sched/numa, mm: Use active_nodes nodemask to limit numa migrations
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
598f0ec0
MG
822static unsigned int task_nr_scan_windows(struct task_struct *p)
823{
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839}
840
841/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842#define MAX_SCAN_WINDOW 2560
843
844static unsigned int task_scan_min(struct task_struct *p)
845{
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855}
856
857static unsigned int task_scan_max(struct task_struct *p)
858{
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865}
866
0ec8aa00
PZ
867static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871}
872
873static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874{
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877}
878
8c8a743c
PZ
879struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
e29cf08b 884 pid_t gid;
8c8a743c
PZ
885 struct list_head task_list;
886
887 struct rcu_head rcu;
20e07dea 888 nodemask_t active_nodes;
989348b5 889 unsigned long total_faults;
50ec8a40 890 unsigned long *faults_cpu;
989348b5 891 unsigned long faults[0];
8c8a743c
PZ
892};
893
e29cf08b
MG
894pid_t task_numa_group_id(struct task_struct *p)
895{
896 return p->numa_group ? p->numa_group->gid : 0;
897}
898
ac8e895b
MG
899static inline int task_faults_idx(int nid, int priv)
900{
901 return 2 * nid + priv;
902}
903
904static inline unsigned long task_faults(struct task_struct *p, int nid)
905{
ff1df896 906 if (!p->numa_faults_memory)
ac8e895b
MG
907 return 0;
908
ff1df896
RR
909 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
911}
912
83e1d2cd
MG
913static inline unsigned long group_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_group)
916 return 0;
917
82897b4f
WL
918 return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
920}
921
20e07dea
RR
922static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923{
924 return group->faults_cpu[task_faults_idx(nid, 0)] +
925 group->faults_cpu[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
ff1df896 938 if (!p->numa_faults_memory)
83e1d2cd
MG
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
10f39042
RR
957bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
958 int src_nid, int dst_cpu)
959{
960 struct numa_group *ng = p->numa_group;
961 int dst_nid = cpu_to_node(dst_cpu);
962 int last_cpupid, this_cpupid;
963
964 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
965
966 /*
967 * Multi-stage node selection is used in conjunction with a periodic
968 * migration fault to build a temporal task<->page relation. By using
969 * a two-stage filter we remove short/unlikely relations.
970 *
971 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
972 * a task's usage of a particular page (n_p) per total usage of this
973 * page (n_t) (in a given time-span) to a probability.
974 *
975 * Our periodic faults will sample this probability and getting the
976 * same result twice in a row, given these samples are fully
977 * independent, is then given by P(n)^2, provided our sample period
978 * is sufficiently short compared to the usage pattern.
979 *
980 * This quadric squishes small probabilities, making it less likely we
981 * act on an unlikely task<->page relation.
982 */
983 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
984 if (!cpupid_pid_unset(last_cpupid) &&
985 cpupid_to_nid(last_cpupid) != dst_nid)
986 return false;
987
988 /* Always allow migrate on private faults */
989 if (cpupid_match_pid(p, last_cpupid))
990 return true;
991
992 /* A shared fault, but p->numa_group has not been set up yet. */
993 if (!ng)
994 return true;
995
996 /*
997 * Do not migrate if the destination is not a node that
998 * is actively used by this numa group.
999 */
1000 if (!node_isset(dst_nid, ng->active_nodes))
1001 return false;
1002
1003 /*
1004 * Source is a node that is not actively used by this
1005 * numa group, while the destination is. Migrate.
1006 */
1007 if (!node_isset(src_nid, ng->active_nodes))
1008 return true;
1009
1010 /*
1011 * Both source and destination are nodes in active
1012 * use by this numa group. Maximize memory bandwidth
1013 * by migrating from more heavily used groups, to less
1014 * heavily used ones, spreading the load around.
1015 * Use a 1/4 hysteresis to avoid spurious page movement.
1016 */
1017 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1018}
1019
e6628d5b 1020static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1021static unsigned long source_load(int cpu, int type);
1022static unsigned long target_load(int cpu, int type);
1023static unsigned long power_of(int cpu);
1024static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1025
fb13c7ee 1026/* Cached statistics for all CPUs within a node */
58d081b5 1027struct numa_stats {
fb13c7ee 1028 unsigned long nr_running;
58d081b5 1029 unsigned long load;
fb13c7ee
MG
1030
1031 /* Total compute capacity of CPUs on a node */
1032 unsigned long power;
1033
1034 /* Approximate capacity in terms of runnable tasks on a node */
1035 unsigned long capacity;
1036 int has_capacity;
58d081b5 1037};
e6628d5b 1038
fb13c7ee
MG
1039/*
1040 * XXX borrowed from update_sg_lb_stats
1041 */
1042static void update_numa_stats(struct numa_stats *ns, int nid)
1043{
5eca82a9 1044 int cpu, cpus = 0;
fb13c7ee
MG
1045
1046 memset(ns, 0, sizeof(*ns));
1047 for_each_cpu(cpu, cpumask_of_node(nid)) {
1048 struct rq *rq = cpu_rq(cpu);
1049
1050 ns->nr_running += rq->nr_running;
1051 ns->load += weighted_cpuload(cpu);
1052 ns->power += power_of(cpu);
5eca82a9
PZ
1053
1054 cpus++;
fb13c7ee
MG
1055 }
1056
5eca82a9
PZ
1057 /*
1058 * If we raced with hotplug and there are no CPUs left in our mask
1059 * the @ns structure is NULL'ed and task_numa_compare() will
1060 * not find this node attractive.
1061 *
1062 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1063 * and bail there.
1064 */
1065 if (!cpus)
1066 return;
1067
fb13c7ee
MG
1068 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1069 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1070 ns->has_capacity = (ns->nr_running < ns->capacity);
1071}
1072
58d081b5
MG
1073struct task_numa_env {
1074 struct task_struct *p;
e6628d5b 1075
58d081b5
MG
1076 int src_cpu, src_nid;
1077 int dst_cpu, dst_nid;
e6628d5b 1078
58d081b5 1079 struct numa_stats src_stats, dst_stats;
e6628d5b 1080
40ea2b42 1081 int imbalance_pct;
fb13c7ee
MG
1082
1083 struct task_struct *best_task;
1084 long best_imp;
58d081b5
MG
1085 int best_cpu;
1086};
1087
fb13c7ee
MG
1088static void task_numa_assign(struct task_numa_env *env,
1089 struct task_struct *p, long imp)
1090{
1091 if (env->best_task)
1092 put_task_struct(env->best_task);
1093 if (p)
1094 get_task_struct(p);
1095
1096 env->best_task = p;
1097 env->best_imp = imp;
1098 env->best_cpu = env->dst_cpu;
1099}
1100
1101/*
1102 * This checks if the overall compute and NUMA accesses of the system would
1103 * be improved if the source tasks was migrated to the target dst_cpu taking
1104 * into account that it might be best if task running on the dst_cpu should
1105 * be exchanged with the source task
1106 */
887c290e
RR
1107static void task_numa_compare(struct task_numa_env *env,
1108 long taskimp, long groupimp)
fb13c7ee
MG
1109{
1110 struct rq *src_rq = cpu_rq(env->src_cpu);
1111 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1112 struct task_struct *cur;
1113 long dst_load, src_load;
1114 long load;
887c290e 1115 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1116
1117 rcu_read_lock();
1118 cur = ACCESS_ONCE(dst_rq->curr);
1119 if (cur->pid == 0) /* idle */
1120 cur = NULL;
1121
1122 /*
1123 * "imp" is the fault differential for the source task between the
1124 * source and destination node. Calculate the total differential for
1125 * the source task and potential destination task. The more negative
1126 * the value is, the more rmeote accesses that would be expected to
1127 * be incurred if the tasks were swapped.
1128 */
1129 if (cur) {
1130 /* Skip this swap candidate if cannot move to the source cpu */
1131 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1132 goto unlock;
1133
887c290e
RR
1134 /*
1135 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1136 * in any group then look only at task weights.
887c290e 1137 */
ca28aa53 1138 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1139 imp = taskimp + task_weight(cur, env->src_nid) -
1140 task_weight(cur, env->dst_nid);
ca28aa53
RR
1141 /*
1142 * Add some hysteresis to prevent swapping the
1143 * tasks within a group over tiny differences.
1144 */
1145 if (cur->numa_group)
1146 imp -= imp/16;
887c290e 1147 } else {
ca28aa53
RR
1148 /*
1149 * Compare the group weights. If a task is all by
1150 * itself (not part of a group), use the task weight
1151 * instead.
1152 */
1153 if (env->p->numa_group)
1154 imp = groupimp;
1155 else
1156 imp = taskimp;
1157
1158 if (cur->numa_group)
1159 imp += group_weight(cur, env->src_nid) -
1160 group_weight(cur, env->dst_nid);
1161 else
1162 imp += task_weight(cur, env->src_nid) -
1163 task_weight(cur, env->dst_nid);
887c290e 1164 }
fb13c7ee
MG
1165 }
1166
1167 if (imp < env->best_imp)
1168 goto unlock;
1169
1170 if (!cur) {
1171 /* Is there capacity at our destination? */
1172 if (env->src_stats.has_capacity &&
1173 !env->dst_stats.has_capacity)
1174 goto unlock;
1175
1176 goto balance;
1177 }
1178
1179 /* Balance doesn't matter much if we're running a task per cpu */
1180 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1181 goto assign;
1182
1183 /*
1184 * In the overloaded case, try and keep the load balanced.
1185 */
1186balance:
1187 dst_load = env->dst_stats.load;
1188 src_load = env->src_stats.load;
1189
1190 /* XXX missing power terms */
1191 load = task_h_load(env->p);
1192 dst_load += load;
1193 src_load -= load;
1194
1195 if (cur) {
1196 load = task_h_load(cur);
1197 dst_load -= load;
1198 src_load += load;
1199 }
1200
1201 /* make src_load the smaller */
1202 if (dst_load < src_load)
1203 swap(dst_load, src_load);
1204
1205 if (src_load * env->imbalance_pct < dst_load * 100)
1206 goto unlock;
1207
1208assign:
1209 task_numa_assign(env, cur, imp);
1210unlock:
1211 rcu_read_unlock();
1212}
1213
887c290e
RR
1214static void task_numa_find_cpu(struct task_numa_env *env,
1215 long taskimp, long groupimp)
2c8a50aa
MG
1216{
1217 int cpu;
1218
1219 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1220 /* Skip this CPU if the source task cannot migrate */
1221 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1222 continue;
1223
1224 env->dst_cpu = cpu;
887c290e 1225 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1226 }
1227}
1228
58d081b5
MG
1229static int task_numa_migrate(struct task_struct *p)
1230{
58d081b5
MG
1231 struct task_numa_env env = {
1232 .p = p,
fb13c7ee 1233
58d081b5 1234 .src_cpu = task_cpu(p),
b32e86b4 1235 .src_nid = task_node(p),
fb13c7ee
MG
1236
1237 .imbalance_pct = 112,
1238
1239 .best_task = NULL,
1240 .best_imp = 0,
1241 .best_cpu = -1
58d081b5
MG
1242 };
1243 struct sched_domain *sd;
887c290e 1244 unsigned long taskweight, groupweight;
2c8a50aa 1245 int nid, ret;
887c290e 1246 long taskimp, groupimp;
e6628d5b 1247
58d081b5 1248 /*
fb13c7ee
MG
1249 * Pick the lowest SD_NUMA domain, as that would have the smallest
1250 * imbalance and would be the first to start moving tasks about.
1251 *
1252 * And we want to avoid any moving of tasks about, as that would create
1253 * random movement of tasks -- counter the numa conditions we're trying
1254 * to satisfy here.
58d081b5
MG
1255 */
1256 rcu_read_lock();
fb13c7ee 1257 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1258 if (sd)
1259 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1260 rcu_read_unlock();
1261
46a73e8a
RR
1262 /*
1263 * Cpusets can break the scheduler domain tree into smaller
1264 * balance domains, some of which do not cross NUMA boundaries.
1265 * Tasks that are "trapped" in such domains cannot be migrated
1266 * elsewhere, so there is no point in (re)trying.
1267 */
1268 if (unlikely(!sd)) {
de1b301a 1269 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1270 return -EINVAL;
1271 }
1272
887c290e
RR
1273 taskweight = task_weight(p, env.src_nid);
1274 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1275 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1276 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1277 taskimp = task_weight(p, env.dst_nid) - taskweight;
1278 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1279 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1280
e1dda8a7
RR
1281 /* If the preferred nid has capacity, try to use it. */
1282 if (env.dst_stats.has_capacity)
887c290e 1283 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1284
1285 /* No space available on the preferred nid. Look elsewhere. */
1286 if (env.best_cpu == -1) {
2c8a50aa
MG
1287 for_each_online_node(nid) {
1288 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1289 continue;
58d081b5 1290
83e1d2cd 1291 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1292 taskimp = task_weight(p, nid) - taskweight;
1293 groupimp = group_weight(p, nid) - groupweight;
1294 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1295 continue;
1296
2c8a50aa
MG
1297 env.dst_nid = nid;
1298 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1299 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1300 }
1301 }
1302
fb13c7ee
MG
1303 /* No better CPU than the current one was found. */
1304 if (env.best_cpu == -1)
1305 return -EAGAIN;
1306
0ec8aa00
PZ
1307 sched_setnuma(p, env.dst_nid);
1308
04bb2f94
RR
1309 /*
1310 * Reset the scan period if the task is being rescheduled on an
1311 * alternative node to recheck if the tasks is now properly placed.
1312 */
1313 p->numa_scan_period = task_scan_min(p);
1314
fb13c7ee
MG
1315 if (env.best_task == NULL) {
1316 int ret = migrate_task_to(p, env.best_cpu);
1317 return ret;
1318 }
1319
1320 ret = migrate_swap(p, env.best_task);
1321 put_task_struct(env.best_task);
1322 return ret;
e6628d5b
MG
1323}
1324
6b9a7460
MG
1325/* Attempt to migrate a task to a CPU on the preferred node. */
1326static void numa_migrate_preferred(struct task_struct *p)
1327{
2739d3ee 1328 /* This task has no NUMA fault statistics yet */
ff1df896 1329 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1330 return;
1331
2739d3ee
RR
1332 /* Periodically retry migrating the task to the preferred node */
1333 p->numa_migrate_retry = jiffies + HZ;
1334
1335 /* Success if task is already running on preferred CPU */
de1b301a 1336 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1337 return;
1338
1339 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1340 task_numa_migrate(p);
6b9a7460
MG
1341}
1342
20e07dea
RR
1343/*
1344 * Find the nodes on which the workload is actively running. We do this by
1345 * tracking the nodes from which NUMA hinting faults are triggered. This can
1346 * be different from the set of nodes where the workload's memory is currently
1347 * located.
1348 *
1349 * The bitmask is used to make smarter decisions on when to do NUMA page
1350 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1351 * are added when they cause over 6/16 of the maximum number of faults, but
1352 * only removed when they drop below 3/16.
1353 */
1354static void update_numa_active_node_mask(struct numa_group *numa_group)
1355{
1356 unsigned long faults, max_faults = 0;
1357 int nid;
1358
1359 for_each_online_node(nid) {
1360 faults = group_faults_cpu(numa_group, nid);
1361 if (faults > max_faults)
1362 max_faults = faults;
1363 }
1364
1365 for_each_online_node(nid) {
1366 faults = group_faults_cpu(numa_group, nid);
1367 if (!node_isset(nid, numa_group->active_nodes)) {
1368 if (faults > max_faults * 6 / 16)
1369 node_set(nid, numa_group->active_nodes);
1370 } else if (faults < max_faults * 3 / 16)
1371 node_clear(nid, numa_group->active_nodes);
1372 }
1373}
1374
04bb2f94
RR
1375/*
1376 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1377 * increments. The more local the fault statistics are, the higher the scan
1378 * period will be for the next scan window. If local/remote ratio is below
1379 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1380 * scan period will decrease
1381 */
1382#define NUMA_PERIOD_SLOTS 10
1383#define NUMA_PERIOD_THRESHOLD 3
1384
1385/*
1386 * Increase the scan period (slow down scanning) if the majority of
1387 * our memory is already on our local node, or if the majority of
1388 * the page accesses are shared with other processes.
1389 * Otherwise, decrease the scan period.
1390 */
1391static void update_task_scan_period(struct task_struct *p,
1392 unsigned long shared, unsigned long private)
1393{
1394 unsigned int period_slot;
1395 int ratio;
1396 int diff;
1397
1398 unsigned long remote = p->numa_faults_locality[0];
1399 unsigned long local = p->numa_faults_locality[1];
1400
1401 /*
1402 * If there were no record hinting faults then either the task is
1403 * completely idle or all activity is areas that are not of interest
1404 * to automatic numa balancing. Scan slower
1405 */
1406 if (local + shared == 0) {
1407 p->numa_scan_period = min(p->numa_scan_period_max,
1408 p->numa_scan_period << 1);
1409
1410 p->mm->numa_next_scan = jiffies +
1411 msecs_to_jiffies(p->numa_scan_period);
1412
1413 return;
1414 }
1415
1416 /*
1417 * Prepare to scale scan period relative to the current period.
1418 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1419 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1420 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1421 */
1422 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1423 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1424 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1425 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1426 if (!slot)
1427 slot = 1;
1428 diff = slot * period_slot;
1429 } else {
1430 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1431
1432 /*
1433 * Scale scan rate increases based on sharing. There is an
1434 * inverse relationship between the degree of sharing and
1435 * the adjustment made to the scanning period. Broadly
1436 * speaking the intent is that there is little point
1437 * scanning faster if shared accesses dominate as it may
1438 * simply bounce migrations uselessly
1439 */
04bb2f94
RR
1440 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1441 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1442 }
1443
1444 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1445 task_scan_min(p), task_scan_max(p));
1446 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1447}
1448
cbee9f88
PZ
1449static void task_numa_placement(struct task_struct *p)
1450{
83e1d2cd
MG
1451 int seq, nid, max_nid = -1, max_group_nid = -1;
1452 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1453 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1454 spinlock_t *group_lock = NULL;
cbee9f88 1455
2832bc19 1456 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1457 if (p->numa_scan_seq == seq)
1458 return;
1459 p->numa_scan_seq = seq;
598f0ec0 1460 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1461
7dbd13ed
MG
1462 /* If the task is part of a group prevent parallel updates to group stats */
1463 if (p->numa_group) {
1464 group_lock = &p->numa_group->lock;
1465 spin_lock(group_lock);
1466 }
1467
688b7585
MG
1468 /* Find the node with the highest number of faults */
1469 for_each_online_node(nid) {
83e1d2cd 1470 unsigned long faults = 0, group_faults = 0;
ac8e895b 1471 int priv, i;
745d6147 1472
ac8e895b 1473 for (priv = 0; priv < 2; priv++) {
50ec8a40 1474 long diff, f_diff;
8c8a743c 1475
ac8e895b 1476 i = task_faults_idx(nid, priv);
ff1df896 1477 diff = -p->numa_faults_memory[i];
50ec8a40 1478 f_diff = -p->numa_faults_cpu[i];
745d6147 1479
ac8e895b 1480 /* Decay existing window, copy faults since last scan */
ff1df896
RR
1481 p->numa_faults_memory[i] >>= 1;
1482 p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
1483 fault_types[priv] += p->numa_faults_buffer_memory[i];
1484 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1485
50ec8a40
RR
1486 p->numa_faults_cpu[i] >>= 1;
1487 p->numa_faults_cpu[i] += p->numa_faults_buffer_cpu[i];
1488 p->numa_faults_buffer_cpu[i] = 0;
1489
ff1df896
RR
1490 faults += p->numa_faults_memory[i];
1491 diff += p->numa_faults_memory[i];
50ec8a40 1492 f_diff += p->numa_faults_cpu[i];
83e1d2cd 1493 p->total_numa_faults += diff;
8c8a743c
PZ
1494 if (p->numa_group) {
1495 /* safe because we can only change our own group */
989348b5 1496 p->numa_group->faults[i] += diff;
50ec8a40 1497 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1498 p->numa_group->total_faults += diff;
1499 group_faults += p->numa_group->faults[i];
8c8a743c 1500 }
ac8e895b
MG
1501 }
1502
688b7585
MG
1503 if (faults > max_faults) {
1504 max_faults = faults;
1505 max_nid = nid;
1506 }
83e1d2cd
MG
1507
1508 if (group_faults > max_group_faults) {
1509 max_group_faults = group_faults;
1510 max_group_nid = nid;
1511 }
1512 }
1513
04bb2f94
RR
1514 update_task_scan_period(p, fault_types[0], fault_types[1]);
1515
7dbd13ed 1516 if (p->numa_group) {
20e07dea 1517 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1518 /*
1519 * If the preferred task and group nids are different,
1520 * iterate over the nodes again to find the best place.
1521 */
1522 if (max_nid != max_group_nid) {
1523 unsigned long weight, max_weight = 0;
1524
1525 for_each_online_node(nid) {
1526 weight = task_weight(p, nid) + group_weight(p, nid);
1527 if (weight > max_weight) {
1528 max_weight = weight;
1529 max_nid = nid;
1530 }
83e1d2cd
MG
1531 }
1532 }
7dbd13ed
MG
1533
1534 spin_unlock(group_lock);
688b7585
MG
1535 }
1536
6b9a7460 1537 /* Preferred node as the node with the most faults */
3a7053b3 1538 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1539 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1540 sched_setnuma(p, max_nid);
6b9a7460 1541 numa_migrate_preferred(p);
3a7053b3 1542 }
cbee9f88
PZ
1543}
1544
8c8a743c
PZ
1545static inline int get_numa_group(struct numa_group *grp)
1546{
1547 return atomic_inc_not_zero(&grp->refcount);
1548}
1549
1550static inline void put_numa_group(struct numa_group *grp)
1551{
1552 if (atomic_dec_and_test(&grp->refcount))
1553 kfree_rcu(grp, rcu);
1554}
1555
3e6a9418
MG
1556static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1557 int *priv)
8c8a743c
PZ
1558{
1559 struct numa_group *grp, *my_grp;
1560 struct task_struct *tsk;
1561 bool join = false;
1562 int cpu = cpupid_to_cpu(cpupid);
1563 int i;
1564
1565 if (unlikely(!p->numa_group)) {
1566 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1567 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1568
1569 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1570 if (!grp)
1571 return;
1572
1573 atomic_set(&grp->refcount, 1);
1574 spin_lock_init(&grp->lock);
1575 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1576 grp->gid = p->pid;
50ec8a40
RR
1577 /* Second half of the array tracks nids where faults happen */
1578 grp->faults_cpu = grp->faults + 2 * nr_node_ids;
8c8a743c 1579
20e07dea
RR
1580 node_set(task_node(current), grp->active_nodes);
1581
50ec8a40 1582 for (i = 0; i < 4*nr_node_ids; i++)
ff1df896 1583 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1584
989348b5 1585 grp->total_faults = p->total_numa_faults;
83e1d2cd 1586
8c8a743c
PZ
1587 list_add(&p->numa_entry, &grp->task_list);
1588 grp->nr_tasks++;
1589 rcu_assign_pointer(p->numa_group, grp);
1590 }
1591
1592 rcu_read_lock();
1593 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1594
1595 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1596 goto no_join;
8c8a743c
PZ
1597
1598 grp = rcu_dereference(tsk->numa_group);
1599 if (!grp)
3354781a 1600 goto no_join;
8c8a743c
PZ
1601
1602 my_grp = p->numa_group;
1603 if (grp == my_grp)
3354781a 1604 goto no_join;
8c8a743c
PZ
1605
1606 /*
1607 * Only join the other group if its bigger; if we're the bigger group,
1608 * the other task will join us.
1609 */
1610 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1611 goto no_join;
8c8a743c
PZ
1612
1613 /*
1614 * Tie-break on the grp address.
1615 */
1616 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1617 goto no_join;
8c8a743c 1618
dabe1d99
RR
1619 /* Always join threads in the same process. */
1620 if (tsk->mm == current->mm)
1621 join = true;
1622
1623 /* Simple filter to avoid false positives due to PID collisions */
1624 if (flags & TNF_SHARED)
1625 join = true;
8c8a743c 1626
3e6a9418
MG
1627 /* Update priv based on whether false sharing was detected */
1628 *priv = !join;
1629
dabe1d99 1630 if (join && !get_numa_group(grp))
3354781a 1631 goto no_join;
8c8a743c 1632
8c8a743c
PZ
1633 rcu_read_unlock();
1634
1635 if (!join)
1636 return;
1637
989348b5
MG
1638 double_lock(&my_grp->lock, &grp->lock);
1639
50ec8a40 1640 for (i = 0; i < 4*nr_node_ids; i++) {
ff1df896
RR
1641 my_grp->faults[i] -= p->numa_faults_memory[i];
1642 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1643 }
989348b5
MG
1644 my_grp->total_faults -= p->total_numa_faults;
1645 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1646
1647 list_move(&p->numa_entry, &grp->task_list);
1648 my_grp->nr_tasks--;
1649 grp->nr_tasks++;
1650
1651 spin_unlock(&my_grp->lock);
1652 spin_unlock(&grp->lock);
1653
1654 rcu_assign_pointer(p->numa_group, grp);
1655
1656 put_numa_group(my_grp);
3354781a
PZ
1657 return;
1658
1659no_join:
1660 rcu_read_unlock();
1661 return;
8c8a743c
PZ
1662}
1663
1664void task_numa_free(struct task_struct *p)
1665{
1666 struct numa_group *grp = p->numa_group;
1667 int i;
ff1df896 1668 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1669
1670 if (grp) {
989348b5 1671 spin_lock(&grp->lock);
50ec8a40 1672 for (i = 0; i < 4*nr_node_ids; i++)
ff1df896 1673 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1674 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1675
8c8a743c
PZ
1676 list_del(&p->numa_entry);
1677 grp->nr_tasks--;
1678 spin_unlock(&grp->lock);
1679 rcu_assign_pointer(p->numa_group, NULL);
1680 put_numa_group(grp);
1681 }
1682
ff1df896
RR
1683 p->numa_faults_memory = NULL;
1684 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1685 p->numa_faults_cpu= NULL;
1686 p->numa_faults_buffer_cpu = NULL;
82727018 1687 kfree(numa_faults);
8c8a743c
PZ
1688}
1689
cbee9f88
PZ
1690/*
1691 * Got a PROT_NONE fault for a page on @node.
