Kconfig: rename HAS_IOPORT to HAS_IOPORT_MAP
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
c46fff2a 435 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
6201b4d6 558int get_nohz_timer_target(int pinned)
83cd4fe2
VP
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
6201b4d6
VK
564 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
565 return cpu;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
1c20091e 590static void wake_up_idle_cpu(int cpu)
06d8308c
TG
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
c5bfece2 620static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 621{
c5bfece2 622 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
623 if (cpu != smp_processor_id() ||
624 tick_nohz_tick_stopped())
625 smp_send_reschedule(cpu);
626 return true;
627 }
628
629 return false;
630}
631
632void wake_up_nohz_cpu(int cpu)
633{
c5bfece2 634 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
635 wake_up_idle_cpu(cpu);
636}
637
ca38062e 638static inline bool got_nohz_idle_kick(void)
45bf76df 639{
1c792db7 640 int cpu = smp_processor_id();
873b4c65
VG
641
642 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
643 return false;
644
645 if (idle_cpu(cpu) && !need_resched())
646 return true;
647
648 /*
649 * We can't run Idle Load Balance on this CPU for this time so we
650 * cancel it and clear NOHZ_BALANCE_KICK
651 */
652 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
653 return false;
45bf76df
IM
654}
655
3451d024 656#else /* CONFIG_NO_HZ_COMMON */
45bf76df 657
ca38062e 658static inline bool got_nohz_idle_kick(void)
2069dd75 659{
ca38062e 660 return false;
2069dd75
PZ
661}
662
3451d024 663#endif /* CONFIG_NO_HZ_COMMON */
d842de87 664
ce831b38
FW
665#ifdef CONFIG_NO_HZ_FULL
666bool sched_can_stop_tick(void)
667{
668 struct rq *rq;
669
670 rq = this_rq();
671
672 /* Make sure rq->nr_running update is visible after the IPI */
673 smp_rmb();
674
675 /* More than one running task need preemption */
676 if (rq->nr_running > 1)
677 return false;
678
679 return true;
680}
681#endif /* CONFIG_NO_HZ_FULL */
d842de87 682
029632fb 683void sched_avg_update(struct rq *rq)
18d95a28 684{
e9e9250b
PZ
685 s64 period = sched_avg_period();
686
78becc27 687 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
688 /*
689 * Inline assembly required to prevent the compiler
690 * optimising this loop into a divmod call.
691 * See __iter_div_u64_rem() for another example of this.
692 */
693 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
694 rq->age_stamp += period;
695 rq->rt_avg /= 2;
696 }
18d95a28
PZ
697}
698
6d6bc0ad 699#endif /* CONFIG_SMP */
18d95a28 700
a790de99
PT
701#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
702 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 703/*
8277434e
PT
704 * Iterate task_group tree rooted at *from, calling @down when first entering a
705 * node and @up when leaving it for the final time.
706 *
707 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 708 */
029632fb 709int walk_tg_tree_from(struct task_group *from,
8277434e 710 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
711{
712 struct task_group *parent, *child;
eb755805 713 int ret;
c09595f6 714
8277434e
PT
715 parent = from;
716
c09595f6 717down:
eb755805
PZ
718 ret = (*down)(parent, data);
719 if (ret)
8277434e 720 goto out;
c09595f6
PZ
721 list_for_each_entry_rcu(child, &parent->children, siblings) {
722 parent = child;
723 goto down;
724
725up:
726 continue;
727 }
eb755805 728 ret = (*up)(parent, data);
8277434e
PT
729 if (ret || parent == from)
730 goto out;
c09595f6
PZ
731
732 child = parent;
733 parent = parent->parent;
734 if (parent)
735 goto up;
8277434e 736out:
eb755805 737 return ret;
c09595f6
PZ
738}
739
029632fb 740int tg_nop(struct task_group *tg, void *data)
eb755805 741{
e2b245f8 742 return 0;
eb755805 743}
18d95a28
PZ
744#endif
745
45bf76df
IM
746static void set_load_weight(struct task_struct *p)
747{
f05998d4
NR
748 int prio = p->static_prio - MAX_RT_PRIO;
749 struct load_weight *load = &p->se.load;
750
dd41f596
IM
751 /*
752 * SCHED_IDLE tasks get minimal weight:
753 */
754 if (p->policy == SCHED_IDLE) {
c8b28116 755 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 756 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
757 return;
758 }
71f8bd46 759
c8b28116 760 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 761 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
762}
763
371fd7e7 764static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 765{
a64692a3 766 update_rq_clock(rq);
43148951 767 sched_info_queued(rq, p);
371fd7e7 768 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
769}
770
371fd7e7 771static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 772{
a64692a3 773 update_rq_clock(rq);
43148951 774 sched_info_dequeued(rq, p);
371fd7e7 775 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
776}
777
029632fb 778void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
779{
780 if (task_contributes_to_load(p))
781 rq->nr_uninterruptible--;
782
371fd7e7 783 enqueue_task(rq, p, flags);
1e3c88bd
PZ
784}
785
029632fb 786void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible++;
790
371fd7e7 791 dequeue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
fe44d621 794static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 795{
095c0aa8
GC
796/*
797 * In theory, the compile should just see 0 here, and optimize out the call
798 * to sched_rt_avg_update. But I don't trust it...
799 */
800#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
801 s64 steal = 0, irq_delta = 0;
802#endif
803#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 804 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
805
806 /*
807 * Since irq_time is only updated on {soft,}irq_exit, we might run into
808 * this case when a previous update_rq_clock() happened inside a
809 * {soft,}irq region.
810 *
811 * When this happens, we stop ->clock_task and only update the
812 * prev_irq_time stamp to account for the part that fit, so that a next
813 * update will consume the rest. This ensures ->clock_task is
814 * monotonic.
815 *
816 * It does however cause some slight miss-attribution of {soft,}irq
817 * time, a more accurate solution would be to update the irq_time using
818 * the current rq->clock timestamp, except that would require using
819 * atomic ops.
820 */
821 if (irq_delta > delta)
822 irq_delta = delta;
823
824 rq->prev_irq_time += irq_delta;
825 delta -= irq_delta;
095c0aa8
GC
826#endif
827#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 828 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
829 steal = paravirt_steal_clock(cpu_of(rq));
830 steal -= rq->prev_steal_time_rq;
831
832 if (unlikely(steal > delta))
833 steal = delta;
834
095c0aa8 835 rq->prev_steal_time_rq += steal;
095c0aa8
GC
836 delta -= steal;
837 }
838#endif
839
fe44d621
PZ
840 rq->clock_task += delta;
841
095c0aa8
GC
842#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
844 sched_rt_avg_update(rq, irq_delta + steal);
845#endif
aa483808
VP
846}
847
34f971f6
PZ
848void sched_set_stop_task(int cpu, struct task_struct *stop)
849{
850 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
851 struct task_struct *old_stop = cpu_rq(cpu)->stop;
852
853 if (stop) {
854 /*
855 * Make it appear like a SCHED_FIFO task, its something
856 * userspace knows about and won't get confused about.
857 *
858 * Also, it will make PI more or less work without too
859 * much confusion -- but then, stop work should not
860 * rely on PI working anyway.
861 */
862 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
863
864 stop->sched_class = &stop_sched_class;
865 }
866
867 cpu_rq(cpu)->stop = stop;
868
869 if (old_stop) {
870 /*
871 * Reset it back to a normal scheduling class so that
872 * it can die in pieces.
873 */
874 old_stop->sched_class = &rt_sched_class;
875 }
876}
877
14531189 878/*
dd41f596 879 * __normal_prio - return the priority that is based on the static prio
14531189 880 */
14531189
IM
881static inline int __normal_prio(struct task_struct *p)
882{
dd41f596 883 return p->static_prio;
14531189
IM
884}
885
b29739f9
IM
886/*
887 * Calculate the expected normal priority: i.e. priority
888 * without taking RT-inheritance into account. Might be
889 * boosted by interactivity modifiers. Changes upon fork,
890 * setprio syscalls, and whenever the interactivity
891 * estimator recalculates.
892 */
36c8b586 893static inline int normal_prio(struct task_struct *p)
b29739f9
IM
894{
895 int prio;
896
aab03e05
DF
897 if (task_has_dl_policy(p))
898 prio = MAX_DL_PRIO-1;
899 else if (task_has_rt_policy(p))
b29739f9
IM
900 prio = MAX_RT_PRIO-1 - p->rt_priority;
901 else
902 prio = __normal_prio(p);
903 return prio;
904}
905
906/*
907 * Calculate the current priority, i.e. the priority
908 * taken into account by the scheduler. This value might
909 * be boosted by RT tasks, or might be boosted by
910 * interactivity modifiers. Will be RT if the task got
911 * RT-boosted. If not then it returns p->normal_prio.
912 */
36c8b586 913static int effective_prio(struct task_struct *p)
b29739f9
IM
914{
915 p->normal_prio = normal_prio(p);
916 /*
917 * If we are RT tasks or we were boosted to RT priority,
918 * keep the priority unchanged. Otherwise, update priority
919 * to the normal priority:
920 */
921 if (!rt_prio(p->prio))
922 return p->normal_prio;
923 return p->prio;
924}
925
1da177e4
LT
926/**
927 * task_curr - is this task currently executing on a CPU?
928 * @p: the task in question.
e69f6186
YB
929 *
930 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 931 */
36c8b586 932inline int task_curr(const struct task_struct *p)
1da177e4
LT
933{
934 return cpu_curr(task_cpu(p)) == p;
935}
936
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e
PZ
943 prev_class->switched_from(rq, p);
944 p->sched_class->switched_to(rq, p);
2d3d891d 945 } else if (oldprio != p->prio || dl_task(p))
da7a735e 946 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
947}
948
029632fb 949void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
950{
951 const struct sched_class *class;
952
953 if (p->sched_class == rq->curr->sched_class) {
954 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
955 } else {
956 for_each_class(class) {
957 if (class == rq->curr->sched_class)
958 break;
959 if (class == p->sched_class) {
960 resched_task(rq->curr);
961 break;
962 }
963 }
964 }
965
966 /*
967 * A queue event has occurred, and we're going to schedule. In
968 * this case, we can save a useless back to back clock update.
969 */
fd2f4419 970 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
971 rq->skip_clock_update = 1;
972}
973
1da177e4 974#ifdef CONFIG_SMP
dd41f596 975void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 976{
e2912009
PZ
977#ifdef CONFIG_SCHED_DEBUG
978 /*
979 * We should never call set_task_cpu() on a blocked task,
980 * ttwu() will sort out the placement.
981 */
077614ee 982 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 983 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
984
985#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
986 /*
987 * The caller should hold either p->pi_lock or rq->lock, when changing
988 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
989 *
990 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 991 * see task_group().
6c6c54e1
PZ
992 *
993 * Furthermore, all task_rq users should acquire both locks, see
994 * task_rq_lock().
995 */
0122ec5b
PZ
996 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
997 lockdep_is_held(&task_rq(p)->lock)));
998#endif
e2912009
PZ
999#endif
1000
de1d7286 1001 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1002
0c69774e 1003 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1004 if (p->sched_class->migrate_task_rq)
1005 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1006 p->se.nr_migrations++;
a8b0ca17 1007 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1008 }
dd41f596
IM
1009
1010 __set_task_cpu(p, new_cpu);
c65cc870
IM
1011}
1012
ac66f547
PZ
1013static void __migrate_swap_task(struct task_struct *p, int cpu)
1014{
1015 if (p->on_rq) {
1016 struct rq *src_rq, *dst_rq;
1017
1018 src_rq = task_rq(p);
1019 dst_rq = cpu_rq(cpu);
1020
1021 deactivate_task(src_rq, p, 0);
1022 set_task_cpu(p, cpu);
1023 activate_task(dst_rq, p, 0);
1024 check_preempt_curr(dst_rq, p, 0);
1025 } else {
1026 /*
1027 * Task isn't running anymore; make it appear like we migrated
1028 * it before it went to sleep. This means on wakeup we make the
1029 * previous cpu our targer instead of where it really is.
1030 */
1031 p->wake_cpu = cpu;
1032 }
1033}
1034
1035struct migration_swap_arg {
1036 struct task_struct *src_task, *dst_task;
1037 int src_cpu, dst_cpu;
1038};
1039
1040static int migrate_swap_stop(void *data)
1041{
1042 struct migration_swap_arg *arg = data;
1043 struct rq *src_rq, *dst_rq;
1044 int ret = -EAGAIN;
1045
1046 src_rq = cpu_rq(arg->src_cpu);
1047 dst_rq = cpu_rq(arg->dst_cpu);
1048
74602315
PZ
1049 double_raw_lock(&arg->src_task->pi_lock,
1050 &arg->dst_task->pi_lock);
ac66f547
PZ
1051 double_rq_lock(src_rq, dst_rq);
1052 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1053 goto unlock;
1054
1055 if (task_cpu(arg->src_task) != arg->src_cpu)
1056 goto unlock;
1057
1058 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1062 goto unlock;
1063
1064 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1065 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1066
1067 ret = 0;
1068
1069unlock:
1070 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1071 raw_spin_unlock(&arg->dst_task->pi_lock);
1072 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1073
1074 return ret;
1075}
1076
1077/*
1078 * Cross migrate two tasks
1079 */
1080int migrate_swap(struct task_struct *cur, struct task_struct *p)
1081{
1082 struct migration_swap_arg arg;
1083 int ret = -EINVAL;
1084
ac66f547
PZ
1085 arg = (struct migration_swap_arg){
1086 .src_task = cur,
1087 .src_cpu = task_cpu(cur),
1088 .dst_task = p,
1089 .dst_cpu = task_cpu(p),
1090 };
1091
1092 if (arg.src_cpu == arg.dst_cpu)
1093 goto out;
1094
6acce3ef
PZ
1095 /*
1096 * These three tests are all lockless; this is OK since all of them
1097 * will be re-checked with proper locks held further down the line.
1098 */
ac66f547
PZ
1099 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1100 goto out;
1101
1102 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1106 goto out;
1107
286549dc 1108 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1109 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1110
1111out:
ac66f547
PZ
1112 return ret;
1113}
1114
969c7921 1115struct migration_arg {
36c8b586 1116 struct task_struct *task;
1da177e4 1117 int dest_cpu;
70b97a7f 1118};
1da177e4 1119
969c7921
TH
1120static int migration_cpu_stop(void *data);
1121
1da177e4
LT
1122/*
1123 * wait_task_inactive - wait for a thread to unschedule.
1124 *
85ba2d86
RM
1125 * If @match_state is nonzero, it's the @p->state value just checked and
1126 * not expected to change. If it changes, i.e. @p might have woken up,
1127 * then return zero. When we succeed in waiting for @p to be off its CPU,
1128 * we return a positive number (its total switch count). If a second call
1129 * a short while later returns the same number, the caller can be sure that
1130 * @p has remained unscheduled the whole time.
1131 *
1da177e4
LT
1132 * The caller must ensure that the task *will* unschedule sometime soon,
1133 * else this function might spin for a *long* time. This function can't
1134 * be called with interrupts off, or it may introduce deadlock with
1135 * smp_call_function() if an IPI is sent by the same process we are
1136 * waiting to become inactive.
1137 */
85ba2d86 1138unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1139{
1140 unsigned long flags;
dd41f596 1141 int running, on_rq;
85ba2d86 1142 unsigned long ncsw;
70b97a7f 1143 struct rq *rq;
1da177e4 1144
3a5c359a
AK
1145 for (;;) {
1146 /*
1147 * We do the initial early heuristics without holding
1148 * any task-queue locks at all. We'll only try to get
1149 * the runqueue lock when things look like they will
1150 * work out!
1151 */
1152 rq = task_rq(p);
fa490cfd 1153
3a5c359a
AK
1154 /*
1155 * If the task is actively running on another CPU
1156 * still, just relax and busy-wait without holding
1157 * any locks.
1158 *
1159 * NOTE! Since we don't hold any locks, it's not
1160 * even sure that "rq" stays as the right runqueue!
1161 * But we don't care, since "task_running()" will
1162 * return false if the runqueue has changed and p
1163 * is actually now running somewhere else!
1164 */
85ba2d86
RM
1165 while (task_running(rq, p)) {
1166 if (match_state && unlikely(p->state != match_state))
1167 return 0;
3a5c359a 1168 cpu_relax();
85ba2d86 1169 }
fa490cfd 1170
3a5c359a
AK
1171 /*
1172 * Ok, time to look more closely! We need the rq
1173 * lock now, to be *sure*. If we're wrong, we'll
1174 * just go back and repeat.
1175 */
1176 rq = task_rq_lock(p, &flags);
27a9da65 1177 trace_sched_wait_task(p);
3a5c359a 1178 running = task_running(rq, p);
fd2f4419 1179 on_rq = p->on_rq;
85ba2d86 1180 ncsw = 0;
f31e11d8 1181 if (!match_state || p->state == match_state)
93dcf55f 1182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1183 task_rq_unlock(rq, p, &flags);
fa490cfd 1184
85ba2d86
RM
1185 /*
1186 * If it changed from the expected state, bail out now.
1187 */
1188 if (unlikely(!ncsw))
1189 break;
1190
3a5c359a
AK
1191 /*
1192 * Was it really running after all now that we
1193 * checked with the proper locks actually held?
1194 *
1195 * Oops. Go back and try again..
1196 */
1197 if (unlikely(running)) {
1198 cpu_relax();
1199 continue;
1200 }
fa490cfd 1201
3a5c359a
AK
1202 /*
1203 * It's not enough that it's not actively running,
1204 * it must be off the runqueue _entirely_, and not
1205 * preempted!
1206 *
80dd99b3 1207 * So if it was still runnable (but just not actively
3a5c359a
AK
1208 * running right now), it's preempted, and we should
1209 * yield - it could be a while.
1210 */
1211 if (unlikely(on_rq)) {
8eb90c30
TG
1212 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1213
1214 set_current_state(TASK_UNINTERRUPTIBLE);
1215 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1216 continue;
1217 }
fa490cfd 1218
3a5c359a
AK
1219 /*
1220 * Ahh, all good. It wasn't running, and it wasn't
1221 * runnable, which means that it will never become
1222 * running in the future either. We're all done!
1223 */
1224 break;
1225 }
85ba2d86
RM
1226
1227 return ncsw;
1da177e4
LT
1228}
1229
1230/***
1231 * kick_process - kick a running thread to enter/exit the kernel
1232 * @p: the to-be-kicked thread
1233 *
1234 * Cause a process which is running on another CPU to enter
1235 * kernel-mode, without any delay. (to get signals handled.)
1236 *
25985edc 1237 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1238 * because all it wants to ensure is that the remote task enters
1239 * the kernel. If the IPI races and the task has been migrated
1240 * to another CPU then no harm is done and the purpose has been
1241 * achieved as well.
1242 */
36c8b586 1243void kick_process(struct task_struct *p)
1da177e4
LT
1244{
1245 int cpu;
1246
1247 preempt_disable();
1248 cpu = task_cpu(p);
1249 if ((cpu != smp_processor_id()) && task_curr(p))
1250 smp_send_reschedule(cpu);
1251 preempt_enable();
1252}
b43e3521 1253EXPORT_SYMBOL_GPL(kick_process);
476d139c 1254#endif /* CONFIG_SMP */
1da177e4 1255
970b13ba 1256#ifdef CONFIG_SMP
30da688e 1257/*
013fdb80 1258 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1259 */
5da9a0fb
PZ
1260static int select_fallback_rq(int cpu, struct task_struct *p)
1261{
aa00d89c
TC
1262 int nid = cpu_to_node(cpu);
1263 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1264 enum { cpuset, possible, fail } state = cpuset;
1265 int dest_cpu;
5da9a0fb 1266
aa00d89c
TC
1267 /*
1268 * If the node that the cpu is on has been offlined, cpu_to_node()
1269 * will return -1. There is no cpu on the node, and we should
1270 * select the cpu on the other node.
1271 */
1272 if (nid != -1) {
1273 nodemask = cpumask_of_node(nid);
1274
1275 /* Look for allowed, online CPU in same node. */
1276 for_each_cpu(dest_cpu, nodemask) {
1277 if (!cpu_online(dest_cpu))
1278 continue;
1279 if (!cpu_active(dest_cpu))
1280 continue;
1281 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1282 return dest_cpu;
1283 }
2baab4e9 1284 }
5da9a0fb 1285
2baab4e9
PZ
1286 for (;;) {
1287 /* Any allowed, online CPU? */
e3831edd 1288 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1289 if (!cpu_online(dest_cpu))
1290 continue;
1291 if (!cpu_active(dest_cpu))
1292 continue;
1293 goto out;
1294 }
5da9a0fb 1295
2baab4e9
PZ
1296 switch (state) {
1297 case cpuset:
1298 /* No more Mr. Nice Guy. */
1299 cpuset_cpus_allowed_fallback(p);
1300 state = possible;
1301 break;
1302
1303 case possible:
1304 do_set_cpus_allowed(p, cpu_possible_mask);
1305 state = fail;
1306 break;
1307
1308 case fail:
1309 BUG();
1310 break;
1311 }
1312 }
1313
1314out:
1315 if (state != cpuset) {
1316 /*
1317 * Don't tell them about moving exiting tasks or
1318 * kernel threads (both mm NULL), since they never
1319 * leave kernel.
1320 */
1321 if (p->mm && printk_ratelimit()) {
1322 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1323 task_pid_nr(p), p->comm, cpu);
1324 }
5da9a0fb
PZ
1325 }
1326
1327 return dest_cpu;
1328}
1329
e2912009 1330/*
013fdb80 1331 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1332 */
970b13ba 1333static inline
ac66f547 1334int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1335{
ac66f547 1336 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1337
1338 /*
1339 * In order not to call set_task_cpu() on a blocking task we need
1340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1341 * cpu.
1342 *
1343 * Since this is common to all placement strategies, this lives here.
1344 *
1345 * [ this allows ->select_task() to simply return task_cpu(p) and
1346 * not worry about this generic constraint ]
1347 */
fa17b507 1348 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1349 !cpu_online(cpu)))
5da9a0fb 1350 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1351
1352 return cpu;
970b13ba 1353}
09a40af5
MG
1354
1355static void update_avg(u64 *avg, u64 sample)
1356{
1357 s64 diff = sample - *avg;
1358 *avg += diff >> 3;
1359}
970b13ba
PZ
1360#endif
1361
d7c01d27 1362static void
b84cb5df 1363ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1364{
d7c01d27 1365#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1366 struct rq *rq = this_rq();
1367
d7c01d27
PZ
1368#ifdef CONFIG_SMP
1369 int this_cpu = smp_processor_id();
1370
1371 if (cpu == this_cpu) {
1372 schedstat_inc(rq, ttwu_local);
1373 schedstat_inc(p, se.statistics.nr_wakeups_local);
1374 } else {
1375 struct sched_domain *sd;
1376
1377 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1378 rcu_read_lock();
d7c01d27
PZ
1379 for_each_domain(this_cpu, sd) {
1380 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1381 schedstat_inc(sd, ttwu_wake_remote);
1382 break;
1383 }
1384 }
057f3fad 1385 rcu_read_unlock();
d7c01d27 1386 }
f339b9dc
PZ
1387
1388 if (wake_flags & WF_MIGRATED)
1389 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1390
d7c01d27
PZ
1391#endif /* CONFIG_SMP */
1392
1393 schedstat_inc(rq, ttwu_count);
9ed3811a 1394 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1395
1396 if (wake_flags & WF_SYNC)
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1398
d7c01d27
PZ
1399#endif /* CONFIG_SCHEDSTATS */
1400}
1401
1402static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1403{
9ed3811a 1404 activate_task(rq, p, en_flags);
fd2f4419 1405 p->on_rq = 1;
c2f7115e
PZ
1406
1407 /* if a worker is waking up, notify workqueue */
1408 if (p->flags & PF_WQ_WORKER)
1409 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1410}
1411
23f41eeb
PZ
1412/*
1413 * Mark the task runnable and perform wakeup-preemption.
1414 */
89363381 1415static void
23f41eeb 1416ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1417{
9ed3811a 1418 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1419 trace_sched_wakeup(p, true);
9ed3811a
TH
1420
1421 p->state = TASK_RUNNING;
1422#ifdef CONFIG_SMP
1423 if (p->sched_class->task_woken)
1424 p->sched_class->task_woken(rq, p);
1425
e69c6341 1426 if (rq->idle_stamp) {
78becc27 1427 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1428 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1429
abfafa54
JL
1430 update_avg(&rq->avg_idle, delta);
1431
1432 if (rq->avg_idle > max)
9ed3811a 1433 rq->avg_idle = max;
abfafa54 1434
9ed3811a
TH
1435 rq->idle_stamp = 0;
1436 }
1437#endif
1438}
1439
c05fbafb
PZ
1440static void
1441ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1442{
1443#ifdef CONFIG_SMP
1444 if (p->sched_contributes_to_load)
1445 rq->nr_uninterruptible--;
1446#endif
1447
1448 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1449 ttwu_do_wakeup(rq, p, wake_flags);
1450}
1451
1452/*
1453 * Called in case the task @p isn't fully descheduled from its runqueue,
1454 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1455 * since all we need to do is flip p->state to TASK_RUNNING, since
1456 * the task is still ->on_rq.
1457 */
1458static int ttwu_remote(struct task_struct *p, int wake_flags)
1459{
1460 struct rq *rq;
1461 int ret = 0;
1462
1463 rq = __task_rq_lock(p);
1464 if (p->on_rq) {
1ad4ec0d
FW
1465 /* check_preempt_curr() may use rq clock */
1466 update_rq_clock(rq);
c05fbafb
PZ
1467 ttwu_do_wakeup(rq, p, wake_flags);
1468 ret = 1;
1469 }
1470 __task_rq_unlock(rq);
1471
1472 return ret;
1473}
1474
317f3941 1475#ifdef CONFIG_SMP
fa14ff4a 1476static void sched_ttwu_pending(void)
317f3941
PZ
1477{
1478 struct rq *rq = this_rq();
fa14ff4a
PZ
1479 struct llist_node *llist = llist_del_all(&rq->wake_list);
1480 struct task_struct *p;
317f3941
PZ
1481
1482 raw_spin_lock(&rq->lock);
1483
fa14ff4a
PZ
1484 while (llist) {
1485 p = llist_entry(llist, struct task_struct, wake_entry);
1486 llist = llist_next(llist);
317f3941
PZ
1487 ttwu_do_activate(rq, p, 0);
1488 }
1489
1490 raw_spin_unlock(&rq->lock);
1491}
1492
1493void scheduler_ipi(void)
1494{
f27dde8d
PZ
1495 /*
1496 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1497 * TIF_NEED_RESCHED remotely (for the first time) will also send
1498 * this IPI.
1499 */
8cb75e0c 1500 preempt_fold_need_resched();
f27dde8d 1501
873b4c65
VG
1502 if (llist_empty(&this_rq()->wake_list)
1503 && !tick_nohz_full_cpu(smp_processor_id())
1504 && !got_nohz_idle_kick())
c5d753a5
PZ
1505 return;
1506
1507 /*
1508 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1509 * traditionally all their work was done from the interrupt return
1510 * path. Now that we actually do some work, we need to make sure
1511 * we do call them.
1512 *
1513 * Some archs already do call them, luckily irq_enter/exit nest
1514 * properly.
1515 *
1516 * Arguably we should visit all archs and update all handlers,
1517 * however a fair share of IPIs are still resched only so this would
1518 * somewhat pessimize the simple resched case.
1519 */
1520 irq_enter();
ff442c51 1521 tick_nohz_full_check();
fa14ff4a 1522 sched_ttwu_pending();
ca38062e
SS
1523
1524 /*
1525 * Check if someone kicked us for doing the nohz idle load balance.
1526 */
873b4c65 1527 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1528 this_rq()->idle_balance = 1;
ca38062e 1529 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1530 }
c5d753a5 1531 irq_exit();
317f3941
PZ
1532}
1533
1534static void ttwu_queue_remote(struct task_struct *p, int cpu)
1535{
fa14ff4a 1536 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1537 smp_send_reschedule(cpu);
1538}
d6aa8f85 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
e69f6186 1575 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
e0acd0a6
ON
1584 /*
1585 * If we are going to wake up a thread waiting for CONDITION we
1586 * need to ensure that CONDITION=1 done by the caller can not be
1587 * reordered with p->state check below. This pairs with mb() in
1588 * set_current_state() the waiting thread does.
