sched/numa: Build per numa_group active node mask from numa_faults_cpu statistics
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
598f0ec0
MG
822static unsigned int task_nr_scan_windows(struct task_struct *p)
823{
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839}
840
841/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842#define MAX_SCAN_WINDOW 2560
843
844static unsigned int task_scan_min(struct task_struct *p)
845{
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855}
856
857static unsigned int task_scan_max(struct task_struct *p)
858{
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865}
866
0ec8aa00
PZ
867static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868{
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871}
872
873static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874{
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877}
878
8c8a743c
PZ
879struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
e29cf08b 884 pid_t gid;
8c8a743c
PZ
885 struct list_head task_list;
886
887 struct rcu_head rcu;
20e07dea 888 nodemask_t active_nodes;
989348b5 889 unsigned long total_faults;
50ec8a40 890 unsigned long *faults_cpu;
989348b5 891 unsigned long faults[0];
8c8a743c
PZ
892};
893
e29cf08b
MG
894pid_t task_numa_group_id(struct task_struct *p)
895{
896 return p->numa_group ? p->numa_group->gid : 0;
897}
898
ac8e895b
MG
899static inline int task_faults_idx(int nid, int priv)
900{
901 return 2 * nid + priv;
902}
903
904static inline unsigned long task_faults(struct task_struct *p, int nid)
905{
ff1df896 906 if (!p->numa_faults_memory)
ac8e895b
MG
907 return 0;
908
ff1df896
RR
909 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
911}
912
83e1d2cd
MG
913static inline unsigned long group_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_group)
916 return 0;
917
82897b4f
WL
918 return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
920}
921
20e07dea
RR
922static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923{
924 return group->faults_cpu[task_faults_idx(nid, 0)] +
925 group->faults_cpu[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
ff1df896 938 if (!p->numa_faults_memory)
83e1d2cd
MG
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
e6628d5b 957static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
958static unsigned long source_load(int cpu, int type);
959static unsigned long target_load(int cpu, int type);
960static unsigned long power_of(int cpu);
961static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
962
fb13c7ee 963/* Cached statistics for all CPUs within a node */
58d081b5 964struct numa_stats {
fb13c7ee 965 unsigned long nr_running;
58d081b5 966 unsigned long load;
fb13c7ee
MG
967
968 /* Total compute capacity of CPUs on a node */
969 unsigned long power;
970
971 /* Approximate capacity in terms of runnable tasks on a node */
972 unsigned long capacity;
973 int has_capacity;
58d081b5 974};
e6628d5b 975
fb13c7ee
MG
976/*
977 * XXX borrowed from update_sg_lb_stats
978 */
979static void update_numa_stats(struct numa_stats *ns, int nid)
980{
5eca82a9 981 int cpu, cpus = 0;
fb13c7ee
MG
982
983 memset(ns, 0, sizeof(*ns));
984 for_each_cpu(cpu, cpumask_of_node(nid)) {
985 struct rq *rq = cpu_rq(cpu);
986
987 ns->nr_running += rq->nr_running;
988 ns->load += weighted_cpuload(cpu);
989 ns->power += power_of(cpu);
5eca82a9
PZ
990
991 cpus++;
fb13c7ee
MG
992 }
993
5eca82a9
PZ
994 /*
995 * If we raced with hotplug and there are no CPUs left in our mask
996 * the @ns structure is NULL'ed and task_numa_compare() will
997 * not find this node attractive.
998 *
999 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1000 * and bail there.
1001 */
1002 if (!cpus)
1003 return;
1004
fb13c7ee
MG
1005 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1006 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1007 ns->has_capacity = (ns->nr_running < ns->capacity);
1008}
1009
58d081b5
MG
1010struct task_numa_env {
1011 struct task_struct *p;
e6628d5b 1012
58d081b5
MG
1013 int src_cpu, src_nid;
1014 int dst_cpu, dst_nid;
e6628d5b 1015
58d081b5 1016 struct numa_stats src_stats, dst_stats;
e6628d5b 1017
40ea2b42 1018 int imbalance_pct;
fb13c7ee
MG
1019
1020 struct task_struct *best_task;
1021 long best_imp;
58d081b5
MG
1022 int best_cpu;
1023};
1024
fb13c7ee
MG
1025static void task_numa_assign(struct task_numa_env *env,
1026 struct task_struct *p, long imp)
1027{
1028 if (env->best_task)
1029 put_task_struct(env->best_task);
1030 if (p)
1031 get_task_struct(p);
1032
1033 env->best_task = p;
1034 env->best_imp = imp;
1035 env->best_cpu = env->dst_cpu;
1036}
1037
1038/*
1039 * This checks if the overall compute and NUMA accesses of the system would
1040 * be improved if the source tasks was migrated to the target dst_cpu taking
1041 * into account that it might be best if task running on the dst_cpu should
1042 * be exchanged with the source task
1043 */
887c290e
RR
1044static void task_numa_compare(struct task_numa_env *env,
1045 long taskimp, long groupimp)
fb13c7ee
MG
1046{
1047 struct rq *src_rq = cpu_rq(env->src_cpu);
1048 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1049 struct task_struct *cur;
1050 long dst_load, src_load;
1051 long load;
887c290e 1052 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1053
1054 rcu_read_lock();
1055 cur = ACCESS_ONCE(dst_rq->curr);
1056 if (cur->pid == 0) /* idle */
1057 cur = NULL;
1058
1059 /*
1060 * "imp" is the fault differential for the source task between the
1061 * source and destination node. Calculate the total differential for
1062 * the source task and potential destination task. The more negative
1063 * the value is, the more rmeote accesses that would be expected to
1064 * be incurred if the tasks were swapped.
1065 */
1066 if (cur) {
1067 /* Skip this swap candidate if cannot move to the source cpu */
1068 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1069 goto unlock;
1070
887c290e
RR
1071 /*
1072 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1073 * in any group then look only at task weights.
887c290e 1074 */
ca28aa53 1075 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1076 imp = taskimp + task_weight(cur, env->src_nid) -
1077 task_weight(cur, env->dst_nid);
ca28aa53
RR
1078 /*
1079 * Add some hysteresis to prevent swapping the
1080 * tasks within a group over tiny differences.
1081 */
1082 if (cur->numa_group)
1083 imp -= imp/16;
887c290e 1084 } else {
ca28aa53
RR
1085 /*
1086 * Compare the group weights. If a task is all by
1087 * itself (not part of a group), use the task weight
1088 * instead.
1089 */
1090 if (env->p->numa_group)
1091 imp = groupimp;
1092 else
1093 imp = taskimp;
1094
1095 if (cur->numa_group)
1096 imp += group_weight(cur, env->src_nid) -
1097 group_weight(cur, env->dst_nid);
1098 else
1099 imp += task_weight(cur, env->src_nid) -
1100 task_weight(cur, env->dst_nid);
887c290e 1101 }
fb13c7ee
MG
1102 }
1103
1104 if (imp < env->best_imp)
1105 goto unlock;
1106
1107 if (!cur) {
1108 /* Is there capacity at our destination? */
1109 if (env->src_stats.has_capacity &&
1110 !env->dst_stats.has_capacity)
1111 goto unlock;
1112
1113 goto balance;
1114 }
1115
1116 /* Balance doesn't matter much if we're running a task per cpu */
1117 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1118 goto assign;
1119
1120 /*
1121 * In the overloaded case, try and keep the load balanced.
1122 */
1123balance:
1124 dst_load = env->dst_stats.load;
1125 src_load = env->src_stats.load;
1126
1127 /* XXX missing power terms */
1128 load = task_h_load(env->p);
1129 dst_load += load;
1130 src_load -= load;
1131
1132 if (cur) {
1133 load = task_h_load(cur);
1134 dst_load -= load;
1135 src_load += load;
1136 }
1137
1138 /* make src_load the smaller */
1139 if (dst_load < src_load)
1140 swap(dst_load, src_load);
1141
1142 if (src_load * env->imbalance_pct < dst_load * 100)
1143 goto unlock;
1144
1145assign:
1146 task_numa_assign(env, cur, imp);
1147unlock:
1148 rcu_read_unlock();
1149}
1150
887c290e
RR
1151static void task_numa_find_cpu(struct task_numa_env *env,
1152 long taskimp, long groupimp)
2c8a50aa
MG
1153{
1154 int cpu;
1155
1156 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1157 /* Skip this CPU if the source task cannot migrate */
1158 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1159 continue;
1160
1161 env->dst_cpu = cpu;
887c290e 1162 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1163 }
1164}
1165
58d081b5
MG
1166static int task_numa_migrate(struct task_struct *p)
1167{
58d081b5
MG
1168 struct task_numa_env env = {
1169 .p = p,
fb13c7ee 1170
58d081b5 1171 .src_cpu = task_cpu(p),
b32e86b4 1172 .src_nid = task_node(p),
fb13c7ee
MG
1173
1174 .imbalance_pct = 112,
1175
1176 .best_task = NULL,
1177 .best_imp = 0,
1178 .best_cpu = -1
58d081b5
MG
1179 };
1180 struct sched_domain *sd;
887c290e 1181 unsigned long taskweight, groupweight;
2c8a50aa 1182 int nid, ret;
887c290e 1183 long taskimp, groupimp;
e6628d5b 1184
58d081b5 1185 /*
fb13c7ee
MG
1186 * Pick the lowest SD_NUMA domain, as that would have the smallest
1187 * imbalance and would be the first to start moving tasks about.
1188 *
1189 * And we want to avoid any moving of tasks about, as that would create
1190 * random movement of tasks -- counter the numa conditions we're trying
1191 * to satisfy here.
58d081b5
MG
1192 */
1193 rcu_read_lock();
fb13c7ee 1194 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1195 if (sd)
1196 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1197 rcu_read_unlock();
1198
46a73e8a
RR
1199 /*
1200 * Cpusets can break the scheduler domain tree into smaller
1201 * balance domains, some of which do not cross NUMA boundaries.
1202 * Tasks that are "trapped" in such domains cannot be migrated
1203 * elsewhere, so there is no point in (re)trying.
1204 */
1205 if (unlikely(!sd)) {
de1b301a 1206 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1207 return -EINVAL;
1208 }
1209
887c290e
RR
1210 taskweight = task_weight(p, env.src_nid);
1211 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1212 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1213 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1214 taskimp = task_weight(p, env.dst_nid) - taskweight;
1215 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1216 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1217
e1dda8a7
RR
1218 /* If the preferred nid has capacity, try to use it. */
1219 if (env.dst_stats.has_capacity)
887c290e 1220 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1221
1222 /* No space available on the preferred nid. Look elsewhere. */
1223 if (env.best_cpu == -1) {
2c8a50aa
MG
1224 for_each_online_node(nid) {
1225 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1226 continue;
58d081b5 1227
83e1d2cd 1228 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1229 taskimp = task_weight(p, nid) - taskweight;
1230 groupimp = group_weight(p, nid) - groupweight;
1231 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1232 continue;
1233
2c8a50aa
MG
1234 env.dst_nid = nid;
1235 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1236 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1237 }
1238 }
1239
fb13c7ee
MG
1240 /* No better CPU than the current one was found. */
1241 if (env.best_cpu == -1)
1242 return -EAGAIN;
1243
0ec8aa00
PZ
1244 sched_setnuma(p, env.dst_nid);
1245
04bb2f94
RR
1246 /*
1247 * Reset the scan period if the task is being rescheduled on an
1248 * alternative node to recheck if the tasks is now properly placed.
1249 */
1250 p->numa_scan_period = task_scan_min(p);
1251
fb13c7ee
MG
1252 if (env.best_task == NULL) {
1253 int ret = migrate_task_to(p, env.best_cpu);
1254 return ret;
1255 }
1256
1257 ret = migrate_swap(p, env.best_task);
1258 put_task_struct(env.best_task);
1259 return ret;
e6628d5b
MG
1260}
1261
6b9a7460
MG
1262/* Attempt to migrate a task to a CPU on the preferred node. */
1263static void numa_migrate_preferred(struct task_struct *p)
1264{
2739d3ee 1265 /* This task has no NUMA fault statistics yet */
ff1df896 1266 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1267 return;
1268
2739d3ee
RR
1269 /* Periodically retry migrating the task to the preferred node */
1270 p->numa_migrate_retry = jiffies + HZ;
1271
1272 /* Success if task is already running on preferred CPU */
de1b301a 1273 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1274 return;
1275
1276 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1277 task_numa_migrate(p);
6b9a7460
MG
1278}
1279
20e07dea
RR
1280/*
1281 * Find the nodes on which the workload is actively running. We do this by
1282 * tracking the nodes from which NUMA hinting faults are triggered. This can
1283 * be different from the set of nodes where the workload's memory is currently
1284 * located.
1285 *
1286 * The bitmask is used to make smarter decisions on when to do NUMA page
1287 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1288 * are added when they cause over 6/16 of the maximum number of faults, but
1289 * only removed when they drop below 3/16.
1290 */
1291static void update_numa_active_node_mask(struct numa_group *numa_group)
1292{
1293 unsigned long faults, max_faults = 0;
1294 int nid;
1295
1296 for_each_online_node(nid) {
1297 faults = group_faults_cpu(numa_group, nid);
1298 if (faults > max_faults)
1299 max_faults = faults;
1300 }
1301
1302 for_each_online_node(nid) {
1303 faults = group_faults_cpu(numa_group, nid);
1304 if (!node_isset(nid, numa_group->active_nodes)) {
1305 if (faults > max_faults * 6 / 16)
1306 node_set(nid, numa_group->active_nodes);
1307 } else if (faults < max_faults * 3 / 16)
1308 node_clear(nid, numa_group->active_nodes);
1309 }
1310}
1311
04bb2f94
RR
1312/*
1313 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1314 * increments. The more local the fault statistics are, the higher the scan
1315 * period will be for the next scan window. If local/remote ratio is below
1316 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1317 * scan period will decrease
1318 */
1319#define NUMA_PERIOD_SLOTS 10
1320#define NUMA_PERIOD_THRESHOLD 3
1321
1322/*
1323 * Increase the scan period (slow down scanning) if the majority of
1324 * our memory is already on our local node, or if the majority of
1325 * the page accesses are shared with other processes.
1326 * Otherwise, decrease the scan period.
1327 */
1328static void update_task_scan_period(struct task_struct *p,
1329 unsigned long shared, unsigned long private)
1330{
1331 unsigned int period_slot;
1332 int ratio;
1333 int diff;
1334
1335 unsigned long remote = p->numa_faults_locality[0];
1336 unsigned long local = p->numa_faults_locality[1];
1337
1338 /*
1339 * If there were no record hinting faults then either the task is
1340 * completely idle or all activity is areas that are not of interest
1341 * to automatic numa balancing. Scan slower
1342 */
1343 if (local + shared == 0) {
1344 p->numa_scan_period = min(p->numa_scan_period_max,
1345 p->numa_scan_period << 1);
1346
1347 p->mm->numa_next_scan = jiffies +
1348 msecs_to_jiffies(p->numa_scan_period);
1349
1350 return;
1351 }
1352
1353 /*
1354 * Prepare to scale scan period relative to the current period.
