sched/fair: Track cgroup depth
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
ff1df896
RR
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795}
1796#endif
1797#endif
dd41f596
IM
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
aab03e05 1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1803{
0122ec5b 1804 unsigned long flags;
dd41f596
IM
1805 int cpu = get_cpu();
1806
5e1576ed 1807 __sched_fork(clone_flags, p);
06b83b5f 1808 /*
0017d735 1809 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
0017d735 1813 p->state = TASK_RUNNING;
dd41f596 1814
c350a04e
MG
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
b9dc29e7
MG
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1825 p->policy = SCHED_NORMAL;
6c697bdf 1826 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
6c697bdf 1833
b9dc29e7
MG
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
ca94c442 1840
aab03e05
DF
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
2ddbf952 1847 p->sched_class = &fair_sched_class;
aab03e05 1848 }
b29739f9 1849
cd29fe6f
PZ
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
86951599
PZ
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
0122ec5b 1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1861 set_task_cpu(p, cpu);
0122ec5b 1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1863
52f17b6c 1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1865 if (likely(sched_info_on()))
52f17b6c 1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1867#endif
3ca7a440
PZ
1868#if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
4866cde0 1870#endif
01028747 1871 init_task_preempt_count(p);
806c09a7 1872#ifdef CONFIG_SMP
917b627d 1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1875#endif
917b627d 1876
476d139c 1877 put_cpu();
aab03e05 1878 return 0;
1da177e4
LT
1879}
1880
332ac17e
DF
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900 return &cpu_rq(i)->rd->dl_bw;
1901}
1902
de212f18 1903static inline int dl_bw_cpus(int i)
332ac17e 1904{
de212f18
PZ
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
332ac17e
DF
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916 return &cpu_rq(i)->dl.dl_bw;
1917}
1918
de212f18 1919static inline int dl_bw_cpus(int i)
332ac17e
DF
1920{
1921 return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928 dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934 dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954{
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1960 int cpus, err = -1;
332ac17e
DF
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
de212f18 1971 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1da177e4
LT
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
3e51e3ed 1999void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2000{
2001 unsigned long flags;
dd41f596 2002 struct rq *rq;
fabf318e 2003
ab2515c4 2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2005#ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
fabf318e 2010 */
ac66f547 2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2012#endif
2013
a75cdaa9
AS
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
ab2515c4 2016 rq = __task_rq_lock(p);
cd29fe6f 2017 activate_task(rq, p, 0);
fd2f4419 2018 p->on_rq = 1;
89363381 2019 trace_sched_wakeup_new(p, true);
a7558e01 2020 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2021#ifdef CONFIG_SMP
efbbd05a
PZ
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
9a897c5a 2024#endif
0122ec5b 2025 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2026}
2027
e107be36
AK
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
80dd99b3 2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2032 * @notifier: notifier struct to register
e107be36
AK
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2042 * @notifier: notifier struct to unregister
e107be36
AK
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048 hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054 struct preempt_notifier *notifier;
e107be36 2055
b67bfe0d 2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063{
2064 struct preempt_notifier *notifier;
e107be36 2065
b67bfe0d 2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2067 notifier->ops->sched_out(notifier, next);
2068}
2069
6d6bc0ad 2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079{
2080}
2081
6d6bc0ad 2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2083
4866cde0
NP
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
421cee29 2087 * @prev: the current task that is being switched out
4866cde0
NP
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
e107be36
AK
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
4866cde0 2100{
895dd92c 2101 trace_sched_switch(prev, next);
43148951 2102 sched_info_switch(rq, prev, next);
fe4b04fa 2103 perf_event_task_sched_out(prev, next);
e107be36 2104 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107}
2108
1da177e4
LT
2109/**
2110 * finish_task_switch - clean up after a task-switch
344babaa 2111 * @rq: runqueue associated with task-switch
1da177e4
LT
2112 * @prev: the thread we just switched away from.
2113 *
4866cde0
NP
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2120 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
a9957449 2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2125 __releases(rq->lock)
2126{
1da177e4 2127 struct mm_struct *mm = rq->prev_mm;
55a101f8 2128 long prev_state;
1da177e4
LT
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
c394cc9f 2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
c394cc9f 2137 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
55a101f8 2143 prev_state = prev->state;
bf9fae9f 2144 vtime_task_switch(prev);
4866cde0 2145 finish_arch_switch(prev);
a8d757ef 2146 perf_event_task_sched_in(prev, current);
4866cde0 2147 finish_lock_switch(rq, prev);
01f23e16 2148 finish_arch_post_lock_switch();
e8fa1362 2149
e107be36 2150 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2151 if (mm)
2152 mmdrop(mm);
c394cc9f 2153 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2154 task_numa_free(prev);
2155
e6c390f2
DF
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
c6fd91f0 2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
9761eea8 2162 */
c6fd91f0 2163 kprobe_flush_task(prev);
1da177e4 2164 put_task_struct(prev);
c6fd91f0 2165 }
99e5ada9
FW
2166
2167 tick_nohz_task_switch(current);
1da177e4
LT
2168}
2169
3f029d3c
GH
2170#ifdef CONFIG_SMP
2171
2172/* assumes rq->lock is held */
2173static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2174{
2175 if (prev->sched_class->pre_schedule)
2176 prev->sched_class->pre_schedule(rq, prev);
2177}
2178
2179/* rq->lock is NOT held, but preemption is disabled */
2180static inline void post_schedule(struct rq *rq)
2181{
2182 if (rq->post_schedule) {
2183 unsigned long flags;
2184
05fa785c 2185 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2186 if (rq->curr->sched_class->post_schedule)
2187 rq->curr->sched_class->post_schedule(rq);
05fa785c 2188 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2189
2190 rq->post_schedule = 0;
2191 }
2192}
2193
2194#else
da19ab51 2195
3f029d3c
GH
2196static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2197{
2198}
2199
2200static inline void post_schedule(struct rq *rq)
2201{
1da177e4
LT
2202}
2203
3f029d3c
GH
2204#endif
2205
1da177e4
LT
2206/**
2207 * schedule_tail - first thing a freshly forked thread must call.
2208 * @prev: the thread we just switched away from.
2209 */
36c8b586 2210asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2211 __releases(rq->lock)
2212{
70b97a7f
IM
2213 struct rq *rq = this_rq();
2214
4866cde0 2215 finish_task_switch(rq, prev);
da19ab51 2216
3f029d3c
GH
2217 /*
2218 * FIXME: do we need to worry about rq being invalidated by the
2219 * task_switch?
2220 */
2221 post_schedule(rq);
70b97a7f 2222
4866cde0
NP
2223#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2224 /* In this case, finish_task_switch does not reenable preemption */
2225 preempt_enable();
2226#endif
1da177e4 2227 if (current->set_child_tid)
b488893a 2228 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2229}
2230
2231/*
2232 * context_switch - switch to the new MM and the new
2233 * thread's register state.
2234 */
dd41f596 2235static inline void
70b97a7f 2236context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2237 struct task_struct *next)
1da177e4 2238{
dd41f596 2239 struct mm_struct *mm, *oldmm;
1da177e4 2240
e107be36 2241 prepare_task_switch(rq, prev, next);
fe4b04fa 2242
dd41f596
IM
2243 mm = next->mm;
2244 oldmm = prev->active_mm;
9226d125
ZA
2245 /*
2246 * For paravirt, this is coupled with an exit in switch_to to
2247 * combine the page table reload and the switch backend into
2248 * one hypercall.
2249 */
224101ed 2250 arch_start_context_switch(prev);
9226d125 2251
31915ab4 2252 if (!mm) {
1da177e4
LT
2253 next->active_mm = oldmm;
2254 atomic_inc(&oldmm->mm_count);
2255 enter_lazy_tlb(oldmm, next);
2256 } else
2257 switch_mm(oldmm, mm, next);
2258
31915ab4 2259 if (!prev->mm) {
1da177e4 2260 prev->active_mm = NULL;
1da177e4
LT
2261 rq->prev_mm = oldmm;
2262 }
3a5f5e48
IM
2263 /*
2264 * Since the runqueue lock will be released by the next
2265 * task (which is an invalid locking op but in the case
2266 * of the scheduler it's an obvious special-case), so we
2267 * do an early lockdep release here:
2268 */
2269#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2270 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2271#endif
1da177e4 2272
91d1aa43 2273 context_tracking_task_switch(prev, next);
1da177e4
LT
2274 /* Here we just switch the register state and the stack. */
2275 switch_to(prev, next, prev);
2276
dd41f596
IM
2277 barrier();
2278 /*
2279 * this_rq must be evaluated again because prev may have moved
2280 * CPUs since it called schedule(), thus the 'rq' on its stack
2281 * frame will be invalid.
2282 */
2283 finish_task_switch(this_rq(), prev);
1da177e4
LT
2284}
2285
2286/*
1c3e8264 2287 * nr_running and nr_context_switches:
1da177e4
LT
2288 *
2289 * externally visible scheduler statistics: current number of runnable
1c3e8264 2290 * threads, total number of context switches performed since bootup.
1da177e4
LT
2291 */
2292unsigned long nr_running(void)
2293{
2294 unsigned long i, sum = 0;
2295
2296 for_each_online_cpu(i)
2297 sum += cpu_rq(i)->nr_running;
2298
2299 return sum;
f711f609 2300}
1da177e4 2301
1da177e4 2302unsigned long long nr_context_switches(void)
46cb4b7c 2303{
cc94abfc
SR
2304 int i;
2305 unsigned long long sum = 0;
46cb4b7c 2306
0a945022 2307 for_each_possible_cpu(i)
1da177e4 2308 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2309
1da177e4
LT
2310 return sum;
2311}
483b4ee6 2312
1da177e4
LT
2313unsigned long nr_iowait(void)
2314{
2315 unsigned long i, sum = 0;
483b4ee6 2316
0a945022 2317 for_each_possible_cpu(i)
1da177e4 2318 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2319
1da177e4
LT
2320 return sum;
2321}
483b4ee6 2322
8c215bd3 2323unsigned long nr_iowait_cpu(int cpu)
69d25870 2324{
8c215bd3 2325 struct rq *this = cpu_rq(cpu);
69d25870
AV
2326 return atomic_read(&this->nr_iowait);
2327}
46cb4b7c 2328
dd41f596 2329#ifdef CONFIG_SMP
8a0be9ef 2330
46cb4b7c 2331/*
38022906
PZ
2332 * sched_exec - execve() is a valuable balancing opportunity, because at
2333 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2334 */
38022906 2335void sched_exec(void)
46cb4b7c 2336{
38022906 2337 struct task_struct *p = current;
1da177e4 2338 unsigned long flags;
0017d735 2339 int dest_cpu;
46cb4b7c 2340
8f42ced9 2341 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2342 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2343 if (dest_cpu == smp_processor_id())
2344 goto unlock;
38022906 2345
8f42ced9 2346 if (likely(cpu_active(dest_cpu))) {
969c7921 2347 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2348
8f42ced9
PZ
2349 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2350 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2351 return;
2352 }
0017d735 2353unlock:
8f42ced9 2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2355}
dd41f596 2356
1da177e4
LT
2357#endif
2358
1da177e4 2359DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2360DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2361
2362EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2363EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2364
2365/*
c5f8d995 2366 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2367 * @p in case that task is currently running.
c5f8d995
HS
2368 *
2369 * Called with task_rq_lock() held on @rq.
1da177e4 2370 */
c5f8d995
HS
2371static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2372{
2373 u64 ns = 0;
2374
2375 if (task_current(rq, p)) {
2376 update_rq_clock(rq);
78becc27 2377 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2378 if ((s64)ns < 0)
2379 ns = 0;
2380 }
2381
2382 return ns;
2383}
2384
bb34d92f 2385unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2386{
1da177e4 2387 unsigned long flags;
41b86e9c 2388 struct rq *rq;
bb34d92f 2389 u64 ns = 0;
48f24c4d 2390
41b86e9c 2391 rq = task_rq_lock(p, &flags);
c5f8d995 2392 ns = do_task_delta_exec(p, rq);
0122ec5b 2393 task_rq_unlock(rq, p, &flags);
1508487e 2394
c5f8d995
HS
2395 return ns;
2396}
f06febc9 2397
c5f8d995
HS
2398/*
2399 * Return accounted runtime for the task.
2400 * In case the task is currently running, return the runtime plus current's
2401 * pending runtime that have not been accounted yet.
2402 */
2403unsigned long long task_sched_runtime(struct task_struct *p)
2404{
2405 unsigned long flags;
2406 struct rq *rq;
2407 u64 ns = 0;
2408
911b2898
PZ
2409#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2410 /*
2411 * 64-bit doesn't need locks to atomically read a 64bit value.
2412 * So we have a optimization chance when the task's delta_exec is 0.
2413 * Reading ->on_cpu is racy, but this is ok.
2414 *
2415 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2416 * If we race with it entering cpu, unaccounted time is 0. This is
2417 * indistinguishable from the read occurring a few cycles earlier.
2418 */
2419 if (!p->on_cpu)
2420 return p->se.sum_exec_runtime;
2421#endif
2422
c5f8d995
HS
2423 rq = task_rq_lock(p, &flags);
2424 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2425 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2426
2427 return ns;
2428}
48f24c4d 2429
7835b98b
CL
2430/*
2431 * This function gets called by the timer code, with HZ frequency.
2432 * We call it with interrupts disabled.
7835b98b
CL
2433 */
2434void scheduler_tick(void)
2435{
7835b98b
CL
2436 int cpu = smp_processor_id();
2437 struct rq *rq = cpu_rq(cpu);
dd41f596 2438 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2439
2440 sched_clock_tick();
dd41f596 2441
05fa785c 2442 raw_spin_lock(&rq->lock);
3e51f33f 2443 update_rq_clock(rq);
fa85ae24 2444 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2445 update_cpu_load_active(rq);
05fa785c 2446 raw_spin_unlock(&rq->lock);
7835b98b 2447
e9d2b064 2448 perf_event_task_tick();
e220d2dc 2449
e418e1c2 2450#ifdef CONFIG_SMP
6eb57e0d 2451 rq->idle_balance = idle_cpu(cpu);
7caff66f 2452 trigger_load_balance(rq);
e418e1c2 2453#endif
265f22a9 2454 rq_last_tick_reset(rq);
1da177e4
LT
2455}
2456
265f22a9
FW
2457#ifdef CONFIG_NO_HZ_FULL
2458/**
2459 * scheduler_tick_max_deferment
2460 *
2461 * Keep at least one tick per second when a single
2462 * active task is running because the scheduler doesn't
2463 * yet completely support full dynticks environment.
2464 *
2465 * This makes sure that uptime, CFS vruntime, load
2466 * balancing, etc... continue to move forward, even
2467 * with a very low granularity.
e69f6186
YB
2468 *
2469 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2470 */
2471u64 scheduler_tick_max_deferment(void)
2472{
2473 struct rq *rq = this_rq();
2474 unsigned long next, now = ACCESS_ONCE(jiffies);
2475
2476 next = rq->last_sched_tick + HZ;
2477
2478 if (time_before_eq(next, now))
2479 return 0;
2480
8fe8ff09 2481 return jiffies_to_nsecs(next - now);
1da177e4 2482}
265f22a9 2483#endif
1da177e4 2484
132380a0 2485notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2486{
2487 if (in_lock_functions(addr)) {
2488 addr = CALLER_ADDR2;
2489 if (in_lock_functions(addr))
2490 addr = CALLER_ADDR3;
2491 }
2492 return addr;
2493}
1da177e4 2494
7e49fcce
SR
2495#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2496 defined(CONFIG_PREEMPT_TRACER))
2497
bdb43806 2498void __kprobes preempt_count_add(int val)
1da177e4 2499{
6cd8a4bb 2500#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2501 /*
2502 * Underflow?
2503 */
9a11b49a
IM
2504 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2505 return;
6cd8a4bb 2506#endif
bdb43806 2507 __preempt_count_add(val);
6cd8a4bb 2508#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2509 /*
2510 * Spinlock count overflowing soon?
2511 */
33859f7f
MOS
2512 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2513 PREEMPT_MASK - 10);
6cd8a4bb
SR
2514#endif
2515 if (preempt_count() == val)
2516 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2517}
bdb43806 2518EXPORT_SYMBOL(preempt_count_add);
1da177e4 2519
bdb43806 2520void __kprobes preempt_count_sub(int val)
1da177e4 2521{
6cd8a4bb 2522#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2523 /*
2524 * Underflow?
2525 */
01e3eb82 2526 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2527 return;
1da177e4
LT
2528 /*
2529 * Is the spinlock portion underflowing?
2530 */
9a11b49a
IM
2531 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2532 !(preempt_count() & PREEMPT_MASK)))
2533 return;
6cd8a4bb 2534#endif
9a11b49a 2535
6cd8a4bb
SR
2536 if (preempt_count() == val)
2537 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2538 __preempt_count_sub(val);
1da177e4 2539}
bdb43806 2540EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2541
2542#endif
2543
2544/*
dd41f596 2545 * Print scheduling while atomic bug:
1da177e4 2546 */
dd41f596 2547static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2548{
664dfa65
DJ
2549 if (oops_in_progress)
2550 return;
2551
3df0fc5b
PZ
2552 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2553 prev->comm, prev->pid, preempt_count());
838225b4 2554
dd41f596 2555 debug_show_held_locks(prev);
e21f5b15 2556 print_modules();
dd41f596
IM
2557 if (irqs_disabled())
2558 print_irqtrace_events(prev);
6135fc1e 2559 dump_stack();
373d4d09 2560 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2561}
1da177e4 2562
dd41f596
IM
2563/*
2564 * Various schedule()-time debugging checks and statistics:
2565 */
2566static inline void schedule_debug(struct task_struct *prev)
2567{
1da177e4 2568 /*
41a2d6cf 2569 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2570 * schedule() atomically, we ignore that path. Otherwise whine
2571 * if we are scheduling when we should not.
1da177e4 2572 */
192301e7 2573 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2574 __schedule_bug(prev);
b3fbab05 2575 rcu_sleep_check();
dd41f596 2576
1da177e4
LT
2577 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2578
2d72376b 2579 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2580}
2581
6cecd084 2582static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2583{
61eadef6 2584 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2585 update_rq_clock(rq);
6cecd084 2586 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2587}
2588
dd41f596
IM
2589/*
2590 * Pick up the highest-prio task:
2591 */
2592static inline struct task_struct *
b67802ea 2593pick_next_task(struct rq *rq)
dd41f596 2594{
5522d5d5 2595 const struct sched_class *class;
dd41f596 2596 struct task_struct *p;
1da177e4
LT
2597
2598 /*
dd41f596
IM
2599 * Optimization: we know that if all tasks are in
2600 * the fair class we can call that function directly:
1da177e4 2601 */
953bfcd1 2602 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2603 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2604 if (likely(p))
2605 return p;
1da177e4
LT
2606 }
2607
34f971f6 2608 for_each_class(class) {
fb8d4724 2609 p = class->pick_next_task(rq);
dd41f596
IM
2610 if (p)
2611 return p;
dd41f596 2612 }
34f971f6
PZ
2613
2614 BUG(); /* the idle class will always have a runnable task */
dd41f596 2615}
1da177e4 2616
dd41f596 2617/*
c259e01a 2618 * __schedule() is the main scheduler function.
edde96ea
PE
2619 *
2620 * The main means of driving the scheduler and thus entering this function are:
2621 *
2622 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2623 *
2624 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2625 * paths. For example, see arch/x86/entry_64.S.
2626 *
2627 * To drive preemption between tasks, the scheduler sets the flag in timer
2628 * interrupt handler scheduler_tick().
2629 *
2630 * 3. Wakeups don't really cause entry into schedule(). They add a
2631 * task to the run-queue and that's it.
2632 *
2633 * Now, if the new task added to the run-queue preempts the current
2634 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2635 * called on the nearest possible occasion:
2636 *
2637 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2638 *
2639 * - in syscall or exception context, at the next outmost
2640 * preempt_enable(). (this might be as soon as the wake_up()'s
2641 * spin_unlock()!)
2642 *
2643 * - in IRQ context, return from interrupt-handler to
2644 * preemptible context
2645 *
2646 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2647 * then at the next:
2648 *
2649 * - cond_resched() call
2650 * - explicit schedule() call
2651 * - return from syscall or exception to user-space
2652 * - return from interrupt-handler to user-space
dd41f596 2653 */
c259e01a 2654static void __sched __schedule(void)
dd41f596
IM
2655{
2656 struct task_struct *prev, *next;
67ca7bde 2657 unsigned long *switch_count;
dd41f596 2658 struct rq *rq;
31656519 2659 int cpu;
dd41f596 2660
ff743345
PZ
2661need_resched:
2662 preempt_disable();
dd41f596
IM
2663 cpu = smp_processor_id();
2664 rq = cpu_rq(cpu);
25502a6c 2665 rcu_note_context_switch(cpu);
dd41f596 2666 prev = rq->curr;
dd41f596 2667
dd41f596 2668 schedule_debug(prev);
1da177e4 2669
31656519 2670 if (sched_feat(HRTICK))
f333fdc9 2671 hrtick_clear(rq);
8f4d37ec 2672
e0acd0a6
ON
2673 /*
2674 * Make sure that signal_pending_state()->signal_pending() below
2675 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2676 * done by the caller to avoid the race with signal_wake_up().
2677 */
2678 smp_mb__before_spinlock();
05fa785c 2679 raw_spin_lock_irq(&rq->lock);
1da177e4 2680
246d86b5 2681 switch_count = &prev->nivcsw;
1da177e4 2682 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2683 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2684 prev->state = TASK_RUNNING;
21aa9af0 2685 } else {
2acca55e
PZ
2686 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2687 prev->on_rq = 0;
2688
21aa9af0 2689 /*
2acca55e
PZ
2690 * If a worker went to sleep, notify and ask workqueue
2691 * whether it wants to wake up a task to maintain
2692 * concurrency.
21aa9af0
TH
2693 */
2694 if (prev->flags & PF_WQ_WORKER) {
2695 struct task_struct *to_wakeup;
2696
2697 to_wakeup = wq_worker_sleeping(prev, cpu);
2698 if (to_wakeup)
2699 try_to_wake_up_local(to_wakeup);
2700 }
21aa9af0 2701 }
dd41f596 2702 switch_count = &prev->nvcsw;
1da177e4
LT
2703 }
2704
3f029d3c 2705 pre_schedule(rq, prev);
f65eda4f 2706
3c4017c1
DL
2707 if (unlikely(!rq->nr_running)) {
2708 /*
2709 * We must set idle_stamp _before_ calling idle_balance(), such
2710 * that we measure the duration of idle_balance() as idle time.
2711 */
2712 rq->idle_stamp = rq_clock(rq);
2713 if (idle_balance(rq))
2714 rq->idle_stamp = 0;
2715 }
1da177e4 2716
df1c99d4 2717 put_prev_task(rq, prev);
b67802ea 2718 next = pick_next_task(rq);
f26f9aff 2719 clear_tsk_need_resched(prev);
f27dde8d 2720 clear_preempt_need_resched();
f26f9aff 2721 rq->skip_clock_update = 0;
1da177e4 2722
1da177e4 2723 if (likely(prev != next)) {
1da177e4
LT
2724 rq->nr_switches++;
2725 rq->curr = next;
2726 ++*switch_count;
2727
dd41f596 2728 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2729 /*
246d86b5
ON
2730 * The context switch have flipped the stack from under us
2731 * and restored the local variables which were saved when
2732 * this task called schedule() in the past. prev == current
2733 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2734 */
2735 cpu = smp_processor_id();
2736 rq = cpu_rq(cpu);
1da177e4 2737 } else
05fa785c 2738 raw_spin_unlock_irq(&rq->lock);
1da177e4 2739
3f029d3c 2740 post_schedule(rq);
1da177e4 2741
ba74c144 2742 sched_preempt_enable_no_resched();
ff743345 2743 if (need_resched())
1da177e4
LT
2744 goto need_resched;
2745}
c259e01a 2746
9c40cef2
TG
2747static inline void sched_submit_work(struct task_struct *tsk)
2748{
3c7d5184 2749 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2750 return;
2751 /*
2752 * If we are going to sleep and we have plugged IO queued,
2753 * make sure to submit it to avoid deadlocks.