1589 */
1590 smp_mb__before_spinlock();
013fdb80 1591 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1592 if (!(p->state & state))
1da177e4
LT
1593 goto out;
1594
c05fbafb 1595 success = 1; /* we're going to change ->state */
1da177e4 1596 cpu = task_cpu(p);
1da177e4 1597
c05fbafb
PZ
1598 if (p->on_rq && ttwu_remote(p, wake_flags))
1599 goto stat;
1da177e4 1600
1da177e4 1601#ifdef CONFIG_SMP
e9c84311 1602 /*
c05fbafb
PZ
1603 * If the owning (remote) cpu is still in the middle of schedule() with
1604 * this task as prev, wait until its done referencing the task.
e9c84311 1605 */
f3e94786 1606 while (p->on_cpu)
e4a52bcb 1607 cpu_relax();
0970d299 1608 /*
e4a52bcb 1609 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1610 */
e4a52bcb 1611 smp_rmb();
1da177e4 1612
a8e4f2ea 1613 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1614 p->state = TASK_WAKING;
e7693a36 1615
e4a52bcb 1616 if (p->sched_class->task_waking)
74f8e4b2 1617 p->sched_class->task_waking(p);
efbbd05a 1618
ac66f547 1619 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1620 if (task_cpu(p) != cpu) {
1621 wake_flags |= WF_MIGRATED;
e4a52bcb 1622 set_task_cpu(p, cpu);
f339b9dc 1623 }
1da177e4 1624#endif /* CONFIG_SMP */
1da177e4 1625
c05fbafb
PZ
1626 ttwu_queue(p, cpu);
1627stat:
b84cb5df 1628 ttwu_stat(p, cpu, wake_flags);
1da177e4 1629out:
013fdb80 1630 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1631
1632 return success;
1633}
1634
21aa9af0
TH
1635/**
1636 * try_to_wake_up_local - try to wake up a local task with rq lock held
1637 * @p: the thread to be awakened
1638 *
2acca55e 1639 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1640 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1641 * the current task.
21aa9af0
TH
1642 */
1643static void try_to_wake_up_local(struct task_struct *p)
1644{
1645 struct rq *rq = task_rq(p);
21aa9af0 1646
383efcd0
TH
1647 if (WARN_ON_ONCE(rq != this_rq()) ||
1648 WARN_ON_ONCE(p == current))
1649 return;
1650
21aa9af0
TH
1651 lockdep_assert_held(&rq->lock);
1652
2acca55e
PZ
1653 if (!raw_spin_trylock(&p->pi_lock)) {
1654 raw_spin_unlock(&rq->lock);
1655 raw_spin_lock(&p->pi_lock);
1656 raw_spin_lock(&rq->lock);
1657 }
1658
21aa9af0 1659 if (!(p->state & TASK_NORMAL))
2acca55e 1660 goto out;
21aa9af0 1661
fd2f4419 1662 if (!p->on_rq)
d7c01d27
PZ
1663 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1664
23f41eeb 1665 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1666 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1667out:
1668 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1669}
1670
50fa610a
DH
1671/**
1672 * wake_up_process - Wake up a specific process
1673 * @p: The process to be woken up.
1674 *
1675 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1676 * processes.
1677 *
1678 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1679 *
1680 * It may be assumed that this function implies a write memory barrier before
1681 * changing the task state if and only if any tasks are woken up.
1682 */
7ad5b3a5 1683int wake_up_process(struct task_struct *p)
1da177e4 1684{
9067ac85
ON
1685 WARN_ON(task_is_stopped_or_traced(p));
1686 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1687}
1da177e4
LT
1688EXPORT_SYMBOL(wake_up_process);
1689
7ad5b3a5 1690int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1691{
1692 return try_to_wake_up(p, state, 0);
1693}
1694
1da177e4
LT
1695/*
1696 * Perform scheduler related setup for a newly forked process p.
1697 * p is forked by current.
dd41f596
IM
1698 *
1699 * __sched_fork() is basic setup used by init_idle() too:
1700 */
5e1576ed 1701static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1702{
fd2f4419
PZ
1703 p->on_rq = 0;
1704
1705 p->se.on_rq = 0;
dd41f596
IM
1706 p->se.exec_start = 0;
1707 p->se.sum_exec_runtime = 0;
f6cf891c 1708 p->se.prev_sum_exec_runtime = 0;
6c594c21 1709 p->se.nr_migrations = 0;
da7a735e 1710 p->se.vruntime = 0;
fd2f4419 1711 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1712
1713#ifdef CONFIG_SCHEDSTATS
41acab88 1714 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1715#endif
476d139c 1716
aab03e05
DF
1717 RB_CLEAR_NODE(&p->dl.rb_node);
1718 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719 p->dl.dl_runtime = p->dl.runtime = 0;
1720 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1721 p->dl.dl_period = 0;
aab03e05
DF
1722 p->dl.flags = 0;
1723
fa717060 1724 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1725
e107be36
AK
1726#ifdef CONFIG_PREEMPT_NOTIFIERS
1727 INIT_HLIST_HEAD(&p->preempt_notifiers);
1728#endif
cbee9f88
PZ
1729
1730#ifdef CONFIG_NUMA_BALANCING
1731 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1732 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1733 p->mm->numa_scan_seq = 0;
1734 }
1735
5e1576ed
RR
1736 if (clone_flags & CLONE_VM)
1737 p->numa_preferred_nid = current->numa_preferred_nid;
1738 else
1739 p->numa_preferred_nid = -1;
1740
cbee9f88
PZ
1741 p->node_stamp = 0ULL;
1742 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1743 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1744 p->numa_work.next = &p->numa_work;
ff1df896
RR
1745 p->numa_faults_memory = NULL;
1746 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1747 p->last_task_numa_placement = 0;
1748 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1749
1750 INIT_LIST_HEAD(&p->numa_entry);
1751 p->numa_group = NULL;
cbee9f88 1752#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1753}
1754
1a687c2e 1755#ifdef CONFIG_NUMA_BALANCING
3105b86a 1756#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1757void set_numabalancing_state(bool enabled)
1758{
1759 if (enabled)
1760 sched_feat_set("NUMA");
1761 else
1762 sched_feat_set("NO_NUMA");
1763}
3105b86a
MG
1764#else
1765__read_mostly bool numabalancing_enabled;
1766
1767void set_numabalancing_state(bool enabled)
1768{
1769 numabalancing_enabled = enabled;
dd41f596 1770}
3105b86a 1771#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1772
1773#ifdef CONFIG_PROC_SYSCTL
1774int sysctl_numa_balancing(struct ctl_table *table, int write,
1775 void __user *buffer, size_t *lenp, loff_t *ppos)
1776{
1777 struct ctl_table t;
1778 int err;
1779 int state = numabalancing_enabled;
1780
1781 if (write && !capable(CAP_SYS_ADMIN))
1782 return -EPERM;
1783
1784 t = *table;
1785 t.data = &state;
1786 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1787 if (err < 0)
1788 return err;
1789 if (write)
1790 set_numabalancing_state(state);
1791 return err;
1792}
1793#endif
1794#endif
dd41f596
IM
1795
1796/*
1797 * fork()/clone()-time setup:
1798 */
aab03e05 1799int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1800{
0122ec5b 1801 unsigned long flags;
dd41f596
IM
1802 int cpu = get_cpu();
1803
5e1576ed 1804 __sched_fork(clone_flags, p);
06b83b5f 1805 /*
0017d735 1806 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1807 * nobody will actually run it, and a signal or other external
1808 * event cannot wake it up and insert it on the runqueue either.
1809 */
0017d735 1810 p->state = TASK_RUNNING;
dd41f596 1811
c350a04e
MG
1812 /*
1813 * Make sure we do not leak PI boosting priority to the child.
1814 */
1815 p->prio = current->normal_prio;
1816
b9dc29e7
MG
1817 /*
1818 * Revert to default priority/policy on fork if requested.
1819 */
1820 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1821 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1822 p->policy = SCHED_NORMAL;
6c697bdf 1823 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1824 p->rt_priority = 0;
1825 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1826 p->static_prio = NICE_TO_PRIO(0);
1827
1828 p->prio = p->normal_prio = __normal_prio(p);
1829 set_load_weight(p);
6c697bdf 1830
b9dc29e7
MG
1831 /*
1832 * We don't need the reset flag anymore after the fork. It has
1833 * fulfilled its duty:
1834 */
1835 p->sched_reset_on_fork = 0;
1836 }
ca94c442 1837
aab03e05
DF
1838 if (dl_prio(p->prio)) {
1839 put_cpu();
1840 return -EAGAIN;
1841 } else if (rt_prio(p->prio)) {
1842 p->sched_class = &rt_sched_class;
1843 } else {
2ddbf952 1844 p->sched_class = &fair_sched_class;
aab03e05 1845 }
b29739f9 1846
cd29fe6f
PZ
1847 if (p->sched_class->task_fork)
1848 p->sched_class->task_fork(p);
1849
86951599
PZ
1850 /*
1851 * The child is not yet in the pid-hash so no cgroup attach races,
1852 * and the cgroup is pinned to this child due to cgroup_fork()
1853 * is ran before sched_fork().
1854 *
1855 * Silence PROVE_RCU.
1856 */
0122ec5b 1857 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1858 set_task_cpu(p, cpu);
0122ec5b 1859 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1860
52f17b6c 1861#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1862 if (likely(sched_info_on()))
52f17b6c 1863 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1864#endif
3ca7a440
PZ
1865#if defined(CONFIG_SMP)
1866 p->on_cpu = 0;
4866cde0 1867#endif
01028747 1868 init_task_preempt_count(p);
806c09a7 1869#ifdef CONFIG_SMP
917b627d 1870 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1871 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1872#endif
917b627d 1873
476d139c 1874 put_cpu();
aab03e05 1875 return 0;
1da177e4
LT
1876}
1877
332ac17e
DF
1878unsigned long to_ratio(u64 period, u64 runtime)
1879{
1880 if (runtime == RUNTIME_INF)
1881 return 1ULL << 20;
1882
1883 /*
1884 * Doing this here saves a lot of checks in all
1885 * the calling paths, and returning zero seems
1886 * safe for them anyway.
1887 */
1888 if (period == 0)
1889 return 0;
1890
1891 return div64_u64(runtime << 20, period);
1892}
1893
1894#ifdef CONFIG_SMP
1895inline struct dl_bw *dl_bw_of(int i)
1896{
1897 return &cpu_rq(i)->rd->dl_bw;
1898}
1899
de212f18 1900static inline int dl_bw_cpus(int i)
332ac17e 1901{
de212f18
PZ
1902 struct root_domain *rd = cpu_rq(i)->rd;
1903 int cpus = 0;
1904
1905 for_each_cpu_and(i, rd->span, cpu_active_mask)
1906 cpus++;
1907
1908 return cpus;
332ac17e
DF
1909}
1910#else
1911inline struct dl_bw *dl_bw_of(int i)
1912{
1913 return &cpu_rq(i)->dl.dl_bw;
1914}
1915
de212f18 1916static inline int dl_bw_cpus(int i)
332ac17e
DF
1917{
1918 return 1;
1919}
1920#endif
1921
1922static inline
1923void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1924{
1925 dl_b->total_bw -= tsk_bw;
1926}
1927
1928static inline
1929void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1930{
1931 dl_b->total_bw += tsk_bw;
1932}
1933
1934static inline
1935bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1936{
1937 return dl_b->bw != -1 &&
1938 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1939}
1940
1941/*
1942 * We must be sure that accepting a new task (or allowing changing the
1943 * parameters of an existing one) is consistent with the bandwidth
1944 * constraints. If yes, this function also accordingly updates the currently
1945 * allocated bandwidth to reflect the new situation.
1946 *
1947 * This function is called while holding p's rq->lock.
1948 */
1949static int dl_overflow(struct task_struct *p, int policy,
1950 const struct sched_attr *attr)
1951{
1952
1953 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1954 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1955 u64 runtime = attr->sched_runtime;
1956 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1957 int cpus, err = -1;
332ac17e
DF
1958
1959 if (new_bw == p->dl.dl_bw)
1960 return 0;
1961
1962 /*
1963 * Either if a task, enters, leave, or stays -deadline but changes
1964 * its parameters, we may need to update accordingly the total
1965 * allocated bandwidth of the container.
1966 */
1967 raw_spin_lock(&dl_b->lock);
de212f18 1968 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1969 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1970 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1971 __dl_add(dl_b, new_bw);
1972 err = 0;
1973 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1974 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1975 __dl_clear(dl_b, p->dl.dl_bw);
1976 __dl_add(dl_b, new_bw);
1977 err = 0;
1978 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1979 __dl_clear(dl_b, p->dl.dl_bw);
1980 err = 0;
1981 }
1982 raw_spin_unlock(&dl_b->lock);
1983
1984 return err;
1985}
1986
1987extern void init_dl_bw(struct dl_bw *dl_b);
1988
1da177e4
LT
1989/*
1990 * wake_up_new_task - wake up a newly created task for the first time.
1991 *
1992 * This function will do some initial scheduler statistics housekeeping
1993 * that must be done for every newly created context, then puts the task
1994 * on the runqueue and wakes it.
1995 */
3e51e3ed 1996void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1997{
1998 unsigned long flags;
dd41f596 1999 struct rq *rq;
fabf318e 2000
ab2515c4 2001 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2002#ifdef CONFIG_SMP
2003 /*
2004 * Fork balancing, do it here and not earlier because:
2005 * - cpus_allowed can change in the fork path
2006 * - any previously selected cpu might disappear through hotplug
fabf318e 2007 */
ac66f547 2008 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2009#endif
2010
a75cdaa9
AS
2011 /* Initialize new task's runnable average */
2012 init_task_runnable_average(p);
ab2515c4 2013 rq = __task_rq_lock(p);
cd29fe6f 2014 activate_task(rq, p, 0);
fd2f4419 2015 p->on_rq = 1;
89363381 2016 trace_sched_wakeup_new(p, true);
a7558e01 2017 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2018#ifdef CONFIG_SMP
efbbd05a
PZ
2019 if (p->sched_class->task_woken)
2020 p->sched_class->task_woken(rq, p);
9a897c5a 2021#endif
0122ec5b 2022 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2023}
2024
e107be36
AK
2025#ifdef CONFIG_PREEMPT_NOTIFIERS
2026
2027/**
80dd99b3 2028 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2029 * @notifier: notifier struct to register
e107be36
AK
2030 */
2031void preempt_notifier_register(struct preempt_notifier *notifier)
2032{
2033 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2034}
2035EXPORT_SYMBOL_GPL(preempt_notifier_register);
2036
2037/**
2038 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2039 * @notifier: notifier struct to unregister
e107be36
AK
2040 *
2041 * This is safe to call from within a preemption notifier.
2042 */
2043void preempt_notifier_unregister(struct preempt_notifier *notifier)
2044{
2045 hlist_del(&notifier->link);
2046}
2047EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2048
2049static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2050{
2051 struct preempt_notifier *notifier;
e107be36 2052
b67bfe0d 2053 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2054 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2055}
2056
2057static void
2058fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059 struct task_struct *next)
2060{
2061 struct preempt_notifier *notifier;
e107be36 2062
b67bfe0d 2063 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2064 notifier->ops->sched_out(notifier, next);
2065}
2066
6d6bc0ad 2067#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2068
2069static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2070{
2071}
2072
2073static void
2074fire_sched_out_preempt_notifiers(struct task_struct *curr,
2075 struct task_struct *next)
2076{
2077}
2078
6d6bc0ad 2079#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2080
4866cde0
NP
2081/**
2082 * prepare_task_switch - prepare to switch tasks
2083 * @rq: the runqueue preparing to switch
421cee29 2084 * @prev: the current task that is being switched out
4866cde0
NP
2085 * @next: the task we are going to switch to.
2086 *
2087 * This is called with the rq lock held and interrupts off. It must
2088 * be paired with a subsequent finish_task_switch after the context
2089 * switch.
2090 *
2091 * prepare_task_switch sets up locking and calls architecture specific
2092 * hooks.
2093 */
e107be36
AK
2094static inline void
2095prepare_task_switch(struct rq *rq, struct task_struct *prev,
2096 struct task_struct *next)
4866cde0 2097{
895dd92c 2098 trace_sched_switch(prev, next);
43148951 2099 sched_info_switch(rq, prev, next);
fe4b04fa 2100 perf_event_task_sched_out(prev, next);
e107be36 2101 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2102 prepare_lock_switch(rq, next);
2103 prepare_arch_switch(next);
2104}
2105
1da177e4
LT
2106/**
2107 * finish_task_switch - clean up after a task-switch
344babaa 2108 * @rq: runqueue associated with task-switch
1da177e4
LT
2109 * @prev: the thread we just switched away from.
2110 *
4866cde0
NP
2111 * finish_task_switch must be called after the context switch, paired
2112 * with a prepare_task_switch call before the context switch.
2113 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2114 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2115 *
2116 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2117 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2118 * with the lock held can cause deadlocks; see schedule() for
2119 * details.)
2120 */
a9957449 2121static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2122 __releases(rq->lock)
2123{
1da177e4 2124 struct mm_struct *mm = rq->prev_mm;
55a101f8 2125 long prev_state;
1da177e4
LT
2126
2127 rq->prev_mm = NULL;
2128
2129 /*
2130 * A task struct has one reference for the use as "current".
c394cc9f 2131 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2132 * schedule one last time. The schedule call will never return, and
2133 * the scheduled task must drop that reference.
c394cc9f 2134 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2135 * still held, otherwise prev could be scheduled on another cpu, die
2136 * there before we look at prev->state, and then the reference would
2137 * be dropped twice.
2138 * Manfred Spraul <manfred@colorfullife.com>
2139 */
55a101f8 2140 prev_state = prev->state;
bf9fae9f 2141 vtime_task_switch(prev);
4866cde0 2142 finish_arch_switch(prev);
a8d757ef 2143 perf_event_task_sched_in(prev, current);
4866cde0 2144 finish_lock_switch(rq, prev);
01f23e16 2145 finish_arch_post_lock_switch();
e8fa1362 2146
e107be36 2147 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2148 if (mm)
2149 mmdrop(mm);
c394cc9f 2150 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2151 if (prev->sched_class->task_dead)
2152 prev->sched_class->task_dead(prev);
2153
c6fd91f0 2154 /*
2155 * Remove function-return probe instances associated with this
2156 * task and put them back on the free list.
9761eea8 2157 */
c6fd91f0 2158 kprobe_flush_task(prev);
1da177e4 2159 put_task_struct(prev);
c6fd91f0 2160 }
99e5ada9
FW
2161
2162 tick_nohz_task_switch(current);
1da177e4
LT
2163}
2164
3f029d3c
GH
2165#ifdef CONFIG_SMP
2166
3f029d3c
GH
2167/* rq->lock is NOT held, but preemption is disabled */
2168static inline void post_schedule(struct rq *rq)
2169{
2170 if (rq->post_schedule) {
2171 unsigned long flags;
2172
05fa785c 2173 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2174 if (rq->curr->sched_class->post_schedule)
2175 rq->curr->sched_class->post_schedule(rq);
05fa785c 2176 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2177
2178 rq->post_schedule = 0;
2179 }
2180}
2181
2182#else
da19ab51 2183
3f029d3c
GH
2184static inline void post_schedule(struct rq *rq)
2185{
1da177e4
LT
2186}
2187
3f029d3c
GH
2188#endif
2189
1da177e4
LT
2190/**
2191 * schedule_tail - first thing a freshly forked thread must call.
2192 * @prev: the thread we just switched away from.
2193 */
36c8b586 2194asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2195 __releases(rq->lock)
2196{
70b97a7f
IM
2197 struct rq *rq = this_rq();
2198
4866cde0 2199 finish_task_switch(rq, prev);
da19ab51 2200
3f029d3c
GH
2201 /*
2202 * FIXME: do we need to worry about rq being invalidated by the
2203 * task_switch?
2204 */
2205 post_schedule(rq);
70b97a7f 2206
4866cde0
NP
2207#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2208 /* In this case, finish_task_switch does not reenable preemption */
2209 preempt_enable();
2210#endif
1da177e4 2211 if (current->set_child_tid)
b488893a 2212 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2213}
2214
2215/*
2216 * context_switch - switch to the new MM and the new
2217 * thread's register state.
2218 */
dd41f596 2219static inline void
70b97a7f 2220context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2221 struct task_struct *next)
1da177e4 2222{
dd41f596 2223 struct mm_struct *mm, *oldmm;
1da177e4 2224
e107be36 2225 prepare_task_switch(rq, prev, next);
fe4b04fa 2226
dd41f596
IM
2227 mm = next->mm;
2228 oldmm = prev->active_mm;
9226d125
ZA
2229 /*
2230 * For paravirt, this is coupled with an exit in switch_to to
2231 * combine the page table reload and the switch backend into
2232 * one hypercall.
2233 */
224101ed 2234 arch_start_context_switch(prev);
9226d125 2235
31915ab4 2236 if (!mm) {
1da177e4
LT
2237 next->active_mm = oldmm;
2238 atomic_inc(&oldmm->mm_count);
2239 enter_lazy_tlb(oldmm, next);
2240 } else
2241 switch_mm(oldmm, mm, next);
2242
31915ab4 2243 if (!prev->mm) {
1da177e4 2244 prev->active_mm = NULL;
1da177e4
LT
2245 rq->prev_mm = oldmm;
2246 }
3a5f5e48
IM
2247 /*
2248 * Since the runqueue lock will be released by the next
2249 * task (which is an invalid locking op but in the case
2250 * of the scheduler it's an obvious special-case), so we
2251 * do an early lockdep release here:
2252 */
2253#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2254 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2255#endif
1da177e4 2256
91d1aa43 2257 context_tracking_task_switch(prev, next);
1da177e4
LT
2258 /* Here we just switch the register state and the stack. */
2259 switch_to(prev, next, prev);
2260
dd41f596
IM
2261 barrier();
2262 /*
2263 * this_rq must be evaluated again because prev may have moved
2264 * CPUs since it called schedule(), thus the 'rq' on its stack
2265 * frame will be invalid.
2266 */
2267 finish_task_switch(this_rq(), prev);
1da177e4
LT
2268}
2269
2270/*
1c3e8264 2271 * nr_running and nr_context_switches:
1da177e4
LT
2272 *
2273 * externally visible scheduler statistics: current number of runnable
1c3e8264 2274 * threads, total number of context switches performed since bootup.
1da177e4
LT
2275 */
2276unsigned long nr_running(void)
2277{
2278 unsigned long i, sum = 0;
2279
2280 for_each_online_cpu(i)
2281 sum += cpu_rq(i)->nr_running;
2282
2283 return sum;
f711f609 2284}
1da177e4 2285
1da177e4 2286unsigned long long nr_context_switches(void)
46cb4b7c 2287{
cc94abfc
SR
2288 int i;
2289 unsigned long long sum = 0;
46cb4b7c 2290
0a945022 2291 for_each_possible_cpu(i)
1da177e4 2292 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2293
1da177e4
LT
2294 return sum;
2295}
483b4ee6 2296
1da177e4
LT
2297unsigned long nr_iowait(void)
2298{
2299 unsigned long i, sum = 0;
483b4ee6 2300
0a945022 2301 for_each_possible_cpu(i)
1da177e4 2302 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2303
1da177e4
LT
2304 return sum;
2305}
483b4ee6 2306
8c215bd3 2307unsigned long nr_iowait_cpu(int cpu)
69d25870 2308{
8c215bd3 2309 struct rq *this = cpu_rq(cpu);
69d25870
AV
2310 return atomic_read(&this->nr_iowait);
2311}
46cb4b7c 2312
dd41f596 2313#ifdef CONFIG_SMP
8a0be9ef 2314
46cb4b7c 2315/*
38022906
PZ
2316 * sched_exec - execve() is a valuable balancing opportunity, because at
2317 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2318 */
38022906 2319void sched_exec(void)
46cb4b7c 2320{
38022906 2321 struct task_struct *p = current;
1da177e4 2322 unsigned long flags;
0017d735 2323 int dest_cpu;
46cb4b7c 2324
8f42ced9 2325 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2326 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2327 if (dest_cpu == smp_processor_id())
2328 goto unlock;
38022906 2329
8f42ced9 2330 if (likely(cpu_active(dest_cpu))) {
969c7921 2331 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2332
8f42ced9
PZ
2333 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2334 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2335 return;
2336 }
0017d735 2337unlock:
8f42ced9 2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2339}
dd41f596 2340
1da177e4
LT
2341#endif
2342
1da177e4 2343DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2344DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2345
2346EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2347EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2348
2349/*
c5f8d995 2350 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2351 * @p in case that task is currently running.
c5f8d995
HS
2352 *
2353 * Called with task_rq_lock() held on @rq.
1da177e4 2354 */
c5f8d995
HS
2355static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2356{
2357 u64 ns = 0;
2358
2359 if (task_current(rq, p)) {
2360 update_rq_clock(rq);
78becc27 2361 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2362 if ((s64)ns < 0)
2363 ns = 0;
2364 }
2365
2366 return ns;
2367}
2368
bb34d92f 2369unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2370{
1da177e4 2371 unsigned long flags;
41b86e9c 2372 struct rq *rq;
bb34d92f 2373 u64 ns = 0;
48f24c4d 2374
41b86e9c 2375 rq = task_rq_lock(p, &flags);
c5f8d995 2376 ns = do_task_delta_exec(p, rq);
0122ec5b 2377 task_rq_unlock(rq, p, &flags);
1508487e 2378
c5f8d995
HS
2379 return ns;
2380}
f06febc9 2381
c5f8d995
HS
2382/*
2383 * Return accounted runtime for the task.
2384 * In case the task is currently running, return the runtime plus current's
2385 * pending runtime that have not been accounted yet.
2386 */
2387unsigned long long task_sched_runtime(struct task_struct *p)
2388{
2389 unsigned long flags;
2390 struct rq *rq;
2391 u64 ns = 0;
2392
911b2898
PZ
2393#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2394 /*
2395 * 64-bit doesn't need locks to atomically read a 64bit value.
2396 * So we have a optimization chance when the task's delta_exec is 0.
2397 * Reading ->on_cpu is racy, but this is ok.
2398 *
2399 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2400 * If we race with it entering cpu, unaccounted time is 0. This is
2401 * indistinguishable from the read occurring a few cycles earlier.
2402 */
2403 if (!p->on_cpu)
2404 return p->se.sum_exec_runtime;
2405#endif
2406
c5f8d995
HS
2407 rq = task_rq_lock(p, &flags);
2408 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2409 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2410
2411 return ns;
2412}
48f24c4d 2413
7835b98b
CL
2414/*
2415 * This function gets called by the timer code, with HZ frequency.
2416 * We call it with interrupts disabled.
7835b98b
CL
2417 */
2418void scheduler_tick(void)
2419{
7835b98b
CL
2420 int cpu = smp_processor_id();
2421 struct rq *rq = cpu_rq(cpu);
dd41f596 2422 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2423
2424 sched_clock_tick();
dd41f596 2425
05fa785c 2426 raw_spin_lock(&rq->lock);
3e51f33f 2427 update_rq_clock(rq);
fa85ae24 2428 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2429 update_cpu_load_active(rq);
05fa785c 2430 raw_spin_unlock(&rq->lock);
7835b98b 2431
e9d2b064 2432 perf_event_task_tick();
e220d2dc 2433
e418e1c2 2434#ifdef CONFIG_SMP
6eb57e0d 2435 rq->idle_balance = idle_cpu(cpu);
7caff66f 2436 trigger_load_balance(rq);
e418e1c2 2437#endif
265f22a9 2438 rq_last_tick_reset(rq);
1da177e4
LT
2439}
2440
265f22a9
FW
2441#ifdef CONFIG_NO_HZ_FULL
2442/**
2443 * scheduler_tick_max_deferment
2444 *
2445 * Keep at least one tick per second when a single
2446 * active task is running because the scheduler doesn't
2447 * yet completely support full dynticks environment.
2448 *
2449 * This makes sure that uptime, CFS vruntime, load
2450 * balancing, etc... continue to move forward, even
2451 * with a very low granularity.
e69f6186
YB
2452 *
2453 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2454 */
2455u64 scheduler_tick_max_deferment(void)
2456{
2457 struct rq *rq = this_rq();
2458 unsigned long next, now = ACCESS_ONCE(jiffies);
2459
2460 next = rq->last_sched_tick + HZ;
2461
2462 if (time_before_eq(next, now))
2463 return 0;
2464
8fe8ff09 2465 return jiffies_to_nsecs(next - now);
1da177e4 2466}
265f22a9 2467#endif
1da177e4 2468
132380a0 2469notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2470{
2471 if (in_lock_functions(addr)) {
2472 addr = CALLER_ADDR2;
2473 if (in_lock_functions(addr))
2474 addr = CALLER_ADDR3;
2475 }
2476 return addr;
2477}
1da177e4 2478
7e49fcce
SR
2479#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2480 defined(CONFIG_PREEMPT_TRACER))
2481
bdb43806 2482void __kprobes preempt_count_add(int val)
1da177e4 2483{
6cd8a4bb 2484#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2485 /*
2486 * Underflow?
2487 */
9a11b49a
IM
2488 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2489 return;
6cd8a4bb 2490#endif
bdb43806 2491 __preempt_count_add(val);
6cd8a4bb 2492#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2493 /*
2494 * Spinlock count overflowing soon?
