printk: disable preemption for printk_sched
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621
PZ
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 rq->clock += delta;
143 update_rq_clock_task(rq, delta);
3e51f33f
PZ
144}
145
bf5c91ba
IM
146/*
147 * Debugging: various feature bits
148 */
f00b45c1 149
f00b45c1
PZ
150#define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
152
bf5c91ba 153const_debug unsigned int sysctl_sched_features =
391e43da 154#include "features.h"
f00b45c1
PZ
155 0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled) \
161 #name ,
162
1292531f 163static const char * const sched_feat_names[] = {
391e43da 164#include "features.h"
f00b45c1
PZ
165};
166
167#undef SCHED_FEAT
168
34f3a814 169static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 170{
f00b45c1
PZ
171 int i;
172
f8b6d1cc 173 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
174 if (!(sysctl_sched_features & (1UL << i)))
175 seq_puts(m, "NO_");
176 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 177 }
34f3a814 178 seq_puts(m, "\n");
f00b45c1 179
34f3a814 180 return 0;
f00b45c1
PZ
181}
182
f8b6d1cc
PZ
183#ifdef HAVE_JUMP_LABEL
184
c5905afb
IM
185#define jump_label_key__true STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
187
188#define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
190
c5905afb 191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
c5905afb
IM
199 if (static_key_enabled(&sched_feat_keys[i]))
200 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
201}
202
203static void sched_feat_enable(int i)
204{
c5905afb
IM
205 if (!static_key_enabled(&sched_feat_keys[i]))
206 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
1a687c2e 213static int sched_feat_set(char *cmp)
f00b45c1 214{
f00b45c1 215 int i;
1a687c2e 216 int neg = 0;
f00b45c1 217
524429c3 218 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
219 neg = 1;
220 cmp += 3;
221 }
222
f8b6d1cc 223 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 224 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 225 if (neg) {
f00b45c1 226 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
227 sched_feat_disable(i);
228 } else {
f00b45c1 229 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
230 sched_feat_enable(i);
231 }
f00b45c1
PZ
232 break;
233 }
234 }
235
1a687c2e
MG
236 return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241 size_t cnt, loff_t *ppos)
242{
243 char buf[64];
244 char *cmp;
245 int i;
246
247 if (cnt > 63)
248 cnt = 63;
249
250 if (copy_from_user(&buf, ubuf, cnt))
251 return -EFAULT;
252
253 buf[cnt] = 0;
254 cmp = strstrip(buf);
255
256 i = sched_feat_set(cmp);
f8b6d1cc 257 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
258 return -EINVAL;
259
42994724 260 *ppos += cnt;
f00b45c1
PZ
261
262 return cnt;
263}
264
34f3a814
LZ
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267 return single_open(filp, sched_feat_show, NULL);
268}
269
828c0950 270static const struct file_operations sched_feat_fops = {
34f3a814
LZ
271 .open = sched_feat_open,
272 .write = sched_feat_write,
273 .read = seq_read,
274 .llseek = seq_lseek,
275 .release = single_release,
f00b45c1
PZ
276};
277
278static __init int sched_init_debug(void)
279{
f00b45c1
PZ
280 debugfs_create_file("sched_features", 0644, NULL, NULL,
281 &sched_feat_fops);
282
283 return 0;
284}
285late_initcall(sched_init_debug);
f8b6d1cc 286#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 287
b82d9fdd
PZ
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
e9e9250b
PZ
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
fa85ae24 302/*
9f0c1e56 303 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
304 * default: 1s
305 */
9f0c1e56 306unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 307
029632fb 308__read_mostly int scheduler_running;
6892b75e 309
9f0c1e56
PZ
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
fa85ae24 315
0970d299 316/*
0122ec5b 317 * __task_rq_lock - lock the rq @p resides on.
b29739f9 318 */
70b97a7f 319static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
320 __acquires(rq->lock)
321{
0970d299
PZ
322 struct rq *rq;
323
0122ec5b
PZ
324 lockdep_assert_held(&p->pi_lock);
325
3a5c359a 326 for (;;) {
0970d299 327 rq = task_rq(p);
05fa785c 328 raw_spin_lock(&rq->lock);
65cc8e48 329 if (likely(rq == task_rq(p)))
3a5c359a 330 return rq;
05fa785c 331 raw_spin_unlock(&rq->lock);
b29739f9 332 }
b29739f9
IM
333}
334
1da177e4 335/*
0122ec5b 336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 337 */
70b97a7f 338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 339 __acquires(p->pi_lock)
1da177e4
LT
340 __acquires(rq->lock)
341{
70b97a7f 342 struct rq *rq;
1da177e4 343
3a5c359a 344 for (;;) {
0122ec5b 345 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 346 rq = task_rq(p);
05fa785c 347 raw_spin_lock(&rq->lock);
65cc8e48 348 if (likely(rq == task_rq(p)))
3a5c359a 349 return rq;
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 352 }
1da177e4
LT
353}
354
a9957449 355static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
356 __releases(rq->lock)
357{
05fa785c 358 raw_spin_unlock(&rq->lock);
b29739f9
IM
359}
360
0122ec5b
PZ
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 363 __releases(rq->lock)
0122ec5b 364 __releases(p->pi_lock)
1da177e4 365{
0122ec5b
PZ
366 raw_spin_unlock(&rq->lock);
367 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
368}
369
1da177e4 370/*
cc2a73b5 371 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 372 */
a9957449 373static struct rq *this_rq_lock(void)
1da177e4
LT
374 __acquires(rq->lock)
375{
70b97a7f 376 struct rq *rq;
1da177e4
LT
377
378 local_irq_disable();
379 rq = this_rq();
05fa785c 380 raw_spin_lock(&rq->lock);
1da177e4
LT
381
382 return rq;
383}
384
8f4d37ec
PZ
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 388 */
8f4d37ec 389
8f4d37ec
PZ
390static void hrtick_clear(struct rq *rq)
391{
392 if (hrtimer_active(&rq->hrtick_timer))
393 hrtimer_cancel(&rq->hrtick_timer);
394}
395
8f4d37ec
PZ
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
05fa785c 406 raw_spin_lock(&rq->lock);
3e51f33f 407 update_rq_clock(rq);
8f4d37ec 408 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 409 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
410
411 return HRTIMER_NORESTART;
412}
413
95e904c7 414#ifdef CONFIG_SMP
971ee28c
PZ
415
416static int __hrtick_restart(struct rq *rq)
417{
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = hrtimer_get_softexpires(timer);
420
421 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
31656519
PZ
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
b328ca18 428{
31656519 429 struct rq *rq = arg;
b328ca18 430
05fa785c 431 raw_spin_lock(&rq->lock);
971ee28c 432 __hrtick_restart(rq);
31656519 433 rq->hrtick_csd_pending = 0;
05fa785c 434 raw_spin_unlock(&rq->lock);
b328ca18
PZ
435}
436
31656519
PZ
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
029632fb 442void hrtick_start(struct rq *rq, u64 delay)
b328ca18 443{
31656519
PZ
444 struct hrtimer *timer = &rq->hrtick_timer;
445 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 446
cc584b21 447 hrtimer_set_expires(timer, time);
31656519
PZ
448
449 if (rq == this_rq()) {
971ee28c 450 __hrtick_restart(rq);
31656519 451 } else if (!rq->hrtick_csd_pending) {
c46fff2a 452 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
453 rq->hrtick_csd_pending = 1;
454 }
b328ca18
PZ
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460 int cpu = (int)(long)hcpu;
461
462 switch (action) {
463 case CPU_UP_CANCELED:
464 case CPU_UP_CANCELED_FROZEN:
465 case CPU_DOWN_PREPARE:
466 case CPU_DOWN_PREPARE_FROZEN:
467 case CPU_DEAD:
468 case CPU_DEAD_FROZEN:
31656519 469 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
470 return NOTIFY_OK;
471 }
472
473 return NOTIFY_DONE;
474}
475
fa748203 476static __init void init_hrtick(void)
b328ca18
PZ
477{
478 hotcpu_notifier(hotplug_hrtick, 0);
479}
31656519
PZ
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
029632fb 486void hrtick_start(struct rq *rq, u64 delay)
31656519 487{
7f1e2ca9 488 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 489 HRTIMER_MODE_REL_PINNED, 0);
31656519 490}
b328ca18 491
006c75f1 492static inline void init_hrtick(void)
8f4d37ec 493{
8f4d37ec 494}
31656519 495#endif /* CONFIG_SMP */
8f4d37ec 496
31656519 497static void init_rq_hrtick(struct rq *rq)
8f4d37ec 498{
31656519
PZ
499#ifdef CONFIG_SMP
500 rq->hrtick_csd_pending = 0;
8f4d37ec 501
31656519
PZ
502 rq->hrtick_csd.flags = 0;
503 rq->hrtick_csd.func = __hrtick_start;
504 rq->hrtick_csd.info = rq;
505#endif
8f4d37ec 506
31656519
PZ
507 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508 rq->hrtick_timer.function = hrtick;
8f4d37ec 509}
006c75f1 510#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
8f4d37ec
PZ
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
b328ca18
PZ
519static inline void init_hrtick(void)
520{
521}
006c75f1 522#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 523
fd99f91a
PZ
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val) \
528({ typeof(*(ptr)) __old, __val = *(ptr); \
529 for (;;) { \
530 __old = cmpxchg((ptr), __val, __val | (val)); \
531 if (__old == __val) \
532 break; \
533 __val = __old; \
534 } \
535 __old; \
536})
537
538#ifdef TIF_POLLING_NRFLAG
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546 struct thread_info *ti = task_thread_info(p);
547 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
549#else
550static bool set_nr_and_not_polling(struct task_struct *p)
551{
552 set_tsk_need_resched(p);
553 return true;
554}
555#endif
556
c24d20db
IM
557/*
558 * resched_task - mark a task 'to be rescheduled now'.
559 *
560 * On UP this means the setting of the need_resched flag, on SMP it
561 * might also involve a cross-CPU call to trigger the scheduler on
562 * the target CPU.
563 */
029632fb 564void resched_task(struct task_struct *p)
c24d20db
IM
565{
566 int cpu;
567
b021fe3e 568 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 569
5ed0cec0 570 if (test_tsk_need_resched(p))
c24d20db
IM
571 return;
572
c24d20db 573 cpu = task_cpu(p);
fd99f91a 574
f27dde8d 575 if (cpu == smp_processor_id()) {
fd99f91a 576 set_tsk_need_resched(p);
f27dde8d 577 set_preempt_need_resched();
c24d20db 578 return;
f27dde8d 579 }
c24d20db 580
fd99f91a 581 if (set_nr_and_not_polling(p))
c24d20db
IM
582 smp_send_reschedule(cpu);
583}
584
029632fb 585void resched_cpu(int cpu)
c24d20db
IM
586{
587 struct rq *rq = cpu_rq(cpu);
588 unsigned long flags;
589
05fa785c 590 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
591 return;
592 resched_task(cpu_curr(cpu));
05fa785c 593 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 594}
06d8308c 595
b021fe3e 596#ifdef CONFIG_SMP
3451d024 597#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
598/*
599 * In the semi idle case, use the nearest busy cpu for migrating timers
600 * from an idle cpu. This is good for power-savings.
601 *
602 * We don't do similar optimization for completely idle system, as
603 * selecting an idle cpu will add more delays to the timers than intended
604 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
605 */
6201b4d6 606int get_nohz_timer_target(int pinned)
83cd4fe2
VP
607{
608 int cpu = smp_processor_id();
609 int i;
610 struct sched_domain *sd;
611
6201b4d6
VK
612 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
613 return cpu;
614
057f3fad 615 rcu_read_lock();
83cd4fe2 616 for_each_domain(cpu, sd) {
057f3fad
PZ
617 for_each_cpu(i, sched_domain_span(sd)) {
618 if (!idle_cpu(i)) {
619 cpu = i;
620 goto unlock;
621 }
622 }
83cd4fe2 623 }
057f3fad
PZ
624unlock:
625 rcu_read_unlock();
83cd4fe2
VP
626 return cpu;
627}
06d8308c
TG
628/*
629 * When add_timer_on() enqueues a timer into the timer wheel of an
630 * idle CPU then this timer might expire before the next timer event
631 * which is scheduled to wake up that CPU. In case of a completely
632 * idle system the next event might even be infinite time into the
633 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
634 * leaves the inner idle loop so the newly added timer is taken into
635 * account when the CPU goes back to idle and evaluates the timer
636 * wheel for the next timer event.
637 */
1c20091e 638static void wake_up_idle_cpu(int cpu)
06d8308c
TG
639{
640 struct rq *rq = cpu_rq(cpu);
641
642 if (cpu == smp_processor_id())
643 return;
644
645 /*
646 * This is safe, as this function is called with the timer
647 * wheel base lock of (cpu) held. When the CPU is on the way
648 * to idle and has not yet set rq->curr to idle then it will
649 * be serialized on the timer wheel base lock and take the new
650 * timer into account automatically.
651 */
652 if (rq->curr != rq->idle)
653 return;
45bf76df 654
45bf76df 655 /*
06d8308c
TG
656 * We can set TIF_RESCHED on the idle task of the other CPU
657 * lockless. The worst case is that the other CPU runs the
658 * idle task through an additional NOOP schedule()
45bf76df 659 */
5ed0cec0 660 set_tsk_need_resched(rq->idle);
45bf76df 661
06d8308c
TG
662 /* NEED_RESCHED must be visible before we test polling */
663 smp_mb();
664 if (!tsk_is_polling(rq->idle))
665 smp_send_reschedule(cpu);
45bf76df
IM
666}
667
c5bfece2 668static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 669{
c5bfece2 670 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
671 if (cpu != smp_processor_id() ||
672 tick_nohz_tick_stopped())
673 smp_send_reschedule(cpu);
674 return true;
675 }
676
677 return false;
678}
679
680void wake_up_nohz_cpu(int cpu)
681{
c5bfece2 682 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
683 wake_up_idle_cpu(cpu);
684}
685
ca38062e 686static inline bool got_nohz_idle_kick(void)
45bf76df 687{
1c792db7 688 int cpu = smp_processor_id();
873b4c65
VG
689
690 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
691 return false;
692
693 if (idle_cpu(cpu) && !need_resched())
694 return true;
695
696 /*
697 * We can't run Idle Load Balance on this CPU for this time so we
698 * cancel it and clear NOHZ_BALANCE_KICK
699 */
700 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
701 return false;
45bf76df
IM
702}
703
3451d024 704#else /* CONFIG_NO_HZ_COMMON */
45bf76df 705
ca38062e 706static inline bool got_nohz_idle_kick(void)
2069dd75 707{
ca38062e 708 return false;
2069dd75
PZ
709}
710
3451d024 711#endif /* CONFIG_NO_HZ_COMMON */
d842de87 712
ce831b38
FW
713#ifdef CONFIG_NO_HZ_FULL
714bool sched_can_stop_tick(void)
715{
716 struct rq *rq;
717
718 rq = this_rq();
719
720 /* Make sure rq->nr_running update is visible after the IPI */
721 smp_rmb();
722
723 /* More than one running task need preemption */
724 if (rq->nr_running > 1)
725 return false;
726
727 return true;
728}
729#endif /* CONFIG_NO_HZ_FULL */
d842de87 730
029632fb 731void sched_avg_update(struct rq *rq)
18d95a28 732{
e9e9250b
PZ
733 s64 period = sched_avg_period();
734
78becc27 735 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
736 /*
737 * Inline assembly required to prevent the compiler
738 * optimising this loop into a divmod call.
739 * See __iter_div_u64_rem() for another example of this.
740 */
741 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
742 rq->age_stamp += period;
743 rq->rt_avg /= 2;
744 }
18d95a28
PZ
745}
746
6d6bc0ad 747#endif /* CONFIG_SMP */
18d95a28 748
a790de99
PT
749#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
750 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 751/*
8277434e
PT
752 * Iterate task_group tree rooted at *from, calling @down when first entering a
753 * node and @up when leaving it for the final time.
754 *
755 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 756 */
029632fb 757int walk_tg_tree_from(struct task_group *from,
8277434e 758 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
759{
760 struct task_group *parent, *child;
eb755805 761 int ret;
c09595f6 762
8277434e
PT
763 parent = from;
764
c09595f6 765down:
eb755805
PZ
766 ret = (*down)(parent, data);
767 if (ret)
8277434e 768 goto out;
c09595f6
PZ
769 list_for_each_entry_rcu(child, &parent->children, siblings) {
770 parent = child;
771 goto down;
772
773up:
774 continue;
775 }
eb755805 776 ret = (*up)(parent, data);
8277434e
PT
777 if (ret || parent == from)
778 goto out;
c09595f6
PZ
779
780 child = parent;
781 parent = parent->parent;
782 if (parent)
783 goto up;
8277434e 784out:
eb755805 785 return ret;
c09595f6
PZ
786}
787
029632fb 788int tg_nop(struct task_group *tg, void *data)
eb755805 789{
e2b245f8 790 return 0;
eb755805 791}
18d95a28
PZ
792#endif
793
45bf76df
IM
794static void set_load_weight(struct task_struct *p)
795{
f05998d4
NR
796 int prio = p->static_prio - MAX_RT_PRIO;
797 struct load_weight *load = &p->se.load;
798
dd41f596
IM
799 /*
800 * SCHED_IDLE tasks get minimal weight:
801 */
802 if (p->policy == SCHED_IDLE) {
c8b28116 803 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 804 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
805 return;
806 }
71f8bd46 807
c8b28116 808 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 809 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
810}
811
371fd7e7 812static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 813{
a64692a3 814 update_rq_clock(rq);
43148951 815 sched_info_queued(rq, p);
371fd7e7 816 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
817}
818
371fd7e7 819static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 820{
a64692a3 821 update_rq_clock(rq);
43148951 822 sched_info_dequeued(rq, p);
371fd7e7 823 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
824}
825
029632fb 826void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
827{
828 if (task_contributes_to_load(p))
829 rq->nr_uninterruptible--;
830
371fd7e7 831 enqueue_task(rq, p, flags);
1e3c88bd
PZ
832}
833
029632fb 834void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
835{
836 if (task_contributes_to_load(p))
837 rq->nr_uninterruptible++;
838
371fd7e7 839 dequeue_task(rq, p, flags);
1e3c88bd
PZ
840}
841
fe44d621 842static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 843{
095c0aa8
GC
844/*
845 * In theory, the compile should just see 0 here, and optimize out the call
846 * to sched_rt_avg_update. But I don't trust it...
847 */
848#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
849 s64 steal = 0, irq_delta = 0;
850#endif
851#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 852 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
853
854 /*
855 * Since irq_time is only updated on {soft,}irq_exit, we might run into
856 * this case when a previous update_rq_clock() happened inside a
857 * {soft,}irq region.
858 *
859 * When this happens, we stop ->clock_task and only update the
860 * prev_irq_time stamp to account for the part that fit, so that a next
861 * update will consume the rest. This ensures ->clock_task is
862 * monotonic.
863 *
864 * It does however cause some slight miss-attribution of {soft,}irq
865 * time, a more accurate solution would be to update the irq_time using
866 * the current rq->clock timestamp, except that would require using
867 * atomic ops.
868 */
869 if (irq_delta > delta)
870 irq_delta = delta;
871
872 rq->prev_irq_time += irq_delta;
873 delta -= irq_delta;
095c0aa8
GC
874#endif
875#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 876 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
877 steal = paravirt_steal_clock(cpu_of(rq));
878 steal -= rq->prev_steal_time_rq;
879
880 if (unlikely(steal > delta))
881 steal = delta;
882
095c0aa8 883 rq->prev_steal_time_rq += steal;
095c0aa8
GC
884 delta -= steal;
885 }
886#endif
887
fe44d621
PZ
888 rq->clock_task += delta;
889
095c0aa8
GC
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
892 sched_rt_avg_update(rq, irq_delta + steal);
893#endif
aa483808
VP
894}
895
34f971f6
PZ
896void sched_set_stop_task(int cpu, struct task_struct *stop)
897{
898 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
899 struct task_struct *old_stop = cpu_rq(cpu)->stop;
900
901 if (stop) {
902 /*
903 * Make it appear like a SCHED_FIFO task, its something
904 * userspace knows about and won't get confused about.
905 *
906 * Also, it will make PI more or less work without too
907 * much confusion -- but then, stop work should not
908 * rely on PI working anyway.
909 */
910 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
911
912 stop->sched_class = &stop_sched_class;
913 }
914
915 cpu_rq(cpu)->stop = stop;
916
917 if (old_stop) {
918 /*
919 * Reset it back to a normal scheduling class so that
920 * it can die in pieces.
921 */
922 old_stop->sched_class = &rt_sched_class;
923 }
924}
925
14531189 926/*
dd41f596 927 * __normal_prio - return the priority that is based on the static prio
14531189 928 */
14531189
IM
929static inline int __normal_prio(struct task_struct *p)
930{
dd41f596 931 return p->static_prio;
14531189
IM
932}
933
b29739f9
IM
934/*
935 * Calculate the expected normal priority: i.e. priority
936 * without taking RT-inheritance into account. Might be
937 * boosted by interactivity modifiers. Changes upon fork,
938 * setprio syscalls, and whenever the interactivity
939 * estimator recalculates.
940 */
36c8b586 941static inline int normal_prio(struct task_struct *p)
b29739f9
IM
942{
943 int prio;
944
aab03e05
DF
945 if (task_has_dl_policy(p))
946 prio = MAX_DL_PRIO-1;
947 else if (task_has_rt_policy(p))
b29739f9
IM
948 prio = MAX_RT_PRIO-1 - p->rt_priority;
949 else
950 prio = __normal_prio(p);
951 return prio;
952}
953
954/*
955 * Calculate the current priority, i.e. the priority
956 * taken into account by the scheduler. This value might
957 * be boosted by RT tasks, or might be boosted by
958 * interactivity modifiers. Will be RT if the task got
959 * RT-boosted. If not then it returns p->normal_prio.
960 */
36c8b586 961static int effective_prio(struct task_struct *p)
b29739f9
IM
962{
963 p->normal_prio = normal_prio(p);
964 /*
965 * If we are RT tasks or we were boosted to RT priority,
966 * keep the priority unchanged. Otherwise, update priority
967 * to the normal priority:
968 */
969 if (!rt_prio(p->prio))
970 return p->normal_prio;
971 return p->prio;
972}
973
1da177e4
LT
974/**
975 * task_curr - is this task currently executing on a CPU?
976 * @p: the task in question.
e69f6186
YB
977 *
978 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 979 */
36c8b586 980inline int task_curr(const struct task_struct *p)
1da177e4
LT
981{
982 return cpu_curr(task_cpu(p)) == p;
983}
984
cb469845
SR
985static inline void check_class_changed(struct rq *rq, struct task_struct *p,
986 const struct sched_class *prev_class,
da7a735e 987 int oldprio)
cb469845
SR
988{
989 if (prev_class != p->sched_class) {
990 if (prev_class->switched_from)
da7a735e
PZ
991 prev_class->switched_from(rq, p);
992 p->sched_class->switched_to(rq, p);
2d3d891d 993 } else if (oldprio != p->prio || dl_task(p))
da7a735e 994 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
995}
996
029632fb 997void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
998{
999 const struct sched_class *class;
1000
1001 if (p->sched_class == rq->curr->sched_class) {
1002 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1003 } else {
1004 for_each_class(class) {
1005 if (class == rq->curr->sched_class)
1006 break;
1007 if (class == p->sched_class) {
1008 resched_task(rq->curr);
1009 break;
1010 }
1011 }
1012 }
1013
1014 /*
1015 * A queue event has occurred, and we're going to schedule. In
1016 * this case, we can save a useless back to back clock update.
1017 */
fd2f4419 1018 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1019 rq->skip_clock_update = 1;
1020}
1021
1da177e4 1022#ifdef CONFIG_SMP
dd41f596 1023void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1024{
e2912009
PZ
1025#ifdef CONFIG_SCHED_DEBUG
1026 /*
1027 * We should never call set_task_cpu() on a blocked task,
1028 * ttwu() will sort out the placement.
1029 */
077614ee 1030 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1031 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1032
1033#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1034 /*
1035 * The caller should hold either p->pi_lock or rq->lock, when changing
1036 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1037 *
1038 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1039 * see task_group().
6c6c54e1
PZ
1040 *
1041 * Furthermore, all task_rq users should acquire both locks, see
1042 * task_rq_lock().
1043 */
0122ec5b
PZ
1044 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1045 lockdep_is_held(&task_rq(p)->lock)));
1046#endif
e2912009
PZ
1047#endif
1048
de1d7286 1049 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1050
0c69774e 1051 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1052 if (p->sched_class->migrate_task_rq)
1053 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1054 p->se.nr_migrations++;
a8b0ca17 1055 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1056 }
dd41f596
IM
1057
1058 __set_task_cpu(p, new_cpu);
c65cc870
IM
1059}
1060
ac66f547
PZ
1061static void __migrate_swap_task(struct task_struct *p, int cpu)
1062{
1063 if (p->on_rq) {
1064 struct rq *src_rq, *dst_rq;
1065
1066 src_rq = task_rq(p);
1067 dst_rq = cpu_rq(cpu);
1068
1069 deactivate_task(src_rq, p, 0);
1070 set_task_cpu(p, cpu);
1071 activate_task(dst_rq, p, 0);
1072 check_preempt_curr(dst_rq, p, 0);
1073 } else {
1074 /*
1075 * Task isn't running anymore; make it appear like we migrated
1076 * it before it went to sleep. This means on wakeup we make the
1077 * previous cpu our targer instead of where it really is.
1078 */
1079 p->wake_cpu = cpu;
1080 }
1081}
1082
1083struct migration_swap_arg {
1084 struct task_struct *src_task, *dst_task;
1085 int src_cpu, dst_cpu;
1086};
1087
1088static int migrate_swap_stop(void *data)
1089{
1090 struct migration_swap_arg *arg = data;
1091 struct rq *src_rq, *dst_rq;
1092 int ret = -EAGAIN;
1093
1094 src_rq = cpu_rq(arg->src_cpu);
1095 dst_rq = cpu_rq(arg->dst_cpu);
1096
74602315
PZ
1097 double_raw_lock(&arg->src_task->pi_lock,
1098 &arg->dst_task->pi_lock);
ac66f547
PZ
1099 double_rq_lock(src_rq, dst_rq);
1100 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1101 goto unlock;
1102
1103 if (task_cpu(arg->src_task) != arg->src_cpu)
1104 goto unlock;
1105
1106 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1107 goto unlock;
1108
1109 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1110 goto unlock;
1111
1112 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1113 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1114
1115 ret = 0;
1116
1117unlock:
1118 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1119 raw_spin_unlock(&arg->dst_task->pi_lock);
1120 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1121
1122 return ret;
1123}
1124
1125/*
1126 * Cross migrate two tasks
1127 */
1128int migrate_swap(struct task_struct *cur, struct task_struct *p)
1129{
1130 struct migration_swap_arg arg;
1131 int ret = -EINVAL;
1132
ac66f547
PZ
1133 arg = (struct migration_swap_arg){
1134 .src_task = cur,
1135 .src_cpu = task_cpu(cur),
1136 .dst_task = p,
1137 .dst_cpu = task_cpu(p),
1138 };
1139
1140 if (arg.src_cpu == arg.dst_cpu)
1141 goto out;
1142
6acce3ef
PZ
1143 /*
1144 * These three tests are all lockless; this is OK since all of them
1145 * will be re-checked with proper locks held further down the line.
1146 */
ac66f547
PZ
1147 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1148 goto out;
1149
1150 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1151 goto out;
1152
1153 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1154 goto out;
1155
286549dc 1156 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1157 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1158
1159out:
ac66f547
PZ
1160 return ret;
1161}
1162
969c7921 1163struct migration_arg {
36c8b586 1164 struct task_struct *task;
1da177e4 1165 int dest_cpu;
70b97a7f 1166};
1da177e4 1167
969c7921
TH
1168static int migration_cpu_stop(void *data);
1169
1da177e4
LT
1170/*
1171 * wait_task_inactive - wait for a thread to unschedule.
1172 *
85ba2d86
RM
1173 * If @match_state is nonzero, it's the @p->state value just checked and
1174 * not expected to change. If it changes, i.e. @p might have woken up,
1175 * then return zero. When we succeed in waiting for @p to be off its CPU,
1176 * we return a positive number (its total switch count). If a second call
1177 * a short while later returns the same number, the caller can be sure that
1178 * @p has remained unscheduled the whole time.
1179 *
1da177e4
LT
1180 * The caller must ensure that the task *will* unschedule sometime soon,
1181 * else this function might spin for a *long* time. This function can't
1182 * be called with interrupts off, or it may introduce deadlock with
1183 * smp_call_function() if an IPI is sent by the same process we are
1184 * waiting to become inactive.
1185 */
85ba2d86 1186unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1187{
1188 unsigned long flags;
dd41f596 1189 int running, on_rq;
85ba2d86 1190 unsigned long ncsw;
70b97a7f 1191 struct rq *rq;
1da177e4 1192
3a5c359a
AK
1193 for (;;) {
1194 /*
1195 * We do the initial early heuristics without holding
1196 * any task-queue locks at all. We'll only try to get
1197 * the runqueue lock when things look like they will
1198 * work out!
1199 */
1200 rq = task_rq(p);
fa490cfd 1201
3a5c359a
AK
1202 /*
1203 * If the task is actively running on another CPU
1204 * still, just relax and busy-wait without holding
1205 * any locks.
1206 *
1207 * NOTE! Since we don't hold any locks, it's not
1208 * even sure that "rq" stays as the right runqueue!
1209 * But we don't care, since "task_running()" will
1210 * return false if the runqueue has changed and p
1211 * is actually now running somewhere else!
1212 */
85ba2d86
RM
1213 while (task_running(rq, p)) {
1214 if (match_state && unlikely(p->state != match_state))
1215 return 0;
3a5c359a 1216 cpu_relax();
85ba2d86 1217 }
fa490cfd 1218
3a5c359a
AK
1219 /*
1220 * Ok, time to look more closely! We need the rq
1221 * lock now, to be *sure*. If we're wrong, we'll
1222 * just go back and repeat.
1223 */
1224 rq = task_rq_lock(p, &flags);
27a9da65 1225 trace_sched_wait_task(p);
3a5c359a 1226 running = task_running(rq, p);
fd2f4419 1227 on_rq = p->on_rq;
85ba2d86 1228 ncsw = 0;
f31e11d8 1229 if (!match_state || p->state == match_state)
93dcf55f 1230 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1231 task_rq_unlock(rq, p, &flags);
fa490cfd 1232
85ba2d86
RM
1233 /*
1234 * If it changed from the expected state, bail out now.
1235 */
1236 if (unlikely(!ncsw))
1237 break;
1238
3a5c359a
AK
1239 /*
1240 * Was it really running after all now that we
1241 * checked with the proper locks actually held?
1242 *
1243 * Oops. Go back and try again..