2754 */
2755 if (blk_needs_flush_plug(tsk))
2756 blk_schedule_flush_plug(tsk);
2757}
2758
6ebbe7a0 2759asmlinkage void __sched schedule(void)
c259e01a 2760{
9c40cef2
TG
2761 struct task_struct *tsk = current;
2762
2763 sched_submit_work(tsk);
c259e01a
TG
2764 __schedule();
2765}
1da177e4
LT
2766EXPORT_SYMBOL(schedule);
2767
91d1aa43 2768#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2769asmlinkage void __sched schedule_user(void)
2770{
2771 /*
2772 * If we come here after a random call to set_need_resched(),
2773 * or we have been woken up remotely but the IPI has not yet arrived,
2774 * we haven't yet exited the RCU idle mode. Do it here manually until
2775 * we find a better solution.
2776 */
91d1aa43 2777 user_exit();
20ab65e3 2778 schedule();
91d1aa43 2779 user_enter();
20ab65e3
FW
2780}
2781#endif
2782
c5491ea7
TG
2783/**
2784 * schedule_preempt_disabled - called with preemption disabled
2785 *
2786 * Returns with preemption disabled. Note: preempt_count must be 1
2787 */
2788void __sched schedule_preempt_disabled(void)
2789{
ba74c144 2790 sched_preempt_enable_no_resched();
c5491ea7
TG
2791 schedule();
2792 preempt_disable();
2793}
2794
1da177e4
LT
2795#ifdef CONFIG_PREEMPT
2796/*
2ed6e34f 2797 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2798 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2799 * occur there and call schedule directly.
2800 */
d1f74e20 2801asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2802{
1da177e4
LT
2803 /*
2804 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2805 * we do not want to preempt the current task. Just return..
1da177e4 2806 */
fbb00b56 2807 if (likely(!preemptible()))
1da177e4
LT
2808 return;
2809
3a5c359a 2810 do {
bdb43806 2811 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2812 __schedule();
bdb43806 2813 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2814
3a5c359a
AK
2815 /*
2816 * Check again in case we missed a preemption opportunity
2817 * between schedule and now.
2818 */
2819 barrier();
5ed0cec0 2820 } while (need_resched());
1da177e4 2821}
1da177e4 2822EXPORT_SYMBOL(preempt_schedule);
32e475d7 2823#endif /* CONFIG_PREEMPT */
1da177e4
LT
2824
2825/*
2ed6e34f 2826 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2827 * off of irq context.
2828 * Note, that this is called and return with irqs disabled. This will
2829 * protect us against recursive calling from irq.
2830 */
2831asmlinkage void __sched preempt_schedule_irq(void)
2832{
b22366cd 2833 enum ctx_state prev_state;
6478d880 2834
2ed6e34f 2835 /* Catch callers which need to be fixed */
f27dde8d 2836 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2837
b22366cd
FW
2838 prev_state = exception_enter();
2839
3a5c359a 2840 do {
bdb43806 2841 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2842 local_irq_enable();
c259e01a 2843 __schedule();
3a5c359a 2844 local_irq_disable();
bdb43806 2845 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2846
3a5c359a
AK
2847 /*
2848 * Check again in case we missed a preemption opportunity
2849 * between schedule and now.
2850 */
2851 barrier();
5ed0cec0 2852 } while (need_resched());
b22366cd
FW
2853
2854 exception_exit(prev_state);
1da177e4
LT
2855}
2856
63859d4f 2857int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2858 void *key)
1da177e4 2859{
63859d4f 2860 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2861}
1da177e4
LT
2862EXPORT_SYMBOL(default_wake_function);
2863
8cbbe86d
AK
2864static long __sched
2865sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2866{
0fec171c
IM
2867 unsigned long flags;
2868 wait_queue_t wait;
2869
2870 init_waitqueue_entry(&wait, current);
1da177e4 2871
8cbbe86d 2872 __set_current_state(state);
1da177e4 2873
8cbbe86d
AK
2874 spin_lock_irqsave(&q->lock, flags);
2875 __add_wait_queue(q, &wait);
2876 spin_unlock(&q->lock);
2877 timeout = schedule_timeout(timeout);
2878 spin_lock_irq(&q->lock);
2879 __remove_wait_queue(q, &wait);
2880 spin_unlock_irqrestore(&q->lock, flags);
2881
2882 return timeout;
2883}
2884
2885void __sched interruptible_sleep_on(wait_queue_head_t *q)
2886{
2887 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2888}
1da177e4
LT
2889EXPORT_SYMBOL(interruptible_sleep_on);
2890
0fec171c 2891long __sched
95cdf3b7 2892interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2893{
8cbbe86d 2894 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2895}
1da177e4
LT
2896EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2897
0fec171c 2898void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2899{
8cbbe86d 2900 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2901}
1da177e4
LT
2902EXPORT_SYMBOL(sleep_on);
2903
0fec171c 2904long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2905{
8cbbe86d 2906 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2907}
1da177e4
LT
2908EXPORT_SYMBOL(sleep_on_timeout);
2909
b29739f9
IM
2910#ifdef CONFIG_RT_MUTEXES
2911
2912/*
2913 * rt_mutex_setprio - set the current priority of a task
2914 * @p: task
2915 * @prio: prio value (kernel-internal form)
2916 *
2917 * This function changes the 'effective' priority of a task. It does
2918 * not touch ->normal_prio like __setscheduler().
2919 *
2920 * Used by the rt_mutex code to implement priority inheritance logic.
2921 */
36c8b586 2922void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2923{
2d3d891d 2924 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2925 struct rq *rq;
83ab0aa0 2926 const struct sched_class *prev_class;
b29739f9 2927
aab03e05 2928 BUG_ON(prio > MAX_PRIO);
b29739f9 2929
0122ec5b 2930 rq = __task_rq_lock(p);
b29739f9 2931
1c4dd99b
TG
2932 /*
2933 * Idle task boosting is a nono in general. There is one
2934 * exception, when PREEMPT_RT and NOHZ is active:
2935 *
2936 * The idle task calls get_next_timer_interrupt() and holds
2937 * the timer wheel base->lock on the CPU and another CPU wants
2938 * to access the timer (probably to cancel it). We can safely
2939 * ignore the boosting request, as the idle CPU runs this code
2940 * with interrupts disabled and will complete the lock
2941 * protected section without being interrupted. So there is no
2942 * real need to boost.
2943 */
2944 if (unlikely(p == rq->idle)) {
2945 WARN_ON(p != rq->curr);
2946 WARN_ON(p->pi_blocked_on);
2947 goto out_unlock;
2948 }
2949
a8027073 2950 trace_sched_pi_setprio(p, prio);
2d3d891d 2951 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2952 oldprio = p->prio;
83ab0aa0 2953 prev_class = p->sched_class;
fd2f4419 2954 on_rq = p->on_rq;
051a1d1a 2955 running = task_current(rq, p);
0e1f3483 2956 if (on_rq)
69be72c1 2957 dequeue_task(rq, p, 0);
0e1f3483
HS
2958 if (running)
2959 p->sched_class->put_prev_task(rq, p);
dd41f596 2960
2d3d891d
DF
2961 /*
2962 * Boosting condition are:
2963 * 1. -rt task is running and holds mutex A
2964 * --> -dl task blocks on mutex A
2965 *
2966 * 2. -dl task is running and holds mutex A
2967 * --> -dl task blocks on mutex A and could preempt the
2968 * running task
2969 */
2970 if (dl_prio(prio)) {
2971 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2972 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2973 p->dl.dl_boosted = 1;
2974 p->dl.dl_throttled = 0;
2975 enqueue_flag = ENQUEUE_REPLENISH;
2976 } else
2977 p->dl.dl_boosted = 0;
aab03e05 2978 p->sched_class = &dl_sched_class;
2d3d891d
DF
2979 } else if (rt_prio(prio)) {
2980 if (dl_prio(oldprio))
2981 p->dl.dl_boosted = 0;
2982 if (oldprio < prio)
2983 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2984 p->sched_class = &rt_sched_class;
2d3d891d
DF
2985 } else {
2986 if (dl_prio(oldprio))
2987 p->dl.dl_boosted = 0;
dd41f596 2988 p->sched_class = &fair_sched_class;
2d3d891d 2989 }
dd41f596 2990
b29739f9
IM
2991 p->prio = prio;
2992
0e1f3483
HS
2993 if (running)
2994 p->sched_class->set_curr_task(rq);
da7a735e 2995 if (on_rq)
2d3d891d 2996 enqueue_task(rq, p, enqueue_flag);
cb469845 2997
da7a735e 2998 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2999out_unlock:
0122ec5b 3000 __task_rq_unlock(rq);
b29739f9 3001}
b29739f9 3002#endif
d50dde5a 3003
36c8b586 3004void set_user_nice(struct task_struct *p, long nice)
1da177e4 3005{
dd41f596 3006 int old_prio, delta, on_rq;
1da177e4 3007 unsigned long flags;
70b97a7f 3008 struct rq *rq;
1da177e4 3009
d0ea0268 3010 if (task_nice(p) == nice || nice < -20 || nice > 19)
1da177e4
LT
3011 return;
3012 /*
3013 * We have to be careful, if called from sys_setpriority(),
3014 * the task might be in the middle of scheduling on another CPU.
3015 */
3016 rq = task_rq_lock(p, &flags);
3017 /*
3018 * The RT priorities are set via sched_setscheduler(), but we still
3019 * allow the 'normal' nice value to be set - but as expected
3020 * it wont have any effect on scheduling until the task is
aab03e05 3021 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3022 */
aab03e05 3023 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3024 p->static_prio = NICE_TO_PRIO(nice);
3025 goto out_unlock;
3026 }
fd2f4419 3027 on_rq = p->on_rq;
c09595f6 3028 if (on_rq)
69be72c1 3029 dequeue_task(rq, p, 0);
1da177e4 3030
1da177e4 3031 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3032 set_load_weight(p);
b29739f9
IM
3033 old_prio = p->prio;
3034 p->prio = effective_prio(p);
3035 delta = p->prio - old_prio;
1da177e4 3036
dd41f596 3037 if (on_rq) {
371fd7e7 3038 enqueue_task(rq, p, 0);
1da177e4 3039 /*
d5f9f942
AM
3040 * If the task increased its priority or is running and
3041 * lowered its priority, then reschedule its CPU:
1da177e4 3042 */
d5f9f942 3043 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3044 resched_task(rq->curr);
3045 }
3046out_unlock:
0122ec5b 3047 task_rq_unlock(rq, p, &flags);
1da177e4 3048}
1da177e4
LT
3049EXPORT_SYMBOL(set_user_nice);
3050
e43379f1
MM
3051/*
3052 * can_nice - check if a task can reduce its nice value
3053 * @p: task
3054 * @nice: nice value
3055 */
36c8b586 3056int can_nice(const struct task_struct *p, const int nice)
e43379f1 3057{
024f4747
MM
3058 /* convert nice value [19,-20] to rlimit style value [1,40] */
3059 int nice_rlim = 20 - nice;
48f24c4d 3060
78d7d407 3061 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3062 capable(CAP_SYS_NICE));
3063}
3064
1da177e4
LT
3065#ifdef __ARCH_WANT_SYS_NICE
3066
3067/*
3068 * sys_nice - change the priority of the current process.
3069 * @increment: priority increment
3070 *
3071 * sys_setpriority is a more generic, but much slower function that
3072 * does similar things.
3073 */
5add95d4 3074SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3075{
48f24c4d 3076 long nice, retval;
1da177e4
LT
3077
3078 /*
3079 * Setpriority might change our priority at the same moment.
3080 * We don't have to worry. Conceptually one call occurs first
3081 * and we have a single winner.
3082 */
e43379f1
MM
3083 if (increment < -40)
3084 increment = -40;
1da177e4
LT
3085 if (increment > 40)
3086 increment = 40;
3087
d0ea0268 3088 nice = task_nice(current) + increment;
1da177e4
LT
3089 if (nice < -20)
3090 nice = -20;
3091 if (nice > 19)
3092 nice = 19;
3093
e43379f1
MM
3094 if (increment < 0 && !can_nice(current, nice))
3095 return -EPERM;
3096
1da177e4
LT
3097 retval = security_task_setnice(current, nice);
3098 if (retval)
3099 return retval;
3100
3101 set_user_nice(current, nice);
3102 return 0;
3103}
3104
3105#endif
3106
3107/**
3108 * task_prio - return the priority value of a given task.
3109 * @p: the task in question.
3110 *
e69f6186 3111 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3112 * RT tasks are offset by -200. Normal tasks are centered
3113 * around 0, value goes from -16 to +15.
3114 */
36c8b586 3115int task_prio(const struct task_struct *p)
1da177e4
LT
3116{
3117 return p->prio - MAX_RT_PRIO;
3118}
3119
1da177e4
LT
3120/**
3121 * idle_cpu - is a given cpu idle currently?
3122 * @cpu: the processor in question.
e69f6186
YB
3123 *
3124 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3125 */
3126int idle_cpu(int cpu)
3127{
908a3283
TG
3128 struct rq *rq = cpu_rq(cpu);
3129
3130 if (rq->curr != rq->idle)
3131 return 0;
3132
3133 if (rq->nr_running)
3134 return 0;
3135
3136#ifdef CONFIG_SMP
3137 if (!llist_empty(&rq->wake_list))
3138 return 0;
3139#endif
3140
3141 return 1;
1da177e4
LT
3142}
3143
1da177e4
LT
3144/**
3145 * idle_task - return the idle task for a given cpu.
3146 * @cpu: the processor in question.
e69f6186
YB
3147 *
3148 * Return: The idle task for the cpu @cpu.
1da177e4 3149 */
36c8b586 3150struct task_struct *idle_task(int cpu)
1da177e4
LT
3151{
3152 return cpu_rq(cpu)->idle;
3153}
3154
3155/**
3156 * find_process_by_pid - find a process with a matching PID value.
3157 * @pid: the pid in question.
e69f6186
YB
3158 *
3159 * The task of @pid, if found. %NULL otherwise.
1da177e4 3160 */
a9957449 3161static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3162{
228ebcbe 3163 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3164}
3165
aab03e05
DF
3166/*
3167 * This function initializes the sched_dl_entity of a newly becoming
3168 * SCHED_DEADLINE task.
3169 *
3170 * Only the static values are considered here, the actual runtime and the
3171 * absolute deadline will be properly calculated when the task is enqueued
3172 * for the first time with its new policy.
3173 */
3174static void
3175__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3176{
3177 struct sched_dl_entity *dl_se = &p->dl;
3178
3179 init_dl_task_timer(dl_se);
3180 dl_se->dl_runtime = attr->sched_runtime;
3181 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3182 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3183 dl_se->flags = attr->sched_flags;
332ac17e 3184 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3185 dl_se->dl_throttled = 0;
3186 dl_se->dl_new = 1;
3187}
3188
d50dde5a
DF
3189/* Actually do priority change: must hold pi & rq lock. */
3190static void __setscheduler(struct rq *rq, struct task_struct *p,
3191 const struct sched_attr *attr)
1da177e4 3192{
d50dde5a
DF
3193 int policy = attr->sched_policy;
3194
39fd8fd2
PZ
3195 if (policy == -1) /* setparam */
3196 policy = p->policy;
3197
1da177e4 3198 p->policy = policy;
d50dde5a 3199
aab03e05
DF
3200 if (dl_policy(policy))
3201 __setparam_dl(p, attr);
39fd8fd2 3202 else if (fair_policy(policy))
d50dde5a
DF
3203 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3204
39fd8fd2
PZ
3205 /*
3206 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3207 * !rt_policy. Always setting this ensures that things like
3208 * getparam()/getattr() don't report silly values for !rt tasks.
3209 */
3210 p->rt_priority = attr->sched_priority;
3211
b29739f9 3212 p->normal_prio = normal_prio(p);
b29739f9 3213 p->prio = rt_mutex_getprio(p);
d50dde5a 3214
aab03e05
DF
3215 if (dl_prio(p->prio))
3216 p->sched_class = &dl_sched_class;
3217 else if (rt_prio(p->prio))
ffd44db5
PZ
3218 p->sched_class = &rt_sched_class;
3219 else
3220 p->sched_class = &fair_sched_class;
d50dde5a 3221
2dd73a4f 3222 set_load_weight(p);
1da177e4 3223}
aab03e05
DF
3224
3225static void
3226__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3227{
3228 struct sched_dl_entity *dl_se = &p->dl;
3229
3230 attr->sched_priority = p->rt_priority;
3231 attr->sched_runtime = dl_se->dl_runtime;
3232 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3233 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3234 attr->sched_flags = dl_se->flags;
3235}
3236
3237/*
3238 * This function validates the new parameters of a -deadline task.
3239 * We ask for the deadline not being zero, and greater or equal
755378a4 3240 * than the runtime, as well as the period of being zero or
332ac17e
DF
3241 * greater than deadline. Furthermore, we have to be sure that
3242 * user parameters are above the internal resolution (1us); we
3243 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3244 */
3245static bool
3246__checkparam_dl(const struct sched_attr *attr)
3247{
3248 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3249 (attr->sched_period == 0 ||
3250 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3251 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3252 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3253}
3254
c69e8d9c
DH
3255/*
3256 * check the target process has a UID that matches the current process's
3257 */
3258static bool check_same_owner(struct task_struct *p)
3259{
3260 const struct cred *cred = current_cred(), *pcred;
3261 bool match;
3262
3263 rcu_read_lock();
3264 pcred = __task_cred(p);
9c806aa0
EB
3265 match = (uid_eq(cred->euid, pcred->euid) ||
3266 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3267 rcu_read_unlock();
3268 return match;
3269}
3270
d50dde5a
DF
3271static int __sched_setscheduler(struct task_struct *p,
3272 const struct sched_attr *attr,
3273 bool user)
1da177e4 3274{
83b699ed 3275 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3276 int policy = attr->sched_policy;
1da177e4 3277 unsigned long flags;
83ab0aa0 3278 const struct sched_class *prev_class;
70b97a7f 3279 struct rq *rq;
ca94c442 3280 int reset_on_fork;
1da177e4 3281
66e5393a
SR
3282 /* may grab non-irq protected spin_locks */
3283 BUG_ON(in_interrupt());
1da177e4
LT
3284recheck:
3285 /* double check policy once rq lock held */
ca94c442
LP
3286 if (policy < 0) {
3287 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3288 policy = oldpolicy = p->policy;
ca94c442 3289 } else {
7479f3c9 3290 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3291
aab03e05
DF
3292 if (policy != SCHED_DEADLINE &&
3293 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3294 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3295 policy != SCHED_IDLE)
3296 return -EINVAL;
3297 }
3298
7479f3c9
PZ
3299 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3300 return -EINVAL;
3301
1da177e4
LT
3302 /*
3303 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3304 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3305 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3306 */
0bb040a4 3307 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3308 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3309 return -EINVAL;
aab03e05
DF
3310 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3311 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3312 return -EINVAL;
3313
37e4ab3f
OC
3314 /*
3315 * Allow unprivileged RT tasks to decrease priority:
3316 */
961ccddd 3317 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3318 if (fair_policy(policy)) {
d0ea0268 3319 if (attr->sched_nice < task_nice(p) &&
eaad4513 3320 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3321 return -EPERM;
3322 }
3323
e05606d3 3324 if (rt_policy(policy)) {
a44702e8
ON
3325 unsigned long rlim_rtprio =
3326 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3327
3328 /* can't set/change the rt policy */
3329 if (policy != p->policy && !rlim_rtprio)
3330 return -EPERM;
3331
3332 /* can't increase priority */
d50dde5a
DF
3333 if (attr->sched_priority > p->rt_priority &&
3334 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3335 return -EPERM;
3336 }
c02aa73b 3337
dd41f596 3338 /*
c02aa73b
DH
3339 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3340 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3341 */
c02aa73b 3342 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3343 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3344 return -EPERM;
3345 }
5fe1d75f 3346
37e4ab3f 3347 /* can't change other user's priorities */
c69e8d9c 3348 if (!check_same_owner(p))
37e4ab3f 3349 return -EPERM;
ca94c442
LP
3350
3351 /* Normal users shall not reset the sched_reset_on_fork flag */
3352 if (p->sched_reset_on_fork && !reset_on_fork)
3353 return -EPERM;
37e4ab3f 3354 }
1da177e4 3355
725aad24 3356 if (user) {
b0ae1981 3357 retval = security_task_setscheduler(p);
725aad24
JF
3358 if (retval)
3359 return retval;
3360 }
3361
b29739f9
IM
3362 /*
3363 * make sure no PI-waiters arrive (or leave) while we are
3364 * changing the priority of the task:
0122ec5b 3365 *
25985edc 3366 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3367 * runqueue lock must be held.
3368 */
0122ec5b 3369 rq = task_rq_lock(p, &flags);
dc61b1d6 3370
34f971f6
PZ
3371 /*
3372 * Changing the policy of the stop threads its a very bad idea
3373 */
3374 if (p == rq->stop) {
0122ec5b 3375 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3376 return -EINVAL;
3377 }
3378
a51e9198
DF
3379 /*
3380 * If not changing anything there's no need to proceed further:
3381 */
d50dde5a 3382 if (unlikely(policy == p->policy)) {
d0ea0268 3383 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3384 goto change;
3385 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3386 goto change;
aab03e05
DF
3387 if (dl_policy(policy))
3388 goto change;
d50dde5a 3389
45afb173 3390 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3391 return 0;
3392 }
d50dde5a 3393change:
a51e9198 3394
dc61b1d6 3395 if (user) {
332ac17e 3396#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3397 /*
3398 * Do not allow realtime tasks into groups that have no runtime
3399 * assigned.
3400 */
3401 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3402 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3404 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3405 return -EPERM;
3406 }
dc61b1d6 3407#endif
332ac17e
DF
3408#ifdef CONFIG_SMP
3409 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3410 cpumask_t *span = rq->rd->span;
332ac17e
DF
3411
3412 /*
3413 * Don't allow tasks with an affinity mask smaller than
3414 * the entire root_domain to become SCHED_DEADLINE. We
3415 * will also fail if there's no bandwidth available.
3416 */
e4099a5e
PZ
3417 if (!cpumask_subset(span, &p->cpus_allowed) ||
3418 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3419 task_rq_unlock(rq, p, &flags);
3420 return -EPERM;
3421 }
3422 }
3423#endif
3424 }
dc61b1d6 3425
1da177e4
LT
3426 /* recheck policy now with rq lock held */
3427 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3428 policy = oldpolicy = -1;
0122ec5b 3429 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3430 goto recheck;
3431 }
332ac17e
DF
3432
3433 /*
3434 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3435 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3436 * is available.