2495 */
33859f7f
MOS
2496 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2497 PREEMPT_MASK - 10);
6cd8a4bb 2498#endif
8f47b187
TG
2499 if (preempt_count() == val) {
2500 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2501#ifdef CONFIG_DEBUG_PREEMPT
2502 current->preempt_disable_ip = ip;
2503#endif
2504 trace_preempt_off(CALLER_ADDR0, ip);
2505 }
1da177e4 2506}
bdb43806 2507EXPORT_SYMBOL(preempt_count_add);
1da177e4 2508
bdb43806 2509void __kprobes preempt_count_sub(int val)
1da177e4 2510{
6cd8a4bb 2511#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2512 /*
2513 * Underflow?
2514 */
01e3eb82 2515 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2516 return;
1da177e4
LT
2517 /*
2518 * Is the spinlock portion underflowing?
2519 */
9a11b49a
IM
2520 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521 !(preempt_count() & PREEMPT_MASK)))
2522 return;
6cd8a4bb 2523#endif
9a11b49a 2524
6cd8a4bb
SR
2525 if (preempt_count() == val)
2526 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2527 __preempt_count_sub(val);
1da177e4 2528}
bdb43806 2529EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2530
2531#endif
2532
2533/*
dd41f596 2534 * Print scheduling while atomic bug:
1da177e4 2535 */
dd41f596 2536static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2537{
664dfa65
DJ
2538 if (oops_in_progress)
2539 return;
2540
3df0fc5b
PZ
2541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542 prev->comm, prev->pid, preempt_count());
838225b4 2543
dd41f596 2544 debug_show_held_locks(prev);
e21f5b15 2545 print_modules();
dd41f596
IM
2546 if (irqs_disabled())
2547 print_irqtrace_events(prev);
8f47b187
TG
2548#ifdef CONFIG_DEBUG_PREEMPT
2549 if (in_atomic_preempt_off()) {
2550 pr_err("Preemption disabled at:");
2551 print_ip_sym(current->preempt_disable_ip);
2552 pr_cont("\n");
2553 }
2554#endif
6135fc1e 2555 dump_stack();
373d4d09 2556 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2557}
1da177e4 2558
dd41f596
IM
2559/*
2560 * Various schedule()-time debugging checks and statistics:
2561 */
2562static inline void schedule_debug(struct task_struct *prev)
2563{
1da177e4 2564 /*
41a2d6cf 2565 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2566 * schedule() atomically, we ignore that path. Otherwise whine
2567 * if we are scheduling when we should not.
1da177e4 2568 */
192301e7 2569 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2570 __schedule_bug(prev);
b3fbab05 2571 rcu_sleep_check();
dd41f596 2572
1da177e4
LT
2573 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2574
2d72376b 2575 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2576}
2577
2578/*
2579 * Pick up the highest-prio task:
2580 */
2581static inline struct task_struct *
606dba2e 2582pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2583{
37e117c0 2584 const struct sched_class *class = &fair_sched_class;
dd41f596 2585 struct task_struct *p;
1da177e4
LT
2586
2587 /*
dd41f596
IM
2588 * Optimization: we know that if all tasks are in
2589 * the fair class we can call that function directly:
1da177e4 2590 */
37e117c0 2591 if (likely(prev->sched_class == class &&
38033c37 2592 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2593 p = fair_sched_class.pick_next_task(rq, prev);
37e117c0 2594 if (likely(p && p != RETRY_TASK))
dd41f596 2595 return p;
1da177e4
LT
2596 }
2597
37e117c0 2598again:
34f971f6 2599 for_each_class(class) {
606dba2e 2600 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2601 if (p) {
2602 if (unlikely(p == RETRY_TASK))
2603 goto again;
dd41f596 2604 return p;
37e117c0 2605 }
dd41f596 2606 }
34f971f6
PZ
2607
2608 BUG(); /* the idle class will always have a runnable task */
dd41f596 2609}
1da177e4 2610
dd41f596 2611/*
c259e01a 2612 * __schedule() is the main scheduler function.
edde96ea
PE
2613 *
2614 * The main means of driving the scheduler and thus entering this function are:
2615 *
2616 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2617 *
2618 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2619 * paths. For example, see arch/x86/entry_64.S.
2620 *
2621 * To drive preemption between tasks, the scheduler sets the flag in timer
2622 * interrupt handler scheduler_tick().
2623 *
2624 * 3. Wakeups don't really cause entry into schedule(). They add a
2625 * task to the run-queue and that's it.
2626 *
2627 * Now, if the new task added to the run-queue preempts the current
2628 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2629 * called on the nearest possible occasion:
2630 *
2631 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2632 *
2633 * - in syscall or exception context, at the next outmost
2634 * preempt_enable(). (this might be as soon as the wake_up()'s
2635 * spin_unlock()!)
2636 *
2637 * - in IRQ context, return from interrupt-handler to
2638 * preemptible context
2639 *
2640 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2641 * then at the next:
2642 *
2643 * - cond_resched() call
2644 * - explicit schedule() call
2645 * - return from syscall or exception to user-space
2646 * - return from interrupt-handler to user-space
dd41f596 2647 */
c259e01a 2648static void __sched __schedule(void)
dd41f596
IM
2649{
2650 struct task_struct *prev, *next;
67ca7bde 2651 unsigned long *switch_count;
dd41f596 2652 struct rq *rq;
31656519 2653 int cpu;
dd41f596 2654
ff743345
PZ
2655need_resched:
2656 preempt_disable();
dd41f596
IM
2657 cpu = smp_processor_id();
2658 rq = cpu_rq(cpu);
25502a6c 2659 rcu_note_context_switch(cpu);
dd41f596 2660 prev = rq->curr;
dd41f596 2661
dd41f596 2662 schedule_debug(prev);
1da177e4 2663
31656519 2664 if (sched_feat(HRTICK))
f333fdc9 2665 hrtick_clear(rq);
8f4d37ec 2666
e0acd0a6
ON
2667 /*
2668 * Make sure that signal_pending_state()->signal_pending() below
2669 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2670 * done by the caller to avoid the race with signal_wake_up().
2671 */
2672 smp_mb__before_spinlock();
05fa785c 2673 raw_spin_lock_irq(&rq->lock);
1da177e4 2674
246d86b5 2675 switch_count = &prev->nivcsw;
1da177e4 2676 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2677 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2678 prev->state = TASK_RUNNING;
21aa9af0 2679 } else {
2acca55e
PZ
2680 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2681 prev->on_rq = 0;
2682
21aa9af0 2683 /*
2acca55e
PZ
2684 * If a worker went to sleep, notify and ask workqueue
2685 * whether it wants to wake up a task to maintain
2686 * concurrency.
21aa9af0
TH
2687 */
2688 if (prev->flags & PF_WQ_WORKER) {
2689 struct task_struct *to_wakeup;
2690
2691 to_wakeup = wq_worker_sleeping(prev, cpu);
2692 if (to_wakeup)
2693 try_to_wake_up_local(to_wakeup);
2694 }
21aa9af0 2695 }
dd41f596 2696 switch_count = &prev->nvcsw;
1da177e4
LT
2697 }
2698
606dba2e
PZ
2699 if (prev->on_rq || rq->skip_clock_update < 0)
2700 update_rq_clock(rq);
2701
2702 next = pick_next_task(rq, prev);
f26f9aff 2703 clear_tsk_need_resched(prev);
f27dde8d 2704 clear_preempt_need_resched();
f26f9aff 2705 rq->skip_clock_update = 0;
1da177e4 2706
1da177e4 2707 if (likely(prev != next)) {
1da177e4
LT
2708 rq->nr_switches++;
2709 rq->curr = next;
2710 ++*switch_count;
2711
dd41f596 2712 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2713 /*
246d86b5
ON
2714 * The context switch have flipped the stack from under us
2715 * and restored the local variables which were saved when
2716 * this task called schedule() in the past. prev == current
2717 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2718 */
2719 cpu = smp_processor_id();
2720 rq = cpu_rq(cpu);
1da177e4 2721 } else
05fa785c 2722 raw_spin_unlock_irq(&rq->lock);
1da177e4 2723
3f029d3c 2724 post_schedule(rq);
1da177e4 2725
ba74c144 2726 sched_preempt_enable_no_resched();
ff743345 2727 if (need_resched())
1da177e4
LT
2728 goto need_resched;
2729}
c259e01a 2730
9c40cef2
TG
2731static inline void sched_submit_work(struct task_struct *tsk)
2732{
3c7d5184 2733 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2734 return;
2735 /*
2736 * If we are going to sleep and we have plugged IO queued,
2737 * make sure to submit it to avoid deadlocks.
2738 */
2739 if (blk_needs_flush_plug(tsk))
2740 blk_schedule_flush_plug(tsk);
2741}
2742
6ebbe7a0 2743asmlinkage void __sched schedule(void)
c259e01a 2744{
9c40cef2
TG
2745 struct task_struct *tsk = current;
2746
2747 sched_submit_work(tsk);
c259e01a
TG
2748 __schedule();
2749}
1da177e4
LT
2750EXPORT_SYMBOL(schedule);
2751
91d1aa43 2752#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2753asmlinkage void __sched schedule_user(void)
2754{
2755 /*
2756 * If we come here after a random call to set_need_resched(),
2757 * or we have been woken up remotely but the IPI has not yet arrived,
2758 * we haven't yet exited the RCU idle mode. Do it here manually until
2759 * we find a better solution.
2760 */
91d1aa43 2761 user_exit();
20ab65e3 2762 schedule();
91d1aa43 2763 user_enter();
20ab65e3
FW
2764}
2765#endif
2766
c5491ea7
TG
2767/**
2768 * schedule_preempt_disabled - called with preemption disabled
2769 *
2770 * Returns with preemption disabled. Note: preempt_count must be 1
2771 */
2772void __sched schedule_preempt_disabled(void)
2773{
ba74c144 2774 sched_preempt_enable_no_resched();
c5491ea7
TG
2775 schedule();
2776 preempt_disable();
2777}
2778
1da177e4
LT
2779#ifdef CONFIG_PREEMPT
2780/*
2ed6e34f 2781 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2782 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2783 * occur there and call schedule directly.
2784 */
d1f74e20 2785asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2786{
1da177e4
LT
2787 /*
2788 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2789 * we do not want to preempt the current task. Just return..
1da177e4 2790 */
fbb00b56 2791 if (likely(!preemptible()))
1da177e4
LT
2792 return;
2793
3a5c359a 2794 do {
bdb43806 2795 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2796 __schedule();
bdb43806 2797 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2798
3a5c359a
AK
2799 /*
2800 * Check again in case we missed a preemption opportunity
2801 * between schedule and now.
2802 */
2803 barrier();
5ed0cec0 2804 } while (need_resched());
1da177e4 2805}
1da177e4 2806EXPORT_SYMBOL(preempt_schedule);
32e475d7 2807#endif /* CONFIG_PREEMPT */
1da177e4
LT
2808
2809/*
2ed6e34f 2810 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2811 * off of irq context.
2812 * Note, that this is called and return with irqs disabled. This will
2813 * protect us against recursive calling from irq.
2814 */
2815asmlinkage void __sched preempt_schedule_irq(void)
2816{
b22366cd 2817 enum ctx_state prev_state;
6478d880 2818
2ed6e34f 2819 /* Catch callers which need to be fixed */
f27dde8d 2820 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2821
b22366cd
FW
2822 prev_state = exception_enter();
2823
3a5c359a 2824 do {
bdb43806 2825 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2826 local_irq_enable();
c259e01a 2827 __schedule();
3a5c359a 2828 local_irq_disable();
bdb43806 2829 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2830
3a5c359a
AK
2831 /*
2832 * Check again in case we missed a preemption opportunity
2833 * between schedule and now.
2834 */
2835 barrier();
5ed0cec0 2836 } while (need_resched());
b22366cd
FW
2837
2838 exception_exit(prev_state);
1da177e4
LT
2839}
2840
63859d4f 2841int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2842 void *key)
1da177e4 2843{
63859d4f 2844 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2845}
1da177e4
LT
2846EXPORT_SYMBOL(default_wake_function);
2847
8cbbe86d
AK
2848static long __sched
2849sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2850{
0fec171c
IM
2851 unsigned long flags;
2852 wait_queue_t wait;
2853
2854 init_waitqueue_entry(&wait, current);
1da177e4 2855
8cbbe86d 2856 __set_current_state(state);
1da177e4 2857
8cbbe86d
AK
2858 spin_lock_irqsave(&q->lock, flags);
2859 __add_wait_queue(q, &wait);
2860 spin_unlock(&q->lock);
2861 timeout = schedule_timeout(timeout);
2862 spin_lock_irq(&q->lock);
2863 __remove_wait_queue(q, &wait);
2864 spin_unlock_irqrestore(&q->lock, flags);
2865
2866 return timeout;
2867}
2868
2869void __sched interruptible_sleep_on(wait_queue_head_t *q)
2870{
2871 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2872}
1da177e4
LT
2873EXPORT_SYMBOL(interruptible_sleep_on);
2874
0fec171c 2875long __sched
95cdf3b7 2876interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2877{
8cbbe86d 2878 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2879}
1da177e4
LT
2880EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2881
0fec171c 2882void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2883{
8cbbe86d 2884 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2885}
1da177e4
LT
2886EXPORT_SYMBOL(sleep_on);
2887
0fec171c 2888long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2889{
8cbbe86d 2890 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2891}
1da177e4
LT
2892EXPORT_SYMBOL(sleep_on_timeout);
2893
b29739f9
IM
2894#ifdef CONFIG_RT_MUTEXES
2895
2896/*
2897 * rt_mutex_setprio - set the current priority of a task
2898 * @p: task
2899 * @prio: prio value (kernel-internal form)
2900 *
2901 * This function changes the 'effective' priority of a task. It does
2902 * not touch ->normal_prio like __setscheduler().
2903 *
c365c292
TG
2904 * Used by the rt_mutex code to implement priority inheritance
2905 * logic. Call site only calls if the priority of the task changed.
b29739f9 2906 */
36c8b586 2907void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2908{
2d3d891d 2909 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2910 struct rq *rq;
83ab0aa0 2911 const struct sched_class *prev_class;
b29739f9 2912
aab03e05 2913 BUG_ON(prio > MAX_PRIO);
b29739f9 2914
0122ec5b 2915 rq = __task_rq_lock(p);
b29739f9 2916
1c4dd99b
TG
2917 /*
2918 * Idle task boosting is a nono in general. There is one
2919 * exception, when PREEMPT_RT and NOHZ is active:
2920 *
2921 * The idle task calls get_next_timer_interrupt() and holds
2922 * the timer wheel base->lock on the CPU and another CPU wants
2923 * to access the timer (probably to cancel it). We can safely
2924 * ignore the boosting request, as the idle CPU runs this code
2925 * with interrupts disabled and will complete the lock
2926 * protected section without being interrupted. So there is no
2927 * real need to boost.
2928 */
2929 if (unlikely(p == rq->idle)) {
2930 WARN_ON(p != rq->curr);
2931 WARN_ON(p->pi_blocked_on);
2932 goto out_unlock;
2933 }
2934
a8027073 2935 trace_sched_pi_setprio(p, prio);
2d3d891d 2936 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2937 oldprio = p->prio;
83ab0aa0 2938 prev_class = p->sched_class;
fd2f4419 2939 on_rq = p->on_rq;
051a1d1a 2940 running = task_current(rq, p);
0e1f3483 2941 if (on_rq)
69be72c1 2942 dequeue_task(rq, p, 0);
0e1f3483
HS
2943 if (running)
2944 p->sched_class->put_prev_task(rq, p);
dd41f596 2945
2d3d891d
DF
2946 /*
2947 * Boosting condition are:
2948 * 1. -rt task is running and holds mutex A
2949 * --> -dl task blocks on mutex A
2950 *
2951 * 2. -dl task is running and holds mutex A
2952 * --> -dl task blocks on mutex A and could preempt the
2953 * running task
2954 */
2955 if (dl_prio(prio)) {
2956 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958 p->dl.dl_boosted = 1;
2959 p->dl.dl_throttled = 0;
2960 enqueue_flag = ENQUEUE_REPLENISH;
2961 } else
2962 p->dl.dl_boosted = 0;
aab03e05 2963 p->sched_class = &dl_sched_class;
2d3d891d
DF
2964 } else if (rt_prio(prio)) {
2965 if (dl_prio(oldprio))
2966 p->dl.dl_boosted = 0;
2967 if (oldprio < prio)
2968 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2969 p->sched_class = &rt_sched_class;
2d3d891d
DF
2970 } else {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
dd41f596 2973 p->sched_class = &fair_sched_class;
2d3d891d 2974 }
dd41f596 2975
b29739f9
IM
2976 p->prio = prio;
2977
0e1f3483
HS
2978 if (running)
2979 p->sched_class->set_curr_task(rq);
da7a735e 2980 if (on_rq)
2d3d891d 2981 enqueue_task(rq, p, enqueue_flag);
cb469845 2982
da7a735e 2983 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2984out_unlock:
0122ec5b 2985 __task_rq_unlock(rq);
b29739f9 2986}
b29739f9 2987#endif
d50dde5a 2988
36c8b586 2989void set_user_nice(struct task_struct *p, long nice)
1da177e4 2990{
dd41f596 2991 int old_prio, delta, on_rq;
1da177e4 2992 unsigned long flags;
70b97a7f 2993 struct rq *rq;
1da177e4 2994
75e45d51 2995 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2996 return;
2997 /*
2998 * We have to be careful, if called from sys_setpriority(),
2999 * the task might be in the middle of scheduling on another CPU.
3000 */
3001 rq = task_rq_lock(p, &flags);
3002 /*
3003 * The RT priorities are set via sched_setscheduler(), but we still
3004 * allow the 'normal' nice value to be set - but as expected
3005 * it wont have any effect on scheduling until the task is
aab03e05 3006 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3007 */
aab03e05 3008 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3009 p->static_prio = NICE_TO_PRIO(nice);
3010 goto out_unlock;
3011 }
fd2f4419 3012 on_rq = p->on_rq;
c09595f6 3013 if (on_rq)
69be72c1 3014 dequeue_task(rq, p, 0);
1da177e4 3015
1da177e4 3016 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3017 set_load_weight(p);
b29739f9
IM
3018 old_prio = p->prio;
3019 p->prio = effective_prio(p);
3020 delta = p->prio - old_prio;
1da177e4 3021
dd41f596 3022 if (on_rq) {
371fd7e7 3023 enqueue_task(rq, p, 0);
1da177e4 3024 /*
d5f9f942
AM
3025 * If the task increased its priority or is running and
3026 * lowered its priority, then reschedule its CPU:
1da177e4 3027 */
d5f9f942 3028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3029 resched_task(rq->curr);
3030 }
3031out_unlock:
0122ec5b 3032 task_rq_unlock(rq, p, &flags);
1da177e4 3033}
1da177e4
LT
3034EXPORT_SYMBOL(set_user_nice);
3035
e43379f1
MM
3036/*
3037 * can_nice - check if a task can reduce its nice value
3038 * @p: task
3039 * @nice: nice value
3040 */
36c8b586 3041int can_nice(const struct task_struct *p, const int nice)
e43379f1 3042{
024f4747
MM
3043 /* convert nice value [19,-20] to rlimit style value [1,40] */
3044 int nice_rlim = 20 - nice;
48f24c4d 3045
78d7d407 3046 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3047 capable(CAP_SYS_NICE));
3048}
3049
1da177e4
LT
3050#ifdef __ARCH_WANT_SYS_NICE
3051
3052/*
3053 * sys_nice - change the priority of the current process.
3054 * @increment: priority increment
3055 *
3056 * sys_setpriority is a more generic, but much slower function that
3057 * does similar things.
3058 */
5add95d4 3059SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3060{
48f24c4d 3061 long nice, retval;
1da177e4
LT
3062
3063 /*
3064 * Setpriority might change our priority at the same moment.
3065 * We don't have to worry. Conceptually one call occurs first
3066 * and we have a single winner.
3067 */
e43379f1
MM
3068 if (increment < -40)
3069 increment = -40;
1da177e4
LT
3070 if (increment > 40)
3071 increment = 40;
3072
d0ea0268 3073 nice = task_nice(current) + increment;
75e45d51
DY
3074 if (nice < MIN_NICE)
3075 nice = MIN_NICE;
3076 if (nice > MAX_NICE)
3077 nice = MAX_NICE;
1da177e4 3078
e43379f1
MM
3079 if (increment < 0 && !can_nice(current, nice))
3080 return -EPERM;
3081
1da177e4
LT
3082 retval = security_task_setnice(current, nice);
3083 if (retval)
3084 return retval;
3085
3086 set_user_nice(current, nice);
3087 return 0;
3088}
3089
3090#endif
3091
3092/**
3093 * task_prio - return the priority value of a given task.
3094 * @p: the task in question.
3095 *
e69f6186 3096 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3097 * RT tasks are offset by -200. Normal tasks are centered
3098 * around 0, value goes from -16 to +15.
3099 */
36c8b586 3100int task_prio(const struct task_struct *p)
1da177e4
LT
3101{
3102 return p->prio - MAX_RT_PRIO;
3103}
3104
1da177e4
LT
3105/**
3106 * idle_cpu - is a given cpu idle currently?
3107 * @cpu: the processor in question.
e69f6186
YB
3108 *
3109 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3110 */
3111int idle_cpu(int cpu)
3112{
908a3283
TG
3113 struct rq *rq = cpu_rq(cpu);
3114
3115 if (rq->curr != rq->idle)
3116 return 0;
3117
3118 if (rq->nr_running)
3119 return 0;
3120
3121#ifdef CONFIG_SMP
3122 if (!llist_empty(&rq->wake_list))
3123 return 0;
3124#endif
3125
3126 return 1;
1da177e4
LT
3127}
3128
1da177e4
LT
3129/**
3130 * idle_task - return the idle task for a given cpu.
3131 * @cpu: the processor in question.
e69f6186
YB
3132 *
3133 * Return: The idle task for the cpu @cpu.
1da177e4 3134 */
36c8b586 3135struct task_struct *idle_task(int cpu)
1da177e4
LT
3136{
3137 return cpu_rq(cpu)->idle;
3138}
3139
3140/**
3141 * find_process_by_pid - find a process with a matching PID value.
3142 * @pid: the pid in question.
e69f6186
YB
3143 *
3144 * The task of @pid, if found. %NULL otherwise.
1da177e4 3145 */
a9957449 3146static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3147{
228ebcbe 3148 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3149}
3150
aab03e05
DF
3151/*
3152 * This function initializes the sched_dl_entity of a newly becoming
3153 * SCHED_DEADLINE task.
3154 *
3155 * Only the static values are considered here, the actual runtime and the
3156 * absolute deadline will be properly calculated when the task is enqueued
3157 * for the first time with its new policy.
3158 */
3159static void
3160__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3161{
3162 struct sched_dl_entity *dl_se = &p->dl;
3163
3164 init_dl_task_timer(dl_se);
3165 dl_se->dl_runtime = attr->sched_runtime;
3166 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3167 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3168 dl_se->flags = attr->sched_flags;
332ac17e 3169 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3170 dl_se->dl_throttled = 0;
3171 dl_se->dl_new = 1;
3172}
3173
c365c292
TG
3174static void __setscheduler_params(struct task_struct *p,
3175 const struct sched_attr *attr)
1da177e4 3176{
d50dde5a
DF
3177 int policy = attr->sched_policy;
3178
39fd8fd2
PZ
3179 if (policy == -1) /* setparam */
3180 policy = p->policy;
3181
1da177e4 3182 p->policy = policy;
d50dde5a 3183
aab03e05
DF
3184 if (dl_policy(policy))
3185 __setparam_dl(p, attr);
39fd8fd2 3186 else if (fair_policy(policy))
d50dde5a
DF
3187 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3188
39fd8fd2
PZ
3189 /*
3190 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3191 * !rt_policy. Always setting this ensures that things like
3192 * getparam()/getattr() don't report silly values for !rt tasks.
3193 */
3194 p->rt_priority = attr->sched_priority;
383afd09 3195 p->normal_prio = normal_prio(p);
c365c292
TG
3196 set_load_weight(p);
3197}
39fd8fd2 3198
c365c292
TG
3199/* Actually do priority change: must hold pi & rq lock. */
3200static void __setscheduler(struct rq *rq, struct task_struct *p,
3201 const struct sched_attr *attr)
3202{
3203 __setscheduler_params(p, attr);
d50dde5a 3204
383afd09
SR
3205 /*
3206 * If we get here, there was no pi waiters boosting the
3207 * task. It is safe to use the normal prio.
3208 */
3209 p->prio = normal_prio(p);
3210
aab03e05
DF
3211 if (dl_prio(p->prio))
3212 p->sched_class = &dl_sched_class;
3213 else if (rt_prio(p->prio))
ffd44db5
PZ
3214 p->sched_class = &rt_sched_class;
3215 else
3216 p->sched_class = &fair_sched_class;
1da177e4 3217}
aab03e05
DF
3218
3219static void
3220__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3221{
3222 struct sched_dl_entity *dl_se = &p->dl;
3223
3224 attr->sched_priority = p->rt_priority;
3225 attr->sched_runtime = dl_se->dl_runtime;
3226 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3227 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3228 attr->sched_flags = dl_se->flags;
3229}
3230
3231/*
3232 * This function validates the new parameters of a -deadline task.
3233 * We ask for the deadline not being zero, and greater or equal
755378a4 3234 * than the runtime, as well as the period of being zero or
332ac17e
DF
3235 * greater than deadline. Furthermore, we have to be sure that
3236 * user parameters are above the internal resolution (1us); we
3237 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3238 */
3239static bool
3240__checkparam_dl(const struct sched_attr *attr)
3241{
3242 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3243 (attr->sched_period == 0 ||
3244 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3245 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3246 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3247}
3248
c69e8d9c
DH
3249/*
3250 * check the target process has a UID that matches the current process's
3251 */
3252static bool check_same_owner(struct task_struct *p)
3253{
3254 const struct cred *cred = current_cred(), *pcred;
3255 bool match;
3256
3257 rcu_read_lock();
3258 pcred = __task_cred(p);
9c806aa0
EB
3259 match = (uid_eq(cred->euid, pcred->euid) ||
3260 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3261 rcu_read_unlock();
3262 return match;
3263}
3264
d50dde5a
DF
3265static int __sched_setscheduler(struct task_struct *p,
3266 const struct sched_attr *attr,
3267 bool user)
1da177e4 3268{
383afd09
SR
3269 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3270 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3271 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3272 int policy = attr->sched_policy;
1da177e4 3273 unsigned long flags;
83ab0aa0 3274 const struct sched_class *prev_class;
70b97a7f 3275 struct rq *rq;
ca94c442 3276 int reset_on_fork;
1da177e4 3277
66e5393a
SR
3278 /* may grab non-irq protected spin_locks */
3279 BUG_ON(in_interrupt());
1da177e4
LT
3280recheck:
3281 /* double check policy once rq lock held */
ca94c442
LP
3282 if (policy < 0) {
3283 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3284 policy = oldpolicy = p->policy;
ca94c442 3285 } else {
7479f3c9 3286 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3287
aab03e05
DF
3288 if (policy != SCHED_DEADLINE &&
3289 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3290 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3291 policy != SCHED_IDLE)
3292 return -EINVAL;
3293 }
3294
7479f3c9
PZ
3295 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3296 return -EINVAL;
3297
1da177e4
LT
3298 /*
3299 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3300 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3301 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3302 */
0bb040a4 3303 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3304 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3305 return -EINVAL;
aab03e05
DF
3306 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3307 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3308 return -EINVAL;
3309
37e4ab3f
OC
3310 /*
3311 * Allow unprivileged RT tasks to decrease priority:
3312 */
961ccddd 3313 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3314 if (fair_policy(policy)) {
d0ea0268 3315 if (attr->sched_nice < task_nice(p) &&
eaad4513 3316 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3317 return -EPERM;
3318 }
3319
e05606d3 3320 if (rt_policy(policy)) {
a44702e8
ON
3321 unsigned long rlim_rtprio =
3322 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3323
3324 /* can't set/change the rt policy */
3325 if (policy != p->policy && !rlim_rtprio)
3326 return -EPERM;
3327
3328 /* can't increase priority */
d50dde5a
DF
3329 if (attr->sched_priority > p->rt_priority &&
3330 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3331 return -EPERM;
3332 }
c02aa73b 3333
d44753b8
JL
3334 /*
3335 * Can't set/change SCHED_DEADLINE policy at all for now
3336 * (safest behavior); in the future we would like to allow
3337 * unprivileged DL tasks to increase their relative deadline
3338 * or reduce their runtime (both ways reducing utilization)
3339 */
3340 if (dl_policy(policy))
3341 return -EPERM;
3342
dd41f596 3343 /*
c02aa73b
DH
3344 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3345 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3346 */
c02aa73b 3347 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3348 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3349 return -EPERM;
3350 }
5fe1d75f 3351
37e4ab3f 3352 /* can't change other user's priorities */
c69e8d9c 3353 if (!check_same_owner(p))
37e4ab3f 3354 return -EPERM;
ca94c442
LP
3355
3356 /* Normal users shall not reset the sched_reset_on_fork flag */
3357 if (p->sched_reset_on_fork && !reset_on_fork)
3358 return -EPERM;
37e4ab3f 3359 }
1da177e4 3360
725aad24 3361 if (user) {
b0ae1981 3362 retval = security_task_setscheduler(p);
725aad24
JF
3363 if (retval)
3364 return retval;
3365 }
3366
b29739f9
IM
3367 /*
3368 * make sure no PI-waiters arrive (or leave) while we are
3369 * changing the priority of the task:
0122ec5b 3370 *
25985edc 3371 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3372 * runqueue lock must be held.