1244 */
1245 if (unlikely(running)) {
1246 cpu_relax();
1247 continue;
1248 }
fa490cfd 1249
3a5c359a
AK
1250 /*
1251 * It's not enough that it's not actively running,
1252 * it must be off the runqueue _entirely_, and not
1253 * preempted!
1254 *
80dd99b3 1255 * So if it was still runnable (but just not actively
3a5c359a
AK
1256 * running right now), it's preempted, and we should
1257 * yield - it could be a while.
1258 */
1259 if (unlikely(on_rq)) {
8eb90c30
TG
1260 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1261
1262 set_current_state(TASK_UNINTERRUPTIBLE);
1263 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1264 continue;
1265 }
fa490cfd 1266
3a5c359a
AK
1267 /*
1268 * Ahh, all good. It wasn't running, and it wasn't
1269 * runnable, which means that it will never become
1270 * running in the future either. We're all done!
1271 */
1272 break;
1273 }
85ba2d86
RM
1274
1275 return ncsw;
1da177e4
LT
1276}
1277
1278/***
1279 * kick_process - kick a running thread to enter/exit the kernel
1280 * @p: the to-be-kicked thread
1281 *
1282 * Cause a process which is running on another CPU to enter
1283 * kernel-mode, without any delay. (to get signals handled.)
1284 *
25985edc 1285 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1286 * because all it wants to ensure is that the remote task enters
1287 * the kernel. If the IPI races and the task has been migrated
1288 * to another CPU then no harm is done and the purpose has been
1289 * achieved as well.
1290 */
36c8b586 1291void kick_process(struct task_struct *p)
1da177e4
LT
1292{
1293 int cpu;
1294
1295 preempt_disable();
1296 cpu = task_cpu(p);
1297 if ((cpu != smp_processor_id()) && task_curr(p))
1298 smp_send_reschedule(cpu);
1299 preempt_enable();
1300}
b43e3521 1301EXPORT_SYMBOL_GPL(kick_process);
476d139c 1302#endif /* CONFIG_SMP */
1da177e4 1303
970b13ba 1304#ifdef CONFIG_SMP
30da688e 1305/*
013fdb80 1306 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1307 */
5da9a0fb
PZ
1308static int select_fallback_rq(int cpu, struct task_struct *p)
1309{
aa00d89c
TC
1310 int nid = cpu_to_node(cpu);
1311 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1312 enum { cpuset, possible, fail } state = cpuset;
1313 int dest_cpu;
5da9a0fb 1314
aa00d89c
TC
1315 /*
1316 * If the node that the cpu is on has been offlined, cpu_to_node()
1317 * will return -1. There is no cpu on the node, and we should
1318 * select the cpu on the other node.
1319 */
1320 if (nid != -1) {
1321 nodemask = cpumask_of_node(nid);
1322
1323 /* Look for allowed, online CPU in same node. */
1324 for_each_cpu(dest_cpu, nodemask) {
1325 if (!cpu_online(dest_cpu))
1326 continue;
1327 if (!cpu_active(dest_cpu))
1328 continue;
1329 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1330 return dest_cpu;
1331 }
2baab4e9 1332 }
5da9a0fb 1333
2baab4e9
PZ
1334 for (;;) {
1335 /* Any allowed, online CPU? */
e3831edd 1336 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1337 if (!cpu_online(dest_cpu))
1338 continue;
1339 if (!cpu_active(dest_cpu))
1340 continue;
1341 goto out;
1342 }
5da9a0fb 1343
2baab4e9
PZ
1344 switch (state) {
1345 case cpuset:
1346 /* No more Mr. Nice Guy. */
1347 cpuset_cpus_allowed_fallback(p);
1348 state = possible;
1349 break;
1350
1351 case possible:
1352 do_set_cpus_allowed(p, cpu_possible_mask);
1353 state = fail;
1354 break;
1355
1356 case fail:
1357 BUG();
1358 break;
1359 }
1360 }
1361
1362out:
1363 if (state != cpuset) {
1364 /*
1365 * Don't tell them about moving exiting tasks or
1366 * kernel threads (both mm NULL), since they never
1367 * leave kernel.
1368 */
1369 if (p->mm && printk_ratelimit()) {
1370 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1371 task_pid_nr(p), p->comm, cpu);
1372 }
5da9a0fb
PZ
1373 }
1374
1375 return dest_cpu;
1376}
1377
e2912009 1378/*
013fdb80 1379 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1380 */
970b13ba 1381static inline
ac66f547 1382int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1383{
ac66f547 1384 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1385
1386 /*
1387 * In order not to call set_task_cpu() on a blocking task we need
1388 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1389 * cpu.
1390 *
1391 * Since this is common to all placement strategies, this lives here.
1392 *
1393 * [ this allows ->select_task() to simply return task_cpu(p) and
1394 * not worry about this generic constraint ]
1395 */
fa17b507 1396 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1397 !cpu_online(cpu)))
5da9a0fb 1398 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1399
1400 return cpu;
970b13ba 1401}
09a40af5
MG
1402
1403static void update_avg(u64 *avg, u64 sample)
1404{
1405 s64 diff = sample - *avg;
1406 *avg += diff >> 3;
1407}
970b13ba
PZ
1408#endif
1409
d7c01d27 1410static void
b84cb5df 1411ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1412{
d7c01d27 1413#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1414 struct rq *rq = this_rq();
1415
d7c01d27
PZ
1416#ifdef CONFIG_SMP
1417 int this_cpu = smp_processor_id();
1418
1419 if (cpu == this_cpu) {
1420 schedstat_inc(rq, ttwu_local);
1421 schedstat_inc(p, se.statistics.nr_wakeups_local);
1422 } else {
1423 struct sched_domain *sd;
1424
1425 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1426 rcu_read_lock();
d7c01d27
PZ
1427 for_each_domain(this_cpu, sd) {
1428 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1429 schedstat_inc(sd, ttwu_wake_remote);
1430 break;
1431 }
1432 }
057f3fad 1433 rcu_read_unlock();
d7c01d27 1434 }
f339b9dc
PZ
1435
1436 if (wake_flags & WF_MIGRATED)
1437 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1438
d7c01d27
PZ
1439#endif /* CONFIG_SMP */
1440
1441 schedstat_inc(rq, ttwu_count);
9ed3811a 1442 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1443
1444 if (wake_flags & WF_SYNC)
9ed3811a 1445 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1446
d7c01d27
PZ
1447#endif /* CONFIG_SCHEDSTATS */
1448}
1449
1450static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1451{
9ed3811a 1452 activate_task(rq, p, en_flags);
fd2f4419 1453 p->on_rq = 1;
c2f7115e
PZ
1454
1455 /* if a worker is waking up, notify workqueue */
1456 if (p->flags & PF_WQ_WORKER)
1457 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1458}
1459
23f41eeb
PZ
1460/*
1461 * Mark the task runnable and perform wakeup-preemption.
1462 */
89363381 1463static void
23f41eeb 1464ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1465{
9ed3811a 1466 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1467 trace_sched_wakeup(p, true);
9ed3811a
TH
1468
1469 p->state = TASK_RUNNING;
1470#ifdef CONFIG_SMP
1471 if (p->sched_class->task_woken)
1472 p->sched_class->task_woken(rq, p);
1473
e69c6341 1474 if (rq->idle_stamp) {
78becc27 1475 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1476 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1477
abfafa54
JL
1478 update_avg(&rq->avg_idle, delta);
1479
1480 if (rq->avg_idle > max)
9ed3811a 1481 rq->avg_idle = max;
abfafa54 1482
9ed3811a
TH
1483 rq->idle_stamp = 0;
1484 }
1485#endif
1486}
1487
c05fbafb
PZ
1488static void
1489ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1490{
1491#ifdef CONFIG_SMP
1492 if (p->sched_contributes_to_load)
1493 rq->nr_uninterruptible--;
1494#endif
1495
1496 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1497 ttwu_do_wakeup(rq, p, wake_flags);
1498}
1499
1500/*
1501 * Called in case the task @p isn't fully descheduled from its runqueue,
1502 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1503 * since all we need to do is flip p->state to TASK_RUNNING, since
1504 * the task is still ->on_rq.
1505 */
1506static int ttwu_remote(struct task_struct *p, int wake_flags)
1507{
1508 struct rq *rq;
1509 int ret = 0;
1510
1511 rq = __task_rq_lock(p);
1512 if (p->on_rq) {
1ad4ec0d
FW
1513 /* check_preempt_curr() may use rq clock */
1514 update_rq_clock(rq);
c05fbafb
PZ
1515 ttwu_do_wakeup(rq, p, wake_flags);
1516 ret = 1;
1517 }
1518 __task_rq_unlock(rq);
1519
1520 return ret;
1521}
1522
317f3941 1523#ifdef CONFIG_SMP
fa14ff4a 1524static void sched_ttwu_pending(void)
317f3941
PZ
1525{
1526 struct rq *rq = this_rq();
fa14ff4a
PZ
1527 struct llist_node *llist = llist_del_all(&rq->wake_list);
1528 struct task_struct *p;
317f3941
PZ
1529
1530 raw_spin_lock(&rq->lock);
1531
fa14ff4a
PZ
1532 while (llist) {
1533 p = llist_entry(llist, struct task_struct, wake_entry);
1534 llist = llist_next(llist);
317f3941
PZ
1535 ttwu_do_activate(rq, p, 0);
1536 }
1537
1538 raw_spin_unlock(&rq->lock);
1539}
1540
1541void scheduler_ipi(void)
1542{
f27dde8d
PZ
1543 /*
1544 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1545 * TIF_NEED_RESCHED remotely (for the first time) will also send
1546 * this IPI.
1547 */
8cb75e0c 1548 preempt_fold_need_resched();
f27dde8d 1549
873b4c65
VG
1550 if (llist_empty(&this_rq()->wake_list)
1551 && !tick_nohz_full_cpu(smp_processor_id())
1552 && !got_nohz_idle_kick())
c5d753a5
PZ
1553 return;
1554
1555 /*
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1559 * we do call them.
1560 *
1561 * Some archs already do call them, luckily irq_enter/exit nest
1562 * properly.
1563 *
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1567 */
1568 irq_enter();
ff442c51 1569 tick_nohz_full_check();
fa14ff4a 1570 sched_ttwu_pending();
ca38062e
SS
1571
1572 /*
1573 * Check if someone kicked us for doing the nohz idle load balance.
1574 */
873b4c65 1575 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1576 this_rq()->idle_balance = 1;
ca38062e 1577 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1578 }
c5d753a5 1579 irq_exit();
317f3941
PZ
1580}
1581
1582static void ttwu_queue_remote(struct task_struct *p, int cpu)
1583{
fa14ff4a 1584 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1585 smp_send_reschedule(cpu);
1586}
d6aa8f85 1587
39be3501 1588bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1589{
1590 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1591}
d6aa8f85 1592#endif /* CONFIG_SMP */
317f3941 1593
c05fbafb
PZ
1594static void ttwu_queue(struct task_struct *p, int cpu)
1595{
1596 struct rq *rq = cpu_rq(cpu);
1597
17d9f311 1598#if defined(CONFIG_SMP)
39be3501 1599 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1600 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1601 ttwu_queue_remote(p, cpu);
1602 return;
1603 }
1604#endif
1605
c05fbafb
PZ
1606 raw_spin_lock(&rq->lock);
1607 ttwu_do_activate(rq, p, 0);
1608 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1609}
1610
1611/**
1da177e4 1612 * try_to_wake_up - wake up a thread
9ed3811a 1613 * @p: the thread to be awakened
1da177e4 1614 * @state: the mask of task states that can be woken
9ed3811a 1615 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1616 *
1617 * Put it on the run-queue if it's not already there. The "current"
1618 * thread is always on the run-queue (except when the actual
1619 * re-schedule is in progress), and as such you're allowed to do
1620 * the simpler "current->state = TASK_RUNNING" to mark yourself
1621 * runnable without the overhead of this.
1622 *
e69f6186 1623 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1624 * or @state didn't match @p's state.
1da177e4 1625 */
e4a52bcb
PZ
1626static int
1627try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1628{
1da177e4 1629 unsigned long flags;
c05fbafb 1630 int cpu, success = 0;
2398f2c6 1631
e0acd0a6
ON
1632 /*
1633 * If we are going to wake up a thread waiting for CONDITION we
1634 * need to ensure that CONDITION=1 done by the caller can not be
1635 * reordered with p->state check below. This pairs with mb() in
1636 * set_current_state() the waiting thread does.
1637 */
1638 smp_mb__before_spinlock();
013fdb80 1639 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1640 if (!(p->state & state))
1da177e4
LT
1641 goto out;
1642
c05fbafb 1643 success = 1; /* we're going to change ->state */
1da177e4 1644 cpu = task_cpu(p);
1da177e4 1645
c05fbafb
PZ
1646 if (p->on_rq && ttwu_remote(p, wake_flags))
1647 goto stat;
1da177e4 1648
1da177e4 1649#ifdef CONFIG_SMP
e9c84311 1650 /*
c05fbafb
PZ
1651 * If the owning (remote) cpu is still in the middle of schedule() with
1652 * this task as prev, wait until its done referencing the task.
e9c84311 1653 */
f3e94786 1654 while (p->on_cpu)
e4a52bcb 1655 cpu_relax();
0970d299 1656 /*
e4a52bcb 1657 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1658 */
e4a52bcb 1659 smp_rmb();
1da177e4 1660
a8e4f2ea 1661 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1662 p->state = TASK_WAKING;
e7693a36 1663
e4a52bcb 1664 if (p->sched_class->task_waking)
74f8e4b2 1665 p->sched_class->task_waking(p);
efbbd05a 1666
ac66f547 1667 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1668 if (task_cpu(p) != cpu) {
1669 wake_flags |= WF_MIGRATED;
e4a52bcb 1670 set_task_cpu(p, cpu);
f339b9dc 1671 }
1da177e4 1672#endif /* CONFIG_SMP */
1da177e4 1673
c05fbafb
PZ
1674 ttwu_queue(p, cpu);
1675stat:
b84cb5df 1676 ttwu_stat(p, cpu, wake_flags);
1da177e4 1677out:
013fdb80 1678 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1679
1680 return success;
1681}
1682
21aa9af0
TH
1683/**
1684 * try_to_wake_up_local - try to wake up a local task with rq lock held
1685 * @p: the thread to be awakened
1686 *
2acca55e 1687 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1688 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1689 * the current task.
21aa9af0
TH
1690 */
1691static void try_to_wake_up_local(struct task_struct *p)
1692{
1693 struct rq *rq = task_rq(p);
21aa9af0 1694
383efcd0
TH
1695 if (WARN_ON_ONCE(rq != this_rq()) ||
1696 WARN_ON_ONCE(p == current))
1697 return;
1698
21aa9af0
TH
1699 lockdep_assert_held(&rq->lock);
1700
2acca55e
PZ
1701 if (!raw_spin_trylock(&p->pi_lock)) {
1702 raw_spin_unlock(&rq->lock);
1703 raw_spin_lock(&p->pi_lock);
1704 raw_spin_lock(&rq->lock);
1705 }
1706
21aa9af0 1707 if (!(p->state & TASK_NORMAL))
2acca55e 1708 goto out;
21aa9af0 1709
fd2f4419 1710 if (!p->on_rq)
d7c01d27
PZ
1711 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1712
23f41eeb 1713 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1714 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1715out:
1716 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1717}
1718
50fa610a
DH
1719/**
1720 * wake_up_process - Wake up a specific process
1721 * @p: The process to be woken up.
1722 *
1723 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1724 * processes.
1725 *
1726 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1727 *
1728 * It may be assumed that this function implies a write memory barrier before
1729 * changing the task state if and only if any tasks are woken up.
1730 */
7ad5b3a5 1731int wake_up_process(struct task_struct *p)
1da177e4 1732{
9067ac85
ON
1733 WARN_ON(task_is_stopped_or_traced(p));
1734 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1735}
1da177e4
LT
1736EXPORT_SYMBOL(wake_up_process);
1737
7ad5b3a5 1738int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1739{
1740 return try_to_wake_up(p, state, 0);
1741}
1742
1da177e4
LT
1743/*
1744 * Perform scheduler related setup for a newly forked process p.
1745 * p is forked by current.
dd41f596
IM
1746 *
1747 * __sched_fork() is basic setup used by init_idle() too:
1748 */
5e1576ed 1749static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1750{
fd2f4419
PZ
1751 p->on_rq = 0;
1752
1753 p->se.on_rq = 0;
dd41f596
IM
1754 p->se.exec_start = 0;
1755 p->se.sum_exec_runtime = 0;
f6cf891c 1756 p->se.prev_sum_exec_runtime = 0;
6c594c21 1757 p->se.nr_migrations = 0;
da7a735e 1758 p->se.vruntime = 0;
fd2f4419 1759 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1760
1761#ifdef CONFIG_SCHEDSTATS
41acab88 1762 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1763#endif
476d139c 1764
aab03e05
DF
1765 RB_CLEAR_NODE(&p->dl.rb_node);
1766 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1767 p->dl.dl_runtime = p->dl.runtime = 0;
1768 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1769 p->dl.dl_period = 0;
aab03e05
DF
1770 p->dl.flags = 0;
1771
fa717060 1772 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1773
e107be36
AK
1774#ifdef CONFIG_PREEMPT_NOTIFIERS
1775 INIT_HLIST_HEAD(&p->preempt_notifiers);
1776#endif
cbee9f88
PZ
1777
1778#ifdef CONFIG_NUMA_BALANCING
1779 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1780 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1781 p->mm->numa_scan_seq = 0;
1782 }
1783
5e1576ed
RR
1784 if (clone_flags & CLONE_VM)
1785 p->numa_preferred_nid = current->numa_preferred_nid;
1786 else
1787 p->numa_preferred_nid = -1;
1788
cbee9f88
PZ
1789 p->node_stamp = 0ULL;
1790 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1791 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1792 p->numa_work.next = &p->numa_work;
ff1df896
RR
1793 p->numa_faults_memory = NULL;
1794 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1795 p->last_task_numa_placement = 0;
1796 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1797
1798 INIT_LIST_HEAD(&p->numa_entry);
1799 p->numa_group = NULL;
cbee9f88 1800#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1801}
1802
1a687c2e 1803#ifdef CONFIG_NUMA_BALANCING
3105b86a 1804#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1805void set_numabalancing_state(bool enabled)
1806{
1807 if (enabled)
1808 sched_feat_set("NUMA");
1809 else
1810 sched_feat_set("NO_NUMA");
1811}
3105b86a
MG
1812#else
1813__read_mostly bool numabalancing_enabled;
1814
1815void set_numabalancing_state(bool enabled)
1816{
1817 numabalancing_enabled = enabled;
dd41f596 1818}
3105b86a 1819#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1820
1821#ifdef CONFIG_PROC_SYSCTL
1822int sysctl_numa_balancing(struct ctl_table *table, int write,
1823 void __user *buffer, size_t *lenp, loff_t *ppos)
1824{
1825 struct ctl_table t;
1826 int err;
1827 int state = numabalancing_enabled;
1828
1829 if (write && !capable(CAP_SYS_ADMIN))
1830 return -EPERM;
1831
1832 t = *table;
1833 t.data = &state;
1834 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1835 if (err < 0)
1836 return err;
1837 if (write)
1838 set_numabalancing_state(state);
1839 return err;
1840}
1841#endif
1842#endif
dd41f596
IM
1843
1844/*
1845 * fork()/clone()-time setup:
1846 */
aab03e05 1847int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1848{
0122ec5b 1849 unsigned long flags;
dd41f596
IM
1850 int cpu = get_cpu();
1851
5e1576ed 1852 __sched_fork(clone_flags, p);
06b83b5f 1853 /*
0017d735 1854 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1855 * nobody will actually run it, and a signal or other external
1856 * event cannot wake it up and insert it on the runqueue either.
1857 */
0017d735 1858 p->state = TASK_RUNNING;
dd41f596 1859
c350a04e
MG
1860 /*
1861 * Make sure we do not leak PI boosting priority to the child.
1862 */
1863 p->prio = current->normal_prio;
1864
b9dc29e7
MG
1865 /*
1866 * Revert to default priority/policy on fork if requested.
1867 */
1868 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1869 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1870 p->policy = SCHED_NORMAL;
6c697bdf 1871 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1872 p->rt_priority = 0;
1873 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1874 p->static_prio = NICE_TO_PRIO(0);
1875
1876 p->prio = p->normal_prio = __normal_prio(p);
1877 set_load_weight(p);
6c697bdf 1878
b9dc29e7
MG
1879 /*
1880 * We don't need the reset flag anymore after the fork. It has
1881 * fulfilled its duty:
1882 */
1883 p->sched_reset_on_fork = 0;
1884 }
ca94c442 1885
aab03e05
DF
1886 if (dl_prio(p->prio)) {
1887 put_cpu();
1888 return -EAGAIN;
1889 } else if (rt_prio(p->prio)) {
1890 p->sched_class = &rt_sched_class;
1891 } else {
2ddbf952 1892 p->sched_class = &fair_sched_class;
aab03e05 1893 }
b29739f9 1894
cd29fe6f
PZ
1895 if (p->sched_class->task_fork)
1896 p->sched_class->task_fork(p);
1897
86951599
PZ
1898 /*
1899 * The child is not yet in the pid-hash so no cgroup attach races,
1900 * and the cgroup is pinned to this child due to cgroup_fork()
1901 * is ran before sched_fork().
1902 *
1903 * Silence PROVE_RCU.
1904 */
0122ec5b 1905 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1906 set_task_cpu(p, cpu);
0122ec5b 1907 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1908
52f17b6c 1909#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1910 if (likely(sched_info_on()))
52f17b6c 1911 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1912#endif
3ca7a440
PZ
1913#if defined(CONFIG_SMP)
1914 p->on_cpu = 0;
4866cde0 1915#endif
01028747 1916 init_task_preempt_count(p);
806c09a7 1917#ifdef CONFIG_SMP
917b627d 1918 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1919 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1920#endif
917b627d 1921
476d139c 1922 put_cpu();
aab03e05 1923 return 0;
1da177e4
LT
1924}
1925
332ac17e
DF
1926unsigned long to_ratio(u64 period, u64 runtime)
1927{
1928 if (runtime == RUNTIME_INF)
1929 return 1ULL << 20;
1930
1931 /*
1932 * Doing this here saves a lot of checks in all
1933 * the calling paths, and returning zero seems
1934 * safe for them anyway.
1935 */
1936 if (period == 0)
1937 return 0;
1938
1939 return div64_u64(runtime << 20, period);
1940}
1941
1942#ifdef CONFIG_SMP
1943inline struct dl_bw *dl_bw_of(int i)
1944{
1945 return &cpu_rq(i)->rd->dl_bw;
1946}
1947
de212f18 1948static inline int dl_bw_cpus(int i)
332ac17e 1949{
de212f18
PZ
1950 struct root_domain *rd = cpu_rq(i)->rd;
1951 int cpus = 0;
1952
1953 for_each_cpu_and(i, rd->span, cpu_active_mask)
1954 cpus++;
1955
1956 return cpus;
332ac17e
DF
1957}
1958#else
1959inline struct dl_bw *dl_bw_of(int i)
1960{
1961 return &cpu_rq(i)->dl.dl_bw;
1962}
1963
de212f18 1964static inline int dl_bw_cpus(int i)
332ac17e
DF
1965{
1966 return 1;
1967}
1968#endif
1969
1970static inline
1971void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1972{
1973 dl_b->total_bw -= tsk_bw;
1974}
1975
1976static inline
1977void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1978{
1979 dl_b->total_bw += tsk_bw;
1980}
1981
1982static inline
1983bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1984{
1985 return dl_b->bw != -1 &&
1986 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1987}
1988
1989/*
1990 * We must be sure that accepting a new task (or allowing changing the
1991 * parameters of an existing one) is consistent with the bandwidth
1992 * constraints. If yes, this function also accordingly updates the currently
1993 * allocated bandwidth to reflect the new situation.
1994 *
1995 * This function is called while holding p's rq->lock.
1996 */
1997static int dl_overflow(struct task_struct *p, int policy,
1998 const struct sched_attr *attr)
1999{
2000
2001 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2002 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2003 u64 runtime = attr->sched_runtime;
2004 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2005 int cpus, err = -1;
332ac17e
DF
2006
2007 if (new_bw == p->dl.dl_bw)
2008 return 0;
2009
2010 /*
2011 * Either if a task, enters, leave, or stays -deadline but changes
2012 * its parameters, we may need to update accordingly the total
2013 * allocated bandwidth of the container.
2014 */
2015 raw_spin_lock(&dl_b->lock);
de212f18 2016 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2017 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2018 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2019 __dl_add(dl_b, new_bw);
2020 err = 0;
2021 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2022 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2023 __dl_clear(dl_b, p->dl.dl_bw);
2024 __dl_add(dl_b, new_bw);
2025 err = 0;
2026 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2027 __dl_clear(dl_b, p->dl.dl_bw);
2028 err = 0;
2029 }
2030 raw_spin_unlock(&dl_b->lock);
2031
2032 return err;
2033}
2034
2035extern void init_dl_bw(struct dl_bw *dl_b);
2036
1da177e4
LT
2037/*
2038 * wake_up_new_task - wake up a newly created task for the first time.
2039 *
2040 * This function will do some initial scheduler statistics housekeeping
2041 * that must be done for every newly created context, then puts the task
2042 * on the runqueue and wakes it.
2043 */
3e51e3ed 2044void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2045{
2046 unsigned long flags;
dd41f596 2047 struct rq *rq;
fabf318e 2048
ab2515c4 2049 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2050#ifdef CONFIG_SMP
2051 /*
2052 * Fork balancing, do it here and not earlier because:
2053 * - cpus_allowed can change in the fork path
2054 * - any previously selected cpu might disappear through hotplug
fabf318e 2055 */
ac66f547 2056 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2057#endif
2058
a75cdaa9
AS
2059 /* Initialize new task's runnable average */
2060 init_task_runnable_average(p);
ab2515c4 2061 rq = __task_rq_lock(p);
cd29fe6f 2062 activate_task(rq, p, 0);
fd2f4419 2063 p->on_rq = 1;
89363381 2064 trace_sched_wakeup_new(p, true);
a7558e01 2065 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2066#ifdef CONFIG_SMP
efbbd05a
PZ
2067 if (p->sched_class->task_woken)
2068 p->sched_class->task_woken(rq, p);
9a897c5a 2069#endif
0122ec5b 2070 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2071}
2072
e107be36
AK
2073#ifdef CONFIG_PREEMPT_NOTIFIERS
2074
2075/**
80dd99b3 2076 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2077 * @notifier: notifier struct to register
e107be36
AK
2078 */
2079void preempt_notifier_register(struct preempt_notifier *notifier)
2080{
2081 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2082}
2083EXPORT_SYMBOL_GPL(preempt_notifier_register);
2084
2085/**
2086 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2087 * @notifier: notifier struct to unregister
e107be36
AK
2088 *
2089 * This is safe to call from within a preemption notifier.
2090 */
2091void preempt_notifier_unregister(struct preempt_notifier *notifier)
2092{
2093 hlist_del(&notifier->link);
2094}
2095EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2096
2097static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2098{
2099 struct preempt_notifier *notifier;
e107be36 2100
b67bfe0d 2101 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2102 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2103}
2104
2105static void
2106fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107 struct task_struct *next)
2108{
2109 struct preempt_notifier *notifier;
e107be36 2110
b67bfe0d 2111 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2112 notifier->ops->sched_out(notifier, next);
2113}
2114
6d6bc0ad 2115#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2116
2117static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2118{
2119}
2120
2121static void
2122fire_sched_out_preempt_notifiers(struct task_struct *curr,
2123 struct task_struct *next)
2124{
2125}
2126
6d6bc0ad 2127#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2128
4866cde0
NP
2129/**
2130 * prepare_task_switch - prepare to switch tasks
2131 * @rq: the runqueue preparing to switch
421cee29 2132 * @prev: the current task that is being switched out
4866cde0
NP
2133 * @next: the task we are going to switch to.
2134 *
2135 * This is called with the rq lock held and interrupts off. It must
2136 * be paired with a subsequent finish_task_switch after the context
2137 * switch.
2138 *
2139 * prepare_task_switch sets up locking and calls architecture specific
2140 * hooks.
2141 */
e107be36
AK
2142static inline void
2143prepare_task_switch(struct rq *rq, struct task_struct *prev,
2144 struct task_struct *next)
4866cde0 2145{
895dd92c 2146 trace_sched_switch(prev, next);
43148951 2147 sched_info_switch(rq, prev, next);
fe4b04fa 2148 perf_event_task_sched_out(prev, next);
e107be36 2149 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2150 prepare_lock_switch(rq, next);
2151 prepare_arch_switch(next);
2152}
2153
1da177e4
LT
2154/**
2155 * finish_task_switch - clean up after a task-switch
344babaa 2156 * @rq: runqueue associated with task-switch
1da177e4
LT
2157 * @prev: the thread we just switched away from.
2158 *
4866cde0
NP
2159 * finish_task_switch must be called after the context switch, paired
2160 * with a prepare_task_switch call before the context switch.
2161 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2162 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2163 *
2164 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2165 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2166 * with the lock held can cause deadlocks; see schedule() for
2167 * details.)
2168 */
a9957449 2169static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2170 __releases(rq->lock)
2171{
1da177e4 2172 struct mm_struct *mm = rq->prev_mm;
55a101f8 2173 long prev_state;
1da177e4
LT
2174
2175 rq->prev_mm = NULL;
2176
2177 /*
2178 * A task struct has one reference for the use as "current".
c394cc9f 2179 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2180 * schedule one last time. The schedule call will never return, and
2181 * the scheduled task must drop that reference.
c394cc9f 2182 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2183 * still held, otherwise prev could be scheduled on another cpu, die
2184 * there before we look at prev->state, and then the reference would
2185 * be dropped twice.
2186 * Manfred Spraul <manfred@colorfullife.com>
2187 */
55a101f8 2188 prev_state = prev->state;
bf9fae9f 2189 vtime_task_switch(prev);
4866cde0 2190 finish_arch_switch(prev);
a8d757ef 2191 perf_event_task_sched_in(prev, current);
4866cde0 2192 finish_lock_switch(rq, prev);
01f23e16 2193 finish_arch_post_lock_switch();
e8fa1362 2194
e107be36 2195 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2196 if (mm)
2197 mmdrop(mm);
c394cc9f 2198 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2199 if (prev->sched_class->task_dead)
2200 prev->sched_class->task_dead(prev);
2201
c6fd91f0 2202 /*
2203 * Remove function-return probe instances associated with this
2204 * task and put them back on the free list.