3437 */
e4099a5e 3438 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3439 task_rq_unlock(rq, p, &flags);
3440 return -EBUSY;
3441 }
3442
fd2f4419 3443 on_rq = p->on_rq;
051a1d1a 3444 running = task_current(rq, p);
0e1f3483 3445 if (on_rq)
4ca9b72b 3446 dequeue_task(rq, p, 0);
0e1f3483
HS
3447 if (running)
3448 p->sched_class->put_prev_task(rq, p);
f6b53205 3449
ca94c442
LP
3450 p->sched_reset_on_fork = reset_on_fork;
3451
1da177e4 3452 oldprio = p->prio;
83ab0aa0 3453 prev_class = p->sched_class;
d50dde5a 3454 __setscheduler(rq, p, attr);
f6b53205 3455
0e1f3483
HS
3456 if (running)
3457 p->sched_class->set_curr_task(rq);
da7a735e 3458 if (on_rq)
4ca9b72b 3459 enqueue_task(rq, p, 0);
cb469845 3460
da7a735e 3461 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3462 task_rq_unlock(rq, p, &flags);
b29739f9 3463
95e02ca9
TG
3464 rt_mutex_adjust_pi(p);
3465
1da177e4
LT
3466 return 0;
3467}
961ccddd 3468
7479f3c9
PZ
3469static int _sched_setscheduler(struct task_struct *p, int policy,
3470 const struct sched_param *param, bool check)
3471{
3472 struct sched_attr attr = {
3473 .sched_policy = policy,
3474 .sched_priority = param->sched_priority,
3475 .sched_nice = PRIO_TO_NICE(p->static_prio),
3476 };
3477
3478 /*
3479 * Fixup the legacy SCHED_RESET_ON_FORK hack
3480 */
3481 if (policy & SCHED_RESET_ON_FORK) {
3482 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3483 policy &= ~SCHED_RESET_ON_FORK;
3484 attr.sched_policy = policy;
3485 }
3486
3487 return __sched_setscheduler(p, &attr, check);
3488}
961ccddd
RR
3489/**
3490 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3491 * @p: the task in question.
3492 * @policy: new policy.
3493 * @param: structure containing the new RT priority.
3494 *
e69f6186
YB
3495 * Return: 0 on success. An error code otherwise.
3496 *
961ccddd
RR
3497 * NOTE that the task may be already dead.
3498 */
3499int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3500 const struct sched_param *param)
961ccddd 3501{
7479f3c9 3502 return _sched_setscheduler(p, policy, param, true);
961ccddd 3503}
1da177e4
LT
3504EXPORT_SYMBOL_GPL(sched_setscheduler);
3505
d50dde5a
DF
3506int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3507{
3508 return __sched_setscheduler(p, attr, true);
3509}
3510EXPORT_SYMBOL_GPL(sched_setattr);
3511
961ccddd
RR
3512/**
3513 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3514 * @p: the task in question.
3515 * @policy: new policy.
3516 * @param: structure containing the new RT priority.
3517 *
3518 * Just like sched_setscheduler, only don't bother checking if the
3519 * current context has permission. For example, this is needed in
3520 * stop_machine(): we create temporary high priority worker threads,
3521 * but our caller might not have that capability.
e69f6186
YB
3522 *
3523 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3524 */
3525int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3526 const struct sched_param *param)
961ccddd 3527{
7479f3c9 3528 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3529}
3530
95cdf3b7
IM
3531static int
3532do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3533{
1da177e4
LT
3534 struct sched_param lparam;
3535 struct task_struct *p;
36c8b586 3536 int retval;
1da177e4
LT
3537
3538 if (!param || pid < 0)
3539 return -EINVAL;
3540 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3541 return -EFAULT;
5fe1d75f
ON
3542
3543 rcu_read_lock();
3544 retval = -ESRCH;
1da177e4 3545 p = find_process_by_pid(pid);
5fe1d75f
ON
3546 if (p != NULL)
3547 retval = sched_setscheduler(p, policy, &lparam);
3548 rcu_read_unlock();
36c8b586 3549
1da177e4
LT
3550 return retval;
3551}
3552
d50dde5a
DF
3553/*
3554 * Mimics kernel/events/core.c perf_copy_attr().
3555 */
3556static int sched_copy_attr(struct sched_attr __user *uattr,
3557 struct sched_attr *attr)
3558{
3559 u32 size;
3560 int ret;
3561
3562 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3563 return -EFAULT;
3564
3565 /*
3566 * zero the full structure, so that a short copy will be nice.
3567 */
3568 memset(attr, 0, sizeof(*attr));
3569
3570 ret = get_user(size, &uattr->size);
3571 if (ret)
3572 return ret;
3573
3574 if (size > PAGE_SIZE) /* silly large */
3575 goto err_size;
3576
3577 if (!size) /* abi compat */
3578 size = SCHED_ATTR_SIZE_VER0;
3579
3580 if (size < SCHED_ATTR_SIZE_VER0)
3581 goto err_size;
3582
3583 /*
3584 * If we're handed a bigger struct than we know of,
3585 * ensure all the unknown bits are 0 - i.e. new
3586 * user-space does not rely on any kernel feature
3587 * extensions we dont know about yet.
3588 */
3589 if (size > sizeof(*attr)) {
3590 unsigned char __user *addr;
3591 unsigned char __user *end;
3592 unsigned char val;
3593
3594 addr = (void __user *)uattr + sizeof(*attr);
3595 end = (void __user *)uattr + size;
3596
3597 for (; addr < end; addr++) {
3598 ret = get_user(val, addr);
3599 if (ret)
3600 return ret;
3601 if (val)
3602 goto err_size;
3603 }
3604 size = sizeof(*attr);
3605 }
3606
3607 ret = copy_from_user(attr, uattr, size);
3608 if (ret)
3609 return -EFAULT;
3610
3611 /*
3612 * XXX: do we want to be lenient like existing syscalls; or do we want
3613 * to be strict and return an error on out-of-bounds values?
3614 */
3615 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3616
3617out:
3618 return ret;
3619
3620err_size:
3621 put_user(sizeof(*attr), &uattr->size);
3622 ret = -E2BIG;
3623 goto out;
3624}
3625
1da177e4
LT
3626/**
3627 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3628 * @pid: the pid in question.
3629 * @policy: new policy.
3630 * @param: structure containing the new RT priority.
e69f6186
YB
3631 *
3632 * Return: 0 on success. An error code otherwise.
1da177e4 3633 */
5add95d4
HC
3634SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3635 struct sched_param __user *, param)
1da177e4 3636{
c21761f1
JB
3637 /* negative values for policy are not valid */
3638 if (policy < 0)
3639 return -EINVAL;
3640
1da177e4
LT
3641 return do_sched_setscheduler(pid, policy, param);
3642}
3643
3644/**
3645 * sys_sched_setparam - set/change the RT priority of a thread
3646 * @pid: the pid in question.
3647 * @param: structure containing the new RT priority.
e69f6186
YB
3648 *
3649 * Return: 0 on success. An error code otherwise.
1da177e4 3650 */
5add95d4 3651SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3652{
3653 return do_sched_setscheduler(pid, -1, param);
3654}
3655
d50dde5a
DF
3656/**
3657 * sys_sched_setattr - same as above, but with extended sched_attr
3658 * @pid: the pid in question.
5778fccf 3659 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3660 */
3661SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3662{
3663 struct sched_attr attr;
3664 struct task_struct *p;
3665 int retval;
3666
3667 if (!uattr || pid < 0)
3668 return -EINVAL;
3669
3670 if (sched_copy_attr(uattr, &attr))
3671 return -EFAULT;
3672
3673 rcu_read_lock();
3674 retval = -ESRCH;
3675 p = find_process_by_pid(pid);
3676 if (p != NULL)
3677 retval = sched_setattr(p, &attr);
3678 rcu_read_unlock();
3679
3680 return retval;
3681}
3682
1da177e4
LT
3683/**
3684 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3685 * @pid: the pid in question.
e69f6186
YB
3686 *
3687 * Return: On success, the policy of the thread. Otherwise, a negative error
3688 * code.
1da177e4 3689 */
5add95d4 3690SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3691{
36c8b586 3692 struct task_struct *p;
3a5c359a 3693 int retval;
1da177e4
LT
3694
3695 if (pid < 0)
3a5c359a 3696 return -EINVAL;
1da177e4
LT
3697
3698 retval = -ESRCH;
5fe85be0 3699 rcu_read_lock();
1da177e4
LT
3700 p = find_process_by_pid(pid);
3701 if (p) {
3702 retval = security_task_getscheduler(p);
3703 if (!retval)
ca94c442
LP
3704 retval = p->policy
3705 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3706 }
5fe85be0 3707 rcu_read_unlock();
1da177e4
LT
3708 return retval;
3709}
3710
3711/**
ca94c442 3712 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3713 * @pid: the pid in question.
3714 * @param: structure containing the RT priority.
e69f6186
YB
3715 *
3716 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3717 * code.
1da177e4 3718 */
5add95d4 3719SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3720{
3721 struct sched_param lp;
36c8b586 3722 struct task_struct *p;
3a5c359a 3723 int retval;
1da177e4
LT
3724
3725 if (!param || pid < 0)
3a5c359a 3726 return -EINVAL;
1da177e4 3727
5fe85be0 3728 rcu_read_lock();
1da177e4
LT
3729 p = find_process_by_pid(pid);
3730 retval = -ESRCH;
3731 if (!p)
3732 goto out_unlock;
3733
3734 retval = security_task_getscheduler(p);
3735 if (retval)
3736 goto out_unlock;
3737
aab03e05
DF
3738 if (task_has_dl_policy(p)) {
3739 retval = -EINVAL;
3740 goto out_unlock;
3741 }
1da177e4 3742 lp.sched_priority = p->rt_priority;
5fe85be0 3743 rcu_read_unlock();
1da177e4
LT
3744
3745 /*
3746 * This one might sleep, we cannot do it with a spinlock held ...
3747 */
3748 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3749
1da177e4
LT
3750 return retval;
3751
3752out_unlock:
5fe85be0 3753 rcu_read_unlock();
1da177e4
LT
3754 return retval;
3755}
3756
d50dde5a
DF
3757static int sched_read_attr(struct sched_attr __user *uattr,
3758 struct sched_attr *attr,
3759 unsigned int usize)
3760{
3761 int ret;
3762
3763 if (!access_ok(VERIFY_WRITE, uattr, usize))
3764 return -EFAULT;
3765
3766 /*
3767 * If we're handed a smaller struct than we know of,
3768 * ensure all the unknown bits are 0 - i.e. old
3769 * user-space does not get uncomplete information.
3770 */
3771 if (usize < sizeof(*attr)) {
3772 unsigned char *addr;
3773 unsigned char *end;
3774
3775 addr = (void *)attr + usize;
3776 end = (void *)attr + sizeof(*attr);
3777
3778 for (; addr < end; addr++) {
3779 if (*addr)
3780 goto err_size;
3781 }
3782
3783 attr->size = usize;
3784 }
3785
3786 ret = copy_to_user(uattr, attr, usize);
3787 if (ret)
3788 return -EFAULT;
3789
3790out:
3791 return ret;
3792
3793err_size:
3794 ret = -E2BIG;
3795 goto out;
3796}
3797
3798/**
aab03e05 3799 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3800 * @pid: the pid in question.
5778fccf 3801 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3802 * @size: sizeof(attr) for fwd/bwd comp.
3803 */
3804SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3805 unsigned int, size)
3806{
3807 struct sched_attr attr = {
3808 .size = sizeof(struct sched_attr),
3809 };
3810 struct task_struct *p;
3811 int retval;
3812
3813 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3814 size < SCHED_ATTR_SIZE_VER0)
3815 return -EINVAL;
3816
3817 rcu_read_lock();
3818 p = find_process_by_pid(pid);
3819 retval = -ESRCH;
3820 if (!p)
3821 goto out_unlock;
3822
3823 retval = security_task_getscheduler(p);
3824 if (retval)
3825 goto out_unlock;
3826
3827 attr.sched_policy = p->policy;
7479f3c9
PZ
3828 if (p->sched_reset_on_fork)
3829 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3830 if (task_has_dl_policy(p))
3831 __getparam_dl(p, &attr);
3832 else if (task_has_rt_policy(p))
d50dde5a
DF
3833 attr.sched_priority = p->rt_priority;
3834 else
d0ea0268 3835 attr.sched_nice = task_nice(p);
d50dde5a
DF
3836
3837 rcu_read_unlock();
3838
3839 retval = sched_read_attr(uattr, &attr, size);
3840 return retval;
3841
3842out_unlock:
3843 rcu_read_unlock();
3844 return retval;
3845}
3846
96f874e2 3847long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3848{
5a16f3d3 3849 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3850 struct task_struct *p;
3851 int retval;
1da177e4 3852
23f5d142 3853 rcu_read_lock();
1da177e4
LT
3854
3855 p = find_process_by_pid(pid);
3856 if (!p) {
23f5d142 3857 rcu_read_unlock();
1da177e4
LT
3858 return -ESRCH;
3859 }
3860
23f5d142 3861 /* Prevent p going away */
1da177e4 3862 get_task_struct(p);
23f5d142 3863 rcu_read_unlock();
1da177e4 3864
14a40ffc
TH
3865 if (p->flags & PF_NO_SETAFFINITY) {
3866 retval = -EINVAL;
3867 goto out_put_task;
3868 }
5a16f3d3
RR
3869 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3870 retval = -ENOMEM;
3871 goto out_put_task;
3872 }
3873 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3874 retval = -ENOMEM;
3875 goto out_free_cpus_allowed;
3876 }
1da177e4 3877 retval = -EPERM;
4c44aaaf
EB
3878 if (!check_same_owner(p)) {
3879 rcu_read_lock();
3880 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3881 rcu_read_unlock();
3882 goto out_unlock;
3883 }
3884 rcu_read_unlock();
3885 }
1da177e4 3886
b0ae1981 3887 retval = security_task_setscheduler(p);
e7834f8f
DQ
3888 if (retval)
3889 goto out_unlock;
3890
e4099a5e
PZ
3891
3892 cpuset_cpus_allowed(p, cpus_allowed);
3893 cpumask_and(new_mask, in_mask, cpus_allowed);
3894
332ac17e
DF
3895 /*
3896 * Since bandwidth control happens on root_domain basis,
3897 * if admission test is enabled, we only admit -deadline
3898 * tasks allowed to run on all the CPUs in the task's
3899 * root_domain.
3900 */
3901#ifdef CONFIG_SMP
3902 if (task_has_dl_policy(p)) {
3903 const struct cpumask *span = task_rq(p)->rd->span;
3904
e4099a5e 3905 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3906 retval = -EBUSY;
3907 goto out_unlock;
3908 }
3909 }
3910#endif
49246274 3911again:
5a16f3d3 3912 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3913
8707d8b8 3914 if (!retval) {
5a16f3d3
RR
3915 cpuset_cpus_allowed(p, cpus_allowed);
3916 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3917 /*
3918 * We must have raced with a concurrent cpuset
3919 * update. Just reset the cpus_allowed to the
3920 * cpuset's cpus_allowed
3921 */
5a16f3d3 3922 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3923 goto again;
3924 }
3925 }
1da177e4 3926out_unlock:
5a16f3d3
RR
3927 free_cpumask_var(new_mask);
3928out_free_cpus_allowed:
3929 free_cpumask_var(cpus_allowed);
3930out_put_task:
1da177e4 3931 put_task_struct(p);
1da177e4
LT
3932 return retval;
3933}
3934
3935static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3936 struct cpumask *new_mask)
1da177e4 3937{
96f874e2
RR
3938 if (len < cpumask_size())
3939 cpumask_clear(new_mask);
3940 else if (len > cpumask_size())
3941 len = cpumask_size();
3942
1da177e4
LT
3943 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3944}
3945
3946/**
3947 * sys_sched_setaffinity - set the cpu affinity of a process
3948 * @pid: pid of the process
3949 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3950 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3951 *
3952 * Return: 0 on success. An error code otherwise.
1da177e4 3953 */
5add95d4
HC
3954SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3955 unsigned long __user *, user_mask_ptr)
1da177e4 3956{
5a16f3d3 3957 cpumask_var_t new_mask;
1da177e4
LT
3958 int retval;
3959
5a16f3d3
RR
3960 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3961 return -ENOMEM;
1da177e4 3962
5a16f3d3
RR
3963 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3964 if (retval == 0)
3965 retval = sched_setaffinity(pid, new_mask);
3966 free_cpumask_var(new_mask);
3967 return retval;
1da177e4
LT
3968}
3969
96f874e2 3970long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3971{
36c8b586 3972 struct task_struct *p;
31605683 3973 unsigned long flags;
1da177e4 3974 int retval;
1da177e4 3975
23f5d142 3976 rcu_read_lock();
1da177e4
LT
3977
3978 retval = -ESRCH;
3979 p = find_process_by_pid(pid);
3980 if (!p)
3981 goto out_unlock;
3982
e7834f8f
DQ
3983 retval = security_task_getscheduler(p);
3984 if (retval)
3985 goto out_unlock;
3986
013fdb80 3987 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3988 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3989 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3990
3991out_unlock:
23f5d142 3992 rcu_read_unlock();
1da177e4 3993
9531b62f 3994 return retval;
1da177e4
LT
3995}
3996
3997/**
3998 * sys_sched_getaffinity - get the cpu affinity of a process
3999 * @pid: pid of the process
4000 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4001 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4002 *
4003 * Return: 0 on success. An error code otherwise.
1da177e4 4004 */
5add95d4
HC
4005SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4006 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4007{
4008 int ret;
f17c8607 4009 cpumask_var_t mask;
1da177e4 4010
84fba5ec 4011 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4012 return -EINVAL;
4013 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4014 return -EINVAL;
4015
f17c8607
RR
4016 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4017 return -ENOMEM;
1da177e4 4018
f17c8607
RR
4019 ret = sched_getaffinity(pid, mask);
4020 if (ret == 0) {
8bc037fb 4021 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4022
4023 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4024 ret = -EFAULT;
4025 else
cd3d8031 4026 ret = retlen;
f17c8607
RR
4027 }
4028 free_cpumask_var(mask);
1da177e4 4029
f17c8607 4030 return ret;
1da177e4
LT
4031}
4032
4033/**
4034 * sys_sched_yield - yield the current processor to other threads.
4035 *
dd41f596
IM
4036 * This function yields the current CPU to other tasks. If there are no
4037 * other threads running on this CPU then this function will return.
e69f6186
YB
4038 *
4039 * Return: 0.
1da177e4 4040 */
5add95d4 4041SYSCALL_DEFINE0(sched_yield)
1da177e4 4042{
70b97a7f 4043 struct rq *rq = this_rq_lock();
1da177e4 4044
2d72376b 4045 schedstat_inc(rq, yld_count);
4530d7ab 4046 current->sched_class->yield_task(rq);
1da177e4
LT
4047
4048 /*
4049 * Since we are going to call schedule() anyway, there's
4050 * no need to preempt or enable interrupts:
4051 */
4052 __release(rq->lock);
8a25d5de 4053 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4054 do_raw_spin_unlock(&rq->lock);
ba74c144 4055 sched_preempt_enable_no_resched();
1da177e4
LT
4056
4057 schedule();
4058
4059 return 0;
4060}
4061
e7b38404 4062static void __cond_resched(void)
1da177e4 4063{
bdb43806 4064 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4065 __schedule();
bdb43806 4066 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4067}
4068
02b67cc3 4069int __sched _cond_resched(void)
1da177e4 4070{
d86ee480 4071 if (should_resched()) {
1da177e4
LT
4072 __cond_resched();
4073 return 1;
4074 }
4075 return 0;
4076}
02b67cc3 4077EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4078
4079/*
613afbf8 4080 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4081 * call schedule, and on return reacquire the lock.
4082 *
41a2d6cf 4083 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4084 * operations here to prevent schedule() from being called twice (once via
4085 * spin_unlock(), once by hand).
4086 */
613afbf8 4087int __cond_resched_lock(spinlock_t *lock)
1da177e4 4088{
d86ee480 4089 int resched = should_resched();
6df3cecb
JK
4090 int ret = 0;
4091
f607c668
PZ
4092 lockdep_assert_held(lock);
4093
95c354fe 4094 if (spin_needbreak(lock) || resched) {
1da177e4 4095 spin_unlock(lock);
d86ee480 4096 if (resched)
95c354fe
NP
4097 __cond_resched();
4098 else
4099 cpu_relax();
6df3cecb 4100 ret = 1;
1da177e4 4101 spin_lock(lock);
1da177e4 4102 }
6df3cecb 4103 return ret;
1da177e4 4104}
613afbf8 4105EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4106
613afbf8 4107int __sched __cond_resched_softirq(void)
1da177e4
LT
4108{
4109 BUG_ON(!in_softirq());
4110
d86ee480 4111 if (should_resched()) {
98d82567 4112 local_bh_enable();
1da177e4
LT
4113 __cond_resched();
4114 local_bh_disable();
4115 return 1;
4116 }
4117 return 0;
4118}
613afbf8 4119EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4120
1da177e4
LT
4121/**
4122 * yield - yield the current processor to other threads.
4123 *
8e3fabfd
PZ
4124 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4125 *
4126 * The scheduler is at all times free to pick the calling task as the most
4127 * eligible task to run, if removing the yield() call from your code breaks
4128 * it, its already broken.
4129 *
4130 * Typical broken usage is:
4131 *
4132 * while (!event)
4133 * yield();
4134 *
4135 * where one assumes that yield() will let 'the other' process run that will
4136 * make event true. If the current task is a SCHED_FIFO task that will never
4137 * happen. Never use yield() as a progress guarantee!!
4138 *
4139 * If you want to use yield() to wait for something, use wait_event().
4140 * If you want to use yield() to be 'nice' for others, use cond_resched().
4141 * If you still want to use yield(), do not!
1da177e4
LT
4142 */
4143void __sched yield(void)
4144{
4145 set_current_state(TASK_RUNNING);
4146 sys_sched_yield();
4147}
1da177e4
LT
4148EXPORT_SYMBOL(yield);
4149
d95f4122
MG
4150/**
4151 * yield_to - yield the current processor to another thread in
4152 * your thread group, or accelerate that thread toward the
4153 * processor it's on.
16addf95
RD
4154 * @p: target task
4155 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4156 *
4157 * It's the caller's job to ensure that the target task struct
4158 * can't go away on us before we can do any checks.
4159 *
e69f6186 4160 * Return:
7b270f60
PZ
4161 * true (>0) if we indeed boosted the target task.
4162 * false (0) if we failed to boost the target.
4163 * -ESRCH if there's no task to yield to.
d95f4122
MG
4164 */
4165bool __sched yield_to(struct task_struct *p, bool preempt)
4166{
4167 struct task_struct *curr = current;
4168 struct rq *rq, *p_rq;
4169 unsigned long flags;
c3c18640 4170 int yielded = 0;
d95f4122
MG
4171
4172 local_irq_save(flags);
4173 rq = this_rq();
4174
4175again:
4176 p_rq = task_rq(p);
7b270f60
PZ
4177 /*
4178 * If we're the only runnable task on the rq and target rq also
4179 * has only one task, there's absolutely no point in yielding.
