mm/mmu_context, sched/core: Fix mmu_context.h assumption
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
76d92ac3
FW
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
1e78cdbd 602 */
76d92ac3
FW
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
1e78cdbd
RR
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
76d92ac3 609 * realtime priority.
1e78cdbd 610 */
76d92ac3
FW
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
1e78cdbd
RR
616 }
617
76d92ac3
FW
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
541b8264 620 return false;
ce831b38 621
541b8264 622 return true;
ce831b38
FW
623}
624#endif /* CONFIG_NO_HZ_FULL */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
78becc27 630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#endif /* CONFIG_SMP */
18d95a28 643
a790de99
PT
644#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 646/*
8277434e
PT
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 651 */
029632fb 652int walk_tg_tree_from(struct task_group *from,
8277434e 653 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
654{
655 struct task_group *parent, *child;
eb755805 656 int ret;
c09595f6 657
8277434e
PT
658 parent = from;
659
c09595f6 660down:
eb755805
PZ
661 ret = (*down)(parent, data);
662 if (ret)
8277434e 663 goto out;
c09595f6
PZ
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668up:
669 continue;
670 }
eb755805 671 ret = (*up)(parent, data);
8277434e
PT
672 if (ret || parent == from)
673 goto out;
c09595f6
PZ
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
8277434e 679out:
eb755805 680 return ret;
c09595f6
PZ
681}
682
029632fb 683int tg_nop(struct task_group *tg, void *data)
eb755805 684{
e2b245f8 685 return 0;
eb755805 686}
18d95a28
PZ
687#endif
688
45bf76df
IM
689static void set_load_weight(struct task_struct *p)
690{
f05998d4
NR
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
dd41f596
IM
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
20f9cd2a 697 if (idle_policy(p->policy)) {
c8b28116 698 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 699 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
700 return;
701 }
71f8bd46 702
ed82b8a1
AK
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
705}
706
1de64443 707static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 708{
a64692a3 709 update_rq_clock(rq);
1de64443
PZ
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
371fd7e7 712 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
713}
714
1de64443 715static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 716{
a64692a3 717 update_rq_clock(rq);
1de64443
PZ
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
371fd7e7 720 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
721}
722
029632fb 723void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
724{
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
371fd7e7 728 enqueue_task(rq, p, flags);
1e3c88bd
PZ
729}
730
029632fb 731void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
732{
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
371fd7e7 736 dequeue_task(rq, p, flags);
1e3c88bd
PZ
737}
738
fe44d621 739static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 740{
095c0aa8
GC
741/*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747#endif
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
095c0aa8
GC
771#endif
772#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 773 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
095c0aa8 780 rq->prev_steal_time_rq += steal;
095c0aa8
GC
781 delta -= steal;
782 }
783#endif
784
fe44d621
PZ
785 rq->clock_task += delta;
786
095c0aa8 787#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
789 sched_rt_avg_update(rq, irq_delta + steal);
790#endif
aa483808
VP
791}
792
34f971f6
PZ
793void sched_set_stop_task(int cpu, struct task_struct *stop)
794{
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821}
822
14531189 823/*
dd41f596 824 * __normal_prio - return the priority that is based on the static prio
14531189 825 */
14531189
IM
826static inline int __normal_prio(struct task_struct *p)
827{
dd41f596 828 return p->static_prio;
14531189
IM
829}
830
b29739f9
IM
831/*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
36c8b586 838static inline int normal_prio(struct task_struct *p)
b29739f9
IM
839{
840 int prio;
841
aab03e05
DF
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
b29739f9
IM
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849}
850
851/*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
36c8b586 858static int effective_prio(struct task_struct *p)
b29739f9
IM
859{
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869}
870
1da177e4
LT
871/**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
e69f6186
YB
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 876 */
36c8b586 877inline int task_curr(const struct task_struct *p)
1da177e4
LT
878{
879 return cpu_curr(task_cpu(p)) == p;
880}
881
67dfa1b7 882/*
4c9a4bc8
PZ
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
67dfa1b7 888 */
cb469845
SR
889static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
da7a735e 891 int oldprio)
cb469845
SR
892{
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
da7a735e 895 prev_class->switched_from(rq, p);
4c9a4bc8 896
da7a735e 897 p->sched_class->switched_to(rq, p);
2d3d891d 898 } else if (oldprio != p->prio || dl_task(p))
da7a735e 899 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
900}
901
029632fb 902void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
903{
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
8875125e 913 resched_curr(rq);
1e5a7405
PZ
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
da0c1e65 923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 924 rq_clock_skip_update(rq, true);
1e5a7405
PZ
925}
926
1da177e4 927#ifdef CONFIG_SMP
5cc389bc
PZ
928/*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942/*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
5e16bbc2 947static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 948{
5cc389bc
PZ
949 lockdep_assert_held(&rq->lock);
950
5cc389bc 951 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 952 dequeue_task(rq, p, 0);
5cc389bc
PZ
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 960 enqueue_task(rq, p, 0);
3ea94de1 961 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965}
966
967struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970};
971
972/*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
5cc389bc 980 */
5e16bbc2 981static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 988 return rq;
5cc389bc 989
5e16bbc2
PZ
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
5cc389bc
PZ
993}
994
995/*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000static int migration_cpu_stop(void *data)
1001{
1002 struct migration_arg *arg = data;
5e16bbc2
PZ
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
5cc389bc
PZ
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
5e16bbc2
PZ
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
5cc389bc
PZ
1030 local_irq_enable();
1031 return 0;
1032}
1033
c5b28038
PZ
1034/*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1039{
5cc389bc
PZ
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042}
1043
c5b28038
PZ
1044void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045{
6c37067e
PZ
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
c5b28038 1049 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1de64443 1060 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
c5b28038 1065 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1de64443 1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1071}
1072
5cc389bc
PZ
1073/*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
25834c73
PZ
1082static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1084{
1085 unsigned long flags;
1086 struct rq *rq;
1087 unsigned int dest_cpu;
1088 int ret = 0;
1089
1090 rq = task_rq_lock(p, &flags);
1091
25834c73
PZ
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
5cc389bc
PZ
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 /* Can the task run on the task's current CPU? If so, we're done */
1112 if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 goto out;
1114
1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 struct migration_arg arg = { p, dest_cpu };
1118 /* Need help from migration thread: drop lock and wait. */
1119 task_rq_unlock(rq, p, &flags);
1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 tlb_migrate_finish(p->mm);
1122 return 0;
cbce1a68
PZ
1123 } else if (task_on_rq_queued(p)) {
1124 /*
1125 * OK, since we're going to drop the lock immediately
1126 * afterwards anyway.
1127 */
1128 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1129 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1130 lockdep_pin_lock(&rq->lock);
1131 }
5cc389bc
PZ
1132out:
1133 task_rq_unlock(rq, p, &flags);
1134
1135 return ret;
1136}
25834c73
PZ
1137
1138int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139{
1140 return __set_cpus_allowed_ptr(p, new_mask, false);
1141}
5cc389bc
PZ
1142EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143
dd41f596 1144void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1145{
e2912009
PZ
1146#ifdef CONFIG_SCHED_DEBUG
1147 /*
1148 * We should never call set_task_cpu() on a blocked task,
1149 * ttwu() will sort out the placement.
1150 */
077614ee 1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1152 !p->on_rq);
0122ec5b 1153
3ea94de1
JP
1154 /*
1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 * time relying on p->on_rq.
1158 */
1159 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 p->sched_class == &fair_sched_class &&
1161 (p->on_rq && !task_on_rq_migrating(p)));
1162
0122ec5b 1163#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1164 /*
1165 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 *
1168 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1169 * see task_group().
6c6c54e1
PZ
1170 *
1171 * Furthermore, all task_rq users should acquire both locks, see
1172 * task_rq_lock().
1173 */
0122ec5b
PZ
1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 lockdep_is_held(&task_rq(p)->lock)));
1176#endif
e2912009
PZ
1177#endif
1178
de1d7286 1179 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1180
0c69774e 1181 if (task_cpu(p) != new_cpu) {
0a74bef8 1182 if (p->sched_class->migrate_task_rq)
5a4fd036 1183 p->sched_class->migrate_task_rq(p);
0c69774e 1184 p->se.nr_migrations++;
ff303e66 1185 perf_event_task_migrate(p);
0c69774e 1186 }
dd41f596
IM
1187
1188 __set_task_cpu(p, new_cpu);
c65cc870
IM
1189}
1190
ac66f547
PZ
1191static void __migrate_swap_task(struct task_struct *p, int cpu)
1192{
da0c1e65 1193 if (task_on_rq_queued(p)) {
ac66f547
PZ
1194 struct rq *src_rq, *dst_rq;
1195
1196 src_rq = task_rq(p);
1197 dst_rq = cpu_rq(cpu);
1198
3ea94de1 1199 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1200 deactivate_task(src_rq, p, 0);
1201 set_task_cpu(p, cpu);
1202 activate_task(dst_rq, p, 0);
3ea94de1 1203 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1204 check_preempt_curr(dst_rq, p, 0);
1205 } else {
1206 /*
1207 * Task isn't running anymore; make it appear like we migrated
1208 * it before it went to sleep. This means on wakeup we make the
1209 * previous cpu our targer instead of where it really is.
1210 */
1211 p->wake_cpu = cpu;
1212 }
1213}
1214
1215struct migration_swap_arg {
1216 struct task_struct *src_task, *dst_task;
1217 int src_cpu, dst_cpu;
1218};
1219
1220static int migrate_swap_stop(void *data)
1221{
1222 struct migration_swap_arg *arg = data;
1223 struct rq *src_rq, *dst_rq;
1224 int ret = -EAGAIN;
1225
62694cd5
PZ
1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 return -EAGAIN;
1228
ac66f547
PZ
1229 src_rq = cpu_rq(arg->src_cpu);
1230 dst_rq = cpu_rq(arg->dst_cpu);
1231
74602315
PZ
1232 double_raw_lock(&arg->src_task->pi_lock,
1233 &arg->dst_task->pi_lock);
ac66f547 1234 double_rq_lock(src_rq, dst_rq);
62694cd5 1235
ac66f547
PZ
1236 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 goto unlock;
1238
1239 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 goto unlock;
1247
1248 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1250
1251 ret = 0;
1252
1253unlock:
1254 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1255 raw_spin_unlock(&arg->dst_task->pi_lock);
1256 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1257
1258 return ret;
1259}
1260
1261/*
1262 * Cross migrate two tasks
1263 */
1264int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265{
1266 struct migration_swap_arg arg;
1267 int ret = -EINVAL;
1268
ac66f547
PZ
1269 arg = (struct migration_swap_arg){
1270 .src_task = cur,
1271 .src_cpu = task_cpu(cur),
1272 .dst_task = p,
1273 .dst_cpu = task_cpu(p),
1274 };
1275
1276 if (arg.src_cpu == arg.dst_cpu)
1277 goto out;
1278
6acce3ef
PZ
1279 /*
1280 * These three tests are all lockless; this is OK since all of them
1281 * will be re-checked with proper locks held further down the line.
1282 */
ac66f547
PZ
1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 goto out;
1285
1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 goto out;
1291
286549dc 1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294
1295out:
ac66f547
PZ
1296 return ret;
1297}
1298
1da177e4
LT
1299/*
1300 * wait_task_inactive - wait for a thread to unschedule.
1301 *
85ba2d86
RM
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1308 *
1da177e4
LT
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1314 */
85ba2d86 1315unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1316{
1317 unsigned long flags;
da0c1e65 1318 int running, queued;
85ba2d86 1319 unsigned long ncsw;
70b97a7f 1320 struct rq *rq;
1da177e4 1321
3a5c359a
AK
1322 for (;;) {
1323 /*
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1327 * work out!
1328 */
1329 rq = task_rq(p);
fa490cfd 1330
3a5c359a
AK
1331 /*
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1334 * any locks.
1335 *
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1341 */
85ba2d86
RM
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1344 return 0;
3a5c359a 1345 cpu_relax();
85ba2d86 1346 }
fa490cfd 1347
3a5c359a
AK
1348 /*
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1352 */
1353 rq = task_rq_lock(p, &flags);
27a9da65 1354 trace_sched_wait_task(p);
3a5c359a 1355 running = task_running(rq, p);
da0c1e65 1356 queued = task_on_rq_queued(p);
85ba2d86 1357 ncsw = 0;
f31e11d8 1358 if (!match_state || p->state == match_state)
93dcf55f 1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1360 task_rq_unlock(rq, p, &flags);
fa490cfd 1361
85ba2d86
RM
1362 /*
1363 * If it changed from the expected state, bail out now.
1364 */
1365 if (unlikely(!ncsw))
1366 break;
1367
3a5c359a
AK
1368 /*
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1371 *
1372 * Oops. Go back and try again..
1373 */
1374 if (unlikely(running)) {
1375 cpu_relax();
1376 continue;
1377 }
fa490cfd 1378
3a5c359a
AK
1379 /*
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1382 * preempted!
1383 *
80dd99b3 1384 * So if it was still runnable (but just not actively
3a5c359a
AK
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1387 */
da0c1e65 1388 if (unlikely(queued)) {
8eb90c30
TG
1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1393 continue;
1394 }
fa490cfd 1395
3a5c359a
AK
1396 /*
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1400 */
1401 break;
1402 }
85ba2d86
RM
1403
1404 return ncsw;
1da177e4
LT
1405}
1406
1407/***
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1410 *
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1413 *
25985edc 1414 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1418 * achieved as well.
1419 */
36c8b586 1420void kick_process(struct task_struct *p)
1da177e4
LT
1421{
1422 int cpu;
1423
1424 preempt_disable();
1425 cpu = task_cpu(p);
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1428 preempt_enable();
1429}
b43e3521 1430EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1431
30da688e 1432/*
013fdb80 1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1434 */
5da9a0fb
PZ
1435static int select_fallback_rq(int cpu, struct task_struct *p)
1436{
aa00d89c
TC
1437 int nid = cpu_to_node(cpu);
1438 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1439 enum { cpuset, possible, fail } state = cpuset;
1440 int dest_cpu;
5da9a0fb 1441
aa00d89c
TC
1442 /*
1443 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 * will return -1. There is no cpu on the node, and we should
1445 * select the cpu on the other node.
1446 */
1447 if (nid != -1) {
1448 nodemask = cpumask_of_node(nid);
1449
1450 /* Look for allowed, online CPU in same node. */
1451 for_each_cpu(dest_cpu, nodemask) {
1452 if (!cpu_online(dest_cpu))
1453 continue;
1454 if (!cpu_active(dest_cpu))
1455 continue;
1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 return dest_cpu;
1458 }
2baab4e9 1459 }
5da9a0fb 1460
2baab4e9
PZ
1461 for (;;) {
1462 /* Any allowed, online CPU? */
e3831edd 1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1464 if (!cpu_online(dest_cpu))
1465 continue;
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 goto out;
1469 }
5da9a0fb 1470
e73e85f0 1471 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1472 switch (state) {
1473 case cpuset:
e73e85f0
ON
1474 if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 cpuset_cpus_allowed_fallback(p);
1476 state = possible;
1477 break;
1478 }
1479 /* fall-through */
2baab4e9
PZ
1480 case possible:
1481 do_set_cpus_allowed(p, cpu_possible_mask);
1482 state = fail;
1483 break;
1484
1485 case fail:
1486 BUG();
1487 break;
1488 }
1489 }
1490
1491out:
1492 if (state != cpuset) {
1493 /*
1494 * Don't tell them about moving exiting tasks or
1495 * kernel threads (both mm NULL), since they never
1496 * leave kernel.
1497 */
1498 if (p->mm && printk_ratelimit()) {
aac74dc4 1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1500 task_pid_nr(p), p->comm, cpu);
1501 }
5da9a0fb
PZ
1502 }
1503
1504 return dest_cpu;
1505}
1506
e2912009 1507/*
013fdb80 1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1509 */
970b13ba 1510static inline
ac66f547 1511int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1512{
cbce1a68
PZ
1513 lockdep_assert_held(&p->pi_lock);
1514
6c1d9410
WL
1515 if (p->nr_cpus_allowed > 1)
1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1517
1518 /*
1519 * In order not to call set_task_cpu() on a blocking task we need
1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 * cpu.
1522 *
1523 * Since this is common to all placement strategies, this lives here.
1524 *
1525 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 * not worry about this generic constraint ]
1527 */
fa17b507 1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1529 !cpu_online(cpu)))
5da9a0fb 1530 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1531
1532 return cpu;
970b13ba 1533}
09a40af5
MG
1534
1535static void update_avg(u64 *avg, u64 sample)
1536{
1537 s64 diff = sample - *avg;
1538 *avg += diff >> 3;
1539}
25834c73
PZ
1540
1541#else
1542
1543static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 const struct cpumask *new_mask, bool check)
1545{
1546 return set_cpus_allowed_ptr(p, new_mask);
1547}
1548
5cc389bc 1549#endif /* CONFIG_SMP */
970b13ba 1550
d7c01d27 1551static void
b84cb5df 1552ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1553{
d7c01d27 1554#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1555 struct rq *rq = this_rq();
1556
d7c01d27
PZ
1557#ifdef CONFIG_SMP
1558 int this_cpu = smp_processor_id();
1559
1560 if (cpu == this_cpu) {
1561 schedstat_inc(rq, ttwu_local);
1562 schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 } else {
1564 struct sched_domain *sd;
1565
1566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1567 rcu_read_lock();
d7c01d27
PZ
1568 for_each_domain(this_cpu, sd) {
1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 schedstat_inc(sd, ttwu_wake_remote);
1571 break;
1572 }
1573 }
057f3fad 1574 rcu_read_unlock();
d7c01d27 1575 }
f339b9dc
PZ
1576
1577 if (wake_flags & WF_MIGRATED)
1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579
d7c01d27
PZ
1580#endif /* CONFIG_SMP */
1581
1582 schedstat_inc(rq, ttwu_count);
9ed3811a 1583 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1584
1585 if (wake_flags & WF_SYNC)
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1587
d7c01d27
PZ
1588#endif /* CONFIG_SCHEDSTATS */
1589}
1590
1de64443 1591static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1592{
9ed3811a 1593 activate_task(rq, p, en_flags);
da0c1e65 1594 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1595
1596 /* if a worker is waking up, notify workqueue */
1597 if (p->flags & PF_WQ_WORKER)
1598 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1599}
1600
23f41eeb
PZ
1601/*
1602 * Mark the task runnable and perform wakeup-preemption.
1603 */
89363381 1604static void
23f41eeb 1605ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1606{
9ed3811a 1607 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1608 p->state = TASK_RUNNING;
fbd705a0
PZ
1609 trace_sched_wakeup(p);
1610
9ed3811a 1611#ifdef CONFIG_SMP
4c9a4bc8
PZ
1612 if (p->sched_class->task_woken) {
1613 /*
cbce1a68
PZ
1614 * Our task @p is fully woken up and running; so its safe to
1615 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1616 */
cbce1a68 1617 lockdep_unpin_lock(&rq->lock);
9ed3811a 1618 p->sched_class->task_woken(rq, p);
cbce1a68 1619 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1620 }
9ed3811a 1621
e69c6341 1622 if (rq->idle_stamp) {
78becc27 1623 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1624 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1625
abfafa54
JL
1626 update_avg(&rq->avg_idle, delta);
1627
1628 if (rq->avg_idle > max)
9ed3811a 1629 rq->avg_idle = max;
abfafa54 1630
9ed3811a
TH
1631 rq->idle_stamp = 0;
1632 }
1633#endif
1634}
1635
c05fbafb
PZ
1636static void
1637ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638{
cbce1a68
PZ
1639 lockdep_assert_held(&rq->lock);
1640
c05fbafb
PZ
1641#ifdef CONFIG_SMP
1642 if (p->sched_contributes_to_load)
1643 rq->nr_uninterruptible--;
1644#endif
1645
1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 ttwu_do_wakeup(rq, p, wake_flags);
1648}
1649
1650/*
1651 * Called in case the task @p isn't fully descheduled from its runqueue,
1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653 * since all we need to do is flip p->state to TASK_RUNNING, since
1654 * the task is still ->on_rq.
1655 */
1656static int ttwu_remote(struct task_struct *p, int wake_flags)
1657{
1658 struct rq *rq;
1659 int ret = 0;
1660
1661 rq = __task_rq_lock(p);
da0c1e65 1662 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1663 /* check_preempt_curr() may use rq clock */
1664 update_rq_clock(rq);
c05fbafb
PZ
1665 ttwu_do_wakeup(rq, p, wake_flags);
1666 ret = 1;
1667 }
1668 __task_rq_unlock(rq);
1669
1670 return ret;
1671}
1672
317f3941 1673#ifdef CONFIG_SMP
e3baac47 1674void sched_ttwu_pending(void)
317f3941
PZ
1675{
1676 struct rq *rq = this_rq();
fa14ff4a
PZ
1677 struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 struct task_struct *p;
e3baac47 1679 unsigned long flags;
317f3941 1680
e3baac47
PZ
1681 if (!llist)
1682 return;
1683
1684 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1685 lockdep_pin_lock(&rq->lock);
317f3941 1686
fa14ff4a
PZ
1687 while (llist) {
1688 p = llist_entry(llist, struct task_struct, wake_entry);
1689 llist = llist_next(llist);
317f3941
PZ
1690 ttwu_do_activate(rq, p, 0);
1691 }
1692
cbce1a68 1693 lockdep_unpin_lock(&rq->lock);
e3baac47 1694 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1695}
1696
1697void scheduler_ipi(void)
1698{
f27dde8d
PZ
1699 /*
1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 * this IPI.
1703 */
8cb75e0c 1704 preempt_fold_need_resched();
f27dde8d 1705
fd2ac4f4 1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1707 return;
1708
1709 /*
1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 * traditionally all their work was done from the interrupt return
1712 * path. Now that we actually do some work, we need to make sure
1713 * we do call them.
1714 *
1715 * Some archs already do call them, luckily irq_enter/exit nest
1716 * properly.
1717 *
1718 * Arguably we should visit all archs and update all handlers,
1719 * however a fair share of IPIs are still resched only so this would
1720 * somewhat pessimize the simple resched case.
1721 */
1722 irq_enter();
fa14ff4a 1723 sched_ttwu_pending();
ca38062e
SS
1724
1725 /*
1726 * Check if someone kicked us for doing the nohz idle load balance.
1727 */
873b4c65 1728 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1729 this_rq()->idle_balance = 1;
ca38062e 1730 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1731 }
c5d753a5 1732 irq_exit();
317f3941
PZ
1733}
1734
1735static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736{
e3baac47
PZ
1737 struct rq *rq = cpu_rq(cpu);
1738
1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 if (!set_nr_if_polling(rq->idle))
1741 smp_send_reschedule(cpu);
1742 else
1743 trace_sched_wake_idle_without_ipi(cpu);
1744 }
317f3941 1745}
d6aa8f85 1746
f6be8af1
CL
1747void wake_up_if_idle(int cpu)
1748{
1749 struct rq *rq = cpu_rq(cpu);
1750 unsigned long flags;
1751
fd7de1e8
AL
1752 rcu_read_lock();
1753
1754 if (!is_idle_task(rcu_dereference(rq->curr)))
1755 goto out;
f6be8af1
CL
1756
1757 if (set_nr_if_polling(rq->idle)) {
1758 trace_sched_wake_idle_without_ipi(cpu);
1759 } else {
1760 raw_spin_lock_irqsave(&rq->lock, flags);
1761 if (is_idle_task(rq->curr))
1762 smp_send_reschedule(cpu);
1763 /* Else cpu is not in idle, do nothing here */
1764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 }
fd7de1e8
AL
1766
1767out:
1768 rcu_read_unlock();
f6be8af1
CL
1769}
1770
39be3501 1771bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1772{
1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774}
d6aa8f85 1775#endif /* CONFIG_SMP */
317f3941 1776
c05fbafb
PZ
1777static void ttwu_queue(struct task_struct *p, int cpu)
1778{
1779 struct rq *rq = cpu_rq(cpu);
1780
17d9f311 1781#if defined(CONFIG_SMP)
39be3501 1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1784 ttwu_queue_remote(p, cpu);
1785 return;
1786 }
1787#endif
1788
c05fbafb 1789 raw_spin_lock(&rq->lock);
cbce1a68 1790 lockdep_pin_lock(&rq->lock);
c05fbafb 1791 ttwu_do_activate(rq, p, 0);
cbce1a68 1792 lockdep_unpin_lock(&rq->lock);
c05fbafb 1793 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1794}
1795
8643cda5
PZ
1796/*
1797 * Notes on Program-Order guarantees on SMP systems.
1798 *
1799 * MIGRATION
1800 *
1801 * The basic program-order guarantee on SMP systems is that when a task [t]
1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803 * execution on its new cpu [c1].
1804 *
1805 * For migration (of runnable tasks) this is provided by the following means:
1806 *
1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1809 * rq(c1)->lock (if not at the same time, then in that order).
1810 * C) LOCK of the rq(c1)->lock scheduling in task
1811 *
1812 * Transitivity guarantees that B happens after A and C after B.
1813 * Note: we only require RCpc transitivity.
1814 * Note: the cpu doing B need not be c0 or c1
1815 *
1816 * Example:
1817 *
1818 * CPU0 CPU1 CPU2
1819 *
1820 * LOCK rq(0)->lock
1821 * sched-out X
1822 * sched-in Y
1823 * UNLOCK rq(0)->lock
1824 *
1825 * LOCK rq(0)->lock // orders against CPU0
1826 * dequeue X
1827 * UNLOCK rq(0)->lock
1828 *
1829 * LOCK rq(1)->lock
1830 * enqueue X
1831 * UNLOCK rq(1)->lock
1832 *
1833 * LOCK rq(1)->lock // orders against CPU2
1834 * sched-out Z
1835 * sched-in X
1836 * UNLOCK rq(1)->lock
1837 *
1838 *
1839 * BLOCKING -- aka. SLEEP + WAKEUP
1840 *
1841 * For blocking we (obviously) need to provide the same guarantee as for
1842 * migration. However the means are completely different as there is no lock
1843 * chain to provide order. Instead we do:
1844 *
1845 * 1) smp_store_release(X->on_cpu, 0)
1846 * 2) smp_cond_acquire(!X->on_cpu)
1847 *
1848 * Example:
1849 *
1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1851 *
1852 * LOCK rq(0)->lock LOCK X->pi_lock
1853 * dequeue X
1854 * sched-out X
1855 * smp_store_release(X->on_cpu, 0);
1856 *
1857 * smp_cond_acquire(!X->on_cpu);
1858 * X->state = WAKING
1859 * set_task_cpu(X,2)
1860 *
1861 * LOCK rq(2)->lock
1862 * enqueue X
1863 * X->state = RUNNING
1864 * UNLOCK rq(2)->lock
1865 *
1866 * LOCK rq(2)->lock // orders against CPU1
1867 * sched-out Z
1868 * sched-in X
1869 * UNLOCK rq(2)->lock
1870 *
1871 * UNLOCK X->pi_lock
1872 * UNLOCK rq(0)->lock
1873 *
1874 *
1875 * However; for wakeups there is a second guarantee we must provide, namely we
1876 * must observe the state that lead to our wakeup. That is, not only must our
1877 * task observe its own prior state, it must also observe the stores prior to
1878 * its wakeup.
1879 *
1880 * This means that any means of doing remote wakeups must order the CPU doing
1881 * the wakeup against the CPU the task is going to end up running on. This,
1882 * however, is already required for the regular Program-Order guarantee above,
1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884 *
1885 */
1886
9ed3811a 1887/**
1da177e4 1888 * try_to_wake_up - wake up a thread
9ed3811a 1889 * @p: the thread to be awakened
1da177e4 1890 * @state: the mask of task states that can be woken
9ed3811a 1891 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1892 *
1893 * Put it on the run-queue if it's not already there. The "current"
1894 * thread is always on the run-queue (except when the actual
1895 * re-schedule is in progress), and as such you're allowed to do
1896 * the simpler "current->state = TASK_RUNNING" to mark yourself
1897 * runnable without the overhead of this.
1898 *
e69f6186 1899 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1900 * or @state didn't match @p's state.
1da177e4 1901 */
e4a52bcb
PZ
1902static int
1903try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1904{
1da177e4 1905 unsigned long flags;
c05fbafb 1906 int cpu, success = 0;
2398f2c6 1907
e0acd0a6
ON
1908 /*
1909 * If we are going to wake up a thread waiting for CONDITION we
1910 * need to ensure that CONDITION=1 done by the caller can not be
1911 * reordered with p->state check below. This pairs with mb() in
1912 * set_current_state() the waiting thread does.
1913 */
1914 smp_mb__before_spinlock();
013fdb80 1915 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1916 if (!(p->state & state))
1da177e4
LT
1917 goto out;
1918
fbd705a0
PZ
1919 trace_sched_waking(p);
1920
c05fbafb 1921 success = 1; /* we're going to change ->state */
1da177e4 1922 cpu = task_cpu(p);
1da177e4 1923
c05fbafb
PZ
1924 if (p->on_rq && ttwu_remote(p, wake_flags))
1925 goto stat;
1da177e4 1926
1da177e4 1927#ifdef CONFIG_SMP
ecf7d01c
PZ
1928 /*
1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 * possible to, falsely, observe p->on_cpu == 0.
1931 *
1932 * One must be running (->on_cpu == 1) in order to remove oneself
1933 * from the runqueue.