9761eea8 2205 */
c6fd91f0 2206 kprobe_flush_task(prev);
1da177e4 2207 put_task_struct(prev);
c6fd91f0 2208 }
99e5ada9
FW
2209
2210 tick_nohz_task_switch(current);
1da177e4
LT
2211}
2212
3f029d3c
GH
2213#ifdef CONFIG_SMP
2214
3f029d3c
GH
2215/* rq->lock is NOT held, but preemption is disabled */
2216static inline void post_schedule(struct rq *rq)
2217{
2218 if (rq->post_schedule) {
2219 unsigned long flags;
2220
05fa785c 2221 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2222 if (rq->curr->sched_class->post_schedule)
2223 rq->curr->sched_class->post_schedule(rq);
05fa785c 2224 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2225
2226 rq->post_schedule = 0;
2227 }
2228}
2229
2230#else
da19ab51 2231
3f029d3c
GH
2232static inline void post_schedule(struct rq *rq)
2233{
1da177e4
LT
2234}
2235
3f029d3c
GH
2236#endif
2237
1da177e4
LT
2238/**
2239 * schedule_tail - first thing a freshly forked thread must call.
2240 * @prev: the thread we just switched away from.
2241 */
722a9f92 2242asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2243 __releases(rq->lock)
2244{
70b97a7f
IM
2245 struct rq *rq = this_rq();
2246
4866cde0 2247 finish_task_switch(rq, prev);
da19ab51 2248
3f029d3c
GH
2249 /*
2250 * FIXME: do we need to worry about rq being invalidated by the
2251 * task_switch?
2252 */
2253 post_schedule(rq);
70b97a7f 2254
4866cde0
NP
2255#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2256 /* In this case, finish_task_switch does not reenable preemption */
2257 preempt_enable();
2258#endif
1da177e4 2259 if (current->set_child_tid)
b488893a 2260 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2261}
2262
2263/*
2264 * context_switch - switch to the new MM and the new
2265 * thread's register state.
2266 */
dd41f596 2267static inline void
70b97a7f 2268context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2269 struct task_struct *next)
1da177e4 2270{
dd41f596 2271 struct mm_struct *mm, *oldmm;
1da177e4 2272
e107be36 2273 prepare_task_switch(rq, prev, next);
fe4b04fa 2274
dd41f596
IM
2275 mm = next->mm;
2276 oldmm = prev->active_mm;
9226d125
ZA
2277 /*
2278 * For paravirt, this is coupled with an exit in switch_to to
2279 * combine the page table reload and the switch backend into
2280 * one hypercall.
2281 */
224101ed 2282 arch_start_context_switch(prev);
9226d125 2283
31915ab4 2284 if (!mm) {
1da177e4
LT
2285 next->active_mm = oldmm;
2286 atomic_inc(&oldmm->mm_count);
2287 enter_lazy_tlb(oldmm, next);
2288 } else
2289 switch_mm(oldmm, mm, next);
2290
31915ab4 2291 if (!prev->mm) {
1da177e4 2292 prev->active_mm = NULL;
1da177e4
LT
2293 rq->prev_mm = oldmm;
2294 }
3a5f5e48
IM
2295 /*
2296 * Since the runqueue lock will be released by the next
2297 * task (which is an invalid locking op but in the case
2298 * of the scheduler it's an obvious special-case), so we
2299 * do an early lockdep release here:
2300 */
2301#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2302 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2303#endif
1da177e4 2304
91d1aa43 2305 context_tracking_task_switch(prev, next);
1da177e4
LT
2306 /* Here we just switch the register state and the stack. */
2307 switch_to(prev, next, prev);
2308
dd41f596
IM
2309 barrier();
2310 /*
2311 * this_rq must be evaluated again because prev may have moved
2312 * CPUs since it called schedule(), thus the 'rq' on its stack
2313 * frame will be invalid.
2314 */
2315 finish_task_switch(this_rq(), prev);
1da177e4
LT
2316}
2317
2318/*
1c3e8264 2319 * nr_running and nr_context_switches:
1da177e4
LT
2320 *
2321 * externally visible scheduler statistics: current number of runnable
1c3e8264 2322 * threads, total number of context switches performed since bootup.
1da177e4
LT
2323 */
2324unsigned long nr_running(void)
2325{
2326 unsigned long i, sum = 0;
2327
2328 for_each_online_cpu(i)
2329 sum += cpu_rq(i)->nr_running;
2330
2331 return sum;
f711f609 2332}
1da177e4 2333
1da177e4 2334unsigned long long nr_context_switches(void)
46cb4b7c 2335{
cc94abfc
SR
2336 int i;
2337 unsigned long long sum = 0;
46cb4b7c 2338
0a945022 2339 for_each_possible_cpu(i)
1da177e4 2340 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2341
1da177e4
LT
2342 return sum;
2343}
483b4ee6 2344
1da177e4
LT
2345unsigned long nr_iowait(void)
2346{
2347 unsigned long i, sum = 0;
483b4ee6 2348
0a945022 2349 for_each_possible_cpu(i)
1da177e4 2350 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2351
1da177e4
LT
2352 return sum;
2353}
483b4ee6 2354
8c215bd3 2355unsigned long nr_iowait_cpu(int cpu)
69d25870 2356{
8c215bd3 2357 struct rq *this = cpu_rq(cpu);
69d25870
AV
2358 return atomic_read(&this->nr_iowait);
2359}
46cb4b7c 2360
dd41f596 2361#ifdef CONFIG_SMP
8a0be9ef 2362
46cb4b7c 2363/*
38022906
PZ
2364 * sched_exec - execve() is a valuable balancing opportunity, because at
2365 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2366 */
38022906 2367void sched_exec(void)
46cb4b7c 2368{
38022906 2369 struct task_struct *p = current;
1da177e4 2370 unsigned long flags;
0017d735 2371 int dest_cpu;
46cb4b7c 2372
8f42ced9 2373 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2374 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2375 if (dest_cpu == smp_processor_id())
2376 goto unlock;
38022906 2377
8f42ced9 2378 if (likely(cpu_active(dest_cpu))) {
969c7921 2379 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2380
8f42ced9
PZ
2381 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2382 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2383 return;
2384 }
0017d735 2385unlock:
8f42ced9 2386 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2387}
dd41f596 2388
1da177e4
LT
2389#endif
2390
1da177e4 2391DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2392DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2393
2394EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2395EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2396
2397/*
c5f8d995 2398 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2399 * @p in case that task is currently running.
c5f8d995
HS
2400 *
2401 * Called with task_rq_lock() held on @rq.
1da177e4 2402 */
c5f8d995
HS
2403static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2404{
2405 u64 ns = 0;
2406
2407 if (task_current(rq, p)) {
2408 update_rq_clock(rq);
78becc27 2409 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2410 if ((s64)ns < 0)
2411 ns = 0;
2412 }
2413
2414 return ns;
2415}
2416
bb34d92f 2417unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2418{
1da177e4 2419 unsigned long flags;
41b86e9c 2420 struct rq *rq;
bb34d92f 2421 u64 ns = 0;
48f24c4d 2422
41b86e9c 2423 rq = task_rq_lock(p, &flags);
c5f8d995 2424 ns = do_task_delta_exec(p, rq);
0122ec5b 2425 task_rq_unlock(rq, p, &flags);
1508487e 2426
c5f8d995
HS
2427 return ns;
2428}
f06febc9 2429
c5f8d995
HS
2430/*
2431 * Return accounted runtime for the task.
2432 * In case the task is currently running, return the runtime plus current's
2433 * pending runtime that have not been accounted yet.
2434 */
2435unsigned long long task_sched_runtime(struct task_struct *p)
2436{
2437 unsigned long flags;
2438 struct rq *rq;
2439 u64 ns = 0;
2440
911b2898
PZ
2441#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2442 /*
2443 * 64-bit doesn't need locks to atomically read a 64bit value.
2444 * So we have a optimization chance when the task's delta_exec is 0.
2445 * Reading ->on_cpu is racy, but this is ok.
2446 *
2447 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2448 * If we race with it entering cpu, unaccounted time is 0. This is
2449 * indistinguishable from the read occurring a few cycles earlier.
2450 */
2451 if (!p->on_cpu)
2452 return p->se.sum_exec_runtime;
2453#endif
2454
c5f8d995
HS
2455 rq = task_rq_lock(p, &flags);
2456 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2457 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2458
2459 return ns;
2460}
48f24c4d 2461
7835b98b
CL
2462/*
2463 * This function gets called by the timer code, with HZ frequency.
2464 * We call it with interrupts disabled.
7835b98b
CL
2465 */
2466void scheduler_tick(void)
2467{
7835b98b
CL
2468 int cpu = smp_processor_id();
2469 struct rq *rq = cpu_rq(cpu);
dd41f596 2470 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2471
2472 sched_clock_tick();
dd41f596 2473
05fa785c 2474 raw_spin_lock(&rq->lock);
3e51f33f 2475 update_rq_clock(rq);
fa85ae24 2476 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2477 update_cpu_load_active(rq);
05fa785c 2478 raw_spin_unlock(&rq->lock);
7835b98b 2479
e9d2b064 2480 perf_event_task_tick();
e220d2dc 2481
e418e1c2 2482#ifdef CONFIG_SMP
6eb57e0d 2483 rq->idle_balance = idle_cpu(cpu);
7caff66f 2484 trigger_load_balance(rq);
e418e1c2 2485#endif
265f22a9 2486 rq_last_tick_reset(rq);
1da177e4
LT
2487}
2488
265f22a9
FW
2489#ifdef CONFIG_NO_HZ_FULL
2490/**
2491 * scheduler_tick_max_deferment
2492 *
2493 * Keep at least one tick per second when a single
2494 * active task is running because the scheduler doesn't
2495 * yet completely support full dynticks environment.
2496 *
2497 * This makes sure that uptime, CFS vruntime, load
2498 * balancing, etc... continue to move forward, even
2499 * with a very low granularity.
e69f6186
YB
2500 *
2501 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2502 */
2503u64 scheduler_tick_max_deferment(void)
2504{
2505 struct rq *rq = this_rq();
2506 unsigned long next, now = ACCESS_ONCE(jiffies);
2507
2508 next = rq->last_sched_tick + HZ;
2509
2510 if (time_before_eq(next, now))
2511 return 0;
2512
8fe8ff09 2513 return jiffies_to_nsecs(next - now);
1da177e4 2514}
265f22a9 2515#endif
1da177e4 2516
132380a0 2517notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2518{
2519 if (in_lock_functions(addr)) {
2520 addr = CALLER_ADDR2;
2521 if (in_lock_functions(addr))
2522 addr = CALLER_ADDR3;
2523 }
2524 return addr;
2525}
1da177e4 2526
7e49fcce
SR
2527#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2528 defined(CONFIG_PREEMPT_TRACER))
2529
bdb43806 2530void __kprobes preempt_count_add(int val)
1da177e4 2531{
6cd8a4bb 2532#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2533 /*
2534 * Underflow?
2535 */
9a11b49a
IM
2536 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2537 return;
6cd8a4bb 2538#endif
bdb43806 2539 __preempt_count_add(val);
6cd8a4bb 2540#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2541 /*
2542 * Spinlock count overflowing soon?
2543 */
33859f7f
MOS
2544 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2545 PREEMPT_MASK - 10);
6cd8a4bb 2546#endif
8f47b187
TG
2547 if (preempt_count() == val) {
2548 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550 current->preempt_disable_ip = ip;
2551#endif
2552 trace_preempt_off(CALLER_ADDR0, ip);
2553 }
1da177e4 2554}
bdb43806 2555EXPORT_SYMBOL(preempt_count_add);
1da177e4 2556
bdb43806 2557void __kprobes preempt_count_sub(int val)
1da177e4 2558{
6cd8a4bb 2559#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2560 /*
2561 * Underflow?
2562 */
01e3eb82 2563 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2564 return;
1da177e4
LT
2565 /*
2566 * Is the spinlock portion underflowing?
2567 */
9a11b49a
IM
2568 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2569 !(preempt_count() & PREEMPT_MASK)))
2570 return;
6cd8a4bb 2571#endif
9a11b49a 2572
6cd8a4bb
SR
2573 if (preempt_count() == val)
2574 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2575 __preempt_count_sub(val);
1da177e4 2576}
bdb43806 2577EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2578
2579#endif
2580
2581/*
dd41f596 2582 * Print scheduling while atomic bug:
1da177e4 2583 */
dd41f596 2584static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2585{
664dfa65
DJ
2586 if (oops_in_progress)
2587 return;
2588
3df0fc5b
PZ
2589 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2590 prev->comm, prev->pid, preempt_count());
838225b4 2591
dd41f596 2592 debug_show_held_locks(prev);
e21f5b15 2593 print_modules();
dd41f596
IM
2594 if (irqs_disabled())
2595 print_irqtrace_events(prev);
8f47b187
TG
2596#ifdef CONFIG_DEBUG_PREEMPT
2597 if (in_atomic_preempt_off()) {
2598 pr_err("Preemption disabled at:");
2599 print_ip_sym(current->preempt_disable_ip);
2600 pr_cont("\n");
2601 }
2602#endif
6135fc1e 2603 dump_stack();
373d4d09 2604 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2605}
1da177e4 2606
dd41f596
IM
2607/*
2608 * Various schedule()-time debugging checks and statistics:
2609 */
2610static inline void schedule_debug(struct task_struct *prev)
2611{
1da177e4 2612 /*
41a2d6cf 2613 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2614 * schedule() atomically, we ignore that path. Otherwise whine
2615 * if we are scheduling when we should not.
1da177e4 2616 */
192301e7 2617 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2618 __schedule_bug(prev);
b3fbab05 2619 rcu_sleep_check();
dd41f596 2620
1da177e4
LT
2621 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2622
2d72376b 2623 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2624}
2625
2626/*
2627 * Pick up the highest-prio task:
2628 */
2629static inline struct task_struct *
606dba2e 2630pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2631{
37e117c0 2632 const struct sched_class *class = &fair_sched_class;
dd41f596 2633 struct task_struct *p;
1da177e4
LT
2634
2635 /*
dd41f596
IM
2636 * Optimization: we know that if all tasks are in
2637 * the fair class we can call that function directly:
1da177e4 2638 */
37e117c0 2639 if (likely(prev->sched_class == class &&
38033c37 2640 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2641 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2642 if (unlikely(p == RETRY_TASK))
2643 goto again;
2644
2645 /* assumes fair_sched_class->next == idle_sched_class */
2646 if (unlikely(!p))
2647 p = idle_sched_class.pick_next_task(rq, prev);
2648
2649 return p;
1da177e4
LT
2650 }
2651
37e117c0 2652again:
34f971f6 2653 for_each_class(class) {
606dba2e 2654 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2655 if (p) {
2656 if (unlikely(p == RETRY_TASK))
2657 goto again;
dd41f596 2658 return p;
37e117c0 2659 }
dd41f596 2660 }
34f971f6
PZ
2661
2662 BUG(); /* the idle class will always have a runnable task */
dd41f596 2663}
1da177e4 2664
dd41f596 2665/*
c259e01a 2666 * __schedule() is the main scheduler function.
edde96ea
PE
2667 *
2668 * The main means of driving the scheduler and thus entering this function are:
2669 *
2670 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2671 *
2672 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2673 * paths. For example, see arch/x86/entry_64.S.
2674 *
2675 * To drive preemption between tasks, the scheduler sets the flag in timer
2676 * interrupt handler scheduler_tick().
2677 *
2678 * 3. Wakeups don't really cause entry into schedule(). They add a
2679 * task to the run-queue and that's it.
2680 *
2681 * Now, if the new task added to the run-queue preempts the current
2682 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2683 * called on the nearest possible occasion:
2684 *
2685 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2686 *
2687 * - in syscall or exception context, at the next outmost
2688 * preempt_enable(). (this might be as soon as the wake_up()'s
2689 * spin_unlock()!)
2690 *
2691 * - in IRQ context, return from interrupt-handler to
2692 * preemptible context
2693 *
2694 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2695 * then at the next:
2696 *
2697 * - cond_resched() call
2698 * - explicit schedule() call
2699 * - return from syscall or exception to user-space
2700 * - return from interrupt-handler to user-space
dd41f596 2701 */
c259e01a 2702static void __sched __schedule(void)
dd41f596
IM
2703{
2704 struct task_struct *prev, *next;
67ca7bde 2705 unsigned long *switch_count;
dd41f596 2706 struct rq *rq;
31656519 2707 int cpu;
dd41f596 2708
ff743345
PZ
2709need_resched:
2710 preempt_disable();
dd41f596
IM
2711 cpu = smp_processor_id();
2712 rq = cpu_rq(cpu);
25502a6c 2713 rcu_note_context_switch(cpu);
dd41f596 2714 prev = rq->curr;
dd41f596 2715
dd41f596 2716 schedule_debug(prev);
1da177e4 2717
31656519 2718 if (sched_feat(HRTICK))
f333fdc9 2719 hrtick_clear(rq);
8f4d37ec 2720
e0acd0a6
ON
2721 /*
2722 * Make sure that signal_pending_state()->signal_pending() below
2723 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2724 * done by the caller to avoid the race with signal_wake_up().
2725 */
2726 smp_mb__before_spinlock();
05fa785c 2727 raw_spin_lock_irq(&rq->lock);
1da177e4 2728
246d86b5 2729 switch_count = &prev->nivcsw;
1da177e4 2730 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2731 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2732 prev->state = TASK_RUNNING;
21aa9af0 2733 } else {
2acca55e
PZ
2734 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2735 prev->on_rq = 0;
2736
21aa9af0 2737 /*
2acca55e
PZ
2738 * If a worker went to sleep, notify and ask workqueue
2739 * whether it wants to wake up a task to maintain
2740 * concurrency.
21aa9af0
TH
2741 */
2742 if (prev->flags & PF_WQ_WORKER) {
2743 struct task_struct *to_wakeup;
2744
2745 to_wakeup = wq_worker_sleeping(prev, cpu);
2746 if (to_wakeup)
2747 try_to_wake_up_local(to_wakeup);
2748 }
21aa9af0 2749 }
dd41f596 2750 switch_count = &prev->nvcsw;
1da177e4
LT
2751 }
2752
606dba2e
PZ
2753 if (prev->on_rq || rq->skip_clock_update < 0)
2754 update_rq_clock(rq);
2755
2756 next = pick_next_task(rq, prev);
f26f9aff 2757 clear_tsk_need_resched(prev);
f27dde8d 2758 clear_preempt_need_resched();
f26f9aff 2759 rq->skip_clock_update = 0;
1da177e4 2760
1da177e4 2761 if (likely(prev != next)) {
1da177e4
LT
2762 rq->nr_switches++;
2763 rq->curr = next;
2764 ++*switch_count;
2765
dd41f596 2766 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2767 /*
246d86b5
ON
2768 * The context switch have flipped the stack from under us
2769 * and restored the local variables which were saved when
2770 * this task called schedule() in the past. prev == current
2771 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2772 */
2773 cpu = smp_processor_id();
2774 rq = cpu_rq(cpu);
1da177e4 2775 } else
05fa785c 2776 raw_spin_unlock_irq(&rq->lock);
1da177e4 2777
3f029d3c 2778 post_schedule(rq);
1da177e4 2779
ba74c144 2780 sched_preempt_enable_no_resched();
ff743345 2781 if (need_resched())
1da177e4
LT
2782 goto need_resched;
2783}
c259e01a 2784
9c40cef2
TG
2785static inline void sched_submit_work(struct task_struct *tsk)
2786{
3c7d5184 2787 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2788 return;
2789 /*
2790 * If we are going to sleep and we have plugged IO queued,
2791 * make sure to submit it to avoid deadlocks.
2792 */
2793 if (blk_needs_flush_plug(tsk))
2794 blk_schedule_flush_plug(tsk);
2795}
2796
722a9f92 2797asmlinkage __visible void __sched schedule(void)
c259e01a 2798{
9c40cef2
TG
2799 struct task_struct *tsk = current;
2800
2801 sched_submit_work(tsk);
c259e01a
TG
2802 __schedule();
2803}
1da177e4
LT
2804EXPORT_SYMBOL(schedule);
2805
91d1aa43 2806#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2807asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2808{
2809 /*
2810 * If we come here after a random call to set_need_resched(),
2811 * or we have been woken up remotely but the IPI has not yet arrived,
2812 * we haven't yet exited the RCU idle mode. Do it here manually until
2813 * we find a better solution.
2814 */
91d1aa43 2815 user_exit();
20ab65e3 2816 schedule();
91d1aa43 2817 user_enter();
20ab65e3
FW
2818}
2819#endif
2820
c5491ea7
TG
2821/**
2822 * schedule_preempt_disabled - called with preemption disabled
2823 *
2824 * Returns with preemption disabled. Note: preempt_count must be 1
2825 */
2826void __sched schedule_preempt_disabled(void)
2827{
ba74c144 2828 sched_preempt_enable_no_resched();
c5491ea7
TG
2829 schedule();
2830 preempt_disable();
2831}
2832
1da177e4
LT
2833#ifdef CONFIG_PREEMPT
2834/*
2ed6e34f 2835 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2836 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2837 * occur there and call schedule directly.
2838 */
722a9f92 2839asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2840{
1da177e4
LT
2841 /*
2842 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2843 * we do not want to preempt the current task. Just return..
1da177e4 2844 */
fbb00b56 2845 if (likely(!preemptible()))
1da177e4
LT
2846 return;
2847
3a5c359a 2848 do {
bdb43806 2849 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2850 __schedule();
bdb43806 2851 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2852
3a5c359a
AK
2853 /*
2854 * Check again in case we missed a preemption opportunity
2855 * between schedule and now.
2856 */
2857 barrier();
5ed0cec0 2858 } while (need_resched());
1da177e4 2859}
1da177e4 2860EXPORT_SYMBOL(preempt_schedule);
32e475d7 2861#endif /* CONFIG_PREEMPT */
1da177e4
LT
2862
2863/*
2ed6e34f 2864 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2865 * off of irq context.
2866 * Note, that this is called and return with irqs disabled. This will
2867 * protect us against recursive calling from irq.
2868 */
722a9f92 2869asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2870{
b22366cd 2871 enum ctx_state prev_state;
6478d880 2872
2ed6e34f 2873 /* Catch callers which need to be fixed */
f27dde8d 2874 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2875
b22366cd
FW
2876 prev_state = exception_enter();
2877
3a5c359a 2878 do {
bdb43806 2879 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2880 local_irq_enable();
c259e01a 2881 __schedule();
3a5c359a 2882 local_irq_disable();
bdb43806 2883 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2884
3a5c359a
AK
2885 /*
2886 * Check again in case we missed a preemption opportunity
2887 * between schedule and now.
2888 */
2889 barrier();
5ed0cec0 2890 } while (need_resched());
b22366cd
FW
2891
2892 exception_exit(prev_state);
1da177e4
LT
2893}
2894
63859d4f 2895int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2896 void *key)
1da177e4 2897{
63859d4f 2898 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2899}
1da177e4
LT
2900EXPORT_SYMBOL(default_wake_function);
2901
b29739f9
IM
2902#ifdef CONFIG_RT_MUTEXES
2903
2904/*
2905 * rt_mutex_setprio - set the current priority of a task
2906 * @p: task
2907 * @prio: prio value (kernel-internal form)
2908 *
2909 * This function changes the 'effective' priority of a task. It does
2910 * not touch ->normal_prio like __setscheduler().
2911 *
c365c292
TG
2912 * Used by the rt_mutex code to implement priority inheritance
2913 * logic. Call site only calls if the priority of the task changed.
b29739f9 2914 */
36c8b586 2915void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2916{
2d3d891d 2917 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2918 struct rq *rq;
83ab0aa0 2919 const struct sched_class *prev_class;
b29739f9 2920
aab03e05 2921 BUG_ON(prio > MAX_PRIO);
b29739f9 2922
0122ec5b 2923 rq = __task_rq_lock(p);
b29739f9 2924
1c4dd99b
TG
2925 /*
2926 * Idle task boosting is a nono in general. There is one
2927 * exception, when PREEMPT_RT and NOHZ is active:
2928 *
2929 * The idle task calls get_next_timer_interrupt() and holds
2930 * the timer wheel base->lock on the CPU and another CPU wants
2931 * to access the timer (probably to cancel it). We can safely
2932 * ignore the boosting request, as the idle CPU runs this code
2933 * with interrupts disabled and will complete the lock
2934 * protected section without being interrupted. So there is no
2935 * real need to boost.
2936 */
2937 if (unlikely(p == rq->idle)) {
2938 WARN_ON(p != rq->curr);
2939 WARN_ON(p->pi_blocked_on);
2940 goto out_unlock;
2941 }
2942
a8027073 2943 trace_sched_pi_setprio(p, prio);
2d3d891d 2944 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2945 oldprio = p->prio;
83ab0aa0 2946 prev_class = p->sched_class;
fd2f4419 2947 on_rq = p->on_rq;
051a1d1a 2948 running = task_current(rq, p);
0e1f3483 2949 if (on_rq)
69be72c1 2950 dequeue_task(rq, p, 0);
0e1f3483
HS
2951 if (running)
2952 p->sched_class->put_prev_task(rq, p);
dd41f596 2953
2d3d891d
DF
2954 /*
2955 * Boosting condition are:
2956 * 1. -rt task is running and holds mutex A
2957 * --> -dl task blocks on mutex A
2958 *
2959 * 2. -dl task is running and holds mutex A
2960 * --> -dl task blocks on mutex A and could preempt the
2961 * running task
2962 */
2963 if (dl_prio(prio)) {
2964 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2965 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2966 p->dl.dl_boosted = 1;
2967 p->dl.dl_throttled = 0;
2968 enqueue_flag = ENQUEUE_REPLENISH;
2969 } else
2970 p->dl.dl_boosted = 0;
aab03e05 2971 p->sched_class = &dl_sched_class;
2d3d891d
DF
2972 } else if (rt_prio(prio)) {
2973 if (dl_prio(oldprio))
2974 p->dl.dl_boosted = 0;
2975 if (oldprio < prio)
2976 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2977 p->sched_class = &rt_sched_class;
2d3d891d
DF
2978 } else {
2979 if (dl_prio(oldprio))
2980 p->dl.dl_boosted = 0;
dd41f596 2981 p->sched_class = &fair_sched_class;
2d3d891d 2982 }
dd41f596 2983
b29739f9
IM
2984 p->prio = prio;
2985
0e1f3483
HS
2986 if (running)
2987 p->sched_class->set_curr_task(rq);
da7a735e 2988 if (on_rq)
2d3d891d 2989 enqueue_task(rq, p, enqueue_flag);
cb469845 2990
da7a735e 2991 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2992out_unlock:
0122ec5b 2993 __task_rq_unlock(rq);
b29739f9 2994}
b29739f9 2995#endif
d50dde5a 2996
36c8b586 2997void set_user_nice(struct task_struct *p, long nice)
1da177e4 2998{
dd41f596 2999 int old_prio, delta, on_rq;
1da177e4 3000 unsigned long flags;
70b97a7f 3001 struct rq *rq;
1da177e4 3002
75e45d51 3003 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3004 return;
3005 /*
3006 * We have to be careful, if called from sys_setpriority(),
3007 * the task might be in the middle of scheduling on another CPU.
3008 */
3009 rq = task_rq_lock(p, &flags);
3010 /*
3011 * The RT priorities are set via sched_setscheduler(), but we still
3012 * allow the 'normal' nice value to be set - but as expected
3013 * it wont have any effect on scheduling until the task is
aab03e05 3014 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3015 */
aab03e05 3016 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3017 p->static_prio = NICE_TO_PRIO(nice);
3018 goto out_unlock;
3019 }
fd2f4419 3020 on_rq = p->on_rq;
c09595f6 3021 if (on_rq)
69be72c1 3022 dequeue_task(rq, p, 0);
1da177e4 3023
1da177e4 3024 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3025 set_load_weight(p);
b29739f9
IM
3026 old_prio = p->prio;
3027 p->prio = effective_prio(p);
3028 delta = p->prio - old_prio;
1da177e4 3029
dd41f596 3030 if (on_rq) {
371fd7e7 3031 enqueue_task(rq, p, 0);
1da177e4 3032 /*
d5f9f942
AM
3033 * If the task increased its priority or is running and
3034 * lowered its priority, then reschedule its CPU:
1da177e4 3035 */
d5f9f942 3036 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3037 resched_task(rq->curr);
3038 }
3039out_unlock:
0122ec5b 3040 task_rq_unlock(rq, p, &flags);
1da177e4 3041}
1da177e4
LT
3042EXPORT_SYMBOL(set_user_nice);
3043
e43379f1
MM
3044/*
3045 * can_nice - check if a task can reduce its nice value
3046 * @p: task
3047 * @nice: nice value
3048 */
36c8b586 3049int can_nice(const struct task_struct *p, const int nice)
e43379f1 3050{
024f4747 3051 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3052 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3053
78d7d407 3054 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3055 capable(CAP_SYS_NICE));
3056}
3057
1da177e4
LT
3058#ifdef __ARCH_WANT_SYS_NICE
3059
3060/*
3061 * sys_nice - change the priority of the current process.
3062 * @increment: priority increment
3063 *
3064 * sys_setpriority is a more generic, but much slower function that
3065 * does similar things.
3066 */
5add95d4 3067SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3068{
48f24c4d 3069 long nice, retval;
1da177e4
LT
3070
3071 /*
3072 * Setpriority might change our priority at the same moment.
3073 * We don't have to worry. Conceptually one call occurs first
3074 * and we have a single winner.
3075 */
a9467fa3 3076 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3077 nice = task_nice(current) + increment;
1da177e4 3078
a9467fa3 3079 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3080 if (increment < 0 && !can_nice(current, nice))
3081 return -EPERM;
3082
1da177e4
LT
3083 retval = security_task_setnice(current, nice);
3084 if (retval)
3085 return retval;
3086
3087 set_user_nice(current, nice);
3088 return 0;
3089}
3090
3091#endif
3092
3093/**
3094 * task_prio - return the priority value of a given task.
3095 * @p: the task in question.
3096 *
e69f6186 3097 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3098 * RT tasks are offset by -200. Normal tasks are centered
3099 * around 0, value goes from -16 to +15.
3100 */
36c8b586 3101int task_prio(const struct task_struct *p)
1da177e4
LT
3102{
3103 return p->prio - MAX_RT_PRIO;
3104}
3105
1da177e4
LT
3106/**
3107 * idle_cpu - is a given cpu idle currently?
3108 * @cpu: the processor in question.
e69f6186
YB
3109 *
3110 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3111 */
3112int idle_cpu(int cpu)
3113{
908a3283
TG
3114 struct rq *rq = cpu_rq(cpu);
3115
3116 if (rq->curr != rq->idle)
3117 return 0;
3118
3119 if (rq->nr_running)
3120 return 0;
3121
3122#ifdef CONFIG_SMP
3123 if (!llist_empty(&rq->wake_list))
3124 return 0;
3125#endif
3126
3127 return 1;
1da177e4
LT
3128}
3129
1da177e4
LT
3130/**
3131 * idle_task - return the idle task for a given cpu.