1355 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1356 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1357 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1358 */
1359 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1360 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1361 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1362 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1363 if (!slot)
1364 slot = 1;
1365 diff = slot * period_slot;
1366 } else {
1367 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1368
1369 /*
1370 * Scale scan rate increases based on sharing. There is an
1371 * inverse relationship between the degree of sharing and
1372 * the adjustment made to the scanning period. Broadly
1373 * speaking the intent is that there is little point
1374 * scanning faster if shared accesses dominate as it may
1375 * simply bounce migrations uselessly
1376 */
04bb2f94
RR
1377 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1378 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1379 }
1380
1381 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1382 task_scan_min(p), task_scan_max(p));
1383 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1384}
1385
cbee9f88
PZ
1386static void task_numa_placement(struct task_struct *p)
1387{
83e1d2cd
MG
1388 int seq, nid, max_nid = -1, max_group_nid = -1;
1389 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1390 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1391 spinlock_t *group_lock = NULL;
cbee9f88 1392
2832bc19 1393 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1394 if (p->numa_scan_seq == seq)
1395 return;
1396 p->numa_scan_seq = seq;
598f0ec0 1397 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1398
7dbd13ed
MG
1399 /* If the task is part of a group prevent parallel updates to group stats */
1400 if (p->numa_group) {
1401 group_lock = &p->numa_group->lock;
1402 spin_lock(group_lock);
1403 }
1404
688b7585
MG
1405 /* Find the node with the highest number of faults */
1406 for_each_online_node(nid) {
83e1d2cd 1407 unsigned long faults = 0, group_faults = 0;
ac8e895b 1408 int priv, i;
745d6147 1409
ac8e895b 1410 for (priv = 0; priv < 2; priv++) {
50ec8a40 1411 long diff, f_diff;
8c8a743c 1412
ac8e895b 1413 i = task_faults_idx(nid, priv);
ff1df896 1414 diff = -p->numa_faults_memory[i];
50ec8a40 1415 f_diff = -p->numa_faults_cpu[i];
745d6147 1416
ac8e895b 1417 /* Decay existing window, copy faults since last scan */
ff1df896
RR
1418 p->numa_faults_memory[i] >>= 1;
1419 p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
1420 fault_types[priv] += p->numa_faults_buffer_memory[i];
1421 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1422
50ec8a40
RR
1423 p->numa_faults_cpu[i] >>= 1;
1424 p->numa_faults_cpu[i] += p->numa_faults_buffer_cpu[i];
1425 p->numa_faults_buffer_cpu[i] = 0;
1426
ff1df896
RR
1427 faults += p->numa_faults_memory[i];
1428 diff += p->numa_faults_memory[i];
50ec8a40 1429 f_diff += p->numa_faults_cpu[i];
83e1d2cd 1430 p->total_numa_faults += diff;
8c8a743c
PZ
1431 if (p->numa_group) {
1432 /* safe because we can only change our own group */
989348b5 1433 p->numa_group->faults[i] += diff;
50ec8a40 1434 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1435 p->numa_group->total_faults += diff;
1436 group_faults += p->numa_group->faults[i];
8c8a743c 1437 }
ac8e895b
MG
1438 }
1439
688b7585
MG
1440 if (faults > max_faults) {
1441 max_faults = faults;
1442 max_nid = nid;
1443 }
83e1d2cd
MG
1444
1445 if (group_faults > max_group_faults) {
1446 max_group_faults = group_faults;
1447 max_group_nid = nid;
1448 }
1449 }
1450
04bb2f94
RR
1451 update_task_scan_period(p, fault_types[0], fault_types[1]);
1452
7dbd13ed 1453 if (p->numa_group) {
20e07dea 1454 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1455 /*
1456 * If the preferred task and group nids are different,
1457 * iterate over the nodes again to find the best place.
1458 */
1459 if (max_nid != max_group_nid) {
1460 unsigned long weight, max_weight = 0;
1461
1462 for_each_online_node(nid) {
1463 weight = task_weight(p, nid) + group_weight(p, nid);
1464 if (weight > max_weight) {
1465 max_weight = weight;
1466 max_nid = nid;
1467 }
83e1d2cd
MG
1468 }
1469 }
7dbd13ed
MG
1470
1471 spin_unlock(group_lock);
688b7585
MG
1472 }
1473
6b9a7460 1474 /* Preferred node as the node with the most faults */
3a7053b3 1475 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1476 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1477 sched_setnuma(p, max_nid);
6b9a7460 1478 numa_migrate_preferred(p);
3a7053b3 1479 }
cbee9f88
PZ
1480}
1481
8c8a743c
PZ
1482static inline int get_numa_group(struct numa_group *grp)
1483{
1484 return atomic_inc_not_zero(&grp->refcount);
1485}
1486
1487static inline void put_numa_group(struct numa_group *grp)
1488{
1489 if (atomic_dec_and_test(&grp->refcount))
1490 kfree_rcu(grp, rcu);
1491}
1492
3e6a9418
MG
1493static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1494 int *priv)
8c8a743c
PZ
1495{
1496 struct numa_group *grp, *my_grp;
1497 struct task_struct *tsk;
1498 bool join = false;
1499 int cpu = cpupid_to_cpu(cpupid);
1500 int i;
1501
1502 if (unlikely(!p->numa_group)) {
1503 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1504 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1505
1506 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1507 if (!grp)
1508 return;
1509
1510 atomic_set(&grp->refcount, 1);
1511 spin_lock_init(&grp->lock);
1512 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1513 grp->gid = p->pid;
50ec8a40
RR
1514 /* Second half of the array tracks nids where faults happen */
1515 grp->faults_cpu = grp->faults + 2 * nr_node_ids;
8c8a743c 1516
20e07dea
RR
1517 node_set(task_node(current), grp->active_nodes);
1518
50ec8a40 1519 for (i = 0; i < 4*nr_node_ids; i++)
ff1df896 1520 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1521
989348b5 1522 grp->total_faults = p->total_numa_faults;
83e1d2cd 1523
8c8a743c
PZ
1524 list_add(&p->numa_entry, &grp->task_list);
1525 grp->nr_tasks++;
1526 rcu_assign_pointer(p->numa_group, grp);
1527 }
1528
1529 rcu_read_lock();
1530 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1531
1532 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1533 goto no_join;
8c8a743c
PZ
1534
1535 grp = rcu_dereference(tsk->numa_group);
1536 if (!grp)
3354781a 1537 goto no_join;
8c8a743c
PZ
1538
1539 my_grp = p->numa_group;
1540 if (grp == my_grp)
3354781a 1541 goto no_join;
8c8a743c
PZ
1542
1543 /*
1544 * Only join the other group if its bigger; if we're the bigger group,
1545 * the other task will join us.
1546 */
1547 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1548 goto no_join;
8c8a743c
PZ
1549
1550 /*
1551 * Tie-break on the grp address.
1552 */
1553 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1554 goto no_join;
8c8a743c 1555
dabe1d99
RR
1556 /* Always join threads in the same process. */
1557 if (tsk->mm == current->mm)
1558 join = true;
1559
1560 /* Simple filter to avoid false positives due to PID collisions */
1561 if (flags & TNF_SHARED)
1562 join = true;
8c8a743c 1563
3e6a9418
MG
1564 /* Update priv based on whether false sharing was detected */
1565 *priv = !join;
1566
dabe1d99 1567 if (join && !get_numa_group(grp))
3354781a 1568 goto no_join;
8c8a743c 1569
8c8a743c
PZ
1570 rcu_read_unlock();
1571
1572 if (!join)
1573 return;
1574
989348b5
MG
1575 double_lock(&my_grp->lock, &grp->lock);
1576
50ec8a40 1577 for (i = 0; i < 4*nr_node_ids; i++) {
ff1df896
RR
1578 my_grp->faults[i] -= p->numa_faults_memory[i];
1579 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1580 }
989348b5
MG
1581 my_grp->total_faults -= p->total_numa_faults;
1582 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1583
1584 list_move(&p->numa_entry, &grp->task_list);
1585 my_grp->nr_tasks--;
1586 grp->nr_tasks++;
1587
1588 spin_unlock(&my_grp->lock);
1589 spin_unlock(&grp->lock);
1590
1591 rcu_assign_pointer(p->numa_group, grp);
1592
1593 put_numa_group(my_grp);
3354781a
PZ
1594 return;
1595
1596no_join:
1597 rcu_read_unlock();
1598 return;
8c8a743c
PZ
1599}
1600
1601void task_numa_free(struct task_struct *p)
1602{
1603 struct numa_group *grp = p->numa_group;
1604 int i;
ff1df896 1605 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1606
1607 if (grp) {
989348b5 1608 spin_lock(&grp->lock);
50ec8a40 1609 for (i = 0; i < 4*nr_node_ids; i++)
ff1df896 1610 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1611 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1612
8c8a743c
PZ
1613 list_del(&p->numa_entry);
1614 grp->nr_tasks--;
1615 spin_unlock(&grp->lock);
1616 rcu_assign_pointer(p->numa_group, NULL);
1617 put_numa_group(grp);
1618 }
1619
ff1df896
RR
1620 p->numa_faults_memory = NULL;
1621 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1622 p->numa_faults_cpu= NULL;
1623 p->numa_faults_buffer_cpu = NULL;
82727018 1624 kfree(numa_faults);
8c8a743c
PZ
1625}
1626
cbee9f88
PZ
1627/*
1628 * Got a PROT_NONE fault for a page on @node.
1629 */
6688cc05 1630void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1631{
1632 struct task_struct *p = current;
6688cc05 1633 bool migrated = flags & TNF_MIGRATED;
50ec8a40 1634 int this_node = task_node(current);
ac8e895b 1635 int priv;
cbee9f88 1636
10e84b97 1637 if (!numabalancing_enabled)
1a687c2e
MG
1638 return;
1639
9ff1d9ff
MG
1640 /* for example, ksmd faulting in a user's mm */
1641 if (!p->mm)
1642 return;
1643
82727018
RR
1644 /* Do not worry about placement if exiting */
1645 if (p->state == TASK_DEAD)
1646 return;
1647
f809ca9a 1648 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1649 if (unlikely(!p->numa_faults_memory)) {
50ec8a40 1650 int size = sizeof(*p->numa_faults_memory) * 4 * nr_node_ids;
f809ca9a 1651
745d6147 1652 /* numa_faults and numa_faults_buffer share the allocation */
ff1df896
RR
1653 p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1654 if (!p->numa_faults_memory)
f809ca9a 1655 return;
745d6147 1656
ff1df896 1657 BUG_ON(p->numa_faults_buffer_memory);
50ec8a40
RR
1658 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1659 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1660 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1661 p->total_numa_faults = 0;
04bb2f94 1662 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1663 }
cbee9f88 1664
8c8a743c
PZ
1665 /*
1666 * First accesses are treated as private, otherwise consider accesses
1667 * to be private if the accessing pid has not changed
1668 */
1669 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1670 priv = 1;
1671 } else {
1672 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1673 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1674 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1675 }
1676
cbee9f88 1677 task_numa_placement(p);
f809ca9a 1678
2739d3ee
RR
1679 /*
1680 * Retry task to preferred node migration periodically, in case it
1681 * case it previously failed, or the scheduler moved us.
1682 */
1683 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1684 numa_migrate_preferred(p);
1685
b32e86b4
IM
1686 if (migrated)
1687 p->numa_pages_migrated += pages;
1688
ff1df896 1689 p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
50ec8a40 1690 p->numa_faults_buffer_cpu[task_faults_idx(this_node, priv)] += pages;
04bb2f94 1691 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1692}
1693
6e5fb223
PZ
1694static void reset_ptenuma_scan(struct task_struct *p)
1695{
1696 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1697 p->mm->numa_scan_offset = 0;
1698}
1699
cbee9f88
PZ
1700/*
1701 * The expensive part of numa migration is done from task_work context.
1702 * Triggered from task_tick_numa().
1703 */
1704void task_numa_work(struct callback_head *work)
1705{
1706 unsigned long migrate, next_scan, now = jiffies;
1707 struct task_struct *p = current;
1708 struct mm_struct *mm = p->mm;
6e5fb223 1709 struct vm_area_struct *vma;
9f40604c 1710 unsigned long start, end;
598f0ec0 1711 unsigned long nr_pte_updates = 0;
9f40604c 1712 long pages;
cbee9f88
PZ
1713
1714 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1715
1716 work->next = work; /* protect against double add */
1717 /*
1718 * Who cares about NUMA placement when they're dying.
1719 *
1720 * NOTE: make sure not to dereference p->mm before this check,
1721 * exit_task_work() happens _after_ exit_mm() so we could be called
1722 * without p->mm even though we still had it when we enqueued this
1723 * work.
1724 */
1725 if (p->flags & PF_EXITING)
1726 return;
1727
930aa174 1728 if (!mm->numa_next_scan) {
7e8d16b6
MG
1729 mm->numa_next_scan = now +
1730 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1731 }
1732
cbee9f88
PZ
1733 /*
1734 * Enforce maximal scan/migration frequency..
1735 */
1736 migrate = mm->numa_next_scan;
1737 if (time_before(now, migrate))
1738 return;
1739
598f0ec0
MG
1740 if (p->numa_scan_period == 0) {
1741 p->numa_scan_period_max = task_scan_max(p);
1742 p->numa_scan_period = task_scan_min(p);
1743 }
cbee9f88 1744
fb003b80 1745 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1746 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1747 return;
1748
19a78d11
PZ
1749 /*
1750 * Delay this task enough that another task of this mm will likely win
1751 * the next time around.
1752 */
1753 p->node_stamp += 2 * TICK_NSEC;
1754
9f40604c
MG
1755 start = mm->numa_scan_offset;
1756 pages = sysctl_numa_balancing_scan_size;
1757 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1758 if (!pages)
1759 return;
cbee9f88 1760
6e5fb223 1761 down_read(&mm->mmap_sem);
9f40604c 1762 vma = find_vma(mm, start);
6e5fb223
PZ
1763 if (!vma) {
1764 reset_ptenuma_scan(p);
9f40604c 1765 start = 0;
6e5fb223
PZ
1766 vma = mm->mmap;
1767 }
9f40604c 1768 for (; vma; vma = vma->vm_next) {
fc314724 1769 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1770 continue;
1771
4591ce4f
MG
1772 /*
1773 * Shared library pages mapped by multiple processes are not
1774 * migrated as it is expected they are cache replicated. Avoid
1775 * hinting faults in read-only file-backed mappings or the vdso
1776 * as migrating the pages will be of marginal benefit.
1777 */
1778 if (!vma->vm_mm ||
1779 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1780 continue;
1781
3c67f474
MG
1782 /*
1783 * Skip inaccessible VMAs to avoid any confusion between
1784 * PROT_NONE and NUMA hinting ptes
1785 */
1786 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1787 continue;
4591ce4f 1788
9f40604c
MG
1789 do {
1790 start = max(start, vma->vm_start);
1791 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1792 end = min(end, vma->vm_end);
598f0ec0
MG
1793 nr_pte_updates += change_prot_numa(vma, start, end);
1794
1795 /*
1796 * Scan sysctl_numa_balancing_scan_size but ensure that
1797 * at least one PTE is updated so that unused virtual
1798 * address space is quickly skipped.
1799 */
1800 if (nr_pte_updates)
1801 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1802
9f40604c
MG
1803 start = end;
1804 if (pages <= 0)
1805 goto out;
1806 } while (end != vma->vm_end);
cbee9f88 1807 }
6e5fb223 1808
9f40604c 1809out:
6e5fb223 1810 /*
c69307d5
PZ
1811 * It is possible to reach the end of the VMA list but the last few
1812 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1813 * would find the !migratable VMA on the next scan but not reset the
1814 * scanner to the start so check it now.