1934 *
1935 * [S] ->on_cpu = 1; [L] ->on_rq
1936 * UNLOCK rq->lock
1937 * RMB
1938 * LOCK rq->lock
1939 * [S] ->on_rq = 0; [L] ->on_cpu
1940 *
1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 * from the consecutive calls to schedule(); the first switching to our
1943 * task, the second putting it to sleep.
1944 */
1945 smp_rmb();
1946
e9c84311 1947 /*
c05fbafb
PZ
1948 * If the owning (remote) cpu is still in the middle of schedule() with
1949 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1950 *
1951 * Pairs with the smp_store_release() in finish_lock_switch().
1952 *
1953 * This ensures that tasks getting woken will be fully ordered against
1954 * their previous state and preserve Program Order.
0970d299 1955 */
b3e0b1b6 1956 smp_cond_acquire(!p->on_cpu);
1da177e4 1957
a8e4f2ea 1958 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1959 p->state = TASK_WAKING;
e7693a36 1960
e4a52bcb 1961 if (p->sched_class->task_waking)
74f8e4b2 1962 p->sched_class->task_waking(p);
efbbd05a 1963
ac66f547 1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1965 if (task_cpu(p) != cpu) {
1966 wake_flags |= WF_MIGRATED;
e4a52bcb 1967 set_task_cpu(p, cpu);
f339b9dc 1968 }
1da177e4 1969#endif /* CONFIG_SMP */
1da177e4 1970
c05fbafb
PZ
1971 ttwu_queue(p, cpu);
1972stat:
cb251765
MG
1973 if (schedstat_enabled())
1974 ttwu_stat(p, cpu, wake_flags);
1da177e4 1975out:
013fdb80 1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1977
1978 return success;
1979}
1980
21aa9af0
TH
1981/**
1982 * try_to_wake_up_local - try to wake up a local task with rq lock held
1983 * @p: the thread to be awakened
1984 *
2acca55e 1985 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1987 * the current task.
21aa9af0
TH
1988 */
1989static void try_to_wake_up_local(struct task_struct *p)
1990{
1991 struct rq *rq = task_rq(p);
21aa9af0 1992
383efcd0
TH
1993 if (WARN_ON_ONCE(rq != this_rq()) ||
1994 WARN_ON_ONCE(p == current))
1995 return;
1996
21aa9af0
TH
1997 lockdep_assert_held(&rq->lock);
1998
2acca55e 1999 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2000 /*
2001 * This is OK, because current is on_cpu, which avoids it being
2002 * picked for load-balance and preemption/IRQs are still
2003 * disabled avoiding further scheduler activity on it and we've
2004 * not yet picked a replacement task.
2005 */
2006 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2007 raw_spin_unlock(&rq->lock);
2008 raw_spin_lock(&p->pi_lock);
2009 raw_spin_lock(&rq->lock);
cbce1a68 2010 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2011 }
2012
21aa9af0 2013 if (!(p->state & TASK_NORMAL))
2acca55e 2014 goto out;
21aa9af0 2015
fbd705a0
PZ
2016 trace_sched_waking(p);
2017
da0c1e65 2018 if (!task_on_rq_queued(p))
d7c01d27
PZ
2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020
23f41eeb 2021 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2022 if (schedstat_enabled())
2023 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2024out:
2025 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2026}
2027
50fa610a
DH
2028/**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
7ad5b3a5 2040int wake_up_process(struct task_struct *p)
1da177e4 2041{
9067ac85 2042 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2043}
1da177e4
LT
2044EXPORT_SYMBOL(wake_up_process);
2045
7ad5b3a5 2046int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2047{
2048 return try_to_wake_up(p, state, 0);
2049}
2050
a5e7be3b
JL
2051/*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054void __dl_clear_params(struct task_struct *p)
2055{
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
40767b0d
PZ
2063
2064 dl_se->dl_throttled = 0;
40767b0d 2065 dl_se->dl_yielded = 0;
a5e7be3b
JL
2066}
2067
1da177e4
LT
2068/*
2069 * Perform scheduler related setup for a newly forked process p.
2070 * p is forked by current.
dd41f596
IM
2071 *
2072 * __sched_fork() is basic setup used by init_idle() too:
2073 */
5e1576ed 2074static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2075{
fd2f4419
PZ
2076 p->on_rq = 0;
2077
2078 p->se.on_rq = 0;
dd41f596
IM
2079 p->se.exec_start = 0;
2080 p->se.sum_exec_runtime = 0;
f6cf891c 2081 p->se.prev_sum_exec_runtime = 0;
6c594c21 2082 p->se.nr_migrations = 0;
da7a735e 2083 p->se.vruntime = 0;
fd2f4419 2084 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2085
ad936d86
BP
2086#ifdef CONFIG_FAIR_GROUP_SCHED
2087 p->se.cfs_rq = NULL;
2088#endif
2089
6cfb0d5d 2090#ifdef CONFIG_SCHEDSTATS
cb251765 2091 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2093#endif
476d139c 2094
aab03e05 2095 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2096 init_dl_task_timer(&p->dl);
a5e7be3b 2097 __dl_clear_params(p);
aab03e05 2098
fa717060 2099 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2100 p->rt.timeout = 0;
2101 p->rt.time_slice = sched_rr_timeslice;
2102 p->rt.on_rq = 0;
2103 p->rt.on_list = 0;
476d139c 2104
e107be36
AK
2105#ifdef CONFIG_PREEMPT_NOTIFIERS
2106 INIT_HLIST_HEAD(&p->preempt_notifiers);
2107#endif
cbee9f88
PZ
2108
2109#ifdef CONFIG_NUMA_BALANCING
2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2112 p->mm->numa_scan_seq = 0;
2113 }
2114
5e1576ed
RR
2115 if (clone_flags & CLONE_VM)
2116 p->numa_preferred_nid = current->numa_preferred_nid;
2117 else
2118 p->numa_preferred_nid = -1;
2119
cbee9f88
PZ
2120 p->node_stamp = 0ULL;
2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2123 p->numa_work.next = &p->numa_work;
44dba3d5 2124 p->numa_faults = NULL;
7e2703e6
RR
2125 p->last_task_numa_placement = 0;
2126 p->last_sum_exec_runtime = 0;
8c8a743c 2127
8c8a743c 2128 p->numa_group = NULL;
cbee9f88 2129#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2130}
2131
2a595721
SD
2132DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133
1a687c2e 2134#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2135
1a687c2e
MG
2136void set_numabalancing_state(bool enabled)
2137{
2138 if (enabled)
2a595721 2139 static_branch_enable(&sched_numa_balancing);
1a687c2e 2140 else
2a595721 2141 static_branch_disable(&sched_numa_balancing);
1a687c2e 2142}
54a43d54
AK
2143
2144#ifdef CONFIG_PROC_SYSCTL
2145int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 void __user *buffer, size_t *lenp, loff_t *ppos)
2147{
2148 struct ctl_table t;
2149 int err;
2a595721 2150 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2151
2152 if (write && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154
2155 t = *table;
2156 t.data = &state;
2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 if (err < 0)
2159 return err;
2160 if (write)
2161 set_numabalancing_state(state);
2162 return err;
2163}
2164#endif
2165#endif
dd41f596 2166
cb251765
MG
2167DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168
2169#ifdef CONFIG_SCHEDSTATS
2170static void set_schedstats(bool enabled)
2171{
2172 if (enabled)
2173 static_branch_enable(&sched_schedstats);
2174 else
2175 static_branch_disable(&sched_schedstats);
2176}
2177
2178void force_schedstat_enabled(void)
2179{
2180 if (!schedstat_enabled()) {
2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 static_branch_enable(&sched_schedstats);
2183 }
2184}
2185
2186static int __init setup_schedstats(char *str)
2187{
2188 int ret = 0;
2189 if (!str)
2190 goto out;
2191
2192 if (!strcmp(str, "enable")) {
2193 set_schedstats(true);
2194 ret = 1;
2195 } else if (!strcmp(str, "disable")) {
2196 set_schedstats(false);
2197 ret = 1;
2198 }
2199out:
2200 if (!ret)
2201 pr_warn("Unable to parse schedstats=\n");
2202
2203 return ret;
2204}
2205__setup("schedstats=", setup_schedstats);
2206
2207#ifdef CONFIG_PROC_SYSCTL
2208int sysctl_schedstats(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210{
2211 struct ctl_table t;
2212 int err;
2213 int state = static_branch_likely(&sched_schedstats);
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_schedstats(state);
2225 return err;
2226}
2227#endif
2228#endif
dd41f596
IM
2229
2230/*
2231 * fork()/clone()-time setup:
2232 */
aab03e05 2233int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2234{
0122ec5b 2235 unsigned long flags;
dd41f596
IM
2236 int cpu = get_cpu();
2237
5e1576ed 2238 __sched_fork(clone_flags, p);
06b83b5f 2239 /*
0017d735 2240 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2241 * nobody will actually run it, and a signal or other external
2242 * event cannot wake it up and insert it on the runqueue either.
2243 */
0017d735 2244 p->state = TASK_RUNNING;
dd41f596 2245
c350a04e
MG
2246 /*
2247 * Make sure we do not leak PI boosting priority to the child.
2248 */
2249 p->prio = current->normal_prio;
2250
b9dc29e7
MG
2251 /*
2252 * Revert to default priority/policy on fork if requested.
2253 */
2254 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2256 p->policy = SCHED_NORMAL;
6c697bdf 2257 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2258 p->rt_priority = 0;
2259 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 p->static_prio = NICE_TO_PRIO(0);
2261
2262 p->prio = p->normal_prio = __normal_prio(p);
2263 set_load_weight(p);
6c697bdf 2264
b9dc29e7
MG
2265 /*
2266 * We don't need the reset flag anymore after the fork. It has
2267 * fulfilled its duty:
2268 */
2269 p->sched_reset_on_fork = 0;
2270 }
ca94c442 2271
aab03e05
DF
2272 if (dl_prio(p->prio)) {
2273 put_cpu();
2274 return -EAGAIN;
2275 } else if (rt_prio(p->prio)) {
2276 p->sched_class = &rt_sched_class;
2277 } else {
2ddbf952 2278 p->sched_class = &fair_sched_class;
aab03e05 2279 }
b29739f9 2280
cd29fe6f
PZ
2281 if (p->sched_class->task_fork)
2282 p->sched_class->task_fork(p);
2283
86951599
PZ
2284 /*
2285 * The child is not yet in the pid-hash so no cgroup attach races,
2286 * and the cgroup is pinned to this child due to cgroup_fork()
2287 * is ran before sched_fork().
2288 *
2289 * Silence PROVE_RCU.
2290 */
0122ec5b 2291 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2292 set_task_cpu(p, cpu);
0122ec5b 2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2294
f6db8347 2295#ifdef CONFIG_SCHED_INFO
dd41f596 2296 if (likely(sched_info_on()))
52f17b6c 2297 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2298#endif
3ca7a440
PZ
2299#if defined(CONFIG_SMP)
2300 p->on_cpu = 0;
4866cde0 2301#endif
01028747 2302 init_task_preempt_count(p);
806c09a7 2303#ifdef CONFIG_SMP
917b627d 2304 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2305 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2306#endif
917b627d 2307
476d139c 2308 put_cpu();
aab03e05 2309 return 0;
1da177e4
LT
2310}
2311
332ac17e
DF
2312unsigned long to_ratio(u64 period, u64 runtime)
2313{
2314 if (runtime == RUNTIME_INF)
2315 return 1ULL << 20;
2316
2317 /*
2318 * Doing this here saves a lot of checks in all
2319 * the calling paths, and returning zero seems
2320 * safe for them anyway.
2321 */
2322 if (period == 0)
2323 return 0;
2324
2325 return div64_u64(runtime << 20, period);
2326}
2327
2328#ifdef CONFIG_SMP
2329inline struct dl_bw *dl_bw_of(int i)
2330{
f78f5b90
PM
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
332ac17e
DF
2333 return &cpu_rq(i)->rd->dl_bw;
2334}
2335
de212f18 2336static inline int dl_bw_cpus(int i)
332ac17e 2337{
de212f18
PZ
2338 struct root_domain *rd = cpu_rq(i)->rd;
2339 int cpus = 0;
2340
f78f5b90
PM
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
de212f18
PZ
2343 for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 cpus++;
2345
2346 return cpus;
332ac17e
DF
2347}
2348#else
2349inline struct dl_bw *dl_bw_of(int i)
2350{
2351 return &cpu_rq(i)->dl.dl_bw;
2352}
2353
de212f18 2354static inline int dl_bw_cpus(int i)
332ac17e
DF
2355{
2356 return 1;
2357}
2358#endif
2359
332ac17e
DF
2360/*
2361 * We must be sure that accepting a new task (or allowing changing the
2362 * parameters of an existing one) is consistent with the bandwidth
2363 * constraints. If yes, this function also accordingly updates the currently
2364 * allocated bandwidth to reflect the new situation.
2365 *
2366 * This function is called while holding p's rq->lock.
40767b0d
PZ
2367 *
2368 * XXX we should delay bw change until the task's 0-lag point, see
2369 * __setparam_dl().
332ac17e
DF
2370 */
2371static int dl_overflow(struct task_struct *p, int policy,
2372 const struct sched_attr *attr)
2373{
2374
2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2376 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2377 u64 runtime = attr->sched_runtime;
2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2379 int cpus, err = -1;
332ac17e 2380
fec148c0
XP
2381 /* !deadline task may carry old deadline bandwidth */
2382 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2383 return 0;
2384
2385 /*
2386 * Either if a task, enters, leave, or stays -deadline but changes
2387 * its parameters, we may need to update accordingly the total
2388 * allocated bandwidth of the container.
2389 */
2390 raw_spin_lock(&dl_b->lock);
de212f18 2391 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2392 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2393 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2394 __dl_add(dl_b, new_bw);
2395 err = 0;
2396 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2397 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2398 __dl_clear(dl_b, p->dl.dl_bw);
2399 __dl_add(dl_b, new_bw);
2400 err = 0;
2401 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2402 __dl_clear(dl_b, p->dl.dl_bw);
2403 err = 0;
2404 }
2405 raw_spin_unlock(&dl_b->lock);
2406
2407 return err;
2408}
2409
2410extern void init_dl_bw(struct dl_bw *dl_b);
2411
1da177e4
LT
2412/*
2413 * wake_up_new_task - wake up a newly created task for the first time.
2414 *
2415 * This function will do some initial scheduler statistics housekeeping
2416 * that must be done for every newly created context, then puts the task
2417 * on the runqueue and wakes it.
2418 */
3e51e3ed 2419void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2420{
2421 unsigned long flags;
dd41f596 2422 struct rq *rq;
fabf318e 2423
ab2515c4 2424 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2425 /* Initialize new task's runnable average */
2426 init_entity_runnable_average(&p->se);
fabf318e
PZ
2427#ifdef CONFIG_SMP
2428 /*
2429 * Fork balancing, do it here and not earlier because:
2430 * - cpus_allowed can change in the fork path
2431 * - any previously selected cpu might disappear through hotplug
fabf318e 2432 */
ac66f547 2433 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2434#endif
2b8c41da
YD
2435 /* Post initialize new task's util average when its cfs_rq is set */
2436 post_init_entity_util_avg(&p->se);
0017d735 2437
ab2515c4 2438 rq = __task_rq_lock(p);
cd29fe6f 2439 activate_task(rq, p, 0);
da0c1e65 2440 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2441 trace_sched_wakeup_new(p);
a7558e01 2442 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2443#ifdef CONFIG_SMP
0aaafaab
PZ
2444 if (p->sched_class->task_woken) {
2445 /*
2446 * Nothing relies on rq->lock after this, so its fine to
2447 * drop it.
2448 */
2449 lockdep_unpin_lock(&rq->lock);
efbbd05a 2450 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2451 lockdep_pin_lock(&rq->lock);
2452 }
9a897c5a 2453#endif
0122ec5b 2454 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2455}
2456
e107be36
AK
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
1cde2930
PZ
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2ecd9d29
PZ
2461void preempt_notifier_inc(void)
2462{
2463 static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469 static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
e107be36 2473/**
80dd99b3 2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2475 * @notifier: notifier struct to register
e107be36
AK
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2ecd9d29
PZ
2479 if (!static_key_false(&preempt_notifier_key))
2480 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
e107be36
AK
2482 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2488 * @notifier: notifier struct to unregister
e107be36 2489 *
d84525a8 2490 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494 hlist_del(&notifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
1cde2930 2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2499{
2500 struct preempt_notifier *notifier;
e107be36 2501
b67bfe0d 2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2503 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
1cde2930
PZ
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508 if (static_key_false(&preempt_notifier_key))
2509 __fire_sched_in_preempt_notifiers(curr);
2510}
2511
e107be36 2512static void
1cde2930
PZ
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514 struct task_struct *next)
e107be36
AK
2515{
2516 struct preempt_notifier *notifier;
e107be36 2517
b67bfe0d 2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2519 notifier->ops->sched_out(notifier, next);
2520}
2521
1cde2930
PZ
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524 struct task_struct *next)
2525{
2526 if (static_key_false(&preempt_notifier_key))
2527 __fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
6d6bc0ad 2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2531
1cde2930 2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2533{
2534}
2535
1cde2930 2536static inline void
e107be36
AK
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539{
2540}
2541
6d6bc0ad 2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2543
4866cde0
NP
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
421cee29 2547 * @prev: the current task that is being switched out
4866cde0
NP
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
e107be36
AK
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
4866cde0 2560{
43148951 2561 sched_info_switch(rq, prev, next);
fe4b04fa 2562 perf_event_task_sched_out(prev, next);
e107be36 2563 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
1da177e4
LT
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
4866cde0
NP
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2578 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
dfa50b60
ON
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
1da177e4 2586 */
dfa50b60 2587static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2588 __releases(rq->lock)
2589{
dfa50b60 2590 struct rq *rq = this_rq();
1da177e4 2591 struct mm_struct *mm = rq->prev_mm;
55a101f8 2592 long prev_state;
1da177e4 2593
609ca066
PZ
2594 /*
2595 * The previous task will have left us with a preempt_count of 2
2596 * because it left us after:
2597 *
2598 * schedule()
2599 * preempt_disable(); // 1
2600 * __schedule()
2601 * raw_spin_lock_irq(&rq->lock) // 2
2602 *
2603 * Also, see FORK_PREEMPT_COUNT.
2604 */
e2bf1c4b
PZ
2605 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606 "corrupted preempt_count: %s/%d/0x%x\n",
2607 current->comm, current->pid, preempt_count()))
2608 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2609
1da177e4
LT
2610 rq->prev_mm = NULL;
2611
2612 /*
2613 * A task struct has one reference for the use as "current".
c394cc9f 2614 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2615 * schedule one last time. The schedule call will never return, and
2616 * the scheduled task must drop that reference.
95913d97
PZ
2617 *
2618 * We must observe prev->state before clearing prev->on_cpu (in
2619 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620 * running on another CPU and we could rave with its RUNNING -> DEAD
2621 * transition, resulting in a double drop.
1da177e4 2622 */
55a101f8 2623 prev_state = prev->state;
bf9fae9f 2624 vtime_task_switch(prev);
a8d757ef 2625 perf_event_task_sched_in(prev, current);
4866cde0 2626 finish_lock_switch(rq, prev);
01f23e16 2627 finish_arch_post_lock_switch();
e8fa1362 2628
e107be36 2629 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2630 if (mm)
2631 mmdrop(mm);
c394cc9f 2632 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2633 if (prev->sched_class->task_dead)
2634 prev->sched_class->task_dead(prev);
2635
c6fd91f0 2636 /*
2637 * Remove function-return probe instances associated with this
2638 * task and put them back on the free list.
9761eea8 2639 */
c6fd91f0 2640 kprobe_flush_task(prev);
1da177e4 2641 put_task_struct(prev);
c6fd91f0 2642 }
99e5ada9 2643
de734f89 2644 tick_nohz_task_switch();
dfa50b60 2645 return rq;
1da177e4
LT
2646}
2647
3f029d3c
GH
2648#ifdef CONFIG_SMP
2649
3f029d3c 2650/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2651static void __balance_callback(struct rq *rq)
3f029d3c 2652{
e3fca9e7
PZ
2653 struct callback_head *head, *next;
2654 void (*func)(struct rq *rq);
2655 unsigned long flags;
3f029d3c 2656
e3fca9e7
PZ
2657 raw_spin_lock_irqsave(&rq->lock, flags);
2658 head = rq->balance_callback;
2659 rq->balance_callback = NULL;
2660 while (head) {
2661 func = (void (*)(struct rq *))head->func;
2662 next = head->next;
2663 head->next = NULL;
2664 head = next;
3f029d3c 2665
e3fca9e7 2666 func(rq);
3f029d3c 2667 }
e3fca9e7
PZ
2668 raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673 if (unlikely(rq->balance_callback))
2674 __balance_callback(rq);
3f029d3c
GH
2675}
2676
2677#else
da19ab51 2678
e3fca9e7 2679static inline void balance_callback(struct rq *rq)
3f029d3c 2680{
1da177e4
LT
2681}
2682
3f029d3c
GH
2683#endif
2684
1da177e4
LT
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
722a9f92 2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2690 __releases(rq->lock)
2691{
1a43a14a 2692 struct rq *rq;
da19ab51 2693
609ca066
PZ
2694 /*
2695 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696 * finish_task_switch() for details.
2697 *
2698 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699 * and the preempt_enable() will end up enabling preemption (on
2700 * PREEMPT_COUNT kernels).
2701 */
2702
dfa50b60 2703 rq = finish_task_switch(prev);
e3fca9e7 2704 balance_callback(rq);
1a43a14a 2705 preempt_enable();
70b97a7f 2706
1da177e4 2707 if (current->set_child_tid)
b488893a 2708 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2709}
2710
2711/*
dfa50b60 2712 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2713 */
04936948 2714static __always_inline struct rq *
70b97a7f 2715context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2716 struct task_struct *next)
1da177e4 2717{
dd41f596 2718 struct mm_struct *mm, *oldmm;
1da177e4 2719
e107be36 2720 prepare_task_switch(rq, prev, next);
fe4b04fa 2721
dd41f596
IM
2722 mm = next->mm;
2723 oldmm = prev->active_mm;
9226d125
ZA
2724 /*
2725 * For paravirt, this is coupled with an exit in switch_to to
2726 * combine the page table reload and the switch backend into
2727 * one hypercall.
2728 */
224101ed 2729 arch_start_context_switch(prev);
9226d125 2730
31915ab4 2731 if (!mm) {
1da177e4
LT
2732 next->active_mm = oldmm;
2733 atomic_inc(&oldmm->mm_count);
2734 enter_lazy_tlb(oldmm, next);
2735 } else
2736 switch_mm(oldmm, mm, next);
2737
31915ab4 2738 if (!prev->mm) {
1da177e4 2739 prev->active_mm = NULL;
1da177e4
LT
2740 rq->prev_mm = oldmm;
2741 }
3a5f5e48
IM
2742 /*
2743 * Since the runqueue lock will be released by the next
2744 * task (which is an invalid locking op but in the case
2745 * of the scheduler it's an obvious special-case), so we
2746 * do an early lockdep release here:
2747 */
cbce1a68 2748 lockdep_unpin_lock(&rq->lock);
8a25d5de 2749 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2750
2751 /* Here we just switch the register state and the stack. */
2752 switch_to(prev, next, prev);
dd41f596 2753 barrier();
dfa50b60
ON
2754
2755 return finish_task_switch(prev);
1da177e4
LT
2756}
2757
2758/*
1c3e8264 2759 * nr_running and nr_context_switches:
1da177e4
LT
2760 *
2761 * externally visible scheduler statistics: current number of runnable
1c3e8264 2762 * threads, total number of context switches performed since bootup.
1da177e4
LT
2763 */
2764unsigned long nr_running(void)
2765{
2766 unsigned long i, sum = 0;
2767
2768 for_each_online_cpu(i)
2769 sum += cpu_rq(i)->nr_running;
2770
2771 return sum;
f711f609 2772}
1da177e4 2773
2ee507c4
TC
2774/*
2775 * Check if only the current task is running on the cpu.
00cc1633
DD
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race. The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2786 */
2787bool single_task_running(void)
2788{
00cc1633 2789 return raw_rq()->nr_running == 1;
2ee507c4
TC
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
1da177e4 2793unsigned long long nr_context_switches(void)
46cb4b7c 2794{
cc94abfc
SR
2795 int i;
2796 unsigned long long sum = 0;
46cb4b7c 2797
0a945022 2798 for_each_possible_cpu(i)
1da177e4 2799 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2800
1da177e4
LT
2801 return sum;
2802}
483b4ee6 2803
1da177e4
LT
2804unsigned long nr_iowait(void)
2805{
2806 unsigned long i, sum = 0;
483b4ee6 2807
0a945022 2808 for_each_possible_cpu(i)
1da177e4 2809 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2810
1da177e4
LT
2811 return sum;
2812}
483b4ee6 2813
8c215bd3 2814unsigned long nr_iowait_cpu(int cpu)
69d25870 2815{
8c215bd3 2816 struct rq *this = cpu_rq(cpu);
69d25870
AV
2817 return atomic_read(&this->nr_iowait);
2818}
46cb4b7c 2819
372ba8cb
MG
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
3289bdb4
PZ
2822 struct rq *rq = this_rq();
2823 *nr_waiters = atomic_read(&rq->nr_iowait);
2824 *load = rq->load.weight;
372ba8cb
MG
2825}
2826
dd41f596 2827#ifdef CONFIG_SMP
8a0be9ef 2828
46cb4b7c 2829/*
38022906
PZ
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2832 */
38022906 2833void sched_exec(void)
46cb4b7c 2834{
38022906 2835 struct task_struct *p = current;
1da177e4 2836 unsigned long flags;
0017d735 2837 int dest_cpu;
46cb4b7c 2838
8f42ced9 2839 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2840 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2841 if (dest_cpu == smp_processor_id())
2842 goto unlock;
38022906 2843
8f42ced9 2844 if (likely(cpu_active(dest_cpu))) {
969c7921 2845 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2846
8f42ced9
PZ
2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2849 return;
2850 }
0017d735 2851unlock:
8f42ced9 2852 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2853}
dd41f596 2854
1da177e4
LT
2855#endif
2856
1da177e4 2857DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2862
c5f8d995
HS
2863/*
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870 unsigned long flags;
2871 struct rq *rq;
6e998916 2872 u64 ns;
c5f8d995 2873
911b2898
PZ
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875 /*
2876 * 64-bit doesn't need locks to atomically read a 64bit value.
2877 * So we have a optimization chance when the task's delta_exec is 0.
2878 * Reading ->on_cpu is racy, but this is ok.
2879 *
2880 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881 * If we race with it entering cpu, unaccounted time is 0. This is
2882 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2883 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884 * been accounted, so we're correct here as well.
911b2898 2885 */
da0c1e65 2886 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2887 return p->se.sum_exec_runtime;
2888#endif
2889
c5f8d995 2890 rq = task_rq_lock(p, &flags);
6e998916
SG
2891 /*
2892 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2893 * project cycles that may never be accounted to this
2894 * thread, breaking clock_gettime().
2895 */
2896 if (task_current(rq, p) && task_on_rq_queued(p)) {
2897 update_rq_clock(rq);
2898 p->sched_class->update_curr(rq);
2899 }
2900 ns = p->se.sum_exec_runtime;
0122ec5b 2901 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2902
2903 return ns;
2904}
48f24c4d 2905
7835b98b
CL
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
7835b98b
CL
2909 */
2910void scheduler_tick(void)
2911{
7835b98b
CL
2912 int cpu = smp_processor_id();
2913 struct rq *rq = cpu_rq(cpu);
dd41f596 2914 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2915
2916 sched_clock_tick();
dd41f596 2917
05fa785c 2918 raw_spin_lock(&rq->lock);
3e51f33f 2919 update_rq_clock(rq);
fa85ae24 2920 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 2921 cpu_load_update_active(rq);
3289bdb4 2922 calc_global_load_tick(rq);
05fa785c 2923 raw_spin_unlock(&rq->lock);
7835b98b 2924
e9d2b064 2925 perf_event_task_tick();
e220d2dc 2926
e418e1c2 2927#ifdef CONFIG_SMP
6eb57e0d 2928 rq->idle_balance = idle_cpu(cpu);
7caff66f 2929 trigger_load_balance(rq);
e418e1c2 2930#endif
265f22a9 2931 rq_last_tick_reset(rq);
1da177e4
LT
2932}
2933
265f22a9
FW
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
e69f6186
YB
2945 *
2946 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2947 */
2948u64 scheduler_tick_max_deferment(void)
2949{
2950 struct rq *rq = this_rq();
316c1608 2951 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2952
2953 next = rq->last_sched_tick + HZ;
2954
2955 if (time_before_eq(next, now))
2956 return 0;
2957
8fe8ff09 2958 return jiffies_to_nsecs(next - now);
1da177e4 2959}
265f22a9 2960#endif
1da177e4 2961
7e49fcce
SR
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
2964/*
2965 * If the value passed in is equal to the current preempt count
2966 * then we just disabled preemption. Start timing the latency.
2967 */
2968static inline void preempt_latency_start(int val)
2969{
2970 if (preempt_count() == val) {
2971 unsigned long ip = get_lock_parent_ip();
2972#ifdef CONFIG_DEBUG_PREEMPT
2973 current->preempt_disable_ip = ip;
2974#endif
2975 trace_preempt_off(CALLER_ADDR0, ip);
2976 }
2977}
7e49fcce 2978
edafe3a5 2979void preempt_count_add(int val)
1da177e4 2980{
6cd8a4bb 2981#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2982 /*
2983 * Underflow?