3132 * @cpu: the processor in question.
e69f6186
YB
3133 *
3134 * Return: The idle task for the cpu @cpu.
1da177e4 3135 */
36c8b586 3136struct task_struct *idle_task(int cpu)
1da177e4
LT
3137{
3138 return cpu_rq(cpu)->idle;
3139}
3140
3141/**
3142 * find_process_by_pid - find a process with a matching PID value.
3143 * @pid: the pid in question.
e69f6186
YB
3144 *
3145 * The task of @pid, if found. %NULL otherwise.
1da177e4 3146 */
a9957449 3147static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3148{
228ebcbe 3149 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3150}
3151
aab03e05
DF
3152/*
3153 * This function initializes the sched_dl_entity of a newly becoming
3154 * SCHED_DEADLINE task.
3155 *
3156 * Only the static values are considered here, the actual runtime and the
3157 * absolute deadline will be properly calculated when the task is enqueued
3158 * for the first time with its new policy.
3159 */
3160static void
3161__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3162{
3163 struct sched_dl_entity *dl_se = &p->dl;
3164
3165 init_dl_task_timer(dl_se);
3166 dl_se->dl_runtime = attr->sched_runtime;
3167 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3168 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3169 dl_se->flags = attr->sched_flags;
332ac17e 3170 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3171 dl_se->dl_throttled = 0;
3172 dl_se->dl_new = 1;
5bfd126e 3173 dl_se->dl_yielded = 0;
aab03e05
DF
3174}
3175
c365c292
TG
3176static void __setscheduler_params(struct task_struct *p,
3177 const struct sched_attr *attr)
1da177e4 3178{
d50dde5a
DF
3179 int policy = attr->sched_policy;
3180
39fd8fd2
PZ
3181 if (policy == -1) /* setparam */
3182 policy = p->policy;
3183
1da177e4 3184 p->policy = policy;
d50dde5a 3185
aab03e05
DF
3186 if (dl_policy(policy))
3187 __setparam_dl(p, attr);
39fd8fd2 3188 else if (fair_policy(policy))
d50dde5a
DF
3189 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3190
39fd8fd2
PZ
3191 /*
3192 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3193 * !rt_policy. Always setting this ensures that things like
3194 * getparam()/getattr() don't report silly values for !rt tasks.
3195 */
3196 p->rt_priority = attr->sched_priority;
383afd09 3197 p->normal_prio = normal_prio(p);
c365c292
TG
3198 set_load_weight(p);
3199}
39fd8fd2 3200
c365c292
TG
3201/* Actually do priority change: must hold pi & rq lock. */
3202static void __setscheduler(struct rq *rq, struct task_struct *p,
3203 const struct sched_attr *attr)
3204{
3205 __setscheduler_params(p, attr);
d50dde5a 3206
383afd09
SR
3207 /*
3208 * If we get here, there was no pi waiters boosting the
3209 * task. It is safe to use the normal prio.
3210 */
3211 p->prio = normal_prio(p);
3212
aab03e05
DF
3213 if (dl_prio(p->prio))
3214 p->sched_class = &dl_sched_class;
3215 else if (rt_prio(p->prio))
ffd44db5
PZ
3216 p->sched_class = &rt_sched_class;
3217 else
3218 p->sched_class = &fair_sched_class;
1da177e4 3219}
aab03e05
DF
3220
3221static void
3222__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3223{
3224 struct sched_dl_entity *dl_se = &p->dl;
3225
3226 attr->sched_priority = p->rt_priority;
3227 attr->sched_runtime = dl_se->dl_runtime;
3228 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3229 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3230 attr->sched_flags = dl_se->flags;
3231}
3232
3233/*
3234 * This function validates the new parameters of a -deadline task.
3235 * We ask for the deadline not being zero, and greater or equal
755378a4 3236 * than the runtime, as well as the period of being zero or
332ac17e 3237 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3238 * user parameters are above the internal resolution of 1us (we
3239 * check sched_runtime only since it is always the smaller one) and
3240 * below 2^63 ns (we have to check both sched_deadline and
3241 * sched_period, as the latter can be zero).
aab03e05
DF
3242 */
3243static bool
3244__checkparam_dl(const struct sched_attr *attr)
3245{
b0827819
JL
3246 /* deadline != 0 */
3247 if (attr->sched_deadline == 0)
3248 return false;
3249
3250 /*
3251 * Since we truncate DL_SCALE bits, make sure we're at least
3252 * that big.
3253 */
3254 if (attr->sched_runtime < (1ULL << DL_SCALE))
3255 return false;
3256
3257 /*
3258 * Since we use the MSB for wrap-around and sign issues, make
3259 * sure it's not set (mind that period can be equal to zero).
3260 */
3261 if (attr->sched_deadline & (1ULL << 63) ||
3262 attr->sched_period & (1ULL << 63))
3263 return false;
3264
3265 /* runtime <= deadline <= period (if period != 0) */
3266 if ((attr->sched_period != 0 &&
3267 attr->sched_period < attr->sched_deadline) ||
3268 attr->sched_deadline < attr->sched_runtime)
3269 return false;
3270
3271 return true;
aab03e05
DF
3272}
3273
c69e8d9c
DH
3274/*
3275 * check the target process has a UID that matches the current process's
3276 */
3277static bool check_same_owner(struct task_struct *p)
3278{
3279 const struct cred *cred = current_cred(), *pcred;
3280 bool match;
3281
3282 rcu_read_lock();
3283 pcred = __task_cred(p);
9c806aa0
EB
3284 match = (uid_eq(cred->euid, pcred->euid) ||
3285 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3286 rcu_read_unlock();
3287 return match;
3288}
3289
d50dde5a
DF
3290static int __sched_setscheduler(struct task_struct *p,
3291 const struct sched_attr *attr,
3292 bool user)
1da177e4 3293{
383afd09
SR
3294 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3295 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3296 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3297 int policy = attr->sched_policy;
1da177e4 3298 unsigned long flags;
83ab0aa0 3299 const struct sched_class *prev_class;
70b97a7f 3300 struct rq *rq;
ca94c442 3301 int reset_on_fork;
1da177e4 3302
66e5393a
SR
3303 /* may grab non-irq protected spin_locks */
3304 BUG_ON(in_interrupt());
1da177e4
LT
3305recheck:
3306 /* double check policy once rq lock held */
ca94c442
LP
3307 if (policy < 0) {
3308 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3309 policy = oldpolicy = p->policy;
ca94c442 3310 } else {
7479f3c9 3311 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3312
aab03e05
DF
3313 if (policy != SCHED_DEADLINE &&
3314 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3315 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3316 policy != SCHED_IDLE)
3317 return -EINVAL;
3318 }
3319
7479f3c9
PZ
3320 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3321 return -EINVAL;
3322
1da177e4
LT
3323 /*
3324 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3325 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3326 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3327 */
0bb040a4 3328 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3329 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3330 return -EINVAL;
aab03e05
DF
3331 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3332 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3333 return -EINVAL;
3334
37e4ab3f
OC
3335 /*
3336 * Allow unprivileged RT tasks to decrease priority:
3337 */
961ccddd 3338 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3339 if (fair_policy(policy)) {
d0ea0268 3340 if (attr->sched_nice < task_nice(p) &&
eaad4513 3341 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3342 return -EPERM;
3343 }
3344
e05606d3 3345 if (rt_policy(policy)) {
a44702e8
ON
3346 unsigned long rlim_rtprio =
3347 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3348
3349 /* can't set/change the rt policy */
3350 if (policy != p->policy && !rlim_rtprio)
3351 return -EPERM;
3352
3353 /* can't increase priority */
d50dde5a
DF
3354 if (attr->sched_priority > p->rt_priority &&
3355 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3356 return -EPERM;
3357 }
c02aa73b 3358
d44753b8
JL
3359 /*
3360 * Can't set/change SCHED_DEADLINE policy at all for now
3361 * (safest behavior); in the future we would like to allow
3362 * unprivileged DL tasks to increase their relative deadline
3363 * or reduce their runtime (both ways reducing utilization)
3364 */
3365 if (dl_policy(policy))
3366 return -EPERM;
3367
dd41f596 3368 /*
c02aa73b
DH
3369 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3370 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3371 */
c02aa73b 3372 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3373 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3374 return -EPERM;
3375 }
5fe1d75f 3376
37e4ab3f 3377 /* can't change other user's priorities */
c69e8d9c 3378 if (!check_same_owner(p))
37e4ab3f 3379 return -EPERM;
ca94c442
LP
3380
3381 /* Normal users shall not reset the sched_reset_on_fork flag */
3382 if (p->sched_reset_on_fork && !reset_on_fork)
3383 return -EPERM;
37e4ab3f 3384 }
1da177e4 3385
725aad24 3386 if (user) {
b0ae1981 3387 retval = security_task_setscheduler(p);
725aad24
JF
3388 if (retval)
3389 return retval;
3390 }
3391
b29739f9
IM
3392 /*
3393 * make sure no PI-waiters arrive (or leave) while we are
3394 * changing the priority of the task:
0122ec5b 3395 *
25985edc 3396 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3397 * runqueue lock must be held.
3398 */
0122ec5b 3399 rq = task_rq_lock(p, &flags);
dc61b1d6 3400
34f971f6
PZ
3401 /*
3402 * Changing the policy of the stop threads its a very bad idea
3403 */
3404 if (p == rq->stop) {
0122ec5b 3405 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3406 return -EINVAL;
3407 }
3408
a51e9198 3409 /*
d6b1e911
TG
3410 * If not changing anything there's no need to proceed further,
3411 * but store a possible modification of reset_on_fork.
a51e9198 3412 */
d50dde5a 3413 if (unlikely(policy == p->policy)) {
d0ea0268 3414 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3415 goto change;
3416 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3417 goto change;
aab03e05
DF
3418 if (dl_policy(policy))
3419 goto change;
d50dde5a 3420
d6b1e911 3421 p->sched_reset_on_fork = reset_on_fork;
45afb173 3422 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3423 return 0;
3424 }
d50dde5a 3425change:
a51e9198 3426
dc61b1d6 3427 if (user) {
332ac17e 3428#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3429 /*
3430 * Do not allow realtime tasks into groups that have no runtime
3431 * assigned.
3432 */
3433 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3434 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3435 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3436 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3437 return -EPERM;
3438 }
dc61b1d6 3439#endif
332ac17e
DF
3440#ifdef CONFIG_SMP
3441 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3442 cpumask_t *span = rq->rd->span;
332ac17e
DF
3443
3444 /*
3445 * Don't allow tasks with an affinity mask smaller than
3446 * the entire root_domain to become SCHED_DEADLINE. We
3447 * will also fail if there's no bandwidth available.
3448 */
e4099a5e
PZ
3449 if (!cpumask_subset(span, &p->cpus_allowed) ||
3450 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3451 task_rq_unlock(rq, p, &flags);
3452 return -EPERM;
3453 }
3454 }
3455#endif
3456 }
dc61b1d6 3457
1da177e4
LT
3458 /* recheck policy now with rq lock held */
3459 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3460 policy = oldpolicy = -1;
0122ec5b 3461 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3462 goto recheck;
3463 }
332ac17e
DF
3464
3465 /*
3466 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3467 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3468 * is available.
3469 */
e4099a5e 3470 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3471 task_rq_unlock(rq, p, &flags);
3472 return -EBUSY;
3473 }
3474
c365c292
TG
3475 p->sched_reset_on_fork = reset_on_fork;
3476 oldprio = p->prio;
3477
3478 /*
3479 * Special case for priority boosted tasks.
3480 *
3481 * If the new priority is lower or equal (user space view)
3482 * than the current (boosted) priority, we just store the new
3483 * normal parameters and do not touch the scheduler class and
3484 * the runqueue. This will be done when the task deboost
3485 * itself.
3486 */
3487 if (rt_mutex_check_prio(p, newprio)) {
3488 __setscheduler_params(p, attr);
3489 task_rq_unlock(rq, p, &flags);
3490 return 0;
3491 }
3492
fd2f4419 3493 on_rq = p->on_rq;
051a1d1a 3494 running = task_current(rq, p);
0e1f3483 3495 if (on_rq)
4ca9b72b 3496 dequeue_task(rq, p, 0);
0e1f3483
HS
3497 if (running)
3498 p->sched_class->put_prev_task(rq, p);
f6b53205 3499
83ab0aa0 3500 prev_class = p->sched_class;
d50dde5a 3501 __setscheduler(rq, p, attr);
f6b53205 3502
0e1f3483
HS
3503 if (running)
3504 p->sched_class->set_curr_task(rq);
81a44c54
TG
3505 if (on_rq) {
3506 /*
3507 * We enqueue to tail when the priority of a task is
3508 * increased (user space view).
3509 */
3510 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3511 }
cb469845 3512
da7a735e 3513 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3514 task_rq_unlock(rq, p, &flags);
b29739f9 3515
95e02ca9
TG
3516 rt_mutex_adjust_pi(p);
3517
1da177e4
LT
3518 return 0;
3519}
961ccddd 3520
7479f3c9
PZ
3521static int _sched_setscheduler(struct task_struct *p, int policy,
3522 const struct sched_param *param, bool check)
3523{
3524 struct sched_attr attr = {
3525 .sched_policy = policy,
3526 .sched_priority = param->sched_priority,
3527 .sched_nice = PRIO_TO_NICE(p->static_prio),
3528 };
3529
3530 /*
3531 * Fixup the legacy SCHED_RESET_ON_FORK hack
3532 */
3533 if (policy & SCHED_RESET_ON_FORK) {
3534 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3535 policy &= ~SCHED_RESET_ON_FORK;
3536 attr.sched_policy = policy;
3537 }
3538
3539 return __sched_setscheduler(p, &attr, check);
3540}
961ccddd
RR
3541/**
3542 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3543 * @p: the task in question.
3544 * @policy: new policy.
3545 * @param: structure containing the new RT priority.
3546 *
e69f6186
YB
3547 * Return: 0 on success. An error code otherwise.
3548 *
961ccddd
RR
3549 * NOTE that the task may be already dead.
3550 */
3551int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3552 const struct sched_param *param)
961ccddd 3553{
7479f3c9 3554 return _sched_setscheduler(p, policy, param, true);
961ccddd 3555}
1da177e4
LT
3556EXPORT_SYMBOL_GPL(sched_setscheduler);
3557
d50dde5a
DF
3558int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3559{
3560 return __sched_setscheduler(p, attr, true);
3561}
3562EXPORT_SYMBOL_GPL(sched_setattr);
3563
961ccddd
RR
3564/**
3565 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3566 * @p: the task in question.
3567 * @policy: new policy.
3568 * @param: structure containing the new RT priority.
3569 *
3570 * Just like sched_setscheduler, only don't bother checking if the
3571 * current context has permission. For example, this is needed in
3572 * stop_machine(): we create temporary high priority worker threads,
3573 * but our caller might not have that capability.
e69f6186
YB
3574 *
3575 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3576 */
3577int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3578 const struct sched_param *param)
961ccddd 3579{
7479f3c9 3580 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3581}
3582
95cdf3b7
IM
3583static int
3584do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3585{
1da177e4
LT
3586 struct sched_param lparam;
3587 struct task_struct *p;
36c8b586 3588 int retval;
1da177e4
LT
3589
3590 if (!param || pid < 0)
3591 return -EINVAL;
3592 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3593 return -EFAULT;
5fe1d75f
ON
3594
3595 rcu_read_lock();
3596 retval = -ESRCH;
1da177e4 3597 p = find_process_by_pid(pid);
5fe1d75f
ON
3598 if (p != NULL)
3599 retval = sched_setscheduler(p, policy, &lparam);
3600 rcu_read_unlock();
36c8b586 3601
1da177e4
LT
3602 return retval;
3603}
3604
d50dde5a
DF
3605/*
3606 * Mimics kernel/events/core.c perf_copy_attr().
3607 */
3608static int sched_copy_attr(struct sched_attr __user *uattr,
3609 struct sched_attr *attr)
3610{
3611 u32 size;
3612 int ret;
3613
3614 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3615 return -EFAULT;
3616
3617 /*
3618 * zero the full structure, so that a short copy will be nice.
3619 */
3620 memset(attr, 0, sizeof(*attr));
3621
3622 ret = get_user(size, &uattr->size);
3623 if (ret)
3624 return ret;
3625
3626 if (size > PAGE_SIZE) /* silly large */
3627 goto err_size;
3628
3629 if (!size) /* abi compat */
3630 size = SCHED_ATTR_SIZE_VER0;
3631
3632 if (size < SCHED_ATTR_SIZE_VER0)
3633 goto err_size;
3634
3635 /*
3636 * If we're handed a bigger struct than we know of,
3637 * ensure all the unknown bits are 0 - i.e. new
3638 * user-space does not rely on any kernel feature
3639 * extensions we dont know about yet.
3640 */
3641 if (size > sizeof(*attr)) {
3642 unsigned char __user *addr;
3643 unsigned char __user *end;
3644 unsigned char val;
3645
3646 addr = (void __user *)uattr + sizeof(*attr);
3647 end = (void __user *)uattr + size;
3648
3649 for (; addr < end; addr++) {
3650 ret = get_user(val, addr);
3651 if (ret)
3652 return ret;
3653 if (val)
3654 goto err_size;
3655 }
3656 size = sizeof(*attr);
3657 }
3658
3659 ret = copy_from_user(attr, uattr, size);
3660 if (ret)
3661 return -EFAULT;
3662
3663 /*
3664 * XXX: do we want to be lenient like existing syscalls; or do we want
3665 * to be strict and return an error on out-of-bounds values?
3666 */
75e45d51 3667 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3668
e78c7bca 3669 return 0;
d50dde5a
DF
3670
3671err_size:
3672 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3673 return -E2BIG;
d50dde5a
DF
3674}
3675
1da177e4
LT
3676/**
3677 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3678 * @pid: the pid in question.
3679 * @policy: new policy.
3680 * @param: structure containing the new RT priority.
e69f6186
YB
3681 *
3682 * Return: 0 on success. An error code otherwise.
1da177e4 3683 */
5add95d4
HC
3684SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3685 struct sched_param __user *, param)
1da177e4 3686{
c21761f1
JB
3687 /* negative values for policy are not valid */
3688 if (policy < 0)
3689 return -EINVAL;
3690
1da177e4
LT
3691 return do_sched_setscheduler(pid, policy, param);
3692}
3693
3694/**
3695 * sys_sched_setparam - set/change the RT priority of a thread
3696 * @pid: the pid in question.
3697 * @param: structure containing the new RT priority.
e69f6186
YB
3698 *
3699 * Return: 0 on success. An error code otherwise.
1da177e4 3700 */
5add95d4 3701SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3702{
3703 return do_sched_setscheduler(pid, -1, param);
3704}
3705
d50dde5a
DF
3706/**
3707 * sys_sched_setattr - same as above, but with extended sched_attr
3708 * @pid: the pid in question.
5778fccf 3709 * @uattr: structure containing the extended parameters.
db66d756 3710 * @flags: for future extension.
d50dde5a 3711 */
6d35ab48
PZ
3712SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3713 unsigned int, flags)
d50dde5a
DF
3714{
3715 struct sched_attr attr;
3716 struct task_struct *p;
3717 int retval;
3718
6d35ab48 3719 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3720 return -EINVAL;
3721
143cf23d
MK
3722 retval = sched_copy_attr(uattr, &attr);
3723 if (retval)
3724 return retval;
d50dde5a 3725
dbdb2275
PZ
3726 if (attr.sched_policy < 0)
3727 return -EINVAL;
d50dde5a
DF
3728
3729 rcu_read_lock();
3730 retval = -ESRCH;
3731 p = find_process_by_pid(pid);
3732 if (p != NULL)
3733 retval = sched_setattr(p, &attr);
3734 rcu_read_unlock();
3735
3736 return retval;
3737}
3738
1da177e4
LT
3739/**
3740 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3741 * @pid: the pid in question.
e69f6186
YB
3742 *
3743 * Return: On success, the policy of the thread. Otherwise, a negative error
3744 * code.
1da177e4 3745 */
5add95d4 3746SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3747{
36c8b586 3748 struct task_struct *p;
3a5c359a 3749 int retval;
1da177e4
LT
3750
3751 if (pid < 0)
3a5c359a 3752 return -EINVAL;
1da177e4
LT
3753
3754 retval = -ESRCH;
5fe85be0 3755 rcu_read_lock();
1da177e4
LT
3756 p = find_process_by_pid(pid);
3757 if (p) {
3758 retval = security_task_getscheduler(p);
3759 if (!retval)
ca94c442
LP
3760 retval = p->policy
3761 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3762 }
5fe85be0 3763 rcu_read_unlock();
1da177e4
LT
3764 return retval;
3765}
3766
3767/**
ca94c442 3768 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3769 * @pid: the pid in question.
3770 * @param: structure containing the RT priority.
e69f6186
YB
3771 *
3772 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3773 * code.
1da177e4 3774 */
5add95d4 3775SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3776{
ce5f7f82 3777 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3778 struct task_struct *p;
3a5c359a 3779 int retval;
1da177e4
LT
3780
3781 if (!param || pid < 0)
3a5c359a 3782 return -EINVAL;
1da177e4 3783
5fe85be0 3784 rcu_read_lock();
1da177e4
LT
3785 p = find_process_by_pid(pid);
3786 retval = -ESRCH;
3787 if (!p)
3788 goto out_unlock;
3789
3790 retval = security_task_getscheduler(p);
3791 if (retval)
3792 goto out_unlock;
3793
ce5f7f82
PZ
3794 if (task_has_rt_policy(p))
3795 lp.sched_priority = p->rt_priority;
5fe85be0 3796 rcu_read_unlock();
1da177e4
LT
3797
3798 /*
3799 * This one might sleep, we cannot do it with a spinlock held ...
3800 */
3801 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3802
1da177e4
LT
3803 return retval;
3804
3805out_unlock:
5fe85be0 3806 rcu_read_unlock();
1da177e4
LT
3807 return retval;
3808}
3809
d50dde5a
DF
3810static int sched_read_attr(struct sched_attr __user *uattr,
3811 struct sched_attr *attr,
3812 unsigned int usize)
3813{
3814 int ret;
3815
3816 if (!access_ok(VERIFY_WRITE, uattr, usize))
3817 return -EFAULT;
3818
3819 /*
3820 * If we're handed a smaller struct than we know of,
3821 * ensure all the unknown bits are 0 - i.e. old
3822 * user-space does not get uncomplete information.
3823 */
3824 if (usize < sizeof(*attr)) {
3825 unsigned char *addr;
3826 unsigned char *end;
3827
3828 addr = (void *)attr + usize;
3829 end = (void *)attr + sizeof(*attr);
3830
3831 for (; addr < end; addr++) {
3832 if (*addr)
22400674 3833 return -EFBIG;
d50dde5a
DF
3834 }
3835
3836 attr->size = usize;
3837 }
3838
4efbc454 3839 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3840 if (ret)
3841 return -EFAULT;
3842
22400674 3843 return 0;
d50dde5a
DF
3844}
3845
3846/**
aab03e05 3847 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3848 * @pid: the pid in question.
5778fccf 3849 * @uattr: structure containing the extended parameters.
d50dde5a 3850 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3851 * @flags: for future extension.
d50dde5a 3852 */
6d35ab48
PZ
3853SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3854 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3855{
3856 struct sched_attr attr = {
3857 .size = sizeof(struct sched_attr),
3858 };
3859 struct task_struct *p;
3860 int retval;
3861
3862 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3863 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3864 return -EINVAL;
3865
3866 rcu_read_lock();
3867 p = find_process_by_pid(pid);
3868 retval = -ESRCH;
3869 if (!p)
3870 goto out_unlock;
3871
3872 retval = security_task_getscheduler(p);
3873 if (retval)
3874 goto out_unlock;
3875
3876 attr.sched_policy = p->policy;
7479f3c9
PZ
3877 if (p->sched_reset_on_fork)
3878 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3879 if (task_has_dl_policy(p))
3880 __getparam_dl(p, &attr);
3881 else if (task_has_rt_policy(p))
d50dde5a
DF
3882 attr.sched_priority = p->rt_priority;
3883 else
d0ea0268 3884 attr.sched_nice = task_nice(p);
d50dde5a
DF
3885
3886 rcu_read_unlock();
3887
3888 retval = sched_read_attr(uattr, &attr, size);
3889 return retval;
3890
3891out_unlock:
3892 rcu_read_unlock();
3893 return retval;
3894}
3895
96f874e2 3896long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3897{
5a16f3d3 3898 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3899 struct task_struct *p;
3900 int retval;
1da177e4 3901
23f5d142 3902 rcu_read_lock();
1da177e4
LT
3903
3904 p = find_process_by_pid(pid);
3905 if (!p) {
23f5d142 3906 rcu_read_unlock();
1da177e4
LT
3907 return -ESRCH;
3908 }
3909
23f5d142 3910 /* Prevent p going away */
1da177e4 3911 get_task_struct(p);
23f5d142 3912 rcu_read_unlock();
1da177e4 3913
14a40ffc
TH
3914 if (p->flags & PF_NO_SETAFFINITY) {
3915 retval = -EINVAL;
3916 goto out_put_task;
3917 }
5a16f3d3
RR
3918 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3919 retval = -ENOMEM;
3920 goto out_put_task;
3921 }
3922 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3923 retval = -ENOMEM;
3924 goto out_free_cpus_allowed;
3925 }
1da177e4 3926 retval = -EPERM;
4c44aaaf
EB
3927 if (!check_same_owner(p)) {
3928 rcu_read_lock();
3929 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3930 rcu_read_unlock();
3931 goto out_unlock;
3932 }
3933 rcu_read_unlock();
3934 }
1da177e4 3935
b0ae1981 3936 retval = security_task_setscheduler(p);
e7834f8f
DQ
3937 if (retval)
3938 goto out_unlock;
3939
e4099a5e
PZ
3940
3941 cpuset_cpus_allowed(p, cpus_allowed);
3942 cpumask_and(new_mask, in_mask, cpus_allowed);
3943
332ac17e
DF
3944 /*
3945 * Since bandwidth control happens on root_domain basis,
3946 * if admission test is enabled, we only admit -deadline
3947 * tasks allowed to run on all the CPUs in the task's
3948 * root_domain.
3949 */
3950#ifdef CONFIG_SMP
3951 if (task_has_dl_policy(p)) {
3952 const struct cpumask *span = task_rq(p)->rd->span;
3953
e4099a5e 3954 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3955 retval = -EBUSY;
3956 goto out_unlock;
3957 }
3958 }
3959#endif
49246274 3960again:
5a16f3d3 3961 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3962
8707d8b8 3963 if (!retval) {
5a16f3d3
RR
3964 cpuset_cpus_allowed(p, cpus_allowed);
3965 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3966 /*
3967 * We must have raced with a concurrent cpuset
3968 * update. Just reset the cpus_allowed to the
3969 * cpuset's cpus_allowed
3970 */
5a16f3d3 3971 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3972 goto again;
3973 }
3974 }
1da177e4 3975out_unlock:
5a16f3d3
RR
3976 free_cpumask_var(new_mask);
3977out_free_cpus_allowed:
3978 free_cpumask_var(cpus_allowed);
3979out_put_task:
1da177e4 3980 put_task_struct(p);
1da177e4
LT
3981 return retval;
3982}
3983
3984static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3985 struct cpumask *new_mask)
1da177e4 3986{
96f874e2
RR
3987 if (len < cpumask_size())
3988 cpumask_clear(new_mask);
3989 else if (len > cpumask_size())
3990 len = cpumask_size();
3991
1da177e4
LT
3992 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3993}
3994
3995/**
3996 * sys_sched_setaffinity - set the cpu affinity of a process
3997 * @pid: pid of the process
3998 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3999 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4000 *
4001 * Return: 0 on success. An error code otherwise.
1da177e4 4002 */
5add95d4
HC
4003SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4004 unsigned long __user *, user_mask_ptr)
1da177e4 4005{
5a16f3d3 4006 cpumask_var_t new_mask;
1da177e4
LT
4007 int retval;
4008
5a16f3d3
RR
4009 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4010 return -ENOMEM;
1da177e4 4011
5a16f3d3
RR
4012 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4013 if (retval == 0)
4014 retval = sched_setaffinity(pid, new_mask);
4015 free_cpumask_var(new_mask);
4016 return retval;
1da177e4
LT
4017}
4018
96f874e2 4019long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4020{
36c8b586 4021 struct task_struct *p;
31605683 4022 unsigned long flags;
1da177e4 4023 int retval;
1da177e4 4024
23f5d142 4025 rcu_read_lock();
1da177e4
LT
4026
4027 retval = -ESRCH;
4028 p = find_process_by_pid(pid);
4029 if (!p)
4030 goto out_unlock;
4031
e7834f8f
DQ
4032 retval = security_task_getscheduler(p);
4033 if (retval)
4034 goto out_unlock;
4035
013fdb80 4036 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4037 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4038 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4039
4040out_unlock:
23f5d142 4041 rcu_read_unlock();
1da177e4 4042
9531b62f 4043 return retval;
1da177e4
LT
4044}
4045
4046/**
4047 * sys_sched_getaffinity - get the cpu affinity of a process
4048 * @pid: pid of the process
4049 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4050 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4051 *
4052 * Return: 0 on success. An error code otherwise.
1da177e4 4053 */
5add95d4
HC
4054SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4055 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4056{
4057 int ret;
f17c8607 4058 cpumask_var_t mask;
1da177e4 4059
84fba5ec 4060 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4061 return -EINVAL;
4062 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4063 return -EINVAL;
4064
f17c8607
RR
4065 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4066 return -ENOMEM;
1da177e4 4067
f17c8607
RR
4068 ret = sched_getaffinity(pid, mask);
4069 if (ret == 0) {
8bc037fb 4070 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4071
4072 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4073 ret = -EFAULT;
4074 else
cd3d8031 4075 ret = retlen;
f17c8607
RR
4076 }
4077 free_cpumask_var(mask);
1da177e4 4078
f17c8607 4079 return ret;
1da177e4
LT
4080}
4081
4082/**
4083 * sys_sched_yield - yield the current processor to other threads.
4084 *
dd41f596
IM
4085 * This function yields the current CPU to other tasks. If there are no
4086 * other threads running on this CPU then this function will return.
e69f6186
YB
4087 *
4088 * Return: 0.
1da177e4 4089 */
5add95d4 4090SYSCALL_DEFINE0(sched_yield)
1da177e4 4091{
70b97a7f 4092 struct rq *rq = this_rq_lock();
1da177e4 4093
2d72376b 4094 schedstat_inc(rq, yld_count);
4530d7ab 4095 current->sched_class->yield_task(rq);
1da177e4
LT
4096
4097 /*
4098 * Since we are going to call schedule() anyway, there's
4099 * no need to preempt or enable interrupts:
4100 */
4101 __release(rq->lock);
8a25d5de 4102 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4103 do_raw_spin_unlock(&rq->lock);
ba74c144 4104 sched_preempt_enable_no_resched();
1da177e4
LT
4105
4106 schedule();
4107
4108 return 0;
4109}
4110
e7b38404 4111static void __cond_resched(void)
1da177e4 4112{
bdb43806 4113 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4114 __schedule();
bdb43806 4115 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4116}
4117
02b67cc3 4118int __sched _cond_resched(void)
1da177e4 4119{
ac1bea85 4120 rcu_cond_resched();
d86ee480 4121 if (should_resched()) {
1da177e4
LT
4122 __cond_resched();
4123 return 1;
4124 }
4125 return 0;
4126}
02b67cc3 4127EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4128
4129/*
613afbf8 4130 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4131 * call schedule, and on return reacquire the lock.
