se->dl_period = 0;
1980 dl_se->flags = 0;
1981 dl_se->dl_bw = 0;
40767b0d
PZ
1982
1983 dl_se->dl_throttled = 0;
1984 dl_se->dl_new = 1;
1985 dl_se->dl_yielded = 0;
a5e7be3b
JL
1986}
1987
1da177e4
LT
1988/*
1989 * Perform scheduler related setup for a newly forked process p.
1990 * p is forked by current.
dd41f596
IM
1991 *
1992 * __sched_fork() is basic setup used by init_idle() too:
1993 */
5e1576ed 1994static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1995{
fd2f4419
PZ
1996 p->on_rq = 0;
1997
1998 p->se.on_rq = 0;
dd41f596
IM
1999 p->se.exec_start = 0;
2000 p->se.sum_exec_runtime = 0;
f6cf891c 2001 p->se.prev_sum_exec_runtime = 0;
6c594c21 2002 p->se.nr_migrations = 0;
da7a735e 2003 p->se.vruntime = 0;
bb04159d
KT
2004#ifdef CONFIG_SMP
2005 p->se.avg.decay_count = 0;
2006#endif
fd2f4419 2007 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2008
2009#ifdef CONFIG_SCHEDSTATS
41acab88 2010 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2011#endif
476d139c 2012
aab03e05 2013 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2014 init_dl_task_timer(&p->dl);
a5e7be3b 2015 __dl_clear_params(p);
aab03e05 2016
fa717060 2017 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2018
e107be36
AK
2019#ifdef CONFIG_PREEMPT_NOTIFIERS
2020 INIT_HLIST_HEAD(&p->preempt_notifiers);
2021#endif
cbee9f88
PZ
2022
2023#ifdef CONFIG_NUMA_BALANCING
2024 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2025 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2026 p->mm->numa_scan_seq = 0;
2027 }
2028
5e1576ed
RR
2029 if (clone_flags & CLONE_VM)
2030 p->numa_preferred_nid = current->numa_preferred_nid;
2031 else
2032 p->numa_preferred_nid = -1;
2033
cbee9f88
PZ
2034 p->node_stamp = 0ULL;
2035 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2036 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2037 p->numa_work.next = &p->numa_work;
44dba3d5 2038 p->numa_faults = NULL;
7e2703e6
RR
2039 p->last_task_numa_placement = 0;
2040 p->last_sum_exec_runtime = 0;
8c8a743c 2041
8c8a743c 2042 p->numa_group = NULL;
cbee9f88 2043#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2044}
2045
1a687c2e 2046#ifdef CONFIG_NUMA_BALANCING
3105b86a 2047#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
2048void set_numabalancing_state(bool enabled)
2049{
2050 if (enabled)
2051 sched_feat_set("NUMA");
2052 else
2053 sched_feat_set("NO_NUMA");
2054}
3105b86a
MG
2055#else
2056__read_mostly bool numabalancing_enabled;
2057
2058void set_numabalancing_state(bool enabled)
2059{
2060 numabalancing_enabled = enabled;
dd41f596 2061}
3105b86a 2062#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
2063
2064#ifdef CONFIG_PROC_SYSCTL
2065int sysctl_numa_balancing(struct ctl_table *table, int write,
2066 void __user *buffer, size_t *lenp, loff_t *ppos)
2067{
2068 struct ctl_table t;
2069 int err;
2070 int state = numabalancing_enabled;
2071
2072 if (write && !capable(CAP_SYS_ADMIN))
2073 return -EPERM;
2074
2075 t = *table;
2076 t.data = &state;
2077 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2078 if (err < 0)
2079 return err;
2080 if (write)
2081 set_numabalancing_state(state);
2082 return err;
2083}
2084#endif
2085#endif
dd41f596
IM
2086
2087/*
2088 * fork()/clone()-time setup:
2089 */
aab03e05 2090int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2091{
0122ec5b 2092 unsigned long flags;
dd41f596
IM
2093 int cpu = get_cpu();
2094
5e1576ed 2095 __sched_fork(clone_flags, p);
06b83b5f 2096 /*
0017d735 2097 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2098 * nobody will actually run it, and a signal or other external
2099 * event cannot wake it up and insert it on the runqueue either.
2100 */
0017d735 2101 p->state = TASK_RUNNING;
dd41f596 2102
c350a04e
MG
2103 /*
2104 * Make sure we do not leak PI boosting priority to the child.
2105 */
2106 p->prio = current->normal_prio;
2107
b9dc29e7
MG
2108 /*
2109 * Revert to default priority/policy on fork if requested.
2110 */
2111 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2112 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2113 p->policy = SCHED_NORMAL;
6c697bdf 2114 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2115 p->rt_priority = 0;
2116 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2117 p->static_prio = NICE_TO_PRIO(0);
2118
2119 p->prio = p->normal_prio = __normal_prio(p);
2120 set_load_weight(p);
6c697bdf 2121
b9dc29e7
MG
2122 /*
2123 * We don't need the reset flag anymore after the fork. It has
2124 * fulfilled its duty:
2125 */
2126 p->sched_reset_on_fork = 0;
2127 }
ca94c442 2128
aab03e05
DF
2129 if (dl_prio(p->prio)) {
2130 put_cpu();
2131 return -EAGAIN;
2132 } else if (rt_prio(p->prio)) {
2133 p->sched_class = &rt_sched_class;
2134 } else {
2ddbf952 2135 p->sched_class = &fair_sched_class;
aab03e05 2136 }
b29739f9 2137
cd29fe6f
PZ
2138 if (p->sched_class->task_fork)
2139 p->sched_class->task_fork(p);
2140
86951599
PZ
2141 /*
2142 * The child is not yet in the pid-hash so no cgroup attach races,
2143 * and the cgroup is pinned to this child due to cgroup_fork()
2144 * is ran before sched_fork().
2145 *
2146 * Silence PROVE_RCU.
2147 */
0122ec5b 2148 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2149 set_task_cpu(p, cpu);
0122ec5b 2150 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2151
52f17b6c 2152#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2153 if (likely(sched_info_on()))
52f17b6c 2154 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2155#endif
3ca7a440
PZ
2156#if defined(CONFIG_SMP)
2157 p->on_cpu = 0;
4866cde0 2158#endif
01028747 2159 init_task_preempt_count(p);
806c09a7 2160#ifdef CONFIG_SMP
917b627d 2161 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2162 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2163#endif
917b627d 2164
476d139c 2165 put_cpu();
aab03e05 2166 return 0;
1da177e4
LT
2167}
2168
332ac17e
DF
2169unsigned long to_ratio(u64 period, u64 runtime)
2170{
2171 if (runtime == RUNTIME_INF)
2172 return 1ULL << 20;
2173
2174 /*
2175 * Doing this here saves a lot of checks in all
2176 * the calling paths, and returning zero seems
2177 * safe for them anyway.
2178 */
2179 if (period == 0)
2180 return 0;
2181
2182 return div64_u64(runtime << 20, period);
2183}
2184
2185#ifdef CONFIG_SMP
2186inline struct dl_bw *dl_bw_of(int i)
2187{
66339c31
KT
2188 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2189 "sched RCU must be held");
332ac17e
DF
2190 return &cpu_rq(i)->rd->dl_bw;
2191}
2192
de212f18 2193static inline int dl_bw_cpus(int i)
332ac17e 2194{
de212f18
PZ
2195 struct root_domain *rd = cpu_rq(i)->rd;
2196 int cpus = 0;
2197
66339c31
KT
2198 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2199 "sched RCU must be held");
de212f18
PZ
2200 for_each_cpu_and(i, rd->span, cpu_active_mask)
2201 cpus++;
2202
2203 return cpus;
332ac17e
DF
2204}
2205#else
2206inline struct dl_bw *dl_bw_of(int i)
2207{
2208 return &cpu_rq(i)->dl.dl_bw;
2209}
2210
de212f18 2211static inline int dl_bw_cpus(int i)
332ac17e
DF
2212{
2213 return 1;
2214}
2215#endif
2216
332ac17e
DF
2217/*
2218 * We must be sure that accepting a new task (or allowing changing the
2219 * parameters of an existing one) is consistent with the bandwidth
2220 * constraints. If yes, this function also accordingly updates the currently
2221 * allocated bandwidth to reflect the new situation.
2222 *
2223 * This function is called while holding p's rq->lock.
40767b0d
PZ
2224 *
2225 * XXX we should delay bw change until the task's 0-lag point, see
2226 * __setparam_dl().
332ac17e
DF
2227 */
2228static int dl_overflow(struct task_struct *p, int policy,
2229 const struct sched_attr *attr)
2230{
2231
2232 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2233 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2234 u64 runtime = attr->sched_runtime;
2235 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2236 int cpus, err = -1;
332ac17e
DF
2237
2238 if (new_bw == p->dl.dl_bw)
2239 return 0;
2240
2241 /*
2242 * Either if a task, enters, leave, or stays -deadline but changes
2243 * its parameters, we may need to update accordingly the total
2244 * allocated bandwidth of the container.
2245 */
2246 raw_spin_lock(&dl_b->lock);
de212f18 2247 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2248 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2249 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2250 __dl_add(dl_b, new_bw);
2251 err = 0;
2252 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2253 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2254 __dl_clear(dl_b, p->dl.dl_bw);
2255 __dl_add(dl_b, new_bw);
2256 err = 0;
2257 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2258 __dl_clear(dl_b, p->dl.dl_bw);
2259 err = 0;
2260 }
2261 raw_spin_unlock(&dl_b->lock);
2262
2263 return err;
2264}
2265
2266extern void init_dl_bw(struct dl_bw *dl_b);
2267
1da177e4
LT
2268/*
2269 * wake_up_new_task - wake up a newly created task for the first time.
2270 *
2271 * This function will do some initial scheduler statistics housekeeping
2272 * that must be done for every newly created context, then puts the task
2273 * on the runqueue and wakes it.
2274 */
3e51e3ed 2275void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2276{
2277 unsigned long flags;
dd41f596 2278 struct rq *rq;
fabf318e 2279
ab2515c4 2280 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2281#ifdef CONFIG_SMP
2282 /*
2283 * Fork balancing, do it here and not earlier because:
2284 * - cpus_allowed can change in the fork path
2285 * - any previously selected cpu might disappear through hotplug
fabf318e 2286 */
ac66f547 2287 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2288#endif
2289
a75cdaa9
AS
2290 /* Initialize new task's runnable average */
2291 init_task_runnable_average(p);
ab2515c4 2292 rq = __task_rq_lock(p);
cd29fe6f 2293 activate_task(rq, p, 0);
da0c1e65 2294 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2295 trace_sched_wakeup_new(p, true);
a7558e01 2296 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2297#ifdef CONFIG_SMP
efbbd05a
PZ
2298 if (p->sched_class->task_woken)
2299 p->sched_class->task_woken(rq, p);
9a897c5a 2300#endif
0122ec5b 2301 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2302}
2303
e107be36
AK
2304#ifdef CONFIG_PREEMPT_NOTIFIERS
2305
2306/**
80dd99b3 2307 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2308 * @notifier: notifier struct to register
e107be36
AK
2309 */
2310void preempt_notifier_register(struct preempt_notifier *notifier)
2311{
2312 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2313}
2314EXPORT_SYMBOL_GPL(preempt_notifier_register);
2315
2316/**
2317 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2318 * @notifier: notifier struct to unregister
e107be36
AK
2319 *
2320 * This is safe to call from within a preemption notifier.
2321 */
2322void preempt_notifier_unregister(struct preempt_notifier *notifier)
2323{
2324 hlist_del(&notifier->link);
2325}
2326EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2327
2328static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2329{
2330 struct preempt_notifier *notifier;
e107be36 2331
b67bfe0d 2332 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2333 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2334}
2335
2336static void
2337fire_sched_out_preempt_notifiers(struct task_struct *curr,
2338 struct task_struct *next)
2339{
2340 struct preempt_notifier *notifier;
e107be36 2341
b67bfe0d 2342 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2343 notifier->ops->sched_out(notifier, next);
2344}
2345
6d6bc0ad 2346#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2347
2348static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2349{
2350}
2351
2352static void
2353fire_sched_out_preempt_notifiers(struct task_struct *curr,
2354 struct task_struct *next)
2355{
2356}
2357
6d6bc0ad 2358#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2359
4866cde0
NP
2360/**
2361 * prepare_task_switch - prepare to switch tasks
2362 * @rq: the runqueue preparing to switch
421cee29 2363 * @prev: the current task that is being switched out
4866cde0
NP
2364 * @next: the task we are going to switch to.
2365 *
2366 * This is called with the rq lock held and interrupts off. It must
2367 * be paired with a subsequent finish_task_switch after the context
2368 * switch.
2369 *
2370 * prepare_task_switch sets up locking and calls architecture specific
2371 * hooks.
2372 */
e107be36
AK
2373static inline void
2374prepare_task_switch(struct rq *rq, struct task_struct *prev,
2375 struct task_struct *next)
4866cde0 2376{
895dd92c 2377 trace_sched_switch(prev, next);
43148951 2378 sched_info_switch(rq, prev, next);
fe4b04fa 2379 perf_event_task_sched_out(prev, next);
e107be36 2380 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2381 prepare_lock_switch(rq, next);
2382 prepare_arch_switch(next);
2383}
2384
1da177e4
LT
2385/**
2386 * finish_task_switch - clean up after a task-switch
2387 * @prev: the thread we just switched away from.
2388 *
4866cde0
NP
2389 * finish_task_switch must be called after the context switch, paired
2390 * with a prepare_task_switch call before the context switch.
2391 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2392 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2393 *
2394 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2395 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2396 * with the lock held can cause deadlocks; see schedule() for
2397 * details.)
dfa50b60
ON
2398 *
2399 * The context switch have flipped the stack from under us and restored the
2400 * local variables which were saved when this task called schedule() in the
2401 * past. prev == current is still correct but we need to recalculate this_rq
2402 * because prev may have moved to another CPU.
1da177e4 2403 */
dfa50b60 2404static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2405 __releases(rq->lock)
2406{
dfa50b60 2407 struct rq *rq = this_rq();
1da177e4 2408 struct mm_struct *mm = rq->prev_mm;
55a101f8 2409 long prev_state;
1da177e4
LT
2410
2411 rq->prev_mm = NULL;
2412
2413 /*
2414 * A task struct has one reference for the use as "current".
c394cc9f 2415 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2416 * schedule one last time. The schedule call will never return, and
2417 * the scheduled task must drop that reference.
c394cc9f 2418 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2419 * still held, otherwise prev could be scheduled on another cpu, die
2420 * there before we look at prev->state, and then the reference would
2421 * be dropped twice.
2422 * Manfred Spraul <manfred@colorfullife.com>
2423 */
55a101f8 2424 prev_state = prev->state;
bf9fae9f 2425 vtime_task_switch(prev);
4866cde0 2426 finish_arch_switch(prev);
a8d757ef 2427 perf_event_task_sched_in(prev, current);
4866cde0 2428 finish_lock_switch(rq, prev);
01f23e16 2429 finish_arch_post_lock_switch();
e8fa1362 2430
e107be36 2431 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2432 if (mm)
2433 mmdrop(mm);
c394cc9f 2434 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2435 if (prev->sched_class->task_dead)
2436 prev->sched_class->task_dead(prev);
2437
c6fd91f0 2438 /*
2439 * Remove function-return probe instances associated with this
2440 * task and put them back on the free list.
9761eea8 2441 */
c6fd91f0 2442 kprobe_flush_task(prev);
1da177e4 2443 put_task_struct(prev);
c6fd91f0 2444 }
99e5ada9
FW
2445
2446 tick_nohz_task_switch(current);
dfa50b60 2447 return rq;
1da177e4
LT
2448}
2449
3f029d3c
GH
2450#ifdef CONFIG_SMP
2451
3f029d3c 2452/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2453static void __balance_callback(struct rq *rq)
3f029d3c 2454{
e3fca9e7
PZ
2455 struct callback_head *head, *next;
2456 void (*func)(struct rq *rq);
2457 unsigned long flags;
3f029d3c 2458
e3fca9e7
PZ
2459 raw_spin_lock_irqsave(&rq->lock, flags);
2460 head = rq->balance_callback;
2461 rq->balance_callback = NULL;
2462 while (head) {
2463 func = (void (*)(struct rq *))head->func;
2464 next = head->next;
2465 head->next = NULL;
2466 head = next;
3f029d3c 2467
e3fca9e7 2468 func(rq);
3f029d3c 2469 }
e3fca9e7
PZ
2470 raw_spin_unlock_irqrestore(&rq->lock, flags);
2471}
2472
2473static inline void balance_callback(struct rq *rq)
2474{
2475 if (unlikely(rq->balance_callback))
2476 __balance_callback(rq);
3f029d3c
GH
2477}
2478
2479#else
da19ab51 2480
e3fca9e7 2481static inline void balance_callback(struct rq *rq)
3f029d3c 2482{
1da177e4
LT
2483}
2484
3f029d3c
GH
2485#endif
2486
1da177e4
LT
2487/**
2488 * schedule_tail - first thing a freshly forked thread must call.
2489 * @prev: the thread we just switched away from.
2490 */
722a9f92 2491asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2492 __releases(rq->lock)
2493{
1a43a14a 2494 struct rq *rq;
da19ab51 2495
1a43a14a
ON
2496 /* finish_task_switch() drops rq->lock and enables preemtion */
2497 preempt_disable();
dfa50b60 2498 rq = finish_task_switch(prev);
e3fca9e7 2499 balance_callback(rq);
1a43a14a 2500 preempt_enable();
70b97a7f 2501
1da177e4 2502 if (current->set_child_tid)
b488893a 2503 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2504}
2505
2506/*
dfa50b60 2507 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2508 */
dfa50b60 2509static inline struct rq *
70b97a7f 2510context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2511 struct task_struct *next)
1da177e4 2512{
dd41f596 2513 struct mm_struct *mm, *oldmm;
1da177e4 2514
e107be36 2515 prepare_task_switch(rq, prev, next);
fe4b04fa 2516
dd41f596
IM
2517 mm = next->mm;
2518 oldmm = prev->active_mm;
9226d125
ZA
2519 /*
2520 * For paravirt, this is coupled with an exit in switch_to to
2521 * combine the page table reload and the switch backend into
2522 * one hypercall.
2523 */
224101ed 2524 arch_start_context_switch(prev);
9226d125 2525
31915ab4 2526 if (!mm) {
1da177e4
LT
2527 next->active_mm = oldmm;
2528 atomic_inc(&oldmm->mm_count);
2529 enter_lazy_tlb(oldmm, next);
2530 } else
2531 switch_mm(oldmm, mm, next);
2532
31915ab4 2533 if (!prev->mm) {
1da177e4 2534 prev->active_mm = NULL;
1da177e4
LT
2535 rq->prev_mm = oldmm;
2536 }
3a5f5e48
IM
2537 /*
2538 * Since the runqueue lock will be released by the next
2539 * task (which is an invalid locking op but in the case
2540 * of the scheduler it's an obvious special-case), so we
2541 * do an early lockdep release here:
2542 */
8a25d5de 2543 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2544
91d1aa43 2545 context_tracking_task_switch(prev, next);
1da177e4
LT
2546 /* Here we just switch the register state and the stack. */
2547 switch_to(prev, next, prev);
dd41f596 2548 barrier();
dfa50b60
ON
2549
2550 return finish_task_switch(prev);
1da177e4
LT
2551}
2552
2553/*
1c3e8264 2554 * nr_running and nr_context_switches:
1da177e4
LT
2555 *
2556 * externally visible scheduler statistics: current number of runnable
1c3e8264 2557 * threads, total number of context switches performed since bootup.
1da177e4
LT
2558 */
2559unsigned long nr_running(void)
2560{
2561 unsigned long i, sum = 0;
2562
2563 for_each_online_cpu(i)
2564 sum += cpu_rq(i)->nr_running;
2565
2566 return sum;
f711f609 2567}
1da177e4 2568
2ee507c4
TC
2569/*
2570 * Check if only the current task is running on the cpu.
2571 */
2572bool single_task_running(void)
2573{
2574 if (cpu_rq(smp_processor_id())->nr_running == 1)
2575 return true;
2576 else
2577 return false;
2578}
2579EXPORT_SYMBOL(single_task_running);
2580
1da177e4 2581unsigned long long nr_context_switches(void)
46cb4b7c 2582{
cc94abfc
SR
2583 int i;
2584 unsigned long long sum = 0;
46cb4b7c 2585
0a945022 2586 for_each_possible_cpu(i)
1da177e4 2587 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2588
1da177e4
LT
2589 return sum;
2590}
483b4ee6 2591
1da177e4
LT
2592unsigned long nr_iowait(void)
2593{
2594 unsigned long i, sum = 0;
483b4ee6 2595
0a945022 2596 for_each_possible_cpu(i)
1da177e4 2597 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2598
1da177e4
LT
2599 return sum;
2600}
483b4ee6 2601
8c215bd3 2602unsigned long nr_iowait_cpu(int cpu)
69d25870 2603{
8c215bd3 2604 struct rq *this = cpu_rq(cpu);
69d25870
AV
2605 return atomic_read(&this->nr_iowait);
2606}
46cb4b7c 2607
372ba8cb
MG
2608void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2609{
3289bdb4
PZ
2610 struct rq *rq = this_rq();
2611 *nr_waiters = atomic_read(&rq->nr_iowait);
2612 *load = rq->load.weight;
372ba8cb
MG
2613}
2614
dd41f596 2615#ifdef CONFIG_SMP
8a0be9ef 2616
46cb4b7c 2617/*
38022906
PZ
2618 * sched_exec - execve() is a valuable balancing opportunity, because at
2619 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2620 */
38022906 2621void sched_exec(void)
46cb4b7c 2622{
38022906 2623 struct task_struct *p = current;
1da177e4 2624 unsigned long flags;
0017d735 2625 int dest_cpu;
46cb4b7c 2626
8f42ced9 2627 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2628 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2629 if (dest_cpu == smp_processor_id())
2630 goto unlock;
38022906 2631
8f42ced9 2632 if (likely(cpu_active(dest_cpu))) {
969c7921 2633 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2634
8f42ced9
PZ
2635 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2636 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2637 return;
2638 }
0017d735 2639unlock:
8f42ced9 2640 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2641}
dd41f596 2642
1da177e4
LT
2643#endif
2644
1da177e4 2645DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2646DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2647
2648EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2649EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2650
c5f8d995
HS
2651/*
2652 * Return accounted runtime for the task.
2653 * In case the task is currently running, return the runtime plus current's
2654 * pending runtime that have not been accounted yet.
2655 */
2656unsigned long long task_sched_runtime(struct task_struct *p)
2657{
2658 unsigned long flags;
2659 struct rq *rq;
6e998916 2660 u64 ns;
c5f8d995 2661
911b2898
PZ
2662#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2663 /*
2664 * 64-bit doesn't need locks to atomically read a 64bit value.
2665 * So we have a optimization chance when the task's delta_exec is 0.
2666 * Reading ->on_cpu is racy, but this is ok.
2667 *
2668 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2669 * If we race with it entering cpu, unaccounted time is 0. This is
2670 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2671 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2672 * been accounted, so we're correct here as well.
911b2898 2673 */
da0c1e65 2674 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2675 return p->se.sum_exec_runtime;
2676#endif
2677
c5f8d995 2678 rq = task_rq_lock(p, &flags);
6e998916
SG
2679 /*
2680 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2681 * project cycles that may never be accounted to this
2682 * thread, breaking clock_gettime().
2683 */
2684 if (task_current(rq, p) && task_on_rq_queued(p)) {
2685 update_rq_clock(rq);
2686 p->sched_class->update_curr(rq);
2687 }
2688 ns = p->se.sum_exec_runtime;
0122ec5b 2689 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2690
2691 return ns;
2692}
48f24c4d 2693
7835b98b
CL
2694/*
2695 * This function gets called by the timer code, with HZ frequency.
2696 * We call it with interrupts disabled.
7835b98b
CL
2697 */
2698void scheduler_tick(void)
2699{
7835b98b
CL
2700 int cpu = smp_processor_id();
2701 struct rq *rq = cpu_rq(cpu);
dd41f596 2702 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2703
2704 sched_clock_tick();
dd41f596 2705
05fa785c 2706 raw_spin_lock(&rq->lock);
3e51f33f 2707 update_rq_clock(rq);
fa85ae24 2708 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2709 update_cpu_load_active(rq);
3289bdb4 2710 calc_global_load_tick(rq);
05fa785c 2711 raw_spin_unlock(&rq->lock);
7835b98b 2712
e9d2b064 2713 perf_event_task_tick();
e220d2dc 2714
e418e1c2 2715#ifdef CONFIG_SMP
6eb57e0d 2716 rq->idle_balance = idle_cpu(cpu);
7caff66f 2717 trigger_load_balance(rq);
e418e1c2 2718#endif
265f22a9 2719 rq_last_tick_reset(rq);
1da177e4
LT
2720}
2721
265f22a9
FW
2722#ifdef CONFIG_NO_HZ_FULL
2723/**
2724 * scheduler_tick_max_deferment
2725 *
2726 * Keep at least one tick per second when a single
2727 * active task is running because the scheduler doesn't
2728 * yet completely support full dynticks environment.