2984 */
9a11b49a
IM
2985 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2986 return;
6cd8a4bb 2987#endif
bdb43806 2988 __preempt_count_add(val);
6cd8a4bb 2989#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2990 /*
2991 * Spinlock count overflowing soon?
2992 */
33859f7f
MOS
2993 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2994 PREEMPT_MASK - 10);
6cd8a4bb 2995#endif
47252cfb 2996 preempt_latency_start(val);
1da177e4 2997}
bdb43806 2998EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2999NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3000
47252cfb
SR
3001/*
3002 * If the value passed in equals to the current preempt count
3003 * then we just enabled preemption. Stop timing the latency.
3004 */
3005static inline void preempt_latency_stop(int val)
3006{
3007 if (preempt_count() == val)
3008 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3009}
3010
edafe3a5 3011void preempt_count_sub(int val)
1da177e4 3012{
6cd8a4bb 3013#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3014 /*
3015 * Underflow?
3016 */
01e3eb82 3017 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3018 return;
1da177e4
LT
3019 /*
3020 * Is the spinlock portion underflowing?
3021 */
9a11b49a
IM
3022 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3023 !(preempt_count() & PREEMPT_MASK)))
3024 return;
6cd8a4bb 3025#endif
9a11b49a 3026
47252cfb 3027 preempt_latency_stop(val);
bdb43806 3028 __preempt_count_sub(val);
1da177e4 3029}
bdb43806 3030EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3031NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3032
47252cfb
SR
3033#else
3034static inline void preempt_latency_start(int val) { }
3035static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3036#endif
3037
3038/*
dd41f596 3039 * Print scheduling while atomic bug:
1da177e4 3040 */
dd41f596 3041static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3042{
664dfa65
DJ
3043 if (oops_in_progress)
3044 return;
3045
3df0fc5b
PZ
3046 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3047 prev->comm, prev->pid, preempt_count());
838225b4 3048
dd41f596 3049 debug_show_held_locks(prev);
e21f5b15 3050 print_modules();
dd41f596
IM
3051 if (irqs_disabled())
3052 print_irqtrace_events(prev);
8f47b187
TG
3053#ifdef CONFIG_DEBUG_PREEMPT
3054 if (in_atomic_preempt_off()) {
3055 pr_err("Preemption disabled at:");
3056 print_ip_sym(current->preempt_disable_ip);
3057 pr_cont("\n");
3058 }
3059#endif
6135fc1e 3060 dump_stack();
373d4d09 3061 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3062}
1da177e4 3063
dd41f596
IM
3064/*
3065 * Various schedule()-time debugging checks and statistics:
3066 */
3067static inline void schedule_debug(struct task_struct *prev)
3068{
0d9e2632 3069#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3070 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3071#endif
b99def8b 3072
1dc0fffc 3073 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3074 __schedule_bug(prev);
1dc0fffc
PZ
3075 preempt_count_set(PREEMPT_DISABLED);
3076 }
b3fbab05 3077 rcu_sleep_check();
dd41f596 3078
1da177e4
LT
3079 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3080
2d72376b 3081 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3082}
3083
3084/*
3085 * Pick up the highest-prio task:
3086 */
3087static inline struct task_struct *
606dba2e 3088pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3089{
37e117c0 3090 const struct sched_class *class = &fair_sched_class;
dd41f596 3091 struct task_struct *p;
1da177e4
LT
3092
3093 /*
dd41f596
IM
3094 * Optimization: we know that if all tasks are in
3095 * the fair class we can call that function directly:
1da177e4 3096 */
37e117c0 3097 if (likely(prev->sched_class == class &&
38033c37 3098 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3099 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3100 if (unlikely(p == RETRY_TASK))
3101 goto again;
3102
3103 /* assumes fair_sched_class->next == idle_sched_class */
3104 if (unlikely(!p))
3105 p = idle_sched_class.pick_next_task(rq, prev);
3106
3107 return p;
1da177e4
LT
3108 }
3109
37e117c0 3110again:
34f971f6 3111 for_each_class(class) {
606dba2e 3112 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3113 if (p) {
3114 if (unlikely(p == RETRY_TASK))
3115 goto again;
dd41f596 3116 return p;
37e117c0 3117 }
dd41f596 3118 }
34f971f6
PZ
3119
3120 BUG(); /* the idle class will always have a runnable task */
dd41f596 3121}
1da177e4 3122
dd41f596 3123/*
c259e01a 3124 * __schedule() is the main scheduler function.
edde96ea
PE
3125 *
3126 * The main means of driving the scheduler and thus entering this function are:
3127 *
3128 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3129 *
3130 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3131 * paths. For example, see arch/x86/entry_64.S.
3132 *
3133 * To drive preemption between tasks, the scheduler sets the flag in timer
3134 * interrupt handler scheduler_tick().
3135 *
3136 * 3. Wakeups don't really cause entry into schedule(). They add a
3137 * task to the run-queue and that's it.
3138 *
3139 * Now, if the new task added to the run-queue preempts the current
3140 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3141 * called on the nearest possible occasion:
3142 *
3143 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3144 *
3145 * - in syscall or exception context, at the next outmost
3146 * preempt_enable(). (this might be as soon as the wake_up()'s
3147 * spin_unlock()!)
3148 *
3149 * - in IRQ context, return from interrupt-handler to
3150 * preemptible context
3151 *
3152 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3153 * then at the next:
3154 *
3155 * - cond_resched() call
3156 * - explicit schedule() call
3157 * - return from syscall or exception to user-space
3158 * - return from interrupt-handler to user-space
bfd9b2b5 3159 *
b30f0e3f 3160 * WARNING: must be called with preemption disabled!
dd41f596 3161 */
499d7955 3162static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3163{
3164 struct task_struct *prev, *next;
67ca7bde 3165 unsigned long *switch_count;
dd41f596 3166 struct rq *rq;
31656519 3167 int cpu;
dd41f596 3168
dd41f596
IM
3169 cpu = smp_processor_id();
3170 rq = cpu_rq(cpu);
dd41f596 3171 prev = rq->curr;
dd41f596 3172
b99def8b
PZ
3173 /*
3174 * do_exit() calls schedule() with preemption disabled as an exception;
3175 * however we must fix that up, otherwise the next task will see an
3176 * inconsistent (higher) preempt count.
3177 *
3178 * It also avoids the below schedule_debug() test from complaining
3179 * about this.
3180 */
3181 if (unlikely(prev->state == TASK_DEAD))
3182 preempt_enable_no_resched_notrace();
3183
dd41f596 3184 schedule_debug(prev);
1da177e4 3185
31656519 3186 if (sched_feat(HRTICK))
f333fdc9 3187 hrtick_clear(rq);
8f4d37ec 3188
46a5d164
PM
3189 local_irq_disable();
3190 rcu_note_context_switch();
3191
e0acd0a6
ON
3192 /*
3193 * Make sure that signal_pending_state()->signal_pending() below
3194 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3195 * done by the caller to avoid the race with signal_wake_up().
3196 */
3197 smp_mb__before_spinlock();
46a5d164 3198 raw_spin_lock(&rq->lock);
cbce1a68 3199 lockdep_pin_lock(&rq->lock);
1da177e4 3200
9edfbfed
PZ
3201 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3202
246d86b5 3203 switch_count = &prev->nivcsw;
fc13aeba 3204 if (!preempt && prev->state) {
21aa9af0 3205 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3206 prev->state = TASK_RUNNING;
21aa9af0 3207 } else {
2acca55e
PZ
3208 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3209 prev->on_rq = 0;
3210
21aa9af0 3211 /*
2acca55e
PZ
3212 * If a worker went to sleep, notify and ask workqueue
3213 * whether it wants to wake up a task to maintain
3214 * concurrency.
21aa9af0
TH
3215 */
3216 if (prev->flags & PF_WQ_WORKER) {
3217 struct task_struct *to_wakeup;
3218
9b7f6597 3219 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3220 if (to_wakeup)
3221 try_to_wake_up_local(to_wakeup);
3222 }
21aa9af0 3223 }
dd41f596 3224 switch_count = &prev->nvcsw;
1da177e4
LT
3225 }
3226
9edfbfed 3227 if (task_on_rq_queued(prev))
606dba2e
PZ
3228 update_rq_clock(rq);
3229
3230 next = pick_next_task(rq, prev);
f26f9aff 3231 clear_tsk_need_resched(prev);
f27dde8d 3232 clear_preempt_need_resched();
9edfbfed 3233 rq->clock_skip_update = 0;
1da177e4 3234
1da177e4 3235 if (likely(prev != next)) {
1da177e4
LT
3236 rq->nr_switches++;
3237 rq->curr = next;
3238 ++*switch_count;
3239
c73464b1 3240 trace_sched_switch(preempt, prev, next);
dfa50b60 3241 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3242 } else {
3243 lockdep_unpin_lock(&rq->lock);
05fa785c 3244 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3245 }
1da177e4 3246
e3fca9e7 3247 balance_callback(rq);
1da177e4 3248}
8e05e96a 3249STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3250
9c40cef2
TG
3251static inline void sched_submit_work(struct task_struct *tsk)
3252{
3c7d5184 3253 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3254 return;
3255 /*
3256 * If we are going to sleep and we have plugged IO queued,
3257 * make sure to submit it to avoid deadlocks.
3258 */
3259 if (blk_needs_flush_plug(tsk))
3260 blk_schedule_flush_plug(tsk);
3261}
3262
722a9f92 3263asmlinkage __visible void __sched schedule(void)
c259e01a 3264{
9c40cef2
TG
3265 struct task_struct *tsk = current;
3266
3267 sched_submit_work(tsk);
bfd9b2b5 3268 do {
b30f0e3f 3269 preempt_disable();
fc13aeba 3270 __schedule(false);
b30f0e3f 3271 sched_preempt_enable_no_resched();
bfd9b2b5 3272 } while (need_resched());
c259e01a 3273}
1da177e4
LT
3274EXPORT_SYMBOL(schedule);
3275
91d1aa43 3276#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3277asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3278{
3279 /*
3280 * If we come here after a random call to set_need_resched(),
3281 * or we have been woken up remotely but the IPI has not yet arrived,
3282 * we haven't yet exited the RCU idle mode. Do it here manually until
3283 * we find a better solution.
7cc78f8f
AL
3284 *
3285 * NB: There are buggy callers of this function. Ideally we
c467ea76 3286 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3287 * too frequently to make sense yet.
20ab65e3 3288 */
7cc78f8f 3289 enum ctx_state prev_state = exception_enter();
20ab65e3 3290 schedule();
7cc78f8f 3291 exception_exit(prev_state);
20ab65e3
FW
3292}
3293#endif
3294
c5491ea7
TG
3295/**
3296 * schedule_preempt_disabled - called with preemption disabled
3297 *
3298 * Returns with preemption disabled. Note: preempt_count must be 1
3299 */
3300void __sched schedule_preempt_disabled(void)
3301{
ba74c144 3302 sched_preempt_enable_no_resched();
c5491ea7
TG
3303 schedule();
3304 preempt_disable();
3305}
3306
06b1f808 3307static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3308{
3309 do {
47252cfb
SR
3310 /*
3311 * Because the function tracer can trace preempt_count_sub()
3312 * and it also uses preempt_enable/disable_notrace(), if
3313 * NEED_RESCHED is set, the preempt_enable_notrace() called
3314 * by the function tracer will call this function again and
3315 * cause infinite recursion.
3316 *
3317 * Preemption must be disabled here before the function
3318 * tracer can trace. Break up preempt_disable() into two
3319 * calls. One to disable preemption without fear of being
3320 * traced. The other to still record the preemption latency,
3321 * which can also be traced by the function tracer.
3322 */
499d7955 3323 preempt_disable_notrace();
47252cfb 3324 preempt_latency_start(1);
fc13aeba 3325 __schedule(true);
47252cfb 3326 preempt_latency_stop(1);
499d7955 3327 preempt_enable_no_resched_notrace();
a18b5d01
FW
3328
3329 /*
3330 * Check again in case we missed a preemption opportunity
3331 * between schedule and now.
3332 */
a18b5d01
FW
3333 } while (need_resched());
3334}
3335
1da177e4
LT
3336#ifdef CONFIG_PREEMPT
3337/*
2ed6e34f 3338 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3339 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3340 * occur there and call schedule directly.
3341 */
722a9f92 3342asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3343{
1da177e4
LT
3344 /*
3345 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3346 * we do not want to preempt the current task. Just return..
1da177e4 3347 */
fbb00b56 3348 if (likely(!preemptible()))
1da177e4
LT
3349 return;
3350
a18b5d01 3351 preempt_schedule_common();
1da177e4 3352}
376e2424 3353NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3354EXPORT_SYMBOL(preempt_schedule);
009f60e2 3355
009f60e2 3356/**
4eaca0a8 3357 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3358 *
3359 * The tracing infrastructure uses preempt_enable_notrace to prevent
3360 * recursion and tracing preempt enabling caused by the tracing
3361 * infrastructure itself. But as tracing can happen in areas coming
3362 * from userspace or just about to enter userspace, a preempt enable
3363 * can occur before user_exit() is called. This will cause the scheduler
3364 * to be called when the system is still in usermode.
3365 *
3366 * To prevent this, the preempt_enable_notrace will use this function
3367 * instead of preempt_schedule() to exit user context if needed before
3368 * calling the scheduler.
3369 */
4eaca0a8 3370asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3371{
3372 enum ctx_state prev_ctx;
3373
3374 if (likely(!preemptible()))
3375 return;
3376
3377 do {
47252cfb
SR
3378 /*
3379 * Because the function tracer can trace preempt_count_sub()
3380 * and it also uses preempt_enable/disable_notrace(), if
3381 * NEED_RESCHED is set, the preempt_enable_notrace() called
3382 * by the function tracer will call this function again and
3383 * cause infinite recursion.
3384 *
3385 * Preemption must be disabled here before the function
3386 * tracer can trace. Break up preempt_disable() into two
3387 * calls. One to disable preemption without fear of being
3388 * traced. The other to still record the preemption latency,
3389 * which can also be traced by the function tracer.
3390 */
3d8f74dd 3391 preempt_disable_notrace();
47252cfb 3392 preempt_latency_start(1);
009f60e2
ON
3393 /*
3394 * Needs preempt disabled in case user_exit() is traced
3395 * and the tracer calls preempt_enable_notrace() causing
3396 * an infinite recursion.
3397 */
3398 prev_ctx = exception_enter();
fc13aeba 3399 __schedule(true);
009f60e2
ON
3400 exception_exit(prev_ctx);
3401
47252cfb 3402 preempt_latency_stop(1);
3d8f74dd 3403 preempt_enable_no_resched_notrace();
009f60e2
ON
3404 } while (need_resched());
3405}
4eaca0a8 3406EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3407
32e475d7 3408#endif /* CONFIG_PREEMPT */
1da177e4
LT
3409
3410/*
2ed6e34f 3411 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3412 * off of irq context.
3413 * Note, that this is called and return with irqs disabled. This will
3414 * protect us against recursive calling from irq.
3415 */
722a9f92 3416asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3417{
b22366cd 3418 enum ctx_state prev_state;
6478d880 3419
2ed6e34f 3420 /* Catch callers which need to be fixed */
f27dde8d 3421 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3422
b22366cd
FW
3423 prev_state = exception_enter();
3424
3a5c359a 3425 do {
3d8f74dd 3426 preempt_disable();
3a5c359a 3427 local_irq_enable();
fc13aeba 3428 __schedule(true);
3a5c359a 3429 local_irq_disable();
3d8f74dd 3430 sched_preempt_enable_no_resched();
5ed0cec0 3431 } while (need_resched());
b22366cd
FW
3432
3433 exception_exit(prev_state);
1da177e4
LT
3434}
3435
63859d4f 3436int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3437 void *key)
1da177e4 3438{
63859d4f 3439 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3440}
1da177e4
LT
3441EXPORT_SYMBOL(default_wake_function);
3442
b29739f9
IM
3443#ifdef CONFIG_RT_MUTEXES
3444
3445/*
3446 * rt_mutex_setprio - set the current priority of a task
3447 * @p: task
3448 * @prio: prio value (kernel-internal form)
3449 *
3450 * This function changes the 'effective' priority of a task. It does
3451 * not touch ->normal_prio like __setscheduler().
3452 *
c365c292
TG
3453 * Used by the rt_mutex code to implement priority inheritance
3454 * logic. Call site only calls if the priority of the task changed.
b29739f9 3455 */
36c8b586 3456void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3457{
ff77e468 3458 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3459 struct rq *rq;
83ab0aa0 3460 const struct sched_class *prev_class;
b29739f9 3461
aab03e05 3462 BUG_ON(prio > MAX_PRIO);
b29739f9 3463
0122ec5b 3464 rq = __task_rq_lock(p);
b29739f9 3465
1c4dd99b
TG
3466 /*
3467 * Idle task boosting is a nono in general. There is one
3468 * exception, when PREEMPT_RT and NOHZ is active:
3469 *
3470 * The idle task calls get_next_timer_interrupt() and holds
3471 * the timer wheel base->lock on the CPU and another CPU wants
3472 * to access the timer (probably to cancel it). We can safely
3473 * ignore the boosting request, as the idle CPU runs this code
3474 * with interrupts disabled and will complete the lock
3475 * protected section without being interrupted. So there is no
3476 * real need to boost.
3477 */
3478 if (unlikely(p == rq->idle)) {
3479 WARN_ON(p != rq->curr);
3480 WARN_ON(p->pi_blocked_on);
3481 goto out_unlock;
3482 }
3483
a8027073 3484 trace_sched_pi_setprio(p, prio);
d5f9f942 3485 oldprio = p->prio;
ff77e468
PZ
3486
3487 if (oldprio == prio)
3488 queue_flag &= ~DEQUEUE_MOVE;
3489
83ab0aa0 3490 prev_class = p->sched_class;
da0c1e65 3491 queued = task_on_rq_queued(p);
051a1d1a 3492 running = task_current(rq, p);
da0c1e65 3493 if (queued)
ff77e468 3494 dequeue_task(rq, p, queue_flag);
0e1f3483 3495 if (running)
f3cd1c4e 3496 put_prev_task(rq, p);
dd41f596 3497
2d3d891d
DF
3498 /*
3499 * Boosting condition are:
3500 * 1. -rt task is running and holds mutex A
3501 * --> -dl task blocks on mutex A
3502 *
3503 * 2. -dl task is running and holds mutex A
3504 * --> -dl task blocks on mutex A and could preempt the
3505 * running task
3506 */
3507 if (dl_prio(prio)) {
466af29b
ON
3508 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3509 if (!dl_prio(p->normal_prio) ||
3510 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3511 p->dl.dl_boosted = 1;
ff77e468 3512 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3513 } else
3514 p->dl.dl_boosted = 0;
aab03e05 3515 p->sched_class = &dl_sched_class;
2d3d891d
DF
3516 } else if (rt_prio(prio)) {
3517 if (dl_prio(oldprio))
3518 p->dl.dl_boosted = 0;
3519 if (oldprio < prio)
ff77e468 3520 queue_flag |= ENQUEUE_HEAD;
dd41f596 3521 p->sched_class = &rt_sched_class;
2d3d891d
DF
3522 } else {
3523 if (dl_prio(oldprio))
3524 p->dl.dl_boosted = 0;
746db944
BS
3525 if (rt_prio(oldprio))
3526 p->rt.timeout = 0;
dd41f596 3527 p->sched_class = &fair_sched_class;
2d3d891d 3528 }
dd41f596 3529
b29739f9
IM
3530 p->prio = prio;
3531
0e1f3483
HS
3532 if (running)
3533 p->sched_class->set_curr_task(rq);
da0c1e65 3534 if (queued)
ff77e468 3535 enqueue_task(rq, p, queue_flag);
cb469845 3536
da7a735e 3537 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3538out_unlock:
4c9a4bc8 3539 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3540 __task_rq_unlock(rq);
4c9a4bc8
PZ
3541
3542 balance_callback(rq);
3543 preempt_enable();
b29739f9 3544}
b29739f9 3545#endif
d50dde5a 3546
36c8b586 3547void set_user_nice(struct task_struct *p, long nice)
1da177e4 3548{
da0c1e65 3549 int old_prio, delta, queued;
1da177e4 3550 unsigned long flags;
70b97a7f 3551 struct rq *rq;
1da177e4 3552
75e45d51 3553 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3554 return;
3555 /*
3556 * We have to be careful, if called from sys_setpriority(),
3557 * the task might be in the middle of scheduling on another CPU.
3558 */
3559 rq = task_rq_lock(p, &flags);
3560 /*
3561 * The RT priorities are set via sched_setscheduler(), but we still
3562 * allow the 'normal' nice value to be set - but as expected
3563 * it wont have any effect on scheduling until the task is
aab03e05 3564 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3565 */
aab03e05 3566 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3567 p->static_prio = NICE_TO_PRIO(nice);
3568 goto out_unlock;
3569 }
da0c1e65
KT
3570 queued = task_on_rq_queued(p);
3571 if (queued)
1de64443 3572 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3573
1da177e4 3574 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3575 set_load_weight(p);
b29739f9
IM
3576 old_prio = p->prio;
3577 p->prio = effective_prio(p);
3578 delta = p->prio - old_prio;
1da177e4 3579
da0c1e65 3580 if (queued) {
1de64443 3581 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3582 /*
d5f9f942
AM
3583 * If the task increased its priority or is running and
3584 * lowered its priority, then reschedule its CPU:
1da177e4 3585 */
d5f9f942 3586 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3587 resched_curr(rq);
1da177e4
LT
3588 }
3589out_unlock:
0122ec5b 3590 task_rq_unlock(rq, p, &flags);
1da177e4 3591}
1da177e4
LT
3592EXPORT_SYMBOL(set_user_nice);
3593
e43379f1
MM
3594/*
3595 * can_nice - check if a task can reduce its nice value
3596 * @p: task
3597 * @nice: nice value
3598 */
36c8b586 3599int can_nice(const struct task_struct *p, const int nice)
e43379f1 3600{
024f4747 3601 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3602 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3603
78d7d407 3604 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3605 capable(CAP_SYS_NICE));
3606}
3607
1da177e4
LT
3608#ifdef __ARCH_WANT_SYS_NICE
3609
3610/*
3611 * sys_nice - change the priority of the current process.
3612 * @increment: priority increment
3613 *
3614 * sys_setpriority is a more generic, but much slower function that
3615 * does similar things.
3616 */
5add95d4 3617SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3618{
48f24c4d 3619 long nice, retval;
1da177e4
LT
3620
3621 /*
3622 * Setpriority might change our priority at the same moment.
3623 * We don't have to worry. Conceptually one call occurs first
3624 * and we have a single winner.
3625 */
a9467fa3 3626 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3627 nice = task_nice(current) + increment;
1da177e4 3628
a9467fa3 3629 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3630 if (increment < 0 && !can_nice(current, nice))
3631 return -EPERM;
3632
1da177e4
LT
3633 retval = security_task_setnice(current, nice);
3634 if (retval)
3635 return retval;
3636
3637 set_user_nice(current, nice);
3638 return 0;
3639}
3640
3641#endif
3642
3643/**
3644 * task_prio - return the priority value of a given task.
3645 * @p: the task in question.
3646 *
e69f6186 3647 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3648 * RT tasks are offset by -200. Normal tasks are centered
3649 * around 0, value goes from -16 to +15.
3650 */
36c8b586 3651int task_prio(const struct task_struct *p)
1da177e4
LT
3652{
3653 return p->prio - MAX_RT_PRIO;
3654}
3655
1da177e4
LT
3656/**
3657 * idle_cpu - is a given cpu idle currently?
3658 * @cpu: the processor in question.
e69f6186
YB
3659 *
3660 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3661 */
3662int idle_cpu(int cpu)
3663{
908a3283
TG
3664 struct rq *rq = cpu_rq(cpu);
3665
3666 if (rq->curr != rq->idle)
3667 return 0;
3668
3669 if (rq->nr_running)
3670 return 0;
3671
3672#ifdef CONFIG_SMP
3673 if (!llist_empty(&rq->wake_list))
3674 return 0;
3675#endif
3676
3677 return 1;
1da177e4
LT
3678}
3679
1da177e4
LT
3680/**
3681 * idle_task - return the idle task for a given cpu.
3682 * @cpu: the processor in question.
e69f6186
YB
3683 *
3684 * Return: The idle task for the cpu @cpu.
1da177e4 3685 */
36c8b586 3686struct task_struct *idle_task(int cpu)
1da177e4
LT
3687{
3688 return cpu_rq(cpu)->idle;
3689}
3690
3691/**
3692 * find_process_by_pid - find a process with a matching PID value.
3693 * @pid: the pid in question.
e69f6186
YB
3694 *
3695 * The task of @pid, if found. %NULL otherwise.
1da177e4 3696 */
a9957449 3697static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3698{
228ebcbe 3699 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3700}
3701
aab03e05
DF
3702/*
3703 * This function initializes the sched_dl_entity of a newly becoming
3704 * SCHED_DEADLINE task.
3705 *
3706 * Only the static values are considered here, the actual runtime and the
3707 * absolute deadline will be properly calculated when the task is enqueued
3708 * for the first time with its new policy.
3709 */
3710static void
3711__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3712{
3713 struct sched_dl_entity *dl_se = &p->dl;
3714
aab03e05
DF
3715 dl_se->dl_runtime = attr->sched_runtime;
3716 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3717 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3718 dl_se->flags = attr->sched_flags;
332ac17e 3719 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3720
3721 /*
3722 * Changing the parameters of a task is 'tricky' and we're not doing
3723 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3724 *
3725 * What we SHOULD do is delay the bandwidth release until the 0-lag
3726 * point. This would include retaining the task_struct until that time
3727 * and change dl_overflow() to not immediately decrement the current
3728 * amount.
3729 *
3730 * Instead we retain the current runtime/deadline and let the new
3731 * parameters take effect after the current reservation period lapses.
3732 * This is safe (albeit pessimistic) because the 0-lag point is always
3733 * before the current scheduling deadline.
3734 *
3735 * We can still have temporary overloads because we do not delay the
3736 * change in bandwidth until that time; so admission control is
3737 * not on the safe side. It does however guarantee tasks will never
3738 * consume more than promised.
3739 */
aab03e05
DF
3740}
3741
c13db6b1
SR
3742/*
3743 * sched_setparam() passes in -1 for its policy, to let the functions
3744 * it calls know not to change it.
3745 */
3746#define SETPARAM_POLICY -1
3747
c365c292
TG
3748static void __setscheduler_params(struct task_struct *p,
3749 const struct sched_attr *attr)
1da177e4 3750{
d50dde5a
DF
3751 int policy = attr->sched_policy;
3752
c13db6b1 3753 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3754 policy = p->policy;
3755
1da177e4 3756 p->policy = policy;
d50dde5a 3757
aab03e05
DF
3758 if (dl_policy(policy))
3759 __setparam_dl(p, attr);
39fd8fd2 3760 else if (fair_policy(policy))
d50dde5a
DF
3761 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3762
39fd8fd2
PZ
3763 /*
3764 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3765 * !rt_policy. Always setting this ensures that things like
3766 * getparam()/getattr() don't report silly values for !rt tasks.
3767 */
3768 p->rt_priority = attr->sched_priority;
383afd09 3769 p->normal_prio = normal_prio(p);
c365c292
TG
3770 set_load_weight(p);
3771}
39fd8fd2 3772
c365c292
TG
3773/* Actually do priority change: must hold pi & rq lock. */
3774static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3775 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3776{
3777 __setscheduler_params(p, attr);
d50dde5a 3778
383afd09 3779 /*
0782e63b
TG
3780 * Keep a potential priority boosting if called from
3781 * sched_setscheduler().
383afd09 3782 */
0782e63b
TG
3783 if (keep_boost)
3784 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3785 else
3786 p->prio = normal_prio(p);
383afd09 3787
aab03e05
DF
3788 if (dl_prio(p->prio))
3789 p->sched_class = &dl_sched_class;
3790 else if (rt_prio(p->prio))
ffd44db5
PZ
3791 p->sched_class = &rt_sched_class;
3792 else
3793 p->sched_class = &fair_sched_class;
1da177e4 3794}
aab03e05
DF
3795
3796static void
3797__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3798{
3799 struct sched_dl_entity *dl_se = &p->dl;
3800
3801 attr->sched_priority = p->rt_priority;
3802 attr->sched_runtime = dl_se->dl_runtime;
3803 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3804 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3805 attr->sched_flags = dl_se->flags;
3806}
3807
3808/*
3809 * This function validates the new parameters of a -deadline task.
3810 * We ask for the deadline not being zero, and greater or equal
755378a4 3811 * than the runtime, as well as the period of being zero or
332ac17e 3812 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3813 * user parameters are above the internal resolution of 1us (we
3814 * check sched_runtime only since it is always the smaller one) and
3815 * below 2^63 ns (we have to check both sched_deadline and
3816 * sched_period, as the latter can be zero).
aab03e05
DF
3817 */
3818static bool
3819__checkparam_dl(const struct sched_attr *attr)
3820{
b0827819
JL
3821 /* deadline != 0 */
3822 if (attr->sched_deadline == 0)
3823 return false;
3824
3825 /*
3826 * Since we truncate DL_SCALE bits, make sure we're at least
3827 * that big.
3828 */
3829 if (attr->sched_runtime < (1ULL << DL_SCALE))
3830 return false;
3831
3832 /*
3833 * Since we use the MSB for wrap-around and sign issues, make
3834 * sure it's not set (mind that period can be equal to zero).