4132 *
41a2d6cf 4133 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4134 * operations here to prevent schedule() from being called twice (once via
4135 * spin_unlock(), once by hand).
4136 */
613afbf8 4137int __cond_resched_lock(spinlock_t *lock)
1da177e4 4138{
ac1bea85 4139 bool need_rcu_resched = rcu_should_resched();
d86ee480 4140 int resched = should_resched();
6df3cecb
JK
4141 int ret = 0;
4142
f607c668
PZ
4143 lockdep_assert_held(lock);
4144
ac1bea85 4145 if (spin_needbreak(lock) || resched || need_rcu_resched) {
1da177e4 4146 spin_unlock(lock);
d86ee480 4147 if (resched)
95c354fe 4148 __cond_resched();
ac1bea85
PM
4149 else if (unlikely(need_rcu_resched))
4150 rcu_resched();
95c354fe
NP
4151 else
4152 cpu_relax();
6df3cecb 4153 ret = 1;
1da177e4 4154 spin_lock(lock);
1da177e4 4155 }
6df3cecb 4156 return ret;
1da177e4 4157}
613afbf8 4158EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4159
613afbf8 4160int __sched __cond_resched_softirq(void)
1da177e4
LT
4161{
4162 BUG_ON(!in_softirq());
4163
ac1bea85 4164 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */
d86ee480 4165 if (should_resched()) {
98d82567 4166 local_bh_enable();
1da177e4
LT
4167 __cond_resched();
4168 local_bh_disable();
4169 return 1;
4170 }
4171 return 0;
4172}
613afbf8 4173EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4174
1da177e4
LT
4175/**
4176 * yield - yield the current processor to other threads.
4177 *
8e3fabfd
PZ
4178 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4179 *
4180 * The scheduler is at all times free to pick the calling task as the most
4181 * eligible task to run, if removing the yield() call from your code breaks
4182 * it, its already broken.
4183 *
4184 * Typical broken usage is:
4185 *
4186 * while (!event)
4187 * yield();
4188 *
4189 * where one assumes that yield() will let 'the other' process run that will
4190 * make event true. If the current task is a SCHED_FIFO task that will never
4191 * happen. Never use yield() as a progress guarantee!!
4192 *
4193 * If you want to use yield() to wait for something, use wait_event().
4194 * If you want to use yield() to be 'nice' for others, use cond_resched().
4195 * If you still want to use yield(), do not!
1da177e4
LT
4196 */
4197void __sched yield(void)
4198{
4199 set_current_state(TASK_RUNNING);
4200 sys_sched_yield();
4201}
1da177e4
LT
4202EXPORT_SYMBOL(yield);
4203
d95f4122
MG
4204/**
4205 * yield_to - yield the current processor to another thread in
4206 * your thread group, or accelerate that thread toward the
4207 * processor it's on.
16addf95
RD
4208 * @p: target task
4209 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4210 *
4211 * It's the caller's job to ensure that the target task struct
4212 * can't go away on us before we can do any checks.
4213 *
e69f6186 4214 * Return:
7b270f60
PZ
4215 * true (>0) if we indeed boosted the target task.
4216 * false (0) if we failed to boost the target.
4217 * -ESRCH if there's no task to yield to.
d95f4122
MG
4218 */
4219bool __sched yield_to(struct task_struct *p, bool preempt)
4220{
4221 struct task_struct *curr = current;
4222 struct rq *rq, *p_rq;
4223 unsigned long flags;
c3c18640 4224 int yielded = 0;
d95f4122
MG
4225
4226 local_irq_save(flags);
4227 rq = this_rq();
4228
4229again:
4230 p_rq = task_rq(p);
7b270f60
PZ
4231 /*
4232 * If we're the only runnable task on the rq and target rq also
4233 * has only one task, there's absolutely no point in yielding.
4234 */
4235 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4236 yielded = -ESRCH;
4237 goto out_irq;
4238 }
4239
d95f4122 4240 double_rq_lock(rq, p_rq);
39e24d8f 4241 if (task_rq(p) != p_rq) {
d95f4122
MG
4242 double_rq_unlock(rq, p_rq);
4243 goto again;
4244 }
4245
4246 if (!curr->sched_class->yield_to_task)
7b270f60 4247 goto out_unlock;
d95f4122
MG
4248
4249 if (curr->sched_class != p->sched_class)
7b270f60 4250 goto out_unlock;
d95f4122
MG
4251
4252 if (task_running(p_rq, p) || p->state)
7b270f60 4253 goto out_unlock;
d95f4122
MG
4254
4255 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4256 if (yielded) {
d95f4122 4257 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4258 /*
4259 * Make p's CPU reschedule; pick_next_entity takes care of
4260 * fairness.
4261 */
4262 if (preempt && rq != p_rq)
4263 resched_task(p_rq->curr);
4264 }
d95f4122 4265
7b270f60 4266out_unlock:
d95f4122 4267 double_rq_unlock(rq, p_rq);
7b270f60 4268out_irq:
d95f4122
MG
4269 local_irq_restore(flags);
4270
7b270f60 4271 if (yielded > 0)
d95f4122
MG
4272 schedule();
4273
4274 return yielded;
4275}
4276EXPORT_SYMBOL_GPL(yield_to);
4277
1da177e4 4278/*
41a2d6cf 4279 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4280 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4281 */
4282void __sched io_schedule(void)
4283{
54d35f29 4284 struct rq *rq = raw_rq();
1da177e4 4285
0ff92245 4286 delayacct_blkio_start();
1da177e4 4287 atomic_inc(&rq->nr_iowait);
73c10101 4288 blk_flush_plug(current);
8f0dfc34 4289 current->in_iowait = 1;
1da177e4 4290 schedule();
8f0dfc34 4291 current->in_iowait = 0;
1da177e4 4292 atomic_dec(&rq->nr_iowait);
0ff92245 4293 delayacct_blkio_end();
1da177e4 4294}
1da177e4
LT
4295EXPORT_SYMBOL(io_schedule);
4296
4297long __sched io_schedule_timeout(long timeout)
4298{
54d35f29 4299 struct rq *rq = raw_rq();
1da177e4
LT
4300 long ret;
4301
0ff92245 4302 delayacct_blkio_start();
1da177e4 4303 atomic_inc(&rq->nr_iowait);
73c10101 4304 blk_flush_plug(current);
8f0dfc34 4305 current->in_iowait = 1;
1da177e4 4306 ret = schedule_timeout(timeout);
8f0dfc34 4307 current->in_iowait = 0;
1da177e4 4308 atomic_dec(&rq->nr_iowait);
0ff92245 4309 delayacct_blkio_end();
1da177e4
LT
4310 return ret;
4311}
4312
4313/**
4314 * sys_sched_get_priority_max - return maximum RT priority.
4315 * @policy: scheduling class.
4316 *
e69f6186
YB
4317 * Return: On success, this syscall returns the maximum
4318 * rt_priority that can be used by a given scheduling class.
4319 * On failure, a negative error code is returned.
1da177e4 4320 */
5add95d4 4321SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4322{
4323 int ret = -EINVAL;
4324
4325 switch (policy) {
4326 case SCHED_FIFO:
4327 case SCHED_RR:
4328 ret = MAX_USER_RT_PRIO-1;
4329 break;
aab03e05 4330 case SCHED_DEADLINE:
1da177e4 4331 case SCHED_NORMAL:
b0a9499c 4332 case SCHED_BATCH:
dd41f596 4333 case SCHED_IDLE:
1da177e4
LT
4334 ret = 0;
4335 break;
4336 }
4337 return ret;
4338}
4339
4340/**
4341 * sys_sched_get_priority_min - return minimum RT priority.
4342 * @policy: scheduling class.
4343 *
e69f6186
YB
4344 * Return: On success, this syscall returns the minimum
4345 * rt_priority that can be used by a given scheduling class.
4346 * On failure, a negative error code is returned.
1da177e4 4347 */
5add95d4 4348SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4349{
4350 int ret = -EINVAL;
4351
4352 switch (policy) {
4353 case SCHED_FIFO:
4354 case SCHED_RR:
4355 ret = 1;
4356 break;
aab03e05 4357 case SCHED_DEADLINE:
1da177e4 4358 case SCHED_NORMAL:
b0a9499c 4359 case SCHED_BATCH:
dd41f596 4360 case SCHED_IDLE:
1da177e4
LT
4361 ret = 0;
4362 }
4363 return ret;
4364}
4365
4366/**
4367 * sys_sched_rr_get_interval - return the default timeslice of a process.
4368 * @pid: pid of the process.
4369 * @interval: userspace pointer to the timeslice value.
4370 *
4371 * this syscall writes the default timeslice value of a given process
4372 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4373 *
4374 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4375 * an error code.
1da177e4 4376 */
17da2bd9 4377SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4378 struct timespec __user *, interval)
1da177e4 4379{
36c8b586 4380 struct task_struct *p;
a4ec24b4 4381 unsigned int time_slice;
dba091b9
TG
4382 unsigned long flags;
4383 struct rq *rq;
3a5c359a 4384 int retval;
1da177e4 4385 struct timespec t;
1da177e4
LT
4386
4387 if (pid < 0)
3a5c359a 4388 return -EINVAL;
1da177e4
LT
4389
4390 retval = -ESRCH;
1a551ae7 4391 rcu_read_lock();
1da177e4
LT
4392 p = find_process_by_pid(pid);
4393 if (!p)
4394 goto out_unlock;
4395
4396 retval = security_task_getscheduler(p);
4397 if (retval)
4398 goto out_unlock;
4399
dba091b9 4400 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4401 time_slice = 0;
4402 if (p->sched_class->get_rr_interval)
4403 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4404 task_rq_unlock(rq, p, &flags);
a4ec24b4 4405
1a551ae7 4406 rcu_read_unlock();
a4ec24b4 4407 jiffies_to_timespec(time_slice, &t);
1da177e4 4408 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4409 return retval;
3a5c359a 4410
1da177e4 4411out_unlock:
1a551ae7 4412 rcu_read_unlock();
1da177e4
LT
4413 return retval;
4414}
4415
7c731e0a 4416static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4417
82a1fcb9 4418void sched_show_task(struct task_struct *p)
1da177e4 4419{
1da177e4 4420 unsigned long free = 0;
4e79752c 4421 int ppid;
36c8b586 4422 unsigned state;
1da177e4 4423
1da177e4 4424 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4425 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4426 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4427#if BITS_PER_LONG == 32
1da177e4 4428 if (state == TASK_RUNNING)
3df0fc5b 4429 printk(KERN_CONT " running ");
1da177e4 4430 else
3df0fc5b 4431 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4432#else
4433 if (state == TASK_RUNNING)
3df0fc5b 4434 printk(KERN_CONT " running task ");
1da177e4 4435 else
3df0fc5b 4436 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4437#endif
4438#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4439 free = stack_not_used(p);
1da177e4 4440#endif
4e79752c
PM
4441 rcu_read_lock();
4442 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4443 rcu_read_unlock();
3df0fc5b 4444 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4445 task_pid_nr(p), ppid,
aa47b7e0 4446 (unsigned long)task_thread_info(p)->flags);
1da177e4 4447
3d1cb205 4448 print_worker_info(KERN_INFO, p);
5fb5e6de 4449 show_stack(p, NULL);
1da177e4
LT
4450}
4451
e59e2ae2 4452void show_state_filter(unsigned long state_filter)
1da177e4 4453{
36c8b586 4454 struct task_struct *g, *p;
1da177e4 4455
4bd77321 4456#if BITS_PER_LONG == 32
3df0fc5b
PZ
4457 printk(KERN_INFO
4458 " task PC stack pid father\n");
1da177e4 4459#else
3df0fc5b
PZ
4460 printk(KERN_INFO
4461 " task PC stack pid father\n");
1da177e4 4462#endif
510f5acc 4463 rcu_read_lock();
1da177e4
LT
4464 do_each_thread(g, p) {
4465 /*
4466 * reset the NMI-timeout, listing all files on a slow
25985edc 4467 * console might take a lot of time:
1da177e4
LT
4468 */
4469 touch_nmi_watchdog();
39bc89fd 4470 if (!state_filter || (p->state & state_filter))
82a1fcb9 4471 sched_show_task(p);
1da177e4
LT
4472 } while_each_thread(g, p);
4473
04c9167f
JF
4474 touch_all_softlockup_watchdogs();
4475
dd41f596
IM
4476#ifdef CONFIG_SCHED_DEBUG
4477 sysrq_sched_debug_show();
4478#endif
510f5acc 4479 rcu_read_unlock();
e59e2ae2
IM
4480 /*
4481 * Only show locks if all tasks are dumped:
4482 */
93335a21 4483 if (!state_filter)
e59e2ae2 4484 debug_show_all_locks();
1da177e4
LT
4485}
4486
0db0628d 4487void init_idle_bootup_task(struct task_struct *idle)
1df21055 4488{
dd41f596 4489 idle->sched_class = &idle_sched_class;
1df21055
IM
4490}
4491
f340c0d1
IM
4492/**
4493 * init_idle - set up an idle thread for a given CPU
4494 * @idle: task in question
4495 * @cpu: cpu the idle task belongs to
4496 *
4497 * NOTE: this function does not set the idle thread's NEED_RESCHED
4498 * flag, to make booting more robust.
4499 */
0db0628d 4500void init_idle(struct task_struct *idle, int cpu)
1da177e4 4501{
70b97a7f 4502 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4503 unsigned long flags;
4504
05fa785c 4505 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4506
5e1576ed 4507 __sched_fork(0, idle);
06b83b5f 4508 idle->state = TASK_RUNNING;
dd41f596
IM
4509 idle->se.exec_start = sched_clock();
4510
1e1b6c51 4511 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4512 /*
4513 * We're having a chicken and egg problem, even though we are
4514 * holding rq->lock, the cpu isn't yet set to this cpu so the
4515 * lockdep check in task_group() will fail.
4516 *
4517 * Similar case to sched_fork(). / Alternatively we could
4518 * use task_rq_lock() here and obtain the other rq->lock.
4519 *
4520 * Silence PROVE_RCU
4521 */
4522 rcu_read_lock();
dd41f596 4523 __set_task_cpu(idle, cpu);
6506cf6c 4524 rcu_read_unlock();
1da177e4 4525
1da177e4 4526 rq->curr = rq->idle = idle;
77177856 4527 idle->on_rq = 1;
3ca7a440
PZ
4528#if defined(CONFIG_SMP)
4529 idle->on_cpu = 1;
4866cde0 4530#endif
05fa785c 4531 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4532
4533 /* Set the preempt count _outside_ the spinlocks! */
01028747 4534 init_idle_preempt_count(idle, cpu);
55cd5340 4535
dd41f596
IM
4536 /*
4537 * The idle tasks have their own, simple scheduling class:
4538 */
4539 idle->sched_class = &idle_sched_class;
868baf07 4540 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4541 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4542#if defined(CONFIG_SMP)
4543 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4544#endif
19978ca6
IM
4545}
4546
1da177e4 4547#ifdef CONFIG_SMP
1e1b6c51
KM
4548void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4549{
4550 if (p->sched_class && p->sched_class->set_cpus_allowed)
4551 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4552
4553 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4554 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4555}
4556
1da177e4
LT
4557/*
4558 * This is how migration works:
4559 *
969c7921
TH
4560 * 1) we invoke migration_cpu_stop() on the target CPU using
4561 * stop_one_cpu().
4562 * 2) stopper starts to run (implicitly forcing the migrated thread
4563 * off the CPU)
4564 * 3) it checks whether the migrated task is still in the wrong runqueue.
4565 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4566 * it and puts it into the right queue.
969c7921
TH
4567 * 5) stopper completes and stop_one_cpu() returns and the migration
4568 * is done.
1da177e4
LT
4569 */
4570
4571/*
4572 * Change a given task's CPU affinity. Migrate the thread to a
4573 * proper CPU and schedule it away if the CPU it's executing on
4574 * is removed from the allowed bitmask.
4575 *
4576 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4577 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4578 * call is not atomic; no spinlocks may be held.
4579 */
96f874e2 4580int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4581{
4582 unsigned long flags;
70b97a7f 4583 struct rq *rq;
969c7921 4584 unsigned int dest_cpu;
48f24c4d 4585 int ret = 0;
1da177e4
LT
4586
4587 rq = task_rq_lock(p, &flags);
e2912009 4588
db44fc01
YZ
4589 if (cpumask_equal(&p->cpus_allowed, new_mask))
4590 goto out;
4591
6ad4c188 4592 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4593 ret = -EINVAL;
4594 goto out;
4595 }
4596
1e1b6c51 4597 do_set_cpus_allowed(p, new_mask);
73fe6aae 4598
1da177e4 4599 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4600 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4601 goto out;
4602
969c7921 4603 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4604 if (p->on_rq) {
969c7921 4605 struct migration_arg arg = { p, dest_cpu };
1da177e4 4606 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4607 task_rq_unlock(rq, p, &flags);
969c7921 4608 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4609 tlb_migrate_finish(p->mm);
4610 return 0;
4611 }
4612out:
0122ec5b 4613 task_rq_unlock(rq, p, &flags);
48f24c4d 4614
1da177e4
LT
4615 return ret;
4616}
cd8ba7cd 4617EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4618
4619/*
41a2d6cf 4620 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4621 * this because either it can't run here any more (set_cpus_allowed()
4622 * away from this CPU, or CPU going down), or because we're
4623 * attempting to rebalance this task on exec (sched_exec).
4624 *
4625 * So we race with normal scheduler movements, but that's OK, as long
4626 * as the task is no longer on this CPU.
efc30814
KK
4627 *
4628 * Returns non-zero if task was successfully migrated.
1da177e4 4629 */
efc30814 4630static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4631{
70b97a7f 4632 struct rq *rq_dest, *rq_src;
e2912009 4633 int ret = 0;
1da177e4 4634
e761b772 4635 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4636 return ret;
1da177e4
LT
4637
4638 rq_src = cpu_rq(src_cpu);
4639 rq_dest = cpu_rq(dest_cpu);
4640
0122ec5b 4641 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4642 double_rq_lock(rq_src, rq_dest);
4643 /* Already moved. */
4644 if (task_cpu(p) != src_cpu)
b1e38734 4645 goto done;
1da177e4 4646 /* Affinity changed (again). */
fa17b507 4647 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4648 goto fail;
1da177e4 4649
e2912009
PZ
4650 /*
4651 * If we're not on a rq, the next wake-up will ensure we're
4652 * placed properly.
4653 */
fd2f4419 4654 if (p->on_rq) {
4ca9b72b 4655 dequeue_task(rq_src, p, 0);
e2912009 4656 set_task_cpu(p, dest_cpu);
4ca9b72b 4657 enqueue_task(rq_dest, p, 0);
15afe09b 4658 check_preempt_curr(rq_dest, p, 0);
1da177e4 4659 }
b1e38734 4660done:
efc30814 4661 ret = 1;
b1e38734 4662fail:
1da177e4 4663 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4664 raw_spin_unlock(&p->pi_lock);
efc30814 4665 return ret;
1da177e4
LT
4666}
4667
e6628d5b
MG
4668#ifdef CONFIG_NUMA_BALANCING
4669/* Migrate current task p to target_cpu */
4670int migrate_task_to(struct task_struct *p, int target_cpu)
4671{
4672 struct migration_arg arg = { p, target_cpu };
4673 int curr_cpu = task_cpu(p);
4674
4675 if (curr_cpu == target_cpu)
4676 return 0;
4677
4678 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4679 return -EINVAL;
4680
4681 /* TODO: This is not properly updating schedstats */
4682
286549dc 4683 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4684 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4685}
0ec8aa00
PZ
4686
4687/*
4688 * Requeue a task on a given node and accurately track the number of NUMA
4689 * tasks on the runqueues
4690 */
4691void sched_setnuma(struct task_struct *p, int nid)
4692{
4693 struct rq *rq;
4694 unsigned long flags;
4695 bool on_rq, running;
4696
4697 rq = task_rq_lock(p, &flags);
4698 on_rq = p->on_rq;
4699 running = task_current(rq, p);
4700
4701 if (on_rq)
4702 dequeue_task(rq, p, 0);
4703 if (running)
4704 p->sched_class->put_prev_task(rq, p);
4705
4706 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4707
4708 if (running)
4709 p->sched_class->set_curr_task(rq);
4710 if (on_rq)
4711 enqueue_task(rq, p, 0);
4712 task_rq_unlock(rq, p, &flags);
4713}
e6628d5b
MG
4714#endif
4715
1da177e4 4716/*
969c7921
TH
4717 * migration_cpu_stop - this will be executed by a highprio stopper thread
4718 * and performs thread migration by bumping thread off CPU then
4719 * 'pushing' onto another runqueue.
1da177e4 4720 */
969c7921 4721static int migration_cpu_stop(void *data)
1da177e4 4722{
969c7921 4723 struct migration_arg *arg = data;
f7b4cddc 4724
969c7921
TH
4725 /*
4726 * The original target cpu might have gone down and we might
4727 * be on another cpu but it doesn't matter.
4728 */
f7b4cddc 4729 local_irq_disable();
969c7921 4730 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4731 local_irq_enable();
1da177e4 4732 return 0;
f7b4cddc
ON
4733}
4734
1da177e4 4735#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4736
054b9108 4737/*
48c5ccae
PZ
4738 * Ensures that the idle task is using init_mm right before its cpu goes
4739 * offline.
054b9108 4740 */
48c5ccae 4741void idle_task_exit(void)
1da177e4 4742{
48c5ccae 4743 struct mm_struct *mm = current->active_mm;
e76bd8d9 4744
48c5ccae 4745 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4746
a53efe5f 4747 if (mm != &init_mm) {
48c5ccae 4748 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4749 finish_arch_post_lock_switch();
4750 }
48c5ccae 4751 mmdrop(mm);
1da177e4
LT
4752}
4753
4754/*
5d180232
PZ
4755 * Since this CPU is going 'away' for a while, fold any nr_active delta
4756 * we might have. Assumes we're called after migrate_tasks() so that the
4757 * nr_active count is stable.
4758 *
4759 * Also see the comment "Global load-average calculations".
1da177e4 4760 */
5d180232 4761static void calc_load_migrate(struct rq *rq)
1da177e4 4762{
5d180232
PZ
4763 long delta = calc_load_fold_active(rq);
4764 if (delta)
4765 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4766}
4767
3f1d2a31
PZ
4768static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4769{
4770}
4771
4772static const struct sched_class fake_sched_class = {
4773 .put_prev_task = put_prev_task_fake,
4774};
4775
4776static struct task_struct fake_task = {
4777 /*
4778 * Avoid pull_{rt,dl}_task()
4779 */
4780 .prio = MAX_PRIO + 1,
4781 .sched_class = &fake_sched_class,
4782};
4783
48f24c4d 4784/*
48c5ccae
PZ
4785 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4786 * try_to_wake_up()->select_task_rq().
4787 *
4788 * Called with rq->lock held even though we'er in stop_machine() and
4789 * there's no concurrency possible, we hold the required locks anyway
4790 * because of lock validation efforts.
1da177e4 4791 */
48c5ccae 4792static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4793{
70b97a7f 4794 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4795 struct task_struct *next, *stop = rq->stop;
4796 int dest_cpu;
1da177e4
LT
4797
4798 /*
48c5ccae
PZ
4799 * Fudge the rq selection such that the below task selection loop
4800 * doesn't get stuck on the currently eligible stop task.
4801 *
4802 * We're currently inside stop_machine() and the rq is either stuck
4803 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4804 * either way we should never end up calling schedule() until we're
4805 * done here.
1da177e4 4806 */
48c5ccae 4807 rq->stop = NULL;
48f24c4d 4808
77bd3970
FW
4809 /*
4810 * put_prev_task() and pick_next_task() sched
4811 * class method both need to have an up-to-date
4812 * value of rq->clock[_task]
4813 */
4814 update_rq_clock(rq);
4815
dd41f596 4816 for ( ; ; ) {
48c5ccae
PZ
4817 /*
4818 * There's this thread running, bail when that's the only
4819 * remaining thread.
4820 */
4821 if (rq->nr_running == 1)
dd41f596 4822 break;
48c5ccae 4823
3f1d2a31 4824 next = pick_next_task(rq, &fake_task);
48c5ccae 4825 BUG_ON(!next);
79c53799 4826 next->sched_class->put_prev_task(rq, next);
e692ab53 4827
48c5ccae
PZ
4828 /* Find suitable destination for @next, with force if needed. */
4829 dest_cpu = select_fallback_rq(dead_cpu, next);
4830 raw_spin_unlock(&rq->lock);
4831
4832 __migrate_task(next, dead_cpu, dest_cpu);
4833
4834 raw_spin_lock(&rq->lock);
1da177e4 4835 }
dce48a84 4836
48c5ccae 4837 rq->stop = stop;
dce48a84 4838}
48c5ccae 4839
1da177e4
LT
4840#endif /* CONFIG_HOTPLUG_CPU */
4841
e692ab53
NP
4842#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4843
4844static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4845 {
4846 .procname = "sched_domain",
c57baf1e 4847 .mode = 0555,
e0361851 4848 },
56992309 4849 {}
e692ab53
NP
4850};
4851
4852static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4853 {
4854 .procname = "kernel",
c57baf1e 4855 .mode = 0555,
e0361851
AD
4856 .child = sd_ctl_dir,
4857 },
56992309 4858 {}
e692ab53
NP
4859};
4860
4861static struct ctl_table *sd_alloc_ctl_entry(int n)
4862{
4863 struct ctl_table *entry =
5cf9f062 4864 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4865
e692ab53
NP
4866 return entry;
4867}
4868
6382bc90
MM
4869static void sd_free_ctl_entry(struct ctl_table **tablep)
4870{
cd790076 4871 struct ctl_table *entry;
6382bc90 4872
cd790076
MM
4873 /*
4874 * In the intermediate directories, both the child directory and
4875 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4876 * will always be set. In the lowest directory the names are
cd790076
MM
4877 * static strings and all have proc handlers.
4878 */
4879 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4880 if (entry->child)
4881 sd_free_ctl_entry(&entry->child);
cd790076
MM
4882 if (entry->proc_handler == NULL)
4883 kfree(entry->procname);
4884 }
6382bc90
MM
4885
4886 kfree(*tablep);
4887 *tablep = NULL;
4888}
4889
201c373e 4890static int min_load_idx = 0;
fd9b86d3 4891static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4892
e692ab53 4893static void
e0361851 4894set_table_entry(struct ctl_table *entry,
e692ab53 4895 const char *procname, void *data, int maxlen,
201c373e
NK
4896 umode_t mode, proc_handler *proc_handler,
4897 bool load_idx)
e692ab53 4898{
e692ab53
NP
4899 entry->procname = procname;
4900 entry->data = data;
4901 entry->maxlen = maxlen;
4902 entry->mode = mode;
4903 entry->proc_handler = proc_handler;
201c373e
NK
4904
4905 if (load_idx) {
4906 entry->extra1 = &min_load_idx;
4907 entry->extra2 = &max_load_idx;
4908 }
e692ab53
NP
4909}
4910
4911static struct ctl_table *
4912sd_alloc_ctl_domain_table(struct sched_domain *sd)
4913{
37e6bae8 4914 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4915
ad1cdc1d
MM
4916 if (table == NULL)
4917 return NULL;
4918
e0361851 4919 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4920 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4921 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4922 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4923 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4924 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4925 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4926 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4927 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4928 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4929 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4930 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4931 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4932 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4933 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4934 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4935 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4936 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4937 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4938 &sd->cache_nice_tries,
201c373e 4939 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4940 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4941 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4942 set_table_entry(&table[11], "max_newidle_lb_cost",
4943 &sd->max_newidle_lb_cost,
4944 sizeof(long), 0644, proc_doulongvec_minmax, false);
4945 set_table_entry(&table[12], "name", sd->name,
201c373e 4946 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4947 /* &table[13] is terminator */
e692ab53
NP
4948
4949 return table;
4950}
4951
be7002e6 4952static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4953{
4954 struct ctl_table *entry, *table;
4955 struct sched_domain *sd;
4956 int domain_num = 0, i;
4957 char buf[32];
4958
4959 for_each_domain(cpu, sd)
4960 domain_num++;
4961 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4962 if (table == NULL)
4963 return NULL;
e692ab53
NP
4964
4965 i = 0;
4966 for_each_domain(cpu, sd) {
4967 snprintf(buf, 32, "domain%d", i);
e692ab53 4968 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4969 entry->mode = 0555;
e692ab53
NP
4970 entry->child = sd_alloc_ctl_domain_table(sd);
4971 entry++;
4972 i++;
4973 }
4974 return table;
4975}
4976
4977static struct ctl_table_header *sd_sysctl_header;
6382bc90 4978static void register_sched_domain_sysctl(void)
e692ab53 4979{
6ad4c188 4980 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4981 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4982 char buf[32];
4983
7378547f
MM
4984 WARN_ON(sd_ctl_dir[0].child);
4985 sd_ctl_dir[0].child = entry;
4986
ad1cdc1d
MM
4987 if (entry == NULL)
4988 return;
4989
6ad4c188 4990 for_each_possible_cpu(i) {
e692ab53 4991 snprintf(buf, 32, "cpu%d", i);
e692ab53 4992 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4993 entry->mode = 0555;
e692ab53 4994 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4995 entry++;
e692ab53 4996 }
7378547f
MM
4997
4998 WARN_ON(sd_sysctl_header);
e692ab53
NP
4999 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5000}
6382bc90 5001
7378547f 5002/* may be called multiple times per register */
6382bc90
MM
5003static void unregister_sched_domain_sysctl(void)
5004{
7378547f
MM
5005 if (sd_sysctl_header)
5006 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5007 sd_sysctl_header = NULL;
7378547f
MM
5008 if (sd_ctl_dir[0].child)
5009 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5010}
e692ab53 5011#else
6382bc90
MM
5012static void register_sched_domain_sysctl(void)
5013{
5014}
5015static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5016{
5017}
5018#endif
5019
1f11eb6a
GH
5020static void set_rq_online(struct rq *rq)
5021{
5022 if (!rq->online) {
5023 const struct sched_class *class;
5024
c6c4927b 5025 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5026 rq->online = 1;
5027
5028 for_each_class(class) {
5029 if (class->rq_online)
5030 class->rq_online(rq);
5031 }
5032 }
5033}
5034
5035static void set_rq_offline(struct rq *rq)
5036{
5037 if (rq->online) {
5038 const struct sched_class *class;
5039
5040 for_each_class(class) {
5041 if (class->rq_offline)
5042 class->rq_offline(rq);
5043 }
5044
c6c4927b 5045 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5046 rq->online = 0;
5047 }
5048}
5049
1da177e4
LT
5050/*
5051 * migration_call - callback that gets triggered when a CPU is added.
