Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
ced549fa 1049 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1b6a7495
NP
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
5eca82a9
PZ
1061 */
1062 if (!cpus)
1063 return;
1064
5ef20ca1 1065 ns->task_capacity =
ca8ce3d0 1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1b6a7495 1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
28a21745 1098static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1099 struct task_numa_env *env)
1100{
1101 long imb, old_imb;
28a21745
RR
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
28a21745
RR
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
28a21745
RR
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
e63da036
RR
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
28a21745
RR
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1137
1138 /* Would this change make things worse? */
1662867a 1139 return (imb > old_imb);
e63da036
RR
1140}
1141
fb13c7ee
MG
1142/*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
887c290e
RR
1148static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
fb13c7ee
MG
1150{
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
28a21745 1154 long src_load, dst_load;
fb13c7ee 1155 long load;
1c5d3eb3 1156 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1157 long moveimp = imp;
fb13c7ee
MG
1158
1159 rcu_read_lock();
1160 cur = ACCESS_ONCE(dst_rq->curr);
1161 if (cur->pid == 0) /* idle */
1162 cur = NULL;
1163
1164 /*
1165 * "imp" is the fault differential for the source task between the
1166 * source and destination node. Calculate the total differential for
1167 * the source task and potential destination task. The more negative
1168 * the value is, the more rmeote accesses that would be expected to
1169 * be incurred if the tasks were swapped.
1170 */
1171 if (cur) {
1172 /* Skip this swap candidate if cannot move to the source cpu */
1173 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1174 goto unlock;
1175
887c290e
RR
1176 /*
1177 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1178 * in any group then look only at task weights.
887c290e 1179 */
ca28aa53 1180 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1181 imp = taskimp + task_weight(cur, env->src_nid) -
1182 task_weight(cur, env->dst_nid);
ca28aa53
RR
1183 /*
1184 * Add some hysteresis to prevent swapping the
1185 * tasks within a group over tiny differences.
1186 */
1187 if (cur->numa_group)
1188 imp -= imp/16;
887c290e 1189 } else {
ca28aa53
RR
1190 /*
1191 * Compare the group weights. If a task is all by
1192 * itself (not part of a group), use the task weight
1193 * instead.
1194 */
ca28aa53
RR
1195 if (cur->numa_group)
1196 imp += group_weight(cur, env->src_nid) -
1197 group_weight(cur, env->dst_nid);
1198 else
1199 imp += task_weight(cur, env->src_nid) -
1200 task_weight(cur, env->dst_nid);
887c290e 1201 }
fb13c7ee
MG
1202 }
1203
0132c3e1 1204 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1205 goto unlock;
1206
1207 if (!cur) {
1208 /* Is there capacity at our destination? */
1b6a7495
NP
1209 if (env->src_stats.has_free_capacity &&
1210 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1211 goto unlock;
1212
1213 goto balance;
1214 }
1215
1216 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1217 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1218 dst_rq->nr_running == 1)
fb13c7ee
MG
1219 goto assign;
1220
1221 /*
1222 * In the overloaded case, try and keep the load balanced.
1223 */
1224balance:
e720fff6
PZ
1225 load = task_h_load(env->p);
1226 dst_load = env->dst_stats.load + load;
1227 src_load = env->src_stats.load - load;
fb13c7ee 1228
0132c3e1
RR
1229 if (moveimp > imp && moveimp > env->best_imp) {
1230 /*
1231 * If the improvement from just moving env->p direction is
1232 * better than swapping tasks around, check if a move is
1233 * possible. Store a slightly smaller score than moveimp,
1234 * so an actually idle CPU will win.
1235 */
1236 if (!load_too_imbalanced(src_load, dst_load, env)) {
1237 imp = moveimp - 1;
1238 cur = NULL;
1239 goto assign;
1240 }
1241 }
1242
1243 if (imp <= env->best_imp)
1244 goto unlock;
1245
fb13c7ee 1246 if (cur) {
e720fff6
PZ
1247 load = task_h_load(cur);
1248 dst_load -= load;
1249 src_load += load;
fb13c7ee
MG
1250 }
1251
28a21745 1252 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1253 goto unlock;
1254
1255assign:
1256 task_numa_assign(env, cur, imp);
1257unlock:
1258 rcu_read_unlock();
1259}
1260
887c290e
RR
1261static void task_numa_find_cpu(struct task_numa_env *env,
1262 long taskimp, long groupimp)
2c8a50aa
MG
1263{
1264 int cpu;
1265
1266 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1267 /* Skip this CPU if the source task cannot migrate */
1268 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1269 continue;
1270
1271 env->dst_cpu = cpu;
887c290e 1272 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1273 }
1274}
1275
58d081b5
MG
1276static int task_numa_migrate(struct task_struct *p)
1277{
58d081b5
MG
1278 struct task_numa_env env = {
1279 .p = p,
fb13c7ee 1280
58d081b5 1281 .src_cpu = task_cpu(p),
b32e86b4 1282 .src_nid = task_node(p),
fb13c7ee
MG
1283
1284 .imbalance_pct = 112,
1285
1286 .best_task = NULL,
1287 .best_imp = 0,
1288 .best_cpu = -1
58d081b5
MG
1289 };
1290 struct sched_domain *sd;
887c290e 1291 unsigned long taskweight, groupweight;
2c8a50aa 1292 int nid, ret;
887c290e 1293 long taskimp, groupimp;
e6628d5b 1294
58d081b5 1295 /*
fb13c7ee
MG
1296 * Pick the lowest SD_NUMA domain, as that would have the smallest
1297 * imbalance and would be the first to start moving tasks about.
1298 *
1299 * And we want to avoid any moving of tasks about, as that would create
1300 * random movement of tasks -- counter the numa conditions we're trying
1301 * to satisfy here.
58d081b5
MG
1302 */
1303 rcu_read_lock();
fb13c7ee 1304 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1305 if (sd)
1306 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1307 rcu_read_unlock();
1308
46a73e8a
RR
1309 /*
1310 * Cpusets can break the scheduler domain tree into smaller
1311 * balance domains, some of which do not cross NUMA boundaries.
1312 * Tasks that are "trapped" in such domains cannot be migrated
1313 * elsewhere, so there is no point in (re)trying.
1314 */
1315 if (unlikely(!sd)) {
de1b301a 1316 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1317 return -EINVAL;
1318 }
1319
887c290e
RR
1320 taskweight = task_weight(p, env.src_nid);
1321 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1322 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1323 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1324 taskimp = task_weight(p, env.dst_nid) - taskweight;
1325 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1326 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1327
a43455a1
RR
1328 /* Try to find a spot on the preferred nid. */
1329 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1330
1331 /* No space available on the preferred nid. Look elsewhere. */
1332 if (env.best_cpu == -1) {
2c8a50aa
MG
1333 for_each_online_node(nid) {
1334 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1335 continue;
58d081b5 1336
83e1d2cd 1337 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1338 taskimp = task_weight(p, nid) - taskweight;
1339 groupimp = group_weight(p, nid) - groupweight;
1340 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1341 continue;
1342
2c8a50aa
MG
1343 env.dst_nid = nid;
1344 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1345 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1346 }
1347 }
1348
68d1b02a
RR
1349 /*
1350 * If the task is part of a workload that spans multiple NUMA nodes,
1351 * and is migrating into one of the workload's active nodes, remember
1352 * this node as the task's preferred numa node, so the workload can
1353 * settle down.
1354 * A task that migrated to a second choice node will be better off
1355 * trying for a better one later. Do not set the preferred node here.
1356 */
db015dae
RR
1357 if (p->numa_group) {
1358 if (env.best_cpu == -1)
1359 nid = env.src_nid;
1360 else
1361 nid = env.dst_nid;
1362
1363 if (node_isset(nid, p->numa_group->active_nodes))
1364 sched_setnuma(p, env.dst_nid);
1365 }
1366
1367 /* No better CPU than the current one was found. */
1368 if (env.best_cpu == -1)
1369 return -EAGAIN;
0ec8aa00 1370
04bb2f94
RR
1371 /*
1372 * Reset the scan period if the task is being rescheduled on an
1373 * alternative node to recheck if the tasks is now properly placed.
1374 */
1375 p->numa_scan_period = task_scan_min(p);
1376
fb13c7ee 1377 if (env.best_task == NULL) {
286549dc
MG
1378 ret = migrate_task_to(p, env.best_cpu);
1379 if (ret != 0)
1380 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1381 return ret;
1382 }
1383
1384 ret = migrate_swap(p, env.best_task);
286549dc
MG
1385 if (ret != 0)
1386 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1387 put_task_struct(env.best_task);
1388 return ret;
e6628d5b
MG
1389}
1390
6b9a7460
MG
1391/* Attempt to migrate a task to a CPU on the preferred node. */
1392static void numa_migrate_preferred(struct task_struct *p)
1393{
5085e2a3
RR
1394 unsigned long interval = HZ;
1395
2739d3ee 1396 /* This task has no NUMA fault statistics yet */
ff1df896 1397 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1398 return;
1399
2739d3ee 1400 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1401 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1402 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1403
1404 /* Success if task is already running on preferred CPU */
de1b301a 1405 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1406 return;
1407
1408 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1409 task_numa_migrate(p);
6b9a7460
MG
1410}
1411
20e07dea
RR
1412/*
1413 * Find the nodes on which the workload is actively running. We do this by
1414 * tracking the nodes from which NUMA hinting faults are triggered. This can
1415 * be different from the set of nodes where the workload's memory is currently
1416 * located.
1417 *
1418 * The bitmask is used to make smarter decisions on when to do NUMA page
1419 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1420 * are added when they cause over 6/16 of the maximum number of faults, but
1421 * only removed when they drop below 3/16.
1422 */
1423static void update_numa_active_node_mask(struct numa_group *numa_group)
1424{
1425 unsigned long faults, max_faults = 0;
1426 int nid;
1427
1428 for_each_online_node(nid) {
1429 faults = group_faults_cpu(numa_group, nid);
1430 if (faults > max_faults)
1431 max_faults = faults;
1432 }
1433
1434 for_each_online_node(nid) {
1435 faults = group_faults_cpu(numa_group, nid);
1436 if (!node_isset(nid, numa_group->active_nodes)) {
1437 if (faults > max_faults * 6 / 16)
1438 node_set(nid, numa_group->active_nodes);
1439 } else if (faults < max_faults * 3 / 16)
1440 node_clear(nid, numa_group->active_nodes);
1441 }
1442}
1443
04bb2f94
RR
1444/*
1445 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1446 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1447 * period will be for the next scan window. If local/(local+remote) ratio is
1448 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1449 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1450 */
1451#define NUMA_PERIOD_SLOTS 10
a22b4b01 1452#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1453
1454/*
1455 * Increase the scan period (slow down scanning) if the majority of
1456 * our memory is already on our local node, or if the majority of
1457 * the page accesses are shared with other processes.
1458 * Otherwise, decrease the scan period.
1459 */
1460static void update_task_scan_period(struct task_struct *p,
1461 unsigned long shared, unsigned long private)
1462{
1463 unsigned int period_slot;
1464 int ratio;
1465 int diff;
1466
1467 unsigned long remote = p->numa_faults_locality[0];
1468 unsigned long local = p->numa_faults_locality[1];
1469
1470 /*
1471 * If there were no record hinting faults then either the task is
1472 * completely idle or all activity is areas that are not of interest
1473 * to automatic numa balancing. Scan slower
1474 */
1475 if (local + shared == 0) {
1476 p->numa_scan_period = min(p->numa_scan_period_max,
1477 p->numa_scan_period << 1);
1478
1479 p->mm->numa_next_scan = jiffies +
1480 msecs_to_jiffies(p->numa_scan_period);
1481
1482 return;
1483 }
1484
1485 /*
1486 * Prepare to scale scan period relative to the current period.
1487 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1488 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1489 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1490 */
1491 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1492 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1493 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1494 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1495 if (!slot)
1496 slot = 1;
1497 diff = slot * period_slot;
1498 } else {
1499 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1500
1501 /*
1502 * Scale scan rate increases based on sharing. There is an
1503 * inverse relationship between the degree of sharing and
1504 * the adjustment made to the scanning period. Broadly
1505 * speaking the intent is that there is little point
1506 * scanning faster if shared accesses dominate as it may
1507 * simply bounce migrations uselessly
1508 */
04bb2f94
RR
1509 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1510 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1511 }
1512
1513 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1514 task_scan_min(p), task_scan_max(p));
1515 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1516}
1517
7e2703e6
RR
1518/*
1519 * Get the fraction of time the task has been running since the last
1520 * NUMA placement cycle. The scheduler keeps similar statistics, but
1521 * decays those on a 32ms period, which is orders of magnitude off
1522 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1523 * stats only if the task is so new there are no NUMA statistics yet.
1524 */
1525static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1526{
1527 u64 runtime, delta, now;
1528 /* Use the start of this time slice to avoid calculations. */
1529 now = p->se.exec_start;
1530 runtime = p->se.sum_exec_runtime;
1531
1532 if (p->last_task_numa_placement) {
1533 delta = runtime - p->last_sum_exec_runtime;
1534 *period = now - p->last_task_numa_placement;
1535 } else {
1536 delta = p->se.avg.runnable_avg_sum;
1537 *period = p->se.avg.runnable_avg_period;
1538 }
1539
1540 p->last_sum_exec_runtime = runtime;
1541 p->last_task_numa_placement = now;
1542
1543 return delta;
1544}
1545
cbee9f88
PZ
1546static void task_numa_placement(struct task_struct *p)
1547{
83e1d2cd
MG
1548 int seq, nid, max_nid = -1, max_group_nid = -1;
1549 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1550 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1551 unsigned long total_faults;
1552 u64 runtime, period;
7dbd13ed 1553 spinlock_t *group_lock = NULL;
cbee9f88 1554
2832bc19 1555 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1556 if (p->numa_scan_seq == seq)
1557 return;
1558 p->numa_scan_seq = seq;
598f0ec0 1559 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1560
7e2703e6
RR
1561 total_faults = p->numa_faults_locality[0] +
1562 p->numa_faults_locality[1];
1563 runtime = numa_get_avg_runtime(p, &period);
1564
7dbd13ed
MG
1565 /* If the task is part of a group prevent parallel updates to group stats */
1566 if (p->numa_group) {
1567 group_lock = &p->numa_group->lock;
60e69eed 1568 spin_lock_irq(group_lock);
7dbd13ed
MG
1569 }
1570
688b7585
MG
1571 /* Find the node with the highest number of faults */
1572 for_each_online_node(nid) {
83e1d2cd 1573 unsigned long faults = 0, group_faults = 0;
ac8e895b 1574 int priv, i;
745d6147 1575
be1e4e76 1576 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1577 long diff, f_diff, f_weight;
8c8a743c 1578
ac8e895b 1579 i = task_faults_idx(nid, priv);
745d6147 1580
ac8e895b 1581 /* Decay existing window, copy faults since last scan */
35664fd4 1582 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1583 fault_types[priv] += p->numa_faults_buffer_memory[i];
1584 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1585
7e2703e6
RR
1586 /*
1587 * Normalize the faults_from, so all tasks in a group
1588 * count according to CPU use, instead of by the raw
1589 * number of faults. Tasks with little runtime have
1590 * little over-all impact on throughput, and thus their
1591 * faults are less important.
1592 */
1593 f_weight = div64_u64(runtime << 16, period + 1);
1594 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1595 (total_faults + 1);
35664fd4 1596 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1597 p->numa_faults_buffer_cpu[i] = 0;
1598
35664fd4
RR
1599 p->numa_faults_memory[i] += diff;
1600 p->numa_faults_cpu[i] += f_diff;
ff1df896 1601 faults += p->numa_faults_memory[i];
83e1d2cd 1602 p->total_numa_faults += diff;
8c8a743c
PZ
1603 if (p->numa_group) {
1604 /* safe because we can only change our own group */
989348b5 1605 p->numa_group->faults[i] += diff;
50ec8a40 1606 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1607 p->numa_group->total_faults += diff;
1608 group_faults += p->numa_group->faults[i];
8c8a743c 1609 }
ac8e895b
MG
1610 }
1611
688b7585
MG
1612 if (faults > max_faults) {
1613 max_faults = faults;
1614 max_nid = nid;
1615 }
83e1d2cd
MG
1616
1617 if (group_faults > max_group_faults) {
1618 max_group_faults = group_faults;
1619 max_group_nid = nid;
1620 }
1621 }
1622
04bb2f94
RR
1623 update_task_scan_period(p, fault_types[0], fault_types[1]);
1624
7dbd13ed 1625 if (p->numa_group) {
20e07dea 1626 update_numa_active_node_mask(p->numa_group);
60e69eed 1627 spin_unlock_irq(group_lock);
f0b8a4af 1628 max_nid = max_group_nid;
688b7585
MG
1629 }
1630
bb97fc31
RR
1631 if (max_faults) {
1632 /* Set the new preferred node */
1633 if (max_nid != p->numa_preferred_nid)
1634 sched_setnuma(p, max_nid);
1635
1636 if (task_node(p) != p->numa_preferred_nid)
1637 numa_migrate_preferred(p);
3a7053b3 1638 }
cbee9f88
PZ
1639}
1640
8c8a743c
PZ
1641static inline int get_numa_group(struct numa_group *grp)
1642{
1643 return atomic_inc_not_zero(&grp->refcount);
1644}
1645
1646static inline void put_numa_group(struct numa_group *grp)
1647{
1648 if (atomic_dec_and_test(&grp->refcount))
1649 kfree_rcu(grp, rcu);
1650}
1651
3e6a9418
MG
1652static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1653 int *priv)
8c8a743c
PZ
1654{
1655 struct numa_group *grp, *my_grp;
1656 struct task_struct *tsk;
1657 bool join = false;
1658 int cpu = cpupid_to_cpu(cpupid);
1659 int i;
1660
1661 if (unlikely(!p->numa_group)) {
1662 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1663 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1664
1665 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1666 if (!grp)
1667 return;
1668
1669 atomic_set(&grp->refcount, 1);
1670 spin_lock_init(&grp->lock);
1671 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1672 grp->gid = p->pid;
50ec8a40 1673 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1674 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1675 nr_node_ids;
8c8a743c 1676
20e07dea
RR
1677 node_set(task_node(current), grp->active_nodes);
1678
be1e4e76 1679 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1680 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1681
989348b5 1682 grp->total_faults = p->total_numa_faults;
83e1d2cd 1683
8c8a743c
PZ
1684 list_add(&p->numa_entry, &grp->task_list);
1685 grp->nr_tasks++;
1686 rcu_assign_pointer(p->numa_group, grp);
1687 }
1688
1689 rcu_read_lock();
1690 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1691
1692 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1693 goto no_join;
8c8a743c
PZ
1694
1695 grp = rcu_dereference(tsk->numa_group);
1696 if (!grp)
3354781a 1697 goto no_join;
8c8a743c
PZ
1698
1699 my_grp = p->numa_group;
1700 if (grp == my_grp)
3354781a 1701 goto no_join;
8c8a743c
PZ
1702
1703 /*
1704 * Only join the other group if its bigger; if we're the bigger group,
1705 * the other task will join us.
1706 */
1707 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1708 goto no_join;
8c8a743c
PZ
1709
1710 /*
1711 * Tie-break on the grp address.
1712 */
1713 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1714 goto no_join;
8c8a743c 1715
dabe1d99
RR
1716 /* Always join threads in the same process. */
1717 if (tsk->mm == current->mm)
1718 join = true;
1719
1720 /* Simple filter to avoid false positives due to PID collisions */
1721 if (flags & TNF_SHARED)
1722 join = true;
8c8a743c 1723
3e6a9418
MG
1724 /* Update priv based on whether false sharing was detected */
1725 *priv = !join;
1726
dabe1d99 1727 if (join && !get_numa_group(grp))
3354781a 1728 goto no_join;
8c8a743c 1729
8c8a743c
PZ
1730 rcu_read_unlock();
1731
1732 if (!join)
1733 return;
1734
60e69eed
MG
1735 BUG_ON(irqs_disabled());
1736 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1737
be1e4e76 1738 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1739 my_grp->faults[i] -= p->numa_faults_memory[i];
1740 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1741 }
989348b5
MG
1742 my_grp->total_faults -= p->total_numa_faults;
1743 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1744
1745 list_move(&p->numa_entry, &grp->task_list);
1746 my_grp->nr_tasks--;
1747 grp->nr_tasks++;
1748
1749 spin_unlock(&my_grp->lock);
60e69eed 1750 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1751
1752 rcu_assign_pointer(p->numa_group, grp);
1753
1754 put_numa_group(my_grp);
3354781a
PZ
1755 return;
1756
1757no_join:
1758 rcu_read_unlock();
1759 return;
8c8a743c
PZ
1760}
1761
1762void task_numa_free(struct task_struct *p)
1763{
1764 struct numa_group *grp = p->numa_group;
ff1df896 1765 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1766 unsigned long flags;
1767 int i;
8c8a743c
PZ
1768
1769 if (grp) {
e9dd685c 1770 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1771 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1772 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1773 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1774
8c8a743c
PZ
1775 list_del(&p->numa_entry);
1776 grp->nr_tasks--;
e9dd685c 1777 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1778 rcu_assign_pointer(p->numa_group, NULL);
1779 put_numa_group(grp);
1780 }
1781
ff1df896
RR
1782 p->numa_faults_memory = NULL;
1783 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1784 p->numa_faults_cpu= NULL;
1785 p->numa_faults_buffer_cpu = NULL;
82727018 1786 kfree(numa_faults);
8c8a743c
PZ
1787}
1788
cbee9f88
PZ
1789/*
1790 * Got a PROT_NONE fault for a page on @node.
1791 */
58b46da3 1792void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1793{
1794 struct task_struct *p = current;
6688cc05 1795 bool migrated = flags & TNF_MIGRATED;
58b46da3 1796 int cpu_node = task_node(current);
792568ec 1797 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1798 int priv;
cbee9f88 1799
10e84b97 1800 if (!numabalancing_enabled)
1a687c2e
MG
1801 return;
1802
9ff1d9ff
MG
1803 /* for example, ksmd faulting in a user's mm */
1804 if (!p->mm)
1805 return;
1806
82727018
RR
1807 /* Do not worry about placement if exiting */
1808 if (p->state == TASK_DEAD)
1809 return;
1810
f809ca9a 1811 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1812 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1813 int size = sizeof(*p->numa_faults_memory) *
1814 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1815
be1e4e76 1816 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1817 if (!p->numa_faults_memory)
f809ca9a 1818 return;
745d6147 1819
ff1df896 1820 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1821 /*
1822 * The averaged statistics, shared & private, memory & cpu,
1823 * occupy the first half of the array. The second half of the
1824 * array is for current counters, which are averaged into the
1825 * first set by task_numa_placement.
1826 */
50ec8a40
RR
1827 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1828 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1829 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1830 p->total_numa_faults = 0;
04bb2f94 1831 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1832 }
cbee9f88 1833
8c8a743c
PZ
1834 /*
1835 * First accesses are treated as private, otherwise consider accesses
1836 * to be private if the accessing pid has not changed
1837 */
1838 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1839 priv = 1;
1840 } else {
1841 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1842 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1843 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1844 }
1845
792568ec
RR
1846 /*
1847 * If a workload spans multiple NUMA nodes, a shared fault that
1848 * occurs wholly within the set of nodes that the workload is
1849 * actively using should be counted as local. This allows the
1850 * scan rate to slow down when a workload has settled down.
1851 */
1852 if (!priv && !local && p->numa_group &&
1853 node_isset(cpu_node, p->numa_group->active_nodes) &&
1854 node_isset(mem_node, p->numa_group->active_nodes))
1855 local = 1;
1856
cbee9f88 1857 task_numa_placement(p);
f809ca9a 1858
2739d3ee
RR
1859 /*
1860 * Retry task to preferred node migration periodically, in case it
1861 * case it previously failed, or the scheduler moved us.
1862 */
1863 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1864 numa_migrate_preferred(p);
1865
b32e86b4
IM
1866 if (migrated)
1867 p->numa_pages_migrated += pages;
1868
58b46da3
RR
1869 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1870 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1871 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1872}
1873
6e5fb223
PZ
1874static void reset_ptenuma_scan(struct task_struct *p)
1875{
1876 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1877 p->mm->numa_scan_offset = 0;
1878}
1879
cbee9f88
PZ
1880/*
1881 * The expensive part of numa migration is done from task_work context.
1882 * Triggered from task_tick_numa().
1883 */
1884void task_numa_work(struct callback_head *work)
1885{
1886 unsigned long migrate, next_scan, now = jiffies;
1887 struct task_struct *p = current;
1888 struct mm_struct *mm = p->mm;
6e5fb223 1889 struct vm_area_struct *vma;
9f40604c 1890 unsigned long start, end;
598f0ec0 1891 unsigned long nr_pte_updates = 0;
9f40604c 1892 long pages;
cbee9f88
PZ
1893
1894 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1895
1896 work->next = work; /* protect against double add */
1897 /*
1898 * Who cares about NUMA placement when they're dying.
1899 *
1900 * NOTE: make sure not to dereference p->mm before this check,
1901 * exit_task_work() happens _after_ exit_mm() so we could be called
1902 * without p->mm even though we still had it when we enqueued this
1903 * work.
1904 */
1905 if (p->flags & PF_EXITING)
1906 return;
1907
930aa174 1908 if (!mm->numa_next_scan) {
7e8d16b6
MG
1909 mm->numa_next_scan = now +
1910 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1911 }
1912
cbee9f88
PZ
1913 /*
1914 * Enforce maximal scan/migration frequency..
1915 */
1916 migrate = mm->numa_next_scan;
1917 if (time_before(now, migrate))
1918 return;
1919
598f0ec0
MG
1920 if (p->numa_scan_period == 0) {
1921 p->numa_scan_period_max = task_scan_max(p);
1922 p->numa_scan_period = task_scan_min(p);
1923 }
cbee9f88 1924
fb003b80 1925 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1926 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1927 return;
1928
19a78d11
PZ
1929 /*
1930 * Delay this task enough that another task of this mm will likely win
1931 * the next time around.