3373 */
0122ec5b 3374 rq = task_rq_lock(p, &flags);
dc61b1d6 3375
34f971f6
PZ
3376 /*
3377 * Changing the policy of the stop threads its a very bad idea
3378 */
3379 if (p == rq->stop) {
0122ec5b 3380 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3381 return -EINVAL;
3382 }
3383
a51e9198 3384 /*
d6b1e911
TG
3385 * If not changing anything there's no need to proceed further,
3386 * but store a possible modification of reset_on_fork.
a51e9198 3387 */
d50dde5a 3388 if (unlikely(policy == p->policy)) {
d0ea0268 3389 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3390 goto change;
3391 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3392 goto change;
aab03e05
DF
3393 if (dl_policy(policy))
3394 goto change;
d50dde5a 3395
d6b1e911 3396 p->sched_reset_on_fork = reset_on_fork;
45afb173 3397 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3398 return 0;
3399 }
d50dde5a 3400change:
a51e9198 3401
dc61b1d6 3402 if (user) {
332ac17e 3403#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3404 /*
3405 * Do not allow realtime tasks into groups that have no runtime
3406 * assigned.
3407 */
3408 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3409 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3410 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3411 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3412 return -EPERM;
3413 }
dc61b1d6 3414#endif
332ac17e
DF
3415#ifdef CONFIG_SMP
3416 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3417 cpumask_t *span = rq->rd->span;
332ac17e
DF
3418
3419 /*
3420 * Don't allow tasks with an affinity mask smaller than
3421 * the entire root_domain to become SCHED_DEADLINE. We
3422 * will also fail if there's no bandwidth available.
3423 */
e4099a5e
PZ
3424 if (!cpumask_subset(span, &p->cpus_allowed) ||
3425 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3426 task_rq_unlock(rq, p, &flags);
3427 return -EPERM;
3428 }
3429 }
3430#endif
3431 }
dc61b1d6 3432
1da177e4
LT
3433 /* recheck policy now with rq lock held */
3434 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3435 policy = oldpolicy = -1;
0122ec5b 3436 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3437 goto recheck;
3438 }
332ac17e
DF
3439
3440 /*
3441 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3442 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3443 * is available.
3444 */
e4099a5e 3445 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3446 task_rq_unlock(rq, p, &flags);
3447 return -EBUSY;
3448 }
3449
c365c292
TG
3450 p->sched_reset_on_fork = reset_on_fork;
3451 oldprio = p->prio;
3452
3453 /*
3454 * Special case for priority boosted tasks.
3455 *
3456 * If the new priority is lower or equal (user space view)
3457 * than the current (boosted) priority, we just store the new
3458 * normal parameters and do not touch the scheduler class and
3459 * the runqueue. This will be done when the task deboost
3460 * itself.
3461 */
3462 if (rt_mutex_check_prio(p, newprio)) {
3463 __setscheduler_params(p, attr);
3464 task_rq_unlock(rq, p, &flags);
3465 return 0;
3466 }
3467
fd2f4419 3468 on_rq = p->on_rq;
051a1d1a 3469 running = task_current(rq, p);
0e1f3483 3470 if (on_rq)
4ca9b72b 3471 dequeue_task(rq, p, 0);
0e1f3483
HS
3472 if (running)
3473 p->sched_class->put_prev_task(rq, p);
f6b53205 3474
83ab0aa0 3475 prev_class = p->sched_class;
d50dde5a 3476 __setscheduler(rq, p, attr);
f6b53205 3477
0e1f3483
HS
3478 if (running)
3479 p->sched_class->set_curr_task(rq);
81a44c54
TG
3480 if (on_rq) {
3481 /*
3482 * We enqueue to tail when the priority of a task is
3483 * increased (user space view).
3484 */
3485 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3486 }
cb469845 3487
da7a735e 3488 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3489 task_rq_unlock(rq, p, &flags);
b29739f9 3490
95e02ca9
TG
3491 rt_mutex_adjust_pi(p);
3492
1da177e4
LT
3493 return 0;
3494}
961ccddd 3495
7479f3c9
PZ
3496static int _sched_setscheduler(struct task_struct *p, int policy,
3497 const struct sched_param *param, bool check)
3498{
3499 struct sched_attr attr = {
3500 .sched_policy = policy,
3501 .sched_priority = param->sched_priority,
3502 .sched_nice = PRIO_TO_NICE(p->static_prio),
3503 };
3504
3505 /*
3506 * Fixup the legacy SCHED_RESET_ON_FORK hack
3507 */
3508 if (policy & SCHED_RESET_ON_FORK) {
3509 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3510 policy &= ~SCHED_RESET_ON_FORK;
3511 attr.sched_policy = policy;
3512 }
3513
3514 return __sched_setscheduler(p, &attr, check);
3515}
961ccddd
RR
3516/**
3517 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3518 * @p: the task in question.
3519 * @policy: new policy.
3520 * @param: structure containing the new RT priority.
3521 *
e69f6186
YB
3522 * Return: 0 on success. An error code otherwise.
3523 *
961ccddd
RR
3524 * NOTE that the task may be already dead.
3525 */
3526int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3527 const struct sched_param *param)
961ccddd 3528{
7479f3c9 3529 return _sched_setscheduler(p, policy, param, true);
961ccddd 3530}
1da177e4
LT
3531EXPORT_SYMBOL_GPL(sched_setscheduler);
3532
d50dde5a
DF
3533int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3534{
3535 return __sched_setscheduler(p, attr, true);
3536}
3537EXPORT_SYMBOL_GPL(sched_setattr);
3538
961ccddd
RR
3539/**
3540 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3541 * @p: the task in question.
3542 * @policy: new policy.
3543 * @param: structure containing the new RT priority.
3544 *
3545 * Just like sched_setscheduler, only don't bother checking if the
3546 * current context has permission. For example, this is needed in
3547 * stop_machine(): we create temporary high priority worker threads,
3548 * but our caller might not have that capability.
e69f6186
YB
3549 *
3550 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3551 */
3552int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3553 const struct sched_param *param)
961ccddd 3554{
7479f3c9 3555 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3556}
3557
95cdf3b7
IM
3558static int
3559do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3560{
1da177e4
LT
3561 struct sched_param lparam;
3562 struct task_struct *p;
36c8b586 3563 int retval;
1da177e4
LT
3564
3565 if (!param || pid < 0)
3566 return -EINVAL;
3567 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3568 return -EFAULT;
5fe1d75f
ON
3569
3570 rcu_read_lock();
3571 retval = -ESRCH;
1da177e4 3572 p = find_process_by_pid(pid);
5fe1d75f
ON
3573 if (p != NULL)
3574 retval = sched_setscheduler(p, policy, &lparam);
3575 rcu_read_unlock();
36c8b586 3576
1da177e4
LT
3577 return retval;
3578}
3579
d50dde5a
DF
3580/*
3581 * Mimics kernel/events/core.c perf_copy_attr().
3582 */
3583static int sched_copy_attr(struct sched_attr __user *uattr,
3584 struct sched_attr *attr)
3585{
3586 u32 size;
3587 int ret;
3588
3589 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3590 return -EFAULT;
3591
3592 /*
3593 * zero the full structure, so that a short copy will be nice.
3594 */
3595 memset(attr, 0, sizeof(*attr));
3596
3597 ret = get_user(size, &uattr->size);
3598 if (ret)
3599 return ret;
3600
3601 if (size > PAGE_SIZE) /* silly large */
3602 goto err_size;
3603
3604 if (!size) /* abi compat */
3605 size = SCHED_ATTR_SIZE_VER0;
3606
3607 if (size < SCHED_ATTR_SIZE_VER0)
3608 goto err_size;
3609
3610 /*
3611 * If we're handed a bigger struct than we know of,
3612 * ensure all the unknown bits are 0 - i.e. new
3613 * user-space does not rely on any kernel feature
3614 * extensions we dont know about yet.
3615 */
3616 if (size > sizeof(*attr)) {
3617 unsigned char __user *addr;
3618 unsigned char __user *end;
3619 unsigned char val;
3620
3621 addr = (void __user *)uattr + sizeof(*attr);
3622 end = (void __user *)uattr + size;
3623
3624 for (; addr < end; addr++) {
3625 ret = get_user(val, addr);
3626 if (ret)
3627 return ret;
3628 if (val)
3629 goto err_size;
3630 }
3631 size = sizeof(*attr);
3632 }
3633
3634 ret = copy_from_user(attr, uattr, size);
3635 if (ret)
3636 return -EFAULT;
3637
3638 /*
3639 * XXX: do we want to be lenient like existing syscalls; or do we want
3640 * to be strict and return an error on out-of-bounds values?
3641 */
75e45d51 3642 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a
DF
3643
3644out:
3645 return ret;
3646
3647err_size:
3648 put_user(sizeof(*attr), &uattr->size);
3649 ret = -E2BIG;
3650 goto out;
3651}
3652
1da177e4
LT
3653/**
3654 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3655 * @pid: the pid in question.
3656 * @policy: new policy.
3657 * @param: structure containing the new RT priority.
e69f6186
YB
3658 *
3659 * Return: 0 on success. An error code otherwise.
1da177e4 3660 */
5add95d4
HC
3661SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3662 struct sched_param __user *, param)
1da177e4 3663{
c21761f1
JB
3664 /* negative values for policy are not valid */
3665 if (policy < 0)
3666 return -EINVAL;
3667
1da177e4
LT
3668 return do_sched_setscheduler(pid, policy, param);
3669}
3670
3671/**
3672 * sys_sched_setparam - set/change the RT priority of a thread
3673 * @pid: the pid in question.
3674 * @param: structure containing the new RT priority.
e69f6186
YB
3675 *
3676 * Return: 0 on success. An error code otherwise.
1da177e4 3677 */
5add95d4 3678SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3679{
3680 return do_sched_setscheduler(pid, -1, param);
3681}
3682
d50dde5a
DF
3683/**
3684 * sys_sched_setattr - same as above, but with extended sched_attr
3685 * @pid: the pid in question.
5778fccf 3686 * @uattr: structure containing the extended parameters.
d50dde5a 3687 */
6d35ab48
PZ
3688SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3689 unsigned int, flags)
d50dde5a
DF
3690{
3691 struct sched_attr attr;
3692 struct task_struct *p;
3693 int retval;
3694
6d35ab48 3695 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3696 return -EINVAL;
3697
3698 if (sched_copy_attr(uattr, &attr))
3699 return -EFAULT;
3700
3701 rcu_read_lock();
3702 retval = -ESRCH;
3703 p = find_process_by_pid(pid);
3704 if (p != NULL)
3705 retval = sched_setattr(p, &attr);
3706 rcu_read_unlock();
3707
3708 return retval;
3709}
3710
1da177e4
LT
3711/**
3712 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3713 * @pid: the pid in question.
e69f6186
YB
3714 *
3715 * Return: On success, the policy of the thread. Otherwise, a negative error
3716 * code.
1da177e4 3717 */
5add95d4 3718SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3719{
36c8b586 3720 struct task_struct *p;
3a5c359a 3721 int retval;
1da177e4
LT
3722
3723 if (pid < 0)
3a5c359a 3724 return -EINVAL;
1da177e4
LT
3725
3726 retval = -ESRCH;
5fe85be0 3727 rcu_read_lock();
1da177e4
LT
3728 p = find_process_by_pid(pid);
3729 if (p) {
3730 retval = security_task_getscheduler(p);
3731 if (!retval)
ca94c442
LP
3732 retval = p->policy
3733 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3734 }
5fe85be0 3735 rcu_read_unlock();
1da177e4
LT
3736 return retval;
3737}
3738
3739/**
ca94c442 3740 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3741 * @pid: the pid in question.
3742 * @param: structure containing the RT priority.
e69f6186
YB
3743 *
3744 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3745 * code.
1da177e4 3746 */
5add95d4 3747SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3748{
3749 struct sched_param lp;
36c8b586 3750 struct task_struct *p;
3a5c359a 3751 int retval;
1da177e4
LT
3752
3753 if (!param || pid < 0)
3a5c359a 3754 return -EINVAL;
1da177e4 3755
5fe85be0 3756 rcu_read_lock();
1da177e4
LT
3757 p = find_process_by_pid(pid);
3758 retval = -ESRCH;
3759 if (!p)
3760 goto out_unlock;
3761
3762 retval = security_task_getscheduler(p);
3763 if (retval)
3764 goto out_unlock;
3765
aab03e05
DF
3766 if (task_has_dl_policy(p)) {
3767 retval = -EINVAL;
3768 goto out_unlock;
3769 }
1da177e4 3770 lp.sched_priority = p->rt_priority;
5fe85be0 3771 rcu_read_unlock();
1da177e4
LT
3772
3773 /*
3774 * This one might sleep, we cannot do it with a spinlock held ...
3775 */
3776 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3777
1da177e4
LT
3778 return retval;
3779
3780out_unlock:
5fe85be0 3781 rcu_read_unlock();
1da177e4
LT
3782 return retval;
3783}
3784
d50dde5a
DF
3785static int sched_read_attr(struct sched_attr __user *uattr,
3786 struct sched_attr *attr,
3787 unsigned int usize)
3788{
3789 int ret;
3790
3791 if (!access_ok(VERIFY_WRITE, uattr, usize))
3792 return -EFAULT;
3793
3794 /*
3795 * If we're handed a smaller struct than we know of,
3796 * ensure all the unknown bits are 0 - i.e. old
3797 * user-space does not get uncomplete information.
3798 */
3799 if (usize < sizeof(*attr)) {
3800 unsigned char *addr;
3801 unsigned char *end;
3802
3803 addr = (void *)attr + usize;
3804 end = (void *)attr + sizeof(*attr);
3805
3806 for (; addr < end; addr++) {
3807 if (*addr)
3808 goto err_size;
3809 }
3810
3811 attr->size = usize;
3812 }
3813
4efbc454 3814 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3815 if (ret)
3816 return -EFAULT;
3817
3818out:
3819 return ret;
3820
3821err_size:
3822 ret = -E2BIG;
3823 goto out;
3824}
3825
3826/**
aab03e05 3827 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3828 * @pid: the pid in question.
5778fccf 3829 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3830 * @size: sizeof(attr) for fwd/bwd comp.
3831 */
6d35ab48
PZ
3832SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3833 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3834{
3835 struct sched_attr attr = {
3836 .size = sizeof(struct sched_attr),
3837 };
3838 struct task_struct *p;
3839 int retval;
3840
3841 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3842 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3843 return -EINVAL;
3844
3845 rcu_read_lock();
3846 p = find_process_by_pid(pid);
3847 retval = -ESRCH;
3848 if (!p)
3849 goto out_unlock;
3850
3851 retval = security_task_getscheduler(p);
3852 if (retval)
3853 goto out_unlock;
3854
3855 attr.sched_policy = p->policy;
7479f3c9
PZ
3856 if (p->sched_reset_on_fork)
3857 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3858 if (task_has_dl_policy(p))
3859 __getparam_dl(p, &attr);
3860 else if (task_has_rt_policy(p))
d50dde5a
DF
3861 attr.sched_priority = p->rt_priority;
3862 else
d0ea0268 3863 attr.sched_nice = task_nice(p);
d50dde5a
DF
3864
3865 rcu_read_unlock();
3866
3867 retval = sched_read_attr(uattr, &attr, size);
3868 return retval;
3869
3870out_unlock:
3871 rcu_read_unlock();
3872 return retval;
3873}
3874
96f874e2 3875long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3876{
5a16f3d3 3877 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3878 struct task_struct *p;
3879 int retval;
1da177e4 3880
23f5d142 3881 rcu_read_lock();
1da177e4
LT
3882
3883 p = find_process_by_pid(pid);
3884 if (!p) {
23f5d142 3885 rcu_read_unlock();
1da177e4
LT
3886 return -ESRCH;
3887 }
3888
23f5d142 3889 /* Prevent p going away */
1da177e4 3890 get_task_struct(p);
23f5d142 3891 rcu_read_unlock();
1da177e4 3892
14a40ffc
TH
3893 if (p->flags & PF_NO_SETAFFINITY) {
3894 retval = -EINVAL;
3895 goto out_put_task;
3896 }
5a16f3d3
RR
3897 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3898 retval = -ENOMEM;
3899 goto out_put_task;
3900 }
3901 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3902 retval = -ENOMEM;
3903 goto out_free_cpus_allowed;
3904 }
1da177e4 3905 retval = -EPERM;
4c44aaaf
EB
3906 if (!check_same_owner(p)) {
3907 rcu_read_lock();
3908 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3909 rcu_read_unlock();
3910 goto out_unlock;
3911 }
3912 rcu_read_unlock();
3913 }
1da177e4 3914
b0ae1981 3915 retval = security_task_setscheduler(p);
e7834f8f
DQ
3916 if (retval)
3917 goto out_unlock;
3918
e4099a5e
PZ
3919
3920 cpuset_cpus_allowed(p, cpus_allowed);
3921 cpumask_and(new_mask, in_mask, cpus_allowed);
3922
332ac17e
DF
3923 /*
3924 * Since bandwidth control happens on root_domain basis,
3925 * if admission test is enabled, we only admit -deadline
3926 * tasks allowed to run on all the CPUs in the task's
3927 * root_domain.
3928 */
3929#ifdef CONFIG_SMP
3930 if (task_has_dl_policy(p)) {
3931 const struct cpumask *span = task_rq(p)->rd->span;
3932
e4099a5e 3933 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3934 retval = -EBUSY;
3935 goto out_unlock;
3936 }
3937 }
3938#endif
49246274 3939again:
5a16f3d3 3940 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3941
8707d8b8 3942 if (!retval) {
5a16f3d3
RR
3943 cpuset_cpus_allowed(p, cpus_allowed);
3944 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3945 /*
3946 * We must have raced with a concurrent cpuset
3947 * update. Just reset the cpus_allowed to the
3948 * cpuset's cpus_allowed
3949 */
5a16f3d3 3950 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3951 goto again;
3952 }
3953 }
1da177e4 3954out_unlock:
5a16f3d3
RR
3955 free_cpumask_var(new_mask);
3956out_free_cpus_allowed:
3957 free_cpumask_var(cpus_allowed);
3958out_put_task:
1da177e4 3959 put_task_struct(p);
1da177e4
LT
3960 return retval;
3961}
3962
3963static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3964 struct cpumask *new_mask)
1da177e4 3965{
96f874e2
RR
3966 if (len < cpumask_size())
3967 cpumask_clear(new_mask);
3968 else if (len > cpumask_size())
3969 len = cpumask_size();
3970
1da177e4
LT
3971 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3972}
3973
3974/**
3975 * sys_sched_setaffinity - set the cpu affinity of a process
3976 * @pid: pid of the process
3977 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3978 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3979 *
3980 * Return: 0 on success. An error code otherwise.
1da177e4 3981 */
5add95d4
HC
3982SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3983 unsigned long __user *, user_mask_ptr)
1da177e4 3984{
5a16f3d3 3985 cpumask_var_t new_mask;
1da177e4
LT
3986 int retval;
3987
5a16f3d3
RR
3988 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3989 return -ENOMEM;
1da177e4 3990
5a16f3d3
RR
3991 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3992 if (retval == 0)
3993 retval = sched_setaffinity(pid, new_mask);
3994 free_cpumask_var(new_mask);
3995 return retval;
1da177e4
LT
3996}
3997
96f874e2 3998long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3999{
36c8b586 4000 struct task_struct *p;
31605683 4001 unsigned long flags;
1da177e4 4002 int retval;
1da177e4 4003
23f5d142 4004 rcu_read_lock();
1da177e4
LT
4005
4006 retval = -ESRCH;
4007 p = find_process_by_pid(pid);
4008 if (!p)
4009 goto out_unlock;
4010
e7834f8f
DQ
4011 retval = security_task_getscheduler(p);
4012 if (retval)
4013 goto out_unlock;
4014
013fdb80 4015 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4016 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4017 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4018
4019out_unlock:
23f5d142 4020 rcu_read_unlock();
1da177e4 4021
9531b62f 4022 return retval;
1da177e4
LT
4023}
4024
4025/**
4026 * sys_sched_getaffinity - get the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4030 *
4031 * Return: 0 on success. An error code otherwise.
1da177e4 4032 */
5add95d4
HC
4033SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4034 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4035{
4036 int ret;
f17c8607 4037 cpumask_var_t mask;
1da177e4 4038
84fba5ec 4039 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4040 return -EINVAL;
4041 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4042 return -EINVAL;
4043
f17c8607
RR
4044 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4045 return -ENOMEM;
1da177e4 4046
f17c8607
RR
4047 ret = sched_getaffinity(pid, mask);
4048 if (ret == 0) {
8bc037fb 4049 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4050
4051 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4052 ret = -EFAULT;
4053 else
cd3d8031 4054 ret = retlen;
f17c8607
RR
4055 }
4056 free_cpumask_var(mask);
1da177e4 4057
f17c8607 4058 return ret;
1da177e4
LT
4059}
4060
4061/**
4062 * sys_sched_yield - yield the current processor to other threads.
4063 *
dd41f596
IM
4064 * This function yields the current CPU to other tasks. If there are no
4065 * other threads running on this CPU then this function will return.
e69f6186
YB
4066 *
4067 * Return: 0.
1da177e4 4068 */
5add95d4 4069SYSCALL_DEFINE0(sched_yield)
1da177e4 4070{
70b97a7f 4071 struct rq *rq = this_rq_lock();
1da177e4 4072
2d72376b 4073 schedstat_inc(rq, yld_count);
4530d7ab 4074 current->sched_class->yield_task(rq);
1da177e4
LT
4075
4076 /*
4077 * Since we are going to call schedule() anyway, there's
4078 * no need to preempt or enable interrupts:
4079 */
4080 __release(rq->lock);
8a25d5de 4081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4082 do_raw_spin_unlock(&rq->lock);
ba74c144 4083 sched_preempt_enable_no_resched();
1da177e4
LT
4084
4085 schedule();
4086
4087 return 0;
4088}
4089
e7b38404 4090static void __cond_resched(void)
1da177e4 4091{
bdb43806 4092 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4093 __schedule();
bdb43806 4094 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4095}
4096
02b67cc3 4097int __sched _cond_resched(void)
1da177e4 4098{
d86ee480 4099 if (should_resched()) {
1da177e4
LT
4100 __cond_resched();
4101 return 1;
4102 }
4103 return 0;
4104}
02b67cc3 4105EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4106
4107/*
613afbf8 4108 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4109 * call schedule, and on return reacquire the lock.
4110 *
41a2d6cf 4111 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4112 * operations here to prevent schedule() from being called twice (once via
4113 * spin_unlock(), once by hand).
4114 */
613afbf8 4115int __cond_resched_lock(spinlock_t *lock)
1da177e4 4116{
d86ee480 4117 int resched = should_resched();
6df3cecb
JK
4118 int ret = 0;
4119
f607c668
PZ
4120 lockdep_assert_held(lock);
4121
95c354fe 4122 if (spin_needbreak(lock) || resched) {
1da177e4 4123 spin_unlock(lock);
d86ee480 4124 if (resched)
95c354fe
NP
4125 __cond_resched();
4126 else
4127 cpu_relax();
6df3cecb 4128 ret = 1;
1da177e4 4129 spin_lock(lock);
1da177e4 4130 }
6df3cecb 4131 return ret;
1da177e4 4132}
613afbf8 4133EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4134
613afbf8 4135int __sched __cond_resched_softirq(void)
1da177e4
LT
4136{
4137 BUG_ON(!in_softirq());
4138
d86ee480 4139 if (should_resched()) {
98d82567 4140 local_bh_enable();
1da177e4
LT
4141 __cond_resched();
4142 local_bh_disable();
4143 return 1;
4144 }
4145 return 0;
4146}
613afbf8 4147EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4148
1da177e4
LT
4149/**
4150 * yield - yield the current processor to other threads.
4151 *
8e3fabfd
PZ
4152 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4153 *
4154 * The scheduler is at all times free to pick the calling task as the most
4155 * eligible task to run, if removing the yield() call from your code breaks
4156 * it, its already broken.
4157 *
4158 * Typical broken usage is:
4159 *
4160 * while (!event)
4161 * yield();
4162 *
4163 * where one assumes that yield() will let 'the other' process run that will
4164 * make event true. If the current task is a SCHED_FIFO task that will never
4165 * happen. Never use yield() as a progress guarantee!!
4166 *
4167 * If you want to use yield() to wait for something, use wait_event().
4168 * If you want to use yield() to be 'nice' for others, use cond_resched().
4169 * If you still want to use yield(), do not!
1da177e4
LT
4170 */
4171void __sched yield(void)
4172{
4173 set_current_state(TASK_RUNNING);
4174 sys_sched_yield();
4175}
1da177e4
LT
4176EXPORT_SYMBOL(yield);
4177
d95f4122
MG
4178/**
4179 * yield_to - yield the current processor to another thread in
4180 * your thread group, or accelerate that thread toward the
4181 * processor it's on.
16addf95
RD
4182 * @p: target task
4183 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4184 *
4185 * It's the caller's job to ensure that the target task struct
4186 * can't go away on us before we can do any checks.
4187 *
e69f6186 4188 * Return:
7b270f60
PZ
4189 * true (>0) if we indeed boosted the target task.
4190 * false (0) if we failed to boost the target.
4191 * -ESRCH if there's no task to yield to.
d95f4122
MG
4192 */
4193bool __sched yield_to(struct task_struct *p, bool preempt)
4194{
4195 struct task_struct *curr = current;
4196 struct rq *rq, *p_rq;
4197 unsigned long flags;
c3c18640 4198 int yielded = 0;
d95f4122
MG
4199
4200 local_irq_save(flags);
4201 rq = this_rq();
4202
4203again:
4204 p_rq = task_rq(p);
7b270f60
PZ
4205 /*
4206 * If we're the only runnable task on the rq and target rq also
4207 * has only one task, there's absolutely no point in yielding.
4208 */
4209 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4210 yielded = -ESRCH;
4211 goto out_irq;
4212 }
4213
d95f4122 4214 double_rq_lock(rq, p_rq);
39e24d8f 4215 if (task_rq(p) != p_rq) {
d95f4122
MG
4216 double_rq_unlock(rq, p_rq);
4217 goto again;
4218 }
4219
4220 if (!curr->sched_class->yield_to_task)
7b270f60 4221 goto out_unlock;
d95f4122
MG
4222
4223 if (curr->sched_class != p->sched_class)
7b270f60 4224 goto out_unlock;
d95f4122
MG
4225
4226 if (task_running(p_rq, p) || p->state)
7b270f60 4227 goto out_unlock;
d95f4122
MG
4228
4229 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4230 if (yielded) {
d95f4122 4231 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4232 /*
4233 * Make p's CPU reschedule; pick_next_entity takes care of
4234 * fairness.
4235 */
4236 if (preempt && rq != p_rq)
4237 resched_task(p_rq->curr);
4238 }
d95f4122 4239
7b270f60 4240out_unlock:
d95f4122 4241 double_rq_unlock(rq, p_rq);
7b270f60 4242out_irq:
d95f4122
MG
4243 local_irq_restore(flags);
4244
7b270f60 4245 if (yielded > 0)
d95f4122
MG
4246 schedule();
4247
4248 return yielded;
4249}
4250EXPORT_SYMBOL_GPL(yield_to);
4251
1da177e4 4252/*
41a2d6cf 4253 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4254 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4255 */
4256void __sched io_schedule(void)
4257{
54d35f29 4258 struct rq *rq = raw_rq();
1da177e4 4259
0ff92245 4260 delayacct_blkio_start();
1da177e4 4261 atomic_inc(&rq->nr_iowait);
73c10101 4262 blk_flush_plug(current);
8f0dfc34 4263 current->in_iowait = 1;
1da177e4 4264 schedule();
8f0dfc34 4265 current->in_iowait = 0;
1da177e4 4266 atomic_dec(&rq->nr_iowait);
0ff92245 4267 delayacct_blkio_end();
1da177e4 4268}
1da177e4
LT
4269EXPORT_SYMBOL(io_schedule);
4270
4271long __sched io_schedule_timeout(long timeout)
4272{
54d35f29 4273 struct rq *rq = raw_rq();
1da177e4
LT
4274 long ret;
4275
0ff92245 4276 delayacct_blkio_start();
1da177e4 4277 atomic_inc(&rq->nr_iowait);
73c10101 4278 blk_flush_plug(current);
8f0dfc34 4279 current->in_iowait = 1;
1da177e4 4280 ret = schedule_timeout(timeout);
8f0dfc34 4281 current->in_iowait = 0;
1da177e4 4282 atomic_dec(&rq->nr_iowait);
0ff92245 4283 delayacct_blkio_end();
1da177e4
LT
4284 return ret;
4285}
4286
4287/**
4288 * sys_sched_get_priority_max - return maximum RT priority.