1692 */
6688cc05 1693void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1694{
1695 struct task_struct *p = current;
6688cc05 1696 bool migrated = flags & TNF_MIGRATED;
50ec8a40 1697 int this_node = task_node(current);
ac8e895b 1698 int priv;
cbee9f88 1699
10e84b97 1700 if (!numabalancing_enabled)
1a687c2e
MG
1701 return;
1702
9ff1d9ff
MG
1703 /* for example, ksmd faulting in a user's mm */
1704 if (!p->mm)
1705 return;
1706
82727018
RR
1707 /* Do not worry about placement if exiting */
1708 if (p->state == TASK_DEAD)
1709 return;
1710
f809ca9a 1711 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1712 if (unlikely(!p->numa_faults_memory)) {
50ec8a40 1713 int size = sizeof(*p->numa_faults_memory) * 4 * nr_node_ids;
f809ca9a 1714
745d6147 1715 /* numa_faults and numa_faults_buffer share the allocation */
ff1df896
RR
1716 p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1717 if (!p->numa_faults_memory)
f809ca9a 1718 return;
745d6147 1719
ff1df896 1720 BUG_ON(p->numa_faults_buffer_memory);
50ec8a40
RR
1721 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1722 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1723 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1724 p->total_numa_faults = 0;
04bb2f94 1725 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1726 }
cbee9f88 1727
8c8a743c
PZ
1728 /*
1729 * First accesses are treated as private, otherwise consider accesses
1730 * to be private if the accessing pid has not changed
1731 */
1732 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1733 priv = 1;
1734 } else {
1735 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1736 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1737 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1738 }
1739
cbee9f88 1740 task_numa_placement(p);
f809ca9a 1741
2739d3ee
RR
1742 /*
1743 * Retry task to preferred node migration periodically, in case it
1744 * case it previously failed, or the scheduler moved us.
1745 */
1746 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1747 numa_migrate_preferred(p);
1748
b32e86b4
IM
1749 if (migrated)
1750 p->numa_pages_migrated += pages;
1751
ff1df896 1752 p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
50ec8a40 1753 p->numa_faults_buffer_cpu[task_faults_idx(this_node, priv)] += pages;
04bb2f94 1754 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1755}
1756
6e5fb223
PZ
1757static void reset_ptenuma_scan(struct task_struct *p)
1758{
1759 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1760 p->mm->numa_scan_offset = 0;
1761}
1762
cbee9f88
PZ
1763/*
1764 * The expensive part of numa migration is done from task_work context.
1765 * Triggered from task_tick_numa().
1766 */
1767void task_numa_work(struct callback_head *work)
1768{
1769 unsigned long migrate, next_scan, now = jiffies;
1770 struct task_struct *p = current;
1771 struct mm_struct *mm = p->mm;
6e5fb223 1772 struct vm_area_struct *vma;
9f40604c 1773 unsigned long start, end;
598f0ec0 1774 unsigned long nr_pte_updates = 0;
9f40604c 1775 long pages;
cbee9f88
PZ
1776
1777 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1778
1779 work->next = work; /* protect against double add */
1780 /*
1781 * Who cares about NUMA placement when they're dying.
1782 *
1783 * NOTE: make sure not to dereference p->mm before this check,
1784 * exit_task_work() happens _after_ exit_mm() so we could be called
1785 * without p->mm even though we still had it when we enqueued this
1786 * work.
1787 */
1788 if (p->flags & PF_EXITING)
1789 return;
1790
930aa174 1791 if (!mm->numa_next_scan) {
7e8d16b6
MG
1792 mm->numa_next_scan = now +
1793 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1794 }
1795
cbee9f88
PZ
1796 /*
1797 * Enforce maximal scan/migration frequency..
1798 */
1799 migrate = mm->numa_next_scan;
1800 if (time_before(now, migrate))
1801 return;
1802
598f0ec0
MG
1803 if (p->numa_scan_period == 0) {
1804 p->numa_scan_period_max = task_scan_max(p);
1805 p->numa_scan_period = task_scan_min(p);
1806 }
cbee9f88 1807
fb003b80 1808 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1809 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1810 return;
1811
19a78d11
PZ
1812 /*
1813 * Delay this task enough that another task of this mm will likely win
1814 * the next time around.
1815 */
1816 p->node_stamp += 2 * TICK_NSEC;
1817
9f40604c
MG
1818 start = mm->numa_scan_offset;
1819 pages = sysctl_numa_balancing_scan_size;
1820 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1821 if (!pages)
1822 return;
cbee9f88 1823
6e5fb223 1824 down_read(&mm->mmap_sem);
9f40604c 1825 vma = find_vma(mm, start);
6e5fb223
PZ
1826 if (!vma) {
1827 reset_ptenuma_scan(p);
9f40604c 1828 start = 0;
6e5fb223
PZ
1829 vma = mm->mmap;
1830 }
9f40604c 1831 for (; vma; vma = vma->vm_next) {
fc314724 1832 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1833 continue;
1834
4591ce4f
MG
1835 /*
1836 * Shared library pages mapped by multiple processes are not
1837 * migrated as it is expected they are cache replicated. Avoid
1838 * hinting faults in read-only file-backed mappings or the vdso
1839 * as migrating the pages will be of marginal benefit.
1840 */
1841 if (!vma->vm_mm ||
1842 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1843 continue;
1844
3c67f474
MG
1845 /*
1846 * Skip inaccessible VMAs to avoid any confusion between
1847 * PROT_NONE and NUMA hinting ptes
1848 */
1849 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1850 continue;
4591ce4f 1851
9f40604c
MG
1852 do {
1853 start = max(start, vma->vm_start);
1854 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1855 end = min(end, vma->vm_end);
598f0ec0
MG
1856 nr_pte_updates += change_prot_numa(vma, start, end);
1857
1858 /*
1859 * Scan sysctl_numa_balancing_scan_size but ensure that
1860 * at least one PTE is updated so that unused virtual
1861 * address space is quickly skipped.
1862 */
1863 if (nr_pte_updates)
1864 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1865
9f40604c
MG
1866 start = end;
1867 if (pages <= 0)
1868 goto out;
1869 } while (end != vma->vm_end);
cbee9f88 1870 }
6e5fb223 1871
9f40604c 1872out:
6e5fb223 1873 /*
c69307d5
PZ
1874 * It is possible to reach the end of the VMA list but the last few
1875 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1876 * would find the !migratable VMA on the next scan but not reset the
1877 * scanner to the start so check it now.
6e5fb223
PZ
1878 */
1879 if (vma)
9f40604c 1880 mm->numa_scan_offset = start;
6e5fb223
PZ
1881 else
1882 reset_ptenuma_scan(p);
1883 up_read(&mm->mmap_sem);
cbee9f88
PZ
1884}
1885
1886/*
1887 * Drive the periodic memory faults..
1888 */
1889void task_tick_numa(struct rq *rq, struct task_struct *curr)
1890{
1891 struct callback_head *work = &curr->numa_work;
1892 u64 period, now;
1893
1894 /*
1895 * We don't care about NUMA placement if we don't have memory.
1896 */
1897 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1898 return;
1899
1900 /*
1901 * Using runtime rather than walltime has the dual advantage that
1902 * we (mostly) drive the selection from busy threads and that the
1903 * task needs to have done some actual work before we bother with
1904 * NUMA placement.
1905 */
1906 now = curr->se.sum_exec_runtime;
1907 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1908
1909 if (now - curr->node_stamp > period) {
4b96a29b 1910 if (!curr->node_stamp)
598f0ec0 1911 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1912 curr->node_stamp += period;
cbee9f88
PZ
1913
1914 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1915 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1916 task_work_add(curr, work, true);
1917 }
1918 }
1919}
1920#else
1921static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1922{
1923}
0ec8aa00
PZ
1924
1925static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1926{
1927}
1928
1929static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1930{
1931}
cbee9f88
PZ
1932#endif /* CONFIG_NUMA_BALANCING */
1933
30cfdcfc
DA
1934static void
1935account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1936{
1937 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1938 if (!parent_entity(se))
029632fb 1939 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1940#ifdef CONFIG_SMP
0ec8aa00
PZ
1941 if (entity_is_task(se)) {
1942 struct rq *rq = rq_of(cfs_rq);
1943
1944 account_numa_enqueue(rq, task_of(se));
1945 list_add(&se->group_node, &rq->cfs_tasks);
1946 }
367456c7 1947#endif
30cfdcfc 1948 cfs_rq->nr_running++;
30cfdcfc
DA
1949}
1950
1951static void
1952account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1953{
1954 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1955 if (!parent_entity(se))
029632fb 1956 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1957 if (entity_is_task(se)) {
1958 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1959 list_del_init(&se->group_node);
0ec8aa00 1960 }
30cfdcfc 1961 cfs_rq->nr_running--;
30cfdcfc
DA
1962}
1963
3ff6dcac
YZ
1964#ifdef CONFIG_FAIR_GROUP_SCHED
1965# ifdef CONFIG_SMP
cf5f0acf
PZ
1966static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1967{
1968 long tg_weight;
1969
1970 /*
1971 * Use this CPU's actual weight instead of the last load_contribution
1972 * to gain a more accurate current total weight. See
1973 * update_cfs_rq_load_contribution().
1974 */
bf5b986e 1975 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1976 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1977 tg_weight += cfs_rq->load.weight;
1978
1979 return tg_weight;
1980}
1981
6d5ab293 1982static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1983{
cf5f0acf 1984 long tg_weight, load, shares;
3ff6dcac 1985
cf5f0acf 1986 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1987 load = cfs_rq->load.weight;
3ff6dcac 1988
3ff6dcac 1989 shares = (tg->shares * load);
cf5f0acf
PZ
1990 if (tg_weight)
1991 shares /= tg_weight;
3ff6dcac
YZ
1992
1993 if (shares < MIN_SHARES)
1994 shares = MIN_SHARES;
1995 if (shares > tg->shares)
1996 shares = tg->shares;
1997
1998 return shares;
1999}
3ff6dcac 2000# else /* CONFIG_SMP */
6d5ab293 2001static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2002{
2003 return tg->shares;
2004}
3ff6dcac 2005# endif /* CONFIG_SMP */
2069dd75
PZ
2006static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2007 unsigned long weight)
2008{
19e5eebb
PT
2009 if (se->on_rq) {
2010 /* commit outstanding execution time */
2011 if (cfs_rq->curr == se)
2012 update_curr(cfs_rq);
2069dd75 2013 account_entity_dequeue(cfs_rq, se);
19e5eebb 2014 }
2069dd75
PZ
2015
2016 update_load_set(&se->load, weight);
2017
2018 if (se->on_rq)
2019 account_entity_enqueue(cfs_rq, se);
2020}
2021
82958366
PT
2022static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2023
6d5ab293 2024static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2025{
2026 struct task_group *tg;
2027 struct sched_entity *se;
3ff6dcac 2028 long shares;
2069dd75 2029
2069dd75
PZ
2030 tg = cfs_rq->tg;
2031 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2032 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2033 return;
3ff6dcac
YZ
2034#ifndef CONFIG_SMP
2035 if (likely(se->load.weight == tg->shares))
2036 return;
2037#endif
6d5ab293 2038 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2039
2040 reweight_entity(cfs_rq_of(se), se, shares);
2041}
2042#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2043static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2044{
2045}
2046#endif /* CONFIG_FAIR_GROUP_SCHED */
2047
141965c7 2048#ifdef CONFIG_SMP
5b51f2f8
PT
2049/*
2050 * We choose a half-life close to 1 scheduling period.
2051 * Note: The tables below are dependent on this value.
2052 */
2053#define LOAD_AVG_PERIOD 32
2054#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2055#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2056
2057/* Precomputed fixed inverse multiplies for multiplication by y^n */
2058static const u32 runnable_avg_yN_inv[] = {
2059 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2060 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2061 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2062 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2063 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2064 0x85aac367, 0x82cd8698,
2065};
2066
2067/*
2068 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2069 * over-estimates when re-combining.
2070 */
2071static const u32 runnable_avg_yN_sum[] = {
2072 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2073 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2074 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2075};
2076
9d85f21c
PT
2077/*
2078 * Approximate:
2079 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2080 */
2081static __always_inline u64 decay_load(u64 val, u64 n)
2082{
5b51f2f8
PT
2083 unsigned int local_n;
2084
2085 if (!n)
2086 return val;
2087 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2088 return 0;
2089
2090 /* after bounds checking we can collapse to 32-bit */
2091 local_n = n;
2092
2093 /*
2094 * As y^PERIOD = 1/2, we can combine
2095 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2096 * With a look-up table which covers k^n (n<PERIOD)
2097 *
2098 * To achieve constant time decay_load.
2099 */
2100 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2101 val >>= local_n / LOAD_AVG_PERIOD;
2102 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2103 }
2104
5b51f2f8
PT
2105 val *= runnable_avg_yN_inv[local_n];
2106 /* We don't use SRR here since we always want to round down. */
2107 return val >> 32;
2108}
2109
2110/*
2111 * For updates fully spanning n periods, the contribution to runnable
2112 * average will be: \Sum 1024*y^n
2113 *
2114 * We can compute this reasonably efficiently by combining:
2115 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2116 */
2117static u32 __compute_runnable_contrib(u64 n)
2118{
2119 u32 contrib = 0;
2120
2121 if (likely(n <= LOAD_AVG_PERIOD))
2122 return runnable_avg_yN_sum[n];
2123 else if (unlikely(n >= LOAD_AVG_MAX_N))
2124 return LOAD_AVG_MAX;
2125
2126 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2127 do {
2128 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2129 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2130
2131 n -= LOAD_AVG_PERIOD;
2132 } while (n > LOAD_AVG_PERIOD);
2133
2134 contrib = decay_load(contrib, n);
2135 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2136}
2137
2138/*
2139 * We can represent the historical contribution to runnable average as the
2140 * coefficients of a geometric series. To do this we sub-divide our runnable
2141 * history into segments of approximately 1ms (1024us); label the segment that
2142 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2143 *
2144 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2145 * p0 p1 p2
2146 * (now) (~1ms ago) (~2ms ago)
2147 *
2148 * Let u_i denote the fraction of p_i that the entity was runnable.
2149 *
2150 * We then designate the fractions u_i as our co-efficients, yielding the
2151 * following representation of historical load:
2152 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2153 *
2154 * We choose y based on the with of a reasonably scheduling period, fixing:
2155 * y^32 = 0.5
2156 *
2157 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2158 * approximately half as much as the contribution to load within the last ms
2159 * (u_0).
2160 *
2161 * When a period "rolls over" and we have new u_0`, multiplying the previous
2162 * sum again by y is sufficient to update:
2163 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2164 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2165 */
2166static __always_inline int __update_entity_runnable_avg(u64 now,
2167 struct sched_avg *sa,
2168 int runnable)
2169{
5b51f2f8
PT
2170 u64 delta, periods;
2171 u32 runnable_contrib;
9d85f21c
PT
2172 int delta_w, decayed = 0;
2173
2174 delta = now - sa->last_runnable_update;
2175 /*
2176 * This should only happen when time goes backwards, which it
2177 * unfortunately does during sched clock init when we swap over to TSC.
2178 */
2179 if ((s64)delta < 0) {
2180 sa->last_runnable_update = now;
2181 return 0;
2182 }
2183
2184 /*
2185 * Use 1024ns as the unit of measurement since it's a reasonable
2186 * approximation of 1us and fast to compute.
2187 */
2188 delta >>= 10;
2189 if (!delta)
2190 return 0;
2191 sa->last_runnable_update = now;
2192
2193 /* delta_w is the amount already accumulated against our next period */
2194 delta_w = sa->runnable_avg_period % 1024;
2195 if (delta + delta_w >= 1024) {
2196 /* period roll-over */
2197 decayed = 1;
2198
2199 /*
2200 * Now that we know we're crossing a period boundary, figure
2201 * out how much from delta we need to complete the current
2202 * period and accrue it.
2203 */
2204 delta_w = 1024 - delta_w;
5b51f2f8
PT
2205 if (runnable)
2206 sa->runnable_avg_sum += delta_w;
2207 sa->runnable_avg_period += delta_w;
2208
2209 delta -= delta_w;
2210
2211 /* Figure out how many additional periods this update spans */
2212 periods = delta / 1024;
2213 delta %= 1024;
2214
2215 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2216 periods + 1);
2217 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2218 periods + 1);
2219
2220 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2221 runnable_contrib = __compute_runnable_contrib(periods);
2222 if (runnable)
2223 sa->runnable_avg_sum += runnable_contrib;
2224 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2225 }
2226
2227 /* Remainder of delta accrued against u_0` */
2228 if (runnable)
2229 sa->runnable_avg_sum += delta;
2230 sa->runnable_avg_period += delta;
2231
2232 return decayed;
2233}
2234
9ee474f5 2235/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2236static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2237{
2238 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2239 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2240
2241 decays -= se->avg.decay_count;
2242 if (!decays)
aff3e498 2243 return 0;
9ee474f5
PT
2244
2245 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2246 se->avg.decay_count = 0;
aff3e498
PT
2247
2248 return decays;
9ee474f5
PT
2249}
2250
c566e8e9
PT
2251#ifdef CONFIG_FAIR_GROUP_SCHED
2252static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2253 int force_update)
2254{
2255 struct task_group *tg = cfs_rq->tg;
bf5b986e 2256 long tg_contrib;
c566e8e9
PT
2257
2258 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2259 tg_contrib -= cfs_rq->tg_load_contrib;
2260
bf5b986e
AS
2261 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2262 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2263 cfs_rq->tg_load_contrib += tg_contrib;
2264 }
2265}
8165e145 2266
bb17f655
PT
2267/*
2268 * Aggregate cfs_rq runnable averages into an equivalent task_group
2269 * representation for computing load contributions.
2270 */
2271static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2272 struct cfs_rq *cfs_rq)
2273{
2274 struct task_group *tg = cfs_rq->tg;
2275 long contrib;
2276
2277 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2278 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2279 sa->runnable_avg_period + 1);
2280 contrib -= cfs_rq->tg_runnable_contrib;
2281
2282 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2283 atomic_add(contrib, &tg->runnable_avg);
2284 cfs_rq->tg_runnable_contrib += contrib;
2285 }
2286}
2287
8165e145
PT
2288static inline void __update_group_entity_contrib(struct sched_entity *se)
2289{
2290 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2291 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2292 int runnable_avg;
2293
8165e145
PT
2294 u64 contrib;
2295
2296 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2297 se->avg.load_avg_contrib = div_u64(contrib,
2298 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2299
2300 /*
2301 * For group entities we need to compute a correction term in the case
2302 * that they are consuming <1 cpu so that we would contribute the same
2303 * load as a task of equal weight.
2304 *
2305 * Explicitly co-ordinating this measurement would be expensive, but
2306 * fortunately the sum of each cpus contribution forms a usable
2307 * lower-bound on the true value.
2308 *
2309 * Consider the aggregate of 2 contributions. Either they are disjoint
2310 * (and the sum represents true value) or they are disjoint and we are
2311 * understating by the aggregate of their overlap.
2312 *
2313 * Extending this to N cpus, for a given overlap, the maximum amount we
2314 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2315 * cpus that overlap for this interval and w_i is the interval width.
2316 *
2317 * On a small machine; the first term is well-bounded which bounds the
2318 * total error since w_i is a subset of the period. Whereas on a
2319 * larger machine, while this first term can be larger, if w_i is the
2320 * of consequential size guaranteed to see n_i*w_i quickly converge to
2321 * our upper bound of 1-cpu.
2322 */
2323 runnable_avg = atomic_read(&tg->runnable_avg);
2324 if (runnable_avg < NICE_0_LOAD) {
2325 se->avg.load_avg_contrib *= runnable_avg;
2326 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2327 }
8165e145 2328}
c566e8e9
PT
2329#else
2330static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2331 int force_update) {}
bb17f655
PT
2332static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2333 struct cfs_rq *cfs_rq) {}
8165e145 2334static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2335#endif
2336
8165e145
PT
2337static inline void __update_task_entity_contrib(struct sched_entity *se)
2338{
2339 u32 contrib;
2340
2341 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2342 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2343 contrib /= (se->avg.runnable_avg_period + 1);
2344 se->avg.load_avg_contrib = scale_load(contrib);
2345}
2346
2dac754e
PT
2347/* Compute the current contribution to load_avg by se, return any delta */
2348static long __update_entity_load_avg_contrib(struct sched_entity *se)
2349{
2350 long old_contrib = se->avg.load_avg_contrib;
2351
8165e145
PT
2352 if (entity_is_task(se)) {
2353 __update_task_entity_contrib(se);
2354 } else {
bb17f655 2355 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2356 __update_group_entity_contrib(se);
2357 }
2dac754e
PT
2358
2359 return se->avg.load_avg_contrib - old_contrib;
2360}
2361
9ee474f5
PT
2362static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2363 long load_contrib)
2364{
2365 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2366 cfs_rq->blocked_load_avg -= load_contrib;
2367 else
2368 cfs_rq->blocked_load_avg = 0;
2369}
2370
f1b17280
PT
2371static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2372
9d85f21c 2373/* Update a sched_entity's runnable average */
9ee474f5
PT
2374static inline void update_entity_load_avg(struct sched_entity *se,
2375 int update_cfs_rq)
9d85f21c 2376{
2dac754e
PT
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 long contrib_delta;
f1b17280 2379 u64 now;
2dac754e 2380
f1b17280
PT
2381 /*
2382 * For a group entity we need to use their owned cfs_rq_clock_task() in
2383 * case they are the parent of a throttled hierarchy.
2384 */
2385 if (entity_is_task(se))
2386 now = cfs_rq_clock_task(cfs_rq);
2387 else
2388 now = cfs_rq_clock_task(group_cfs_rq(se));
2389
2390 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2391 return;
2392
2393 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2394
2395 if (!update_cfs_rq)
2396 return;
2397
2dac754e
PT
2398 if (se->on_rq)
2399 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2400 else
2401 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2402}
2403
2404/*
2405 * Decay the load contributed by all blocked children and account this so that
2406 * their contribution may appropriately discounted when they wake up.
2407 */
aff3e498 2408static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2409{
f1b17280 2410 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2411 u64 decays;
2412
2413 decays = now - cfs_rq->last_decay;
aff3e498 2414 if (!decays && !force_update)
9ee474f5
PT
2415 return;
2416
2509940f
AS
2417 if (atomic_long_read(&cfs_rq->removed_load)) {
2418 unsigned long removed_load;
2419 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2420 subtract_blocked_load_contrib(cfs_rq, removed_load);
2421 }
9ee474f5 2422
aff3e498
PT
2423 if (decays) {
2424 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2425 decays);
2426 atomic64_add(decays, &cfs_rq->decay_counter);
2427 cfs_rq->last_decay = now;
2428 }
c566e8e9
PT
2429
2430 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2431}
18bf2805
BS
2432
2433static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2434{
78becc27 2435 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2436 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2437}
2dac754e
PT
2438
2439/* Add the load generated by se into cfs_rq's child load-average */
2440static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2441 struct sched_entity *se,
2442 int wakeup)
2dac754e 2443{
aff3e498
PT
2444 /*
2445 * We track migrations using entity decay_count <= 0, on a wake-up
2446 * migration we use a negative decay count to track the remote decays
2447 * accumulated while sleeping.
a75cdaa9
AS
2448 *
2449 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2450 * are seen by enqueue_entity_load_avg() as a migration with an already
2451 * constructed load_avg_contrib.
aff3e498
PT
2452 */
2453 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2454 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2455 if (se->avg.decay_count) {
2456 /*
2457 * In a wake-up migration we have to approximate the
2458 * time sleeping. This is because we can't synchronize
2459 * clock_task between the two cpus, and it is not
2460 * guaranteed to be read-safe. Instead, we can
2461 * approximate this using our carried decays, which are
2462 * explicitly atomically readable.
2463 */
2464 se->avg.last_runnable_update -= (-se->avg.decay_count)
2465 << 20;
2466 update_entity_load_avg(se, 0);
2467 /* Indicate that we're now synchronized and on-rq */
2468 se->avg.decay_count = 0;
2469 }
9ee474f5
PT
2470 wakeup = 0;
2471 } else {
9390675a 2472 __synchronize_entity_decay(se);
9ee474f5
PT
2473 }
2474
aff3e498
PT
2475 /* migrated tasks did not contribute to our blocked load */
2476 if (wakeup) {
9ee474f5 2477 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2478 update_entity_load_avg(se, 0);
2479 }
9ee474f5 2480
2dac754e 2481 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2482 /* we force update consideration on load-balancer moves */
2483 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2484}
2485
9ee474f5
PT
2486/*
2487 * Remove se's load from this cfs_rq child load-average, if the entity is
2488 * transitioning to a blocked state we track its projected decay using
2489 * blocked_load_avg.
2490 */
2dac754e 2491static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2492 struct sched_entity *se,
2493 int sleep)
2dac754e 2494{
9ee474f5 2495 update_entity_load_avg(se, 1);
aff3e498
PT
2496 /* we force update consideration on load-balancer moves */
2497 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2498
2dac754e 2499 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2500 if (sleep) {
2501 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2502 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2503 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2504}
642dbc39
VG
2505
2506/*
2507 * Update the rq's load with the elapsed running time before entering
2508 * idle. if the last scheduled task is not a CFS task, idle_enter will
2509 * be the only way to update the runnable statistic.
2510 */
2511void idle_enter_fair(struct rq *this_rq)
2512{
2513 update_rq_runnable_avg(this_rq, 1);
2514}
2515
2516/*
2517 * Update the rq's load with the elapsed idle time before a task is
2518 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2519 * be the only way to update the runnable statistic.