1932 */
1933 p->node_stamp += 2 * TICK_NSEC;
1934
9f40604c
MG
1935 start = mm->numa_scan_offset;
1936 pages = sysctl_numa_balancing_scan_size;
1937 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1938 if (!pages)
1939 return;
cbee9f88 1940
6e5fb223 1941 down_read(&mm->mmap_sem);
9f40604c 1942 vma = find_vma(mm, start);
6e5fb223
PZ
1943 if (!vma) {
1944 reset_ptenuma_scan(p);
9f40604c 1945 start = 0;
6e5fb223
PZ
1946 vma = mm->mmap;
1947 }
9f40604c 1948 for (; vma; vma = vma->vm_next) {
fc314724 1949 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1950 continue;
1951
4591ce4f
MG
1952 /*
1953 * Shared library pages mapped by multiple processes are not
1954 * migrated as it is expected they are cache replicated. Avoid
1955 * hinting faults in read-only file-backed mappings or the vdso
1956 * as migrating the pages will be of marginal benefit.
1957 */
1958 if (!vma->vm_mm ||
1959 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1960 continue;
1961
3c67f474
MG
1962 /*
1963 * Skip inaccessible VMAs to avoid any confusion between
1964 * PROT_NONE and NUMA hinting ptes
1965 */
1966 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1967 continue;
4591ce4f 1968
9f40604c
MG
1969 do {
1970 start = max(start, vma->vm_start);
1971 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1972 end = min(end, vma->vm_end);
598f0ec0
MG
1973 nr_pte_updates += change_prot_numa(vma, start, end);
1974
1975 /*
1976 * Scan sysctl_numa_balancing_scan_size but ensure that
1977 * at least one PTE is updated so that unused virtual
1978 * address space is quickly skipped.
1979 */
1980 if (nr_pte_updates)
1981 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1982
9f40604c
MG
1983 start = end;
1984 if (pages <= 0)
1985 goto out;
3cf1962c
RR
1986
1987 cond_resched();
9f40604c 1988 } while (end != vma->vm_end);
cbee9f88 1989 }
6e5fb223 1990
9f40604c 1991out:
6e5fb223 1992 /*
c69307d5
PZ
1993 * It is possible to reach the end of the VMA list but the last few
1994 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1995 * would find the !migratable VMA on the next scan but not reset the
1996 * scanner to the start so check it now.
6e5fb223
PZ
1997 */
1998 if (vma)
9f40604c 1999 mm->numa_scan_offset = start;
6e5fb223
PZ
2000 else
2001 reset_ptenuma_scan(p);
2002 up_read(&mm->mmap_sem);
cbee9f88
PZ
2003}
2004
2005/*
2006 * Drive the periodic memory faults..
2007 */
2008void task_tick_numa(struct rq *rq, struct task_struct *curr)
2009{
2010 struct callback_head *work = &curr->numa_work;
2011 u64 period, now;
2012
2013 /*
2014 * We don't care about NUMA placement if we don't have memory.
2015 */
2016 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2017 return;
2018
2019 /*
2020 * Using runtime rather than walltime has the dual advantage that
2021 * we (mostly) drive the selection from busy threads and that the
2022 * task needs to have done some actual work before we bother with
2023 * NUMA placement.
2024 */
2025 now = curr->se.sum_exec_runtime;
2026 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2027
2028 if (now - curr->node_stamp > period) {
4b96a29b 2029 if (!curr->node_stamp)
598f0ec0 2030 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2031 curr->node_stamp += period;
cbee9f88
PZ
2032
2033 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2034 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2035 task_work_add(curr, work, true);
2036 }
2037 }
2038}
2039#else
2040static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2041{
2042}
0ec8aa00
PZ
2043
2044static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2045{
2046}
2047
2048static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2049{
2050}
cbee9f88
PZ
2051#endif /* CONFIG_NUMA_BALANCING */
2052
30cfdcfc
DA
2053static void
2054account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055{
2056 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2057 if (!parent_entity(se))
029632fb 2058 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2059#ifdef CONFIG_SMP
0ec8aa00
PZ
2060 if (entity_is_task(se)) {
2061 struct rq *rq = rq_of(cfs_rq);
2062
2063 account_numa_enqueue(rq, task_of(se));
2064 list_add(&se->group_node, &rq->cfs_tasks);
2065 }
367456c7 2066#endif
30cfdcfc 2067 cfs_rq->nr_running++;
30cfdcfc
DA
2068}
2069
2070static void
2071account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2072{
2073 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2074 if (!parent_entity(se))
029632fb 2075 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2076 if (entity_is_task(se)) {
2077 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2078 list_del_init(&se->group_node);
0ec8aa00 2079 }
30cfdcfc 2080 cfs_rq->nr_running--;
30cfdcfc
DA
2081}
2082
3ff6dcac
YZ
2083#ifdef CONFIG_FAIR_GROUP_SCHED
2084# ifdef CONFIG_SMP
cf5f0acf
PZ
2085static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2086{
2087 long tg_weight;
2088
2089 /*
2090 * Use this CPU's actual weight instead of the last load_contribution
2091 * to gain a more accurate current total weight. See
2092 * update_cfs_rq_load_contribution().
2093 */
bf5b986e 2094 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2095 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2096 tg_weight += cfs_rq->load.weight;
2097
2098 return tg_weight;
2099}
2100
6d5ab293 2101static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2102{
cf5f0acf 2103 long tg_weight, load, shares;
3ff6dcac 2104
cf5f0acf 2105 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2106 load = cfs_rq->load.weight;
3ff6dcac 2107
3ff6dcac 2108 shares = (tg->shares * load);
cf5f0acf
PZ
2109 if (tg_weight)
2110 shares /= tg_weight;
3ff6dcac
YZ
2111
2112 if (shares < MIN_SHARES)
2113 shares = MIN_SHARES;
2114 if (shares > tg->shares)
2115 shares = tg->shares;
2116
2117 return shares;
2118}
3ff6dcac 2119# else /* CONFIG_SMP */
6d5ab293 2120static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2121{
2122 return tg->shares;
2123}
3ff6dcac 2124# endif /* CONFIG_SMP */
2069dd75
PZ
2125static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2126 unsigned long weight)
2127{
19e5eebb
PT
2128 if (se->on_rq) {
2129 /* commit outstanding execution time */
2130 if (cfs_rq->curr == se)
2131 update_curr(cfs_rq);
2069dd75 2132 account_entity_dequeue(cfs_rq, se);
19e5eebb 2133 }
2069dd75
PZ
2134
2135 update_load_set(&se->load, weight);
2136
2137 if (se->on_rq)
2138 account_entity_enqueue(cfs_rq, se);
2139}
2140
82958366
PT
2141static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2142
6d5ab293 2143static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2144{
2145 struct task_group *tg;
2146 struct sched_entity *se;
3ff6dcac 2147 long shares;
2069dd75 2148
2069dd75
PZ
2149 tg = cfs_rq->tg;
2150 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2151 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2152 return;
3ff6dcac
YZ
2153#ifndef CONFIG_SMP
2154 if (likely(se->load.weight == tg->shares))
2155 return;
2156#endif
6d5ab293 2157 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2158
2159 reweight_entity(cfs_rq_of(se), se, shares);
2160}
2161#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2162static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2163{
2164}
2165#endif /* CONFIG_FAIR_GROUP_SCHED */
2166
141965c7 2167#ifdef CONFIG_SMP
5b51f2f8
PT
2168/*
2169 * We choose a half-life close to 1 scheduling period.
2170 * Note: The tables below are dependent on this value.
2171 */
2172#define LOAD_AVG_PERIOD 32
2173#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2174#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2175
2176/* Precomputed fixed inverse multiplies for multiplication by y^n */
2177static const u32 runnable_avg_yN_inv[] = {
2178 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2179 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2180 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2181 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2182 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2183 0x85aac367, 0x82cd8698,
2184};
2185
2186/*
2187 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2188 * over-estimates when re-combining.
2189 */
2190static const u32 runnable_avg_yN_sum[] = {
2191 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2192 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2193 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2194};
2195
9d85f21c
PT
2196/*
2197 * Approximate:
2198 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2199 */
2200static __always_inline u64 decay_load(u64 val, u64 n)
2201{
5b51f2f8
PT
2202 unsigned int local_n;
2203
2204 if (!n)
2205 return val;
2206 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2207 return 0;
2208
2209 /* after bounds checking we can collapse to 32-bit */
2210 local_n = n;
2211
2212 /*
2213 * As y^PERIOD = 1/2, we can combine
2214 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2215 * With a look-up table which covers k^n (n<PERIOD)
2216 *
2217 * To achieve constant time decay_load.
2218 */
2219 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2220 val >>= local_n / LOAD_AVG_PERIOD;
2221 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2222 }
2223
5b51f2f8
PT
2224 val *= runnable_avg_yN_inv[local_n];
2225 /* We don't use SRR here since we always want to round down. */
2226 return val >> 32;
2227}
2228
2229/*
2230 * For updates fully spanning n periods, the contribution to runnable
2231 * average will be: \Sum 1024*y^n
2232 *
2233 * We can compute this reasonably efficiently by combining:
2234 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2235 */
2236static u32 __compute_runnable_contrib(u64 n)
2237{
2238 u32 contrib = 0;
2239
2240 if (likely(n <= LOAD_AVG_PERIOD))
2241 return runnable_avg_yN_sum[n];
2242 else if (unlikely(n >= LOAD_AVG_MAX_N))
2243 return LOAD_AVG_MAX;
2244
2245 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2246 do {
2247 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2248 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2249
2250 n -= LOAD_AVG_PERIOD;
2251 } while (n > LOAD_AVG_PERIOD);
2252
2253 contrib = decay_load(contrib, n);
2254 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2255}
2256
2257/*
2258 * We can represent the historical contribution to runnable average as the
2259 * coefficients of a geometric series. To do this we sub-divide our runnable
2260 * history into segments of approximately 1ms (1024us); label the segment that
2261 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2262 *
2263 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2264 * p0 p1 p2
2265 * (now) (~1ms ago) (~2ms ago)
2266 *
2267 * Let u_i denote the fraction of p_i that the entity was runnable.
2268 *
2269 * We then designate the fractions u_i as our co-efficients, yielding the
2270 * following representation of historical load:
2271 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2272 *
2273 * We choose y based on the with of a reasonably scheduling period, fixing:
2274 * y^32 = 0.5
2275 *
2276 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2277 * approximately half as much as the contribution to load within the last ms
2278 * (u_0).
2279 *
2280 * When a period "rolls over" and we have new u_0`, multiplying the previous
2281 * sum again by y is sufficient to update:
2282 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2283 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2284 */
2285static __always_inline int __update_entity_runnable_avg(u64 now,
2286 struct sched_avg *sa,
2287 int runnable)
2288{
5b51f2f8
PT
2289 u64 delta, periods;
2290 u32 runnable_contrib;
9d85f21c
PT
2291 int delta_w, decayed = 0;
2292
2293 delta = now - sa->last_runnable_update;
2294 /*
2295 * This should only happen when time goes backwards, which it
2296 * unfortunately does during sched clock init when we swap over to TSC.
2297 */
2298 if ((s64)delta < 0) {
2299 sa->last_runnable_update = now;
2300 return 0;
2301 }
2302
2303 /*
2304 * Use 1024ns as the unit of measurement since it's a reasonable
2305 * approximation of 1us and fast to compute.
2306 */
2307 delta >>= 10;
2308 if (!delta)
2309 return 0;
2310 sa->last_runnable_update = now;
2311
2312 /* delta_w is the amount already accumulated against our next period */
2313 delta_w = sa->runnable_avg_period % 1024;
2314 if (delta + delta_w >= 1024) {
2315 /* period roll-over */
2316 decayed = 1;
2317
2318 /*
2319 * Now that we know we're crossing a period boundary, figure
2320 * out how much from delta we need to complete the current
2321 * period and accrue it.
2322 */
2323 delta_w = 1024 - delta_w;
5b51f2f8
PT
2324 if (runnable)
2325 sa->runnable_avg_sum += delta_w;
2326 sa->runnable_avg_period += delta_w;
2327
2328 delta -= delta_w;
2329
2330 /* Figure out how many additional periods this update spans */
2331 periods = delta / 1024;
2332 delta %= 1024;
2333
2334 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2335 periods + 1);
2336 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2337 periods + 1);
2338
2339 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2340 runnable_contrib = __compute_runnable_contrib(periods);
2341 if (runnable)
2342 sa->runnable_avg_sum += runnable_contrib;
2343 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2344 }
2345
2346 /* Remainder of delta accrued against u_0` */
2347 if (runnable)
2348 sa->runnable_avg_sum += delta;
2349 sa->runnable_avg_period += delta;
2350
2351 return decayed;
2352}
2353
9ee474f5 2354/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2355static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2356{
2357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2358 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2359
2360 decays -= se->avg.decay_count;
2361 if (!decays)
aff3e498 2362 return 0;
9ee474f5
PT
2363
2364 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2365 se->avg.decay_count = 0;
aff3e498
PT
2366
2367 return decays;
9ee474f5
PT
2368}
2369
c566e8e9
PT
2370#ifdef CONFIG_FAIR_GROUP_SCHED
2371static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2372 int force_update)
2373{
2374 struct task_group *tg = cfs_rq->tg;
bf5b986e 2375 long tg_contrib;
c566e8e9
PT
2376
2377 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2378 tg_contrib -= cfs_rq->tg_load_contrib;
2379
bf5b986e
AS
2380 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2381 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2382 cfs_rq->tg_load_contrib += tg_contrib;
2383 }
2384}
8165e145 2385
bb17f655
PT
2386/*
2387 * Aggregate cfs_rq runnable averages into an equivalent task_group
2388 * representation for computing load contributions.
2389 */
2390static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391 struct cfs_rq *cfs_rq)
2392{
2393 struct task_group *tg = cfs_rq->tg;
2394 long contrib;
2395
2396 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2397 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2398 sa->runnable_avg_period + 1);
2399 contrib -= cfs_rq->tg_runnable_contrib;
2400
2401 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2402 atomic_add(contrib, &tg->runnable_avg);
2403 cfs_rq->tg_runnable_contrib += contrib;
2404 }
2405}
2406
8165e145
PT
2407static inline void __update_group_entity_contrib(struct sched_entity *se)
2408{
2409 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2410 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2411 int runnable_avg;
2412
8165e145
PT
2413 u64 contrib;
2414
2415 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2416 se->avg.load_avg_contrib = div_u64(contrib,
2417 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2418
2419 /*
2420 * For group entities we need to compute a correction term in the case
2421 * that they are consuming <1 cpu so that we would contribute the same
2422 * load as a task of equal weight.
2423 *
2424 * Explicitly co-ordinating this measurement would be expensive, but
2425 * fortunately the sum of each cpus contribution forms a usable
2426 * lower-bound on the true value.
2427 *
2428 * Consider the aggregate of 2 contributions. Either they are disjoint
2429 * (and the sum represents true value) or they are disjoint and we are
2430 * understating by the aggregate of their overlap.
2431 *
2432 * Extending this to N cpus, for a given overlap, the maximum amount we
2433 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2434 * cpus that overlap for this interval and w_i is the interval width.
2435 *
2436 * On a small machine; the first term is well-bounded which bounds the
2437 * total error since w_i is a subset of the period. Whereas on a
2438 * larger machine, while this first term can be larger, if w_i is the
2439 * of consequential size guaranteed to see n_i*w_i quickly converge to
2440 * our upper bound of 1-cpu.
2441 */
2442 runnable_avg = atomic_read(&tg->runnable_avg);
2443 if (runnable_avg < NICE_0_LOAD) {
2444 se->avg.load_avg_contrib *= runnable_avg;
2445 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2446 }
8165e145 2447}
f5f9739d
DE
2448
2449static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2450{
2451 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2452 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2453}
6e83125c 2454#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2455static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2456 int force_update) {}
bb17f655
PT
2457static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2458 struct cfs_rq *cfs_rq) {}
8165e145 2459static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2460static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2461#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2462
8165e145
PT
2463static inline void __update_task_entity_contrib(struct sched_entity *se)
2464{
2465 u32 contrib;
2466
2467 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2468 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2469 contrib /= (se->avg.runnable_avg_period + 1);
2470 se->avg.load_avg_contrib = scale_load(contrib);
2471}
2472
2dac754e
PT
2473/* Compute the current contribution to load_avg by se, return any delta */
2474static long __update_entity_load_avg_contrib(struct sched_entity *se)
2475{
2476 long old_contrib = se->avg.load_avg_contrib;
2477
8165e145
PT
2478 if (entity_is_task(se)) {
2479 __update_task_entity_contrib(se);
2480 } else {
bb17f655 2481 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2482 __update_group_entity_contrib(se);
2483 }
2dac754e
PT
2484
2485 return se->avg.load_avg_contrib - old_contrib;
2486}
2487
9ee474f5
PT
2488static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2489 long load_contrib)
2490{
2491 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2492 cfs_rq->blocked_load_avg -= load_contrib;
2493 else
2494 cfs_rq->blocked_load_avg = 0;
2495}
2496
f1b17280
PT
2497static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2498
9d85f21c 2499/* Update a sched_entity's runnable average */
9ee474f5
PT
2500static inline void update_entity_load_avg(struct sched_entity *se,
2501 int update_cfs_rq)
9d85f21c 2502{
2dac754e
PT
2503 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2504 long contrib_delta;
f1b17280 2505 u64 now;
2dac754e 2506
f1b17280
PT
2507 /*
2508 * For a group entity we need to use their owned cfs_rq_clock_task() in
2509 * case they are the parent of a throttled hierarchy.
2510 */
2511 if (entity_is_task(se))
2512 now = cfs_rq_clock_task(cfs_rq);
2513 else
2514 now = cfs_rq_clock_task(group_cfs_rq(se));
2515
2516 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2517 return;
2518
2519 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2520
2521 if (!update_cfs_rq)
2522 return;
2523
2dac754e
PT
2524 if (se->on_rq)
2525 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2526 else
2527 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2528}
2529
2530/*
2531 * Decay the load contributed by all blocked children and account this so that
2532 * their contribution may appropriately discounted when they wake up.
2533 */
aff3e498 2534static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2535{
f1b17280 2536 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2537 u64 decays;
2538
2539 decays = now - cfs_rq->last_decay;
aff3e498 2540 if (!decays && !force_update)
9ee474f5
PT
2541 return;
2542
2509940f
AS
2543 if (atomic_long_read(&cfs_rq->removed_load)) {
2544 unsigned long removed_load;
2545 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2546 subtract_blocked_load_contrib(cfs_rq, removed_load);
2547 }
9ee474f5 2548
aff3e498
PT
2549 if (decays) {
2550 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2551 decays);
2552 atomic64_add(decays, &cfs_rq->decay_counter);
2553 cfs_rq->last_decay = now;
2554 }
c566e8e9
PT
2555
2556 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2557}
18bf2805 2558
2dac754e
PT
2559/* Add the load generated by se into cfs_rq's child load-average */
2560static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2561 struct sched_entity *se,
2562 int wakeup)
2dac754e 2563{
aff3e498
PT
2564 /*
2565 * We track migrations using entity decay_count <= 0, on a wake-up
2566 * migration we use a negative decay count to track the remote decays
2567 * accumulated while sleeping.
a75cdaa9
AS
2568 *
2569 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2570 * are seen by enqueue_entity_load_avg() as a migration with an already
2571 * constructed load_avg_contrib.
aff3e498
PT
2572 */
2573 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2574 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2575 if (se->avg.decay_count) {
2576 /*
2577 * In a wake-up migration we have to approximate the
2578 * time sleeping. This is because we can't synchronize
2579 * clock_task between the two cpus, and it is not
2580 * guaranteed to be read-safe. Instead, we can
2581 * approximate this using our carried decays, which are
2582 * explicitly atomically readable.
2583 */
2584 se->avg.last_runnable_update -= (-se->avg.decay_count)
2585 << 20;
2586 update_entity_load_avg(se, 0);
2587 /* Indicate that we're now synchronized and on-rq */
2588 se->avg.decay_count = 0;
2589 }
9ee474f5
PT
2590 wakeup = 0;
2591 } else {
9390675a 2592 __synchronize_entity_decay(se);
9ee474f5
PT
2593 }
2594
aff3e498
PT
2595 /* migrated tasks did not contribute to our blocked load */
2596 if (wakeup) {
9ee474f5 2597 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2598 update_entity_load_avg(se, 0);
2599 }
9ee474f5 2600
2dac754e 2601 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2602 /* we force update consideration on load-balancer moves */
2603 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2604}
2605
9ee474f5
PT
2606/*
2607 * Remove se's load from this cfs_rq child load-average, if the entity is
2608 * transitioning to a blocked state we track its projected decay using
2609 * blocked_load_avg.
2610 */
2dac754e 2611static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2612 struct sched_entity *se,
2613 int sleep)
2dac754e 2614{
9ee474f5 2615 update_entity_load_avg(se, 1);
aff3e498
PT
2616 /* we force update consideration on load-balancer moves */
2617 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2618
2dac754e 2619 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2620 if (sleep) {
2621 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2622 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2623 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2624}
642dbc39
VG
2625
2626/*
2627 * Update the rq's load with the elapsed running time before entering
2628 * idle. if the last scheduled task is not a CFS task, idle_enter will
2629 * be the only way to update the runnable statistic.
2630 */
2631void idle_enter_fair(struct rq *this_rq)
2632{
2633 update_rq_runnable_avg(this_rq, 1);
2634}
2635
2636/*
2637 * Update the rq's load with the elapsed idle time before a task is
2638 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2639 * be the only way to update the runnable statistic.
2640 */
2641void idle_exit_fair(struct rq *this_rq)
2642{
2643 update_rq_runnable_avg(this_rq, 0);
2644}
2645
6e83125c
PZ
2646static int idle_balance(struct rq *this_rq);
2647
38033c37
PZ
2648#else /* CONFIG_SMP */
2649
9ee474f5
PT
2650static inline void update_entity_load_avg(struct sched_entity *se,
2651 int update_cfs_rq) {}
18bf2805 2652static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2653static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2654 struct sched_entity *se,
2655 int wakeup) {}
2dac754e 2656static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2657 struct sched_entity *se,
2658 int sleep) {}
aff3e498
PT
2659static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2660 int force_update) {}
6e83125c
PZ
2661
2662static inline int idle_balance(struct rq *rq)
2663{
2664 return 0;
2665}
2666
38033c37 2667#endif /* CONFIG_SMP */
9d85f21c 2668
2396af69 2669static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2670{
bf0f6f24 2671#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2672 struct task_struct *tsk = NULL;
2673
2674 if (entity_is_task(se))
2675 tsk = task_of(se);
2676
41acab88 2677 if (se->statistics.sleep_start) {
78becc27 2678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2679
2680 if ((s64)delta < 0)
2681 delta = 0;
2682
41acab88
LDM
2683 if (unlikely(delta > se->statistics.sleep_max))
2684 se->statistics.sleep_max = delta;
bf0f6f24 2685
8c79a045 2686 se->statistics.sleep_start = 0;
41acab88 2687 se->statistics.sum_sleep_runtime += delta;
9745512c 2688
768d0c27 2689 if (tsk) {
e414314c 2690 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2691 trace_sched_stat_sleep(tsk, delta);
2692 }
bf0f6f24 2693 }
41acab88 2694 if (se->statistics.block_start) {
78becc27 2695 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2696
2697 if ((s64)delta < 0)
2698 delta = 0;
2699
41acab88
LDM
2700 if (unlikely(delta > se->statistics.block_max))
2701 se->statistics.block_max = delta;
bf0f6f24 2702
8c79a045 2703 se->statistics.block_start = 0;
41acab88 2704 se->statistics.sum_sleep_runtime += delta;
30084fbd 2705
e414314c 2706 if (tsk) {
8f0dfc34 2707 if (tsk->in_iowait) {
41acab88
LDM
2708 se->statistics.iowait_sum += delta;
2709 se->statistics.iowait_count++;
768d0c27 2710 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2711 }
2712
b781a602
AV
2713 trace_sched_stat_blocked(tsk, delta);
2714
e414314c
PZ
2715 /*
2716 * Blocking time is in units of nanosecs, so shift by
2717 * 20 to get a milliseconds-range estimation of the
2718 * amount of time that the task spent sleeping:
2719 */
2720 if (unlikely(prof_on == SLEEP_PROFILING)) {
2721 profile_hits(SLEEP_PROFILING,
2722 (void *)get_wchan(tsk),
2723 delta >> 20);
2724 }
2725 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2726 }
bf0f6f24
IM
2727 }
2728#endif
2729}
2730
ddc97297
PZ
2731static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2732{
2733#ifdef CONFIG_SCHED_DEBUG
2734 s64 d = se->vruntime - cfs_rq->min_vruntime;
2735
2736 if (d < 0)
2737 d = -d;
2738
2739 if (d > 3*sysctl_sched_latency)
2740 schedstat_inc(cfs_rq, nr_spread_over);
2741#endif
2742}
2743
aeb73b04
PZ
2744static void
2745place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2746{
1af5f730 2747 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2748
2cb8600e
PZ
2749 /*
2750 * The 'current' period is already promised to the current tasks,
2751 * however the extra weight of the new task will slow them down a
2752 * little, place the new task so that it fits in the slot that
2753 * stays open at the end.
2754 */
94dfb5e7 2755 if (initial && sched_feat(START_DEBIT))
f9c0b095 2756 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2757
a2e7a7eb 2758 /* sleeps up to a single latency don't count. */
5ca9880c 2759 if (!initial) {
a2e7a7eb 2760 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2761
a2e7a7eb
MG
2762 /*
2763 * Halve their sleep time's effect, to allow
2764 * for a gentler effect of sleepers:
2765 */
2766 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2767 thresh >>= 1;
51e0304c 2768
a2e7a7eb 2769 vruntime -= thresh;
aeb73b04
PZ
2770 }
2771
b5d9d734 2772 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2773 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2774}
2775
d3d9dc33
PT
2776static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2777
bf0f6f24 2778static void
88ec22d3 2779enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2780{
88ec22d3
PZ
2781 /*
2782 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2783 * through calling update_curr().