5052 * Here we can start up the necessary migration thread for the new CPU.
5053 */
0db0628d 5054static int
48f24c4d 5055migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5056{
48f24c4d 5057 int cpu = (long)hcpu;
1da177e4 5058 unsigned long flags;
969c7921 5059 struct rq *rq = cpu_rq(cpu);
1da177e4 5060
48c5ccae 5061 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5062
1da177e4 5063 case CPU_UP_PREPARE:
a468d389 5064 rq->calc_load_update = calc_load_update;
1da177e4 5065 break;
48f24c4d 5066
1da177e4 5067 case CPU_ONLINE:
1f94ef59 5068 /* Update our root-domain */
05fa785c 5069 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5070 if (rq->rd) {
c6c4927b 5071 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5072
5073 set_rq_online(rq);
1f94ef59 5074 }
05fa785c 5075 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5076 break;
48f24c4d 5077
1da177e4 5078#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5079 case CPU_DYING:
317f3941 5080 sched_ttwu_pending();
57d885fe 5081 /* Update our root-domain */
05fa785c 5082 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5083 if (rq->rd) {
c6c4927b 5084 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5085 set_rq_offline(rq);
57d885fe 5086 }
48c5ccae
PZ
5087 migrate_tasks(cpu);
5088 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5089 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5090 break;
48c5ccae 5091
5d180232 5092 case CPU_DEAD:
f319da0c 5093 calc_load_migrate(rq);
57d885fe 5094 break;
1da177e4
LT
5095#endif
5096 }
49c022e6
PZ
5097
5098 update_max_interval();
5099
1da177e4
LT
5100 return NOTIFY_OK;
5101}
5102
f38b0820
PM
5103/*
5104 * Register at high priority so that task migration (migrate_all_tasks)
5105 * happens before everything else. This has to be lower priority than
cdd6c482 5106 * the notifier in the perf_event subsystem, though.
1da177e4 5107 */
0db0628d 5108static struct notifier_block migration_notifier = {
1da177e4 5109 .notifier_call = migration_call,
50a323b7 5110 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5111};
5112
a803f026
CM
5113static void __cpuinit set_cpu_rq_start_time(void)
5114{
5115 int cpu = smp_processor_id();
5116 struct rq *rq = cpu_rq(cpu);
5117 rq->age_stamp = sched_clock_cpu(cpu);
5118}
5119
0db0628d 5120static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5121 unsigned long action, void *hcpu)
5122{
5123 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5124 case CPU_STARTING:
5125 set_cpu_rq_start_time();
5126 return NOTIFY_OK;
3a101d05
TH
5127 case CPU_DOWN_FAILED:
5128 set_cpu_active((long)hcpu, true);
5129 return NOTIFY_OK;
5130 default:
5131 return NOTIFY_DONE;
5132 }
5133}
5134
0db0628d 5135static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5136 unsigned long action, void *hcpu)
5137{
de212f18
PZ
5138 unsigned long flags;
5139 long cpu = (long)hcpu;
5140
3a101d05
TH
5141 switch (action & ~CPU_TASKS_FROZEN) {
5142 case CPU_DOWN_PREPARE:
de212f18
PZ
5143 set_cpu_active(cpu, false);
5144
5145 /* explicitly allow suspend */
5146 if (!(action & CPU_TASKS_FROZEN)) {
5147 struct dl_bw *dl_b = dl_bw_of(cpu);
5148 bool overflow;
5149 int cpus;
5150
5151 raw_spin_lock_irqsave(&dl_b->lock, flags);
5152 cpus = dl_bw_cpus(cpu);
5153 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5154 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5155
5156 if (overflow)
5157 return notifier_from_errno(-EBUSY);
5158 }
3a101d05 5159 return NOTIFY_OK;
3a101d05 5160 }
de212f18
PZ
5161
5162 return NOTIFY_DONE;
3a101d05
TH
5163}
5164
7babe8db 5165static int __init migration_init(void)
1da177e4
LT
5166{
5167 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5168 int err;
48f24c4d 5169
3a101d05 5170 /* Initialize migration for the boot CPU */
07dccf33
AM
5171 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5172 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5173 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5174 register_cpu_notifier(&migration_notifier);
7babe8db 5175
3a101d05
TH
5176 /* Register cpu active notifiers */
5177 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5178 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5179
a004cd42 5180 return 0;
1da177e4 5181}
7babe8db 5182early_initcall(migration_init);
1da177e4
LT
5183#endif
5184
5185#ifdef CONFIG_SMP
476f3534 5186
4cb98839
PZ
5187static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5188
3e9830dc 5189#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5190
d039ac60 5191static __read_mostly int sched_debug_enabled;
f6630114 5192
d039ac60 5193static int __init sched_debug_setup(char *str)
f6630114 5194{
d039ac60 5195 sched_debug_enabled = 1;
f6630114
MT
5196
5197 return 0;
5198}
d039ac60
PZ
5199early_param("sched_debug", sched_debug_setup);
5200
5201static inline bool sched_debug(void)
5202{
5203 return sched_debug_enabled;
5204}
f6630114 5205
7c16ec58 5206static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5207 struct cpumask *groupmask)
1da177e4 5208{
4dcf6aff 5209 struct sched_group *group = sd->groups;
434d53b0 5210 char str[256];
1da177e4 5211
968ea6d8 5212 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5213 cpumask_clear(groupmask);
4dcf6aff
IM
5214
5215 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5216
5217 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5218 printk("does not load-balance\n");
4dcf6aff 5219 if (sd->parent)
3df0fc5b
PZ
5220 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5221 " has parent");
4dcf6aff 5222 return -1;
41c7ce9a
NP
5223 }
5224
3df0fc5b 5225 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5226
758b2cdc 5227 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5228 printk(KERN_ERR "ERROR: domain->span does not contain "
5229 "CPU%d\n", cpu);
4dcf6aff 5230 }
758b2cdc 5231 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5232 printk(KERN_ERR "ERROR: domain->groups does not contain"
5233 " CPU%d\n", cpu);
4dcf6aff 5234 }
1da177e4 5235
4dcf6aff 5236 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5237 do {
4dcf6aff 5238 if (!group) {
3df0fc5b
PZ
5239 printk("\n");
5240 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5241 break;
5242 }
5243
c3decf0d
PZ
5244 /*
5245 * Even though we initialize ->power to something semi-sane,
5246 * we leave power_orig unset. This allows us to detect if
5247 * domain iteration is still funny without causing /0 traps.
5248 */
5249 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5250 printk(KERN_CONT "\n");
5251 printk(KERN_ERR "ERROR: domain->cpu_power not "
5252 "set\n");
4dcf6aff
IM
5253 break;
5254 }
1da177e4 5255
758b2cdc 5256 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5257 printk(KERN_CONT "\n");
5258 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5259 break;
5260 }
1da177e4 5261
cb83b629
PZ
5262 if (!(sd->flags & SD_OVERLAP) &&
5263 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5264 printk(KERN_CONT "\n");
5265 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5266 break;
5267 }
1da177e4 5268
758b2cdc 5269 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5270
968ea6d8 5271 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5272
3df0fc5b 5273 printk(KERN_CONT " %s", str);
9c3f75cb 5274 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5275 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5276 group->sgp->power);
381512cf 5277 }
1da177e4 5278
4dcf6aff
IM
5279 group = group->next;
5280 } while (group != sd->groups);
3df0fc5b 5281 printk(KERN_CONT "\n");
1da177e4 5282
758b2cdc 5283 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5284 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5285
758b2cdc
RR
5286 if (sd->parent &&
5287 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5288 printk(KERN_ERR "ERROR: parent span is not a superset "
5289 "of domain->span\n");
4dcf6aff
IM
5290 return 0;
5291}
1da177e4 5292
4dcf6aff
IM
5293static void sched_domain_debug(struct sched_domain *sd, int cpu)
5294{
5295 int level = 0;
1da177e4 5296
d039ac60 5297 if (!sched_debug_enabled)
f6630114
MT
5298 return;
5299
4dcf6aff
IM
5300 if (!sd) {
5301 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5302 return;
5303 }
1da177e4 5304
4dcf6aff
IM
5305 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5306
5307 for (;;) {
4cb98839 5308 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5309 break;
1da177e4
LT
5310 level++;
5311 sd = sd->parent;
33859f7f 5312 if (!sd)
4dcf6aff
IM
5313 break;
5314 }
1da177e4 5315}
6d6bc0ad 5316#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5317# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5318static inline bool sched_debug(void)
5319{
5320 return false;
5321}
6d6bc0ad 5322#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5323
1a20ff27 5324static int sd_degenerate(struct sched_domain *sd)
245af2c7 5325{
758b2cdc 5326 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5327 return 1;
5328
5329 /* Following flags need at least 2 groups */
5330 if (sd->flags & (SD_LOAD_BALANCE |
5331 SD_BALANCE_NEWIDLE |
5332 SD_BALANCE_FORK |
89c4710e
SS
5333 SD_BALANCE_EXEC |
5334 SD_SHARE_CPUPOWER |
d77b3ed5
VG
5335 SD_SHARE_PKG_RESOURCES |
5336 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5337 if (sd->groups != sd->groups->next)
5338 return 0;
5339 }
5340
5341 /* Following flags don't use groups */
c88d5910 5342 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5343 return 0;
5344
5345 return 1;
5346}
5347
48f24c4d
IM
5348static int
5349sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5350{
5351 unsigned long cflags = sd->flags, pflags = parent->flags;
5352
5353 if (sd_degenerate(parent))
5354 return 1;
5355
758b2cdc 5356 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5357 return 0;
5358
245af2c7
SS
5359 /* Flags needing groups don't count if only 1 group in parent */
5360 if (parent->groups == parent->groups->next) {
5361 pflags &= ~(SD_LOAD_BALANCE |
5362 SD_BALANCE_NEWIDLE |
5363 SD_BALANCE_FORK |
89c4710e
SS
5364 SD_BALANCE_EXEC |
5365 SD_SHARE_CPUPOWER |
10866e62 5366 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5367 SD_PREFER_SIBLING |
5368 SD_SHARE_POWERDOMAIN);
5436499e
KC
5369 if (nr_node_ids == 1)
5370 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5371 }
5372 if (~cflags & pflags)
5373 return 0;
5374
5375 return 1;
5376}
5377
dce840a0 5378static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5379{
dce840a0 5380 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5381
68e74568 5382 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5383 cpudl_cleanup(&rd->cpudl);
1baca4ce 5384 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5385 free_cpumask_var(rd->rto_mask);
5386 free_cpumask_var(rd->online);
5387 free_cpumask_var(rd->span);
5388 kfree(rd);
5389}
5390
57d885fe
GH
5391static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5392{
a0490fa3 5393 struct root_domain *old_rd = NULL;
57d885fe 5394 unsigned long flags;
57d885fe 5395
05fa785c 5396 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5397
5398 if (rq->rd) {
a0490fa3 5399 old_rd = rq->rd;
57d885fe 5400
c6c4927b 5401 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5402 set_rq_offline(rq);
57d885fe 5403
c6c4927b 5404 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5405
a0490fa3 5406 /*
0515973f 5407 * If we dont want to free the old_rd yet then
a0490fa3
IM
5408 * set old_rd to NULL to skip the freeing later
5409 * in this function:
5410 */
5411 if (!atomic_dec_and_test(&old_rd->refcount))
5412 old_rd = NULL;
57d885fe
GH
5413 }
5414
5415 atomic_inc(&rd->refcount);
5416 rq->rd = rd;
5417
c6c4927b 5418 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5419 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5420 set_rq_online(rq);
57d885fe 5421
05fa785c 5422 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5423
5424 if (old_rd)
dce840a0 5425 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5426}
5427
68c38fc3 5428static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5429{
5430 memset(rd, 0, sizeof(*rd));
5431
68c38fc3 5432 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5433 goto out;
68c38fc3 5434 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5435 goto free_span;
1baca4ce 5436 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5437 goto free_online;
1baca4ce
JL
5438 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5439 goto free_dlo_mask;
6e0534f2 5440
332ac17e 5441 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5442 if (cpudl_init(&rd->cpudl) != 0)
5443 goto free_dlo_mask;
332ac17e 5444
68c38fc3 5445 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5446 goto free_rto_mask;
c6c4927b 5447 return 0;
6e0534f2 5448
68e74568
RR
5449free_rto_mask:
5450 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5451free_dlo_mask:
5452 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5453free_online:
5454 free_cpumask_var(rd->online);
5455free_span:
5456 free_cpumask_var(rd->span);
0c910d28 5457out:
c6c4927b 5458 return -ENOMEM;
57d885fe
GH
5459}
5460
029632fb
PZ
5461/*
5462 * By default the system creates a single root-domain with all cpus as
5463 * members (mimicking the global state we have today).
5464 */
5465struct root_domain def_root_domain;
5466
57d885fe
GH
5467static void init_defrootdomain(void)
5468{
68c38fc3 5469 init_rootdomain(&def_root_domain);
c6c4927b 5470
57d885fe
GH
5471 atomic_set(&def_root_domain.refcount, 1);
5472}
5473
dc938520 5474static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5475{
5476 struct root_domain *rd;
5477
5478 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5479 if (!rd)
5480 return NULL;
5481
68c38fc3 5482 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5483 kfree(rd);
5484 return NULL;
5485 }
57d885fe
GH
5486
5487 return rd;
5488}
5489
e3589f6c
PZ
5490static void free_sched_groups(struct sched_group *sg, int free_sgp)
5491{
5492 struct sched_group *tmp, *first;
5493
5494 if (!sg)
5495 return;
5496
5497 first = sg;
5498 do {
5499 tmp = sg->next;
5500
5501 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5502 kfree(sg->sgp);
5503
5504 kfree(sg);
5505 sg = tmp;
5506 } while (sg != first);
5507}
5508
dce840a0
PZ
5509static void free_sched_domain(struct rcu_head *rcu)
5510{
5511 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5512
5513 /*
5514 * If its an overlapping domain it has private groups, iterate and
5515 * nuke them all.
5516 */
5517 if (sd->flags & SD_OVERLAP) {
5518 free_sched_groups(sd->groups, 1);
5519 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5520 kfree(sd->groups->sgp);
dce840a0 5521 kfree(sd->groups);
9c3f75cb 5522 }
dce840a0
PZ
5523 kfree(sd);
5524}
5525
5526static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5527{
5528 call_rcu(&sd->rcu, free_sched_domain);
5529}
5530
5531static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5532{
5533 for (; sd; sd = sd->parent)
5534 destroy_sched_domain(sd, cpu);
5535}
5536
518cd623
PZ
5537/*
5538 * Keep a special pointer to the highest sched_domain that has
5539 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5540 * allows us to avoid some pointer chasing select_idle_sibling().
5541 *
5542 * Also keep a unique ID per domain (we use the first cpu number in
5543 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5544 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5545 */
5546DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5547DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5548DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5549DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5550DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5551DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5552
5553static void update_top_cache_domain(int cpu)
5554{
5555 struct sched_domain *sd;
5d4cf996 5556 struct sched_domain *busy_sd = NULL;
518cd623 5557 int id = cpu;
7d9ffa89 5558 int size = 1;
518cd623
PZ
5559
5560 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5561 if (sd) {
518cd623 5562 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5563 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5564 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5565 }
5d4cf996 5566 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5567
5568 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5569 per_cpu(sd_llc_size, cpu) = size;
518cd623 5570 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5571
5572 sd = lowest_flag_domain(cpu, SD_NUMA);
5573 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5574
5575 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5576 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5577}
5578
1da177e4 5579/*
0eab9146 5580 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5581 * hold the hotplug lock.
5582 */
0eab9146
IM
5583static void
5584cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5585{
70b97a7f 5586 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5587 struct sched_domain *tmp;
5588
5589 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5590 for (tmp = sd; tmp; ) {
245af2c7
SS
5591 struct sched_domain *parent = tmp->parent;
5592 if (!parent)
5593 break;
f29c9b1c 5594
1a848870 5595 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5596 tmp->parent = parent->parent;
1a848870
SS
5597 if (parent->parent)
5598 parent->parent->child = tmp;
10866e62
PZ
5599 /*
5600 * Transfer SD_PREFER_SIBLING down in case of a
5601 * degenerate parent; the spans match for this
5602 * so the property transfers.
5603 */
5604 if (parent->flags & SD_PREFER_SIBLING)
5605 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5606 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5607 } else
5608 tmp = tmp->parent;
245af2c7
SS
5609 }
5610
1a848870 5611 if (sd && sd_degenerate(sd)) {
dce840a0 5612 tmp = sd;
245af2c7 5613 sd = sd->parent;
dce840a0 5614 destroy_sched_domain(tmp, cpu);
1a848870
SS
5615 if (sd)
5616 sd->child = NULL;
5617 }
1da177e4 5618
4cb98839 5619 sched_domain_debug(sd, cpu);
1da177e4 5620
57d885fe 5621 rq_attach_root(rq, rd);
dce840a0 5622 tmp = rq->sd;
674311d5 5623 rcu_assign_pointer(rq->sd, sd);
dce840a0 5624 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5625
5626 update_top_cache_domain(cpu);
1da177e4
LT
5627}
5628
5629/* cpus with isolated domains */
dcc30a35 5630static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5631
5632/* Setup the mask of cpus configured for isolated domains */
5633static int __init isolated_cpu_setup(char *str)
5634{
bdddd296 5635 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5636 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5637 return 1;
5638}
5639
8927f494 5640__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5641
49a02c51 5642struct s_data {
21d42ccf 5643 struct sched_domain ** __percpu sd;
49a02c51
AH
5644 struct root_domain *rd;
5645};
5646
2109b99e 5647enum s_alloc {
2109b99e 5648 sa_rootdomain,
21d42ccf 5649 sa_sd,
dce840a0 5650 sa_sd_storage,
2109b99e
AH
5651 sa_none,
5652};
5653
c1174876
PZ
5654/*
5655 * Build an iteration mask that can exclude certain CPUs from the upwards
5656 * domain traversal.
5657 *
5658 * Asymmetric node setups can result in situations where the domain tree is of
5659 * unequal depth, make sure to skip domains that already cover the entire
5660 * range.
5661 *
5662 * In that case build_sched_domains() will have terminated the iteration early
5663 * and our sibling sd spans will be empty. Domains should always include the
5664 * cpu they're built on, so check that.
5665 *
5666 */
5667static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5668{
5669 const struct cpumask *span = sched_domain_span(sd);
5670 struct sd_data *sdd = sd->private;
5671 struct sched_domain *sibling;
5672 int i;
5673
5674 for_each_cpu(i, span) {
5675 sibling = *per_cpu_ptr(sdd->sd, i);
5676 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5677 continue;
5678
5679 cpumask_set_cpu(i, sched_group_mask(sg));
5680 }
5681}
5682
5683/*
5684 * Return the canonical balance cpu for this group, this is the first cpu
5685 * of this group that's also in the iteration mask.
5686 */
5687int group_balance_cpu(struct sched_group *sg)
5688{
5689 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5690}
5691
e3589f6c
PZ
5692static int
5693build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5694{
5695 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5696 const struct cpumask *span = sched_domain_span(sd);
5697 struct cpumask *covered = sched_domains_tmpmask;
5698 struct sd_data *sdd = sd->private;
5699 struct sched_domain *child;
5700 int i;
5701
5702 cpumask_clear(covered);
5703
5704 for_each_cpu(i, span) {
5705 struct cpumask *sg_span;
5706
5707 if (cpumask_test_cpu(i, covered))
5708 continue;
5709
c1174876
PZ
5710 child = *per_cpu_ptr(sdd->sd, i);
5711
5712 /* See the comment near build_group_mask(). */
5713 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5714 continue;
5715
e3589f6c 5716 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5717 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5718
5719 if (!sg)
5720 goto fail;
5721
5722 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5723 if (child->child) {
5724 child = child->child;
5725 cpumask_copy(sg_span, sched_domain_span(child));
5726 } else
5727 cpumask_set_cpu(i, sg_span);
5728
5729 cpumask_or(covered, covered, sg_span);
5730
74a5ce20 5731 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5732 if (atomic_inc_return(&sg->sgp->ref) == 1)
5733 build_group_mask(sd, sg);
5734
c3decf0d
PZ
5735 /*
5736 * Initialize sgp->power such that even if we mess up the
5737 * domains and no possible iteration will get us here, we won't
5738 * die on a /0 trap.
5739 */
5740 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5741 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5742
c1174876
PZ
5743 /*
5744 * Make sure the first group of this domain contains the
5745 * canonical balance cpu. Otherwise the sched_domain iteration
5746 * breaks. See update_sg_lb_stats().
5747 */
74a5ce20 5748 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5749 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5750 groups = sg;
5751
5752 if (!first)
5753 first = sg;
5754 if (last)
5755 last->next = sg;
5756 last = sg;
5757 last->next = first;
5758 }
5759 sd->groups = groups;
5760
5761 return 0;
5762
5763fail:
5764 free_sched_groups(first, 0);
5765
5766 return -ENOMEM;
5767}
5768
dce840a0 5769static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5770{
dce840a0
PZ
5771 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5772 struct sched_domain *child = sd->child;
1da177e4 5773
dce840a0
PZ
5774 if (child)
5775 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5776
9c3f75cb 5777 if (sg) {
dce840a0 5778 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5779 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5780 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5781 }
dce840a0
PZ
5782
5783 return cpu;
1e9f28fa 5784}
1e9f28fa 5785
01a08546 5786/*
dce840a0
PZ
5787 * build_sched_groups will build a circular linked list of the groups
5788 * covered by the given span, and will set each group's ->cpumask correctly,
5789 * and ->cpu_power to 0.
e3589f6c
PZ
5790 *
5791 * Assumes the sched_domain tree is fully constructed
01a08546 5792 */
e3589f6c
PZ
5793static int
5794build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5795{
dce840a0
PZ
5796 struct sched_group *first = NULL, *last = NULL;
5797 struct sd_data *sdd = sd->private;
5798 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5799 struct cpumask *covered;
dce840a0 5800 int i;
9c1cfda2 5801
e3589f6c
PZ
5802 get_group(cpu, sdd, &sd->groups);
5803 atomic_inc(&sd->groups->ref);
5804
0936629f 5805 if (cpu != cpumask_first(span))
e3589f6c
PZ
5806 return 0;
5807
f96225fd
PZ
5808 lockdep_assert_held(&sched_domains_mutex);
5809 covered = sched_domains_tmpmask;
5810
dce840a0 5811 cpumask_clear(covered);
6711cab4 5812
dce840a0
PZ
5813 for_each_cpu(i, span) {
5814 struct sched_group *sg;
cd08e923 5815 int group, j;
6711cab4 5816
dce840a0
PZ
5817 if (cpumask_test_cpu(i, covered))
5818 continue;
6711cab4 5819
cd08e923 5820 group = get_group(i, sdd, &sg);
c1174876 5821 cpumask_setall(sched_group_mask(sg));
0601a88d 5822
dce840a0
PZ
5823 for_each_cpu(j, span) {
5824 if (get_group(j, sdd, NULL) != group)
5825 continue;
0601a88d 5826
dce840a0
PZ
5827 cpumask_set_cpu(j, covered);
5828 cpumask_set_cpu(j, sched_group_cpus(sg));
5829 }
0601a88d 5830
dce840a0
PZ
5831 if (!first)
5832 first = sg;
5833 if (last)
5834 last->next = sg;
5835 last = sg;
5836 }
5837 last->next = first;
e3589f6c
PZ
5838
5839 return 0;
0601a88d 5840}
51888ca2 5841
89c4710e
SS
5842/*
5843 * Initialize sched groups cpu_power.
5844 *
5845 * cpu_power indicates the capacity of sched group, which is used while
5846 * distributing the load between different sched groups in a sched domain.
5847 * Typically cpu_power for all the groups in a sched domain will be same unless
5848 * there are asymmetries in the topology. If there are asymmetries, group
5849 * having more cpu_power will pickup more load compared to the group having
5850 * less cpu_power.
89c4710e
SS
5851 */
5852static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5853{
e3589f6c 5854 struct sched_group *sg = sd->groups;
89c4710e 5855
94c95ba6 5856 WARN_ON(!sg);
e3589f6c
PZ
5857
5858 do {
5859 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5860 sg = sg->next;
5861 } while (sg != sd->groups);
89c4710e 5862
c1174876 5863 if (cpu != group_balance_cpu(sg))
e3589f6c 5864 return;
aae6d3dd 5865
d274cb30 5866 update_group_power(sd, cpu);
69e1e811 5867 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5868}
5869
7c16ec58
MT
5870/*
5871 * Initializers for schedule domains
5872 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5873 */
5874
1d3504fc 5875static int default_relax_domain_level = -1;
60495e77 5876int sched_domain_level_max;
1d3504fc
HS
5877
5878static int __init setup_relax_domain_level(char *str)
5879{
a841f8ce
DS
5880 if (kstrtoint(str, 0, &default_relax_domain_level))
5881 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5882
1d3504fc
HS
5883 return 1;
5884}
5885__setup("relax_domain_level=", setup_relax_domain_level);
5886
5887static void set_domain_attribute(struct sched_domain *sd,
5888 struct sched_domain_attr *attr)
5889{
5890 int request;
5891
5892 if (!attr || attr->relax_domain_level < 0) {
5893 if (default_relax_domain_level < 0)
5894 return;
5895 else
5896 request = default_relax_domain_level;
5897 } else
5898 request = attr->relax_domain_level;
5899 if (request < sd->level) {
5900 /* turn off idle balance on this domain */
c88d5910 5901 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5902 } else {
5903 /* turn on idle balance on this domain */
c88d5910 5904 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5905 }
5906}
5907
54ab4ff4
PZ
5908static void __sdt_free(const struct cpumask *cpu_map);
5909static int __sdt_alloc(const struct cpumask *cpu_map);
5910
2109b99e
AH
5911static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5912 const struct cpumask *cpu_map)
5913{
5914 switch (what) {
2109b99e 5915 case sa_rootdomain:
822ff793
PZ
5916 if (!atomic_read(&d->rd->refcount))
5917 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5918 case sa_sd:
5919 free_percpu(d->sd); /* fall through */
dce840a0 5920 case sa_sd_storage:
54ab4ff4 5921 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5922 case sa_none:
5923 break;
5924 }
5925}
3404c8d9 5926
2109b99e
AH
5927static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5928 const struct cpumask *cpu_map)
5929{
dce840a0
PZ
5930 memset(d, 0, sizeof(*d));
5931
54ab4ff4
PZ
5932 if (__sdt_alloc(cpu_map))
5933 return sa_sd_storage;
dce840a0
PZ
5934 d->sd = alloc_percpu(struct sched_domain *);
5935 if (!d->sd)
5936 return sa_sd_storage;
2109b99e 5937 d->rd = alloc_rootdomain();
dce840a0 5938 if (!d->rd)
21d42ccf 5939 return sa_sd;
2109b99e
AH
5940 return sa_rootdomain;
5941}
57d885fe 5942
dce840a0
PZ
5943/*
5944 * NULL the sd_data elements we've used to build the sched_domain and
5945 * sched_group structure so that the subsequent __free_domain_allocs()
5946 * will not free the data we're using.
5947 */
5948static void claim_allocations(int cpu, struct sched_domain *sd)
5949{
5950 struct sd_data *sdd = sd->private;
dce840a0
PZ
5951
5952 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5953 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5954
e3589f6c 5955 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5956 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5957
5958 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5959 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5960}
5961
cb83b629 5962#ifdef CONFIG_NUMA
cb83b629 5963static int sched_domains_numa_levels;
cb83b629
PZ
5964static int *sched_domains_numa_distance;
5965static struct cpumask ***sched_domains_numa_masks;
5966static int sched_domains_curr_level;
143e1e28 5967#endif
cb83b629 5968
143e1e28
VG
5969/*
5970 * SD_flags allowed in topology descriptions.
5971 *
5972 * SD_SHARE_CPUPOWER - describes SMT topologies
5973 * SD_SHARE_PKG_RESOURCES - describes shared caches
5974 * SD_NUMA - describes NUMA topologies
d77b3ed5 5975 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
5976 *
5977 * Odd one out:
5978 * SD_ASYM_PACKING - describes SMT quirks
5979 */
5980#define TOPOLOGY_SD_FLAGS \
5981 (SD_SHARE_CPUPOWER | \
5982 SD_SHARE_PKG_RESOURCES | \
5983 SD_NUMA | \
d77b3ed5
VG
5984 SD_ASYM_PACKING | \
5985 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
5986
5987static struct sched_domain *
143e1e28 5988sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
5989{
5990 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
5991 int sd_weight, sd_flags = 0;
5992
5993#ifdef CONFIG_NUMA
5994 /*
5995 * Ugly hack to pass state to sd_numa_mask()...
5996 */
5997 sched_domains_curr_level = tl->numa_level;
5998#endif
5999
6000 sd_weight = cpumask_weight(tl->mask(cpu));
6001
6002 if (tl->sd_flags)
6003 sd_flags = (*tl->sd_flags)();
6004 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6005 "wrong sd_flags in topology description\n"))
6006 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6007
6008 *sd = (struct sched_domain){
6009 .min_interval = sd_weight,
6010 .max_interval = 2*sd_weight,
6011 .busy_factor = 32,
870a0bb5 6012 .imbalance_pct = 125,
143e1e28
VG
6013
6014 .cache_nice_tries = 0,
6015 .busy_idx = 0,
6016 .idle_idx = 0,
cb83b629
PZ
6017 .newidle_idx = 0,
6018 .wake_idx = 0,
6019 .forkexec_idx = 0,
6020
6021 .flags = 1*SD_LOAD_BALANCE
6022 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6023 | 1*SD_BALANCE_EXEC
6024 | 1*SD_BALANCE_FORK
cb83b629 6025 | 0*SD_BALANCE_WAKE
143e1e28 6026 | 1*SD_WAKE_AFFINE
cb83b629 6027 | 0*SD_SHARE_CPUPOWER
cb83b629 6028 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6029 | 0*SD_SERIALIZE
cb83b629 6030 | 0*SD_PREFER_SIBLING
143e1e28
VG
6031 | 0*SD_NUMA
6032 | sd_flags
cb83b629 6033 ,
143e1e28 6034
cb83b629
PZ
6035 .last_balance = jiffies,
6036 .balance_interval = sd_weight,
143e1e28 6037 .smt_gain = 0,
2b4cfe64
JL
6038 .max_newidle_lb_cost = 0,
6039 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6040#ifdef CONFIG_SCHED_DEBUG
6041 .name = tl->name,
6042#endif
cb83b629 6043 };
cb83b629
PZ
6044
6045 /*
143e1e28 6046 * Convert topological properties into behaviour.
cb83b629 6047 */
143e1e28
VG
6048
6049 if (sd->flags & SD_SHARE_CPUPOWER) {
6050 sd->imbalance_pct = 110;
6051 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6052
6053 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6054 sd->imbalance_pct = 117;
6055 sd->cache_nice_tries = 1;
6056 sd->busy_idx = 2;
6057
6058#ifdef CONFIG_NUMA
6059 } else if (sd->flags & SD_NUMA) {
6060 sd->cache_nice_tries = 2;
6061 sd->busy_idx = 3;
6062 sd->idle_idx = 2;
6063
6064 sd->flags |= SD_SERIALIZE;
6065 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6066 sd->flags &= ~(SD_BALANCE_EXEC |
6067 SD_BALANCE_FORK |
6068 SD_WAKE_AFFINE);
6069 }
6070
6071#endif
6072 } else {
6073 sd->flags |= SD_PREFER_SIBLING;
6074 sd->cache_nice_tries = 1;
6075 sd->busy_idx = 2;
6076 sd->idle_idx = 1;
6077 }
6078
6079 sd->private = &tl->data;
cb83b629
PZ
6080
6081 return sd;
6082}
6083
143e1e28
VG
6084/*
6085 * Topology list, bottom-up.