2520 */
2521void idle_exit_fair(struct rq *this_rq)
2522{
2523 update_rq_runnable_avg(this_rq, 0);
2524}
2525
9d85f21c 2526#else
9ee474f5
PT
2527static inline void update_entity_load_avg(struct sched_entity *se,
2528 int update_cfs_rq) {}
18bf2805 2529static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2530static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2531 struct sched_entity *se,
2532 int wakeup) {}
2dac754e 2533static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2534 struct sched_entity *se,
2535 int sleep) {}
aff3e498
PT
2536static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2537 int force_update) {}
9d85f21c
PT
2538#endif
2539
2396af69 2540static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2541{
bf0f6f24 2542#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2543 struct task_struct *tsk = NULL;
2544
2545 if (entity_is_task(se))
2546 tsk = task_of(se);
2547
41acab88 2548 if (se->statistics.sleep_start) {
78becc27 2549 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2550
2551 if ((s64)delta < 0)
2552 delta = 0;
2553
41acab88
LDM
2554 if (unlikely(delta > se->statistics.sleep_max))
2555 se->statistics.sleep_max = delta;
bf0f6f24 2556
8c79a045 2557 se->statistics.sleep_start = 0;
41acab88 2558 se->statistics.sum_sleep_runtime += delta;
9745512c 2559
768d0c27 2560 if (tsk) {
e414314c 2561 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2562 trace_sched_stat_sleep(tsk, delta);
2563 }
bf0f6f24 2564 }
41acab88 2565 if (se->statistics.block_start) {
78becc27 2566 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2567
2568 if ((s64)delta < 0)
2569 delta = 0;
2570
41acab88
LDM
2571 if (unlikely(delta > se->statistics.block_max))
2572 se->statistics.block_max = delta;
bf0f6f24 2573
8c79a045 2574 se->statistics.block_start = 0;
41acab88 2575 se->statistics.sum_sleep_runtime += delta;
30084fbd 2576
e414314c 2577 if (tsk) {
8f0dfc34 2578 if (tsk->in_iowait) {
41acab88
LDM
2579 se->statistics.iowait_sum += delta;
2580 se->statistics.iowait_count++;
768d0c27 2581 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2582 }
2583
b781a602
AV
2584 trace_sched_stat_blocked(tsk, delta);
2585
e414314c
PZ
2586 /*
2587 * Blocking time is in units of nanosecs, so shift by
2588 * 20 to get a milliseconds-range estimation of the
2589 * amount of time that the task spent sleeping:
2590 */
2591 if (unlikely(prof_on == SLEEP_PROFILING)) {
2592 profile_hits(SLEEP_PROFILING,
2593 (void *)get_wchan(tsk),
2594 delta >> 20);
2595 }
2596 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2597 }
bf0f6f24
IM
2598 }
2599#endif
2600}
2601
ddc97297
PZ
2602static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603{
2604#ifdef CONFIG_SCHED_DEBUG
2605 s64 d = se->vruntime - cfs_rq->min_vruntime;
2606
2607 if (d < 0)
2608 d = -d;
2609
2610 if (d > 3*sysctl_sched_latency)
2611 schedstat_inc(cfs_rq, nr_spread_over);
2612#endif
2613}
2614
aeb73b04
PZ
2615static void
2616place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2617{
1af5f730 2618 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2619
2cb8600e
PZ
2620 /*
2621 * The 'current' period is already promised to the current tasks,
2622 * however the extra weight of the new task will slow them down a
2623 * little, place the new task so that it fits in the slot that
2624 * stays open at the end.
2625 */
94dfb5e7 2626 if (initial && sched_feat(START_DEBIT))
f9c0b095 2627 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2628
a2e7a7eb 2629 /* sleeps up to a single latency don't count. */
5ca9880c 2630 if (!initial) {
a2e7a7eb 2631 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2632
a2e7a7eb
MG
2633 /*
2634 * Halve their sleep time's effect, to allow
2635 * for a gentler effect of sleepers:
2636 */
2637 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2638 thresh >>= 1;
51e0304c 2639
a2e7a7eb 2640 vruntime -= thresh;
aeb73b04
PZ
2641 }
2642
b5d9d734 2643 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2644 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2645}
2646
d3d9dc33
PT
2647static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2648
bf0f6f24 2649static void
88ec22d3 2650enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2651{
88ec22d3
PZ
2652 /*
2653 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2654 * through calling update_curr().
88ec22d3 2655 */
371fd7e7 2656 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2657 se->vruntime += cfs_rq->min_vruntime;
2658
bf0f6f24 2659 /*
a2a2d680 2660 * Update run-time statistics of the 'current'.
bf0f6f24 2661 */
b7cc0896 2662 update_curr(cfs_rq);
f269ae04 2663 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2664 account_entity_enqueue(cfs_rq, se);
2665 update_cfs_shares(cfs_rq);
bf0f6f24 2666
88ec22d3 2667 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2668 place_entity(cfs_rq, se, 0);
2396af69 2669 enqueue_sleeper(cfs_rq, se);
e9acbff6 2670 }
bf0f6f24 2671
d2417e5a 2672 update_stats_enqueue(cfs_rq, se);
ddc97297 2673 check_spread(cfs_rq, se);
83b699ed
SV
2674 if (se != cfs_rq->curr)
2675 __enqueue_entity(cfs_rq, se);
2069dd75 2676 se->on_rq = 1;
3d4b47b4 2677
d3d9dc33 2678 if (cfs_rq->nr_running == 1) {
3d4b47b4 2679 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2680 check_enqueue_throttle(cfs_rq);
2681 }
bf0f6f24
IM
2682}
2683
2c13c919 2684static void __clear_buddies_last(struct sched_entity *se)
2002c695 2685{
2c13c919
RR
2686 for_each_sched_entity(se) {
2687 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2688 if (cfs_rq->last == se)
2689 cfs_rq->last = NULL;
2690 else
2691 break;
2692 }
2693}
2002c695 2694
2c13c919
RR
2695static void __clear_buddies_next(struct sched_entity *se)
2696{
2697 for_each_sched_entity(se) {
2698 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2699 if (cfs_rq->next == se)
2700 cfs_rq->next = NULL;
2701 else
2702 break;
2703 }
2002c695
PZ
2704}
2705
ac53db59
RR
2706static void __clear_buddies_skip(struct sched_entity *se)
2707{
2708 for_each_sched_entity(se) {
2709 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2710 if (cfs_rq->skip == se)
2711 cfs_rq->skip = NULL;
2712 else
2713 break;
2714 }
2715}
2716
a571bbea
PZ
2717static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2718{
2c13c919
RR
2719 if (cfs_rq->last == se)
2720 __clear_buddies_last(se);
2721
2722 if (cfs_rq->next == se)
2723 __clear_buddies_next(se);
ac53db59
RR
2724
2725 if (cfs_rq->skip == se)
2726 __clear_buddies_skip(se);
a571bbea
PZ
2727}
2728
6c16a6dc 2729static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2730
bf0f6f24 2731static void
371fd7e7 2732dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2733{
a2a2d680
DA
2734 /*
2735 * Update run-time statistics of the 'current'.
2736 */
2737 update_curr(cfs_rq);
17bc14b7 2738 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2739
19b6a2e3 2740 update_stats_dequeue(cfs_rq, se);
371fd7e7 2741 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2742#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2743 if (entity_is_task(se)) {
2744 struct task_struct *tsk = task_of(se);
2745
2746 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2747 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2748 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2749 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2750 }
db36cc7d 2751#endif
67e9fb2a
PZ
2752 }
2753
2002c695 2754 clear_buddies(cfs_rq, se);
4793241b 2755
83b699ed 2756 if (se != cfs_rq->curr)
30cfdcfc 2757 __dequeue_entity(cfs_rq, se);
17bc14b7 2758 se->on_rq = 0;
30cfdcfc 2759 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2760
2761 /*
2762 * Normalize the entity after updating the min_vruntime because the
2763 * update can refer to the ->curr item and we need to reflect this
2764 * movement in our normalized position.
2765 */
371fd7e7 2766 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2767 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2768
d8b4986d
PT
2769 /* return excess runtime on last dequeue */
2770 return_cfs_rq_runtime(cfs_rq);
2771
1e876231 2772 update_min_vruntime(cfs_rq);
17bc14b7 2773 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2774}
2775
2776/*
2777 * Preempt the current task with a newly woken task if needed:
2778 */
7c92e54f 2779static void
2e09bf55 2780check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2781{
11697830 2782 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2783 struct sched_entity *se;
2784 s64 delta;
11697830 2785
6d0f0ebd 2786 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2787 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2788 if (delta_exec > ideal_runtime) {
bf0f6f24 2789 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2790 /*
2791 * The current task ran long enough, ensure it doesn't get
2792 * re-elected due to buddy favours.
2793 */
2794 clear_buddies(cfs_rq, curr);
f685ceac
MG
2795 return;
2796 }
2797
2798 /*
2799 * Ensure that a task that missed wakeup preemption by a
2800 * narrow margin doesn't have to wait for a full slice.
2801 * This also mitigates buddy induced latencies under load.
2802 */
f685ceac
MG
2803 if (delta_exec < sysctl_sched_min_granularity)
2804 return;
2805
f4cfb33e
WX
2806 se = __pick_first_entity(cfs_rq);
2807 delta = curr->vruntime - se->vruntime;
f685ceac 2808
f4cfb33e
WX
2809 if (delta < 0)
2810 return;
d7d82944 2811
f4cfb33e
WX
2812 if (delta > ideal_runtime)
2813 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2814}
2815
83b699ed 2816static void
8494f412 2817set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2818{
83b699ed
SV
2819 /* 'current' is not kept within the tree. */
2820 if (se->on_rq) {
2821 /*
2822 * Any task has to be enqueued before it get to execute on
2823 * a CPU. So account for the time it spent waiting on the
2824 * runqueue.
2825 */
2826 update_stats_wait_end(cfs_rq, se);
2827 __dequeue_entity(cfs_rq, se);
2828 }
2829
79303e9e 2830 update_stats_curr_start(cfs_rq, se);
429d43bc 2831 cfs_rq->curr = se;
eba1ed4b
IM
2832#ifdef CONFIG_SCHEDSTATS
2833 /*
2834 * Track our maximum slice length, if the CPU's load is at
2835 * least twice that of our own weight (i.e. dont track it
2836 * when there are only lesser-weight tasks around):
2837 */
495eca49 2838 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2839 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2840 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2841 }
2842#endif
4a55b450 2843 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2844}
2845
3f3a4904
PZ
2846static int
2847wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2848
ac53db59
RR
2849/*
2850 * Pick the next process, keeping these things in mind, in this order:
2851 * 1) keep things fair between processes/task groups
2852 * 2) pick the "next" process, since someone really wants that to run
2853 * 3) pick the "last" process, for cache locality
2854 * 4) do not run the "skip" process, if something else is available
2855 */
f4b6755f 2856static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2857{
ac53db59 2858 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2859 struct sched_entity *left = se;
f4b6755f 2860
ac53db59
RR
2861 /*
2862 * Avoid running the skip buddy, if running something else can
2863 * be done without getting too unfair.
2864 */
2865 if (cfs_rq->skip == se) {
2866 struct sched_entity *second = __pick_next_entity(se);
2867 if (second && wakeup_preempt_entity(second, left) < 1)
2868 se = second;
2869 }
aa2ac252 2870
f685ceac
MG
2871 /*
2872 * Prefer last buddy, try to return the CPU to a preempted task.
2873 */
2874 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2875 se = cfs_rq->last;
2876
ac53db59
RR
2877 /*
2878 * Someone really wants this to run. If it's not unfair, run it.
2879 */
2880 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2881 se = cfs_rq->next;
2882
f685ceac 2883 clear_buddies(cfs_rq, se);
4793241b
PZ
2884
2885 return se;
aa2ac252
PZ
2886}
2887
d3d9dc33
PT
2888static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2889
ab6cde26 2890static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2891{
2892 /*
2893 * If still on the runqueue then deactivate_task()
2894 * was not called and update_curr() has to be done:
2895 */
2896 if (prev->on_rq)
b7cc0896 2897 update_curr(cfs_rq);
bf0f6f24 2898
d3d9dc33
PT
2899 /* throttle cfs_rqs exceeding runtime */
2900 check_cfs_rq_runtime(cfs_rq);
2901
ddc97297 2902 check_spread(cfs_rq, prev);
30cfdcfc 2903 if (prev->on_rq) {
5870db5b 2904 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2905 /* Put 'current' back into the tree. */
2906 __enqueue_entity(cfs_rq, prev);
9d85f21c 2907 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2908 update_entity_load_avg(prev, 1);
30cfdcfc 2909 }
429d43bc 2910 cfs_rq->curr = NULL;
bf0f6f24
IM
2911}
2912
8f4d37ec
PZ
2913static void
2914entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2915{
bf0f6f24 2916 /*
30cfdcfc 2917 * Update run-time statistics of the 'current'.
bf0f6f24 2918 */
30cfdcfc 2919 update_curr(cfs_rq);
bf0f6f24 2920
9d85f21c
PT
2921 /*
2922 * Ensure that runnable average is periodically updated.
2923 */
9ee474f5 2924 update_entity_load_avg(curr, 1);
aff3e498 2925 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2926 update_cfs_shares(cfs_rq);
9d85f21c 2927
8f4d37ec
PZ
2928#ifdef CONFIG_SCHED_HRTICK
2929 /*
2930 * queued ticks are scheduled to match the slice, so don't bother
2931 * validating it and just reschedule.
2932 */
983ed7a6
HH
2933 if (queued) {
2934 resched_task(rq_of(cfs_rq)->curr);
2935 return;
2936 }
8f4d37ec
PZ
2937 /*
2938 * don't let the period tick interfere with the hrtick preemption
2939 */
2940 if (!sched_feat(DOUBLE_TICK) &&
2941 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2942 return;
2943#endif
2944
2c2efaed 2945 if (cfs_rq->nr_running > 1)
2e09bf55 2946 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2947}
2948
ab84d31e
PT
2949
2950/**************************************************
2951 * CFS bandwidth control machinery
2952 */
2953
2954#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2955
2956#ifdef HAVE_JUMP_LABEL
c5905afb 2957static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2958
2959static inline bool cfs_bandwidth_used(void)
2960{
c5905afb 2961 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2962}
2963
1ee14e6c 2964void cfs_bandwidth_usage_inc(void)
029632fb 2965{
1ee14e6c
BS
2966 static_key_slow_inc(&__cfs_bandwidth_used);
2967}
2968
2969void cfs_bandwidth_usage_dec(void)
2970{
2971 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2972}
2973#else /* HAVE_JUMP_LABEL */
2974static bool cfs_bandwidth_used(void)
2975{
2976 return true;
2977}
2978
1ee14e6c
BS
2979void cfs_bandwidth_usage_inc(void) {}
2980void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2981#endif /* HAVE_JUMP_LABEL */
2982
ab84d31e
PT
2983/*
2984 * default period for cfs group bandwidth.
2985 * default: 0.1s, units: nanoseconds
2986 */
2987static inline u64 default_cfs_period(void)
2988{
2989 return 100000000ULL;
2990}
ec12cb7f
PT
2991
2992static inline u64 sched_cfs_bandwidth_slice(void)
2993{
2994 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2995}
2996
a9cf55b2
PT
2997/*
2998 * Replenish runtime according to assigned quota and update expiration time.
2999 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3000 * additional synchronization around rq->lock.
3001 *
3002 * requires cfs_b->lock
3003 */
029632fb 3004void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3005{
3006 u64 now;
3007
3008 if (cfs_b->quota == RUNTIME_INF)
3009 return;
3010
3011 now = sched_clock_cpu(smp_processor_id());
3012 cfs_b->runtime = cfs_b->quota;
3013 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3014}
3015
029632fb
PZ
3016static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3017{
3018 return &tg->cfs_bandwidth;
3019}
3020
f1b17280
PT
3021/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3022static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3023{
3024 if (unlikely(cfs_rq->throttle_count))
3025 return cfs_rq->throttled_clock_task;
3026
78becc27 3027 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3028}
3029
85dac906
PT
3030/* returns 0 on failure to allocate runtime */
3031static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3032{
3033 struct task_group *tg = cfs_rq->tg;
3034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3035 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3036
3037 /* note: this is a positive sum as runtime_remaining <= 0 */
3038 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3039
3040 raw_spin_lock(&cfs_b->lock);
3041 if (cfs_b->quota == RUNTIME_INF)
3042 amount = min_amount;
58088ad0 3043 else {
a9cf55b2
PT
3044 /*
3045 * If the bandwidth pool has become inactive, then at least one
3046 * period must have elapsed since the last consumption.
3047 * Refresh the global state and ensure bandwidth timer becomes
3048 * active.
3049 */
3050 if (!cfs_b->timer_active) {
3051 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3052 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3053 }
58088ad0
PT
3054
3055 if (cfs_b->runtime > 0) {
3056 amount = min(cfs_b->runtime, min_amount);
3057 cfs_b->runtime -= amount;
3058 cfs_b->idle = 0;
3059 }
ec12cb7f 3060 }
a9cf55b2 3061 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3062 raw_spin_unlock(&cfs_b->lock);
3063
3064 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3065 /*
3066 * we may have advanced our local expiration to account for allowed
3067 * spread between our sched_clock and the one on which runtime was
3068 * issued.
3069 */
3070 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3071 cfs_rq->runtime_expires = expires;
85dac906
PT
3072
3073 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3074}
3075
a9cf55b2
PT
3076/*
3077 * Note: This depends on the synchronization provided by sched_clock and the
3078 * fact that rq->clock snapshots this value.
3079 */
3080static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3081{
a9cf55b2 3082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3083
3084 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3085 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3086 return;
3087
a9cf55b2
PT
3088 if (cfs_rq->runtime_remaining < 0)
3089 return;
3090
3091 /*
3092 * If the local deadline has passed we have to consider the
3093 * possibility that our sched_clock is 'fast' and the global deadline
3094 * has not truly expired.
3095 *
3096 * Fortunately we can check determine whether this the case by checking
3097 * whether the global deadline has advanced.
3098 */
3099
3100 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3101 /* extend local deadline, drift is bounded above by 2 ticks */
3102 cfs_rq->runtime_expires += TICK_NSEC;
3103 } else {
3104 /* global deadline is ahead, expiration has passed */
3105 cfs_rq->runtime_remaining = 0;
3106 }
3107}
3108
9dbdb155 3109static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3110{
3111 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3112 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3113 expire_cfs_rq_runtime(cfs_rq);
3114
3115 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3116 return;
3117
85dac906
PT
3118 /*
3119 * if we're unable to extend our runtime we resched so that the active
3120 * hierarchy can be throttled
3121 */
3122 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3123 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3124}
3125
6c16a6dc 3126static __always_inline
9dbdb155 3127void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3128{
56f570e5 3129 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3130 return;
3131
3132 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3133}
3134
85dac906
PT
3135static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3136{
56f570e5 3137 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3138}
3139
64660c86
PT
3140/* check whether cfs_rq, or any parent, is throttled */
3141static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3142{
56f570e5 3143 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3144}
3145
3146/*
3147 * Ensure that neither of the group entities corresponding to src_cpu or
3148 * dest_cpu are members of a throttled hierarchy when performing group
3149 * load-balance operations.
3150 */
3151static inline int throttled_lb_pair(struct task_group *tg,
3152 int src_cpu, int dest_cpu)
3153{
3154 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3155
3156 src_cfs_rq = tg->cfs_rq[src_cpu];
3157 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3158
3159 return throttled_hierarchy(src_cfs_rq) ||
3160 throttled_hierarchy(dest_cfs_rq);
3161}
3162
3163/* updated child weight may affect parent so we have to do this bottom up */
3164static int tg_unthrottle_up(struct task_group *tg, void *data)
3165{
3166 struct rq *rq = data;
3167 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3168
3169 cfs_rq->throttle_count--;
3170#ifdef CONFIG_SMP
3171 if (!cfs_rq->throttle_count) {
f1b17280 3172 /* adjust cfs_rq_clock_task() */
78becc27 3173 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3174 cfs_rq->throttled_clock_task;
64660c86
PT
3175 }
3176#endif
3177
3178 return 0;
3179}
3180
3181static int tg_throttle_down(struct task_group *tg, void *data)
3182{
3183 struct rq *rq = data;
3184 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3185
82958366
PT
3186 /* group is entering throttled state, stop time */
3187 if (!cfs_rq->throttle_count)
78becc27 3188 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3189 cfs_rq->throttle_count++;
3190
3191 return 0;
3192}
3193
d3d9dc33 3194static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3195{
3196 struct rq *rq = rq_of(cfs_rq);
3197 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3198 struct sched_entity *se;
3199 long task_delta, dequeue = 1;
3200
3201 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3202
f1b17280 3203 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3204 rcu_read_lock();
3205 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3206 rcu_read_unlock();
85dac906
PT
3207
3208 task_delta = cfs_rq->h_nr_running;
3209 for_each_sched_entity(se) {
3210 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3211 /* throttled entity or throttle-on-deactivate */
3212 if (!se->on_rq)
3213 break;
3214
3215 if (dequeue)
3216 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3217 qcfs_rq->h_nr_running -= task_delta;
3218
3219 if (qcfs_rq->load.weight)
3220 dequeue = 0;
3221 }
3222
3223 if (!se)
3224 rq->nr_running -= task_delta;
3225
3226 cfs_rq->throttled = 1;
78becc27 3227 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3228 raw_spin_lock(&cfs_b->lock);
3229 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3230 if (!cfs_b->timer_active)
3231 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3232 raw_spin_unlock(&cfs_b->lock);
3233}
3234
029632fb 3235void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3236{
3237 struct rq *rq = rq_of(cfs_rq);
3238 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3239 struct sched_entity *se;
3240 int enqueue = 1;
3241 long task_delta;
3242
22b958d8 3243 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3244
3245 cfs_rq->throttled = 0;
1a55af2e
FW
3246
3247 update_rq_clock(rq);
3248
671fd9da 3249 raw_spin_lock(&cfs_b->lock);
78becc27 3250 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3251 list_del_rcu(&cfs_rq->throttled_list);
3252 raw_spin_unlock(&cfs_b->lock);
3253
64660c86
PT
3254 /* update hierarchical throttle state */
3255 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3256
671fd9da
PT
3257 if (!cfs_rq->load.weight)
3258 return;
3259
3260 task_delta = cfs_rq->h_nr_running;
3261 for_each_sched_entity(se) {
3262 if (se->on_rq)
3263 enqueue = 0;
3264
3265 cfs_rq = cfs_rq_of(se);
3266 if (enqueue)
3267 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3268 cfs_rq->h_nr_running += task_delta;
3269
3270 if (cfs_rq_throttled(cfs_rq))
3271 break;
3272 }
3273
3274 if (!se)
3275 rq->nr_running += task_delta;
3276
3277 /* determine whether we need to wake up potentially idle cpu */
3278 if (rq->curr == rq->idle && rq->cfs.nr_running)
3279 resched_task(rq->curr);
3280}
3281
3282static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3283 u64 remaining, u64 expires)
3284{
3285 struct cfs_rq *cfs_rq;
3286 u64 runtime = remaining;
3287
3288 rcu_read_lock();
3289 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3290 throttled_list) {
3291 struct rq *rq = rq_of(cfs_rq);
3292
3293 raw_spin_lock(&rq->lock);
3294 if (!cfs_rq_throttled(cfs_rq))
3295 goto next;
3296
3297 runtime = -cfs_rq->runtime_remaining + 1;
3298 if (runtime > remaining)
3299 runtime = remaining;
3300 remaining -= runtime;
3301
3302 cfs_rq->runtime_remaining += runtime;
3303 cfs_rq->runtime_expires = expires;
3304
3305 /* we check whether we're throttled above */
3306 if (cfs_rq->runtime_remaining > 0)
3307 unthrottle_cfs_rq(cfs_rq);
3308
3309next:
3310 raw_spin_unlock(&rq->lock);
3311
3312 if (!remaining)
3313 break;
3314 }
3315 rcu_read_unlock();
3316
3317 return remaining;
3318}
3319
58088ad0
PT
3320/*
3321 * Responsible for refilling a task_group's bandwidth and unthrottling its
3322 * cfs_rqs as appropriate. If there has been no activity within the last
3323 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3324 * used to track this state.
3325 */
3326static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3327{
671fd9da
PT
3328 u64 runtime, runtime_expires;
3329 int idle = 1, throttled;
58088ad0
PT
3330
3331 raw_spin_lock(&cfs_b->lock);
3332 /* no need to continue the timer with no bandwidth constraint */
3333 if (cfs_b->quota == RUNTIME_INF)
3334 goto out_unlock;
3335
671fd9da
PT
3336 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3337 /* idle depends on !throttled (for the case of a large deficit) */
3338 idle = cfs_b->idle && !throttled;
e8da1b18 3339 cfs_b->nr_periods += overrun;
671fd9da 3340
a9cf55b2
PT
3341 /* if we're going inactive then everything else can be deferred */
3342 if (idle)
3343 goto out_unlock;
3344
927b54fc
BS
3345 /*
3346 * if we have relooped after returning idle once, we need to update our
3347 * status as actually running, so that other cpus doing
3348 * __start_cfs_bandwidth will stop trying to cancel us.
3349 */
3350 cfs_b->timer_active = 1;
3351
a9cf55b2
PT
3352 __refill_cfs_bandwidth_runtime(cfs_b);
3353
671fd9da
PT
3354 if (!throttled) {
3355 /* mark as potentially idle for the upcoming period */
3356 cfs_b->idle = 1;
3357 goto out_unlock;
3358 }
3359
e8da1b18
NR
3360 /* account preceding periods in which throttling occurred */
3361 cfs_b->nr_throttled += overrun;
3362
671fd9da
PT
3363 /*
3364 * There are throttled entities so we must first use the new bandwidth
3365 * to unthrottle them before making it generally available. This
3366 * ensures that all existing debts will be paid before a new cfs_rq is
3367 * allowed to run.