6e5fb223
PZ
1815 */
1816 if (vma)
9f40604c 1817 mm->numa_scan_offset = start;
6e5fb223
PZ
1818 else
1819 reset_ptenuma_scan(p);
1820 up_read(&mm->mmap_sem);
cbee9f88
PZ
1821}
1822
1823/*
1824 * Drive the periodic memory faults..
1825 */
1826void task_tick_numa(struct rq *rq, struct task_struct *curr)
1827{
1828 struct callback_head *work = &curr->numa_work;
1829 u64 period, now;
1830
1831 /*
1832 * We don't care about NUMA placement if we don't have memory.
1833 */
1834 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1835 return;
1836
1837 /*
1838 * Using runtime rather than walltime has the dual advantage that
1839 * we (mostly) drive the selection from busy threads and that the
1840 * task needs to have done some actual work before we bother with
1841 * NUMA placement.
1842 */
1843 now = curr->se.sum_exec_runtime;
1844 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1845
1846 if (now - curr->node_stamp > period) {
4b96a29b 1847 if (!curr->node_stamp)
598f0ec0 1848 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1849 curr->node_stamp += period;
cbee9f88
PZ
1850
1851 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1852 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1853 task_work_add(curr, work, true);
1854 }
1855 }
1856}
1857#else
1858static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1859{
1860}
0ec8aa00
PZ
1861
1862static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1863{
1864}
1865
1866static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1867{
1868}
cbee9f88
PZ
1869#endif /* CONFIG_NUMA_BALANCING */
1870
30cfdcfc
DA
1871static void
1872account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1873{
1874 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1875 if (!parent_entity(se))
029632fb 1876 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1877#ifdef CONFIG_SMP
0ec8aa00
PZ
1878 if (entity_is_task(se)) {
1879 struct rq *rq = rq_of(cfs_rq);
1880
1881 account_numa_enqueue(rq, task_of(se));
1882 list_add(&se->group_node, &rq->cfs_tasks);
1883 }
367456c7 1884#endif
30cfdcfc 1885 cfs_rq->nr_running++;
30cfdcfc
DA
1886}
1887
1888static void
1889account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1890{
1891 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1892 if (!parent_entity(se))
029632fb 1893 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1894 if (entity_is_task(se)) {
1895 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1896 list_del_init(&se->group_node);
0ec8aa00 1897 }
30cfdcfc 1898 cfs_rq->nr_running--;
30cfdcfc
DA
1899}
1900
3ff6dcac
YZ
1901#ifdef CONFIG_FAIR_GROUP_SCHED
1902# ifdef CONFIG_SMP
cf5f0acf
PZ
1903static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1904{
1905 long tg_weight;
1906
1907 /*
1908 * Use this CPU's actual weight instead of the last load_contribution
1909 * to gain a more accurate current total weight. See
1910 * update_cfs_rq_load_contribution().
1911 */
bf5b986e 1912 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1913 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1914 tg_weight += cfs_rq->load.weight;
1915
1916 return tg_weight;
1917}
1918
6d5ab293 1919static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1920{
cf5f0acf 1921 long tg_weight, load, shares;
3ff6dcac 1922
cf5f0acf 1923 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1924 load = cfs_rq->load.weight;
3ff6dcac 1925
3ff6dcac 1926 shares = (tg->shares * load);
cf5f0acf
PZ
1927 if (tg_weight)
1928 shares /= tg_weight;
3ff6dcac
YZ
1929
1930 if (shares < MIN_SHARES)
1931 shares = MIN_SHARES;
1932 if (shares > tg->shares)
1933 shares = tg->shares;
1934
1935 return shares;
1936}
3ff6dcac 1937# else /* CONFIG_SMP */
6d5ab293 1938static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1939{
1940 return tg->shares;
1941}
3ff6dcac 1942# endif /* CONFIG_SMP */
2069dd75
PZ
1943static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1944 unsigned long weight)
1945{
19e5eebb
PT
1946 if (se->on_rq) {
1947 /* commit outstanding execution time */
1948 if (cfs_rq->curr == se)
1949 update_curr(cfs_rq);
2069dd75 1950 account_entity_dequeue(cfs_rq, se);
19e5eebb 1951 }
2069dd75
PZ
1952
1953 update_load_set(&se->load, weight);
1954
1955 if (se->on_rq)
1956 account_entity_enqueue(cfs_rq, se);
1957}
1958
82958366
PT
1959static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1960
6d5ab293 1961static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1962{
1963 struct task_group *tg;
1964 struct sched_entity *se;
3ff6dcac 1965 long shares;
2069dd75 1966
2069dd75
PZ
1967 tg = cfs_rq->tg;
1968 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1969 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1970 return;
3ff6dcac
YZ
1971#ifndef CONFIG_SMP
1972 if (likely(se->load.weight == tg->shares))
1973 return;
1974#endif
6d5ab293 1975 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1976
1977 reweight_entity(cfs_rq_of(se), se, shares);
1978}
1979#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1980static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1981{
1982}
1983#endif /* CONFIG_FAIR_GROUP_SCHED */
1984
141965c7 1985#ifdef CONFIG_SMP
5b51f2f8
PT
1986/*
1987 * We choose a half-life close to 1 scheduling period.
1988 * Note: The tables below are dependent on this value.
1989 */
1990#define LOAD_AVG_PERIOD 32
1991#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1992#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1993
1994/* Precomputed fixed inverse multiplies for multiplication by y^n */
1995static const u32 runnable_avg_yN_inv[] = {
1996 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1997 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1998 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1999 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2000 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2001 0x85aac367, 0x82cd8698,
2002};
2003
2004/*
2005 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2006 * over-estimates when re-combining.
2007 */
2008static const u32 runnable_avg_yN_sum[] = {
2009 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2010 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2011 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2012};
2013
9d85f21c
PT
2014/*
2015 * Approximate:
2016 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2017 */
2018static __always_inline u64 decay_load(u64 val, u64 n)
2019{
5b51f2f8
PT
2020 unsigned int local_n;
2021
2022 if (!n)
2023 return val;
2024 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2025 return 0;
2026
2027 /* after bounds checking we can collapse to 32-bit */
2028 local_n = n;
2029
2030 /*
2031 * As y^PERIOD = 1/2, we can combine
2032 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2033 * With a look-up table which covers k^n (n<PERIOD)
2034 *
2035 * To achieve constant time decay_load.
2036 */
2037 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2038 val >>= local_n / LOAD_AVG_PERIOD;
2039 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2040 }
2041
5b51f2f8
PT
2042 val *= runnable_avg_yN_inv[local_n];
2043 /* We don't use SRR here since we always want to round down. */
2044 return val >> 32;
2045}
2046
2047/*
2048 * For updates fully spanning n periods, the contribution to runnable
2049 * average will be: \Sum 1024*y^n
2050 *
2051 * We can compute this reasonably efficiently by combining:
2052 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2053 */
2054static u32 __compute_runnable_contrib(u64 n)
2055{
2056 u32 contrib = 0;
2057
2058 if (likely(n <= LOAD_AVG_PERIOD))
2059 return runnable_avg_yN_sum[n];
2060 else if (unlikely(n >= LOAD_AVG_MAX_N))
2061 return LOAD_AVG_MAX;
2062
2063 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2064 do {
2065 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2066 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2067
2068 n -= LOAD_AVG_PERIOD;
2069 } while (n > LOAD_AVG_PERIOD);
2070
2071 contrib = decay_load(contrib, n);
2072 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2073}
2074
2075/*
2076 * We can represent the historical contribution to runnable average as the
2077 * coefficients of a geometric series. To do this we sub-divide our runnable
2078 * history into segments of approximately 1ms (1024us); label the segment that
2079 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2080 *
2081 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2082 * p0 p1 p2
2083 * (now) (~1ms ago) (~2ms ago)
2084 *
2085 * Let u_i denote the fraction of p_i that the entity was runnable.
2086 *
2087 * We then designate the fractions u_i as our co-efficients, yielding the
2088 * following representation of historical load:
2089 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2090 *
2091 * We choose y based on the with of a reasonably scheduling period, fixing:
2092 * y^32 = 0.5
2093 *
2094 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2095 * approximately half as much as the contribution to load within the last ms
2096 * (u_0).
2097 *
2098 * When a period "rolls over" and we have new u_0`, multiplying the previous
2099 * sum again by y is sufficient to update:
2100 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2101 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2102 */
2103static __always_inline int __update_entity_runnable_avg(u64 now,
2104 struct sched_avg *sa,
2105 int runnable)
2106{
5b51f2f8
PT
2107 u64 delta, periods;
2108 u32 runnable_contrib;
9d85f21c
PT
2109 int delta_w, decayed = 0;
2110
2111 delta = now - sa->last_runnable_update;
2112 /*
2113 * This should only happen when time goes backwards, which it
2114 * unfortunately does during sched clock init when we swap over to TSC.
2115 */
2116 if ((s64)delta < 0) {
2117 sa->last_runnable_update = now;
2118 return 0;
2119 }
2120
2121 /*
2122 * Use 1024ns as the unit of measurement since it's a reasonable
2123 * approximation of 1us and fast to compute.
2124 */
2125 delta >>= 10;
2126 if (!delta)
2127 return 0;
2128 sa->last_runnable_update = now;
2129
2130 /* delta_w is the amount already accumulated against our next period */
2131 delta_w = sa->runnable_avg_period % 1024;
2132 if (delta + delta_w >= 1024) {
2133 /* period roll-over */
2134 decayed = 1;
2135
2136 /*
2137 * Now that we know we're crossing a period boundary, figure
2138 * out how much from delta we need to complete the current
2139 * period and accrue it.
2140 */
2141 delta_w = 1024 - delta_w;
5b51f2f8
PT
2142 if (runnable)
2143 sa->runnable_avg_sum += delta_w;
2144 sa->runnable_avg_period += delta_w;
2145
2146 delta -= delta_w;
2147
2148 /* Figure out how many additional periods this update spans */
2149 periods = delta / 1024;
2150 delta %= 1024;
2151
2152 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2153 periods + 1);
2154 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2155 periods + 1);
2156
2157 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2158 runnable_contrib = __compute_runnable_contrib(periods);
2159 if (runnable)
2160 sa->runnable_avg_sum += runnable_contrib;
2161 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2162 }
2163
2164 /* Remainder of delta accrued against u_0` */
2165 if (runnable)
2166 sa->runnable_avg_sum += delta;
2167 sa->runnable_avg_period += delta;
2168
2169 return decayed;
2170}
2171
9ee474f5 2172/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2173static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2174{
2175 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2176 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2177
2178 decays -= se->avg.decay_count;
2179 if (!decays)
aff3e498 2180 return 0;
9ee474f5
PT
2181
2182 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2183 se->avg.decay_count = 0;
aff3e498
PT
2184
2185 return decays;
9ee474f5
PT
2186}
2187
c566e8e9
PT
2188#ifdef CONFIG_FAIR_GROUP_SCHED
2189static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2190 int force_update)
2191{
2192 struct task_group *tg = cfs_rq->tg;
bf5b986e 2193 long tg_contrib;
c566e8e9
PT
2194
2195 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2196 tg_contrib -= cfs_rq->tg_load_contrib;
2197
bf5b986e
AS
2198 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2199 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2200 cfs_rq->tg_load_contrib += tg_contrib;
2201 }
2202}
8165e145 2203
bb17f655
PT
2204/*
2205 * Aggregate cfs_rq runnable averages into an equivalent task_group
2206 * representation for computing load contributions.
2207 */
2208static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2209 struct cfs_rq *cfs_rq)
2210{
2211 struct task_group *tg = cfs_rq->tg;
2212 long contrib;
2213
2214 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2215 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2216 sa->runnable_avg_period + 1);
2217 contrib -= cfs_rq->tg_runnable_contrib;
2218
2219 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2220 atomic_add(contrib, &tg->runnable_avg);
2221 cfs_rq->tg_runnable_contrib += contrib;
2222 }
2223}
2224
8165e145
PT
2225static inline void __update_group_entity_contrib(struct sched_entity *se)
2226{
2227 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2228 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2229 int runnable_avg;
2230
8165e145
PT
2231 u64 contrib;
2232
2233 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2234 se->avg.load_avg_contrib = div_u64(contrib,
2235 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2236
2237 /*
2238 * For group entities we need to compute a correction term in the case
2239 * that they are consuming <1 cpu so that we would contribute the same
2240 * load as a task of equal weight.
2241 *
2242 * Explicitly co-ordinating this measurement would be expensive, but
2243 * fortunately the sum of each cpus contribution forms a usable
2244 * lower-bound on the true value.
2245 *
2246 * Consider the aggregate of 2 contributions. Either they are disjoint
2247 * (and the sum represents true value) or they are disjoint and we are
2248 * understating by the aggregate of their overlap.
2249 *
2250 * Extending this to N cpus, for a given overlap, the maximum amount we
2251 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2252 * cpus that overlap for this interval and w_i is the interval width.
2253 *
2254 * On a small machine; the first term is well-bounded which bounds the
2255 * total error since w_i is a subset of the period. Whereas on a
2256 * larger machine, while this first term can be larger, if w_i is the
2257 * of consequential size guaranteed to see n_i*w_i quickly converge to
2258 * our upper bound of 1-cpu.
2259 */
2260 runnable_avg = atomic_read(&tg->runnable_avg);
2261 if (runnable_avg < NICE_0_LOAD) {
2262 se->avg.load_avg_contrib *= runnable_avg;
2263 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2264 }
8165e145 2265}
c566e8e9
PT
2266#else
2267static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2268 int force_update) {}
bb17f655
PT
2269static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2270 struct cfs_rq *cfs_rq) {}
8165e145 2271static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2272#endif
2273
8165e145
PT
2274static inline void __update_task_entity_contrib(struct sched_entity *se)
2275{
2276 u32 contrib;
2277
2278 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2279 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2280 contrib /= (se->avg.runnable_avg_period + 1);
2281 se->avg.load_avg_contrib = scale_load(contrib);
2282}
2283
2dac754e
PT
2284/* Compute the current contribution to load_avg by se, return any delta */
2285static long __update_entity_load_avg_contrib(struct sched_entity *se)
2286{
2287 long old_contrib = se->avg.load_avg_contrib;
2288
8165e145
PT
2289 if (entity_is_task(se)) {
2290 __update_task_entity_contrib(se);
2291 } else {
bb17f655 2292 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2293 __update_group_entity_contrib(se);
2294 }
2dac754e
PT
2295
2296 return se->avg.load_avg_contrib - old_contrib;
2297}
2298
9ee474f5
PT
2299static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2300 long load_contrib)
2301{
2302 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2303 cfs_rq->blocked_load_avg -= load_contrib;
2304 else
2305 cfs_rq->blocked_load_avg = 0;
2306}
2307
f1b17280
PT
2308static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2309
9d85f21c 2310/* Update a sched_entity's runnable average */
9ee474f5
PT
2311static inline void update_entity_load_avg(struct sched_entity *se,
2312 int update_cfs_rq)
9d85f21c 2313{
2dac754e
PT
2314 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2315 long contrib_delta;
f1b17280 2316 u64 now;
2dac754e 2317
f1b17280
PT
2318 /*
2319 * For a group entity we need to use their owned cfs_rq_clock_task() in
2320 * case they are the parent of a throttled hierarchy.