3835 */
3836 if (attr->sched_deadline & (1ULL << 63) ||
3837 attr->sched_period & (1ULL << 63))
3838 return false;
3839
3840 /* runtime <= deadline <= period (if period != 0) */
3841 if ((attr->sched_period != 0 &&
3842 attr->sched_period < attr->sched_deadline) ||
3843 attr->sched_deadline < attr->sched_runtime)
3844 return false;
3845
3846 return true;
aab03e05
DF
3847}
3848
c69e8d9c
DH
3849/*
3850 * check the target process has a UID that matches the current process's
3851 */
3852static bool check_same_owner(struct task_struct *p)
3853{
3854 const struct cred *cred = current_cred(), *pcred;
3855 bool match;
3856
3857 rcu_read_lock();
3858 pcred = __task_cred(p);
9c806aa0
EB
3859 match = (uid_eq(cred->euid, pcred->euid) ||
3860 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3861 rcu_read_unlock();
3862 return match;
3863}
3864
75381608
WL
3865static bool dl_param_changed(struct task_struct *p,
3866 const struct sched_attr *attr)
3867{
3868 struct sched_dl_entity *dl_se = &p->dl;
3869
3870 if (dl_se->dl_runtime != attr->sched_runtime ||
3871 dl_se->dl_deadline != attr->sched_deadline ||
3872 dl_se->dl_period != attr->sched_period ||
3873 dl_se->flags != attr->sched_flags)
3874 return true;
3875
3876 return false;
3877}
3878
d50dde5a
DF
3879static int __sched_setscheduler(struct task_struct *p,
3880 const struct sched_attr *attr,
dbc7f069 3881 bool user, bool pi)
1da177e4 3882{
383afd09
SR
3883 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3884 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3885 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3886 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3887 unsigned long flags;
83ab0aa0 3888 const struct sched_class *prev_class;
70b97a7f 3889 struct rq *rq;
ca94c442 3890 int reset_on_fork;
ff77e468 3891 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3892
66e5393a
SR
3893 /* may grab non-irq protected spin_locks */
3894 BUG_ON(in_interrupt());
1da177e4
LT
3895recheck:
3896 /* double check policy once rq lock held */
ca94c442
LP
3897 if (policy < 0) {
3898 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3899 policy = oldpolicy = p->policy;
ca94c442 3900 } else {
7479f3c9 3901 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3902
20f9cd2a 3903 if (!valid_policy(policy))
ca94c442
LP
3904 return -EINVAL;
3905 }
3906
7479f3c9
PZ
3907 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3908 return -EINVAL;
3909
1da177e4
LT
3910 /*
3911 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3912 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3913 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3914 */
0bb040a4 3915 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3916 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3917 return -EINVAL;
aab03e05
DF
3918 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3919 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3920 return -EINVAL;
3921
37e4ab3f
OC
3922 /*
3923 * Allow unprivileged RT tasks to decrease priority:
3924 */
961ccddd 3925 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3926 if (fair_policy(policy)) {
d0ea0268 3927 if (attr->sched_nice < task_nice(p) &&
eaad4513 3928 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3929 return -EPERM;
3930 }
3931
e05606d3 3932 if (rt_policy(policy)) {
a44702e8
ON
3933 unsigned long rlim_rtprio =
3934 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3935
3936 /* can't set/change the rt policy */
3937 if (policy != p->policy && !rlim_rtprio)
3938 return -EPERM;
3939
3940 /* can't increase priority */
d50dde5a
DF
3941 if (attr->sched_priority > p->rt_priority &&
3942 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3943 return -EPERM;
3944 }
c02aa73b 3945
d44753b8
JL
3946 /*
3947 * Can't set/change SCHED_DEADLINE policy at all for now
3948 * (safest behavior); in the future we would like to allow
3949 * unprivileged DL tasks to increase their relative deadline
3950 * or reduce their runtime (both ways reducing utilization)
3951 */
3952 if (dl_policy(policy))
3953 return -EPERM;
3954
dd41f596 3955 /*
c02aa73b
DH
3956 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3957 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3958 */
20f9cd2a 3959 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3960 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3961 return -EPERM;
3962 }
5fe1d75f 3963
37e4ab3f 3964 /* can't change other user's priorities */
c69e8d9c 3965 if (!check_same_owner(p))
37e4ab3f 3966 return -EPERM;
ca94c442
LP
3967
3968 /* Normal users shall not reset the sched_reset_on_fork flag */
3969 if (p->sched_reset_on_fork && !reset_on_fork)
3970 return -EPERM;
37e4ab3f 3971 }
1da177e4 3972
725aad24 3973 if (user) {
b0ae1981 3974 retval = security_task_setscheduler(p);
725aad24
JF
3975 if (retval)
3976 return retval;
3977 }
3978
b29739f9
IM
3979 /*
3980 * make sure no PI-waiters arrive (or leave) while we are
3981 * changing the priority of the task:
0122ec5b 3982 *
25985edc 3983 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3984 * runqueue lock must be held.
3985 */
0122ec5b 3986 rq = task_rq_lock(p, &flags);
dc61b1d6 3987
34f971f6
PZ
3988 /*
3989 * Changing the policy of the stop threads its a very bad idea
3990 */
3991 if (p == rq->stop) {
0122ec5b 3992 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3993 return -EINVAL;
3994 }
3995
a51e9198 3996 /*
d6b1e911
TG
3997 * If not changing anything there's no need to proceed further,
3998 * but store a possible modification of reset_on_fork.
a51e9198 3999 */
d50dde5a 4000 if (unlikely(policy == p->policy)) {
d0ea0268 4001 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4002 goto change;
4003 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4004 goto change;
75381608 4005 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4006 goto change;
d50dde5a 4007
d6b1e911 4008 p->sched_reset_on_fork = reset_on_fork;
45afb173 4009 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4010 return 0;
4011 }
d50dde5a 4012change:
a51e9198 4013
dc61b1d6 4014 if (user) {
332ac17e 4015#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4016 /*
4017 * Do not allow realtime tasks into groups that have no runtime
4018 * assigned.
4019 */
4020 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4021 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4022 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4023 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4024 return -EPERM;
4025 }
dc61b1d6 4026#endif
332ac17e
DF
4027#ifdef CONFIG_SMP
4028 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4029 cpumask_t *span = rq->rd->span;
332ac17e
DF
4030
4031 /*
4032 * Don't allow tasks with an affinity mask smaller than
4033 * the entire root_domain to become SCHED_DEADLINE. We
4034 * will also fail if there's no bandwidth available.
4035 */
e4099a5e
PZ
4036 if (!cpumask_subset(span, &p->cpus_allowed) ||
4037 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4038 task_rq_unlock(rq, p, &flags);
4039 return -EPERM;
4040 }
4041 }
4042#endif
4043 }
dc61b1d6 4044
1da177e4
LT
4045 /* recheck policy now with rq lock held */
4046 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4047 policy = oldpolicy = -1;
0122ec5b 4048 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4049 goto recheck;
4050 }
332ac17e
DF
4051
4052 /*
4053 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4054 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4055 * is available.
4056 */
e4099a5e 4057 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4058 task_rq_unlock(rq, p, &flags);
4059 return -EBUSY;
4060 }
4061
c365c292
TG
4062 p->sched_reset_on_fork = reset_on_fork;
4063 oldprio = p->prio;
4064
dbc7f069
PZ
4065 if (pi) {
4066 /*
4067 * Take priority boosted tasks into account. If the new
4068 * effective priority is unchanged, we just store the new
4069 * normal parameters and do not touch the scheduler class and
4070 * the runqueue. This will be done when the task deboost
4071 * itself.
4072 */
4073 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4074 if (new_effective_prio == oldprio)
4075 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4076 }
4077
da0c1e65 4078 queued = task_on_rq_queued(p);
051a1d1a 4079 running = task_current(rq, p);
da0c1e65 4080 if (queued)
ff77e468 4081 dequeue_task(rq, p, queue_flags);
0e1f3483 4082 if (running)
f3cd1c4e 4083 put_prev_task(rq, p);
f6b53205 4084
83ab0aa0 4085 prev_class = p->sched_class;
dbc7f069 4086 __setscheduler(rq, p, attr, pi);
f6b53205 4087
0e1f3483
HS
4088 if (running)
4089 p->sched_class->set_curr_task(rq);
da0c1e65 4090 if (queued) {
81a44c54
TG
4091 /*
4092 * We enqueue to tail when the priority of a task is
4093 * increased (user space view).
4094 */
ff77e468
PZ
4095 if (oldprio < p->prio)
4096 queue_flags |= ENQUEUE_HEAD;
1de64443 4097
ff77e468 4098 enqueue_task(rq, p, queue_flags);
81a44c54 4099 }
cb469845 4100
da7a735e 4101 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4102 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4103 task_rq_unlock(rq, p, &flags);
b29739f9 4104
dbc7f069
PZ
4105 if (pi)
4106 rt_mutex_adjust_pi(p);
95e02ca9 4107
4c9a4bc8
PZ
4108 /*
4109 * Run balance callbacks after we've adjusted the PI chain.
4110 */
4111 balance_callback(rq);
4112 preempt_enable();
95e02ca9 4113
1da177e4
LT
4114 return 0;
4115}
961ccddd 4116
7479f3c9
PZ
4117static int _sched_setscheduler(struct task_struct *p, int policy,
4118 const struct sched_param *param, bool check)
4119{
4120 struct sched_attr attr = {
4121 .sched_policy = policy,
4122 .sched_priority = param->sched_priority,
4123 .sched_nice = PRIO_TO_NICE(p->static_prio),
4124 };
4125
c13db6b1
SR
4126 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4127 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4128 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4129 policy &= ~SCHED_RESET_ON_FORK;
4130 attr.sched_policy = policy;
4131 }
4132
dbc7f069 4133 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4134}
961ccddd
RR
4135/**
4136 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4137 * @p: the task in question.
4138 * @policy: new policy.
4139 * @param: structure containing the new RT priority.
4140 *
e69f6186
YB
4141 * Return: 0 on success. An error code otherwise.
4142 *
961ccddd
RR
4143 * NOTE that the task may be already dead.
4144 */
4145int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4146 const struct sched_param *param)
961ccddd 4147{
7479f3c9 4148 return _sched_setscheduler(p, policy, param, true);
961ccddd 4149}
1da177e4
LT
4150EXPORT_SYMBOL_GPL(sched_setscheduler);
4151
d50dde5a
DF
4152int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4153{
dbc7f069 4154 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4155}
4156EXPORT_SYMBOL_GPL(sched_setattr);
4157
961ccddd
RR
4158/**
4159 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4160 * @p: the task in question.
4161 * @policy: new policy.
4162 * @param: structure containing the new RT priority.
4163 *
4164 * Just like sched_setscheduler, only don't bother checking if the
4165 * current context has permission. For example, this is needed in
4166 * stop_machine(): we create temporary high priority worker threads,
4167 * but our caller might not have that capability.
e69f6186
YB
4168 *
4169 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4170 */
4171int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4172 const struct sched_param *param)
961ccddd 4173{
7479f3c9 4174 return _sched_setscheduler(p, policy, param, false);
961ccddd 4175}
84778472 4176EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4177
95cdf3b7
IM
4178static int
4179do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4180{
1da177e4
LT
4181 struct sched_param lparam;
4182 struct task_struct *p;
36c8b586 4183 int retval;
1da177e4
LT
4184
4185 if (!param || pid < 0)
4186 return -EINVAL;
4187 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4188 return -EFAULT;
5fe1d75f
ON
4189
4190 rcu_read_lock();
4191 retval = -ESRCH;
1da177e4 4192 p = find_process_by_pid(pid);
5fe1d75f
ON
4193 if (p != NULL)
4194 retval = sched_setscheduler(p, policy, &lparam);
4195 rcu_read_unlock();
36c8b586 4196
1da177e4
LT
4197 return retval;
4198}
4199
d50dde5a
DF
4200/*
4201 * Mimics kernel/events/core.c perf_copy_attr().
4202 */
4203static int sched_copy_attr(struct sched_attr __user *uattr,
4204 struct sched_attr *attr)
4205{
4206 u32 size;
4207 int ret;
4208
4209 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4210 return -EFAULT;
4211
4212 /*
4213 * zero the full structure, so that a short copy will be nice.
4214 */
4215 memset(attr, 0, sizeof(*attr));
4216
4217 ret = get_user(size, &uattr->size);
4218 if (ret)
4219 return ret;
4220
4221 if (size > PAGE_SIZE) /* silly large */
4222 goto err_size;
4223
4224 if (!size) /* abi compat */
4225 size = SCHED_ATTR_SIZE_VER0;
4226
4227 if (size < SCHED_ATTR_SIZE_VER0)
4228 goto err_size;
4229
4230 /*
4231 * If we're handed a bigger struct than we know of,
4232 * ensure all the unknown bits are 0 - i.e. new
4233 * user-space does not rely on any kernel feature
4234 * extensions we dont know about yet.
4235 */
4236 if (size > sizeof(*attr)) {
4237 unsigned char __user *addr;
4238 unsigned char __user *end;
4239 unsigned char val;
4240
4241 addr = (void __user *)uattr + sizeof(*attr);
4242 end = (void __user *)uattr + size;
4243
4244 for (; addr < end; addr++) {
4245 ret = get_user(val, addr);
4246 if (ret)
4247 return ret;
4248 if (val)
4249 goto err_size;
4250 }
4251 size = sizeof(*attr);
4252 }
4253
4254 ret = copy_from_user(attr, uattr, size);
4255 if (ret)
4256 return -EFAULT;
4257
4258 /*
4259 * XXX: do we want to be lenient like existing syscalls; or do we want
4260 * to be strict and return an error on out-of-bounds values?
4261 */
75e45d51 4262 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4263
e78c7bca 4264 return 0;
d50dde5a
DF
4265
4266err_size:
4267 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4268 return -E2BIG;
d50dde5a
DF
4269}
4270
1da177e4
LT
4271/**
4272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4273 * @pid: the pid in question.
4274 * @policy: new policy.
4275 * @param: structure containing the new RT priority.
e69f6186
YB
4276 *
4277 * Return: 0 on success. An error code otherwise.
1da177e4 4278 */
5add95d4
HC
4279SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4280 struct sched_param __user *, param)
1da177e4 4281{
c21761f1
JB
4282 /* negative values for policy are not valid */
4283 if (policy < 0)
4284 return -EINVAL;
4285
1da177e4
LT
4286 return do_sched_setscheduler(pid, policy, param);
4287}
4288
4289/**
4290 * sys_sched_setparam - set/change the RT priority of a thread
4291 * @pid: the pid in question.
4292 * @param: structure containing the new RT priority.
e69f6186
YB
4293 *
4294 * Return: 0 on success. An error code otherwise.
1da177e4 4295 */
5add95d4 4296SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4297{
c13db6b1 4298 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4299}
4300
d50dde5a
DF
4301/**
4302 * sys_sched_setattr - same as above, but with extended sched_attr
4303 * @pid: the pid in question.
5778fccf 4304 * @uattr: structure containing the extended parameters.
db66d756 4305 * @flags: for future extension.
d50dde5a 4306 */
6d35ab48
PZ
4307SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4308 unsigned int, flags)
d50dde5a
DF
4309{
4310 struct sched_attr attr;
4311 struct task_struct *p;
4312 int retval;
4313
6d35ab48 4314 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4315 return -EINVAL;
4316
143cf23d
MK
4317 retval = sched_copy_attr(uattr, &attr);
4318 if (retval)
4319 return retval;
d50dde5a 4320
b14ed2c2 4321 if ((int)attr.sched_policy < 0)
dbdb2275 4322 return -EINVAL;
d50dde5a
DF
4323
4324 rcu_read_lock();
4325 retval = -ESRCH;
4326 p = find_process_by_pid(pid);
4327 if (p != NULL)
4328 retval = sched_setattr(p, &attr);
4329 rcu_read_unlock();
4330
4331 return retval;
4332}
4333
1da177e4
LT
4334/**
4335 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4336 * @pid: the pid in question.
e69f6186
YB
4337 *
4338 * Return: On success, the policy of the thread. Otherwise, a negative error
4339 * code.
1da177e4 4340 */
5add95d4 4341SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4342{
36c8b586 4343 struct task_struct *p;
3a5c359a 4344 int retval;
1da177e4
LT
4345
4346 if (pid < 0)
3a5c359a 4347 return -EINVAL;
1da177e4
LT
4348
4349 retval = -ESRCH;
5fe85be0 4350 rcu_read_lock();
1da177e4
LT
4351 p = find_process_by_pid(pid);
4352 if (p) {
4353 retval = security_task_getscheduler(p);
4354 if (!retval)
ca94c442
LP
4355 retval = p->policy
4356 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4357 }
5fe85be0 4358 rcu_read_unlock();
1da177e4
LT
4359 return retval;
4360}
4361
4362/**
ca94c442 4363 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4364 * @pid: the pid in question.
4365 * @param: structure containing the RT priority.
e69f6186
YB
4366 *
4367 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4368 * code.
1da177e4 4369 */
5add95d4 4370SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4371{
ce5f7f82 4372 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4373 struct task_struct *p;
3a5c359a 4374 int retval;
1da177e4
LT
4375
4376 if (!param || pid < 0)
3a5c359a 4377 return -EINVAL;
1da177e4 4378
5fe85be0 4379 rcu_read_lock();
1da177e4
LT
4380 p = find_process_by_pid(pid);
4381 retval = -ESRCH;
4382 if (!p)
4383 goto out_unlock;
4384
4385 retval = security_task_getscheduler(p);
4386 if (retval)
4387 goto out_unlock;
4388
ce5f7f82
PZ
4389 if (task_has_rt_policy(p))
4390 lp.sched_priority = p->rt_priority;
5fe85be0 4391 rcu_read_unlock();
1da177e4
LT
4392
4393 /*
4394 * This one might sleep, we cannot do it with a spinlock held ...
4395 */
4396 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4397
1da177e4
LT
4398 return retval;
4399
4400out_unlock:
5fe85be0 4401 rcu_read_unlock();
1da177e4
LT
4402 return retval;
4403}
4404
d50dde5a
DF
4405static int sched_read_attr(struct sched_attr __user *uattr,
4406 struct sched_attr *attr,
4407 unsigned int usize)
4408{
4409 int ret;
4410
4411 if (!access_ok(VERIFY_WRITE, uattr, usize))
4412 return -EFAULT;
4413
4414 /*
4415 * If we're handed a smaller struct than we know of,
4416 * ensure all the unknown bits are 0 - i.e. old
4417 * user-space does not get uncomplete information.
4418 */
4419 if (usize < sizeof(*attr)) {
4420 unsigned char *addr;
4421 unsigned char *end;
4422
4423 addr = (void *)attr + usize;
4424 end = (void *)attr + sizeof(*attr);
4425
4426 for (; addr < end; addr++) {
4427 if (*addr)
22400674 4428 return -EFBIG;
d50dde5a
DF
4429 }
4430
4431 attr->size = usize;
4432 }
4433
4efbc454 4434 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4435 if (ret)
4436 return -EFAULT;
4437
22400674 4438 return 0;
d50dde5a
DF
4439}
4440
4441/**
aab03e05 4442 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4443 * @pid: the pid in question.
5778fccf 4444 * @uattr: structure containing the extended parameters.
d50dde5a 4445 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4446 * @flags: for future extension.
d50dde5a 4447 */
6d35ab48
PZ
4448SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4449 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4450{
4451 struct sched_attr attr = {
4452 .size = sizeof(struct sched_attr),
4453 };
4454 struct task_struct *p;
4455 int retval;
4456
4457 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4458 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4459 return -EINVAL;
4460
4461 rcu_read_lock();
4462 p = find_process_by_pid(pid);
4463 retval = -ESRCH;
4464 if (!p)
4465 goto out_unlock;
4466
4467 retval = security_task_getscheduler(p);
4468 if (retval)
4469 goto out_unlock;
4470
4471 attr.sched_policy = p->policy;
7479f3c9
PZ
4472 if (p->sched_reset_on_fork)
4473 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4474 if (task_has_dl_policy(p))
4475 __getparam_dl(p, &attr);
4476 else if (task_has_rt_policy(p))
d50dde5a
DF
4477 attr.sched_priority = p->rt_priority;
4478 else
d0ea0268 4479 attr.sched_nice = task_nice(p);
d50dde5a
DF
4480
4481 rcu_read_unlock();
4482
4483 retval = sched_read_attr(uattr, &attr, size);
4484 return retval;
4485
4486out_unlock:
4487 rcu_read_unlock();
4488 return retval;
4489}
4490
96f874e2 4491long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4492{
5a16f3d3 4493 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4494 struct task_struct *p;
4495 int retval;
1da177e4 4496
23f5d142 4497 rcu_read_lock();
1da177e4
LT
4498
4499 p = find_process_by_pid(pid);
4500 if (!p) {
23f5d142 4501 rcu_read_unlock();
1da177e4
LT
4502 return -ESRCH;
4503 }
4504
23f5d142 4505 /* Prevent p going away */
1da177e4 4506 get_task_struct(p);
23f5d142 4507 rcu_read_unlock();
1da177e4 4508
14a40ffc
TH
4509 if (p->flags & PF_NO_SETAFFINITY) {
4510 retval = -EINVAL;
4511 goto out_put_task;
4512 }
5a16f3d3
RR
4513 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4514 retval = -ENOMEM;
4515 goto out_put_task;
4516 }
4517 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4518 retval = -ENOMEM;
4519 goto out_free_cpus_allowed;
4520 }
1da177e4 4521 retval = -EPERM;
4c44aaaf
EB
4522 if (!check_same_owner(p)) {
4523 rcu_read_lock();
4524 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4525 rcu_read_unlock();
16303ab2 4526 goto out_free_new_mask;
4c44aaaf
EB
4527 }
4528 rcu_read_unlock();
4529 }
1da177e4 4530
b0ae1981 4531 retval = security_task_setscheduler(p);
e7834f8f 4532 if (retval)
16303ab2 4533 goto out_free_new_mask;
e7834f8f 4534
e4099a5e
PZ
4535
4536 cpuset_cpus_allowed(p, cpus_allowed);
4537 cpumask_and(new_mask, in_mask, cpus_allowed);
4538
332ac17e
DF
4539 /*
4540 * Since bandwidth control happens on root_domain basis,
4541 * if admission test is enabled, we only admit -deadline
4542 * tasks allowed to run on all the CPUs in the task's
4543 * root_domain.
4544 */
4545#ifdef CONFIG_SMP
f1e3a093
KT
4546 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4547 rcu_read_lock();
4548 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4549 retval = -EBUSY;
f1e3a093 4550 rcu_read_unlock();
16303ab2 4551 goto out_free_new_mask;
332ac17e 4552 }
f1e3a093 4553 rcu_read_unlock();
332ac17e
DF
4554 }
4555#endif
49246274 4556again:
25834c73 4557 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4558
8707d8b8 4559 if (!retval) {
5a16f3d3
RR
4560 cpuset_cpus_allowed(p, cpus_allowed);
4561 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4562 /*
4563 * We must have raced with a concurrent cpuset
4564 * update. Just reset the cpus_allowed to the
4565 * cpuset's cpus_allowed
4566 */
5a16f3d3 4567 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4568 goto again;
4569 }
4570 }
16303ab2 4571out_free_new_mask:
5a16f3d3
RR
4572 free_cpumask_var(new_mask);
4573out_free_cpus_allowed:
4574 free_cpumask_var(cpus_allowed);
4575out_put_task:
1da177e4 4576 put_task_struct(p);
1da177e4
LT
4577 return retval;
4578}
4579
4580static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4581 struct cpumask *new_mask)
1da177e4 4582{
96f874e2
RR
4583 if (len < cpumask_size())
4584 cpumask_clear(new_mask);
4585 else if (len > cpumask_size())
4586 len = cpumask_size();
4587
1da177e4
LT
4588 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4589}
4590
4591/**
4592 * sys_sched_setaffinity - set the cpu affinity of a process
4593 * @pid: pid of the process
4594 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4595 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4596 *
4597 * Return: 0 on success. An error code otherwise.
1da177e4 4598 */
5add95d4
HC
4599SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4600 unsigned long __user *, user_mask_ptr)
1da177e4 4601{
5a16f3d3 4602 cpumask_var_t new_mask;
1da177e4
LT
4603 int retval;
4604
5a16f3d3
RR
4605 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4606 return -ENOMEM;
1da177e4 4607
5a16f3d3
RR
4608 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4609 if (retval == 0)
4610 retval = sched_setaffinity(pid, new_mask);
4611 free_cpumask_var(new_mask);
4612 return retval;
1da177e4
LT
4613}
4614
96f874e2 4615long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4616{
36c8b586 4617 struct task_struct *p;
31605683 4618 unsigned long flags;
1da177e4 4619 int retval;
1da177e4 4620
23f5d142 4621 rcu_read_lock();
1da177e4
LT
4622
4623 retval = -ESRCH;
4624 p = find_process_by_pid(pid);
4625 if (!p)
4626 goto out_unlock;
4627
e7834f8f
DQ
4628 retval = security_task_getscheduler(p);
4629 if (retval)
4630 goto out_unlock;
4631
013fdb80 4632 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4633 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4634 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4635
4636out_unlock:
23f5d142 4637 rcu_read_unlock();
1da177e4 4638
9531b62f 4639 return retval;
1da177e4
LT
4640}
4641
4642/**
4643 * sys_sched_getaffinity - get the cpu affinity of a process
4644 * @pid: pid of the process
4645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4647 *
4648 * Return: 0 on success. An error code otherwise.
1da177e4 4649 */
5add95d4
HC
4650SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4651 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4652{
4653 int ret;
f17c8607 4654 cpumask_var_t mask;
1da177e4 4655
84fba5ec 4656 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4657 return -EINVAL;
4658 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4659 return -EINVAL;
4660
f17c8607
RR
4661 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4662 return -ENOMEM;
1da177e4 4663
f17c8607
RR
4664 ret = sched_getaffinity(pid, mask);
4665 if (ret == 0) {
8bc037fb 4666 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4667
4668 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4669 ret = -EFAULT;
4670 else
cd3d8031 4671 ret = retlen;
f17c8607
RR
4672 }
4673 free_cpumask_var(mask);
1da177e4 4674
f17c8607 4675 return ret;
1da177e4
LT
4676}
4677
4678/**
4679 * sys_sched_yield - yield the current processor to other threads.
4680 *
dd41f596
IM
4681 * This function yields the current CPU to other tasks. If there are no
4682 * other threads running on this CPU then this function will return.
e69f6186
YB
4683 *
4684 * Return: 0.
1da177e4 4685 */
5add95d4 4686SYSCALL_DEFINE0(sched_yield)
1da177e4 4687{
70b97a7f 4688 struct rq *rq = this_rq_lock();
1da177e4 4689
2d72376b 4690 schedstat_inc(rq, yld_count);
4530d7ab 4691 current->sched_class->yield_task(rq);
1da177e4
LT
4692
4693 /*
4694 * Since we are going to call schedule() anyway, there's
4695 * no need to preempt or enable interrupts:
4696 */
4697 __release(rq->lock);
8a25d5de 4698 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4699 do_raw_spin_unlock(&rq->lock);
ba74c144 4700 sched_preempt_enable_no_resched();
1da177e4
LT
4701
4702 schedule();
4703
4704 return 0;
4705}
4706
02b67cc3 4707int __sched _cond_resched(void)
1da177e4 4708{
fe32d3cd 4709 if (should_resched(0)) {
a18b5d01 4710 preempt_schedule_common();
1da177e4
LT
4711 return 1;
4712 }
4713 return 0;
4714}
02b67cc3 4715EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4716
4717/*
613afbf8 4718 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4719 * call schedule, and on return reacquire the lock.
4720 *
41a2d6cf 4721 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4722 * operations here to prevent schedule() from being called twice (once via
4723 * spin_unlock(), once by hand).
4724 */
613afbf8 4725int __cond_resched_lock(spinlock_t *lock)
1da177e4 4726{
fe32d3cd 4727 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4728 int ret = 0;
4729
f607c668
PZ
4730 lockdep_assert_held(lock);
4731
4a81e832 4732 if (spin_needbreak(lock) || resched) {
1da177e4 4733 spin_unlock(lock);
d86ee480 4734 if (resched)
a18b5d01 4735 preempt_schedule_common();
95c354fe
NP
4736 else
4737 cpu_relax();
6df3cecb 4738 ret = 1;
1da177e4 4739 spin_lock(lock);
1da177e4 4740 }
6df3cecb 4741 return ret;
1da177e4 4742}
613afbf8 4743EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4744
613afbf8 4745int __sched __cond_resched_softirq(void)
1da177e4
LT
4746{
4747 BUG_ON(!in_softirq());
4748
fe32d3cd 4749 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4750 local_bh_enable();
a18b5d01 4751 preempt_schedule_common();
1da177e4
LT
4752 local_bh_disable();
4753 return 1;
4754 }
4755 return 0;
4756}
613afbf8 4757EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4758
1da177e4
LT
4759/**
4760 * yield - yield the current processor to other threads.
4761 *
8e3fabfd
PZ
4762 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4763 *
4764 * The scheduler is at all times free to pick the calling task as the most
4765 * eligible task to run, if removing the yield() call from your code breaks
4766 * it, its already broken.
4767 *
4768 * Typical broken usage is:
4769 *
4770 * while (!event)
4771 * yield();
4772 *
4773 * where one assumes that yield() will let 'the other' process run that will
4774 * make event true. If the current task is a SCHED_FIFO task that will never
4775 * happen. Never use yield() as a progress guarantee!!