2729 *
2730 * This makes sure that uptime, CFS vruntime, load
2731 * balancing, etc... continue to move forward, even
2732 * with a very low granularity.
e69f6186
YB
2733 *
2734 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2735 */
2736u64 scheduler_tick_max_deferment(void)
2737{
2738 struct rq *rq = this_rq();
316c1608 2739 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2740
2741 next = rq->last_sched_tick + HZ;
2742
2743 if (time_before_eq(next, now))
2744 return 0;
2745
8fe8ff09 2746 return jiffies_to_nsecs(next - now);
1da177e4 2747}
265f22a9 2748#endif
1da177e4 2749
132380a0 2750notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2751{
2752 if (in_lock_functions(addr)) {
2753 addr = CALLER_ADDR2;
2754 if (in_lock_functions(addr))
2755 addr = CALLER_ADDR3;
2756 }
2757 return addr;
2758}
1da177e4 2759
7e49fcce
SR
2760#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2761 defined(CONFIG_PREEMPT_TRACER))
2762
edafe3a5 2763void preempt_count_add(int val)
1da177e4 2764{
6cd8a4bb 2765#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2766 /*
2767 * Underflow?
2768 */
9a11b49a
IM
2769 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2770 return;
6cd8a4bb 2771#endif
bdb43806 2772 __preempt_count_add(val);
6cd8a4bb 2773#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2774 /*
2775 * Spinlock count overflowing soon?
2776 */
33859f7f
MOS
2777 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2778 PREEMPT_MASK - 10);
6cd8a4bb 2779#endif
8f47b187
TG
2780 if (preempt_count() == val) {
2781 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2782#ifdef CONFIG_DEBUG_PREEMPT
2783 current->preempt_disable_ip = ip;
2784#endif
2785 trace_preempt_off(CALLER_ADDR0, ip);
2786 }
1da177e4 2787}
bdb43806 2788EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2789NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2790
edafe3a5 2791void preempt_count_sub(int val)
1da177e4 2792{
6cd8a4bb 2793#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2794 /*
2795 * Underflow?
2796 */
01e3eb82 2797 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2798 return;
1da177e4
LT
2799 /*
2800 * Is the spinlock portion underflowing?
2801 */
9a11b49a
IM
2802 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2803 !(preempt_count() & PREEMPT_MASK)))
2804 return;
6cd8a4bb 2805#endif
9a11b49a 2806
6cd8a4bb
SR
2807 if (preempt_count() == val)
2808 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2809 __preempt_count_sub(val);
1da177e4 2810}
bdb43806 2811EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2812NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2813
2814#endif
2815
2816/*
dd41f596 2817 * Print scheduling while atomic bug:
1da177e4 2818 */
dd41f596 2819static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2820{
664dfa65
DJ
2821 if (oops_in_progress)
2822 return;
2823
3df0fc5b
PZ
2824 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2825 prev->comm, prev->pid, preempt_count());
838225b4 2826
dd41f596 2827 debug_show_held_locks(prev);
e21f5b15 2828 print_modules();
dd41f596
IM
2829 if (irqs_disabled())
2830 print_irqtrace_events(prev);
8f47b187
TG
2831#ifdef CONFIG_DEBUG_PREEMPT
2832 if (in_atomic_preempt_off()) {
2833 pr_err("Preemption disabled at:");
2834 print_ip_sym(current->preempt_disable_ip);
2835 pr_cont("\n");
2836 }
2837#endif
6135fc1e 2838 dump_stack();
373d4d09 2839 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2840}
1da177e4 2841
dd41f596
IM
2842/*
2843 * Various schedule()-time debugging checks and statistics:
2844 */
2845static inline void schedule_debug(struct task_struct *prev)
2846{
0d9e2632
AT
2847#ifdef CONFIG_SCHED_STACK_END_CHECK
2848 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2849#endif
1da177e4 2850 /*
41a2d6cf 2851 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2852 * schedule() atomically, we ignore that path. Otherwise whine
2853 * if we are scheduling when we should not.
1da177e4 2854 */
192301e7 2855 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2856 __schedule_bug(prev);
b3fbab05 2857 rcu_sleep_check();
dd41f596 2858
1da177e4
LT
2859 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2860
2d72376b 2861 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2862}
2863
2864/*
2865 * Pick up the highest-prio task:
2866 */
2867static inline struct task_struct *
606dba2e 2868pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2869{
37e117c0 2870 const struct sched_class *class = &fair_sched_class;
dd41f596 2871 struct task_struct *p;
1da177e4
LT
2872
2873 /*
dd41f596
IM
2874 * Optimization: we know that if all tasks are in
2875 * the fair class we can call that function directly:
1da177e4 2876 */
37e117c0 2877 if (likely(prev->sched_class == class &&
38033c37 2878 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2879 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2880 if (unlikely(p == RETRY_TASK))
2881 goto again;
2882
2883 /* assumes fair_sched_class->next == idle_sched_class */
2884 if (unlikely(!p))
2885 p = idle_sched_class.pick_next_task(rq, prev);
2886
2887 return p;
1da177e4
LT
2888 }
2889
37e117c0 2890again:
34f971f6 2891 for_each_class(class) {
606dba2e 2892 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2893 if (p) {
2894 if (unlikely(p == RETRY_TASK))
2895 goto again;
dd41f596 2896 return p;
37e117c0 2897 }
dd41f596 2898 }
34f971f6
PZ
2899
2900 BUG(); /* the idle class will always have a runnable task */
dd41f596 2901}
1da177e4 2902
dd41f596 2903/*
c259e01a 2904 * __schedule() is the main scheduler function.
edde96ea
PE
2905 *
2906 * The main means of driving the scheduler and thus entering this function are:
2907 *
2908 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2909 *
2910 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2911 * paths. For example, see arch/x86/entry_64.S.
2912 *
2913 * To drive preemption between tasks, the scheduler sets the flag in timer
2914 * interrupt handler scheduler_tick().
2915 *
2916 * 3. Wakeups don't really cause entry into schedule(). They add a
2917 * task to the run-queue and that's it.
2918 *
2919 * Now, if the new task added to the run-queue preempts the current
2920 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2921 * called on the nearest possible occasion:
2922 *
2923 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2924 *
2925 * - in syscall or exception context, at the next outmost
2926 * preempt_enable(). (this might be as soon as the wake_up()'s
2927 * spin_unlock()!)
2928 *
2929 * - in IRQ context, return from interrupt-handler to
2930 * preemptible context
2931 *
2932 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2933 * then at the next:
2934 *
2935 * - cond_resched() call
2936 * - explicit schedule() call
2937 * - return from syscall or exception to user-space
2938 * - return from interrupt-handler to user-space
bfd9b2b5 2939 *
b30f0e3f 2940 * WARNING: must be called with preemption disabled!
dd41f596 2941 */
c259e01a 2942static void __sched __schedule(void)
dd41f596
IM
2943{
2944 struct task_struct *prev, *next;
67ca7bde 2945 unsigned long *switch_count;
dd41f596 2946 struct rq *rq;
31656519 2947 int cpu;
dd41f596 2948
dd41f596
IM
2949 cpu = smp_processor_id();
2950 rq = cpu_rq(cpu);
38200cf2 2951 rcu_note_context_switch();
dd41f596 2952 prev = rq->curr;
dd41f596 2953
dd41f596 2954 schedule_debug(prev);
1da177e4 2955
31656519 2956 if (sched_feat(HRTICK))
f333fdc9 2957 hrtick_clear(rq);
8f4d37ec 2958
e0acd0a6
ON
2959 /*
2960 * Make sure that signal_pending_state()->signal_pending() below
2961 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2962 * done by the caller to avoid the race with signal_wake_up().
2963 */
2964 smp_mb__before_spinlock();
05fa785c 2965 raw_spin_lock_irq(&rq->lock);
1da177e4 2966
9edfbfed
PZ
2967 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2968
246d86b5 2969 switch_count = &prev->nivcsw;
1da177e4 2970 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2971 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2972 prev->state = TASK_RUNNING;
21aa9af0 2973 } else {
2acca55e
PZ
2974 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2975 prev->on_rq = 0;
2976
21aa9af0 2977 /*
2acca55e
PZ
2978 * If a worker went to sleep, notify and ask workqueue
2979 * whether it wants to wake up a task to maintain
2980 * concurrency.
21aa9af0
TH
2981 */
2982 if (prev->flags & PF_WQ_WORKER) {
2983 struct task_struct *to_wakeup;
2984
2985 to_wakeup = wq_worker_sleeping(prev, cpu);
2986 if (to_wakeup)
2987 try_to_wake_up_local(to_wakeup);
2988 }
21aa9af0 2989 }
dd41f596 2990 switch_count = &prev->nvcsw;
1da177e4
LT
2991 }
2992
9edfbfed 2993 if (task_on_rq_queued(prev))
606dba2e
PZ
2994 update_rq_clock(rq);
2995
2996 next = pick_next_task(rq, prev);
f26f9aff 2997 clear_tsk_need_resched(prev);
f27dde8d 2998 clear_preempt_need_resched();
9edfbfed 2999 rq->clock_skip_update = 0;
1da177e4 3000
1da177e4 3001 if (likely(prev != next)) {
1da177e4
LT
3002 rq->nr_switches++;
3003 rq->curr = next;
3004 ++*switch_count;
3005
dfa50b60
ON
3006 rq = context_switch(rq, prev, next); /* unlocks the rq */
3007 cpu = cpu_of(rq);
1da177e4 3008 } else
05fa785c 3009 raw_spin_unlock_irq(&rq->lock);
1da177e4 3010
e3fca9e7 3011 balance_callback(rq);
1da177e4 3012}
c259e01a 3013
9c40cef2
TG
3014static inline void sched_submit_work(struct task_struct *tsk)
3015{
3c7d5184 3016 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3017 return;
3018 /*
3019 * If we are going to sleep and we have plugged IO queued,
3020 * make sure to submit it to avoid deadlocks.
3021 */
3022 if (blk_needs_flush_plug(tsk))
3023 blk_schedule_flush_plug(tsk);
3024}
3025
722a9f92 3026asmlinkage __visible void __sched schedule(void)
c259e01a 3027{
9c40cef2
TG
3028 struct task_struct *tsk = current;
3029
3030 sched_submit_work(tsk);
bfd9b2b5 3031 do {
b30f0e3f 3032 preempt_disable();
bfd9b2b5 3033 __schedule();
b30f0e3f 3034 sched_preempt_enable_no_resched();
bfd9b2b5 3035 } while (need_resched());
c259e01a 3036}
1da177e4
LT
3037EXPORT_SYMBOL(schedule);
3038
91d1aa43 3039#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3040asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3041{
3042 /*
3043 * If we come here after a random call to set_need_resched(),
3044 * or we have been woken up remotely but the IPI has not yet arrived,
3045 * we haven't yet exited the RCU idle mode. Do it here manually until
3046 * we find a better solution.
7cc78f8f
AL
3047 *
3048 * NB: There are buggy callers of this function. Ideally we
c467ea76 3049 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3050 * too frequently to make sense yet.
20ab65e3 3051 */
7cc78f8f 3052 enum ctx_state prev_state = exception_enter();
20ab65e3 3053 schedule();
7cc78f8f 3054 exception_exit(prev_state);
20ab65e3
FW
3055}
3056#endif
3057
c5491ea7
TG
3058/**
3059 * schedule_preempt_disabled - called with preemption disabled
3060 *
3061 * Returns with preemption disabled. Note: preempt_count must be 1
3062 */
3063void __sched schedule_preempt_disabled(void)
3064{
ba74c144 3065 sched_preempt_enable_no_resched();
c5491ea7
TG
3066 schedule();
3067 preempt_disable();
3068}
3069
06b1f808 3070static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3071{
3072 do {
b30f0e3f 3073 preempt_active_enter();
a18b5d01 3074 __schedule();
b30f0e3f 3075 preempt_active_exit();
a18b5d01
FW
3076
3077 /*
3078 * Check again in case we missed a preemption opportunity
3079 * between schedule and now.
3080 */
a18b5d01
FW
3081 } while (need_resched());
3082}
3083
1da177e4
LT
3084#ifdef CONFIG_PREEMPT
3085/*
2ed6e34f 3086 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3087 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3088 * occur there and call schedule directly.
3089 */
722a9f92 3090asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3091{
1da177e4
LT
3092 /*
3093 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3094 * we do not want to preempt the current task. Just return..
1da177e4 3095 */
fbb00b56 3096 if (likely(!preemptible()))
1da177e4
LT
3097 return;
3098
a18b5d01 3099 preempt_schedule_common();
1da177e4 3100}
376e2424 3101NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3102EXPORT_SYMBOL(preempt_schedule);
009f60e2 3103
009f60e2 3104/**
4eaca0a8 3105 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3106 *
3107 * The tracing infrastructure uses preempt_enable_notrace to prevent
3108 * recursion and tracing preempt enabling caused by the tracing
3109 * infrastructure itself. But as tracing can happen in areas coming
3110 * from userspace or just about to enter userspace, a preempt enable
3111 * can occur before user_exit() is called. This will cause the scheduler
3112 * to be called when the system is still in usermode.
3113 *
3114 * To prevent this, the preempt_enable_notrace will use this function
3115 * instead of preempt_schedule() to exit user context if needed before
3116 * calling the scheduler.
3117 */
4eaca0a8 3118asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3119{
3120 enum ctx_state prev_ctx;
3121
3122 if (likely(!preemptible()))
3123 return;
3124
3125 do {
be690035
FW
3126 /*
3127 * Use raw __prempt_count() ops that don't call function.
3128 * We can't call functions before disabling preemption which
3129 * disarm preemption tracing recursions.
3130 */
3131 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3132 barrier();
009f60e2
ON
3133 /*
3134 * Needs preempt disabled in case user_exit() is traced
3135 * and the tracer calls preempt_enable_notrace() causing
3136 * an infinite recursion.
3137 */
3138 prev_ctx = exception_enter();
3139 __schedule();
3140 exception_exit(prev_ctx);
3141
be690035
FW
3142 barrier();
3143 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
009f60e2
ON
3144 } while (need_resched());
3145}
4eaca0a8 3146EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3147
32e475d7 3148#endif /* CONFIG_PREEMPT */
1da177e4
LT
3149
3150/*
2ed6e34f 3151 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3152 * off of irq context.
3153 * Note, that this is called and return with irqs disabled. This will
3154 * protect us against recursive calling from irq.
3155 */
722a9f92 3156asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3157{
b22366cd 3158 enum ctx_state prev_state;
6478d880 3159
2ed6e34f 3160 /* Catch callers which need to be fixed */
f27dde8d 3161 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3162
b22366cd
FW
3163 prev_state = exception_enter();
3164
3a5c359a 3165 do {
b30f0e3f 3166 preempt_active_enter();
3a5c359a 3167 local_irq_enable();
c259e01a 3168 __schedule();
3a5c359a 3169 local_irq_disable();
b30f0e3f 3170 preempt_active_exit();
5ed0cec0 3171 } while (need_resched());
b22366cd
FW
3172
3173 exception_exit(prev_state);
1da177e4
LT
3174}
3175
63859d4f 3176int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3177 void *key)
1da177e4 3178{
63859d4f 3179 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3180}
1da177e4
LT
3181EXPORT_SYMBOL(default_wake_function);
3182
b29739f9
IM
3183#ifdef CONFIG_RT_MUTEXES
3184
3185/*
3186 * rt_mutex_setprio - set the current priority of a task
3187 * @p: task
3188 * @prio: prio value (kernel-internal form)
3189 *
3190 * This function changes the 'effective' priority of a task. It does
3191 * not touch ->normal_prio like __setscheduler().
3192 *
c365c292
TG
3193 * Used by the rt_mutex code to implement priority inheritance
3194 * logic. Call site only calls if the priority of the task changed.
b29739f9 3195 */
36c8b586 3196void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3197{
da0c1e65 3198 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 3199 struct rq *rq;
83ab0aa0 3200 const struct sched_class *prev_class;
b29739f9 3201
aab03e05 3202 BUG_ON(prio > MAX_PRIO);
b29739f9 3203
0122ec5b 3204 rq = __task_rq_lock(p);
b29739f9 3205
1c4dd99b
TG
3206 /*
3207 * Idle task boosting is a nono in general. There is one
3208 * exception, when PREEMPT_RT and NOHZ is active:
3209 *
3210 * The idle task calls get_next_timer_interrupt() and holds
3211 * the timer wheel base->lock on the CPU and another CPU wants
3212 * to access the timer (probably to cancel it). We can safely
3213 * ignore the boosting request, as the idle CPU runs this code
3214 * with interrupts disabled and will complete the lock
3215 * protected section without being interrupted. So there is no
3216 * real need to boost.
3217 */
3218 if (unlikely(p == rq->idle)) {
3219 WARN_ON(p != rq->curr);
3220 WARN_ON(p->pi_blocked_on);
3221 goto out_unlock;
3222 }
3223
a8027073 3224 trace_sched_pi_setprio(p, prio);
d5f9f942 3225 oldprio = p->prio;
83ab0aa0 3226 prev_class = p->sched_class;
da0c1e65 3227 queued = task_on_rq_queued(p);
051a1d1a 3228 running = task_current(rq, p);
da0c1e65 3229 if (queued)
69be72c1 3230 dequeue_task(rq, p, 0);
0e1f3483 3231 if (running)
f3cd1c4e 3232 put_prev_task(rq, p);
dd41f596 3233
2d3d891d
DF
3234 /*
3235 * Boosting condition are:
3236 * 1. -rt task is running and holds mutex A
3237 * --> -dl task blocks on mutex A
3238 *
3239 * 2. -dl task is running and holds mutex A
3240 * --> -dl task blocks on mutex A and could preempt the
3241 * running task
3242 */
3243 if (dl_prio(prio)) {
466af29b
ON
3244 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3245 if (!dl_prio(p->normal_prio) ||
3246 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3247 p->dl.dl_boosted = 1;
3248 p->dl.dl_throttled = 0;
3249 enqueue_flag = ENQUEUE_REPLENISH;
3250 } else
3251 p->dl.dl_boosted = 0;
aab03e05 3252 p->sched_class = &dl_sched_class;
2d3d891d
DF
3253 } else if (rt_prio(prio)) {
3254 if (dl_prio(oldprio))
3255 p->dl.dl_boosted = 0;
3256 if (oldprio < prio)
3257 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3258 p->sched_class = &rt_sched_class;
2d3d891d
DF
3259 } else {
3260 if (dl_prio(oldprio))
3261 p->dl.dl_boosted = 0;
746db944
BS
3262 if (rt_prio(oldprio))
3263 p->rt.timeout = 0;
dd41f596 3264 p->sched_class = &fair_sched_class;
2d3d891d 3265 }
dd41f596 3266
b29739f9
IM
3267 p->prio = prio;
3268
0e1f3483
HS
3269 if (running)
3270 p->sched_class->set_curr_task(rq);
da0c1e65 3271 if (queued)
2d3d891d 3272 enqueue_task(rq, p, enqueue_flag);
cb469845 3273
da7a735e 3274 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3275out_unlock:
4c9a4bc8 3276 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3277 __task_rq_unlock(rq);
4c9a4bc8
PZ
3278
3279 balance_callback(rq);
3280 preempt_enable();
b29739f9 3281}
b29739f9 3282#endif
d50dde5a 3283
36c8b586 3284void set_user_nice(struct task_struct *p, long nice)
1da177e4 3285{
da0c1e65 3286 int old_prio, delta, queued;
1da177e4 3287 unsigned long flags;
70b97a7f 3288 struct rq *rq;
1da177e4 3289
75e45d51 3290 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3291 return;
3292 /*
3293 * We have to be careful, if called from sys_setpriority(),
3294 * the task might be in the middle of scheduling on another CPU.
3295 */
3296 rq = task_rq_lock(p, &flags);
3297 /*
3298 * The RT priorities are set via sched_setscheduler(), but we still
3299 * allow the 'normal' nice value to be set - but as expected
3300 * it wont have any effect on scheduling until the task is
aab03e05 3301 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3302 */
aab03e05 3303 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3304 p->static_prio = NICE_TO_PRIO(nice);
3305 goto out_unlock;
3306 }
da0c1e65
KT
3307 queued = task_on_rq_queued(p);
3308 if (queued)
69be72c1 3309 dequeue_task(rq, p, 0);
1da177e4 3310
1da177e4 3311 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3312 set_load_weight(p);
b29739f9
IM
3313 old_prio = p->prio;
3314 p->prio = effective_prio(p);
3315 delta = p->prio - old_prio;
1da177e4 3316
da0c1e65 3317 if (queued) {
371fd7e7 3318 enqueue_task(rq, p, 0);
1da177e4 3319 /*
d5f9f942
AM
3320 * If the task increased its priority or is running and
3321 * lowered its priority, then reschedule its CPU:
1da177e4 3322 */
d5f9f942 3323 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3324 resched_curr(rq);
1da177e4
LT
3325 }
3326out_unlock:
0122ec5b 3327 task_rq_unlock(rq, p, &flags);
1da177e4 3328}
1da177e4
LT
3329EXPORT_SYMBOL(set_user_nice);
3330
e43379f1
MM
3331/*
3332 * can_nice - check if a task can reduce its nice value
3333 * @p: task
3334 * @nice: nice value
3335 */
36c8b586 3336int can_nice(const struct task_struct *p, const int nice)
e43379f1 3337{
024f4747 3338 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3339 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3340
78d7d407 3341 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3342 capable(CAP_SYS_NICE));
3343}
3344
1da177e4
LT
3345#ifdef __ARCH_WANT_SYS_NICE
3346
3347/*
3348 * sys_nice - change the priority of the current process.
3349 * @increment: priority increment
3350 *
3351 * sys_setpriority is a more generic, but much slower function that
3352 * does similar things.
3353 */
5add95d4 3354SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3355{
48f24c4d 3356 long nice, retval;
1da177e4
LT
3357
3358 /*
3359 * Setpriority might change our priority at the same moment.
3360 * We don't have to worry. Conceptually one call occurs first
3361 * and we have a single winner.
3362 */
a9467fa3 3363 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3364 nice = task_nice(current) + increment;
1da177e4 3365
a9467fa3 3366 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3367 if (increment < 0 && !can_nice(current, nice))
3368 return -EPERM;
3369
1da177e4
LT
3370 retval = security_task_setnice(current, nice);
3371 if (retval)
3372 return retval;
3373
3374 set_user_nice(current, nice);
3375 return 0;
3376}
3377
3378#endif
3379
3380/**
3381 * task_prio - return the priority value of a given task.
3382 * @p: the task in question.
3383 *
e69f6186 3384 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3385 * RT tasks are offset by -200. Normal tasks are centered
3386 * around 0, value goes from -16 to +15.
3387 */
36c8b586 3388int task_prio(const struct task_struct *p)
1da177e4
LT
3389{
3390 return p->prio - MAX_RT_PRIO;
3391}
3392
1da177e4
LT
3393/**
3394 * idle_cpu - is a given cpu idle currently?
3395 * @cpu: the processor in question.
e69f6186
YB
3396 *
3397 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3398 */
3399int idle_cpu(int cpu)
3400{
908a3283
TG
3401 struct rq *rq = cpu_rq(cpu);
3402
3403 if (rq->curr != rq->idle)
3404 return 0;
3405
3406 if (rq->nr_running)
3407 return 0;
3408
3409#ifdef CONFIG_SMP
3410 if (!llist_empty(&rq->wake_list))
3411 return 0;
3412#endif
3413
3414 return 1;
1da177e4
LT
3415}
3416
1da177e4
LT
3417/**
3418 * idle_task - return the idle task for a given cpu.
3419 * @cpu: the processor in question.
e69f6186
YB
3420 *
3421 * Return: The idle task for the cpu @cpu.
1da177e4 3422 */
36c8b586 3423struct task_struct *idle_task(int cpu)
1da177e4
LT
3424{
3425 return cpu_rq(cpu)->idle;
3426}
3427
3428/**
3429 * find_process_by_pid - find a process with a matching PID value.
3430 * @pid: the pid in question.
e69f6186
YB
3431 *
3432 * The task of @pid, if found. %NULL otherwise.
1da177e4 3433 */
a9957449 3434static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3435{
228ebcbe 3436 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3437}
3438
aab03e05
DF
3439/*
3440 * This function initializes the sched_dl_entity of a newly becoming
3441 * SCHED_DEADLINE task.
3442 *
3443 * Only the static values are considered here, the actual runtime and the
3444 * absolute deadline will be properly calculated when the task is enqueued
3445 * for the first time with its new policy.
3446 */
3447static void
3448__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3449{
3450 struct sched_dl_entity *dl_se = &p->dl;
3451
aab03e05
DF
3452 dl_se->dl_runtime = attr->sched_runtime;
3453 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3454 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3455 dl_se->flags = attr->sched_flags;
332ac17e 3456 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3457
3458 /*
3459 * Changing the parameters of a task is 'tricky' and we're not doing
3460 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3461 *
3462 * What we SHOULD do is delay the bandwidth release until the 0-lag
3463 * point. This would include retaining the task_struct until that time
3464 * and change dl_overflow() to not immediately decrement the current
3465 * amount.
3466 *
3467 * Instead we retain the current runtime/deadline and let the new
3468 * parameters take effect after the current reservation period lapses.
3469 * This is safe (albeit pessimistic) because the 0-lag point is always
3470 * before the current scheduling deadline.
3471 *
3472 * We can still have temporary overloads because we do not delay the
3473 * change in bandwidth until that time; so admission control is
3474 * not on the safe side. It does however guarantee tasks will never
3475 * consume more than promised.
3476 */
aab03e05
DF
3477}
3478
c13db6b1
SR
3479/*
3480 * sched_setparam() passes in -1 for its policy, to let the functions
3481 * it calls know not to change it.