2321 */
2322 if (entity_is_task(se))
2323 now = cfs_rq_clock_task(cfs_rq);
2324 else
2325 now = cfs_rq_clock_task(group_cfs_rq(se));
2326
2327 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2328 return;
2329
2330 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2331
2332 if (!update_cfs_rq)
2333 return;
2334
2dac754e
PT
2335 if (se->on_rq)
2336 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2337 else
2338 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2339}
2340
2341/*
2342 * Decay the load contributed by all blocked children and account this so that
2343 * their contribution may appropriately discounted when they wake up.
2344 */
aff3e498 2345static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2346{
f1b17280 2347 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2348 u64 decays;
2349
2350 decays = now - cfs_rq->last_decay;
aff3e498 2351 if (!decays && !force_update)
9ee474f5
PT
2352 return;
2353
2509940f
AS
2354 if (atomic_long_read(&cfs_rq->removed_load)) {
2355 unsigned long removed_load;
2356 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2357 subtract_blocked_load_contrib(cfs_rq, removed_load);
2358 }
9ee474f5 2359
aff3e498
PT
2360 if (decays) {
2361 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2362 decays);
2363 atomic64_add(decays, &cfs_rq->decay_counter);
2364 cfs_rq->last_decay = now;
2365 }
c566e8e9
PT
2366
2367 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2368}
18bf2805
BS
2369
2370static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2371{
78becc27 2372 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2373 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2374}
2dac754e
PT
2375
2376/* Add the load generated by se into cfs_rq's child load-average */
2377static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2378 struct sched_entity *se,
2379 int wakeup)
2dac754e 2380{
aff3e498
PT
2381 /*
2382 * We track migrations using entity decay_count <= 0, on a wake-up
2383 * migration we use a negative decay count to track the remote decays
2384 * accumulated while sleeping.
a75cdaa9
AS
2385 *
2386 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2387 * are seen by enqueue_entity_load_avg() as a migration with an already
2388 * constructed load_avg_contrib.
aff3e498
PT
2389 */
2390 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2391 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2392 if (se->avg.decay_count) {
2393 /*
2394 * In a wake-up migration we have to approximate the
2395 * time sleeping. This is because we can't synchronize
2396 * clock_task between the two cpus, and it is not
2397 * guaranteed to be read-safe. Instead, we can
2398 * approximate this using our carried decays, which are
2399 * explicitly atomically readable.
2400 */
2401 se->avg.last_runnable_update -= (-se->avg.decay_count)
2402 << 20;
2403 update_entity_load_avg(se, 0);
2404 /* Indicate that we're now synchronized and on-rq */
2405 se->avg.decay_count = 0;
2406 }
9ee474f5
PT
2407 wakeup = 0;
2408 } else {
9390675a 2409 __synchronize_entity_decay(se);
9ee474f5
PT
2410 }
2411
aff3e498
PT
2412 /* migrated tasks did not contribute to our blocked load */
2413 if (wakeup) {
9ee474f5 2414 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2415 update_entity_load_avg(se, 0);
2416 }
9ee474f5 2417
2dac754e 2418 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2419 /* we force update consideration on load-balancer moves */
2420 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2421}
2422
9ee474f5
PT
2423/*
2424 * Remove se's load from this cfs_rq child load-average, if the entity is
2425 * transitioning to a blocked state we track its projected decay using
2426 * blocked_load_avg.
2427 */
2dac754e 2428static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2429 struct sched_entity *se,
2430 int sleep)
2dac754e 2431{
9ee474f5 2432 update_entity_load_avg(se, 1);
aff3e498
PT
2433 /* we force update consideration on load-balancer moves */
2434 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2435
2dac754e 2436 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2437 if (sleep) {
2438 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2439 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2440 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2441}
642dbc39
VG
2442
2443/*
2444 * Update the rq's load with the elapsed running time before entering
2445 * idle. if the last scheduled task is not a CFS task, idle_enter will
2446 * be the only way to update the runnable statistic.
2447 */
2448void idle_enter_fair(struct rq *this_rq)
2449{
2450 update_rq_runnable_avg(this_rq, 1);
2451}
2452
2453/*
2454 * Update the rq's load with the elapsed idle time before a task is
2455 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2456 * be the only way to update the runnable statistic.
2457 */
2458void idle_exit_fair(struct rq *this_rq)
2459{
2460 update_rq_runnable_avg(this_rq, 0);
2461}
2462
9d85f21c 2463#else
9ee474f5
PT
2464static inline void update_entity_load_avg(struct sched_entity *se,
2465 int update_cfs_rq) {}
18bf2805 2466static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2467static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2468 struct sched_entity *se,
2469 int wakeup) {}
2dac754e 2470static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2471 struct sched_entity *se,
2472 int sleep) {}
aff3e498
PT
2473static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2474 int force_update) {}
9d85f21c
PT
2475#endif
2476
2396af69 2477static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2478{
bf0f6f24 2479#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2480 struct task_struct *tsk = NULL;
2481
2482 if (entity_is_task(se))
2483 tsk = task_of(se);
2484
41acab88 2485 if (se->statistics.sleep_start) {
78becc27 2486 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2487
2488 if ((s64)delta < 0)
2489 delta = 0;
2490
41acab88
LDM
2491 if (unlikely(delta > se->statistics.sleep_max))
2492 se->statistics.sleep_max = delta;
bf0f6f24 2493
8c79a045 2494 se->statistics.sleep_start = 0;
41acab88 2495 se->statistics.sum_sleep_runtime += delta;
9745512c 2496
768d0c27 2497 if (tsk) {
e414314c 2498 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2499 trace_sched_stat_sleep(tsk, delta);
2500 }
bf0f6f24 2501 }
41acab88 2502 if (se->statistics.block_start) {
78becc27 2503 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2504
2505 if ((s64)delta < 0)
2506 delta = 0;
2507
41acab88
LDM
2508 if (unlikely(delta > se->statistics.block_max))
2509 se->statistics.block_max = delta;
bf0f6f24 2510
8c79a045 2511 se->statistics.block_start = 0;
41acab88 2512 se->statistics.sum_sleep_runtime += delta;
30084fbd 2513
e414314c 2514 if (tsk) {
8f0dfc34 2515 if (tsk->in_iowait) {
41acab88
LDM
2516 se->statistics.iowait_sum += delta;
2517 se->statistics.iowait_count++;
768d0c27 2518 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2519 }
2520
b781a602
AV
2521 trace_sched_stat_blocked(tsk, delta);
2522
e414314c
PZ
2523 /*
2524 * Blocking time is in units of nanosecs, so shift by
2525 * 20 to get a milliseconds-range estimation of the
2526 * amount of time that the task spent sleeping:
2527 */
2528 if (unlikely(prof_on == SLEEP_PROFILING)) {
2529 profile_hits(SLEEP_PROFILING,
2530 (void *)get_wchan(tsk),
2531 delta >> 20);
2532 }
2533 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2534 }
bf0f6f24
IM
2535 }
2536#endif
2537}
2538
ddc97297
PZ
2539static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2540{
2541#ifdef CONFIG_SCHED_DEBUG
2542 s64 d = se->vruntime - cfs_rq->min_vruntime;
2543
2544 if (d < 0)
2545 d = -d;
2546
2547 if (d > 3*sysctl_sched_latency)
2548 schedstat_inc(cfs_rq, nr_spread_over);
2549#endif
2550}
2551
aeb73b04
PZ
2552static void
2553place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2554{
1af5f730 2555 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2556
2cb8600e
PZ
2557 /*
2558 * The 'current' period is already promised to the current tasks,
2559 * however the extra weight of the new task will slow them down a
2560 * little, place the new task so that it fits in the slot that
2561 * stays open at the end.
2562 */
94dfb5e7 2563 if (initial && sched_feat(START_DEBIT))
f9c0b095 2564 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2565
a2e7a7eb 2566 /* sleeps up to a single latency don't count. */
5ca9880c 2567 if (!initial) {
a2e7a7eb 2568 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2569
a2e7a7eb
MG
2570 /*
2571 * Halve their sleep time's effect, to allow
2572 * for a gentler effect of sleepers:
2573 */
2574 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2575 thresh >>= 1;
51e0304c 2576
a2e7a7eb 2577 vruntime -= thresh;
aeb73b04
PZ
2578 }
2579
b5d9d734 2580 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2581 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2582}
2583
d3d9dc33
PT
2584static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2585
bf0f6f24 2586static void
88ec22d3 2587enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2588{
88ec22d3
PZ
2589 /*
2590 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2591 * through calling update_curr().
88ec22d3 2592 */
371fd7e7 2593 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2594 se->vruntime += cfs_rq->min_vruntime;
2595
bf0f6f24 2596 /*
a2a2d680 2597 * Update run-time statistics of the 'current'.
bf0f6f24 2598 */
b7cc0896 2599 update_curr(cfs_rq);
f269ae04 2600 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2601 account_entity_enqueue(cfs_rq, se);
2602 update_cfs_shares(cfs_rq);
bf0f6f24 2603
88ec22d3 2604 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2605 place_entity(cfs_rq, se, 0);
2396af69 2606 enqueue_sleeper(cfs_rq, se);
e9acbff6 2607 }
bf0f6f24 2608
d2417e5a 2609 update_stats_enqueue(cfs_rq, se);
ddc97297 2610 check_spread(cfs_rq, se);
83b699ed
SV
2611 if (se != cfs_rq->curr)
2612 __enqueue_entity(cfs_rq, se);
2069dd75 2613 se->on_rq = 1;
3d4b47b4 2614
d3d9dc33 2615 if (cfs_rq->nr_running == 1) {
3d4b47b4 2616 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2617 check_enqueue_throttle(cfs_rq);
2618 }
bf0f6f24
IM
2619}
2620
2c13c919 2621static void __clear_buddies_last(struct sched_entity *se)
2002c695 2622{
2c13c919
RR
2623 for_each_sched_entity(se) {
2624 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2625 if (cfs_rq->last == se)
2626 cfs_rq->last = NULL;
2627 else
2628 break;
2629 }
2630}
2002c695 2631
2c13c919
RR
2632static void __clear_buddies_next(struct sched_entity *se)
2633{
2634 for_each_sched_entity(se) {
2635 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2636 if (cfs_rq->next == se)
2637 cfs_rq->next = NULL;
2638 else
2639 break;
2640 }
2002c695
PZ
2641}
2642
ac53db59
RR
2643static void __clear_buddies_skip(struct sched_entity *se)
2644{
2645 for_each_sched_entity(se) {
2646 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2647 if (cfs_rq->skip == se)
2648 cfs_rq->skip = NULL;
2649 else
2650 break;
2651 }
2652}
2653
a571bbea
PZ
2654static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2655{
2c13c919
RR
2656 if (cfs_rq->last == se)
2657 __clear_buddies_last(se);
2658
2659 if (cfs_rq->next == se)
2660 __clear_buddies_next(se);
ac53db59
RR
2661
2662 if (cfs_rq->skip == se)
2663 __clear_buddies_skip(se);
a571bbea
PZ
2664}
2665
6c16a6dc 2666static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2667
bf0f6f24 2668static void
371fd7e7 2669dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2670{
a2a2d680
DA
2671 /*
2672 * Update run-time statistics of the 'current'.
2673 */
2674 update_curr(cfs_rq);
17bc14b7 2675 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2676
19b6a2e3 2677 update_stats_dequeue(cfs_rq, se);
371fd7e7 2678 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2679#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2680 if (entity_is_task(se)) {
2681 struct task_struct *tsk = task_of(se);
2682
2683 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2684 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2685 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2686 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2687 }
db36cc7d 2688#endif
67e9fb2a
PZ
2689 }
2690
2002c695 2691 clear_buddies(cfs_rq, se);
4793241b 2692
83b699ed 2693 if (se != cfs_rq->curr)
30cfdcfc 2694 __dequeue_entity(cfs_rq, se);
17bc14b7 2695 se->on_rq = 0;
30cfdcfc 2696 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2697
2698 /*
2699 * Normalize the entity after updating the min_vruntime because the
2700 * update can refer to the ->curr item and we need to reflect this
2701 * movement in our normalized position.
2702 */
371fd7e7 2703 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2704 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2705
d8b4986d
PT
2706 /* return excess runtime on last dequeue */
2707 return_cfs_rq_runtime(cfs_rq);
2708
1e876231 2709 update_min_vruntime(cfs_rq);
17bc14b7 2710 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2711}
2712
2713/*
2714 * Preempt the current task with a newly woken task if needed:
2715 */
7c92e54f 2716static void
2e09bf55 2717check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2718{
11697830 2719 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2720 struct sched_entity *se;
2721 s64 delta;
11697830 2722
6d0f0ebd 2723 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2724 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2725 if (delta_exec > ideal_runtime) {
bf0f6f24 2726 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2727 /*
2728 * The current task ran long enough, ensure it doesn't get
2729 * re-elected due to buddy favours.
2730 */
2731 clear_buddies(cfs_rq, curr);
f685ceac
MG
2732 return;
2733 }
2734
2735 /*
2736 * Ensure that a task that missed wakeup preemption by a
2737 * narrow margin doesn't have to wait for a full slice.
2738 * This also mitigates buddy induced latencies under load.
2739 */
f685ceac
MG
2740 if (delta_exec < sysctl_sched_min_granularity)
2741 return;
2742
f4cfb33e
WX
2743 se = __pick_first_entity(cfs_rq);
2744 delta = curr->vruntime - se->vruntime;
f685ceac 2745
f4cfb33e
WX
2746 if (delta < 0)
2747 return;
d7d82944 2748
f4cfb33e
WX
2749 if (delta > ideal_runtime)
2750 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2751}
2752
83b699ed 2753static void
8494f412 2754set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2755{
83b699ed
SV
2756 /* 'current' is not kept within the tree. */
2757 if (se->on_rq) {
2758 /*
2759 * Any task has to be enqueued before it get to execute on
2760 * a CPU. So account for the time it spent waiting on the
2761 * runqueue.
2762 */
2763 update_stats_wait_end(cfs_rq, se);
2764 __dequeue_entity(cfs_rq, se);
2765 }
2766
79303e9e 2767 update_stats_curr_start(cfs_rq, se);
429d43bc 2768 cfs_rq->curr = se;
eba1ed4b
IM
2769#ifdef CONFIG_SCHEDSTATS
2770 /*
2771 * Track our maximum slice length, if the CPU's load is at
2772 * least twice that of our own weight (i.e. dont track it
2773 * when there are only lesser-weight tasks around):
2774 */
495eca49 2775 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2776 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2777 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2778 }
2779#endif
4a55b450 2780 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2781}
2782
3f3a4904
PZ
2783static int
2784wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2785
ac53db59
RR
2786/*
2787 * Pick the next process, keeping these things in mind, in this order:
2788 * 1) keep things fair between processes/task groups
2789 * 2) pick the "next" process, since someone really wants that to run
2790 * 3) pick the "last" process, for cache locality
2791 * 4) do not run the "skip" process, if something else is available
2792 */
f4b6755f 2793static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2794{
ac53db59 2795 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2796 struct sched_entity *left = se;
f4b6755f 2797
ac53db59
RR
2798 /*
2799 * Avoid running the skip buddy, if running something else can
2800 * be done without getting too unfair.