3368 */
3369 runtime = cfs_b->runtime;
3370 runtime_expires = cfs_b->runtime_expires;
3371 cfs_b->runtime = 0;
3372
3373 /*
3374 * This check is repeated as we are holding onto the new bandwidth
3375 * while we unthrottle. This can potentially race with an unthrottled
3376 * group trying to acquire new bandwidth from the global pool.
3377 */
3378 while (throttled && runtime > 0) {
3379 raw_spin_unlock(&cfs_b->lock);
3380 /* we can't nest cfs_b->lock while distributing bandwidth */
3381 runtime = distribute_cfs_runtime(cfs_b, runtime,
3382 runtime_expires);
3383 raw_spin_lock(&cfs_b->lock);
3384
3385 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3386 }
58088ad0 3387
671fd9da
PT
3388 /* return (any) remaining runtime */
3389 cfs_b->runtime = runtime;
3390 /*
3391 * While we are ensured activity in the period following an
3392 * unthrottle, this also covers the case in which the new bandwidth is
3393 * insufficient to cover the existing bandwidth deficit. (Forcing the
3394 * timer to remain active while there are any throttled entities.)
3395 */
3396 cfs_b->idle = 0;
58088ad0
PT
3397out_unlock:
3398 if (idle)
3399 cfs_b->timer_active = 0;
3400 raw_spin_unlock(&cfs_b->lock);
3401
3402 return idle;
3403}
d3d9dc33 3404
d8b4986d
PT
3405/* a cfs_rq won't donate quota below this amount */
3406static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3407/* minimum remaining period time to redistribute slack quota */
3408static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3409/* how long we wait to gather additional slack before distributing */
3410static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3411
db06e78c
BS
3412/*
3413 * Are we near the end of the current quota period?
3414 *
3415 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3416 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3417 * migrate_hrtimers, base is never cleared, so we are fine.
3418 */
d8b4986d
PT
3419static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3420{
3421 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3422 u64 remaining;
3423
3424 /* if the call-back is running a quota refresh is already occurring */
3425 if (hrtimer_callback_running(refresh_timer))
3426 return 1;
3427
3428 /* is a quota refresh about to occur? */
3429 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3430 if (remaining < min_expire)
3431 return 1;
3432
3433 return 0;
3434}
3435
3436static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3437{
3438 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3439
3440 /* if there's a quota refresh soon don't bother with slack */
3441 if (runtime_refresh_within(cfs_b, min_left))
3442 return;
3443
3444 start_bandwidth_timer(&cfs_b->slack_timer,
3445 ns_to_ktime(cfs_bandwidth_slack_period));
3446}
3447
3448/* we know any runtime found here is valid as update_curr() precedes return */
3449static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3450{
3451 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3452 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3453
3454 if (slack_runtime <= 0)
3455 return;
3456
3457 raw_spin_lock(&cfs_b->lock);
3458 if (cfs_b->quota != RUNTIME_INF &&
3459 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3460 cfs_b->runtime += slack_runtime;
3461
3462 /* we are under rq->lock, defer unthrottling using a timer */
3463 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3464 !list_empty(&cfs_b->throttled_cfs_rq))
3465 start_cfs_slack_bandwidth(cfs_b);
3466 }
3467 raw_spin_unlock(&cfs_b->lock);
3468
3469 /* even if it's not valid for return we don't want to try again */
3470 cfs_rq->runtime_remaining -= slack_runtime;
3471}
3472
3473static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3474{
56f570e5
PT
3475 if (!cfs_bandwidth_used())
3476 return;
3477
fccfdc6f 3478 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3479 return;
3480
3481 __return_cfs_rq_runtime(cfs_rq);
3482}
3483
3484/*
3485 * This is done with a timer (instead of inline with bandwidth return) since
3486 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3487 */
3488static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3489{
3490 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3491 u64 expires;
3492
3493 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3494 raw_spin_lock(&cfs_b->lock);
3495 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3496 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3497 return;
db06e78c 3498 }
d8b4986d 3499
d8b4986d
PT
3500 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3501 runtime = cfs_b->runtime;
3502 cfs_b->runtime = 0;
3503 }
3504 expires = cfs_b->runtime_expires;
3505 raw_spin_unlock(&cfs_b->lock);
3506
3507 if (!runtime)
3508 return;
3509
3510 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3511
3512 raw_spin_lock(&cfs_b->lock);
3513 if (expires == cfs_b->runtime_expires)
3514 cfs_b->runtime = runtime;
3515 raw_spin_unlock(&cfs_b->lock);
3516}
3517
d3d9dc33
PT
3518/*
3519 * When a group wakes up we want to make sure that its quota is not already
3520 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3521 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3522 */
3523static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3524{
56f570e5
PT
3525 if (!cfs_bandwidth_used())
3526 return;
3527
d3d9dc33
PT
3528 /* an active group must be handled by the update_curr()->put() path */
3529 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3530 return;
3531
3532 /* ensure the group is not already throttled */
3533 if (cfs_rq_throttled(cfs_rq))
3534 return;
3535
3536 /* update runtime allocation */
3537 account_cfs_rq_runtime(cfs_rq, 0);
3538 if (cfs_rq->runtime_remaining <= 0)
3539 throttle_cfs_rq(cfs_rq);
3540}
3541
3542/* conditionally throttle active cfs_rq's from put_prev_entity() */
3543static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3544{
56f570e5
PT
3545 if (!cfs_bandwidth_used())
3546 return;
3547
d3d9dc33
PT
3548 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3549 return;
3550
3551 /*
3552 * it's possible for a throttled entity to be forced into a running
3553 * state (e.g. set_curr_task), in this case we're finished.
3554 */
3555 if (cfs_rq_throttled(cfs_rq))
3556 return;
3557
3558 throttle_cfs_rq(cfs_rq);
3559}
029632fb 3560
029632fb
PZ
3561static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3562{
3563 struct cfs_bandwidth *cfs_b =
3564 container_of(timer, struct cfs_bandwidth, slack_timer);
3565 do_sched_cfs_slack_timer(cfs_b);
3566
3567 return HRTIMER_NORESTART;
3568}
3569
3570static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3571{
3572 struct cfs_bandwidth *cfs_b =
3573 container_of(timer, struct cfs_bandwidth, period_timer);
3574 ktime_t now;
3575 int overrun;
3576 int idle = 0;
3577
3578 for (;;) {
3579 now = hrtimer_cb_get_time(timer);
3580 overrun = hrtimer_forward(timer, now, cfs_b->period);
3581
3582 if (!overrun)
3583 break;
3584
3585 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3586 }
3587
3588 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3589}
3590
3591void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3592{
3593 raw_spin_lock_init(&cfs_b->lock);
3594 cfs_b->runtime = 0;
3595 cfs_b->quota = RUNTIME_INF;
3596 cfs_b->period = ns_to_ktime(default_cfs_period());
3597
3598 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3599 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3600 cfs_b->period_timer.function = sched_cfs_period_timer;
3601 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3602 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3603}
3604
3605static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3606{
3607 cfs_rq->runtime_enabled = 0;
3608 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3609}
3610
3611/* requires cfs_b->lock, may release to reprogram timer */
3612void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3613{
3614 /*
3615 * The timer may be active because we're trying to set a new bandwidth
3616 * period or because we're racing with the tear-down path
3617 * (timer_active==0 becomes visible before the hrtimer call-back
3618 * terminates). In either case we ensure that it's re-programmed
3619 */
927b54fc
BS
3620 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3621 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3622 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3623 raw_spin_unlock(&cfs_b->lock);
927b54fc 3624 cpu_relax();
029632fb
PZ
3625 raw_spin_lock(&cfs_b->lock);
3626 /* if someone else restarted the timer then we're done */
3627 if (cfs_b->timer_active)
3628 return;
3629 }
3630
3631 cfs_b->timer_active = 1;
3632 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3633}
3634
3635static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3636{
3637 hrtimer_cancel(&cfs_b->period_timer);
3638 hrtimer_cancel(&cfs_b->slack_timer);
3639}
3640
38dc3348 3641static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3642{
3643 struct cfs_rq *cfs_rq;
3644
3645 for_each_leaf_cfs_rq(rq, cfs_rq) {
3646 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3647
3648 if (!cfs_rq->runtime_enabled)
3649 continue;
3650
3651 /*
3652 * clock_task is not advancing so we just need to make sure
3653 * there's some valid quota amount
3654 */
3655 cfs_rq->runtime_remaining = cfs_b->quota;
3656 if (cfs_rq_throttled(cfs_rq))
3657 unthrottle_cfs_rq(cfs_rq);
3658 }
3659}
3660
3661#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3663{
78becc27 3664 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3665}
3666
9dbdb155 3667static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3668static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3669static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3670static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3671
3672static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3673{
3674 return 0;
3675}
64660c86
PT
3676
3677static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3678{
3679 return 0;
3680}
3681
3682static inline int throttled_lb_pair(struct task_group *tg,
3683 int src_cpu, int dest_cpu)
3684{
3685 return 0;
3686}
029632fb
PZ
3687
3688void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3689
3690#ifdef CONFIG_FAIR_GROUP_SCHED
3691static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3692#endif
3693
029632fb
PZ
3694static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3695{
3696 return NULL;
3697}
3698static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3699static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3700
3701#endif /* CONFIG_CFS_BANDWIDTH */
3702
bf0f6f24
IM
3703/**************************************************
3704 * CFS operations on tasks:
3705 */
3706
8f4d37ec
PZ
3707#ifdef CONFIG_SCHED_HRTICK
3708static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3709{
8f4d37ec
PZ
3710 struct sched_entity *se = &p->se;
3711 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3712
3713 WARN_ON(task_rq(p) != rq);
3714
b39e66ea 3715 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3716 u64 slice = sched_slice(cfs_rq, se);
3717 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3718 s64 delta = slice - ran;
3719
3720 if (delta < 0) {
3721 if (rq->curr == p)
3722 resched_task(p);
3723 return;
3724 }
3725
3726 /*
3727 * Don't schedule slices shorter than 10000ns, that just
3728 * doesn't make sense. Rely on vruntime for fairness.
3729 */
31656519 3730 if (rq->curr != p)
157124c1 3731 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3732
31656519 3733 hrtick_start(rq, delta);
8f4d37ec
PZ
3734 }
3735}
a4c2f00f
PZ
3736
3737/*
3738 * called from enqueue/dequeue and updates the hrtick when the
3739 * current task is from our class and nr_running is low enough
3740 * to matter.
3741 */
3742static void hrtick_update(struct rq *rq)
3743{
3744 struct task_struct *curr = rq->curr;
3745
b39e66ea 3746 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3747 return;
3748
3749 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3750 hrtick_start_fair(rq, curr);
3751}
55e12e5e 3752#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3753static inline void
3754hrtick_start_fair(struct rq *rq, struct task_struct *p)
3755{
3756}
a4c2f00f
PZ
3757
3758static inline void hrtick_update(struct rq *rq)
3759{
3760}
8f4d37ec
PZ
3761#endif
3762
bf0f6f24
IM
3763/*
3764 * The enqueue_task method is called before nr_running is
3765 * increased. Here we update the fair scheduling stats and
3766 * then put the task into the rbtree:
3767 */
ea87bb78 3768static void
371fd7e7 3769enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3770{
3771 struct cfs_rq *cfs_rq;
62fb1851 3772 struct sched_entity *se = &p->se;
bf0f6f24
IM
3773
3774 for_each_sched_entity(se) {
62fb1851 3775 if (se->on_rq)
bf0f6f24
IM
3776 break;
3777 cfs_rq = cfs_rq_of(se);
88ec22d3 3778 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3779
3780 /*
3781 * end evaluation on encountering a throttled cfs_rq
3782 *
3783 * note: in the case of encountering a throttled cfs_rq we will
3784 * post the final h_nr_running increment below.
3785 */
3786 if (cfs_rq_throttled(cfs_rq))
3787 break;
953bfcd1 3788 cfs_rq->h_nr_running++;
85dac906 3789
88ec22d3 3790 flags = ENQUEUE_WAKEUP;
bf0f6f24 3791 }
8f4d37ec 3792
2069dd75 3793 for_each_sched_entity(se) {
0f317143 3794 cfs_rq = cfs_rq_of(se);
953bfcd1 3795 cfs_rq->h_nr_running++;
2069dd75 3796
85dac906
PT
3797 if (cfs_rq_throttled(cfs_rq))
3798 break;
3799
17bc14b7 3800 update_cfs_shares(cfs_rq);
9ee474f5 3801 update_entity_load_avg(se, 1);
2069dd75
PZ
3802 }
3803
18bf2805
BS
3804 if (!se) {
3805 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3806 inc_nr_running(rq);
18bf2805 3807 }
a4c2f00f 3808 hrtick_update(rq);
bf0f6f24
IM
3809}
3810
2f36825b
VP
3811static void set_next_buddy(struct sched_entity *se);
3812
bf0f6f24
IM
3813/*
3814 * The dequeue_task method is called before nr_running is
3815 * decreased. We remove the task from the rbtree and
3816 * update the fair scheduling stats:
3817 */
371fd7e7 3818static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3819{
3820 struct cfs_rq *cfs_rq;
62fb1851 3821 struct sched_entity *se = &p->se;
2f36825b 3822 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3823
3824 for_each_sched_entity(se) {
3825 cfs_rq = cfs_rq_of(se);
371fd7e7 3826 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3827
3828 /*
3829 * end evaluation on encountering a throttled cfs_rq
3830 *
3831 * note: in the case of encountering a throttled cfs_rq we will
3832 * post the final h_nr_running decrement below.
3833 */
3834 if (cfs_rq_throttled(cfs_rq))
3835 break;
953bfcd1 3836 cfs_rq->h_nr_running--;
2069dd75 3837
bf0f6f24 3838 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3839 if (cfs_rq->load.weight) {
3840 /*
3841 * Bias pick_next to pick a task from this cfs_rq, as
3842 * p is sleeping when it is within its sched_slice.
3843 */
3844 if (task_sleep && parent_entity(se))
3845 set_next_buddy(parent_entity(se));
9598c82d
PT
3846
3847 /* avoid re-evaluating load for this entity */
3848 se = parent_entity(se);
bf0f6f24 3849 break;
2f36825b 3850 }
371fd7e7 3851 flags |= DEQUEUE_SLEEP;
bf0f6f24 3852 }
8f4d37ec 3853
2069dd75 3854 for_each_sched_entity(se) {
0f317143 3855 cfs_rq = cfs_rq_of(se);
953bfcd1 3856 cfs_rq->h_nr_running--;
2069dd75 3857
85dac906
PT
3858 if (cfs_rq_throttled(cfs_rq))
3859 break;
3860
17bc14b7 3861 update_cfs_shares(cfs_rq);
9ee474f5 3862 update_entity_load_avg(se, 1);
2069dd75
PZ
3863 }
3864
18bf2805 3865 if (!se) {
85dac906 3866 dec_nr_running(rq);
18bf2805
BS
3867 update_rq_runnable_avg(rq, 1);
3868 }
a4c2f00f 3869 hrtick_update(rq);
bf0f6f24
IM
3870}
3871
e7693a36 3872#ifdef CONFIG_SMP
029632fb
PZ
3873/* Used instead of source_load when we know the type == 0 */
3874static unsigned long weighted_cpuload(const int cpu)
3875{
b92486cb 3876 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3877}
3878
3879/*
3880 * Return a low guess at the load of a migration-source cpu weighted
3881 * according to the scheduling class and "nice" value.
3882 *
3883 * We want to under-estimate the load of migration sources, to
3884 * balance conservatively.
3885 */
3886static unsigned long source_load(int cpu, int type)
3887{
3888 struct rq *rq = cpu_rq(cpu);
3889 unsigned long total = weighted_cpuload(cpu);
3890
3891 if (type == 0 || !sched_feat(LB_BIAS))
3892 return total;
3893
3894 return min(rq->cpu_load[type-1], total);
3895}
3896
3897/*
3898 * Return a high guess at the load of a migration-target cpu weighted
3899 * according to the scheduling class and "nice" value.
3900 */
3901static unsigned long target_load(int cpu, int type)
3902{
3903 struct rq *rq = cpu_rq(cpu);
3904 unsigned long total = weighted_cpuload(cpu);
3905
3906 if (type == 0 || !sched_feat(LB_BIAS))
3907 return total;
3908
3909 return max(rq->cpu_load[type-1], total);
3910}
3911
3912static unsigned long power_of(int cpu)
3913{
3914 return cpu_rq(cpu)->cpu_power;
3915}
3916
3917static unsigned long cpu_avg_load_per_task(int cpu)
3918{
3919 struct rq *rq = cpu_rq(cpu);
3920 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3921 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3922
3923 if (nr_running)
b92486cb 3924 return load_avg / nr_running;
029632fb
PZ
3925
3926 return 0;
3927}
3928
62470419
MW
3929static void record_wakee(struct task_struct *p)
3930{
3931 /*
3932 * Rough decay (wiping) for cost saving, don't worry
3933 * about the boundary, really active task won't care
3934 * about the loss.
3935 */
3936 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3937 current->wakee_flips = 0;
3938 current->wakee_flip_decay_ts = jiffies;
3939 }
3940
3941 if (current->last_wakee != p) {
3942 current->last_wakee = p;
3943 current->wakee_flips++;
3944 }
3945}
098fb9db 3946
74f8e4b2 3947static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3948{
3949 struct sched_entity *se = &p->se;
3950 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3951 u64 min_vruntime;
3952
3953#ifndef CONFIG_64BIT
3954 u64 min_vruntime_copy;
88ec22d3 3955
3fe1698b
PZ
3956 do {
3957 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3958 smp_rmb();
3959 min_vruntime = cfs_rq->min_vruntime;
3960 } while (min_vruntime != min_vruntime_copy);
3961#else
3962 min_vruntime = cfs_rq->min_vruntime;
3963#endif
88ec22d3 3964
3fe1698b 3965 se->vruntime -= min_vruntime;
62470419 3966 record_wakee(p);
88ec22d3
PZ
3967}
3968
bb3469ac 3969#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3970/*
3971 * effective_load() calculates the load change as seen from the root_task_group
3972 *
3973 * Adding load to a group doesn't make a group heavier, but can cause movement
3974 * of group shares between cpus. Assuming the shares were perfectly aligned one
3975 * can calculate the shift in shares.
cf5f0acf
PZ
3976 *
3977 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3978 * on this @cpu and results in a total addition (subtraction) of @wg to the
3979 * total group weight.
3980 *
3981 * Given a runqueue weight distribution (rw_i) we can compute a shares
3982 * distribution (s_i) using:
3983 *
3984 * s_i = rw_i / \Sum rw_j (1)
3985 *
3986 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3987 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3988 * shares distribution (s_i):
3989 *
3990 * rw_i = { 2, 4, 1, 0 }
3991 * s_i = { 2/7, 4/7, 1/7, 0 }
3992 *
3993 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3994 * task used to run on and the CPU the waker is running on), we need to
3995 * compute the effect of waking a task on either CPU and, in case of a sync
3996 * wakeup, compute the effect of the current task going to sleep.
3997 *
3998 * So for a change of @wl to the local @cpu with an overall group weight change
3999 * of @wl we can compute the new shares distribution (s'_i) using:
4000 *
4001 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4002 *
4003 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4004 * differences in waking a task to CPU 0. The additional task changes the
4005 * weight and shares distributions like:
4006 *
4007 * rw'_i = { 3, 4, 1, 0 }
4008 * s'_i = { 3/8, 4/8, 1/8, 0 }
4009 *
4010 * We can then compute the difference in effective weight by using:
4011 *
4012 * dw_i = S * (s'_i - s_i) (3)
4013 *
4014 * Where 'S' is the group weight as seen by its parent.
4015 *
4016 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4017 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4018 * 4/7) times the weight of the group.
f5bfb7d9 4019 */
2069dd75 4020static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4021{
4be9daaa 4022 struct sched_entity *se = tg->se[cpu];
f1d239f7 4023
9722c2da 4024 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4025 return wl;
4026
4be9daaa 4027 for_each_sched_entity(se) {
cf5f0acf 4028 long w, W;
4be9daaa 4029
977dda7c 4030 tg = se->my_q->tg;
bb3469ac 4031
cf5f0acf
PZ
4032 /*
4033 * W = @wg + \Sum rw_j
4034 */
4035 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4036
cf5f0acf
PZ
4037 /*
4038 * w = rw_i + @wl
4039 */
4040 w = se->my_q->load.weight + wl;
940959e9 4041
cf5f0acf
PZ
4042 /*
4043 * wl = S * s'_i; see (2)
4044 */
4045 if (W > 0 && w < W)
4046 wl = (w * tg->shares) / W;
977dda7c
PT
4047 else
4048 wl = tg->shares;
940959e9 4049
cf5f0acf
PZ
4050 /*
4051 * Per the above, wl is the new se->load.weight value; since
4052 * those are clipped to [MIN_SHARES, ...) do so now. See
4053 * calc_cfs_shares().
4054 */
977dda7c
PT
4055 if (wl < MIN_SHARES)
4056 wl = MIN_SHARES;
cf5f0acf
PZ
4057
4058 /*
4059 * wl = dw_i = S * (s'_i - s_i); see (3)
4060 */
977dda7c 4061 wl -= se->load.weight;
cf5f0acf
PZ
4062
4063 /*
4064 * Recursively apply this logic to all parent groups to compute
4065 * the final effective load change on the root group. Since
4066 * only the @tg group gets extra weight, all parent groups can
4067 * only redistribute existing shares. @wl is the shift in shares
4068 * resulting from this level per the above.
4069 */
4be9daaa 4070 wg = 0;
4be9daaa 4071 }
bb3469ac 4072
4be9daaa 4073 return wl;
bb3469ac
PZ
4074}
4075#else
4be9daaa 4076
58d081b5 4077static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4078{
83378269 4079 return wl;
bb3469ac 4080}
4be9daaa 4081
bb3469ac
PZ
4082#endif
4083
62470419
MW
4084static int wake_wide(struct task_struct *p)
4085{
7d9ffa89 4086 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4087
4088 /*
4089 * Yeah, it's the switching-frequency, could means many wakee or
4090 * rapidly switch, use factor here will just help to automatically
4091 * adjust the loose-degree, so bigger node will lead to more pull.
4092 */
4093 if (p->wakee_flips > factor) {
4094 /*
4095 * wakee is somewhat hot, it needs certain amount of cpu
4096 * resource, so if waker is far more hot, prefer to leave
4097 * it alone.
4098 */
4099 if (current->wakee_flips > (factor * p->wakee_flips))
4100 return 1;
4101 }
4102
4103 return 0;
4104}
4105
c88d5910 4106static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4107{
e37b6a7b 4108 s64 this_load, load;
c88d5910 4109 int idx, this_cpu, prev_cpu;
098fb9db 4110 unsigned long tl_per_task;
c88d5910 4111 struct task_group *tg;
83378269 4112 unsigned long weight;
b3137bc8 4113 int balanced;
098fb9db 4114
62470419
MW
4115 /*
4116 * If we wake multiple tasks be careful to not bounce
4117 * ourselves around too much.
4118 */
4119 if (wake_wide(p))
4120 return 0;
4121
c88d5910
PZ
4122 idx = sd->wake_idx;
4123 this_cpu = smp_processor_id();
4124 prev_cpu = task_cpu(p);
4125 load = source_load(prev_cpu, idx);
4126 this_load = target_load(this_cpu, idx);
098fb9db 4127
b3137bc8
MG
4128 /*
4129 * If sync wakeup then subtract the (maximum possible)
4130 * effect of the currently running task from the load
4131 * of the current CPU:
4132 */
83378269
PZ
4133 if (sync) {
4134 tg = task_group(current);
4135 weight = current->se.load.weight;
4136
c88d5910 4137 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4138 load += effective_load(tg, prev_cpu, 0, -weight);
4139 }
b3137bc8 4140
83378269
PZ
4141 tg = task_group(p);
4142 weight = p->se.load.weight;
b3137bc8 4143
71a29aa7
PZ
4144 /*
4145 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4146 * due to the sync cause above having dropped this_load to 0, we'll
4147 * always have an imbalance, but there's really nothing you can do
4148 * about that, so that's good too.
71a29aa7
PZ
4149 *
4150 * Otherwise check if either cpus are near enough in load to allow this
4151 * task to be woken on this_cpu.
4152 */
e37b6a7b
PT
4153 if (this_load > 0) {
4154 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4155
4156 this_eff_load = 100;
4157 this_eff_load *= power_of(prev_cpu);
4158 this_eff_load *= this_load +
4159 effective_load(tg, this_cpu, weight, weight);
4160
4161 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4162 prev_eff_load *= power_of(this_cpu);
4163 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4164
4165 balanced = this_eff_load <= prev_eff_load;
4166 } else
4167 balanced = true;
b3137bc8 4168
098fb9db 4169 /*
4ae7d5ce
IM
4170 * If the currently running task will sleep within
4171 * a reasonable amount of time then attract this newly
4172 * woken task:
098fb9db 4173 */
2fb7635c
PZ
4174 if (sync && balanced)
4175 return 1;
098fb9db 4176
41acab88 4177 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4178 tl_per_task = cpu_avg_load_per_task(this_cpu);
4179
c88d5910
PZ
4180 if (balanced ||
4181 (this_load <= load &&
4182 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4183 /*
4184 * This domain has SD_WAKE_AFFINE and
4185 * p is cache cold in this domain, and
4186 * there is no bad imbalance.
4187 */
c88d5910 4188 schedstat_inc(sd, ttwu_move_affine);
41acab88 4189 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4190
4191 return 1;
4192 }
4193 return 0;
4194}
4195
aaee1203
PZ
4196/*
4197 * find_idlest_group finds and returns the least busy CPU group within the
4198 * domain.