3482 */
3483#define SETPARAM_POLICY -1
3484
c365c292
TG
3485static void __setscheduler_params(struct task_struct *p,
3486 const struct sched_attr *attr)
1da177e4 3487{
d50dde5a
DF
3488 int policy = attr->sched_policy;
3489
c13db6b1 3490 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3491 policy = p->policy;
3492
1da177e4 3493 p->policy = policy;
d50dde5a 3494
aab03e05
DF
3495 if (dl_policy(policy))
3496 __setparam_dl(p, attr);
39fd8fd2 3497 else if (fair_policy(policy))
d50dde5a
DF
3498 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3499
39fd8fd2
PZ
3500 /*
3501 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3502 * !rt_policy. Always setting this ensures that things like
3503 * getparam()/getattr() don't report silly values for !rt tasks.
3504 */
3505 p->rt_priority = attr->sched_priority;
383afd09 3506 p->normal_prio = normal_prio(p);
c365c292
TG
3507 set_load_weight(p);
3508}
39fd8fd2 3509
c365c292
TG
3510/* Actually do priority change: must hold pi & rq lock. */
3511static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3512 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3513{
3514 __setscheduler_params(p, attr);
d50dde5a 3515
383afd09 3516 /*
0782e63b
TG
3517 * Keep a potential priority boosting if called from
3518 * sched_setscheduler().
383afd09 3519 */
0782e63b
TG
3520 if (keep_boost)
3521 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3522 else
3523 p->prio = normal_prio(p);
383afd09 3524
aab03e05
DF
3525 if (dl_prio(p->prio))
3526 p->sched_class = &dl_sched_class;
3527 else if (rt_prio(p->prio))
ffd44db5
PZ
3528 p->sched_class = &rt_sched_class;
3529 else
3530 p->sched_class = &fair_sched_class;
1da177e4 3531}
aab03e05
DF
3532
3533static void
3534__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3535{
3536 struct sched_dl_entity *dl_se = &p->dl;
3537
3538 attr->sched_priority = p->rt_priority;
3539 attr->sched_runtime = dl_se->dl_runtime;
3540 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3541 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3542 attr->sched_flags = dl_se->flags;
3543}
3544
3545/*
3546 * This function validates the new parameters of a -deadline task.
3547 * We ask for the deadline not being zero, and greater or equal
755378a4 3548 * than the runtime, as well as the period of being zero or
332ac17e 3549 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3550 * user parameters are above the internal resolution of 1us (we
3551 * check sched_runtime only since it is always the smaller one) and
3552 * below 2^63 ns (we have to check both sched_deadline and
3553 * sched_period, as the latter can be zero).
aab03e05
DF
3554 */
3555static bool
3556__checkparam_dl(const struct sched_attr *attr)
3557{
b0827819
JL
3558 /* deadline != 0 */
3559 if (attr->sched_deadline == 0)
3560 return false;
3561
3562 /*
3563 * Since we truncate DL_SCALE bits, make sure we're at least
3564 * that big.
3565 */
3566 if (attr->sched_runtime < (1ULL << DL_SCALE))
3567 return false;
3568
3569 /*
3570 * Since we use the MSB for wrap-around and sign issues, make
3571 * sure it's not set (mind that period can be equal to zero).
3572 */
3573 if (attr->sched_deadline & (1ULL << 63) ||
3574 attr->sched_period & (1ULL << 63))
3575 return false;
3576
3577 /* runtime <= deadline <= period (if period != 0) */
3578 if ((attr->sched_period != 0 &&
3579 attr->sched_period < attr->sched_deadline) ||
3580 attr->sched_deadline < attr->sched_runtime)
3581 return false;
3582
3583 return true;
aab03e05
DF
3584}
3585
c69e8d9c
DH
3586/*
3587 * check the target process has a UID that matches the current process's
3588 */
3589static bool check_same_owner(struct task_struct *p)
3590{
3591 const struct cred *cred = current_cred(), *pcred;
3592 bool match;
3593
3594 rcu_read_lock();
3595 pcred = __task_cred(p);
9c806aa0
EB
3596 match = (uid_eq(cred->euid, pcred->euid) ||
3597 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3598 rcu_read_unlock();
3599 return match;
3600}
3601
75381608
WL
3602static bool dl_param_changed(struct task_struct *p,
3603 const struct sched_attr *attr)
3604{
3605 struct sched_dl_entity *dl_se = &p->dl;
3606
3607 if (dl_se->dl_runtime != attr->sched_runtime ||
3608 dl_se->dl_deadline != attr->sched_deadline ||
3609 dl_se->dl_period != attr->sched_period ||
3610 dl_se->flags != attr->sched_flags)
3611 return true;
3612
3613 return false;
3614}
3615
d50dde5a
DF
3616static int __sched_setscheduler(struct task_struct *p,
3617 const struct sched_attr *attr,
dbc7f069 3618 bool user, bool pi)
1da177e4 3619{
383afd09
SR
3620 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3621 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3622 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3623 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3624 unsigned long flags;
83ab0aa0 3625 const struct sched_class *prev_class;
70b97a7f 3626 struct rq *rq;
ca94c442 3627 int reset_on_fork;
1da177e4 3628
66e5393a
SR
3629 /* may grab non-irq protected spin_locks */
3630 BUG_ON(in_interrupt());
1da177e4
LT
3631recheck:
3632 /* double check policy once rq lock held */
ca94c442
LP
3633 if (policy < 0) {
3634 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3635 policy = oldpolicy = p->policy;
ca94c442 3636 } else {
7479f3c9 3637 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3638
aab03e05
DF
3639 if (policy != SCHED_DEADLINE &&
3640 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3641 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3642 policy != SCHED_IDLE)
3643 return -EINVAL;
3644 }
3645
7479f3c9
PZ
3646 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3647 return -EINVAL;
3648
1da177e4
LT
3649 /*
3650 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3651 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3652 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3653 */
0bb040a4 3654 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3655 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3656 return -EINVAL;
aab03e05
DF
3657 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3658 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3659 return -EINVAL;
3660
37e4ab3f
OC
3661 /*
3662 * Allow unprivileged RT tasks to decrease priority:
3663 */
961ccddd 3664 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3665 if (fair_policy(policy)) {
d0ea0268 3666 if (attr->sched_nice < task_nice(p) &&
eaad4513 3667 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3668 return -EPERM;
3669 }
3670
e05606d3 3671 if (rt_policy(policy)) {
a44702e8
ON
3672 unsigned long rlim_rtprio =
3673 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3674
3675 /* can't set/change the rt policy */
3676 if (policy != p->policy && !rlim_rtprio)
3677 return -EPERM;
3678
3679 /* can't increase priority */
d50dde5a
DF
3680 if (attr->sched_priority > p->rt_priority &&
3681 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3682 return -EPERM;
3683 }
c02aa73b 3684
d44753b8
JL
3685 /*
3686 * Can't set/change SCHED_DEADLINE policy at all for now
3687 * (safest behavior); in the future we would like to allow
3688 * unprivileged DL tasks to increase their relative deadline
3689 * or reduce their runtime (both ways reducing utilization)
3690 */
3691 if (dl_policy(policy))
3692 return -EPERM;
3693
dd41f596 3694 /*
c02aa73b
DH
3695 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3696 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3697 */
c02aa73b 3698 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3699 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3700 return -EPERM;
3701 }
5fe1d75f 3702
37e4ab3f 3703 /* can't change other user's priorities */
c69e8d9c 3704 if (!check_same_owner(p))
37e4ab3f 3705 return -EPERM;
ca94c442
LP
3706
3707 /* Normal users shall not reset the sched_reset_on_fork flag */
3708 if (p->sched_reset_on_fork && !reset_on_fork)
3709 return -EPERM;
37e4ab3f 3710 }
1da177e4 3711
725aad24 3712 if (user) {
b0ae1981 3713 retval = security_task_setscheduler(p);
725aad24
JF
3714 if (retval)
3715 return retval;
3716 }
3717
b29739f9
IM
3718 /*
3719 * make sure no PI-waiters arrive (or leave) while we are
3720 * changing the priority of the task:
0122ec5b 3721 *
25985edc 3722 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3723 * runqueue lock must be held.
3724 */
0122ec5b 3725 rq = task_rq_lock(p, &flags);
dc61b1d6 3726
34f971f6
PZ
3727 /*
3728 * Changing the policy of the stop threads its a very bad idea
3729 */
3730 if (p == rq->stop) {
0122ec5b 3731 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3732 return -EINVAL;
3733 }
3734
a51e9198 3735 /*
d6b1e911
TG
3736 * If not changing anything there's no need to proceed further,
3737 * but store a possible modification of reset_on_fork.
a51e9198 3738 */
d50dde5a 3739 if (unlikely(policy == p->policy)) {
d0ea0268 3740 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3741 goto change;
3742 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3743 goto change;
75381608 3744 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3745 goto change;
d50dde5a 3746
d6b1e911 3747 p->sched_reset_on_fork = reset_on_fork;
45afb173 3748 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3749 return 0;
3750 }
d50dde5a 3751change:
a51e9198 3752
dc61b1d6 3753 if (user) {
332ac17e 3754#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3755 /*
3756 * Do not allow realtime tasks into groups that have no runtime
3757 * assigned.
3758 */
3759 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3760 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3761 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3762 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3763 return -EPERM;
3764 }
dc61b1d6 3765#endif
332ac17e
DF
3766#ifdef CONFIG_SMP
3767 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3768 cpumask_t *span = rq->rd->span;
332ac17e
DF
3769
3770 /*
3771 * Don't allow tasks with an affinity mask smaller than
3772 * the entire root_domain to become SCHED_DEADLINE. We
3773 * will also fail if there's no bandwidth available.
3774 */
e4099a5e
PZ
3775 if (!cpumask_subset(span, &p->cpus_allowed) ||
3776 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3777 task_rq_unlock(rq, p, &flags);
3778 return -EPERM;
3779 }
3780 }
3781#endif
3782 }
dc61b1d6 3783
1da177e4
LT
3784 /* recheck policy now with rq lock held */
3785 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3786 policy = oldpolicy = -1;
0122ec5b 3787 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3788 goto recheck;
3789 }
332ac17e
DF
3790
3791 /*
3792 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3793 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3794 * is available.
3795 */
e4099a5e 3796 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3797 task_rq_unlock(rq, p, &flags);
3798 return -EBUSY;
3799 }
3800
c365c292
TG
3801 p->sched_reset_on_fork = reset_on_fork;
3802 oldprio = p->prio;
3803
dbc7f069
PZ
3804 if (pi) {
3805 /*
3806 * Take priority boosted tasks into account. If the new
3807 * effective priority is unchanged, we just store the new
3808 * normal parameters and do not touch the scheduler class and
3809 * the runqueue. This will be done when the task deboost
3810 * itself.
3811 */
3812 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3813 if (new_effective_prio == oldprio) {
3814 __setscheduler_params(p, attr);
3815 task_rq_unlock(rq, p, &flags);
3816 return 0;
3817 }
c365c292
TG
3818 }
3819
da0c1e65 3820 queued = task_on_rq_queued(p);
051a1d1a 3821 running = task_current(rq, p);
da0c1e65 3822 if (queued)
4ca9b72b 3823 dequeue_task(rq, p, 0);
0e1f3483 3824 if (running)
f3cd1c4e 3825 put_prev_task(rq, p);
f6b53205 3826
83ab0aa0 3827 prev_class = p->sched_class;
dbc7f069 3828 __setscheduler(rq, p, attr, pi);
f6b53205 3829
0e1f3483
HS
3830 if (running)
3831 p->sched_class->set_curr_task(rq);
da0c1e65 3832 if (queued) {
81a44c54
TG
3833 /*
3834 * We enqueue to tail when the priority of a task is
3835 * increased (user space view).
3836 */
3837 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3838 }
cb469845 3839
da7a735e 3840 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 3841 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3842 task_rq_unlock(rq, p, &flags);
b29739f9 3843
dbc7f069
PZ
3844 if (pi)
3845 rt_mutex_adjust_pi(p);
95e02ca9 3846
4c9a4bc8
PZ
3847 /*
3848 * Run balance callbacks after we've adjusted the PI chain.
3849 */
3850 balance_callback(rq);
3851 preempt_enable();
3852
1da177e4
LT
3853 return 0;
3854}
961ccddd 3855
7479f3c9
PZ
3856static int _sched_setscheduler(struct task_struct *p, int policy,
3857 const struct sched_param *param, bool check)
3858{
3859 struct sched_attr attr = {
3860 .sched_policy = policy,
3861 .sched_priority = param->sched_priority,
3862 .sched_nice = PRIO_TO_NICE(p->static_prio),
3863 };
3864
c13db6b1
SR
3865 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3866 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3867 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3868 policy &= ~SCHED_RESET_ON_FORK;
3869 attr.sched_policy = policy;
3870 }
3871
dbc7f069 3872 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 3873}
961ccddd
RR
3874/**
3875 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3876 * @p: the task in question.
3877 * @policy: new policy.
3878 * @param: structure containing the new RT priority.
3879 *
e69f6186
YB
3880 * Return: 0 on success. An error code otherwise.
3881 *
961ccddd
RR
3882 * NOTE that the task may be already dead.
3883 */
3884int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3885 const struct sched_param *param)
961ccddd 3886{
7479f3c9 3887 return _sched_setscheduler(p, policy, param, true);
961ccddd 3888}
1da177e4
LT
3889EXPORT_SYMBOL_GPL(sched_setscheduler);
3890
d50dde5a
DF
3891int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3892{
dbc7f069 3893 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
3894}
3895EXPORT_SYMBOL_GPL(sched_setattr);
3896
961ccddd
RR
3897/**
3898 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3899 * @p: the task in question.
3900 * @policy: new policy.
3901 * @param: structure containing the new RT priority.
3902 *
3903 * Just like sched_setscheduler, only don't bother checking if the
3904 * current context has permission. For example, this is needed in
3905 * stop_machine(): we create temporary high priority worker threads,
3906 * but our caller might not have that capability.
e69f6186
YB
3907 *
3908 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3909 */
3910int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3911 const struct sched_param *param)
961ccddd 3912{
7479f3c9 3913 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3914}
3915
95cdf3b7
IM
3916static int
3917do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3918{
1da177e4
LT
3919 struct sched_param lparam;
3920 struct task_struct *p;
36c8b586 3921 int retval;
1da177e4
LT
3922
3923 if (!param || pid < 0)
3924 return -EINVAL;
3925 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3926 return -EFAULT;
5fe1d75f
ON
3927
3928 rcu_read_lock();
3929 retval = -ESRCH;
1da177e4 3930 p = find_process_by_pid(pid);
5fe1d75f
ON
3931 if (p != NULL)
3932 retval = sched_setscheduler(p, policy, &lparam);
3933 rcu_read_unlock();
36c8b586 3934
1da177e4
LT
3935 return retval;
3936}
3937
d50dde5a
DF
3938/*
3939 * Mimics kernel/events/core.c perf_copy_attr().
3940 */
3941static int sched_copy_attr(struct sched_attr __user *uattr,
3942 struct sched_attr *attr)
3943{
3944 u32 size;
3945 int ret;
3946
3947 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3948 return -EFAULT;
3949
3950 /*
3951 * zero the full structure, so that a short copy will be nice.
3952 */
3953 memset(attr, 0, sizeof(*attr));
3954
3955 ret = get_user(size, &uattr->size);
3956 if (ret)
3957 return ret;
3958
3959 if (size > PAGE_SIZE) /* silly large */
3960 goto err_size;
3961
3962 if (!size) /* abi compat */
3963 size = SCHED_ATTR_SIZE_VER0;
3964
3965 if (size < SCHED_ATTR_SIZE_VER0)
3966 goto err_size;
3967
3968 /*
3969 * If we're handed a bigger struct than we know of,
3970 * ensure all the unknown bits are 0 - i.e. new
3971 * user-space does not rely on any kernel feature
3972 * extensions we dont know about yet.
3973 */
3974 if (size > sizeof(*attr)) {
3975 unsigned char __user *addr;
3976 unsigned char __user *end;
3977 unsigned char val;
3978
3979 addr = (void __user *)uattr + sizeof(*attr);
3980 end = (void __user *)uattr + size;
3981
3982 for (; addr < end; addr++) {
3983 ret = get_user(val, addr);
3984 if (ret)
3985 return ret;
3986 if (val)
3987 goto err_size;
3988 }
3989 size = sizeof(*attr);
3990 }
3991
3992 ret = copy_from_user(attr, uattr, size);
3993 if (ret)
3994 return -EFAULT;
3995
3996 /*
3997 * XXX: do we want to be lenient like existing syscalls; or do we want
3998 * to be strict and return an error on out-of-bounds values?
3999 */
75e45d51 4000 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4001
e78c7bca 4002 return 0;
d50dde5a
DF
4003
4004err_size:
4005 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4006 return -E2BIG;
d50dde5a
DF
4007}
4008
1da177e4
LT
4009/**
4010 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4011 * @pid: the pid in question.
4012 * @policy: new policy.
4013 * @param: structure containing the new RT priority.
e69f6186
YB
4014 *
4015 * Return: 0 on success. An error code otherwise.
1da177e4 4016 */
5add95d4
HC
4017SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4018 struct sched_param __user *, param)
1da177e4 4019{
c21761f1
JB
4020 /* negative values for policy are not valid */
4021 if (policy < 0)
4022 return -EINVAL;
4023
1da177e4
LT
4024 return do_sched_setscheduler(pid, policy, param);
4025}
4026
4027/**
4028 * sys_sched_setparam - set/change the RT priority of a thread
4029 * @pid: the pid in question.
4030 * @param: structure containing the new RT priority.
e69f6186
YB
4031 *
4032 * Return: 0 on success. An error code otherwise.
1da177e4 4033 */
5add95d4 4034SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4035{
c13db6b1 4036 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4037}
4038
d50dde5a
DF
4039/**
4040 * sys_sched_setattr - same as above, but with extended sched_attr
4041 * @pid: the pid in question.
5778fccf 4042 * @uattr: structure containing the extended parameters.
db66d756 4043 * @flags: for future extension.
d50dde5a 4044 */
6d35ab48
PZ
4045SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4046 unsigned int, flags)
d50dde5a
DF
4047{
4048 struct sched_attr attr;
4049 struct task_struct *p;
4050 int retval;
4051
6d35ab48 4052 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4053 return -EINVAL;
4054
143cf23d
MK
4055 retval = sched_copy_attr(uattr, &attr);
4056 if (retval)
4057 return retval;
d50dde5a 4058
b14ed2c2 4059 if ((int)attr.sched_policy < 0)
dbdb2275 4060 return -EINVAL;
d50dde5a
DF
4061
4062 rcu_read_lock();
4063 retval = -ESRCH;
4064 p = find_process_by_pid(pid);
4065 if (p != NULL)
4066 retval = sched_setattr(p, &attr);
4067 rcu_read_unlock();
4068
4069 return retval;
4070}
4071
1da177e4
LT
4072/**
4073 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4074 * @pid: the pid in question.
e69f6186
YB
4075 *
4076 * Return: On success, the policy of the thread. Otherwise, a negative error
4077 * code.
1da177e4 4078 */
5add95d4 4079SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4080{
36c8b586 4081 struct task_struct *p;
3a5c359a 4082 int retval;
1da177e4
LT
4083
4084 if (pid < 0)
3a5c359a 4085 return -EINVAL;
1da177e4
LT
4086
4087 retval = -ESRCH;
5fe85be0 4088 rcu_read_lock();
1da177e4
LT
4089 p = find_process_by_pid(pid);
4090 if (p) {
4091 retval = security_task_getscheduler(p);
4092 if (!retval)
ca94c442
LP
4093 retval = p->policy
4094 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4095 }
5fe85be0 4096 rcu_read_unlock();
1da177e4
LT
4097 return retval;
4098}
4099
4100/**
ca94c442 4101 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4102 * @pid: the pid in question.
4103 * @param: structure containing the RT priority.
e69f6186
YB
4104 *
4105 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4106 * code.
1da177e4 4107 */
5add95d4 4108SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4109{
ce5f7f82 4110 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4111 struct task_struct *p;
3a5c359a 4112 int retval;
1da177e4
LT
4113
4114 if (!param || pid < 0)
3a5c359a 4115 return -EINVAL;
1da177e4 4116
5fe85be0 4117 rcu_read_lock();
1da177e4
LT
4118 p = find_process_by_pid(pid);
4119 retval = -ESRCH;
4120 if (!p)
4121 goto out_unlock;
4122
4123 retval = security_task_getscheduler(p);
4124 if (retval)
4125 goto out_unlock;
4126
ce5f7f82
PZ
4127 if (task_has_rt_policy(p))
4128 lp.sched_priority = p->rt_priority;
5fe85be0 4129 rcu_read_unlock();
1da177e4
LT
4130
4131 /*
4132 * This one might sleep, we cannot do it with a spinlock held ...
4133 */
4134 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4135
1da177e4
LT
4136 return retval;
4137
4138out_unlock:
5fe85be0 4139 rcu_read_unlock();
1da177e4
LT
4140 return retval;
4141}
4142
d50dde5a
DF
4143static int sched_read_attr(struct sched_attr __user *uattr,
4144 struct sched_attr *attr,
4145 unsigned int usize)
4146{
4147 int ret;
4148
4149 if (!access_ok(VERIFY_WRITE, uattr, usize))
4150 return -EFAULT;
4151
4152 /*
4153 * If we're handed a smaller struct than we know of,
4154 * ensure all the unknown bits are 0 - i.e. old
4155 * user-space does not get uncomplete information.
4156 */
4157 if (usize < sizeof(*attr)) {
4158 unsigned char *addr;
4159 unsigned char *end;
4160
4161 addr = (void *)attr + usize;
4162 end = (void *)attr + sizeof(*attr);
4163
4164 for (; addr < end; addr++) {
4165 if (*addr)
22400674 4166 return -EFBIG;
d50dde5a
DF
4167 }
4168
4169 attr->size = usize;
4170 }
4171
4efbc454 4172 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4173 if (ret)
4174 return -EFAULT;
4175
22400674 4176 return 0;
d50dde5a
DF
4177}
4178
4179/**
aab03e05 4180 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4181 * @pid: the pid in question.
5778fccf 4182 * @uattr: structure containing the extended parameters.
d50dde5a 4183 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4184 * @flags: for future extension.
d50dde5a 4185 */
6d35ab48
PZ
4186SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4187 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4188{
4189 struct sched_attr attr = {
4190 .size = sizeof(struct sched_attr),
4191 };
4192 struct task_struct *p;
4193 int retval;
4194
4195 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4196 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4197 return -EINVAL;
4198
4199 rcu_read_lock();
4200 p = find_process_by_pid(pid);
4201 retval = -ESRCH;
4202 if (!p)
4203 goto out_unlock;
4204
4205 retval = security_task_getscheduler(p);
4206 if (retval)
4207 goto out_unlock;
4208
4209 attr.sched_policy = p->policy;
7479f3c9
PZ
4210 if (p->sched_reset_on_fork)
4211 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4212 if (task_has_dl_policy(p))
4213 __getparam_dl(p, &attr);
4214 else if (task_has_rt_policy(p))
d50dde5a
DF
4215 attr.sched_priority = p->rt_priority;
4216 else
d0ea0268 4217 attr.sched_nice = task_nice(p);
d50dde5a
DF
4218
4219 rcu_read_unlock();
4220
4221 retval = sched_read_attr(uattr, &attr, size);
4222 return retval;
4223
4224out_unlock:
4225 rcu_read_unlock();
4226 return retval;
4227}
4228
96f874e2 4229long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4230{
5a16f3d3 4231 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4232 struct task_struct *p;
4233 int retval;
1da177e4 4234
23f5d142 4235 rcu_read_lock();
1da177e4
LT
4236
4237 p = find_process_by_pid(pid);
4238 if (!p) {
23f5d142 4239 rcu_read_unlock();
1da177e4
LT
4240 return -ESRCH;
4241 }
4242
23f5d142 4243 /* Prevent p going away */
1da177e4 4244 get_task_struct(p);
23f5d142 4245 rcu_read_unlock();
1da177e4 4246
14a40ffc
TH
4247 if (p->flags & PF_NO_SETAFFINITY) {
4248 retval = -EINVAL;
4249 goto out_put_task;
4250 }
5a16f3d3
RR
4251 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4252 retval = -ENOMEM;
4253 goto out_put_task;
4254 }
4255 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4256 retval = -ENOMEM;
4257 goto out_free_cpus_allowed;
4258 }
1da177e4 4259 retval = -EPERM;
4c44aaaf
EB
4260 if (!check_same_owner(p)) {
4261 rcu_read_lock();
4262 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4263 rcu_read_unlock();
16303ab2 4264 goto out_free_new_mask;
4c44aaaf
EB
4265 }
4266 rcu_read_unlock();
4267 }
1da177e4 4268
b0ae1981 4269 retval = security_task_setscheduler(p);
e7834f8f 4270 if (retval)
16303ab2 4271 goto out_free_new_mask;
e7834f8f 4272
e4099a5e
PZ
4273
4274 cpuset_cpus_allowed(p, cpus_allowed);
4275 cpumask_and(new_mask, in_mask, cpus_allowed);
4276
332ac17e
DF
4277 /*
4278 * Since bandwidth control happens on root_domain basis,
4279 * if admission test is enabled, we only admit -deadline
4280 * tasks allowed to run on all the CPUs in the task's
4281 * root_domain.