4180 */
4181 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4182 yielded = -ESRCH;
4183 goto out_irq;
4184 }
4185
d95f4122 4186 double_rq_lock(rq, p_rq);
39e24d8f 4187 if (task_rq(p) != p_rq) {
d95f4122
MG
4188 double_rq_unlock(rq, p_rq);
4189 goto again;
4190 }
4191
4192 if (!curr->sched_class->yield_to_task)
7b270f60 4193 goto out_unlock;
d95f4122
MG
4194
4195 if (curr->sched_class != p->sched_class)
7b270f60 4196 goto out_unlock;
d95f4122
MG
4197
4198 if (task_running(p_rq, p) || p->state)
7b270f60 4199 goto out_unlock;
d95f4122
MG
4200
4201 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4202 if (yielded) {
d95f4122 4203 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4204 /*
4205 * Make p's CPU reschedule; pick_next_entity takes care of
4206 * fairness.
4207 */
4208 if (preempt && rq != p_rq)
4209 resched_task(p_rq->curr);
4210 }
d95f4122 4211
7b270f60 4212out_unlock:
d95f4122 4213 double_rq_unlock(rq, p_rq);
7b270f60 4214out_irq:
d95f4122
MG
4215 local_irq_restore(flags);
4216
7b270f60 4217 if (yielded > 0)
d95f4122
MG
4218 schedule();
4219
4220 return yielded;
4221}
4222EXPORT_SYMBOL_GPL(yield_to);
4223
1da177e4 4224/*
41a2d6cf 4225 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4226 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4227 */
4228void __sched io_schedule(void)
4229{
54d35f29 4230 struct rq *rq = raw_rq();
1da177e4 4231
0ff92245 4232 delayacct_blkio_start();
1da177e4 4233 atomic_inc(&rq->nr_iowait);
73c10101 4234 blk_flush_plug(current);
8f0dfc34 4235 current->in_iowait = 1;
1da177e4 4236 schedule();
8f0dfc34 4237 current->in_iowait = 0;
1da177e4 4238 atomic_dec(&rq->nr_iowait);
0ff92245 4239 delayacct_blkio_end();
1da177e4 4240}
1da177e4
LT
4241EXPORT_SYMBOL(io_schedule);
4242
4243long __sched io_schedule_timeout(long timeout)
4244{
54d35f29 4245 struct rq *rq = raw_rq();
1da177e4
LT
4246 long ret;
4247
0ff92245 4248 delayacct_blkio_start();
1da177e4 4249 atomic_inc(&rq->nr_iowait);
73c10101 4250 blk_flush_plug(current);
8f0dfc34 4251 current->in_iowait = 1;
1da177e4 4252 ret = schedule_timeout(timeout);
8f0dfc34 4253 current->in_iowait = 0;
1da177e4 4254 atomic_dec(&rq->nr_iowait);
0ff92245 4255 delayacct_blkio_end();
1da177e4
LT
4256 return ret;
4257}
4258
4259/**
4260 * sys_sched_get_priority_max - return maximum RT priority.
4261 * @policy: scheduling class.
4262 *
e69f6186
YB
4263 * Return: On success, this syscall returns the maximum
4264 * rt_priority that can be used by a given scheduling class.
4265 * On failure, a negative error code is returned.
1da177e4 4266 */
5add95d4 4267SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4268{
4269 int ret = -EINVAL;
4270
4271 switch (policy) {
4272 case SCHED_FIFO:
4273 case SCHED_RR:
4274 ret = MAX_USER_RT_PRIO-1;
4275 break;
aab03e05 4276 case SCHED_DEADLINE:
1da177e4 4277 case SCHED_NORMAL:
b0a9499c 4278 case SCHED_BATCH:
dd41f596 4279 case SCHED_IDLE:
1da177e4
LT
4280 ret = 0;
4281 break;
4282 }
4283 return ret;
4284}
4285
4286/**
4287 * sys_sched_get_priority_min - return minimum RT priority.
4288 * @policy: scheduling class.
4289 *
e69f6186
YB
4290 * Return: On success, this syscall returns the minimum
4291 * rt_priority that can be used by a given scheduling class.
4292 * On failure, a negative error code is returned.
1da177e4 4293 */
5add95d4 4294SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4295{
4296 int ret = -EINVAL;
4297
4298 switch (policy) {
4299 case SCHED_FIFO:
4300 case SCHED_RR:
4301 ret = 1;
4302 break;
aab03e05 4303 case SCHED_DEADLINE:
1da177e4 4304 case SCHED_NORMAL:
b0a9499c 4305 case SCHED_BATCH:
dd41f596 4306 case SCHED_IDLE:
1da177e4
LT
4307 ret = 0;
4308 }
4309 return ret;
4310}
4311
4312/**
4313 * sys_sched_rr_get_interval - return the default timeslice of a process.
4314 * @pid: pid of the process.
4315 * @interval: userspace pointer to the timeslice value.
4316 *
4317 * this syscall writes the default timeslice value of a given process
4318 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4319 *
4320 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4321 * an error code.
1da177e4 4322 */
17da2bd9 4323SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4324 struct timespec __user *, interval)
1da177e4 4325{
36c8b586 4326 struct task_struct *p;
a4ec24b4 4327 unsigned int time_slice;
dba091b9
TG
4328 unsigned long flags;
4329 struct rq *rq;
3a5c359a 4330 int retval;
1da177e4 4331 struct timespec t;
1da177e4
LT
4332
4333 if (pid < 0)
3a5c359a 4334 return -EINVAL;
1da177e4
LT
4335
4336 retval = -ESRCH;
1a551ae7 4337 rcu_read_lock();
1da177e4
LT
4338 p = find_process_by_pid(pid);
4339 if (!p)
4340 goto out_unlock;
4341
4342 retval = security_task_getscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
dba091b9 4346 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4347 time_slice = 0;
4348 if (p->sched_class->get_rr_interval)
4349 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4350 task_rq_unlock(rq, p, &flags);
a4ec24b4 4351
1a551ae7 4352 rcu_read_unlock();
a4ec24b4 4353 jiffies_to_timespec(time_slice, &t);
1da177e4 4354 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4355 return retval;
3a5c359a 4356
1da177e4 4357out_unlock:
1a551ae7 4358 rcu_read_unlock();
1da177e4
LT
4359 return retval;
4360}
4361
7c731e0a 4362static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4363
82a1fcb9 4364void sched_show_task(struct task_struct *p)
1da177e4 4365{
1da177e4 4366 unsigned long free = 0;
4e79752c 4367 int ppid;
36c8b586 4368 unsigned state;
1da177e4 4369
1da177e4 4370 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4371 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4372 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4373#if BITS_PER_LONG == 32
1da177e4 4374 if (state == TASK_RUNNING)
3df0fc5b 4375 printk(KERN_CONT " running ");
1da177e4 4376 else
3df0fc5b 4377 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4378#else
4379 if (state == TASK_RUNNING)
3df0fc5b 4380 printk(KERN_CONT " running task ");
1da177e4 4381 else
3df0fc5b 4382 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4383#endif
4384#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4385 free = stack_not_used(p);
1da177e4 4386#endif
4e79752c
PM
4387 rcu_read_lock();
4388 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4389 rcu_read_unlock();
3df0fc5b 4390 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4391 task_pid_nr(p), ppid,
aa47b7e0 4392 (unsigned long)task_thread_info(p)->flags);
1da177e4 4393
3d1cb205 4394 print_worker_info(KERN_INFO, p);
5fb5e6de 4395 show_stack(p, NULL);
1da177e4
LT
4396}
4397
e59e2ae2 4398void show_state_filter(unsigned long state_filter)
1da177e4 4399{
36c8b586 4400 struct task_struct *g, *p;
1da177e4 4401
4bd77321 4402#if BITS_PER_LONG == 32
3df0fc5b
PZ
4403 printk(KERN_INFO
4404 " task PC stack pid father\n");
1da177e4 4405#else
3df0fc5b
PZ
4406 printk(KERN_INFO
4407 " task PC stack pid father\n");
1da177e4 4408#endif
510f5acc 4409 rcu_read_lock();
1da177e4
LT
4410 do_each_thread(g, p) {
4411 /*
4412 * reset the NMI-timeout, listing all files on a slow
25985edc 4413 * console might take a lot of time:
1da177e4
LT
4414 */
4415 touch_nmi_watchdog();
39bc89fd 4416 if (!state_filter || (p->state & state_filter))
82a1fcb9 4417 sched_show_task(p);
1da177e4
LT
4418 } while_each_thread(g, p);
4419
04c9167f
JF
4420 touch_all_softlockup_watchdogs();
4421
dd41f596
IM
4422#ifdef CONFIG_SCHED_DEBUG
4423 sysrq_sched_debug_show();
4424#endif
510f5acc 4425 rcu_read_unlock();
e59e2ae2
IM
4426 /*
4427 * Only show locks if all tasks are dumped:
4428 */
93335a21 4429 if (!state_filter)
e59e2ae2 4430 debug_show_all_locks();
1da177e4
LT
4431}
4432
0db0628d 4433void init_idle_bootup_task(struct task_struct *idle)
1df21055 4434{
dd41f596 4435 idle->sched_class = &idle_sched_class;
1df21055
IM
4436}
4437
f340c0d1
IM
4438/**
4439 * init_idle - set up an idle thread for a given CPU
4440 * @idle: task in question
4441 * @cpu: cpu the idle task belongs to
4442 *
4443 * NOTE: this function does not set the idle thread's NEED_RESCHED
4444 * flag, to make booting more robust.
4445 */
0db0628d 4446void init_idle(struct task_struct *idle, int cpu)
1da177e4 4447{
70b97a7f 4448 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4449 unsigned long flags;
4450
05fa785c 4451 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4452
5e1576ed 4453 __sched_fork(0, idle);
06b83b5f 4454 idle->state = TASK_RUNNING;
dd41f596
IM
4455 idle->se.exec_start = sched_clock();
4456
1e1b6c51 4457 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4458 /*
4459 * We're having a chicken and egg problem, even though we are
4460 * holding rq->lock, the cpu isn't yet set to this cpu so the
4461 * lockdep check in task_group() will fail.
4462 *
4463 * Similar case to sched_fork(). / Alternatively we could
4464 * use task_rq_lock() here and obtain the other rq->lock.
4465 *
4466 * Silence PROVE_RCU
4467 */
4468 rcu_read_lock();
dd41f596 4469 __set_task_cpu(idle, cpu);
6506cf6c 4470 rcu_read_unlock();
1da177e4 4471
1da177e4 4472 rq->curr = rq->idle = idle;
3ca7a440
PZ
4473#if defined(CONFIG_SMP)
4474 idle->on_cpu = 1;
4866cde0 4475#endif
05fa785c 4476 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4477
4478 /* Set the preempt count _outside_ the spinlocks! */
01028747 4479 init_idle_preempt_count(idle, cpu);
55cd5340 4480
dd41f596
IM
4481 /*
4482 * The idle tasks have their own, simple scheduling class:
4483 */
4484 idle->sched_class = &idle_sched_class;
868baf07 4485 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4486 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4487#if defined(CONFIG_SMP)
4488 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4489#endif
19978ca6
IM
4490}
4491
1da177e4 4492#ifdef CONFIG_SMP
1e1b6c51
KM
4493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4494{
4495 if (p->sched_class && p->sched_class->set_cpus_allowed)
4496 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4497
4498 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4499 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4500}
4501
1da177e4
LT
4502/*
4503 * This is how migration works:
4504 *
969c7921
TH
4505 * 1) we invoke migration_cpu_stop() on the target CPU using
4506 * stop_one_cpu().
4507 * 2) stopper starts to run (implicitly forcing the migrated thread
4508 * off the CPU)
4509 * 3) it checks whether the migrated task is still in the wrong runqueue.
4510 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4511 * it and puts it into the right queue.
969c7921
TH
4512 * 5) stopper completes and stop_one_cpu() returns and the migration
4513 * is done.
1da177e4
LT
4514 */
4515
4516/*
4517 * Change a given task's CPU affinity. Migrate the thread to a
4518 * proper CPU and schedule it away if the CPU it's executing on
4519 * is removed from the allowed bitmask.
4520 *
4521 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4522 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4523 * call is not atomic; no spinlocks may be held.
4524 */
96f874e2 4525int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4526{
4527 unsigned long flags;
70b97a7f 4528 struct rq *rq;
969c7921 4529 unsigned int dest_cpu;
48f24c4d 4530 int ret = 0;
1da177e4
LT
4531
4532 rq = task_rq_lock(p, &flags);
e2912009 4533
db44fc01
YZ
4534 if (cpumask_equal(&p->cpus_allowed, new_mask))
4535 goto out;
4536
6ad4c188 4537 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4538 ret = -EINVAL;
4539 goto out;
4540 }
4541
1e1b6c51 4542 do_set_cpus_allowed(p, new_mask);
73fe6aae 4543
1da177e4 4544 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4545 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4546 goto out;
4547
969c7921 4548 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4549 if (p->on_rq) {
969c7921 4550 struct migration_arg arg = { p, dest_cpu };
1da177e4 4551 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4552 task_rq_unlock(rq, p, &flags);
969c7921 4553 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4554 tlb_migrate_finish(p->mm);
4555 return 0;
4556 }
4557out:
0122ec5b 4558 task_rq_unlock(rq, p, &flags);
48f24c4d 4559
1da177e4
LT
4560 return ret;
4561}
cd8ba7cd 4562EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4563
4564/*
41a2d6cf 4565 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4566 * this because either it can't run here any more (set_cpus_allowed()
4567 * away from this CPU, or CPU going down), or because we're
4568 * attempting to rebalance this task on exec (sched_exec).
4569 *
4570 * So we race with normal scheduler movements, but that's OK, as long
4571 * as the task is no longer on this CPU.
efc30814
KK
4572 *
4573 * Returns non-zero if task was successfully migrated.
1da177e4 4574 */
efc30814 4575static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4576{
70b97a7f 4577 struct rq *rq_dest, *rq_src;
e2912009 4578 int ret = 0;
1da177e4 4579
e761b772 4580 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4581 return ret;
1da177e4
LT
4582
4583 rq_src = cpu_rq(src_cpu);
4584 rq_dest = cpu_rq(dest_cpu);
4585
0122ec5b 4586 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4587 double_rq_lock(rq_src, rq_dest);
4588 /* Already moved. */
4589 if (task_cpu(p) != src_cpu)
b1e38734 4590 goto done;
1da177e4 4591 /* Affinity changed (again). */
fa17b507 4592 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4593 goto fail;
1da177e4 4594
e2912009
PZ
4595 /*
4596 * If we're not on a rq, the next wake-up will ensure we're
4597 * placed properly.
4598 */
fd2f4419 4599 if (p->on_rq) {
4ca9b72b 4600 dequeue_task(rq_src, p, 0);
e2912009 4601 set_task_cpu(p, dest_cpu);
4ca9b72b 4602 enqueue_task(rq_dest, p, 0);
15afe09b 4603 check_preempt_curr(rq_dest, p, 0);
1da177e4 4604 }
b1e38734 4605done:
efc30814 4606 ret = 1;
b1e38734 4607fail:
1da177e4 4608 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4609 raw_spin_unlock(&p->pi_lock);
efc30814 4610 return ret;
1da177e4
LT
4611}
4612
e6628d5b
MG
4613#ifdef CONFIG_NUMA_BALANCING
4614/* Migrate current task p to target_cpu */
4615int migrate_task_to(struct task_struct *p, int target_cpu)
4616{
4617 struct migration_arg arg = { p, target_cpu };
4618 int curr_cpu = task_cpu(p);
4619
4620 if (curr_cpu == target_cpu)
4621 return 0;
4622
4623 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4624 return -EINVAL;
4625
4626 /* TODO: This is not properly updating schedstats */
4627
286549dc 4628 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4629 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4630}
0ec8aa00
PZ
4631
4632/*
4633 * Requeue a task on a given node and accurately track the number of NUMA
4634 * tasks on the runqueues
4635 */
4636void sched_setnuma(struct task_struct *p, int nid)
4637{
4638 struct rq *rq;
4639 unsigned long flags;
4640 bool on_rq, running;
4641
4642 rq = task_rq_lock(p, &flags);
4643 on_rq = p->on_rq;
4644 running = task_current(rq, p);
4645
4646 if (on_rq)
4647 dequeue_task(rq, p, 0);
4648 if (running)
4649 p->sched_class->put_prev_task(rq, p);
4650
4651 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4652
4653 if (running)
4654 p->sched_class->set_curr_task(rq);
4655 if (on_rq)
4656 enqueue_task(rq, p, 0);
4657 task_rq_unlock(rq, p, &flags);
4658}
e6628d5b
MG
4659#endif
4660
1da177e4 4661/*
969c7921
TH
4662 * migration_cpu_stop - this will be executed by a highprio stopper thread
4663 * and performs thread migration by bumping thread off CPU then
4664 * 'pushing' onto another runqueue.
1da177e4 4665 */
969c7921 4666static int migration_cpu_stop(void *data)
1da177e4 4667{
969c7921 4668 struct migration_arg *arg = data;
f7b4cddc 4669
969c7921
TH
4670 /*
4671 * The original target cpu might have gone down and we might
4672 * be on another cpu but it doesn't matter.
4673 */
f7b4cddc 4674 local_irq_disable();
969c7921 4675 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4676 local_irq_enable();
1da177e4 4677 return 0;
f7b4cddc
ON
4678}
4679
1da177e4 4680#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4681
054b9108 4682/*
48c5ccae
PZ
4683 * Ensures that the idle task is using init_mm right before its cpu goes
4684 * offline.
054b9108 4685 */
48c5ccae 4686void idle_task_exit(void)
1da177e4 4687{
48c5ccae 4688 struct mm_struct *mm = current->active_mm;
e76bd8d9 4689
48c5ccae 4690 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4691
48c5ccae
PZ
4692 if (mm != &init_mm)
4693 switch_mm(mm, &init_mm, current);
4694 mmdrop(mm);
1da177e4
LT
4695}
4696
4697/*
5d180232
PZ
4698 * Since this CPU is going 'away' for a while, fold any nr_active delta
4699 * we might have. Assumes we're called after migrate_tasks() so that the
4700 * nr_active count is stable.
4701 *
4702 * Also see the comment "Global load-average calculations".
1da177e4 4703 */
5d180232 4704static void calc_load_migrate(struct rq *rq)
1da177e4 4705{
5d180232
PZ
4706 long delta = calc_load_fold_active(rq);
4707 if (delta)
4708 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4709}
4710
48f24c4d 4711/*
48c5ccae
PZ
4712 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4713 * try_to_wake_up()->select_task_rq().
4714 *
4715 * Called with rq->lock held even though we'er in stop_machine() and
4716 * there's no concurrency possible, we hold the required locks anyway
4717 * because of lock validation efforts.
1da177e4 4718 */
48c5ccae 4719static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4720{
70b97a7f 4721 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4722 struct task_struct *next, *stop = rq->stop;
4723 int dest_cpu;
1da177e4
LT
4724
4725 /*
48c5ccae
PZ
4726 * Fudge the rq selection such that the below task selection loop
4727 * doesn't get stuck on the currently eligible stop task.
4728 *
4729 * We're currently inside stop_machine() and the rq is either stuck
4730 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4731 * either way we should never end up calling schedule() until we're
4732 * done here.
1da177e4 4733 */
48c5ccae 4734 rq->stop = NULL;
48f24c4d 4735
77bd3970
FW
4736 /*
4737 * put_prev_task() and pick_next_task() sched
4738 * class method both need to have an up-to-date
4739 * value of rq->clock[_task]
4740 */
4741 update_rq_clock(rq);
4742
dd41f596 4743 for ( ; ; ) {
48c5ccae
PZ
4744 /*
4745 * There's this thread running, bail when that's the only
4746 * remaining thread.
4747 */
4748 if (rq->nr_running == 1)
dd41f596 4749 break;
48c5ccae 4750
b67802ea 4751 next = pick_next_task(rq);
48c5ccae 4752 BUG_ON(!next);
79c53799 4753 next->sched_class->put_prev_task(rq, next);
e692ab53 4754
48c5ccae
PZ
4755 /* Find suitable destination for @next, with force if needed. */
4756 dest_cpu = select_fallback_rq(dead_cpu, next);
4757 raw_spin_unlock(&rq->lock);
4758
4759 __migrate_task(next, dead_cpu, dest_cpu);
4760
4761 raw_spin_lock(&rq->lock);
1da177e4 4762 }
dce48a84 4763
48c5ccae 4764 rq->stop = stop;
dce48a84 4765}
48c5ccae 4766
1da177e4
LT
4767#endif /* CONFIG_HOTPLUG_CPU */
4768
e692ab53
NP
4769#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4770
4771static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4772 {
4773 .procname = "sched_domain",
c57baf1e 4774 .mode = 0555,
e0361851 4775 },
56992309 4776 {}
e692ab53
NP
4777};
4778
4779static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4780 {
4781 .procname = "kernel",
c57baf1e 4782 .mode = 0555,
e0361851
AD
4783 .child = sd_ctl_dir,
4784 },
56992309 4785 {}
e692ab53
NP
4786};
4787
4788static struct ctl_table *sd_alloc_ctl_entry(int n)
4789{
4790 struct ctl_table *entry =
5cf9f062 4791 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4792
e692ab53
NP
4793 return entry;
4794}
4795
6382bc90
MM
4796static void sd_free_ctl_entry(struct ctl_table **tablep)
4797{
cd790076 4798 struct ctl_table *entry;
6382bc90 4799
cd790076
MM
4800 /*
4801 * In the intermediate directories, both the child directory and
4802 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4803 * will always be set. In the lowest directory the names are
cd790076
MM
4804 * static strings and all have proc handlers.