88ec22d3 2784 */
371fd7e7 2785 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2786 se->vruntime += cfs_rq->min_vruntime;
2787
bf0f6f24 2788 /*
a2a2d680 2789 * Update run-time statistics of the 'current'.
bf0f6f24 2790 */
b7cc0896 2791 update_curr(cfs_rq);
f269ae04 2792 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2793 account_entity_enqueue(cfs_rq, se);
2794 update_cfs_shares(cfs_rq);
bf0f6f24 2795
88ec22d3 2796 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2797 place_entity(cfs_rq, se, 0);
2396af69 2798 enqueue_sleeper(cfs_rq, se);
e9acbff6 2799 }
bf0f6f24 2800
d2417e5a 2801 update_stats_enqueue(cfs_rq, se);
ddc97297 2802 check_spread(cfs_rq, se);
83b699ed
SV
2803 if (se != cfs_rq->curr)
2804 __enqueue_entity(cfs_rq, se);
2069dd75 2805 se->on_rq = 1;
3d4b47b4 2806
d3d9dc33 2807 if (cfs_rq->nr_running == 1) {
3d4b47b4 2808 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2809 check_enqueue_throttle(cfs_rq);
2810 }
bf0f6f24
IM
2811}
2812
2c13c919 2813static void __clear_buddies_last(struct sched_entity *se)
2002c695 2814{
2c13c919
RR
2815 for_each_sched_entity(se) {
2816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2817 if (cfs_rq->last != se)
2c13c919 2818 break;
f1044799
PZ
2819
2820 cfs_rq->last = NULL;
2c13c919
RR
2821 }
2822}
2002c695 2823
2c13c919
RR
2824static void __clear_buddies_next(struct sched_entity *se)
2825{
2826 for_each_sched_entity(se) {
2827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2828 if (cfs_rq->next != se)
2c13c919 2829 break;
f1044799
PZ
2830
2831 cfs_rq->next = NULL;
2c13c919 2832 }
2002c695
PZ
2833}
2834
ac53db59
RR
2835static void __clear_buddies_skip(struct sched_entity *se)
2836{
2837 for_each_sched_entity(se) {
2838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2839 if (cfs_rq->skip != se)
ac53db59 2840 break;
f1044799
PZ
2841
2842 cfs_rq->skip = NULL;
ac53db59
RR
2843 }
2844}
2845
a571bbea
PZ
2846static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2847{
2c13c919
RR
2848 if (cfs_rq->last == se)
2849 __clear_buddies_last(se);
2850
2851 if (cfs_rq->next == se)
2852 __clear_buddies_next(se);
ac53db59
RR
2853
2854 if (cfs_rq->skip == se)
2855 __clear_buddies_skip(se);
a571bbea
PZ
2856}
2857
6c16a6dc 2858static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2859
bf0f6f24 2860static void
371fd7e7 2861dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2862{
a2a2d680
DA
2863 /*
2864 * Update run-time statistics of the 'current'.
2865 */
2866 update_curr(cfs_rq);
17bc14b7 2867 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2868
19b6a2e3 2869 update_stats_dequeue(cfs_rq, se);
371fd7e7 2870 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2871#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2872 if (entity_is_task(se)) {
2873 struct task_struct *tsk = task_of(se);
2874
2875 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2876 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2877 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2878 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2879 }
db36cc7d 2880#endif
67e9fb2a
PZ
2881 }
2882
2002c695 2883 clear_buddies(cfs_rq, se);
4793241b 2884
83b699ed 2885 if (se != cfs_rq->curr)
30cfdcfc 2886 __dequeue_entity(cfs_rq, se);
17bc14b7 2887 se->on_rq = 0;
30cfdcfc 2888 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2889
2890 /*
2891 * Normalize the entity after updating the min_vruntime because the
2892 * update can refer to the ->curr item and we need to reflect this
2893 * movement in our normalized position.
2894 */
371fd7e7 2895 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2896 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2897
d8b4986d
PT
2898 /* return excess runtime on last dequeue */
2899 return_cfs_rq_runtime(cfs_rq);
2900
1e876231 2901 update_min_vruntime(cfs_rq);
17bc14b7 2902 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2903}
2904
2905/*
2906 * Preempt the current task with a newly woken task if needed:
2907 */
7c92e54f 2908static void
2e09bf55 2909check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2910{
11697830 2911 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2912 struct sched_entity *se;
2913 s64 delta;
11697830 2914
6d0f0ebd 2915 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2916 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2917 if (delta_exec > ideal_runtime) {
8875125e 2918 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2919 /*
2920 * The current task ran long enough, ensure it doesn't get
2921 * re-elected due to buddy favours.
2922 */
2923 clear_buddies(cfs_rq, curr);
f685ceac
MG
2924 return;
2925 }
2926
2927 /*
2928 * Ensure that a task that missed wakeup preemption by a
2929 * narrow margin doesn't have to wait for a full slice.
2930 * This also mitigates buddy induced latencies under load.
2931 */
f685ceac
MG
2932 if (delta_exec < sysctl_sched_min_granularity)
2933 return;
2934
f4cfb33e
WX
2935 se = __pick_first_entity(cfs_rq);
2936 delta = curr->vruntime - se->vruntime;
f685ceac 2937
f4cfb33e
WX
2938 if (delta < 0)
2939 return;
d7d82944 2940
f4cfb33e 2941 if (delta > ideal_runtime)
8875125e 2942 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2943}
2944
83b699ed 2945static void
8494f412 2946set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2947{
83b699ed
SV
2948 /* 'current' is not kept within the tree. */
2949 if (se->on_rq) {
2950 /*
2951 * Any task has to be enqueued before it get to execute on
2952 * a CPU. So account for the time it spent waiting on the
2953 * runqueue.
2954 */
2955 update_stats_wait_end(cfs_rq, se);
2956 __dequeue_entity(cfs_rq, se);
2957 }
2958
79303e9e 2959 update_stats_curr_start(cfs_rq, se);
429d43bc 2960 cfs_rq->curr = se;
eba1ed4b
IM
2961#ifdef CONFIG_SCHEDSTATS
2962 /*
2963 * Track our maximum slice length, if the CPU's load is at
2964 * least twice that of our own weight (i.e. dont track it
2965 * when there are only lesser-weight tasks around):
2966 */
495eca49 2967 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2968 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2969 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2970 }
2971#endif
4a55b450 2972 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2973}
2974
3f3a4904
PZ
2975static int
2976wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2977
ac53db59
RR
2978/*
2979 * Pick the next process, keeping these things in mind, in this order:
2980 * 1) keep things fair between processes/task groups
2981 * 2) pick the "next" process, since someone really wants that to run
2982 * 3) pick the "last" process, for cache locality
2983 * 4) do not run the "skip" process, if something else is available
2984 */
678d5718
PZ
2985static struct sched_entity *
2986pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2987{
678d5718
PZ
2988 struct sched_entity *left = __pick_first_entity(cfs_rq);
2989 struct sched_entity *se;
2990
2991 /*
2992 * If curr is set we have to see if its left of the leftmost entity
2993 * still in the tree, provided there was anything in the tree at all.
2994 */
2995 if (!left || (curr && entity_before(curr, left)))
2996 left = curr;
2997
2998 se = left; /* ideally we run the leftmost entity */
f4b6755f 2999
ac53db59
RR
3000 /*
3001 * Avoid running the skip buddy, if running something else can
3002 * be done without getting too unfair.
3003 */
3004 if (cfs_rq->skip == se) {
678d5718
PZ
3005 struct sched_entity *second;
3006
3007 if (se == curr) {
3008 second = __pick_first_entity(cfs_rq);
3009 } else {
3010 second = __pick_next_entity(se);
3011 if (!second || (curr && entity_before(curr, second)))
3012 second = curr;
3013 }
3014
ac53db59
RR
3015 if (second && wakeup_preempt_entity(second, left) < 1)
3016 se = second;
3017 }
aa2ac252 3018
f685ceac
MG
3019 /*
3020 * Prefer last buddy, try to return the CPU to a preempted task.
3021 */
3022 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3023 se = cfs_rq->last;
3024
ac53db59
RR
3025 /*
3026 * Someone really wants this to run. If it's not unfair, run it.
3027 */
3028 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3029 se = cfs_rq->next;
3030
f685ceac 3031 clear_buddies(cfs_rq, se);
4793241b
PZ
3032
3033 return se;
aa2ac252
PZ
3034}
3035
678d5718 3036static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3037
ab6cde26 3038static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3039{
3040 /*
3041 * If still on the runqueue then deactivate_task()
3042 * was not called and update_curr() has to be done:
3043 */
3044 if (prev->on_rq)
b7cc0896 3045 update_curr(cfs_rq);
bf0f6f24 3046
d3d9dc33
PT
3047 /* throttle cfs_rqs exceeding runtime */
3048 check_cfs_rq_runtime(cfs_rq);
3049
ddc97297 3050 check_spread(cfs_rq, prev);
30cfdcfc 3051 if (prev->on_rq) {
5870db5b 3052 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3053 /* Put 'current' back into the tree. */
3054 __enqueue_entity(cfs_rq, prev);
9d85f21c 3055 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3056 update_entity_load_avg(prev, 1);
30cfdcfc 3057 }
429d43bc 3058 cfs_rq->curr = NULL;
bf0f6f24
IM
3059}
3060
8f4d37ec
PZ
3061static void
3062entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3063{
bf0f6f24 3064 /*
30cfdcfc 3065 * Update run-time statistics of the 'current'.
bf0f6f24 3066 */
30cfdcfc 3067 update_curr(cfs_rq);
bf0f6f24 3068
9d85f21c
PT
3069 /*
3070 * Ensure that runnable average is periodically updated.
3071 */
9ee474f5 3072 update_entity_load_avg(curr, 1);
aff3e498 3073 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3074 update_cfs_shares(cfs_rq);
9d85f21c 3075
8f4d37ec
PZ
3076#ifdef CONFIG_SCHED_HRTICK
3077 /*
3078 * queued ticks are scheduled to match the slice, so don't bother
3079 * validating it and just reschedule.
3080 */
983ed7a6 3081 if (queued) {
8875125e 3082 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3083 return;
3084 }
8f4d37ec
PZ
3085 /*
3086 * don't let the period tick interfere with the hrtick preemption
3087 */
3088 if (!sched_feat(DOUBLE_TICK) &&
3089 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3090 return;
3091#endif
3092
2c2efaed 3093 if (cfs_rq->nr_running > 1)
2e09bf55 3094 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3095}
3096
ab84d31e
PT
3097
3098/**************************************************
3099 * CFS bandwidth control machinery
3100 */
3101
3102#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3103
3104#ifdef HAVE_JUMP_LABEL
c5905afb 3105static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3106
3107static inline bool cfs_bandwidth_used(void)
3108{
c5905afb 3109 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3110}
3111
1ee14e6c 3112void cfs_bandwidth_usage_inc(void)
029632fb 3113{
1ee14e6c
BS
3114 static_key_slow_inc(&__cfs_bandwidth_used);
3115}
3116
3117void cfs_bandwidth_usage_dec(void)
3118{
3119 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3120}
3121#else /* HAVE_JUMP_LABEL */
3122static bool cfs_bandwidth_used(void)
3123{
3124 return true;
3125}
3126
1ee14e6c
BS
3127void cfs_bandwidth_usage_inc(void) {}
3128void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3129#endif /* HAVE_JUMP_LABEL */
3130
ab84d31e
PT
3131/*
3132 * default period for cfs group bandwidth.
3133 * default: 0.1s, units: nanoseconds
3134 */
3135static inline u64 default_cfs_period(void)
3136{
3137 return 100000000ULL;
3138}
ec12cb7f
PT
3139
3140static inline u64 sched_cfs_bandwidth_slice(void)
3141{
3142 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3143}
3144
a9cf55b2
PT
3145/*
3146 * Replenish runtime according to assigned quota and update expiration time.
3147 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3148 * additional synchronization around rq->lock.
3149 *
3150 * requires cfs_b->lock
3151 */
029632fb 3152void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3153{
3154 u64 now;
3155
3156 if (cfs_b->quota == RUNTIME_INF)
3157 return;
3158
3159 now = sched_clock_cpu(smp_processor_id());
3160 cfs_b->runtime = cfs_b->quota;
3161 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3162}
3163
029632fb
PZ
3164static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3165{
3166 return &tg->cfs_bandwidth;
3167}
3168
f1b17280
PT
3169/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3170static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3171{
3172 if (unlikely(cfs_rq->throttle_count))
3173 return cfs_rq->throttled_clock_task;
3174
78becc27 3175 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3176}
3177
85dac906
PT
3178/* returns 0 on failure to allocate runtime */
3179static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3180{
3181 struct task_group *tg = cfs_rq->tg;
3182 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3183 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3184
3185 /* note: this is a positive sum as runtime_remaining <= 0 */
3186 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3187
3188 raw_spin_lock(&cfs_b->lock);
3189 if (cfs_b->quota == RUNTIME_INF)
3190 amount = min_amount;
58088ad0 3191 else {
a9cf55b2
PT
3192 /*
3193 * If the bandwidth pool has become inactive, then at least one
3194 * period must have elapsed since the last consumption.
3195 * Refresh the global state and ensure bandwidth timer becomes
3196 * active.
3197 */
3198 if (!cfs_b->timer_active) {
3199 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3200 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3201 }
58088ad0
PT
3202
3203 if (cfs_b->runtime > 0) {
3204 amount = min(cfs_b->runtime, min_amount);
3205 cfs_b->runtime -= amount;
3206 cfs_b->idle = 0;
3207 }
ec12cb7f 3208 }
a9cf55b2 3209 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3210 raw_spin_unlock(&cfs_b->lock);
3211
3212 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3213 /*
3214 * we may have advanced our local expiration to account for allowed
3215 * spread between our sched_clock and the one on which runtime was
3216 * issued.
3217 */
3218 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3219 cfs_rq->runtime_expires = expires;
85dac906
PT
3220
3221 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3222}
3223
a9cf55b2
PT
3224/*
3225 * Note: This depends on the synchronization provided by sched_clock and the
3226 * fact that rq->clock snapshots this value.
3227 */
3228static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3229{
a9cf55b2 3230 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3231
3232 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3233 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3234 return;
3235
a9cf55b2
PT
3236 if (cfs_rq->runtime_remaining < 0)
3237 return;
3238
3239 /*
3240 * If the local deadline has passed we have to consider the
3241 * possibility that our sched_clock is 'fast' and the global deadline
3242 * has not truly expired.
3243 *
3244 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3245 * whether the global deadline has advanced. It is valid to compare
3246 * cfs_b->runtime_expires without any locks since we only care about
3247 * exact equality, so a partial write will still work.
a9cf55b2
PT
3248 */
3249
51f2176d 3250 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3251 /* extend local deadline, drift is bounded above by 2 ticks */
3252 cfs_rq->runtime_expires += TICK_NSEC;
3253 } else {
3254 /* global deadline is ahead, expiration has passed */
3255 cfs_rq->runtime_remaining = 0;
3256 }
3257}
3258
9dbdb155 3259static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3260{
3261 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3262 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3263 expire_cfs_rq_runtime(cfs_rq);
3264
3265 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3266 return;
3267
85dac906
PT
3268 /*
3269 * if we're unable to extend our runtime we resched so that the active
3270 * hierarchy can be throttled
3271 */
3272 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3273 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3274}
3275
6c16a6dc 3276static __always_inline
9dbdb155 3277void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3278{
56f570e5 3279 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3280 return;
3281
3282 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3283}
3284
85dac906
PT
3285static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3286{
56f570e5 3287 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3288}
3289
64660c86
PT
3290/* check whether cfs_rq, or any parent, is throttled */
3291static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3292{
56f570e5 3293 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3294}
3295
3296/*
3297 * Ensure that neither of the group entities corresponding to src_cpu or
3298 * dest_cpu are members of a throttled hierarchy when performing group
3299 * load-balance operations.
3300 */
3301static inline int throttled_lb_pair(struct task_group *tg,
3302 int src_cpu, int dest_cpu)
3303{
3304 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3305
3306 src_cfs_rq = tg->cfs_rq[src_cpu];
3307 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3308
3309 return throttled_hierarchy(src_cfs_rq) ||
3310 throttled_hierarchy(dest_cfs_rq);
3311}
3312
3313/* updated child weight may affect parent so we have to do this bottom up */
3314static int tg_unthrottle_up(struct task_group *tg, void *data)
3315{
3316 struct rq *rq = data;
3317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3318
3319 cfs_rq->throttle_count--;
3320#ifdef CONFIG_SMP
3321 if (!cfs_rq->throttle_count) {
f1b17280 3322 /* adjust cfs_rq_clock_task() */
78becc27 3323 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3324 cfs_rq->throttled_clock_task;
64660c86
PT
3325 }
3326#endif
3327
3328 return 0;
3329}
3330
3331static int tg_throttle_down(struct task_group *tg, void *data)
3332{
3333 struct rq *rq = data;
3334 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3335
82958366
PT
3336 /* group is entering throttled state, stop time */
3337 if (!cfs_rq->throttle_count)
78becc27 3338 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3339 cfs_rq->throttle_count++;
3340
3341 return 0;
3342}
3343
d3d9dc33 3344static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3345{
3346 struct rq *rq = rq_of(cfs_rq);
3347 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3348 struct sched_entity *se;
3349 long task_delta, dequeue = 1;
3350
3351 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3352
f1b17280 3353 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3354 rcu_read_lock();
3355 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3356 rcu_read_unlock();
85dac906
PT
3357
3358 task_delta = cfs_rq->h_nr_running;
3359 for_each_sched_entity(se) {
3360 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3361 /* throttled entity or throttle-on-deactivate */
3362 if (!se->on_rq)
3363 break;
3364
3365 if (dequeue)
3366 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3367 qcfs_rq->h_nr_running -= task_delta;
3368
3369 if (qcfs_rq->load.weight)
3370 dequeue = 0;
3371 }
3372
3373 if (!se)
72465447 3374 sub_nr_running(rq, task_delta);
85dac906
PT
3375
3376 cfs_rq->throttled = 1;
78becc27 3377 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3378 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3379 /*
3380 * Add to the _head_ of the list, so that an already-started
3381 * distribute_cfs_runtime will not see us
3382 */
3383 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3384 if (!cfs_b->timer_active)
09dc4ab0 3385 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3386 raw_spin_unlock(&cfs_b->lock);
3387}
3388
029632fb 3389void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3390{
3391 struct rq *rq = rq_of(cfs_rq);
3392 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3393 struct sched_entity *se;
3394 int enqueue = 1;
3395 long task_delta;
3396
22b958d8 3397 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3398
3399 cfs_rq->throttled = 0;
1a55af2e
FW
3400
3401 update_rq_clock(rq);
3402
671fd9da 3403 raw_spin_lock(&cfs_b->lock);
78becc27 3404 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3405 list_del_rcu(&cfs_rq->throttled_list);
3406 raw_spin_unlock(&cfs_b->lock);
3407
64660c86
PT
3408 /* update hierarchical throttle state */
3409 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3410
671fd9da
PT
3411 if (!cfs_rq->load.weight)
3412 return;
3413
3414 task_delta = cfs_rq->h_nr_running;
3415 for_each_sched_entity(se) {
3416 if (se->on_rq)
3417 enqueue = 0;
3418
3419 cfs_rq = cfs_rq_of(se);
3420 if (enqueue)
3421 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3422 cfs_rq->h_nr_running += task_delta;
3423
3424 if (cfs_rq_throttled(cfs_rq))
3425 break;
3426 }
3427
3428 if (!se)
72465447 3429 add_nr_running(rq, task_delta);
671fd9da
PT
3430
3431 /* determine whether we need to wake up potentially idle cpu */
3432 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3433 resched_curr(rq);
671fd9da
PT
3434}
3435
3436static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3437 u64 remaining, u64 expires)
3438{
3439 struct cfs_rq *cfs_rq;
c06f04c7
BS
3440 u64 runtime;
3441 u64 starting_runtime = remaining;
671fd9da
PT
3442
3443 rcu_read_lock();
3444 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3445 throttled_list) {
3446 struct rq *rq = rq_of(cfs_rq);
3447
3448 raw_spin_lock(&rq->lock);
3449 if (!cfs_rq_throttled(cfs_rq))
3450 goto next;
3451
3452 runtime = -cfs_rq->runtime_remaining + 1;
3453 if (runtime > remaining)
3454 runtime = remaining;
3455 remaining -= runtime;
3456
3457 cfs_rq->runtime_remaining += runtime;
3458 cfs_rq->runtime_expires = expires;
3459
3460 /* we check whether we're throttled above */
3461 if (cfs_rq->runtime_remaining > 0)
3462 unthrottle_cfs_rq(cfs_rq);
3463
3464next:
3465 raw_spin_unlock(&rq->lock);
3466
3467 if (!remaining)
3468 break;
3469 }
3470 rcu_read_unlock();
3471
c06f04c7 3472 return starting_runtime - remaining;
671fd9da
PT
3473}
3474
58088ad0
PT
3475/*
3476 * Responsible for refilling a task_group's bandwidth and unthrottling its
3477 * cfs_rqs as appropriate. If there has been no activity within the last
3478 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3479 * used to track this state.
3480 */
3481static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3482{
671fd9da 3483 u64 runtime, runtime_expires;
51f2176d 3484 int throttled;
58088ad0 3485
58088ad0
PT
3486 /* no need to continue the timer with no bandwidth constraint */
3487 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3488 goto out_deactivate;
58088ad0 3489
671fd9da 3490 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3491 cfs_b->nr_periods += overrun;
671fd9da 3492
51f2176d
BS
3493 /*
3494 * idle depends on !throttled (for the case of a large deficit), and if
3495 * we're going inactive then everything else can be deferred
3496 */
3497 if (cfs_b->idle && !throttled)
3498 goto out_deactivate;
a9cf55b2 3499
927b54fc
BS
3500 /*
3501 * if we have relooped after returning idle once, we need to update our
3502 * status as actually running, so that other cpus doing
3503 * __start_cfs_bandwidth will stop trying to cancel us.
3504 */
3505 cfs_b->timer_active = 1;
3506
a9cf55b2
PT
3507 __refill_cfs_bandwidth_runtime(cfs_b);
3508
671fd9da
PT
3509 if (!throttled) {
3510 /* mark as potentially idle for the upcoming period */
3511 cfs_b->idle = 1;
51f2176d 3512 return 0;
671fd9da
PT
3513 }
3514
e8da1b18
NR
3515 /* account preceding periods in which throttling occurred */
3516 cfs_b->nr_throttled += overrun;
3517
671fd9da 3518 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3519
3520 /*
c06f04c7
BS
3521 * This check is repeated as we are holding onto the new bandwidth while
3522 * we unthrottle. This can potentially race with an unthrottled group
3523 * trying to acquire new bandwidth from the global pool. This can result
3524 * in us over-using our runtime if it is all used during this loop, but
3525 * only by limited amounts in that extreme case.
671fd9da 3526 */
c06f04c7
BS
3527 while (throttled && cfs_b->runtime > 0) {
3528 runtime = cfs_b->runtime;
671fd9da
PT
3529 raw_spin_unlock(&cfs_b->lock);
3530 /* we can't nest cfs_b->lock while distributing bandwidth */
3531 runtime = distribute_cfs_runtime(cfs_b, runtime,
3532 runtime_expires);
3533 raw_spin_lock(&cfs_b->lock);
3534
3535 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3536
3537 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3538 }
58088ad0 3539
671fd9da
PT
3540 /*
3541 * While we are ensured activity in the period following an
3542 * unthrottle, this also covers the case in which the new bandwidth is
3543 * insufficient to cover the existing bandwidth deficit. (Forcing the
3544 * timer to remain active while there are any throttled entities.)
3545 */
3546 cfs_b->idle = 0;
58088ad0 3547
51f2176d
BS
3548 return 0;
3549
3550out_deactivate:
3551 cfs_b->timer_active = 0;
3552 return 1;
58088ad0 3553}
d3d9dc33 3554
d8b4986d
PT
3555/* a cfs_rq won't donate quota below this amount */
3556static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3557/* minimum remaining period time to redistribute slack quota */
3558static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3559/* how long we wait to gather additional slack before distributing */
3560static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3561
db06e78c
BS
3562/*
3563 * Are we near the end of the current quota period?
3564 *
3565 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3566 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3567 * migrate_hrtimers, base is never cleared, so we are fine.
3568 */
d8b4986d
PT
3569static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3570{
3571 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3572 u64 remaining;
3573
3574 /* if the call-back is running a quota refresh is already occurring */
3575 if (hrtimer_callback_running(refresh_timer))
3576 return 1;
3577
3578 /* is a quota refresh about to occur? */
3579 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3580 if (remaining < min_expire)
3581 return 1;
3582
3583 return 0;
3584}
3585
3586static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3587{
3588 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3589
3590 /* if there's a quota refresh soon don't bother with slack */
3591 if (runtime_refresh_within(cfs_b, min_left))
3592 return;
3593
3594 start_bandwidth_timer(&cfs_b->slack_timer,
3595 ns_to_ktime(cfs_bandwidth_slack_period));
3596}
3597
3598/* we know any runtime found here is valid as update_curr() precedes return */
3599static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3600{
3601 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3602 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3603
3604 if (slack_runtime <= 0)
3605 return;
3606
3607 raw_spin_lock(&cfs_b->lock);
3608 if (cfs_b->quota != RUNTIME_INF &&
3609 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3610 cfs_b->runtime += slack_runtime;
3611
3612 /* we are under rq->lock, defer unthrottling using a timer */
3613 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3614 !list_empty(&cfs_b->throttled_cfs_rq))
3615 start_cfs_slack_bandwidth(cfs_b);
3616 }
3617 raw_spin_unlock(&cfs_b->lock);
3618
3619 /* even if it's not valid for return we don't want to try again */
3620 cfs_rq->runtime_remaining -= slack_runtime;
3621}
3622
3623static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624{
56f570e5
PT
3625 if (!cfs_bandwidth_used())
3626 return;
3627
fccfdc6f 3628 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3629 return;
3630
3631 __return_cfs_rq_runtime(cfs_rq);
3632}
3633
3634/*
3635 * This is done with a timer (instead of inline with bandwidth return) since
3636 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3637 */
3638static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3639{
3640 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3641 u64 expires;
3642
3643 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3644 raw_spin_lock(&cfs_b->lock);
3645 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3646 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3647 return;
db06e78c 3648 }
d8b4986d 3649
c06f04c7 3650 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3651 runtime = cfs_b->runtime;
c06f04c7 3652
d8b4986d
PT
3653 expires = cfs_b->runtime_expires;
3654 raw_spin_unlock(&cfs_b->lock);
3655
3656 if (!runtime)
3657 return;
3658
3659 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3660
3661 raw_spin_lock(&cfs_b->lock);
3662 if (expires == cfs_b->runtime_expires)
c06f04c7 3663 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3664 raw_spin_unlock(&cfs_b->lock);
3665}
3666
d3d9dc33
PT
3667/*
3668 * When a group wakes up we want to make sure that its quota is not already
3669 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3670 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3671 */
3672static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3673{
56f570e5
PT
3674 if (!cfs_bandwidth_used())
3675 return;
3676
d3d9dc33
PT
3677 /* an active group must be handled by the update_curr()->put() path */
3678 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3679 return;
3680
3681 /* ensure the group is not already throttled */
3682 if (cfs_rq_throttled(cfs_rq))
3683 return;
3684
3685 /* update runtime allocation */
3686 account_cfs_rq_runtime(cfs_rq, 0);
3687 if (cfs_rq->runtime_remaining <= 0)
3688 throttle_cfs_rq(cfs_rq);
3689}
3690
3691/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3692static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3693{
56f570e5 3694 if (!cfs_bandwidth_used())
678d5718 3695 return false;
56f570e5 3696
d3d9dc33 3697 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3698 return false;
d3d9dc33
PT
3699
3700 /*
3701 * it's possible for a throttled entity to be forced into a running
3702 * state (e.g. set_curr_task), in this case we're finished.