4776 *
4777 * If you want to use yield() to wait for something, use wait_event().
4778 * If you want to use yield() to be 'nice' for others, use cond_resched().
4779 * If you still want to use yield(), do not!
1da177e4
LT
4780 */
4781void __sched yield(void)
4782{
4783 set_current_state(TASK_RUNNING);
4784 sys_sched_yield();
4785}
1da177e4
LT
4786EXPORT_SYMBOL(yield);
4787
d95f4122
MG
4788/**
4789 * yield_to - yield the current processor to another thread in
4790 * your thread group, or accelerate that thread toward the
4791 * processor it's on.
16addf95
RD
4792 * @p: target task
4793 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4794 *
4795 * It's the caller's job to ensure that the target task struct
4796 * can't go away on us before we can do any checks.
4797 *
e69f6186 4798 * Return:
7b270f60
PZ
4799 * true (>0) if we indeed boosted the target task.
4800 * false (0) if we failed to boost the target.
4801 * -ESRCH if there's no task to yield to.
d95f4122 4802 */
fa93384f 4803int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4804{
4805 struct task_struct *curr = current;
4806 struct rq *rq, *p_rq;
4807 unsigned long flags;
c3c18640 4808 int yielded = 0;
d95f4122
MG
4809
4810 local_irq_save(flags);
4811 rq = this_rq();
4812
4813again:
4814 p_rq = task_rq(p);
7b270f60
PZ
4815 /*
4816 * If we're the only runnable task on the rq and target rq also
4817 * has only one task, there's absolutely no point in yielding.
4818 */
4819 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4820 yielded = -ESRCH;
4821 goto out_irq;
4822 }
4823
d95f4122 4824 double_rq_lock(rq, p_rq);
39e24d8f 4825 if (task_rq(p) != p_rq) {
d95f4122
MG
4826 double_rq_unlock(rq, p_rq);
4827 goto again;
4828 }
4829
4830 if (!curr->sched_class->yield_to_task)
7b270f60 4831 goto out_unlock;
d95f4122
MG
4832
4833 if (curr->sched_class != p->sched_class)
7b270f60 4834 goto out_unlock;
d95f4122
MG
4835
4836 if (task_running(p_rq, p) || p->state)
7b270f60 4837 goto out_unlock;
d95f4122
MG
4838
4839 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4840 if (yielded) {
d95f4122 4841 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4842 /*
4843 * Make p's CPU reschedule; pick_next_entity takes care of
4844 * fairness.
4845 */
4846 if (preempt && rq != p_rq)
8875125e 4847 resched_curr(p_rq);
6d1cafd8 4848 }
d95f4122 4849
7b270f60 4850out_unlock:
d95f4122 4851 double_rq_unlock(rq, p_rq);
7b270f60 4852out_irq:
d95f4122
MG
4853 local_irq_restore(flags);
4854
7b270f60 4855 if (yielded > 0)
d95f4122
MG
4856 schedule();
4857
4858 return yielded;
4859}
4860EXPORT_SYMBOL_GPL(yield_to);
4861
1da177e4 4862/*
41a2d6cf 4863 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4864 * that process accounting knows that this is a task in IO wait state.
1da177e4 4865 */
1da177e4
LT
4866long __sched io_schedule_timeout(long timeout)
4867{
9cff8ade
N
4868 int old_iowait = current->in_iowait;
4869 struct rq *rq;
1da177e4
LT
4870 long ret;
4871
9cff8ade 4872 current->in_iowait = 1;
10d784ea 4873 blk_schedule_flush_plug(current);
9cff8ade 4874
0ff92245 4875 delayacct_blkio_start();
9cff8ade 4876 rq = raw_rq();
1da177e4
LT
4877 atomic_inc(&rq->nr_iowait);
4878 ret = schedule_timeout(timeout);
9cff8ade 4879 current->in_iowait = old_iowait;
1da177e4 4880 atomic_dec(&rq->nr_iowait);
0ff92245 4881 delayacct_blkio_end();
9cff8ade 4882
1da177e4
LT
4883 return ret;
4884}
9cff8ade 4885EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4886
4887/**
4888 * sys_sched_get_priority_max - return maximum RT priority.
4889 * @policy: scheduling class.
4890 *
e69f6186
YB
4891 * Return: On success, this syscall returns the maximum
4892 * rt_priority that can be used by a given scheduling class.
4893 * On failure, a negative error code is returned.
1da177e4 4894 */
5add95d4 4895SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4896{
4897 int ret = -EINVAL;
4898
4899 switch (policy) {
4900 case SCHED_FIFO:
4901 case SCHED_RR:
4902 ret = MAX_USER_RT_PRIO-1;
4903 break;
aab03e05 4904 case SCHED_DEADLINE:
1da177e4 4905 case SCHED_NORMAL:
b0a9499c 4906 case SCHED_BATCH:
dd41f596 4907 case SCHED_IDLE:
1da177e4
LT
4908 ret = 0;
4909 break;
4910 }
4911 return ret;
4912}
4913
4914/**
4915 * sys_sched_get_priority_min - return minimum RT priority.
4916 * @policy: scheduling class.
4917 *
e69f6186
YB
4918 * Return: On success, this syscall returns the minimum
4919 * rt_priority that can be used by a given scheduling class.
4920 * On failure, a negative error code is returned.
1da177e4 4921 */
5add95d4 4922SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4923{
4924 int ret = -EINVAL;
4925
4926 switch (policy) {
4927 case SCHED_FIFO:
4928 case SCHED_RR:
4929 ret = 1;
4930 break;
aab03e05 4931 case SCHED_DEADLINE:
1da177e4 4932 case SCHED_NORMAL:
b0a9499c 4933 case SCHED_BATCH:
dd41f596 4934 case SCHED_IDLE:
1da177e4
LT
4935 ret = 0;
4936 }
4937 return ret;
4938}
4939
4940/**
4941 * sys_sched_rr_get_interval - return the default timeslice of a process.
4942 * @pid: pid of the process.
4943 * @interval: userspace pointer to the timeslice value.
4944 *
4945 * this syscall writes the default timeslice value of a given process
4946 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4947 *
4948 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4949 * an error code.
1da177e4 4950 */
17da2bd9 4951SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4952 struct timespec __user *, interval)
1da177e4 4953{
36c8b586 4954 struct task_struct *p;
a4ec24b4 4955 unsigned int time_slice;
dba091b9
TG
4956 unsigned long flags;
4957 struct rq *rq;
3a5c359a 4958 int retval;
1da177e4 4959 struct timespec t;
1da177e4
LT
4960
4961 if (pid < 0)
3a5c359a 4962 return -EINVAL;
1da177e4
LT
4963
4964 retval = -ESRCH;
1a551ae7 4965 rcu_read_lock();
1da177e4
LT
4966 p = find_process_by_pid(pid);
4967 if (!p)
4968 goto out_unlock;
4969
4970 retval = security_task_getscheduler(p);
4971 if (retval)
4972 goto out_unlock;
4973
dba091b9 4974 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4975 time_slice = 0;
4976 if (p->sched_class->get_rr_interval)
4977 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4978 task_rq_unlock(rq, p, &flags);
a4ec24b4 4979
1a551ae7 4980 rcu_read_unlock();
a4ec24b4 4981 jiffies_to_timespec(time_slice, &t);
1da177e4 4982 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4983 return retval;
3a5c359a 4984
1da177e4 4985out_unlock:
1a551ae7 4986 rcu_read_unlock();
1da177e4
LT
4987 return retval;
4988}
4989
7c731e0a 4990static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4991
82a1fcb9 4992void sched_show_task(struct task_struct *p)
1da177e4 4993{
1da177e4 4994 unsigned long free = 0;
4e79752c 4995 int ppid;
1f8a7633 4996 unsigned long state = p->state;
1da177e4 4997
1f8a7633
TH
4998 if (state)
4999 state = __ffs(state) + 1;
28d0686c 5000 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5001 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5002#if BITS_PER_LONG == 32
1da177e4 5003 if (state == TASK_RUNNING)
3df0fc5b 5004 printk(KERN_CONT " running ");
1da177e4 5005 else
3df0fc5b 5006 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5007#else
5008 if (state == TASK_RUNNING)
3df0fc5b 5009 printk(KERN_CONT " running task ");
1da177e4 5010 else
3df0fc5b 5011 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5012#endif
5013#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5014 free = stack_not_used(p);
1da177e4 5015#endif
a90e984c 5016 ppid = 0;
4e79752c 5017 rcu_read_lock();
a90e984c
ON
5018 if (pid_alive(p))
5019 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5020 rcu_read_unlock();
3df0fc5b 5021 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5022 task_pid_nr(p), ppid,
aa47b7e0 5023 (unsigned long)task_thread_info(p)->flags);
1da177e4 5024
3d1cb205 5025 print_worker_info(KERN_INFO, p);
5fb5e6de 5026 show_stack(p, NULL);
1da177e4
LT
5027}
5028
e59e2ae2 5029void show_state_filter(unsigned long state_filter)
1da177e4 5030{
36c8b586 5031 struct task_struct *g, *p;
1da177e4 5032
4bd77321 5033#if BITS_PER_LONG == 32
3df0fc5b
PZ
5034 printk(KERN_INFO
5035 " task PC stack pid father\n");
1da177e4 5036#else
3df0fc5b
PZ
5037 printk(KERN_INFO
5038 " task PC stack pid father\n");
1da177e4 5039#endif
510f5acc 5040 rcu_read_lock();
5d07f420 5041 for_each_process_thread(g, p) {
1da177e4
LT
5042 /*
5043 * reset the NMI-timeout, listing all files on a slow
25985edc 5044 * console might take a lot of time:
1da177e4
LT
5045 */
5046 touch_nmi_watchdog();
39bc89fd 5047 if (!state_filter || (p->state & state_filter))
82a1fcb9 5048 sched_show_task(p);
5d07f420 5049 }
1da177e4 5050
04c9167f
JF
5051 touch_all_softlockup_watchdogs();
5052
dd41f596 5053#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5054 if (!state_filter)
5055 sysrq_sched_debug_show();
dd41f596 5056#endif
510f5acc 5057 rcu_read_unlock();
e59e2ae2
IM
5058 /*
5059 * Only show locks if all tasks are dumped:
5060 */
93335a21 5061 if (!state_filter)
e59e2ae2 5062 debug_show_all_locks();
1da177e4
LT
5063}
5064
0db0628d 5065void init_idle_bootup_task(struct task_struct *idle)
1df21055 5066{
dd41f596 5067 idle->sched_class = &idle_sched_class;
1df21055
IM
5068}
5069
f340c0d1
IM
5070/**
5071 * init_idle - set up an idle thread for a given CPU
5072 * @idle: task in question
5073 * @cpu: cpu the idle task belongs to
5074 *
5075 * NOTE: this function does not set the idle thread's NEED_RESCHED
5076 * flag, to make booting more robust.
5077 */
0db0628d 5078void init_idle(struct task_struct *idle, int cpu)
1da177e4 5079{
70b97a7f 5080 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5081 unsigned long flags;
5082
25834c73
PZ
5083 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5084 raw_spin_lock(&rq->lock);
5cbd54ef 5085
5e1576ed 5086 __sched_fork(0, idle);
06b83b5f 5087 idle->state = TASK_RUNNING;
dd41f596
IM
5088 idle->se.exec_start = sched_clock();
5089
e1b77c92
MR
5090 kasan_unpoison_task_stack(idle);
5091
de9b8f5d
PZ
5092#ifdef CONFIG_SMP
5093 /*
5094 * Its possible that init_idle() gets called multiple times on a task,
5095 * in that case do_set_cpus_allowed() will not do the right thing.
5096 *
5097 * And since this is boot we can forgo the serialization.
5098 */
5099 set_cpus_allowed_common(idle, cpumask_of(cpu));
5100#endif
6506cf6c
PZ
5101 /*
5102 * We're having a chicken and egg problem, even though we are
5103 * holding rq->lock, the cpu isn't yet set to this cpu so the
5104 * lockdep check in task_group() will fail.
5105 *
5106 * Similar case to sched_fork(). / Alternatively we could
5107 * use task_rq_lock() here and obtain the other rq->lock.
5108 *
5109 * Silence PROVE_RCU
5110 */
5111 rcu_read_lock();
dd41f596 5112 __set_task_cpu(idle, cpu);
6506cf6c 5113 rcu_read_unlock();
1da177e4 5114
1da177e4 5115 rq->curr = rq->idle = idle;
da0c1e65 5116 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5117#ifdef CONFIG_SMP
3ca7a440 5118 idle->on_cpu = 1;
4866cde0 5119#endif
25834c73
PZ
5120 raw_spin_unlock(&rq->lock);
5121 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5122
5123 /* Set the preempt count _outside_ the spinlocks! */
01028747 5124 init_idle_preempt_count(idle, cpu);
55cd5340 5125
dd41f596
IM
5126 /*
5127 * The idle tasks have their own, simple scheduling class:
5128 */
5129 idle->sched_class = &idle_sched_class;
868baf07 5130 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5131 vtime_init_idle(idle, cpu);
de9b8f5d 5132#ifdef CONFIG_SMP
f1c6f1a7
CE
5133 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5134#endif
19978ca6
IM
5135}
5136
f82f8042
JL
5137int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5138 const struct cpumask *trial)
5139{
5140 int ret = 1, trial_cpus;
5141 struct dl_bw *cur_dl_b;
5142 unsigned long flags;
5143
bb2bc55a
MG
5144 if (!cpumask_weight(cur))
5145 return ret;
5146
75e23e49 5147 rcu_read_lock_sched();
f82f8042
JL
5148 cur_dl_b = dl_bw_of(cpumask_any(cur));
5149 trial_cpus = cpumask_weight(trial);
5150
5151 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5152 if (cur_dl_b->bw != -1 &&
5153 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5154 ret = 0;
5155 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5156 rcu_read_unlock_sched();
f82f8042
JL
5157
5158 return ret;
5159}
5160
7f51412a
JL
5161int task_can_attach(struct task_struct *p,
5162 const struct cpumask *cs_cpus_allowed)
5163{
5164 int ret = 0;
5165
5166 /*
5167 * Kthreads which disallow setaffinity shouldn't be moved
5168 * to a new cpuset; we don't want to change their cpu
5169 * affinity and isolating such threads by their set of
5170 * allowed nodes is unnecessary. Thus, cpusets are not
5171 * applicable for such threads. This prevents checking for
5172 * success of set_cpus_allowed_ptr() on all attached tasks
5173 * before cpus_allowed may be changed.
5174 */
5175 if (p->flags & PF_NO_SETAFFINITY) {
5176 ret = -EINVAL;
5177 goto out;
5178 }
5179
5180#ifdef CONFIG_SMP
5181 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5182 cs_cpus_allowed)) {
5183 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5184 cs_cpus_allowed);
75e23e49 5185 struct dl_bw *dl_b;
7f51412a
JL
5186 bool overflow;
5187 int cpus;
5188 unsigned long flags;
5189
75e23e49
JL
5190 rcu_read_lock_sched();
5191 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5192 raw_spin_lock_irqsave(&dl_b->lock, flags);
5193 cpus = dl_bw_cpus(dest_cpu);
5194 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5195 if (overflow)
5196 ret = -EBUSY;
5197 else {
5198 /*
5199 * We reserve space for this task in the destination
5200 * root_domain, as we can't fail after this point.
5201 * We will free resources in the source root_domain
5202 * later on (see set_cpus_allowed_dl()).
5203 */
5204 __dl_add(dl_b, p->dl.dl_bw);
5205 }
5206 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5207 rcu_read_unlock_sched();
7f51412a
JL
5208
5209 }
5210#endif
5211out:
5212 return ret;
5213}
5214
1da177e4 5215#ifdef CONFIG_SMP
1da177e4 5216
e6628d5b
MG
5217#ifdef CONFIG_NUMA_BALANCING
5218/* Migrate current task p to target_cpu */
5219int migrate_task_to(struct task_struct *p, int target_cpu)
5220{
5221 struct migration_arg arg = { p, target_cpu };
5222 int curr_cpu = task_cpu(p);
5223
5224 if (curr_cpu == target_cpu)
5225 return 0;
5226
5227 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5228 return -EINVAL;
5229
5230 /* TODO: This is not properly updating schedstats */
5231
286549dc 5232 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5233 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5234}
0ec8aa00
PZ
5235
5236/*
5237 * Requeue a task on a given node and accurately track the number of NUMA
5238 * tasks on the runqueues
5239 */
5240void sched_setnuma(struct task_struct *p, int nid)
5241{
5242 struct rq *rq;
5243 unsigned long flags;
da0c1e65 5244 bool queued, running;
0ec8aa00
PZ
5245
5246 rq = task_rq_lock(p, &flags);
da0c1e65 5247 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5248 running = task_current(rq, p);
5249
da0c1e65 5250 if (queued)
1de64443 5251 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5252 if (running)
f3cd1c4e 5253 put_prev_task(rq, p);
0ec8aa00
PZ
5254
5255 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5256
5257 if (running)
5258 p->sched_class->set_curr_task(rq);
da0c1e65 5259 if (queued)
1de64443 5260 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5261 task_rq_unlock(rq, p, &flags);
5262}
5cc389bc 5263#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5264
1da177e4 5265#ifdef CONFIG_HOTPLUG_CPU
054b9108 5266/*
48c5ccae
PZ
5267 * Ensures that the idle task is using init_mm right before its cpu goes
5268 * offline.
054b9108 5269 */
48c5ccae 5270void idle_task_exit(void)
1da177e4 5271{
48c5ccae 5272 struct mm_struct *mm = current->active_mm;
e76bd8d9 5273
48c5ccae 5274 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5275
a53efe5f 5276 if (mm != &init_mm) {
48c5ccae 5277 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5278 finish_arch_post_lock_switch();
5279 }
48c5ccae 5280 mmdrop(mm);
1da177e4
LT
5281}
5282
5283/*
5d180232
PZ
5284 * Since this CPU is going 'away' for a while, fold any nr_active delta
5285 * we might have. Assumes we're called after migrate_tasks() so that the
5286 * nr_active count is stable.
5287 *
5288 * Also see the comment "Global load-average calculations".
1da177e4 5289 */
5d180232 5290static void calc_load_migrate(struct rq *rq)
1da177e4 5291{
5d180232
PZ
5292 long delta = calc_load_fold_active(rq);
5293 if (delta)
5294 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5295}
5296
3f1d2a31
PZ
5297static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5298{
5299}
5300
5301static const struct sched_class fake_sched_class = {
5302 .put_prev_task = put_prev_task_fake,
5303};
5304
5305static struct task_struct fake_task = {
5306 /*
5307 * Avoid pull_{rt,dl}_task()
5308 */
5309 .prio = MAX_PRIO + 1,
5310 .sched_class = &fake_sched_class,
5311};
5312
48f24c4d 5313/*
48c5ccae
PZ
5314 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5315 * try_to_wake_up()->select_task_rq().
5316 *
5317 * Called with rq->lock held even though we'er in stop_machine() and
5318 * there's no concurrency possible, we hold the required locks anyway
5319 * because of lock validation efforts.
1da177e4 5320 */
5e16bbc2 5321static void migrate_tasks(struct rq *dead_rq)
1da177e4 5322{
5e16bbc2 5323 struct rq *rq = dead_rq;
48c5ccae
PZ
5324 struct task_struct *next, *stop = rq->stop;
5325 int dest_cpu;
1da177e4
LT
5326
5327 /*
48c5ccae
PZ
5328 * Fudge the rq selection such that the below task selection loop
5329 * doesn't get stuck on the currently eligible stop task.
5330 *
5331 * We're currently inside stop_machine() and the rq is either stuck
5332 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5333 * either way we should never end up calling schedule() until we're
5334 * done here.
1da177e4 5335 */
48c5ccae 5336 rq->stop = NULL;
48f24c4d 5337
77bd3970
FW
5338 /*
5339 * put_prev_task() and pick_next_task() sched
5340 * class method both need to have an up-to-date
5341 * value of rq->clock[_task]
5342 */
5343 update_rq_clock(rq);
5344
5e16bbc2 5345 for (;;) {
48c5ccae
PZ
5346 /*
5347 * There's this thread running, bail when that's the only
5348 * remaining thread.
5349 */
5350 if (rq->nr_running == 1)
dd41f596 5351 break;
48c5ccae 5352
cbce1a68 5353 /*
5473e0cc 5354 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5355 */
5356 lockdep_pin_lock(&rq->lock);
3f1d2a31 5357 next = pick_next_task(rq, &fake_task);
48c5ccae 5358 BUG_ON(!next);
79c53799 5359 next->sched_class->put_prev_task(rq, next);
e692ab53 5360
5473e0cc
WL
5361 /*
5362 * Rules for changing task_struct::cpus_allowed are holding
5363 * both pi_lock and rq->lock, such that holding either
5364 * stabilizes the mask.
5365 *
5366 * Drop rq->lock is not quite as disastrous as it usually is
5367 * because !cpu_active at this point, which means load-balance
5368 * will not interfere. Also, stop-machine.
5369 */
5370 lockdep_unpin_lock(&rq->lock);
5371 raw_spin_unlock(&rq->lock);
5372 raw_spin_lock(&next->pi_lock);
5373 raw_spin_lock(&rq->lock);
5374
5375 /*
5376 * Since we're inside stop-machine, _nothing_ should have
5377 * changed the task, WARN if weird stuff happened, because in
5378 * that case the above rq->lock drop is a fail too.
5379 */
5380 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5381 raw_spin_unlock(&next->pi_lock);
5382 continue;
5383 }
5384
48c5ccae 5385 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5386 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5387
5e16bbc2
PZ
5388 rq = __migrate_task(rq, next, dest_cpu);
5389 if (rq != dead_rq) {
5390 raw_spin_unlock(&rq->lock);
5391 rq = dead_rq;
5392 raw_spin_lock(&rq->lock);
5393 }
5473e0cc 5394 raw_spin_unlock(&next->pi_lock);
1da177e4 5395 }
dce48a84 5396
48c5ccae 5397 rq->stop = stop;
dce48a84 5398}
1da177e4
LT
5399#endif /* CONFIG_HOTPLUG_CPU */
5400
1f11eb6a
GH
5401static void set_rq_online(struct rq *rq)
5402{
5403 if (!rq->online) {
5404 const struct sched_class *class;
5405
c6c4927b 5406 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5407 rq->online = 1;
5408
5409 for_each_class(class) {
5410 if (class->rq_online)
5411 class->rq_online(rq);
5412 }
5413 }
5414}
5415
5416static void set_rq_offline(struct rq *rq)
5417{
5418 if (rq->online) {
5419 const struct sched_class *class;
5420
5421 for_each_class(class) {
5422 if (class->rq_offline)
5423 class->rq_offline(rq);
5424 }
5425
c6c4927b 5426 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5427 rq->online = 0;
5428 }
5429}
5430
1da177e4
LT
5431/*
5432 * migration_call - callback that gets triggered when a CPU is added.
5433 * Here we can start up the necessary migration thread for the new CPU.
5434 */
0db0628d 5435static int
48f24c4d 5436migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5437{
48f24c4d 5438 int cpu = (long)hcpu;
1da177e4 5439 unsigned long flags;
969c7921 5440 struct rq *rq = cpu_rq(cpu);
1da177e4 5441
48c5ccae 5442 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5443
1da177e4 5444 case CPU_UP_PREPARE:
a468d389 5445 rq->calc_load_update = calc_load_update;
e9532e69 5446 account_reset_rq(rq);
1da177e4 5447 break;
48f24c4d 5448
1da177e4 5449 case CPU_ONLINE:
1f94ef59 5450 /* Update our root-domain */
05fa785c 5451 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5452 if (rq->rd) {
c6c4927b 5453 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5454
5455 set_rq_online(rq);
1f94ef59 5456 }
05fa785c 5457 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5458 break;
48f24c4d 5459
1da177e4 5460#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5461 case CPU_DYING:
317f3941 5462 sched_ttwu_pending();
57d885fe 5463 /* Update our root-domain */
05fa785c 5464 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5465 if (rq->rd) {
c6c4927b 5466 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5467 set_rq_offline(rq);
57d885fe 5468 }
5e16bbc2 5469 migrate_tasks(rq);
48c5ccae 5470 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5472 break;
48c5ccae 5473
5d180232 5474 case CPU_DEAD:
f319da0c 5475 calc_load_migrate(rq);
57d885fe 5476 break;
1da177e4
LT
5477#endif
5478 }
49c022e6
PZ
5479
5480 update_max_interval();
5481
1da177e4
LT
5482 return NOTIFY_OK;
5483}
5484
f38b0820
PM
5485/*
5486 * Register at high priority so that task migration (migrate_all_tasks)
5487 * happens before everything else. This has to be lower priority than
cdd6c482 5488 * the notifier in the perf_event subsystem, though.