2801 */
2802 if (cfs_rq->skip == se) {
2803 struct sched_entity *second = __pick_next_entity(se);
2804 if (second && wakeup_preempt_entity(second, left) < 1)
2805 se = second;
2806 }
aa2ac252 2807
f685ceac
MG
2808 /*
2809 * Prefer last buddy, try to return the CPU to a preempted task.
2810 */
2811 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2812 se = cfs_rq->last;
2813
ac53db59
RR
2814 /*
2815 * Someone really wants this to run. If it's not unfair, run it.
2816 */
2817 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2818 se = cfs_rq->next;
2819
f685ceac 2820 clear_buddies(cfs_rq, se);
4793241b
PZ
2821
2822 return se;
aa2ac252
PZ
2823}
2824
d3d9dc33
PT
2825static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2826
ab6cde26 2827static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2828{
2829 /*
2830 * If still on the runqueue then deactivate_task()
2831 * was not called and update_curr() has to be done:
2832 */
2833 if (prev->on_rq)
b7cc0896 2834 update_curr(cfs_rq);
bf0f6f24 2835
d3d9dc33
PT
2836 /* throttle cfs_rqs exceeding runtime */
2837 check_cfs_rq_runtime(cfs_rq);
2838
ddc97297 2839 check_spread(cfs_rq, prev);
30cfdcfc 2840 if (prev->on_rq) {
5870db5b 2841 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2842 /* Put 'current' back into the tree. */
2843 __enqueue_entity(cfs_rq, prev);
9d85f21c 2844 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2845 update_entity_load_avg(prev, 1);
30cfdcfc 2846 }
429d43bc 2847 cfs_rq->curr = NULL;
bf0f6f24
IM
2848}
2849
8f4d37ec
PZ
2850static void
2851entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2852{
bf0f6f24 2853 /*
30cfdcfc 2854 * Update run-time statistics of the 'current'.
bf0f6f24 2855 */
30cfdcfc 2856 update_curr(cfs_rq);
bf0f6f24 2857
9d85f21c
PT
2858 /*
2859 * Ensure that runnable average is periodically updated.
2860 */
9ee474f5 2861 update_entity_load_avg(curr, 1);
aff3e498 2862 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2863 update_cfs_shares(cfs_rq);
9d85f21c 2864
8f4d37ec
PZ
2865#ifdef CONFIG_SCHED_HRTICK
2866 /*
2867 * queued ticks are scheduled to match the slice, so don't bother
2868 * validating it and just reschedule.
2869 */
983ed7a6
HH
2870 if (queued) {
2871 resched_task(rq_of(cfs_rq)->curr);
2872 return;
2873 }
8f4d37ec
PZ
2874 /*
2875 * don't let the period tick interfere with the hrtick preemption
2876 */
2877 if (!sched_feat(DOUBLE_TICK) &&
2878 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2879 return;
2880#endif
2881
2c2efaed 2882 if (cfs_rq->nr_running > 1)
2e09bf55 2883 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2884}
2885
ab84d31e
PT
2886
2887/**************************************************
2888 * CFS bandwidth control machinery
2889 */
2890
2891#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2892
2893#ifdef HAVE_JUMP_LABEL
c5905afb 2894static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2895
2896static inline bool cfs_bandwidth_used(void)
2897{
c5905afb 2898 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2899}
2900
1ee14e6c 2901void cfs_bandwidth_usage_inc(void)
029632fb 2902{
1ee14e6c
BS
2903 static_key_slow_inc(&__cfs_bandwidth_used);
2904}
2905
2906void cfs_bandwidth_usage_dec(void)
2907{
2908 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2909}
2910#else /* HAVE_JUMP_LABEL */
2911static bool cfs_bandwidth_used(void)
2912{
2913 return true;
2914}
2915
1ee14e6c
BS
2916void cfs_bandwidth_usage_inc(void) {}
2917void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2918#endif /* HAVE_JUMP_LABEL */
2919
ab84d31e
PT
2920/*
2921 * default period for cfs group bandwidth.
2922 * default: 0.1s, units: nanoseconds
2923 */
2924static inline u64 default_cfs_period(void)
2925{
2926 return 100000000ULL;
2927}
ec12cb7f
PT
2928
2929static inline u64 sched_cfs_bandwidth_slice(void)
2930{
2931 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2932}
2933
a9cf55b2
PT
2934/*
2935 * Replenish runtime according to assigned quota and update expiration time.
2936 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2937 * additional synchronization around rq->lock.
2938 *
2939 * requires cfs_b->lock
2940 */
029632fb 2941void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2942{
2943 u64 now;
2944
2945 if (cfs_b->quota == RUNTIME_INF)
2946 return;
2947
2948 now = sched_clock_cpu(smp_processor_id());
2949 cfs_b->runtime = cfs_b->quota;
2950 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2951}
2952
029632fb
PZ
2953static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2954{
2955 return &tg->cfs_bandwidth;
2956}
2957
f1b17280
PT
2958/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2959static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2960{
2961 if (unlikely(cfs_rq->throttle_count))
2962 return cfs_rq->throttled_clock_task;
2963
78becc27 2964 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2965}
2966
85dac906
PT
2967/* returns 0 on failure to allocate runtime */
2968static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2969{
2970 struct task_group *tg = cfs_rq->tg;
2971 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2972 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2973
2974 /* note: this is a positive sum as runtime_remaining <= 0 */
2975 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2976
2977 raw_spin_lock(&cfs_b->lock);
2978 if (cfs_b->quota == RUNTIME_INF)
2979 amount = min_amount;
58088ad0 2980 else {
a9cf55b2
PT
2981 /*
2982 * If the bandwidth pool has become inactive, then at least one
2983 * period must have elapsed since the last consumption.
2984 * Refresh the global state and ensure bandwidth timer becomes
2985 * active.
2986 */
2987 if (!cfs_b->timer_active) {
2988 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2989 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2990 }
58088ad0
PT
2991
2992 if (cfs_b->runtime > 0) {
2993 amount = min(cfs_b->runtime, min_amount);
2994 cfs_b->runtime -= amount;
2995 cfs_b->idle = 0;
2996 }
ec12cb7f 2997 }
a9cf55b2 2998 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2999 raw_spin_unlock(&cfs_b->lock);
3000
3001 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3002 /*
3003 * we may have advanced our local expiration to account for allowed
3004 * spread between our sched_clock and the one on which runtime was
3005 * issued.
3006 */
3007 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3008 cfs_rq->runtime_expires = expires;
85dac906
PT
3009
3010 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3011}
3012
a9cf55b2
PT
3013/*
3014 * Note: This depends on the synchronization provided by sched_clock and the
3015 * fact that rq->clock snapshots this value.
3016 */
3017static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3018{
a9cf55b2 3019 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3020
3021 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3022 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3023 return;
3024
a9cf55b2
PT
3025 if (cfs_rq->runtime_remaining < 0)
3026 return;
3027
3028 /*
3029 * If the local deadline has passed we have to consider the
3030 * possibility that our sched_clock is 'fast' and the global deadline
3031 * has not truly expired.
3032 *
3033 * Fortunately we can check determine whether this the case by checking
3034 * whether the global deadline has advanced.
3035 */
3036
3037 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3038 /* extend local deadline, drift is bounded above by 2 ticks */
3039 cfs_rq->runtime_expires += TICK_NSEC;
3040 } else {
3041 /* global deadline is ahead, expiration has passed */
3042 cfs_rq->runtime_remaining = 0;
3043 }
3044}
3045
9dbdb155 3046static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3047{
3048 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3049 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3050 expire_cfs_rq_runtime(cfs_rq);
3051
3052 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3053 return;
3054
85dac906
PT
3055 /*
3056 * if we're unable to extend our runtime we resched so that the active
3057 * hierarchy can be throttled
3058 */
3059 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3060 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3061}
3062
6c16a6dc 3063static __always_inline
9dbdb155 3064void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3065{
56f570e5 3066 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3067 return;
3068
3069 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3070}
3071
85dac906
PT
3072static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3073{
56f570e5 3074 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3075}
3076
64660c86
PT
3077/* check whether cfs_rq, or any parent, is throttled */
3078static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3079{
56f570e5 3080 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3081}
3082
3083/*
3084 * Ensure that neither of the group entities corresponding to src_cpu or
3085 * dest_cpu are members of a throttled hierarchy when performing group
3086 * load-balance operations.
3087 */
3088static inline int throttled_lb_pair(struct task_group *tg,
3089 int src_cpu, int dest_cpu)
3090{
3091 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3092
3093 src_cfs_rq = tg->cfs_rq[src_cpu];
3094 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3095
3096 return throttled_hierarchy(src_cfs_rq) ||
3097 throttled_hierarchy(dest_cfs_rq);
3098}
3099
3100/* updated child weight may affect parent so we have to do this bottom up */
3101static int tg_unthrottle_up(struct task_group *tg, void *data)
3102{
3103 struct rq *rq = data;
3104 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3105
3106 cfs_rq->throttle_count--;
3107#ifdef CONFIG_SMP
3108 if (!cfs_rq->throttle_count) {
f1b17280 3109 /* adjust cfs_rq_clock_task() */
78becc27 3110 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3111 cfs_rq->throttled_clock_task;
64660c86
PT
3112 }
3113#endif
3114
3115 return 0;
3116}
3117
3118static int tg_throttle_down(struct task_group *tg, void *data)
3119{
3120 struct rq *rq = data;
3121 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3122
82958366
PT
3123 /* group is entering throttled state, stop time */
3124 if (!cfs_rq->throttle_count)
78becc27 3125 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3126 cfs_rq->throttle_count++;
3127
3128 return 0;
3129}
3130
d3d9dc33 3131static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3132{
3133 struct rq *rq = rq_of(cfs_rq);
3134 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3135 struct sched_entity *se;
3136 long task_delta, dequeue = 1;
3137
3138 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3139
f1b17280 3140 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3141 rcu_read_lock();
3142 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3143 rcu_read_unlock();
85dac906
PT
3144
3145 task_delta = cfs_rq->h_nr_running;
3146 for_each_sched_entity(se) {
3147 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3148 /* throttled entity or throttle-on-deactivate */
3149 if (!se->on_rq)
3150 break;
3151
3152 if (dequeue)
3153 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3154 qcfs_rq->h_nr_running -= task_delta;
3155
3156 if (qcfs_rq->load.weight)
3157 dequeue = 0;
3158 }
3159
3160 if (!se)
3161 rq->nr_running -= task_delta;
3162
3163 cfs_rq->throttled = 1;
78becc27 3164 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3165 raw_spin_lock(&cfs_b->lock);
3166 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3167 if (!cfs_b->timer_active)
3168 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3169 raw_spin_unlock(&cfs_b->lock);
3170}
3171
029632fb 3172void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3173{
3174 struct rq *rq = rq_of(cfs_rq);
3175 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3176 struct sched_entity *se;
3177 int enqueue = 1;
3178 long task_delta;
3179
22b958d8 3180 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3181
3182 cfs_rq->throttled = 0;
1a55af2e
FW
3183
3184 update_rq_clock(rq);
3185
671fd9da 3186 raw_spin_lock(&cfs_b->lock);
78becc27 3187 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3188 list_del_rcu(&cfs_rq->throttled_list);
3189 raw_spin_unlock(&cfs_b->lock);
3190
64660c86
PT
3191 /* update hierarchical throttle state */
3192 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3193
671fd9da
PT
3194 if (!cfs_rq->load.weight)
3195 return;
3196
3197 task_delta = cfs_rq->h_nr_running;
3198 for_each_sched_entity(se) {
3199 if (se->on_rq)
3200 enqueue = 0;
3201
3202 cfs_rq = cfs_rq_of(se);
3203 if (enqueue)
3204 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3205 cfs_rq->h_nr_running += task_delta;
3206
3207 if (cfs_rq_throttled(cfs_rq))
3208 break;
3209 }
3210
3211 if (!se)
3212 rq->nr_running += task_delta;
3213
3214 /* determine whether we need to wake up potentially idle cpu */
3215 if (rq->curr == rq->idle && rq->cfs.nr_running)
3216 resched_task(rq->curr);
3217}
3218
3219static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3220 u64 remaining, u64 expires)
3221{
3222 struct cfs_rq *cfs_rq;
3223 u64 runtime = remaining;
3224
3225 rcu_read_lock();
3226 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3227 throttled_list) {
3228 struct rq *rq = rq_of(cfs_rq);
3229
3230 raw_spin_lock(&rq->lock);
3231 if (!cfs_rq_throttled(cfs_rq))
3232 goto next;
3233
3234 runtime = -cfs_rq->runtime_remaining + 1;
3235 if (runtime > remaining)
3236 runtime = remaining;
3237 remaining -= runtime;
3238
3239 cfs_rq->runtime_remaining += runtime;
3240 cfs_rq->runtime_expires = expires;
3241
3242 /* we check whether we're throttled above */
3243 if (cfs_rq->runtime_remaining > 0)
3244 unthrottle_cfs_rq(cfs_rq);
3245
3246next:
3247 raw_spin_unlock(&rq->lock);
3248
3249 if (!remaining)
3250 break;
3251 }
3252 rcu_read_unlock();
3253
3254 return remaining;
3255}
3256
58088ad0
PT
3257/*
3258 * Responsible for refilling a task_group's bandwidth and unthrottling its
3259 * cfs_rqs as appropriate. If there has been no activity within the last
3260 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3261 * used to track this state.
3262 */
3263static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3264{
671fd9da
PT
3265 u64 runtime, runtime_expires;
3266 int idle = 1, throttled;
58088ad0
PT
3267
3268 raw_spin_lock(&cfs_b->lock);
3269 /* no need to continue the timer with no bandwidth constraint */
3270 if (cfs_b->quota == RUNTIME_INF)
3271 goto out_unlock;
3272
671fd9da
PT
3273 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3274 /* idle depends on !throttled (for the case of a large deficit) */
3275 idle = cfs_b->idle && !throttled;
e8da1b18 3276 cfs_b->nr_periods += overrun;
671fd9da 3277
a9cf55b2
PT
3278 /* if we're going inactive then everything else can be deferred */
3279 if (idle)
3280 goto out_unlock;
3281
927b54fc
BS
3282 /*
3283 * if we have relooped after returning idle once, we need to update our
3284 * status as actually running, so that other cpus doing
3285 * __start_cfs_bandwidth will stop trying to cancel us.
3286 */
3287 cfs_b->timer_active = 1;
3288
a9cf55b2
PT
3289 __refill_cfs_bandwidth_runtime(cfs_b);
3290
671fd9da
PT
3291 if (!throttled) {
3292 /* mark as potentially idle for the upcoming period */
3293 cfs_b->idle = 1;
3294 goto out_unlock;
3295 }
3296
e8da1b18
NR
3297 /* account preceding periods in which throttling occurred */
3298 cfs_b->nr_throttled += overrun;
3299
671fd9da
PT
3300 /*
3301 * There are throttled entities so we must first use the new bandwidth
3302 * to unthrottle them before making it generally available. This
3303 * ensures that all existing debts will be paid before a new cfs_rq is
3304 * allowed to run.
3305 */
3306 runtime = cfs_b->runtime;
3307 runtime_expires = cfs_b->runtime_expires;
3308 cfs_b->runtime = 0;
3309
3310 /*
3311 * This check is repeated as we are holding onto the new bandwidth
3312 * while we unthrottle. This can potentially race with an unthrottled
3313 * group trying to acquire new bandwidth from the global pool.