4805 */
4806 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4807 if (entry->child)
4808 sd_free_ctl_entry(&entry->child);
cd790076
MM
4809 if (entry->proc_handler == NULL)
4810 kfree(entry->procname);
4811 }
6382bc90
MM
4812
4813 kfree(*tablep);
4814 *tablep = NULL;
4815}
4816
201c373e 4817static int min_load_idx = 0;
fd9b86d3 4818static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4819
e692ab53 4820static void
e0361851 4821set_table_entry(struct ctl_table *entry,
e692ab53 4822 const char *procname, void *data, int maxlen,
201c373e
NK
4823 umode_t mode, proc_handler *proc_handler,
4824 bool load_idx)
e692ab53 4825{
e692ab53
NP
4826 entry->procname = procname;
4827 entry->data = data;
4828 entry->maxlen = maxlen;
4829 entry->mode = mode;
4830 entry->proc_handler = proc_handler;
201c373e
NK
4831
4832 if (load_idx) {
4833 entry->extra1 = &min_load_idx;
4834 entry->extra2 = &max_load_idx;
4835 }
e692ab53
NP
4836}
4837
4838static struct ctl_table *
4839sd_alloc_ctl_domain_table(struct sched_domain *sd)
4840{
a5d8c348 4841 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4842
ad1cdc1d
MM
4843 if (table == NULL)
4844 return NULL;
4845
e0361851 4846 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4847 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4848 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4849 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4850 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4851 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4852 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4853 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4854 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4855 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4856 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4857 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4858 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4859 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4860 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4861 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4862 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4863 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4864 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4865 &sd->cache_nice_tries,
201c373e 4866 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4867 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4868 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4869 set_table_entry(&table[11], "name", sd->name,
201c373e 4870 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4871 /* &table[12] is terminator */
e692ab53
NP
4872
4873 return table;
4874}
4875
be7002e6 4876static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4877{
4878 struct ctl_table *entry, *table;
4879 struct sched_domain *sd;
4880 int domain_num = 0, i;
4881 char buf[32];
4882
4883 for_each_domain(cpu, sd)
4884 domain_num++;
4885 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4886 if (table == NULL)
4887 return NULL;
e692ab53
NP
4888
4889 i = 0;
4890 for_each_domain(cpu, sd) {
4891 snprintf(buf, 32, "domain%d", i);
e692ab53 4892 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4893 entry->mode = 0555;
e692ab53
NP
4894 entry->child = sd_alloc_ctl_domain_table(sd);
4895 entry++;
4896 i++;
4897 }
4898 return table;
4899}
4900
4901static struct ctl_table_header *sd_sysctl_header;
6382bc90 4902static void register_sched_domain_sysctl(void)
e692ab53 4903{
6ad4c188 4904 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4905 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4906 char buf[32];
4907
7378547f
MM
4908 WARN_ON(sd_ctl_dir[0].child);
4909 sd_ctl_dir[0].child = entry;
4910
ad1cdc1d
MM
4911 if (entry == NULL)
4912 return;
4913
6ad4c188 4914 for_each_possible_cpu(i) {
e692ab53 4915 snprintf(buf, 32, "cpu%d", i);
e692ab53 4916 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4917 entry->mode = 0555;
e692ab53 4918 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4919 entry++;
e692ab53 4920 }
7378547f
MM
4921
4922 WARN_ON(sd_sysctl_header);
e692ab53
NP
4923 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4924}
6382bc90 4925
7378547f 4926/* may be called multiple times per register */
6382bc90
MM
4927static void unregister_sched_domain_sysctl(void)
4928{
7378547f
MM
4929 if (sd_sysctl_header)
4930 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4931 sd_sysctl_header = NULL;
7378547f
MM
4932 if (sd_ctl_dir[0].child)
4933 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4934}
e692ab53 4935#else
6382bc90
MM
4936static void register_sched_domain_sysctl(void)
4937{
4938}
4939static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4940{
4941}
4942#endif
4943
1f11eb6a
GH
4944static void set_rq_online(struct rq *rq)
4945{
4946 if (!rq->online) {
4947 const struct sched_class *class;
4948
c6c4927b 4949 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4950 rq->online = 1;
4951
4952 for_each_class(class) {
4953 if (class->rq_online)
4954 class->rq_online(rq);
4955 }
4956 }
4957}
4958
4959static void set_rq_offline(struct rq *rq)
4960{
4961 if (rq->online) {
4962 const struct sched_class *class;
4963
4964 for_each_class(class) {
4965 if (class->rq_offline)
4966 class->rq_offline(rq);
4967 }
4968
c6c4927b 4969 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4970 rq->online = 0;
4971 }
4972}
4973
1da177e4
LT
4974/*
4975 * migration_call - callback that gets triggered when a CPU is added.
4976 * Here we can start up the necessary migration thread for the new CPU.
4977 */
0db0628d 4978static int
48f24c4d 4979migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4980{
48f24c4d 4981 int cpu = (long)hcpu;
1da177e4 4982 unsigned long flags;
969c7921 4983 struct rq *rq = cpu_rq(cpu);
1da177e4 4984
48c5ccae 4985 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4986
1da177e4 4987 case CPU_UP_PREPARE:
a468d389 4988 rq->calc_load_update = calc_load_update;
1da177e4 4989 break;
48f24c4d 4990
1da177e4 4991 case CPU_ONLINE:
1f94ef59 4992 /* Update our root-domain */
05fa785c 4993 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4994 if (rq->rd) {
c6c4927b 4995 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4996
4997 set_rq_online(rq);
1f94ef59 4998 }
05fa785c 4999 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5000 break;
48f24c4d 5001
1da177e4 5002#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5003 case CPU_DYING:
317f3941 5004 sched_ttwu_pending();
57d885fe 5005 /* Update our root-domain */
05fa785c 5006 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5007 if (rq->rd) {
c6c4927b 5008 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5009 set_rq_offline(rq);
57d885fe 5010 }
48c5ccae
PZ
5011 migrate_tasks(cpu);
5012 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5013 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5014 break;
48c5ccae 5015
5d180232 5016 case CPU_DEAD:
f319da0c 5017 calc_load_migrate(rq);
57d885fe 5018 break;
1da177e4
LT
5019#endif
5020 }
49c022e6
PZ
5021
5022 update_max_interval();
5023
1da177e4
LT
5024 return NOTIFY_OK;
5025}
5026
f38b0820
PM
5027/*
5028 * Register at high priority so that task migration (migrate_all_tasks)
5029 * happens before everything else. This has to be lower priority than
cdd6c482 5030 * the notifier in the perf_event subsystem, though.
1da177e4 5031 */
0db0628d 5032static struct notifier_block migration_notifier = {
1da177e4 5033 .notifier_call = migration_call,
50a323b7 5034 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5035};
5036
0db0628d 5037static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5038 unsigned long action, void *hcpu)
5039{
5040 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5041 case CPU_STARTING:
3a101d05
TH
5042 case CPU_DOWN_FAILED:
5043 set_cpu_active((long)hcpu, true);
5044 return NOTIFY_OK;
5045 default:
5046 return NOTIFY_DONE;
5047 }
5048}
5049
0db0628d 5050static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5051 unsigned long action, void *hcpu)
5052{
de212f18
PZ
5053 unsigned long flags;
5054 long cpu = (long)hcpu;
5055
3a101d05
TH
5056 switch (action & ~CPU_TASKS_FROZEN) {
5057 case CPU_DOWN_PREPARE:
de212f18
PZ
5058 set_cpu_active(cpu, false);
5059
5060 /* explicitly allow suspend */
5061 if (!(action & CPU_TASKS_FROZEN)) {
5062 struct dl_bw *dl_b = dl_bw_of(cpu);
5063 bool overflow;
5064 int cpus;
5065
5066 raw_spin_lock_irqsave(&dl_b->lock, flags);
5067 cpus = dl_bw_cpus(cpu);
5068 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5069 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5070
5071 if (overflow)
5072 return notifier_from_errno(-EBUSY);
5073 }
3a101d05 5074 return NOTIFY_OK;
3a101d05 5075 }
de212f18
PZ
5076
5077 return NOTIFY_DONE;
3a101d05
TH
5078}
5079
7babe8db 5080static int __init migration_init(void)
1da177e4
LT
5081{
5082 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5083 int err;
48f24c4d 5084
3a101d05 5085 /* Initialize migration for the boot CPU */
07dccf33
AM
5086 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5087 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5088 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5089 register_cpu_notifier(&migration_notifier);
7babe8db 5090
3a101d05
TH
5091 /* Register cpu active notifiers */
5092 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5093 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5094
a004cd42 5095 return 0;
1da177e4 5096}
7babe8db 5097early_initcall(migration_init);
1da177e4
LT
5098#endif
5099
5100#ifdef CONFIG_SMP
476f3534 5101
4cb98839
PZ
5102static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5103
3e9830dc 5104#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5105
d039ac60 5106static __read_mostly int sched_debug_enabled;
f6630114 5107
d039ac60 5108static int __init sched_debug_setup(char *str)
f6630114 5109{
d039ac60 5110 sched_debug_enabled = 1;
f6630114
MT
5111
5112 return 0;
5113}
d039ac60
PZ
5114early_param("sched_debug", sched_debug_setup);
5115
5116static inline bool sched_debug(void)
5117{
5118 return sched_debug_enabled;
5119}
f6630114 5120
7c16ec58 5121static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5122 struct cpumask *groupmask)
1da177e4 5123{
4dcf6aff 5124 struct sched_group *group = sd->groups;
434d53b0 5125 char str[256];
1da177e4 5126
968ea6d8 5127 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5128 cpumask_clear(groupmask);
4dcf6aff
IM
5129
5130 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5131
5132 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5133 printk("does not load-balance\n");
4dcf6aff 5134 if (sd->parent)
3df0fc5b
PZ
5135 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5136 " has parent");
4dcf6aff 5137 return -1;
41c7ce9a
NP
5138 }
5139
3df0fc5b 5140 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5141
758b2cdc 5142 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5143 printk(KERN_ERR "ERROR: domain->span does not contain "
5144 "CPU%d\n", cpu);
4dcf6aff 5145 }
758b2cdc 5146 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5147 printk(KERN_ERR "ERROR: domain->groups does not contain"
5148 " CPU%d\n", cpu);
4dcf6aff 5149 }
1da177e4 5150
4dcf6aff 5151 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5152 do {
4dcf6aff 5153 if (!group) {
3df0fc5b
PZ
5154 printk("\n");
5155 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5156 break;
5157 }
5158
c3decf0d
PZ
5159 /*
5160 * Even though we initialize ->power to something semi-sane,
5161 * we leave power_orig unset. This allows us to detect if
5162 * domain iteration is still funny without causing /0 traps.
5163 */
5164 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5165 printk(KERN_CONT "\n");
5166 printk(KERN_ERR "ERROR: domain->cpu_power not "
5167 "set\n");
4dcf6aff
IM
5168 break;
5169 }
1da177e4 5170
758b2cdc 5171 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5172 printk(KERN_CONT "\n");
5173 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5174 break;
5175 }
1da177e4 5176
cb83b629
PZ
5177 if (!(sd->flags & SD_OVERLAP) &&
5178 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5179 printk(KERN_CONT "\n");
5180 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5181 break;
5182 }
1da177e4 5183
758b2cdc 5184 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5185
968ea6d8 5186 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5187
3df0fc5b 5188 printk(KERN_CONT " %s", str);
9c3f75cb 5189 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5190 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5191 group->sgp->power);
381512cf 5192 }
1da177e4 5193
4dcf6aff
IM
5194 group = group->next;
5195 } while (group != sd->groups);
3df0fc5b 5196 printk(KERN_CONT "\n");
1da177e4 5197
758b2cdc 5198 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5199 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5200
758b2cdc
RR
5201 if (sd->parent &&
5202 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5203 printk(KERN_ERR "ERROR: parent span is not a superset "
5204 "of domain->span\n");
4dcf6aff
IM
5205 return 0;
5206}
1da177e4 5207
4dcf6aff
IM
5208static void sched_domain_debug(struct sched_domain *sd, int cpu)
5209{
5210 int level = 0;
1da177e4 5211
d039ac60 5212 if (!sched_debug_enabled)
f6630114
MT
5213 return;
5214
4dcf6aff
IM
5215 if (!sd) {
5216 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5217 return;
5218 }
1da177e4 5219
4dcf6aff
IM
5220 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5221
5222 for (;;) {
4cb98839 5223 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5224 break;
1da177e4
LT
5225 level++;
5226 sd = sd->parent;
33859f7f 5227 if (!sd)
4dcf6aff
IM
5228 break;
5229 }
1da177e4 5230}
6d6bc0ad 5231#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5232# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5233static inline bool sched_debug(void)
5234{
5235 return false;
5236}
6d6bc0ad 5237#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5238
1a20ff27 5239static int sd_degenerate(struct sched_domain *sd)
245af2c7 5240{
758b2cdc 5241 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5242 return 1;
5243
5244 /* Following flags need at least 2 groups */
5245 if (sd->flags & (SD_LOAD_BALANCE |
5246 SD_BALANCE_NEWIDLE |
5247 SD_BALANCE_FORK |
89c4710e
SS
5248 SD_BALANCE_EXEC |
5249 SD_SHARE_CPUPOWER |
5250 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5251 if (sd->groups != sd->groups->next)
5252 return 0;
5253 }
5254
5255 /* Following flags don't use groups */
c88d5910 5256 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5257 return 0;
5258
5259 return 1;
5260}
5261
48f24c4d
IM
5262static int
5263sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5264{
5265 unsigned long cflags = sd->flags, pflags = parent->flags;
5266
5267 if (sd_degenerate(parent))
5268 return 1;
5269
758b2cdc 5270 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5271 return 0;
5272
245af2c7
SS
5273 /* Flags needing groups don't count if only 1 group in parent */
5274 if (parent->groups == parent->groups->next) {
5275 pflags &= ~(SD_LOAD_BALANCE |
5276 SD_BALANCE_NEWIDLE |
5277 SD_BALANCE_FORK |
89c4710e
SS
5278 SD_BALANCE_EXEC |
5279 SD_SHARE_CPUPOWER |
10866e62
PZ
5280 SD_SHARE_PKG_RESOURCES |
5281 SD_PREFER_SIBLING);
5436499e
KC
5282 if (nr_node_ids == 1)
5283 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5284 }
5285 if (~cflags & pflags)
5286 return 0;
5287
5288 return 1;
5289}
5290
dce840a0 5291static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5292{
dce840a0 5293 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5294
68e74568 5295 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5296 cpudl_cleanup(&rd->cpudl);
1baca4ce 5297 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5298 free_cpumask_var(rd->rto_mask);
5299 free_cpumask_var(rd->online);
5300 free_cpumask_var(rd->span);
5301 kfree(rd);
5302}
5303
57d885fe
GH
5304static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5305{
a0490fa3 5306 struct root_domain *old_rd = NULL;
57d885fe 5307 unsigned long flags;
57d885fe 5308
05fa785c 5309 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5310
5311 if (rq->rd) {
a0490fa3 5312 old_rd = rq->rd;
57d885fe 5313
c6c4927b 5314 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5315 set_rq_offline(rq);
57d885fe 5316
c6c4927b 5317 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5318
a0490fa3 5319 /*
0515973f 5320 * If we dont want to free the old_rd yet then
a0490fa3
IM
5321 * set old_rd to NULL to skip the freeing later
5322 * in this function:
5323 */
5324 if (!atomic_dec_and_test(&old_rd->refcount))
5325 old_rd = NULL;
57d885fe
GH
5326 }
5327
5328 atomic_inc(&rd->refcount);
5329 rq->rd = rd;
5330
c6c4927b 5331 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5332 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5333 set_rq_online(rq);
57d885fe 5334
05fa785c 5335 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5336
5337 if (old_rd)
dce840a0 5338 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5339}
5340
68c38fc3 5341static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5342{
5343 memset(rd, 0, sizeof(*rd));
5344
68c38fc3 5345 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5346 goto out;
68c38fc3 5347 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5348 goto free_span;
1baca4ce 5349 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5350 goto free_online;
1baca4ce
JL
5351 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5352 goto free_dlo_mask;
6e0534f2 5353
332ac17e 5354 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5355 if (cpudl_init(&rd->cpudl) != 0)
5356 goto free_dlo_mask;
332ac17e 5357
68c38fc3 5358 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5359 goto free_rto_mask;
c6c4927b 5360 return 0;
6e0534f2 5361
68e74568
RR
5362free_rto_mask:
5363 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5364free_dlo_mask:
5365 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5366free_online:
5367 free_cpumask_var(rd->online);
5368free_span:
5369 free_cpumask_var(rd->span);
0c910d28 5370out:
c6c4927b 5371 return -ENOMEM;
57d885fe
GH
5372}
5373
029632fb
PZ
5374/*
5375 * By default the system creates a single root-domain with all cpus as
5376 * members (mimicking the global state we have today).
5377 */
5378struct root_domain def_root_domain;
5379
57d885fe
GH
5380static void init_defrootdomain(void)
5381{
68c38fc3 5382 init_rootdomain(&def_root_domain);
c6c4927b 5383
57d885fe
GH
5384 atomic_set(&def_root_domain.refcount, 1);
5385}
5386
dc938520 5387static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5388{
5389 struct root_domain *rd;
5390
5391 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5392 if (!rd)
5393 return NULL;
5394
68c38fc3 5395 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5396 kfree(rd);
5397 return NULL;
5398 }
57d885fe
GH
5399
5400 return rd;
5401}
5402
e3589f6c
PZ
5403static void free_sched_groups(struct sched_group *sg, int free_sgp)
5404{
5405 struct sched_group *tmp, *first;
5406
5407 if (!sg)
5408 return;
5409
5410 first = sg;
5411 do {
5412 tmp = sg->next;
5413
5414 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5415 kfree(sg->sgp);
5416
5417 kfree(sg);
5418 sg = tmp;
5419 } while (sg != first);
5420}
5421
dce840a0
PZ
5422static void free_sched_domain(struct rcu_head *rcu)
5423{
5424 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5425
5426 /*
5427 * If its an overlapping domain it has private groups, iterate and
5428 * nuke them all.
5429 */
5430 if (sd->flags & SD_OVERLAP) {
5431 free_sched_groups(sd->groups, 1);
5432 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5433 kfree(sd->groups->sgp);
dce840a0 5434 kfree(sd->groups);
9c3f75cb 5435 }
dce840a0
PZ
5436 kfree(sd);
5437}
5438
5439static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5440{
5441 call_rcu(&sd->rcu, free_sched_domain);
5442}
5443
5444static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5445{
5446 for (; sd; sd = sd->parent)
5447 destroy_sched_domain(sd, cpu);
5448}
5449
518cd623
PZ
5450/*
5451 * Keep a special pointer to the highest sched_domain that has
5452 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5453 * allows us to avoid some pointer chasing select_idle_sibling().
5454 *
5455 * Also keep a unique ID per domain (we use the first cpu number in
5456 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5457 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5458 */
5459DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5460DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5461DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5462DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5463DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5464DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5465
5466static void update_top_cache_domain(int cpu)
5467{
5468 struct sched_domain *sd;
5d4cf996 5469 struct sched_domain *busy_sd = NULL;
518cd623 5470 int id = cpu;
7d9ffa89 5471 int size = 1;
518cd623
PZ
5472
5473 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5474 if (sd) {
518cd623 5475 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5476 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5477 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5478 }
5d4cf996 5479 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5480
5481 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5482 per_cpu(sd_llc_size, cpu) = size;
518cd623 5483 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5484
5485 sd = lowest_flag_domain(cpu, SD_NUMA);
5486 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5487
5488 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5489 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5490}
5491
1da177e4 5492/*
0eab9146 5493 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5494 * hold the hotplug lock.
5495 */
0eab9146
IM
5496static void
5497cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5498{
70b97a7f 5499 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5500 struct sched_domain *tmp;
5501
5502 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5503 for (tmp = sd; tmp; ) {
245af2c7
SS
5504 struct sched_domain *parent = tmp->parent;
5505 if (!parent)
5506 break;
f29c9b1c 5507
1a848870 5508 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5509 tmp->parent = parent->parent;
1a848870
SS
5510 if (parent->parent)
5511 parent->parent->child = tmp;
10866e62
PZ
5512 /*
5513 * Transfer SD_PREFER_SIBLING down in case of a
5514 * degenerate parent; the spans match for this
5515 * so the property transfers.
5516 */
5517 if (parent->flags & SD_PREFER_SIBLING)
5518 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5519 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5520 } else
5521 tmp = tmp->parent;
245af2c7
SS
5522 }
5523
1a848870 5524 if (sd && sd_degenerate(sd)) {
dce840a0 5525 tmp = sd;
245af2c7 5526 sd = sd->parent;
dce840a0 5527 destroy_sched_domain(tmp, cpu);
1a848870
SS
5528 if (sd)
5529 sd->child = NULL;
5530 }
1da177e4 5531
4cb98839 5532 sched_domain_debug(sd, cpu);
1da177e4 5533
57d885fe 5534 rq_attach_root(rq, rd);
dce840a0 5535 tmp = rq->sd;
674311d5 5536 rcu_assign_pointer(rq->sd, sd);
dce840a0 5537 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5538
5539 update_top_cache_domain(cpu);
1da177e4
LT
5540}
5541
5542/* cpus with isolated domains */
dcc30a35 5543static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5544
5545/* Setup the mask of cpus configured for isolated domains */
5546static int __init isolated_cpu_setup(char *str)
5547{
bdddd296 5548 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5549 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5550 return 1;
5551}
5552
8927f494 5553__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5554
d3081f52
PZ
5555static const struct cpumask *cpu_cpu_mask(int cpu)
5556{
5557 return cpumask_of_node(cpu_to_node(cpu));
5558}
5559
dce840a0
PZ
5560struct sd_data {
5561 struct sched_domain **__percpu sd;
5562 struct sched_group **__percpu sg;
9c3f75cb 5563 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5564};
5565
49a02c51 5566struct s_data {
21d42ccf 5567 struct sched_domain ** __percpu sd;
49a02c51
AH
5568 struct root_domain *rd;
5569};
5570
2109b99e 5571enum s_alloc {
2109b99e 5572 sa_rootdomain,
21d42ccf 5573 sa_sd,
dce840a0 5574 sa_sd_storage,
2109b99e
AH
5575 sa_none,
5576};
5577
54ab4ff4
PZ
5578struct sched_domain_topology_level;
5579
5580typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5581typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5582
e3589f6c
PZ
5583#define SDTL_OVERLAP 0x01
5584
eb7a74e6 5585struct sched_domain_topology_level {
2c402dc3
PZ
5586 sched_domain_init_f init;
5587 sched_domain_mask_f mask;
e3589f6c 5588 int flags;
cb83b629 5589 int numa_level;
54ab4ff4 5590 struct sd_data data;
eb7a74e6
PZ
5591};
5592
c1174876
PZ
5593/*
5594 * Build an iteration mask that can exclude certain CPUs from the upwards
5595 * domain traversal.
5596 *
5597 * Asymmetric node setups can result in situations where the domain tree is of
5598 * unequal depth, make sure to skip domains that already cover the entire
5599 * range.
5600 *
5601 * In that case build_sched_domains() will have terminated the iteration early
5602 * and our sibling sd spans will be empty. Domains should always include the
5603 * cpu they're built on, so check that.
5604 *
5605 */
5606static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5607{
5608 const struct cpumask *span = sched_domain_span(sd);
5609 struct sd_data *sdd = sd->private;
5610 struct sched_domain *sibling;
5611 int i;
5612
5613 for_each_cpu(i, span) {
5614 sibling = *per_cpu_ptr(sdd->sd, i);
5615 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5616 continue;
5617
5618 cpumask_set_cpu(i, sched_group_mask(sg));
5619 }
5620}
5621
5622/*
5623 * Return the canonical balance cpu for this group, this is the first cpu
5624 * of this group that's also in the iteration mask.
5625 */
5626int group_balance_cpu(struct sched_group *sg)
5627{
5628 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5629}
5630
e3589f6c
PZ
5631static int
5632build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5633{
5634 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5635 const struct cpumask *span = sched_domain_span(sd);
5636 struct cpumask *covered = sched_domains_tmpmask;
5637 struct sd_data *sdd = sd->private;
5638 struct sched_domain *child;
5639 int i;
5640
5641 cpumask_clear(covered);
5642
5643 for_each_cpu(i, span) {
5644 struct cpumask *sg_span;
5645
5646 if (cpumask_test_cpu(i, covered))
5647 continue;
5648
c1174876
PZ
5649 child = *per_cpu_ptr(sdd->sd, i);
5650
5651 /* See the comment near build_group_mask(). */
5652 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5653 continue;
5654
e3589f6c 5655 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5656 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5657
5658 if (!sg)
5659 goto fail;
5660
5661 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5662 if (child->child) {
5663 child = child->child;
5664 cpumask_copy(sg_span, sched_domain_span(child));
5665 } else
5666 cpumask_set_cpu(i, sg_span);
5667
5668 cpumask_or(covered, covered, sg_span);
5669
74a5ce20 5670 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5671 if (atomic_inc_return(&sg->sgp->ref) == 1)
5672 build_group_mask(sd, sg);
5673
c3decf0d
PZ
5674 /*
5675 * Initialize sgp->power such that even if we mess up the
5676 * domains and no possible iteration will get us here, we won't
5677 * die on a /0 trap.