4199 */
4200static struct sched_group *
78e7ed53 4201find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4202 int this_cpu, int sd_flag)
e7693a36 4203{
b3bd3de6 4204 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4205 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4206 int load_idx = sd->forkexec_idx;
aaee1203 4207 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4208
c44f2a02
VG
4209 if (sd_flag & SD_BALANCE_WAKE)
4210 load_idx = sd->wake_idx;
4211
aaee1203
PZ
4212 do {
4213 unsigned long load, avg_load;
4214 int local_group;
4215 int i;
e7693a36 4216
aaee1203
PZ
4217 /* Skip over this group if it has no CPUs allowed */
4218 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4219 tsk_cpus_allowed(p)))
aaee1203
PZ
4220 continue;
4221
4222 local_group = cpumask_test_cpu(this_cpu,
4223 sched_group_cpus(group));
4224
4225 /* Tally up the load of all CPUs in the group */
4226 avg_load = 0;
4227
4228 for_each_cpu(i, sched_group_cpus(group)) {
4229 /* Bias balancing toward cpus of our domain */
4230 if (local_group)
4231 load = source_load(i, load_idx);
4232 else
4233 load = target_load(i, load_idx);
4234
4235 avg_load += load;
4236 }
4237
4238 /* Adjust by relative CPU power of the group */
9c3f75cb 4239 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4240
4241 if (local_group) {
4242 this_load = avg_load;
aaee1203
PZ
4243 } else if (avg_load < min_load) {
4244 min_load = avg_load;
4245 idlest = group;
4246 }
4247 } while (group = group->next, group != sd->groups);
4248
4249 if (!idlest || 100*this_load < imbalance*min_load)
4250 return NULL;
4251 return idlest;
4252}
4253
4254/*
4255 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4256 */
4257static int
4258find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4259{
4260 unsigned long load, min_load = ULONG_MAX;
4261 int idlest = -1;
4262 int i;
4263
4264 /* Traverse only the allowed CPUs */
fa17b507 4265 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4266 load = weighted_cpuload(i);
4267
4268 if (load < min_load || (load == min_load && i == this_cpu)) {
4269 min_load = load;
4270 idlest = i;
e7693a36
GH
4271 }
4272 }
4273
aaee1203
PZ
4274 return idlest;
4275}
e7693a36 4276
a50bde51
PZ
4277/*
4278 * Try and locate an idle CPU in the sched_domain.
4279 */
99bd5e2f 4280static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4281{
99bd5e2f 4282 struct sched_domain *sd;
37407ea7 4283 struct sched_group *sg;
e0a79f52 4284 int i = task_cpu(p);
a50bde51 4285
e0a79f52
MG
4286 if (idle_cpu(target))
4287 return target;
99bd5e2f
SS
4288
4289 /*
e0a79f52 4290 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4291 */
e0a79f52
MG
4292 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4293 return i;
a50bde51
PZ
4294
4295 /*
37407ea7 4296 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4297 */
518cd623 4298 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4299 for_each_lower_domain(sd) {
37407ea7
LT
4300 sg = sd->groups;
4301 do {
4302 if (!cpumask_intersects(sched_group_cpus(sg),
4303 tsk_cpus_allowed(p)))
4304 goto next;
4305
4306 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4307 if (i == target || !idle_cpu(i))
37407ea7
LT
4308 goto next;
4309 }
970e1789 4310
37407ea7
LT
4311 target = cpumask_first_and(sched_group_cpus(sg),
4312 tsk_cpus_allowed(p));
4313 goto done;
4314next:
4315 sg = sg->next;
4316 } while (sg != sd->groups);
4317 }
4318done:
a50bde51
PZ
4319 return target;
4320}
4321
aaee1203
PZ
4322/*
4323 * sched_balance_self: balance the current task (running on cpu) in domains
4324 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4325 * SD_BALANCE_EXEC.
4326 *
4327 * Balance, ie. select the least loaded group.
4328 *
4329 * Returns the target CPU number, or the same CPU if no balancing is needed.
4330 *
4331 * preempt must be disabled.
4332 */
0017d735 4333static int
ac66f547 4334select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4335{
29cd8bae 4336 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4337 int cpu = smp_processor_id();
c88d5910 4338 int new_cpu = cpu;
99bd5e2f 4339 int want_affine = 0;
5158f4e4 4340 int sync = wake_flags & WF_SYNC;
c88d5910 4341
29baa747 4342 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4343 return prev_cpu;
4344
0763a660 4345 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4346 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4347 want_affine = 1;
4348 new_cpu = prev_cpu;
4349 }
aaee1203 4350
dce840a0 4351 rcu_read_lock();
aaee1203 4352 for_each_domain(cpu, tmp) {
e4f42888
PZ
4353 if (!(tmp->flags & SD_LOAD_BALANCE))
4354 continue;
4355
fe3bcfe1 4356 /*
99bd5e2f
SS
4357 * If both cpu and prev_cpu are part of this domain,
4358 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4359 */
99bd5e2f
SS
4360 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4361 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4362 affine_sd = tmp;
29cd8bae 4363 break;
f03542a7 4364 }
29cd8bae 4365
f03542a7 4366 if (tmp->flags & sd_flag)
29cd8bae
PZ
4367 sd = tmp;
4368 }
4369
8b911acd 4370 if (affine_sd) {
f03542a7 4371 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4372 prev_cpu = cpu;
4373
4374 new_cpu = select_idle_sibling(p, prev_cpu);
4375 goto unlock;
8b911acd 4376 }
e7693a36 4377
aaee1203
PZ
4378 while (sd) {
4379 struct sched_group *group;
c88d5910 4380 int weight;
098fb9db 4381
0763a660 4382 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4383 sd = sd->child;
4384 continue;
4385 }
098fb9db 4386
c44f2a02 4387 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4388 if (!group) {
4389 sd = sd->child;
4390 continue;
4391 }
4ae7d5ce 4392
d7c33c49 4393 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4394 if (new_cpu == -1 || new_cpu == cpu) {
4395 /* Now try balancing at a lower domain level of cpu */
4396 sd = sd->child;
4397 continue;
e7693a36 4398 }
aaee1203
PZ
4399
4400 /* Now try balancing at a lower domain level of new_cpu */
4401 cpu = new_cpu;
669c55e9 4402 weight = sd->span_weight;
aaee1203
PZ
4403 sd = NULL;
4404 for_each_domain(cpu, tmp) {
669c55e9 4405 if (weight <= tmp->span_weight)
aaee1203 4406 break;
0763a660 4407 if (tmp->flags & sd_flag)
aaee1203
PZ
4408 sd = tmp;
4409 }
4410 /* while loop will break here if sd == NULL */
e7693a36 4411 }
dce840a0
PZ
4412unlock:
4413 rcu_read_unlock();
e7693a36 4414
c88d5910 4415 return new_cpu;
e7693a36 4416}
0a74bef8
PT
4417
4418/*
4419 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4420 * cfs_rq_of(p) references at time of call are still valid and identify the
4421 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4422 * other assumptions, including the state of rq->lock, should be made.
4423 */
4424static void
4425migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4426{
aff3e498
PT
4427 struct sched_entity *se = &p->se;
4428 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4429
4430 /*
4431 * Load tracking: accumulate removed load so that it can be processed
4432 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4433 * to blocked load iff they have a positive decay-count. It can never
4434 * be negative here since on-rq tasks have decay-count == 0.
4435 */
4436 if (se->avg.decay_count) {
4437 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4438 atomic_long_add(se->avg.load_avg_contrib,
4439 &cfs_rq->removed_load);
aff3e498 4440 }
0a74bef8 4441}
e7693a36
GH
4442#endif /* CONFIG_SMP */
4443
e52fb7c0
PZ
4444static unsigned long
4445wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4446{
4447 unsigned long gran = sysctl_sched_wakeup_granularity;
4448
4449 /*
e52fb7c0
PZ
4450 * Since its curr running now, convert the gran from real-time
4451 * to virtual-time in his units.
13814d42
MG
4452 *
4453 * By using 'se' instead of 'curr' we penalize light tasks, so
4454 * they get preempted easier. That is, if 'se' < 'curr' then
4455 * the resulting gran will be larger, therefore penalizing the
4456 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4457 * be smaller, again penalizing the lighter task.
4458 *
4459 * This is especially important for buddies when the leftmost
4460 * task is higher priority than the buddy.
0bbd3336 4461 */
f4ad9bd2 4462 return calc_delta_fair(gran, se);
0bbd3336
PZ
4463}
4464
464b7527
PZ
4465/*
4466 * Should 'se' preempt 'curr'.
4467 *
4468 * |s1
4469 * |s2
4470 * |s3
4471 * g
4472 * |<--->|c
4473 *
4474 * w(c, s1) = -1
4475 * w(c, s2) = 0
4476 * w(c, s3) = 1
4477 *
4478 */
4479static int
4480wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4481{
4482 s64 gran, vdiff = curr->vruntime - se->vruntime;
4483
4484 if (vdiff <= 0)
4485 return -1;
4486
e52fb7c0 4487 gran = wakeup_gran(curr, se);
464b7527
PZ
4488 if (vdiff > gran)
4489 return 1;
4490
4491 return 0;
4492}
4493
02479099
PZ
4494static void set_last_buddy(struct sched_entity *se)
4495{
69c80f3e
VP
4496 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4497 return;
4498
4499 for_each_sched_entity(se)
4500 cfs_rq_of(se)->last = se;
02479099
PZ
4501}
4502
4503static void set_next_buddy(struct sched_entity *se)
4504{
69c80f3e
VP
4505 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4506 return;
4507
4508 for_each_sched_entity(se)
4509 cfs_rq_of(se)->next = se;
02479099
PZ
4510}
4511
ac53db59
RR
4512static void set_skip_buddy(struct sched_entity *se)
4513{
69c80f3e
VP
4514 for_each_sched_entity(se)
4515 cfs_rq_of(se)->skip = se;
ac53db59
RR
4516}
4517
bf0f6f24
IM
4518/*
4519 * Preempt the current task with a newly woken task if needed:
4520 */
5a9b86f6 4521static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4522{
4523 struct task_struct *curr = rq->curr;
8651a86c 4524 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4525 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4526 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4527 int next_buddy_marked = 0;
bf0f6f24 4528
4ae7d5ce
IM
4529 if (unlikely(se == pse))
4530 return;
4531
5238cdd3 4532 /*
ddcdf6e7 4533 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4534 * unconditionally check_prempt_curr() after an enqueue (which may have
4535 * lead to a throttle). This both saves work and prevents false
4536 * next-buddy nomination below.
4537 */
4538 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4539 return;
4540
2f36825b 4541 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4542 set_next_buddy(pse);
2f36825b
VP
4543 next_buddy_marked = 1;
4544 }
57fdc26d 4545
aec0a514
BR
4546 /*
4547 * We can come here with TIF_NEED_RESCHED already set from new task
4548 * wake up path.
5238cdd3
PT
4549 *
4550 * Note: this also catches the edge-case of curr being in a throttled
4551 * group (e.g. via set_curr_task), since update_curr() (in the
4552 * enqueue of curr) will have resulted in resched being set. This
4553 * prevents us from potentially nominating it as a false LAST_BUDDY
4554 * below.
aec0a514
BR
4555 */
4556 if (test_tsk_need_resched(curr))
4557 return;
4558
a2f5c9ab
DH
4559 /* Idle tasks are by definition preempted by non-idle tasks. */
4560 if (unlikely(curr->policy == SCHED_IDLE) &&
4561 likely(p->policy != SCHED_IDLE))
4562 goto preempt;
4563
91c234b4 4564 /*
a2f5c9ab
DH
4565 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4566 * is driven by the tick):
91c234b4 4567 */
8ed92e51 4568 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4569 return;
bf0f6f24 4570
464b7527 4571 find_matching_se(&se, &pse);
9bbd7374 4572 update_curr(cfs_rq_of(se));
002f128b 4573 BUG_ON(!pse);
2f36825b
VP
4574 if (wakeup_preempt_entity(se, pse) == 1) {
4575 /*
4576 * Bias pick_next to pick the sched entity that is
4577 * triggering this preemption.
4578 */
4579 if (!next_buddy_marked)
4580 set_next_buddy(pse);
3a7e73a2 4581 goto preempt;
2f36825b 4582 }
464b7527 4583
3a7e73a2 4584 return;
a65ac745 4585
3a7e73a2
PZ
4586preempt:
4587 resched_task(curr);
4588 /*
4589 * Only set the backward buddy when the current task is still
4590 * on the rq. This can happen when a wakeup gets interleaved
4591 * with schedule on the ->pre_schedule() or idle_balance()
4592 * point, either of which can * drop the rq lock.
4593 *
4594 * Also, during early boot the idle thread is in the fair class,
4595 * for obvious reasons its a bad idea to schedule back to it.
4596 */
4597 if (unlikely(!se->on_rq || curr == rq->idle))
4598 return;
4599
4600 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4601 set_last_buddy(se);
bf0f6f24
IM
4602}
4603
fb8d4724 4604static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4605{
8f4d37ec 4606 struct task_struct *p;
bf0f6f24
IM
4607 struct cfs_rq *cfs_rq = &rq->cfs;
4608 struct sched_entity *se;
4609
36ace27e 4610 if (!cfs_rq->nr_running)
bf0f6f24
IM
4611 return NULL;
4612
4613 do {
9948f4b2 4614 se = pick_next_entity(cfs_rq);
f4b6755f 4615 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4616 cfs_rq = group_cfs_rq(se);
4617 } while (cfs_rq);
4618
8f4d37ec 4619 p = task_of(se);
b39e66ea
MG
4620 if (hrtick_enabled(rq))
4621 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4622
4623 return p;
bf0f6f24
IM
4624}
4625
4626/*
4627 * Account for a descheduled task:
4628 */
31ee529c 4629static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4630{
4631 struct sched_entity *se = &prev->se;
4632 struct cfs_rq *cfs_rq;
4633
4634 for_each_sched_entity(se) {
4635 cfs_rq = cfs_rq_of(se);
ab6cde26 4636 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4637 }
4638}
4639
ac53db59
RR
4640/*
4641 * sched_yield() is very simple
4642 *
4643 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4644 */
4645static void yield_task_fair(struct rq *rq)
4646{
4647 struct task_struct *curr = rq->curr;
4648 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4649 struct sched_entity *se = &curr->se;
4650
4651 /*
4652 * Are we the only task in the tree?
4653 */
4654 if (unlikely(rq->nr_running == 1))
4655 return;
4656
4657 clear_buddies(cfs_rq, se);
4658
4659 if (curr->policy != SCHED_BATCH) {
4660 update_rq_clock(rq);
4661 /*
4662 * Update run-time statistics of the 'current'.
4663 */
4664 update_curr(cfs_rq);
916671c0
MG
4665 /*
4666 * Tell update_rq_clock() that we've just updated,
4667 * so we don't do microscopic update in schedule()
4668 * and double the fastpath cost.
4669 */
4670 rq->skip_clock_update = 1;
ac53db59
RR
4671 }
4672
4673 set_skip_buddy(se);
4674}
4675
d95f4122
MG
4676static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4677{
4678 struct sched_entity *se = &p->se;
4679
5238cdd3
PT
4680 /* throttled hierarchies are not runnable */
4681 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4682 return false;
4683
4684 /* Tell the scheduler that we'd really like pse to run next. */
4685 set_next_buddy(se);
4686
d95f4122
MG
4687 yield_task_fair(rq);
4688
4689 return true;
4690}
4691
681f3e68 4692#ifdef CONFIG_SMP
bf0f6f24 4693/**************************************************
e9c84cb8
PZ
4694 * Fair scheduling class load-balancing methods.
4695 *
4696 * BASICS
4697 *
4698 * The purpose of load-balancing is to achieve the same basic fairness the
4699 * per-cpu scheduler provides, namely provide a proportional amount of compute
4700 * time to each task. This is expressed in the following equation:
4701 *
4702 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4703 *
4704 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4705 * W_i,0 is defined as:
4706 *
4707 * W_i,0 = \Sum_j w_i,j (2)
4708 *
4709 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4710 * is derived from the nice value as per prio_to_weight[].
4711 *
4712 * The weight average is an exponential decay average of the instantaneous
4713 * weight:
4714 *
4715 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4716 *
4717 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4718 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4719 * can also include other factors [XXX].
4720 *
4721 * To achieve this balance we define a measure of imbalance which follows
4722 * directly from (1):
4723 *
4724 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4725 *
4726 * We them move tasks around to minimize the imbalance. In the continuous
4727 * function space it is obvious this converges, in the discrete case we get
4728 * a few fun cases generally called infeasible weight scenarios.
4729 *
4730 * [XXX expand on:
4731 * - infeasible weights;
4732 * - local vs global optima in the discrete case. ]
4733 *
4734 *
4735 * SCHED DOMAINS
4736 *
4737 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4738 * for all i,j solution, we create a tree of cpus that follows the hardware
4739 * topology where each level pairs two lower groups (or better). This results
4740 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4741 * tree to only the first of the previous level and we decrease the frequency
4742 * of load-balance at each level inv. proportional to the number of cpus in
4743 * the groups.
4744 *
4745 * This yields:
4746 *
4747 * log_2 n 1 n
4748 * \Sum { --- * --- * 2^i } = O(n) (5)
4749 * i = 0 2^i 2^i
4750 * `- size of each group
4751 * | | `- number of cpus doing load-balance
4752 * | `- freq
4753 * `- sum over all levels
4754 *
4755 * Coupled with a limit on how many tasks we can migrate every balance pass,
4756 * this makes (5) the runtime complexity of the balancer.
4757 *
4758 * An important property here is that each CPU is still (indirectly) connected
4759 * to every other cpu in at most O(log n) steps:
4760 *
4761 * The adjacency matrix of the resulting graph is given by:
4762 *
4763 * log_2 n
4764 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4765 * k = 0
4766 *
4767 * And you'll find that:
4768 *
4769 * A^(log_2 n)_i,j != 0 for all i,j (7)
4770 *
4771 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4772 * The task movement gives a factor of O(m), giving a convergence complexity
4773 * of:
4774 *
4775 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4776 *
4777 *
4778 * WORK CONSERVING
4779 *
4780 * In order to avoid CPUs going idle while there's still work to do, new idle
4781 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4782 * tree itself instead of relying on other CPUs to bring it work.
4783 *
4784 * This adds some complexity to both (5) and (8) but it reduces the total idle
4785 * time.
4786 *
4787 * [XXX more?]
4788 *
4789 *
4790 * CGROUPS
4791 *
4792 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4793 *
4794 * s_k,i
4795 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4796 * S_k
4797 *
4798 * Where
4799 *
4800 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4801 *
4802 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4803 *
4804 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4805 * property.
4806 *
4807 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4808 * rewrite all of this once again.]
4809 */
bf0f6f24 4810
ed387b78
HS
4811static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4812
0ec8aa00
PZ
4813enum fbq_type { regular, remote, all };
4814
ddcdf6e7 4815#define LBF_ALL_PINNED 0x01
367456c7 4816#define LBF_NEED_BREAK 0x02
6263322c
PZ
4817#define LBF_DST_PINNED 0x04
4818#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4819
4820struct lb_env {
4821 struct sched_domain *sd;
4822
ddcdf6e7 4823 struct rq *src_rq;
85c1e7da 4824 int src_cpu;
ddcdf6e7
PZ
4825
4826 int dst_cpu;
4827 struct rq *dst_rq;
4828
88b8dac0
SV
4829 struct cpumask *dst_grpmask;
4830 int new_dst_cpu;
ddcdf6e7 4831 enum cpu_idle_type idle;
bd939f45 4832 long imbalance;
b9403130
MW
4833 /* The set of CPUs under consideration for load-balancing */
4834 struct cpumask *cpus;
4835
ddcdf6e7 4836 unsigned int flags;
367456c7
PZ
4837
4838 unsigned int loop;
4839 unsigned int loop_break;
4840 unsigned int loop_max;
0ec8aa00
PZ
4841
4842 enum fbq_type fbq_type;
ddcdf6e7
PZ
4843};
4844
1e3c88bd 4845/*
ddcdf6e7 4846 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4847 * Both runqueues must be locked.
4848 */
ddcdf6e7 4849static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4850{
ddcdf6e7
PZ
4851 deactivate_task(env->src_rq, p, 0);
4852 set_task_cpu(p, env->dst_cpu);
4853 activate_task(env->dst_rq, p, 0);
4854 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4855}
4856
029632fb
PZ
4857/*
4858 * Is this task likely cache-hot:
4859 */
4860static int
4861task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4862{
4863 s64 delta;
4864
4865 if (p->sched_class != &fair_sched_class)
4866 return 0;
4867
4868 if (unlikely(p->policy == SCHED_IDLE))
4869 return 0;
4870
4871 /*
4872 * Buddy candidates are cache hot:
4873 */
4874 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4875 (&p->se == cfs_rq_of(&p->se)->next ||
4876 &p->se == cfs_rq_of(&p->se)->last))
4877 return 1;
4878
4879 if (sysctl_sched_migration_cost == -1)
4880 return 1;
4881 if (sysctl_sched_migration_cost == 0)
4882 return 0;
4883
4884 delta = now - p->se.exec_start;
4885
4886 return delta < (s64)sysctl_sched_migration_cost;
4887}
4888
3a7053b3
MG
4889#ifdef CONFIG_NUMA_BALANCING
4890/* Returns true if the destination node has incurred more faults */
4891static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4892{
4893 int src_nid, dst_nid;
4894
ff1df896 4895 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
4896 !(env->sd->flags & SD_NUMA)) {
4897 return false;
4898 }
4899
4900 src_nid = cpu_to_node(env->src_cpu);
4901 dst_nid = cpu_to_node(env->dst_cpu);
4902
83e1d2cd 4903 if (src_nid == dst_nid)
3a7053b3
MG
4904 return false;
4905
83e1d2cd
MG
4906 /* Always encourage migration to the preferred node. */
4907 if (dst_nid == p->numa_preferred_nid)
4908 return true;
4909
887c290e
RR
4910 /* If both task and group weight improve, this move is a winner. */
4911 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4912 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4913 return true;
4914
4915 return false;
4916}
7a0f3083
MG
4917
4918
4919static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4920{
4921 int src_nid, dst_nid;
4922
4923 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4924 return false;
4925
ff1df896 4926 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
4927 return false;
4928
4929 src_nid = cpu_to_node(env->src_cpu);
4930 dst_nid = cpu_to_node(env->dst_cpu);
4931
83e1d2cd 4932 if (src_nid == dst_nid)
7a0f3083
MG
4933 return false;
4934
83e1d2cd
MG
4935 /* Migrating away from the preferred node is always bad. */
4936 if (src_nid == p->numa_preferred_nid)
4937 return true;
4938
887c290e
RR
4939 /* If either task or group weight get worse, don't do it. */
4940 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4941 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4942 return true;
4943
4944 return false;
4945}
4946
3a7053b3
MG
4947#else
4948static inline bool migrate_improves_locality(struct task_struct *p,
4949 struct lb_env *env)
4950{
4951 return false;
4952}
7a0f3083
MG
4953
4954static inline bool migrate_degrades_locality(struct task_struct *p,
4955 struct lb_env *env)
4956{
4957 return false;
4958}
3a7053b3
MG
4959#endif
4960
1e3c88bd
PZ
4961/*
4962 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4963 */
4964static
8e45cb54 4965int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4966{
4967 int tsk_cache_hot = 0;
4968 /*
4969 * We do not migrate tasks that are:
d3198084 4970 * 1) throttled_lb_pair, or
1e3c88bd 4971 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4972 * 3) running (obviously), or
4973 * 4) are cache-hot on their current CPU.
1e3c88bd 4974 */
d3198084
JK
4975 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4976 return 0;
4977
ddcdf6e7 4978 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4979 int cpu;
88b8dac0 4980
41acab88 4981 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4982
6263322c
PZ
4983 env->flags |= LBF_SOME_PINNED;
4984
88b8dac0
SV
4985 /*
4986 * Remember if this task can be migrated to any other cpu in
4987 * our sched_group. We may want to revisit it if we couldn't
4988 * meet load balance goals by pulling other tasks on src_cpu.
4989 *
4990 * Also avoid computing new_dst_cpu if we have already computed
4991 * one in current iteration.
4992 */
6263322c 4993 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4994 return 0;
4995
e02e60c1
JK
4996 /* Prevent to re-select dst_cpu via env's cpus */
4997 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4998 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4999 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5000 env->new_dst_cpu = cpu;
5001 break;
5002 }
88b8dac0 5003 }
e02e60c1 5004
1e3c88bd
PZ
5005 return 0;
5006 }
88b8dac0
SV
5007
5008 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5009 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5010
ddcdf6e7 5011 if (task_running(env->src_rq, p)) {
41acab88 5012 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5013 return 0;
5014 }
5015
5016 /*
5017 * Aggressive migration if:
3a7053b3
MG
5018 * 1) destination numa is preferred
5019 * 2) task is cache cold, or
5020 * 3) too many balance attempts have failed.
1e3c88bd 5021 */
78becc27 5022 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
5023 if (!tsk_cache_hot)
5024 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5025
5026 if (migrate_improves_locality(p, env)) {
5027#ifdef CONFIG_SCHEDSTATS
5028 if (tsk_cache_hot) {
5029 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5030 schedstat_inc(p, se.statistics.nr_forced_migrations);
5031 }
5032#endif
5033 return 1;
5034 }
5035
1e3c88bd 5036 if (!tsk_cache_hot ||
8e45cb54 5037 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5038
1e3c88bd 5039 if (tsk_cache_hot) {
8e45cb54 5040 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5041 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5042 }
4e2dcb73 5043
1e3c88bd
PZ
5044 return 1;
5045 }
5046
4e2dcb73
ZH
5047 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5048 return 0;
1e3c88bd
PZ
5049}
5050
897c395f
PZ
5051/*
5052 * move_one_task tries to move exactly one task from busiest to this_rq, as
5053 * part of active balancing operations within "domain".
5054 * Returns 1 if successful and 0 otherwise.
5055 *
5056 * Called with both runqueues locked.