3703 */
3704 if (cfs_rq_throttled(cfs_rq))
678d5718 3705 return true;
d3d9dc33
PT
3706
3707 throttle_cfs_rq(cfs_rq);
678d5718 3708 return true;
d3d9dc33 3709}
029632fb 3710
029632fb
PZ
3711static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3712{
3713 struct cfs_bandwidth *cfs_b =
3714 container_of(timer, struct cfs_bandwidth, slack_timer);
3715 do_sched_cfs_slack_timer(cfs_b);
3716
3717 return HRTIMER_NORESTART;
3718}
3719
3720static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3721{
3722 struct cfs_bandwidth *cfs_b =
3723 container_of(timer, struct cfs_bandwidth, period_timer);
3724 ktime_t now;
3725 int overrun;
3726 int idle = 0;
3727
51f2176d 3728 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3729 for (;;) {
3730 now = hrtimer_cb_get_time(timer);
3731 overrun = hrtimer_forward(timer, now, cfs_b->period);
3732
3733 if (!overrun)
3734 break;
3735
3736 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3737 }
51f2176d 3738 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3739
3740 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3741}
3742
3743void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744{
3745 raw_spin_lock_init(&cfs_b->lock);
3746 cfs_b->runtime = 0;
3747 cfs_b->quota = RUNTIME_INF;
3748 cfs_b->period = ns_to_ktime(default_cfs_period());
3749
3750 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3751 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3752 cfs_b->period_timer.function = sched_cfs_period_timer;
3753 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3754 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3755}
3756
3757static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3758{
3759 cfs_rq->runtime_enabled = 0;
3760 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3761}
3762
3763/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3764void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3765{
3766 /*
3767 * The timer may be active because we're trying to set a new bandwidth
3768 * period or because we're racing with the tear-down path
3769 * (timer_active==0 becomes visible before the hrtimer call-back
3770 * terminates). In either case we ensure that it's re-programmed
3771 */
927b54fc
BS
3772 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3773 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3774 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3775 raw_spin_unlock(&cfs_b->lock);
927b54fc 3776 cpu_relax();
029632fb
PZ
3777 raw_spin_lock(&cfs_b->lock);
3778 /* if someone else restarted the timer then we're done */
09dc4ab0 3779 if (!force && cfs_b->timer_active)
029632fb
PZ
3780 return;
3781 }
3782
3783 cfs_b->timer_active = 1;
3784 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3785}
3786
3787static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3788{
3789 hrtimer_cancel(&cfs_b->period_timer);
3790 hrtimer_cancel(&cfs_b->slack_timer);
3791}
3792
0e59bdae
KT
3793static void __maybe_unused update_runtime_enabled(struct rq *rq)
3794{
3795 struct cfs_rq *cfs_rq;
3796
3797 for_each_leaf_cfs_rq(rq, cfs_rq) {
3798 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3799
3800 raw_spin_lock(&cfs_b->lock);
3801 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3802 raw_spin_unlock(&cfs_b->lock);
3803 }
3804}
3805
38dc3348 3806static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3807{
3808 struct cfs_rq *cfs_rq;
3809
3810 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3811 if (!cfs_rq->runtime_enabled)
3812 continue;
3813
3814 /*
3815 * clock_task is not advancing so we just need to make sure
3816 * there's some valid quota amount
3817 */
51f2176d 3818 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3819 /*
3820 * Offline rq is schedulable till cpu is completely disabled
3821 * in take_cpu_down(), so we prevent new cfs throttling here.
3822 */
3823 cfs_rq->runtime_enabled = 0;
3824
029632fb
PZ
3825 if (cfs_rq_throttled(cfs_rq))
3826 unthrottle_cfs_rq(cfs_rq);
3827 }
3828}
3829
3830#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3831static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3832{
78becc27 3833 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3834}
3835
9dbdb155 3836static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3837static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3838static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3839static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3840
3841static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3842{
3843 return 0;
3844}
64660c86
PT
3845
3846static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3847{
3848 return 0;
3849}
3850
3851static inline int throttled_lb_pair(struct task_group *tg,
3852 int src_cpu, int dest_cpu)
3853{
3854 return 0;
3855}
029632fb
PZ
3856
3857void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3858
3859#ifdef CONFIG_FAIR_GROUP_SCHED
3860static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3861#endif
3862
029632fb
PZ
3863static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3864{
3865 return NULL;
3866}
3867static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3868static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3869static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3870
3871#endif /* CONFIG_CFS_BANDWIDTH */
3872
bf0f6f24
IM
3873/**************************************************
3874 * CFS operations on tasks:
3875 */
3876
8f4d37ec
PZ
3877#ifdef CONFIG_SCHED_HRTICK
3878static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3879{
8f4d37ec
PZ
3880 struct sched_entity *se = &p->se;
3881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3882
3883 WARN_ON(task_rq(p) != rq);
3884
b39e66ea 3885 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3886 u64 slice = sched_slice(cfs_rq, se);
3887 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3888 s64 delta = slice - ran;
3889
3890 if (delta < 0) {
3891 if (rq->curr == p)
8875125e 3892 resched_curr(rq);
8f4d37ec
PZ
3893 return;
3894 }
3895
3896 /*
3897 * Don't schedule slices shorter than 10000ns, that just
3898 * doesn't make sense. Rely on vruntime for fairness.
3899 */
31656519 3900 if (rq->curr != p)
157124c1 3901 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3902
31656519 3903 hrtick_start(rq, delta);
8f4d37ec
PZ
3904 }
3905}
a4c2f00f
PZ
3906
3907/*
3908 * called from enqueue/dequeue and updates the hrtick when the
3909 * current task is from our class and nr_running is low enough
3910 * to matter.
3911 */
3912static void hrtick_update(struct rq *rq)
3913{
3914 struct task_struct *curr = rq->curr;
3915
b39e66ea 3916 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3917 return;
3918
3919 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3920 hrtick_start_fair(rq, curr);
3921}
55e12e5e 3922#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3923static inline void
3924hrtick_start_fair(struct rq *rq, struct task_struct *p)
3925{
3926}
a4c2f00f
PZ
3927
3928static inline void hrtick_update(struct rq *rq)
3929{
3930}
8f4d37ec
PZ
3931#endif
3932
bf0f6f24
IM
3933/*
3934 * The enqueue_task method is called before nr_running is
3935 * increased. Here we update the fair scheduling stats and
3936 * then put the task into the rbtree:
3937 */
ea87bb78 3938static void
371fd7e7 3939enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3940{
3941 struct cfs_rq *cfs_rq;
62fb1851 3942 struct sched_entity *se = &p->se;
bf0f6f24
IM
3943
3944 for_each_sched_entity(se) {
62fb1851 3945 if (se->on_rq)
bf0f6f24
IM
3946 break;
3947 cfs_rq = cfs_rq_of(se);
88ec22d3 3948 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3949
3950 /*
3951 * end evaluation on encountering a throttled cfs_rq
3952 *
3953 * note: in the case of encountering a throttled cfs_rq we will
3954 * post the final h_nr_running increment below.
3955 */
3956 if (cfs_rq_throttled(cfs_rq))
3957 break;
953bfcd1 3958 cfs_rq->h_nr_running++;
85dac906 3959
88ec22d3 3960 flags = ENQUEUE_WAKEUP;
bf0f6f24 3961 }
8f4d37ec 3962
2069dd75 3963 for_each_sched_entity(se) {
0f317143 3964 cfs_rq = cfs_rq_of(se);
953bfcd1 3965 cfs_rq->h_nr_running++;
2069dd75 3966
85dac906
PT
3967 if (cfs_rq_throttled(cfs_rq))
3968 break;
3969
17bc14b7 3970 update_cfs_shares(cfs_rq);
9ee474f5 3971 update_entity_load_avg(se, 1);
2069dd75
PZ
3972 }
3973
18bf2805
BS
3974 if (!se) {
3975 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3976 add_nr_running(rq, 1);
18bf2805 3977 }
a4c2f00f 3978 hrtick_update(rq);
bf0f6f24
IM
3979}
3980
2f36825b
VP
3981static void set_next_buddy(struct sched_entity *se);
3982
bf0f6f24
IM
3983/*
3984 * The dequeue_task method is called before nr_running is
3985 * decreased. We remove the task from the rbtree and
3986 * update the fair scheduling stats:
3987 */
371fd7e7 3988static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3989{
3990 struct cfs_rq *cfs_rq;
62fb1851 3991 struct sched_entity *se = &p->se;
2f36825b 3992 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3993
3994 for_each_sched_entity(se) {
3995 cfs_rq = cfs_rq_of(se);
371fd7e7 3996 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3997
3998 /*
3999 * end evaluation on encountering a throttled cfs_rq
4000 *
4001 * note: in the case of encountering a throttled cfs_rq we will
4002 * post the final h_nr_running decrement below.
4003 */
4004 if (cfs_rq_throttled(cfs_rq))
4005 break;
953bfcd1 4006 cfs_rq->h_nr_running--;
2069dd75 4007
bf0f6f24 4008 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4009 if (cfs_rq->load.weight) {
4010 /*
4011 * Bias pick_next to pick a task from this cfs_rq, as
4012 * p is sleeping when it is within its sched_slice.
4013 */
4014 if (task_sleep && parent_entity(se))
4015 set_next_buddy(parent_entity(se));
9598c82d
PT
4016
4017 /* avoid re-evaluating load for this entity */
4018 se = parent_entity(se);
bf0f6f24 4019 break;
2f36825b 4020 }
371fd7e7 4021 flags |= DEQUEUE_SLEEP;
bf0f6f24 4022 }
8f4d37ec 4023
2069dd75 4024 for_each_sched_entity(se) {
0f317143 4025 cfs_rq = cfs_rq_of(se);
953bfcd1 4026 cfs_rq->h_nr_running--;
2069dd75 4027
85dac906
PT
4028 if (cfs_rq_throttled(cfs_rq))
4029 break;
4030
17bc14b7 4031 update_cfs_shares(cfs_rq);
9ee474f5 4032 update_entity_load_avg(se, 1);
2069dd75
PZ
4033 }
4034
18bf2805 4035 if (!se) {
72465447 4036 sub_nr_running(rq, 1);
18bf2805
BS
4037 update_rq_runnable_avg(rq, 1);
4038 }
a4c2f00f 4039 hrtick_update(rq);
bf0f6f24
IM
4040}
4041
e7693a36 4042#ifdef CONFIG_SMP
029632fb
PZ
4043/* Used instead of source_load when we know the type == 0 */
4044static unsigned long weighted_cpuload(const int cpu)
4045{
b92486cb 4046 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4047}
4048
4049/*
4050 * Return a low guess at the load of a migration-source cpu weighted
4051 * according to the scheduling class and "nice" value.
4052 *
4053 * We want to under-estimate the load of migration sources, to
4054 * balance conservatively.
4055 */
4056static unsigned long source_load(int cpu, int type)
4057{
4058 struct rq *rq = cpu_rq(cpu);
4059 unsigned long total = weighted_cpuload(cpu);
4060
4061 if (type == 0 || !sched_feat(LB_BIAS))
4062 return total;
4063
4064 return min(rq->cpu_load[type-1], total);
4065}
4066
4067/*
4068 * Return a high guess at the load of a migration-target cpu weighted
4069 * according to the scheduling class and "nice" value.
4070 */
4071static unsigned long target_load(int cpu, int type)
4072{
4073 struct rq *rq = cpu_rq(cpu);
4074 unsigned long total = weighted_cpuload(cpu);
4075
4076 if (type == 0 || !sched_feat(LB_BIAS))
4077 return total;
4078
4079 return max(rq->cpu_load[type-1], total);
4080}
4081
ced549fa 4082static unsigned long capacity_of(int cpu)
029632fb 4083{
ced549fa 4084 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4085}
4086
4087static unsigned long cpu_avg_load_per_task(int cpu)
4088{
4089 struct rq *rq = cpu_rq(cpu);
4090 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4091 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4092
4093 if (nr_running)
b92486cb 4094 return load_avg / nr_running;
029632fb
PZ
4095
4096 return 0;
4097}
4098
62470419
MW
4099static void record_wakee(struct task_struct *p)
4100{
4101 /*
4102 * Rough decay (wiping) for cost saving, don't worry
4103 * about the boundary, really active task won't care
4104 * about the loss.
4105 */
2538d960 4106 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4107 current->wakee_flips >>= 1;
62470419
MW
4108 current->wakee_flip_decay_ts = jiffies;
4109 }
4110
4111 if (current->last_wakee != p) {
4112 current->last_wakee = p;
4113 current->wakee_flips++;
4114 }
4115}
098fb9db 4116
74f8e4b2 4117static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4118{
4119 struct sched_entity *se = &p->se;
4120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4121 u64 min_vruntime;
4122
4123#ifndef CONFIG_64BIT
4124 u64 min_vruntime_copy;
88ec22d3 4125
3fe1698b
PZ
4126 do {
4127 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4128 smp_rmb();
4129 min_vruntime = cfs_rq->min_vruntime;
4130 } while (min_vruntime != min_vruntime_copy);
4131#else
4132 min_vruntime = cfs_rq->min_vruntime;
4133#endif
88ec22d3 4134
3fe1698b 4135 se->vruntime -= min_vruntime;
62470419 4136 record_wakee(p);
88ec22d3
PZ
4137}
4138
bb3469ac 4139#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4140/*
4141 * effective_load() calculates the load change as seen from the root_task_group
4142 *
4143 * Adding load to a group doesn't make a group heavier, but can cause movement
4144 * of group shares between cpus. Assuming the shares were perfectly aligned one
4145 * can calculate the shift in shares.
cf5f0acf
PZ
4146 *
4147 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4148 * on this @cpu and results in a total addition (subtraction) of @wg to the
4149 * total group weight.
4150 *
4151 * Given a runqueue weight distribution (rw_i) we can compute a shares
4152 * distribution (s_i) using:
4153 *
4154 * s_i = rw_i / \Sum rw_j (1)
4155 *
4156 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4157 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4158 * shares distribution (s_i):
4159 *
4160 * rw_i = { 2, 4, 1, 0 }
4161 * s_i = { 2/7, 4/7, 1/7, 0 }
4162 *
4163 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4164 * task used to run on and the CPU the waker is running on), we need to
4165 * compute the effect of waking a task on either CPU and, in case of a sync
4166 * wakeup, compute the effect of the current task going to sleep.
4167 *
4168 * So for a change of @wl to the local @cpu with an overall group weight change
4169 * of @wl we can compute the new shares distribution (s'_i) using:
4170 *
4171 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4172 *
4173 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4174 * differences in waking a task to CPU 0. The additional task changes the
4175 * weight and shares distributions like:
4176 *
4177 * rw'_i = { 3, 4, 1, 0 }
4178 * s'_i = { 3/8, 4/8, 1/8, 0 }
4179 *
4180 * We can then compute the difference in effective weight by using:
4181 *
4182 * dw_i = S * (s'_i - s_i) (3)
4183 *
4184 * Where 'S' is the group weight as seen by its parent.
4185 *
4186 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4187 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4188 * 4/7) times the weight of the group.
f5bfb7d9 4189 */
2069dd75 4190static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4191{
4be9daaa 4192 struct sched_entity *se = tg->se[cpu];
f1d239f7 4193
9722c2da 4194 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4195 return wl;
4196
4be9daaa 4197 for_each_sched_entity(se) {
cf5f0acf 4198 long w, W;
4be9daaa 4199
977dda7c 4200 tg = se->my_q->tg;
bb3469ac 4201
cf5f0acf
PZ
4202 /*
4203 * W = @wg + \Sum rw_j
4204 */
4205 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4206
cf5f0acf
PZ
4207 /*
4208 * w = rw_i + @wl
4209 */
4210 w = se->my_q->load.weight + wl;
940959e9 4211
cf5f0acf
PZ
4212 /*
4213 * wl = S * s'_i; see (2)
4214 */
4215 if (W > 0 && w < W)
4216 wl = (w * tg->shares) / W;
977dda7c
PT
4217 else
4218 wl = tg->shares;
940959e9 4219
cf5f0acf
PZ
4220 /*
4221 * Per the above, wl is the new se->load.weight value; since
4222 * those are clipped to [MIN_SHARES, ...) do so now. See
4223 * calc_cfs_shares().
4224 */
977dda7c
PT
4225 if (wl < MIN_SHARES)
4226 wl = MIN_SHARES;
cf5f0acf
PZ
4227
4228 /*
4229 * wl = dw_i = S * (s'_i - s_i); see (3)
4230 */
977dda7c 4231 wl -= se->load.weight;
cf5f0acf
PZ
4232
4233 /*
4234 * Recursively apply this logic to all parent groups to compute
4235 * the final effective load change on the root group. Since
4236 * only the @tg group gets extra weight, all parent groups can
4237 * only redistribute existing shares. @wl is the shift in shares
4238 * resulting from this level per the above.
4239 */
4be9daaa 4240 wg = 0;
4be9daaa 4241 }
bb3469ac 4242
4be9daaa 4243 return wl;
bb3469ac
PZ
4244}
4245#else
4be9daaa 4246
58d081b5 4247static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4248{
83378269 4249 return wl;
bb3469ac 4250}
4be9daaa 4251
bb3469ac
PZ
4252#endif
4253
62470419
MW
4254static int wake_wide(struct task_struct *p)
4255{
7d9ffa89 4256 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4257
4258 /*
4259 * Yeah, it's the switching-frequency, could means many wakee or
4260 * rapidly switch, use factor here will just help to automatically
4261 * adjust the loose-degree, so bigger node will lead to more pull.
4262 */
4263 if (p->wakee_flips > factor) {
4264 /*
4265 * wakee is somewhat hot, it needs certain amount of cpu
4266 * resource, so if waker is far more hot, prefer to leave
4267 * it alone.
4268 */
4269 if (current->wakee_flips > (factor * p->wakee_flips))
4270 return 1;
4271 }
4272
4273 return 0;
4274}
4275
c88d5910 4276static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4277{
e37b6a7b 4278 s64 this_load, load;
c88d5910 4279 int idx, this_cpu, prev_cpu;
098fb9db 4280 unsigned long tl_per_task;
c88d5910 4281 struct task_group *tg;
83378269 4282 unsigned long weight;
b3137bc8 4283 int balanced;
098fb9db 4284
62470419
MW
4285 /*
4286 * If we wake multiple tasks be careful to not bounce
4287 * ourselves around too much.
4288 */
4289 if (wake_wide(p))
4290 return 0;
4291
c88d5910
PZ
4292 idx = sd->wake_idx;
4293 this_cpu = smp_processor_id();
4294 prev_cpu = task_cpu(p);
4295 load = source_load(prev_cpu, idx);
4296 this_load = target_load(this_cpu, idx);
098fb9db 4297
b3137bc8
MG
4298 /*
4299 * If sync wakeup then subtract the (maximum possible)
4300 * effect of the currently running task from the load
4301 * of the current CPU:
4302 */
83378269
PZ
4303 if (sync) {
4304 tg = task_group(current);
4305 weight = current->se.load.weight;
4306
c88d5910 4307 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4308 load += effective_load(tg, prev_cpu, 0, -weight);
4309 }
b3137bc8 4310
83378269
PZ
4311 tg = task_group(p);
4312 weight = p->se.load.weight;
b3137bc8 4313
71a29aa7
PZ
4314 /*
4315 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4316 * due to the sync cause above having dropped this_load to 0, we'll
4317 * always have an imbalance, but there's really nothing you can do
4318 * about that, so that's good too.
71a29aa7
PZ
4319 *
4320 * Otherwise check if either cpus are near enough in load to allow this
4321 * task to be woken on this_cpu.
4322 */
e37b6a7b
PT
4323 if (this_load > 0) {
4324 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4325
4326 this_eff_load = 100;
ced549fa 4327 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4328 this_eff_load *= this_load +
4329 effective_load(tg, this_cpu, weight, weight);
4330
4331 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4332 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4333 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4334
4335 balanced = this_eff_load <= prev_eff_load;
4336 } else
4337 balanced = true;
b3137bc8 4338
098fb9db 4339 /*
4ae7d5ce
IM
4340 * If the currently running task will sleep within
4341 * a reasonable amount of time then attract this newly
4342 * woken task:
098fb9db 4343 */
2fb7635c
PZ
4344 if (sync && balanced)
4345 return 1;
098fb9db 4346
41acab88 4347 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4348 tl_per_task = cpu_avg_load_per_task(this_cpu);
4349
c88d5910
PZ
4350 if (balanced ||
4351 (this_load <= load &&
4352 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4353 /*
4354 * This domain has SD_WAKE_AFFINE and
4355 * p is cache cold in this domain, and
4356 * there is no bad imbalance.
4357 */
c88d5910 4358 schedstat_inc(sd, ttwu_move_affine);
41acab88 4359 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4360
4361 return 1;
4362 }
4363 return 0;
4364}
4365
aaee1203
PZ
4366/*
4367 * find_idlest_group finds and returns the least busy CPU group within the
4368 * domain.
4369 */
4370static struct sched_group *
78e7ed53 4371find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4372 int this_cpu, int sd_flag)
e7693a36 4373{
b3bd3de6 4374 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4375 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4376 int load_idx = sd->forkexec_idx;
aaee1203 4377 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4378
c44f2a02
VG
4379 if (sd_flag & SD_BALANCE_WAKE)
4380 load_idx = sd->wake_idx;
4381
aaee1203
PZ
4382 do {
4383 unsigned long load, avg_load;
4384 int local_group;
4385 int i;
e7693a36 4386
aaee1203
PZ
4387 /* Skip over this group if it has no CPUs allowed */
4388 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4389 tsk_cpus_allowed(p)))
aaee1203
PZ
4390 continue;
4391
4392 local_group = cpumask_test_cpu(this_cpu,
4393 sched_group_cpus(group));
4394
4395 /* Tally up the load of all CPUs in the group */
4396 avg_load = 0;
4397
4398 for_each_cpu(i, sched_group_cpus(group)) {
4399 /* Bias balancing toward cpus of our domain */
4400 if (local_group)
4401 load = source_load(i, load_idx);
4402 else
4403 load = target_load(i, load_idx);
4404
4405 avg_load += load;
4406 }
4407
63b2ca30 4408 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4409 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4410
4411 if (local_group) {
4412 this_load = avg_load;
aaee1203
PZ
4413 } else if (avg_load < min_load) {
4414 min_load = avg_load;
4415 idlest = group;
4416 }
4417 } while (group = group->next, group != sd->groups);
4418
4419 if (!idlest || 100*this_load < imbalance*min_load)
4420 return NULL;
4421 return idlest;
4422}
4423
4424/*
4425 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4426 */
4427static int
4428find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4429{
4430 unsigned long load, min_load = ULONG_MAX;
4431 int idlest = -1;
4432 int i;
4433
4434 /* Traverse only the allowed CPUs */
fa17b507 4435 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4436 load = weighted_cpuload(i);
4437
4438 if (load < min_load || (load == min_load && i == this_cpu)) {
4439 min_load = load;
4440 idlest = i;
e7693a36
GH
4441 }
4442 }
4443
aaee1203
PZ
4444 return idlest;
4445}
e7693a36 4446
a50bde51
PZ
4447/*
4448 * Try and locate an idle CPU in the sched_domain.
4449 */
99bd5e2f 4450static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4451{
99bd5e2f 4452 struct sched_domain *sd;
37407ea7 4453 struct sched_group *sg;
e0a79f52 4454 int i = task_cpu(p);
a50bde51 4455
e0a79f52
MG
4456 if (idle_cpu(target))
4457 return target;
99bd5e2f
SS
4458
4459 /*
e0a79f52 4460 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4461 */
e0a79f52
MG
4462 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4463 return i;
a50bde51
PZ
4464
4465 /*
37407ea7 4466 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4467 */
518cd623 4468 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4469 for_each_lower_domain(sd) {
37407ea7
LT
4470 sg = sd->groups;
4471 do {
4472 if (!cpumask_intersects(sched_group_cpus(sg),
4473 tsk_cpus_allowed(p)))
4474 goto next;
4475
4476 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4477 if (i == target || !idle_cpu(i))
37407ea7
LT
4478 goto next;
4479 }
970e1789 4480
37407ea7
LT
4481 target = cpumask_first_and(sched_group_cpus(sg),
4482 tsk_cpus_allowed(p));
4483 goto done;
4484next:
4485 sg = sg->next;
4486 } while (sg != sd->groups);
4487 }
4488done:
a50bde51
PZ
4489 return target;
4490}
4491
aaee1203 4492/*
de91b9cb
MR
4493 * select_task_rq_fair: Select target runqueue for the waking task in domains
4494 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4495 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4496 *
de91b9cb
MR
4497 * Balances load by selecting the idlest cpu in the idlest group, or under
4498 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4499 *
de91b9cb 4500 * Returns the target cpu number.
aaee1203
PZ
4501 *
4502 * preempt must be disabled.