4289 * @policy: scheduling class.
4290 *
e69f6186
YB
4291 * Return: On success, this syscall returns the maximum
4292 * rt_priority that can be used by a given scheduling class.
4293 * On failure, a negative error code is returned.
1da177e4 4294 */
5add95d4 4295SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4296{
4297 int ret = -EINVAL;
4298
4299 switch (policy) {
4300 case SCHED_FIFO:
4301 case SCHED_RR:
4302 ret = MAX_USER_RT_PRIO-1;
4303 break;
aab03e05 4304 case SCHED_DEADLINE:
1da177e4 4305 case SCHED_NORMAL:
b0a9499c 4306 case SCHED_BATCH:
dd41f596 4307 case SCHED_IDLE:
1da177e4
LT
4308 ret = 0;
4309 break;
4310 }
4311 return ret;
4312}
4313
4314/**
4315 * sys_sched_get_priority_min - return minimum RT priority.
4316 * @policy: scheduling class.
4317 *
e69f6186
YB
4318 * Return: On success, this syscall returns the minimum
4319 * rt_priority that can be used by a given scheduling class.
4320 * On failure, a negative error code is returned.
1da177e4 4321 */
5add95d4 4322SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4323{
4324 int ret = -EINVAL;
4325
4326 switch (policy) {
4327 case SCHED_FIFO:
4328 case SCHED_RR:
4329 ret = 1;
4330 break;
aab03e05 4331 case SCHED_DEADLINE:
1da177e4 4332 case SCHED_NORMAL:
b0a9499c 4333 case SCHED_BATCH:
dd41f596 4334 case SCHED_IDLE:
1da177e4
LT
4335 ret = 0;
4336 }
4337 return ret;
4338}
4339
4340/**
4341 * sys_sched_rr_get_interval - return the default timeslice of a process.
4342 * @pid: pid of the process.
4343 * @interval: userspace pointer to the timeslice value.
4344 *
4345 * this syscall writes the default timeslice value of a given process
4346 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4347 *
4348 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4349 * an error code.
1da177e4 4350 */
17da2bd9 4351SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4352 struct timespec __user *, interval)
1da177e4 4353{
36c8b586 4354 struct task_struct *p;
a4ec24b4 4355 unsigned int time_slice;
dba091b9
TG
4356 unsigned long flags;
4357 struct rq *rq;
3a5c359a 4358 int retval;
1da177e4 4359 struct timespec t;
1da177e4
LT
4360
4361 if (pid < 0)
3a5c359a 4362 return -EINVAL;
1da177e4
LT
4363
4364 retval = -ESRCH;
1a551ae7 4365 rcu_read_lock();
1da177e4
LT
4366 p = find_process_by_pid(pid);
4367 if (!p)
4368 goto out_unlock;
4369
4370 retval = security_task_getscheduler(p);
4371 if (retval)
4372 goto out_unlock;
4373
dba091b9 4374 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4375 time_slice = 0;
4376 if (p->sched_class->get_rr_interval)
4377 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4378 task_rq_unlock(rq, p, &flags);
a4ec24b4 4379
1a551ae7 4380 rcu_read_unlock();
a4ec24b4 4381 jiffies_to_timespec(time_slice, &t);
1da177e4 4382 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4383 return retval;
3a5c359a 4384
1da177e4 4385out_unlock:
1a551ae7 4386 rcu_read_unlock();
1da177e4
LT
4387 return retval;
4388}
4389
7c731e0a 4390static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4391
82a1fcb9 4392void sched_show_task(struct task_struct *p)
1da177e4 4393{
1da177e4 4394 unsigned long free = 0;
4e79752c 4395 int ppid;
36c8b586 4396 unsigned state;
1da177e4 4397
1da177e4 4398 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4399 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4400 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4401#if BITS_PER_LONG == 32
1da177e4 4402 if (state == TASK_RUNNING)
3df0fc5b 4403 printk(KERN_CONT " running ");
1da177e4 4404 else
3df0fc5b 4405 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4406#else
4407 if (state == TASK_RUNNING)
3df0fc5b 4408 printk(KERN_CONT " running task ");
1da177e4 4409 else
3df0fc5b 4410 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4411#endif
4412#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4413 free = stack_not_used(p);
1da177e4 4414#endif
4e79752c
PM
4415 rcu_read_lock();
4416 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4417 rcu_read_unlock();
3df0fc5b 4418 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4419 task_pid_nr(p), ppid,
aa47b7e0 4420 (unsigned long)task_thread_info(p)->flags);
1da177e4 4421
3d1cb205 4422 print_worker_info(KERN_INFO, p);
5fb5e6de 4423 show_stack(p, NULL);
1da177e4
LT
4424}
4425
e59e2ae2 4426void show_state_filter(unsigned long state_filter)
1da177e4 4427{
36c8b586 4428 struct task_struct *g, *p;
1da177e4 4429
4bd77321 4430#if BITS_PER_LONG == 32
3df0fc5b
PZ
4431 printk(KERN_INFO
4432 " task PC stack pid father\n");
1da177e4 4433#else
3df0fc5b
PZ
4434 printk(KERN_INFO
4435 " task PC stack pid father\n");
1da177e4 4436#endif
510f5acc 4437 rcu_read_lock();
1da177e4
LT
4438 do_each_thread(g, p) {
4439 /*
4440 * reset the NMI-timeout, listing all files on a slow
25985edc 4441 * console might take a lot of time:
1da177e4
LT
4442 */
4443 touch_nmi_watchdog();
39bc89fd 4444 if (!state_filter || (p->state & state_filter))
82a1fcb9 4445 sched_show_task(p);
1da177e4
LT
4446 } while_each_thread(g, p);
4447
04c9167f
JF
4448 touch_all_softlockup_watchdogs();
4449
dd41f596
IM
4450#ifdef CONFIG_SCHED_DEBUG
4451 sysrq_sched_debug_show();
4452#endif
510f5acc 4453 rcu_read_unlock();
e59e2ae2
IM
4454 /*
4455 * Only show locks if all tasks are dumped:
4456 */
93335a21 4457 if (!state_filter)
e59e2ae2 4458 debug_show_all_locks();
1da177e4
LT
4459}
4460
0db0628d 4461void init_idle_bootup_task(struct task_struct *idle)
1df21055 4462{
dd41f596 4463 idle->sched_class = &idle_sched_class;
1df21055
IM
4464}
4465
f340c0d1
IM
4466/**
4467 * init_idle - set up an idle thread for a given CPU
4468 * @idle: task in question
4469 * @cpu: cpu the idle task belongs to
4470 *
4471 * NOTE: this function does not set the idle thread's NEED_RESCHED
4472 * flag, to make booting more robust.
4473 */
0db0628d 4474void init_idle(struct task_struct *idle, int cpu)
1da177e4 4475{
70b97a7f 4476 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4477 unsigned long flags;
4478
05fa785c 4479 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4480
5e1576ed 4481 __sched_fork(0, idle);
06b83b5f 4482 idle->state = TASK_RUNNING;
dd41f596
IM
4483 idle->se.exec_start = sched_clock();
4484
1e1b6c51 4485 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4486 /*
4487 * We're having a chicken and egg problem, even though we are
4488 * holding rq->lock, the cpu isn't yet set to this cpu so the
4489 * lockdep check in task_group() will fail.
4490 *
4491 * Similar case to sched_fork(). / Alternatively we could
4492 * use task_rq_lock() here and obtain the other rq->lock.
4493 *
4494 * Silence PROVE_RCU
4495 */
4496 rcu_read_lock();
dd41f596 4497 __set_task_cpu(idle, cpu);
6506cf6c 4498 rcu_read_unlock();
1da177e4 4499
1da177e4 4500 rq->curr = rq->idle = idle;
77177856 4501 idle->on_rq = 1;
3ca7a440
PZ
4502#if defined(CONFIG_SMP)
4503 idle->on_cpu = 1;
4866cde0 4504#endif
05fa785c 4505 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4506
4507 /* Set the preempt count _outside_ the spinlocks! */
01028747 4508 init_idle_preempt_count(idle, cpu);
55cd5340 4509
dd41f596
IM
4510 /*
4511 * The idle tasks have their own, simple scheduling class:
4512 */
4513 idle->sched_class = &idle_sched_class;
868baf07 4514 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4515 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4516#if defined(CONFIG_SMP)
4517 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4518#endif
19978ca6
IM
4519}
4520
1da177e4 4521#ifdef CONFIG_SMP
1e1b6c51
KM
4522void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4523{
4524 if (p->sched_class && p->sched_class->set_cpus_allowed)
4525 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4526
4527 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4528 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4529}
4530
1da177e4
LT
4531/*
4532 * This is how migration works:
4533 *
969c7921
TH
4534 * 1) we invoke migration_cpu_stop() on the target CPU using
4535 * stop_one_cpu().
4536 * 2) stopper starts to run (implicitly forcing the migrated thread
4537 * off the CPU)
4538 * 3) it checks whether the migrated task is still in the wrong runqueue.
4539 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4540 * it and puts it into the right queue.
969c7921
TH
4541 * 5) stopper completes and stop_one_cpu() returns and the migration
4542 * is done.
1da177e4
LT
4543 */
4544
4545/*
4546 * Change a given task's CPU affinity. Migrate the thread to a
4547 * proper CPU and schedule it away if the CPU it's executing on
4548 * is removed from the allowed bitmask.
4549 *
4550 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4551 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4552 * call is not atomic; no spinlocks may be held.
4553 */
96f874e2 4554int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4555{
4556 unsigned long flags;
70b97a7f 4557 struct rq *rq;
969c7921 4558 unsigned int dest_cpu;
48f24c4d 4559 int ret = 0;
1da177e4
LT
4560
4561 rq = task_rq_lock(p, &flags);
e2912009 4562
db44fc01
YZ
4563 if (cpumask_equal(&p->cpus_allowed, new_mask))
4564 goto out;
4565
6ad4c188 4566 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4567 ret = -EINVAL;
4568 goto out;
4569 }
4570
1e1b6c51 4571 do_set_cpus_allowed(p, new_mask);
73fe6aae 4572
1da177e4 4573 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4574 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4575 goto out;
4576
969c7921 4577 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4578 if (p->on_rq) {
969c7921 4579 struct migration_arg arg = { p, dest_cpu };
1da177e4 4580 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4581 task_rq_unlock(rq, p, &flags);
969c7921 4582 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4583 tlb_migrate_finish(p->mm);
4584 return 0;
4585 }
4586out:
0122ec5b 4587 task_rq_unlock(rq, p, &flags);
48f24c4d 4588
1da177e4
LT
4589 return ret;
4590}
cd8ba7cd 4591EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4592
4593/*
41a2d6cf 4594 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4595 * this because either it can't run here any more (set_cpus_allowed()
4596 * away from this CPU, or CPU going down), or because we're
4597 * attempting to rebalance this task on exec (sched_exec).
4598 *
4599 * So we race with normal scheduler movements, but that's OK, as long
4600 * as the task is no longer on this CPU.
efc30814
KK
4601 *
4602 * Returns non-zero if task was successfully migrated.
1da177e4 4603 */
efc30814 4604static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4605{
70b97a7f 4606 struct rq *rq_dest, *rq_src;
e2912009 4607 int ret = 0;
1da177e4 4608
e761b772 4609 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4610 return ret;
1da177e4
LT
4611
4612 rq_src = cpu_rq(src_cpu);
4613 rq_dest = cpu_rq(dest_cpu);
4614
0122ec5b 4615 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4616 double_rq_lock(rq_src, rq_dest);
4617 /* Already moved. */
4618 if (task_cpu(p) != src_cpu)
b1e38734 4619 goto done;
1da177e4 4620 /* Affinity changed (again). */
fa17b507 4621 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4622 goto fail;
1da177e4 4623
e2912009
PZ
4624 /*
4625 * If we're not on a rq, the next wake-up will ensure we're
4626 * placed properly.
4627 */
fd2f4419 4628 if (p->on_rq) {
4ca9b72b 4629 dequeue_task(rq_src, p, 0);
e2912009 4630 set_task_cpu(p, dest_cpu);
4ca9b72b 4631 enqueue_task(rq_dest, p, 0);
15afe09b 4632 check_preempt_curr(rq_dest, p, 0);
1da177e4 4633 }
b1e38734 4634done:
efc30814 4635 ret = 1;
b1e38734 4636fail:
1da177e4 4637 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4638 raw_spin_unlock(&p->pi_lock);
efc30814 4639 return ret;
1da177e4
LT
4640}
4641
e6628d5b
MG
4642#ifdef CONFIG_NUMA_BALANCING
4643/* Migrate current task p to target_cpu */
4644int migrate_task_to(struct task_struct *p, int target_cpu)
4645{
4646 struct migration_arg arg = { p, target_cpu };
4647 int curr_cpu = task_cpu(p);
4648
4649 if (curr_cpu == target_cpu)
4650 return 0;
4651
4652 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4653 return -EINVAL;
4654
4655 /* TODO: This is not properly updating schedstats */
4656
286549dc 4657 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4658 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4659}
0ec8aa00
PZ
4660
4661/*
4662 * Requeue a task on a given node and accurately track the number of NUMA
4663 * tasks on the runqueues
4664 */
4665void sched_setnuma(struct task_struct *p, int nid)
4666{
4667 struct rq *rq;
4668 unsigned long flags;
4669 bool on_rq, running;
4670
4671 rq = task_rq_lock(p, &flags);
4672 on_rq = p->on_rq;
4673 running = task_current(rq, p);
4674
4675 if (on_rq)
4676 dequeue_task(rq, p, 0);
4677 if (running)
4678 p->sched_class->put_prev_task(rq, p);
4679
4680 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4681
4682 if (running)
4683 p->sched_class->set_curr_task(rq);
4684 if (on_rq)
4685 enqueue_task(rq, p, 0);
4686 task_rq_unlock(rq, p, &flags);
4687}
e6628d5b
MG
4688#endif
4689
1da177e4 4690/*
969c7921
TH
4691 * migration_cpu_stop - this will be executed by a highprio stopper thread
4692 * and performs thread migration by bumping thread off CPU then
4693 * 'pushing' onto another runqueue.
1da177e4 4694 */
969c7921 4695static int migration_cpu_stop(void *data)
1da177e4 4696{
969c7921 4697 struct migration_arg *arg = data;
f7b4cddc 4698
969c7921
TH
4699 /*
4700 * The original target cpu might have gone down and we might
4701 * be on another cpu but it doesn't matter.
4702 */
f7b4cddc 4703 local_irq_disable();
969c7921 4704 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4705 local_irq_enable();
1da177e4 4706 return 0;
f7b4cddc
ON
4707}
4708
1da177e4 4709#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4710
054b9108 4711/*
48c5ccae
PZ
4712 * Ensures that the idle task is using init_mm right before its cpu goes
4713 * offline.
054b9108 4714 */
48c5ccae 4715void idle_task_exit(void)
1da177e4 4716{
48c5ccae 4717 struct mm_struct *mm = current->active_mm;
e76bd8d9 4718
48c5ccae 4719 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4720
a53efe5f 4721 if (mm != &init_mm) {
48c5ccae 4722 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4723 finish_arch_post_lock_switch();
4724 }
48c5ccae 4725 mmdrop(mm);
1da177e4
LT
4726}
4727
4728/*
5d180232
PZ
4729 * Since this CPU is going 'away' for a while, fold any nr_active delta
4730 * we might have. Assumes we're called after migrate_tasks() so that the
4731 * nr_active count is stable.
4732 *
4733 * Also see the comment "Global load-average calculations".
1da177e4 4734 */
5d180232 4735static void calc_load_migrate(struct rq *rq)
1da177e4 4736{
5d180232
PZ
4737 long delta = calc_load_fold_active(rq);
4738 if (delta)
4739 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4740}
4741
3f1d2a31
PZ
4742static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4743{
4744}
4745
4746static const struct sched_class fake_sched_class = {
4747 .put_prev_task = put_prev_task_fake,
4748};
4749
4750static struct task_struct fake_task = {
4751 /*
4752 * Avoid pull_{rt,dl}_task()
4753 */
4754 .prio = MAX_PRIO + 1,
4755 .sched_class = &fake_sched_class,
4756};
4757
48f24c4d 4758/*
48c5ccae
PZ
4759 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4760 * try_to_wake_up()->select_task_rq().
4761 *
4762 * Called with rq->lock held even though we'er in stop_machine() and
4763 * there's no concurrency possible, we hold the required locks anyway
4764 * because of lock validation efforts.
1da177e4 4765 */
48c5ccae 4766static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4767{
70b97a7f 4768 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4769 struct task_struct *next, *stop = rq->stop;
4770 int dest_cpu;
1da177e4
LT
4771
4772 /*
48c5ccae
PZ
4773 * Fudge the rq selection such that the below task selection loop
4774 * doesn't get stuck on the currently eligible stop task.
4775 *
4776 * We're currently inside stop_machine() and the rq is either stuck
4777 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4778 * either way we should never end up calling schedule() until we're
4779 * done here.
1da177e4 4780 */
48c5ccae 4781 rq->stop = NULL;
48f24c4d 4782
77bd3970
FW
4783 /*
4784 * put_prev_task() and pick_next_task() sched
4785 * class method both need to have an up-to-date
4786 * value of rq->clock[_task]
4787 */
4788 update_rq_clock(rq);
4789
dd41f596 4790 for ( ; ; ) {
48c5ccae
PZ
4791 /*
4792 * There's this thread running, bail when that's the only
4793 * remaining thread.
4794 */
4795 if (rq->nr_running == 1)
dd41f596 4796 break;
48c5ccae 4797
3f1d2a31 4798 next = pick_next_task(rq, &fake_task);
48c5ccae 4799 BUG_ON(!next);
79c53799 4800 next->sched_class->put_prev_task(rq, next);
e692ab53 4801
48c5ccae
PZ
4802 /* Find suitable destination for @next, with force if needed. */
4803 dest_cpu = select_fallback_rq(dead_cpu, next);
4804 raw_spin_unlock(&rq->lock);
4805
4806 __migrate_task(next, dead_cpu, dest_cpu);
4807
4808 raw_spin_lock(&rq->lock);
1da177e4 4809 }
dce48a84 4810
48c5ccae 4811 rq->stop = stop;
dce48a84 4812}
48c5ccae 4813
1da177e4
LT
4814#endif /* CONFIG_HOTPLUG_CPU */
4815
e692ab53
NP
4816#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4817
4818static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4819 {
4820 .procname = "sched_domain",
c57baf1e 4821 .mode = 0555,
e0361851 4822 },
56992309 4823 {}
e692ab53
NP
4824};
4825
4826static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4827 {
4828 .procname = "kernel",
c57baf1e 4829 .mode = 0555,
e0361851
AD
4830 .child = sd_ctl_dir,
4831 },
56992309 4832 {}
e692ab53
NP
4833};
4834
4835static struct ctl_table *sd_alloc_ctl_entry(int n)
4836{
4837 struct ctl_table *entry =
5cf9f062 4838 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4839
e692ab53
NP
4840 return entry;
4841}
4842
6382bc90
MM
4843static void sd_free_ctl_entry(struct ctl_table **tablep)
4844{
cd790076 4845 struct ctl_table *entry;
6382bc90 4846
cd790076
MM
4847 /*
4848 * In the intermediate directories, both the child directory and
4849 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4850 * will always be set. In the lowest directory the names are
cd790076
MM
4851 * static strings and all have proc handlers.
4852 */
4853 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4854 if (entry->child)
4855 sd_free_ctl_entry(&entry->child);
cd790076
MM
4856 if (entry->proc_handler == NULL)
4857 kfree(entry->procname);
4858 }
6382bc90
MM
4859
4860 kfree(*tablep);
4861 *tablep = NULL;
4862}
4863
201c373e 4864static int min_load_idx = 0;
fd9b86d3 4865static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4866
e692ab53 4867static void
e0361851 4868set_table_entry(struct ctl_table *entry,
e692ab53 4869 const char *procname, void *data, int maxlen,
201c373e
NK
4870 umode_t mode, proc_handler *proc_handler,
4871 bool load_idx)
e692ab53 4872{
e692ab53
NP
4873 entry->procname = procname;
4874 entry->data = data;
4875 entry->maxlen = maxlen;
4876 entry->mode = mode;
4877 entry->proc_handler = proc_handler;
201c373e
NK
4878
4879 if (load_idx) {
4880 entry->extra1 = &min_load_idx;
4881 entry->extra2 = &max_load_idx;
4882 }
e692ab53
NP
4883}
4884
4885static struct ctl_table *
4886sd_alloc_ctl_domain_table(struct sched_domain *sd)
4887{
37e6bae8 4888 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4889
ad1cdc1d
MM
4890 if (table == NULL)
4891 return NULL;
4892
e0361851 4893 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4894 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4895 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4896 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4897 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4898 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4899 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4900 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4901 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4902 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4903 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4904 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4905 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4906 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4907 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4908 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4909 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4910 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4911 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4912 &sd->cache_nice_tries,
201c373e 4913 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4914 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4915 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4916 set_table_entry(&table[11], "max_newidle_lb_cost",
4917 &sd->max_newidle_lb_cost,
4918 sizeof(long), 0644, proc_doulongvec_minmax, false);
4919 set_table_entry(&table[12], "name", sd->name,
201c373e 4920 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4921 /* &table[13] is terminator */
e692ab53
NP
4922
4923 return table;
4924}
4925
be7002e6 4926static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4927{
4928 struct ctl_table *entry, *table;
4929 struct sched_domain *sd;
4930 int domain_num = 0, i;
4931 char buf[32];
4932
4933 for_each_domain(cpu, sd)
4934 domain_num++;
4935 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4936 if (table == NULL)
4937 return NULL;
e692ab53
NP
4938
4939 i = 0;
4940 for_each_domain(cpu, sd) {
4941 snprintf(buf, 32, "domain%d", i);
e692ab53 4942 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4943 entry->mode = 0555;
e692ab53
NP
4944 entry->child = sd_alloc_ctl_domain_table(sd);
4945 entry++;
4946 i++;
4947 }
4948 return table;
4949}
4950
4951static struct ctl_table_header *sd_sysctl_header;
6382bc90 4952static void register_sched_domain_sysctl(void)
e692ab53 4953{
6ad4c188 4954 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4955 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4956 char buf[32];
4957
7378547f
MM
4958 WARN_ON(sd_ctl_dir[0].child);
4959 sd_ctl_dir[0].child = entry;
4960
ad1cdc1d
MM
4961 if (entry == NULL)
4962 return;
4963
6ad4c188 4964 for_each_possible_cpu(i) {
e692ab53 4965 snprintf(buf, 32, "cpu%d", i);
e692ab53 4966 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4967 entry->mode = 0555;
e692ab53 4968 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4969 entry++;
e692ab53 4970 }
7378547f
MM
4971
4972 WARN_ON(sd_sysctl_header);
e692ab53
NP
4973 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4974}
6382bc90 4975
7378547f 4976/* may be called multiple times per register */
6382bc90
MM
4977static void unregister_sched_domain_sysctl(void)
4978{
7378547f
MM
4979 if (sd_sysctl_header)
4980 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4981 sd_sysctl_header = NULL;
7378547f
MM
4982 if (sd_ctl_dir[0].child)
4983 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4984}
e692ab53 4985#else
6382bc90
MM
4986static void register_sched_domain_sysctl(void)
4987{
4988}
4989static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4990{
4991}
4992#endif
4993
1f11eb6a
GH
4994static void set_rq_online(struct rq *rq)
4995{
4996 if (!rq->online) {
4997 const struct sched_class *class;
4998
c6c4927b 4999 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5000 rq->online = 1;
5001
5002 for_each_class(class) {
5003 if (class->rq_online)
5004 class->rq_online(rq);
5005 }
5006 }
5007}
5008
5009static void set_rq_offline(struct rq *rq)
5010{
5011 if (rq->online) {
5012 const struct sched_class *class;
5013
5014 for_each_class(class) {
5015 if (class->rq_offline)
5016 class->rq_offline(rq);
5017 }
5018
c6c4927b 5019 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5020 rq->online = 0;
5021 }
5022}
5023
1da177e4
LT
5024/*
5025 * migration_call - callback that gets triggered when a CPU is added.
5026 * Here we can start up the necessary migration thread for the new CPU.
5027 */
0db0628d 5028static int
48f24c4d 5029migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5030{
48f24c4d 5031 int cpu = (long)hcpu;
1da177e4 5032 unsigned long flags;
969c7921 5033 struct rq *rq = cpu_rq(cpu);
1da177e4 5034
48c5ccae 5035 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5036
1da177e4 5037 case CPU_UP_PREPARE:
a468d389 5038 rq->calc_load_update = calc_load_update;
1da177e4 5039 break;
48f24c4d 5040
1da177e4 5041 case CPU_ONLINE:
1f94ef59 5042 /* Update our root-domain */
05fa785c 5043 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5044 if (rq->rd) {
c6c4927b 5045 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5046
5047 set_rq_online(rq);
1f94ef59 5048 }
05fa785c 5049 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5050 break;
48f24c4d 5051
1da177e4 5052#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5053 case CPU_DYING:
317f3941 5054 sched_ttwu_pending();
57d885fe 5055 /* Update our root-domain */
05fa785c 5056 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5057 if (rq->rd) {
c6c4927b 5058 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5059 set_rq_offline(rq);
57d885fe 5060 }
48c5ccae
PZ
5061 migrate_tasks(cpu);
5062 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5063 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5064 break;
48c5ccae 5065
5d180232 5066 case CPU_DEAD:
f319da0c 5067 calc_load_migrate(rq);
57d885fe 5068 break;
1da177e4
LT
5069#endif
5070 }
49c022e6
PZ
5071
5072 update_max_interval();
5073
1da177e4
LT
5074 return NOTIFY_OK;
5075}
5076
f38b0820
PM
5077/*
5078 * Register at high priority so that task migration (migrate_all_tasks)
5079 * happens before everything else. This has to be lower priority than
cdd6c482 5080 * the notifier in the perf_event subsystem, though.
1da177e4 5081 */
0db0628d 5082static struct notifier_block migration_notifier = {
1da177e4 5083 .notifier_call = migration_call,
50a323b7 5084 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5085};
5086
0db0628d 5087static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5088 unsigned long action, void *hcpu)
5089{
5090 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5091 case CPU_STARTING:
3a101d05
TH
5092 case CPU_DOWN_FAILED:
5093 set_cpu_active((long)hcpu, true);
5094 return NOTIFY_OK;
5095 default:
5096 return NOTIFY_DONE;
5097 }
5098}
5099
0db0628d 5100static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5101 unsigned long action, void *hcpu)
5102{
de212f18
PZ
5103 unsigned long flags;
5104 long cpu = (long)hcpu;
5105
3a101d05
TH
5106 switch (action & ~CPU_TASKS_FROZEN) {
5107 case CPU_DOWN_PREPARE:
de212f18
PZ
5108 set_cpu_active(cpu, false);
5109
5110 /* explicitly allow suspend */
5111 if (!(action & CPU_TASKS_FROZEN)) {
5112 struct dl_bw *dl_b = dl_bw_of(cpu);
5113 bool overflow;
5114 int cpus;
5115
5116 raw_spin_lock_irqsave(&dl_b->lock, flags);
5117 cpus = dl_bw_cpus(cpu);
5118 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5119 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5120
5121 if (overflow)
5122 return notifier_from_errno(-EBUSY);
5123 }
3a101d05 5124 return NOTIFY_OK;
3a101d05 5125 }
de212f18
PZ
5126
5127 return NOTIFY_DONE;
3a101d05
TH
5128}
5129
7babe8db 5130static int __init migration_init(void)
1da177e4
LT
5131{
5132 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5133 int err;
48f24c4d 5134
3a101d05 5135 /* Initialize migration for the boot CPU */
07dccf33
AM
5136 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5137 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5138 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5139 register_cpu_notifier(&migration_notifier);
7babe8db 5140
3a101d05
TH
5141 /* Register cpu active notifiers */
5142 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5143 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5144
a004cd42 5145 return 0;
1da177e4 5146}
7babe8db 5147early_initcall(migration_init);
1da177e4
LT
5148#endif
5149
5150#ifdef CONFIG_SMP
476f3534 5151
4cb98839
PZ
5152static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5153
3e9830dc 5154#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5155
d039ac60 5156static __read_mostly int sched_debug_enabled;
f6630114 5157
d039ac60 5158static int __init sched_debug_setup(char *str)
f6630114 5159{
d039ac60 5160 sched_debug_enabled = 1;
f6630114
MT
5161
5162 return 0;
5163}
d039ac60
PZ
5164early_param("sched_debug", sched_debug_setup);
5165
5166static inline bool sched_debug(void)
5167{
5168 return sched_debug_enabled;
5169}
f6630114 5170
7c16ec58 5171static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5172 struct cpumask *groupmask)
1da177e4 5173{
4dcf6aff 5174 struct sched_group *group = sd->groups;
434d53b0 5175 char str[256];
1da177e4 5176
968ea6d8 5177 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5178 cpumask_clear(groupmask);
4dcf6aff
IM
5179
5180 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5181
5182 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5183 printk("does not load-balance\n");
4dcf6aff 5184 if (sd->parent)
3df0fc5b
PZ
5185 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5186 " has parent");
4dcf6aff 5187 return -1;
41c7ce9a
NP
5188 }
5189
3df0fc5b 5190 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5191
758b2cdc 5192 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5193 printk(KERN_ERR "ERROR: domain->span does not contain "
5194 "CPU%d\n", cpu);
4dcf6aff 5195 }
758b2cdc 5196 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5197 printk(KERN_ERR "ERROR: domain->groups does not contain"
5198 " CPU%d\n", cpu);
4dcf6aff 5199 }
1da177e4 5200
4dcf6aff 5201 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5202 do {
4dcf6aff 5203 if (!group) {
3df0fc5b
PZ
5204 printk("\n");
5205 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5206 break;
5207 }
5208
c3decf0d
PZ
5209 /*
5210 * Even though we initialize ->power to something semi-sane,
5211 * we leave power_orig unset. This allows us to detect if
5212 * domain iteration is still funny without causing /0 traps.