5057 */
8e45cb54 5058static int move_one_task(struct lb_env *env)
897c395f
PZ
5059{
5060 struct task_struct *p, *n;
897c395f 5061
367456c7 5062 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5063 if (!can_migrate_task(p, env))
5064 continue;
897c395f 5065
367456c7
PZ
5066 move_task(p, env);
5067 /*
5068 * Right now, this is only the second place move_task()
5069 * is called, so we can safely collect move_task()
5070 * stats here rather than inside move_task().
5071 */
5072 schedstat_inc(env->sd, lb_gained[env->idle]);
5073 return 1;
897c395f 5074 }
897c395f
PZ
5075 return 0;
5076}
5077
eb95308e
PZ
5078static const unsigned int sched_nr_migrate_break = 32;
5079
5d6523eb 5080/*
bd939f45 5081 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5082 * this_rq, as part of a balancing operation within domain "sd".
5083 * Returns 1 if successful and 0 otherwise.
5084 *
5085 * Called with both runqueues locked.
5086 */
5087static int move_tasks(struct lb_env *env)
1e3c88bd 5088{
5d6523eb
PZ
5089 struct list_head *tasks = &env->src_rq->cfs_tasks;
5090 struct task_struct *p;
367456c7
PZ
5091 unsigned long load;
5092 int pulled = 0;
1e3c88bd 5093
bd939f45 5094 if (env->imbalance <= 0)
5d6523eb 5095 return 0;
1e3c88bd 5096
5d6523eb
PZ
5097 while (!list_empty(tasks)) {
5098 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5099
367456c7
PZ
5100 env->loop++;
5101 /* We've more or less seen every task there is, call it quits */
5d6523eb 5102 if (env->loop > env->loop_max)
367456c7 5103 break;
5d6523eb
PZ
5104
5105 /* take a breather every nr_migrate tasks */
367456c7 5106 if (env->loop > env->loop_break) {
eb95308e 5107 env->loop_break += sched_nr_migrate_break;
8e45cb54 5108 env->flags |= LBF_NEED_BREAK;
ee00e66f 5109 break;
a195f004 5110 }
1e3c88bd 5111
d3198084 5112 if (!can_migrate_task(p, env))
367456c7
PZ
5113 goto next;
5114
5115 load = task_h_load(p);
5d6523eb 5116
eb95308e 5117 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5118 goto next;
5119
bd939f45 5120 if ((load / 2) > env->imbalance)
367456c7 5121 goto next;
1e3c88bd 5122
ddcdf6e7 5123 move_task(p, env);
ee00e66f 5124 pulled++;
bd939f45 5125 env->imbalance -= load;
1e3c88bd
PZ
5126
5127#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5128 /*
5129 * NEWIDLE balancing is a source of latency, so preemptible
5130 * kernels will stop after the first task is pulled to minimize
5131 * the critical section.
5132 */
5d6523eb 5133 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5134 break;
1e3c88bd
PZ
5135#endif
5136
ee00e66f
PZ
5137 /*
5138 * We only want to steal up to the prescribed amount of
5139 * weighted load.
5140 */
bd939f45 5141 if (env->imbalance <= 0)
ee00e66f 5142 break;
367456c7
PZ
5143
5144 continue;
5145next:
5d6523eb 5146 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5147 }
5d6523eb 5148
1e3c88bd 5149 /*
ddcdf6e7
PZ
5150 * Right now, this is one of only two places move_task() is called,
5151 * so we can safely collect move_task() stats here rather than
5152 * inside move_task().
1e3c88bd 5153 */
8e45cb54 5154 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5155
5d6523eb 5156 return pulled;
1e3c88bd
PZ
5157}
5158
230059de 5159#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5160/*
5161 * update tg->load_weight by folding this cpu's load_avg
5162 */
48a16753 5163static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5164{
48a16753
PT
5165 struct sched_entity *se = tg->se[cpu];
5166 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5167
48a16753
PT
5168 /* throttled entities do not contribute to load */
5169 if (throttled_hierarchy(cfs_rq))
5170 return;
9e3081ca 5171
aff3e498 5172 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5173
82958366
PT
5174 if (se) {
5175 update_entity_load_avg(se, 1);
5176 /*
5177 * We pivot on our runnable average having decayed to zero for
5178 * list removal. This generally implies that all our children
5179 * have also been removed (modulo rounding error or bandwidth
5180 * control); however, such cases are rare and we can fix these
5181 * at enqueue.
5182 *
5183 * TODO: fix up out-of-order children on enqueue.
5184 */
5185 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5186 list_del_leaf_cfs_rq(cfs_rq);
5187 } else {
48a16753 5188 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5189 update_rq_runnable_avg(rq, rq->nr_running);
5190 }
9e3081ca
PZ
5191}
5192
48a16753 5193static void update_blocked_averages(int cpu)
9e3081ca 5194{
9e3081ca 5195 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5196 struct cfs_rq *cfs_rq;
5197 unsigned long flags;
9e3081ca 5198
48a16753
PT
5199 raw_spin_lock_irqsave(&rq->lock, flags);
5200 update_rq_clock(rq);
9763b67f
PZ
5201 /*
5202 * Iterates the task_group tree in a bottom up fashion, see
5203 * list_add_leaf_cfs_rq() for details.
5204 */
64660c86 5205 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5206 /*
5207 * Note: We may want to consider periodically releasing
5208 * rq->lock about these updates so that creating many task
5209 * groups does not result in continually extending hold time.
5210 */
5211 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5212 }
48a16753
PT
5213
5214 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5215}
5216
9763b67f 5217/*
68520796 5218 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5219 * This needs to be done in a top-down fashion because the load of a child
5220 * group is a fraction of its parents load.
5221 */
68520796 5222static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5223{
68520796
VD
5224 struct rq *rq = rq_of(cfs_rq);
5225 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5226 unsigned long now = jiffies;
68520796 5227 unsigned long load;
a35b6466 5228
68520796 5229 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5230 return;
5231
68520796
VD
5232 cfs_rq->h_load_next = NULL;
5233 for_each_sched_entity(se) {
5234 cfs_rq = cfs_rq_of(se);
5235 cfs_rq->h_load_next = se;
5236 if (cfs_rq->last_h_load_update == now)
5237 break;
5238 }
a35b6466 5239
68520796 5240 if (!se) {
7e3115ef 5241 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5242 cfs_rq->last_h_load_update = now;
5243 }
5244
5245 while ((se = cfs_rq->h_load_next) != NULL) {
5246 load = cfs_rq->h_load;
5247 load = div64_ul(load * se->avg.load_avg_contrib,
5248 cfs_rq->runnable_load_avg + 1);
5249 cfs_rq = group_cfs_rq(se);
5250 cfs_rq->h_load = load;
5251 cfs_rq->last_h_load_update = now;
5252 }
9763b67f
PZ
5253}
5254
367456c7 5255static unsigned long task_h_load(struct task_struct *p)
230059de 5256{
367456c7 5257 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5258
68520796 5259 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5260 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5261 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5262}
5263#else
48a16753 5264static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5265{
5266}
5267
367456c7 5268static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5269{
a003a25b 5270 return p->se.avg.load_avg_contrib;
1e3c88bd 5271}
230059de 5272#endif
1e3c88bd 5273
1e3c88bd 5274/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5275/*
5276 * sg_lb_stats - stats of a sched_group required for load_balancing
5277 */
5278struct sg_lb_stats {
5279 unsigned long avg_load; /*Avg load across the CPUs of the group */
5280 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5281 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5282 unsigned long load_per_task;
3ae11c90 5283 unsigned long group_power;
147c5fc2
PZ
5284 unsigned int sum_nr_running; /* Nr tasks running in the group */
5285 unsigned int group_capacity;
5286 unsigned int idle_cpus;
5287 unsigned int group_weight;
1e3c88bd 5288 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5289 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5290#ifdef CONFIG_NUMA_BALANCING
5291 unsigned int nr_numa_running;
5292 unsigned int nr_preferred_running;
5293#endif
1e3c88bd
PZ
5294};
5295
56cf515b
JK
5296/*
5297 * sd_lb_stats - Structure to store the statistics of a sched_domain
5298 * during load balancing.
5299 */
5300struct sd_lb_stats {
5301 struct sched_group *busiest; /* Busiest group in this sd */
5302 struct sched_group *local; /* Local group in this sd */
5303 unsigned long total_load; /* Total load of all groups in sd */
5304 unsigned long total_pwr; /* Total power of all groups in sd */
5305 unsigned long avg_load; /* Average load across all groups in sd */
5306
56cf515b 5307 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5308 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5309};
5310
147c5fc2
PZ
5311static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5312{
5313 /*
5314 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5315 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5316 * We must however clear busiest_stat::avg_load because
5317 * update_sd_pick_busiest() reads this before assignment.
5318 */
5319 *sds = (struct sd_lb_stats){
5320 .busiest = NULL,
5321 .local = NULL,
5322 .total_load = 0UL,
5323 .total_pwr = 0UL,
5324 .busiest_stat = {
5325 .avg_load = 0UL,
5326 },
5327 };
5328}
5329
1e3c88bd
PZ
5330/**
5331 * get_sd_load_idx - Obtain the load index for a given sched domain.
5332 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5333 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5334 *
5335 * Return: The load index.
1e3c88bd
PZ
5336 */
5337static inline int get_sd_load_idx(struct sched_domain *sd,
5338 enum cpu_idle_type idle)
5339{
5340 int load_idx;
5341
5342 switch (idle) {
5343 case CPU_NOT_IDLE:
5344 load_idx = sd->busy_idx;
5345 break;
5346
5347 case CPU_NEWLY_IDLE:
5348 load_idx = sd->newidle_idx;
5349 break;
5350 default:
5351 load_idx = sd->idle_idx;
5352 break;
5353 }
5354
5355 return load_idx;
5356}
5357
15f803c9 5358static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5359{
1399fa78 5360 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5361}
5362
5363unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5364{
5365 return default_scale_freq_power(sd, cpu);
5366}
5367
15f803c9 5368static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5369{
669c55e9 5370 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5371 unsigned long smt_gain = sd->smt_gain;
5372
5373 smt_gain /= weight;
5374
5375 return smt_gain;
5376}
5377
5378unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5379{
5380 return default_scale_smt_power(sd, cpu);
5381}
5382
15f803c9 5383static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5384{
5385 struct rq *rq = cpu_rq(cpu);
b654f7de 5386 u64 total, available, age_stamp, avg;
1e3c88bd 5387
b654f7de
PZ
5388 /*
5389 * Since we're reading these variables without serialization make sure
5390 * we read them once before doing sanity checks on them.
5391 */
5392 age_stamp = ACCESS_ONCE(rq->age_stamp);
5393 avg = ACCESS_ONCE(rq->rt_avg);
5394
78becc27 5395 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5396
b654f7de 5397 if (unlikely(total < avg)) {
aa483808
VP
5398 /* Ensures that power won't end up being negative */
5399 available = 0;
5400 } else {
b654f7de 5401 available = total - avg;
aa483808 5402 }
1e3c88bd 5403
1399fa78
NR
5404 if (unlikely((s64)total < SCHED_POWER_SCALE))
5405 total = SCHED_POWER_SCALE;
1e3c88bd 5406
1399fa78 5407 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5408
5409 return div_u64(available, total);
5410}
5411
5412static void update_cpu_power(struct sched_domain *sd, int cpu)
5413{
669c55e9 5414 unsigned long weight = sd->span_weight;
1399fa78 5415 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5416 struct sched_group *sdg = sd->groups;
5417
1e3c88bd
PZ
5418 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5419 if (sched_feat(ARCH_POWER))
5420 power *= arch_scale_smt_power(sd, cpu);
5421 else
5422 power *= default_scale_smt_power(sd, cpu);
5423
1399fa78 5424 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5425 }
5426
9c3f75cb 5427 sdg->sgp->power_orig = power;
9d5efe05
SV
5428
5429 if (sched_feat(ARCH_POWER))
5430 power *= arch_scale_freq_power(sd, cpu);
5431 else
5432 power *= default_scale_freq_power(sd, cpu);
5433
1399fa78 5434 power >>= SCHED_POWER_SHIFT;
9d5efe05 5435
1e3c88bd 5436 power *= scale_rt_power(cpu);
1399fa78 5437 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5438
5439 if (!power)
5440 power = 1;
5441
e51fd5e2 5442 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5443 sdg->sgp->power = power;
1e3c88bd
PZ
5444}
5445
029632fb 5446void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5447{
5448 struct sched_domain *child = sd->child;
5449 struct sched_group *group, *sdg = sd->groups;
863bffc8 5450 unsigned long power, power_orig;
4ec4412e
VG
5451 unsigned long interval;
5452
5453 interval = msecs_to_jiffies(sd->balance_interval);
5454 interval = clamp(interval, 1UL, max_load_balance_interval);
5455 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5456
5457 if (!child) {
5458 update_cpu_power(sd, cpu);
5459 return;
5460 }
5461
863bffc8 5462 power_orig = power = 0;
1e3c88bd 5463
74a5ce20
PZ
5464 if (child->flags & SD_OVERLAP) {
5465 /*
5466 * SD_OVERLAP domains cannot assume that child groups
5467 * span the current group.
5468 */
5469
863bffc8 5470 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5471 struct sched_group_power *sgp;
5472 struct rq *rq = cpu_rq(cpu);
863bffc8 5473
9abf24d4
SD
5474 /*
5475 * build_sched_domains() -> init_sched_groups_power()
5476 * gets here before we've attached the domains to the
5477 * runqueues.
5478 *
5479 * Use power_of(), which is set irrespective of domains
5480 * in update_cpu_power().
5481 *
5482 * This avoids power/power_orig from being 0 and
5483 * causing divide-by-zero issues on boot.
5484 *
5485 * Runtime updates will correct power_orig.
5486 */
5487 if (unlikely(!rq->sd)) {
5488 power_orig += power_of(cpu);
5489 power += power_of(cpu);
5490 continue;
5491 }
863bffc8 5492
9abf24d4
SD
5493 sgp = rq->sd->groups->sgp;
5494 power_orig += sgp->power_orig;
5495 power += sgp->power;
863bffc8 5496 }
74a5ce20
PZ
5497 } else {
5498 /*
5499 * !SD_OVERLAP domains can assume that child groups
5500 * span the current group.
5501 */
5502
5503 group = child->groups;
5504 do {
863bffc8 5505 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5506 power += group->sgp->power;
5507 group = group->next;
5508 } while (group != child->groups);
5509 }
1e3c88bd 5510
863bffc8
PZ
5511 sdg->sgp->power_orig = power_orig;
5512 sdg->sgp->power = power;
1e3c88bd
PZ
5513}
5514
9d5efe05
SV
5515/*
5516 * Try and fix up capacity for tiny siblings, this is needed when
5517 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5518 * which on its own isn't powerful enough.
5519 *
5520 * See update_sd_pick_busiest() and check_asym_packing().
5521 */
5522static inline int
5523fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5524{
5525 /*
1399fa78 5526 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5527 */
a6c75f2f 5528 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5529 return 0;
5530
5531 /*
5532 * If ~90% of the cpu_power is still there, we're good.
5533 */
9c3f75cb 5534 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5535 return 1;
5536
5537 return 0;
5538}
5539
30ce5dab
PZ
5540/*
5541 * Group imbalance indicates (and tries to solve) the problem where balancing
5542 * groups is inadequate due to tsk_cpus_allowed() constraints.
5543 *
5544 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5545 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5546 * Something like:
5547 *
5548 * { 0 1 2 3 } { 4 5 6 7 }
5549 * * * * *
5550 *
5551 * If we were to balance group-wise we'd place two tasks in the first group and
5552 * two tasks in the second group. Clearly this is undesired as it will overload
5553 * cpu 3 and leave one of the cpus in the second group unused.
5554 *
5555 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5556 * by noticing the lower domain failed to reach balance and had difficulty
5557 * moving tasks due to affinity constraints.
30ce5dab
PZ
5558 *
5559 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5560 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5561 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5562 * to create an effective group imbalance.
5563 *
5564 * This is a somewhat tricky proposition since the next run might not find the
5565 * group imbalance and decide the groups need to be balanced again. A most
5566 * subtle and fragile situation.
5567 */
5568
6263322c 5569static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5570{
6263322c 5571 return group->sgp->imbalance;
30ce5dab
PZ
5572}
5573
b37d9316
PZ
5574/*
5575 * Compute the group capacity.
5576 *
c61037e9
PZ
5577 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5578 * first dividing out the smt factor and computing the actual number of cores
5579 * and limit power unit capacity with that.
b37d9316
PZ
5580 */
5581static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5582{
c61037e9
PZ
5583 unsigned int capacity, smt, cpus;
5584 unsigned int power, power_orig;
5585
5586 power = group->sgp->power;
5587 power_orig = group->sgp->power_orig;
5588 cpus = group->group_weight;
b37d9316 5589
c61037e9
PZ
5590 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5591 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5592 capacity = cpus / smt; /* cores */
b37d9316 5593
c61037e9 5594 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5595 if (!capacity)
5596 capacity = fix_small_capacity(env->sd, group);
5597
5598 return capacity;
5599}
5600
1e3c88bd
PZ
5601/**
5602 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5603 * @env: The load balancing environment.
1e3c88bd 5604 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5605 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5606 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5607 * @sgs: variable to hold the statistics for this group.
5608 */
bd939f45
PZ
5609static inline void update_sg_lb_stats(struct lb_env *env,
5610 struct sched_group *group, int load_idx,
23f0d209 5611 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5612{
30ce5dab 5613 unsigned long load;
bd939f45 5614 int i;
1e3c88bd 5615
b72ff13c
PZ
5616 memset(sgs, 0, sizeof(*sgs));
5617
b9403130 5618 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5619 struct rq *rq = cpu_rq(i);
5620
1e3c88bd 5621 /* Bias balancing toward cpus of our domain */
6263322c 5622 if (local_group)
04f733b4 5623 load = target_load(i, load_idx);
6263322c 5624 else
1e3c88bd 5625 load = source_load(i, load_idx);
1e3c88bd
PZ
5626
5627 sgs->group_load += load;
380c9077 5628 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5629#ifdef CONFIG_NUMA_BALANCING
5630 sgs->nr_numa_running += rq->nr_numa_running;
5631 sgs->nr_preferred_running += rq->nr_preferred_running;
5632#endif
1e3c88bd 5633 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5634 if (idle_cpu(i))
5635 sgs->idle_cpus++;
1e3c88bd
PZ
5636 }
5637
1e3c88bd 5638 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5639 sgs->group_power = group->sgp->power;
5640 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5641
dd5feea1 5642 if (sgs->sum_nr_running)
38d0f770 5643 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5644
aae6d3dd 5645 sgs->group_weight = group->group_weight;
fab47622 5646
b37d9316
PZ
5647 sgs->group_imb = sg_imbalanced(group);
5648 sgs->group_capacity = sg_capacity(env, group);
5649
fab47622
NR
5650 if (sgs->group_capacity > sgs->sum_nr_running)
5651 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5652}
5653
532cb4c4
MN
5654/**
5655 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5656 * @env: The load balancing environment.
532cb4c4
MN
5657 * @sds: sched_domain statistics
5658 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5659 * @sgs: sched_group statistics
532cb4c4
MN
5660 *
5661 * Determine if @sg is a busier group than the previously selected
5662 * busiest group.
e69f6186
YB
5663 *
5664 * Return: %true if @sg is a busier group than the previously selected
5665 * busiest group. %false otherwise.
532cb4c4 5666 */
bd939f45 5667static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5668 struct sd_lb_stats *sds,
5669 struct sched_group *sg,
bd939f45 5670 struct sg_lb_stats *sgs)
532cb4c4 5671{
56cf515b 5672 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5673 return false;
5674
5675 if (sgs->sum_nr_running > sgs->group_capacity)
5676 return true;
5677
5678 if (sgs->group_imb)
5679 return true;
5680
5681 /*
5682 * ASYM_PACKING needs to move all the work to the lowest
5683 * numbered CPUs in the group, therefore mark all groups
5684 * higher than ourself as busy.
5685 */
bd939f45
PZ
5686 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5687 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5688 if (!sds->busiest)
5689 return true;
5690
5691 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5692 return true;
5693 }
5694
5695 return false;
5696}
5697
0ec8aa00
PZ
5698#ifdef CONFIG_NUMA_BALANCING
5699static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5700{
5701 if (sgs->sum_nr_running > sgs->nr_numa_running)
5702 return regular;
5703 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5704 return remote;
5705 return all;
5706}
5707
5708static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5709{
5710 if (rq->nr_running > rq->nr_numa_running)
5711 return regular;
5712 if (rq->nr_running > rq->nr_preferred_running)
5713 return remote;
5714 return all;
5715}
5716#else
5717static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5718{
5719 return all;
5720}
5721
5722static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5723{
5724 return regular;
5725}
5726#endif /* CONFIG_NUMA_BALANCING */
5727
1e3c88bd 5728/**
461819ac 5729 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5730 * @env: The load balancing environment.
1e3c88bd
PZ
5731 * @sds: variable to hold the statistics for this sched_domain.
5732 */
0ec8aa00 5733static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5734{
bd939f45
PZ
5735 struct sched_domain *child = env->sd->child;
5736 struct sched_group *sg = env->sd->groups;
56cf515b 5737 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5738 int load_idx, prefer_sibling = 0;
5739
5740 if (child && child->flags & SD_PREFER_SIBLING)
5741 prefer_sibling = 1;
5742
bd939f45 5743 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5744
5745 do {
56cf515b 5746 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5747 int local_group;
5748
bd939f45 5749 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5750 if (local_group) {
5751 sds->local = sg;
5752 sgs = &sds->local_stat;
b72ff13c
PZ
5753
5754 if (env->idle != CPU_NEWLY_IDLE ||
5755 time_after_eq(jiffies, sg->sgp->next_update))
5756 update_group_power(env->sd, env->dst_cpu);
56cf515b 5757 }
1e3c88bd 5758
56cf515b 5759 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5760
b72ff13c
PZ
5761 if (local_group)
5762 goto next_group;
5763
1e3c88bd
PZ
5764 /*
5765 * In case the child domain prefers tasks go to siblings
532cb4c4 5766 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5767 * and move all the excess tasks away. We lower the capacity
5768 * of a group only if the local group has the capacity to fit
5769 * these excess tasks, i.e. nr_running < group_capacity. The
5770 * extra check prevents the case where you always pull from the
5771 * heaviest group when it is already under-utilized (possible
5772 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5773 */
b72ff13c
PZ
5774 if (prefer_sibling && sds->local &&
5775 sds->local_stat.group_has_capacity)
147c5fc2 5776 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5777
b72ff13c 5778 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5779 sds->busiest = sg;
56cf515b 5780 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5781 }
5782
b72ff13c
PZ
5783next_group:
5784 /* Now, start updating sd_lb_stats */
5785 sds->total_load += sgs->group_load;
5786 sds->total_pwr += sgs->group_power;
5787
532cb4c4 5788 sg = sg->next;
bd939f45 5789 } while (sg != env->sd->groups);
0ec8aa00
PZ
5790
5791 if (env->sd->flags & SD_NUMA)
5792 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5793}
5794
532cb4c4
MN
5795/**
5796 * check_asym_packing - Check to see if the group is packed into the
5797 * sched doman.
5798 *
5799 * This is primarily intended to used at the sibling level. Some
5800 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5801 * case of POWER7, it can move to lower SMT modes only when higher
5802 * threads are idle. When in lower SMT modes, the threads will
5803 * perform better since they share less core resources. Hence when we
5804 * have idle threads, we want them to be the higher ones.
5805 *
5806 * This packing function is run on idle threads. It checks to see if
5807 * the busiest CPU in this domain (core in the P7 case) has a higher
5808 * CPU number than the packing function is being run on. Here we are
5809 * assuming lower CPU number will be equivalent to lower a SMT thread
5810 * number.
5811 *
e69f6186 5812 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5813 * this CPU. The amount of the imbalance is returned in *imbalance.
5814 *
cd96891d 5815 * @env: The load balancing environment.
532cb4c4 5816 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5817 */
bd939f45 5818static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5819{
5820 int busiest_cpu;
5821
bd939f45 5822 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5823 return 0;
5824
5825 if (!sds->busiest)
5826 return 0;
5827
5828 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5829 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5830 return 0;
5831
bd939f45 5832 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5833 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5834 SCHED_POWER_SCALE);
bd939f45 5835
532cb4c4 5836 return 1;
1e3c88bd
PZ
5837}
5838
5839/**
5840 * fix_small_imbalance - Calculate the minor imbalance that exists
5841 * amongst the groups of a sched_domain, during
5842 * load balancing.
cd96891d 5843 * @env: The load balancing environment.
1e3c88bd 5844 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5845 */
bd939f45
PZ
5846static inline
5847void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5848{
5849 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5850 unsigned int imbn = 2;
dd5feea1 5851 unsigned long scaled_busy_load_per_task;
56cf515b 5852 struct sg_lb_stats *local, *busiest;
1e3c88bd 5853
56cf515b
JK
5854 local = &sds->local_stat;
5855 busiest = &sds->busiest_stat;
1e3c88bd 5856
56cf515b
JK
5857 if (!local->sum_nr_running)
5858 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5859 else if (busiest->load_per_task > local->load_per_task)
5860 imbn = 1;
dd5feea1 5861
56cf515b
JK
5862 scaled_busy_load_per_task =
5863 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5864 busiest->group_power;
56cf515b 5865
3029ede3
VD
5866 if (busiest->avg_load + scaled_busy_load_per_task >=
5867 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5868 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5869 return;
5870 }
5871
5872 /*
5873 * OK, we don't have enough imbalance to justify moving tasks,
5874 * however we may be able to increase total CPU power used by
5875 * moving them.