4503 */
0017d735 4504static int
ac66f547 4505select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4506{
29cd8bae 4507 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4508 int cpu = smp_processor_id();
c88d5910 4509 int new_cpu = cpu;
99bd5e2f 4510 int want_affine = 0;
5158f4e4 4511 int sync = wake_flags & WF_SYNC;
c88d5910 4512
29baa747 4513 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4514 return prev_cpu;
4515
0763a660 4516 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4517 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4518 want_affine = 1;
4519 new_cpu = prev_cpu;
4520 }
aaee1203 4521
dce840a0 4522 rcu_read_lock();
aaee1203 4523 for_each_domain(cpu, tmp) {
e4f42888
PZ
4524 if (!(tmp->flags & SD_LOAD_BALANCE))
4525 continue;
4526
fe3bcfe1 4527 /*
99bd5e2f
SS
4528 * If both cpu and prev_cpu are part of this domain,
4529 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4530 */
99bd5e2f
SS
4531 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4532 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4533 affine_sd = tmp;
29cd8bae 4534 break;
f03542a7 4535 }
29cd8bae 4536
f03542a7 4537 if (tmp->flags & sd_flag)
29cd8bae
PZ
4538 sd = tmp;
4539 }
4540
8bf21433
RR
4541 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4542 prev_cpu = cpu;
dce840a0 4543
8bf21433 4544 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4545 new_cpu = select_idle_sibling(p, prev_cpu);
4546 goto unlock;
8b911acd 4547 }
e7693a36 4548
aaee1203
PZ
4549 while (sd) {
4550 struct sched_group *group;
c88d5910 4551 int weight;
098fb9db 4552
0763a660 4553 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4554 sd = sd->child;
4555 continue;
4556 }
098fb9db 4557
c44f2a02 4558 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4559 if (!group) {
4560 sd = sd->child;
4561 continue;
4562 }
4ae7d5ce 4563
d7c33c49 4564 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4565 if (new_cpu == -1 || new_cpu == cpu) {
4566 /* Now try balancing at a lower domain level of cpu */
4567 sd = sd->child;
4568 continue;
e7693a36 4569 }
aaee1203
PZ
4570
4571 /* Now try balancing at a lower domain level of new_cpu */
4572 cpu = new_cpu;
669c55e9 4573 weight = sd->span_weight;
aaee1203
PZ
4574 sd = NULL;
4575 for_each_domain(cpu, tmp) {
669c55e9 4576 if (weight <= tmp->span_weight)
aaee1203 4577 break;
0763a660 4578 if (tmp->flags & sd_flag)
aaee1203
PZ
4579 sd = tmp;
4580 }
4581 /* while loop will break here if sd == NULL */
e7693a36 4582 }
dce840a0
PZ
4583unlock:
4584 rcu_read_unlock();
e7693a36 4585
c88d5910 4586 return new_cpu;
e7693a36 4587}
0a74bef8
PT
4588
4589/*
4590 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4591 * cfs_rq_of(p) references at time of call are still valid and identify the
4592 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4593 * other assumptions, including the state of rq->lock, should be made.
4594 */
4595static void
4596migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4597{
aff3e498
PT
4598 struct sched_entity *se = &p->se;
4599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600
4601 /*
4602 * Load tracking: accumulate removed load so that it can be processed
4603 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4604 * to blocked load iff they have a positive decay-count. It can never
4605 * be negative here since on-rq tasks have decay-count == 0.
4606 */
4607 if (se->avg.decay_count) {
4608 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4609 atomic_long_add(se->avg.load_avg_contrib,
4610 &cfs_rq->removed_load);
aff3e498 4611 }
3944a927
BS
4612
4613 /* We have migrated, no longer consider this task hot */
4614 se->exec_start = 0;
0a74bef8 4615}
e7693a36
GH
4616#endif /* CONFIG_SMP */
4617
e52fb7c0
PZ
4618static unsigned long
4619wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4620{
4621 unsigned long gran = sysctl_sched_wakeup_granularity;
4622
4623 /*
e52fb7c0
PZ
4624 * Since its curr running now, convert the gran from real-time
4625 * to virtual-time in his units.
13814d42
MG
4626 *
4627 * By using 'se' instead of 'curr' we penalize light tasks, so
4628 * they get preempted easier. That is, if 'se' < 'curr' then
4629 * the resulting gran will be larger, therefore penalizing the
4630 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4631 * be smaller, again penalizing the lighter task.
4632 *
4633 * This is especially important for buddies when the leftmost
4634 * task is higher priority than the buddy.
0bbd3336 4635 */
f4ad9bd2 4636 return calc_delta_fair(gran, se);
0bbd3336
PZ
4637}
4638
464b7527
PZ
4639/*
4640 * Should 'se' preempt 'curr'.
4641 *
4642 * |s1
4643 * |s2
4644 * |s3
4645 * g
4646 * |<--->|c
4647 *
4648 * w(c, s1) = -1
4649 * w(c, s2) = 0
4650 * w(c, s3) = 1
4651 *
4652 */
4653static int
4654wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4655{
4656 s64 gran, vdiff = curr->vruntime - se->vruntime;
4657
4658 if (vdiff <= 0)
4659 return -1;
4660
e52fb7c0 4661 gran = wakeup_gran(curr, se);
464b7527
PZ
4662 if (vdiff > gran)
4663 return 1;
4664
4665 return 0;
4666}
4667
02479099
PZ
4668static void set_last_buddy(struct sched_entity *se)
4669{
69c80f3e
VP
4670 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4671 return;
4672
4673 for_each_sched_entity(se)
4674 cfs_rq_of(se)->last = se;
02479099
PZ
4675}
4676
4677static void set_next_buddy(struct sched_entity *se)
4678{
69c80f3e
VP
4679 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4680 return;
4681
4682 for_each_sched_entity(se)
4683 cfs_rq_of(se)->next = se;
02479099
PZ
4684}
4685
ac53db59
RR
4686static void set_skip_buddy(struct sched_entity *se)
4687{
69c80f3e
VP
4688 for_each_sched_entity(se)
4689 cfs_rq_of(se)->skip = se;
ac53db59
RR
4690}
4691
bf0f6f24
IM
4692/*
4693 * Preempt the current task with a newly woken task if needed:
4694 */
5a9b86f6 4695static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4696{
4697 struct task_struct *curr = rq->curr;
8651a86c 4698 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4699 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4700 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4701 int next_buddy_marked = 0;
bf0f6f24 4702
4ae7d5ce
IM
4703 if (unlikely(se == pse))
4704 return;
4705
5238cdd3 4706 /*
ddcdf6e7 4707 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4708 * unconditionally check_prempt_curr() after an enqueue (which may have
4709 * lead to a throttle). This both saves work and prevents false
4710 * next-buddy nomination below.
4711 */
4712 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4713 return;
4714
2f36825b 4715 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4716 set_next_buddy(pse);
2f36825b
VP
4717 next_buddy_marked = 1;
4718 }
57fdc26d 4719
aec0a514
BR
4720 /*
4721 * We can come here with TIF_NEED_RESCHED already set from new task
4722 * wake up path.
5238cdd3
PT
4723 *
4724 * Note: this also catches the edge-case of curr being in a throttled
4725 * group (e.g. via set_curr_task), since update_curr() (in the
4726 * enqueue of curr) will have resulted in resched being set. This
4727 * prevents us from potentially nominating it as a false LAST_BUDDY
4728 * below.
aec0a514
BR
4729 */
4730 if (test_tsk_need_resched(curr))
4731 return;
4732
a2f5c9ab
DH
4733 /* Idle tasks are by definition preempted by non-idle tasks. */
4734 if (unlikely(curr->policy == SCHED_IDLE) &&
4735 likely(p->policy != SCHED_IDLE))
4736 goto preempt;
4737
91c234b4 4738 /*
a2f5c9ab
DH
4739 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4740 * is driven by the tick):
91c234b4 4741 */
8ed92e51 4742 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4743 return;
bf0f6f24 4744
464b7527 4745 find_matching_se(&se, &pse);
9bbd7374 4746 update_curr(cfs_rq_of(se));
002f128b 4747 BUG_ON(!pse);
2f36825b
VP
4748 if (wakeup_preempt_entity(se, pse) == 1) {
4749 /*
4750 * Bias pick_next to pick the sched entity that is
4751 * triggering this preemption.
4752 */
4753 if (!next_buddy_marked)
4754 set_next_buddy(pse);
3a7e73a2 4755 goto preempt;
2f36825b 4756 }
464b7527 4757
3a7e73a2 4758 return;
a65ac745 4759
3a7e73a2 4760preempt:
8875125e 4761 resched_curr(rq);
3a7e73a2
PZ
4762 /*
4763 * Only set the backward buddy when the current task is still
4764 * on the rq. This can happen when a wakeup gets interleaved
4765 * with schedule on the ->pre_schedule() or idle_balance()
4766 * point, either of which can * drop the rq lock.
4767 *
4768 * Also, during early boot the idle thread is in the fair class,
4769 * for obvious reasons its a bad idea to schedule back to it.
4770 */
4771 if (unlikely(!se->on_rq || curr == rq->idle))
4772 return;
4773
4774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4775 set_last_buddy(se);
bf0f6f24
IM
4776}
4777
606dba2e
PZ
4778static struct task_struct *
4779pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4780{
4781 struct cfs_rq *cfs_rq = &rq->cfs;
4782 struct sched_entity *se;
678d5718 4783 struct task_struct *p;
37e117c0 4784 int new_tasks;
678d5718 4785
6e83125c 4786again:
678d5718
PZ
4787#ifdef CONFIG_FAIR_GROUP_SCHED
4788 if (!cfs_rq->nr_running)
38033c37 4789 goto idle;
678d5718 4790
3f1d2a31 4791 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4792 goto simple;
4793
4794 /*
4795 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4796 * likely that a next task is from the same cgroup as the current.
4797 *
4798 * Therefore attempt to avoid putting and setting the entire cgroup
4799 * hierarchy, only change the part that actually changes.
4800 */
4801
4802 do {
4803 struct sched_entity *curr = cfs_rq->curr;
4804
4805 /*
4806 * Since we got here without doing put_prev_entity() we also
4807 * have to consider cfs_rq->curr. If it is still a runnable
4808 * entity, update_curr() will update its vruntime, otherwise
4809 * forget we've ever seen it.
4810 */
4811 if (curr && curr->on_rq)
4812 update_curr(cfs_rq);
4813 else
4814 curr = NULL;
4815
4816 /*
4817 * This call to check_cfs_rq_runtime() will do the throttle and
4818 * dequeue its entity in the parent(s). Therefore the 'simple'
4819 * nr_running test will indeed be correct.
4820 */
4821 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4822 goto simple;
4823
4824 se = pick_next_entity(cfs_rq, curr);
4825 cfs_rq = group_cfs_rq(se);
4826 } while (cfs_rq);
4827
4828 p = task_of(se);
4829
4830 /*
4831 * Since we haven't yet done put_prev_entity and if the selected task
4832 * is a different task than we started out with, try and touch the
4833 * least amount of cfs_rqs.
4834 */
4835 if (prev != p) {
4836 struct sched_entity *pse = &prev->se;
4837
4838 while (!(cfs_rq = is_same_group(se, pse))) {
4839 int se_depth = se->depth;
4840 int pse_depth = pse->depth;
4841
4842 if (se_depth <= pse_depth) {
4843 put_prev_entity(cfs_rq_of(pse), pse);
4844 pse = parent_entity(pse);
4845 }
4846 if (se_depth >= pse_depth) {
4847 set_next_entity(cfs_rq_of(se), se);
4848 se = parent_entity(se);
4849 }
4850 }
4851
4852 put_prev_entity(cfs_rq, pse);
4853 set_next_entity(cfs_rq, se);
4854 }
4855
4856 if (hrtick_enabled(rq))
4857 hrtick_start_fair(rq, p);
4858
4859 return p;
4860simple:
4861 cfs_rq = &rq->cfs;
4862#endif
bf0f6f24 4863
36ace27e 4864 if (!cfs_rq->nr_running)
38033c37 4865 goto idle;
bf0f6f24 4866
3f1d2a31 4867 put_prev_task(rq, prev);
606dba2e 4868
bf0f6f24 4869 do {
678d5718 4870 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4871 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4872 cfs_rq = group_cfs_rq(se);
4873 } while (cfs_rq);
4874
8f4d37ec 4875 p = task_of(se);
678d5718 4876
b39e66ea
MG
4877 if (hrtick_enabled(rq))
4878 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4879
4880 return p;
38033c37
PZ
4881
4882idle:
e4aa358b 4883 new_tasks = idle_balance(rq);
37e117c0
PZ
4884 /*
4885 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4886 * possible for any higher priority task to appear. In that case we
4887 * must re-start the pick_next_entity() loop.
4888 */
e4aa358b 4889 if (new_tasks < 0)
37e117c0
PZ
4890 return RETRY_TASK;
4891
e4aa358b 4892 if (new_tasks > 0)
38033c37 4893 goto again;
38033c37
PZ
4894
4895 return NULL;
bf0f6f24
IM
4896}
4897
4898/*
4899 * Account for a descheduled task:
4900 */
31ee529c 4901static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4902{
4903 struct sched_entity *se = &prev->se;
4904 struct cfs_rq *cfs_rq;
4905
4906 for_each_sched_entity(se) {
4907 cfs_rq = cfs_rq_of(se);
ab6cde26 4908 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4909 }
4910}
4911
ac53db59
RR
4912/*
4913 * sched_yield() is very simple
4914 *
4915 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4916 */
4917static void yield_task_fair(struct rq *rq)
4918{
4919 struct task_struct *curr = rq->curr;
4920 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 struct sched_entity *se = &curr->se;
4922
4923 /*
4924 * Are we the only task in the tree?
4925 */
4926 if (unlikely(rq->nr_running == 1))
4927 return;
4928
4929 clear_buddies(cfs_rq, se);
4930
4931 if (curr->policy != SCHED_BATCH) {
4932 update_rq_clock(rq);
4933 /*
4934 * Update run-time statistics of the 'current'.
4935 */
4936 update_curr(cfs_rq);
916671c0
MG
4937 /*
4938 * Tell update_rq_clock() that we've just updated,
4939 * so we don't do microscopic update in schedule()
4940 * and double the fastpath cost.
4941 */
4942 rq->skip_clock_update = 1;
ac53db59
RR
4943 }
4944
4945 set_skip_buddy(se);
4946}
4947
d95f4122
MG
4948static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4949{
4950 struct sched_entity *se = &p->se;
4951
5238cdd3
PT
4952 /* throttled hierarchies are not runnable */
4953 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4954 return false;
4955
4956 /* Tell the scheduler that we'd really like pse to run next. */
4957 set_next_buddy(se);
4958
d95f4122
MG
4959 yield_task_fair(rq);
4960
4961 return true;
4962}
4963
681f3e68 4964#ifdef CONFIG_SMP
bf0f6f24 4965/**************************************************
e9c84cb8
PZ
4966 * Fair scheduling class load-balancing methods.
4967 *
4968 * BASICS
4969 *
4970 * The purpose of load-balancing is to achieve the same basic fairness the
4971 * per-cpu scheduler provides, namely provide a proportional amount of compute
4972 * time to each task. This is expressed in the following equation:
4973 *
4974 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4975 *
4976 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4977 * W_i,0 is defined as:
4978 *
4979 * W_i,0 = \Sum_j w_i,j (2)
4980 *
4981 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4982 * is derived from the nice value as per prio_to_weight[].
4983 *
4984 * The weight average is an exponential decay average of the instantaneous
4985 * weight:
4986 *
4987 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4988 *
ced549fa 4989 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4990 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4991 * can also include other factors [XXX].
4992 *
4993 * To achieve this balance we define a measure of imbalance which follows
4994 * directly from (1):
4995 *
ced549fa 4996 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
4997 *
4998 * We them move tasks around to minimize the imbalance. In the continuous
4999 * function space it is obvious this converges, in the discrete case we get
5000 * a few fun cases generally called infeasible weight scenarios.
5001 *
5002 * [XXX expand on:
5003 * - infeasible weights;
5004 * - local vs global optima in the discrete case. ]
5005 *
5006 *
5007 * SCHED DOMAINS
5008 *
5009 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5010 * for all i,j solution, we create a tree of cpus that follows the hardware
5011 * topology where each level pairs two lower groups (or better). This results
5012 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5013 * tree to only the first of the previous level and we decrease the frequency
5014 * of load-balance at each level inv. proportional to the number of cpus in
5015 * the groups.
5016 *
5017 * This yields:
5018 *
5019 * log_2 n 1 n
5020 * \Sum { --- * --- * 2^i } = O(n) (5)
5021 * i = 0 2^i 2^i
5022 * `- size of each group
5023 * | | `- number of cpus doing load-balance
5024 * | `- freq
5025 * `- sum over all levels
5026 *
5027 * Coupled with a limit on how many tasks we can migrate every balance pass,
5028 * this makes (5) the runtime complexity of the balancer.
5029 *
5030 * An important property here is that each CPU is still (indirectly) connected
5031 * to every other cpu in at most O(log n) steps:
5032 *
5033 * The adjacency matrix of the resulting graph is given by:
5034 *
5035 * log_2 n
5036 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5037 * k = 0
5038 *
5039 * And you'll find that:
5040 *
5041 * A^(log_2 n)_i,j != 0 for all i,j (7)
5042 *
5043 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5044 * The task movement gives a factor of O(m), giving a convergence complexity
5045 * of:
5046 *
5047 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5048 *
5049 *
5050 * WORK CONSERVING
5051 *
5052 * In order to avoid CPUs going idle while there's still work to do, new idle
5053 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5054 * tree itself instead of relying on other CPUs to bring it work.
5055 *
5056 * This adds some complexity to both (5) and (8) but it reduces the total idle
5057 * time.
5058 *
5059 * [XXX more?]
5060 *
5061 *
5062 * CGROUPS
5063 *
5064 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5065 *
5066 * s_k,i
5067 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5068 * S_k
5069 *
5070 * Where
5071 *
5072 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5073 *
5074 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5075 *
5076 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5077 * property.
5078 *
5079 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5080 * rewrite all of this once again.]
5081 */
bf0f6f24 5082
ed387b78
HS
5083static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5084
0ec8aa00
PZ
5085enum fbq_type { regular, remote, all };
5086
ddcdf6e7 5087#define LBF_ALL_PINNED 0x01
367456c7 5088#define LBF_NEED_BREAK 0x02
6263322c
PZ
5089#define LBF_DST_PINNED 0x04
5090#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5091
5092struct lb_env {
5093 struct sched_domain *sd;
5094
ddcdf6e7 5095 struct rq *src_rq;
85c1e7da 5096 int src_cpu;
ddcdf6e7
PZ
5097
5098 int dst_cpu;
5099 struct rq *dst_rq;
5100
88b8dac0
SV
5101 struct cpumask *dst_grpmask;
5102 int new_dst_cpu;
ddcdf6e7 5103 enum cpu_idle_type idle;
bd939f45 5104 long imbalance;
b9403130
MW
5105 /* The set of CPUs under consideration for load-balancing */
5106 struct cpumask *cpus;
5107
ddcdf6e7 5108 unsigned int flags;
367456c7
PZ
5109
5110 unsigned int loop;
5111 unsigned int loop_break;
5112 unsigned int loop_max;
0ec8aa00
PZ
5113
5114 enum fbq_type fbq_type;
ddcdf6e7
PZ
5115};
5116
1e3c88bd 5117/*
ddcdf6e7 5118 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5119 * Both runqueues must be locked.
5120 */
ddcdf6e7 5121static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5122{
ddcdf6e7
PZ
5123 deactivate_task(env->src_rq, p, 0);
5124 set_task_cpu(p, env->dst_cpu);
5125 activate_task(env->dst_rq, p, 0);
5126 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5127}
5128
029632fb
PZ
5129/*
5130 * Is this task likely cache-hot:
5131 */
5d5e2b1b 5132static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5133{
5134 s64 delta;
5135
5136 if (p->sched_class != &fair_sched_class)
5137 return 0;
5138
5139 if (unlikely(p->policy == SCHED_IDLE))
5140 return 0;
5141
5142 /*
5143 * Buddy candidates are cache hot:
5144 */
5d5e2b1b 5145 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5146 (&p->se == cfs_rq_of(&p->se)->next ||
5147 &p->se == cfs_rq_of(&p->se)->last))
5148 return 1;
5149
5150 if (sysctl_sched_migration_cost == -1)
5151 return 1;
5152 if (sysctl_sched_migration_cost == 0)
5153 return 0;
5154
5d5e2b1b 5155 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5156
5157 return delta < (s64)sysctl_sched_migration_cost;
5158}
5159
3a7053b3
MG
5160#ifdef CONFIG_NUMA_BALANCING
5161/* Returns true if the destination node has incurred more faults */
5162static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5163{
b1ad065e 5164 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5165 int src_nid, dst_nid;
5166
ff1df896 5167 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5168 !(env->sd->flags & SD_NUMA)) {
5169 return false;
5170 }
5171
5172 src_nid = cpu_to_node(env->src_cpu);
5173 dst_nid = cpu_to_node(env->dst_cpu);
5174
83e1d2cd 5175 if (src_nid == dst_nid)
3a7053b3
MG
5176 return false;
5177
b1ad065e
RR
5178 if (numa_group) {
5179 /* Task is already in the group's interleave set. */
5180 if (node_isset(src_nid, numa_group->active_nodes))
5181 return false;
83e1d2cd 5182
b1ad065e
RR
5183 /* Task is moving into the group's interleave set. */
5184 if (node_isset(dst_nid, numa_group->active_nodes))
5185 return true;
83e1d2cd 5186
b1ad065e
RR
5187 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5188 }
5189
5190 /* Encourage migration to the preferred node. */
5191 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5192 return true;
5193
b1ad065e 5194 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5195}
7a0f3083
MG
5196
5197
5198static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5199{
b1ad065e 5200 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5201 int src_nid, dst_nid;
5202
5203 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5204 return false;
5205
ff1df896 5206 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5207 return false;
5208
5209 src_nid = cpu_to_node(env->src_cpu);
5210 dst_nid = cpu_to_node(env->dst_cpu);
5211
83e1d2cd 5212 if (src_nid == dst_nid)
7a0f3083
MG
5213 return false;
5214
b1ad065e
RR
5215 if (numa_group) {
5216 /* Task is moving within/into the group's interleave set. */
5217 if (node_isset(dst_nid, numa_group->active_nodes))
5218 return false;
5219
5220 /* Task is moving out of the group's interleave set. */
5221 if (node_isset(src_nid, numa_group->active_nodes))
5222 return true;
5223
5224 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5225 }
5226
83e1d2cd
MG
5227 /* Migrating away from the preferred node is always bad. */
5228 if (src_nid == p->numa_preferred_nid)
5229 return true;
5230
b1ad065e 5231 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5232}
5233
3a7053b3
MG
5234#else
5235static inline bool migrate_improves_locality(struct task_struct *p,
5236 struct lb_env *env)
5237{
5238 return false;
5239}
7a0f3083
MG
5240
5241static inline bool migrate_degrades_locality(struct task_struct *p,
5242 struct lb_env *env)
5243{
5244 return false;
5245}
3a7053b3
MG
5246#endif
5247
1e3c88bd
PZ
5248/*
5249 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5250 */
5251static
8e45cb54 5252int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5253{
5254 int tsk_cache_hot = 0;
5255 /*
5256 * We do not migrate tasks that are:
d3198084 5257 * 1) throttled_lb_pair, or
1e3c88bd 5258 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5259 * 3) running (obviously), or
5260 * 4) are cache-hot on their current CPU.
1e3c88bd 5261 */
d3198084
JK
5262 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5263 return 0;
5264
ddcdf6e7 5265 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5266 int cpu;
88b8dac0 5267
41acab88 5268 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5269
6263322c
PZ
5270 env->flags |= LBF_SOME_PINNED;
5271
88b8dac0
SV
5272 /*
5273 * Remember if this task can be migrated to any other cpu in
5274 * our sched_group. We may want to revisit it if we couldn't
5275 * meet load balance goals by pulling other tasks on src_cpu.
5276 *
5277 * Also avoid computing new_dst_cpu if we have already computed
5278 * one in current iteration.
5279 */
6263322c 5280 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5281 return 0;
5282
e02e60c1
JK
5283 /* Prevent to re-select dst_cpu via env's cpus */
5284 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5285 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5286 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5287 env->new_dst_cpu = cpu;
5288 break;
5289 }
88b8dac0 5290 }
e02e60c1 5291
1e3c88bd
PZ
5292 return 0;
5293 }
88b8dac0
SV
5294
5295 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5296 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5297
ddcdf6e7 5298 if (task_running(env->src_rq, p)) {
41acab88 5299 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5300 return 0;
5301 }
5302
5303 /*
5304 * Aggressive migration if:
3a7053b3
MG
5305 * 1) destination numa is preferred
5306 * 2) task is cache cold, or
5307 * 3) too many balance attempts have failed.
1e3c88bd 5308 */
5d5e2b1b 5309 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5310 if (!tsk_cache_hot)
5311 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5312
5313 if (migrate_improves_locality(p, env)) {
5314#ifdef CONFIG_SCHEDSTATS
5315 if (tsk_cache_hot) {
5316 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5317 schedstat_inc(p, se.statistics.nr_forced_migrations);
5318 }
5319#endif
5320 return 1;
5321 }
5322
1e3c88bd 5323 if (!tsk_cache_hot ||
8e45cb54 5324 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5325
1e3c88bd 5326 if (tsk_cache_hot) {
8e45cb54 5327 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5328 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5329 }
4e2dcb73 5330
1e3c88bd
PZ
5331 return 1;
5332 }
5333
4e2dcb73
ZH
5334 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5335 return 0;
1e3c88bd
PZ
5336}
5337
897c395f
PZ
5338/*
5339 * move_one_task tries to move exactly one task from busiest to this_rq, as
5340 * part of active balancing operations within "domain".
5341 * Returns 1 if successful and 0 otherwise.
5342 *
5343 * Called with both runqueues locked.
5344 */
8e45cb54 5345static int move_one_task(struct lb_env *env)
897c395f
PZ
5346{
5347 struct task_struct *p, *n;
897c395f 5348
367456c7 5349 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5350 if (!can_migrate_task(p, env))
5351 continue;
897c395f 5352
367456c7
PZ
5353 move_task(p, env);
5354 /*
5355 * Right now, this is only the second place move_task()
5356 * is called, so we can safely collect move_task()
5357 * stats here rather than inside move_task().
5358 */
5359 schedstat_inc(env->sd, lb_gained[env->idle]);
5360 return 1;
897c395f 5361 }
897c395f
PZ
5362 return 0;
5363}
5364
eb95308e
PZ
5365static const unsigned int sched_nr_migrate_break = 32;
5366
5d6523eb 5367/*
bd939f45 5368 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5369 * this_rq, as part of a balancing operation within domain "sd".
5370 * Returns 1 if successful and 0 otherwise.
5371 *
5372 * Called with both runqueues locked.