5213 */
5214 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5215 printk(KERN_CONT "\n");
5216 printk(KERN_ERR "ERROR: domain->cpu_power not "
5217 "set\n");
4dcf6aff
IM
5218 break;
5219 }
1da177e4 5220
758b2cdc 5221 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5222 printk(KERN_CONT "\n");
5223 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5224 break;
5225 }
1da177e4 5226
cb83b629
PZ
5227 if (!(sd->flags & SD_OVERLAP) &&
5228 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5229 printk(KERN_CONT "\n");
5230 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5231 break;
5232 }
1da177e4 5233
758b2cdc 5234 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5235
968ea6d8 5236 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5237
3df0fc5b 5238 printk(KERN_CONT " %s", str);
9c3f75cb 5239 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5240 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5241 group->sgp->power);
381512cf 5242 }
1da177e4 5243
4dcf6aff
IM
5244 group = group->next;
5245 } while (group != sd->groups);
3df0fc5b 5246 printk(KERN_CONT "\n");
1da177e4 5247
758b2cdc 5248 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5249 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5250
758b2cdc
RR
5251 if (sd->parent &&
5252 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5253 printk(KERN_ERR "ERROR: parent span is not a superset "
5254 "of domain->span\n");
4dcf6aff
IM
5255 return 0;
5256}
1da177e4 5257
4dcf6aff
IM
5258static void sched_domain_debug(struct sched_domain *sd, int cpu)
5259{
5260 int level = 0;
1da177e4 5261
d039ac60 5262 if (!sched_debug_enabled)
f6630114
MT
5263 return;
5264
4dcf6aff
IM
5265 if (!sd) {
5266 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5267 return;
5268 }
1da177e4 5269
4dcf6aff
IM
5270 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5271
5272 for (;;) {
4cb98839 5273 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5274 break;
1da177e4
LT
5275 level++;
5276 sd = sd->parent;
33859f7f 5277 if (!sd)
4dcf6aff
IM
5278 break;
5279 }
1da177e4 5280}
6d6bc0ad 5281#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5282# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5283static inline bool sched_debug(void)
5284{
5285 return false;
5286}
6d6bc0ad 5287#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5288
1a20ff27 5289static int sd_degenerate(struct sched_domain *sd)
245af2c7 5290{
758b2cdc 5291 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5292 return 1;
5293
5294 /* Following flags need at least 2 groups */
5295 if (sd->flags & (SD_LOAD_BALANCE |
5296 SD_BALANCE_NEWIDLE |
5297 SD_BALANCE_FORK |
89c4710e
SS
5298 SD_BALANCE_EXEC |
5299 SD_SHARE_CPUPOWER |
5300 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5301 if (sd->groups != sd->groups->next)
5302 return 0;
5303 }
5304
5305 /* Following flags don't use groups */
c88d5910 5306 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5307 return 0;
5308
5309 return 1;
5310}
5311
48f24c4d
IM
5312static int
5313sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5314{
5315 unsigned long cflags = sd->flags, pflags = parent->flags;
5316
5317 if (sd_degenerate(parent))
5318 return 1;
5319
758b2cdc 5320 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5321 return 0;
5322
245af2c7
SS
5323 /* Flags needing groups don't count if only 1 group in parent */
5324 if (parent->groups == parent->groups->next) {
5325 pflags &= ~(SD_LOAD_BALANCE |
5326 SD_BALANCE_NEWIDLE |
5327 SD_BALANCE_FORK |
89c4710e
SS
5328 SD_BALANCE_EXEC |
5329 SD_SHARE_CPUPOWER |
10866e62
PZ
5330 SD_SHARE_PKG_RESOURCES |
5331 SD_PREFER_SIBLING);
5436499e
KC
5332 if (nr_node_ids == 1)
5333 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5334 }
5335 if (~cflags & pflags)
5336 return 0;
5337
5338 return 1;
5339}
5340
dce840a0 5341static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5342{
dce840a0 5343 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5344
68e74568 5345 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5346 cpudl_cleanup(&rd->cpudl);
1baca4ce 5347 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5348 free_cpumask_var(rd->rto_mask);
5349 free_cpumask_var(rd->online);
5350 free_cpumask_var(rd->span);
5351 kfree(rd);
5352}
5353
57d885fe
GH
5354static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5355{
a0490fa3 5356 struct root_domain *old_rd = NULL;
57d885fe 5357 unsigned long flags;
57d885fe 5358
05fa785c 5359 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5360
5361 if (rq->rd) {
a0490fa3 5362 old_rd = rq->rd;
57d885fe 5363
c6c4927b 5364 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5365 set_rq_offline(rq);
57d885fe 5366
c6c4927b 5367 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5368
a0490fa3 5369 /*
0515973f 5370 * If we dont want to free the old_rd yet then
a0490fa3
IM
5371 * set old_rd to NULL to skip the freeing later
5372 * in this function:
5373 */
5374 if (!atomic_dec_and_test(&old_rd->refcount))
5375 old_rd = NULL;
57d885fe
GH
5376 }
5377
5378 atomic_inc(&rd->refcount);
5379 rq->rd = rd;
5380
c6c4927b 5381 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5382 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5383 set_rq_online(rq);
57d885fe 5384
05fa785c 5385 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5386
5387 if (old_rd)
dce840a0 5388 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5389}
5390
68c38fc3 5391static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5392{
5393 memset(rd, 0, sizeof(*rd));
5394
68c38fc3 5395 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5396 goto out;
68c38fc3 5397 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5398 goto free_span;
1baca4ce 5399 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5400 goto free_online;
1baca4ce
JL
5401 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5402 goto free_dlo_mask;
6e0534f2 5403
332ac17e 5404 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5405 if (cpudl_init(&rd->cpudl) != 0)
5406 goto free_dlo_mask;
332ac17e 5407
68c38fc3 5408 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5409 goto free_rto_mask;
c6c4927b 5410 return 0;
6e0534f2 5411
68e74568
RR
5412free_rto_mask:
5413 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5414free_dlo_mask:
5415 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5416free_online:
5417 free_cpumask_var(rd->online);
5418free_span:
5419 free_cpumask_var(rd->span);
0c910d28 5420out:
c6c4927b 5421 return -ENOMEM;
57d885fe
GH
5422}
5423
029632fb
PZ
5424/*
5425 * By default the system creates a single root-domain with all cpus as
5426 * members (mimicking the global state we have today).
5427 */
5428struct root_domain def_root_domain;
5429
57d885fe
GH
5430static void init_defrootdomain(void)
5431{
68c38fc3 5432 init_rootdomain(&def_root_domain);
c6c4927b 5433
57d885fe
GH
5434 atomic_set(&def_root_domain.refcount, 1);
5435}
5436
dc938520 5437static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5438{
5439 struct root_domain *rd;
5440
5441 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5442 if (!rd)
5443 return NULL;
5444
68c38fc3 5445 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5446 kfree(rd);
5447 return NULL;
5448 }
57d885fe
GH
5449
5450 return rd;
5451}
5452
e3589f6c
PZ
5453static void free_sched_groups(struct sched_group *sg, int free_sgp)
5454{
5455 struct sched_group *tmp, *first;
5456
5457 if (!sg)
5458 return;
5459
5460 first = sg;
5461 do {
5462 tmp = sg->next;
5463
5464 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5465 kfree(sg->sgp);
5466
5467 kfree(sg);
5468 sg = tmp;
5469 } while (sg != first);
5470}
5471
dce840a0
PZ
5472static void free_sched_domain(struct rcu_head *rcu)
5473{
5474 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5475
5476 /*
5477 * If its an overlapping domain it has private groups, iterate and
5478 * nuke them all.
5479 */
5480 if (sd->flags & SD_OVERLAP) {
5481 free_sched_groups(sd->groups, 1);
5482 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5483 kfree(sd->groups->sgp);
dce840a0 5484 kfree(sd->groups);
9c3f75cb 5485 }
dce840a0
PZ
5486 kfree(sd);
5487}
5488
5489static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5490{
5491 call_rcu(&sd->rcu, free_sched_domain);
5492}
5493
5494static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5495{
5496 for (; sd; sd = sd->parent)
5497 destroy_sched_domain(sd, cpu);
5498}
5499
518cd623
PZ
5500/*
5501 * Keep a special pointer to the highest sched_domain that has
5502 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5503 * allows us to avoid some pointer chasing select_idle_sibling().
5504 *
5505 * Also keep a unique ID per domain (we use the first cpu number in
5506 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5507 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5508 */
5509DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5510DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5511DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5512DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5513DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5514DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5515
5516static void update_top_cache_domain(int cpu)
5517{
5518 struct sched_domain *sd;
5d4cf996 5519 struct sched_domain *busy_sd = NULL;
518cd623 5520 int id = cpu;
7d9ffa89 5521 int size = 1;
518cd623
PZ
5522
5523 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5524 if (sd) {
518cd623 5525 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5526 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5527 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5528 }
5d4cf996 5529 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5530
5531 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5532 per_cpu(sd_llc_size, cpu) = size;
518cd623 5533 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5534
5535 sd = lowest_flag_domain(cpu, SD_NUMA);
5536 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5537
5538 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5539 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5540}
5541
1da177e4 5542/*
0eab9146 5543 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5544 * hold the hotplug lock.
5545 */
0eab9146
IM
5546static void
5547cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5548{
70b97a7f 5549 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5550 struct sched_domain *tmp;
5551
5552 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5553 for (tmp = sd; tmp; ) {
245af2c7
SS
5554 struct sched_domain *parent = tmp->parent;
5555 if (!parent)
5556 break;
f29c9b1c 5557
1a848870 5558 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5559 tmp->parent = parent->parent;
1a848870
SS
5560 if (parent->parent)
5561 parent->parent->child = tmp;
10866e62
PZ
5562 /*
5563 * Transfer SD_PREFER_SIBLING down in case of a
5564 * degenerate parent; the spans match for this
5565 * so the property transfers.
5566 */
5567 if (parent->flags & SD_PREFER_SIBLING)
5568 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5569 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5570 } else
5571 tmp = tmp->parent;
245af2c7
SS
5572 }
5573
1a848870 5574 if (sd && sd_degenerate(sd)) {
dce840a0 5575 tmp = sd;
245af2c7 5576 sd = sd->parent;
dce840a0 5577 destroy_sched_domain(tmp, cpu);
1a848870
SS
5578 if (sd)
5579 sd->child = NULL;
5580 }
1da177e4 5581
4cb98839 5582 sched_domain_debug(sd, cpu);
1da177e4 5583
57d885fe 5584 rq_attach_root(rq, rd);
dce840a0 5585 tmp = rq->sd;
674311d5 5586 rcu_assign_pointer(rq->sd, sd);
dce840a0 5587 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5588
5589 update_top_cache_domain(cpu);
1da177e4
LT
5590}
5591
5592/* cpus with isolated domains */
dcc30a35 5593static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5594
5595/* Setup the mask of cpus configured for isolated domains */
5596static int __init isolated_cpu_setup(char *str)
5597{
bdddd296 5598 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5599 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5600 return 1;
5601}
5602
8927f494 5603__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5604
d3081f52
PZ
5605static const struct cpumask *cpu_cpu_mask(int cpu)
5606{
5607 return cpumask_of_node(cpu_to_node(cpu));
5608}
5609
dce840a0
PZ
5610struct sd_data {
5611 struct sched_domain **__percpu sd;
5612 struct sched_group **__percpu sg;
9c3f75cb 5613 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5614};
5615
49a02c51 5616struct s_data {
21d42ccf 5617 struct sched_domain ** __percpu sd;
49a02c51
AH
5618 struct root_domain *rd;
5619};
5620
2109b99e 5621enum s_alloc {
2109b99e 5622 sa_rootdomain,
21d42ccf 5623 sa_sd,
dce840a0 5624 sa_sd_storage,
2109b99e
AH
5625 sa_none,
5626};
5627
54ab4ff4
PZ
5628struct sched_domain_topology_level;
5629
5630typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5631typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5632
e3589f6c
PZ
5633#define SDTL_OVERLAP 0x01
5634
eb7a74e6 5635struct sched_domain_topology_level {
2c402dc3
PZ
5636 sched_domain_init_f init;
5637 sched_domain_mask_f mask;
e3589f6c 5638 int flags;
cb83b629 5639 int numa_level;
54ab4ff4 5640 struct sd_data data;
eb7a74e6
PZ
5641};
5642
c1174876
PZ
5643/*
5644 * Build an iteration mask that can exclude certain CPUs from the upwards
5645 * domain traversal.
5646 *
5647 * Asymmetric node setups can result in situations where the domain tree is of
5648 * unequal depth, make sure to skip domains that already cover the entire
5649 * range.
5650 *
5651 * In that case build_sched_domains() will have terminated the iteration early
5652 * and our sibling sd spans will be empty. Domains should always include the
5653 * cpu they're built on, so check that.
5654 *
5655 */
5656static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5657{
5658 const struct cpumask *span = sched_domain_span(sd);
5659 struct sd_data *sdd = sd->private;
5660 struct sched_domain *sibling;
5661 int i;
5662
5663 for_each_cpu(i, span) {
5664 sibling = *per_cpu_ptr(sdd->sd, i);
5665 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5666 continue;
5667
5668 cpumask_set_cpu(i, sched_group_mask(sg));
5669 }
5670}
5671
5672/*
5673 * Return the canonical balance cpu for this group, this is the first cpu
5674 * of this group that's also in the iteration mask.
5675 */
5676int group_balance_cpu(struct sched_group *sg)
5677{
5678 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5679}
5680
e3589f6c
PZ
5681static int
5682build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5683{
5684 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5685 const struct cpumask *span = sched_domain_span(sd);
5686 struct cpumask *covered = sched_domains_tmpmask;
5687 struct sd_data *sdd = sd->private;
5688 struct sched_domain *child;
5689 int i;
5690
5691 cpumask_clear(covered);
5692
5693 for_each_cpu(i, span) {
5694 struct cpumask *sg_span;
5695
5696 if (cpumask_test_cpu(i, covered))
5697 continue;
5698
c1174876
PZ
5699 child = *per_cpu_ptr(sdd->sd, i);
5700
5701 /* See the comment near build_group_mask(). */
5702 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5703 continue;
5704
e3589f6c 5705 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5706 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5707
5708 if (!sg)
5709 goto fail;
5710
5711 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5712 if (child->child) {
5713 child = child->child;
5714 cpumask_copy(sg_span, sched_domain_span(child));
5715 } else
5716 cpumask_set_cpu(i, sg_span);
5717
5718 cpumask_or(covered, covered, sg_span);
5719
74a5ce20 5720 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5721 if (atomic_inc_return(&sg->sgp->ref) == 1)
5722 build_group_mask(sd, sg);
5723
c3decf0d
PZ
5724 /*
5725 * Initialize sgp->power such that even if we mess up the
5726 * domains and no possible iteration will get us here, we won't
5727 * die on a /0 trap.
5728 */
5729 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5730 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5731
c1174876
PZ
5732 /*
5733 * Make sure the first group of this domain contains the
5734 * canonical balance cpu. Otherwise the sched_domain iteration
5735 * breaks. See update_sg_lb_stats().
5736 */
74a5ce20 5737 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5738 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5739 groups = sg;
5740
5741 if (!first)
5742 first = sg;
5743 if (last)
5744 last->next = sg;
5745 last = sg;
5746 last->next = first;
5747 }
5748 sd->groups = groups;
5749
5750 return 0;
5751
5752fail:
5753 free_sched_groups(first, 0);
5754
5755 return -ENOMEM;
5756}
5757
dce840a0 5758static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5759{
dce840a0
PZ
5760 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5761 struct sched_domain *child = sd->child;
1da177e4 5762
dce840a0
PZ
5763 if (child)
5764 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5765
9c3f75cb 5766 if (sg) {
dce840a0 5767 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5768 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5769 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5770 }
dce840a0
PZ
5771
5772 return cpu;
1e9f28fa 5773}
1e9f28fa 5774
01a08546 5775/*
dce840a0
PZ
5776 * build_sched_groups will build a circular linked list of the groups
5777 * covered by the given span, and will set each group's ->cpumask correctly,
5778 * and ->cpu_power to 0.
e3589f6c
PZ
5779 *
5780 * Assumes the sched_domain tree is fully constructed
01a08546 5781 */
e3589f6c
PZ
5782static int
5783build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5784{
dce840a0
PZ
5785 struct sched_group *first = NULL, *last = NULL;
5786 struct sd_data *sdd = sd->private;
5787 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5788 struct cpumask *covered;
dce840a0 5789 int i;
9c1cfda2 5790
e3589f6c
PZ
5791 get_group(cpu, sdd, &sd->groups);
5792 atomic_inc(&sd->groups->ref);
5793
0936629f 5794 if (cpu != cpumask_first(span))
e3589f6c
PZ
5795 return 0;
5796
f96225fd
PZ
5797 lockdep_assert_held(&sched_domains_mutex);
5798 covered = sched_domains_tmpmask;
5799
dce840a0 5800 cpumask_clear(covered);
6711cab4 5801
dce840a0
PZ
5802 for_each_cpu(i, span) {
5803 struct sched_group *sg;
cd08e923 5804 int group, j;
6711cab4 5805
dce840a0
PZ
5806 if (cpumask_test_cpu(i, covered))
5807 continue;
6711cab4 5808
cd08e923 5809 group = get_group(i, sdd, &sg);
dce840a0 5810 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5811 sg->sgp->power = 0;
c1174876 5812 cpumask_setall(sched_group_mask(sg));
0601a88d 5813
dce840a0
PZ
5814 for_each_cpu(j, span) {
5815 if (get_group(j, sdd, NULL) != group)
5816 continue;
0601a88d 5817
dce840a0
PZ
5818 cpumask_set_cpu(j, covered);
5819 cpumask_set_cpu(j, sched_group_cpus(sg));
5820 }
0601a88d 5821
dce840a0
PZ
5822 if (!first)
5823 first = sg;
5824 if (last)
5825 last->next = sg;
5826 last = sg;
5827 }
5828 last->next = first;
e3589f6c
PZ
5829
5830 return 0;
0601a88d 5831}
51888ca2 5832
89c4710e
SS
5833/*
5834 * Initialize sched groups cpu_power.
5835 *
5836 * cpu_power indicates the capacity of sched group, which is used while
5837 * distributing the load between different sched groups in a sched domain.
5838 * Typically cpu_power for all the groups in a sched domain will be same unless
5839 * there are asymmetries in the topology. If there are asymmetries, group
5840 * having more cpu_power will pickup more load compared to the group having
5841 * less cpu_power.
89c4710e
SS
5842 */
5843static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5844{
e3589f6c 5845 struct sched_group *sg = sd->groups;
89c4710e 5846
94c95ba6 5847 WARN_ON(!sg);
e3589f6c
PZ
5848
5849 do {
5850 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5851 sg = sg->next;
5852 } while (sg != sd->groups);
89c4710e 5853
c1174876 5854 if (cpu != group_balance_cpu(sg))
e3589f6c 5855 return;
aae6d3dd 5856
d274cb30 5857 update_group_power(sd, cpu);
69e1e811 5858 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5859}
5860
029632fb
PZ
5861int __weak arch_sd_sibling_asym_packing(void)
5862{
5863 return 0*SD_ASYM_PACKING;
89c4710e
SS
5864}
5865
7c16ec58
MT
5866/*
5867 * Initializers for schedule domains
5868 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5869 */
5870
a5d8c348
IM
5871#ifdef CONFIG_SCHED_DEBUG
5872# define SD_INIT_NAME(sd, type) sd->name = #type
5873#else
5874# define SD_INIT_NAME(sd, type) do { } while (0)
5875#endif
5876
54ab4ff4
PZ
5877#define SD_INIT_FUNC(type) \
5878static noinline struct sched_domain * \
5879sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5880{ \
5881 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5882 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5883 SD_INIT_NAME(sd, type); \
5884 sd->private = &tl->data; \
5885 return sd; \
7c16ec58
MT
5886}
5887
5888SD_INIT_FUNC(CPU)
7c16ec58
MT
5889#ifdef CONFIG_SCHED_SMT
5890 SD_INIT_FUNC(SIBLING)
5891#endif
5892#ifdef CONFIG_SCHED_MC
5893 SD_INIT_FUNC(MC)
5894#endif
01a08546
HC
5895#ifdef CONFIG_SCHED_BOOK
5896 SD_INIT_FUNC(BOOK)
5897#endif
7c16ec58 5898
1d3504fc 5899static int default_relax_domain_level = -1;
60495e77 5900int sched_domain_level_max;
1d3504fc
HS
5901
5902static int __init setup_relax_domain_level(char *str)
5903{
a841f8ce
DS
5904 if (kstrtoint(str, 0, &default_relax_domain_level))
5905 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5906
1d3504fc
HS
5907 return 1;
5908}
5909__setup("relax_domain_level=", setup_relax_domain_level);
5910
5911static void set_domain_attribute(struct sched_domain *sd,
5912 struct sched_domain_attr *attr)
5913{
5914 int request;
5915
5916 if (!attr || attr->relax_domain_level < 0) {
5917 if (default_relax_domain_level < 0)
5918 return;
5919 else
5920 request = default_relax_domain_level;
5921 } else
5922 request = attr->relax_domain_level;
5923 if (request < sd->level) {
5924 /* turn off idle balance on this domain */
c88d5910 5925 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5926 } else {
5927 /* turn on idle balance on this domain */
c88d5910 5928 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5929 }
5930}
5931
54ab4ff4
PZ
5932static void __sdt_free(const struct cpumask *cpu_map);
5933static int __sdt_alloc(const struct cpumask *cpu_map);
5934
2109b99e
AH
5935static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5936 const struct cpumask *cpu_map)
5937{
5938 switch (what) {
2109b99e 5939 case sa_rootdomain:
822ff793
PZ
5940 if (!atomic_read(&d->rd->refcount))
5941 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5942 case sa_sd:
5943 free_percpu(d->sd); /* fall through */
dce840a0 5944 case sa_sd_storage:
54ab4ff4 5945 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5946 case sa_none:
5947 break;
5948 }
5949}
3404c8d9 5950
2109b99e
AH
5951static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5952 const struct cpumask *cpu_map)
5953{
dce840a0
PZ
5954 memset(d, 0, sizeof(*d));
5955
54ab4ff4
PZ
5956 if (__sdt_alloc(cpu_map))
5957 return sa_sd_storage;
dce840a0
PZ
5958 d->sd = alloc_percpu(struct sched_domain *);
5959 if (!d->sd)
5960 return sa_sd_storage;
2109b99e 5961 d->rd = alloc_rootdomain();
dce840a0 5962 if (!d->rd)
21d42ccf 5963 return sa_sd;
2109b99e
AH
5964 return sa_rootdomain;
5965}
57d885fe 5966
dce840a0
PZ
5967/*
5968 * NULL the sd_data elements we've used to build the sched_domain and
5969 * sched_group structure so that the subsequent __free_domain_allocs()
5970 * will not free the data we're using.
5971 */
5972static void claim_allocations(int cpu, struct sched_domain *sd)
5973{
5974 struct sd_data *sdd = sd->private;
dce840a0
PZ
5975
5976 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5977 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5978
e3589f6c 5979 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5980 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5981
5982 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5983 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5984}
5985
2c402dc3
PZ
5986#ifdef CONFIG_SCHED_SMT
5987static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5988{
2c402dc3 5989 return topology_thread_cpumask(cpu);
3bd65a80 5990}
2c402dc3 5991#endif
7f4588f3 5992
d069b916
PZ
5993/*
5994 * Topology list, bottom-up.
5995 */
2c402dc3 5996static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5997#ifdef CONFIG_SCHED_SMT
5998 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5999#endif
1e9f28fa 6000#ifdef CONFIG_SCHED_MC
2c402dc3 6001 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6002#endif
d069b916
PZ
6003#ifdef CONFIG_SCHED_BOOK
6004 { sd_init_BOOK, cpu_book_mask, },
6005#endif
6006 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6007 { NULL, },
6008};
6009
6010static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6011
27723a68
VK
6012#define for_each_sd_topology(tl) \
6013 for (tl = sched_domain_topology; tl->init; tl++)
6014
cb83b629
PZ
6015#ifdef CONFIG_NUMA
6016
6017static int sched_domains_numa_levels;
cb83b629
PZ
6018static int *sched_domains_numa_distance;
6019static struct cpumask ***sched_domains_numa_masks;
6020static int sched_domains_curr_level;
6021
cb83b629
PZ
6022static inline int sd_local_flags(int level)
6023{
10717dcd 6024 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6025 return 0;
6026
6027 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6028}
6029
6030static struct sched_domain *
6031sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6032{
6033 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6034 int level = tl->numa_level;
6035 int sd_weight = cpumask_weight(
6036 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6037
6038 *sd = (struct sched_domain){
6039 .min_interval = sd_weight,
6040 .max_interval = 2*sd_weight,
6041 .busy_factor = 32,
870a0bb5 6042 .imbalance_pct = 125,
cb83b629
PZ
6043 .cache_nice_tries = 2,
6044 .busy_idx = 3,
6045 .idle_idx = 2,
6046 .newidle_idx = 0,
6047 .wake_idx = 0,
6048 .forkexec_idx = 0,
6049
6050 .flags = 1*SD_LOAD_BALANCE
6051 | 1*SD_BALANCE_NEWIDLE
6052 | 0*SD_BALANCE_EXEC
6053 | 0*SD_BALANCE_FORK
6054 | 0*SD_BALANCE_WAKE
6055 | 0*SD_WAKE_AFFINE
cb83b629 6056 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6057 | 0*SD_SHARE_PKG_RESOURCES
6058 | 1*SD_SERIALIZE
6059 | 0*SD_PREFER_SIBLING
3a7053b3 6060 | 1*SD_NUMA
cb83b629
PZ
6061 | sd_local_flags(level)
6062 ,
6063 .last_balance = jiffies,
6064 .balance_interval = sd_weight,
6065 };
6066 SD_INIT_NAME(sd, NUMA);
6067 sd->private = &tl->data;
6068
6069 /*
6070 * Ugly hack to pass state to sd_numa_mask()...
6071 */
6072 sched_domains_curr_level = tl->numa_level;
6073
6074 return sd;
6075}
6076
6077static const struct cpumask *sd_numa_mask(int cpu)
6078{
6079 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6080}
6081
d039ac60
PZ
6082static void sched_numa_warn(const char *str)
6083{
6084 static int done = false;
6085 int i,j;
6086
6087 if (done)
6088 return;
6089
6090 done = true;
6091
6092 printk(KERN_WARNING "ERROR: %s\n\n", str);
6093
6094 for (i = 0; i < nr_node_ids; i++) {
6095 printk(KERN_WARNING " ");
6096 for (j = 0; j < nr_node_ids; j++)
6097 printk(KERN_CONT "%02d ", node_distance(i,j));
6098 printk(KERN_CONT "\n");
6099 }
6100 printk(KERN_WARNING "\n");
6101}
6102
6103static bool find_numa_distance(int distance)
6104{
6105 int i;
6106
6107 if (distance == node_distance(0, 0))
6108 return true;
6109
6110 for (i = 0; i < sched_domains_numa_levels; i++) {
6111 if (sched_domains_numa_distance[i] == distance)
6112 return true;
6113 }
6114
6115 return false;
6116}
6117
cb83b629
PZ
6118static void sched_init_numa(void)
6119{
6120 int next_distance, curr_distance = node_distance(0, 0);
6121 struct sched_domain_topology_level *tl;
6122 int level = 0;
6123 int i, j, k;
6124
cb83b629
PZ
6125 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6126 if (!sched_domains_numa_distance)
6127 return;
6128
6129 /*
6130 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6131 * unique distances in the node_distance() table.