4282 */
4283#ifdef CONFIG_SMP
f1e3a093
KT
4284 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4285 rcu_read_lock();
4286 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4287 retval = -EBUSY;
f1e3a093 4288 rcu_read_unlock();
16303ab2 4289 goto out_free_new_mask;
332ac17e 4290 }
f1e3a093 4291 rcu_read_unlock();
332ac17e
DF
4292 }
4293#endif
49246274 4294again:
5a16f3d3 4295 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4296
8707d8b8 4297 if (!retval) {
5a16f3d3
RR
4298 cpuset_cpus_allowed(p, cpus_allowed);
4299 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4300 /*
4301 * We must have raced with a concurrent cpuset
4302 * update. Just reset the cpus_allowed to the
4303 * cpuset's cpus_allowed
4304 */
5a16f3d3 4305 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4306 goto again;
4307 }
4308 }
16303ab2 4309out_free_new_mask:
5a16f3d3
RR
4310 free_cpumask_var(new_mask);
4311out_free_cpus_allowed:
4312 free_cpumask_var(cpus_allowed);
4313out_put_task:
1da177e4 4314 put_task_struct(p);
1da177e4
LT
4315 return retval;
4316}
4317
4318static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4319 struct cpumask *new_mask)
1da177e4 4320{
96f874e2
RR
4321 if (len < cpumask_size())
4322 cpumask_clear(new_mask);
4323 else if (len > cpumask_size())
4324 len = cpumask_size();
4325
1da177e4
LT
4326 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4327}
4328
4329/**
4330 * sys_sched_setaffinity - set the cpu affinity of a process
4331 * @pid: pid of the process
4332 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4333 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4334 *
4335 * Return: 0 on success. An error code otherwise.
1da177e4 4336 */
5add95d4
HC
4337SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4338 unsigned long __user *, user_mask_ptr)
1da177e4 4339{
5a16f3d3 4340 cpumask_var_t new_mask;
1da177e4
LT
4341 int retval;
4342
5a16f3d3
RR
4343 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4344 return -ENOMEM;
1da177e4 4345
5a16f3d3
RR
4346 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4347 if (retval == 0)
4348 retval = sched_setaffinity(pid, new_mask);
4349 free_cpumask_var(new_mask);
4350 return retval;
1da177e4
LT
4351}
4352
96f874e2 4353long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4354{
36c8b586 4355 struct task_struct *p;
31605683 4356 unsigned long flags;
1da177e4 4357 int retval;
1da177e4 4358
23f5d142 4359 rcu_read_lock();
1da177e4
LT
4360
4361 retval = -ESRCH;
4362 p = find_process_by_pid(pid);
4363 if (!p)
4364 goto out_unlock;
4365
e7834f8f
DQ
4366 retval = security_task_getscheduler(p);
4367 if (retval)
4368 goto out_unlock;
4369
013fdb80 4370 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4371 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4372 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4373
4374out_unlock:
23f5d142 4375 rcu_read_unlock();
1da177e4 4376
9531b62f 4377 return retval;
1da177e4
LT
4378}
4379
4380/**
4381 * sys_sched_getaffinity - get the cpu affinity of a process
4382 * @pid: pid of the process
4383 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4384 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4385 *
4386 * Return: 0 on success. An error code otherwise.
1da177e4 4387 */
5add95d4
HC
4388SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4389 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4390{
4391 int ret;
f17c8607 4392 cpumask_var_t mask;
1da177e4 4393
84fba5ec 4394 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4395 return -EINVAL;
4396 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4397 return -EINVAL;
4398
f17c8607
RR
4399 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4400 return -ENOMEM;
1da177e4 4401
f17c8607
RR
4402 ret = sched_getaffinity(pid, mask);
4403 if (ret == 0) {
8bc037fb 4404 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4405
4406 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4407 ret = -EFAULT;
4408 else
cd3d8031 4409 ret = retlen;
f17c8607
RR
4410 }
4411 free_cpumask_var(mask);
1da177e4 4412
f17c8607 4413 return ret;
1da177e4
LT
4414}
4415
4416/**
4417 * sys_sched_yield - yield the current processor to other threads.
4418 *
dd41f596
IM
4419 * This function yields the current CPU to other tasks. If there are no
4420 * other threads running on this CPU then this function will return.
e69f6186
YB
4421 *
4422 * Return: 0.
1da177e4 4423 */
5add95d4 4424SYSCALL_DEFINE0(sched_yield)
1da177e4 4425{
70b97a7f 4426 struct rq *rq = this_rq_lock();
1da177e4 4427
2d72376b 4428 schedstat_inc(rq, yld_count);
4530d7ab 4429 current->sched_class->yield_task(rq);
1da177e4
LT
4430
4431 /*
4432 * Since we are going to call schedule() anyway, there's
4433 * no need to preempt or enable interrupts:
4434 */
4435 __release(rq->lock);
8a25d5de 4436 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4437 do_raw_spin_unlock(&rq->lock);
ba74c144 4438 sched_preempt_enable_no_resched();
1da177e4
LT
4439
4440 schedule();
4441
4442 return 0;
4443}
4444
02b67cc3 4445int __sched _cond_resched(void)
1da177e4 4446{
d86ee480 4447 if (should_resched()) {
a18b5d01 4448 preempt_schedule_common();
1da177e4
LT
4449 return 1;
4450 }
4451 return 0;
4452}
02b67cc3 4453EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4454
4455/*
613afbf8 4456 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4457 * call schedule, and on return reacquire the lock.
4458 *
41a2d6cf 4459 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4460 * operations here to prevent schedule() from being called twice (once via
4461 * spin_unlock(), once by hand).
4462 */
613afbf8 4463int __cond_resched_lock(spinlock_t *lock)
1da177e4 4464{
d86ee480 4465 int resched = should_resched();
6df3cecb
JK
4466 int ret = 0;
4467
f607c668
PZ
4468 lockdep_assert_held(lock);
4469
4a81e832 4470 if (spin_needbreak(lock) || resched) {
1da177e4 4471 spin_unlock(lock);
d86ee480 4472 if (resched)
a18b5d01 4473 preempt_schedule_common();
95c354fe
NP
4474 else
4475 cpu_relax();
6df3cecb 4476 ret = 1;
1da177e4 4477 spin_lock(lock);
1da177e4 4478 }
6df3cecb 4479 return ret;
1da177e4 4480}
613afbf8 4481EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4482
613afbf8 4483int __sched __cond_resched_softirq(void)
1da177e4
LT
4484{
4485 BUG_ON(!in_softirq());
4486
d86ee480 4487 if (should_resched()) {
98d82567 4488 local_bh_enable();
a18b5d01 4489 preempt_schedule_common();
1da177e4
LT
4490 local_bh_disable();
4491 return 1;
4492 }
4493 return 0;
4494}
613afbf8 4495EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4496
1da177e4
LT
4497/**
4498 * yield - yield the current processor to other threads.
4499 *
8e3fabfd
PZ
4500 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4501 *
4502 * The scheduler is at all times free to pick the calling task as the most
4503 * eligible task to run, if removing the yield() call from your code breaks
4504 * it, its already broken.
4505 *
4506 * Typical broken usage is:
4507 *
4508 * while (!event)
4509 * yield();
4510 *
4511 * where one assumes that yield() will let 'the other' process run that will
4512 * make event true. If the current task is a SCHED_FIFO task that will never
4513 * happen. Never use yield() as a progress guarantee!!
4514 *
4515 * If you want to use yield() to wait for something, use wait_event().
4516 * If you want to use yield() to be 'nice' for others, use cond_resched().
4517 * If you still want to use yield(), do not!
1da177e4
LT
4518 */
4519void __sched yield(void)
4520{
4521 set_current_state(TASK_RUNNING);
4522 sys_sched_yield();
4523}
1da177e4
LT
4524EXPORT_SYMBOL(yield);
4525
d95f4122
MG
4526/**
4527 * yield_to - yield the current processor to another thread in
4528 * your thread group, or accelerate that thread toward the
4529 * processor it's on.
16addf95
RD
4530 * @p: target task
4531 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4532 *
4533 * It's the caller's job to ensure that the target task struct
4534 * can't go away on us before we can do any checks.
4535 *
e69f6186 4536 * Return:
7b270f60
PZ
4537 * true (>0) if we indeed boosted the target task.
4538 * false (0) if we failed to boost the target.
4539 * -ESRCH if there's no task to yield to.
d95f4122 4540 */
fa93384f 4541int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4542{
4543 struct task_struct *curr = current;
4544 struct rq *rq, *p_rq;
4545 unsigned long flags;
c3c18640 4546 int yielded = 0;
d95f4122
MG
4547
4548 local_irq_save(flags);
4549 rq = this_rq();
4550
4551again:
4552 p_rq = task_rq(p);
7b270f60
PZ
4553 /*
4554 * If we're the only runnable task on the rq and target rq also
4555 * has only one task, there's absolutely no point in yielding.
4556 */
4557 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4558 yielded = -ESRCH;
4559 goto out_irq;
4560 }
4561
d95f4122 4562 double_rq_lock(rq, p_rq);
39e24d8f 4563 if (task_rq(p) != p_rq) {
d95f4122
MG
4564 double_rq_unlock(rq, p_rq);
4565 goto again;
4566 }
4567
4568 if (!curr->sched_class->yield_to_task)
7b270f60 4569 goto out_unlock;
d95f4122
MG
4570
4571 if (curr->sched_class != p->sched_class)
7b270f60 4572 goto out_unlock;
d95f4122
MG
4573
4574 if (task_running(p_rq, p) || p->state)
7b270f60 4575 goto out_unlock;
d95f4122
MG
4576
4577 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4578 if (yielded) {
d95f4122 4579 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4580 /*
4581 * Make p's CPU reschedule; pick_next_entity takes care of
4582 * fairness.
4583 */
4584 if (preempt && rq != p_rq)
8875125e 4585 resched_curr(p_rq);
6d1cafd8 4586 }
d95f4122 4587
7b270f60 4588out_unlock:
d95f4122 4589 double_rq_unlock(rq, p_rq);
7b270f60 4590out_irq:
d95f4122
MG
4591 local_irq_restore(flags);
4592
7b270f60 4593 if (yielded > 0)
d95f4122
MG
4594 schedule();
4595
4596 return yielded;
4597}
4598EXPORT_SYMBOL_GPL(yield_to);
4599
1da177e4 4600/*
41a2d6cf 4601 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4602 * that process accounting knows that this is a task in IO wait state.
1da177e4 4603 */
1da177e4
LT
4604long __sched io_schedule_timeout(long timeout)
4605{
9cff8ade
N
4606 int old_iowait = current->in_iowait;
4607 struct rq *rq;
1da177e4
LT
4608 long ret;
4609
9cff8ade 4610 current->in_iowait = 1;
10d784ea 4611 blk_schedule_flush_plug(current);
9cff8ade 4612
0ff92245 4613 delayacct_blkio_start();
9cff8ade 4614 rq = raw_rq();
1da177e4
LT
4615 atomic_inc(&rq->nr_iowait);
4616 ret = schedule_timeout(timeout);
9cff8ade 4617 current->in_iowait = old_iowait;
1da177e4 4618 atomic_dec(&rq->nr_iowait);
0ff92245 4619 delayacct_blkio_end();
9cff8ade 4620
1da177e4
LT
4621 return ret;
4622}
9cff8ade 4623EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4624
4625/**
4626 * sys_sched_get_priority_max - return maximum RT priority.
4627 * @policy: scheduling class.
4628 *
e69f6186
YB
4629 * Return: On success, this syscall returns the maximum
4630 * rt_priority that can be used by a given scheduling class.
4631 * On failure, a negative error code is returned.
1da177e4 4632 */
5add95d4 4633SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4634{
4635 int ret = -EINVAL;
4636
4637 switch (policy) {
4638 case SCHED_FIFO:
4639 case SCHED_RR:
4640 ret = MAX_USER_RT_PRIO-1;
4641 break;
aab03e05 4642 case SCHED_DEADLINE:
1da177e4 4643 case SCHED_NORMAL:
b0a9499c 4644 case SCHED_BATCH:
dd41f596 4645 case SCHED_IDLE:
1da177e4
LT
4646 ret = 0;
4647 break;
4648 }
4649 return ret;
4650}
4651
4652/**
4653 * sys_sched_get_priority_min - return minimum RT priority.
4654 * @policy: scheduling class.
4655 *
e69f6186
YB
4656 * Return: On success, this syscall returns the minimum
4657 * rt_priority that can be used by a given scheduling class.
4658 * On failure, a negative error code is returned.
1da177e4 4659 */
5add95d4 4660SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4661{
4662 int ret = -EINVAL;
4663
4664 switch (policy) {
4665 case SCHED_FIFO:
4666 case SCHED_RR:
4667 ret = 1;
4668 break;
aab03e05 4669 case SCHED_DEADLINE:
1da177e4 4670 case SCHED_NORMAL:
b0a9499c 4671 case SCHED_BATCH:
dd41f596 4672 case SCHED_IDLE:
1da177e4
LT
4673 ret = 0;
4674 }
4675 return ret;
4676}
4677
4678/**
4679 * sys_sched_rr_get_interval - return the default timeslice of a process.
4680 * @pid: pid of the process.
4681 * @interval: userspace pointer to the timeslice value.
4682 *
4683 * this syscall writes the default timeslice value of a given process
4684 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4685 *
4686 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4687 * an error code.
1da177e4 4688 */
17da2bd9 4689SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4690 struct timespec __user *, interval)
1da177e4 4691{
36c8b586 4692 struct task_struct *p;
a4ec24b4 4693 unsigned int time_slice;
dba091b9
TG
4694 unsigned long flags;
4695 struct rq *rq;
3a5c359a 4696 int retval;
1da177e4 4697 struct timespec t;
1da177e4
LT
4698
4699 if (pid < 0)
3a5c359a 4700 return -EINVAL;
1da177e4
LT
4701
4702 retval = -ESRCH;
1a551ae7 4703 rcu_read_lock();
1da177e4
LT
4704 p = find_process_by_pid(pid);
4705 if (!p)
4706 goto out_unlock;
4707
4708 retval = security_task_getscheduler(p);
4709 if (retval)
4710 goto out_unlock;
4711
dba091b9 4712 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4713 time_slice = 0;
4714 if (p->sched_class->get_rr_interval)
4715 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4716 task_rq_unlock(rq, p, &flags);
a4ec24b4 4717
1a551ae7 4718 rcu_read_unlock();
a4ec24b4 4719 jiffies_to_timespec(time_slice, &t);
1da177e4 4720 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4721 return retval;
3a5c359a 4722
1da177e4 4723out_unlock:
1a551ae7 4724 rcu_read_unlock();
1da177e4
LT
4725 return retval;
4726}
4727
7c731e0a 4728static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4729
82a1fcb9 4730void sched_show_task(struct task_struct *p)
1da177e4 4731{
1da177e4 4732 unsigned long free = 0;
4e79752c 4733 int ppid;
1f8a7633 4734 unsigned long state = p->state;
1da177e4 4735
1f8a7633
TH
4736 if (state)
4737 state = __ffs(state) + 1;
28d0686c 4738 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4739 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4740#if BITS_PER_LONG == 32
1da177e4 4741 if (state == TASK_RUNNING)
3df0fc5b 4742 printk(KERN_CONT " running ");
1da177e4 4743 else
3df0fc5b 4744 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4745#else
4746 if (state == TASK_RUNNING)
3df0fc5b 4747 printk(KERN_CONT " running task ");
1da177e4 4748 else
3df0fc5b 4749 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4750#endif
4751#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4752 free = stack_not_used(p);
1da177e4 4753#endif
a90e984c 4754 ppid = 0;
4e79752c 4755 rcu_read_lock();
a90e984c
ON
4756 if (pid_alive(p))
4757 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4758 rcu_read_unlock();
3df0fc5b 4759 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4760 task_pid_nr(p), ppid,
aa47b7e0 4761 (unsigned long)task_thread_info(p)->flags);
1da177e4 4762
3d1cb205 4763 print_worker_info(KERN_INFO, p);
5fb5e6de 4764 show_stack(p, NULL);
1da177e4
LT
4765}
4766
e59e2ae2 4767void show_state_filter(unsigned long state_filter)
1da177e4 4768{
36c8b586 4769 struct task_struct *g, *p;
1da177e4 4770
4bd77321 4771#if BITS_PER_LONG == 32
3df0fc5b
PZ
4772 printk(KERN_INFO
4773 " task PC stack pid father\n");
1da177e4 4774#else
3df0fc5b
PZ
4775 printk(KERN_INFO
4776 " task PC stack pid father\n");
1da177e4 4777#endif
510f5acc 4778 rcu_read_lock();
5d07f420 4779 for_each_process_thread(g, p) {
1da177e4
LT
4780 /*
4781 * reset the NMI-timeout, listing all files on a slow
25985edc 4782 * console might take a lot of time:
1da177e4
LT
4783 */
4784 touch_nmi_watchdog();
39bc89fd 4785 if (!state_filter || (p->state & state_filter))
82a1fcb9 4786 sched_show_task(p);
5d07f420 4787 }
1da177e4 4788
04c9167f
JF
4789 touch_all_softlockup_watchdogs();
4790
dd41f596
IM
4791#ifdef CONFIG_SCHED_DEBUG
4792 sysrq_sched_debug_show();
4793#endif
510f5acc 4794 rcu_read_unlock();
e59e2ae2
IM
4795 /*
4796 * Only show locks if all tasks are dumped:
4797 */
93335a21 4798 if (!state_filter)
e59e2ae2 4799 debug_show_all_locks();
1da177e4
LT
4800}
4801
0db0628d 4802void init_idle_bootup_task(struct task_struct *idle)
1df21055 4803{
dd41f596 4804 idle->sched_class = &idle_sched_class;
1df21055
IM
4805}
4806
f340c0d1
IM
4807/**
4808 * init_idle - set up an idle thread for a given CPU
4809 * @idle: task in question
4810 * @cpu: cpu the idle task belongs to
4811 *
4812 * NOTE: this function does not set the idle thread's NEED_RESCHED
4813 * flag, to make booting more robust.
4814 */
0db0628d 4815void init_idle(struct task_struct *idle, int cpu)
1da177e4 4816{
70b97a7f 4817 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4818 unsigned long flags;
4819
05fa785c 4820 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4821
5e1576ed 4822 __sched_fork(0, idle);
06b83b5f 4823 idle->state = TASK_RUNNING;
dd41f596
IM
4824 idle->se.exec_start = sched_clock();
4825
1e1b6c51 4826 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4827 /*
4828 * We're having a chicken and egg problem, even though we are
4829 * holding rq->lock, the cpu isn't yet set to this cpu so the
4830 * lockdep check in task_group() will fail.
4831 *
4832 * Similar case to sched_fork(). / Alternatively we could
4833 * use task_rq_lock() here and obtain the other rq->lock.
4834 *
4835 * Silence PROVE_RCU
4836 */
4837 rcu_read_lock();
dd41f596 4838 __set_task_cpu(idle, cpu);
6506cf6c 4839 rcu_read_unlock();
1da177e4 4840
1da177e4 4841 rq->curr = rq->idle = idle;
da0c1e65 4842 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4843#if defined(CONFIG_SMP)
4844 idle->on_cpu = 1;
4866cde0 4845#endif
05fa785c 4846 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4847
4848 /* Set the preempt count _outside_ the spinlocks! */
01028747 4849 init_idle_preempt_count(idle, cpu);
55cd5340 4850
dd41f596
IM
4851 /*
4852 * The idle tasks have their own, simple scheduling class:
4853 */
4854 idle->sched_class = &idle_sched_class;
868baf07 4855 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4856 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4857#if defined(CONFIG_SMP)
4858 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4859#endif
19978ca6
IM
4860}
4861
f82f8042
JL
4862int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4863 const struct cpumask *trial)
4864{
4865 int ret = 1, trial_cpus;
4866 struct dl_bw *cur_dl_b;
4867 unsigned long flags;
4868
bb2bc55a
MG
4869 if (!cpumask_weight(cur))
4870 return ret;
4871
75e23e49 4872 rcu_read_lock_sched();
f82f8042
JL
4873 cur_dl_b = dl_bw_of(cpumask_any(cur));
4874 trial_cpus = cpumask_weight(trial);
4875
4876 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4877 if (cur_dl_b->bw != -1 &&
4878 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4879 ret = 0;
4880 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4881 rcu_read_unlock_sched();
f82f8042
JL
4882
4883 return ret;
4884}
4885
7f51412a
JL
4886int task_can_attach(struct task_struct *p,
4887 const struct cpumask *cs_cpus_allowed)
4888{
4889 int ret = 0;
4890
4891 /*
4892 * Kthreads which disallow setaffinity shouldn't be moved
4893 * to a new cpuset; we don't want to change their cpu
4894 * affinity and isolating such threads by their set of
4895 * allowed nodes is unnecessary. Thus, cpusets are not
4896 * applicable for such threads. This prevents checking for
4897 * success of set_cpus_allowed_ptr() on all attached tasks
4898 * before cpus_allowed may be changed.
4899 */
4900 if (p->flags & PF_NO_SETAFFINITY) {
4901 ret = -EINVAL;
4902 goto out;
4903 }
4904
4905#ifdef CONFIG_SMP
4906 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4907 cs_cpus_allowed)) {
4908 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4909 cs_cpus_allowed);
75e23e49 4910 struct dl_bw *dl_b;
7f51412a
JL
4911 bool overflow;
4912 int cpus;
4913 unsigned long flags;
4914
75e23e49
JL
4915 rcu_read_lock_sched();
4916 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4917 raw_spin_lock_irqsave(&dl_b->lock, flags);
4918 cpus = dl_bw_cpus(dest_cpu);
4919 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4920 if (overflow)
4921 ret = -EBUSY;
4922 else {
4923 /*
4924 * We reserve space for this task in the destination
4925 * root_domain, as we can't fail after this point.
4926 * We will free resources in the source root_domain
4927 * later on (see set_cpus_allowed_dl()).
4928 */
4929 __dl_add(dl_b, p->dl.dl_bw);
4930 }
4931 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4932 rcu_read_unlock_sched();
7f51412a
JL
4933
4934 }
4935#endif
4936out:
4937 return ret;
4938}
4939
1da177e4 4940#ifdef CONFIG_SMP
1da177e4 4941
e6628d5b
MG
4942#ifdef CONFIG_NUMA_BALANCING
4943/* Migrate current task p to target_cpu */
4944int migrate_task_to(struct task_struct *p, int target_cpu)
4945{
4946 struct migration_arg arg = { p, target_cpu };
4947 int curr_cpu = task_cpu(p);
4948
4949 if (curr_cpu == target_cpu)
4950 return 0;
4951
4952 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4953 return -EINVAL;
4954
4955 /* TODO: This is not properly updating schedstats */
4956
286549dc 4957 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4958 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4959}
0ec8aa00
PZ
4960
4961/*
4962 * Requeue a task on a given node and accurately track the number of NUMA
4963 * tasks on the runqueues
4964 */
4965void sched_setnuma(struct task_struct *p, int nid)
4966{
4967 struct rq *rq;
4968 unsigned long flags;
da0c1e65 4969 bool queued, running;
0ec8aa00
PZ
4970
4971 rq = task_rq_lock(p, &flags);
da0c1e65 4972 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4973 running = task_current(rq, p);
4974
da0c1e65 4975 if (queued)
0ec8aa00
PZ
4976 dequeue_task(rq, p, 0);
4977 if (running)
f3cd1c4e 4978 put_prev_task(rq, p);
0ec8aa00
PZ
4979
4980 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4981
4982 if (running)
4983 p->sched_class->set_curr_task(rq);
da0c1e65 4984 if (queued)
0ec8aa00
PZ
4985 enqueue_task(rq, p, 0);
4986 task_rq_unlock(rq, p, &flags);
4987}
5cc389bc 4988#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 4989
1da177e4 4990#ifdef CONFIG_HOTPLUG_CPU
054b9108 4991/*
48c5ccae
PZ
4992 * Ensures that the idle task is using init_mm right before its cpu goes
4993 * offline.
054b9108 4994 */
48c5ccae 4995void idle_task_exit(void)
1da177e4 4996{
48c5ccae 4997 struct mm_struct *mm = current->active_mm;
e76bd8d9 4998
48c5ccae 4999 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5000
a53efe5f 5001 if (mm != &init_mm) {
48c5ccae 5002 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5003 finish_arch_post_lock_switch();
5004 }
48c5ccae 5005 mmdrop(mm);
1da177e4
LT
5006}
5007
5008/*
5d180232
PZ
5009 * Since this CPU is going 'away' for a while, fold any nr_active delta
5010 * we might have. Assumes we're called after migrate_tasks() so that the
5011 * nr_active count is stable.
5012 *
5013 * Also see the comment "Global load-average calculations".
1da177e4 5014 */
5d180232 5015static void calc_load_migrate(struct rq *rq)
1da177e4 5016{
5d180232
PZ
5017 long delta = calc_load_fold_active(rq);
5018 if (delta)
5019 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5020}
5021
3f1d2a31
PZ
5022static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5023{
5024}
5025
5026static const struct sched_class fake_sched_class = {
5027 .put_prev_task = put_prev_task_fake,
5028};
5029
5030static struct task_struct fake_task = {
5031 /*
5032 * Avoid pull_{rt,dl}_task()
5033 */
5034 .prio = MAX_PRIO + 1,
5035 .sched_class = &fake_sched_class,
5036};
5037
48f24c4d 5038/*
48c5ccae
PZ
5039 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5040 * try_to_wake_up()->select_task_rq().
5041 *
5042 * Called with rq->lock held even though we'er in stop_machine() and
5043 * there's no concurrency possible, we hold the required locks anyway
5044 * because of lock validation efforts.
1da177e4 5045 */
48c5ccae 5046static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5047{
70b97a7f 5048 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5049 struct task_struct *next, *stop = rq->stop;
5050 int dest_cpu;
1da177e4
LT
5051
5052 /*
48c5ccae
PZ
5053 * Fudge the rq selection such that the below task selection loop
5054 * doesn't get stuck on the currently eligible stop task.