5373 */
5374static int move_tasks(struct lb_env *env)
1e3c88bd 5375{
5d6523eb
PZ
5376 struct list_head *tasks = &env->src_rq->cfs_tasks;
5377 struct task_struct *p;
367456c7
PZ
5378 unsigned long load;
5379 int pulled = 0;
1e3c88bd 5380
bd939f45 5381 if (env->imbalance <= 0)
5d6523eb 5382 return 0;
1e3c88bd 5383
5d6523eb
PZ
5384 while (!list_empty(tasks)) {
5385 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5386
367456c7
PZ
5387 env->loop++;
5388 /* We've more or less seen every task there is, call it quits */
5d6523eb 5389 if (env->loop > env->loop_max)
367456c7 5390 break;
5d6523eb
PZ
5391
5392 /* take a breather every nr_migrate tasks */
367456c7 5393 if (env->loop > env->loop_break) {
eb95308e 5394 env->loop_break += sched_nr_migrate_break;
8e45cb54 5395 env->flags |= LBF_NEED_BREAK;
ee00e66f 5396 break;
a195f004 5397 }
1e3c88bd 5398
d3198084 5399 if (!can_migrate_task(p, env))
367456c7
PZ
5400 goto next;
5401
5402 load = task_h_load(p);
5d6523eb 5403
eb95308e 5404 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5405 goto next;
5406
bd939f45 5407 if ((load / 2) > env->imbalance)
367456c7 5408 goto next;
1e3c88bd 5409
ddcdf6e7 5410 move_task(p, env);
ee00e66f 5411 pulled++;
bd939f45 5412 env->imbalance -= load;
1e3c88bd
PZ
5413
5414#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5415 /*
5416 * NEWIDLE balancing is a source of latency, so preemptible
5417 * kernels will stop after the first task is pulled to minimize
5418 * the critical section.
5419 */
5d6523eb 5420 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5421 break;
1e3c88bd
PZ
5422#endif
5423
ee00e66f
PZ
5424 /*
5425 * We only want to steal up to the prescribed amount of
5426 * weighted load.
5427 */
bd939f45 5428 if (env->imbalance <= 0)
ee00e66f 5429 break;
367456c7
PZ
5430
5431 continue;
5432next:
5d6523eb 5433 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5434 }
5d6523eb 5435
1e3c88bd 5436 /*
ddcdf6e7
PZ
5437 * Right now, this is one of only two places move_task() is called,
5438 * so we can safely collect move_task() stats here rather than
5439 * inside move_task().
1e3c88bd 5440 */
8e45cb54 5441 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5442
5d6523eb 5443 return pulled;
1e3c88bd
PZ
5444}
5445
230059de 5446#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5447/*
5448 * update tg->load_weight by folding this cpu's load_avg
5449 */
48a16753 5450static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5451{
48a16753
PT
5452 struct sched_entity *se = tg->se[cpu];
5453 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5454
48a16753
PT
5455 /* throttled entities do not contribute to load */
5456 if (throttled_hierarchy(cfs_rq))
5457 return;
9e3081ca 5458
aff3e498 5459 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5460
82958366
PT
5461 if (se) {
5462 update_entity_load_avg(se, 1);
5463 /*
5464 * We pivot on our runnable average having decayed to zero for
5465 * list removal. This generally implies that all our children
5466 * have also been removed (modulo rounding error or bandwidth
5467 * control); however, such cases are rare and we can fix these
5468 * at enqueue.
5469 *
5470 * TODO: fix up out-of-order children on enqueue.
5471 */
5472 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5473 list_del_leaf_cfs_rq(cfs_rq);
5474 } else {
48a16753 5475 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5476 update_rq_runnable_avg(rq, rq->nr_running);
5477 }
9e3081ca
PZ
5478}
5479
48a16753 5480static void update_blocked_averages(int cpu)
9e3081ca 5481{
9e3081ca 5482 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5483 struct cfs_rq *cfs_rq;
5484 unsigned long flags;
9e3081ca 5485
48a16753
PT
5486 raw_spin_lock_irqsave(&rq->lock, flags);
5487 update_rq_clock(rq);
9763b67f
PZ
5488 /*
5489 * Iterates the task_group tree in a bottom up fashion, see
5490 * list_add_leaf_cfs_rq() for details.
5491 */
64660c86 5492 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5493 /*
5494 * Note: We may want to consider periodically releasing
5495 * rq->lock about these updates so that creating many task
5496 * groups does not result in continually extending hold time.
5497 */
5498 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5499 }
48a16753
PT
5500
5501 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5502}
5503
9763b67f 5504/*
68520796 5505 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5506 * This needs to be done in a top-down fashion because the load of a child
5507 * group is a fraction of its parents load.
5508 */
68520796 5509static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5510{
68520796
VD
5511 struct rq *rq = rq_of(cfs_rq);
5512 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5513 unsigned long now = jiffies;
68520796 5514 unsigned long load;
a35b6466 5515
68520796 5516 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5517 return;
5518
68520796
VD
5519 cfs_rq->h_load_next = NULL;
5520 for_each_sched_entity(se) {
5521 cfs_rq = cfs_rq_of(se);
5522 cfs_rq->h_load_next = se;
5523 if (cfs_rq->last_h_load_update == now)
5524 break;
5525 }
a35b6466 5526
68520796 5527 if (!se) {
7e3115ef 5528 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5529 cfs_rq->last_h_load_update = now;
5530 }
5531
5532 while ((se = cfs_rq->h_load_next) != NULL) {
5533 load = cfs_rq->h_load;
5534 load = div64_ul(load * se->avg.load_avg_contrib,
5535 cfs_rq->runnable_load_avg + 1);
5536 cfs_rq = group_cfs_rq(se);
5537 cfs_rq->h_load = load;
5538 cfs_rq->last_h_load_update = now;
5539 }
9763b67f
PZ
5540}
5541
367456c7 5542static unsigned long task_h_load(struct task_struct *p)
230059de 5543{
367456c7 5544 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5545
68520796 5546 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5547 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5548 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5549}
5550#else
48a16753 5551static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5552{
5553}
5554
367456c7 5555static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5556{
a003a25b 5557 return p->se.avg.load_avg_contrib;
1e3c88bd 5558}
230059de 5559#endif
1e3c88bd 5560
1e3c88bd 5561/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5562/*
5563 * sg_lb_stats - stats of a sched_group required for load_balancing
5564 */
5565struct sg_lb_stats {
5566 unsigned long avg_load; /*Avg load across the CPUs of the group */
5567 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5568 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5569 unsigned long load_per_task;
63b2ca30 5570 unsigned long group_capacity;
147c5fc2 5571 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5572 unsigned int group_capacity_factor;
147c5fc2
PZ
5573 unsigned int idle_cpus;
5574 unsigned int group_weight;
1e3c88bd 5575 int group_imb; /* Is there an imbalance in the group ? */
1b6a7495 5576 int group_has_free_capacity;
0ec8aa00
PZ
5577#ifdef CONFIG_NUMA_BALANCING
5578 unsigned int nr_numa_running;
5579 unsigned int nr_preferred_running;
5580#endif
1e3c88bd
PZ
5581};
5582
56cf515b
JK
5583/*
5584 * sd_lb_stats - Structure to store the statistics of a sched_domain
5585 * during load balancing.
5586 */
5587struct sd_lb_stats {
5588 struct sched_group *busiest; /* Busiest group in this sd */
5589 struct sched_group *local; /* Local group in this sd */
5590 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5591 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5592 unsigned long avg_load; /* Average load across all groups in sd */
5593
56cf515b 5594 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5595 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5596};
5597
147c5fc2
PZ
5598static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5599{
5600 /*
5601 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5602 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5603 * We must however clear busiest_stat::avg_load because
5604 * update_sd_pick_busiest() reads this before assignment.
5605 */
5606 *sds = (struct sd_lb_stats){
5607 .busiest = NULL,
5608 .local = NULL,
5609 .total_load = 0UL,
63b2ca30 5610 .total_capacity = 0UL,
147c5fc2
PZ
5611 .busiest_stat = {
5612 .avg_load = 0UL,
5613 },
5614 };
5615}
5616
1e3c88bd
PZ
5617/**
5618 * get_sd_load_idx - Obtain the load index for a given sched domain.
5619 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5620 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5621 *
5622 * Return: The load index.
1e3c88bd
PZ
5623 */
5624static inline int get_sd_load_idx(struct sched_domain *sd,
5625 enum cpu_idle_type idle)
5626{
5627 int load_idx;
5628
5629 switch (idle) {
5630 case CPU_NOT_IDLE:
5631 load_idx = sd->busy_idx;
5632 break;
5633
5634 case CPU_NEWLY_IDLE:
5635 load_idx = sd->newidle_idx;
5636 break;
5637 default:
5638 load_idx = sd->idle_idx;
5639 break;
5640 }
5641
5642 return load_idx;
5643}
5644
ced549fa 5645static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5646{
ca8ce3d0 5647 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5648}
5649
ca8ce3d0 5650unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5651{
ced549fa 5652 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5653}
5654
ced549fa 5655static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5656{
669c55e9 5657 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5658 unsigned long smt_gain = sd->smt_gain;
5659
5660 smt_gain /= weight;
5661
5662 return smt_gain;
5663}
5664
ca8ce3d0 5665unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5666{
ced549fa 5667 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5668}
5669
ced549fa 5670static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5671{
5672 struct rq *rq = cpu_rq(cpu);
b654f7de 5673 u64 total, available, age_stamp, avg;
cadefd3d 5674 s64 delta;
1e3c88bd 5675
b654f7de
PZ
5676 /*
5677 * Since we're reading these variables without serialization make sure
5678 * we read them once before doing sanity checks on them.
5679 */
5680 age_stamp = ACCESS_ONCE(rq->age_stamp);
5681 avg = ACCESS_ONCE(rq->rt_avg);
5682
cadefd3d
PZ
5683 delta = rq_clock(rq) - age_stamp;
5684 if (unlikely(delta < 0))
5685 delta = 0;
5686
5687 total = sched_avg_period() + delta;
aa483808 5688
b654f7de 5689 if (unlikely(total < avg)) {
ced549fa 5690 /* Ensures that capacity won't end up being negative */
aa483808
VP
5691 available = 0;
5692 } else {
b654f7de 5693 available = total - avg;
aa483808 5694 }
1e3c88bd 5695
ca8ce3d0
NP
5696 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5697 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5698
ca8ce3d0 5699 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5700
5701 return div_u64(available, total);
5702}
5703
ced549fa 5704static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5705{
669c55e9 5706 unsigned long weight = sd->span_weight;
ca8ce3d0 5707 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5708 struct sched_group *sdg = sd->groups;
5709
5d4dfddd
NP
5710 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5711 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5712 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5713 else
ced549fa 5714 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5715
ca8ce3d0 5716 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5717 }
5718
ced549fa 5719 sdg->sgc->capacity_orig = capacity;
9d5efe05 5720
5d4dfddd 5721 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5722 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5723 else
ced549fa 5724 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5725
ca8ce3d0 5726 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5727
ced549fa 5728 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5729 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5730
ced549fa
NP
5731 if (!capacity)
5732 capacity = 1;
1e3c88bd 5733
ced549fa
NP
5734 cpu_rq(cpu)->cpu_capacity = capacity;
5735 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5736}
5737
63b2ca30 5738void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5739{
5740 struct sched_domain *child = sd->child;
5741 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5742 unsigned long capacity, capacity_orig;
4ec4412e
VG
5743 unsigned long interval;
5744
5745 interval = msecs_to_jiffies(sd->balance_interval);
5746 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5747 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5748
5749 if (!child) {
ced549fa 5750 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5751 return;
5752 }
5753
63b2ca30 5754 capacity_orig = capacity = 0;
1e3c88bd 5755
74a5ce20
PZ
5756 if (child->flags & SD_OVERLAP) {
5757 /*
5758 * SD_OVERLAP domains cannot assume that child groups
5759 * span the current group.
5760 */
5761
863bffc8 5762 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5763 struct sched_group_capacity *sgc;
9abf24d4 5764 struct rq *rq = cpu_rq(cpu);
863bffc8 5765
9abf24d4 5766 /*
63b2ca30 5767 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5768 * gets here before we've attached the domains to the
5769 * runqueues.
5770 *
ced549fa
NP
5771 * Use capacity_of(), which is set irrespective of domains
5772 * in update_cpu_capacity().
9abf24d4 5773 *
63b2ca30 5774 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5775 * causing divide-by-zero issues on boot.
5776 *
63b2ca30 5777 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5778 */
5779 if (unlikely(!rq->sd)) {
ced549fa
NP
5780 capacity_orig += capacity_of(cpu);
5781 capacity += capacity_of(cpu);
9abf24d4
SD
5782 continue;
5783 }
863bffc8 5784
63b2ca30
NP
5785 sgc = rq->sd->groups->sgc;
5786 capacity_orig += sgc->capacity_orig;
5787 capacity += sgc->capacity;
863bffc8 5788 }
74a5ce20
PZ
5789 } else {
5790 /*
5791 * !SD_OVERLAP domains can assume that child groups
5792 * span the current group.
5793 */
5794
5795 group = child->groups;
5796 do {
63b2ca30
NP
5797 capacity_orig += group->sgc->capacity_orig;
5798 capacity += group->sgc->capacity;
74a5ce20
PZ
5799 group = group->next;
5800 } while (group != child->groups);
5801 }
1e3c88bd 5802
63b2ca30
NP
5803 sdg->sgc->capacity_orig = capacity_orig;
5804 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5805}
5806
9d5efe05
SV
5807/*
5808 * Try and fix up capacity for tiny siblings, this is needed when
5809 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5810 * which on its own isn't powerful enough.
5811 *
5812 * See update_sd_pick_busiest() and check_asym_packing().
5813 */
5814static inline int
5815fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5816{
5817 /*
ca8ce3d0 5818 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5819 */
5d4dfddd 5820 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5821 return 0;
5822
5823 /*
63b2ca30 5824 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5825 */
63b2ca30 5826 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5827 return 1;
5828
5829 return 0;
5830}
5831
30ce5dab
PZ
5832/*
5833 * Group imbalance indicates (and tries to solve) the problem where balancing
5834 * groups is inadequate due to tsk_cpus_allowed() constraints.
5835 *
5836 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5837 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5838 * Something like:
5839 *
5840 * { 0 1 2 3 } { 4 5 6 7 }
5841 * * * * *
5842 *
5843 * If we were to balance group-wise we'd place two tasks in the first group and
5844 * two tasks in the second group. Clearly this is undesired as it will overload
5845 * cpu 3 and leave one of the cpus in the second group unused.
5846 *
5847 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5848 * by noticing the lower domain failed to reach balance and had difficulty
5849 * moving tasks due to affinity constraints.
30ce5dab
PZ
5850 *
5851 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5852 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5853 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5854 * to create an effective group imbalance.
5855 *
5856 * This is a somewhat tricky proposition since the next run might not find the
5857 * group imbalance and decide the groups need to be balanced again. A most
5858 * subtle and fragile situation.
5859 */
5860
6263322c 5861static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5862{
63b2ca30 5863 return group->sgc->imbalance;
30ce5dab
PZ
5864}
5865
b37d9316 5866/*
0fedc6c8 5867 * Compute the group capacity factor.
b37d9316 5868 *
ced549fa 5869 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5870 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5871 * and limit unit capacity with that.
b37d9316 5872 */
0fedc6c8 5873static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5874{
0fedc6c8 5875 unsigned int capacity_factor, smt, cpus;
63b2ca30 5876 unsigned int capacity, capacity_orig;
c61037e9 5877
63b2ca30
NP
5878 capacity = group->sgc->capacity;
5879 capacity_orig = group->sgc->capacity_orig;
c61037e9 5880 cpus = group->group_weight;
b37d9316 5881
63b2ca30 5882 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5883 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5884 capacity_factor = cpus / smt; /* cores */
b37d9316 5885
63b2ca30 5886 capacity_factor = min_t(unsigned,
ca8ce3d0 5887 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5888 if (!capacity_factor)
5889 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5890
0fedc6c8 5891 return capacity_factor;
b37d9316
PZ
5892}
5893
1e3c88bd
PZ
5894/**
5895 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5896 * @env: The load balancing environment.
1e3c88bd 5897 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5898 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5899 * @local_group: Does group contain this_cpu.
1e3c88bd 5900 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5901 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5902 */
bd939f45
PZ
5903static inline void update_sg_lb_stats(struct lb_env *env,
5904 struct sched_group *group, int load_idx,
4486edd1
TC
5905 int local_group, struct sg_lb_stats *sgs,
5906 bool *overload)
1e3c88bd 5907{
30ce5dab 5908 unsigned long load;
bd939f45 5909 int i;
1e3c88bd 5910
b72ff13c
PZ
5911 memset(sgs, 0, sizeof(*sgs));
5912
b9403130 5913 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5914 struct rq *rq = cpu_rq(i);
5915
1e3c88bd 5916 /* Bias balancing toward cpus of our domain */
6263322c 5917 if (local_group)
04f733b4 5918 load = target_load(i, load_idx);
6263322c 5919 else
1e3c88bd 5920 load = source_load(i, load_idx);
1e3c88bd
PZ
5921
5922 sgs->group_load += load;
380c9077 5923 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
5924
5925 if (rq->nr_running > 1)
5926 *overload = true;
5927
0ec8aa00
PZ
5928#ifdef CONFIG_NUMA_BALANCING
5929 sgs->nr_numa_running += rq->nr_numa_running;
5930 sgs->nr_preferred_running += rq->nr_preferred_running;
5931#endif
1e3c88bd 5932 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5933 if (idle_cpu(i))
5934 sgs->idle_cpus++;
1e3c88bd
PZ
5935 }
5936
63b2ca30
NP
5937 /* Adjust by relative CPU capacity of the group */
5938 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 5939 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 5940
dd5feea1 5941 if (sgs->sum_nr_running)
38d0f770 5942 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5943
aae6d3dd 5944 sgs->group_weight = group->group_weight;
fab47622 5945
b37d9316 5946 sgs->group_imb = sg_imbalanced(group);
0fedc6c8 5947 sgs->group_capacity_factor = sg_capacity_factor(env, group);
b37d9316 5948
0fedc6c8 5949 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 5950 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
5951}
5952
532cb4c4
MN
5953/**
5954 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5955 * @env: The load balancing environment.
532cb4c4
MN
5956 * @sds: sched_domain statistics
5957 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5958 * @sgs: sched_group statistics
532cb4c4
MN
5959 *
5960 * Determine if @sg is a busier group than the previously selected
5961 * busiest group.
e69f6186
YB
5962 *
5963 * Return: %true if @sg is a busier group than the previously selected
5964 * busiest group. %false otherwise.
532cb4c4 5965 */
bd939f45 5966static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5967 struct sd_lb_stats *sds,
5968 struct sched_group *sg,
bd939f45 5969 struct sg_lb_stats *sgs)
532cb4c4 5970{
56cf515b 5971 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5972 return false;
5973
0fedc6c8 5974 if (sgs->sum_nr_running > sgs->group_capacity_factor)
532cb4c4
MN
5975 return true;
5976
5977 if (sgs->group_imb)
5978 return true;
5979
5980 /*
5981 * ASYM_PACKING needs to move all the work to the lowest
5982 * numbered CPUs in the group, therefore mark all groups
5983 * higher than ourself as busy.
5984 */
bd939f45
PZ
5985 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5986 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5987 if (!sds->busiest)
5988 return true;
5989
5990 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5991 return true;
5992 }
5993
5994 return false;
5995}
5996
0ec8aa00
PZ
5997#ifdef CONFIG_NUMA_BALANCING
5998static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5999{
6000 if (sgs->sum_nr_running > sgs->nr_numa_running)
6001 return regular;
6002 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6003 return remote;
6004 return all;
6005}
6006
6007static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6008{
6009 if (rq->nr_running > rq->nr_numa_running)
6010 return regular;
6011 if (rq->nr_running > rq->nr_preferred_running)
6012 return remote;
6013 return all;
6014}
6015#else
6016static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6017{
6018 return all;
6019}
6020
6021static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6022{
6023 return regular;
6024}
6025#endif /* CONFIG_NUMA_BALANCING */
6026
1e3c88bd 6027/**
461819ac 6028 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6029 * @env: The load balancing environment.
1e3c88bd
PZ
6030 * @sds: variable to hold the statistics for this sched_domain.
6031 */
0ec8aa00 6032static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6033{
bd939f45
PZ
6034 struct sched_domain *child = env->sd->child;
6035 struct sched_group *sg = env->sd->groups;
56cf515b 6036 struct sg_lb_stats tmp_sgs;
1e3c88bd 6037 int load_idx, prefer_sibling = 0;
4486edd1 6038 bool overload = false;
1e3c88bd
PZ
6039
6040 if (child && child->flags & SD_PREFER_SIBLING)
6041 prefer_sibling = 1;
6042
bd939f45 6043 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6044
6045 do {
56cf515b 6046 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6047 int local_group;
6048
bd939f45 6049 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6050 if (local_group) {
6051 sds->local = sg;
6052 sgs = &sds->local_stat;
b72ff13c
PZ
6053
6054 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6055 time_after_eq(jiffies, sg->sgc->next_update))
6056 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6057 }
1e3c88bd 6058
4486edd1
TC
6059 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6060 &overload);
1e3c88bd 6061
b72ff13c
PZ
6062 if (local_group)
6063 goto next_group;
6064
1e3c88bd
PZ
6065 /*
6066 * In case the child domain prefers tasks go to siblings
0fedc6c8 6067 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6068 * and move all the excess tasks away. We lower the capacity
6069 * of a group only if the local group has the capacity to fit
0fedc6c8 6070 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6071 * extra check prevents the case where you always pull from the
6072 * heaviest group when it is already under-utilized (possible
6073 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6074 */
b72ff13c 6075 if (prefer_sibling && sds->local &&
1b6a7495 6076 sds->local_stat.group_has_free_capacity)
0fedc6c8 6077 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6078
b72ff13c 6079 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6080 sds->busiest = sg;
56cf515b 6081 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6082 }
6083
b72ff13c
PZ
6084next_group:
6085 /* Now, start updating sd_lb_stats */
6086 sds->total_load += sgs->group_load;
63b2ca30 6087 sds->total_capacity += sgs->group_capacity;
b72ff13c 6088
532cb4c4 6089 sg = sg->next;
bd939f45 6090 } while (sg != env->sd->groups);
0ec8aa00
PZ
6091
6092 if (env->sd->flags & SD_NUMA)
6093 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6094
6095 if (!env->sd->parent) {
6096 /* update overload indicator if we are at root domain */
6097 if (env->dst_rq->rd->overload != overload)
6098 env->dst_rq->rd->overload = overload;
6099 }
6100
532cb4c4
MN
6101}
6102
532cb4c4
MN
6103/**
6104 * check_asym_packing - Check to see if the group is packed into the
6105 * sched doman.
6106 *
6107 * This is primarily intended to used at the sibling level. Some
6108 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6109 * case of POWER7, it can move to lower SMT modes only when higher
6110 * threads are idle. When in lower SMT modes, the threads will
6111 * perform better since they share less core resources. Hence when we
6112 * have idle threads, we want them to be the higher ones.
6113 *
6114 * This packing function is run on idle threads. It checks to see if
6115 * the busiest CPU in this domain (core in the P7 case) has a higher
6116 * CPU number than the packing function is being run on. Here we are
6117 * assuming lower CPU number will be equivalent to lower a SMT thread
6118 * number.
6119 *
e69f6186 6120 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6121 * this CPU. The amount of the imbalance is returned in *imbalance.
6122 *
cd96891d 6123 * @env: The load balancing environment.
532cb4c4 6124 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6125 */
bd939f45 6126static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6127{
6128 int busiest_cpu;
6129
bd939f45 6130 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6131 return 0;
6132
6133 if (!sds->busiest)
6134 return 0;
6135
6136 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6137 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6138 return 0;
6139
bd939f45 6140 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6141 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6142 SCHED_CAPACITY_SCALE);
bd939f45 6143
532cb4c4 6144 return 1;
1e3c88bd
PZ
6145}
6146
6147/**
6148 * fix_small_imbalance - Calculate the minor imbalance that exists
6149 * amongst the groups of a sched_domain, during
6150 * load balancing.
cd96891d 6151 * @env: The load balancing environment.
1e3c88bd 6152 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6153 */
bd939f45
PZ
6154static inline
6155void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6156{
63b2ca30 6157 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6158 unsigned int imbn = 2;
dd5feea1 6159 unsigned long scaled_busy_load_per_task;
56cf515b 6160 struct sg_lb_stats *local, *busiest;
1e3c88bd 6161
56cf515b
JK
6162 local = &sds->local_stat;
6163 busiest = &sds->busiest_stat;
1e3c88bd 6164
56cf515b
JK
6165 if (!local->sum_nr_running)
6166 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6167 else if (busiest->load_per_task > local->load_per_task)
6168 imbn = 1;
dd5feea1 6169
56cf515b 6170 scaled_busy_load_per_task =
ca8ce3d0 6171 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6172 busiest->group_capacity;
56cf515b 6173
3029ede3
VD
6174 if (busiest->avg_load + scaled_busy_load_per_task >=
6175 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6176 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6177 return;
6178 }
6179
6180 /*
6181 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6182 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6183 * moving them.