1da177e4 5489 */
0db0628d 5490static struct notifier_block migration_notifier = {
1da177e4 5491 .notifier_call = migration_call,
50a323b7 5492 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5493};
5494
6a82b60d 5495static void set_cpu_rq_start_time(void)
a803f026
CM
5496{
5497 int cpu = smp_processor_id();
5498 struct rq *rq = cpu_rq(cpu);
5499 rq->age_stamp = sched_clock_cpu(cpu);
5500}
5501
0db0628d 5502static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5503 unsigned long action, void *hcpu)
5504{
07f06cb3
PZ
5505 int cpu = (long)hcpu;
5506
3a101d05 5507 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5508 case CPU_STARTING:
5509 set_cpu_rq_start_time();
5510 return NOTIFY_OK;
07f06cb3 5511
3a101d05 5512 case CPU_DOWN_FAILED:
07f06cb3 5513 set_cpu_active(cpu, true);
3a101d05 5514 return NOTIFY_OK;
07f06cb3 5515
3a101d05
TH
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519}
5520
0db0628d 5521static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5522 unsigned long action, void *hcpu)
5523{
5524 switch (action & ~CPU_TASKS_FROZEN) {
5525 case CPU_DOWN_PREPARE:
3c18d447 5526 set_cpu_active((long)hcpu, false);
3a101d05 5527 return NOTIFY_OK;
3c18d447
JL
5528 default:
5529 return NOTIFY_DONE;
3a101d05
TH
5530 }
5531}
5532
7babe8db 5533static int __init migration_init(void)
1da177e4
LT
5534{
5535 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5536 int err;
48f24c4d 5537
3a101d05 5538 /* Initialize migration for the boot CPU */
07dccf33
AM
5539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5541 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 register_cpu_notifier(&migration_notifier);
7babe8db 5543
3a101d05
TH
5544 /* Register cpu active notifiers */
5545 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5546 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5547
a004cd42 5548 return 0;
1da177e4 5549}
7babe8db 5550early_initcall(migration_init);
476f3534 5551
4cb98839
PZ
5552static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5553
3e9830dc 5554#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5555
d039ac60 5556static __read_mostly int sched_debug_enabled;
f6630114 5557
d039ac60 5558static int __init sched_debug_setup(char *str)
f6630114 5559{
d039ac60 5560 sched_debug_enabled = 1;
f6630114
MT
5561
5562 return 0;
5563}
d039ac60
PZ
5564early_param("sched_debug", sched_debug_setup);
5565
5566static inline bool sched_debug(void)
5567{
5568 return sched_debug_enabled;
5569}
f6630114 5570
7c16ec58 5571static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5572 struct cpumask *groupmask)
1da177e4 5573{
4dcf6aff 5574 struct sched_group *group = sd->groups;
1da177e4 5575
96f874e2 5576 cpumask_clear(groupmask);
4dcf6aff
IM
5577
5578 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579
5580 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5581 printk("does not load-balance\n");
4dcf6aff 5582 if (sd->parent)
3df0fc5b
PZ
5583 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584 " has parent");
4dcf6aff 5585 return -1;
41c7ce9a
NP
5586 }
5587
333470ee
TH
5588 printk(KERN_CONT "span %*pbl level %s\n",
5589 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5590
758b2cdc 5591 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5592 printk(KERN_ERR "ERROR: domain->span does not contain "
5593 "CPU%d\n", cpu);
4dcf6aff 5594 }
758b2cdc 5595 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5596 printk(KERN_ERR "ERROR: domain->groups does not contain"
5597 " CPU%d\n", cpu);
4dcf6aff 5598 }
1da177e4 5599
4dcf6aff 5600 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5601 do {
4dcf6aff 5602 if (!group) {
3df0fc5b
PZ
5603 printk("\n");
5604 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5605 break;
5606 }
5607
758b2cdc 5608 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5609 printk(KERN_CONT "\n");
5610 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5611 break;
5612 }
1da177e4 5613
cb83b629
PZ
5614 if (!(sd->flags & SD_OVERLAP) &&
5615 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5616 printk(KERN_CONT "\n");
5617 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5618 break;
5619 }
1da177e4 5620
758b2cdc 5621 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5622
333470ee
TH
5623 printk(KERN_CONT " %*pbl",
5624 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5625 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5626 printk(KERN_CONT " (cpu_capacity = %d)",
5627 group->sgc->capacity);
381512cf 5628 }
1da177e4 5629
4dcf6aff
IM
5630 group = group->next;
5631 } while (group != sd->groups);
3df0fc5b 5632 printk(KERN_CONT "\n");
1da177e4 5633
758b2cdc 5634 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5635 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5636
758b2cdc
RR
5637 if (sd->parent &&
5638 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5639 printk(KERN_ERR "ERROR: parent span is not a superset "
5640 "of domain->span\n");
4dcf6aff
IM
5641 return 0;
5642}
1da177e4 5643
4dcf6aff
IM
5644static void sched_domain_debug(struct sched_domain *sd, int cpu)
5645{
5646 int level = 0;
1da177e4 5647
d039ac60 5648 if (!sched_debug_enabled)
f6630114
MT
5649 return;
5650
4dcf6aff
IM
5651 if (!sd) {
5652 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5653 return;
5654 }
1da177e4 5655
4dcf6aff
IM
5656 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5657
5658 for (;;) {
4cb98839 5659 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5660 break;
1da177e4
LT
5661 level++;
5662 sd = sd->parent;
33859f7f 5663 if (!sd)
4dcf6aff
IM
5664 break;
5665 }
1da177e4 5666}
6d6bc0ad 5667#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5668# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5669static inline bool sched_debug(void)
5670{
5671 return false;
5672}
6d6bc0ad 5673#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5674
1a20ff27 5675static int sd_degenerate(struct sched_domain *sd)
245af2c7 5676{
758b2cdc 5677 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5678 return 1;
5679
5680 /* Following flags need at least 2 groups */
5681 if (sd->flags & (SD_LOAD_BALANCE |
5682 SD_BALANCE_NEWIDLE |
5683 SD_BALANCE_FORK |
89c4710e 5684 SD_BALANCE_EXEC |
5d4dfddd 5685 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5686 SD_SHARE_PKG_RESOURCES |
5687 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5688 if (sd->groups != sd->groups->next)
5689 return 0;
5690 }
5691
5692 /* Following flags don't use groups */
c88d5910 5693 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5694 return 0;
5695
5696 return 1;
5697}
5698
48f24c4d
IM
5699static int
5700sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5701{
5702 unsigned long cflags = sd->flags, pflags = parent->flags;
5703
5704 if (sd_degenerate(parent))
5705 return 1;
5706
758b2cdc 5707 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5708 return 0;
5709
245af2c7
SS
5710 /* Flags needing groups don't count if only 1 group in parent */
5711 if (parent->groups == parent->groups->next) {
5712 pflags &= ~(SD_LOAD_BALANCE |
5713 SD_BALANCE_NEWIDLE |
5714 SD_BALANCE_FORK |
89c4710e 5715 SD_BALANCE_EXEC |
5d4dfddd 5716 SD_SHARE_CPUCAPACITY |
10866e62 5717 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5718 SD_PREFER_SIBLING |
5719 SD_SHARE_POWERDOMAIN);
5436499e
KC
5720 if (nr_node_ids == 1)
5721 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5722 }
5723 if (~cflags & pflags)
5724 return 0;
5725
5726 return 1;
5727}
5728
dce840a0 5729static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5730{
dce840a0 5731 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5732
68e74568 5733 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5734 cpudl_cleanup(&rd->cpudl);
1baca4ce 5735 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5736 free_cpumask_var(rd->rto_mask);
5737 free_cpumask_var(rd->online);
5738 free_cpumask_var(rd->span);
5739 kfree(rd);
5740}
5741
57d885fe
GH
5742static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5743{
a0490fa3 5744 struct root_domain *old_rd = NULL;
57d885fe 5745 unsigned long flags;
57d885fe 5746
05fa785c 5747 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5748
5749 if (rq->rd) {
a0490fa3 5750 old_rd = rq->rd;
57d885fe 5751
c6c4927b 5752 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5753 set_rq_offline(rq);
57d885fe 5754
c6c4927b 5755 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5756
a0490fa3 5757 /*
0515973f 5758 * If we dont want to free the old_rd yet then
a0490fa3
IM
5759 * set old_rd to NULL to skip the freeing later
5760 * in this function:
5761 */
5762 if (!atomic_dec_and_test(&old_rd->refcount))
5763 old_rd = NULL;
57d885fe
GH
5764 }
5765
5766 atomic_inc(&rd->refcount);
5767 rq->rd = rd;
5768
c6c4927b 5769 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5770 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5771 set_rq_online(rq);
57d885fe 5772
05fa785c 5773 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5774
5775 if (old_rd)
dce840a0 5776 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5777}
5778
68c38fc3 5779static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5780{
5781 memset(rd, 0, sizeof(*rd));
5782
8295c699 5783 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5784 goto out;
8295c699 5785 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5786 goto free_span;
8295c699 5787 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5788 goto free_online;
8295c699 5789 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5790 goto free_dlo_mask;
6e0534f2 5791
332ac17e 5792 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5793 if (cpudl_init(&rd->cpudl) != 0)
5794 goto free_dlo_mask;
332ac17e 5795
68c38fc3 5796 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5797 goto free_rto_mask;
c6c4927b 5798 return 0;
6e0534f2 5799
68e74568
RR
5800free_rto_mask:
5801 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5802free_dlo_mask:
5803 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5804free_online:
5805 free_cpumask_var(rd->online);
5806free_span:
5807 free_cpumask_var(rd->span);
0c910d28 5808out:
c6c4927b 5809 return -ENOMEM;
57d885fe
GH
5810}
5811
029632fb
PZ
5812/*
5813 * By default the system creates a single root-domain with all cpus as
5814 * members (mimicking the global state we have today).
5815 */
5816struct root_domain def_root_domain;
5817
57d885fe
GH
5818static void init_defrootdomain(void)
5819{
68c38fc3 5820 init_rootdomain(&def_root_domain);
c6c4927b 5821
57d885fe
GH
5822 atomic_set(&def_root_domain.refcount, 1);
5823}
5824
dc938520 5825static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5826{
5827 struct root_domain *rd;
5828
5829 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5830 if (!rd)
5831 return NULL;
5832
68c38fc3 5833 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5834 kfree(rd);
5835 return NULL;
5836 }
57d885fe
GH
5837
5838 return rd;
5839}
5840
63b2ca30 5841static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5842{
5843 struct sched_group *tmp, *first;
5844
5845 if (!sg)
5846 return;
5847
5848 first = sg;
5849 do {
5850 tmp = sg->next;
5851
63b2ca30
NP
5852 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5853 kfree(sg->sgc);
e3589f6c
PZ
5854
5855 kfree(sg);
5856 sg = tmp;
5857 } while (sg != first);
5858}
5859
dce840a0
PZ
5860static void free_sched_domain(struct rcu_head *rcu)
5861{
5862 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5863
5864 /*
5865 * If its an overlapping domain it has private groups, iterate and
5866 * nuke them all.
5867 */
5868 if (sd->flags & SD_OVERLAP) {
5869 free_sched_groups(sd->groups, 1);
5870 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5871 kfree(sd->groups->sgc);
dce840a0 5872 kfree(sd->groups);
9c3f75cb 5873 }
dce840a0
PZ
5874 kfree(sd);
5875}
5876
5877static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5878{
5879 call_rcu(&sd->rcu, free_sched_domain);
5880}
5881
5882static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5883{
5884 for (; sd; sd = sd->parent)
5885 destroy_sched_domain(sd, cpu);
5886}
5887
518cd623
PZ
5888/*
5889 * Keep a special pointer to the highest sched_domain that has
5890 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5891 * allows us to avoid some pointer chasing select_idle_sibling().
5892 *
5893 * Also keep a unique ID per domain (we use the first cpu number in
5894 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5895 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5896 */
5897DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5898DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5899DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5900DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5901DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5902DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5903
5904static void update_top_cache_domain(int cpu)
5905{
5906 struct sched_domain *sd;
5d4cf996 5907 struct sched_domain *busy_sd = NULL;
518cd623 5908 int id = cpu;
7d9ffa89 5909 int size = 1;
518cd623
PZ
5910
5911 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5912 if (sd) {
518cd623 5913 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5914 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5915 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5916 }
5d4cf996 5917 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5918
5919 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5920 per_cpu(sd_llc_size, cpu) = size;
518cd623 5921 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5922
5923 sd = lowest_flag_domain(cpu, SD_NUMA);
5924 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5925
5926 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5927 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5928}
5929
1da177e4 5930/*
0eab9146 5931 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5932 * hold the hotplug lock.
5933 */
0eab9146
IM
5934static void
5935cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5936{
70b97a7f 5937 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5938 struct sched_domain *tmp;
5939
5940 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5941 for (tmp = sd; tmp; ) {
245af2c7
SS
5942 struct sched_domain *parent = tmp->parent;
5943 if (!parent)
5944 break;
f29c9b1c 5945
1a848870 5946 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5947 tmp->parent = parent->parent;
1a848870
SS
5948 if (parent->parent)
5949 parent->parent->child = tmp;
10866e62
PZ
5950 /*
5951 * Transfer SD_PREFER_SIBLING down in case of a
5952 * degenerate parent; the spans match for this
5953 * so the property transfers.
5954 */
5955 if (parent->flags & SD_PREFER_SIBLING)
5956 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5957 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5958 } else
5959 tmp = tmp->parent;
245af2c7
SS
5960 }
5961
1a848870 5962 if (sd && sd_degenerate(sd)) {
dce840a0 5963 tmp = sd;
245af2c7 5964 sd = sd->parent;
dce840a0 5965 destroy_sched_domain(tmp, cpu);
1a848870
SS
5966 if (sd)
5967 sd->child = NULL;
5968 }
1da177e4 5969
4cb98839 5970 sched_domain_debug(sd, cpu);
1da177e4 5971
57d885fe 5972 rq_attach_root(rq, rd);
dce840a0 5973 tmp = rq->sd;
674311d5 5974 rcu_assign_pointer(rq->sd, sd);
dce840a0 5975 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5976
5977 update_top_cache_domain(cpu);
1da177e4
LT
5978}
5979
1da177e4
LT
5980/* Setup the mask of cpus configured for isolated domains */
5981static int __init isolated_cpu_setup(char *str)
5982{
a6e4491c
PB
5983 int ret;
5984
bdddd296 5985 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5986 ret = cpulist_parse(str, cpu_isolated_map);
5987 if (ret) {
5988 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5989 return 0;
5990 }
1da177e4
LT
5991 return 1;
5992}
8927f494 5993__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5994
49a02c51 5995struct s_data {
21d42ccf 5996 struct sched_domain ** __percpu sd;
49a02c51
AH
5997 struct root_domain *rd;
5998};
5999
2109b99e 6000enum s_alloc {
2109b99e 6001 sa_rootdomain,
21d42ccf 6002 sa_sd,
dce840a0 6003 sa_sd_storage,
2109b99e
AH
6004 sa_none,
6005};
6006
c1174876
PZ
6007/*
6008 * Build an iteration mask that can exclude certain CPUs from the upwards
6009 * domain traversal.
6010 *
6011 * Asymmetric node setups can result in situations where the domain tree is of
6012 * unequal depth, make sure to skip domains that already cover the entire
6013 * range.
6014 *
6015 * In that case build_sched_domains() will have terminated the iteration early
6016 * and our sibling sd spans will be empty. Domains should always include the
6017 * cpu they're built on, so check that.
6018 *
6019 */
6020static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6021{
6022 const struct cpumask *span = sched_domain_span(sd);
6023 struct sd_data *sdd = sd->private;
6024 struct sched_domain *sibling;
6025 int i;
6026
6027 for_each_cpu(i, span) {
6028 sibling = *per_cpu_ptr(sdd->sd, i);
6029 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6030 continue;
6031
6032 cpumask_set_cpu(i, sched_group_mask(sg));
6033 }
6034}
6035
6036/*
6037 * Return the canonical balance cpu for this group, this is the first cpu
6038 * of this group that's also in the iteration mask.
6039 */
6040int group_balance_cpu(struct sched_group *sg)
6041{
6042 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6043}
6044
e3589f6c
PZ
6045static int
6046build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6047{
6048 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6049 const struct cpumask *span = sched_domain_span(sd);
6050 struct cpumask *covered = sched_domains_tmpmask;
6051 struct sd_data *sdd = sd->private;
aaecac4a 6052 struct sched_domain *sibling;
e3589f6c
PZ
6053 int i;
6054
6055 cpumask_clear(covered);
6056
6057 for_each_cpu(i, span) {
6058 struct cpumask *sg_span;
6059
6060 if (cpumask_test_cpu(i, covered))
6061 continue;
6062
aaecac4a 6063 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6064
6065 /* See the comment near build_group_mask(). */
aaecac4a 6066 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6067 continue;
6068
e3589f6c 6069 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6070 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6071
6072 if (!sg)
6073 goto fail;
6074
6075 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6076 if (sibling->child)
6077 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6078 else
e3589f6c
PZ
6079 cpumask_set_cpu(i, sg_span);
6080
6081 cpumask_or(covered, covered, sg_span);
6082
63b2ca30
NP
6083 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6084 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6085 build_group_mask(sd, sg);
6086
c3decf0d 6087 /*
63b2ca30 6088 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6089 * domains and no possible iteration will get us here, we won't
6090 * die on a /0 trap.
6091 */
ca8ce3d0 6092 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6093
c1174876
PZ
6094 /*
6095 * Make sure the first group of this domain contains the
6096 * canonical balance cpu. Otherwise the sched_domain iteration
6097 * breaks. See update_sg_lb_stats().
6098 */
74a5ce20 6099 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6100 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6101 groups = sg;
6102
6103 if (!first)
6104 first = sg;
6105 if (last)
6106 last->next = sg;
6107 last = sg;
6108 last->next = first;
6109 }
6110 sd->groups = groups;
6111
6112 return 0;
6113
6114fail:
6115 free_sched_groups(first, 0);
6116
6117 return -ENOMEM;
6118}
6119
dce840a0 6120static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6121{
dce840a0
PZ
6122 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6123 struct sched_domain *child = sd->child;
1da177e4 6124
dce840a0
PZ
6125 if (child)
6126 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6127
9c3f75cb 6128 if (sg) {
dce840a0 6129 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6130 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6131 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6132 }
dce840a0
PZ
6133
6134 return cpu;
1e9f28fa 6135}
1e9f28fa 6136
01a08546 6137/*
dce840a0
PZ
6138 * build_sched_groups will build a circular linked list of the groups
6139 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6140 * and ->cpu_capacity to 0.
e3589f6c
PZ
6141 *
6142 * Assumes the sched_domain tree is fully constructed
01a08546 6143 */
e3589f6c
PZ
6144static int
6145build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6146{
dce840a0
PZ
6147 struct sched_group *first = NULL, *last = NULL;
6148 struct sd_data *sdd = sd->private;
6149 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6150 struct cpumask *covered;
dce840a0 6151 int i;
9c1cfda2 6152
e3589f6c
PZ
6153 get_group(cpu, sdd, &sd->groups);
6154 atomic_inc(&sd->groups->ref);
6155
0936629f 6156 if (cpu != cpumask_first(span))
e3589f6c
PZ
6157 return 0;
6158
f96225fd
PZ
6159 lockdep_assert_held(&sched_domains_mutex);
6160 covered = sched_domains_tmpmask;
6161
dce840a0 6162 cpumask_clear(covered);
6711cab4 6163
dce840a0
PZ
6164 for_each_cpu(i, span) {
6165 struct sched_group *sg;
cd08e923 6166 int group, j;
6711cab4 6167
dce840a0
PZ
6168 if (cpumask_test_cpu(i, covered))
6169 continue;
6711cab4 6170
cd08e923 6171 group = get_group(i, sdd, &sg);
c1174876 6172 cpumask_setall(sched_group_mask(sg));
0601a88d 6173
dce840a0
PZ
6174 for_each_cpu(j, span) {
6175 if (get_group(j, sdd, NULL) != group)
6176 continue;
0601a88d 6177
dce840a0
PZ
6178 cpumask_set_cpu(j, covered);
6179 cpumask_set_cpu(j, sched_group_cpus(sg));
6180 }
0601a88d 6181
dce840a0
PZ
6182 if (!first)
6183 first = sg;
6184 if (last)
6185 last->next = sg;
6186 last = sg;
6187 }
6188 last->next = first;
e3589f6c
PZ
6189
6190 return 0;
0601a88d 6191}
51888ca2 6192
89c4710e 6193/*
63b2ca30 6194 * Initialize sched groups cpu_capacity.
89c4710e 6195 *
63b2ca30 6196 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6197 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6198 * Typically cpu_capacity for all the groups in a sched domain will be same
6199 * unless there are asymmetries in the topology. If there are asymmetries,
6200 * group having more cpu_capacity will pickup more load compared to the
6201 * group having less cpu_capacity.
89c4710e 6202 */
63b2ca30 6203static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6204{
e3589f6c 6205 struct sched_group *sg = sd->groups;
89c4710e 6206
94c95ba6 6207 WARN_ON(!sg);
e3589f6c
PZ
6208
6209 do {
6210 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6211 sg = sg->next;
6212 } while (sg != sd->groups);
89c4710e 6213
c1174876 6214 if (cpu != group_balance_cpu(sg))
e3589f6c 6215 return;
aae6d3dd 6216
63b2ca30
NP
6217 update_group_capacity(sd, cpu);
6218 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6219}
6220
7c16ec58
MT
6221/*
6222 * Initializers for schedule domains
6223 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6224 */
6225
1d3504fc 6226static int default_relax_domain_level = -1;
60495e77 6227int sched_domain_level_max;
1d3504fc
HS
6228
6229static int __init setup_relax_domain_level(char *str)
6230{
a841f8ce
DS
6231 if (kstrtoint(str, 0, &default_relax_domain_level))
6232 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6233
1d3504fc
HS
6234 return 1;
6235}
6236__setup("relax_domain_level=", setup_relax_domain_level);
6237
6238static void set_domain_attribute(struct sched_domain *sd,
6239 struct sched_domain_attr *attr)
6240{
6241 int request;
6242
6243 if (!attr || attr->relax_domain_level < 0) {
6244 if (default_relax_domain_level < 0)
6245 return;
6246 else
6247 request = default_relax_domain_level;
6248 } else
6249 request = attr->relax_domain_level;
6250 if (request < sd->level) {
6251 /* turn off idle balance on this domain */
c88d5910 6252 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6253 } else {
6254 /* turn on idle balance on this domain */
c88d5910 6255 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6256 }
6257}
6258
54ab4ff4
PZ
6259static void __sdt_free(const struct cpumask *cpu_map);
6260static int __sdt_alloc(const struct cpumask *cpu_map);
6261
2109b99e
AH
6262static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6263 const struct cpumask *cpu_map)
6264{
6265 switch (what) {
2109b99e 6266 case sa_rootdomain:
822ff793
PZ
6267 if (!atomic_read(&d->rd->refcount))
6268 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6269 case sa_sd:
6270 free_percpu(d->sd); /* fall through */
dce840a0 6271 case sa_sd_storage:
54ab4ff4 6272 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6273 case sa_none:
6274 break;
6275 }
6276}
3404c8d9 6277
2109b99e
AH
6278static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6279 const struct cpumask *cpu_map)
6280{
dce840a0
PZ
6281 memset(d, 0, sizeof(*d));
6282
54ab4ff4
PZ
6283 if (__sdt_alloc(cpu_map))
6284 return sa_sd_storage;
dce840a0
PZ
6285 d->sd = alloc_percpu(struct sched_domain *);
6286 if (!d->sd)
6287 return sa_sd_storage;
2109b99e 6288 d->rd = alloc_rootdomain();
dce840a0 6289 if (!d->rd)
21d42ccf 6290 return sa_sd;
2109b99e
AH
6291 return sa_rootdomain;
6292}
57d885fe 6293
dce840a0
PZ
6294/*
6295 * NULL the sd_data elements we've used to build the sched_domain and
6296 * sched_group structure so that the subsequent __free_domain_allocs()
6297 * will not free the data we're using.
6298 */
6299static void claim_allocations(int cpu, struct sched_domain *sd)
6300{
6301 struct sd_data *sdd = sd->private;
dce840a0
PZ
6302
6303 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6304 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6305
e3589f6c 6306 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6307 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6308
63b2ca30
NP
6309 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6310 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6311}
6312
cb83b629 6313#ifdef CONFIG_NUMA
cb83b629 6314static int sched_domains_numa_levels;
e3fe70b1 6315enum numa_topology_type sched_numa_topology_type;
cb83b629 6316static int *sched_domains_numa_distance;
9942f79b 6317int sched_max_numa_distance;
cb83b629
PZ
6318static struct cpumask ***sched_domains_numa_masks;
6319static int sched_domains_curr_level;
143e1e28 6320#endif
cb83b629 6321
143e1e28
VG
6322/*
6323 * SD_flags allowed in topology descriptions.
6324 *
5d4dfddd 6325 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6326 * SD_SHARE_PKG_RESOURCES - describes shared caches
6327 * SD_NUMA - describes NUMA topologies
d77b3ed5 6328 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6329 *
6330 * Odd one out:
6331 * SD_ASYM_PACKING - describes SMT quirks
6332 */
6333#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6334 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6335 SD_SHARE_PKG_RESOURCES | \
6336 SD_NUMA | \
d77b3ed5
VG
6337 SD_ASYM_PACKING | \
6338 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6339
6340static struct sched_domain *
143e1e28 6341sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6342{
6343 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6344 int sd_weight, sd_flags = 0;
6345
6346#ifdef CONFIG_NUMA
6347 /*
6348 * Ugly hack to pass state to sd_numa_mask()...
6349 */
6350 sched_domains_curr_level = tl->numa_level;
6351#endif
6352
6353 sd_weight = cpumask_weight(tl->mask(cpu));
6354
6355 if (tl->sd_flags)
6356 sd_flags = (*tl->sd_flags)();
6357 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6358 "wrong sd_flags in topology description\n"))
6359 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6360
6361 *sd = (struct sched_domain){
6362 .min_interval = sd_weight,
6363 .max_interval = 2*sd_weight,
6364 .busy_factor = 32,
870a0bb5 6365 .imbalance_pct = 125,
143e1e28
VG
6366
6367 .cache_nice_tries = 0,
6368 .busy_idx = 0,
6369 .idle_idx = 0,
cb83b629
PZ
6370 .newidle_idx = 0,
6371 .wake_idx = 0,
6372 .forkexec_idx = 0,
6373
6374 .flags = 1*SD_LOAD_BALANCE
6375 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6376 | 1*SD_BALANCE_EXEC
6377 | 1*SD_BALANCE_FORK
cb83b629 6378 | 0*SD_BALANCE_WAKE
143e1e28 6379 | 1*SD_WAKE_AFFINE
5d4dfddd 6380 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6381 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6382 | 0*SD_SERIALIZE
cb83b629 6383 | 0*SD_PREFER_SIBLING
143e1e28
VG
6384 | 0*SD_NUMA
6385 | sd_flags
cb83b629 6386 ,
143e1e28 6387
cb83b629
PZ
6388 .last_balance = jiffies,
6389 .balance_interval = sd_weight,
143e1e28 6390 .smt_gain = 0,
2b4cfe64
JL
6391 .max_newidle_lb_cost = 0,
6392 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6393#ifdef CONFIG_SCHED_DEBUG
6394 .name = tl->name,
6395#endif
cb83b629 6396 };
cb83b629
PZ
6397
6398 /*
143e1e28 6399 * Convert topological properties into behaviour.
cb83b629 6400 */
143e1e28 6401
5d4dfddd 6402 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6403 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6404 sd->imbalance_pct = 110;
6405 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6406
6407 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6408 sd->imbalance_pct = 117;
6409 sd->cache_nice_tries = 1;
6410 sd->busy_idx = 2;
6411
6412#ifdef CONFIG_NUMA
6413 } else if (sd->flags & SD_NUMA) {
6414 sd->cache_nice_tries = 2;
6415 sd->busy_idx = 3;
6416 sd->idle_idx = 2;
6417
6418 sd->flags |= SD_SERIALIZE;
6419 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6420 sd->flags &= ~(SD_BALANCE_EXEC |
6421 SD_BALANCE_FORK |
6422 SD_WAKE_AFFINE);
6423 }
6424
6425#endif
6426 } else {
6427 sd->flags |= SD_PREFER_SIBLING;
6428 sd->cache_nice_tries = 1;
6429 sd->busy_idx = 2;
6430 sd->idle_idx = 1;
6431 }
6432
6433 sd->private = &tl->data;
cb83b629
PZ
6434
6435 return sd;
6436}
6437
143e1e28
VG
6438/*
6439 * Topology list, bottom-up.
6440 */
6441static struct sched_domain_topology_level default_topology[] = {
6442#ifdef CONFIG_SCHED_SMT
6443 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6444#endif
6445#ifdef CONFIG_SCHED_MC
6446 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6447#endif
6448 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6449 { NULL, },
6450};
6451
c6e1e7b5
JG
6452static struct sched_domain_topology_level *sched_domain_topology =
6453 default_topology;
143e1e28
VG
6454
6455#define for_each_sd_topology(tl) \
6456 for (tl = sched_domain_topology; tl->mask; tl++)
6457
6458void set_sched_topology(struct sched_domain_topology_level *tl)
6459{
6460 sched_domain_topology = tl;
6461}
6462
6463#ifdef CONFIG_NUMA
6464
cb83b629
PZ
6465static const struct cpumask *sd_numa_mask(int cpu)
6466{
6467 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6468}
6469
d039ac60
PZ
6470static void sched_numa_warn(const char *str)
6471{
6472 static int done = false;
6473 int i,j;
6474
6475 if (done)
6476 return;
6477
6478 done = true;
6479
6480 printk(KERN_WARNING "ERROR: %s\n\n", str);
6481
6482 for (i = 0; i < nr_node_ids; i++) {
6483 printk(KERN_WARNING " ");
6484 for (j = 0; j < nr_node_ids; j++)
6485 printk(KERN_CONT "%02d ", node_distance(i,j));
6486 printk(KERN_CONT "\n");
6487 }
6488 printk(KERN_WARNING "\n");
6489}
6490
9942f79b 6491bool find_numa_distance(int distance)
d039ac60
PZ
6492{
6493 int i;
6494
6495 if (distance == node_distance(0, 0))
6496 return true;
6497
6498 for (i = 0; i < sched_domains_numa_levels; i++) {
6499 if (sched_domains_numa_distance[i] == distance)
6500 return true;
6501 }
6502
6503 return false;
6504}
6505
e3fe70b1
RR
6506/*
6507 * A system can have three types of NUMA topology:
6508 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6509 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6510 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6511 *
6512 * The difference between a glueless mesh topology and a backplane
6513 * topology lies in whether communication between not directly
6514 * connected nodes goes through intermediary nodes (where programs
6515 * could run), or through backplane controllers. This affects
6516 * placement of programs.
6517 *
6518 * The type of topology can be discerned with the following tests:
6519 * - If the maximum distance between any nodes is 1 hop, the system
6520 * is directly connected.
6521 * - If for two nodes A and B, located N > 1 hops away from each other,
6522 * there is an intermediary node C, which is < N hops away from both
6523 * nodes A and B, the system is a glueless mesh.
6524 */
6525static void init_numa_topology_type(void)
6526{
6527 int a, b, c, n;
6528
6529 n = sched_max_numa_distance;
6530
e237882b 6531 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6532 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6533 return;
6534 }
e3fe70b1
RR
6535
6536 for_each_online_node(a) {
6537 for_each_online_node(b) {
6538 /* Find two nodes furthest removed from each other. */
6539 if (node_distance(a, b) < n)
6540 continue;
6541
6542 /* Is there an intermediary node between a and b? */
6543 for_each_online_node(c) {
6544 if (node_distance(a, c) < n &&
6545 node_distance(b, c) < n) {
6546 sched_numa_topology_type =
6547 NUMA_GLUELESS_MESH;
6548 return;
6549 }
6550 }
6551
6552 sched_numa_topology_type = NUMA_BACKPLANE;
6553 return;
6554 }
6555 }
6556}
6557
cb83b629
PZ
6558static void sched_init_numa(void)
6559{
6560 int next_distance, curr_distance = node_distance(0, 0);
6561 struct sched_domain_topology_level *tl;
6562 int level = 0;
6563 int i, j, k;
6564
cb83b629
PZ
6565 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6566 if (!sched_domains_numa_distance)
6567 return;
6568
6569 /*
6570 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6571 * unique distances in the node_distance() table.
6572 *
6573 * Assumes node_distance(0,j) includes all distances in
6574 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6575 */
6576 next_distance = curr_distance;
6577 for (i = 0; i < nr_node_ids; i++) {
6578 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6579 for (k = 0; k < nr_node_ids; k++) {
6580 int distance = node_distance(i, k);
6581
6582 if (distance > curr_distance &&
6583 (distance < next_distance ||
6584 next_distance == curr_distance))
6585 next_distance = distance;
6586
6587 /*
6588 * While not a strong assumption it would be nice to know
6589 * about cases where if node A is connected to B, B is not
6590 * equally connected to A.
6591 */
6592 if (sched_debug() && node_distance(k, i) != distance)
6593 sched_numa_warn("Node-distance not symmetric");
6594
6595 if (sched_debug() && i && !find_numa_distance(distance))
6596 sched_numa_warn("Node-0 not representative");
6597 }
6598 if (next_distance != curr_distance) {
6599 sched_domains_numa_distance[level++] = next_distance;
6600 sched_domains_numa_levels = level;
6601 curr_distance = next_distance;
6602 } else break;
cb83b629 6603 }
d039ac60
PZ
6604
6605 /*
6606 * In case of sched_debug() we verify the above assumption.
6607 */
6608 if (!sched_debug())
6609 break;
cb83b629 6610 }
c123588b
AR
6611
6612 if (!level)
6613 return;
6614
cb83b629
PZ
6615 /*
6616 * 'level' contains the number of unique distances, excluding the
6617 * identity distance node_distance(i,i).
6618 *
28b4a521 6619 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6620 * numbers.
6621 */
6622
5f7865f3
TC
6623 /*
6624 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6625 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6626 * the array will contain less then 'level' members. This could be
6627 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6628 * in other functions.