6086 */
6087static struct sched_domain_topology_level default_topology[] = {
6088#ifdef CONFIG_SCHED_SMT
6089 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6090#endif
6091#ifdef CONFIG_SCHED_MC
6092 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6093#endif
6094 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6095 { NULL, },
6096};
6097
6098struct sched_domain_topology_level *sched_domain_topology = default_topology;
6099
6100#define for_each_sd_topology(tl) \
6101 for (tl = sched_domain_topology; tl->mask; tl++)
6102
6103void set_sched_topology(struct sched_domain_topology_level *tl)
6104{
6105 sched_domain_topology = tl;
6106}
6107
6108#ifdef CONFIG_NUMA
6109
cb83b629
PZ
6110static const struct cpumask *sd_numa_mask(int cpu)
6111{
6112 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6113}
6114
d039ac60
PZ
6115static void sched_numa_warn(const char *str)
6116{
6117 static int done = false;
6118 int i,j;
6119
6120 if (done)
6121 return;
6122
6123 done = true;
6124
6125 printk(KERN_WARNING "ERROR: %s\n\n", str);
6126
6127 for (i = 0; i < nr_node_ids; i++) {
6128 printk(KERN_WARNING " ");
6129 for (j = 0; j < nr_node_ids; j++)
6130 printk(KERN_CONT "%02d ", node_distance(i,j));
6131 printk(KERN_CONT "\n");
6132 }
6133 printk(KERN_WARNING "\n");
6134}
6135
6136static bool find_numa_distance(int distance)
6137{
6138 int i;
6139
6140 if (distance == node_distance(0, 0))
6141 return true;
6142
6143 for (i = 0; i < sched_domains_numa_levels; i++) {
6144 if (sched_domains_numa_distance[i] == distance)
6145 return true;
6146 }
6147
6148 return false;
6149}
6150
cb83b629
PZ
6151static void sched_init_numa(void)
6152{
6153 int next_distance, curr_distance = node_distance(0, 0);
6154 struct sched_domain_topology_level *tl;
6155 int level = 0;
6156 int i, j, k;
6157
cb83b629
PZ
6158 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6159 if (!sched_domains_numa_distance)
6160 return;
6161
6162 /*
6163 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6164 * unique distances in the node_distance() table.
6165 *
6166 * Assumes node_distance(0,j) includes all distances in
6167 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6168 */
6169 next_distance = curr_distance;
6170 for (i = 0; i < nr_node_ids; i++) {
6171 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6172 for (k = 0; k < nr_node_ids; k++) {
6173 int distance = node_distance(i, k);
6174
6175 if (distance > curr_distance &&
6176 (distance < next_distance ||
6177 next_distance == curr_distance))
6178 next_distance = distance;
6179
6180 /*
6181 * While not a strong assumption it would be nice to know
6182 * about cases where if node A is connected to B, B is not
6183 * equally connected to A.
6184 */
6185 if (sched_debug() && node_distance(k, i) != distance)
6186 sched_numa_warn("Node-distance not symmetric");
6187
6188 if (sched_debug() && i && !find_numa_distance(distance))
6189 sched_numa_warn("Node-0 not representative");
6190 }
6191 if (next_distance != curr_distance) {
6192 sched_domains_numa_distance[level++] = next_distance;
6193 sched_domains_numa_levels = level;
6194 curr_distance = next_distance;
6195 } else break;
cb83b629 6196 }
d039ac60
PZ
6197
6198 /*
6199 * In case of sched_debug() we verify the above assumption.
6200 */
6201 if (!sched_debug())
6202 break;
cb83b629
PZ
6203 }
6204 /*
6205 * 'level' contains the number of unique distances, excluding the
6206 * identity distance node_distance(i,i).
6207 *
28b4a521 6208 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6209 * numbers.
6210 */
6211
5f7865f3
TC
6212 /*
6213 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6214 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6215 * the array will contain less then 'level' members. This could be
6216 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6217 * in other functions.
6218 *
6219 * We reset it to 'level' at the end of this function.
6220 */
6221 sched_domains_numa_levels = 0;
6222
cb83b629
PZ
6223 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6224 if (!sched_domains_numa_masks)
6225 return;
6226
6227 /*
6228 * Now for each level, construct a mask per node which contains all
6229 * cpus of nodes that are that many hops away from us.
6230 */
6231 for (i = 0; i < level; i++) {
6232 sched_domains_numa_masks[i] =
6233 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6234 if (!sched_domains_numa_masks[i])
6235 return;
6236
6237 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6238 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6239 if (!mask)
6240 return;
6241
6242 sched_domains_numa_masks[i][j] = mask;
6243
6244 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6245 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6246 continue;
6247
6248 cpumask_or(mask, mask, cpumask_of_node(k));
6249 }
6250 }
6251 }
6252
143e1e28
VG
6253 /* Compute default topology size */
6254 for (i = 0; sched_domain_topology[i].mask; i++);
6255
c515db8c 6256 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6257 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6258 if (!tl)
6259 return;
6260
6261 /*
6262 * Copy the default topology bits..
6263 */
143e1e28
VG
6264 for (i = 0; sched_domain_topology[i].mask; i++)
6265 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6266
6267 /*
6268 * .. and append 'j' levels of NUMA goodness.
6269 */
6270 for (j = 0; j < level; i++, j++) {
6271 tl[i] = (struct sched_domain_topology_level){
cb83b629 6272 .mask = sd_numa_mask,
143e1e28 6273 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6274 .flags = SDTL_OVERLAP,
6275 .numa_level = j,
143e1e28 6276 SD_INIT_NAME(NUMA)
cb83b629
PZ
6277 };
6278 }
6279
6280 sched_domain_topology = tl;
5f7865f3
TC
6281
6282 sched_domains_numa_levels = level;
cb83b629 6283}
301a5cba
TC
6284
6285static void sched_domains_numa_masks_set(int cpu)
6286{
6287 int i, j;
6288 int node = cpu_to_node(cpu);
6289
6290 for (i = 0; i < sched_domains_numa_levels; i++) {
6291 for (j = 0; j < nr_node_ids; j++) {
6292 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6293 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6294 }
6295 }
6296}
6297
6298static void sched_domains_numa_masks_clear(int cpu)
6299{
6300 int i, j;
6301 for (i = 0; i < sched_domains_numa_levels; i++) {
6302 for (j = 0; j < nr_node_ids; j++)
6303 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6304 }
6305}
6306
6307/*
6308 * Update sched_domains_numa_masks[level][node] array when new cpus
6309 * are onlined.
6310 */
6311static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6312 unsigned long action,
6313 void *hcpu)
6314{
6315 int cpu = (long)hcpu;
6316
6317 switch (action & ~CPU_TASKS_FROZEN) {
6318 case CPU_ONLINE:
6319 sched_domains_numa_masks_set(cpu);
6320 break;
6321
6322 case CPU_DEAD:
6323 sched_domains_numa_masks_clear(cpu);
6324 break;
6325
6326 default:
6327 return NOTIFY_DONE;
6328 }
6329
6330 return NOTIFY_OK;
cb83b629
PZ
6331}
6332#else
6333static inline void sched_init_numa(void)
6334{
6335}
301a5cba
TC
6336
6337static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6338 unsigned long action,
6339 void *hcpu)
6340{
6341 return 0;
6342}
cb83b629
PZ
6343#endif /* CONFIG_NUMA */
6344
54ab4ff4
PZ
6345static int __sdt_alloc(const struct cpumask *cpu_map)
6346{
6347 struct sched_domain_topology_level *tl;
6348 int j;
6349
27723a68 6350 for_each_sd_topology(tl) {
54ab4ff4
PZ
6351 struct sd_data *sdd = &tl->data;
6352
6353 sdd->sd = alloc_percpu(struct sched_domain *);
6354 if (!sdd->sd)
6355 return -ENOMEM;
6356
6357 sdd->sg = alloc_percpu(struct sched_group *);
6358 if (!sdd->sg)
6359 return -ENOMEM;
6360
9c3f75cb
PZ
6361 sdd->sgp = alloc_percpu(struct sched_group_power *);
6362 if (!sdd->sgp)
6363 return -ENOMEM;
6364
54ab4ff4
PZ
6365 for_each_cpu(j, cpu_map) {
6366 struct sched_domain *sd;
6367 struct sched_group *sg;
9c3f75cb 6368 struct sched_group_power *sgp;
54ab4ff4
PZ
6369
6370 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6371 GFP_KERNEL, cpu_to_node(j));
6372 if (!sd)
6373 return -ENOMEM;
6374
6375 *per_cpu_ptr(sdd->sd, j) = sd;
6376
6377 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6378 GFP_KERNEL, cpu_to_node(j));
6379 if (!sg)
6380 return -ENOMEM;
6381
30b4e9eb
IM
6382 sg->next = sg;
6383
54ab4ff4 6384 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6385
c1174876 6386 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6387 GFP_KERNEL, cpu_to_node(j));
6388 if (!sgp)
6389 return -ENOMEM;
6390
6391 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6392 }
6393 }
6394
6395 return 0;
6396}
6397
6398static void __sdt_free(const struct cpumask *cpu_map)
6399{
6400 struct sched_domain_topology_level *tl;
6401 int j;
6402
27723a68 6403 for_each_sd_topology(tl) {
54ab4ff4
PZ
6404 struct sd_data *sdd = &tl->data;
6405
6406 for_each_cpu(j, cpu_map) {
fb2cf2c6 6407 struct sched_domain *sd;
6408
6409 if (sdd->sd) {
6410 sd = *per_cpu_ptr(sdd->sd, j);
6411 if (sd && (sd->flags & SD_OVERLAP))
6412 free_sched_groups(sd->groups, 0);
6413 kfree(*per_cpu_ptr(sdd->sd, j));
6414 }
6415
6416 if (sdd->sg)
6417 kfree(*per_cpu_ptr(sdd->sg, j));
6418 if (sdd->sgp)
6419 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6420 }
6421 free_percpu(sdd->sd);
fb2cf2c6 6422 sdd->sd = NULL;
54ab4ff4 6423 free_percpu(sdd->sg);
fb2cf2c6 6424 sdd->sg = NULL;
9c3f75cb 6425 free_percpu(sdd->sgp);
fb2cf2c6 6426 sdd->sgp = NULL;
54ab4ff4
PZ
6427 }
6428}
6429
2c402dc3 6430struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6431 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6432 struct sched_domain *child, int cpu)
2c402dc3 6433{
143e1e28 6434 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6435 if (!sd)
d069b916 6436 return child;
2c402dc3 6437
2c402dc3 6438 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6439 if (child) {
6440 sd->level = child->level + 1;
6441 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6442 child->parent = sd;
c75e0128 6443 sd->child = child;
60495e77 6444 }
a841f8ce 6445 set_domain_attribute(sd, attr);
2c402dc3
PZ
6446
6447 return sd;
6448}
6449
2109b99e
AH
6450/*
6451 * Build sched domains for a given set of cpus and attach the sched domains
6452 * to the individual cpus
6453 */
dce840a0
PZ
6454static int build_sched_domains(const struct cpumask *cpu_map,
6455 struct sched_domain_attr *attr)
2109b99e 6456{
1c632169 6457 enum s_alloc alloc_state;
dce840a0 6458 struct sched_domain *sd;
2109b99e 6459 struct s_data d;
822ff793 6460 int i, ret = -ENOMEM;
9c1cfda2 6461
2109b99e
AH
6462 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6463 if (alloc_state != sa_rootdomain)
6464 goto error;
9c1cfda2 6465
dce840a0 6466 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6467 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6468 struct sched_domain_topology_level *tl;
6469
3bd65a80 6470 sd = NULL;
27723a68 6471 for_each_sd_topology(tl) {
4a850cbe 6472 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6473 if (tl == sched_domain_topology)
6474 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6475 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6476 sd->flags |= SD_OVERLAP;
d110235d
PZ
6477 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6478 break;
e3589f6c 6479 }
dce840a0
PZ
6480 }
6481
6482 /* Build the groups for the domains */
6483 for_each_cpu(i, cpu_map) {
6484 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6485 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6486 if (sd->flags & SD_OVERLAP) {
6487 if (build_overlap_sched_groups(sd, i))
6488 goto error;
6489 } else {
6490 if (build_sched_groups(sd, i))
6491 goto error;
6492 }
1cf51902 6493 }
a06dadbe 6494 }
9c1cfda2 6495
1da177e4 6496 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6497 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6498 if (!cpumask_test_cpu(i, cpu_map))
6499 continue;
9c1cfda2 6500
dce840a0
PZ
6501 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6502 claim_allocations(i, sd);
cd4ea6ae 6503 init_sched_groups_power(i, sd);
dce840a0 6504 }
f712c0c7 6505 }
9c1cfda2 6506
1da177e4 6507 /* Attach the domains */
dce840a0 6508 rcu_read_lock();
abcd083a 6509 for_each_cpu(i, cpu_map) {
21d42ccf 6510 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6511 cpu_attach_domain(sd, d.rd, i);
1da177e4 6512 }
dce840a0 6513 rcu_read_unlock();
51888ca2 6514
822ff793 6515 ret = 0;
51888ca2 6516error:
2109b99e 6517 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6518 return ret;
1da177e4 6519}
029190c5 6520
acc3f5d7 6521static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6522static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6523static struct sched_domain_attr *dattr_cur;
6524 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6525
6526/*
6527 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6528 * cpumask) fails, then fallback to a single sched domain,
6529 * as determined by the single cpumask fallback_doms.
029190c5 6530 */
4212823f 6531static cpumask_var_t fallback_doms;
029190c5 6532
ee79d1bd
HC
6533/*
6534 * arch_update_cpu_topology lets virtualized architectures update the
6535 * cpu core maps. It is supposed to return 1 if the topology changed
6536 * or 0 if it stayed the same.
6537 */
52f5684c 6538int __weak arch_update_cpu_topology(void)
22e52b07 6539{
ee79d1bd 6540 return 0;
22e52b07
HC
6541}
6542
acc3f5d7
RR
6543cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6544{
6545 int i;
6546 cpumask_var_t *doms;
6547
6548 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6549 if (!doms)
6550 return NULL;
6551 for (i = 0; i < ndoms; i++) {
6552 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6553 free_sched_domains(doms, i);
6554 return NULL;
6555 }
6556 }
6557 return doms;
6558}
6559
6560void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6561{
6562 unsigned int i;
6563 for (i = 0; i < ndoms; i++)
6564 free_cpumask_var(doms[i]);
6565 kfree(doms);
6566}
6567
1a20ff27 6568/*
41a2d6cf 6569 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6570 * For now this just excludes isolated cpus, but could be used to
6571 * exclude other special cases in the future.
1a20ff27 6572 */
c4a8849a 6573static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6574{
7378547f
MM
6575 int err;
6576
22e52b07 6577 arch_update_cpu_topology();
029190c5 6578 ndoms_cur = 1;
acc3f5d7 6579 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6580 if (!doms_cur)
acc3f5d7
RR
6581 doms_cur = &fallback_doms;
6582 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6583 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6584 register_sched_domain_sysctl();
7378547f
MM
6585
6586 return err;
1a20ff27
DG
6587}
6588
1a20ff27
DG
6589/*
6590 * Detach sched domains from a group of cpus specified in cpu_map
6591 * These cpus will now be attached to the NULL domain
6592 */
96f874e2 6593static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6594{
6595 int i;
6596
dce840a0 6597 rcu_read_lock();
abcd083a 6598 for_each_cpu(i, cpu_map)
57d885fe 6599 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6600 rcu_read_unlock();
1a20ff27
DG
6601}
6602
1d3504fc
HS
6603/* handle null as "default" */
6604static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6605 struct sched_domain_attr *new, int idx_new)
6606{
6607 struct sched_domain_attr tmp;
6608
6609 /* fast path */
6610 if (!new && !cur)
6611 return 1;
6612
6613 tmp = SD_ATTR_INIT;
6614 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6615 new ? (new + idx_new) : &tmp,
6616 sizeof(struct sched_domain_attr));
6617}
6618
029190c5
PJ
6619/*
6620 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6621 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6622 * doms_new[] to the current sched domain partitioning, doms_cur[].
6623 * It destroys each deleted domain and builds each new domain.
6624 *
acc3f5d7 6625 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6626 * The masks don't intersect (don't overlap.) We should setup one
6627 * sched domain for each mask. CPUs not in any of the cpumasks will
6628 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6629 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6630 * it as it is.
6631 *
acc3f5d7
RR
6632 * The passed in 'doms_new' should be allocated using
6633 * alloc_sched_domains. This routine takes ownership of it and will
6634 * free_sched_domains it when done with it. If the caller failed the
6635 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6636 * and partition_sched_domains() will fallback to the single partition
6637 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6638 *
96f874e2 6639 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6640 * ndoms_new == 0 is a special case for destroying existing domains,
6641 * and it will not create the default domain.
dfb512ec 6642 *
029190c5
PJ
6643 * Call with hotplug lock held
6644 */
acc3f5d7 6645void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6646 struct sched_domain_attr *dattr_new)
029190c5 6647{
dfb512ec 6648 int i, j, n;
d65bd5ec 6649 int new_topology;
029190c5 6650
712555ee 6651 mutex_lock(&sched_domains_mutex);
a1835615 6652
7378547f
MM
6653 /* always unregister in case we don't destroy any domains */
6654 unregister_sched_domain_sysctl();
6655
d65bd5ec
HC
6656 /* Let architecture update cpu core mappings. */
6657 new_topology = arch_update_cpu_topology();
6658
dfb512ec 6659 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6660
6661 /* Destroy deleted domains */
6662 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6663 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6664 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6665 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6666 goto match1;
6667 }
6668 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6669 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6670match1:
6671 ;
6672 }
6673
c8d2d47a 6674 n = ndoms_cur;
e761b772 6675 if (doms_new == NULL) {
c8d2d47a 6676 n = 0;
acc3f5d7 6677 doms_new = &fallback_doms;
6ad4c188 6678 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6679 WARN_ON_ONCE(dattr_new);
e761b772
MK
6680 }
6681
029190c5
PJ
6682 /* Build new domains */
6683 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6684 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6685 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6686 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6687 goto match2;
6688 }
6689 /* no match - add a new doms_new */
dce840a0 6690 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6691match2:
6692 ;
6693 }
6694
6695 /* Remember the new sched domains */
acc3f5d7
RR
6696 if (doms_cur != &fallback_doms)
6697 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6698 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6699 doms_cur = doms_new;
1d3504fc 6700 dattr_cur = dattr_new;
029190c5 6701 ndoms_cur = ndoms_new;
7378547f
MM
6702
6703 register_sched_domain_sysctl();
a1835615 6704
712555ee 6705 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6706}
6707
d35be8ba
SB
6708static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6709
1da177e4 6710/*
3a101d05
TH
6711 * Update cpusets according to cpu_active mask. If cpusets are
6712 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6713 * around partition_sched_domains().
d35be8ba
SB
6714 *
6715 * If we come here as part of a suspend/resume, don't touch cpusets because we
6716 * want to restore it back to its original state upon resume anyway.
1da177e4 6717 */
0b2e918a
TH
6718static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6719 void *hcpu)
e761b772 6720{
d35be8ba
SB
6721 switch (action) {
6722 case CPU_ONLINE_FROZEN:
6723 case CPU_DOWN_FAILED_FROZEN:
6724
6725 /*
6726 * num_cpus_frozen tracks how many CPUs are involved in suspend
6727 * resume sequence. As long as this is not the last online
6728 * operation in the resume sequence, just build a single sched
6729 * domain, ignoring cpusets.
6730 */
6731 num_cpus_frozen--;
6732 if (likely(num_cpus_frozen)) {
6733 partition_sched_domains(1, NULL, NULL);
6734 break;
6735 }
6736
6737 /*
6738 * This is the last CPU online operation. So fall through and
6739 * restore the original sched domains by considering the
6740 * cpuset configurations.
6741 */
6742
e761b772 6743 case CPU_ONLINE:
6ad4c188 6744 case CPU_DOWN_FAILED:
7ddf96b0 6745 cpuset_update_active_cpus(true);
d35be8ba 6746 break;
3a101d05
TH
6747 default:
6748 return NOTIFY_DONE;
6749 }
d35be8ba 6750 return NOTIFY_OK;
3a101d05 6751}
e761b772 6752
0b2e918a
TH
6753static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6754 void *hcpu)
3a101d05 6755{
d35be8ba 6756 switch (action) {
3a101d05 6757 case CPU_DOWN_PREPARE:
7ddf96b0 6758 cpuset_update_active_cpus(false);
d35be8ba
SB
6759 break;
6760 case CPU_DOWN_PREPARE_FROZEN:
6761 num_cpus_frozen++;
6762 partition_sched_domains(1, NULL, NULL);
6763 break;
e761b772
MK
6764 default:
6765 return NOTIFY_DONE;
6766 }
d35be8ba 6767 return NOTIFY_OK;
e761b772 6768}
e761b772 6769
1da177e4
LT
6770void __init sched_init_smp(void)
6771{
dcc30a35
RR
6772 cpumask_var_t non_isolated_cpus;
6773
6774 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6775 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6776
cb83b629
PZ
6777 sched_init_numa();
6778
6acce3ef
PZ
6779 /*
6780 * There's no userspace yet to cause hotplug operations; hence all the
6781 * cpu masks are stable and all blatant races in the below code cannot
6782 * happen.
6783 */
712555ee 6784 mutex_lock(&sched_domains_mutex);
c4a8849a 6785 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6786 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6787 if (cpumask_empty(non_isolated_cpus))
6788 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6789 mutex_unlock(&sched_domains_mutex);
e761b772 6790
301a5cba 6791 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6792 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6793 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6794
b328ca18 6795 init_hrtick();
5c1e1767
NP
6796
6797 /* Move init over to a non-isolated CPU */
dcc30a35 6798 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6799 BUG();
19978ca6 6800 sched_init_granularity();
dcc30a35 6801 free_cpumask_var(non_isolated_cpus);
4212823f 6802
0e3900e6 6803 init_sched_rt_class();
1baca4ce 6804 init_sched_dl_class();
1da177e4
LT
6805}
6806#else
6807void __init sched_init_smp(void)
6808{
19978ca6 6809 sched_init_granularity();
1da177e4
LT
6810}
6811#endif /* CONFIG_SMP */
6812
cd1bb94b
AB
6813const_debug unsigned int sysctl_timer_migration = 1;
6814
1da177e4
LT
6815int in_sched_functions(unsigned long addr)
6816{
1da177e4
LT
6817 return in_lock_functions(addr) ||
6818 (addr >= (unsigned long)__sched_text_start
6819 && addr < (unsigned long)__sched_text_end);
6820}
6821
029632fb 6822#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6823/*
6824 * Default task group.
6825 * Every task in system belongs to this group at bootup.
6826 */
029632fb 6827struct task_group root_task_group;
35cf4e50 6828LIST_HEAD(task_groups);
052f1dc7 6829#endif
6f505b16 6830
e6252c3e 6831DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6832
1da177e4
LT
6833void __init sched_init(void)
6834{
dd41f596 6835 int i, j;
434d53b0
MT
6836 unsigned long alloc_size = 0, ptr;
6837
6838#ifdef CONFIG_FAIR_GROUP_SCHED
6839 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6840#endif
6841#ifdef CONFIG_RT_GROUP_SCHED
6842 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6843#endif
df7c8e84 6844#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6845 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6846#endif
434d53b0 6847 if (alloc_size) {
36b7b6d4 6848 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6849
6850#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6851 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6852 ptr += nr_cpu_ids * sizeof(void **);
6853
07e06b01 6854 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6855 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6856
6d6bc0ad 6857#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6858#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6859 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6860 ptr += nr_cpu_ids * sizeof(void **);
6861
07e06b01 6862 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6863 ptr += nr_cpu_ids * sizeof(void **);
6864
6d6bc0ad 6865#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6866#ifdef CONFIG_CPUMASK_OFFSTACK
6867 for_each_possible_cpu(i) {
e6252c3e 6868 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6869 ptr += cpumask_size();
6870 }
6871#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6872 }
dd41f596 6873
332ac17e
DF
6874 init_rt_bandwidth(&def_rt_bandwidth,
6875 global_rt_period(), global_rt_runtime());
6876 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6877 global_rt_period(), global_rt_runtime());
332ac17e 6878
57d885fe
GH
6879#ifdef CONFIG_SMP
6880 init_defrootdomain();
6881#endif
6882
d0b27fa7 6883#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6884 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6885 global_rt_period(), global_rt_runtime());
6d6bc0ad 6886#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6887
7c941438 6888#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6889 list_add(&root_task_group.list, &task_groups);
6890 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6891 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6892 autogroup_init(&init_task);
54c707e9 6893
7c941438 6894#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6895
0a945022 6896 for_each_possible_cpu(i) {
70b97a7f 6897 struct rq *rq;
1da177e4
LT
6898
6899 rq = cpu_rq(i);
05fa785c 6900 raw_spin_lock_init(&rq->lock);
7897986b 6901 rq->nr_running = 0;
dce48a84
TG
6902 rq->calc_load_active = 0;
6903 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6904 init_cfs_rq(&rq->cfs);
6f505b16 6905 init_rt_rq(&rq->rt, rq);
aab03e05 6906 init_dl_rq(&rq->dl, rq);
dd41f596 6907#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6908 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6909 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6910 /*
07e06b01 6911 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6912 *
6913 * In case of task-groups formed thr' the cgroup filesystem, it
6914 * gets 100% of the cpu resources in the system. This overall
6915 * system cpu resource is divided among the tasks of
07e06b01 6916 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6917 * based on each entity's (task or task-group's) weight
6918 * (se->load.weight).
6919 *
07e06b01 6920 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6921 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6922 * then A0's share of the cpu resource is:
6923 *
0d905bca 6924 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6925 *
07e06b01
YZ
6926 * We achieve this by letting root_task_group's tasks sit
6927 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6928 */
ab84d31e 6929 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6930 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6931#endif /* CONFIG_FAIR_GROUP_SCHED */
6932
6933 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6934#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6935 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6936#endif
1da177e4 6937
dd41f596
IM
6938 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6939 rq->cpu_load[j] = 0;
fdf3e95d
VP
6940
6941 rq->last_load_update_tick = jiffies;
6942
1da177e4 6943#ifdef CONFIG_SMP
41c7ce9a 6944 rq->sd = NULL;
57d885fe 6945 rq->rd = NULL;
1399fa78 6946 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6947 rq->post_schedule = 0;
1da177e4 6948 rq->active_balance = 0;
dd41f596 6949 rq->next_balance = jiffies;
1da177e4 6950 rq->push_cpu = 0;
0a2966b4 6951 rq->cpu = i;
1f11eb6a 6952 rq->online = 0;
eae0c9df
MG
6953 rq->idle_stamp = 0;
6954 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6955 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6956
6957 INIT_LIST_HEAD(&rq->cfs_tasks);
6958
dc938520 6959 rq_attach_root(rq, &def_root_domain);
3451d024 6960#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6961 rq->nohz_flags = 0;
83cd4fe2 6962#endif
265f22a9
FW
6963#ifdef CONFIG_NO_HZ_FULL
6964 rq->last_sched_tick = 0;
6965#endif
1da177e4 6966#endif
8f4d37ec 6967 init_rq_hrtick(rq);
1da177e4 6968 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6969 }
6970
2dd73a4f 6971 set_load_weight(&init_task);
b50f60ce 6972
e107be36
AK
6973#ifdef CONFIG_PREEMPT_NOTIFIERS
6974 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6975#endif
6976
1da177e4
LT
6977 /*
6978 * The boot idle thread does lazy MMU switching as well:
6979 */
6980 atomic_inc(&init_mm.mm_count);
6981 enter_lazy_tlb(&init_mm, current);
6982
6983 /*
6984 * Make us the idle thread. Technically, schedule() should not be
6985 * called from this thread, however somewhere below it might be,
6986 * but because we are the idle thread, we just pick up running again
6987 * when this runqueue becomes "idle".