5876 */
5877
3ae11c90 5878 pwr_now += busiest->group_power *
56cf515b 5879 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5880 pwr_now += local->group_power *
56cf515b 5881 min(local->load_per_task, local->avg_load);
1399fa78 5882 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5883
5884 /* Amount of load we'd subtract */
56cf515b 5885 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5886 busiest->group_power;
56cf515b 5887 if (busiest->avg_load > tmp) {
3ae11c90 5888 pwr_move += busiest->group_power *
56cf515b
JK
5889 min(busiest->load_per_task,
5890 busiest->avg_load - tmp);
5891 }
1e3c88bd
PZ
5892
5893 /* Amount of load we'd add */
3ae11c90 5894 if (busiest->avg_load * busiest->group_power <
56cf515b 5895 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5896 tmp = (busiest->avg_load * busiest->group_power) /
5897 local->group_power;
56cf515b
JK
5898 } else {
5899 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5900 local->group_power;
56cf515b 5901 }
3ae11c90
PZ
5902 pwr_move += local->group_power *
5903 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5904 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5905
5906 /* Move if we gain throughput */
5907 if (pwr_move > pwr_now)
56cf515b 5908 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5909}
5910
5911/**
5912 * calculate_imbalance - Calculate the amount of imbalance present within the
5913 * groups of a given sched_domain during load balance.
bd939f45 5914 * @env: load balance environment
1e3c88bd 5915 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5916 */
bd939f45 5917static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5918{
dd5feea1 5919 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5920 struct sg_lb_stats *local, *busiest;
5921
5922 local = &sds->local_stat;
56cf515b 5923 busiest = &sds->busiest_stat;
dd5feea1 5924
56cf515b 5925 if (busiest->group_imb) {
30ce5dab
PZ
5926 /*
5927 * In the group_imb case we cannot rely on group-wide averages
5928 * to ensure cpu-load equilibrium, look at wider averages. XXX
5929 */
56cf515b
JK
5930 busiest->load_per_task =
5931 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5932 }
5933
1e3c88bd
PZ
5934 /*
5935 * In the presence of smp nice balancing, certain scenarios can have
5936 * max load less than avg load(as we skip the groups at or below
5937 * its cpu_power, while calculating max_load..)
5938 */
b1885550
VD
5939 if (busiest->avg_load <= sds->avg_load ||
5940 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5941 env->imbalance = 0;
5942 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5943 }
5944
56cf515b 5945 if (!busiest->group_imb) {
dd5feea1
SS
5946 /*
5947 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5948 * Except of course for the group_imb case, since then we might
5949 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5950 */
56cf515b
JK
5951 load_above_capacity =
5952 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5953
1399fa78 5954 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5955 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5956 }
5957
5958 /*
5959 * We're trying to get all the cpus to the average_load, so we don't
5960 * want to push ourselves above the average load, nor do we wish to
5961 * reduce the max loaded cpu below the average load. At the same time,
5962 * we also don't want to reduce the group load below the group capacity
5963 * (so that we can implement power-savings policies etc). Thus we look
5964 * for the minimum possible imbalance.
dd5feea1 5965 */
30ce5dab 5966 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5967
5968 /* How much load to actually move to equalise the imbalance */
56cf515b 5969 env->imbalance = min(
3ae11c90
PZ
5970 max_pull * busiest->group_power,
5971 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5972 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5973
5974 /*
5975 * if *imbalance is less than the average load per runnable task
25985edc 5976 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5977 * a think about bumping its value to force at least one task to be
5978 * moved
5979 */
56cf515b 5980 if (env->imbalance < busiest->load_per_task)
bd939f45 5981 return fix_small_imbalance(env, sds);
1e3c88bd 5982}
fab47622 5983
1e3c88bd
PZ
5984/******* find_busiest_group() helpers end here *********************/
5985
5986/**
5987 * find_busiest_group - Returns the busiest group within the sched_domain
5988 * if there is an imbalance. If there isn't an imbalance, and
5989 * the user has opted for power-savings, it returns a group whose
5990 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5991 * such a group exists.
5992 *
5993 * Also calculates the amount of weighted load which should be moved
5994 * to restore balance.
5995 *
cd96891d 5996 * @env: The load balancing environment.
1e3c88bd 5997 *
e69f6186 5998 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5999 * - If no imbalance and user has opted for power-savings balance,
6000 * return the least loaded group whose CPUs can be
6001 * put to idle by rebalancing its tasks onto our group.
6002 */
56cf515b 6003static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6004{
56cf515b 6005 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6006 struct sd_lb_stats sds;
6007
147c5fc2 6008 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6009
6010 /*
6011 * Compute the various statistics relavent for load balancing at
6012 * this level.
6013 */
23f0d209 6014 update_sd_lb_stats(env, &sds);
56cf515b
JK
6015 local = &sds.local_stat;
6016 busiest = &sds.busiest_stat;
1e3c88bd 6017
bd939f45
PZ
6018 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6019 check_asym_packing(env, &sds))
532cb4c4
MN
6020 return sds.busiest;
6021
cc57aa8f 6022 /* There is no busy sibling group to pull tasks from */
56cf515b 6023 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6024 goto out_balanced;
6025
1399fa78 6026 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6027
866ab43e
PZ
6028 /*
6029 * If the busiest group is imbalanced the below checks don't
30ce5dab 6030 * work because they assume all things are equal, which typically
866ab43e
PZ
6031 * isn't true due to cpus_allowed constraints and the like.
6032 */
56cf515b 6033 if (busiest->group_imb)
866ab43e
PZ
6034 goto force_balance;
6035
cc57aa8f 6036 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6037 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6038 !busiest->group_has_capacity)
fab47622
NR
6039 goto force_balance;
6040
cc57aa8f
PZ
6041 /*
6042 * If the local group is more busy than the selected busiest group
6043 * don't try and pull any tasks.
6044 */
56cf515b 6045 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6046 goto out_balanced;
6047
cc57aa8f
PZ
6048 /*
6049 * Don't pull any tasks if this group is already above the domain
6050 * average load.
6051 */
56cf515b 6052 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6053 goto out_balanced;
6054
bd939f45 6055 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6056 /*
6057 * This cpu is idle. If the busiest group load doesn't
6058 * have more tasks than the number of available cpu's and
6059 * there is no imbalance between this and busiest group
6060 * wrt to idle cpu's, it is balanced.
6061 */
56cf515b
JK
6062 if ((local->idle_cpus < busiest->idle_cpus) &&
6063 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6064 goto out_balanced;
c186fafe
PZ
6065 } else {
6066 /*
6067 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6068 * imbalance_pct to be conservative.
6069 */
56cf515b
JK
6070 if (100 * busiest->avg_load <=
6071 env->sd->imbalance_pct * local->avg_load)
c186fafe 6072 goto out_balanced;
aae6d3dd 6073 }
1e3c88bd 6074
fab47622 6075force_balance:
1e3c88bd 6076 /* Looks like there is an imbalance. Compute it */
bd939f45 6077 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6078 return sds.busiest;
6079
6080out_balanced:
bd939f45 6081 env->imbalance = 0;
1e3c88bd
PZ
6082 return NULL;
6083}
6084
6085/*
6086 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6087 */
bd939f45 6088static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6089 struct sched_group *group)
1e3c88bd
PZ
6090{
6091 struct rq *busiest = NULL, *rq;
95a79b80 6092 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6093 int i;
6094
6906a408 6095 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6096 unsigned long power, capacity, wl;
6097 enum fbq_type rt;
6098
6099 rq = cpu_rq(i);
6100 rt = fbq_classify_rq(rq);
1e3c88bd 6101
0ec8aa00
PZ
6102 /*
6103 * We classify groups/runqueues into three groups:
6104 * - regular: there are !numa tasks
6105 * - remote: there are numa tasks that run on the 'wrong' node
6106 * - all: there is no distinction
6107 *
6108 * In order to avoid migrating ideally placed numa tasks,
6109 * ignore those when there's better options.
6110 *
6111 * If we ignore the actual busiest queue to migrate another
6112 * task, the next balance pass can still reduce the busiest
6113 * queue by moving tasks around inside the node.
6114 *
6115 * If we cannot move enough load due to this classification
6116 * the next pass will adjust the group classification and
6117 * allow migration of more tasks.
6118 *
6119 * Both cases only affect the total convergence complexity.
6120 */
6121 if (rt > env->fbq_type)
6122 continue;
6123
6124 power = power_of(i);
6125 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6126 if (!capacity)
bd939f45 6127 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6128
6e40f5bb 6129 wl = weighted_cpuload(i);
1e3c88bd 6130
6e40f5bb
TG
6131 /*
6132 * When comparing with imbalance, use weighted_cpuload()
6133 * which is not scaled with the cpu power.
6134 */
bd939f45 6135 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6136 continue;
6137
6e40f5bb
TG
6138 /*
6139 * For the load comparisons with the other cpu's, consider
6140 * the weighted_cpuload() scaled with the cpu power, so that
6141 * the load can be moved away from the cpu that is potentially
6142 * running at a lower capacity.
95a79b80
JK
6143 *
6144 * Thus we're looking for max(wl_i / power_i), crosswise
6145 * multiplication to rid ourselves of the division works out
6146 * to: wl_i * power_j > wl_j * power_i; where j is our
6147 * previous maximum.
6e40f5bb 6148 */
95a79b80
JK
6149 if (wl * busiest_power > busiest_load * power) {
6150 busiest_load = wl;
6151 busiest_power = power;
1e3c88bd
PZ
6152 busiest = rq;
6153 }
6154 }
6155
6156 return busiest;
6157}
6158
6159/*
6160 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6161 * so long as it is large enough.
6162 */
6163#define MAX_PINNED_INTERVAL 512
6164
6165/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6166DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6167
bd939f45 6168static int need_active_balance(struct lb_env *env)
1af3ed3d 6169{
bd939f45
PZ
6170 struct sched_domain *sd = env->sd;
6171
6172 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6173
6174 /*
6175 * ASYM_PACKING needs to force migrate tasks from busy but
6176 * higher numbered CPUs in order to pack all tasks in the
6177 * lowest numbered CPUs.
6178 */
bd939f45 6179 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6180 return 1;
1af3ed3d
PZ
6181 }
6182
6183 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6184}
6185
969c7921
TH
6186static int active_load_balance_cpu_stop(void *data);
6187
23f0d209
JK
6188static int should_we_balance(struct lb_env *env)
6189{
6190 struct sched_group *sg = env->sd->groups;
6191 struct cpumask *sg_cpus, *sg_mask;
6192 int cpu, balance_cpu = -1;
6193
6194 /*
6195 * In the newly idle case, we will allow all the cpu's
6196 * to do the newly idle load balance.
6197 */
6198 if (env->idle == CPU_NEWLY_IDLE)
6199 return 1;
6200
6201 sg_cpus = sched_group_cpus(sg);
6202 sg_mask = sched_group_mask(sg);
6203 /* Try to find first idle cpu */
6204 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6205 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6206 continue;
6207
6208 balance_cpu = cpu;
6209 break;
6210 }
6211
6212 if (balance_cpu == -1)
6213 balance_cpu = group_balance_cpu(sg);
6214
6215 /*
6216 * First idle cpu or the first cpu(busiest) in this sched group
6217 * is eligible for doing load balancing at this and above domains.
6218 */
b0cff9d8 6219 return balance_cpu == env->dst_cpu;
23f0d209
JK
6220}
6221
1e3c88bd
PZ
6222/*
6223 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6224 * tasks if there is an imbalance.
6225 */
6226static int load_balance(int this_cpu, struct rq *this_rq,
6227 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6228 int *continue_balancing)
1e3c88bd 6229{
88b8dac0 6230 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6231 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6232 struct sched_group *group;
1e3c88bd
PZ
6233 struct rq *busiest;
6234 unsigned long flags;
e6252c3e 6235 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6236
8e45cb54
PZ
6237 struct lb_env env = {
6238 .sd = sd,
ddcdf6e7
PZ
6239 .dst_cpu = this_cpu,
6240 .dst_rq = this_rq,
88b8dac0 6241 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6242 .idle = idle,
eb95308e 6243 .loop_break = sched_nr_migrate_break,
b9403130 6244 .cpus = cpus,
0ec8aa00 6245 .fbq_type = all,
8e45cb54
PZ
6246 };
6247
cfc03118
JK
6248 /*
6249 * For NEWLY_IDLE load_balancing, we don't need to consider
6250 * other cpus in our group
6251 */
e02e60c1 6252 if (idle == CPU_NEWLY_IDLE)
cfc03118 6253 env.dst_grpmask = NULL;
cfc03118 6254
1e3c88bd
PZ
6255 cpumask_copy(cpus, cpu_active_mask);
6256
1e3c88bd
PZ
6257 schedstat_inc(sd, lb_count[idle]);
6258
6259redo:
23f0d209
JK
6260 if (!should_we_balance(&env)) {
6261 *continue_balancing = 0;
1e3c88bd 6262 goto out_balanced;
23f0d209 6263 }
1e3c88bd 6264
23f0d209 6265 group = find_busiest_group(&env);
1e3c88bd
PZ
6266 if (!group) {
6267 schedstat_inc(sd, lb_nobusyg[idle]);
6268 goto out_balanced;
6269 }
6270
b9403130 6271 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6272 if (!busiest) {
6273 schedstat_inc(sd, lb_nobusyq[idle]);
6274 goto out_balanced;
6275 }
6276
78feefc5 6277 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6278
bd939f45 6279 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6280
6281 ld_moved = 0;
6282 if (busiest->nr_running > 1) {
6283 /*
6284 * Attempt to move tasks. If find_busiest_group has found
6285 * an imbalance but busiest->nr_running <= 1, the group is
6286 * still unbalanced. ld_moved simply stays zero, so it is
6287 * correctly treated as an imbalance.
6288 */
8e45cb54 6289 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6290 env.src_cpu = busiest->cpu;
6291 env.src_rq = busiest;
6292 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6293
5d6523eb 6294more_balance:
1e3c88bd 6295 local_irq_save(flags);
78feefc5 6296 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6297
6298 /*
6299 * cur_ld_moved - load moved in current iteration
6300 * ld_moved - cumulative load moved across iterations
6301 */
6302 cur_ld_moved = move_tasks(&env);
6303 ld_moved += cur_ld_moved;
78feefc5 6304 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6305 local_irq_restore(flags);
6306
6307 /*
6308 * some other cpu did the load balance for us.
6309 */
88b8dac0
SV
6310 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6311 resched_cpu(env.dst_cpu);
6312
f1cd0858
JK
6313 if (env.flags & LBF_NEED_BREAK) {
6314 env.flags &= ~LBF_NEED_BREAK;
6315 goto more_balance;
6316 }
6317
88b8dac0
SV
6318 /*
6319 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6320 * us and move them to an alternate dst_cpu in our sched_group
6321 * where they can run. The upper limit on how many times we
6322 * iterate on same src_cpu is dependent on number of cpus in our
6323 * sched_group.
6324 *
6325 * This changes load balance semantics a bit on who can move
6326 * load to a given_cpu. In addition to the given_cpu itself
6327 * (or a ilb_cpu acting on its behalf where given_cpu is
6328 * nohz-idle), we now have balance_cpu in a position to move
6329 * load to given_cpu. In rare situations, this may cause
6330 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6331 * _independently_ and at _same_ time to move some load to
6332 * given_cpu) causing exceess load to be moved to given_cpu.
6333 * This however should not happen so much in practice and
6334 * moreover subsequent load balance cycles should correct the
6335 * excess load moved.
6336 */
6263322c 6337 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6338
7aff2e3a
VD
6339 /* Prevent to re-select dst_cpu via env's cpus */
6340 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6341
78feefc5 6342 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6343 env.dst_cpu = env.new_dst_cpu;
6263322c 6344 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6345 env.loop = 0;
6346 env.loop_break = sched_nr_migrate_break;
e02e60c1 6347
88b8dac0
SV
6348 /*
6349 * Go back to "more_balance" rather than "redo" since we
6350 * need to continue with same src_cpu.
6351 */
6352 goto more_balance;
6353 }
1e3c88bd 6354
6263322c
PZ
6355 /*
6356 * We failed to reach balance because of affinity.
6357 */
6358 if (sd_parent) {
6359 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6360
6361 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6362 *group_imbalance = 1;
6363 } else if (*group_imbalance)
6364 *group_imbalance = 0;
6365 }
6366
1e3c88bd 6367 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6368 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6369 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6370 if (!cpumask_empty(cpus)) {
6371 env.loop = 0;
6372 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6373 goto redo;
bbf18b19 6374 }
1e3c88bd
PZ
6375 goto out_balanced;
6376 }
6377 }
6378
6379 if (!ld_moved) {
6380 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6381 /*
6382 * Increment the failure counter only on periodic balance.
6383 * We do not want newidle balance, which can be very
6384 * frequent, pollute the failure counter causing
6385 * excessive cache_hot migrations and active balances.
6386 */
6387 if (idle != CPU_NEWLY_IDLE)
6388 sd->nr_balance_failed++;
1e3c88bd 6389
bd939f45 6390 if (need_active_balance(&env)) {
1e3c88bd
PZ
6391 raw_spin_lock_irqsave(&busiest->lock, flags);
6392
969c7921
TH
6393 /* don't kick the active_load_balance_cpu_stop,
6394 * if the curr task on busiest cpu can't be
6395 * moved to this_cpu
1e3c88bd
PZ
6396 */
6397 if (!cpumask_test_cpu(this_cpu,
fa17b507 6398 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6399 raw_spin_unlock_irqrestore(&busiest->lock,
6400 flags);
8e45cb54 6401 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6402 goto out_one_pinned;
6403 }
6404
969c7921
TH
6405 /*
6406 * ->active_balance synchronizes accesses to
6407 * ->active_balance_work. Once set, it's cleared
6408 * only after active load balance is finished.
6409 */
1e3c88bd
PZ
6410 if (!busiest->active_balance) {
6411 busiest->active_balance = 1;
6412 busiest->push_cpu = this_cpu;
6413 active_balance = 1;
6414 }
6415 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6416
bd939f45 6417 if (active_balance) {
969c7921
TH
6418 stop_one_cpu_nowait(cpu_of(busiest),
6419 active_load_balance_cpu_stop, busiest,
6420 &busiest->active_balance_work);
bd939f45 6421 }
1e3c88bd
PZ
6422
6423 /*
6424 * We've kicked active balancing, reset the failure
6425 * counter.
6426 */
6427 sd->nr_balance_failed = sd->cache_nice_tries+1;
6428 }
6429 } else
6430 sd->nr_balance_failed = 0;
6431
6432 if (likely(!active_balance)) {
6433 /* We were unbalanced, so reset the balancing interval */
6434 sd->balance_interval = sd->min_interval;
6435 } else {
6436 /*
6437 * If we've begun active balancing, start to back off. This
6438 * case may not be covered by the all_pinned logic if there
6439 * is only 1 task on the busy runqueue (because we don't call
6440 * move_tasks).
6441 */
6442 if (sd->balance_interval < sd->max_interval)
6443 sd->balance_interval *= 2;
6444 }
6445
1e3c88bd
PZ
6446 goto out;
6447
6448out_balanced:
6449 schedstat_inc(sd, lb_balanced[idle]);
6450
6451 sd->nr_balance_failed = 0;
6452
6453out_one_pinned:
6454 /* tune up the balancing interval */
8e45cb54 6455 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6456 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6457 (sd->balance_interval < sd->max_interval))
6458 sd->balance_interval *= 2;
6459
46e49b38 6460 ld_moved = 0;
1e3c88bd 6461out:
1e3c88bd
PZ
6462 return ld_moved;
6463}
6464
1e3c88bd
PZ
6465/*
6466 * idle_balance is called by schedule() if this_cpu is about to become
6467 * idle. Attempts to pull tasks from other CPUs.
6468 */
029632fb 6469void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6470{
6471 struct sched_domain *sd;
6472 int pulled_task = 0;
6473 unsigned long next_balance = jiffies + HZ;
9bd721c5 6474 u64 curr_cost = 0;
1e3c88bd 6475
78becc27 6476 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6477
6478 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6479 return;
6480
f492e12e
PZ
6481 /*
6482 * Drop the rq->lock, but keep IRQ/preempt disabled.
6483 */
6484 raw_spin_unlock(&this_rq->lock);
6485
48a16753 6486 update_blocked_averages(this_cpu);
dce840a0 6487 rcu_read_lock();
1e3c88bd
PZ
6488 for_each_domain(this_cpu, sd) {
6489 unsigned long interval;
23f0d209 6490 int continue_balancing = 1;
9bd721c5 6491 u64 t0, domain_cost;
1e3c88bd
PZ
6492
6493 if (!(sd->flags & SD_LOAD_BALANCE))
6494 continue;
6495
9bd721c5
JL
6496 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6497 break;
6498
f492e12e 6499 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6500 t0 = sched_clock_cpu(this_cpu);
6501
1e3c88bd 6502 /* If we've pulled tasks over stop searching: */
f492e12e 6503 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6504 sd, CPU_NEWLY_IDLE,
6505 &continue_balancing);
9bd721c5
JL
6506
6507 domain_cost = sched_clock_cpu(this_cpu) - t0;
6508 if (domain_cost > sd->max_newidle_lb_cost)
6509 sd->max_newidle_lb_cost = domain_cost;
6510
6511 curr_cost += domain_cost;
f492e12e 6512 }
1e3c88bd
PZ
6513
6514 interval = msecs_to_jiffies(sd->balance_interval);
6515 if (time_after(next_balance, sd->last_balance + interval))
6516 next_balance = sd->last_balance + interval;
d5ad140b
NR
6517 if (pulled_task) {
6518 this_rq->idle_stamp = 0;
1e3c88bd 6519 break;
d5ad140b 6520 }
1e3c88bd 6521 }
dce840a0 6522 rcu_read_unlock();
f492e12e
PZ
6523
6524 raw_spin_lock(&this_rq->lock);
6525
1e3c88bd
PZ
6526 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6527 /*
6528 * We are going idle. next_balance may be set based on
6529 * a busy processor. So reset next_balance.
6530 */
6531 this_rq->next_balance = next_balance;
6532 }
9bd721c5
JL
6533
6534 if (curr_cost > this_rq->max_idle_balance_cost)
6535 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6536}
6537
6538/*
969c7921
TH
6539 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6540 * running tasks off the busiest CPU onto idle CPUs. It requires at
6541 * least 1 task to be running on each physical CPU where possible, and
6542 * avoids physical / logical imbalances.
1e3c88bd 6543 */
969c7921 6544static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6545{
969c7921
TH
6546 struct rq *busiest_rq = data;
6547 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6548 int target_cpu = busiest_rq->push_cpu;
969c7921 6549 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6550 struct sched_domain *sd;
969c7921
TH
6551
6552 raw_spin_lock_irq(&busiest_rq->lock);
6553
6554 /* make sure the requested cpu hasn't gone down in the meantime */
6555 if (unlikely(busiest_cpu != smp_processor_id() ||
6556 !busiest_rq->active_balance))
6557 goto out_unlock;
1e3c88bd
PZ
6558
6559 /* Is there any task to move? */
6560 if (busiest_rq->nr_running <= 1)
969c7921 6561 goto out_unlock;
1e3c88bd
PZ
6562
6563 /*
6564 * This condition is "impossible", if it occurs
6565 * we need to fix it. Originally reported by
6566 * Bjorn Helgaas on a 128-cpu setup.
6567 */
6568 BUG_ON(busiest_rq == target_rq);
6569
6570 /* move a task from busiest_rq to target_rq */
6571 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6572
6573 /* Search for an sd spanning us and the target CPU. */
dce840a0 6574 rcu_read_lock();
1e3c88bd
PZ
6575 for_each_domain(target_cpu, sd) {
6576 if ((sd->flags & SD_LOAD_BALANCE) &&
6577 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6578 break;
6579 }
6580
6581 if (likely(sd)) {
8e45cb54
PZ
6582 struct lb_env env = {
6583 .sd = sd,
ddcdf6e7
PZ
6584 .dst_cpu = target_cpu,
6585 .dst_rq = target_rq,
6586 .src_cpu = busiest_rq->cpu,
6587 .src_rq = busiest_rq,
8e45cb54
PZ
6588 .idle = CPU_IDLE,
6589 };
6590
1e3c88bd
PZ
6591 schedstat_inc(sd, alb_count);
6592
8e45cb54 6593 if (move_one_task(&env))
1e3c88bd
PZ
6594 schedstat_inc(sd, alb_pushed);
6595 else
6596 schedstat_inc(sd, alb_failed);
6597 }
dce840a0 6598 rcu_read_unlock();
1e3c88bd 6599 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6600out_unlock:
6601 busiest_rq->active_balance = 0;
6602 raw_spin_unlock_irq(&busiest_rq->lock);
6603 return 0;
1e3c88bd
PZ
6604}
6605
3451d024 6606#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6607/*
6608 * idle load balancing details
83cd4fe2
VP
6609 * - When one of the busy CPUs notice that there may be an idle rebalancing
6610 * needed, they will kick the idle load balancer, which then does idle
6611 * load balancing for all the idle CPUs.
6612 */
1e3c88bd 6613static struct {
83cd4fe2 6614 cpumask_var_t idle_cpus_mask;
0b005cf5 6615 atomic_t nr_cpus;
83cd4fe2
VP
6616 unsigned long next_balance; /* in jiffy units */
6617} nohz ____cacheline_aligned;
1e3c88bd 6618
3dd0337d 6619static inline int find_new_ilb(void)
1e3c88bd 6620{
0b005cf5 6621 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6622
786d6dc7
SS
6623 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6624 return ilb;
6625
6626 return nr_cpu_ids;
1e3c88bd 6627}
1e3c88bd 6628
83cd4fe2
VP
6629/*
6630 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6631 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6632 * CPU (if there is one).
6633 */
0aeeeeba 6634static void nohz_balancer_kick(void)
83cd4fe2
VP
6635{
6636 int ilb_cpu;
6637
6638 nohz.next_balance++;
6639
3dd0337d 6640 ilb_cpu = find_new_ilb();
83cd4fe2 6641
0b005cf5
SS
6642 if (ilb_cpu >= nr_cpu_ids)
6643 return;
83cd4fe2 6644
cd490c5b 6645 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6646 return;
6647 /*
6648 * Use smp_send_reschedule() instead of resched_cpu().