5055 *
5056 * We're currently inside stop_machine() and the rq is either stuck
5057 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5058 * either way we should never end up calling schedule() until we're
5059 * done here.
1da177e4 5060 */
48c5ccae 5061 rq->stop = NULL;
48f24c4d 5062
77bd3970
FW
5063 /*
5064 * put_prev_task() and pick_next_task() sched
5065 * class method both need to have an up-to-date
5066 * value of rq->clock[_task]
5067 */
5068 update_rq_clock(rq);
5069
dd41f596 5070 for ( ; ; ) {
48c5ccae
PZ
5071 /*
5072 * There's this thread running, bail when that's the only
5073 * remaining thread.
5074 */
5075 if (rq->nr_running == 1)
dd41f596 5076 break;
48c5ccae 5077
3f1d2a31 5078 next = pick_next_task(rq, &fake_task);
48c5ccae 5079 BUG_ON(!next);
79c53799 5080 next->sched_class->put_prev_task(rq, next);
e692ab53 5081
48c5ccae
PZ
5082 /* Find suitable destination for @next, with force if needed. */
5083 dest_cpu = select_fallback_rq(dead_cpu, next);
5084 raw_spin_unlock(&rq->lock);
5085
5086 __migrate_task(next, dead_cpu, dest_cpu);
5087
5088 raw_spin_lock(&rq->lock);
1da177e4 5089 }
dce48a84 5090
48c5ccae 5091 rq->stop = stop;
dce48a84 5092}
1da177e4
LT
5093#endif /* CONFIG_HOTPLUG_CPU */
5094
e692ab53
NP
5095#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5096
5097static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5098 {
5099 .procname = "sched_domain",
c57baf1e 5100 .mode = 0555,
e0361851 5101 },
56992309 5102 {}
e692ab53
NP
5103};
5104
5105static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5106 {
5107 .procname = "kernel",
c57baf1e 5108 .mode = 0555,
e0361851
AD
5109 .child = sd_ctl_dir,
5110 },
56992309 5111 {}
e692ab53
NP
5112};
5113
5114static struct ctl_table *sd_alloc_ctl_entry(int n)
5115{
5116 struct ctl_table *entry =
5cf9f062 5117 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5118
e692ab53
NP
5119 return entry;
5120}
5121
6382bc90
MM
5122static void sd_free_ctl_entry(struct ctl_table **tablep)
5123{
cd790076 5124 struct ctl_table *entry;
6382bc90 5125
cd790076
MM
5126 /*
5127 * In the intermediate directories, both the child directory and
5128 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5129 * will always be set. In the lowest directory the names are
cd790076
MM
5130 * static strings and all have proc handlers.
5131 */
5132 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5133 if (entry->child)
5134 sd_free_ctl_entry(&entry->child);
cd790076
MM
5135 if (entry->proc_handler == NULL)
5136 kfree(entry->procname);
5137 }
6382bc90
MM
5138
5139 kfree(*tablep);
5140 *tablep = NULL;
5141}
5142
201c373e 5143static int min_load_idx = 0;
fd9b86d3 5144static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5145
e692ab53 5146static void
e0361851 5147set_table_entry(struct ctl_table *entry,
e692ab53 5148 const char *procname, void *data, int maxlen,
201c373e
NK
5149 umode_t mode, proc_handler *proc_handler,
5150 bool load_idx)
e692ab53 5151{
e692ab53
NP
5152 entry->procname = procname;
5153 entry->data = data;
5154 entry->maxlen = maxlen;
5155 entry->mode = mode;
5156 entry->proc_handler = proc_handler;
201c373e
NK
5157
5158 if (load_idx) {
5159 entry->extra1 = &min_load_idx;
5160 entry->extra2 = &max_load_idx;
5161 }
e692ab53
NP
5162}
5163
5164static struct ctl_table *
5165sd_alloc_ctl_domain_table(struct sched_domain *sd)
5166{
37e6bae8 5167 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5168
ad1cdc1d
MM
5169 if (table == NULL)
5170 return NULL;
5171
e0361851 5172 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5173 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5174 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5175 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5176 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5177 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5178 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5179 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5180 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5181 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5182 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5183 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5184 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5185 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5186 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5187 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5188 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5189 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5190 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5191 &sd->cache_nice_tries,
201c373e 5192 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5193 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5194 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5195 set_table_entry(&table[11], "max_newidle_lb_cost",
5196 &sd->max_newidle_lb_cost,
5197 sizeof(long), 0644, proc_doulongvec_minmax, false);
5198 set_table_entry(&table[12], "name", sd->name,
201c373e 5199 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5200 /* &table[13] is terminator */
e692ab53
NP
5201
5202 return table;
5203}
5204
be7002e6 5205static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5206{
5207 struct ctl_table *entry, *table;
5208 struct sched_domain *sd;
5209 int domain_num = 0, i;
5210 char buf[32];
5211
5212 for_each_domain(cpu, sd)
5213 domain_num++;
5214 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5215 if (table == NULL)
5216 return NULL;
e692ab53
NP
5217
5218 i = 0;
5219 for_each_domain(cpu, sd) {
5220 snprintf(buf, 32, "domain%d", i);
e692ab53 5221 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5222 entry->mode = 0555;
e692ab53
NP
5223 entry->child = sd_alloc_ctl_domain_table(sd);
5224 entry++;
5225 i++;
5226 }
5227 return table;
5228}
5229
5230static struct ctl_table_header *sd_sysctl_header;
6382bc90 5231static void register_sched_domain_sysctl(void)
e692ab53 5232{
6ad4c188 5233 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5234 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5235 char buf[32];
5236
7378547f
MM
5237 WARN_ON(sd_ctl_dir[0].child);
5238 sd_ctl_dir[0].child = entry;
5239
ad1cdc1d
MM
5240 if (entry == NULL)
5241 return;
5242
6ad4c188 5243 for_each_possible_cpu(i) {
e692ab53 5244 snprintf(buf, 32, "cpu%d", i);
e692ab53 5245 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5246 entry->mode = 0555;
e692ab53 5247 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5248 entry++;
e692ab53 5249 }
7378547f
MM
5250
5251 WARN_ON(sd_sysctl_header);
e692ab53
NP
5252 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5253}
6382bc90 5254
7378547f 5255/* may be called multiple times per register */
6382bc90
MM
5256static void unregister_sched_domain_sysctl(void)
5257{
7378547f
MM
5258 if (sd_sysctl_header)
5259 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5260 sd_sysctl_header = NULL;
7378547f
MM
5261 if (sd_ctl_dir[0].child)
5262 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5263}
e692ab53 5264#else
6382bc90
MM
5265static void register_sched_domain_sysctl(void)
5266{
5267}
5268static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5269{
5270}
5cc389bc 5271#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5272
1f11eb6a
GH
5273static void set_rq_online(struct rq *rq)
5274{
5275 if (!rq->online) {
5276 const struct sched_class *class;
5277
c6c4927b 5278 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5279 rq->online = 1;
5280
5281 for_each_class(class) {
5282 if (class->rq_online)
5283 class->rq_online(rq);
5284 }
5285 }
5286}
5287
5288static void set_rq_offline(struct rq *rq)
5289{
5290 if (rq->online) {
5291 const struct sched_class *class;
5292
5293 for_each_class(class) {
5294 if (class->rq_offline)
5295 class->rq_offline(rq);
5296 }
5297
c6c4927b 5298 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5299 rq->online = 0;
5300 }
5301}
5302
1da177e4
LT
5303/*
5304 * migration_call - callback that gets triggered when a CPU is added.
5305 * Here we can start up the necessary migration thread for the new CPU.
5306 */
0db0628d 5307static int
48f24c4d 5308migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5309{
48f24c4d 5310 int cpu = (long)hcpu;
1da177e4 5311 unsigned long flags;
969c7921 5312 struct rq *rq = cpu_rq(cpu);
1da177e4 5313
48c5ccae 5314 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5315
1da177e4 5316 case CPU_UP_PREPARE:
a468d389 5317 rq->calc_load_update = calc_load_update;
1da177e4 5318 break;
48f24c4d 5319
1da177e4 5320 case CPU_ONLINE:
1f94ef59 5321 /* Update our root-domain */
05fa785c 5322 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5323 if (rq->rd) {
c6c4927b 5324 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5325
5326 set_rq_online(rq);
1f94ef59 5327 }
05fa785c 5328 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5329 break;
48f24c4d 5330
1da177e4 5331#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5332 case CPU_DYING:
317f3941 5333 sched_ttwu_pending();
57d885fe 5334 /* Update our root-domain */
05fa785c 5335 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5336 if (rq->rd) {
c6c4927b 5337 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5338 set_rq_offline(rq);
57d885fe 5339 }
48c5ccae
PZ
5340 migrate_tasks(cpu);
5341 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5342 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5343 break;
48c5ccae 5344
5d180232 5345 case CPU_DEAD:
f319da0c 5346 calc_load_migrate(rq);
57d885fe 5347 break;
1da177e4
LT
5348#endif
5349 }
49c022e6
PZ
5350
5351 update_max_interval();
5352
1da177e4
LT
5353 return NOTIFY_OK;
5354}
5355
f38b0820
PM
5356/*
5357 * Register at high priority so that task migration (migrate_all_tasks)
5358 * happens before everything else. This has to be lower priority than
cdd6c482 5359 * the notifier in the perf_event subsystem, though.
1da177e4 5360 */
0db0628d 5361static struct notifier_block migration_notifier = {
1da177e4 5362 .notifier_call = migration_call,
50a323b7 5363 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5364};
5365
6a82b60d 5366static void set_cpu_rq_start_time(void)
a803f026
CM
5367{
5368 int cpu = smp_processor_id();
5369 struct rq *rq = cpu_rq(cpu);
5370 rq->age_stamp = sched_clock_cpu(cpu);
5371}
5372
0db0628d 5373static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5374 unsigned long action, void *hcpu)
5375{
5376 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5377 case CPU_STARTING:
5378 set_cpu_rq_start_time();
5379 return NOTIFY_OK;
3a101d05
TH
5380 case CPU_DOWN_FAILED:
5381 set_cpu_active((long)hcpu, true);
5382 return NOTIFY_OK;
5383 default:
5384 return NOTIFY_DONE;
5385 }
5386}
5387
0db0628d 5388static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5389 unsigned long action, void *hcpu)
5390{
5391 switch (action & ~CPU_TASKS_FROZEN) {
5392 case CPU_DOWN_PREPARE:
3c18d447 5393 set_cpu_active((long)hcpu, false);
3a101d05 5394 return NOTIFY_OK;
3c18d447
JL
5395 default:
5396 return NOTIFY_DONE;
3a101d05
TH
5397 }
5398}
5399
7babe8db 5400static int __init migration_init(void)
1da177e4
LT
5401{
5402 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5403 int err;
48f24c4d 5404
3a101d05 5405 /* Initialize migration for the boot CPU */
07dccf33
AM
5406 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5407 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5408 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5409 register_cpu_notifier(&migration_notifier);
7babe8db 5410
3a101d05
TH
5411 /* Register cpu active notifiers */
5412 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5413 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5414
a004cd42 5415 return 0;
1da177e4 5416}
7babe8db 5417early_initcall(migration_init);
476f3534 5418
4cb98839
PZ
5419static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5420
3e9830dc 5421#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5422
d039ac60 5423static __read_mostly int sched_debug_enabled;
f6630114 5424
d039ac60 5425static int __init sched_debug_setup(char *str)
f6630114 5426{
d039ac60 5427 sched_debug_enabled = 1;
f6630114
MT
5428
5429 return 0;
5430}
d039ac60
PZ
5431early_param("sched_debug", sched_debug_setup);
5432
5433static inline bool sched_debug(void)
5434{
5435 return sched_debug_enabled;
5436}
f6630114 5437
7c16ec58 5438static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5439 struct cpumask *groupmask)
1da177e4 5440{
4dcf6aff 5441 struct sched_group *group = sd->groups;
1da177e4 5442
96f874e2 5443 cpumask_clear(groupmask);
4dcf6aff
IM
5444
5445 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5446
5447 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5448 printk("does not load-balance\n");
4dcf6aff 5449 if (sd->parent)
3df0fc5b
PZ
5450 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5451 " has parent");
4dcf6aff 5452 return -1;
41c7ce9a
NP
5453 }
5454
333470ee
TH
5455 printk(KERN_CONT "span %*pbl level %s\n",
5456 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5457
758b2cdc 5458 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5459 printk(KERN_ERR "ERROR: domain->span does not contain "
5460 "CPU%d\n", cpu);
4dcf6aff 5461 }
758b2cdc 5462 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5463 printk(KERN_ERR "ERROR: domain->groups does not contain"
5464 " CPU%d\n", cpu);
4dcf6aff 5465 }
1da177e4 5466
4dcf6aff 5467 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5468 do {
4dcf6aff 5469 if (!group) {
3df0fc5b
PZ
5470 printk("\n");
5471 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5472 break;
5473 }
5474
758b2cdc 5475 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5476 printk(KERN_CONT "\n");
5477 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5478 break;
5479 }
1da177e4 5480
cb83b629
PZ
5481 if (!(sd->flags & SD_OVERLAP) &&
5482 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5483 printk(KERN_CONT "\n");
5484 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5485 break;
5486 }
1da177e4 5487
758b2cdc 5488 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5489
333470ee
TH
5490 printk(KERN_CONT " %*pbl",
5491 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5492 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5493 printk(KERN_CONT " (cpu_capacity = %d)",
5494 group->sgc->capacity);
381512cf 5495 }
1da177e4 5496
4dcf6aff
IM
5497 group = group->next;
5498 } while (group != sd->groups);
3df0fc5b 5499 printk(KERN_CONT "\n");
1da177e4 5500
758b2cdc 5501 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5502 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5503
758b2cdc
RR
5504 if (sd->parent &&
5505 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5506 printk(KERN_ERR "ERROR: parent span is not a superset "
5507 "of domain->span\n");
4dcf6aff
IM
5508 return 0;
5509}
1da177e4 5510
4dcf6aff
IM
5511static void sched_domain_debug(struct sched_domain *sd, int cpu)
5512{
5513 int level = 0;
1da177e4 5514
d039ac60 5515 if (!sched_debug_enabled)
f6630114
MT
5516 return;
5517
4dcf6aff
IM
5518 if (!sd) {
5519 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5520 return;
5521 }
1da177e4 5522
4dcf6aff
IM
5523 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5524
5525 for (;;) {
4cb98839 5526 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5527 break;
1da177e4
LT
5528 level++;
5529 sd = sd->parent;
33859f7f 5530 if (!sd)
4dcf6aff
IM
5531 break;
5532 }
1da177e4 5533}
6d6bc0ad 5534#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5535# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5536static inline bool sched_debug(void)
5537{
5538 return false;
5539}
6d6bc0ad 5540#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5541
1a20ff27 5542static int sd_degenerate(struct sched_domain *sd)
245af2c7 5543{
758b2cdc 5544 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5545 return 1;
5546
5547 /* Following flags need at least 2 groups */
5548 if (sd->flags & (SD_LOAD_BALANCE |
5549 SD_BALANCE_NEWIDLE |
5550 SD_BALANCE_FORK |
89c4710e 5551 SD_BALANCE_EXEC |
5d4dfddd 5552 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5553 SD_SHARE_PKG_RESOURCES |
5554 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5555 if (sd->groups != sd->groups->next)
5556 return 0;
5557 }
5558
5559 /* Following flags don't use groups */
c88d5910 5560 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5561 return 0;
5562
5563 return 1;
5564}
5565
48f24c4d
IM
5566static int
5567sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5568{
5569 unsigned long cflags = sd->flags, pflags = parent->flags;
5570
5571 if (sd_degenerate(parent))
5572 return 1;
5573
758b2cdc 5574 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5575 return 0;
5576
245af2c7
SS
5577 /* Flags needing groups don't count if only 1 group in parent */
5578 if (parent->groups == parent->groups->next) {
5579 pflags &= ~(SD_LOAD_BALANCE |
5580 SD_BALANCE_NEWIDLE |
5581 SD_BALANCE_FORK |
89c4710e 5582 SD_BALANCE_EXEC |
5d4dfddd 5583 SD_SHARE_CPUCAPACITY |
10866e62 5584 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5585 SD_PREFER_SIBLING |
5586 SD_SHARE_POWERDOMAIN);
5436499e
KC
5587 if (nr_node_ids == 1)
5588 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5589 }
5590 if (~cflags & pflags)
5591 return 0;
5592
5593 return 1;
5594}
5595
dce840a0 5596static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5597{
dce840a0 5598 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5599
68e74568 5600 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5601 cpudl_cleanup(&rd->cpudl);
1baca4ce 5602 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5603 free_cpumask_var(rd->rto_mask);
5604 free_cpumask_var(rd->online);
5605 free_cpumask_var(rd->span);
5606 kfree(rd);
5607}
5608
57d885fe
GH
5609static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5610{
a0490fa3 5611 struct root_domain *old_rd = NULL;
57d885fe 5612 unsigned long flags;
57d885fe 5613
05fa785c 5614 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5615
5616 if (rq->rd) {
a0490fa3 5617 old_rd = rq->rd;
57d885fe 5618
c6c4927b 5619 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5620 set_rq_offline(rq);
57d885fe 5621
c6c4927b 5622 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5623
a0490fa3 5624 /*
0515973f 5625 * If we dont want to free the old_rd yet then
a0490fa3
IM
5626 * set old_rd to NULL to skip the freeing later
5627 * in this function:
5628 */
5629 if (!atomic_dec_and_test(&old_rd->refcount))
5630 old_rd = NULL;
57d885fe
GH
5631 }
5632
5633 atomic_inc(&rd->refcount);
5634 rq->rd = rd;
5635
c6c4927b 5636 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5637 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5638 set_rq_online(rq);
57d885fe 5639
05fa785c 5640 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5641
5642 if (old_rd)
dce840a0 5643 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5644}
5645
68c38fc3 5646static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5647{
5648 memset(rd, 0, sizeof(*rd));
5649
68c38fc3 5650 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5651 goto out;
68c38fc3 5652 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5653 goto free_span;
1baca4ce 5654 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5655 goto free_online;
1baca4ce
JL
5656 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5657 goto free_dlo_mask;
6e0534f2 5658
332ac17e 5659 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5660 if (cpudl_init(&rd->cpudl) != 0)
5661 goto free_dlo_mask;
332ac17e 5662
68c38fc3 5663 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5664 goto free_rto_mask;
c6c4927b 5665 return 0;
6e0534f2 5666
68e74568
RR
5667free_rto_mask:
5668 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5669free_dlo_mask:
5670 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5671free_online:
5672 free_cpumask_var(rd->online);
5673free_span:
5674 free_cpumask_var(rd->span);
0c910d28 5675out:
c6c4927b 5676 return -ENOMEM;
57d885fe
GH
5677}
5678
029632fb
PZ
5679/*
5680 * By default the system creates a single root-domain with all cpus as
5681 * members (mimicking the global state we have today).
5682 */
5683struct root_domain def_root_domain;
5684
57d885fe
GH
5685static void init_defrootdomain(void)
5686{
68c38fc3 5687 init_rootdomain(&def_root_domain);
c6c4927b 5688
57d885fe
GH
5689 atomic_set(&def_root_domain.refcount, 1);
5690}
5691
dc938520 5692static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5693{
5694 struct root_domain *rd;
5695
5696 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5697 if (!rd)
5698 return NULL;
5699
68c38fc3 5700 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5701 kfree(rd);
5702 return NULL;
5703 }
57d885fe
GH
5704
5705 return rd;
5706}
5707
63b2ca30 5708static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5709{
5710 struct sched_group *tmp, *first;
5711
5712 if (!sg)
5713 return;
5714
5715 first = sg;
5716 do {
5717 tmp = sg->next;
5718
63b2ca30
NP
5719 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5720 kfree(sg->sgc);
e3589f6c
PZ
5721
5722 kfree(sg);
5723 sg = tmp;
5724 } while (sg != first);
5725}
5726
dce840a0
PZ
5727static void free_sched_domain(struct rcu_head *rcu)
5728{
5729 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5730
5731 /*
5732 * If its an overlapping domain it has private groups, iterate and
5733 * nuke them all.
5734 */
5735 if (sd->flags & SD_OVERLAP) {
5736 free_sched_groups(sd->groups, 1);
5737 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5738 kfree(sd->groups->sgc);
dce840a0 5739 kfree(sd->groups);
9c3f75cb 5740 }
dce840a0
PZ
5741 kfree(sd);
5742}
5743
5744static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5745{
5746 call_rcu(&sd->rcu, free_sched_domain);
5747}
5748
5749static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5750{
5751 for (; sd; sd = sd->parent)
5752 destroy_sched_domain(sd, cpu);
5753}
5754
518cd623
PZ
5755/*
5756 * Keep a special pointer to the highest sched_domain that has
5757 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5758 * allows us to avoid some pointer chasing select_idle_sibling().
5759 *
5760 * Also keep a unique ID per domain (we use the first cpu number in
5761 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5762 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5763 */
5764DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5765DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5766DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5767DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5768DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5769DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5770
5771static void update_top_cache_domain(int cpu)
5772{
5773 struct sched_domain *sd;
5d4cf996 5774 struct sched_domain *busy_sd = NULL;
518cd623 5775 int id = cpu;
7d9ffa89 5776 int size = 1;
518cd623
PZ
5777
5778 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5779 if (sd) {
518cd623 5780 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5781 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5782 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5783 }
5d4cf996 5784 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5785
5786 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5787 per_cpu(sd_llc_size, cpu) = size;
518cd623 5788 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5789
5790 sd = lowest_flag_domain(cpu, SD_NUMA);
5791 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5792
5793 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5794 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5795}
5796
1da177e4 5797/*
0eab9146 5798 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5799 * hold the hotplug lock.
5800 */
0eab9146
IM
5801static void
5802cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5803{
70b97a7f 5804 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5805 struct sched_domain *tmp;
5806
5807 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5808 for (tmp = sd; tmp; ) {
245af2c7
SS
5809 struct sched_domain *parent = tmp->parent;
5810 if (!parent)
5811 break;
f29c9b1c 5812
1a848870 5813 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5814 tmp->parent = parent->parent;
1a848870
SS
5815 if (parent->parent)
5816 parent->parent->child = tmp;
10866e62
PZ
5817 /*
5818 * Transfer SD_PREFER_SIBLING down in case of a
5819 * degenerate parent; the spans match for this
5820 * so the property transfers.
5821 */
5822 if (parent->flags & SD_PREFER_SIBLING)
5823 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5824 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5825 } else
5826 tmp = tmp->parent;
245af2c7
SS
5827 }
5828
1a848870 5829 if (sd && sd_degenerate(sd)) {
dce840a0 5830 tmp = sd;
245af2c7 5831 sd = sd->parent;
dce840a0 5832 destroy_sched_domain(tmp, cpu);
1a848870
SS
5833 if (sd)
5834 sd->child = NULL;
5835 }
1da177e4 5836
4cb98839 5837 sched_domain_debug(sd, cpu);
1da177e4 5838
57d885fe 5839 rq_attach_root(rq, rd);
dce840a0 5840 tmp = rq->sd;
674311d5 5841 rcu_assign_pointer(rq->sd, sd);
dce840a0 5842 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5843
5844 update_top_cache_domain(cpu);
1da177e4
LT
5845}
5846
1da177e4
LT
5847/* Setup the mask of cpus configured for isolated domains */
5848static int __init isolated_cpu_setup(char *str)
5849{
bdddd296 5850 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5851 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5852 return 1;
5853}
5854
8927f494 5855__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5856
49a02c51 5857struct s_data {
21d42ccf 5858 struct sched_domain ** __percpu sd;
49a02c51
AH
5859 struct root_domain *rd;
5860};
5861
2109b99e 5862enum s_alloc {
2109b99e 5863 sa_rootdomain,
21d42ccf 5864 sa_sd,
dce840a0 5865 sa_sd_storage,
2109b99e
AH
5866 sa_none,
5867};
5868
c1174876
PZ
5869/*
5870 * Build an iteration mask that can exclude certain CPUs from the upwards
5871 * domain traversal.
5872 *
5873 * Asymmetric node setups can result in situations where the domain tree is of
5874 * unequal depth, make sure to skip domains that already cover the entire
5875 * range.
5876 *
5877 * In that case build_sched_domains() will have terminated the iteration early
5878 * and our sibling sd spans will be empty. Domains should always include the
5879 * cpu they're built on, so check that.
5880 *
5881 */
5882static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5883{
5884 const struct cpumask *span = sched_domain_span(sd);
5885 struct sd_data *sdd = sd->private;
5886 struct sched_domain *sibling;
5887 int i;
5888
5889 for_each_cpu(i, span) {
5890 sibling = *per_cpu_ptr(sdd->sd, i);
5891 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5892 continue;
5893
5894 cpumask_set_cpu(i, sched_group_mask(sg));
5895 }
5896}
5897
5898/*
5899 * Return the canonical balance cpu for this group, this is the first cpu
5900 * of this group that's also in the iteration mask.