6132 *
6133 * Assumes node_distance(0,j) includes all distances in
6134 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6135 */
6136 next_distance = curr_distance;
6137 for (i = 0; i < nr_node_ids; i++) {
6138 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6139 for (k = 0; k < nr_node_ids; k++) {
6140 int distance = node_distance(i, k);
6141
6142 if (distance > curr_distance &&
6143 (distance < next_distance ||
6144 next_distance == curr_distance))
6145 next_distance = distance;
6146
6147 /*
6148 * While not a strong assumption it would be nice to know
6149 * about cases where if node A is connected to B, B is not
6150 * equally connected to A.
6151 */
6152 if (sched_debug() && node_distance(k, i) != distance)
6153 sched_numa_warn("Node-distance not symmetric");
6154
6155 if (sched_debug() && i && !find_numa_distance(distance))
6156 sched_numa_warn("Node-0 not representative");
6157 }
6158 if (next_distance != curr_distance) {
6159 sched_domains_numa_distance[level++] = next_distance;
6160 sched_domains_numa_levels = level;
6161 curr_distance = next_distance;
6162 } else break;
cb83b629 6163 }
d039ac60
PZ
6164
6165 /*
6166 * In case of sched_debug() we verify the above assumption.
6167 */
6168 if (!sched_debug())
6169 break;
cb83b629
PZ
6170 }
6171 /*
6172 * 'level' contains the number of unique distances, excluding the
6173 * identity distance node_distance(i,i).
6174 *
28b4a521 6175 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6176 * numbers.
6177 */
6178
5f7865f3
TC
6179 /*
6180 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6181 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6182 * the array will contain less then 'level' members. This could be
6183 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6184 * in other functions.
6185 *
6186 * We reset it to 'level' at the end of this function.
6187 */
6188 sched_domains_numa_levels = 0;
6189
cb83b629
PZ
6190 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6191 if (!sched_domains_numa_masks)
6192 return;
6193
6194 /*
6195 * Now for each level, construct a mask per node which contains all
6196 * cpus of nodes that are that many hops away from us.
6197 */
6198 for (i = 0; i < level; i++) {
6199 sched_domains_numa_masks[i] =
6200 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6201 if (!sched_domains_numa_masks[i])
6202 return;
6203
6204 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6205 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6206 if (!mask)
6207 return;
6208
6209 sched_domains_numa_masks[i][j] = mask;
6210
6211 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6212 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6213 continue;
6214
6215 cpumask_or(mask, mask, cpumask_of_node(k));
6216 }
6217 }
6218 }
6219
6220 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6221 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6222 if (!tl)
6223 return;
6224
6225 /*
6226 * Copy the default topology bits..
6227 */
6228 for (i = 0; default_topology[i].init; i++)
6229 tl[i] = default_topology[i];
6230
6231 /*
6232 * .. and append 'j' levels of NUMA goodness.
6233 */
6234 for (j = 0; j < level; i++, j++) {
6235 tl[i] = (struct sched_domain_topology_level){
6236 .init = sd_numa_init,
6237 .mask = sd_numa_mask,
6238 .flags = SDTL_OVERLAP,
6239 .numa_level = j,
6240 };
6241 }
6242
6243 sched_domain_topology = tl;
5f7865f3
TC
6244
6245 sched_domains_numa_levels = level;
cb83b629 6246}
301a5cba
TC
6247
6248static void sched_domains_numa_masks_set(int cpu)
6249{
6250 int i, j;
6251 int node = cpu_to_node(cpu);
6252
6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++) {
6255 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6256 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6257 }
6258 }
6259}
6260
6261static void sched_domains_numa_masks_clear(int cpu)
6262{
6263 int i, j;
6264 for (i = 0; i < sched_domains_numa_levels; i++) {
6265 for (j = 0; j < nr_node_ids; j++)
6266 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6267 }
6268}
6269
6270/*
6271 * Update sched_domains_numa_masks[level][node] array when new cpus
6272 * are onlined.
6273 */
6274static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6275 unsigned long action,
6276 void *hcpu)
6277{
6278 int cpu = (long)hcpu;
6279
6280 switch (action & ~CPU_TASKS_FROZEN) {
6281 case CPU_ONLINE:
6282 sched_domains_numa_masks_set(cpu);
6283 break;
6284
6285 case CPU_DEAD:
6286 sched_domains_numa_masks_clear(cpu);
6287 break;
6288
6289 default:
6290 return NOTIFY_DONE;
6291 }
6292
6293 return NOTIFY_OK;
cb83b629
PZ
6294}
6295#else
6296static inline void sched_init_numa(void)
6297{
6298}
301a5cba
TC
6299
6300static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6301 unsigned long action,
6302 void *hcpu)
6303{
6304 return 0;
6305}
cb83b629
PZ
6306#endif /* CONFIG_NUMA */
6307
54ab4ff4
PZ
6308static int __sdt_alloc(const struct cpumask *cpu_map)
6309{
6310 struct sched_domain_topology_level *tl;
6311 int j;
6312
27723a68 6313 for_each_sd_topology(tl) {
54ab4ff4
PZ
6314 struct sd_data *sdd = &tl->data;
6315
6316 sdd->sd = alloc_percpu(struct sched_domain *);
6317 if (!sdd->sd)
6318 return -ENOMEM;
6319
6320 sdd->sg = alloc_percpu(struct sched_group *);
6321 if (!sdd->sg)
6322 return -ENOMEM;
6323
9c3f75cb
PZ
6324 sdd->sgp = alloc_percpu(struct sched_group_power *);
6325 if (!sdd->sgp)
6326 return -ENOMEM;
6327
54ab4ff4
PZ
6328 for_each_cpu(j, cpu_map) {
6329 struct sched_domain *sd;
6330 struct sched_group *sg;
9c3f75cb 6331 struct sched_group_power *sgp;
54ab4ff4
PZ
6332
6333 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6334 GFP_KERNEL, cpu_to_node(j));
6335 if (!sd)
6336 return -ENOMEM;
6337
6338 *per_cpu_ptr(sdd->sd, j) = sd;
6339
6340 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6341 GFP_KERNEL, cpu_to_node(j));
6342 if (!sg)
6343 return -ENOMEM;
6344
30b4e9eb
IM
6345 sg->next = sg;
6346
54ab4ff4 6347 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6348
c1174876 6349 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6350 GFP_KERNEL, cpu_to_node(j));
6351 if (!sgp)
6352 return -ENOMEM;
6353
6354 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6355 }
6356 }
6357
6358 return 0;
6359}
6360
6361static void __sdt_free(const struct cpumask *cpu_map)
6362{
6363 struct sched_domain_topology_level *tl;
6364 int j;
6365
27723a68 6366 for_each_sd_topology(tl) {
54ab4ff4
PZ
6367 struct sd_data *sdd = &tl->data;
6368
6369 for_each_cpu(j, cpu_map) {
fb2cf2c6 6370 struct sched_domain *sd;
6371
6372 if (sdd->sd) {
6373 sd = *per_cpu_ptr(sdd->sd, j);
6374 if (sd && (sd->flags & SD_OVERLAP))
6375 free_sched_groups(sd->groups, 0);
6376 kfree(*per_cpu_ptr(sdd->sd, j));
6377 }
6378
6379 if (sdd->sg)
6380 kfree(*per_cpu_ptr(sdd->sg, j));
6381 if (sdd->sgp)
6382 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6383 }
6384 free_percpu(sdd->sd);
fb2cf2c6 6385 sdd->sd = NULL;
54ab4ff4 6386 free_percpu(sdd->sg);
fb2cf2c6 6387 sdd->sg = NULL;
9c3f75cb 6388 free_percpu(sdd->sgp);
fb2cf2c6 6389 sdd->sgp = NULL;
54ab4ff4
PZ
6390 }
6391}
6392
2c402dc3 6393struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6394 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6395 struct sched_domain *child, int cpu)
2c402dc3 6396{
54ab4ff4 6397 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6398 if (!sd)
d069b916 6399 return child;
2c402dc3 6400
2c402dc3 6401 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6402 if (child) {
6403 sd->level = child->level + 1;
6404 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6405 child->parent = sd;
c75e0128 6406 sd->child = child;
60495e77 6407 }
a841f8ce 6408 set_domain_attribute(sd, attr);
2c402dc3
PZ
6409
6410 return sd;
6411}
6412
2109b99e
AH
6413/*
6414 * Build sched domains for a given set of cpus and attach the sched domains
6415 * to the individual cpus
6416 */
dce840a0
PZ
6417static int build_sched_domains(const struct cpumask *cpu_map,
6418 struct sched_domain_attr *attr)
2109b99e 6419{
1c632169 6420 enum s_alloc alloc_state;
dce840a0 6421 struct sched_domain *sd;
2109b99e 6422 struct s_data d;
822ff793 6423 int i, ret = -ENOMEM;
9c1cfda2 6424
2109b99e
AH
6425 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6426 if (alloc_state != sa_rootdomain)
6427 goto error;
9c1cfda2 6428
dce840a0 6429 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6430 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6431 struct sched_domain_topology_level *tl;
6432
3bd65a80 6433 sd = NULL;
27723a68 6434 for_each_sd_topology(tl) {
4a850cbe 6435 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6436 if (tl == sched_domain_topology)
6437 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6438 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6439 sd->flags |= SD_OVERLAP;
d110235d
PZ
6440 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6441 break;
e3589f6c 6442 }
dce840a0
PZ
6443 }
6444
6445 /* Build the groups for the domains */
6446 for_each_cpu(i, cpu_map) {
6447 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6448 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6449 if (sd->flags & SD_OVERLAP) {
6450 if (build_overlap_sched_groups(sd, i))
6451 goto error;
6452 } else {
6453 if (build_sched_groups(sd, i))
6454 goto error;
6455 }
1cf51902 6456 }
a06dadbe 6457 }
9c1cfda2 6458
1da177e4 6459 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6460 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6461 if (!cpumask_test_cpu(i, cpu_map))
6462 continue;
9c1cfda2 6463
dce840a0
PZ
6464 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6465 claim_allocations(i, sd);
cd4ea6ae 6466 init_sched_groups_power(i, sd);
dce840a0 6467 }
f712c0c7 6468 }
9c1cfda2 6469
1da177e4 6470 /* Attach the domains */
dce840a0 6471 rcu_read_lock();
abcd083a 6472 for_each_cpu(i, cpu_map) {
21d42ccf 6473 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6474 cpu_attach_domain(sd, d.rd, i);
1da177e4 6475 }
dce840a0 6476 rcu_read_unlock();
51888ca2 6477
822ff793 6478 ret = 0;
51888ca2 6479error:
2109b99e 6480 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6481 return ret;
1da177e4 6482}
029190c5 6483
acc3f5d7 6484static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6485static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6486static struct sched_domain_attr *dattr_cur;
6487 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6488
6489/*
6490 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6491 * cpumask) fails, then fallback to a single sched domain,
6492 * as determined by the single cpumask fallback_doms.
029190c5 6493 */
4212823f 6494static cpumask_var_t fallback_doms;
029190c5 6495
ee79d1bd
HC
6496/*
6497 * arch_update_cpu_topology lets virtualized architectures update the
6498 * cpu core maps. It is supposed to return 1 if the topology changed
6499 * or 0 if it stayed the same.
6500 */
6501int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6502{
ee79d1bd 6503 return 0;
22e52b07
HC
6504}
6505
acc3f5d7
RR
6506cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6507{
6508 int i;
6509 cpumask_var_t *doms;
6510
6511 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6512 if (!doms)
6513 return NULL;
6514 for (i = 0; i < ndoms; i++) {
6515 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6516 free_sched_domains(doms, i);
6517 return NULL;
6518 }
6519 }
6520 return doms;
6521}
6522
6523void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6524{
6525 unsigned int i;
6526 for (i = 0; i < ndoms; i++)
6527 free_cpumask_var(doms[i]);
6528 kfree(doms);
6529}
6530
1a20ff27 6531/*
41a2d6cf 6532 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6533 * For now this just excludes isolated cpus, but could be used to
6534 * exclude other special cases in the future.
1a20ff27 6535 */
c4a8849a 6536static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6537{
7378547f
MM
6538 int err;
6539
22e52b07 6540 arch_update_cpu_topology();
029190c5 6541 ndoms_cur = 1;
acc3f5d7 6542 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6543 if (!doms_cur)
acc3f5d7
RR
6544 doms_cur = &fallback_doms;
6545 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6546 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6547 register_sched_domain_sysctl();
7378547f
MM
6548
6549 return err;
1a20ff27
DG
6550}
6551
1a20ff27
DG
6552/*
6553 * Detach sched domains from a group of cpus specified in cpu_map
6554 * These cpus will now be attached to the NULL domain
6555 */
96f874e2 6556static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6557{
6558 int i;
6559
dce840a0 6560 rcu_read_lock();
abcd083a 6561 for_each_cpu(i, cpu_map)
57d885fe 6562 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6563 rcu_read_unlock();
1a20ff27
DG
6564}
6565
1d3504fc
HS
6566/* handle null as "default" */
6567static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6568 struct sched_domain_attr *new, int idx_new)
6569{
6570 struct sched_domain_attr tmp;
6571
6572 /* fast path */
6573 if (!new && !cur)
6574 return 1;
6575
6576 tmp = SD_ATTR_INIT;
6577 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6578 new ? (new + idx_new) : &tmp,
6579 sizeof(struct sched_domain_attr));
6580}
6581
029190c5
PJ
6582/*
6583 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6584 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6585 * doms_new[] to the current sched domain partitioning, doms_cur[].
6586 * It destroys each deleted domain and builds each new domain.
6587 *
acc3f5d7 6588 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6589 * The masks don't intersect (don't overlap.) We should setup one
6590 * sched domain for each mask. CPUs not in any of the cpumasks will
6591 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6592 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6593 * it as it is.
6594 *
acc3f5d7
RR
6595 * The passed in 'doms_new' should be allocated using
6596 * alloc_sched_domains. This routine takes ownership of it and will
6597 * free_sched_domains it when done with it. If the caller failed the
6598 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6599 * and partition_sched_domains() will fallback to the single partition
6600 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6601 *
96f874e2 6602 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6603 * ndoms_new == 0 is a special case for destroying existing domains,
6604 * and it will not create the default domain.
dfb512ec 6605 *
029190c5
PJ
6606 * Call with hotplug lock held
6607 */
acc3f5d7 6608void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6609 struct sched_domain_attr *dattr_new)
029190c5 6610{
dfb512ec 6611 int i, j, n;
d65bd5ec 6612 int new_topology;
029190c5 6613
712555ee 6614 mutex_lock(&sched_domains_mutex);
a1835615 6615
7378547f
MM
6616 /* always unregister in case we don't destroy any domains */
6617 unregister_sched_domain_sysctl();
6618
d65bd5ec
HC
6619 /* Let architecture update cpu core mappings. */
6620 new_topology = arch_update_cpu_topology();
6621
dfb512ec 6622 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6623
6624 /* Destroy deleted domains */
6625 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6626 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6627 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6628 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6629 goto match1;
6630 }
6631 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6632 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6633match1:
6634 ;
6635 }
6636
c8d2d47a 6637 n = ndoms_cur;
e761b772 6638 if (doms_new == NULL) {
c8d2d47a 6639 n = 0;
acc3f5d7 6640 doms_new = &fallback_doms;
6ad4c188 6641 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6642 WARN_ON_ONCE(dattr_new);
e761b772
MK
6643 }
6644
029190c5
PJ
6645 /* Build new domains */
6646 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6647 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6648 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6649 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6650 goto match2;
6651 }
6652 /* no match - add a new doms_new */
dce840a0 6653 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6654match2:
6655 ;
6656 }
6657
6658 /* Remember the new sched domains */
acc3f5d7
RR
6659 if (doms_cur != &fallback_doms)
6660 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6661 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6662 doms_cur = doms_new;
1d3504fc 6663 dattr_cur = dattr_new;
029190c5 6664 ndoms_cur = ndoms_new;
7378547f
MM
6665
6666 register_sched_domain_sysctl();
a1835615 6667
712555ee 6668 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6669}
6670
d35be8ba
SB
6671static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6672
1da177e4 6673/*
3a101d05
TH
6674 * Update cpusets according to cpu_active mask. If cpusets are
6675 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6676 * around partition_sched_domains().
d35be8ba
SB
6677 *
6678 * If we come here as part of a suspend/resume, don't touch cpusets because we
6679 * want to restore it back to its original state upon resume anyway.
1da177e4 6680 */
0b2e918a
TH
6681static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6682 void *hcpu)
e761b772 6683{
d35be8ba
SB
6684 switch (action) {
6685 case CPU_ONLINE_FROZEN:
6686 case CPU_DOWN_FAILED_FROZEN:
6687
6688 /*
6689 * num_cpus_frozen tracks how many CPUs are involved in suspend
6690 * resume sequence. As long as this is not the last online
6691 * operation in the resume sequence, just build a single sched
6692 * domain, ignoring cpusets.
6693 */
6694 num_cpus_frozen--;
6695 if (likely(num_cpus_frozen)) {
6696 partition_sched_domains(1, NULL, NULL);
6697 break;
6698 }
6699
6700 /*
6701 * This is the last CPU online operation. So fall through and
6702 * restore the original sched domains by considering the
6703 * cpuset configurations.
6704 */
6705
e761b772 6706 case CPU_ONLINE:
6ad4c188 6707 case CPU_DOWN_FAILED:
7ddf96b0 6708 cpuset_update_active_cpus(true);
d35be8ba 6709 break;
3a101d05
TH
6710 default:
6711 return NOTIFY_DONE;
6712 }
d35be8ba 6713 return NOTIFY_OK;
3a101d05 6714}
e761b772 6715
0b2e918a
TH
6716static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6717 void *hcpu)
3a101d05 6718{
d35be8ba 6719 switch (action) {
3a101d05 6720 case CPU_DOWN_PREPARE:
7ddf96b0 6721 cpuset_update_active_cpus(false);
d35be8ba
SB
6722 break;
6723 case CPU_DOWN_PREPARE_FROZEN:
6724 num_cpus_frozen++;
6725 partition_sched_domains(1, NULL, NULL);
6726 break;
e761b772
MK
6727 default:
6728 return NOTIFY_DONE;
6729 }
d35be8ba 6730 return NOTIFY_OK;
e761b772 6731}
e761b772 6732
1da177e4
LT
6733void __init sched_init_smp(void)
6734{
dcc30a35
RR
6735 cpumask_var_t non_isolated_cpus;
6736
6737 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6738 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6739
cb83b629
PZ
6740 sched_init_numa();
6741
6acce3ef
PZ
6742 /*
6743 * There's no userspace yet to cause hotplug operations; hence all the
6744 * cpu masks are stable and all blatant races in the below code cannot
6745 * happen.
6746 */
712555ee 6747 mutex_lock(&sched_domains_mutex);
c4a8849a 6748 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6749 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6750 if (cpumask_empty(non_isolated_cpus))
6751 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6752 mutex_unlock(&sched_domains_mutex);
e761b772 6753
301a5cba 6754 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6755 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6756 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6757
b328ca18 6758 init_hrtick();
5c1e1767
NP
6759
6760 /* Move init over to a non-isolated CPU */
dcc30a35 6761 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6762 BUG();
19978ca6 6763 sched_init_granularity();
dcc30a35 6764 free_cpumask_var(non_isolated_cpus);
4212823f 6765
0e3900e6 6766 init_sched_rt_class();
1baca4ce 6767 init_sched_dl_class();
1da177e4
LT
6768}
6769#else
6770void __init sched_init_smp(void)
6771{
19978ca6 6772 sched_init_granularity();
1da177e4
LT
6773}
6774#endif /* CONFIG_SMP */
6775
cd1bb94b
AB
6776const_debug unsigned int sysctl_timer_migration = 1;
6777
1da177e4
LT
6778int in_sched_functions(unsigned long addr)
6779{
1da177e4
LT
6780 return in_lock_functions(addr) ||
6781 (addr >= (unsigned long)__sched_text_start
6782 && addr < (unsigned long)__sched_text_end);
6783}
6784
029632fb 6785#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6786/*
6787 * Default task group.
6788 * Every task in system belongs to this group at bootup.
6789 */
029632fb 6790struct task_group root_task_group;
35cf4e50 6791LIST_HEAD(task_groups);
052f1dc7 6792#endif
6f505b16 6793
e6252c3e 6794DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6795
1da177e4
LT
6796void __init sched_init(void)
6797{
dd41f596 6798 int i, j;
434d53b0
MT
6799 unsigned long alloc_size = 0, ptr;
6800
6801#ifdef CONFIG_FAIR_GROUP_SCHED
6802 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6803#endif
6804#ifdef CONFIG_RT_GROUP_SCHED
6805 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6806#endif
df7c8e84 6807#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6808 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6809#endif
434d53b0 6810 if (alloc_size) {
36b7b6d4 6811 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6812
6813#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6814 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6815 ptr += nr_cpu_ids * sizeof(void **);
6816
07e06b01 6817 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6818 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6819
6d6bc0ad 6820#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6821#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6822 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6823 ptr += nr_cpu_ids * sizeof(void **);
6824
07e06b01 6825 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6826 ptr += nr_cpu_ids * sizeof(void **);
6827
6d6bc0ad 6828#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6829#ifdef CONFIG_CPUMASK_OFFSTACK
6830 for_each_possible_cpu(i) {
e6252c3e 6831 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6832 ptr += cpumask_size();
6833 }
6834#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6835 }
dd41f596 6836
332ac17e
DF
6837 init_rt_bandwidth(&def_rt_bandwidth,
6838 global_rt_period(), global_rt_runtime());
6839 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6840 global_rt_period(), global_rt_runtime());
332ac17e 6841
57d885fe
GH
6842#ifdef CONFIG_SMP
6843 init_defrootdomain();
6844#endif
6845
d0b27fa7 6846#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6847 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6848 global_rt_period(), global_rt_runtime());
6d6bc0ad 6849#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6850
7c941438 6851#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6852 list_add(&root_task_group.list, &task_groups);
6853 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6854 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6855 autogroup_init(&init_task);
54c707e9 6856
7c941438 6857#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6858
0a945022 6859 for_each_possible_cpu(i) {
70b97a7f 6860 struct rq *rq;
1da177e4
LT
6861
6862 rq = cpu_rq(i);
05fa785c 6863 raw_spin_lock_init(&rq->lock);
7897986b 6864 rq->nr_running = 0;
dce48a84
TG
6865 rq->calc_load_active = 0;
6866 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6867 init_cfs_rq(&rq->cfs);
6f505b16 6868 init_rt_rq(&rq->rt, rq);
aab03e05 6869 init_dl_rq(&rq->dl, rq);
dd41f596 6870#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6871 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6872 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6873 /*
07e06b01 6874 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6875 *
6876 * In case of task-groups formed thr' the cgroup filesystem, it
6877 * gets 100% of the cpu resources in the system. This overall
6878 * system cpu resource is divided among the tasks of
07e06b01 6879 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6880 * based on each entity's (task or task-group's) weight
6881 * (se->load.weight).
6882 *
07e06b01 6883 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6884 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6885 * then A0's share of the cpu resource is:
6886 *
0d905bca 6887 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6888 *
07e06b01
YZ
6889 * We achieve this by letting root_task_group's tasks sit
6890 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6891 */
ab84d31e 6892 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6893 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6894#endif /* CONFIG_FAIR_GROUP_SCHED */
6895
6896 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6897#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6898 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6899#endif
1da177e4 6900
dd41f596
IM
6901 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6902 rq->cpu_load[j] = 0;
fdf3e95d
VP
6903
6904 rq->last_load_update_tick = jiffies;
6905
1da177e4 6906#ifdef CONFIG_SMP
41c7ce9a 6907 rq->sd = NULL;
57d885fe 6908 rq->rd = NULL;
1399fa78 6909 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6910 rq->post_schedule = 0;
1da177e4 6911 rq->active_balance = 0;
dd41f596 6912 rq->next_balance = jiffies;
1da177e4 6913 rq->push_cpu = 0;
0a2966b4 6914 rq->cpu = i;
1f11eb6a 6915 rq->online = 0;
eae0c9df
MG
6916 rq->idle_stamp = 0;
6917 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6918 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6919
6920 INIT_LIST_HEAD(&rq->cfs_tasks);
6921
dc938520 6922 rq_attach_root(rq, &def_root_domain);
3451d024 6923#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6924 rq->nohz_flags = 0;
83cd4fe2 6925#endif
265f22a9
FW
6926#ifdef CONFIG_NO_HZ_FULL
6927 rq->last_sched_tick = 0;
6928#endif
1da177e4 6929#endif
8f4d37ec 6930 init_rq_hrtick(rq);
1da177e4 6931 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6932 }
6933
2dd73a4f 6934 set_load_weight(&init_task);
b50f60ce 6935
e107be36
AK
6936#ifdef CONFIG_PREEMPT_NOTIFIERS
6937 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6938#endif
6939
1da177e4
LT
6940 /*
6941 * The boot idle thread does lazy MMU switching as well:
6942 */
6943 atomic_inc(&init_mm.mm_count);
6944 enter_lazy_tlb(&init_mm, current);
6945
6946 /*
6947 * Make us the idle thread. Technically, schedule() should not be
6948 * called from this thread, however somewhere below it might be,
6949 * but because we are the idle thread, we just pick up running again
6950 * when this runqueue becomes "idle".
6951 */
6952 init_idle(current, smp_processor_id());
dce48a84
TG
6953
6954 calc_load_update = jiffies + LOAD_FREQ;
6955
dd41f596
IM
6956 /*
6957 * During early bootup we pretend to be a normal task:
6958 */
6959 current->sched_class = &fair_sched_class;
6892b75e 6960
bf4d83f6 6961#ifdef CONFIG_SMP
4cb98839 6962 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6963 /* May be allocated at isolcpus cmdline parse time */
6964 if (cpu_isolated_map == NULL)
6965 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6966 idle_thread_set_boot_cpu();
029632fb
PZ
6967#endif
6968 init_sched_fair_class();
6a7b3dc3 6969
6892b75e 6970 scheduler_running = 1;
1da177e4
LT
6971}
6972
d902db1e 6973#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6974static inline int preempt_count_equals(int preempt_offset)
6975{
234da7bc 6976 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6977
4ba8216c 6978 return (nested == preempt_offset);
e4aafea2
FW
6979}
6980
d894837f 6981void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6982{
1da177e4
LT
6983 static unsigned long prev_jiffy; /* ratelimiting */
6984
b3fbab05 6985 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6986 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6987 !is_idle_task(current)) ||
e4aafea2 6988 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6989 return;
6990 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6991 return;
6992 prev_jiffy = jiffies;
6993
3df0fc5b
PZ
6994 printk(KERN_ERR
6995 "BUG: sleeping function called from invalid context at %s:%d\n",
6996 file, line);
6997 printk(KERN_ERR
6998 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6999 in_atomic(), irqs_disabled(),
7000 current->pid, current->comm);
aef745fc
IM
7001
7002 debug_show_held_locks(current);
7003 if (irqs_disabled())
7004 print_irqtrace_events(current);
8f47b187
TG
7005#ifdef CONFIG_DEBUG_PREEMPT
7006 if (!preempt_count_equals(preempt_offset)) {
7007 pr_err("Preemption disabled at:");
7008 print_ip_sym(current->preempt_disable_ip);
7009 pr_cont("\n");
7010 }
7011#endif
aef745fc 7012 dump_stack();
1da177e4
LT
7013}
7014EXPORT_SYMBOL(__might_sleep);
7015#endif
7016
7017#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7018static void normalize_task(struct rq *rq, struct task_struct *p)
7019{
da7a735e 7020 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7021 struct sched_attr attr = {
7022 .sched_policy = SCHED_NORMAL,
7023 };
da7a735e 7024 int old_prio = p->prio;
3a5e4dc1 7025 int on_rq;
3e51f33f 7026
fd2f4419 7027 on_rq = p->on_rq;
3a5e4dc1 7028 if (on_rq)
4ca9b72b 7029 dequeue_task(rq, p, 0);
d50dde5a 7030 __setscheduler(rq, p, &attr);
3a5e4dc1 7031 if (on_rq) {
4ca9b72b 7032 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7033 resched_task(rq->curr);
7034 }
da7a735e
PZ
7035
7036 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7037}
7038
1da177e4
LT
7039void normalize_rt_tasks(void)
7040{
a0f98a1c 7041 struct task_struct *g, *p;
1da177e4 7042 unsigned long flags;
70b97a7f 7043 struct rq *rq;
1da177e4 7044
4cf5d77a 7045 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7046 do_each_thread(g, p) {
178be793
IM
7047 /*
7048 * Only normalize user tasks:
7049 */
7050 if (!p->mm)
7051 continue;
7052
6cfb0d5d 7053 p->se.exec_start = 0;
6cfb0d5d 7054#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7055 p->se.statistics.wait_start = 0;
7056 p->se.statistics.sleep_start = 0;
7057 p->se.statistics.block_start = 0;
6cfb0d5d 7058#endif
dd41f596 7059
aab03e05 7060 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7061 /*
7062 * Renice negative nice level userspace
7063 * tasks back to 0:
7064 */
d0ea0268 7065 if (task_nice(p) < 0 && p->mm)
dd41f596 7066 set_user_nice(p, 0);
1da177e4 7067 continue;
dd41f596 7068 }
1da177e4 7069
1d615482 7070 raw_spin_lock(&p->pi_lock);
b29739f9 7071 rq = __task_rq_lock(p);
1da177e4 7072
178be793 7073 normalize_task(rq, p);
3a5e4dc1 7074
b29739f9 7075 __task_rq_unlock(rq);
1d615482 7076 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7077 } while_each_thread(g, p);
7078
4cf5d77a 7079 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7080}
7081
7082#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7083
67fc4e0c 7084#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7085/*
67fc4e0c 7086 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7087 *
7088 * They can only be called when the whole system has been
7089 * stopped - every CPU needs to be quiescent, and no scheduling
7090 * activity can take place. Using them for anything else would
7091 * be a serious bug, and as a result, they aren't even visible
7092 * under any other configuration.