6629 *
6630 * We reset it to 'level' at the end of this function.
6631 */
6632 sched_domains_numa_levels = 0;
6633
cb83b629
PZ
6634 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6635 if (!sched_domains_numa_masks)
6636 return;
6637
6638 /*
6639 * Now for each level, construct a mask per node which contains all
6640 * cpus of nodes that are that many hops away from us.
6641 */
6642 for (i = 0; i < level; i++) {
6643 sched_domains_numa_masks[i] =
6644 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6645 if (!sched_domains_numa_masks[i])
6646 return;
6647
6648 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6649 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6650 if (!mask)
6651 return;
6652
6653 sched_domains_numa_masks[i][j] = mask;
6654
9c03ee14 6655 for_each_node(k) {
dd7d8634 6656 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6657 continue;
6658
6659 cpumask_or(mask, mask, cpumask_of_node(k));
6660 }
6661 }
6662 }
6663
143e1e28
VG
6664 /* Compute default topology size */
6665 for (i = 0; sched_domain_topology[i].mask; i++);
6666
c515db8c 6667 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6668 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6669 if (!tl)
6670 return;
6671
6672 /*
6673 * Copy the default topology bits..
6674 */
143e1e28
VG
6675 for (i = 0; sched_domain_topology[i].mask; i++)
6676 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6677
6678 /*
6679 * .. and append 'j' levels of NUMA goodness.
6680 */
6681 for (j = 0; j < level; i++, j++) {
6682 tl[i] = (struct sched_domain_topology_level){
cb83b629 6683 .mask = sd_numa_mask,
143e1e28 6684 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6685 .flags = SDTL_OVERLAP,
6686 .numa_level = j,
143e1e28 6687 SD_INIT_NAME(NUMA)
cb83b629
PZ
6688 };
6689 }
6690
6691 sched_domain_topology = tl;
5f7865f3
TC
6692
6693 sched_domains_numa_levels = level;
9942f79b 6694 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6695
6696 init_numa_topology_type();
cb83b629 6697}
301a5cba
TC
6698
6699static void sched_domains_numa_masks_set(int cpu)
6700{
6701 int i, j;
6702 int node = cpu_to_node(cpu);
6703
6704 for (i = 0; i < sched_domains_numa_levels; i++) {
6705 for (j = 0; j < nr_node_ids; j++) {
6706 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6707 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6708 }
6709 }
6710}
6711
6712static void sched_domains_numa_masks_clear(int cpu)
6713{
6714 int i, j;
6715 for (i = 0; i < sched_domains_numa_levels; i++) {
6716 for (j = 0; j < nr_node_ids; j++)
6717 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6718 }
6719}
6720
6721/*
6722 * Update sched_domains_numa_masks[level][node] array when new cpus
6723 * are onlined.
6724 */
6725static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6726 unsigned long action,
6727 void *hcpu)
6728{
6729 int cpu = (long)hcpu;
6730
6731 switch (action & ~CPU_TASKS_FROZEN) {
6732 case CPU_ONLINE:
6733 sched_domains_numa_masks_set(cpu);
6734 break;
6735
6736 case CPU_DEAD:
6737 sched_domains_numa_masks_clear(cpu);
6738 break;
6739
6740 default:
6741 return NOTIFY_DONE;
6742 }
6743
6744 return NOTIFY_OK;
cb83b629
PZ
6745}
6746#else
6747static inline void sched_init_numa(void)
6748{
6749}
301a5cba
TC
6750
6751static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6752 unsigned long action,
6753 void *hcpu)
6754{
6755 return 0;
6756}
cb83b629
PZ
6757#endif /* CONFIG_NUMA */
6758
54ab4ff4
PZ
6759static int __sdt_alloc(const struct cpumask *cpu_map)
6760{
6761 struct sched_domain_topology_level *tl;
6762 int j;
6763
27723a68 6764 for_each_sd_topology(tl) {
54ab4ff4
PZ
6765 struct sd_data *sdd = &tl->data;
6766
6767 sdd->sd = alloc_percpu(struct sched_domain *);
6768 if (!sdd->sd)
6769 return -ENOMEM;
6770
6771 sdd->sg = alloc_percpu(struct sched_group *);
6772 if (!sdd->sg)
6773 return -ENOMEM;
6774
63b2ca30
NP
6775 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6776 if (!sdd->sgc)
9c3f75cb
PZ
6777 return -ENOMEM;
6778
54ab4ff4
PZ
6779 for_each_cpu(j, cpu_map) {
6780 struct sched_domain *sd;
6781 struct sched_group *sg;
63b2ca30 6782 struct sched_group_capacity *sgc;
54ab4ff4 6783
5cc389bc 6784 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6785 GFP_KERNEL, cpu_to_node(j));
6786 if (!sd)
6787 return -ENOMEM;
6788
6789 *per_cpu_ptr(sdd->sd, j) = sd;
6790
6791 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6792 GFP_KERNEL, cpu_to_node(j));
6793 if (!sg)
6794 return -ENOMEM;
6795
30b4e9eb
IM
6796 sg->next = sg;
6797
54ab4ff4 6798 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6799
63b2ca30 6800 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6801 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6802 if (!sgc)
9c3f75cb
PZ
6803 return -ENOMEM;
6804
63b2ca30 6805 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6806 }
6807 }
6808
6809 return 0;
6810}
6811
6812static void __sdt_free(const struct cpumask *cpu_map)
6813{
6814 struct sched_domain_topology_level *tl;
6815 int j;
6816
27723a68 6817 for_each_sd_topology(tl) {
54ab4ff4
PZ
6818 struct sd_data *sdd = &tl->data;
6819
6820 for_each_cpu(j, cpu_map) {
fb2cf2c6 6821 struct sched_domain *sd;
6822
6823 if (sdd->sd) {
6824 sd = *per_cpu_ptr(sdd->sd, j);
6825 if (sd && (sd->flags & SD_OVERLAP))
6826 free_sched_groups(sd->groups, 0);
6827 kfree(*per_cpu_ptr(sdd->sd, j));
6828 }
6829
6830 if (sdd->sg)
6831 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6832 if (sdd->sgc)
6833 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6834 }
6835 free_percpu(sdd->sd);
fb2cf2c6 6836 sdd->sd = NULL;
54ab4ff4 6837 free_percpu(sdd->sg);
fb2cf2c6 6838 sdd->sg = NULL;
63b2ca30
NP
6839 free_percpu(sdd->sgc);
6840 sdd->sgc = NULL;
54ab4ff4
PZ
6841 }
6842}
6843
2c402dc3 6844struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6845 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6846 struct sched_domain *child, int cpu)
2c402dc3 6847{
143e1e28 6848 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6849 if (!sd)
d069b916 6850 return child;
2c402dc3 6851
2c402dc3 6852 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6853 if (child) {
6854 sd->level = child->level + 1;
6855 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6856 child->parent = sd;
c75e0128 6857 sd->child = child;
6ae72dff
PZ
6858
6859 if (!cpumask_subset(sched_domain_span(child),
6860 sched_domain_span(sd))) {
6861 pr_err("BUG: arch topology borken\n");
6862#ifdef CONFIG_SCHED_DEBUG
6863 pr_err(" the %s domain not a subset of the %s domain\n",
6864 child->name, sd->name);
6865#endif
6866 /* Fixup, ensure @sd has at least @child cpus. */
6867 cpumask_or(sched_domain_span(sd),
6868 sched_domain_span(sd),
6869 sched_domain_span(child));
6870 }
6871
60495e77 6872 }
a841f8ce 6873 set_domain_attribute(sd, attr);
2c402dc3
PZ
6874
6875 return sd;
6876}
6877
2109b99e
AH
6878/*
6879 * Build sched domains for a given set of cpus and attach the sched domains
6880 * to the individual cpus
6881 */
dce840a0
PZ
6882static int build_sched_domains(const struct cpumask *cpu_map,
6883 struct sched_domain_attr *attr)
2109b99e 6884{
1c632169 6885 enum s_alloc alloc_state;
dce840a0 6886 struct sched_domain *sd;
2109b99e 6887 struct s_data d;
822ff793 6888 int i, ret = -ENOMEM;
9c1cfda2 6889
2109b99e
AH
6890 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6891 if (alloc_state != sa_rootdomain)
6892 goto error;
9c1cfda2 6893
dce840a0 6894 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6895 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6896 struct sched_domain_topology_level *tl;
6897
3bd65a80 6898 sd = NULL;
27723a68 6899 for_each_sd_topology(tl) {
4a850cbe 6900 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6901 if (tl == sched_domain_topology)
6902 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6903 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6904 sd->flags |= SD_OVERLAP;
d110235d
PZ
6905 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6906 break;
e3589f6c 6907 }
dce840a0
PZ
6908 }
6909
6910 /* Build the groups for the domains */
6911 for_each_cpu(i, cpu_map) {
6912 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6913 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6914 if (sd->flags & SD_OVERLAP) {
6915 if (build_overlap_sched_groups(sd, i))
6916 goto error;
6917 } else {
6918 if (build_sched_groups(sd, i))
6919 goto error;
6920 }
1cf51902 6921 }
a06dadbe 6922 }
9c1cfda2 6923
ced549fa 6924 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6925 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6926 if (!cpumask_test_cpu(i, cpu_map))
6927 continue;
9c1cfda2 6928
dce840a0
PZ
6929 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6930 claim_allocations(i, sd);
63b2ca30 6931 init_sched_groups_capacity(i, sd);
dce840a0 6932 }
f712c0c7 6933 }
9c1cfda2 6934
1da177e4 6935 /* Attach the domains */
dce840a0 6936 rcu_read_lock();
abcd083a 6937 for_each_cpu(i, cpu_map) {
21d42ccf 6938 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6939 cpu_attach_domain(sd, d.rd, i);
1da177e4 6940 }
dce840a0 6941 rcu_read_unlock();
51888ca2 6942
822ff793 6943 ret = 0;
51888ca2 6944error:
2109b99e 6945 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6946 return ret;
1da177e4 6947}
029190c5 6948
acc3f5d7 6949static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6950static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6951static struct sched_domain_attr *dattr_cur;
6952 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6953
6954/*
6955 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6956 * cpumask) fails, then fallback to a single sched domain,
6957 * as determined by the single cpumask fallback_doms.
029190c5 6958 */
4212823f 6959static cpumask_var_t fallback_doms;
029190c5 6960
ee79d1bd
HC
6961/*
6962 * arch_update_cpu_topology lets virtualized architectures update the
6963 * cpu core maps. It is supposed to return 1 if the topology changed
6964 * or 0 if it stayed the same.
6965 */
52f5684c 6966int __weak arch_update_cpu_topology(void)
22e52b07 6967{
ee79d1bd 6968 return 0;
22e52b07
HC
6969}
6970
acc3f5d7
RR
6971cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6972{
6973 int i;
6974 cpumask_var_t *doms;
6975
6976 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6977 if (!doms)
6978 return NULL;
6979 for (i = 0; i < ndoms; i++) {
6980 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6981 free_sched_domains(doms, i);
6982 return NULL;
6983 }
6984 }
6985 return doms;
6986}
6987
6988void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6989{
6990 unsigned int i;
6991 for (i = 0; i < ndoms; i++)
6992 free_cpumask_var(doms[i]);
6993 kfree(doms);
6994}
6995
1a20ff27 6996/*
41a2d6cf 6997 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6998 * For now this just excludes isolated cpus, but could be used to
6999 * exclude other special cases in the future.
1a20ff27 7000 */
c4a8849a 7001static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7002{
7378547f
MM
7003 int err;
7004
22e52b07 7005 arch_update_cpu_topology();
029190c5 7006 ndoms_cur = 1;
acc3f5d7 7007 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7008 if (!doms_cur)
acc3f5d7
RR
7009 doms_cur = &fallback_doms;
7010 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7011 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7012 register_sched_domain_sysctl();
7378547f
MM
7013
7014 return err;
1a20ff27
DG
7015}
7016
1a20ff27
DG
7017/*
7018 * Detach sched domains from a group of cpus specified in cpu_map
7019 * These cpus will now be attached to the NULL domain
7020 */
96f874e2 7021static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7022{
7023 int i;
7024
dce840a0 7025 rcu_read_lock();
abcd083a 7026 for_each_cpu(i, cpu_map)
57d885fe 7027 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7028 rcu_read_unlock();
1a20ff27
DG
7029}
7030
1d3504fc
HS
7031/* handle null as "default" */
7032static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7033 struct sched_domain_attr *new, int idx_new)
7034{
7035 struct sched_domain_attr tmp;
7036
7037 /* fast path */
7038 if (!new && !cur)
7039 return 1;
7040
7041 tmp = SD_ATTR_INIT;
7042 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7043 new ? (new + idx_new) : &tmp,
7044 sizeof(struct sched_domain_attr));
7045}
7046
029190c5
PJ
7047/*
7048 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7049 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7050 * doms_new[] to the current sched domain partitioning, doms_cur[].
7051 * It destroys each deleted domain and builds each new domain.
7052 *
acc3f5d7 7053 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7054 * The masks don't intersect (don't overlap.) We should setup one
7055 * sched domain for each mask. CPUs not in any of the cpumasks will
7056 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7057 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7058 * it as it is.
7059 *
acc3f5d7
RR
7060 * The passed in 'doms_new' should be allocated using
7061 * alloc_sched_domains. This routine takes ownership of it and will
7062 * free_sched_domains it when done with it. If the caller failed the
7063 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7064 * and partition_sched_domains() will fallback to the single partition
7065 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7066 *
96f874e2 7067 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7068 * ndoms_new == 0 is a special case for destroying existing domains,
7069 * and it will not create the default domain.
dfb512ec 7070 *
029190c5
PJ
7071 * Call with hotplug lock held
7072 */
acc3f5d7 7073void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7074 struct sched_domain_attr *dattr_new)
029190c5 7075{
dfb512ec 7076 int i, j, n;
d65bd5ec 7077 int new_topology;
029190c5 7078
712555ee 7079 mutex_lock(&sched_domains_mutex);
a1835615 7080
7378547f
MM
7081 /* always unregister in case we don't destroy any domains */
7082 unregister_sched_domain_sysctl();
7083
d65bd5ec
HC
7084 /* Let architecture update cpu core mappings. */
7085 new_topology = arch_update_cpu_topology();
7086
dfb512ec 7087 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7088
7089 /* Destroy deleted domains */
7090 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7091 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7092 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7093 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7094 goto match1;
7095 }
7096 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7097 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7098match1:
7099 ;
7100 }
7101
c8d2d47a 7102 n = ndoms_cur;
e761b772 7103 if (doms_new == NULL) {
c8d2d47a 7104 n = 0;
acc3f5d7 7105 doms_new = &fallback_doms;
6ad4c188 7106 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7107 WARN_ON_ONCE(dattr_new);
e761b772
MK
7108 }
7109
029190c5
PJ
7110 /* Build new domains */
7111 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7112 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7113 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7114 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7115 goto match2;
7116 }
7117 /* no match - add a new doms_new */
dce840a0 7118 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7119match2:
7120 ;
7121 }
7122
7123 /* Remember the new sched domains */
acc3f5d7
RR
7124 if (doms_cur != &fallback_doms)
7125 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7126 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7127 doms_cur = doms_new;
1d3504fc 7128 dattr_cur = dattr_new;
029190c5 7129 ndoms_cur = ndoms_new;
7378547f
MM
7130
7131 register_sched_domain_sysctl();
a1835615 7132
712555ee 7133 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7134}
7135
d35be8ba
SB
7136static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7137
1da177e4 7138/*
3a101d05
TH
7139 * Update cpusets according to cpu_active mask. If cpusets are
7140 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7141 * around partition_sched_domains().
d35be8ba
SB
7142 *
7143 * If we come here as part of a suspend/resume, don't touch cpusets because we
7144 * want to restore it back to its original state upon resume anyway.
1da177e4 7145 */
0b2e918a
TH
7146static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7147 void *hcpu)
e761b772 7148{
d35be8ba
SB
7149 switch (action) {
7150 case CPU_ONLINE_FROZEN:
7151 case CPU_DOWN_FAILED_FROZEN:
7152
7153 /*
7154 * num_cpus_frozen tracks how many CPUs are involved in suspend
7155 * resume sequence. As long as this is not the last online
7156 * operation in the resume sequence, just build a single sched
7157 * domain, ignoring cpusets.
7158 */
7159 num_cpus_frozen--;
7160 if (likely(num_cpus_frozen)) {
7161 partition_sched_domains(1, NULL, NULL);
7162 break;
7163 }
7164
7165 /*
7166 * This is the last CPU online operation. So fall through and
7167 * restore the original sched domains by considering the
7168 * cpuset configurations.
7169 */
7170
e761b772 7171 case CPU_ONLINE:
7ddf96b0 7172 cpuset_update_active_cpus(true);
d35be8ba 7173 break;
3a101d05
TH
7174 default:
7175 return NOTIFY_DONE;
7176 }
d35be8ba 7177 return NOTIFY_OK;
3a101d05 7178}
e761b772 7179
0b2e918a
TH
7180static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7181 void *hcpu)
3a101d05 7182{
3c18d447
JL
7183 unsigned long flags;
7184 long cpu = (long)hcpu;
7185 struct dl_bw *dl_b;
533445c6
OS
7186 bool overflow;
7187 int cpus;
3c18d447 7188
533445c6 7189 switch (action) {
3a101d05 7190 case CPU_DOWN_PREPARE:
533445c6
OS
7191 rcu_read_lock_sched();
7192 dl_b = dl_bw_of(cpu);
3c18d447 7193
533445c6
OS
7194 raw_spin_lock_irqsave(&dl_b->lock, flags);
7195 cpus = dl_bw_cpus(cpu);
7196 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7197 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7198
533445c6 7199 rcu_read_unlock_sched();
3c18d447 7200
533445c6
OS
7201 if (overflow)
7202 return notifier_from_errno(-EBUSY);
7ddf96b0 7203 cpuset_update_active_cpus(false);
d35be8ba
SB
7204 break;
7205 case CPU_DOWN_PREPARE_FROZEN:
7206 num_cpus_frozen++;
7207 partition_sched_domains(1, NULL, NULL);
7208 break;
e761b772
MK
7209 default:
7210 return NOTIFY_DONE;
7211 }
d35be8ba 7212 return NOTIFY_OK;
e761b772 7213}
e761b772 7214
1da177e4
LT
7215void __init sched_init_smp(void)
7216{
dcc30a35
RR
7217 cpumask_var_t non_isolated_cpus;
7218
7219 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7220 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7221
cb83b629
PZ
7222 sched_init_numa();
7223
6acce3ef
PZ
7224 /*
7225 * There's no userspace yet to cause hotplug operations; hence all the
7226 * cpu masks are stable and all blatant races in the below code cannot
7227 * happen.
7228 */
712555ee 7229 mutex_lock(&sched_domains_mutex);
c4a8849a 7230 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7231 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7232 if (cpumask_empty(non_isolated_cpus))
7233 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7234 mutex_unlock(&sched_domains_mutex);
e761b772 7235
301a5cba 7236 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7237 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7238 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7239
b328ca18 7240 init_hrtick();
5c1e1767
NP
7241
7242 /* Move init over to a non-isolated CPU */
dcc30a35 7243 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7244 BUG();
19978ca6 7245 sched_init_granularity();
dcc30a35 7246 free_cpumask_var(non_isolated_cpus);
4212823f 7247
0e3900e6 7248 init_sched_rt_class();
1baca4ce 7249 init_sched_dl_class();
1da177e4
LT
7250}
7251#else
7252void __init sched_init_smp(void)
7253{
19978ca6 7254 sched_init_granularity();
1da177e4
LT
7255}
7256#endif /* CONFIG_SMP */
7257
7258int in_sched_functions(unsigned long addr)
7259{
1da177e4
LT
7260 return in_lock_functions(addr) ||
7261 (addr >= (unsigned long)__sched_text_start
7262 && addr < (unsigned long)__sched_text_end);
7263}
7264
029632fb 7265#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7266/*
7267 * Default task group.
7268 * Every task in system belongs to this group at bootup.
7269 */
029632fb 7270struct task_group root_task_group;
35cf4e50 7271LIST_HEAD(task_groups);
b0367629
WL
7272
7273/* Cacheline aligned slab cache for task_group */
7274static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7275#endif
6f505b16 7276
e6252c3e 7277DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7278
1da177e4
LT
7279void __init sched_init(void)
7280{
dd41f596 7281 int i, j;
434d53b0
MT
7282 unsigned long alloc_size = 0, ptr;
7283
7284#ifdef CONFIG_FAIR_GROUP_SCHED
7285 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7286#endif
7287#ifdef CONFIG_RT_GROUP_SCHED
7288 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7289#endif
434d53b0 7290 if (alloc_size) {
36b7b6d4 7291 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7292
7293#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7294 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7295 ptr += nr_cpu_ids * sizeof(void **);
7296
07e06b01 7297 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7298 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7299
6d6bc0ad 7300#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7301#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7302 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7303 ptr += nr_cpu_ids * sizeof(void **);
7304
07e06b01 7305 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7306 ptr += nr_cpu_ids * sizeof(void **);
7307
6d6bc0ad 7308#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7309 }
df7c8e84 7310#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7311 for_each_possible_cpu(i) {
7312 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7313 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7314 }
b74e6278 7315#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7316
332ac17e
DF
7317 init_rt_bandwidth(&def_rt_bandwidth,
7318 global_rt_period(), global_rt_runtime());
7319 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7320 global_rt_period(), global_rt_runtime());
332ac17e 7321
57d885fe
GH
7322#ifdef CONFIG_SMP
7323 init_defrootdomain();
7324#endif
7325
d0b27fa7 7326#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7327 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7328 global_rt_period(), global_rt_runtime());
6d6bc0ad 7329#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7330
7c941438 7331#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7332 task_group_cache = KMEM_CACHE(task_group, 0);
7333
07e06b01
YZ
7334 list_add(&root_task_group.list, &task_groups);
7335 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7336 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7337 autogroup_init(&init_task);
7c941438 7338#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7339
0a945022 7340 for_each_possible_cpu(i) {
70b97a7f 7341 struct rq *rq;
1da177e4
LT
7342
7343 rq = cpu_rq(i);
05fa785c 7344 raw_spin_lock_init(&rq->lock);
7897986b 7345 rq->nr_running = 0;
dce48a84
TG
7346 rq->calc_load_active = 0;
7347 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7348 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7349 init_rt_rq(&rq->rt);
7350 init_dl_rq(&rq->dl);
dd41f596 7351#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7352 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7353 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7354 /*
07e06b01 7355 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7356 *
7357 * In case of task-groups formed thr' the cgroup filesystem, it
7358 * gets 100% of the cpu resources in the system. This overall
7359 * system cpu resource is divided among the tasks of
07e06b01 7360 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7361 * based on each entity's (task or task-group's) weight
7362 * (se->load.weight).
7363 *
07e06b01 7364 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7365 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7366 * then A0's share of the cpu resource is:
7367 *
0d905bca 7368 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7369 *
07e06b01
YZ
7370 * We achieve this by letting root_task_group's tasks sit
7371 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7372 */
ab84d31e 7373 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7374 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7375#endif /* CONFIG_FAIR_GROUP_SCHED */
7376
7377 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7378#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7379 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7380#endif
1da177e4 7381
dd41f596
IM
7382 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7383 rq->cpu_load[j] = 0;
fdf3e95d 7384
1da177e4 7385#ifdef CONFIG_SMP
41c7ce9a 7386 rq->sd = NULL;
57d885fe 7387 rq->rd = NULL;
ca6d75e6 7388 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7389 rq->balance_callback = NULL;
1da177e4 7390 rq->active_balance = 0;
dd41f596 7391 rq->next_balance = jiffies;
1da177e4 7392 rq->push_cpu = 0;
0a2966b4 7393 rq->cpu = i;
1f11eb6a 7394 rq->online = 0;
eae0c9df
MG
7395 rq->idle_stamp = 0;
7396 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7397 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7398
7399 INIT_LIST_HEAD(&rq->cfs_tasks);
7400
dc938520 7401 rq_attach_root(rq, &def_root_domain);
3451d024 7402#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7403 rq->last_load_update_tick = jiffies;
1c792db7 7404 rq->nohz_flags = 0;
83cd4fe2 7405#endif
265f22a9
FW
7406#ifdef CONFIG_NO_HZ_FULL
7407 rq->last_sched_tick = 0;
7408#endif
9fd81dd5 7409#endif /* CONFIG_SMP */
8f4d37ec 7410 init_rq_hrtick(rq);
1da177e4 7411 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7412 }
7413
2dd73a4f 7414 set_load_weight(&init_task);
b50f60ce 7415
e107be36
AK
7416#ifdef CONFIG_PREEMPT_NOTIFIERS
7417 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7418#endif
7419
1da177e4
LT
7420 /*
7421 * The boot idle thread does lazy MMU switching as well:
7422 */
7423 atomic_inc(&init_mm.mm_count);
7424 enter_lazy_tlb(&init_mm, current);
7425
1b537c7d
YD
7426 /*
7427 * During early bootup we pretend to be a normal task:
7428 */
7429 current->sched_class = &fair_sched_class;
7430
1da177e4
LT
7431 /*
7432 * Make us the idle thread. Technically, schedule() should not be
7433 * called from this thread, however somewhere below it might be,
7434 * but because we are the idle thread, we just pick up running again
7435 * when this runqueue becomes "idle".
7436 */
7437 init_idle(current, smp_processor_id());
dce48a84
TG
7438
7439 calc_load_update = jiffies + LOAD_FREQ;
7440
bf4d83f6 7441#ifdef CONFIG_SMP
4cb98839 7442 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7443 /* May be allocated at isolcpus cmdline parse time */
7444 if (cpu_isolated_map == NULL)
7445 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7446 idle_thread_set_boot_cpu();
a803f026 7447 set_cpu_rq_start_time();
029632fb
PZ
7448#endif
7449 init_sched_fair_class();
6a7b3dc3 7450
6892b75e 7451 scheduler_running = 1;
1da177e4
LT
7452}
7453
d902db1e 7454#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7455static inline int preempt_count_equals(int preempt_offset)
7456{
da7142e2 7457 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7458
4ba8216c 7459 return (nested == preempt_offset);
e4aafea2
FW
7460}
7461
d894837f 7462void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7463{
8eb23b9f
PZ
7464 /*
7465 * Blocking primitives will set (and therefore destroy) current->state,
7466 * since we will exit with TASK_RUNNING make sure we enter with it,
7467 * otherwise we will destroy state.
7468 */
00845eb9 7469 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7470 "do not call blocking ops when !TASK_RUNNING; "
7471 "state=%lx set at [<%p>] %pS\n",
7472 current->state,
7473 (void *)current->task_state_change,
00845eb9 7474 (void *)current->task_state_change);
8eb23b9f 7475
3427445a
PZ
7476 ___might_sleep(file, line, preempt_offset);
7477}
7478EXPORT_SYMBOL(__might_sleep);
7479
7480void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7481{
1da177e4
LT
7482 static unsigned long prev_jiffy; /* ratelimiting */
7483
b3fbab05 7484 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7485 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7486 !is_idle_task(current)) ||
e4aafea2 7487 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7488 return;
7489 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7490 return;
7491 prev_jiffy = jiffies;
7492
3df0fc5b
PZ
7493 printk(KERN_ERR
7494 "BUG: sleeping function called from invalid context at %s:%d\n",
7495 file, line);
7496 printk(KERN_ERR
7497 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7498 in_atomic(), irqs_disabled(),
7499 current->pid, current->comm);
aef745fc 7500
a8b686b3
ES
7501 if (task_stack_end_corrupted(current))
7502 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7503
aef745fc
IM
7504 debug_show_held_locks(current);
7505 if (irqs_disabled())
7506 print_irqtrace_events(current);
8f47b187
TG
7507#ifdef CONFIG_DEBUG_PREEMPT
7508 if (!preempt_count_equals(preempt_offset)) {
7509 pr_err("Preemption disabled at:");
7510 print_ip_sym(current->preempt_disable_ip);
7511 pr_cont("\n");
7512 }
7513#endif
aef745fc 7514 dump_stack();
1da177e4 7515}
3427445a 7516EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7517#endif
7518
7519#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7520void normalize_rt_tasks(void)
3a5e4dc1 7521{
dbc7f069 7522 struct task_struct *g, *p;
d50dde5a
DF
7523 struct sched_attr attr = {
7524 .sched_policy = SCHED_NORMAL,
7525 };
1da177e4 7526
3472eaa1 7527 read_lock(&tasklist_lock);
5d07f420 7528 for_each_process_thread(g, p) {
178be793
IM
7529 /*
7530 * Only normalize user tasks:
7531 */
3472eaa1 7532 if (p->flags & PF_KTHREAD)
178be793
IM
7533 continue;
7534
6cfb0d5d 7535 p->se.exec_start = 0;
6cfb0d5d 7536#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7537 p->se.statistics.wait_start = 0;
7538 p->se.statistics.sleep_start = 0;
7539 p->se.statistics.block_start = 0;
6cfb0d5d 7540#endif
dd41f596 7541
aab03e05 7542 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7543 /*
7544 * Renice negative nice level userspace
7545 * tasks back to 0:
7546 */
3472eaa1 7547 if (task_nice(p) < 0)
dd41f596 7548 set_user_nice(p, 0);
1da177e4 7549 continue;
dd41f596 7550 }
1da177e4 7551
dbc7f069 7552 __sched_setscheduler(p, &attr, false, false);
5d07f420 7553 }
3472eaa1 7554 read_unlock(&tasklist_lock);
1da177e4
LT
7555}
7556
7557#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7558
67fc4e0c 7559#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7560/*
67fc4e0c 7561 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7562 *
7563 * They can only be called when the whole system has been
7564 * stopped - every CPU needs to be quiescent, and no scheduling
7565 * activity can take place. Using them for anything else would
7566 * be a serious bug, and as a result, they aren't even visible
7567 * under any other configuration.