5901 */
5902int group_balance_cpu(struct sched_group *sg)
5903{
5904 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5905}
5906
e3589f6c
PZ
5907static int
5908build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5909{
5910 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5911 const struct cpumask *span = sched_domain_span(sd);
5912 struct cpumask *covered = sched_domains_tmpmask;
5913 struct sd_data *sdd = sd->private;
aaecac4a 5914 struct sched_domain *sibling;
e3589f6c
PZ
5915 int i;
5916
5917 cpumask_clear(covered);
5918
5919 for_each_cpu(i, span) {
5920 struct cpumask *sg_span;
5921
5922 if (cpumask_test_cpu(i, covered))
5923 continue;
5924
aaecac4a 5925 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5926
5927 /* See the comment near build_group_mask(). */
aaecac4a 5928 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5929 continue;
5930
e3589f6c 5931 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5932 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5933
5934 if (!sg)
5935 goto fail;
5936
5937 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5938 if (sibling->child)
5939 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5940 else
e3589f6c
PZ
5941 cpumask_set_cpu(i, sg_span);
5942
5943 cpumask_or(covered, covered, sg_span);
5944
63b2ca30
NP
5945 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5946 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5947 build_group_mask(sd, sg);
5948
c3decf0d 5949 /*
63b2ca30 5950 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5951 * domains and no possible iteration will get us here, we won't
5952 * die on a /0 trap.
5953 */
ca8ce3d0 5954 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5955
c1174876
PZ
5956 /*
5957 * Make sure the first group of this domain contains the
5958 * canonical balance cpu. Otherwise the sched_domain iteration
5959 * breaks. See update_sg_lb_stats().
5960 */
74a5ce20 5961 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5962 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5963 groups = sg;
5964
5965 if (!first)
5966 first = sg;
5967 if (last)
5968 last->next = sg;
5969 last = sg;
5970 last->next = first;
5971 }
5972 sd->groups = groups;
5973
5974 return 0;
5975
5976fail:
5977 free_sched_groups(first, 0);
5978
5979 return -ENOMEM;
5980}
5981
dce840a0 5982static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5983{
dce840a0
PZ
5984 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5985 struct sched_domain *child = sd->child;
1da177e4 5986
dce840a0
PZ
5987 if (child)
5988 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5989
9c3f75cb 5990 if (sg) {
dce840a0 5991 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5992 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5993 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5994 }
dce840a0
PZ
5995
5996 return cpu;
1e9f28fa 5997}
1e9f28fa 5998
01a08546 5999/*
dce840a0
PZ
6000 * build_sched_groups will build a circular linked list of the groups
6001 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6002 * and ->cpu_capacity to 0.
e3589f6c
PZ
6003 *
6004 * Assumes the sched_domain tree is fully constructed
01a08546 6005 */
e3589f6c
PZ
6006static int
6007build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6008{
dce840a0
PZ
6009 struct sched_group *first = NULL, *last = NULL;
6010 struct sd_data *sdd = sd->private;
6011 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6012 struct cpumask *covered;
dce840a0 6013 int i;
9c1cfda2 6014
e3589f6c
PZ
6015 get_group(cpu, sdd, &sd->groups);
6016 atomic_inc(&sd->groups->ref);
6017
0936629f 6018 if (cpu != cpumask_first(span))
e3589f6c
PZ
6019 return 0;
6020
f96225fd
PZ
6021 lockdep_assert_held(&sched_domains_mutex);
6022 covered = sched_domains_tmpmask;
6023
dce840a0 6024 cpumask_clear(covered);
6711cab4 6025
dce840a0
PZ
6026 for_each_cpu(i, span) {
6027 struct sched_group *sg;
cd08e923 6028 int group, j;
6711cab4 6029
dce840a0
PZ
6030 if (cpumask_test_cpu(i, covered))
6031 continue;
6711cab4 6032
cd08e923 6033 group = get_group(i, sdd, &sg);
c1174876 6034 cpumask_setall(sched_group_mask(sg));
0601a88d 6035
dce840a0
PZ
6036 for_each_cpu(j, span) {
6037 if (get_group(j, sdd, NULL) != group)
6038 continue;
0601a88d 6039
dce840a0
PZ
6040 cpumask_set_cpu(j, covered);
6041 cpumask_set_cpu(j, sched_group_cpus(sg));
6042 }
0601a88d 6043
dce840a0
PZ
6044 if (!first)
6045 first = sg;
6046 if (last)
6047 last->next = sg;
6048 last = sg;
6049 }
6050 last->next = first;
e3589f6c
PZ
6051
6052 return 0;
0601a88d 6053}
51888ca2 6054
89c4710e 6055/*
63b2ca30 6056 * Initialize sched groups cpu_capacity.
89c4710e 6057 *
63b2ca30 6058 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6059 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6060 * Typically cpu_capacity for all the groups in a sched domain will be same
6061 * unless there are asymmetries in the topology. If there are asymmetries,
6062 * group having more cpu_capacity will pickup more load compared to the
6063 * group having less cpu_capacity.
89c4710e 6064 */
63b2ca30 6065static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6066{
e3589f6c 6067 struct sched_group *sg = sd->groups;
89c4710e 6068
94c95ba6 6069 WARN_ON(!sg);
e3589f6c
PZ
6070
6071 do {
6072 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6073 sg = sg->next;
6074 } while (sg != sd->groups);
89c4710e 6075
c1174876 6076 if (cpu != group_balance_cpu(sg))
e3589f6c 6077 return;
aae6d3dd 6078
63b2ca30
NP
6079 update_group_capacity(sd, cpu);
6080 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6081}
6082
7c16ec58
MT
6083/*
6084 * Initializers for schedule domains
6085 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6086 */
6087
1d3504fc 6088static int default_relax_domain_level = -1;
60495e77 6089int sched_domain_level_max;
1d3504fc
HS
6090
6091static int __init setup_relax_domain_level(char *str)
6092{
a841f8ce
DS
6093 if (kstrtoint(str, 0, &default_relax_domain_level))
6094 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6095
1d3504fc
HS
6096 return 1;
6097}
6098__setup("relax_domain_level=", setup_relax_domain_level);
6099
6100static void set_domain_attribute(struct sched_domain *sd,
6101 struct sched_domain_attr *attr)
6102{
6103 int request;
6104
6105 if (!attr || attr->relax_domain_level < 0) {
6106 if (default_relax_domain_level < 0)
6107 return;
6108 else
6109 request = default_relax_domain_level;
6110 } else
6111 request = attr->relax_domain_level;
6112 if (request < sd->level) {
6113 /* turn off idle balance on this domain */
c88d5910 6114 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6115 } else {
6116 /* turn on idle balance on this domain */
c88d5910 6117 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6118 }
6119}
6120
54ab4ff4
PZ
6121static void __sdt_free(const struct cpumask *cpu_map);
6122static int __sdt_alloc(const struct cpumask *cpu_map);
6123
2109b99e
AH
6124static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6125 const struct cpumask *cpu_map)
6126{
6127 switch (what) {
2109b99e 6128 case sa_rootdomain:
822ff793
PZ
6129 if (!atomic_read(&d->rd->refcount))
6130 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6131 case sa_sd:
6132 free_percpu(d->sd); /* fall through */
dce840a0 6133 case sa_sd_storage:
54ab4ff4 6134 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6135 case sa_none:
6136 break;
6137 }
6138}
3404c8d9 6139
2109b99e
AH
6140static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6141 const struct cpumask *cpu_map)
6142{
dce840a0
PZ
6143 memset(d, 0, sizeof(*d));
6144
54ab4ff4
PZ
6145 if (__sdt_alloc(cpu_map))
6146 return sa_sd_storage;
dce840a0
PZ
6147 d->sd = alloc_percpu(struct sched_domain *);
6148 if (!d->sd)
6149 return sa_sd_storage;
2109b99e 6150 d->rd = alloc_rootdomain();
dce840a0 6151 if (!d->rd)
21d42ccf 6152 return sa_sd;
2109b99e
AH
6153 return sa_rootdomain;
6154}
57d885fe 6155
dce840a0
PZ
6156/*
6157 * NULL the sd_data elements we've used to build the sched_domain and
6158 * sched_group structure so that the subsequent __free_domain_allocs()
6159 * will not free the data we're using.
6160 */
6161static void claim_allocations(int cpu, struct sched_domain *sd)
6162{
6163 struct sd_data *sdd = sd->private;
dce840a0
PZ
6164
6165 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6166 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6167
e3589f6c 6168 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6169 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6170
63b2ca30
NP
6171 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6172 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6173}
6174
cb83b629 6175#ifdef CONFIG_NUMA
cb83b629 6176static int sched_domains_numa_levels;
e3fe70b1 6177enum numa_topology_type sched_numa_topology_type;
cb83b629 6178static int *sched_domains_numa_distance;
9942f79b 6179int sched_max_numa_distance;
cb83b629
PZ
6180static struct cpumask ***sched_domains_numa_masks;
6181static int sched_domains_curr_level;
143e1e28 6182#endif
cb83b629 6183
143e1e28
VG
6184/*
6185 * SD_flags allowed in topology descriptions.
6186 *
5d4dfddd 6187 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6188 * SD_SHARE_PKG_RESOURCES - describes shared caches
6189 * SD_NUMA - describes NUMA topologies
d77b3ed5 6190 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6191 *
6192 * Odd one out:
6193 * SD_ASYM_PACKING - describes SMT quirks
6194 */
6195#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6196 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6197 SD_SHARE_PKG_RESOURCES | \
6198 SD_NUMA | \
d77b3ed5
VG
6199 SD_ASYM_PACKING | \
6200 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6201
6202static struct sched_domain *
143e1e28 6203sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6204{
6205 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6206 int sd_weight, sd_flags = 0;
6207
6208#ifdef CONFIG_NUMA
6209 /*
6210 * Ugly hack to pass state to sd_numa_mask()...
6211 */
6212 sched_domains_curr_level = tl->numa_level;
6213#endif
6214
6215 sd_weight = cpumask_weight(tl->mask(cpu));
6216
6217 if (tl->sd_flags)
6218 sd_flags = (*tl->sd_flags)();
6219 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6220 "wrong sd_flags in topology description\n"))
6221 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6222
6223 *sd = (struct sched_domain){
6224 .min_interval = sd_weight,
6225 .max_interval = 2*sd_weight,
6226 .busy_factor = 32,
870a0bb5 6227 .imbalance_pct = 125,
143e1e28
VG
6228
6229 .cache_nice_tries = 0,
6230 .busy_idx = 0,
6231 .idle_idx = 0,
cb83b629
PZ
6232 .newidle_idx = 0,
6233 .wake_idx = 0,
6234 .forkexec_idx = 0,
6235
6236 .flags = 1*SD_LOAD_BALANCE
6237 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6238 | 1*SD_BALANCE_EXEC
6239 | 1*SD_BALANCE_FORK
cb83b629 6240 | 0*SD_BALANCE_WAKE
143e1e28 6241 | 1*SD_WAKE_AFFINE
5d4dfddd 6242 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6243 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6244 | 0*SD_SERIALIZE
cb83b629 6245 | 0*SD_PREFER_SIBLING
143e1e28
VG
6246 | 0*SD_NUMA
6247 | sd_flags
cb83b629 6248 ,
143e1e28 6249
cb83b629
PZ
6250 .last_balance = jiffies,
6251 .balance_interval = sd_weight,
143e1e28 6252 .smt_gain = 0,
2b4cfe64
JL
6253 .max_newidle_lb_cost = 0,
6254 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6255#ifdef CONFIG_SCHED_DEBUG
6256 .name = tl->name,
6257#endif
cb83b629 6258 };
cb83b629
PZ
6259
6260 /*
143e1e28 6261 * Convert topological properties into behaviour.
cb83b629 6262 */
143e1e28 6263
5d4dfddd 6264 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6265 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6266 sd->imbalance_pct = 110;
6267 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6268
6269 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6270 sd->imbalance_pct = 117;
6271 sd->cache_nice_tries = 1;
6272 sd->busy_idx = 2;
6273
6274#ifdef CONFIG_NUMA
6275 } else if (sd->flags & SD_NUMA) {
6276 sd->cache_nice_tries = 2;
6277 sd->busy_idx = 3;
6278 sd->idle_idx = 2;
6279
6280 sd->flags |= SD_SERIALIZE;
6281 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6282 sd->flags &= ~(SD_BALANCE_EXEC |
6283 SD_BALANCE_FORK |
6284 SD_WAKE_AFFINE);
6285 }
6286
6287#endif
6288 } else {
6289 sd->flags |= SD_PREFER_SIBLING;
6290 sd->cache_nice_tries = 1;
6291 sd->busy_idx = 2;
6292 sd->idle_idx = 1;
6293 }
6294
6295 sd->private = &tl->data;
cb83b629
PZ
6296
6297 return sd;
6298}
6299
143e1e28
VG
6300/*
6301 * Topology list, bottom-up.
6302 */
6303static struct sched_domain_topology_level default_topology[] = {
6304#ifdef CONFIG_SCHED_SMT
6305 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6306#endif
6307#ifdef CONFIG_SCHED_MC
6308 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6309#endif
6310 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6311 { NULL, },
6312};
6313
6314struct sched_domain_topology_level *sched_domain_topology = default_topology;
6315
6316#define for_each_sd_topology(tl) \
6317 for (tl = sched_domain_topology; tl->mask; tl++)
6318
6319void set_sched_topology(struct sched_domain_topology_level *tl)
6320{
6321 sched_domain_topology = tl;
6322}
6323
6324#ifdef CONFIG_NUMA
6325
cb83b629
PZ
6326static const struct cpumask *sd_numa_mask(int cpu)
6327{
6328 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6329}
6330
d039ac60
PZ
6331static void sched_numa_warn(const char *str)
6332{
6333 static int done = false;
6334 int i,j;
6335
6336 if (done)
6337 return;
6338
6339 done = true;
6340
6341 printk(KERN_WARNING "ERROR: %s\n\n", str);
6342
6343 for (i = 0; i < nr_node_ids; i++) {
6344 printk(KERN_WARNING " ");
6345 for (j = 0; j < nr_node_ids; j++)
6346 printk(KERN_CONT "%02d ", node_distance(i,j));
6347 printk(KERN_CONT "\n");
6348 }
6349 printk(KERN_WARNING "\n");
6350}
6351
9942f79b 6352bool find_numa_distance(int distance)
d039ac60
PZ
6353{
6354 int i;
6355
6356 if (distance == node_distance(0, 0))
6357 return true;
6358
6359 for (i = 0; i < sched_domains_numa_levels; i++) {
6360 if (sched_domains_numa_distance[i] == distance)
6361 return true;
6362 }
6363
6364 return false;
6365}
6366
e3fe70b1
RR
6367/*
6368 * A system can have three types of NUMA topology:
6369 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6370 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6371 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6372 *
6373 * The difference between a glueless mesh topology and a backplane
6374 * topology lies in whether communication between not directly
6375 * connected nodes goes through intermediary nodes (where programs
6376 * could run), or through backplane controllers. This affects
6377 * placement of programs.
6378 *
6379 * The type of topology can be discerned with the following tests:
6380 * - If the maximum distance between any nodes is 1 hop, the system
6381 * is directly connected.
6382 * - If for two nodes A and B, located N > 1 hops away from each other,
6383 * there is an intermediary node C, which is < N hops away from both
6384 * nodes A and B, the system is a glueless mesh.
6385 */
6386static void init_numa_topology_type(void)
6387{
6388 int a, b, c, n;
6389
6390 n = sched_max_numa_distance;
6391
6392 if (n <= 1)
6393 sched_numa_topology_type = NUMA_DIRECT;
6394
6395 for_each_online_node(a) {
6396 for_each_online_node(b) {
6397 /* Find two nodes furthest removed from each other. */
6398 if (node_distance(a, b) < n)
6399 continue;
6400
6401 /* Is there an intermediary node between a and b? */
6402 for_each_online_node(c) {
6403 if (node_distance(a, c) < n &&
6404 node_distance(b, c) < n) {
6405 sched_numa_topology_type =
6406 NUMA_GLUELESS_MESH;
6407 return;
6408 }
6409 }
6410
6411 sched_numa_topology_type = NUMA_BACKPLANE;
6412 return;
6413 }
6414 }
6415}
6416
cb83b629
PZ
6417static void sched_init_numa(void)
6418{
6419 int next_distance, curr_distance = node_distance(0, 0);
6420 struct sched_domain_topology_level *tl;
6421 int level = 0;
6422 int i, j, k;
6423
cb83b629
PZ
6424 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6425 if (!sched_domains_numa_distance)
6426 return;
6427
6428 /*
6429 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6430 * unique distances in the node_distance() table.
6431 *
6432 * Assumes node_distance(0,j) includes all distances in
6433 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6434 */
6435 next_distance = curr_distance;
6436 for (i = 0; i < nr_node_ids; i++) {
6437 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6438 for (k = 0; k < nr_node_ids; k++) {
6439 int distance = node_distance(i, k);
6440
6441 if (distance > curr_distance &&
6442 (distance < next_distance ||
6443 next_distance == curr_distance))
6444 next_distance = distance;
6445
6446 /*
6447 * While not a strong assumption it would be nice to know
6448 * about cases where if node A is connected to B, B is not
6449 * equally connected to A.
6450 */
6451 if (sched_debug() && node_distance(k, i) != distance)
6452 sched_numa_warn("Node-distance not symmetric");
6453
6454 if (sched_debug() && i && !find_numa_distance(distance))
6455 sched_numa_warn("Node-0 not representative");
6456 }
6457 if (next_distance != curr_distance) {
6458 sched_domains_numa_distance[level++] = next_distance;
6459 sched_domains_numa_levels = level;
6460 curr_distance = next_distance;
6461 } else break;
cb83b629 6462 }
d039ac60
PZ
6463
6464 /*
6465 * In case of sched_debug() we verify the above assumption.
6466 */
6467 if (!sched_debug())
6468 break;
cb83b629 6469 }
c123588b
AR
6470
6471 if (!level)
6472 return;
6473
cb83b629
PZ
6474 /*
6475 * 'level' contains the number of unique distances, excluding the
6476 * identity distance node_distance(i,i).
6477 *
28b4a521 6478 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6479 * numbers.
6480 */
6481
5f7865f3
TC
6482 /*
6483 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6484 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6485 * the array will contain less then 'level' members. This could be
6486 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6487 * in other functions.
6488 *
6489 * We reset it to 'level' at the end of this function.
6490 */
6491 sched_domains_numa_levels = 0;
6492
cb83b629
PZ
6493 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6494 if (!sched_domains_numa_masks)
6495 return;
6496
6497 /*
6498 * Now for each level, construct a mask per node which contains all
6499 * cpus of nodes that are that many hops away from us.
6500 */
6501 for (i = 0; i < level; i++) {
6502 sched_domains_numa_masks[i] =
6503 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6504 if (!sched_domains_numa_masks[i])
6505 return;
6506
6507 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6508 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6509 if (!mask)
6510 return;
6511
6512 sched_domains_numa_masks[i][j] = mask;
6513
6514 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6515 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6516 continue;
6517
6518 cpumask_or(mask, mask, cpumask_of_node(k));
6519 }
6520 }
6521 }
6522
143e1e28
VG
6523 /* Compute default topology size */
6524 for (i = 0; sched_domain_topology[i].mask; i++);
6525
c515db8c 6526 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6527 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6528 if (!tl)
6529 return;
6530
6531 /*
6532 * Copy the default topology bits..
6533 */
143e1e28
VG
6534 for (i = 0; sched_domain_topology[i].mask; i++)
6535 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6536
6537 /*
6538 * .. and append 'j' levels of NUMA goodness.
6539 */
6540 for (j = 0; j < level; i++, j++) {
6541 tl[i] = (struct sched_domain_topology_level){
cb83b629 6542 .mask = sd_numa_mask,
143e1e28 6543 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6544 .flags = SDTL_OVERLAP,
6545 .numa_level = j,
143e1e28 6546 SD_INIT_NAME(NUMA)
cb83b629
PZ
6547 };
6548 }
6549
6550 sched_domain_topology = tl;
5f7865f3
TC
6551
6552 sched_domains_numa_levels = level;
9942f79b 6553 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6554
6555 init_numa_topology_type();
cb83b629 6556}
301a5cba
TC
6557
6558static void sched_domains_numa_masks_set(int cpu)
6559{
6560 int i, j;
6561 int node = cpu_to_node(cpu);
6562
6563 for (i = 0; i < sched_domains_numa_levels; i++) {
6564 for (j = 0; j < nr_node_ids; j++) {
6565 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6566 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6567 }
6568 }
6569}
6570
6571static void sched_domains_numa_masks_clear(int cpu)
6572{
6573 int i, j;
6574 for (i = 0; i < sched_domains_numa_levels; i++) {
6575 for (j = 0; j < nr_node_ids; j++)
6576 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6577 }
6578}
6579
6580/*
6581 * Update sched_domains_numa_masks[level][node] array when new cpus
6582 * are onlined.
6583 */
6584static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6585 unsigned long action,
6586 void *hcpu)
6587{
6588 int cpu = (long)hcpu;
6589
6590 switch (action & ~CPU_TASKS_FROZEN) {
6591 case CPU_ONLINE:
6592 sched_domains_numa_masks_set(cpu);
6593 break;
6594
6595 case CPU_DEAD:
6596 sched_domains_numa_masks_clear(cpu);
6597 break;
6598
6599 default:
6600 return NOTIFY_DONE;
6601 }
6602
6603 return NOTIFY_OK;
cb83b629
PZ
6604}
6605#else
6606static inline void sched_init_numa(void)
6607{
6608}
301a5cba
TC
6609
6610static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6611 unsigned long action,
6612 void *hcpu)
6613{
6614 return 0;
6615}
cb83b629
PZ
6616#endif /* CONFIG_NUMA */
6617
54ab4ff4
PZ
6618static int __sdt_alloc(const struct cpumask *cpu_map)
6619{
6620 struct sched_domain_topology_level *tl;
6621 int j;
6622
27723a68 6623 for_each_sd_topology(tl) {
54ab4ff4
PZ
6624 struct sd_data *sdd = &tl->data;
6625
6626 sdd->sd = alloc_percpu(struct sched_domain *);
6627 if (!sdd->sd)
6628 return -ENOMEM;
6629
6630 sdd->sg = alloc_percpu(struct sched_group *);
6631 if (!sdd->sg)
6632 return -ENOMEM;
6633
63b2ca30
NP
6634 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6635 if (!sdd->sgc)
9c3f75cb
PZ
6636 return -ENOMEM;
6637
54ab4ff4
PZ
6638 for_each_cpu(j, cpu_map) {
6639 struct sched_domain *sd;
6640 struct sched_group *sg;
63b2ca30 6641 struct sched_group_capacity *sgc;
54ab4ff4 6642
5cc389bc 6643 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6644 GFP_KERNEL, cpu_to_node(j));
6645 if (!sd)
6646 return -ENOMEM;
6647
6648 *per_cpu_ptr(sdd->sd, j) = sd;
6649
6650 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6651 GFP_KERNEL, cpu_to_node(j));
6652 if (!sg)
6653 return -ENOMEM;
6654
30b4e9eb
IM
6655 sg->next = sg;
6656
54ab4ff4 6657 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6658
63b2ca30 6659 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6660 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6661 if (!sgc)
9c3f75cb
PZ
6662 return -ENOMEM;
6663
63b2ca30 6664 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6665 }
6666 }
6667
6668 return 0;
6669}
6670
6671static void __sdt_free(const struct cpumask *cpu_map)
6672{
6673 struct sched_domain_topology_level *tl;
6674 int j;
6675
27723a68 6676 for_each_sd_topology(tl) {
54ab4ff4
PZ
6677 struct sd_data *sdd = &tl->data;
6678
6679 for_each_cpu(j, cpu_map) {
fb2cf2c6 6680 struct sched_domain *sd;
6681
6682 if (sdd->sd) {
6683 sd = *per_cpu_ptr(sdd->sd, j);
6684 if (sd && (sd->flags & SD_OVERLAP))
6685 free_sched_groups(sd->groups, 0);
6686 kfree(*per_cpu_ptr(sdd->sd, j));
6687 }
6688
6689 if (sdd->sg)
6690 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6691 if (sdd->sgc)
6692 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6693 }
6694 free_percpu(sdd->sd);
fb2cf2c6 6695 sdd->sd = NULL;
54ab4ff4 6696 free_percpu(sdd->sg);
fb2cf2c6 6697 sdd->sg = NULL;
63b2ca30
NP
6698 free_percpu(sdd->sgc);
6699 sdd->sgc = NULL;
54ab4ff4
PZ
6700 }
6701}
6702
2c402dc3 6703struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6704 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6705 struct sched_domain *child, int cpu)
2c402dc3 6706{
143e1e28 6707 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6708 if (!sd)
d069b916 6709 return child;
2c402dc3 6710
2c402dc3 6711 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6712 if (child) {
6713 sd->level = child->level + 1;
6714 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6715 child->parent = sd;
c75e0128 6716 sd->child = child;
6ae72dff
PZ
6717
6718 if (!cpumask_subset(sched_domain_span(child),
6719 sched_domain_span(sd))) {
6720 pr_err("BUG: arch topology borken\n");
6721#ifdef CONFIG_SCHED_DEBUG
6722 pr_err(" the %s domain not a subset of the %s domain\n",
6723 child->name, sd->name);
6724#endif
6725 /* Fixup, ensure @sd has at least @child cpus. */
6726 cpumask_or(sched_domain_span(sd),
6727 sched_domain_span(sd),
6728 sched_domain_span(child));
6729 }
6730
60495e77 6731 }
a841f8ce 6732 set_domain_attribute(sd, attr);
2c402dc3
PZ
6733
6734 return sd;
6735}
6736
2109b99e
AH
6737/*
6738 * Build sched domains for a given set of cpus and attach the sched domains
6739 * to the individual cpus
6740 */
dce840a0
PZ
6741static int build_sched_domains(const struct cpumask *cpu_map,
6742 struct sched_domain_attr *attr)
2109b99e 6743{
1c632169 6744 enum s_alloc alloc_state;
dce840a0 6745 struct sched_domain *sd;
2109b99e 6746 struct s_data d;
822ff793 6747 int i, ret = -ENOMEM;
9c1cfda2 6748
2109b99e
AH
6749 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6750 if (alloc_state != sa_rootdomain)
6751 goto error;
9c1cfda2 6752
dce840a0 6753 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6754 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6755 struct sched_domain_topology_level *tl;
6756
3bd65a80 6757 sd = NULL;
27723a68 6758 for_each_sd_topology(tl) {
4a850cbe 6759 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6760 if (tl == sched_domain_topology)
6761 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6762 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6763 sd->flags |= SD_OVERLAP;
d110235d
PZ
6764 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6765 break;
e3589f6c 6766 }
dce840a0
PZ
6767 }
6768
6769 /* Build the groups for the domains */
6770 for_each_cpu(i, cpu_map) {
6771 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6772 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6773 if (sd->flags & SD_OVERLAP) {
6774 if (build_overlap_sched_groups(sd, i))
6775 goto error;
6776 } else {
6777 if (build_sched_groups(sd, i))
6778 goto error;
6779 }
1cf51902 6780 }
a06dadbe 6781 }
9c1cfda2 6782
ced549fa 6783 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6784 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6785 if (!cpumask_test_cpu(i, cpu_map))
6786 continue;
9c1cfda2 6787
dce840a0
PZ
6788 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6789 claim_allocations(i, sd);
63b2ca30 6790 init_sched_groups_capacity(i, sd);
dce840a0 6791 }
f712c0c7 6792 }
9c1cfda2 6793
1da177e4 6794 /* Attach the domains */
dce840a0 6795 rcu_read_lock();
abcd083a 6796 for_each_cpu(i, cpu_map) {
21d42ccf 6797 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6798 cpu_attach_domain(sd, d.rd, i);
1da177e4 6799 }
dce840a0 6800 rcu_read_unlock();
51888ca2 6801
822ff793 6802 ret = 0;
51888ca2 6803error:
2109b99e 6804 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6805 return ret;
1da177e4 6806}
029190c5 6807
acc3f5d7 6808static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6809static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6810static struct sched_domain_attr *dattr_cur;
6811 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6812
6813/*
6814 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6815 * cpumask) fails, then fallback to a single sched domain,
6816 * as determined by the single cpumask fallback_doms.