5678 */
5679 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5680 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5681
c1174876
PZ
5682 /*
5683 * Make sure the first group of this domain contains the
5684 * canonical balance cpu. Otherwise the sched_domain iteration
5685 * breaks. See update_sg_lb_stats().
5686 */
74a5ce20 5687 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5688 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5689 groups = sg;
5690
5691 if (!first)
5692 first = sg;
5693 if (last)
5694 last->next = sg;
5695 last = sg;
5696 last->next = first;
5697 }
5698 sd->groups = groups;
5699
5700 return 0;
5701
5702fail:
5703 free_sched_groups(first, 0);
5704
5705 return -ENOMEM;
5706}
5707
dce840a0 5708static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5709{
dce840a0
PZ
5710 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5711 struct sched_domain *child = sd->child;
1da177e4 5712
dce840a0
PZ
5713 if (child)
5714 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5715
9c3f75cb 5716 if (sg) {
dce840a0 5717 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5718 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5719 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5720 }
dce840a0
PZ
5721
5722 return cpu;
1e9f28fa 5723}
1e9f28fa 5724
01a08546 5725/*
dce840a0
PZ
5726 * build_sched_groups will build a circular linked list of the groups
5727 * covered by the given span, and will set each group's ->cpumask correctly,
5728 * and ->cpu_power to 0.
e3589f6c
PZ
5729 *
5730 * Assumes the sched_domain tree is fully constructed
01a08546 5731 */
e3589f6c
PZ
5732static int
5733build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5734{
dce840a0
PZ
5735 struct sched_group *first = NULL, *last = NULL;
5736 struct sd_data *sdd = sd->private;
5737 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5738 struct cpumask *covered;
dce840a0 5739 int i;
9c1cfda2 5740
e3589f6c
PZ
5741 get_group(cpu, sdd, &sd->groups);
5742 atomic_inc(&sd->groups->ref);
5743
0936629f 5744 if (cpu != cpumask_first(span))
e3589f6c
PZ
5745 return 0;
5746
f96225fd
PZ
5747 lockdep_assert_held(&sched_domains_mutex);
5748 covered = sched_domains_tmpmask;
5749
dce840a0 5750 cpumask_clear(covered);
6711cab4 5751
dce840a0
PZ
5752 for_each_cpu(i, span) {
5753 struct sched_group *sg;
cd08e923 5754 int group, j;
6711cab4 5755
dce840a0
PZ
5756 if (cpumask_test_cpu(i, covered))
5757 continue;
6711cab4 5758
cd08e923 5759 group = get_group(i, sdd, &sg);
dce840a0 5760 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5761 sg->sgp->power = 0;
c1174876 5762 cpumask_setall(sched_group_mask(sg));
0601a88d 5763
dce840a0
PZ
5764 for_each_cpu(j, span) {
5765 if (get_group(j, sdd, NULL) != group)
5766 continue;
0601a88d 5767
dce840a0
PZ
5768 cpumask_set_cpu(j, covered);
5769 cpumask_set_cpu(j, sched_group_cpus(sg));
5770 }
0601a88d 5771
dce840a0
PZ
5772 if (!first)
5773 first = sg;
5774 if (last)
5775 last->next = sg;
5776 last = sg;
5777 }
5778 last->next = first;
e3589f6c
PZ
5779
5780 return 0;
0601a88d 5781}
51888ca2 5782
89c4710e
SS
5783/*
5784 * Initialize sched groups cpu_power.
5785 *
5786 * cpu_power indicates the capacity of sched group, which is used while
5787 * distributing the load between different sched groups in a sched domain.
5788 * Typically cpu_power for all the groups in a sched domain will be same unless
5789 * there are asymmetries in the topology. If there are asymmetries, group
5790 * having more cpu_power will pickup more load compared to the group having
5791 * less cpu_power.
89c4710e
SS
5792 */
5793static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5794{
e3589f6c 5795 struct sched_group *sg = sd->groups;
89c4710e 5796
94c95ba6 5797 WARN_ON(!sg);
e3589f6c
PZ
5798
5799 do {
5800 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5801 sg = sg->next;
5802 } while (sg != sd->groups);
89c4710e 5803
c1174876 5804 if (cpu != group_balance_cpu(sg))
e3589f6c 5805 return;
aae6d3dd 5806
d274cb30 5807 update_group_power(sd, cpu);
69e1e811 5808 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5809}
5810
029632fb
PZ
5811int __weak arch_sd_sibling_asym_packing(void)
5812{
5813 return 0*SD_ASYM_PACKING;
89c4710e
SS
5814}
5815
7c16ec58
MT
5816/*
5817 * Initializers for schedule domains
5818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5819 */
5820
a5d8c348
IM
5821#ifdef CONFIG_SCHED_DEBUG
5822# define SD_INIT_NAME(sd, type) sd->name = #type
5823#else
5824# define SD_INIT_NAME(sd, type) do { } while (0)
5825#endif
5826
54ab4ff4
PZ
5827#define SD_INIT_FUNC(type) \
5828static noinline struct sched_domain * \
5829sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5830{ \
5831 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5832 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5833 SD_INIT_NAME(sd, type); \
5834 sd->private = &tl->data; \
5835 return sd; \
7c16ec58
MT
5836}
5837
5838SD_INIT_FUNC(CPU)
7c16ec58
MT
5839#ifdef CONFIG_SCHED_SMT
5840 SD_INIT_FUNC(SIBLING)
5841#endif
5842#ifdef CONFIG_SCHED_MC
5843 SD_INIT_FUNC(MC)
5844#endif
01a08546
HC
5845#ifdef CONFIG_SCHED_BOOK
5846 SD_INIT_FUNC(BOOK)
5847#endif
7c16ec58 5848
1d3504fc 5849static int default_relax_domain_level = -1;
60495e77 5850int sched_domain_level_max;
1d3504fc
HS
5851
5852static int __init setup_relax_domain_level(char *str)
5853{
a841f8ce
DS
5854 if (kstrtoint(str, 0, &default_relax_domain_level))
5855 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5856
1d3504fc
HS
5857 return 1;
5858}
5859__setup("relax_domain_level=", setup_relax_domain_level);
5860
5861static void set_domain_attribute(struct sched_domain *sd,
5862 struct sched_domain_attr *attr)
5863{
5864 int request;
5865
5866 if (!attr || attr->relax_domain_level < 0) {
5867 if (default_relax_domain_level < 0)
5868 return;
5869 else
5870 request = default_relax_domain_level;
5871 } else
5872 request = attr->relax_domain_level;
5873 if (request < sd->level) {
5874 /* turn off idle balance on this domain */
c88d5910 5875 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5876 } else {
5877 /* turn on idle balance on this domain */
c88d5910 5878 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5879 }
5880}
5881
54ab4ff4
PZ
5882static void __sdt_free(const struct cpumask *cpu_map);
5883static int __sdt_alloc(const struct cpumask *cpu_map);
5884
2109b99e
AH
5885static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5886 const struct cpumask *cpu_map)
5887{
5888 switch (what) {
2109b99e 5889 case sa_rootdomain:
822ff793
PZ
5890 if (!atomic_read(&d->rd->refcount))
5891 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5892 case sa_sd:
5893 free_percpu(d->sd); /* fall through */
dce840a0 5894 case sa_sd_storage:
54ab4ff4 5895 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5896 case sa_none:
5897 break;
5898 }
5899}
3404c8d9 5900
2109b99e
AH
5901static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5902 const struct cpumask *cpu_map)
5903{
dce840a0
PZ
5904 memset(d, 0, sizeof(*d));
5905
54ab4ff4
PZ
5906 if (__sdt_alloc(cpu_map))
5907 return sa_sd_storage;
dce840a0
PZ
5908 d->sd = alloc_percpu(struct sched_domain *);
5909 if (!d->sd)
5910 return sa_sd_storage;
2109b99e 5911 d->rd = alloc_rootdomain();
dce840a0 5912 if (!d->rd)
21d42ccf 5913 return sa_sd;
2109b99e
AH
5914 return sa_rootdomain;
5915}
57d885fe 5916
dce840a0
PZ
5917/*
5918 * NULL the sd_data elements we've used to build the sched_domain and
5919 * sched_group structure so that the subsequent __free_domain_allocs()
5920 * will not free the data we're using.
5921 */
5922static void claim_allocations(int cpu, struct sched_domain *sd)
5923{
5924 struct sd_data *sdd = sd->private;
dce840a0
PZ
5925
5926 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5927 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5928
e3589f6c 5929 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5930 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5931
5932 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5933 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5934}
5935
2c402dc3
PZ
5936#ifdef CONFIG_SCHED_SMT
5937static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5938{
2c402dc3 5939 return topology_thread_cpumask(cpu);
3bd65a80 5940}
2c402dc3 5941#endif
7f4588f3 5942
d069b916
PZ
5943/*
5944 * Topology list, bottom-up.
5945 */
2c402dc3 5946static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5947#ifdef CONFIG_SCHED_SMT
5948 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5949#endif
1e9f28fa 5950#ifdef CONFIG_SCHED_MC
2c402dc3 5951 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5952#endif
d069b916
PZ
5953#ifdef CONFIG_SCHED_BOOK
5954 { sd_init_BOOK, cpu_book_mask, },
5955#endif
5956 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5957 { NULL, },
5958};
5959
5960static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5961
27723a68
VK
5962#define for_each_sd_topology(tl) \
5963 for (tl = sched_domain_topology; tl->init; tl++)
5964
cb83b629
PZ
5965#ifdef CONFIG_NUMA
5966
5967static int sched_domains_numa_levels;
cb83b629
PZ
5968static int *sched_domains_numa_distance;
5969static struct cpumask ***sched_domains_numa_masks;
5970static int sched_domains_curr_level;
5971
cb83b629
PZ
5972static inline int sd_local_flags(int level)
5973{
10717dcd 5974 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5975 return 0;
5976
5977 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5978}
5979
5980static struct sched_domain *
5981sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5982{
5983 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5984 int level = tl->numa_level;
5985 int sd_weight = cpumask_weight(
5986 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5987
5988 *sd = (struct sched_domain){
5989 .min_interval = sd_weight,
5990 .max_interval = 2*sd_weight,
5991 .busy_factor = 32,
870a0bb5 5992 .imbalance_pct = 125,
cb83b629
PZ
5993 .cache_nice_tries = 2,
5994 .busy_idx = 3,
5995 .idle_idx = 2,
5996 .newidle_idx = 0,
5997 .wake_idx = 0,
5998 .forkexec_idx = 0,
5999
6000 .flags = 1*SD_LOAD_BALANCE
6001 | 1*SD_BALANCE_NEWIDLE
6002 | 0*SD_BALANCE_EXEC
6003 | 0*SD_BALANCE_FORK
6004 | 0*SD_BALANCE_WAKE
6005 | 0*SD_WAKE_AFFINE
cb83b629 6006 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6007 | 0*SD_SHARE_PKG_RESOURCES
6008 | 1*SD_SERIALIZE
6009 | 0*SD_PREFER_SIBLING
3a7053b3 6010 | 1*SD_NUMA
cb83b629
PZ
6011 | sd_local_flags(level)
6012 ,
6013 .last_balance = jiffies,
6014 .balance_interval = sd_weight,
6015 };
6016 SD_INIT_NAME(sd, NUMA);
6017 sd->private = &tl->data;
6018
6019 /*
6020 * Ugly hack to pass state to sd_numa_mask()...
6021 */
6022 sched_domains_curr_level = tl->numa_level;
6023
6024 return sd;
6025}
6026
6027static const struct cpumask *sd_numa_mask(int cpu)
6028{
6029 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6030}
6031
d039ac60
PZ
6032static void sched_numa_warn(const char *str)
6033{
6034 static int done = false;
6035 int i,j;
6036
6037 if (done)
6038 return;
6039
6040 done = true;
6041
6042 printk(KERN_WARNING "ERROR: %s\n\n", str);
6043
6044 for (i = 0; i < nr_node_ids; i++) {
6045 printk(KERN_WARNING " ");
6046 for (j = 0; j < nr_node_ids; j++)
6047 printk(KERN_CONT "%02d ", node_distance(i,j));
6048 printk(KERN_CONT "\n");
6049 }
6050 printk(KERN_WARNING "\n");
6051}
6052
6053static bool find_numa_distance(int distance)
6054{
6055 int i;
6056
6057 if (distance == node_distance(0, 0))
6058 return true;
6059
6060 for (i = 0; i < sched_domains_numa_levels; i++) {
6061 if (sched_domains_numa_distance[i] == distance)
6062 return true;
6063 }
6064
6065 return false;
6066}
6067
cb83b629
PZ
6068static void sched_init_numa(void)
6069{
6070 int next_distance, curr_distance = node_distance(0, 0);
6071 struct sched_domain_topology_level *tl;
6072 int level = 0;
6073 int i, j, k;
6074
cb83b629
PZ
6075 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6076 if (!sched_domains_numa_distance)
6077 return;
6078
6079 /*
6080 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6081 * unique distances in the node_distance() table.
6082 *
6083 * Assumes node_distance(0,j) includes all distances in
6084 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6085 */
6086 next_distance = curr_distance;
6087 for (i = 0; i < nr_node_ids; i++) {
6088 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6089 for (k = 0; k < nr_node_ids; k++) {
6090 int distance = node_distance(i, k);
6091
6092 if (distance > curr_distance &&
6093 (distance < next_distance ||
6094 next_distance == curr_distance))
6095 next_distance = distance;
6096
6097 /*
6098 * While not a strong assumption it would be nice to know
6099 * about cases where if node A is connected to B, B is not
6100 * equally connected to A.
6101 */
6102 if (sched_debug() && node_distance(k, i) != distance)
6103 sched_numa_warn("Node-distance not symmetric");
6104
6105 if (sched_debug() && i && !find_numa_distance(distance))
6106 sched_numa_warn("Node-0 not representative");
6107 }
6108 if (next_distance != curr_distance) {
6109 sched_domains_numa_distance[level++] = next_distance;
6110 sched_domains_numa_levels = level;
6111 curr_distance = next_distance;
6112 } else break;
cb83b629 6113 }
d039ac60
PZ
6114
6115 /*
6116 * In case of sched_debug() we verify the above assumption.
6117 */
6118 if (!sched_debug())
6119 break;
cb83b629
PZ
6120 }
6121 /*
6122 * 'level' contains the number of unique distances, excluding the
6123 * identity distance node_distance(i,i).
6124 *
28b4a521 6125 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6126 * numbers.
6127 */
6128
5f7865f3
TC
6129 /*
6130 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6131 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6132 * the array will contain less then 'level' members. This could be
6133 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6134 * in other functions.
6135 *
6136 * We reset it to 'level' at the end of this function.
6137 */
6138 sched_domains_numa_levels = 0;
6139
cb83b629
PZ
6140 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6141 if (!sched_domains_numa_masks)
6142 return;
6143
6144 /*
6145 * Now for each level, construct a mask per node which contains all
6146 * cpus of nodes that are that many hops away from us.
6147 */
6148 for (i = 0; i < level; i++) {
6149 sched_domains_numa_masks[i] =
6150 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6151 if (!sched_domains_numa_masks[i])
6152 return;
6153
6154 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6155 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6156 if (!mask)
6157 return;
6158
6159 sched_domains_numa_masks[i][j] = mask;
6160
6161 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6162 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6163 continue;
6164
6165 cpumask_or(mask, mask, cpumask_of_node(k));
6166 }
6167 }
6168 }
6169
6170 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6171 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6172 if (!tl)
6173 return;
6174
6175 /*
6176 * Copy the default topology bits..
6177 */
6178 for (i = 0; default_topology[i].init; i++)
6179 tl[i] = default_topology[i];
6180
6181 /*
6182 * .. and append 'j' levels of NUMA goodness.
6183 */
6184 for (j = 0; j < level; i++, j++) {
6185 tl[i] = (struct sched_domain_topology_level){
6186 .init = sd_numa_init,
6187 .mask = sd_numa_mask,
6188 .flags = SDTL_OVERLAP,
6189 .numa_level = j,
6190 };
6191 }
6192
6193 sched_domain_topology = tl;
5f7865f3
TC
6194
6195 sched_domains_numa_levels = level;
cb83b629 6196}
301a5cba
TC
6197
6198static void sched_domains_numa_masks_set(int cpu)
6199{
6200 int i, j;
6201 int node = cpu_to_node(cpu);
6202
6203 for (i = 0; i < sched_domains_numa_levels; i++) {
6204 for (j = 0; j < nr_node_ids; j++) {
6205 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6206 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6207 }
6208 }
6209}
6210
6211static void sched_domains_numa_masks_clear(int cpu)
6212{
6213 int i, j;
6214 for (i = 0; i < sched_domains_numa_levels; i++) {
6215 for (j = 0; j < nr_node_ids; j++)
6216 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6217 }
6218}
6219
6220/*
6221 * Update sched_domains_numa_masks[level][node] array when new cpus
6222 * are onlined.
6223 */
6224static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6225 unsigned long action,
6226 void *hcpu)
6227{
6228 int cpu = (long)hcpu;
6229
6230 switch (action & ~CPU_TASKS_FROZEN) {
6231 case CPU_ONLINE:
6232 sched_domains_numa_masks_set(cpu);
6233 break;
6234
6235 case CPU_DEAD:
6236 sched_domains_numa_masks_clear(cpu);
6237 break;
6238
6239 default:
6240 return NOTIFY_DONE;
6241 }
6242
6243 return NOTIFY_OK;
cb83b629
PZ
6244}
6245#else
6246static inline void sched_init_numa(void)
6247{
6248}
301a5cba
TC
6249
6250static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6251 unsigned long action,
6252 void *hcpu)
6253{
6254 return 0;
6255}
cb83b629
PZ
6256#endif /* CONFIG_NUMA */
6257
54ab4ff4
PZ
6258static int __sdt_alloc(const struct cpumask *cpu_map)
6259{
6260 struct sched_domain_topology_level *tl;
6261 int j;
6262
27723a68 6263 for_each_sd_topology(tl) {
54ab4ff4
PZ
6264 struct sd_data *sdd = &tl->data;
6265
6266 sdd->sd = alloc_percpu(struct sched_domain *);
6267 if (!sdd->sd)
6268 return -ENOMEM;
6269
6270 sdd->sg = alloc_percpu(struct sched_group *);
6271 if (!sdd->sg)
6272 return -ENOMEM;
6273
9c3f75cb
PZ
6274 sdd->sgp = alloc_percpu(struct sched_group_power *);
6275 if (!sdd->sgp)
6276 return -ENOMEM;
6277
54ab4ff4
PZ
6278 for_each_cpu(j, cpu_map) {
6279 struct sched_domain *sd;
6280 struct sched_group *sg;
9c3f75cb 6281 struct sched_group_power *sgp;
54ab4ff4
PZ
6282
6283 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6284 GFP_KERNEL, cpu_to_node(j));
6285 if (!sd)
6286 return -ENOMEM;
6287
6288 *per_cpu_ptr(sdd->sd, j) = sd;
6289
6290 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6291 GFP_KERNEL, cpu_to_node(j));
6292 if (!sg)
6293 return -ENOMEM;
6294
30b4e9eb
IM
6295 sg->next = sg;
6296
54ab4ff4 6297 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6298
c1174876 6299 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6300 GFP_KERNEL, cpu_to_node(j));
6301 if (!sgp)
6302 return -ENOMEM;
6303
6304 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6305 }
6306 }
6307
6308 return 0;
6309}
6310
6311static void __sdt_free(const struct cpumask *cpu_map)
6312{
6313 struct sched_domain_topology_level *tl;
6314 int j;
6315
27723a68 6316 for_each_sd_topology(tl) {
54ab4ff4
PZ
6317 struct sd_data *sdd = &tl->data;
6318
6319 for_each_cpu(j, cpu_map) {
fb2cf2c6 6320 struct sched_domain *sd;
6321
6322 if (sdd->sd) {
6323 sd = *per_cpu_ptr(sdd->sd, j);
6324 if (sd && (sd->flags & SD_OVERLAP))
6325 free_sched_groups(sd->groups, 0);
6326 kfree(*per_cpu_ptr(sdd->sd, j));
6327 }
6328
6329 if (sdd->sg)
6330 kfree(*per_cpu_ptr(sdd->sg, j));
6331 if (sdd->sgp)
6332 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6333 }
6334 free_percpu(sdd->sd);
fb2cf2c6 6335 sdd->sd = NULL;
54ab4ff4 6336 free_percpu(sdd->sg);
fb2cf2c6 6337 sdd->sg = NULL;
9c3f75cb 6338 free_percpu(sdd->sgp);
fb2cf2c6 6339 sdd->sgp = NULL;
54ab4ff4
PZ
6340 }
6341}
6342
2c402dc3 6343struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6344 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6345 struct sched_domain *child, int cpu)
2c402dc3 6346{
54ab4ff4 6347 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6348 if (!sd)
d069b916 6349 return child;
2c402dc3 6350
2c402dc3 6351 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6352 if (child) {
6353 sd->level = child->level + 1;
6354 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6355 child->parent = sd;
c75e0128 6356 sd->child = child;
60495e77 6357 }
a841f8ce 6358 set_domain_attribute(sd, attr);
2c402dc3
PZ
6359
6360 return sd;
6361}
6362
2109b99e
AH
6363/*
6364 * Build sched domains for a given set of cpus and attach the sched domains
6365 * to the individual cpus
6366 */
dce840a0
PZ
6367static int build_sched_domains(const struct cpumask *cpu_map,
6368 struct sched_domain_attr *attr)
2109b99e 6369{
1c632169 6370 enum s_alloc alloc_state;
dce840a0 6371 struct sched_domain *sd;
2109b99e 6372 struct s_data d;
822ff793 6373 int i, ret = -ENOMEM;
9c1cfda2 6374
2109b99e
AH
6375 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6376 if (alloc_state != sa_rootdomain)
6377 goto error;
9c1cfda2 6378
dce840a0 6379 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6380 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6381 struct sched_domain_topology_level *tl;
6382
3bd65a80 6383 sd = NULL;
27723a68 6384 for_each_sd_topology(tl) {
4a850cbe 6385 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6386 if (tl == sched_domain_topology)
6387 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6388 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6389 sd->flags |= SD_OVERLAP;
d110235d
PZ
6390 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6391 break;
e3589f6c 6392 }
dce840a0
PZ
6393 }
6394
6395 /* Build the groups for the domains */
6396 for_each_cpu(i, cpu_map) {
6397 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6398 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6399 if (sd->flags & SD_OVERLAP) {
6400 if (build_overlap_sched_groups(sd, i))
6401 goto error;
6402 } else {
6403 if (build_sched_groups(sd, i))
6404 goto error;
6405 }
1cf51902 6406 }
a06dadbe 6407 }
9c1cfda2 6408
1da177e4 6409 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6410 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6411 if (!cpumask_test_cpu(i, cpu_map))
6412 continue;
9c1cfda2 6413
dce840a0
PZ
6414 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415 claim_allocations(i, sd);
cd4ea6ae 6416 init_sched_groups_power(i, sd);
dce840a0 6417 }
f712c0c7 6418 }
9c1cfda2 6419
1da177e4 6420 /* Attach the domains */
dce840a0 6421 rcu_read_lock();
abcd083a 6422 for_each_cpu(i, cpu_map) {
21d42ccf 6423 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6424 cpu_attach_domain(sd, d.rd, i);
1da177e4 6425 }
dce840a0 6426 rcu_read_unlock();
51888ca2 6427
822ff793 6428 ret = 0;
51888ca2 6429error:
2109b99e 6430 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6431 return ret;
1da177e4 6432}
029190c5 6433
acc3f5d7 6434static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6435static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6436static struct sched_domain_attr *dattr_cur;
6437 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6438
6439/*
6440 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6441 * cpumask) fails, then fallback to a single sched domain,
6442 * as determined by the single cpumask fallback_doms.