7568 */
7569
7570/**
7571 * curr_task - return the current task for a given cpu.
7572 * @cpu: the processor in question.
7573 *
7574 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7575 *
7576 * Return: The current task for @cpu.
1df5c10a 7577 */
36c8b586 7578struct task_struct *curr_task(int cpu)
1df5c10a
LT
7579{
7580 return cpu_curr(cpu);
7581}
7582
67fc4e0c
JW
7583#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7584
7585#ifdef CONFIG_IA64
1df5c10a
LT
7586/**
7587 * set_curr_task - set the current task for a given cpu.
7588 * @cpu: the processor in question.
7589 * @p: the task pointer to set.
7590 *
7591 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7592 * are serviced on a separate stack. It allows the architecture to switch the
7593 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7594 * must be called with all CPU's synchronized, and interrupts disabled, the
7595 * and caller must save the original value of the current task (see
7596 * curr_task() above) and restore that value before reenabling interrupts and
7597 * re-starting the system.
7598 *
7599 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7600 */
36c8b586 7601void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7602{
7603 cpu_curr(cpu) = p;
7604}
7605
7606#endif
29f59db3 7607
7c941438 7608#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7609/* task_group_lock serializes the addition/removal of task groups */
7610static DEFINE_SPINLOCK(task_group_lock);
7611
2f5177f0 7612static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7613{
7614 free_fair_sched_group(tg);
7615 free_rt_sched_group(tg);
e9aa1dd1 7616 autogroup_free(tg);
b0367629 7617 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7618}
7619
7620/* allocate runqueue etc for a new task group */
ec7dc8ac 7621struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7622{
7623 struct task_group *tg;
bccbe08a 7624
b0367629 7625 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7626 if (!tg)
7627 return ERR_PTR(-ENOMEM);
7628
ec7dc8ac 7629 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7630 goto err;
7631
ec7dc8ac 7632 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7633 goto err;
7634
ace783b9
LZ
7635 return tg;
7636
7637err:
2f5177f0 7638 sched_free_group(tg);
ace783b9
LZ
7639 return ERR_PTR(-ENOMEM);
7640}
7641
7642void sched_online_group(struct task_group *tg, struct task_group *parent)
7643{
7644 unsigned long flags;
7645
8ed36996 7646 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7647 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7648
7649 WARN_ON(!parent); /* root should already exist */
7650
7651 tg->parent = parent;
f473aa5e 7652 INIT_LIST_HEAD(&tg->children);
09f2724a 7653 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7654 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7655}
7656
9b5b7751 7657/* rcu callback to free various structures associated with a task group */
2f5177f0 7658static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7659{
29f59db3 7660 /* now it should be safe to free those cfs_rqs */
2f5177f0 7661 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7662}
7663
4cf86d77 7664void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7665{
7666 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7667 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7668}
7669
7670void sched_offline_group(struct task_group *tg)
29f59db3 7671{
8ed36996 7672 unsigned long flags;
29f59db3 7673
3d4b47b4 7674 /* end participation in shares distribution */
6fe1f348 7675 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7676
7677 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7678 list_del_rcu(&tg->list);
f473aa5e 7679 list_del_rcu(&tg->siblings);
8ed36996 7680 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7681}
7682
9b5b7751 7683/* change task's runqueue when it moves between groups.
3a252015
IM
7684 * The caller of this function should have put the task in its new group
7685 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7686 * reflect its new group.
9b5b7751
SV
7687 */
7688void sched_move_task(struct task_struct *tsk)
29f59db3 7689{
8323f26c 7690 struct task_group *tg;
da0c1e65 7691 int queued, running;
29f59db3
SV
7692 unsigned long flags;
7693 struct rq *rq;
7694
7695 rq = task_rq_lock(tsk, &flags);
7696
051a1d1a 7697 running = task_current(rq, tsk);
da0c1e65 7698 queued = task_on_rq_queued(tsk);
29f59db3 7699
da0c1e65 7700 if (queued)
ff77e468 7701 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7702 if (unlikely(running))
f3cd1c4e 7703 put_prev_task(rq, tsk);
29f59db3 7704
f7b8a47d
KT
7705 /*
7706 * All callers are synchronized by task_rq_lock(); we do not use RCU
7707 * which is pointless here. Thus, we pass "true" to task_css_check()
7708 * to prevent lockdep warnings.
7709 */
7710 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7711 struct task_group, css);
7712 tg = autogroup_task_group(tsk, tg);
7713 tsk->sched_task_group = tg;
7714
810b3817 7715#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7716 if (tsk->sched_class->task_move_group)
bc54da21 7717 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7718 else
810b3817 7719#endif
b2b5ce02 7720 set_task_rq(tsk, task_cpu(tsk));
810b3817 7721
0e1f3483
HS
7722 if (unlikely(running))
7723 tsk->sched_class->set_curr_task(rq);
da0c1e65 7724 if (queued)
ff77e468 7725 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7726
0122ec5b 7727 task_rq_unlock(rq, tsk, &flags);
29f59db3 7728}
7c941438 7729#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7730
a790de99
PT
7731#ifdef CONFIG_RT_GROUP_SCHED
7732/*
7733 * Ensure that the real time constraints are schedulable.
7734 */
7735static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7736
9a7e0b18
PZ
7737/* Must be called with tasklist_lock held */
7738static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7739{
9a7e0b18 7740 struct task_struct *g, *p;
b40b2e8e 7741
1fe89e1b
PZ
7742 /*
7743 * Autogroups do not have RT tasks; see autogroup_create().
7744 */
7745 if (task_group_is_autogroup(tg))
7746 return 0;
7747
5d07f420 7748 for_each_process_thread(g, p) {
8651c658 7749 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7750 return 1;
5d07f420 7751 }
b40b2e8e 7752
9a7e0b18
PZ
7753 return 0;
7754}
b40b2e8e 7755
9a7e0b18
PZ
7756struct rt_schedulable_data {
7757 struct task_group *tg;
7758 u64 rt_period;
7759 u64 rt_runtime;
7760};
b40b2e8e 7761
a790de99 7762static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7763{
7764 struct rt_schedulable_data *d = data;
7765 struct task_group *child;
7766 unsigned long total, sum = 0;
7767 u64 period, runtime;
b40b2e8e 7768
9a7e0b18
PZ
7769 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7770 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7771
9a7e0b18
PZ
7772 if (tg == d->tg) {
7773 period = d->rt_period;
7774 runtime = d->rt_runtime;
b40b2e8e 7775 }
b40b2e8e 7776
4653f803
PZ
7777 /*
7778 * Cannot have more runtime than the period.
7779 */
7780 if (runtime > period && runtime != RUNTIME_INF)
7781 return -EINVAL;
6f505b16 7782
4653f803
PZ
7783 /*
7784 * Ensure we don't starve existing RT tasks.
7785 */
9a7e0b18
PZ
7786 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7787 return -EBUSY;
6f505b16 7788
9a7e0b18 7789 total = to_ratio(period, runtime);
6f505b16 7790
4653f803
PZ
7791 /*
7792 * Nobody can have more than the global setting allows.
7793 */
7794 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7795 return -EINVAL;
6f505b16 7796
4653f803
PZ
7797 /*
7798 * The sum of our children's runtime should not exceed our own.
7799 */
9a7e0b18
PZ
7800 list_for_each_entry_rcu(child, &tg->children, siblings) {
7801 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7802 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7803
9a7e0b18
PZ
7804 if (child == d->tg) {
7805 period = d->rt_period;
7806 runtime = d->rt_runtime;
7807 }
6f505b16 7808
9a7e0b18 7809 sum += to_ratio(period, runtime);
9f0c1e56 7810 }
6f505b16 7811
9a7e0b18
PZ
7812 if (sum > total)
7813 return -EINVAL;
7814
7815 return 0;
6f505b16
PZ
7816}
7817
9a7e0b18 7818static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7819{
8277434e
PT
7820 int ret;
7821
9a7e0b18
PZ
7822 struct rt_schedulable_data data = {
7823 .tg = tg,
7824 .rt_period = period,
7825 .rt_runtime = runtime,
7826 };
7827
8277434e
PT
7828 rcu_read_lock();
7829 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7830 rcu_read_unlock();
7831
7832 return ret;
521f1a24
DG
7833}
7834
ab84d31e 7835static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7836 u64 rt_period, u64 rt_runtime)
6f505b16 7837{
ac086bc2 7838 int i, err = 0;
9f0c1e56 7839
2636ed5f
PZ
7840 /*
7841 * Disallowing the root group RT runtime is BAD, it would disallow the
7842 * kernel creating (and or operating) RT threads.
7843 */
7844 if (tg == &root_task_group && rt_runtime == 0)
7845 return -EINVAL;
7846
7847 /* No period doesn't make any sense. */
7848 if (rt_period == 0)
7849 return -EINVAL;
7850
9f0c1e56 7851 mutex_lock(&rt_constraints_mutex);
521f1a24 7852 read_lock(&tasklist_lock);
9a7e0b18
PZ
7853 err = __rt_schedulable(tg, rt_period, rt_runtime);
7854 if (err)
9f0c1e56 7855 goto unlock;
ac086bc2 7856
0986b11b 7857 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7858 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7859 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7860
7861 for_each_possible_cpu(i) {
7862 struct rt_rq *rt_rq = tg->rt_rq[i];
7863
0986b11b 7864 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7865 rt_rq->rt_runtime = rt_runtime;
0986b11b 7866 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7867 }
0986b11b 7868 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7869unlock:
521f1a24 7870 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7871 mutex_unlock(&rt_constraints_mutex);
7872
7873 return err;
6f505b16
PZ
7874}
7875
25cc7da7 7876static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7877{
7878 u64 rt_runtime, rt_period;
7879
7880 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7881 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7882 if (rt_runtime_us < 0)
7883 rt_runtime = RUNTIME_INF;
7884
ab84d31e 7885 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7886}
7887
25cc7da7 7888static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7889{
7890 u64 rt_runtime_us;
7891
d0b27fa7 7892 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7893 return -1;
7894
d0b27fa7 7895 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7896 do_div(rt_runtime_us, NSEC_PER_USEC);
7897 return rt_runtime_us;
7898}
d0b27fa7 7899
ce2f5fe4 7900static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7901{
7902 u64 rt_runtime, rt_period;
7903
ce2f5fe4 7904 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7905 rt_runtime = tg->rt_bandwidth.rt_runtime;
7906
ab84d31e 7907 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7908}
7909
25cc7da7 7910static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7911{
7912 u64 rt_period_us;
7913
7914 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7915 do_div(rt_period_us, NSEC_PER_USEC);
7916 return rt_period_us;
7917}
332ac17e 7918#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7919
332ac17e 7920#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7921static int sched_rt_global_constraints(void)
7922{
7923 int ret = 0;
7924
7925 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7926 read_lock(&tasklist_lock);
4653f803 7927 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7928 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7929 mutex_unlock(&rt_constraints_mutex);
7930
7931 return ret;
7932}
54e99124 7933
25cc7da7 7934static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7935{
7936 /* Don't accept realtime tasks when there is no way for them to run */
7937 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7938 return 0;
7939
7940 return 1;
7941}
7942
6d6bc0ad 7943#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7944static int sched_rt_global_constraints(void)
7945{
ac086bc2 7946 unsigned long flags;
332ac17e 7947 int i, ret = 0;
ec5d4989 7948
0986b11b 7949 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7950 for_each_possible_cpu(i) {
7951 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7952
0986b11b 7953 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7954 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7955 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7956 }
0986b11b 7957 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7958
332ac17e 7959 return ret;
d0b27fa7 7960}
6d6bc0ad 7961#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7962
a1963b81 7963static int sched_dl_global_validate(void)
332ac17e 7964{
1724813d
PZ
7965 u64 runtime = global_rt_runtime();
7966 u64 period = global_rt_period();
332ac17e 7967 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7968 struct dl_bw *dl_b;
1724813d 7969 int cpu, ret = 0;
49516342 7970 unsigned long flags;
332ac17e
DF
7971
7972 /*
7973 * Here we want to check the bandwidth not being set to some
7974 * value smaller than the currently allocated bandwidth in
7975 * any of the root_domains.
7976 *
7977 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7978 * cycling on root_domains... Discussion on different/better
7979 * solutions is welcome!
7980 */
1724813d 7981 for_each_possible_cpu(cpu) {
f10e00f4
KT
7982 rcu_read_lock_sched();
7983 dl_b = dl_bw_of(cpu);
332ac17e 7984
49516342 7985 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7986 if (new_bw < dl_b->total_bw)
7987 ret = -EBUSY;
49516342 7988 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7989
f10e00f4
KT
7990 rcu_read_unlock_sched();
7991
1724813d
PZ
7992 if (ret)
7993 break;
332ac17e
DF
7994 }
7995
1724813d 7996 return ret;
332ac17e
DF
7997}
7998
1724813d 7999static void sched_dl_do_global(void)
ce0dbbbb 8000{
1724813d 8001 u64 new_bw = -1;
f10e00f4 8002 struct dl_bw *dl_b;
1724813d 8003 int cpu;
49516342 8004 unsigned long flags;
ce0dbbbb 8005
1724813d
PZ
8006 def_dl_bandwidth.dl_period = global_rt_period();
8007 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8008
8009 if (global_rt_runtime() != RUNTIME_INF)
8010 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8011
8012 /*
8013 * FIXME: As above...
8014 */
8015 for_each_possible_cpu(cpu) {
f10e00f4
KT
8016 rcu_read_lock_sched();
8017 dl_b = dl_bw_of(cpu);
1724813d 8018
49516342 8019 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8020 dl_b->bw = new_bw;
49516342 8021 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8022
8023 rcu_read_unlock_sched();
ce0dbbbb 8024 }
1724813d
PZ
8025}
8026
8027static int sched_rt_global_validate(void)
8028{
8029 if (sysctl_sched_rt_period <= 0)
8030 return -EINVAL;
8031
e9e7cb38
JL
8032 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8033 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8034 return -EINVAL;
8035
8036 return 0;
8037}
8038
8039static void sched_rt_do_global(void)
8040{
8041 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8042 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8043}
8044
d0b27fa7 8045int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8046 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8047 loff_t *ppos)
8048{
d0b27fa7
PZ
8049 int old_period, old_runtime;
8050 static DEFINE_MUTEX(mutex);
1724813d 8051 int ret;
d0b27fa7
PZ
8052
8053 mutex_lock(&mutex);
8054 old_period = sysctl_sched_rt_period;
8055 old_runtime = sysctl_sched_rt_runtime;
8056
8d65af78 8057 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8058
8059 if (!ret && write) {
1724813d
PZ
8060 ret = sched_rt_global_validate();
8061 if (ret)
8062 goto undo;
8063
a1963b81 8064 ret = sched_dl_global_validate();
1724813d
PZ
8065 if (ret)
8066 goto undo;
8067
a1963b81 8068 ret = sched_rt_global_constraints();
1724813d
PZ
8069 if (ret)
8070 goto undo;
8071
8072 sched_rt_do_global();
8073 sched_dl_do_global();
8074 }
8075 if (0) {
8076undo:
8077 sysctl_sched_rt_period = old_period;
8078 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8079 }
8080 mutex_unlock(&mutex);
8081
8082 return ret;
8083}
68318b8e 8084
1724813d 8085int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8086 void __user *buffer, size_t *lenp,
8087 loff_t *ppos)
8088{
8089 int ret;
332ac17e 8090 static DEFINE_MUTEX(mutex);
332ac17e
DF
8091
8092 mutex_lock(&mutex);
332ac17e 8093 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8094 /* make sure that internally we keep jiffies */
8095 /* also, writing zero resets timeslice to default */
332ac17e 8096 if (!ret && write) {
1724813d
PZ
8097 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8098 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8099 }
8100 mutex_unlock(&mutex);
332ac17e
DF
8101 return ret;
8102}
8103
052f1dc7 8104#ifdef CONFIG_CGROUP_SCHED
68318b8e 8105
a7c6d554 8106static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8107{
a7c6d554 8108 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8109}
8110
eb95419b
TH
8111static struct cgroup_subsys_state *
8112cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8113{
eb95419b
TH
8114 struct task_group *parent = css_tg(parent_css);
8115 struct task_group *tg;
68318b8e 8116
eb95419b 8117 if (!parent) {
68318b8e 8118 /* This is early initialization for the top cgroup */
07e06b01 8119 return &root_task_group.css;
68318b8e
SV
8120 }
8121
ec7dc8ac 8122 tg = sched_create_group(parent);
68318b8e
SV
8123 if (IS_ERR(tg))
8124 return ERR_PTR(-ENOMEM);
8125
2f5177f0
PZ
8126 sched_online_group(tg, parent);
8127
68318b8e
SV
8128 return &tg->css;
8129}
8130
2f5177f0 8131static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8132{
eb95419b 8133 struct task_group *tg = css_tg(css);
ace783b9 8134
2f5177f0 8135 sched_offline_group(tg);
ace783b9
LZ
8136}
8137
eb95419b 8138static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8139{
eb95419b 8140 struct task_group *tg = css_tg(css);
68318b8e 8141
2f5177f0
PZ
8142 /*
8143 * Relies on the RCU grace period between css_released() and this.
8144 */
8145 sched_free_group(tg);
ace783b9
LZ
8146}
8147
b53202e6 8148static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8149{
8150 sched_move_task(task);
8151}
8152
1f7dd3e5 8153static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8154{
bb9d97b6 8155 struct task_struct *task;
1f7dd3e5 8156 struct cgroup_subsys_state *css;
bb9d97b6 8157
1f7dd3e5 8158 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8159#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8160 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8161 return -EINVAL;
b68aa230 8162#else
bb9d97b6
TH
8163 /* We don't support RT-tasks being in separate groups */
8164 if (task->sched_class != &fair_sched_class)
8165 return -EINVAL;
b68aa230 8166#endif
bb9d97b6 8167 }
be367d09
BB
8168 return 0;
8169}
68318b8e 8170
1f7dd3e5 8171static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8172{
bb9d97b6 8173 struct task_struct *task;
1f7dd3e5 8174 struct cgroup_subsys_state *css;
bb9d97b6 8175
1f7dd3e5 8176 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8177 sched_move_task(task);
68318b8e
SV
8178}
8179
052f1dc7 8180#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8181static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8182 struct cftype *cftype, u64 shareval)
68318b8e 8183{
182446d0 8184 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8185}
8186
182446d0
TH
8187static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8188 struct cftype *cft)
68318b8e 8189{
182446d0 8190 struct task_group *tg = css_tg(css);
68318b8e 8191
c8b28116 8192 return (u64) scale_load_down(tg->shares);
68318b8e 8193}
ab84d31e
PT
8194
8195#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8196static DEFINE_MUTEX(cfs_constraints_mutex);
8197
ab84d31e
PT
8198const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8199const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8200
a790de99
PT
8201static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8202
ab84d31e
PT
8203static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8204{
56f570e5 8205 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8206 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8207
8208 if (tg == &root_task_group)
8209 return -EINVAL;
8210
8211 /*
8212 * Ensure we have at some amount of bandwidth every period. This is
8213 * to prevent reaching a state of large arrears when throttled via
8214 * entity_tick() resulting in prolonged exit starvation.
8215 */
8216 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8217 return -EINVAL;
8218
8219 /*
8220 * Likewise, bound things on the otherside by preventing insane quota
8221 * periods. This also allows us to normalize in computing quota
8222 * feasibility.
8223 */
8224 if (period > max_cfs_quota_period)
8225 return -EINVAL;
8226
0e59bdae
KT
8227 /*
8228 * Prevent race between setting of cfs_rq->runtime_enabled and
8229 * unthrottle_offline_cfs_rqs().
8230 */
8231 get_online_cpus();
a790de99
PT
8232 mutex_lock(&cfs_constraints_mutex);
8233 ret = __cfs_schedulable(tg, period, quota);
8234 if (ret)
8235 goto out_unlock;
8236
58088ad0 8237 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8238 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8239 /*
8240 * If we need to toggle cfs_bandwidth_used, off->on must occur
8241 * before making related changes, and on->off must occur afterwards
8242 */
8243 if (runtime_enabled && !runtime_was_enabled)
8244 cfs_bandwidth_usage_inc();
ab84d31e
PT
8245 raw_spin_lock_irq(&cfs_b->lock);
8246 cfs_b->period = ns_to_ktime(period);
8247 cfs_b->quota = quota;
58088ad0 8248
a9cf55b2 8249 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8250 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8251 if (runtime_enabled)
8252 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8253 raw_spin_unlock_irq(&cfs_b->lock);
8254
0e59bdae 8255 for_each_online_cpu(i) {
ab84d31e 8256 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8257 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8258
8259 raw_spin_lock_irq(&rq->lock);
58088ad0 8260 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8261 cfs_rq->runtime_remaining = 0;
671fd9da 8262
029632fb 8263 if (cfs_rq->throttled)
671fd9da 8264 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8265 raw_spin_unlock_irq(&rq->lock);
8266 }
1ee14e6c
BS
8267 if (runtime_was_enabled && !runtime_enabled)
8268 cfs_bandwidth_usage_dec();
a790de99
PT
8269out_unlock:
8270 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8271 put_online_cpus();
ab84d31e 8272
a790de99 8273 return ret;
ab84d31e
PT
8274}
8275
8276int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8277{
8278 u64 quota, period;
8279
029632fb 8280 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8281 if (cfs_quota_us < 0)
8282 quota = RUNTIME_INF;
8283 else
8284 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8285
8286 return tg_set_cfs_bandwidth(tg, period, quota);
8287}
8288
8289long tg_get_cfs_quota(struct task_group *tg)
8290{
8291 u64 quota_us;
8292
029632fb 8293 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8294 return -1;
8295
029632fb 8296 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8297 do_div(quota_us, NSEC_PER_USEC);
8298
8299 return quota_us;
8300}
8301
8302int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8303{
8304 u64 quota, period;
8305
8306 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8307 quota = tg->cfs_bandwidth.quota;
ab84d31e 8308
ab84d31e
PT
8309 return tg_set_cfs_bandwidth(tg, period, quota);
8310}
8311
8312long tg_get_cfs_period(struct task_group *tg)
8313{
8314 u64 cfs_period_us;
8315
029632fb 8316 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8317 do_div(cfs_period_us, NSEC_PER_USEC);
8318
8319 return cfs_period_us;
8320}
8321
182446d0
TH
8322static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8323 struct cftype *cft)
ab84d31e 8324{
182446d0 8325 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8326}
8327
182446d0
TH
8328static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8329 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8330{
182446d0 8331 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8332}
8333
182446d0
TH
8334static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
ab84d31e 8336{
182446d0 8337 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8338}
8339
182446d0
TH
8340static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8341 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8342{
182446d0 8343 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8344}
8345
a790de99
PT
8346struct cfs_schedulable_data {
8347 struct task_group *tg;
8348 u64 period, quota;
8349};
8350
8351/*
8352 * normalize group quota/period to be quota/max_period
8353 * note: units are usecs
8354 */
8355static u64 normalize_cfs_quota(struct task_group *tg,
8356 struct cfs_schedulable_data *d)
8357{
8358 u64 quota, period;
8359
8360 if (tg == d->tg) {
8361 period = d->period;
8362 quota = d->quota;
8363 } else {
8364 period = tg_get_cfs_period(tg);
8365 quota = tg_get_cfs_quota(tg);
8366 }
8367
8368 /* note: these should typically be equivalent */
8369 if (quota == RUNTIME_INF || quota == -1)
8370 return RUNTIME_INF;
8371
8372 return to_ratio(period, quota);
8373}
8374
8375static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8376{
8377 struct cfs_schedulable_data *d = data;
029632fb 8378 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8379 s64 quota = 0, parent_quota = -1;
8380
8381 if (!tg->parent) {
8382 quota = RUNTIME_INF;
8383 } else {
029632fb 8384 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8385
8386 quota = normalize_cfs_quota(tg, d);
9c58c79a 8387 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8388
8389 /*
8390 * ensure max(child_quota) <= parent_quota, inherit when no
8391 * limit is set
8392 */
8393 if (quota == RUNTIME_INF)
8394 quota = parent_quota;
8395 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8396 return -EINVAL;
8397 }
9c58c79a 8398 cfs_b->hierarchical_quota = quota;
a790de99
PT
8399
8400 return 0;
8401}
8402
8403static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8404{
8277434e 8405 int ret;
a790de99
PT
8406 struct cfs_schedulable_data data = {
8407 .tg = tg,
8408 .period = period,
8409 .quota = quota,
8410 };
8411
8412 if (quota != RUNTIME_INF) {
8413 do_div(data.period, NSEC_PER_USEC);
8414 do_div(data.quota, NSEC_PER_USEC);
8415 }
8416
8277434e
PT
8417 rcu_read_lock();
8418 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8419 rcu_read_unlock();
8420
8421 return ret;
a790de99 8422}
e8da1b18 8423
2da8ca82 8424static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8425{
2da8ca82 8426 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8427 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8428
44ffc75b
TH
8429 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8430 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8431 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8432
8433 return 0;
8434}
ab84d31e 8435#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8436#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8437
052f1dc7 8438#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8439static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8440 struct cftype *cft, s64 val)
6f505b16 8441{
182446d0 8442 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8443}
8444
182446d0
TH
8445static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8446 struct cftype *cft)
6f505b16 8447{
182446d0 8448 return sched_group_rt_runtime(css_tg(css));
6f505b16 8449}
d0b27fa7 8450
182446d0
TH
8451static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8452 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8453{
182446d0 8454 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8455}
8456
182446d0
TH
8457static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8458 struct cftype *cft)
d0b27fa7 8459{
182446d0 8460 return sched_group_rt_period(css_tg(css));
d0b27fa7 8461}
6d6bc0ad 8462#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8463
fe5c7cc2 8464static struct cftype cpu_files[] = {
052f1dc7 8465#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8466 {
8467 .name = "shares",
f4c753b7
PM
8468 .read_u64 = cpu_shares_read_u64,
8469 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8470 },
052f1dc7 8471#endif
ab84d31e
PT
8472#ifdef CONFIG_CFS_BANDWIDTH
8473 {
8474 .name = "cfs_quota_us",
8475 .read_s64 = cpu_cfs_quota_read_s64,
8476 .write_s64 = cpu_cfs_quota_write_s64,
8477 },
8478 {
8479 .name = "cfs_period_us",
8480 .read_u64 = cpu_cfs_period_read_u64,
8481 .write_u64 = cpu_cfs_period_write_u64,
8482 },
e8da1b18
NR
8483 {
8484 .name = "stat",
2da8ca82 8485 .seq_show = cpu_stats_show,
e8da1b18 8486 },
ab84d31e 8487#endif
052f1dc7 8488#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8489 {
9f0c1e56 8490 .name = "rt_runtime_us",
06ecb27c
PM
8491 .read_s64 = cpu_rt_runtime_read,
8492 .write_s64 = cpu_rt_runtime_write,
6f505b16 8493 },
d0b27fa7
PZ
8494 {
8495 .name = "rt_period_us",
f4c753b7
PM
8496 .read_u64 = cpu_rt_period_read_uint,
8497 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8498 },
052f1dc7 8499#endif
4baf6e33 8500 { } /* terminate */
68318b8e
SV
8501};
8502
073219e9 8503struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8504 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8505 .css_released = cpu_cgroup_css_released,
92fb9748 8506 .css_free = cpu_cgroup_css_free,
eeb61e53 8507 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8508 .can_attach = cpu_cgroup_can_attach,
8509 .attach = cpu_cgroup_attach,
5577964e 8510 .legacy_cftypes = cpu_files,
b38e42e9 8511 .early_init = true,
68318b8e
SV
8512};
8513
052f1dc7 8514#endif /* CONFIG_CGROUP_SCHED */
d842de87 8515
b637a328
PM
8516void dump_cpu_task(int cpu)
8517{
8518 pr_info("Task dump for CPU %d:\n", cpu);
8519 sched_show_task(cpu_curr(cpu));
8520}
ed82b8a1
AK
8521
8522/*
8523 * Nice levels are multiplicative, with a gentle 10% change for every
8524 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8525 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8526 * that remained on nice 0.
8527 *
8528 * The "10% effect" is relative and cumulative: from _any_ nice level,
8529 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8530 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8531 * If a task goes up by ~10% and another task goes down by ~10% then
8532 * the relative distance between them is ~25%.)
8533 */
8534const int sched_prio_to_weight[40] = {
8535 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8536 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8537 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8538 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8539 /* 0 */ 1024, 820, 655, 526, 423,
8540 /* 5 */ 335, 272, 215, 172, 137,
8541 /* 10 */ 110, 87, 70, 56, 45,
8542 /* 15 */ 36, 29, 23, 18, 15,
8543};
8544
8545/*
8546 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8547 *
8548 * In cases where the weight does not change often, we can use the
8549 * precalculated inverse to speed up arithmetics by turning divisions
8550 * into multiplications:
8551 */
8552const u32 sched_prio_to_wmult[40] = {
8553 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8554 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8555 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8556 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8557 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8558 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8559 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8560 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8561};
This page took 2.821517 seconds and 5 git commands to generate.