6184 */
6185
63b2ca30 6186 capa_now += busiest->group_capacity *
56cf515b 6187 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6188 capa_now += local->group_capacity *
56cf515b 6189 min(local->load_per_task, local->avg_load);
ca8ce3d0 6190 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6191
6192 /* Amount of load we'd subtract */
a2cd4260 6193 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6194 capa_move += busiest->group_capacity *
56cf515b 6195 min(busiest->load_per_task,
a2cd4260 6196 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6197 }
1e3c88bd
PZ
6198
6199 /* Amount of load we'd add */
63b2ca30 6200 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6201 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6202 tmp = (busiest->avg_load * busiest->group_capacity) /
6203 local->group_capacity;
56cf515b 6204 } else {
ca8ce3d0 6205 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6206 local->group_capacity;
56cf515b 6207 }
63b2ca30 6208 capa_move += local->group_capacity *
3ae11c90 6209 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6210 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6211
6212 /* Move if we gain throughput */
63b2ca30 6213 if (capa_move > capa_now)
56cf515b 6214 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6215}
6216
6217/**
6218 * calculate_imbalance - Calculate the amount of imbalance present within the
6219 * groups of a given sched_domain during load balance.
bd939f45 6220 * @env: load balance environment
1e3c88bd 6221 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6222 */
bd939f45 6223static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6224{
dd5feea1 6225 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6226 struct sg_lb_stats *local, *busiest;
6227
6228 local = &sds->local_stat;
56cf515b 6229 busiest = &sds->busiest_stat;
dd5feea1 6230
56cf515b 6231 if (busiest->group_imb) {
30ce5dab
PZ
6232 /*
6233 * In the group_imb case we cannot rely on group-wide averages
6234 * to ensure cpu-load equilibrium, look at wider averages. XXX
6235 */
56cf515b
JK
6236 busiest->load_per_task =
6237 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6238 }
6239
1e3c88bd
PZ
6240 /*
6241 * In the presence of smp nice balancing, certain scenarios can have
6242 * max load less than avg load(as we skip the groups at or below
ced549fa 6243 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6244 */
b1885550
VD
6245 if (busiest->avg_load <= sds->avg_load ||
6246 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6247 env->imbalance = 0;
6248 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6249 }
6250
56cf515b 6251 if (!busiest->group_imb) {
dd5feea1
SS
6252 /*
6253 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6254 * Except of course for the group_imb case, since then we might
6255 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6256 */
56cf515b 6257 load_above_capacity =
0fedc6c8 6258 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6259
ca8ce3d0 6260 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6261 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6262 }
6263
6264 /*
6265 * We're trying to get all the cpus to the average_load, so we don't
6266 * want to push ourselves above the average load, nor do we wish to
6267 * reduce the max loaded cpu below the average load. At the same time,
6268 * we also don't want to reduce the group load below the group capacity
6269 * (so that we can implement power-savings policies etc). Thus we look
6270 * for the minimum possible imbalance.
dd5feea1 6271 */
30ce5dab 6272 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6273
6274 /* How much load to actually move to equalise the imbalance */
56cf515b 6275 env->imbalance = min(
63b2ca30
NP
6276 max_pull * busiest->group_capacity,
6277 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6278 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6279
6280 /*
6281 * if *imbalance is less than the average load per runnable task
25985edc 6282 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6283 * a think about bumping its value to force at least one task to be
6284 * moved
6285 */
56cf515b 6286 if (env->imbalance < busiest->load_per_task)
bd939f45 6287 return fix_small_imbalance(env, sds);
1e3c88bd 6288}
fab47622 6289
1e3c88bd
PZ
6290/******* find_busiest_group() helpers end here *********************/
6291
6292/**
6293 * find_busiest_group - Returns the busiest group within the sched_domain
6294 * if there is an imbalance. If there isn't an imbalance, and
6295 * the user has opted for power-savings, it returns a group whose
6296 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6297 * such a group exists.
6298 *
6299 * Also calculates the amount of weighted load which should be moved
6300 * to restore balance.
6301 *
cd96891d 6302 * @env: The load balancing environment.
1e3c88bd 6303 *
e69f6186 6304 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6305 * - If no imbalance and user has opted for power-savings balance,
6306 * return the least loaded group whose CPUs can be
6307 * put to idle by rebalancing its tasks onto our group.
6308 */
56cf515b 6309static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6310{
56cf515b 6311 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6312 struct sd_lb_stats sds;
6313
147c5fc2 6314 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6315
6316 /*
6317 * Compute the various statistics relavent for load balancing at
6318 * this level.
6319 */
23f0d209 6320 update_sd_lb_stats(env, &sds);
56cf515b
JK
6321 local = &sds.local_stat;
6322 busiest = &sds.busiest_stat;
1e3c88bd 6323
bd939f45
PZ
6324 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6325 check_asym_packing(env, &sds))
532cb4c4
MN
6326 return sds.busiest;
6327
cc57aa8f 6328 /* There is no busy sibling group to pull tasks from */
56cf515b 6329 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6330 goto out_balanced;
6331
ca8ce3d0
NP
6332 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6333 / sds.total_capacity;
b0432d8f 6334
866ab43e
PZ
6335 /*
6336 * If the busiest group is imbalanced the below checks don't
30ce5dab 6337 * work because they assume all things are equal, which typically
866ab43e
PZ
6338 * isn't true due to cpus_allowed constraints and the like.
6339 */
56cf515b 6340 if (busiest->group_imb)
866ab43e
PZ
6341 goto force_balance;
6342
cc57aa8f 6343 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6344 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6345 !busiest->group_has_free_capacity)
fab47622
NR
6346 goto force_balance;
6347
cc57aa8f
PZ
6348 /*
6349 * If the local group is more busy than the selected busiest group
6350 * don't try and pull any tasks.
6351 */
56cf515b 6352 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6353 goto out_balanced;
6354
cc57aa8f
PZ
6355 /*
6356 * Don't pull any tasks if this group is already above the domain
6357 * average load.
6358 */
56cf515b 6359 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6360 goto out_balanced;
6361
bd939f45 6362 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6363 /*
6364 * This cpu is idle. If the busiest group load doesn't
6365 * have more tasks than the number of available cpu's and
6366 * there is no imbalance between this and busiest group
6367 * wrt to idle cpu's, it is balanced.
6368 */
56cf515b
JK
6369 if ((local->idle_cpus < busiest->idle_cpus) &&
6370 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6371 goto out_balanced;
c186fafe
PZ
6372 } else {
6373 /*
6374 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6375 * imbalance_pct to be conservative.
6376 */
56cf515b
JK
6377 if (100 * busiest->avg_load <=
6378 env->sd->imbalance_pct * local->avg_load)
c186fafe 6379 goto out_balanced;
aae6d3dd 6380 }
1e3c88bd 6381
fab47622 6382force_balance:
1e3c88bd 6383 /* Looks like there is an imbalance. Compute it */
bd939f45 6384 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6385 return sds.busiest;
6386
6387out_balanced:
bd939f45 6388 env->imbalance = 0;
1e3c88bd
PZ
6389 return NULL;
6390}
6391
6392/*
6393 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6394 */
bd939f45 6395static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6396 struct sched_group *group)
1e3c88bd
PZ
6397{
6398 struct rq *busiest = NULL, *rq;
ced549fa 6399 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6400 int i;
6401
6906a408 6402 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6403 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6404 enum fbq_type rt;
6405
6406 rq = cpu_rq(i);
6407 rt = fbq_classify_rq(rq);
1e3c88bd 6408
0ec8aa00
PZ
6409 /*
6410 * We classify groups/runqueues into three groups:
6411 * - regular: there are !numa tasks
6412 * - remote: there are numa tasks that run on the 'wrong' node
6413 * - all: there is no distinction
6414 *
6415 * In order to avoid migrating ideally placed numa tasks,
6416 * ignore those when there's better options.
6417 *
6418 * If we ignore the actual busiest queue to migrate another
6419 * task, the next balance pass can still reduce the busiest
6420 * queue by moving tasks around inside the node.
6421 *
6422 * If we cannot move enough load due to this classification
6423 * the next pass will adjust the group classification and
6424 * allow migration of more tasks.
6425 *
6426 * Both cases only affect the total convergence complexity.
6427 */
6428 if (rt > env->fbq_type)
6429 continue;
6430
ced549fa 6431 capacity = capacity_of(i);
ca8ce3d0 6432 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6433 if (!capacity_factor)
6434 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6435
6e40f5bb 6436 wl = weighted_cpuload(i);
1e3c88bd 6437
6e40f5bb
TG
6438 /*
6439 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6440 * which is not scaled with the cpu capacity.
6e40f5bb 6441 */
0fedc6c8 6442 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6443 continue;
6444
6e40f5bb
TG
6445 /*
6446 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6447 * the weighted_cpuload() scaled with the cpu capacity, so
6448 * that the load can be moved away from the cpu that is
6449 * potentially running at a lower capacity.
95a79b80 6450 *
ced549fa 6451 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6452 * multiplication to rid ourselves of the division works out
ced549fa
NP
6453 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6454 * our previous maximum.
6e40f5bb 6455 */
ced549fa 6456 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6457 busiest_load = wl;
ced549fa 6458 busiest_capacity = capacity;
1e3c88bd
PZ
6459 busiest = rq;
6460 }
6461 }
6462
6463 return busiest;
6464}
6465
6466/*
6467 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6468 * so long as it is large enough.
6469 */
6470#define MAX_PINNED_INTERVAL 512
6471
6472/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6473DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6474
bd939f45 6475static int need_active_balance(struct lb_env *env)
1af3ed3d 6476{
bd939f45
PZ
6477 struct sched_domain *sd = env->sd;
6478
6479 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6480
6481 /*
6482 * ASYM_PACKING needs to force migrate tasks from busy but
6483 * higher numbered CPUs in order to pack all tasks in the
6484 * lowest numbered CPUs.
6485 */
bd939f45 6486 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6487 return 1;
1af3ed3d
PZ
6488 }
6489
6490 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6491}
6492
969c7921
TH
6493static int active_load_balance_cpu_stop(void *data);
6494
23f0d209
JK
6495static int should_we_balance(struct lb_env *env)
6496{
6497 struct sched_group *sg = env->sd->groups;
6498 struct cpumask *sg_cpus, *sg_mask;
6499 int cpu, balance_cpu = -1;
6500
6501 /*
6502 * In the newly idle case, we will allow all the cpu's
6503 * to do the newly idle load balance.
6504 */
6505 if (env->idle == CPU_NEWLY_IDLE)
6506 return 1;
6507
6508 sg_cpus = sched_group_cpus(sg);
6509 sg_mask = sched_group_mask(sg);
6510 /* Try to find first idle cpu */
6511 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6512 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6513 continue;
6514
6515 balance_cpu = cpu;
6516 break;
6517 }
6518
6519 if (balance_cpu == -1)
6520 balance_cpu = group_balance_cpu(sg);
6521
6522 /*
6523 * First idle cpu or the first cpu(busiest) in this sched group
6524 * is eligible for doing load balancing at this and above domains.
6525 */
b0cff9d8 6526 return balance_cpu == env->dst_cpu;
23f0d209
JK
6527}
6528
1e3c88bd
PZ
6529/*
6530 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6531 * tasks if there is an imbalance.
6532 */
6533static int load_balance(int this_cpu, struct rq *this_rq,
6534 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6535 int *continue_balancing)
1e3c88bd 6536{
88b8dac0 6537 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6538 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6539 struct sched_group *group;
1e3c88bd
PZ
6540 struct rq *busiest;
6541 unsigned long flags;
e6252c3e 6542 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6543
8e45cb54
PZ
6544 struct lb_env env = {
6545 .sd = sd,
ddcdf6e7
PZ
6546 .dst_cpu = this_cpu,
6547 .dst_rq = this_rq,
88b8dac0 6548 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6549 .idle = idle,
eb95308e 6550 .loop_break = sched_nr_migrate_break,
b9403130 6551 .cpus = cpus,
0ec8aa00 6552 .fbq_type = all,
8e45cb54
PZ
6553 };
6554
cfc03118
JK
6555 /*
6556 * For NEWLY_IDLE load_balancing, we don't need to consider
6557 * other cpus in our group
6558 */
e02e60c1 6559 if (idle == CPU_NEWLY_IDLE)
cfc03118 6560 env.dst_grpmask = NULL;
cfc03118 6561
1e3c88bd
PZ
6562 cpumask_copy(cpus, cpu_active_mask);
6563
1e3c88bd
PZ
6564 schedstat_inc(sd, lb_count[idle]);
6565
6566redo:
23f0d209
JK
6567 if (!should_we_balance(&env)) {
6568 *continue_balancing = 0;
1e3c88bd 6569 goto out_balanced;
23f0d209 6570 }
1e3c88bd 6571
23f0d209 6572 group = find_busiest_group(&env);
1e3c88bd
PZ
6573 if (!group) {
6574 schedstat_inc(sd, lb_nobusyg[idle]);
6575 goto out_balanced;
6576 }
6577
b9403130 6578 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6579 if (!busiest) {
6580 schedstat_inc(sd, lb_nobusyq[idle]);
6581 goto out_balanced;
6582 }
6583
78feefc5 6584 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6585
bd939f45 6586 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6587
6588 ld_moved = 0;
6589 if (busiest->nr_running > 1) {
6590 /*
6591 * Attempt to move tasks. If find_busiest_group has found
6592 * an imbalance but busiest->nr_running <= 1, the group is
6593 * still unbalanced. ld_moved simply stays zero, so it is
6594 * correctly treated as an imbalance.
6595 */
8e45cb54 6596 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6597 env.src_cpu = busiest->cpu;
6598 env.src_rq = busiest;
6599 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6600
5d6523eb 6601more_balance:
1e3c88bd 6602 local_irq_save(flags);
78feefc5 6603 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6604
6605 /*
6606 * cur_ld_moved - load moved in current iteration
6607 * ld_moved - cumulative load moved across iterations
6608 */
6609 cur_ld_moved = move_tasks(&env);
6610 ld_moved += cur_ld_moved;
78feefc5 6611 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6612 local_irq_restore(flags);
6613
6614 /*
6615 * some other cpu did the load balance for us.
6616 */
88b8dac0
SV
6617 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6618 resched_cpu(env.dst_cpu);
6619
f1cd0858
JK
6620 if (env.flags & LBF_NEED_BREAK) {
6621 env.flags &= ~LBF_NEED_BREAK;
6622 goto more_balance;
6623 }
6624
88b8dac0
SV
6625 /*
6626 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6627 * us and move them to an alternate dst_cpu in our sched_group
6628 * where they can run. The upper limit on how many times we
6629 * iterate on same src_cpu is dependent on number of cpus in our
6630 * sched_group.
6631 *
6632 * This changes load balance semantics a bit on who can move
6633 * load to a given_cpu. In addition to the given_cpu itself
6634 * (or a ilb_cpu acting on its behalf where given_cpu is
6635 * nohz-idle), we now have balance_cpu in a position to move
6636 * load to given_cpu. In rare situations, this may cause
6637 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6638 * _independently_ and at _same_ time to move some load to
6639 * given_cpu) causing exceess load to be moved to given_cpu.
6640 * This however should not happen so much in practice and
6641 * moreover subsequent load balance cycles should correct the
6642 * excess load moved.
6643 */
6263322c 6644 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6645
7aff2e3a
VD
6646 /* Prevent to re-select dst_cpu via env's cpus */
6647 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6648
78feefc5 6649 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6650 env.dst_cpu = env.new_dst_cpu;
6263322c 6651 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6652 env.loop = 0;
6653 env.loop_break = sched_nr_migrate_break;
e02e60c1 6654
88b8dac0
SV
6655 /*
6656 * Go back to "more_balance" rather than "redo" since we
6657 * need to continue with same src_cpu.
6658 */
6659 goto more_balance;
6660 }
1e3c88bd 6661
6263322c
PZ
6662 /*
6663 * We failed to reach balance because of affinity.
6664 */
6665 if (sd_parent) {
63b2ca30 6666 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6667
6668 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6669 *group_imbalance = 1;
6670 } else if (*group_imbalance)
6671 *group_imbalance = 0;
6672 }
6673
1e3c88bd 6674 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6675 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6676 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6677 if (!cpumask_empty(cpus)) {
6678 env.loop = 0;
6679 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6680 goto redo;
bbf18b19 6681 }
1e3c88bd
PZ
6682 goto out_balanced;
6683 }
6684 }
6685
6686 if (!ld_moved) {
6687 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6688 /*
6689 * Increment the failure counter only on periodic balance.
6690 * We do not want newidle balance, which can be very
6691 * frequent, pollute the failure counter causing
6692 * excessive cache_hot migrations and active balances.
6693 */
6694 if (idle != CPU_NEWLY_IDLE)
6695 sd->nr_balance_failed++;
1e3c88bd 6696
bd939f45 6697 if (need_active_balance(&env)) {
1e3c88bd
PZ
6698 raw_spin_lock_irqsave(&busiest->lock, flags);
6699
969c7921
TH
6700 /* don't kick the active_load_balance_cpu_stop,
6701 * if the curr task on busiest cpu can't be
6702 * moved to this_cpu
1e3c88bd
PZ
6703 */
6704 if (!cpumask_test_cpu(this_cpu,
fa17b507 6705 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6706 raw_spin_unlock_irqrestore(&busiest->lock,
6707 flags);
8e45cb54 6708 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6709 goto out_one_pinned;
6710 }
6711
969c7921
TH
6712 /*
6713 * ->active_balance synchronizes accesses to
6714 * ->active_balance_work. Once set, it's cleared
6715 * only after active load balance is finished.
6716 */
1e3c88bd
PZ
6717 if (!busiest->active_balance) {
6718 busiest->active_balance = 1;
6719 busiest->push_cpu = this_cpu;
6720 active_balance = 1;
6721 }
6722 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6723
bd939f45 6724 if (active_balance) {
969c7921
TH
6725 stop_one_cpu_nowait(cpu_of(busiest),
6726 active_load_balance_cpu_stop, busiest,
6727 &busiest->active_balance_work);
bd939f45 6728 }
1e3c88bd
PZ
6729
6730 /*
6731 * We've kicked active balancing, reset the failure
6732 * counter.
6733 */
6734 sd->nr_balance_failed = sd->cache_nice_tries+1;
6735 }
6736 } else
6737 sd->nr_balance_failed = 0;
6738
6739 if (likely(!active_balance)) {
6740 /* We were unbalanced, so reset the balancing interval */
6741 sd->balance_interval = sd->min_interval;
6742 } else {
6743 /*
6744 * If we've begun active balancing, start to back off. This
6745 * case may not be covered by the all_pinned logic if there
6746 * is only 1 task on the busy runqueue (because we don't call
6747 * move_tasks).
6748 */
6749 if (sd->balance_interval < sd->max_interval)
6750 sd->balance_interval *= 2;
6751 }
6752
1e3c88bd
PZ
6753 goto out;
6754
6755out_balanced:
6756 schedstat_inc(sd, lb_balanced[idle]);
6757
6758 sd->nr_balance_failed = 0;
6759
6760out_one_pinned:
6761 /* tune up the balancing interval */
8e45cb54 6762 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6763 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6764 (sd->balance_interval < sd->max_interval))
6765 sd->balance_interval *= 2;
6766
46e49b38 6767 ld_moved = 0;
1e3c88bd 6768out:
1e3c88bd
PZ
6769 return ld_moved;
6770}
6771
52a08ef1
JL
6772static inline unsigned long
6773get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6774{
6775 unsigned long interval = sd->balance_interval;
6776
6777 if (cpu_busy)
6778 interval *= sd->busy_factor;
6779
6780 /* scale ms to jiffies */
6781 interval = msecs_to_jiffies(interval);
6782 interval = clamp(interval, 1UL, max_load_balance_interval);
6783
6784 return interval;
6785}
6786
6787static inline void
6788update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6789{
6790 unsigned long interval, next;
6791
6792 interval = get_sd_balance_interval(sd, cpu_busy);
6793 next = sd->last_balance + interval;
6794
6795 if (time_after(*next_balance, next))
6796 *next_balance = next;
6797}
6798
1e3c88bd
PZ
6799/*
6800 * idle_balance is called by schedule() if this_cpu is about to become
6801 * idle. Attempts to pull tasks from other CPUs.
6802 */
6e83125c 6803static int idle_balance(struct rq *this_rq)
1e3c88bd 6804{
52a08ef1
JL
6805 unsigned long next_balance = jiffies + HZ;
6806 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6807 struct sched_domain *sd;
6808 int pulled_task = 0;
9bd721c5 6809 u64 curr_cost = 0;
1e3c88bd 6810
6e83125c 6811 idle_enter_fair(this_rq);
0e5b5337 6812
6e83125c
PZ
6813 /*
6814 * We must set idle_stamp _before_ calling idle_balance(), such that we
6815 * measure the duration of idle_balance() as idle time.
6816 */
6817 this_rq->idle_stamp = rq_clock(this_rq);
6818
4486edd1
TC
6819 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6820 !this_rq->rd->overload) {
52a08ef1
JL
6821 rcu_read_lock();
6822 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6823 if (sd)
6824 update_next_balance(sd, 0, &next_balance);
6825 rcu_read_unlock();
6826
6e83125c 6827 goto out;
52a08ef1 6828 }
1e3c88bd 6829
f492e12e
PZ
6830 /*
6831 * Drop the rq->lock, but keep IRQ/preempt disabled.
6832 */
6833 raw_spin_unlock(&this_rq->lock);
6834
48a16753 6835 update_blocked_averages(this_cpu);
dce840a0 6836 rcu_read_lock();
1e3c88bd 6837 for_each_domain(this_cpu, sd) {
23f0d209 6838 int continue_balancing = 1;
9bd721c5 6839 u64 t0, domain_cost;
1e3c88bd
PZ
6840
6841 if (!(sd->flags & SD_LOAD_BALANCE))
6842 continue;
6843
52a08ef1
JL
6844 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6845 update_next_balance(sd, 0, &next_balance);
9bd721c5 6846 break;
52a08ef1 6847 }
9bd721c5 6848
f492e12e 6849 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6850 t0 = sched_clock_cpu(this_cpu);
6851
f492e12e 6852 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6853 sd, CPU_NEWLY_IDLE,
6854 &continue_balancing);
9bd721c5
JL
6855
6856 domain_cost = sched_clock_cpu(this_cpu) - t0;
6857 if (domain_cost > sd->max_newidle_lb_cost)
6858 sd->max_newidle_lb_cost = domain_cost;
6859
6860 curr_cost += domain_cost;
f492e12e 6861 }
1e3c88bd 6862
52a08ef1 6863 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6864
6865 /*
6866 * Stop searching for tasks to pull if there are
6867 * now runnable tasks on this rq.
6868 */
6869 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6870 break;
1e3c88bd 6871 }
dce840a0 6872 rcu_read_unlock();
f492e12e
PZ
6873
6874 raw_spin_lock(&this_rq->lock);
6875
0e5b5337
JL
6876 if (curr_cost > this_rq->max_idle_balance_cost)
6877 this_rq->max_idle_balance_cost = curr_cost;
6878
e5fc6611 6879 /*
0e5b5337
JL
6880 * While browsing the domains, we released the rq lock, a task could
6881 * have been enqueued in the meantime. Since we're not going idle,
6882 * pretend we pulled a task.
e5fc6611 6883 */
0e5b5337 6884 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6885 pulled_task = 1;
e5fc6611 6886
52a08ef1
JL
6887out:
6888 /* Move the next balance forward */
6889 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6890 this_rq->next_balance = next_balance;
9bd721c5 6891
e4aa358b 6892 /* Is there a task of a high priority class? */
46383648 6893 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6894 pulled_task = -1;
6895
6896 if (pulled_task) {
6897 idle_exit_fair(this_rq);
6e83125c 6898 this_rq->idle_stamp = 0;
e4aa358b 6899 }
6e83125c 6900
3c4017c1 6901 return pulled_task;
1e3c88bd
PZ
6902}
6903
6904/*
969c7921
TH
6905 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6906 * running tasks off the busiest CPU onto idle CPUs. It requires at
6907 * least 1 task to be running on each physical CPU where possible, and
6908 * avoids physical / logical imbalances.
1e3c88bd 6909 */
969c7921 6910static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6911{
969c7921
TH
6912 struct rq *busiest_rq = data;
6913 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6914 int target_cpu = busiest_rq->push_cpu;
969c7921 6915 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6916 struct sched_domain *sd;
969c7921
TH
6917
6918 raw_spin_lock_irq(&busiest_rq->lock);
6919
6920 /* make sure the requested cpu hasn't gone down in the meantime */
6921 if (unlikely(busiest_cpu != smp_processor_id() ||
6922 !busiest_rq->active_balance))
6923 goto out_unlock;
1e3c88bd
PZ
6924
6925 /* Is there any task to move? */
6926 if (busiest_rq->nr_running <= 1)
969c7921 6927 goto out_unlock;
1e3c88bd
PZ
6928
6929 /*
6930 * This condition is "impossible", if it occurs
6931 * we need to fix it. Originally reported by
6932 * Bjorn Helgaas on a 128-cpu setup.
6933 */
6934 BUG_ON(busiest_rq == target_rq);
6935
6936 /* move a task from busiest_rq to target_rq */
6937 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6938
6939 /* Search for an sd spanning us and the target CPU. */
dce840a0 6940 rcu_read_lock();
1e3c88bd
PZ
6941 for_each_domain(target_cpu, sd) {
6942 if ((sd->flags & SD_LOAD_BALANCE) &&
6943 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6944 break;
6945 }
6946
6947 if (likely(sd)) {
8e45cb54
PZ
6948 struct lb_env env = {
6949 .sd = sd,
ddcdf6e7
PZ
6950 .dst_cpu = target_cpu,
6951 .dst_rq = target_rq,
6952 .src_cpu = busiest_rq->cpu,
6953 .src_rq = busiest_rq,
8e45cb54
PZ
6954 .idle = CPU_IDLE,
6955 };
6956
1e3c88bd
PZ
6957 schedstat_inc(sd, alb_count);
6958
8e45cb54 6959 if (move_one_task(&env))
1e3c88bd
PZ
6960 schedstat_inc(sd, alb_pushed);
6961 else
6962 schedstat_inc(sd, alb_failed);
6963 }
dce840a0 6964 rcu_read_unlock();
1e3c88bd 6965 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6966out_unlock:
6967 busiest_rq->active_balance = 0;
6968 raw_spin_unlock_irq(&busiest_rq->lock);
6969 return 0;
1e3c88bd
PZ
6970}
6971
d987fc7f
MG
6972static inline int on_null_domain(struct rq *rq)
6973{
6974 return unlikely(!rcu_dereference_sched(rq->sd));
6975}
6976
3451d024 6977#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6978/*
6979 * idle load balancing details
83cd4fe2
VP
6980 * - When one of the busy CPUs notice that there may be an idle rebalancing
6981 * needed, they will kick the idle load balancer, which then does idle
6982 * load balancing for all the idle CPUs.
6983 */
1e3c88bd 6984static struct {
83cd4fe2 6985 cpumask_var_t idle_cpus_mask;
0b005cf5 6986 atomic_t nr_cpus;
83cd4fe2
VP
6987 unsigned long next_balance; /* in jiffy units */
6988} nohz ____cacheline_aligned;
1e3c88bd 6989
3dd0337d 6990static inline int find_new_ilb(void)
1e3c88bd 6991{
0b005cf5 6992 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6993
786d6dc7
SS
6994 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6995 return ilb;
6996
6997 return nr_cpu_ids;
1e3c88bd 6998}
1e3c88bd 6999
83cd4fe2
VP
7000/*
7001 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7002 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7003 * CPU (if there is one).
7004 */
0aeeeeba 7005static void nohz_balancer_kick(void)
83cd4fe2
VP
7006{
7007 int ilb_cpu;
7008
7009 nohz.next_balance++;
7010
3dd0337d 7011 ilb_cpu = find_new_ilb();
83cd4fe2 7012
0b005cf5
SS
7013 if (ilb_cpu >= nr_cpu_ids)
7014 return;
83cd4fe2 7015
cd490c5b 7016 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7017 return;
7018 /*
7019 * Use smp_send_reschedule() instead of resched_cpu().
7020 * This way we generate a sched IPI on the target cpu which
7021 * is idle. And the softirq performing nohz idle load balance
7022 * will be run before returning from the IPI.