6988 */
6989 init_idle(current, smp_processor_id());
dce48a84
TG
6990
6991 calc_load_update = jiffies + LOAD_FREQ;
6992
dd41f596
IM
6993 /*
6994 * During early bootup we pretend to be a normal task:
6995 */
6996 current->sched_class = &fair_sched_class;
6892b75e 6997
bf4d83f6 6998#ifdef CONFIG_SMP
4cb98839 6999 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7000 /* May be allocated at isolcpus cmdline parse time */
7001 if (cpu_isolated_map == NULL)
7002 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7003 idle_thread_set_boot_cpu();
a803f026 7004 set_cpu_rq_start_time();
029632fb
PZ
7005#endif
7006 init_sched_fair_class();
6a7b3dc3 7007
6892b75e 7008 scheduler_running = 1;
1da177e4
LT
7009}
7010
d902db1e 7011#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7012static inline int preempt_count_equals(int preempt_offset)
7013{
234da7bc 7014 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7015
4ba8216c 7016 return (nested == preempt_offset);
e4aafea2
FW
7017}
7018
d894837f 7019void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7020{
1da177e4
LT
7021 static unsigned long prev_jiffy; /* ratelimiting */
7022
b3fbab05 7023 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7024 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7025 !is_idle_task(current)) ||
e4aafea2 7026 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7027 return;
7028 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7029 return;
7030 prev_jiffy = jiffies;
7031
3df0fc5b
PZ
7032 printk(KERN_ERR
7033 "BUG: sleeping function called from invalid context at %s:%d\n",
7034 file, line);
7035 printk(KERN_ERR
7036 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7037 in_atomic(), irqs_disabled(),
7038 current->pid, current->comm);
aef745fc
IM
7039
7040 debug_show_held_locks(current);
7041 if (irqs_disabled())
7042 print_irqtrace_events(current);
8f47b187
TG
7043#ifdef CONFIG_DEBUG_PREEMPT
7044 if (!preempt_count_equals(preempt_offset)) {
7045 pr_err("Preemption disabled at:");
7046 print_ip_sym(current->preempt_disable_ip);
7047 pr_cont("\n");
7048 }
7049#endif
aef745fc 7050 dump_stack();
1da177e4
LT
7051}
7052EXPORT_SYMBOL(__might_sleep);
7053#endif
7054
7055#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7056static void normalize_task(struct rq *rq, struct task_struct *p)
7057{
da7a735e 7058 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7059 struct sched_attr attr = {
7060 .sched_policy = SCHED_NORMAL,
7061 };
da7a735e 7062 int old_prio = p->prio;
3a5e4dc1 7063 int on_rq;
3e51f33f 7064
fd2f4419 7065 on_rq = p->on_rq;
3a5e4dc1 7066 if (on_rq)
4ca9b72b 7067 dequeue_task(rq, p, 0);
d50dde5a 7068 __setscheduler(rq, p, &attr);
3a5e4dc1 7069 if (on_rq) {
4ca9b72b 7070 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7071 resched_task(rq->curr);
7072 }
da7a735e
PZ
7073
7074 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7075}
7076
1da177e4
LT
7077void normalize_rt_tasks(void)
7078{
a0f98a1c 7079 struct task_struct *g, *p;
1da177e4 7080 unsigned long flags;
70b97a7f 7081 struct rq *rq;
1da177e4 7082
4cf5d77a 7083 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7084 do_each_thread(g, p) {
178be793
IM
7085 /*
7086 * Only normalize user tasks:
7087 */
7088 if (!p->mm)
7089 continue;
7090
6cfb0d5d 7091 p->se.exec_start = 0;
6cfb0d5d 7092#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7093 p->se.statistics.wait_start = 0;
7094 p->se.statistics.sleep_start = 0;
7095 p->se.statistics.block_start = 0;
6cfb0d5d 7096#endif
dd41f596 7097
aab03e05 7098 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7099 /*
7100 * Renice negative nice level userspace
7101 * tasks back to 0:
7102 */
d0ea0268 7103 if (task_nice(p) < 0 && p->mm)
dd41f596 7104 set_user_nice(p, 0);
1da177e4 7105 continue;
dd41f596 7106 }
1da177e4 7107
1d615482 7108 raw_spin_lock(&p->pi_lock);
b29739f9 7109 rq = __task_rq_lock(p);
1da177e4 7110
178be793 7111 normalize_task(rq, p);
3a5e4dc1 7112
b29739f9 7113 __task_rq_unlock(rq);
1d615482 7114 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7115 } while_each_thread(g, p);
7116
4cf5d77a 7117 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7118}
7119
7120#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7121
67fc4e0c 7122#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7123/*
67fc4e0c 7124 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7125 *
7126 * They can only be called when the whole system has been
7127 * stopped - every CPU needs to be quiescent, and no scheduling
7128 * activity can take place. Using them for anything else would
7129 * be a serious bug, and as a result, they aren't even visible
7130 * under any other configuration.
7131 */
7132
7133/**
7134 * curr_task - return the current task for a given cpu.
7135 * @cpu: the processor in question.
7136 *
7137 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7138 *
7139 * Return: The current task for @cpu.
1df5c10a 7140 */
36c8b586 7141struct task_struct *curr_task(int cpu)
1df5c10a
LT
7142{
7143 return cpu_curr(cpu);
7144}
7145
67fc4e0c
JW
7146#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7147
7148#ifdef CONFIG_IA64
1df5c10a
LT
7149/**
7150 * set_curr_task - set the current task for a given cpu.
7151 * @cpu: the processor in question.
7152 * @p: the task pointer to set.
7153 *
7154 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7155 * are serviced on a separate stack. It allows the architecture to switch the
7156 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7157 * must be called with all CPU's synchronized, and interrupts disabled, the
7158 * and caller must save the original value of the current task (see
7159 * curr_task() above) and restore that value before reenabling interrupts and
7160 * re-starting the system.
7161 *
7162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7163 */
36c8b586 7164void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7165{
7166 cpu_curr(cpu) = p;
7167}
7168
7169#endif
29f59db3 7170
7c941438 7171#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7172/* task_group_lock serializes the addition/removal of task groups */
7173static DEFINE_SPINLOCK(task_group_lock);
7174
bccbe08a
PZ
7175static void free_sched_group(struct task_group *tg)
7176{
7177 free_fair_sched_group(tg);
7178 free_rt_sched_group(tg);
e9aa1dd1 7179 autogroup_free(tg);
bccbe08a
PZ
7180 kfree(tg);
7181}
7182
7183/* allocate runqueue etc for a new task group */
ec7dc8ac 7184struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7185{
7186 struct task_group *tg;
bccbe08a
PZ
7187
7188 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7189 if (!tg)
7190 return ERR_PTR(-ENOMEM);
7191
ec7dc8ac 7192 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7193 goto err;
7194
ec7dc8ac 7195 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7196 goto err;
7197
ace783b9
LZ
7198 return tg;
7199
7200err:
7201 free_sched_group(tg);
7202 return ERR_PTR(-ENOMEM);
7203}
7204
7205void sched_online_group(struct task_group *tg, struct task_group *parent)
7206{
7207 unsigned long flags;
7208
8ed36996 7209 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7210 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7211
7212 WARN_ON(!parent); /* root should already exist */
7213
7214 tg->parent = parent;
f473aa5e 7215 INIT_LIST_HEAD(&tg->children);
09f2724a 7216 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7217 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7218}
7219
9b5b7751 7220/* rcu callback to free various structures associated with a task group */
6f505b16 7221static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7222{
29f59db3 7223 /* now it should be safe to free those cfs_rqs */
6f505b16 7224 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7225}
7226
9b5b7751 7227/* Destroy runqueue etc associated with a task group */
4cf86d77 7228void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7229{
7230 /* wait for possible concurrent references to cfs_rqs complete */
7231 call_rcu(&tg->rcu, free_sched_group_rcu);
7232}
7233
7234void sched_offline_group(struct task_group *tg)
29f59db3 7235{
8ed36996 7236 unsigned long flags;
9b5b7751 7237 int i;
29f59db3 7238
3d4b47b4
PZ
7239 /* end participation in shares distribution */
7240 for_each_possible_cpu(i)
bccbe08a 7241 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7242
7243 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7244 list_del_rcu(&tg->list);
f473aa5e 7245 list_del_rcu(&tg->siblings);
8ed36996 7246 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7247}
7248
9b5b7751 7249/* change task's runqueue when it moves between groups.
3a252015
IM
7250 * The caller of this function should have put the task in its new group
7251 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7252 * reflect its new group.
9b5b7751
SV
7253 */
7254void sched_move_task(struct task_struct *tsk)
29f59db3 7255{
8323f26c 7256 struct task_group *tg;
29f59db3
SV
7257 int on_rq, running;
7258 unsigned long flags;
7259 struct rq *rq;
7260
7261 rq = task_rq_lock(tsk, &flags);
7262
051a1d1a 7263 running = task_current(rq, tsk);
fd2f4419 7264 on_rq = tsk->on_rq;
29f59db3 7265
0e1f3483 7266 if (on_rq)
29f59db3 7267 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7268 if (unlikely(running))
7269 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7270
073219e9 7271 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7272 lockdep_is_held(&tsk->sighand->siglock)),
7273 struct task_group, css);
7274 tg = autogroup_task_group(tsk, tg);
7275 tsk->sched_task_group = tg;
7276
810b3817 7277#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7278 if (tsk->sched_class->task_move_group)
7279 tsk->sched_class->task_move_group(tsk, on_rq);
7280 else
810b3817 7281#endif
b2b5ce02 7282 set_task_rq(tsk, task_cpu(tsk));
810b3817 7283
0e1f3483
HS
7284 if (unlikely(running))
7285 tsk->sched_class->set_curr_task(rq);
7286 if (on_rq)
371fd7e7 7287 enqueue_task(rq, tsk, 0);
29f59db3 7288
0122ec5b 7289 task_rq_unlock(rq, tsk, &flags);
29f59db3 7290}
7c941438 7291#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7292
a790de99
PT
7293#ifdef CONFIG_RT_GROUP_SCHED
7294/*
7295 * Ensure that the real time constraints are schedulable.
7296 */
7297static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7298
9a7e0b18
PZ
7299/* Must be called with tasklist_lock held */
7300static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7301{
9a7e0b18 7302 struct task_struct *g, *p;
b40b2e8e 7303
9a7e0b18 7304 do_each_thread(g, p) {
029632fb 7305 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7306 return 1;
7307 } while_each_thread(g, p);
b40b2e8e 7308
9a7e0b18
PZ
7309 return 0;
7310}
b40b2e8e 7311
9a7e0b18
PZ
7312struct rt_schedulable_data {
7313 struct task_group *tg;
7314 u64 rt_period;
7315 u64 rt_runtime;
7316};
b40b2e8e 7317
a790de99 7318static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7319{
7320 struct rt_schedulable_data *d = data;
7321 struct task_group *child;
7322 unsigned long total, sum = 0;
7323 u64 period, runtime;
b40b2e8e 7324
9a7e0b18
PZ
7325 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7326 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7327
9a7e0b18
PZ
7328 if (tg == d->tg) {
7329 period = d->rt_period;
7330 runtime = d->rt_runtime;
b40b2e8e 7331 }
b40b2e8e 7332
4653f803
PZ
7333 /*
7334 * Cannot have more runtime than the period.
7335 */
7336 if (runtime > period && runtime != RUNTIME_INF)
7337 return -EINVAL;
6f505b16 7338
4653f803
PZ
7339 /*
7340 * Ensure we don't starve existing RT tasks.
7341 */
9a7e0b18
PZ
7342 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7343 return -EBUSY;
6f505b16 7344
9a7e0b18 7345 total = to_ratio(period, runtime);
6f505b16 7346
4653f803
PZ
7347 /*
7348 * Nobody can have more than the global setting allows.
7349 */
7350 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7351 return -EINVAL;
6f505b16 7352
4653f803
PZ
7353 /*
7354 * The sum of our children's runtime should not exceed our own.
7355 */
9a7e0b18
PZ
7356 list_for_each_entry_rcu(child, &tg->children, siblings) {
7357 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7358 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7359
9a7e0b18
PZ
7360 if (child == d->tg) {
7361 period = d->rt_period;
7362 runtime = d->rt_runtime;
7363 }
6f505b16 7364
9a7e0b18 7365 sum += to_ratio(period, runtime);
9f0c1e56 7366 }
6f505b16 7367
9a7e0b18
PZ
7368 if (sum > total)
7369 return -EINVAL;
7370
7371 return 0;
6f505b16
PZ
7372}
7373
9a7e0b18 7374static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7375{
8277434e
PT
7376 int ret;
7377
9a7e0b18
PZ
7378 struct rt_schedulable_data data = {
7379 .tg = tg,
7380 .rt_period = period,
7381 .rt_runtime = runtime,
7382 };
7383
8277434e
PT
7384 rcu_read_lock();
7385 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7386 rcu_read_unlock();
7387
7388 return ret;
521f1a24
DG
7389}
7390
ab84d31e 7391static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7392 u64 rt_period, u64 rt_runtime)
6f505b16 7393{
ac086bc2 7394 int i, err = 0;
9f0c1e56 7395
9f0c1e56 7396 mutex_lock(&rt_constraints_mutex);
521f1a24 7397 read_lock(&tasklist_lock);
9a7e0b18
PZ
7398 err = __rt_schedulable(tg, rt_period, rt_runtime);
7399 if (err)
9f0c1e56 7400 goto unlock;
ac086bc2 7401
0986b11b 7402 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7403 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7404 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7405
7406 for_each_possible_cpu(i) {
7407 struct rt_rq *rt_rq = tg->rt_rq[i];
7408
0986b11b 7409 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7410 rt_rq->rt_runtime = rt_runtime;
0986b11b 7411 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7412 }
0986b11b 7413 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7414unlock:
521f1a24 7415 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7416 mutex_unlock(&rt_constraints_mutex);
7417
7418 return err;
6f505b16
PZ
7419}
7420
25cc7da7 7421static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7422{
7423 u64 rt_runtime, rt_period;
7424
7425 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7426 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7427 if (rt_runtime_us < 0)
7428 rt_runtime = RUNTIME_INF;
7429
ab84d31e 7430 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7431}
7432
25cc7da7 7433static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7434{
7435 u64 rt_runtime_us;
7436
d0b27fa7 7437 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7438 return -1;
7439
d0b27fa7 7440 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7441 do_div(rt_runtime_us, NSEC_PER_USEC);
7442 return rt_runtime_us;
7443}
d0b27fa7 7444
25cc7da7 7445static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7446{
7447 u64 rt_runtime, rt_period;
7448
7449 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7450 rt_runtime = tg->rt_bandwidth.rt_runtime;
7451
619b0488
R
7452 if (rt_period == 0)
7453 return -EINVAL;
7454
ab84d31e 7455 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7456}
7457
25cc7da7 7458static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7459{
7460 u64 rt_period_us;
7461
7462 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7463 do_div(rt_period_us, NSEC_PER_USEC);
7464 return rt_period_us;
7465}
332ac17e 7466#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7467
332ac17e 7468#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7469static int sched_rt_global_constraints(void)
7470{
7471 int ret = 0;
7472
7473 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7474 read_lock(&tasklist_lock);
4653f803 7475 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7476 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7477 mutex_unlock(&rt_constraints_mutex);
7478
7479 return ret;
7480}
54e99124 7481
25cc7da7 7482static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7483{
7484 /* Don't accept realtime tasks when there is no way for them to run */
7485 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7486 return 0;
7487
7488 return 1;
7489}
7490
6d6bc0ad 7491#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7492static int sched_rt_global_constraints(void)
7493{
ac086bc2 7494 unsigned long flags;
332ac17e 7495 int i, ret = 0;
ec5d4989 7496
0986b11b 7497 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7498 for_each_possible_cpu(i) {
7499 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7500
0986b11b 7501 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7502 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7503 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7504 }
0986b11b 7505 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7506
332ac17e 7507 return ret;
d0b27fa7 7508}
6d6bc0ad 7509#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7510
332ac17e
DF
7511static int sched_dl_global_constraints(void)
7512{
1724813d
PZ
7513 u64 runtime = global_rt_runtime();
7514 u64 period = global_rt_period();
332ac17e 7515 u64 new_bw = to_ratio(period, runtime);
1724813d 7516 int cpu, ret = 0;
49516342 7517 unsigned long flags;
332ac17e
DF
7518
7519 /*
7520 * Here we want to check the bandwidth not being set to some
7521 * value smaller than the currently allocated bandwidth in
7522 * any of the root_domains.
7523 *
7524 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7525 * cycling on root_domains... Discussion on different/better
7526 * solutions is welcome!
7527 */
1724813d
PZ
7528 for_each_possible_cpu(cpu) {
7529 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7530
49516342 7531 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7532 if (new_bw < dl_b->total_bw)
7533 ret = -EBUSY;
49516342 7534 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7535
7536 if (ret)
7537 break;
332ac17e
DF
7538 }
7539
1724813d 7540 return ret;
332ac17e
DF
7541}
7542
1724813d 7543static void sched_dl_do_global(void)
ce0dbbbb 7544{
1724813d
PZ
7545 u64 new_bw = -1;
7546 int cpu;
49516342 7547 unsigned long flags;
ce0dbbbb 7548
1724813d
PZ
7549 def_dl_bandwidth.dl_period = global_rt_period();
7550 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7551
7552 if (global_rt_runtime() != RUNTIME_INF)
7553 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7554
7555 /*
7556 * FIXME: As above...
7557 */
7558 for_each_possible_cpu(cpu) {
7559 struct dl_bw *dl_b = dl_bw_of(cpu);
7560
49516342 7561 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7562 dl_b->bw = new_bw;
49516342 7563 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7564 }
1724813d
PZ
7565}
7566
7567static int sched_rt_global_validate(void)
7568{
7569 if (sysctl_sched_rt_period <= 0)
7570 return -EINVAL;
7571
e9e7cb38
JL
7572 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7573 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7574 return -EINVAL;
7575
7576 return 0;
7577}
7578
7579static void sched_rt_do_global(void)
7580{
7581 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7582 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7583}
7584
d0b27fa7 7585int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7586 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7587 loff_t *ppos)
7588{
d0b27fa7
PZ
7589 int old_period, old_runtime;
7590 static DEFINE_MUTEX(mutex);
1724813d 7591 int ret;
d0b27fa7
PZ
7592
7593 mutex_lock(&mutex);
7594 old_period = sysctl_sched_rt_period;
7595 old_runtime = sysctl_sched_rt_runtime;
7596
8d65af78 7597 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7598
7599 if (!ret && write) {
1724813d
PZ
7600 ret = sched_rt_global_validate();
7601 if (ret)
7602 goto undo;
7603
d0b27fa7 7604 ret = sched_rt_global_constraints();
1724813d
PZ
7605 if (ret)
7606 goto undo;
7607
7608 ret = sched_dl_global_constraints();
7609 if (ret)
7610 goto undo;
7611
7612 sched_rt_do_global();
7613 sched_dl_do_global();
7614 }
7615 if (0) {
7616undo:
7617 sysctl_sched_rt_period = old_period;
7618 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7619 }
7620 mutex_unlock(&mutex);
7621
7622 return ret;
7623}
68318b8e 7624
1724813d 7625int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7626 void __user *buffer, size_t *lenp,
7627 loff_t *ppos)
7628{
7629 int ret;
332ac17e 7630 static DEFINE_MUTEX(mutex);
332ac17e
DF
7631
7632 mutex_lock(&mutex);
332ac17e 7633 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7634 /* make sure that internally we keep jiffies */
7635 /* also, writing zero resets timeslice to default */
332ac17e 7636 if (!ret && write) {
1724813d
PZ
7637 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7638 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7639 }
7640 mutex_unlock(&mutex);
332ac17e
DF
7641 return ret;
7642}
7643
052f1dc7 7644#ifdef CONFIG_CGROUP_SCHED
68318b8e 7645
a7c6d554 7646static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7647{
a7c6d554 7648 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7649}
7650
eb95419b
TH
7651static struct cgroup_subsys_state *
7652cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7653{
eb95419b
TH
7654 struct task_group *parent = css_tg(parent_css);
7655 struct task_group *tg;
68318b8e 7656
eb95419b 7657 if (!parent) {
68318b8e 7658 /* This is early initialization for the top cgroup */
07e06b01 7659 return &root_task_group.css;
68318b8e
SV
7660 }
7661
ec7dc8ac 7662 tg = sched_create_group(parent);
68318b8e
SV
7663 if (IS_ERR(tg))
7664 return ERR_PTR(-ENOMEM);
7665
68318b8e
SV
7666 return &tg->css;
7667}
7668
eb95419b 7669static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7670{
eb95419b
TH
7671 struct task_group *tg = css_tg(css);
7672 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7673
63876986
TH
7674 if (parent)
7675 sched_online_group(tg, parent);
ace783b9
LZ
7676 return 0;
7677}
7678
eb95419b 7679static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7680{
eb95419b 7681 struct task_group *tg = css_tg(css);
68318b8e
SV
7682
7683 sched_destroy_group(tg);
7684}
7685
eb95419b 7686static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7687{
eb95419b 7688 struct task_group *tg = css_tg(css);
ace783b9
LZ
7689
7690 sched_offline_group(tg);
7691}
7692
eb95419b 7693static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7694 struct cgroup_taskset *tset)
68318b8e 7695{
bb9d97b6
TH
7696 struct task_struct *task;
7697
924f0d9a 7698 cgroup_taskset_for_each(task, tset) {
b68aa230 7699#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7700 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7701 return -EINVAL;
b68aa230 7702#else
bb9d97b6
TH
7703 /* We don't support RT-tasks being in separate groups */
7704 if (task->sched_class != &fair_sched_class)
7705 return -EINVAL;
b68aa230 7706#endif
bb9d97b6 7707 }
be367d09
BB
7708 return 0;
7709}
68318b8e 7710
eb95419b 7711static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7712 struct cgroup_taskset *tset)
68318b8e 7713{
bb9d97b6
TH
7714 struct task_struct *task;
7715
924f0d9a 7716 cgroup_taskset_for_each(task, tset)
bb9d97b6 7717 sched_move_task(task);
68318b8e
SV
7718}
7719
eb95419b
TH
7720static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7721 struct cgroup_subsys_state *old_css,
7722 struct task_struct *task)
068c5cc5
PZ
7723{
7724 /*
7725 * cgroup_exit() is called in the copy_process() failure path.
7726 * Ignore this case since the task hasn't ran yet, this avoids
7727 * trying to poke a half freed task state from generic code.
7728 */
7729 if (!(task->flags & PF_EXITING))
7730 return;
7731
7732 sched_move_task(task);
7733}
7734
052f1dc7 7735#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7736static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7737 struct cftype *cftype, u64 shareval)
68318b8e 7738{
182446d0 7739 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7740}
7741
182446d0
TH
7742static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7743 struct cftype *cft)
68318b8e 7744{
182446d0 7745 struct task_group *tg = css_tg(css);
68318b8e 7746
c8b28116 7747 return (u64) scale_load_down(tg->shares);
68318b8e 7748}
ab84d31e
PT
7749
7750#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7751static DEFINE_MUTEX(cfs_constraints_mutex);
7752
ab84d31e
PT
7753const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7754const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7755
a790de99
PT
7756static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7757
ab84d31e
PT
7758static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7759{
56f570e5 7760 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7761 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7762
7763 if (tg == &root_task_group)
7764 return -EINVAL;
7765
7766 /*
7767 * Ensure we have at some amount of bandwidth every period. This is
7768 * to prevent reaching a state of large arrears when throttled via
7769 * entity_tick() resulting in prolonged exit starvation.
7770 */
7771 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7772 return -EINVAL;
7773
7774 /*
7775 * Likewise, bound things on the otherside by preventing insane quota
7776 * periods. This also allows us to normalize in computing quota
7777 * feasibility.
7778 */
7779 if (period > max_cfs_quota_period)
7780 return -EINVAL;
7781
a790de99
PT
7782 mutex_lock(&cfs_constraints_mutex);
7783 ret = __cfs_schedulable(tg, period, quota);
7784 if (ret)
7785 goto out_unlock;
7786
58088ad0 7787 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7788 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7789 /*
7790 * If we need to toggle cfs_bandwidth_used, off->on must occur
7791 * before making related changes, and on->off must occur afterwards
7792 */
7793 if (runtime_enabled && !runtime_was_enabled)
7794 cfs_bandwidth_usage_inc();
ab84d31e
PT
7795 raw_spin_lock_irq(&cfs_b->lock);
7796 cfs_b->period = ns_to_ktime(period);
7797 cfs_b->quota = quota;
58088ad0 7798
a9cf55b2 7799 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7800 /* restart the period timer (if active) to handle new period expiry */
7801 if (runtime_enabled && cfs_b->timer_active) {
7802 /* force a reprogram */
7803 cfs_b->timer_active = 0;
7804 __start_cfs_bandwidth(cfs_b);
7805 }
ab84d31e
PT
7806 raw_spin_unlock_irq(&cfs_b->lock);
7807
7808 for_each_possible_cpu(i) {
7809 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7810 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7811
7812 raw_spin_lock_irq(&rq->lock);
58088ad0 7813 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7814 cfs_rq->runtime_remaining = 0;
671fd9da 7815
029632fb 7816 if (cfs_rq->throttled)
671fd9da 7817 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7818 raw_spin_unlock_irq(&rq->lock);
7819 }
1ee14e6c
BS
7820 if (runtime_was_enabled && !runtime_enabled)
7821 cfs_bandwidth_usage_dec();
a790de99
PT
7822out_unlock:
7823 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7824
a790de99 7825 return ret;
ab84d31e
PT
7826}
7827
7828int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7829{
7830 u64 quota, period;
7831
029632fb 7832 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7833 if (cfs_quota_us < 0)
7834 quota = RUNTIME_INF;
7835 else
7836 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7837
7838 return tg_set_cfs_bandwidth(tg, period, quota);
7839}
7840
7841long tg_get_cfs_quota(struct task_group *tg)
7842{
7843 u64 quota_us;
7844
029632fb 7845 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7846 return -1;
7847
029632fb 7848 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7849 do_div(quota_us, NSEC_PER_USEC);
7850
7851 return quota_us;
7852}
7853
7854int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7855{
7856 u64 quota, period;
7857
7858 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7859 quota = tg->cfs_bandwidth.quota;
ab84d31e 7860
ab84d31e
PT
7861 return tg_set_cfs_bandwidth(tg, period, quota);
7862}
7863
7864long tg_get_cfs_period(struct task_group *tg)
7865{
7866 u64 cfs_period_us;
7867
029632fb 7868 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7869 do_div(cfs_period_us, NSEC_PER_USEC);
7870
7871 return cfs_period_us;
7872}
7873
182446d0
TH
7874static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7875 struct cftype *cft)
ab84d31e 7876{
182446d0 7877 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7878}
7879
182446d0
TH
7880static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7881 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7882{
182446d0 7883 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7884}
7885
182446d0
TH
7886static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7887 struct cftype *cft)
ab84d31e 7888{
182446d0 7889 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7890}
7891
182446d0
TH
7892static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7893 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7894{
182446d0 7895 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7896}
7897
a790de99
PT
7898struct cfs_schedulable_data {
7899 struct task_group *tg;
7900 u64 period, quota;
7901};
7902
7903/*
7904 * normalize group quota/period to be quota/max_period
7905 * note: units are usecs
7906 */
7907static u64 normalize_cfs_quota(struct task_group *tg,
7908 struct cfs_schedulable_data *d)
7909{
7910 u64 quota, period;
7911
7912 if (tg == d->tg) {
7913 period = d->period;
7914 quota = d->quota;
7915 } else {
7916 period = tg_get_cfs_period(tg);
7917 quota = tg_get_cfs_quota(tg);
7918 }
7919
7920 /* note: these should typically be equivalent */
7921 if (quota == RUNTIME_INF || quota == -1)
7922 return RUNTIME_INF;
7923
7924 return to_ratio(period, quota);
7925}
7926
7927static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7928{
7929 struct cfs_schedulable_data *d = data;
029632fb 7930 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7931 s64 quota = 0, parent_quota = -1;
7932
7933 if (!tg->parent) {
7934 quota = RUNTIME_INF;
7935 } else {
029632fb 7936 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7937
7938 quota = normalize_cfs_quota(tg, d);
7939 parent_quota = parent_b->hierarchal_quota;
7940
7941 /*
7942 * ensure max(child_quota) <= parent_quota, inherit when no
7943 * limit is set
7944 */
7945 if (quota == RUNTIME_INF)
7946 quota = parent_quota;
7947 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7948 return -EINVAL;
7949 }
7950 cfs_b->hierarchal_quota = quota;
7951
7952 return 0;
7953}
7954
7955static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7956{
8277434e 7957 int ret;
a790de99
PT
7958 struct cfs_schedulable_data data = {
7959 .tg = tg,
7960 .period = period,
7961 .quota = quota,
7962 };
7963
7964 if (quota != RUNTIME_INF) {
7965 do_div(data.period, NSEC_PER_USEC);
7966 do_div(data.quota, NSEC_PER_USEC);
7967 }
7968
8277434e
PT
7969 rcu_read_lock();
7970 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7971 rcu_read_unlock();
7972
7973 return ret;
a790de99 7974}
e8da1b18 7975
2da8ca82 7976static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7977{
2da8ca82 7978 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7979 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7980
44ffc75b
TH
7981 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7982 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7983 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7984
7985 return 0;
7986}
ab84d31e 7987#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7988#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7989
052f1dc7 7990#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7991static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7992 struct cftype *cft, s64 val)
6f505b16 7993{
182446d0 7994 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7995}
7996
182446d0
TH
7997static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7998 struct cftype *cft)
6f505b16 7999{
182446d0 8000 return sched_group_rt_runtime(css_tg(css));
6f505b16 8001}
d0b27fa7 8002
182446d0
TH
8003static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8004 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8005{
182446d0 8006 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8007}
8008
182446d0
TH
8009static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8010 struct cftype *cft)
d0b27fa7 8011{
182446d0 8012 return sched_group_rt_period(css_tg(css));
d0b27fa7 8013}
6d6bc0ad 8014#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8015
fe5c7cc2 8016static struct cftype cpu_files[] = {
052f1dc7 8017#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8018 {
8019 .name = "shares",
f4c753b7
PM
8020 .read_u64 = cpu_shares_read_u64,
8021 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8022 },
052f1dc7 8023#endif
ab84d31e
PT
8024#ifdef CONFIG_CFS_BANDWIDTH
8025 {
8026 .name = "cfs_quota_us",
8027 .read_s64 = cpu_cfs_quota_read_s64,
8028 .write_s64 = cpu_cfs_quota_write_s64,
8029 },
8030 {
8031 .name = "cfs_period_us",
8032 .read_u64 = cpu_cfs_period_read_u64,
8033 .write_u64 = cpu_cfs_period_write_u64,
8034 },
e8da1b18
NR
8035 {
8036 .name = "stat",
2da8ca82 8037 .seq_show = cpu_stats_show,
e8da1b18 8038 },
ab84d31e 8039#endif
052f1dc7 8040#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8041 {
9f0c1e56 8042 .name = "rt_runtime_us",
06ecb27c
PM
8043 .read_s64 = cpu_rt_runtime_read,
8044 .write_s64 = cpu_rt_runtime_write,
6f505b16 8045 },
d0b27fa7
PZ
8046 {
8047 .name = "rt_period_us",
f4c753b7
PM
8048 .read_u64 = cpu_rt_period_read_uint,
8049 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8050 },
052f1dc7 8051#endif
4baf6e33 8052 { } /* terminate */
68318b8e
SV
8053};
8054
073219e9 8055struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8056 .css_alloc = cpu_cgroup_css_alloc,
8057 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8058 .css_online = cpu_cgroup_css_online,
8059 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8060 .can_attach = cpu_cgroup_can_attach,
8061 .attach = cpu_cgroup_attach,
068c5cc5 8062 .exit = cpu_cgroup_exit,
4baf6e33 8063 .base_cftypes = cpu_files,
68318b8e
SV
8064 .early_init = 1,
8065};
8066
052f1dc7 8067#endif /* CONFIG_CGROUP_SCHED */
d842de87 8068
b637a328
PM
8069void dump_cpu_task(int cpu)
8070{
8071 pr_info("Task dump for CPU %d:\n", cpu);
8072 sched_show_task(cpu_curr(cpu));
8073}
This page took 2.534921 seconds and 5 git commands to generate.