029190c5 6817 */
4212823f 6818static cpumask_var_t fallback_doms;
029190c5 6819
ee79d1bd
HC
6820/*
6821 * arch_update_cpu_topology lets virtualized architectures update the
6822 * cpu core maps. It is supposed to return 1 if the topology changed
6823 * or 0 if it stayed the same.
6824 */
52f5684c 6825int __weak arch_update_cpu_topology(void)
22e52b07 6826{
ee79d1bd 6827 return 0;
22e52b07
HC
6828}
6829
acc3f5d7
RR
6830cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6831{
6832 int i;
6833 cpumask_var_t *doms;
6834
6835 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6836 if (!doms)
6837 return NULL;
6838 for (i = 0; i < ndoms; i++) {
6839 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6840 free_sched_domains(doms, i);
6841 return NULL;
6842 }
6843 }
6844 return doms;
6845}
6846
6847void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6848{
6849 unsigned int i;
6850 for (i = 0; i < ndoms; i++)
6851 free_cpumask_var(doms[i]);
6852 kfree(doms);
6853}
6854
1a20ff27 6855/*
41a2d6cf 6856 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6857 * For now this just excludes isolated cpus, but could be used to
6858 * exclude other special cases in the future.
1a20ff27 6859 */
c4a8849a 6860static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6861{
7378547f
MM
6862 int err;
6863
22e52b07 6864 arch_update_cpu_topology();
029190c5 6865 ndoms_cur = 1;
acc3f5d7 6866 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6867 if (!doms_cur)
acc3f5d7
RR
6868 doms_cur = &fallback_doms;
6869 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6870 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6871 register_sched_domain_sysctl();
7378547f
MM
6872
6873 return err;
1a20ff27
DG
6874}
6875
1a20ff27
DG
6876/*
6877 * Detach sched domains from a group of cpus specified in cpu_map
6878 * These cpus will now be attached to the NULL domain
6879 */
96f874e2 6880static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6881{
6882 int i;
6883
dce840a0 6884 rcu_read_lock();
abcd083a 6885 for_each_cpu(i, cpu_map)
57d885fe 6886 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6887 rcu_read_unlock();
1a20ff27
DG
6888}
6889
1d3504fc
HS
6890/* handle null as "default" */
6891static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6892 struct sched_domain_attr *new, int idx_new)
6893{
6894 struct sched_domain_attr tmp;
6895
6896 /* fast path */
6897 if (!new && !cur)
6898 return 1;
6899
6900 tmp = SD_ATTR_INIT;
6901 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6902 new ? (new + idx_new) : &tmp,
6903 sizeof(struct sched_domain_attr));
6904}
6905
029190c5
PJ
6906/*
6907 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6908 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6909 * doms_new[] to the current sched domain partitioning, doms_cur[].
6910 * It destroys each deleted domain and builds each new domain.
6911 *
acc3f5d7 6912 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6913 * The masks don't intersect (don't overlap.) We should setup one
6914 * sched domain for each mask. CPUs not in any of the cpumasks will
6915 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6916 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6917 * it as it is.
6918 *
acc3f5d7
RR
6919 * The passed in 'doms_new' should be allocated using
6920 * alloc_sched_domains. This routine takes ownership of it and will
6921 * free_sched_domains it when done with it. If the caller failed the
6922 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6923 * and partition_sched_domains() will fallback to the single partition
6924 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6925 *
96f874e2 6926 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6927 * ndoms_new == 0 is a special case for destroying existing domains,
6928 * and it will not create the default domain.
dfb512ec 6929 *
029190c5
PJ
6930 * Call with hotplug lock held
6931 */
acc3f5d7 6932void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6933 struct sched_domain_attr *dattr_new)
029190c5 6934{
dfb512ec 6935 int i, j, n;
d65bd5ec 6936 int new_topology;
029190c5 6937
712555ee 6938 mutex_lock(&sched_domains_mutex);
a1835615 6939
7378547f
MM
6940 /* always unregister in case we don't destroy any domains */
6941 unregister_sched_domain_sysctl();
6942
d65bd5ec
HC
6943 /* Let architecture update cpu core mappings. */
6944 new_topology = arch_update_cpu_topology();
6945
dfb512ec 6946 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6947
6948 /* Destroy deleted domains */
6949 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6950 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6951 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6952 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6953 goto match1;
6954 }
6955 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6956 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6957match1:
6958 ;
6959 }
6960
c8d2d47a 6961 n = ndoms_cur;
e761b772 6962 if (doms_new == NULL) {
c8d2d47a 6963 n = 0;
acc3f5d7 6964 doms_new = &fallback_doms;
6ad4c188 6965 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6966 WARN_ON_ONCE(dattr_new);
e761b772
MK
6967 }
6968
029190c5
PJ
6969 /* Build new domains */
6970 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6971 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6972 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6973 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6974 goto match2;
6975 }
6976 /* no match - add a new doms_new */
dce840a0 6977 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6978match2:
6979 ;
6980 }
6981
6982 /* Remember the new sched domains */
acc3f5d7
RR
6983 if (doms_cur != &fallback_doms)
6984 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6985 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6986 doms_cur = doms_new;
1d3504fc 6987 dattr_cur = dattr_new;
029190c5 6988 ndoms_cur = ndoms_new;
7378547f
MM
6989
6990 register_sched_domain_sysctl();
a1835615 6991
712555ee 6992 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6993}
6994
d35be8ba
SB
6995static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6996
1da177e4 6997/*
3a101d05
TH
6998 * Update cpusets according to cpu_active mask. If cpusets are
6999 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7000 * around partition_sched_domains().
d35be8ba
SB
7001 *
7002 * If we come here as part of a suspend/resume, don't touch cpusets because we
7003 * want to restore it back to its original state upon resume anyway.
1da177e4 7004 */
0b2e918a
TH
7005static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7006 void *hcpu)
e761b772 7007{
d35be8ba
SB
7008 switch (action) {
7009 case CPU_ONLINE_FROZEN:
7010 case CPU_DOWN_FAILED_FROZEN:
7011
7012 /*
7013 * num_cpus_frozen tracks how many CPUs are involved in suspend
7014 * resume sequence. As long as this is not the last online
7015 * operation in the resume sequence, just build a single sched
7016 * domain, ignoring cpusets.
7017 */
7018 num_cpus_frozen--;
7019 if (likely(num_cpus_frozen)) {
7020 partition_sched_domains(1, NULL, NULL);
7021 break;
7022 }
7023
7024 /*
7025 * This is the last CPU online operation. So fall through and
7026 * restore the original sched domains by considering the
7027 * cpuset configurations.
7028 */
7029
e761b772 7030 case CPU_ONLINE:
7ddf96b0 7031 cpuset_update_active_cpus(true);
d35be8ba 7032 break;
3a101d05
TH
7033 default:
7034 return NOTIFY_DONE;
7035 }
d35be8ba 7036 return NOTIFY_OK;
3a101d05 7037}
e761b772 7038
0b2e918a
TH
7039static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7040 void *hcpu)
3a101d05 7041{
3c18d447
JL
7042 unsigned long flags;
7043 long cpu = (long)hcpu;
7044 struct dl_bw *dl_b;
533445c6
OS
7045 bool overflow;
7046 int cpus;
3c18d447 7047
533445c6 7048 switch (action) {
3a101d05 7049 case CPU_DOWN_PREPARE:
533445c6
OS
7050 rcu_read_lock_sched();
7051 dl_b = dl_bw_of(cpu);
3c18d447 7052
533445c6
OS
7053 raw_spin_lock_irqsave(&dl_b->lock, flags);
7054 cpus = dl_bw_cpus(cpu);
7055 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7056 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7057
533445c6 7058 rcu_read_unlock_sched();
3c18d447 7059
533445c6
OS
7060 if (overflow)
7061 return notifier_from_errno(-EBUSY);
7ddf96b0 7062 cpuset_update_active_cpus(false);
d35be8ba
SB
7063 break;
7064 case CPU_DOWN_PREPARE_FROZEN:
7065 num_cpus_frozen++;
7066 partition_sched_domains(1, NULL, NULL);
7067 break;
e761b772
MK
7068 default:
7069 return NOTIFY_DONE;
7070 }
d35be8ba 7071 return NOTIFY_OK;
e761b772 7072}
e761b772 7073
1da177e4
LT
7074void __init sched_init_smp(void)
7075{
dcc30a35
RR
7076 cpumask_var_t non_isolated_cpus;
7077
7078 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7079 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7080
cb83b629
PZ
7081 sched_init_numa();
7082
6acce3ef
PZ
7083 /*
7084 * There's no userspace yet to cause hotplug operations; hence all the
7085 * cpu masks are stable and all blatant races in the below code cannot
7086 * happen.
7087 */
712555ee 7088 mutex_lock(&sched_domains_mutex);
c4a8849a 7089 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7090 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7091 if (cpumask_empty(non_isolated_cpus))
7092 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7093 mutex_unlock(&sched_domains_mutex);
e761b772 7094
301a5cba 7095 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7096 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7097 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7098
b328ca18 7099 init_hrtick();
5c1e1767
NP
7100
7101 /* Move init over to a non-isolated CPU */
dcc30a35 7102 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7103 BUG();
19978ca6 7104 sched_init_granularity();
dcc30a35 7105 free_cpumask_var(non_isolated_cpus);
4212823f 7106
0e3900e6 7107 init_sched_rt_class();
1baca4ce 7108 init_sched_dl_class();
1da177e4
LT
7109}
7110#else
7111void __init sched_init_smp(void)
7112{
19978ca6 7113 sched_init_granularity();
1da177e4
LT
7114}
7115#endif /* CONFIG_SMP */
7116
cd1bb94b
AB
7117const_debug unsigned int sysctl_timer_migration = 1;
7118
1da177e4
LT
7119int in_sched_functions(unsigned long addr)
7120{
1da177e4
LT
7121 return in_lock_functions(addr) ||
7122 (addr >= (unsigned long)__sched_text_start
7123 && addr < (unsigned long)__sched_text_end);
7124}
7125
029632fb 7126#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7127/*
7128 * Default task group.
7129 * Every task in system belongs to this group at bootup.
7130 */
029632fb 7131struct task_group root_task_group;
35cf4e50 7132LIST_HEAD(task_groups);
052f1dc7 7133#endif
6f505b16 7134
e6252c3e 7135DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7136
1da177e4
LT
7137void __init sched_init(void)
7138{
dd41f596 7139 int i, j;
434d53b0
MT
7140 unsigned long alloc_size = 0, ptr;
7141
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7144#endif
7145#ifdef CONFIG_RT_GROUP_SCHED
7146 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7147#endif
434d53b0 7148 if (alloc_size) {
36b7b6d4 7149 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7150
7151#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7152 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7153 ptr += nr_cpu_ids * sizeof(void **);
7154
07e06b01 7155 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7156 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7157
6d6bc0ad 7158#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7159#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7160 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7161 ptr += nr_cpu_ids * sizeof(void **);
7162
07e06b01 7163 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7164 ptr += nr_cpu_ids * sizeof(void **);
7165
6d6bc0ad 7166#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7167 }
df7c8e84 7168#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7169 for_each_possible_cpu(i) {
7170 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7171 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7172 }
b74e6278 7173#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7174
332ac17e
DF
7175 init_rt_bandwidth(&def_rt_bandwidth,
7176 global_rt_period(), global_rt_runtime());
7177 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7178 global_rt_period(), global_rt_runtime());
332ac17e 7179
57d885fe
GH
7180#ifdef CONFIG_SMP
7181 init_defrootdomain();
7182#endif
7183
d0b27fa7 7184#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7185 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7186 global_rt_period(), global_rt_runtime());
6d6bc0ad 7187#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7188
7c941438 7189#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7190 list_add(&root_task_group.list, &task_groups);
7191 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7192 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7193 autogroup_init(&init_task);
54c707e9 7194
7c941438 7195#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7196
0a945022 7197 for_each_possible_cpu(i) {
70b97a7f 7198 struct rq *rq;
1da177e4
LT
7199
7200 rq = cpu_rq(i);
05fa785c 7201 raw_spin_lock_init(&rq->lock);
7897986b 7202 rq->nr_running = 0;
dce48a84
TG
7203 rq->calc_load_active = 0;
7204 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7205 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7206 init_rt_rq(&rq->rt);
7207 init_dl_rq(&rq->dl);
dd41f596 7208#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7209 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7210 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7211 /*
07e06b01 7212 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7213 *
7214 * In case of task-groups formed thr' the cgroup filesystem, it
7215 * gets 100% of the cpu resources in the system. This overall
7216 * system cpu resource is divided among the tasks of
07e06b01 7217 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7218 * based on each entity's (task or task-group's) weight
7219 * (se->load.weight).
7220 *
07e06b01 7221 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7222 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7223 * then A0's share of the cpu resource is:
7224 *
0d905bca 7225 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7226 *
07e06b01
YZ
7227 * We achieve this by letting root_task_group's tasks sit
7228 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7229 */
ab84d31e 7230 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7231 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7232#endif /* CONFIG_FAIR_GROUP_SCHED */
7233
7234 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7235#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7236 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7237#endif
1da177e4 7238
dd41f596
IM
7239 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7240 rq->cpu_load[j] = 0;
fdf3e95d
VP
7241
7242 rq->last_load_update_tick = jiffies;
7243
1da177e4 7244#ifdef CONFIG_SMP
41c7ce9a 7245 rq->sd = NULL;
57d885fe 7246 rq->rd = NULL;
ca6d75e6 7247 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7248 rq->balance_callback = NULL;
1da177e4 7249 rq->active_balance = 0;
dd41f596 7250 rq->next_balance = jiffies;
1da177e4 7251 rq->push_cpu = 0;
0a2966b4 7252 rq->cpu = i;
1f11eb6a 7253 rq->online = 0;
eae0c9df
MG
7254 rq->idle_stamp = 0;
7255 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7256 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7257
7258 INIT_LIST_HEAD(&rq->cfs_tasks);
7259
dc938520 7260 rq_attach_root(rq, &def_root_domain);
3451d024 7261#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7262 rq->nohz_flags = 0;
83cd4fe2 7263#endif
265f22a9
FW
7264#ifdef CONFIG_NO_HZ_FULL
7265 rq->last_sched_tick = 0;
7266#endif
1da177e4 7267#endif
8f4d37ec 7268 init_rq_hrtick(rq);
1da177e4 7269 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7270 }
7271
2dd73a4f 7272 set_load_weight(&init_task);
b50f60ce 7273
e107be36
AK
7274#ifdef CONFIG_PREEMPT_NOTIFIERS
7275 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7276#endif
7277
1da177e4
LT
7278 /*
7279 * The boot idle thread does lazy MMU switching as well:
7280 */
7281 atomic_inc(&init_mm.mm_count);
7282 enter_lazy_tlb(&init_mm, current);
7283
1b537c7d
YD
7284 /*
7285 * During early bootup we pretend to be a normal task:
7286 */
7287 current->sched_class = &fair_sched_class;
7288
1da177e4
LT
7289 /*
7290 * Make us the idle thread. Technically, schedule() should not be
7291 * called from this thread, however somewhere below it might be,
7292 * but because we are the idle thread, we just pick up running again
7293 * when this runqueue becomes "idle".
7294 */
7295 init_idle(current, smp_processor_id());
dce48a84
TG
7296
7297 calc_load_update = jiffies + LOAD_FREQ;
7298
bf4d83f6 7299#ifdef CONFIG_SMP
4cb98839 7300 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7301 /* May be allocated at isolcpus cmdline parse time */
7302 if (cpu_isolated_map == NULL)
7303 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7304 idle_thread_set_boot_cpu();
a803f026 7305 set_cpu_rq_start_time();
029632fb
PZ
7306#endif
7307 init_sched_fair_class();
6a7b3dc3 7308
6892b75e 7309 scheduler_running = 1;
1da177e4
LT
7310}
7311
d902db1e 7312#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7313static inline int preempt_count_equals(int preempt_offset)
7314{
234da7bc 7315 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7316
4ba8216c 7317 return (nested == preempt_offset);
e4aafea2
FW
7318}
7319
d894837f 7320void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7321{
8eb23b9f
PZ
7322 /*
7323 * Blocking primitives will set (and therefore destroy) current->state,
7324 * since we will exit with TASK_RUNNING make sure we enter with it,
7325 * otherwise we will destroy state.
7326 */
00845eb9 7327 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7328 "do not call blocking ops when !TASK_RUNNING; "
7329 "state=%lx set at [<%p>] %pS\n",
7330 current->state,
7331 (void *)current->task_state_change,
00845eb9 7332 (void *)current->task_state_change);
8eb23b9f 7333
3427445a
PZ
7334 ___might_sleep(file, line, preempt_offset);
7335}
7336EXPORT_SYMBOL(__might_sleep);
7337
7338void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7339{
1da177e4
LT
7340 static unsigned long prev_jiffy; /* ratelimiting */
7341
b3fbab05 7342 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7343 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7344 !is_idle_task(current)) ||
e4aafea2 7345 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7346 return;
7347 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7348 return;
7349 prev_jiffy = jiffies;
7350
3df0fc5b
PZ
7351 printk(KERN_ERR
7352 "BUG: sleeping function called from invalid context at %s:%d\n",
7353 file, line);
7354 printk(KERN_ERR
7355 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7356 in_atomic(), irqs_disabled(),
7357 current->pid, current->comm);
aef745fc 7358
a8b686b3
ES
7359 if (task_stack_end_corrupted(current))
7360 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7361
aef745fc
IM
7362 debug_show_held_locks(current);
7363 if (irqs_disabled())
7364 print_irqtrace_events(current);
8f47b187
TG
7365#ifdef CONFIG_DEBUG_PREEMPT
7366 if (!preempt_count_equals(preempt_offset)) {
7367 pr_err("Preemption disabled at:");
7368 print_ip_sym(current->preempt_disable_ip);
7369 pr_cont("\n");
7370 }
7371#endif
aef745fc 7372 dump_stack();
1da177e4 7373}
3427445a 7374EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7375#endif
7376
7377#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7378void normalize_rt_tasks(void)
3a5e4dc1 7379{
dbc7f069 7380 struct task_struct *g, *p;
d50dde5a
DF
7381 struct sched_attr attr = {
7382 .sched_policy = SCHED_NORMAL,
7383 };
1da177e4 7384
3472eaa1 7385 read_lock(&tasklist_lock);
5d07f420 7386 for_each_process_thread(g, p) {
178be793
IM
7387 /*
7388 * Only normalize user tasks:
7389 */
3472eaa1 7390 if (p->flags & PF_KTHREAD)
178be793
IM
7391 continue;
7392
6cfb0d5d 7393 p->se.exec_start = 0;
6cfb0d5d 7394#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7395 p->se.statistics.wait_start = 0;
7396 p->se.statistics.sleep_start = 0;
7397 p->se.statistics.block_start = 0;
6cfb0d5d 7398#endif
dd41f596 7399
aab03e05 7400 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7401 /*
7402 * Renice negative nice level userspace
7403 * tasks back to 0:
7404 */
3472eaa1 7405 if (task_nice(p) < 0)
dd41f596 7406 set_user_nice(p, 0);
1da177e4 7407 continue;
dd41f596 7408 }
1da177e4 7409
dbc7f069 7410 __sched_setscheduler(p, &attr, false, false);
5d07f420 7411 }
3472eaa1 7412 read_unlock(&tasklist_lock);
1da177e4
LT
7413}
7414
7415#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7416
67fc4e0c 7417#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7418/*
67fc4e0c 7419 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7420 *
7421 * They can only be called when the whole system has been
7422 * stopped - every CPU needs to be quiescent, and no scheduling
7423 * activity can take place. Using them for anything else would
7424 * be a serious bug, and as a result, they aren't even visible
7425 * under any other configuration.
7426 */
7427
7428/**
7429 * curr_task - return the current task for a given cpu.
7430 * @cpu: the processor in question.
7431 *
7432 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7433 *
7434 * Return: The current task for @cpu.
1df5c10a 7435 */
36c8b586 7436struct task_struct *curr_task(int cpu)
1df5c10a
LT
7437{
7438 return cpu_curr(cpu);
7439}
7440
67fc4e0c
JW
7441#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7442
7443#ifdef CONFIG_IA64
1df5c10a
LT
7444/**
7445 * set_curr_task - set the current task for a given cpu.
7446 * @cpu: the processor in question.
7447 * @p: the task pointer to set.
7448 *
7449 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7450 * are serviced on a separate stack. It allows the architecture to switch the
7451 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7452 * must be called with all CPU's synchronized, and interrupts disabled, the
7453 * and caller must save the original value of the current task (see
7454 * curr_task() above) and restore that value before reenabling interrupts and
7455 * re-starting the system.
7456 *
7457 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7458 */
36c8b586 7459void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7460{
7461 cpu_curr(cpu) = p;
7462}
7463
7464#endif
29f59db3 7465
7c941438 7466#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7467/* task_group_lock serializes the addition/removal of task groups */
7468static DEFINE_SPINLOCK(task_group_lock);
7469
bccbe08a
PZ
7470static void free_sched_group(struct task_group *tg)
7471{
7472 free_fair_sched_group(tg);
7473 free_rt_sched_group(tg);
e9aa1dd1 7474 autogroup_free(tg);
bccbe08a
PZ
7475 kfree(tg);
7476}
7477
7478/* allocate runqueue etc for a new task group */
ec7dc8ac 7479struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7480{
7481 struct task_group *tg;
bccbe08a
PZ
7482
7483 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7484 if (!tg)
7485 return ERR_PTR(-ENOMEM);
7486
ec7dc8ac 7487 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7488 goto err;
7489
ec7dc8ac 7490 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7491 goto err;
7492
ace783b9
LZ
7493 return tg;
7494
7495err:
7496 free_sched_group(tg);
7497 return ERR_PTR(-ENOMEM);
7498}
7499
7500void sched_online_group(struct task_group *tg, struct task_group *parent)
7501{
7502 unsigned long flags;
7503
8ed36996 7504 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7505 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7506
7507 WARN_ON(!parent); /* root should already exist */
7508
7509 tg->parent = parent;
f473aa5e 7510 INIT_LIST_HEAD(&tg->children);
09f2724a 7511 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7512 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7513}
7514
9b5b7751 7515/* rcu callback to free various structures associated with a task group */
6f505b16 7516static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7517{
29f59db3 7518 /* now it should be safe to free those cfs_rqs */
6f505b16 7519 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7520}
7521
9b5b7751 7522/* Destroy runqueue etc associated with a task group */
4cf86d77 7523void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7524{
7525 /* wait for possible concurrent references to cfs_rqs complete */
7526 call_rcu(&tg->rcu, free_sched_group_rcu);
7527}
7528
7529void sched_offline_group(struct task_group *tg)
29f59db3 7530{
8ed36996 7531 unsigned long flags;
9b5b7751 7532 int i;
29f59db3 7533
3d4b47b4
PZ
7534 /* end participation in shares distribution */
7535 for_each_possible_cpu(i)
bccbe08a 7536 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7537
7538 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7539 list_del_rcu(&tg->list);
f473aa5e 7540 list_del_rcu(&tg->siblings);
8ed36996 7541 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7542}
7543
9b5b7751 7544/* change task's runqueue when it moves between groups.
3a252015
IM
7545 * The caller of this function should have put the task in its new group
7546 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7547 * reflect its new group.