7023 */
7024 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7025 return;
7026}
7027
c1cc017c 7028static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7029{
7030 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7031 /*
7032 * Completely isolated CPUs don't ever set, so we must test.
7033 */
7034 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7035 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7036 atomic_dec(&nohz.nr_cpus);
7037 }
71325960
SS
7038 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7039 }
7040}
7041
69e1e811
SS
7042static inline void set_cpu_sd_state_busy(void)
7043{
7044 struct sched_domain *sd;
37dc6b50 7045 int cpu = smp_processor_id();
69e1e811 7046
69e1e811 7047 rcu_read_lock();
37dc6b50 7048 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7049
7050 if (!sd || !sd->nohz_idle)
7051 goto unlock;
7052 sd->nohz_idle = 0;
7053
63b2ca30 7054 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7055unlock:
69e1e811
SS
7056 rcu_read_unlock();
7057}
7058
7059void set_cpu_sd_state_idle(void)
7060{
7061 struct sched_domain *sd;
37dc6b50 7062 int cpu = smp_processor_id();
69e1e811 7063
69e1e811 7064 rcu_read_lock();
37dc6b50 7065 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7066
7067 if (!sd || sd->nohz_idle)
7068 goto unlock;
7069 sd->nohz_idle = 1;
7070
63b2ca30 7071 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7072unlock:
69e1e811
SS
7073 rcu_read_unlock();
7074}
7075
1e3c88bd 7076/*
c1cc017c 7077 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7078 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7079 */
c1cc017c 7080void nohz_balance_enter_idle(int cpu)
1e3c88bd 7081{
71325960
SS
7082 /*
7083 * If this cpu is going down, then nothing needs to be done.
7084 */
7085 if (!cpu_active(cpu))
7086 return;
7087
c1cc017c
AS
7088 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7089 return;
1e3c88bd 7090
d987fc7f
MG
7091 /*
7092 * If we're a completely isolated CPU, we don't play.
7093 */
7094 if (on_null_domain(cpu_rq(cpu)))
7095 return;
7096
c1cc017c
AS
7097 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7098 atomic_inc(&nohz.nr_cpus);
7099 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7100}
71325960 7101
0db0628d 7102static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7103 unsigned long action, void *hcpu)
7104{
7105 switch (action & ~CPU_TASKS_FROZEN) {
7106 case CPU_DYING:
c1cc017c 7107 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7108 return NOTIFY_OK;
7109 default:
7110 return NOTIFY_DONE;
7111 }
7112}
1e3c88bd
PZ
7113#endif
7114
7115static DEFINE_SPINLOCK(balancing);
7116
49c022e6
PZ
7117/*
7118 * Scale the max load_balance interval with the number of CPUs in the system.
7119 * This trades load-balance latency on larger machines for less cross talk.
7120 */
029632fb 7121void update_max_interval(void)
49c022e6
PZ
7122{
7123 max_load_balance_interval = HZ*num_online_cpus()/10;
7124}
7125
1e3c88bd
PZ
7126/*
7127 * It checks each scheduling domain to see if it is due to be balanced,
7128 * and initiates a balancing operation if so.
7129 *
b9b0853a 7130 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7131 */
f7ed0a89 7132static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7133{
23f0d209 7134 int continue_balancing = 1;
f7ed0a89 7135 int cpu = rq->cpu;
1e3c88bd 7136 unsigned long interval;
04f733b4 7137 struct sched_domain *sd;
1e3c88bd
PZ
7138 /* Earliest time when we have to do rebalance again */
7139 unsigned long next_balance = jiffies + 60*HZ;
7140 int update_next_balance = 0;
f48627e6
JL
7141 int need_serialize, need_decay = 0;
7142 u64 max_cost = 0;
1e3c88bd 7143
48a16753 7144 update_blocked_averages(cpu);
2069dd75 7145
dce840a0 7146 rcu_read_lock();
1e3c88bd 7147 for_each_domain(cpu, sd) {
f48627e6
JL
7148 /*
7149 * Decay the newidle max times here because this is a regular
7150 * visit to all the domains. Decay ~1% per second.
7151 */
7152 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7153 sd->max_newidle_lb_cost =
7154 (sd->max_newidle_lb_cost * 253) / 256;
7155 sd->next_decay_max_lb_cost = jiffies + HZ;
7156 need_decay = 1;
7157 }
7158 max_cost += sd->max_newidle_lb_cost;
7159
1e3c88bd
PZ
7160 if (!(sd->flags & SD_LOAD_BALANCE))
7161 continue;
7162
f48627e6
JL
7163 /*
7164 * Stop the load balance at this level. There is another
7165 * CPU in our sched group which is doing load balancing more
7166 * actively.
7167 */
7168 if (!continue_balancing) {
7169 if (need_decay)
7170 continue;
7171 break;
7172 }
7173
52a08ef1 7174 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7175
7176 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7177 if (need_serialize) {
7178 if (!spin_trylock(&balancing))
7179 goto out;
7180 }
7181
7182 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7183 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7184 /*
6263322c 7185 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7186 * env->dst_cpu, so we can't know our idle
7187 * state even if we migrated tasks. Update it.
1e3c88bd 7188 */
de5eb2dd 7189 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7190 }
7191 sd->last_balance = jiffies;
52a08ef1 7192 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7193 }
7194 if (need_serialize)
7195 spin_unlock(&balancing);
7196out:
7197 if (time_after(next_balance, sd->last_balance + interval)) {
7198 next_balance = sd->last_balance + interval;
7199 update_next_balance = 1;
7200 }
f48627e6
JL
7201 }
7202 if (need_decay) {
1e3c88bd 7203 /*
f48627e6
JL
7204 * Ensure the rq-wide value also decays but keep it at a
7205 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7206 */
f48627e6
JL
7207 rq->max_idle_balance_cost =
7208 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7209 }
dce840a0 7210 rcu_read_unlock();
1e3c88bd
PZ
7211
7212 /*
7213 * next_balance will be updated only when there is a need.
7214 * When the cpu is attached to null domain for ex, it will not be
7215 * updated.
7216 */
7217 if (likely(update_next_balance))
7218 rq->next_balance = next_balance;
7219}
7220
3451d024 7221#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7222/*
3451d024 7223 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7224 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7225 */
208cb16b 7226static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7227{
208cb16b 7228 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7229 struct rq *rq;
7230 int balance_cpu;
7231
1c792db7
SS
7232 if (idle != CPU_IDLE ||
7233 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7234 goto end;
83cd4fe2
VP
7235
7236 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7237 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7238 continue;
7239
7240 /*
7241 * If this cpu gets work to do, stop the load balancing
7242 * work being done for other cpus. Next load
7243 * balancing owner will pick it up.
7244 */
1c792db7 7245 if (need_resched())
83cd4fe2 7246 break;
83cd4fe2 7247
5ed4f1d9
VG
7248 rq = cpu_rq(balance_cpu);
7249
ed61bbc6
TC
7250 /*
7251 * If time for next balance is due,
7252 * do the balance.
7253 */
7254 if (time_after_eq(jiffies, rq->next_balance)) {
7255 raw_spin_lock_irq(&rq->lock);
7256 update_rq_clock(rq);
7257 update_idle_cpu_load(rq);
7258 raw_spin_unlock_irq(&rq->lock);
7259 rebalance_domains(rq, CPU_IDLE);
7260 }
83cd4fe2 7261
83cd4fe2
VP
7262 if (time_after(this_rq->next_balance, rq->next_balance))
7263 this_rq->next_balance = rq->next_balance;
7264 }
7265 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7266end:
7267 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7268}
7269
7270/*
0b005cf5
SS
7271 * Current heuristic for kicking the idle load balancer in the presence
7272 * of an idle cpu is the system.
7273 * - This rq has more than one task.
7274 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7275 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7276 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7277 * domain span are idle.
83cd4fe2 7278 */
4a725627 7279static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7280{
7281 unsigned long now = jiffies;
0b005cf5 7282 struct sched_domain *sd;
63b2ca30 7283 struct sched_group_capacity *sgc;
4a725627 7284 int nr_busy, cpu = rq->cpu;
83cd4fe2 7285
4a725627 7286 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7287 return 0;
7288
1c792db7
SS
7289 /*
7290 * We may be recently in ticked or tickless idle mode. At the first
7291 * busy tick after returning from idle, we will update the busy stats.
7292 */
69e1e811 7293 set_cpu_sd_state_busy();
c1cc017c 7294 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7295
7296 /*
7297 * None are in tickless mode and hence no need for NOHZ idle load
7298 * balancing.
7299 */
7300 if (likely(!atomic_read(&nohz.nr_cpus)))
7301 return 0;
1c792db7
SS
7302
7303 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7304 return 0;
7305
0b005cf5
SS
7306 if (rq->nr_running >= 2)
7307 goto need_kick;
83cd4fe2 7308
067491b7 7309 rcu_read_lock();
37dc6b50 7310 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7311
37dc6b50 7312 if (sd) {
63b2ca30
NP
7313 sgc = sd->groups->sgc;
7314 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7315
37dc6b50 7316 if (nr_busy > 1)
067491b7 7317 goto need_kick_unlock;
83cd4fe2 7318 }
37dc6b50
PM
7319
7320 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7321
7322 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7323 sched_domain_span(sd)) < cpu))
7324 goto need_kick_unlock;
7325
067491b7 7326 rcu_read_unlock();
83cd4fe2 7327 return 0;
067491b7
PZ
7328
7329need_kick_unlock:
7330 rcu_read_unlock();
0b005cf5
SS
7331need_kick:
7332 return 1;
83cd4fe2
VP
7333}
7334#else
208cb16b 7335static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7336#endif
7337
7338/*
7339 * run_rebalance_domains is triggered when needed from the scheduler tick.
7340 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7341 */
1e3c88bd
PZ
7342static void run_rebalance_domains(struct softirq_action *h)
7343{
208cb16b 7344 struct rq *this_rq = this_rq();
6eb57e0d 7345 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7346 CPU_IDLE : CPU_NOT_IDLE;
7347
f7ed0a89 7348 rebalance_domains(this_rq, idle);
1e3c88bd 7349
1e3c88bd 7350 /*
83cd4fe2 7351 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7352 * balancing on behalf of the other idle cpus whose ticks are
7353 * stopped.
7354 */
208cb16b 7355 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7356}
7357
1e3c88bd
PZ
7358/*
7359 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7360 */
7caff66f 7361void trigger_load_balance(struct rq *rq)
1e3c88bd 7362{
1e3c88bd 7363 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7364 if (unlikely(on_null_domain(rq)))
7365 return;
7366
7367 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7368 raise_softirq(SCHED_SOFTIRQ);
3451d024 7369#ifdef CONFIG_NO_HZ_COMMON
c726099e 7370 if (nohz_kick_needed(rq))
0aeeeeba 7371 nohz_balancer_kick();
83cd4fe2 7372#endif
1e3c88bd
PZ
7373}
7374
0bcdcf28
CE
7375static void rq_online_fair(struct rq *rq)
7376{
7377 update_sysctl();
0e59bdae
KT
7378
7379 update_runtime_enabled(rq);
0bcdcf28
CE
7380}
7381
7382static void rq_offline_fair(struct rq *rq)
7383{
7384 update_sysctl();
a4c96ae3
PB
7385
7386 /* Ensure any throttled groups are reachable by pick_next_task */
7387 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7388}
7389
55e12e5e 7390#endif /* CONFIG_SMP */
e1d1484f 7391
bf0f6f24
IM
7392/*
7393 * scheduler tick hitting a task of our scheduling class:
7394 */
8f4d37ec 7395static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7396{
7397 struct cfs_rq *cfs_rq;
7398 struct sched_entity *se = &curr->se;
7399
7400 for_each_sched_entity(se) {
7401 cfs_rq = cfs_rq_of(se);
8f4d37ec 7402 entity_tick(cfs_rq, se, queued);
bf0f6f24 7403 }
18bf2805 7404
10e84b97 7405 if (numabalancing_enabled)
cbee9f88 7406 task_tick_numa(rq, curr);
3d59eebc 7407
18bf2805 7408 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7409}
7410
7411/*
cd29fe6f
PZ
7412 * called on fork with the child task as argument from the parent's context
7413 * - child not yet on the tasklist
7414 * - preemption disabled
bf0f6f24 7415 */
cd29fe6f 7416static void task_fork_fair(struct task_struct *p)
bf0f6f24 7417{
4fc420c9
DN
7418 struct cfs_rq *cfs_rq;
7419 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7420 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7421 struct rq *rq = this_rq();
7422 unsigned long flags;
7423
05fa785c 7424 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7425
861d034e
PZ
7426 update_rq_clock(rq);
7427
4fc420c9
DN
7428 cfs_rq = task_cfs_rq(current);
7429 curr = cfs_rq->curr;
7430
6c9a27f5
DN
7431 /*
7432 * Not only the cpu but also the task_group of the parent might have
7433 * been changed after parent->se.parent,cfs_rq were copied to
7434 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7435 * of child point to valid ones.
7436 */
7437 rcu_read_lock();
7438 __set_task_cpu(p, this_cpu);
7439 rcu_read_unlock();
bf0f6f24 7440
7109c442 7441 update_curr(cfs_rq);
cd29fe6f 7442
b5d9d734
MG
7443 if (curr)
7444 se->vruntime = curr->vruntime;
aeb73b04 7445 place_entity(cfs_rq, se, 1);
4d78e7b6 7446
cd29fe6f 7447 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7448 /*
edcb60a3
IM
7449 * Upon rescheduling, sched_class::put_prev_task() will place
7450 * 'current' within the tree based on its new key value.
7451 */
4d78e7b6 7452 swap(curr->vruntime, se->vruntime);
8875125e 7453 resched_curr(rq);
4d78e7b6 7454 }
bf0f6f24 7455
88ec22d3
PZ
7456 se->vruntime -= cfs_rq->min_vruntime;
7457
05fa785c 7458 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7459}
7460
cb469845
SR
7461/*
7462 * Priority of the task has changed. Check to see if we preempt
7463 * the current task.
7464 */
da7a735e
PZ
7465static void
7466prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7467{
da7a735e
PZ
7468 if (!p->se.on_rq)
7469 return;
7470
cb469845
SR
7471 /*
7472 * Reschedule if we are currently running on this runqueue and
7473 * our priority decreased, or if we are not currently running on
7474 * this runqueue and our priority is higher than the current's
7475 */
da7a735e 7476 if (rq->curr == p) {
cb469845 7477 if (p->prio > oldprio)
8875125e 7478 resched_curr(rq);
cb469845 7479 } else
15afe09b 7480 check_preempt_curr(rq, p, 0);
cb469845
SR
7481}
7482
da7a735e
PZ
7483static void switched_from_fair(struct rq *rq, struct task_struct *p)
7484{
7485 struct sched_entity *se = &p->se;
7486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7487
7488 /*
791c9e02 7489 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7490 * switched back to the fair class the enqueue_entity(.flags=0) will
7491 * do the right thing.
7492 *
791c9e02
GM
7493 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7494 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7495 * the task is sleeping will it still have non-normalized vruntime.
7496 */
791c9e02 7497 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7498 /*
7499 * Fix up our vruntime so that the current sleep doesn't
7500 * cause 'unlimited' sleep bonus.
7501 */
7502 place_entity(cfs_rq, se, 0);
7503 se->vruntime -= cfs_rq->min_vruntime;
7504 }
9ee474f5 7505
141965c7 7506#ifdef CONFIG_SMP
9ee474f5
PT
7507 /*
7508 * Remove our load from contribution when we leave sched_fair
7509 * and ensure we don't carry in an old decay_count if we
7510 * switch back.
7511 */
87e3c8ae
KT
7512 if (se->avg.decay_count) {
7513 __synchronize_entity_decay(se);
7514 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7515 }
7516#endif
da7a735e
PZ
7517}
7518
cb469845
SR
7519/*
7520 * We switched to the sched_fair class.
7521 */
da7a735e 7522static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7523{
eb7a59b2
M
7524 struct sched_entity *se = &p->se;
7525#ifdef CONFIG_FAIR_GROUP_SCHED
7526 /*
7527 * Since the real-depth could have been changed (only FAIR
7528 * class maintain depth value), reset depth properly.
7529 */
7530 se->depth = se->parent ? se->parent->depth + 1 : 0;
7531#endif
7532 if (!se->on_rq)
da7a735e
PZ
7533 return;
7534
cb469845
SR
7535 /*
7536 * We were most likely switched from sched_rt, so
7537 * kick off the schedule if running, otherwise just see
7538 * if we can still preempt the current task.
7539 */
da7a735e 7540 if (rq->curr == p)
8875125e 7541 resched_curr(rq);
cb469845 7542 else
15afe09b 7543 check_preempt_curr(rq, p, 0);
cb469845
SR
7544}
7545
83b699ed
SV
7546/* Account for a task changing its policy or group.
7547 *
7548 * This routine is mostly called to set cfs_rq->curr field when a task
7549 * migrates between groups/classes.
7550 */
7551static void set_curr_task_fair(struct rq *rq)
7552{
7553 struct sched_entity *se = &rq->curr->se;
7554
ec12cb7f
PT
7555 for_each_sched_entity(se) {
7556 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7557
7558 set_next_entity(cfs_rq, se);
7559 /* ensure bandwidth has been allocated on our new cfs_rq */
7560 account_cfs_rq_runtime(cfs_rq, 0);
7561 }
83b699ed
SV
7562}
7563
029632fb
PZ
7564void init_cfs_rq(struct cfs_rq *cfs_rq)
7565{
7566 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7567 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7568#ifndef CONFIG_64BIT
7569 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7570#endif
141965c7 7571#ifdef CONFIG_SMP
9ee474f5 7572 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7573 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7574#endif
029632fb
PZ
7575}
7576
810b3817 7577#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7578static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7579{
fed14d45 7580 struct sched_entity *se = &p->se;
aff3e498 7581 struct cfs_rq *cfs_rq;
fed14d45 7582
b2b5ce02
PZ
7583 /*
7584 * If the task was not on the rq at the time of this cgroup movement
7585 * it must have been asleep, sleeping tasks keep their ->vruntime
7586 * absolute on their old rq until wakeup (needed for the fair sleeper
7587 * bonus in place_entity()).
7588 *
7589 * If it was on the rq, we've just 'preempted' it, which does convert
7590 * ->vruntime to a relative base.
7591 *
7592 * Make sure both cases convert their relative position when migrating
7593 * to another cgroup's rq. This does somewhat interfere with the
7594 * fair sleeper stuff for the first placement, but who cares.
7595 */
7ceff013
DN
7596 /*
7597 * When !on_rq, vruntime of the task has usually NOT been normalized.
7598 * But there are some cases where it has already been normalized:
7599 *
7600 * - Moving a forked child which is waiting for being woken up by
7601 * wake_up_new_task().
62af3783
DN
7602 * - Moving a task which has been woken up by try_to_wake_up() and
7603 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7604 *
7605 * To prevent boost or penalty in the new cfs_rq caused by delta
7606 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7607 */
fed14d45 7608 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7609 on_rq = 1;
7610
b2b5ce02 7611 if (!on_rq)
fed14d45 7612 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7613 set_task_rq(p, task_cpu(p));
fed14d45 7614 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7615 if (!on_rq) {
fed14d45
PZ
7616 cfs_rq = cfs_rq_of(se);
7617 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7618#ifdef CONFIG_SMP
7619 /*
7620 * migrate_task_rq_fair() will have removed our previous
7621 * contribution, but we must synchronize for ongoing future
7622 * decay.
7623 */
fed14d45
PZ
7624 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7625 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7626#endif
7627 }
810b3817 7628}
029632fb
PZ
7629
7630void free_fair_sched_group(struct task_group *tg)
7631{
7632 int i;
7633
7634 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7635
7636 for_each_possible_cpu(i) {
7637 if (tg->cfs_rq)
7638 kfree(tg->cfs_rq[i]);
7639 if (tg->se)
7640 kfree(tg->se[i]);
7641 }
7642
7643 kfree(tg->cfs_rq);
7644 kfree(tg->se);
7645}
7646
7647int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7648{
7649 struct cfs_rq *cfs_rq;
7650 struct sched_entity *se;
7651 int i;
7652
7653 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7654 if (!tg->cfs_rq)
7655 goto err;
7656 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7657 if (!tg->se)
7658 goto err;
7659
7660 tg->shares = NICE_0_LOAD;
7661
7662 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7663
7664 for_each_possible_cpu(i) {
7665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7666 GFP_KERNEL, cpu_to_node(i));
7667 if (!cfs_rq)
7668 goto err;
7669
7670 se = kzalloc_node(sizeof(struct sched_entity),
7671 GFP_KERNEL, cpu_to_node(i));
7672 if (!se)
7673 goto err_free_rq;
7674
7675 init_cfs_rq(cfs_rq);
7676 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7677 }
7678
7679 return 1;
7680
7681err_free_rq:
7682 kfree(cfs_rq);
7683err:
7684 return 0;
7685}
7686
7687void unregister_fair_sched_group(struct task_group *tg, int cpu)
7688{
7689 struct rq *rq = cpu_rq(cpu);
7690 unsigned long flags;
7691
7692 /*
7693 * Only empty task groups can be destroyed; so we can speculatively
7694 * check on_list without danger of it being re-added.
7695 */
7696 if (!tg->cfs_rq[cpu]->on_list)
7697 return;
7698
7699 raw_spin_lock_irqsave(&rq->lock, flags);
7700 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7701 raw_spin_unlock_irqrestore(&rq->lock, flags);
7702}
7703
7704void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7705 struct sched_entity *se, int cpu,
7706 struct sched_entity *parent)
7707{
7708 struct rq *rq = cpu_rq(cpu);
7709
7710 cfs_rq->tg = tg;
7711 cfs_rq->rq = rq;
029632fb
PZ
7712 init_cfs_rq_runtime(cfs_rq);
7713
7714 tg->cfs_rq[cpu] = cfs_rq;
7715 tg->se[cpu] = se;
7716
7717 /* se could be NULL for root_task_group */
7718 if (!se)
7719 return;
7720
fed14d45 7721 if (!parent) {
029632fb 7722 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7723 se->depth = 0;
7724 } else {
029632fb 7725 se->cfs_rq = parent->my_q;
fed14d45
PZ
7726 se->depth = parent->depth + 1;
7727 }
029632fb
PZ
7728
7729 se->my_q = cfs_rq;
0ac9b1c2
PT
7730 /* guarantee group entities always have weight */
7731 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7732 se->parent = parent;
7733}
7734
7735static DEFINE_MUTEX(shares_mutex);
7736
7737int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7738{
7739 int i;
7740 unsigned long flags;
7741
7742 /*
7743 * We can't change the weight of the root cgroup.
7744 */
7745 if (!tg->se[0])
7746 return -EINVAL;
7747
7748 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7749
7750 mutex_lock(&shares_mutex);
7751 if (tg->shares == shares)
7752 goto done;
7753
7754 tg->shares = shares;
7755 for_each_possible_cpu(i) {
7756 struct rq *rq = cpu_rq(i);
7757 struct sched_entity *se;
7758
7759 se = tg->se[i];
7760 /* Propagate contribution to hierarchy */
7761 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7762
7763 /* Possible calls to update_curr() need rq clock */
7764 update_rq_clock(rq);
17bc14b7 7765 for_each_sched_entity(se)
029632fb
PZ
7766 update_cfs_shares(group_cfs_rq(se));
7767 raw_spin_unlock_irqrestore(&rq->lock, flags);
7768 }
7769
7770done:
7771 mutex_unlock(&shares_mutex);
7772 return 0;
7773}
7774#else /* CONFIG_FAIR_GROUP_SCHED */
7775
7776void free_fair_sched_group(struct task_group *tg) { }
7777
7778int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7779{
7780 return 1;
7781}
7782
7783void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7784
7785#endif /* CONFIG_FAIR_GROUP_SCHED */
7786
810b3817 7787
6d686f45 7788static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7789{
7790 struct sched_entity *se = &task->se;
0d721cea
PW
7791 unsigned int rr_interval = 0;
7792
7793 /*
7794 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7795 * idle runqueue:
7796 */
0d721cea 7797 if (rq->cfs.load.weight)
a59f4e07 7798 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7799
7800 return rr_interval;
7801}
7802
bf0f6f24
IM
7803/*
7804 * All the scheduling class methods:
7805 */
029632fb 7806const struct sched_class fair_sched_class = {
5522d5d5 7807 .next = &idle_sched_class,
bf0f6f24
IM
7808 .enqueue_task = enqueue_task_fair,
7809 .dequeue_task = dequeue_task_fair,
7810 .yield_task = yield_task_fair,
d95f4122 7811 .yield_to_task = yield_to_task_fair,
bf0f6f24 7812
2e09bf55 7813 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7814
7815 .pick_next_task = pick_next_task_fair,
7816 .put_prev_task = put_prev_task_fair,
7817
681f3e68 7818#ifdef CONFIG_SMP
4ce72a2c 7819 .select_task_rq = select_task_rq_fair,
0a74bef8 7820 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7821
0bcdcf28
CE
7822 .rq_online = rq_online_fair,
7823 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7824
7825 .task_waking = task_waking_fair,
681f3e68 7826#endif
bf0f6f24 7827
83b699ed 7828 .set_curr_task = set_curr_task_fair,
bf0f6f24 7829 .task_tick = task_tick_fair,
cd29fe6f 7830 .task_fork = task_fork_fair,
cb469845
SR
7831
7832 .prio_changed = prio_changed_fair,
da7a735e 7833 .switched_from = switched_from_fair,
cb469845 7834 .switched_to = switched_to_fair,
810b3817 7835
0d721cea
PW
7836 .get_rr_interval = get_rr_interval_fair,
7837
810b3817 7838#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7839 .task_move_group = task_move_group_fair,
810b3817 7840#endif
bf0f6f24
IM
7841};
7842
7843#ifdef CONFIG_SCHED_DEBUG
029632fb 7844void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7845{
bf0f6f24
IM
7846 struct cfs_rq *cfs_rq;
7847
5973e5b9 7848 rcu_read_lock();
c3b64f1e 7849 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7850 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7851 rcu_read_unlock();
bf0f6f24
IM
7852}
7853#endif
029632fb
PZ
7854
7855__init void init_sched_fair_class(void)
7856{
7857#ifdef CONFIG_SMP
7858 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7859
3451d024 7860#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7861 nohz.next_balance = jiffies;
029632fb 7862 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7863 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7864#endif
7865#endif /* SMP */
7866
7867}
This page took 1.104147 seconds and 5 git commands to generate.