6649 * This way we generate a sched IPI on the target cpu which
6650 * is idle. And the softirq performing nohz idle load balance
6651 * will be run before returning from the IPI.
6652 */
6653 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6654 return;
6655}
6656
c1cc017c 6657static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6658{
6659 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6660 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6661 atomic_dec(&nohz.nr_cpus);
6662 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6663 }
6664}
6665
69e1e811
SS
6666static inline void set_cpu_sd_state_busy(void)
6667{
6668 struct sched_domain *sd;
37dc6b50 6669 int cpu = smp_processor_id();
69e1e811 6670
69e1e811 6671 rcu_read_lock();
37dc6b50 6672 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6673
6674 if (!sd || !sd->nohz_idle)
6675 goto unlock;
6676 sd->nohz_idle = 0;
6677
37dc6b50 6678 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6679unlock:
69e1e811
SS
6680 rcu_read_unlock();
6681}
6682
6683void set_cpu_sd_state_idle(void)
6684{
6685 struct sched_domain *sd;
37dc6b50 6686 int cpu = smp_processor_id();
69e1e811 6687
69e1e811 6688 rcu_read_lock();
37dc6b50 6689 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6690
6691 if (!sd || sd->nohz_idle)
6692 goto unlock;
6693 sd->nohz_idle = 1;
6694
37dc6b50 6695 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6696unlock:
69e1e811
SS
6697 rcu_read_unlock();
6698}
6699
1e3c88bd 6700/*
c1cc017c 6701 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6702 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6703 */
c1cc017c 6704void nohz_balance_enter_idle(int cpu)
1e3c88bd 6705{
71325960
SS
6706 /*
6707 * If this cpu is going down, then nothing needs to be done.
6708 */
6709 if (!cpu_active(cpu))
6710 return;
6711
c1cc017c
AS
6712 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6713 return;
1e3c88bd 6714
c1cc017c
AS
6715 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6716 atomic_inc(&nohz.nr_cpus);
6717 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6718}
71325960 6719
0db0628d 6720static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6721 unsigned long action, void *hcpu)
6722{
6723 switch (action & ~CPU_TASKS_FROZEN) {
6724 case CPU_DYING:
c1cc017c 6725 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6726 return NOTIFY_OK;
6727 default:
6728 return NOTIFY_DONE;
6729 }
6730}
1e3c88bd
PZ
6731#endif
6732
6733static DEFINE_SPINLOCK(balancing);
6734
49c022e6
PZ
6735/*
6736 * Scale the max load_balance interval with the number of CPUs in the system.
6737 * This trades load-balance latency on larger machines for less cross talk.
6738 */
029632fb 6739void update_max_interval(void)
49c022e6
PZ
6740{
6741 max_load_balance_interval = HZ*num_online_cpus()/10;
6742}
6743
1e3c88bd
PZ
6744/*
6745 * It checks each scheduling domain to see if it is due to be balanced,
6746 * and initiates a balancing operation if so.
6747 *
b9b0853a 6748 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6749 */
f7ed0a89 6750static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6751{
23f0d209 6752 int continue_balancing = 1;
f7ed0a89 6753 int cpu = rq->cpu;
1e3c88bd 6754 unsigned long interval;
04f733b4 6755 struct sched_domain *sd;
1e3c88bd
PZ
6756 /* Earliest time when we have to do rebalance again */
6757 unsigned long next_balance = jiffies + 60*HZ;
6758 int update_next_balance = 0;
f48627e6
JL
6759 int need_serialize, need_decay = 0;
6760 u64 max_cost = 0;
1e3c88bd 6761
48a16753 6762 update_blocked_averages(cpu);
2069dd75 6763
dce840a0 6764 rcu_read_lock();
1e3c88bd 6765 for_each_domain(cpu, sd) {
f48627e6
JL
6766 /*
6767 * Decay the newidle max times here because this is a regular
6768 * visit to all the domains. Decay ~1% per second.
6769 */
6770 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6771 sd->max_newidle_lb_cost =
6772 (sd->max_newidle_lb_cost * 253) / 256;
6773 sd->next_decay_max_lb_cost = jiffies + HZ;
6774 need_decay = 1;
6775 }
6776 max_cost += sd->max_newidle_lb_cost;
6777
1e3c88bd
PZ
6778 if (!(sd->flags & SD_LOAD_BALANCE))
6779 continue;
6780
f48627e6
JL
6781 /*
6782 * Stop the load balance at this level. There is another
6783 * CPU in our sched group which is doing load balancing more
6784 * actively.
6785 */
6786 if (!continue_balancing) {
6787 if (need_decay)
6788 continue;
6789 break;
6790 }
6791
1e3c88bd
PZ
6792 interval = sd->balance_interval;
6793 if (idle != CPU_IDLE)
6794 interval *= sd->busy_factor;
6795
6796 /* scale ms to jiffies */
6797 interval = msecs_to_jiffies(interval);
49c022e6 6798 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6799
6800 need_serialize = sd->flags & SD_SERIALIZE;
6801
6802 if (need_serialize) {
6803 if (!spin_trylock(&balancing))
6804 goto out;
6805 }
6806
6807 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6808 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6809 /*
6263322c 6810 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6811 * env->dst_cpu, so we can't know our idle
6812 * state even if we migrated tasks. Update it.
1e3c88bd 6813 */
de5eb2dd 6814 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6815 }
6816 sd->last_balance = jiffies;
6817 }
6818 if (need_serialize)
6819 spin_unlock(&balancing);
6820out:
6821 if (time_after(next_balance, sd->last_balance + interval)) {
6822 next_balance = sd->last_balance + interval;
6823 update_next_balance = 1;
6824 }
f48627e6
JL
6825 }
6826 if (need_decay) {
1e3c88bd 6827 /*
f48627e6
JL
6828 * Ensure the rq-wide value also decays but keep it at a
6829 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6830 */
f48627e6
JL
6831 rq->max_idle_balance_cost =
6832 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6833 }
dce840a0 6834 rcu_read_unlock();
1e3c88bd
PZ
6835
6836 /*
6837 * next_balance will be updated only when there is a need.
6838 * When the cpu is attached to null domain for ex, it will not be
6839 * updated.
6840 */
6841 if (likely(update_next_balance))
6842 rq->next_balance = next_balance;
6843}
6844
3451d024 6845#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6846/*
3451d024 6847 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6848 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6849 */
208cb16b 6850static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 6851{
208cb16b 6852 int this_cpu = this_rq->cpu;
83cd4fe2
VP
6853 struct rq *rq;
6854 int balance_cpu;
6855
1c792db7
SS
6856 if (idle != CPU_IDLE ||
6857 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6858 goto end;
83cd4fe2
VP
6859
6860 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6861 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6862 continue;
6863
6864 /*
6865 * If this cpu gets work to do, stop the load balancing
6866 * work being done for other cpus. Next load
6867 * balancing owner will pick it up.
6868 */
1c792db7 6869 if (need_resched())
83cd4fe2 6870 break;
83cd4fe2 6871
5ed4f1d9
VG
6872 rq = cpu_rq(balance_cpu);
6873
6874 raw_spin_lock_irq(&rq->lock);
6875 update_rq_clock(rq);
6876 update_idle_cpu_load(rq);
6877 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6878
f7ed0a89 6879 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6880
83cd4fe2
VP
6881 if (time_after(this_rq->next_balance, rq->next_balance))
6882 this_rq->next_balance = rq->next_balance;
6883 }
6884 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6885end:
6886 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6887}
6888
6889/*
0b005cf5
SS
6890 * Current heuristic for kicking the idle load balancer in the presence
6891 * of an idle cpu is the system.
6892 * - This rq has more than one task.
6893 * - At any scheduler domain level, this cpu's scheduler group has multiple
6894 * busy cpu's exceeding the group's power.
6895 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6896 * domain span are idle.
83cd4fe2 6897 */
4a725627 6898static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6899{
6900 unsigned long now = jiffies;
0b005cf5 6901 struct sched_domain *sd;
37dc6b50 6902 struct sched_group_power *sgp;
4a725627 6903 int nr_busy, cpu = rq->cpu;
83cd4fe2 6904
4a725627 6905 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6906 return 0;
6907
1c792db7
SS
6908 /*
6909 * We may be recently in ticked or tickless idle mode. At the first
6910 * busy tick after returning from idle, we will update the busy stats.
6911 */
69e1e811 6912 set_cpu_sd_state_busy();
c1cc017c 6913 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6914
6915 /*
6916 * None are in tickless mode and hence no need for NOHZ idle load
6917 * balancing.
6918 */
6919 if (likely(!atomic_read(&nohz.nr_cpus)))
6920 return 0;
1c792db7
SS
6921
6922 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6923 return 0;
6924
0b005cf5
SS
6925 if (rq->nr_running >= 2)
6926 goto need_kick;
83cd4fe2 6927
067491b7 6928 rcu_read_lock();
37dc6b50 6929 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6930
37dc6b50
PM
6931 if (sd) {
6932 sgp = sd->groups->sgp;
6933 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6934
37dc6b50 6935 if (nr_busy > 1)
067491b7 6936 goto need_kick_unlock;
83cd4fe2 6937 }
37dc6b50
PM
6938
6939 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6940
6941 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6942 sched_domain_span(sd)) < cpu))
6943 goto need_kick_unlock;
6944
067491b7 6945 rcu_read_unlock();
83cd4fe2 6946 return 0;
067491b7
PZ
6947
6948need_kick_unlock:
6949 rcu_read_unlock();
0b005cf5
SS
6950need_kick:
6951 return 1;
83cd4fe2
VP
6952}
6953#else
208cb16b 6954static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
6955#endif
6956
6957/*
6958 * run_rebalance_domains is triggered when needed from the scheduler tick.
6959 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6960 */
1e3c88bd
PZ
6961static void run_rebalance_domains(struct softirq_action *h)
6962{
208cb16b 6963 struct rq *this_rq = this_rq();
6eb57e0d 6964 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6965 CPU_IDLE : CPU_NOT_IDLE;
6966
f7ed0a89 6967 rebalance_domains(this_rq, idle);
1e3c88bd 6968
1e3c88bd 6969 /*
83cd4fe2 6970 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6971 * balancing on behalf of the other idle cpus whose ticks are
6972 * stopped.
6973 */
208cb16b 6974 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
6975}
6976
63f609b1 6977static inline int on_null_domain(struct rq *rq)
1e3c88bd 6978{
63f609b1 6979 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
6980}
6981
6982/*
6983 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6984 */
7caff66f 6985void trigger_load_balance(struct rq *rq)
1e3c88bd 6986{
1e3c88bd 6987 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
6988 if (unlikely(on_null_domain(rq)))
6989 return;
6990
6991 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 6992 raise_softirq(SCHED_SOFTIRQ);
3451d024 6993#ifdef CONFIG_NO_HZ_COMMON
c726099e 6994 if (nohz_kick_needed(rq))
0aeeeeba 6995 nohz_balancer_kick();
83cd4fe2 6996#endif
1e3c88bd
PZ
6997}
6998
0bcdcf28
CE
6999static void rq_online_fair(struct rq *rq)
7000{
7001 update_sysctl();
7002}
7003
7004static void rq_offline_fair(struct rq *rq)
7005{
7006 update_sysctl();
a4c96ae3
PB
7007
7008 /* Ensure any throttled groups are reachable by pick_next_task */
7009 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7010}
7011
55e12e5e 7012#endif /* CONFIG_SMP */
e1d1484f 7013
bf0f6f24
IM
7014/*
7015 * scheduler tick hitting a task of our scheduling class:
7016 */
8f4d37ec 7017static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7018{
7019 struct cfs_rq *cfs_rq;
7020 struct sched_entity *se = &curr->se;
7021
7022 for_each_sched_entity(se) {
7023 cfs_rq = cfs_rq_of(se);
8f4d37ec 7024 entity_tick(cfs_rq, se, queued);
bf0f6f24 7025 }
18bf2805 7026
10e84b97 7027 if (numabalancing_enabled)
cbee9f88 7028 task_tick_numa(rq, curr);
3d59eebc 7029
18bf2805 7030 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7031}
7032
7033/*
cd29fe6f
PZ
7034 * called on fork with the child task as argument from the parent's context
7035 * - child not yet on the tasklist
7036 * - preemption disabled
bf0f6f24 7037 */
cd29fe6f 7038static void task_fork_fair(struct task_struct *p)
bf0f6f24 7039{
4fc420c9
DN
7040 struct cfs_rq *cfs_rq;
7041 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7042 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7043 struct rq *rq = this_rq();
7044 unsigned long flags;
7045
05fa785c 7046 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7047
861d034e
PZ
7048 update_rq_clock(rq);
7049
4fc420c9
DN
7050 cfs_rq = task_cfs_rq(current);
7051 curr = cfs_rq->curr;
7052
6c9a27f5
DN
7053 /*
7054 * Not only the cpu but also the task_group of the parent might have
7055 * been changed after parent->se.parent,cfs_rq were copied to
7056 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7057 * of child point to valid ones.
7058 */
7059 rcu_read_lock();
7060 __set_task_cpu(p, this_cpu);
7061 rcu_read_unlock();
bf0f6f24 7062
7109c442 7063 update_curr(cfs_rq);
cd29fe6f 7064
b5d9d734
MG
7065 if (curr)
7066 se->vruntime = curr->vruntime;
aeb73b04 7067 place_entity(cfs_rq, se, 1);
4d78e7b6 7068
cd29fe6f 7069 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7070 /*
edcb60a3
IM
7071 * Upon rescheduling, sched_class::put_prev_task() will place
7072 * 'current' within the tree based on its new key value.
7073 */
4d78e7b6 7074 swap(curr->vruntime, se->vruntime);
aec0a514 7075 resched_task(rq->curr);
4d78e7b6 7076 }
bf0f6f24 7077
88ec22d3
PZ
7078 se->vruntime -= cfs_rq->min_vruntime;
7079
05fa785c 7080 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7081}
7082
cb469845
SR
7083/*
7084 * Priority of the task has changed. Check to see if we preempt
7085 * the current task.
7086 */
da7a735e
PZ
7087static void
7088prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7089{
da7a735e
PZ
7090 if (!p->se.on_rq)
7091 return;
7092
cb469845
SR
7093 /*
7094 * Reschedule if we are currently running on this runqueue and
7095 * our priority decreased, or if we are not currently running on
7096 * this runqueue and our priority is higher than the current's
7097 */
da7a735e 7098 if (rq->curr == p) {
cb469845
SR
7099 if (p->prio > oldprio)
7100 resched_task(rq->curr);
7101 } else
15afe09b 7102 check_preempt_curr(rq, p, 0);
cb469845
SR
7103}
7104
da7a735e
PZ
7105static void switched_from_fair(struct rq *rq, struct task_struct *p)
7106{
7107 struct sched_entity *se = &p->se;
7108 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7109
7110 /*
7111 * Ensure the task's vruntime is normalized, so that when its
7112 * switched back to the fair class the enqueue_entity(.flags=0) will
7113 * do the right thing.
7114 *
7115 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7116 * have normalized the vruntime, if it was !on_rq, then only when
7117 * the task is sleeping will it still have non-normalized vruntime.
7118 */
7119 if (!se->on_rq && p->state != TASK_RUNNING) {
7120 /*
7121 * Fix up our vruntime so that the current sleep doesn't
7122 * cause 'unlimited' sleep bonus.
7123 */
7124 place_entity(cfs_rq, se, 0);
7125 se->vruntime -= cfs_rq->min_vruntime;
7126 }
9ee474f5 7127
141965c7 7128#ifdef CONFIG_SMP
9ee474f5
PT
7129 /*
7130 * Remove our load from contribution when we leave sched_fair
7131 * and ensure we don't carry in an old decay_count if we
7132 * switch back.
7133 */
87e3c8ae
KT
7134 if (se->avg.decay_count) {
7135 __synchronize_entity_decay(se);
7136 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7137 }
7138#endif
da7a735e
PZ
7139}
7140
cb469845
SR
7141/*
7142 * We switched to the sched_fair class.
7143 */
da7a735e 7144static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7145{
da7a735e
PZ
7146 if (!p->se.on_rq)
7147 return;
7148
cb469845
SR
7149 /*
7150 * We were most likely switched from sched_rt, so
7151 * kick off the schedule if running, otherwise just see
7152 * if we can still preempt the current task.
7153 */
da7a735e 7154 if (rq->curr == p)
cb469845
SR
7155 resched_task(rq->curr);
7156 else
15afe09b 7157 check_preempt_curr(rq, p, 0);
cb469845
SR
7158}
7159
83b699ed
SV
7160/* Account for a task changing its policy or group.
7161 *
7162 * This routine is mostly called to set cfs_rq->curr field when a task
7163 * migrates between groups/classes.
7164 */
7165static void set_curr_task_fair(struct rq *rq)
7166{
7167 struct sched_entity *se = &rq->curr->se;
7168
ec12cb7f
PT
7169 for_each_sched_entity(se) {
7170 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7171
7172 set_next_entity(cfs_rq, se);
7173 /* ensure bandwidth has been allocated on our new cfs_rq */
7174 account_cfs_rq_runtime(cfs_rq, 0);
7175 }
83b699ed
SV
7176}
7177
029632fb
PZ
7178void init_cfs_rq(struct cfs_rq *cfs_rq)
7179{
7180 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7181 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7182#ifndef CONFIG_64BIT
7183 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7184#endif
141965c7 7185#ifdef CONFIG_SMP
9ee474f5 7186 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7187 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7188#endif
029632fb
PZ
7189}
7190
810b3817 7191#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7192static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7193{
aff3e498 7194 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7195 /*
7196 * If the task was not on the rq at the time of this cgroup movement
7197 * it must have been asleep, sleeping tasks keep their ->vruntime
7198 * absolute on their old rq until wakeup (needed for the fair sleeper
7199 * bonus in place_entity()).
7200 *
7201 * If it was on the rq, we've just 'preempted' it, which does convert
7202 * ->vruntime to a relative base.
7203 *
7204 * Make sure both cases convert their relative position when migrating
7205 * to another cgroup's rq. This does somewhat interfere with the
7206 * fair sleeper stuff for the first placement, but who cares.
7207 */
7ceff013
DN
7208 /*
7209 * When !on_rq, vruntime of the task has usually NOT been normalized.
7210 * But there are some cases where it has already been normalized:
7211 *
7212 * - Moving a forked child which is waiting for being woken up by
7213 * wake_up_new_task().
62af3783
DN
7214 * - Moving a task which has been woken up by try_to_wake_up() and
7215 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7216 *
7217 * To prevent boost or penalty in the new cfs_rq caused by delta
7218 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7219 */
62af3783 7220 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7221 on_rq = 1;
7222
b2b5ce02
PZ
7223 if (!on_rq)
7224 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7225 set_task_rq(p, task_cpu(p));
aff3e498
PT
7226 if (!on_rq) {
7227 cfs_rq = cfs_rq_of(&p->se);
7228 p->se.vruntime += cfs_rq->min_vruntime;
7229#ifdef CONFIG_SMP
7230 /*
7231 * migrate_task_rq_fair() will have removed our previous
7232 * contribution, but we must synchronize for ongoing future
7233 * decay.
7234 */
7235 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7236 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7237#endif
7238 }
810b3817 7239}
029632fb
PZ
7240
7241void free_fair_sched_group(struct task_group *tg)
7242{
7243 int i;
7244
7245 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7246
7247 for_each_possible_cpu(i) {
7248 if (tg->cfs_rq)
7249 kfree(tg->cfs_rq[i]);
7250 if (tg->se)
7251 kfree(tg->se[i]);
7252 }
7253
7254 kfree(tg->cfs_rq);
7255 kfree(tg->se);
7256}
7257
7258int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7259{
7260 struct cfs_rq *cfs_rq;
7261 struct sched_entity *se;
7262 int i;
7263
7264 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7265 if (!tg->cfs_rq)
7266 goto err;
7267 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7268 if (!tg->se)
7269 goto err;
7270
7271 tg->shares = NICE_0_LOAD;
7272
7273 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7274
7275 for_each_possible_cpu(i) {
7276 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7277 GFP_KERNEL, cpu_to_node(i));
7278 if (!cfs_rq)
7279 goto err;
7280
7281 se = kzalloc_node(sizeof(struct sched_entity),
7282 GFP_KERNEL, cpu_to_node(i));
7283 if (!se)
7284 goto err_free_rq;
7285
7286 init_cfs_rq(cfs_rq);
7287 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7288 }
7289
7290 return 1;
7291
7292err_free_rq:
7293 kfree(cfs_rq);
7294err:
7295 return 0;
7296}
7297
7298void unregister_fair_sched_group(struct task_group *tg, int cpu)
7299{
7300 struct rq *rq = cpu_rq(cpu);
7301 unsigned long flags;
7302
7303 /*
7304 * Only empty task groups can be destroyed; so we can speculatively
7305 * check on_list without danger of it being re-added.
7306 */
7307 if (!tg->cfs_rq[cpu]->on_list)
7308 return;
7309
7310 raw_spin_lock_irqsave(&rq->lock, flags);
7311 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7312 raw_spin_unlock_irqrestore(&rq->lock, flags);
7313}
7314
7315void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7316 struct sched_entity *se, int cpu,
7317 struct sched_entity *parent)
7318{
7319 struct rq *rq = cpu_rq(cpu);
7320
7321 cfs_rq->tg = tg;
7322 cfs_rq->rq = rq;
029632fb
PZ
7323 init_cfs_rq_runtime(cfs_rq);
7324
7325 tg->cfs_rq[cpu] = cfs_rq;
7326 tg->se[cpu] = se;
7327
7328 /* se could be NULL for root_task_group */
7329 if (!se)
7330 return;
7331
7332 if (!parent)
7333 se->cfs_rq = &rq->cfs;
7334 else
7335 se->cfs_rq = parent->my_q;
7336
7337 se->my_q = cfs_rq;
0ac9b1c2
PT
7338 /* guarantee group entities always have weight */
7339 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7340 se->parent = parent;
7341}
7342
7343static DEFINE_MUTEX(shares_mutex);
7344
7345int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7346{
7347 int i;
7348 unsigned long flags;
7349
7350 /*
7351 * We can't change the weight of the root cgroup.
7352 */
7353 if (!tg->se[0])
7354 return -EINVAL;
7355
7356 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7357
7358 mutex_lock(&shares_mutex);
7359 if (tg->shares == shares)
7360 goto done;
7361
7362 tg->shares = shares;
7363 for_each_possible_cpu(i) {
7364 struct rq *rq = cpu_rq(i);
7365 struct sched_entity *se;
7366
7367 se = tg->se[i];
7368 /* Propagate contribution to hierarchy */
7369 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7370
7371 /* Possible calls to update_curr() need rq clock */
7372 update_rq_clock(rq);
17bc14b7 7373 for_each_sched_entity(se)
029632fb
PZ
7374 update_cfs_shares(group_cfs_rq(se));
7375 raw_spin_unlock_irqrestore(&rq->lock, flags);
7376 }
7377
7378done:
7379 mutex_unlock(&shares_mutex);
7380 return 0;
7381}
7382#else /* CONFIG_FAIR_GROUP_SCHED */
7383
7384void free_fair_sched_group(struct task_group *tg) { }
7385
7386int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7387{
7388 return 1;
7389}
7390
7391void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7392
7393#endif /* CONFIG_FAIR_GROUP_SCHED */
7394
810b3817 7395
6d686f45 7396static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7397{
7398 struct sched_entity *se = &task->se;
0d721cea
PW
7399 unsigned int rr_interval = 0;
7400
7401 /*
7402 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7403 * idle runqueue:
7404 */
0d721cea 7405 if (rq->cfs.load.weight)
a59f4e07 7406 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7407
7408 return rr_interval;
7409}
7410
bf0f6f24
IM
7411/*
7412 * All the scheduling class methods:
7413 */
029632fb 7414const struct sched_class fair_sched_class = {
5522d5d5 7415 .next = &idle_sched_class,
bf0f6f24
IM
7416 .enqueue_task = enqueue_task_fair,
7417 .dequeue_task = dequeue_task_fair,
7418 .yield_task = yield_task_fair,
d95f4122 7419 .yield_to_task = yield_to_task_fair,
bf0f6f24 7420
2e09bf55 7421 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7422
7423 .pick_next_task = pick_next_task_fair,
7424 .put_prev_task = put_prev_task_fair,
7425
681f3e68 7426#ifdef CONFIG_SMP
4ce72a2c 7427 .select_task_rq = select_task_rq_fair,
0a74bef8 7428 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7429
0bcdcf28
CE
7430 .rq_online = rq_online_fair,
7431 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7432
7433 .task_waking = task_waking_fair,
681f3e68 7434#endif
bf0f6f24 7435
83b699ed 7436 .set_curr_task = set_curr_task_fair,
bf0f6f24 7437 .task_tick = task_tick_fair,
cd29fe6f 7438 .task_fork = task_fork_fair,
cb469845
SR
7439
7440 .prio_changed = prio_changed_fair,
da7a735e 7441 .switched_from = switched_from_fair,
cb469845 7442 .switched_to = switched_to_fair,
810b3817 7443
0d721cea
PW
7444 .get_rr_interval = get_rr_interval_fair,
7445
810b3817 7446#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7447 .task_move_group = task_move_group_fair,
810b3817 7448#endif
bf0f6f24
IM
7449};
7450
7451#ifdef CONFIG_SCHED_DEBUG
029632fb 7452void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7453{
bf0f6f24
IM
7454 struct cfs_rq *cfs_rq;
7455
5973e5b9 7456 rcu_read_lock();
c3b64f1e 7457 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7458 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7459 rcu_read_unlock();
bf0f6f24
IM
7460}
7461#endif
029632fb
PZ
7462
7463__init void init_sched_fair_class(void)
7464{
7465#ifdef CONFIG_SMP
7466 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7467
3451d024 7468#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7469 nohz.next_balance = jiffies;
029632fb 7470 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7471 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7472#endif
7473#endif /* SMP */
7474
7475}
This page took 0.986849 seconds and 5 git commands to generate.