029190c5 6443 */
4212823f 6444static cpumask_var_t fallback_doms;
029190c5 6445
ee79d1bd
HC
6446/*
6447 * arch_update_cpu_topology lets virtualized architectures update the
6448 * cpu core maps. It is supposed to return 1 if the topology changed
6449 * or 0 if it stayed the same.
6450 */
6451int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6452{
ee79d1bd 6453 return 0;
22e52b07
HC
6454}
6455
acc3f5d7
RR
6456cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6457{
6458 int i;
6459 cpumask_var_t *doms;
6460
6461 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6462 if (!doms)
6463 return NULL;
6464 for (i = 0; i < ndoms; i++) {
6465 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6466 free_sched_domains(doms, i);
6467 return NULL;
6468 }
6469 }
6470 return doms;
6471}
6472
6473void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6474{
6475 unsigned int i;
6476 for (i = 0; i < ndoms; i++)
6477 free_cpumask_var(doms[i]);
6478 kfree(doms);
6479}
6480
1a20ff27 6481/*
41a2d6cf 6482 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6483 * For now this just excludes isolated cpus, but could be used to
6484 * exclude other special cases in the future.
1a20ff27 6485 */
c4a8849a 6486static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6487{
7378547f
MM
6488 int err;
6489
22e52b07 6490 arch_update_cpu_topology();
029190c5 6491 ndoms_cur = 1;
acc3f5d7 6492 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6493 if (!doms_cur)
acc3f5d7
RR
6494 doms_cur = &fallback_doms;
6495 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6496 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6497 register_sched_domain_sysctl();
7378547f
MM
6498
6499 return err;
1a20ff27
DG
6500}
6501
1a20ff27
DG
6502/*
6503 * Detach sched domains from a group of cpus specified in cpu_map
6504 * These cpus will now be attached to the NULL domain
6505 */
96f874e2 6506static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6507{
6508 int i;
6509
dce840a0 6510 rcu_read_lock();
abcd083a 6511 for_each_cpu(i, cpu_map)
57d885fe 6512 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6513 rcu_read_unlock();
1a20ff27
DG
6514}
6515
1d3504fc
HS
6516/* handle null as "default" */
6517static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6518 struct sched_domain_attr *new, int idx_new)
6519{
6520 struct sched_domain_attr tmp;
6521
6522 /* fast path */
6523 if (!new && !cur)
6524 return 1;
6525
6526 tmp = SD_ATTR_INIT;
6527 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6528 new ? (new + idx_new) : &tmp,
6529 sizeof(struct sched_domain_attr));
6530}
6531
029190c5
PJ
6532/*
6533 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6534 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6535 * doms_new[] to the current sched domain partitioning, doms_cur[].
6536 * It destroys each deleted domain and builds each new domain.
6537 *
acc3f5d7 6538 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6539 * The masks don't intersect (don't overlap.) We should setup one
6540 * sched domain for each mask. CPUs not in any of the cpumasks will
6541 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6542 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6543 * it as it is.
6544 *
acc3f5d7
RR
6545 * The passed in 'doms_new' should be allocated using
6546 * alloc_sched_domains. This routine takes ownership of it and will
6547 * free_sched_domains it when done with it. If the caller failed the
6548 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6549 * and partition_sched_domains() will fallback to the single partition
6550 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6551 *
96f874e2 6552 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6553 * ndoms_new == 0 is a special case for destroying existing domains,
6554 * and it will not create the default domain.
dfb512ec 6555 *
029190c5
PJ
6556 * Call with hotplug lock held
6557 */
acc3f5d7 6558void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6559 struct sched_domain_attr *dattr_new)
029190c5 6560{
dfb512ec 6561 int i, j, n;
d65bd5ec 6562 int new_topology;
029190c5 6563
712555ee 6564 mutex_lock(&sched_domains_mutex);
a1835615 6565
7378547f
MM
6566 /* always unregister in case we don't destroy any domains */
6567 unregister_sched_domain_sysctl();
6568
d65bd5ec
HC
6569 /* Let architecture update cpu core mappings. */
6570 new_topology = arch_update_cpu_topology();
6571
dfb512ec 6572 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6573
6574 /* Destroy deleted domains */
6575 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6576 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6577 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6578 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6579 goto match1;
6580 }
6581 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6582 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6583match1:
6584 ;
6585 }
6586
c8d2d47a 6587 n = ndoms_cur;
e761b772 6588 if (doms_new == NULL) {
c8d2d47a 6589 n = 0;
acc3f5d7 6590 doms_new = &fallback_doms;
6ad4c188 6591 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6592 WARN_ON_ONCE(dattr_new);
e761b772
MK
6593 }
6594
029190c5
PJ
6595 /* Build new domains */
6596 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6597 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6598 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6599 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6600 goto match2;
6601 }
6602 /* no match - add a new doms_new */
dce840a0 6603 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6604match2:
6605 ;
6606 }
6607
6608 /* Remember the new sched domains */
acc3f5d7
RR
6609 if (doms_cur != &fallback_doms)
6610 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6611 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6612 doms_cur = doms_new;
1d3504fc 6613 dattr_cur = dattr_new;
029190c5 6614 ndoms_cur = ndoms_new;
7378547f
MM
6615
6616 register_sched_domain_sysctl();
a1835615 6617
712555ee 6618 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6619}
6620
d35be8ba
SB
6621static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6622
1da177e4 6623/*
3a101d05
TH
6624 * Update cpusets according to cpu_active mask. If cpusets are
6625 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6626 * around partition_sched_domains().
d35be8ba
SB
6627 *
6628 * If we come here as part of a suspend/resume, don't touch cpusets because we
6629 * want to restore it back to its original state upon resume anyway.
1da177e4 6630 */
0b2e918a
TH
6631static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6632 void *hcpu)
e761b772 6633{
d35be8ba
SB
6634 switch (action) {
6635 case CPU_ONLINE_FROZEN:
6636 case CPU_DOWN_FAILED_FROZEN:
6637
6638 /*
6639 * num_cpus_frozen tracks how many CPUs are involved in suspend
6640 * resume sequence. As long as this is not the last online
6641 * operation in the resume sequence, just build a single sched
6642 * domain, ignoring cpusets.
6643 */
6644 num_cpus_frozen--;
6645 if (likely(num_cpus_frozen)) {
6646 partition_sched_domains(1, NULL, NULL);
6647 break;
6648 }
6649
6650 /*
6651 * This is the last CPU online operation. So fall through and
6652 * restore the original sched domains by considering the
6653 * cpuset configurations.
6654 */
6655
e761b772 6656 case CPU_ONLINE:
6ad4c188 6657 case CPU_DOWN_FAILED:
7ddf96b0 6658 cpuset_update_active_cpus(true);
d35be8ba 6659 break;
3a101d05
TH
6660 default:
6661 return NOTIFY_DONE;
6662 }
d35be8ba 6663 return NOTIFY_OK;
3a101d05 6664}
e761b772 6665
0b2e918a
TH
6666static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6667 void *hcpu)
3a101d05 6668{
d35be8ba 6669 switch (action) {
3a101d05 6670 case CPU_DOWN_PREPARE:
7ddf96b0 6671 cpuset_update_active_cpus(false);
d35be8ba
SB
6672 break;
6673 case CPU_DOWN_PREPARE_FROZEN:
6674 num_cpus_frozen++;
6675 partition_sched_domains(1, NULL, NULL);
6676 break;
e761b772
MK
6677 default:
6678 return NOTIFY_DONE;
6679 }
d35be8ba 6680 return NOTIFY_OK;
e761b772 6681}
e761b772 6682
1da177e4
LT
6683void __init sched_init_smp(void)
6684{
dcc30a35
RR
6685 cpumask_var_t non_isolated_cpus;
6686
6687 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6688 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6689
cb83b629
PZ
6690 sched_init_numa();
6691
6acce3ef
PZ
6692 /*
6693 * There's no userspace yet to cause hotplug operations; hence all the
6694 * cpu masks are stable and all blatant races in the below code cannot
6695 * happen.
6696 */
712555ee 6697 mutex_lock(&sched_domains_mutex);
c4a8849a 6698 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6699 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6700 if (cpumask_empty(non_isolated_cpus))
6701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6702 mutex_unlock(&sched_domains_mutex);
e761b772 6703
301a5cba 6704 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6705 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6706 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6707
b328ca18 6708 init_hrtick();
5c1e1767
NP
6709
6710 /* Move init over to a non-isolated CPU */
dcc30a35 6711 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6712 BUG();
19978ca6 6713 sched_init_granularity();
dcc30a35 6714 free_cpumask_var(non_isolated_cpus);
4212823f 6715
0e3900e6 6716 init_sched_rt_class();
1baca4ce 6717 init_sched_dl_class();
1da177e4
LT
6718}
6719#else
6720void __init sched_init_smp(void)
6721{
19978ca6 6722 sched_init_granularity();
1da177e4
LT
6723}
6724#endif /* CONFIG_SMP */
6725
cd1bb94b
AB
6726const_debug unsigned int sysctl_timer_migration = 1;
6727
1da177e4
LT
6728int in_sched_functions(unsigned long addr)
6729{
1da177e4
LT
6730 return in_lock_functions(addr) ||
6731 (addr >= (unsigned long)__sched_text_start
6732 && addr < (unsigned long)__sched_text_end);
6733}
6734
029632fb 6735#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6736/*
6737 * Default task group.
6738 * Every task in system belongs to this group at bootup.
6739 */
029632fb 6740struct task_group root_task_group;
35cf4e50 6741LIST_HEAD(task_groups);
052f1dc7 6742#endif
6f505b16 6743
e6252c3e 6744DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6745
1da177e4
LT
6746void __init sched_init(void)
6747{
dd41f596 6748 int i, j;
434d53b0
MT
6749 unsigned long alloc_size = 0, ptr;
6750
6751#ifdef CONFIG_FAIR_GROUP_SCHED
6752 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6753#endif
6754#ifdef CONFIG_RT_GROUP_SCHED
6755 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6756#endif
df7c8e84 6757#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6758 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6759#endif
434d53b0 6760 if (alloc_size) {
36b7b6d4 6761 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6762
6763#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6764 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6765 ptr += nr_cpu_ids * sizeof(void **);
6766
07e06b01 6767 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6768 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6769
6d6bc0ad 6770#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6771#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6772 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6773 ptr += nr_cpu_ids * sizeof(void **);
6774
07e06b01 6775 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6776 ptr += nr_cpu_ids * sizeof(void **);
6777
6d6bc0ad 6778#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6779#ifdef CONFIG_CPUMASK_OFFSTACK
6780 for_each_possible_cpu(i) {
e6252c3e 6781 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6782 ptr += cpumask_size();
6783 }
6784#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6785 }
dd41f596 6786
332ac17e
DF
6787 init_rt_bandwidth(&def_rt_bandwidth,
6788 global_rt_period(), global_rt_runtime());
6789 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6790 global_rt_period(), global_rt_runtime());
332ac17e 6791
57d885fe
GH
6792#ifdef CONFIG_SMP
6793 init_defrootdomain();
6794#endif
6795
d0b27fa7 6796#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6797 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6798 global_rt_period(), global_rt_runtime());
6d6bc0ad 6799#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6800
7c941438 6801#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6802 list_add(&root_task_group.list, &task_groups);
6803 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6804 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6805 autogroup_init(&init_task);
54c707e9 6806
7c941438 6807#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6808
0a945022 6809 for_each_possible_cpu(i) {
70b97a7f 6810 struct rq *rq;
1da177e4
LT
6811
6812 rq = cpu_rq(i);
05fa785c 6813 raw_spin_lock_init(&rq->lock);
7897986b 6814 rq->nr_running = 0;
dce48a84
TG
6815 rq->calc_load_active = 0;
6816 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6817 init_cfs_rq(&rq->cfs);
6f505b16 6818 init_rt_rq(&rq->rt, rq);
aab03e05 6819 init_dl_rq(&rq->dl, rq);
dd41f596 6820#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6821 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6822 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6823 /*
07e06b01 6824 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6825 *
6826 * In case of task-groups formed thr' the cgroup filesystem, it
6827 * gets 100% of the cpu resources in the system. This overall
6828 * system cpu resource is divided among the tasks of
07e06b01 6829 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6830 * based on each entity's (task or task-group's) weight
6831 * (se->load.weight).
6832 *
07e06b01 6833 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6834 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6835 * then A0's share of the cpu resource is:
6836 *
0d905bca 6837 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6838 *
07e06b01
YZ
6839 * We achieve this by letting root_task_group's tasks sit
6840 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6841 */
ab84d31e 6842 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6843 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6844#endif /* CONFIG_FAIR_GROUP_SCHED */
6845
6846 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6847#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6848 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6849 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6850#endif
1da177e4 6851
dd41f596
IM
6852 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6853 rq->cpu_load[j] = 0;
fdf3e95d
VP
6854
6855 rq->last_load_update_tick = jiffies;
6856
1da177e4 6857#ifdef CONFIG_SMP
41c7ce9a 6858 rq->sd = NULL;
57d885fe 6859 rq->rd = NULL;
1399fa78 6860 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6861 rq->post_schedule = 0;
1da177e4 6862 rq->active_balance = 0;
dd41f596 6863 rq->next_balance = jiffies;
1da177e4 6864 rq->push_cpu = 0;
0a2966b4 6865 rq->cpu = i;
1f11eb6a 6866 rq->online = 0;
eae0c9df
MG
6867 rq->idle_stamp = 0;
6868 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6869 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6870
6871 INIT_LIST_HEAD(&rq->cfs_tasks);
6872
dc938520 6873 rq_attach_root(rq, &def_root_domain);
3451d024 6874#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6875 rq->nohz_flags = 0;
83cd4fe2 6876#endif
265f22a9
FW
6877#ifdef CONFIG_NO_HZ_FULL
6878 rq->last_sched_tick = 0;
6879#endif
1da177e4 6880#endif
8f4d37ec 6881 init_rq_hrtick(rq);
1da177e4 6882 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6883 }
6884
2dd73a4f 6885 set_load_weight(&init_task);
b50f60ce 6886
e107be36
AK
6887#ifdef CONFIG_PREEMPT_NOTIFIERS
6888 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6889#endif
6890
1da177e4
LT
6891 /*
6892 * The boot idle thread does lazy MMU switching as well:
6893 */
6894 atomic_inc(&init_mm.mm_count);
6895 enter_lazy_tlb(&init_mm, current);
6896
6897 /*
6898 * Make us the idle thread. Technically, schedule() should not be
6899 * called from this thread, however somewhere below it might be,
6900 * but because we are the idle thread, we just pick up running again
6901 * when this runqueue becomes "idle".
6902 */
6903 init_idle(current, smp_processor_id());
dce48a84
TG
6904
6905 calc_load_update = jiffies + LOAD_FREQ;
6906
dd41f596
IM
6907 /*
6908 * During early bootup we pretend to be a normal task:
6909 */
6910 current->sched_class = &fair_sched_class;
6892b75e 6911
bf4d83f6 6912#ifdef CONFIG_SMP
4cb98839 6913 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6914 /* May be allocated at isolcpus cmdline parse time */
6915 if (cpu_isolated_map == NULL)
6916 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6917 idle_thread_set_boot_cpu();
029632fb
PZ
6918#endif
6919 init_sched_fair_class();
6a7b3dc3 6920
6892b75e 6921 scheduler_running = 1;
1da177e4
LT
6922}
6923
d902db1e 6924#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6925static inline int preempt_count_equals(int preempt_offset)
6926{
234da7bc 6927 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6928
4ba8216c 6929 return (nested == preempt_offset);
e4aafea2
FW
6930}
6931
d894837f 6932void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6933{
1da177e4
LT
6934 static unsigned long prev_jiffy; /* ratelimiting */
6935
b3fbab05 6936 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6937 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6938 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6939 return;
6940 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6941 return;
6942 prev_jiffy = jiffies;
6943
3df0fc5b
PZ
6944 printk(KERN_ERR
6945 "BUG: sleeping function called from invalid context at %s:%d\n",
6946 file, line);
6947 printk(KERN_ERR
6948 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6949 in_atomic(), irqs_disabled(),
6950 current->pid, current->comm);
aef745fc
IM
6951
6952 debug_show_held_locks(current);
6953 if (irqs_disabled())
6954 print_irqtrace_events(current);
6955 dump_stack();
1da177e4
LT
6956}
6957EXPORT_SYMBOL(__might_sleep);
6958#endif
6959
6960#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6961static void normalize_task(struct rq *rq, struct task_struct *p)
6962{
da7a735e 6963 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6964 struct sched_attr attr = {
6965 .sched_policy = SCHED_NORMAL,
6966 };
da7a735e 6967 int old_prio = p->prio;
3a5e4dc1 6968 int on_rq;
3e51f33f 6969
fd2f4419 6970 on_rq = p->on_rq;
3a5e4dc1 6971 if (on_rq)
4ca9b72b 6972 dequeue_task(rq, p, 0);
d50dde5a 6973 __setscheduler(rq, p, &attr);
3a5e4dc1 6974 if (on_rq) {
4ca9b72b 6975 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6976 resched_task(rq->curr);
6977 }
da7a735e
PZ
6978
6979 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6980}
6981
1da177e4
LT
6982void normalize_rt_tasks(void)
6983{
a0f98a1c 6984 struct task_struct *g, *p;
1da177e4 6985 unsigned long flags;
70b97a7f 6986 struct rq *rq;
1da177e4 6987
4cf5d77a 6988 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6989 do_each_thread(g, p) {
178be793
IM
6990 /*
6991 * Only normalize user tasks:
6992 */
6993 if (!p->mm)
6994 continue;
6995
6cfb0d5d 6996 p->se.exec_start = 0;
6cfb0d5d 6997#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6998 p->se.statistics.wait_start = 0;
6999 p->se.statistics.sleep_start = 0;
7000 p->se.statistics.block_start = 0;
6cfb0d5d 7001#endif
dd41f596 7002
aab03e05 7003 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7004 /*
7005 * Renice negative nice level userspace
7006 * tasks back to 0:
7007 */
d0ea0268 7008 if (task_nice(p) < 0 && p->mm)
dd41f596 7009 set_user_nice(p, 0);
1da177e4 7010 continue;
dd41f596 7011 }
1da177e4 7012
1d615482 7013 raw_spin_lock(&p->pi_lock);
b29739f9 7014 rq = __task_rq_lock(p);
1da177e4 7015
178be793 7016 normalize_task(rq, p);
3a5e4dc1 7017
b29739f9 7018 __task_rq_unlock(rq);
1d615482 7019 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7020 } while_each_thread(g, p);
7021
4cf5d77a 7022 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7023}
7024
7025#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7026
67fc4e0c 7027#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7028/*
67fc4e0c 7029 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7030 *
7031 * They can only be called when the whole system has been
7032 * stopped - every CPU needs to be quiescent, and no scheduling
7033 * activity can take place. Using them for anything else would
7034 * be a serious bug, and as a result, they aren't even visible
7035 * under any other configuration.
7036 */
7037
7038/**
7039 * curr_task - return the current task for a given cpu.
7040 * @cpu: the processor in question.
7041 *
7042 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7043 *
7044 * Return: The current task for @cpu.
1df5c10a 7045 */
36c8b586 7046struct task_struct *curr_task(int cpu)
1df5c10a
LT
7047{
7048 return cpu_curr(cpu);
7049}
7050
67fc4e0c
JW
7051#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7052
7053#ifdef CONFIG_IA64
1df5c10a
LT
7054/**
7055 * set_curr_task - set the current task for a given cpu.
7056 * @cpu: the processor in question.
7057 * @p: the task pointer to set.
7058 *
7059 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7060 * are serviced on a separate stack. It allows the architecture to switch the
7061 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7062 * must be called with all CPU's synchronized, and interrupts disabled, the
7063 * and caller must save the original value of the current task (see
7064 * curr_task() above) and restore that value before reenabling interrupts and
7065 * re-starting the system.
7066 *
7067 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7068 */
36c8b586 7069void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7070{
7071 cpu_curr(cpu) = p;
7072}
7073
7074#endif
29f59db3 7075
7c941438 7076#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7077/* task_group_lock serializes the addition/removal of task groups */
7078static DEFINE_SPINLOCK(task_group_lock);
7079
bccbe08a
PZ
7080static void free_sched_group(struct task_group *tg)
7081{
7082 free_fair_sched_group(tg);
7083 free_rt_sched_group(tg);
e9aa1dd1 7084 autogroup_free(tg);
bccbe08a
PZ
7085 kfree(tg);
7086}
7087
7088/* allocate runqueue etc for a new task group */
ec7dc8ac 7089struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7090{
7091 struct task_group *tg;
bccbe08a
PZ
7092
7093 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7094 if (!tg)
7095 return ERR_PTR(-ENOMEM);
7096
ec7dc8ac 7097 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7098 goto err;
7099
ec7dc8ac 7100 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7101 goto err;
7102
ace783b9
LZ
7103 return tg;
7104
7105err:
7106 free_sched_group(tg);
7107 return ERR_PTR(-ENOMEM);
7108}
7109
7110void sched_online_group(struct task_group *tg, struct task_group *parent)
7111{
7112 unsigned long flags;
7113
8ed36996 7114 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7115 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7116
7117 WARN_ON(!parent); /* root should already exist */
7118
7119 tg->parent = parent;
f473aa5e 7120 INIT_LIST_HEAD(&tg->children);
09f2724a 7121 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7122 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7123}
7124
9b5b7751 7125/* rcu callback to free various structures associated with a task group */
6f505b16 7126static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7127{
29f59db3 7128 /* now it should be safe to free those cfs_rqs */
6f505b16 7129 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7130}
7131
9b5b7751 7132/* Destroy runqueue etc associated with a task group */
4cf86d77 7133void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7134{
7135 /* wait for possible concurrent references to cfs_rqs complete */
7136 call_rcu(&tg->rcu, free_sched_group_rcu);
7137}
7138
7139void sched_offline_group(struct task_group *tg)
29f59db3 7140{
8ed36996 7141 unsigned long flags;
9b5b7751 7142 int i;
29f59db3 7143
3d4b47b4
PZ
7144 /* end participation in shares distribution */
7145 for_each_possible_cpu(i)
bccbe08a 7146 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7147
7148 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7149 list_del_rcu(&tg->list);
f473aa5e 7150 list_del_rcu(&tg->siblings);
8ed36996 7151 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7152}
7153
9b5b7751 7154/* change task's runqueue when it moves between groups.
3a252015
IM
7155 * The caller of this function should have put the task in its new group
7156 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7157 * reflect its new group.