3314 */
3315 while (throttled && runtime > 0) {
3316 raw_spin_unlock(&cfs_b->lock);
3317 /* we can't nest cfs_b->lock while distributing bandwidth */
3318 runtime = distribute_cfs_runtime(cfs_b, runtime,
3319 runtime_expires);
3320 raw_spin_lock(&cfs_b->lock);
3321
3322 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3323 }
58088ad0 3324
671fd9da
PT
3325 /* return (any) remaining runtime */
3326 cfs_b->runtime = runtime;
3327 /*
3328 * While we are ensured activity in the period following an
3329 * unthrottle, this also covers the case in which the new bandwidth is
3330 * insufficient to cover the existing bandwidth deficit. (Forcing the
3331 * timer to remain active while there are any throttled entities.)
3332 */
3333 cfs_b->idle = 0;
58088ad0
PT
3334out_unlock:
3335 if (idle)
3336 cfs_b->timer_active = 0;
3337 raw_spin_unlock(&cfs_b->lock);
3338
3339 return idle;
3340}
d3d9dc33 3341
d8b4986d
PT
3342/* a cfs_rq won't donate quota below this amount */
3343static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3344/* minimum remaining period time to redistribute slack quota */
3345static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3346/* how long we wait to gather additional slack before distributing */
3347static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3348
db06e78c
BS
3349/*
3350 * Are we near the end of the current quota period?
3351 *
3352 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3353 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3354 * migrate_hrtimers, base is never cleared, so we are fine.
3355 */
d8b4986d
PT
3356static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3357{
3358 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3359 u64 remaining;
3360
3361 /* if the call-back is running a quota refresh is already occurring */
3362 if (hrtimer_callback_running(refresh_timer))
3363 return 1;
3364
3365 /* is a quota refresh about to occur? */
3366 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3367 if (remaining < min_expire)
3368 return 1;
3369
3370 return 0;
3371}
3372
3373static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3374{
3375 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3376
3377 /* if there's a quota refresh soon don't bother with slack */
3378 if (runtime_refresh_within(cfs_b, min_left))
3379 return;
3380
3381 start_bandwidth_timer(&cfs_b->slack_timer,
3382 ns_to_ktime(cfs_bandwidth_slack_period));
3383}
3384
3385/* we know any runtime found here is valid as update_curr() precedes return */
3386static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3387{
3388 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3389 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3390
3391 if (slack_runtime <= 0)
3392 return;
3393
3394 raw_spin_lock(&cfs_b->lock);
3395 if (cfs_b->quota != RUNTIME_INF &&
3396 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3397 cfs_b->runtime += slack_runtime;
3398
3399 /* we are under rq->lock, defer unthrottling using a timer */
3400 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3401 !list_empty(&cfs_b->throttled_cfs_rq))
3402 start_cfs_slack_bandwidth(cfs_b);
3403 }
3404 raw_spin_unlock(&cfs_b->lock);
3405
3406 /* even if it's not valid for return we don't want to try again */
3407 cfs_rq->runtime_remaining -= slack_runtime;
3408}
3409
3410static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3411{
56f570e5
PT
3412 if (!cfs_bandwidth_used())
3413 return;
3414
fccfdc6f 3415 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3416 return;
3417
3418 __return_cfs_rq_runtime(cfs_rq);
3419}
3420
3421/*
3422 * This is done with a timer (instead of inline with bandwidth return) since
3423 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3424 */
3425static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3426{
3427 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3428 u64 expires;
3429
3430 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3431 raw_spin_lock(&cfs_b->lock);
3432 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3433 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3434 return;
db06e78c 3435 }
d8b4986d 3436
d8b4986d
PT
3437 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3438 runtime = cfs_b->runtime;
3439 cfs_b->runtime = 0;
3440 }
3441 expires = cfs_b->runtime_expires;
3442 raw_spin_unlock(&cfs_b->lock);
3443
3444 if (!runtime)
3445 return;
3446
3447 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3448
3449 raw_spin_lock(&cfs_b->lock);
3450 if (expires == cfs_b->runtime_expires)
3451 cfs_b->runtime = runtime;
3452 raw_spin_unlock(&cfs_b->lock);
3453}
3454
d3d9dc33
PT
3455/*
3456 * When a group wakes up we want to make sure that its quota is not already
3457 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3458 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3459 */
3460static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3461{
56f570e5
PT
3462 if (!cfs_bandwidth_used())
3463 return;
3464
d3d9dc33
PT
3465 /* an active group must be handled by the update_curr()->put() path */
3466 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3467 return;
3468
3469 /* ensure the group is not already throttled */
3470 if (cfs_rq_throttled(cfs_rq))
3471 return;
3472
3473 /* update runtime allocation */
3474 account_cfs_rq_runtime(cfs_rq, 0);
3475 if (cfs_rq->runtime_remaining <= 0)
3476 throttle_cfs_rq(cfs_rq);
3477}
3478
3479/* conditionally throttle active cfs_rq's from put_prev_entity() */
3480static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3481{
56f570e5
PT
3482 if (!cfs_bandwidth_used())
3483 return;
3484
d3d9dc33
PT
3485 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3486 return;
3487
3488 /*
3489 * it's possible for a throttled entity to be forced into a running
3490 * state (e.g. set_curr_task), in this case we're finished.
3491 */
3492 if (cfs_rq_throttled(cfs_rq))
3493 return;
3494
3495 throttle_cfs_rq(cfs_rq);
3496}
029632fb 3497
029632fb
PZ
3498static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3499{
3500 struct cfs_bandwidth *cfs_b =
3501 container_of(timer, struct cfs_bandwidth, slack_timer);
3502 do_sched_cfs_slack_timer(cfs_b);
3503
3504 return HRTIMER_NORESTART;
3505}
3506
3507static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3508{
3509 struct cfs_bandwidth *cfs_b =
3510 container_of(timer, struct cfs_bandwidth, period_timer);
3511 ktime_t now;
3512 int overrun;
3513 int idle = 0;
3514
3515 for (;;) {
3516 now = hrtimer_cb_get_time(timer);
3517 overrun = hrtimer_forward(timer, now, cfs_b->period);
3518
3519 if (!overrun)
3520 break;
3521
3522 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3523 }
3524
3525 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3526}
3527
3528void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3529{
3530 raw_spin_lock_init(&cfs_b->lock);
3531 cfs_b->runtime = 0;
3532 cfs_b->quota = RUNTIME_INF;
3533 cfs_b->period = ns_to_ktime(default_cfs_period());
3534
3535 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3536 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3537 cfs_b->period_timer.function = sched_cfs_period_timer;
3538 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3539 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3540}
3541
3542static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3543{
3544 cfs_rq->runtime_enabled = 0;
3545 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3546}
3547
3548/* requires cfs_b->lock, may release to reprogram timer */
3549void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3550{
3551 /*
3552 * The timer may be active because we're trying to set a new bandwidth
3553 * period or because we're racing with the tear-down path
3554 * (timer_active==0 becomes visible before the hrtimer call-back
3555 * terminates). In either case we ensure that it's re-programmed
3556 */
927b54fc
BS
3557 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3558 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3559 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3560 raw_spin_unlock(&cfs_b->lock);
927b54fc 3561 cpu_relax();
029632fb
PZ
3562 raw_spin_lock(&cfs_b->lock);
3563 /* if someone else restarted the timer then we're done */
3564 if (cfs_b->timer_active)
3565 return;
3566 }
3567
3568 cfs_b->timer_active = 1;
3569 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3570}
3571
3572static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3573{
3574 hrtimer_cancel(&cfs_b->period_timer);
3575 hrtimer_cancel(&cfs_b->slack_timer);
3576}
3577
38dc3348 3578static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3579{
3580 struct cfs_rq *cfs_rq;
3581
3582 for_each_leaf_cfs_rq(rq, cfs_rq) {
3583 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3584
3585 if (!cfs_rq->runtime_enabled)
3586 continue;
3587
3588 /*
3589 * clock_task is not advancing so we just need to make sure
3590 * there's some valid quota amount
3591 */
3592 cfs_rq->runtime_remaining = cfs_b->quota;
3593 if (cfs_rq_throttled(cfs_rq))
3594 unthrottle_cfs_rq(cfs_rq);
3595 }
3596}
3597
3598#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3599static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3600{
78becc27 3601 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3602}
3603
9dbdb155 3604static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3605static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3606static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3607static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3608
3609static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3610{
3611 return 0;
3612}
64660c86
PT
3613
3614static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3615{
3616 return 0;
3617}
3618
3619static inline int throttled_lb_pair(struct task_group *tg,
3620 int src_cpu, int dest_cpu)
3621{
3622 return 0;
3623}
029632fb
PZ
3624
3625void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3626
3627#ifdef CONFIG_FAIR_GROUP_SCHED
3628static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3629#endif
3630
029632fb
PZ
3631static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3632{
3633 return NULL;
3634}
3635static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3636static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3637
3638#endif /* CONFIG_CFS_BANDWIDTH */
3639
bf0f6f24
IM
3640/**************************************************
3641 * CFS operations on tasks:
3642 */
3643
8f4d37ec
PZ
3644#ifdef CONFIG_SCHED_HRTICK
3645static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3646{
8f4d37ec
PZ
3647 struct sched_entity *se = &p->se;
3648 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3649
3650 WARN_ON(task_rq(p) != rq);
3651
b39e66ea 3652 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3653 u64 slice = sched_slice(cfs_rq, se);
3654 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3655 s64 delta = slice - ran;
3656
3657 if (delta < 0) {
3658 if (rq->curr == p)
3659 resched_task(p);
3660 return;
3661 }
3662
3663 /*
3664 * Don't schedule slices shorter than 10000ns, that just
3665 * doesn't make sense. Rely on vruntime for fairness.
3666 */
31656519 3667 if (rq->curr != p)
157124c1 3668 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3669
31656519 3670 hrtick_start(rq, delta);
8f4d37ec
PZ
3671 }
3672}
a4c2f00f
PZ
3673
3674/*
3675 * called from enqueue/dequeue and updates the hrtick when the
3676 * current task is from our class and nr_running is low enough
3677 * to matter.
3678 */
3679static void hrtick_update(struct rq *rq)
3680{
3681 struct task_struct *curr = rq->curr;
3682
b39e66ea 3683 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3684 return;
3685
3686 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3687 hrtick_start_fair(rq, curr);
3688}
55e12e5e 3689#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3690static inline void
3691hrtick_start_fair(struct rq *rq, struct task_struct *p)
3692{
3693}
a4c2f00f
PZ
3694
3695static inline void hrtick_update(struct rq *rq)
3696{
3697}
8f4d37ec
PZ
3698#endif
3699
bf0f6f24
IM
3700/*
3701 * The enqueue_task method is called before nr_running is
3702 * increased. Here we update the fair scheduling stats and
3703 * then put the task into the rbtree:
3704 */
ea87bb78 3705static void
371fd7e7 3706enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3707{
3708 struct cfs_rq *cfs_rq;
62fb1851 3709 struct sched_entity *se = &p->se;
bf0f6f24
IM
3710
3711 for_each_sched_entity(se) {
62fb1851 3712 if (se->on_rq)
bf0f6f24
IM
3713 break;
3714 cfs_rq = cfs_rq_of(se);
88ec22d3 3715 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3716
3717 /*
3718 * end evaluation on encountering a throttled cfs_rq
3719 *
3720 * note: in the case of encountering a throttled cfs_rq we will
3721 * post the final h_nr_running increment below.
3722 */
3723 if (cfs_rq_throttled(cfs_rq))
3724 break;
953bfcd1 3725 cfs_rq->h_nr_running++;
85dac906 3726
88ec22d3 3727 flags = ENQUEUE_WAKEUP;
bf0f6f24 3728 }
8f4d37ec 3729
2069dd75 3730 for_each_sched_entity(se) {
0f317143 3731 cfs_rq = cfs_rq_of(se);
953bfcd1 3732 cfs_rq->h_nr_running++;
2069dd75 3733
85dac906
PT
3734 if (cfs_rq_throttled(cfs_rq))
3735 break;
3736
17bc14b7 3737 update_cfs_shares(cfs_rq);
9ee474f5 3738 update_entity_load_avg(se, 1);
2069dd75
PZ
3739 }
3740
18bf2805
BS
3741 if (!se) {
3742 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3743 inc_nr_running(rq);
18bf2805 3744 }
a4c2f00f 3745 hrtick_update(rq);
bf0f6f24
IM
3746}
3747
2f36825b
VP
3748static void set_next_buddy(struct sched_entity *se);
3749
bf0f6f24
IM
3750/*
3751 * The dequeue_task method is called before nr_running is
3752 * decreased. We remove the task from the rbtree and
3753 * update the fair scheduling stats:
3754 */
371fd7e7 3755static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3756{
3757 struct cfs_rq *cfs_rq;
62fb1851 3758 struct sched_entity *se = &p->se;
2f36825b 3759 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3760
3761 for_each_sched_entity(se) {
3762 cfs_rq = cfs_rq_of(se);
371fd7e7 3763 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3764
3765 /*
3766 * end evaluation on encountering a throttled cfs_rq
3767 *
3768 * note: in the case of encountering a throttled cfs_rq we will
3769 * post the final h_nr_running decrement below.
3770 */
3771 if (cfs_rq_throttled(cfs_rq))
3772 break;
953bfcd1 3773 cfs_rq->h_nr_running--;
2069dd75 3774
bf0f6f24 3775 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3776 if (cfs_rq->load.weight) {
3777 /*
3778 * Bias pick_next to pick a task from this cfs_rq, as
3779 * p is sleeping when it is within its sched_slice.
3780 */
3781 if (task_sleep && parent_entity(se))
3782 set_next_buddy(parent_entity(se));
9598c82d
PT
3783
3784 /* avoid re-evaluating load for this entity */
3785 se = parent_entity(se);
bf0f6f24 3786 break;
2f36825b 3787 }
371fd7e7 3788 flags |= DEQUEUE_SLEEP;
bf0f6f24 3789 }
8f4d37ec 3790
2069dd75 3791 for_each_sched_entity(se) {
0f317143 3792 cfs_rq = cfs_rq_of(se);
953bfcd1 3793 cfs_rq->h_nr_running--;
2069dd75 3794
85dac906
PT
3795 if (cfs_rq_throttled(cfs_rq))
3796 break;
3797
17bc14b7 3798 update_cfs_shares(cfs_rq);
9ee474f5 3799 update_entity_load_avg(se, 1);
2069dd75
PZ
3800 }
3801
18bf2805 3802 if (!se) {
85dac906 3803 dec_nr_running(rq);
18bf2805
BS
3804 update_rq_runnable_avg(rq, 1);
3805 }
a4c2f00f 3806 hrtick_update(rq);
bf0f6f24
IM
3807}
3808
e7693a36 3809#ifdef CONFIG_SMP
029632fb
PZ
3810/* Used instead of source_load when we know the type == 0 */
3811static unsigned long weighted_cpuload(const int cpu)
3812{
b92486cb 3813 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3814}
3815
3816/*
3817 * Return a low guess at the load of a migration-source cpu weighted
3818 * according to the scheduling class and "nice" value.
3819 *
3820 * We want to under-estimate the load of migration sources, to
3821 * balance conservatively.