7093 */
7094
7095/**
7096 * curr_task - return the current task for a given cpu.
7097 * @cpu: the processor in question.
7098 *
7099 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7100 *
7101 * Return: The current task for @cpu.
1df5c10a 7102 */
36c8b586 7103struct task_struct *curr_task(int cpu)
1df5c10a
LT
7104{
7105 return cpu_curr(cpu);
7106}
7107
67fc4e0c
JW
7108#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7109
7110#ifdef CONFIG_IA64
1df5c10a
LT
7111/**
7112 * set_curr_task - set the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 * @p: the task pointer to set.
7115 *
7116 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7117 * are serviced on a separate stack. It allows the architecture to switch the
7118 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7119 * must be called with all CPU's synchronized, and interrupts disabled, the
7120 * and caller must save the original value of the current task (see
7121 * curr_task() above) and restore that value before reenabling interrupts and
7122 * re-starting the system.
7123 *
7124 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7125 */
36c8b586 7126void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7127{
7128 cpu_curr(cpu) = p;
7129}
7130
7131#endif
29f59db3 7132
7c941438 7133#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7134/* task_group_lock serializes the addition/removal of task groups */
7135static DEFINE_SPINLOCK(task_group_lock);
7136
bccbe08a
PZ
7137static void free_sched_group(struct task_group *tg)
7138{
7139 free_fair_sched_group(tg);
7140 free_rt_sched_group(tg);
e9aa1dd1 7141 autogroup_free(tg);
bccbe08a
PZ
7142 kfree(tg);
7143}
7144
7145/* allocate runqueue etc for a new task group */
ec7dc8ac 7146struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7147{
7148 struct task_group *tg;
bccbe08a
PZ
7149
7150 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7151 if (!tg)
7152 return ERR_PTR(-ENOMEM);
7153
ec7dc8ac 7154 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7155 goto err;
7156
ec7dc8ac 7157 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7158 goto err;
7159
ace783b9
LZ
7160 return tg;
7161
7162err:
7163 free_sched_group(tg);
7164 return ERR_PTR(-ENOMEM);
7165}
7166
7167void sched_online_group(struct task_group *tg, struct task_group *parent)
7168{
7169 unsigned long flags;
7170
8ed36996 7171 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7172 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7173
7174 WARN_ON(!parent); /* root should already exist */
7175
7176 tg->parent = parent;
f473aa5e 7177 INIT_LIST_HEAD(&tg->children);
09f2724a 7178 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7179 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7180}
7181
9b5b7751 7182/* rcu callback to free various structures associated with a task group */
6f505b16 7183static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7184{
29f59db3 7185 /* now it should be safe to free those cfs_rqs */
6f505b16 7186 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7187}
7188
9b5b7751 7189/* Destroy runqueue etc associated with a task group */
4cf86d77 7190void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7191{
7192 /* wait for possible concurrent references to cfs_rqs complete */
7193 call_rcu(&tg->rcu, free_sched_group_rcu);
7194}
7195
7196void sched_offline_group(struct task_group *tg)
29f59db3 7197{
8ed36996 7198 unsigned long flags;
9b5b7751 7199 int i;
29f59db3 7200
3d4b47b4
PZ
7201 /* end participation in shares distribution */
7202 for_each_possible_cpu(i)
bccbe08a 7203 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7204
7205 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7206 list_del_rcu(&tg->list);
f473aa5e 7207 list_del_rcu(&tg->siblings);
8ed36996 7208 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7209}
7210
9b5b7751 7211/* change task's runqueue when it moves between groups.
3a252015
IM
7212 * The caller of this function should have put the task in its new group
7213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7214 * reflect its new group.
9b5b7751
SV
7215 */
7216void sched_move_task(struct task_struct *tsk)
29f59db3 7217{
8323f26c 7218 struct task_group *tg;
29f59db3
SV
7219 int on_rq, running;
7220 unsigned long flags;
7221 struct rq *rq;
7222
7223 rq = task_rq_lock(tsk, &flags);
7224
051a1d1a 7225 running = task_current(rq, tsk);
fd2f4419 7226 on_rq = tsk->on_rq;
29f59db3 7227
0e1f3483 7228 if (on_rq)
29f59db3 7229 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7230 if (unlikely(running))
7231 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7232
073219e9 7233 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7234 lockdep_is_held(&tsk->sighand->siglock)),
7235 struct task_group, css);
7236 tg = autogroup_task_group(tsk, tg);
7237 tsk->sched_task_group = tg;
7238
810b3817 7239#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7240 if (tsk->sched_class->task_move_group)
7241 tsk->sched_class->task_move_group(tsk, on_rq);
7242 else
810b3817 7243#endif
b2b5ce02 7244 set_task_rq(tsk, task_cpu(tsk));
810b3817 7245
0e1f3483
HS
7246 if (unlikely(running))
7247 tsk->sched_class->set_curr_task(rq);
7248 if (on_rq)
371fd7e7 7249 enqueue_task(rq, tsk, 0);
29f59db3 7250
0122ec5b 7251 task_rq_unlock(rq, tsk, &flags);
29f59db3 7252}
7c941438 7253#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7254
a790de99
PT
7255#ifdef CONFIG_RT_GROUP_SCHED
7256/*
7257 * Ensure that the real time constraints are schedulable.
7258 */
7259static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7260
9a7e0b18
PZ
7261/* Must be called with tasklist_lock held */
7262static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7263{
9a7e0b18 7264 struct task_struct *g, *p;
b40b2e8e 7265
9a7e0b18 7266 do_each_thread(g, p) {
029632fb 7267 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7268 return 1;
7269 } while_each_thread(g, p);
b40b2e8e 7270
9a7e0b18
PZ
7271 return 0;
7272}
b40b2e8e 7273
9a7e0b18
PZ
7274struct rt_schedulable_data {
7275 struct task_group *tg;
7276 u64 rt_period;
7277 u64 rt_runtime;
7278};
b40b2e8e 7279
a790de99 7280static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7281{
7282 struct rt_schedulable_data *d = data;
7283 struct task_group *child;
7284 unsigned long total, sum = 0;
7285 u64 period, runtime;
b40b2e8e 7286
9a7e0b18
PZ
7287 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7288 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7289
9a7e0b18
PZ
7290 if (tg == d->tg) {
7291 period = d->rt_period;
7292 runtime = d->rt_runtime;
b40b2e8e 7293 }
b40b2e8e 7294
4653f803
PZ
7295 /*
7296 * Cannot have more runtime than the period.
7297 */
7298 if (runtime > period && runtime != RUNTIME_INF)
7299 return -EINVAL;
6f505b16 7300
4653f803
PZ
7301 /*
7302 * Ensure we don't starve existing RT tasks.
7303 */
9a7e0b18
PZ
7304 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7305 return -EBUSY;
6f505b16 7306
9a7e0b18 7307 total = to_ratio(period, runtime);
6f505b16 7308
4653f803
PZ
7309 /*
7310 * Nobody can have more than the global setting allows.
7311 */
7312 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7313 return -EINVAL;
6f505b16 7314
4653f803
PZ
7315 /*
7316 * The sum of our children's runtime should not exceed our own.
7317 */
9a7e0b18
PZ
7318 list_for_each_entry_rcu(child, &tg->children, siblings) {
7319 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7320 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7321
9a7e0b18
PZ
7322 if (child == d->tg) {
7323 period = d->rt_period;
7324 runtime = d->rt_runtime;
7325 }
6f505b16 7326
9a7e0b18 7327 sum += to_ratio(period, runtime);
9f0c1e56 7328 }
6f505b16 7329
9a7e0b18
PZ
7330 if (sum > total)
7331 return -EINVAL;
7332
7333 return 0;
6f505b16
PZ
7334}
7335
9a7e0b18 7336static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7337{
8277434e
PT
7338 int ret;
7339
9a7e0b18
PZ
7340 struct rt_schedulable_data data = {
7341 .tg = tg,
7342 .rt_period = period,
7343 .rt_runtime = runtime,
7344 };
7345
8277434e
PT
7346 rcu_read_lock();
7347 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7348 rcu_read_unlock();
7349
7350 return ret;
521f1a24
DG
7351}
7352
ab84d31e 7353static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7354 u64 rt_period, u64 rt_runtime)
6f505b16 7355{
ac086bc2 7356 int i, err = 0;
9f0c1e56 7357
9f0c1e56 7358 mutex_lock(&rt_constraints_mutex);
521f1a24 7359 read_lock(&tasklist_lock);
9a7e0b18
PZ
7360 err = __rt_schedulable(tg, rt_period, rt_runtime);
7361 if (err)
9f0c1e56 7362 goto unlock;
ac086bc2 7363
0986b11b 7364 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7365 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7366 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7367
7368 for_each_possible_cpu(i) {
7369 struct rt_rq *rt_rq = tg->rt_rq[i];
7370
0986b11b 7371 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7372 rt_rq->rt_runtime = rt_runtime;
0986b11b 7373 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7374 }
0986b11b 7375 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7376unlock:
521f1a24 7377 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7378 mutex_unlock(&rt_constraints_mutex);
7379
7380 return err;
6f505b16
PZ
7381}
7382
25cc7da7 7383static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7384{
7385 u64 rt_runtime, rt_period;
7386
7387 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7389 if (rt_runtime_us < 0)
7390 rt_runtime = RUNTIME_INF;
7391
ab84d31e 7392 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7393}
7394
25cc7da7 7395static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7396{
7397 u64 rt_runtime_us;
7398
d0b27fa7 7399 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7400 return -1;
7401
d0b27fa7 7402 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7403 do_div(rt_runtime_us, NSEC_PER_USEC);
7404 return rt_runtime_us;
7405}
d0b27fa7 7406
25cc7da7 7407static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7408{
7409 u64 rt_runtime, rt_period;
7410
7411 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7412 rt_runtime = tg->rt_bandwidth.rt_runtime;
7413
619b0488
R
7414 if (rt_period == 0)
7415 return -EINVAL;
7416
ab84d31e 7417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7418}
7419
25cc7da7 7420static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7421{
7422 u64 rt_period_us;
7423
7424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7425 do_div(rt_period_us, NSEC_PER_USEC);
7426 return rt_period_us;
7427}
332ac17e 7428#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7429
332ac17e 7430#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7431static int sched_rt_global_constraints(void)
7432{
7433 int ret = 0;
7434
7435 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7436 read_lock(&tasklist_lock);
4653f803 7437 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7438 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7439 mutex_unlock(&rt_constraints_mutex);
7440
7441 return ret;
7442}
54e99124 7443
25cc7da7 7444static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7445{
7446 /* Don't accept realtime tasks when there is no way for them to run */
7447 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7448 return 0;
7449
7450 return 1;
7451}
7452
6d6bc0ad 7453#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7454static int sched_rt_global_constraints(void)
7455{
ac086bc2 7456 unsigned long flags;
332ac17e 7457 int i, ret = 0;
ec5d4989 7458
0986b11b 7459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7460 for_each_possible_cpu(i) {
7461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7462
0986b11b 7463 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7464 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7466 }
0986b11b 7467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7468
332ac17e 7469 return ret;
d0b27fa7 7470}
6d6bc0ad 7471#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7472
332ac17e
DF
7473static int sched_dl_global_constraints(void)
7474{
1724813d
PZ
7475 u64 runtime = global_rt_runtime();
7476 u64 period = global_rt_period();
332ac17e 7477 u64 new_bw = to_ratio(period, runtime);
1724813d 7478 int cpu, ret = 0;
49516342 7479 unsigned long flags;
332ac17e
DF
7480
7481 /*
7482 * Here we want to check the bandwidth not being set to some
7483 * value smaller than the currently allocated bandwidth in
7484 * any of the root_domains.
7485 *
7486 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7487 * cycling on root_domains... Discussion on different/better
7488 * solutions is welcome!
7489 */
1724813d
PZ
7490 for_each_possible_cpu(cpu) {
7491 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7492
49516342 7493 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7494 if (new_bw < dl_b->total_bw)
7495 ret = -EBUSY;
49516342 7496 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7497
7498 if (ret)
7499 break;
332ac17e
DF
7500 }
7501
1724813d 7502 return ret;
332ac17e
DF
7503}
7504
1724813d 7505static void sched_dl_do_global(void)
ce0dbbbb 7506{
1724813d
PZ
7507 u64 new_bw = -1;
7508 int cpu;
49516342 7509 unsigned long flags;
ce0dbbbb 7510
1724813d
PZ
7511 def_dl_bandwidth.dl_period = global_rt_period();
7512 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7513
7514 if (global_rt_runtime() != RUNTIME_INF)
7515 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7516
7517 /*
7518 * FIXME: As above...
7519 */
7520 for_each_possible_cpu(cpu) {
7521 struct dl_bw *dl_b = dl_bw_of(cpu);
7522
49516342 7523 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7524 dl_b->bw = new_bw;
49516342 7525 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7526 }
1724813d
PZ
7527}
7528
7529static int sched_rt_global_validate(void)
7530{
7531 if (sysctl_sched_rt_period <= 0)
7532 return -EINVAL;
7533
e9e7cb38
JL
7534 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7535 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7536 return -EINVAL;
7537
7538 return 0;
7539}
7540
7541static void sched_rt_do_global(void)
7542{
7543 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7544 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7545}
7546
d0b27fa7 7547int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7548 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7549 loff_t *ppos)
7550{
d0b27fa7
PZ
7551 int old_period, old_runtime;
7552 static DEFINE_MUTEX(mutex);
1724813d 7553 int ret;
d0b27fa7
PZ
7554
7555 mutex_lock(&mutex);
7556 old_period = sysctl_sched_rt_period;
7557 old_runtime = sysctl_sched_rt_runtime;
7558
8d65af78 7559 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7560
7561 if (!ret && write) {
1724813d
PZ
7562 ret = sched_rt_global_validate();
7563 if (ret)
7564 goto undo;
7565
d0b27fa7 7566 ret = sched_rt_global_constraints();
1724813d
PZ
7567 if (ret)
7568 goto undo;
7569
7570 ret = sched_dl_global_constraints();
7571 if (ret)
7572 goto undo;
7573
7574 sched_rt_do_global();
7575 sched_dl_do_global();
7576 }
7577 if (0) {
7578undo:
7579 sysctl_sched_rt_period = old_period;
7580 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7581 }
7582 mutex_unlock(&mutex);
7583
7584 return ret;
7585}
68318b8e 7586
1724813d 7587int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7588 void __user *buffer, size_t *lenp,
7589 loff_t *ppos)
7590{
7591 int ret;
332ac17e 7592 static DEFINE_MUTEX(mutex);
332ac17e
DF
7593
7594 mutex_lock(&mutex);
332ac17e 7595 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7596 /* make sure that internally we keep jiffies */
7597 /* also, writing zero resets timeslice to default */
332ac17e 7598 if (!ret && write) {
1724813d
PZ
7599 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7600 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7601 }
7602 mutex_unlock(&mutex);
332ac17e
DF
7603 return ret;
7604}
7605
052f1dc7 7606#ifdef CONFIG_CGROUP_SCHED
68318b8e 7607
a7c6d554 7608static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7609{
a7c6d554 7610 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7611}
7612
eb95419b
TH
7613static struct cgroup_subsys_state *
7614cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7615{
eb95419b
TH
7616 struct task_group *parent = css_tg(parent_css);
7617 struct task_group *tg;
68318b8e 7618
eb95419b 7619 if (!parent) {
68318b8e 7620 /* This is early initialization for the top cgroup */
07e06b01 7621 return &root_task_group.css;
68318b8e
SV
7622 }
7623
ec7dc8ac 7624 tg = sched_create_group(parent);
68318b8e
SV
7625 if (IS_ERR(tg))
7626 return ERR_PTR(-ENOMEM);
7627
68318b8e
SV
7628 return &tg->css;
7629}
7630
eb95419b 7631static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7632{
eb95419b
TH
7633 struct task_group *tg = css_tg(css);
7634 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7635
63876986
TH
7636 if (parent)
7637 sched_online_group(tg, parent);
ace783b9
LZ
7638 return 0;
7639}
7640
eb95419b 7641static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7642{
eb95419b 7643 struct task_group *tg = css_tg(css);
68318b8e
SV
7644
7645 sched_destroy_group(tg);
7646}
7647
eb95419b 7648static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7649{
eb95419b 7650 struct task_group *tg = css_tg(css);
ace783b9
LZ
7651
7652 sched_offline_group(tg);
7653}
7654
eb95419b 7655static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7656 struct cgroup_taskset *tset)
68318b8e 7657{
bb9d97b6
TH
7658 struct task_struct *task;
7659
924f0d9a 7660 cgroup_taskset_for_each(task, tset) {
b68aa230 7661#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7662 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7663 return -EINVAL;
b68aa230 7664#else
bb9d97b6
TH
7665 /* We don't support RT-tasks being in separate groups */
7666 if (task->sched_class != &fair_sched_class)
7667 return -EINVAL;
b68aa230 7668#endif
bb9d97b6 7669 }
be367d09
BB
7670 return 0;
7671}
68318b8e 7672
eb95419b 7673static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7674 struct cgroup_taskset *tset)
68318b8e 7675{
bb9d97b6
TH
7676 struct task_struct *task;
7677
924f0d9a 7678 cgroup_taskset_for_each(task, tset)
bb9d97b6 7679 sched_move_task(task);
68318b8e
SV
7680}
7681
eb95419b
TH
7682static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7683 struct cgroup_subsys_state *old_css,
7684 struct task_struct *task)
068c5cc5
PZ
7685{
7686 /*
7687 * cgroup_exit() is called in the copy_process() failure path.
7688 * Ignore this case since the task hasn't ran yet, this avoids
7689 * trying to poke a half freed task state from generic code.
7690 */
7691 if (!(task->flags & PF_EXITING))
7692 return;
7693
7694 sched_move_task(task);
7695}
7696
052f1dc7 7697#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7698static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7699 struct cftype *cftype, u64 shareval)
68318b8e 7700{
182446d0 7701 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7702}
7703
182446d0
TH
7704static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7705 struct cftype *cft)
68318b8e 7706{
182446d0 7707 struct task_group *tg = css_tg(css);
68318b8e 7708
c8b28116 7709 return (u64) scale_load_down(tg->shares);
68318b8e 7710}
ab84d31e
PT
7711
7712#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7713static DEFINE_MUTEX(cfs_constraints_mutex);
7714
ab84d31e
PT
7715const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7716const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7717
a790de99
PT
7718static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7719
ab84d31e
PT
7720static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7721{
56f570e5 7722 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7724
7725 if (tg == &root_task_group)
7726 return -EINVAL;
7727
7728 /*
7729 * Ensure we have at some amount of bandwidth every period. This is
7730 * to prevent reaching a state of large arrears when throttled via
7731 * entity_tick() resulting in prolonged exit starvation.
7732 */
7733 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7734 return -EINVAL;
7735
7736 /*
7737 * Likewise, bound things on the otherside by preventing insane quota
7738 * periods. This also allows us to normalize in computing quota
7739 * feasibility.
7740 */
7741 if (period > max_cfs_quota_period)
7742 return -EINVAL;
7743
a790de99
PT
7744 mutex_lock(&cfs_constraints_mutex);
7745 ret = __cfs_schedulable(tg, period, quota);
7746 if (ret)
7747 goto out_unlock;
7748
58088ad0 7749 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7750 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7751 /*
7752 * If we need to toggle cfs_bandwidth_used, off->on must occur
7753 * before making related changes, and on->off must occur afterwards
7754 */
7755 if (runtime_enabled && !runtime_was_enabled)
7756 cfs_bandwidth_usage_inc();
ab84d31e
PT
7757 raw_spin_lock_irq(&cfs_b->lock);
7758 cfs_b->period = ns_to_ktime(period);
7759 cfs_b->quota = quota;
58088ad0 7760
a9cf55b2 7761 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7762 /* restart the period timer (if active) to handle new period expiry */
7763 if (runtime_enabled && cfs_b->timer_active) {
7764 /* force a reprogram */
7765 cfs_b->timer_active = 0;
7766 __start_cfs_bandwidth(cfs_b);
7767 }
ab84d31e
PT
7768 raw_spin_unlock_irq(&cfs_b->lock);
7769
7770 for_each_possible_cpu(i) {
7771 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7772 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7773
7774 raw_spin_lock_irq(&rq->lock);
58088ad0 7775 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7776 cfs_rq->runtime_remaining = 0;
671fd9da 7777
029632fb 7778 if (cfs_rq->throttled)
671fd9da 7779 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7780 raw_spin_unlock_irq(&rq->lock);
7781 }
1ee14e6c
BS
7782 if (runtime_was_enabled && !runtime_enabled)
7783 cfs_bandwidth_usage_dec();
a790de99
PT
7784out_unlock:
7785 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7786
a790de99 7787 return ret;
ab84d31e
PT
7788}
7789
7790int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7791{
7792 u64 quota, period;
7793
029632fb 7794 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7795 if (cfs_quota_us < 0)
7796 quota = RUNTIME_INF;
7797 else
7798 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7799
7800 return tg_set_cfs_bandwidth(tg, period, quota);
7801}
7802
7803long tg_get_cfs_quota(struct task_group *tg)
7804{
7805 u64 quota_us;
7806
029632fb 7807 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7808 return -1;
7809
029632fb 7810 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7811 do_div(quota_us, NSEC_PER_USEC);
7812
7813 return quota_us;
7814}
7815
7816int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7817{
7818 u64 quota, period;
7819
7820 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7821 quota = tg->cfs_bandwidth.quota;
ab84d31e 7822
ab84d31e
PT
7823 return tg_set_cfs_bandwidth(tg, period, quota);
7824}
7825
7826long tg_get_cfs_period(struct task_group *tg)
7827{
7828 u64 cfs_period_us;
7829
029632fb 7830 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7831 do_div(cfs_period_us, NSEC_PER_USEC);
7832
7833 return cfs_period_us;
7834}
7835
182446d0
TH
7836static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7837 struct cftype *cft)
ab84d31e 7838{
182446d0 7839 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7840}
7841
182446d0
TH
7842static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7843 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7844{
182446d0 7845 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7846}
7847
182446d0
TH
7848static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7849 struct cftype *cft)
ab84d31e 7850{
182446d0 7851 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7852}
7853
182446d0
TH
7854static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7855 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7856{
182446d0 7857 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7858}
7859
a790de99
PT
7860struct cfs_schedulable_data {
7861 struct task_group *tg;
7862 u64 period, quota;
7863};
7864
7865/*
7866 * normalize group quota/period to be quota/max_period
7867 * note: units are usecs
7868 */
7869static u64 normalize_cfs_quota(struct task_group *tg,
7870 struct cfs_schedulable_data *d)
7871{
7872 u64 quota, period;
7873
7874 if (tg == d->tg) {
7875 period = d->period;
7876 quota = d->quota;
7877 } else {
7878 period = tg_get_cfs_period(tg);
7879 quota = tg_get_cfs_quota(tg);
7880 }
7881
7882 /* note: these should typically be equivalent */
7883 if (quota == RUNTIME_INF || quota == -1)
7884 return RUNTIME_INF;
7885
7886 return to_ratio(period, quota);
7887}
7888
7889static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7890{
7891 struct cfs_schedulable_data *d = data;
029632fb 7892 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7893 s64 quota = 0, parent_quota = -1;
7894
7895 if (!tg->parent) {
7896 quota = RUNTIME_INF;
7897 } else {
029632fb 7898 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7899
7900 quota = normalize_cfs_quota(tg, d);
7901 parent_quota = parent_b->hierarchal_quota;
7902
7903 /*
7904 * ensure max(child_quota) <= parent_quota, inherit when no
7905 * limit is set
7906 */
7907 if (quota == RUNTIME_INF)
7908 quota = parent_quota;
7909 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7910 return -EINVAL;
7911 }
7912 cfs_b->hierarchal_quota = quota;
7913
7914 return 0;
7915}
7916
7917static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7918{
8277434e 7919 int ret;
a790de99
PT
7920 struct cfs_schedulable_data data = {
7921 .tg = tg,
7922 .period = period,
7923 .quota = quota,
7924 };
7925
7926 if (quota != RUNTIME_INF) {
7927 do_div(data.period, NSEC_PER_USEC);
7928 do_div(data.quota, NSEC_PER_USEC);
7929 }
7930
8277434e
PT
7931 rcu_read_lock();
7932 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7933 rcu_read_unlock();
7934
7935 return ret;
a790de99 7936}
e8da1b18 7937
2da8ca82 7938static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7939{
2da8ca82 7940 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7941 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7942
44ffc75b
TH
7943 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7944 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7945 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7946
7947 return 0;
7948}
ab84d31e 7949#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7950#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7951
052f1dc7 7952#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7953static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7954 struct cftype *cft, s64 val)
6f505b16 7955{
182446d0 7956 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7957}
7958
182446d0
TH
7959static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7960 struct cftype *cft)
6f505b16 7961{
182446d0 7962 return sched_group_rt_runtime(css_tg(css));
6f505b16 7963}
d0b27fa7 7964
182446d0
TH
7965static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7966 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7967{
182446d0 7968 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7969}
7970
182446d0
TH
7971static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7972 struct cftype *cft)
d0b27fa7 7973{
182446d0 7974 return sched_group_rt_period(css_tg(css));
d0b27fa7 7975}
6d6bc0ad 7976#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7977
fe5c7cc2 7978static struct cftype cpu_files[] = {
052f1dc7 7979#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7980 {
7981 .name = "shares",
f4c753b7
PM
7982 .read_u64 = cpu_shares_read_u64,
7983 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7984 },
052f1dc7 7985#endif
ab84d31e
PT
7986#ifdef CONFIG_CFS_BANDWIDTH
7987 {
7988 .name = "cfs_quota_us",
7989 .read_s64 = cpu_cfs_quota_read_s64,
7990 .write_s64 = cpu_cfs_quota_write_s64,
7991 },
7992 {
7993 .name = "cfs_period_us",
7994 .read_u64 = cpu_cfs_period_read_u64,
7995 .write_u64 = cpu_cfs_period_write_u64,
7996 },
e8da1b18
NR
7997 {
7998 .name = "stat",
2da8ca82 7999 .seq_show = cpu_stats_show,
e8da1b18 8000 },
ab84d31e 8001#endif
052f1dc7 8002#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8003 {
9f0c1e56 8004 .name = "rt_runtime_us",
06ecb27c
PM
8005 .read_s64 = cpu_rt_runtime_read,
8006 .write_s64 = cpu_rt_runtime_write,
6f505b16 8007 },
d0b27fa7
PZ
8008 {
8009 .name = "rt_period_us",
f4c753b7
PM
8010 .read_u64 = cpu_rt_period_read_uint,
8011 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8012 },
052f1dc7 8013#endif
4baf6e33 8014 { } /* terminate */
68318b8e
SV
8015};
8016
073219e9 8017struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8018 .css_alloc = cpu_cgroup_css_alloc,
8019 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8020 .css_online = cpu_cgroup_css_online,
8021 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8022 .can_attach = cpu_cgroup_can_attach,
8023 .attach = cpu_cgroup_attach,
068c5cc5 8024 .exit = cpu_cgroup_exit,
4baf6e33 8025 .base_cftypes = cpu_files,
68318b8e
SV
8026 .early_init = 1,
8027};
8028
052f1dc7 8029#endif /* CONFIG_CGROUP_SCHED */
d842de87 8030
b637a328
PM
8031void dump_cpu_task(int cpu)
8032{
8033 pr_info("Task dump for CPU %d:\n", cpu);
8034 sched_show_task(cpu_curr(cpu));
8035}
This page took 2.58483 seconds and 5 git commands to generate.