9b5b7751
SV
7548 */
7549void sched_move_task(struct task_struct *tsk)
29f59db3 7550{
8323f26c 7551 struct task_group *tg;
da0c1e65 7552 int queued, running;
29f59db3
SV
7553 unsigned long flags;
7554 struct rq *rq;
7555
7556 rq = task_rq_lock(tsk, &flags);
7557
051a1d1a 7558 running = task_current(rq, tsk);
da0c1e65 7559 queued = task_on_rq_queued(tsk);
29f59db3 7560
da0c1e65 7561 if (queued)
29f59db3 7562 dequeue_task(rq, tsk, 0);
0e1f3483 7563 if (unlikely(running))
f3cd1c4e 7564 put_prev_task(rq, tsk);
29f59db3 7565
f7b8a47d
KT
7566 /*
7567 * All callers are synchronized by task_rq_lock(); we do not use RCU
7568 * which is pointless here. Thus, we pass "true" to task_css_check()
7569 * to prevent lockdep warnings.
7570 */
7571 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7572 struct task_group, css);
7573 tg = autogroup_task_group(tsk, tg);
7574 tsk->sched_task_group = tg;
7575
810b3817 7576#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7577 if (tsk->sched_class->task_move_group)
da0c1e65 7578 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7579 else
810b3817 7580#endif
b2b5ce02 7581 set_task_rq(tsk, task_cpu(tsk));
810b3817 7582
0e1f3483
HS
7583 if (unlikely(running))
7584 tsk->sched_class->set_curr_task(rq);
da0c1e65 7585 if (queued)
371fd7e7 7586 enqueue_task(rq, tsk, 0);
29f59db3 7587
0122ec5b 7588 task_rq_unlock(rq, tsk, &flags);
29f59db3 7589}
7c941438 7590#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7591
a790de99
PT
7592#ifdef CONFIG_RT_GROUP_SCHED
7593/*
7594 * Ensure that the real time constraints are schedulable.
7595 */
7596static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7597
9a7e0b18
PZ
7598/* Must be called with tasklist_lock held */
7599static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7600{
9a7e0b18 7601 struct task_struct *g, *p;
b40b2e8e 7602
1fe89e1b
PZ
7603 /*
7604 * Autogroups do not have RT tasks; see autogroup_create().
7605 */
7606 if (task_group_is_autogroup(tg))
7607 return 0;
7608
5d07f420 7609 for_each_process_thread(g, p) {
8651c658 7610 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7611 return 1;
5d07f420 7612 }
b40b2e8e 7613
9a7e0b18
PZ
7614 return 0;
7615}
b40b2e8e 7616
9a7e0b18
PZ
7617struct rt_schedulable_data {
7618 struct task_group *tg;
7619 u64 rt_period;
7620 u64 rt_runtime;
7621};
b40b2e8e 7622
a790de99 7623static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7624{
7625 struct rt_schedulable_data *d = data;
7626 struct task_group *child;
7627 unsigned long total, sum = 0;
7628 u64 period, runtime;
b40b2e8e 7629
9a7e0b18
PZ
7630 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7631 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7632
9a7e0b18
PZ
7633 if (tg == d->tg) {
7634 period = d->rt_period;
7635 runtime = d->rt_runtime;
b40b2e8e 7636 }
b40b2e8e 7637
4653f803
PZ
7638 /*
7639 * Cannot have more runtime than the period.
7640 */
7641 if (runtime > period && runtime != RUNTIME_INF)
7642 return -EINVAL;
6f505b16 7643
4653f803
PZ
7644 /*
7645 * Ensure we don't starve existing RT tasks.
7646 */
9a7e0b18
PZ
7647 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7648 return -EBUSY;
6f505b16 7649
9a7e0b18 7650 total = to_ratio(period, runtime);
6f505b16 7651
4653f803
PZ
7652 /*
7653 * Nobody can have more than the global setting allows.
7654 */
7655 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7656 return -EINVAL;
6f505b16 7657
4653f803
PZ
7658 /*
7659 * The sum of our children's runtime should not exceed our own.
7660 */
9a7e0b18
PZ
7661 list_for_each_entry_rcu(child, &tg->children, siblings) {
7662 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7663 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7664
9a7e0b18
PZ
7665 if (child == d->tg) {
7666 period = d->rt_period;
7667 runtime = d->rt_runtime;
7668 }
6f505b16 7669
9a7e0b18 7670 sum += to_ratio(period, runtime);
9f0c1e56 7671 }
6f505b16 7672
9a7e0b18
PZ
7673 if (sum > total)
7674 return -EINVAL;
7675
7676 return 0;
6f505b16
PZ
7677}
7678
9a7e0b18 7679static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7680{
8277434e
PT
7681 int ret;
7682
9a7e0b18
PZ
7683 struct rt_schedulable_data data = {
7684 .tg = tg,
7685 .rt_period = period,
7686 .rt_runtime = runtime,
7687 };
7688
8277434e
PT
7689 rcu_read_lock();
7690 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7691 rcu_read_unlock();
7692
7693 return ret;
521f1a24
DG
7694}
7695
ab84d31e 7696static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7697 u64 rt_period, u64 rt_runtime)
6f505b16 7698{
ac086bc2 7699 int i, err = 0;
9f0c1e56 7700
2636ed5f
PZ
7701 /*
7702 * Disallowing the root group RT runtime is BAD, it would disallow the
7703 * kernel creating (and or operating) RT threads.
7704 */
7705 if (tg == &root_task_group && rt_runtime == 0)
7706 return -EINVAL;
7707
7708 /* No period doesn't make any sense. */
7709 if (rt_period == 0)
7710 return -EINVAL;
7711
9f0c1e56 7712 mutex_lock(&rt_constraints_mutex);
521f1a24 7713 read_lock(&tasklist_lock);
9a7e0b18
PZ
7714 err = __rt_schedulable(tg, rt_period, rt_runtime);
7715 if (err)
9f0c1e56 7716 goto unlock;
ac086bc2 7717
0986b11b 7718 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7719 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7720 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7721
7722 for_each_possible_cpu(i) {
7723 struct rt_rq *rt_rq = tg->rt_rq[i];
7724
0986b11b 7725 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7726 rt_rq->rt_runtime = rt_runtime;
0986b11b 7727 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7728 }
0986b11b 7729 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7730unlock:
521f1a24 7731 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7732 mutex_unlock(&rt_constraints_mutex);
7733
7734 return err;
6f505b16
PZ
7735}
7736
25cc7da7 7737static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7738{
7739 u64 rt_runtime, rt_period;
7740
7741 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7742 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7743 if (rt_runtime_us < 0)
7744 rt_runtime = RUNTIME_INF;
7745
ab84d31e 7746 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7747}
7748
25cc7da7 7749static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7750{
7751 u64 rt_runtime_us;
7752
d0b27fa7 7753 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7754 return -1;
7755
d0b27fa7 7756 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7757 do_div(rt_runtime_us, NSEC_PER_USEC);
7758 return rt_runtime_us;
7759}
d0b27fa7 7760
ce2f5fe4 7761static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7762{
7763 u64 rt_runtime, rt_period;
7764
ce2f5fe4 7765 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7766 rt_runtime = tg->rt_bandwidth.rt_runtime;
7767
ab84d31e 7768 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7769}
7770
25cc7da7 7771static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7772{
7773 u64 rt_period_us;
7774
7775 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7776 do_div(rt_period_us, NSEC_PER_USEC);
7777 return rt_period_us;
7778}
332ac17e 7779#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7780
332ac17e 7781#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7782static int sched_rt_global_constraints(void)
7783{
7784 int ret = 0;
7785
7786 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7787 read_lock(&tasklist_lock);
4653f803 7788 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7789 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7790 mutex_unlock(&rt_constraints_mutex);
7791
7792 return ret;
7793}
54e99124 7794
25cc7da7 7795static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7796{
7797 /* Don't accept realtime tasks when there is no way for them to run */
7798 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7799 return 0;
7800
7801 return 1;
7802}
7803
6d6bc0ad 7804#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7805static int sched_rt_global_constraints(void)
7806{
ac086bc2 7807 unsigned long flags;
332ac17e 7808 int i, ret = 0;
ec5d4989 7809
0986b11b 7810 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7811 for_each_possible_cpu(i) {
7812 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7813
0986b11b 7814 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7815 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7816 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7817 }
0986b11b 7818 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7819
332ac17e 7820 return ret;
d0b27fa7 7821}
6d6bc0ad 7822#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7823
a1963b81 7824static int sched_dl_global_validate(void)
332ac17e 7825{
1724813d
PZ
7826 u64 runtime = global_rt_runtime();
7827 u64 period = global_rt_period();
332ac17e 7828 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7829 struct dl_bw *dl_b;
1724813d 7830 int cpu, ret = 0;
49516342 7831 unsigned long flags;
332ac17e
DF
7832
7833 /*
7834 * Here we want to check the bandwidth not being set to some
7835 * value smaller than the currently allocated bandwidth in
7836 * any of the root_domains.
7837 *
7838 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7839 * cycling on root_domains... Discussion on different/better
7840 * solutions is welcome!
7841 */
1724813d 7842 for_each_possible_cpu(cpu) {
f10e00f4
KT
7843 rcu_read_lock_sched();
7844 dl_b = dl_bw_of(cpu);
332ac17e 7845
49516342 7846 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7847 if (new_bw < dl_b->total_bw)
7848 ret = -EBUSY;
49516342 7849 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7850
f10e00f4
KT
7851 rcu_read_unlock_sched();
7852
1724813d
PZ
7853 if (ret)
7854 break;
332ac17e
DF
7855 }
7856
1724813d 7857 return ret;
332ac17e
DF
7858}
7859
1724813d 7860static void sched_dl_do_global(void)
ce0dbbbb 7861{
1724813d 7862 u64 new_bw = -1;
f10e00f4 7863 struct dl_bw *dl_b;
1724813d 7864 int cpu;
49516342 7865 unsigned long flags;
ce0dbbbb 7866
1724813d
PZ
7867 def_dl_bandwidth.dl_period = global_rt_period();
7868 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7869
7870 if (global_rt_runtime() != RUNTIME_INF)
7871 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7872
7873 /*
7874 * FIXME: As above...
7875 */
7876 for_each_possible_cpu(cpu) {
f10e00f4
KT
7877 rcu_read_lock_sched();
7878 dl_b = dl_bw_of(cpu);
1724813d 7879
49516342 7880 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7881 dl_b->bw = new_bw;
49516342 7882 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7883
7884 rcu_read_unlock_sched();
ce0dbbbb 7885 }
1724813d
PZ
7886}
7887
7888static int sched_rt_global_validate(void)
7889{
7890 if (sysctl_sched_rt_period <= 0)
7891 return -EINVAL;
7892
e9e7cb38
JL
7893 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7894 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7895 return -EINVAL;
7896
7897 return 0;
7898}
7899
7900static void sched_rt_do_global(void)
7901{
7902 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7903 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7904}
7905
d0b27fa7 7906int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7907 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7908 loff_t *ppos)
7909{
d0b27fa7
PZ
7910 int old_period, old_runtime;
7911 static DEFINE_MUTEX(mutex);
1724813d 7912 int ret;
d0b27fa7
PZ
7913
7914 mutex_lock(&mutex);
7915 old_period = sysctl_sched_rt_period;
7916 old_runtime = sysctl_sched_rt_runtime;
7917
8d65af78 7918 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7919
7920 if (!ret && write) {
1724813d
PZ
7921 ret = sched_rt_global_validate();
7922 if (ret)
7923 goto undo;
7924
a1963b81 7925 ret = sched_dl_global_validate();
1724813d
PZ
7926 if (ret)
7927 goto undo;
7928
a1963b81 7929 ret = sched_rt_global_constraints();
1724813d
PZ
7930 if (ret)
7931 goto undo;
7932
7933 sched_rt_do_global();
7934 sched_dl_do_global();
7935 }
7936 if (0) {
7937undo:
7938 sysctl_sched_rt_period = old_period;
7939 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7940 }
7941 mutex_unlock(&mutex);
7942
7943 return ret;
7944}
68318b8e 7945
1724813d 7946int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7947 void __user *buffer, size_t *lenp,
7948 loff_t *ppos)
7949{
7950 int ret;
332ac17e 7951 static DEFINE_MUTEX(mutex);
332ac17e
DF
7952
7953 mutex_lock(&mutex);
332ac17e 7954 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7955 /* make sure that internally we keep jiffies */
7956 /* also, writing zero resets timeslice to default */
332ac17e 7957 if (!ret && write) {
1724813d
PZ
7958 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7959 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7960 }
7961 mutex_unlock(&mutex);
332ac17e
DF
7962 return ret;
7963}
7964
052f1dc7 7965#ifdef CONFIG_CGROUP_SCHED
68318b8e 7966
a7c6d554 7967static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7968{
a7c6d554 7969 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7970}
7971
eb95419b
TH
7972static struct cgroup_subsys_state *
7973cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7974{
eb95419b
TH
7975 struct task_group *parent = css_tg(parent_css);
7976 struct task_group *tg;
68318b8e 7977
eb95419b 7978 if (!parent) {
68318b8e 7979 /* This is early initialization for the top cgroup */
07e06b01 7980 return &root_task_group.css;
68318b8e
SV
7981 }
7982
ec7dc8ac 7983 tg = sched_create_group(parent);
68318b8e
SV
7984 if (IS_ERR(tg))
7985 return ERR_PTR(-ENOMEM);
7986
68318b8e
SV
7987 return &tg->css;
7988}
7989
eb95419b 7990static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7991{
eb95419b 7992 struct task_group *tg = css_tg(css);
5c9d535b 7993 struct task_group *parent = css_tg(css->parent);
ace783b9 7994
63876986
TH
7995 if (parent)
7996 sched_online_group(tg, parent);
ace783b9
LZ
7997 return 0;
7998}
7999
eb95419b 8000static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8001{
eb95419b 8002 struct task_group *tg = css_tg(css);
68318b8e
SV
8003
8004 sched_destroy_group(tg);
8005}
8006
eb95419b 8007static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8008{
eb95419b 8009 struct task_group *tg = css_tg(css);
ace783b9
LZ
8010
8011 sched_offline_group(tg);
8012}
8013
eeb61e53
KT
8014static void cpu_cgroup_fork(struct task_struct *task)
8015{
8016 sched_move_task(task);
8017}
8018
eb95419b 8019static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8020 struct cgroup_taskset *tset)
68318b8e 8021{
bb9d97b6
TH
8022 struct task_struct *task;
8023
924f0d9a 8024 cgroup_taskset_for_each(task, tset) {
b68aa230 8025#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8026 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8027 return -EINVAL;
b68aa230 8028#else
bb9d97b6
TH
8029 /* We don't support RT-tasks being in separate groups */
8030 if (task->sched_class != &fair_sched_class)
8031 return -EINVAL;
b68aa230 8032#endif
bb9d97b6 8033 }
be367d09
BB
8034 return 0;
8035}
68318b8e 8036
eb95419b 8037static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8038 struct cgroup_taskset *tset)
68318b8e 8039{
bb9d97b6
TH
8040 struct task_struct *task;
8041
924f0d9a 8042 cgroup_taskset_for_each(task, tset)
bb9d97b6 8043 sched_move_task(task);
68318b8e
SV
8044}
8045
eb95419b
TH
8046static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8047 struct cgroup_subsys_state *old_css,
8048 struct task_struct *task)
068c5cc5
PZ
8049{
8050 /*
8051 * cgroup_exit() is called in the copy_process() failure path.
8052 * Ignore this case since the task hasn't ran yet, this avoids
8053 * trying to poke a half freed task state from generic code.
8054 */
8055 if (!(task->flags & PF_EXITING))
8056 return;
8057
8058 sched_move_task(task);
8059}
8060
052f1dc7 8061#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8062static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8063 struct cftype *cftype, u64 shareval)
68318b8e 8064{
182446d0 8065 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8066}
8067
182446d0
TH
8068static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8069 struct cftype *cft)
68318b8e 8070{
182446d0 8071 struct task_group *tg = css_tg(css);
68318b8e 8072
c8b28116 8073 return (u64) scale_load_down(tg->shares);
68318b8e 8074}
ab84d31e
PT
8075
8076#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8077static DEFINE_MUTEX(cfs_constraints_mutex);
8078
ab84d31e
PT
8079const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8080const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8081
a790de99
PT
8082static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8083
ab84d31e
PT
8084static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8085{
56f570e5 8086 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8087 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8088
8089 if (tg == &root_task_group)
8090 return -EINVAL;
8091
8092 /*
8093 * Ensure we have at some amount of bandwidth every period. This is
8094 * to prevent reaching a state of large arrears when throttled via
8095 * entity_tick() resulting in prolonged exit starvation.
8096 */
8097 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8098 return -EINVAL;
8099
8100 /*
8101 * Likewise, bound things on the otherside by preventing insane quota
8102 * periods. This also allows us to normalize in computing quota
8103 * feasibility.
8104 */
8105 if (period > max_cfs_quota_period)
8106 return -EINVAL;
8107
0e59bdae
KT
8108 /*
8109 * Prevent race between setting of cfs_rq->runtime_enabled and
8110 * unthrottle_offline_cfs_rqs().
8111 */
8112 get_online_cpus();
a790de99
PT
8113 mutex_lock(&cfs_constraints_mutex);
8114 ret = __cfs_schedulable(tg, period, quota);
8115 if (ret)
8116 goto out_unlock;
8117
58088ad0 8118 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8119 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8120 /*
8121 * If we need to toggle cfs_bandwidth_used, off->on must occur
8122 * before making related changes, and on->off must occur afterwards
8123 */
8124 if (runtime_enabled && !runtime_was_enabled)
8125 cfs_bandwidth_usage_inc();
ab84d31e
PT
8126 raw_spin_lock_irq(&cfs_b->lock);
8127 cfs_b->period = ns_to_ktime(period);
8128 cfs_b->quota = quota;
58088ad0 8129
a9cf55b2 8130 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8131 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8132 if (runtime_enabled)
8133 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8134 raw_spin_unlock_irq(&cfs_b->lock);
8135
0e59bdae 8136 for_each_online_cpu(i) {
ab84d31e 8137 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8138 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8139
8140 raw_spin_lock_irq(&rq->lock);
58088ad0 8141 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8142 cfs_rq->runtime_remaining = 0;
671fd9da 8143
029632fb 8144 if (cfs_rq->throttled)
671fd9da 8145 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8146 raw_spin_unlock_irq(&rq->lock);
8147 }
1ee14e6c
BS
8148 if (runtime_was_enabled && !runtime_enabled)
8149 cfs_bandwidth_usage_dec();
a790de99
PT
8150out_unlock:
8151 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8152 put_online_cpus();
ab84d31e 8153
a790de99 8154 return ret;
ab84d31e
PT
8155}
8156
8157int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8158{
8159 u64 quota, period;
8160
029632fb 8161 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8162 if (cfs_quota_us < 0)
8163 quota = RUNTIME_INF;
8164 else
8165 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8166
8167 return tg_set_cfs_bandwidth(tg, period, quota);
8168}
8169
8170long tg_get_cfs_quota(struct task_group *tg)
8171{
8172 u64 quota_us;
8173
029632fb 8174 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8175 return -1;
8176
029632fb 8177 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8178 do_div(quota_us, NSEC_PER_USEC);
8179
8180 return quota_us;
8181}
8182
8183int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8184{
8185 u64 quota, period;
8186
8187 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8188 quota = tg->cfs_bandwidth.quota;
ab84d31e 8189
ab84d31e
PT
8190 return tg_set_cfs_bandwidth(tg, period, quota);
8191}
8192
8193long tg_get_cfs_period(struct task_group *tg)
8194{
8195 u64 cfs_period_us;
8196
029632fb 8197 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8198 do_div(cfs_period_us, NSEC_PER_USEC);
8199
8200 return cfs_period_us;
8201}
8202
182446d0
TH
8203static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8204 struct cftype *cft)
ab84d31e 8205{
182446d0 8206 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8207}
8208
182446d0
TH
8209static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8210 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8211{
182446d0 8212 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8213}
8214
182446d0
TH
8215static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8216 struct cftype *cft)
ab84d31e 8217{
182446d0 8218 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8219}
8220
182446d0
TH
8221static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8222 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8223{
182446d0 8224 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8225}
8226
a790de99
PT
8227struct cfs_schedulable_data {
8228 struct task_group *tg;
8229 u64 period, quota;
8230};
8231
8232/*
8233 * normalize group quota/period to be quota/max_period
8234 * note: units are usecs
8235 */
8236static u64 normalize_cfs_quota(struct task_group *tg,
8237 struct cfs_schedulable_data *d)
8238{
8239 u64 quota, period;
8240
8241 if (tg == d->tg) {
8242 period = d->period;
8243 quota = d->quota;
8244 } else {
8245 period = tg_get_cfs_period(tg);
8246 quota = tg_get_cfs_quota(tg);
8247 }
8248
8249 /* note: these should typically be equivalent */
8250 if (quota == RUNTIME_INF || quota == -1)
8251 return RUNTIME_INF;
8252
8253 return to_ratio(period, quota);
8254}
8255
8256static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8257{
8258 struct cfs_schedulable_data *d = data;
029632fb 8259 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8260 s64 quota = 0, parent_quota = -1;
8261
8262 if (!tg->parent) {
8263 quota = RUNTIME_INF;
8264 } else {
029632fb 8265 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8266
8267 quota = normalize_cfs_quota(tg, d);
9c58c79a 8268 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8269
8270 /*
8271 * ensure max(child_quota) <= parent_quota, inherit when no
8272 * limit is set
8273 */
8274 if (quota == RUNTIME_INF)
8275 quota = parent_quota;
8276 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8277 return -EINVAL;
8278 }
9c58c79a 8279 cfs_b->hierarchical_quota = quota;
a790de99
PT
8280
8281 return 0;
8282}
8283
8284static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8285{
8277434e 8286 int ret;
a790de99
PT
8287 struct cfs_schedulable_data data = {
8288 .tg = tg,
8289 .period = period,
8290 .quota = quota,
8291 };
8292
8293 if (quota != RUNTIME_INF) {
8294 do_div(data.period, NSEC_PER_USEC);
8295 do_div(data.quota, NSEC_PER_USEC);
8296 }
8297
8277434e
PT
8298 rcu_read_lock();
8299 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8300 rcu_read_unlock();
8301
8302 return ret;
a790de99 8303}
e8da1b18 8304
2da8ca82 8305static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8306{
2da8ca82 8307 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8308 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8309
44ffc75b
TH
8310 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8311 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8312 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8313
8314 return 0;
8315}
ab84d31e 8316#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8317#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8318
052f1dc7 8319#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8320static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8321 struct cftype *cft, s64 val)
6f505b16 8322{
182446d0 8323 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8324}
8325
182446d0
TH
8326static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8327 struct cftype *cft)
6f505b16 8328{
182446d0 8329 return sched_group_rt_runtime(css_tg(css));
6f505b16 8330}
d0b27fa7 8331
182446d0
TH
8332static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8333 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8334{
182446d0 8335 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8336}
8337
182446d0
TH
8338static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8339 struct cftype *cft)
d0b27fa7 8340{
182446d0 8341 return sched_group_rt_period(css_tg(css));
d0b27fa7 8342}
6d6bc0ad 8343#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8344
fe5c7cc2 8345static struct cftype cpu_files[] = {
052f1dc7 8346#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8347 {
8348 .name = "shares",
f4c753b7
PM
8349 .read_u64 = cpu_shares_read_u64,
8350 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8351 },
052f1dc7 8352#endif
ab84d31e
PT
8353#ifdef CONFIG_CFS_BANDWIDTH
8354 {
8355 .name = "cfs_quota_us",
8356 .read_s64 = cpu_cfs_quota_read_s64,
8357 .write_s64 = cpu_cfs_quota_write_s64,
8358 },
8359 {
8360 .name = "cfs_period_us",
8361 .read_u64 = cpu_cfs_period_read_u64,
8362 .write_u64 = cpu_cfs_period_write_u64,
8363 },
e8da1b18
NR
8364 {
8365 .name = "stat",
2da8ca82 8366 .seq_show = cpu_stats_show,
e8da1b18 8367 },
ab84d31e 8368#endif
052f1dc7 8369#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8370 {
9f0c1e56 8371 .name = "rt_runtime_us",
06ecb27c
PM
8372 .read_s64 = cpu_rt_runtime_read,
8373 .write_s64 = cpu_rt_runtime_write,
6f505b16 8374 },
d0b27fa7
PZ
8375 {
8376 .name = "rt_period_us",
f4c753b7
PM
8377 .read_u64 = cpu_rt_period_read_uint,
8378 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8379 },
052f1dc7 8380#endif
4baf6e33 8381 { } /* terminate */
68318b8e
SV
8382};
8383
073219e9 8384struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8385 .css_alloc = cpu_cgroup_css_alloc,
8386 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8387 .css_online = cpu_cgroup_css_online,
8388 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8389 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8390 .can_attach = cpu_cgroup_can_attach,
8391 .attach = cpu_cgroup_attach,
068c5cc5 8392 .exit = cpu_cgroup_exit,
5577964e 8393 .legacy_cftypes = cpu_files,
68318b8e
SV
8394 .early_init = 1,
8395};
8396
052f1dc7 8397#endif /* CONFIG_CGROUP_SCHED */
d842de87 8398
b637a328
PM
8399void dump_cpu_task(int cpu)
8400{
8401 pr_info("Task dump for CPU %d:\n", cpu);
8402 sched_show_task(cpu_curr(cpu));
8403}
This page took 3.358943 seconds and 5 git commands to generate.