3822 */
3823static unsigned long source_load(int cpu, int type)
3824{
3825 struct rq *rq = cpu_rq(cpu);
3826 unsigned long total = weighted_cpuload(cpu);
3827
3828 if (type == 0 || !sched_feat(LB_BIAS))
3829 return total;
3830
3831 return min(rq->cpu_load[type-1], total);
3832}
3833
3834/*
3835 * Return a high guess at the load of a migration-target cpu weighted
3836 * according to the scheduling class and "nice" value.
3837 */
3838static unsigned long target_load(int cpu, int type)
3839{
3840 struct rq *rq = cpu_rq(cpu);
3841 unsigned long total = weighted_cpuload(cpu);
3842
3843 if (type == 0 || !sched_feat(LB_BIAS))
3844 return total;
3845
3846 return max(rq->cpu_load[type-1], total);
3847}
3848
3849static unsigned long power_of(int cpu)
3850{
3851 return cpu_rq(cpu)->cpu_power;
3852}
3853
3854static unsigned long cpu_avg_load_per_task(int cpu)
3855{
3856 struct rq *rq = cpu_rq(cpu);
3857 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3858 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3859
3860 if (nr_running)
b92486cb 3861 return load_avg / nr_running;
029632fb
PZ
3862
3863 return 0;
3864}
3865
62470419
MW
3866static void record_wakee(struct task_struct *p)
3867{
3868 /*
3869 * Rough decay (wiping) for cost saving, don't worry
3870 * about the boundary, really active task won't care
3871 * about the loss.
3872 */
3873 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3874 current->wakee_flips = 0;
3875 current->wakee_flip_decay_ts = jiffies;
3876 }
3877
3878 if (current->last_wakee != p) {
3879 current->last_wakee = p;
3880 current->wakee_flips++;
3881 }
3882}
098fb9db 3883
74f8e4b2 3884static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3885{
3886 struct sched_entity *se = &p->se;
3887 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3888 u64 min_vruntime;
3889
3890#ifndef CONFIG_64BIT
3891 u64 min_vruntime_copy;
88ec22d3 3892
3fe1698b
PZ
3893 do {
3894 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3895 smp_rmb();
3896 min_vruntime = cfs_rq->min_vruntime;
3897 } while (min_vruntime != min_vruntime_copy);
3898#else
3899 min_vruntime = cfs_rq->min_vruntime;
3900#endif
88ec22d3 3901
3fe1698b 3902 se->vruntime -= min_vruntime;
62470419 3903 record_wakee(p);
88ec22d3
PZ
3904}
3905
bb3469ac 3906#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3907/*
3908 * effective_load() calculates the load change as seen from the root_task_group
3909 *
3910 * Adding load to a group doesn't make a group heavier, but can cause movement
3911 * of group shares between cpus. Assuming the shares were perfectly aligned one
3912 * can calculate the shift in shares.
cf5f0acf
PZ
3913 *
3914 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3915 * on this @cpu and results in a total addition (subtraction) of @wg to the
3916 * total group weight.
3917 *
3918 * Given a runqueue weight distribution (rw_i) we can compute a shares
3919 * distribution (s_i) using:
3920 *
3921 * s_i = rw_i / \Sum rw_j (1)
3922 *
3923 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3924 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3925 * shares distribution (s_i):
3926 *
3927 * rw_i = { 2, 4, 1, 0 }
3928 * s_i = { 2/7, 4/7, 1/7, 0 }
3929 *
3930 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3931 * task used to run on and the CPU the waker is running on), we need to
3932 * compute the effect of waking a task on either CPU and, in case of a sync
3933 * wakeup, compute the effect of the current task going to sleep.
3934 *
3935 * So for a change of @wl to the local @cpu with an overall group weight change
3936 * of @wl we can compute the new shares distribution (s'_i) using:
3937 *
3938 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3939 *
3940 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3941 * differences in waking a task to CPU 0. The additional task changes the
3942 * weight and shares distributions like:
3943 *
3944 * rw'_i = { 3, 4, 1, 0 }
3945 * s'_i = { 3/8, 4/8, 1/8, 0 }
3946 *
3947 * We can then compute the difference in effective weight by using:
3948 *
3949 * dw_i = S * (s'_i - s_i) (3)
3950 *
3951 * Where 'S' is the group weight as seen by its parent.
3952 *
3953 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3954 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3955 * 4/7) times the weight of the group.
f5bfb7d9 3956 */
2069dd75 3957static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3958{
4be9daaa 3959 struct sched_entity *se = tg->se[cpu];
f1d239f7 3960
9722c2da 3961 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3962 return wl;
3963
4be9daaa 3964 for_each_sched_entity(se) {
cf5f0acf 3965 long w, W;
4be9daaa 3966
977dda7c 3967 tg = se->my_q->tg;
bb3469ac 3968
cf5f0acf
PZ
3969 /*
3970 * W = @wg + \Sum rw_j
3971 */
3972 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3973
cf5f0acf
PZ
3974 /*
3975 * w = rw_i + @wl
3976 */
3977 w = se->my_q->load.weight + wl;
940959e9 3978
cf5f0acf
PZ
3979 /*
3980 * wl = S * s'_i; see (2)
3981 */
3982 if (W > 0 && w < W)
3983 wl = (w * tg->shares) / W;
977dda7c
PT
3984 else
3985 wl = tg->shares;
940959e9 3986
cf5f0acf
PZ
3987 /*
3988 * Per the above, wl is the new se->load.weight value; since
3989 * those are clipped to [MIN_SHARES, ...) do so now. See
3990 * calc_cfs_shares().
3991 */
977dda7c
PT
3992 if (wl < MIN_SHARES)
3993 wl = MIN_SHARES;
cf5f0acf
PZ
3994
3995 /*
3996 * wl = dw_i = S * (s'_i - s_i); see (3)
3997 */
977dda7c 3998 wl -= se->load.weight;
cf5f0acf
PZ
3999
4000 /*
4001 * Recursively apply this logic to all parent groups to compute
4002 * the final effective load change on the root group. Since
4003 * only the @tg group gets extra weight, all parent groups can
4004 * only redistribute existing shares. @wl is the shift in shares
4005 * resulting from this level per the above.
4006 */
4be9daaa 4007 wg = 0;
4be9daaa 4008 }
bb3469ac 4009
4be9daaa 4010 return wl;
bb3469ac
PZ
4011}
4012#else
4be9daaa 4013
58d081b5 4014static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4015{
83378269 4016 return wl;
bb3469ac 4017}
4be9daaa 4018
bb3469ac
PZ
4019#endif
4020
62470419
MW
4021static int wake_wide(struct task_struct *p)
4022{
7d9ffa89 4023 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4024
4025 /*
4026 * Yeah, it's the switching-frequency, could means many wakee or
4027 * rapidly switch, use factor here will just help to automatically
4028 * adjust the loose-degree, so bigger node will lead to more pull.
4029 */
4030 if (p->wakee_flips > factor) {
4031 /*
4032 * wakee is somewhat hot, it needs certain amount of cpu
4033 * resource, so if waker is far more hot, prefer to leave
4034 * it alone.
4035 */
4036 if (current->wakee_flips > (factor * p->wakee_flips))
4037 return 1;
4038 }
4039
4040 return 0;
4041}
4042
c88d5910 4043static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4044{
e37b6a7b 4045 s64 this_load, load;
c88d5910 4046 int idx, this_cpu, prev_cpu;
098fb9db 4047 unsigned long tl_per_task;
c88d5910 4048 struct task_group *tg;
83378269 4049 unsigned long weight;
b3137bc8 4050 int balanced;
098fb9db 4051
62470419
MW
4052 /*
4053 * If we wake multiple tasks be careful to not bounce
4054 * ourselves around too much.
4055 */
4056 if (wake_wide(p))
4057 return 0;
4058
c88d5910
PZ
4059 idx = sd->wake_idx;
4060 this_cpu = smp_processor_id();
4061 prev_cpu = task_cpu(p);
4062 load = source_load(prev_cpu, idx);
4063 this_load = target_load(this_cpu, idx);
098fb9db 4064
b3137bc8
MG
4065 /*
4066 * If sync wakeup then subtract the (maximum possible)
4067 * effect of the currently running task from the load
4068 * of the current CPU:
4069 */
83378269
PZ
4070 if (sync) {
4071 tg = task_group(current);
4072 weight = current->se.load.weight;
4073
c88d5910 4074 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4075 load += effective_load(tg, prev_cpu, 0, -weight);
4076 }
b3137bc8 4077
83378269
PZ
4078 tg = task_group(p);
4079 weight = p->se.load.weight;
b3137bc8 4080
71a29aa7
PZ
4081 /*
4082 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4083 * due to the sync cause above having dropped this_load to 0, we'll
4084 * always have an imbalance, but there's really nothing you can do
4085 * about that, so that's good too.
71a29aa7
PZ
4086 *
4087 * Otherwise check if either cpus are near enough in load to allow this
4088 * task to be woken on this_cpu.
4089 */
e37b6a7b
PT
4090 if (this_load > 0) {
4091 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4092
4093 this_eff_load = 100;
4094 this_eff_load *= power_of(prev_cpu);
4095 this_eff_load *= this_load +
4096 effective_load(tg, this_cpu, weight, weight);
4097
4098 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4099 prev_eff_load *= power_of(this_cpu);
4100 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4101
4102 balanced = this_eff_load <= prev_eff_load;
4103 } else
4104 balanced = true;
b3137bc8 4105
098fb9db 4106 /*
4ae7d5ce
IM
4107 * If the currently running task will sleep within
4108 * a reasonable amount of time then attract this newly
4109 * woken task:
098fb9db 4110 */
2fb7635c
PZ
4111 if (sync && balanced)
4112 return 1;
098fb9db 4113
41acab88 4114 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4115 tl_per_task = cpu_avg_load_per_task(this_cpu);
4116
c88d5910
PZ
4117 if (balanced ||
4118 (this_load <= load &&
4119 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4120 /*
4121 * This domain has SD_WAKE_AFFINE and
4122 * p is cache cold in this domain, and
4123 * there is no bad imbalance.
4124 */
c88d5910 4125 schedstat_inc(sd, ttwu_move_affine);
41acab88 4126 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4127
4128 return 1;
4129 }
4130 return 0;
4131}
4132
aaee1203
PZ
4133/*
4134 * find_idlest_group finds and returns the least busy CPU group within the
4135 * domain.
4136 */
4137static struct sched_group *
78e7ed53 4138find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4139 int this_cpu, int sd_flag)
e7693a36 4140{
b3bd3de6 4141 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4142 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4143 int load_idx = sd->forkexec_idx;
aaee1203 4144 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4145
c44f2a02
VG
4146 if (sd_flag & SD_BALANCE_WAKE)
4147 load_idx = sd->wake_idx;
4148
aaee1203
PZ
4149 do {
4150 unsigned long load, avg_load;
4151 int local_group;
4152 int i;
e7693a36 4153
aaee1203
PZ
4154 /* Skip over this group if it has no CPUs allowed */
4155 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4156 tsk_cpus_allowed(p)))
aaee1203
PZ
4157 continue;
4158
4159 local_group = cpumask_test_cpu(this_cpu,
4160 sched_group_cpus(group));
4161
4162 /* Tally up the load of all CPUs in the group */
4163 avg_load = 0;
4164
4165 for_each_cpu(i, sched_group_cpus(group)) {
4166 /* Bias balancing toward cpus of our domain */
4167 if (local_group)
4168 load = source_load(i, load_idx);
4169 else
4170 load = target_load(i, load_idx);
4171
4172 avg_load += load;
4173 }
4174
4175 /* Adjust by relative CPU power of the group */
9c3f75cb 4176 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4177
4178 if (local_group) {
4179 this_load = avg_load;
aaee1203
PZ
4180 } else if (avg_load < min_load) {
4181 min_load = avg_load;
4182 idlest = group;
4183 }
4184 } while (group = group->next, group != sd->groups);
4185
4186 if (!idlest || 100*this_load < imbalance*min_load)
4187 return NULL;
4188 return idlest;
4189}
4190
4191/*
4192 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4193 */
4194static int
4195find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4196{
4197 unsigned long load, min_load = ULONG_MAX;
4198 int idlest = -1;
4199 int i;
4200
4201 /* Traverse only the allowed CPUs */
fa17b507 4202 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4203 load = weighted_cpuload(i);
4204
4205 if (load < min_load || (load == min_load && i == this_cpu)) {
4206 min_load = load;
4207 idlest = i;
e7693a36
GH
4208 }
4209 }
4210
aaee1203
PZ
4211 return idlest;
4212}
e7693a36 4213
a50bde51
PZ
4214/*
4215 * Try and locate an idle CPU in the sched_domain.
4216 */
99bd5e2f 4217static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4218{
99bd5e2f 4219 struct sched_domain *sd;
37407ea7 4220 struct sched_group *sg;
e0a79f52 4221 int i = task_cpu(p);
a50bde51 4222
e0a79f52
MG
4223 if (idle_cpu(target))
4224 return target;
99bd5e2f
SS
4225
4226 /*
e0a79f52 4227 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4228 */
e0a79f52
MG
4229 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4230 return i;
a50bde51
PZ
4231
4232 /*
37407ea7 4233 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4234 */
518cd623 4235 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4236 for_each_lower_domain(sd) {
37407ea7
LT
4237 sg = sd->groups;
4238 do {
4239 if (!cpumask_intersects(sched_group_cpus(sg),
4240 tsk_cpus_allowed(p)))
4241 goto next;
4242
4243 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4244 if (i == target || !idle_cpu(i))
37407ea7
LT
4245 goto next;
4246 }
970e1789 4247
37407ea7
LT
4248 target = cpumask_first_and(sched_group_cpus(sg),
4249 tsk_cpus_allowed(p));
4250 goto done;
4251next:
4252 sg = sg->next;
4253 } while (sg != sd->groups);
4254 }
4255done:
a50bde51
PZ
4256 return target;
4257}
4258
aaee1203
PZ
4259/*
4260 * sched_balance_self: balance the current task (running on cpu) in domains
4261 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4262 * SD_BALANCE_EXEC.
4263 *
4264 * Balance, ie. select the least loaded group.
4265 *
4266 * Returns the target CPU number, or the same CPU if no balancing is needed.
4267 *
4268 * preempt must be disabled.