9b5b7751
SV
7158 */
7159void sched_move_task(struct task_struct *tsk)
29f59db3 7160{
8323f26c 7161 struct task_group *tg;
29f59db3
SV
7162 int on_rq, running;
7163 unsigned long flags;
7164 struct rq *rq;
7165
7166 rq = task_rq_lock(tsk, &flags);
7167
051a1d1a 7168 running = task_current(rq, tsk);
fd2f4419 7169 on_rq = tsk->on_rq;
29f59db3 7170
0e1f3483 7171 if (on_rq)
29f59db3 7172 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7173 if (unlikely(running))
7174 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7175
8af01f56 7176 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7177 lockdep_is_held(&tsk->sighand->siglock)),
7178 struct task_group, css);
7179 tg = autogroup_task_group(tsk, tg);
7180 tsk->sched_task_group = tg;
7181
810b3817 7182#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7183 if (tsk->sched_class->task_move_group)
7184 tsk->sched_class->task_move_group(tsk, on_rq);
7185 else
810b3817 7186#endif
b2b5ce02 7187 set_task_rq(tsk, task_cpu(tsk));
810b3817 7188
0e1f3483
HS
7189 if (unlikely(running))
7190 tsk->sched_class->set_curr_task(rq);
7191 if (on_rq)
371fd7e7 7192 enqueue_task(rq, tsk, 0);
29f59db3 7193
0122ec5b 7194 task_rq_unlock(rq, tsk, &flags);
29f59db3 7195}
7c941438 7196#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7197
a790de99
PT
7198#ifdef CONFIG_RT_GROUP_SCHED
7199/*
7200 * Ensure that the real time constraints are schedulable.
7201 */
7202static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7203
9a7e0b18
PZ
7204/* Must be called with tasklist_lock held */
7205static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7206{
9a7e0b18 7207 struct task_struct *g, *p;
b40b2e8e 7208
9a7e0b18 7209 do_each_thread(g, p) {
029632fb 7210 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7211 return 1;
7212 } while_each_thread(g, p);
b40b2e8e 7213
9a7e0b18
PZ
7214 return 0;
7215}
b40b2e8e 7216
9a7e0b18
PZ
7217struct rt_schedulable_data {
7218 struct task_group *tg;
7219 u64 rt_period;
7220 u64 rt_runtime;
7221};
b40b2e8e 7222
a790de99 7223static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7224{
7225 struct rt_schedulable_data *d = data;
7226 struct task_group *child;
7227 unsigned long total, sum = 0;
7228 u64 period, runtime;
b40b2e8e 7229
9a7e0b18
PZ
7230 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7231 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7232
9a7e0b18
PZ
7233 if (tg == d->tg) {
7234 period = d->rt_period;
7235 runtime = d->rt_runtime;
b40b2e8e 7236 }
b40b2e8e 7237
4653f803
PZ
7238 /*
7239 * Cannot have more runtime than the period.
7240 */
7241 if (runtime > period && runtime != RUNTIME_INF)
7242 return -EINVAL;
6f505b16 7243
4653f803
PZ
7244 /*
7245 * Ensure we don't starve existing RT tasks.
7246 */
9a7e0b18
PZ
7247 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7248 return -EBUSY;
6f505b16 7249
9a7e0b18 7250 total = to_ratio(period, runtime);
6f505b16 7251
4653f803
PZ
7252 /*
7253 * Nobody can have more than the global setting allows.
7254 */
7255 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7256 return -EINVAL;
6f505b16 7257
4653f803
PZ
7258 /*
7259 * The sum of our children's runtime should not exceed our own.
7260 */
9a7e0b18
PZ
7261 list_for_each_entry_rcu(child, &tg->children, siblings) {
7262 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7263 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7264
9a7e0b18
PZ
7265 if (child == d->tg) {
7266 period = d->rt_period;
7267 runtime = d->rt_runtime;
7268 }
6f505b16 7269
9a7e0b18 7270 sum += to_ratio(period, runtime);
9f0c1e56 7271 }
6f505b16 7272
9a7e0b18
PZ
7273 if (sum > total)
7274 return -EINVAL;
7275
7276 return 0;
6f505b16
PZ
7277}
7278
9a7e0b18 7279static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7280{
8277434e
PT
7281 int ret;
7282
9a7e0b18
PZ
7283 struct rt_schedulable_data data = {
7284 .tg = tg,
7285 .rt_period = period,
7286 .rt_runtime = runtime,
7287 };
7288
8277434e
PT
7289 rcu_read_lock();
7290 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7291 rcu_read_unlock();
7292
7293 return ret;
521f1a24
DG
7294}
7295
ab84d31e 7296static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7297 u64 rt_period, u64 rt_runtime)
6f505b16 7298{
ac086bc2 7299 int i, err = 0;
9f0c1e56 7300
9f0c1e56 7301 mutex_lock(&rt_constraints_mutex);
521f1a24 7302 read_lock(&tasklist_lock);
9a7e0b18
PZ
7303 err = __rt_schedulable(tg, rt_period, rt_runtime);
7304 if (err)
9f0c1e56 7305 goto unlock;
ac086bc2 7306
0986b11b 7307 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7308 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7309 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7310
7311 for_each_possible_cpu(i) {
7312 struct rt_rq *rt_rq = tg->rt_rq[i];
7313
0986b11b 7314 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7315 rt_rq->rt_runtime = rt_runtime;
0986b11b 7316 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7317 }
0986b11b 7318 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7319unlock:
521f1a24 7320 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7321 mutex_unlock(&rt_constraints_mutex);
7322
7323 return err;
6f505b16
PZ
7324}
7325
25cc7da7 7326static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7327{
7328 u64 rt_runtime, rt_period;
7329
7330 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7332 if (rt_runtime_us < 0)
7333 rt_runtime = RUNTIME_INF;
7334
ab84d31e 7335 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7336}
7337
25cc7da7 7338static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7339{
7340 u64 rt_runtime_us;
7341
d0b27fa7 7342 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7343 return -1;
7344
d0b27fa7 7345 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7346 do_div(rt_runtime_us, NSEC_PER_USEC);
7347 return rt_runtime_us;
7348}
d0b27fa7 7349
25cc7da7 7350static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7351{
7352 u64 rt_runtime, rt_period;
7353
7354 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7355 rt_runtime = tg->rt_bandwidth.rt_runtime;
7356
619b0488
R
7357 if (rt_period == 0)
7358 return -EINVAL;
7359
ab84d31e 7360 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7361}
7362
25cc7da7 7363static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7364{
7365 u64 rt_period_us;
7366
7367 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7368 do_div(rt_period_us, NSEC_PER_USEC);
7369 return rt_period_us;
7370}
332ac17e 7371#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7372
332ac17e 7373#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7374static int sched_rt_global_constraints(void)
7375{
7376 int ret = 0;
7377
7378 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7379 read_lock(&tasklist_lock);
4653f803 7380 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7381 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7382 mutex_unlock(&rt_constraints_mutex);
7383
7384 return ret;
7385}
54e99124 7386
25cc7da7 7387static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7388{
7389 /* Don't accept realtime tasks when there is no way for them to run */
7390 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7391 return 0;
7392
7393 return 1;
7394}
7395
6d6bc0ad 7396#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7397static int sched_rt_global_constraints(void)
7398{
ac086bc2 7399 unsigned long flags;
332ac17e 7400 int i, ret = 0;
ec5d4989 7401
0986b11b 7402 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7403 for_each_possible_cpu(i) {
7404 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7405
0986b11b 7406 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7407 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7408 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7409 }
0986b11b 7410 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7411
332ac17e 7412 return ret;
d0b27fa7 7413}
6d6bc0ad 7414#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7415
332ac17e
DF
7416static int sched_dl_global_constraints(void)
7417{
1724813d
PZ
7418 u64 runtime = global_rt_runtime();
7419 u64 period = global_rt_period();
332ac17e 7420 u64 new_bw = to_ratio(period, runtime);
1724813d 7421 int cpu, ret = 0;
332ac17e
DF
7422
7423 /*
7424 * Here we want to check the bandwidth not being set to some
7425 * value smaller than the currently allocated bandwidth in
7426 * any of the root_domains.
7427 *
7428 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7429 * cycling on root_domains... Discussion on different/better
7430 * solutions is welcome!
7431 */
1724813d
PZ
7432 for_each_possible_cpu(cpu) {
7433 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7434
7435 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7436 if (new_bw < dl_b->total_bw)
7437 ret = -EBUSY;
332ac17e 7438 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7439
7440 if (ret)
7441 break;
332ac17e
DF
7442 }
7443
1724813d 7444 return ret;
332ac17e
DF
7445}
7446
1724813d 7447static void sched_dl_do_global(void)
ce0dbbbb 7448{
1724813d
PZ
7449 u64 new_bw = -1;
7450 int cpu;
ce0dbbbb 7451
1724813d
PZ
7452 def_dl_bandwidth.dl_period = global_rt_period();
7453 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7454
7455 if (global_rt_runtime() != RUNTIME_INF)
7456 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7457
7458 /*
7459 * FIXME: As above...
7460 */
7461 for_each_possible_cpu(cpu) {
7462 struct dl_bw *dl_b = dl_bw_of(cpu);
7463
7464 raw_spin_lock(&dl_b->lock);
7465 dl_b->bw = new_bw;
7466 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7467 }
1724813d
PZ
7468}
7469
7470static int sched_rt_global_validate(void)
7471{
7472 if (sysctl_sched_rt_period <= 0)
7473 return -EINVAL;
7474
7475 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7476 return -EINVAL;
7477
7478 return 0;
7479}
7480
7481static void sched_rt_do_global(void)
7482{
7483 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7484 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7485}
7486
d0b27fa7 7487int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7488 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7489 loff_t *ppos)
7490{
d0b27fa7
PZ
7491 int old_period, old_runtime;
7492 static DEFINE_MUTEX(mutex);
1724813d 7493 int ret;
d0b27fa7
PZ
7494
7495 mutex_lock(&mutex);
7496 old_period = sysctl_sched_rt_period;
7497 old_runtime = sysctl_sched_rt_runtime;
7498
8d65af78 7499 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7500
7501 if (!ret && write) {
1724813d
PZ
7502 ret = sched_rt_global_validate();
7503 if (ret)
7504 goto undo;
7505
d0b27fa7 7506 ret = sched_rt_global_constraints();
1724813d
PZ
7507 if (ret)
7508 goto undo;
7509
7510 ret = sched_dl_global_constraints();
7511 if (ret)
7512 goto undo;
7513
7514 sched_rt_do_global();
7515 sched_dl_do_global();
7516 }
7517 if (0) {
7518undo:
7519 sysctl_sched_rt_period = old_period;
7520 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7521 }
7522 mutex_unlock(&mutex);
7523
7524 return ret;
7525}
68318b8e 7526
1724813d 7527int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7528 void __user *buffer, size_t *lenp,
7529 loff_t *ppos)
7530{
7531 int ret;
332ac17e 7532 static DEFINE_MUTEX(mutex);
332ac17e
DF
7533
7534 mutex_lock(&mutex);
332ac17e 7535 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7536 /* make sure that internally we keep jiffies */
7537 /* also, writing zero resets timeslice to default */
332ac17e 7538 if (!ret && write) {
1724813d
PZ
7539 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7540 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7541 }
7542 mutex_unlock(&mutex);
332ac17e
DF
7543 return ret;
7544}
7545
052f1dc7 7546#ifdef CONFIG_CGROUP_SCHED
68318b8e 7547
a7c6d554 7548static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7549{
a7c6d554 7550 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7551}
7552
eb95419b
TH
7553static struct cgroup_subsys_state *
7554cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7555{
eb95419b
TH
7556 struct task_group *parent = css_tg(parent_css);
7557 struct task_group *tg;
68318b8e 7558
eb95419b 7559 if (!parent) {
68318b8e 7560 /* This is early initialization for the top cgroup */
07e06b01 7561 return &root_task_group.css;
68318b8e
SV
7562 }
7563
ec7dc8ac 7564 tg = sched_create_group(parent);
68318b8e
SV
7565 if (IS_ERR(tg))
7566 return ERR_PTR(-ENOMEM);
7567
68318b8e
SV
7568 return &tg->css;
7569}
7570
eb95419b 7571static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7572{
eb95419b
TH
7573 struct task_group *tg = css_tg(css);
7574 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7575
63876986
TH
7576 if (parent)
7577 sched_online_group(tg, parent);
ace783b9
LZ
7578 return 0;
7579}
7580
eb95419b 7581static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7582{
eb95419b 7583 struct task_group *tg = css_tg(css);
68318b8e
SV
7584
7585 sched_destroy_group(tg);
7586}
7587
eb95419b 7588static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7589{
eb95419b 7590 struct task_group *tg = css_tg(css);
ace783b9
LZ
7591
7592 sched_offline_group(tg);
7593}
7594
eb95419b 7595static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7596 struct cgroup_taskset *tset)
68318b8e 7597{
bb9d97b6
TH
7598 struct task_struct *task;
7599
d99c8727 7600 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7601#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7602 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7603 return -EINVAL;
b68aa230 7604#else
bb9d97b6
TH
7605 /* We don't support RT-tasks being in separate groups */
7606 if (task->sched_class != &fair_sched_class)
7607 return -EINVAL;
b68aa230 7608#endif
bb9d97b6 7609 }
be367d09
BB
7610 return 0;
7611}
68318b8e 7612
eb95419b 7613static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7614 struct cgroup_taskset *tset)
68318b8e 7615{
bb9d97b6
TH
7616 struct task_struct *task;
7617
d99c8727 7618 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7619 sched_move_task(task);
68318b8e
SV
7620}
7621
eb95419b
TH
7622static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7623 struct cgroup_subsys_state *old_css,
7624 struct task_struct *task)
068c5cc5
PZ
7625{
7626 /*
7627 * cgroup_exit() is called in the copy_process() failure path.
7628 * Ignore this case since the task hasn't ran yet, this avoids
7629 * trying to poke a half freed task state from generic code.
7630 */
7631 if (!(task->flags & PF_EXITING))
7632 return;
7633
7634 sched_move_task(task);
7635}
7636
052f1dc7 7637#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7638static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7639 struct cftype *cftype, u64 shareval)
68318b8e 7640{
182446d0 7641 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7642}
7643
182446d0
TH
7644static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7645 struct cftype *cft)
68318b8e 7646{
182446d0 7647 struct task_group *tg = css_tg(css);
68318b8e 7648
c8b28116 7649 return (u64) scale_load_down(tg->shares);
68318b8e 7650}
ab84d31e
PT
7651
7652#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7653static DEFINE_MUTEX(cfs_constraints_mutex);
7654
ab84d31e
PT
7655const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7656const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7657
a790de99
PT
7658static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7659
ab84d31e
PT
7660static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7661{
56f570e5 7662 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7663 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7664
7665 if (tg == &root_task_group)
7666 return -EINVAL;
7667
7668 /*
7669 * Ensure we have at some amount of bandwidth every period. This is
7670 * to prevent reaching a state of large arrears when throttled via
7671 * entity_tick() resulting in prolonged exit starvation.
7672 */
7673 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7674 return -EINVAL;
7675
7676 /*
7677 * Likewise, bound things on the otherside by preventing insane quota
7678 * periods. This also allows us to normalize in computing quota
7679 * feasibility.
7680 */
7681 if (period > max_cfs_quota_period)
7682 return -EINVAL;
7683
a790de99
PT
7684 mutex_lock(&cfs_constraints_mutex);
7685 ret = __cfs_schedulable(tg, period, quota);
7686 if (ret)
7687 goto out_unlock;
7688
58088ad0 7689 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7690 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7691 /*
7692 * If we need to toggle cfs_bandwidth_used, off->on must occur
7693 * before making related changes, and on->off must occur afterwards
7694 */
7695 if (runtime_enabled && !runtime_was_enabled)
7696 cfs_bandwidth_usage_inc();
ab84d31e
PT
7697 raw_spin_lock_irq(&cfs_b->lock);
7698 cfs_b->period = ns_to_ktime(period);
7699 cfs_b->quota = quota;
58088ad0 7700
a9cf55b2 7701 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7702 /* restart the period timer (if active) to handle new period expiry */
7703 if (runtime_enabled && cfs_b->timer_active) {
7704 /* force a reprogram */
7705 cfs_b->timer_active = 0;
7706 __start_cfs_bandwidth(cfs_b);
7707 }
ab84d31e
PT
7708 raw_spin_unlock_irq(&cfs_b->lock);
7709
7710 for_each_possible_cpu(i) {
7711 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7712 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7713
7714 raw_spin_lock_irq(&rq->lock);
58088ad0 7715 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7716 cfs_rq->runtime_remaining = 0;
671fd9da 7717
029632fb 7718 if (cfs_rq->throttled)
671fd9da 7719 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7720 raw_spin_unlock_irq(&rq->lock);
7721 }
1ee14e6c
BS
7722 if (runtime_was_enabled && !runtime_enabled)
7723 cfs_bandwidth_usage_dec();
a790de99
PT
7724out_unlock:
7725 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7726
a790de99 7727 return ret;
ab84d31e
PT
7728}
7729
7730int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7731{
7732 u64 quota, period;
7733
029632fb 7734 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7735 if (cfs_quota_us < 0)
7736 quota = RUNTIME_INF;
7737 else
7738 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7739
7740 return tg_set_cfs_bandwidth(tg, period, quota);
7741}
7742
7743long tg_get_cfs_quota(struct task_group *tg)
7744{
7745 u64 quota_us;
7746
029632fb 7747 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7748 return -1;
7749
029632fb 7750 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7751 do_div(quota_us, NSEC_PER_USEC);
7752
7753 return quota_us;
7754}
7755
7756int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7757{
7758 u64 quota, period;
7759
7760 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7761 quota = tg->cfs_bandwidth.quota;
ab84d31e 7762
ab84d31e
PT
7763 return tg_set_cfs_bandwidth(tg, period, quota);
7764}
7765
7766long tg_get_cfs_period(struct task_group *tg)
7767{
7768 u64 cfs_period_us;
7769
029632fb 7770 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7771 do_div(cfs_period_us, NSEC_PER_USEC);
7772
7773 return cfs_period_us;
7774}
7775
182446d0
TH
7776static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7777 struct cftype *cft)
ab84d31e 7778{
182446d0 7779 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7780}
7781
182446d0
TH
7782static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7783 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7784{
182446d0 7785 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7786}
7787
182446d0
TH
7788static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7789 struct cftype *cft)
ab84d31e 7790{
182446d0 7791 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7792}
7793
182446d0
TH
7794static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7795 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7796{
182446d0 7797 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7798}
7799
a790de99
PT
7800struct cfs_schedulable_data {
7801 struct task_group *tg;
7802 u64 period, quota;
7803};
7804
7805/*
7806 * normalize group quota/period to be quota/max_period
7807 * note: units are usecs
7808 */
7809static u64 normalize_cfs_quota(struct task_group *tg,
7810 struct cfs_schedulable_data *d)
7811{
7812 u64 quota, period;
7813
7814 if (tg == d->tg) {
7815 period = d->period;
7816 quota = d->quota;
7817 } else {
7818 period = tg_get_cfs_period(tg);
7819 quota = tg_get_cfs_quota(tg);
7820 }
7821
7822 /* note: these should typically be equivalent */
7823 if (quota == RUNTIME_INF || quota == -1)
7824 return RUNTIME_INF;
7825
7826 return to_ratio(period, quota);
7827}
7828
7829static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7830{
7831 struct cfs_schedulable_data *d = data;
029632fb 7832 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7833 s64 quota = 0, parent_quota = -1;
7834
7835 if (!tg->parent) {
7836 quota = RUNTIME_INF;
7837 } else {
029632fb 7838 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7839
7840 quota = normalize_cfs_quota(tg, d);
7841 parent_quota = parent_b->hierarchal_quota;
7842
7843 /*
7844 * ensure max(child_quota) <= parent_quota, inherit when no
7845 * limit is set
7846 */
7847 if (quota == RUNTIME_INF)
7848 quota = parent_quota;
7849 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7850 return -EINVAL;
7851 }
7852 cfs_b->hierarchal_quota = quota;
7853
7854 return 0;
7855}
7856
7857static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7858{
8277434e 7859 int ret;
a790de99
PT
7860 struct cfs_schedulable_data data = {
7861 .tg = tg,
7862 .period = period,
7863 .quota = quota,
7864 };
7865
7866 if (quota != RUNTIME_INF) {
7867 do_div(data.period, NSEC_PER_USEC);
7868 do_div(data.quota, NSEC_PER_USEC);
7869 }
7870
8277434e
PT
7871 rcu_read_lock();
7872 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7873 rcu_read_unlock();
7874
7875 return ret;
a790de99 7876}
e8da1b18 7877
2da8ca82 7878static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7879{
2da8ca82 7880 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7881 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7882
44ffc75b
TH
7883 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7884 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7885 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7886
7887 return 0;
7888}
ab84d31e 7889#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7890#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7891
052f1dc7 7892#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7893static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7894 struct cftype *cft, s64 val)
6f505b16 7895{
182446d0 7896 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7897}
7898
182446d0
TH
7899static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7900 struct cftype *cft)
6f505b16 7901{
182446d0 7902 return sched_group_rt_runtime(css_tg(css));
6f505b16 7903}
d0b27fa7 7904
182446d0
TH
7905static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7906 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7907{
182446d0 7908 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7909}
7910
182446d0
TH
7911static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7912 struct cftype *cft)
d0b27fa7 7913{
182446d0 7914 return sched_group_rt_period(css_tg(css));
d0b27fa7 7915}
6d6bc0ad 7916#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7917
fe5c7cc2 7918static struct cftype cpu_files[] = {
052f1dc7 7919#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7920 {
7921 .name = "shares",
f4c753b7
PM
7922 .read_u64 = cpu_shares_read_u64,
7923 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7924 },
052f1dc7 7925#endif
ab84d31e
PT
7926#ifdef CONFIG_CFS_BANDWIDTH
7927 {
7928 .name = "cfs_quota_us",
7929 .read_s64 = cpu_cfs_quota_read_s64,
7930 .write_s64 = cpu_cfs_quota_write_s64,
7931 },
7932 {
7933 .name = "cfs_period_us",
7934 .read_u64 = cpu_cfs_period_read_u64,
7935 .write_u64 = cpu_cfs_period_write_u64,
7936 },
e8da1b18
NR
7937 {
7938 .name = "stat",
2da8ca82 7939 .seq_show = cpu_stats_show,
e8da1b18 7940 },
ab84d31e 7941#endif
052f1dc7 7942#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7943 {
9f0c1e56 7944 .name = "rt_runtime_us",
06ecb27c
PM
7945 .read_s64 = cpu_rt_runtime_read,
7946 .write_s64 = cpu_rt_runtime_write,
6f505b16 7947 },
d0b27fa7
PZ
7948 {
7949 .name = "rt_period_us",
f4c753b7
PM
7950 .read_u64 = cpu_rt_period_read_uint,
7951 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7952 },
052f1dc7 7953#endif
4baf6e33 7954 { } /* terminate */
68318b8e
SV
7955};
7956
68318b8e 7957struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7958 .name = "cpu",
92fb9748
TH
7959 .css_alloc = cpu_cgroup_css_alloc,
7960 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7961 .css_online = cpu_cgroup_css_online,
7962 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7963 .can_attach = cpu_cgroup_can_attach,
7964 .attach = cpu_cgroup_attach,
068c5cc5 7965 .exit = cpu_cgroup_exit,
38605cae 7966 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7967 .base_cftypes = cpu_files,
68318b8e
SV
7968 .early_init = 1,
7969};
7970
052f1dc7 7971#endif /* CONFIG_CGROUP_SCHED */
d842de87 7972
b637a328
PM
7973void dump_cpu_task(int cpu)
7974{
7975 pr_info("Task dump for CPU %d:\n", cpu);
7976 sched_show_task(cpu_curr(cpu));
7977}
This page took 2.702323 seconds and 5 git commands to generate.