4269 */
0017d735 4270static int
ac66f547 4271select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4272{
29cd8bae 4273 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4274 int cpu = smp_processor_id();
c88d5910 4275 int new_cpu = cpu;
99bd5e2f 4276 int want_affine = 0;
5158f4e4 4277 int sync = wake_flags & WF_SYNC;
c88d5910 4278
29baa747 4279 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4280 return prev_cpu;
4281
0763a660 4282 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4283 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4284 want_affine = 1;
4285 new_cpu = prev_cpu;
4286 }
aaee1203 4287
dce840a0 4288 rcu_read_lock();
aaee1203 4289 for_each_domain(cpu, tmp) {
e4f42888
PZ
4290 if (!(tmp->flags & SD_LOAD_BALANCE))
4291 continue;
4292
fe3bcfe1 4293 /*
99bd5e2f
SS
4294 * If both cpu and prev_cpu are part of this domain,
4295 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4296 */
99bd5e2f
SS
4297 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4298 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4299 affine_sd = tmp;
29cd8bae 4300 break;
f03542a7 4301 }
29cd8bae 4302
f03542a7 4303 if (tmp->flags & sd_flag)
29cd8bae
PZ
4304 sd = tmp;
4305 }
4306
8b911acd 4307 if (affine_sd) {
f03542a7 4308 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4309 prev_cpu = cpu;
4310
4311 new_cpu = select_idle_sibling(p, prev_cpu);
4312 goto unlock;
8b911acd 4313 }
e7693a36 4314
aaee1203
PZ
4315 while (sd) {
4316 struct sched_group *group;
c88d5910 4317 int weight;
098fb9db 4318
0763a660 4319 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4320 sd = sd->child;
4321 continue;
4322 }
098fb9db 4323
c44f2a02 4324 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4325 if (!group) {
4326 sd = sd->child;
4327 continue;
4328 }
4ae7d5ce 4329
d7c33c49 4330 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4331 if (new_cpu == -1 || new_cpu == cpu) {
4332 /* Now try balancing at a lower domain level of cpu */
4333 sd = sd->child;
4334 continue;
e7693a36 4335 }
aaee1203
PZ
4336
4337 /* Now try balancing at a lower domain level of new_cpu */
4338 cpu = new_cpu;
669c55e9 4339 weight = sd->span_weight;
aaee1203
PZ
4340 sd = NULL;
4341 for_each_domain(cpu, tmp) {
669c55e9 4342 if (weight <= tmp->span_weight)
aaee1203 4343 break;
0763a660 4344 if (tmp->flags & sd_flag)
aaee1203
PZ
4345 sd = tmp;
4346 }
4347 /* while loop will break here if sd == NULL */
e7693a36 4348 }
dce840a0
PZ
4349unlock:
4350 rcu_read_unlock();
e7693a36 4351
c88d5910 4352 return new_cpu;
e7693a36 4353}
0a74bef8
PT
4354
4355/*
4356 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4357 * cfs_rq_of(p) references at time of call are still valid and identify the
4358 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4359 * other assumptions, including the state of rq->lock, should be made.
4360 */
4361static void
4362migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4363{
aff3e498
PT
4364 struct sched_entity *se = &p->se;
4365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4366
4367 /*
4368 * Load tracking: accumulate removed load so that it can be processed
4369 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4370 * to blocked load iff they have a positive decay-count. It can never
4371 * be negative here since on-rq tasks have decay-count == 0.
4372 */
4373 if (se->avg.decay_count) {
4374 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4375 atomic_long_add(se->avg.load_avg_contrib,
4376 &cfs_rq->removed_load);
aff3e498 4377 }
0a74bef8 4378}
e7693a36
GH
4379#endif /* CONFIG_SMP */
4380
e52fb7c0
PZ
4381static unsigned long
4382wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4383{
4384 unsigned long gran = sysctl_sched_wakeup_granularity;
4385
4386 /*
e52fb7c0
PZ
4387 * Since its curr running now, convert the gran from real-time
4388 * to virtual-time in his units.
13814d42
MG
4389 *
4390 * By using 'se' instead of 'curr' we penalize light tasks, so
4391 * they get preempted easier. That is, if 'se' < 'curr' then
4392 * the resulting gran will be larger, therefore penalizing the
4393 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4394 * be smaller, again penalizing the lighter task.
4395 *
4396 * This is especially important for buddies when the leftmost
4397 * task is higher priority than the buddy.
0bbd3336 4398 */
f4ad9bd2 4399 return calc_delta_fair(gran, se);
0bbd3336
PZ
4400}
4401
464b7527
PZ
4402/*
4403 * Should 'se' preempt 'curr'.
4404 *
4405 * |s1
4406 * |s2
4407 * |s3
4408 * g
4409 * |<--->|c
4410 *
4411 * w(c, s1) = -1
4412 * w(c, s2) = 0
4413 * w(c, s3) = 1
4414 *
4415 */
4416static int
4417wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4418{
4419 s64 gran, vdiff = curr->vruntime - se->vruntime;
4420
4421 if (vdiff <= 0)
4422 return -1;
4423
e52fb7c0 4424 gran = wakeup_gran(curr, se);
464b7527
PZ
4425 if (vdiff > gran)
4426 return 1;
4427
4428 return 0;
4429}
4430
02479099
PZ
4431static void set_last_buddy(struct sched_entity *se)
4432{
69c80f3e
VP
4433 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4434 return;
4435
4436 for_each_sched_entity(se)
4437 cfs_rq_of(se)->last = se;
02479099
PZ
4438}
4439
4440static void set_next_buddy(struct sched_entity *se)
4441{
69c80f3e
VP
4442 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4443 return;
4444
4445 for_each_sched_entity(se)
4446 cfs_rq_of(se)->next = se;
02479099
PZ
4447}
4448
ac53db59
RR
4449static void set_skip_buddy(struct sched_entity *se)
4450{
69c80f3e
VP
4451 for_each_sched_entity(se)
4452 cfs_rq_of(se)->skip = se;
ac53db59
RR
4453}
4454
bf0f6f24
IM
4455/*
4456 * Preempt the current task with a newly woken task if needed:
4457 */
5a9b86f6 4458static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4459{
4460 struct task_struct *curr = rq->curr;
8651a86c 4461 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4462 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4463 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4464 int next_buddy_marked = 0;
bf0f6f24 4465
4ae7d5ce
IM
4466 if (unlikely(se == pse))
4467 return;
4468
5238cdd3 4469 /*
ddcdf6e7 4470 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4471 * unconditionally check_prempt_curr() after an enqueue (which may have
4472 * lead to a throttle). This both saves work and prevents false
4473 * next-buddy nomination below.
4474 */
4475 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4476 return;
4477
2f36825b 4478 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4479 set_next_buddy(pse);
2f36825b
VP
4480 next_buddy_marked = 1;
4481 }
57fdc26d 4482
aec0a514
BR
4483 /*
4484 * We can come here with TIF_NEED_RESCHED already set from new task
4485 * wake up path.
5238cdd3
PT
4486 *
4487 * Note: this also catches the edge-case of curr being in a throttled
4488 * group (e.g. via set_curr_task), since update_curr() (in the
4489 * enqueue of curr) will have resulted in resched being set. This
4490 * prevents us from potentially nominating it as a false LAST_BUDDY
4491 * below.
aec0a514
BR
4492 */
4493 if (test_tsk_need_resched(curr))
4494 return;
4495
a2f5c9ab
DH
4496 /* Idle tasks are by definition preempted by non-idle tasks. */
4497 if (unlikely(curr->policy == SCHED_IDLE) &&
4498 likely(p->policy != SCHED_IDLE))
4499 goto preempt;
4500
91c234b4 4501 /*
a2f5c9ab
DH
4502 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4503 * is driven by the tick):
91c234b4 4504 */
8ed92e51 4505 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4506 return;
bf0f6f24 4507
464b7527 4508 find_matching_se(&se, &pse);
9bbd7374 4509 update_curr(cfs_rq_of(se));
002f128b 4510 BUG_ON(!pse);
2f36825b
VP
4511 if (wakeup_preempt_entity(se, pse) == 1) {
4512 /*
4513 * Bias pick_next to pick the sched entity that is
4514 * triggering this preemption.
4515 */
4516 if (!next_buddy_marked)
4517 set_next_buddy(pse);
3a7e73a2 4518 goto preempt;
2f36825b 4519 }
464b7527 4520
3a7e73a2 4521 return;
a65ac745 4522
3a7e73a2
PZ
4523preempt:
4524 resched_task(curr);
4525 /*
4526 * Only set the backward buddy when the current task is still
4527 * on the rq. This can happen when a wakeup gets interleaved
4528 * with schedule on the ->pre_schedule() or idle_balance()
4529 * point, either of which can * drop the rq lock.
4530 *
4531 * Also, during early boot the idle thread is in the fair class,
4532 * for obvious reasons its a bad idea to schedule back to it.
4533 */
4534 if (unlikely(!se->on_rq || curr == rq->idle))
4535 return;
4536
4537 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4538 set_last_buddy(se);
bf0f6f24
IM
4539}
4540
fb8d4724 4541static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4542{
8f4d37ec 4543 struct task_struct *p;
bf0f6f24
IM
4544 struct cfs_rq *cfs_rq = &rq->cfs;
4545 struct sched_entity *se;
4546
36ace27e 4547 if (!cfs_rq->nr_running)
bf0f6f24
IM
4548 return NULL;
4549
4550 do {
9948f4b2 4551 se = pick_next_entity(cfs_rq);
f4b6755f 4552 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4553 cfs_rq = group_cfs_rq(se);
4554 } while (cfs_rq);
4555
8f4d37ec 4556 p = task_of(se);
b39e66ea
MG
4557 if (hrtick_enabled(rq))
4558 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4559
4560 return p;
bf0f6f24
IM
4561}
4562
4563/*
4564 * Account for a descheduled task:
4565 */
31ee529c 4566static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4567{
4568 struct sched_entity *se = &prev->se;
4569 struct cfs_rq *cfs_rq;
4570
4571 for_each_sched_entity(se) {
4572 cfs_rq = cfs_rq_of(se);
ab6cde26 4573 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4574 }
4575}
4576
ac53db59
RR
4577/*
4578 * sched_yield() is very simple
4579 *
4580 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4581 */
4582static void yield_task_fair(struct rq *rq)
4583{
4584 struct task_struct *curr = rq->curr;
4585 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4586 struct sched_entity *se = &curr->se;
4587
4588 /*
4589 * Are we the only task in the tree?
4590 */
4591 if (unlikely(rq->nr_running == 1))
4592 return;
4593
4594 clear_buddies(cfs_rq, se);
4595
4596 if (curr->policy != SCHED_BATCH) {
4597 update_rq_clock(rq);
4598 /*
4599 * Update run-time statistics of the 'current'.
4600 */
4601 update_curr(cfs_rq);
916671c0
MG
4602 /*
4603 * Tell update_rq_clock() that we've just updated,
4604 * so we don't do microscopic update in schedule()
4605 * and double the fastpath cost.
4606 */
4607 rq->skip_clock_update = 1;
ac53db59
RR
4608 }
4609
4610 set_skip_buddy(se);
4611}
4612
d95f4122
MG
4613static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4614{
4615 struct sched_entity *se = &p->se;
4616
5238cdd3
PT
4617 /* throttled hierarchies are not runnable */
4618 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4619 return false;
4620
4621 /* Tell the scheduler that we'd really like pse to run next. */
4622 set_next_buddy(se);
4623
d95f4122
MG
4624 yield_task_fair(rq);
4625
4626 return true;
4627}
4628
681f3e68 4629#ifdef CONFIG_SMP
bf0f6f24 4630/**************************************************
e9c84cb8
PZ
4631 * Fair scheduling class load-balancing methods.
4632 *
4633 * BASICS
4634 *
4635 * The purpose of load-balancing is to achieve the same basic fairness the
4636 * per-cpu scheduler provides, namely provide a proportional amount of compute
4637 * time to each task. This is expressed in the following equation:
4638 *
4639 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4640 *
4641 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4642 * W_i,0 is defined as:
4643 *
4644 * W_i,0 = \Sum_j w_i,j (2)
4645 *
4646 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4647 * is derived from the nice value as per prio_to_weight[].
4648 *
4649 * The weight average is an exponential decay average of the instantaneous
4650 * weight:
4651 *
4652 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4653 *
4654 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4655 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4656 * can also include other factors [XXX].
4657 *
4658 * To achieve this balance we define a measure of imbalance which follows
4659 * directly from (1):
4660 *
4661 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4662 *
4663 * We them move tasks around to minimize the imbalance. In the continuous
4664 * function space it is obvious this converges, in the discrete case we get
4665 * a few fun cases generally called infeasible weight scenarios.
4666 *
4667 * [XXX expand on:
4668 * - infeasible weights;
4669 * - local vs global optima in the discrete case. ]
4670 *
4671 *
4672 * SCHED DOMAINS
4673 *
4674 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4675 * for all i,j solution, we create a tree of cpus that follows the hardware
4676 * topology where each level pairs two lower groups (or better). This results
4677 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4678 * tree to only the first of the previous level and we decrease the frequency
4679 * of load-balance at each level inv. proportional to the number of cpus in
4680 * the groups.
4681 *
4682 * This yields:
4683 *
4684 * log_2 n 1 n
4685 * \Sum { --- * --- * 2^i } = O(n) (5)
4686 * i = 0 2^i 2^i
4687 * `- size of each group
4688 * | | `- number of cpus doing load-balance
4689 * | `- freq
4690 * `- sum over all levels
4691 *
4692 * Coupled with a limit on how many tasks we can migrate every balance pass,
4693 * this makes (5) the runtime complexity of the balancer.
4694 *
4695 * An important property here is that each CPU is still (indirectly) connected
4696 * to every other cpu in at most O(log n) steps:
4697 *
4698 * The adjacency matrix of the resulting graph is given by:
4699 *
4700 * log_2 n
4701 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4702 * k = 0
4703 *
4704 * And you'll find that:
4705 *
4706 * A^(log_2 n)_i,j != 0 for all i,j (7)
4707 *
4708 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4709 * The task movement gives a factor of O(m), giving a convergence complexity
4710 * of:
4711 *
4712 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4713 *
4714 *
4715 * WORK CONSERVING
4716 *
4717 * In order to avoid CPUs going idle while there's still work to do, new idle
4718 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4719 * tree itself instead of relying on other CPUs to bring it work.
4720 *
4721 * This adds some complexity to both (5) and (8) but it reduces the total idle
4722 * time.
4723 *
4724 * [XXX more?]
4725 *
4726 *
4727 * CGROUPS
4728 *
4729 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4730 *
4731 * s_k,i
4732 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4733 * S_k
4734 *
4735 * Where
4736 *
4737 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4738 *
4739 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4740 *
4741 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4742 * property.
4743 *
4744 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4745 * rewrite all of this once again.]
4746 */
bf0f6f24 4747
ed387b78
HS
4748static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4749
0ec8aa00
PZ
4750enum fbq_type { regular, remote, all };
4751
ddcdf6e7 4752#define LBF_ALL_PINNED 0x01
367456c7 4753#define LBF_NEED_BREAK 0x02
6263322c
PZ
4754#define LBF_DST_PINNED 0x04
4755#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4756
4757struct lb_env {
4758 struct sched_domain *sd;
4759
ddcdf6e7 4760 struct rq *src_rq;
85c1e7da 4761 int src_cpu;
ddcdf6e7
PZ
4762
4763 int dst_cpu;
4764 struct rq *dst_rq;
4765
88b8dac0
SV
4766 struct cpumask *dst_grpmask;
4767 int new_dst_cpu;
ddcdf6e7 4768 enum cpu_idle_type idle;
bd939f45 4769 long imbalance;
b9403130
MW
4770 /* The set of CPUs under consideration for load-balancing */
4771 struct cpumask *cpus;
4772
ddcdf6e7 4773 unsigned int flags;
367456c7
PZ
4774
4775 unsigned int loop;
4776 unsigned int loop_break;
4777 unsigned int loop_max;
0ec8aa00
PZ
4778
4779 enum fbq_type fbq_type;
ddcdf6e7
PZ
4780};
4781
1e3c88bd 4782/*
ddcdf6e7 4783 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4784 * Both runqueues must be locked.
4785 */
ddcdf6e7 4786static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4787{
ddcdf6e7
PZ
4788 deactivate_task(env->src_rq, p, 0);
4789 set_task_cpu(p, env->dst_cpu);
4790 activate_task(env->dst_rq, p, 0);
4791 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4792}
4793
029632fb
PZ
4794/*
4795 * Is this task likely cache-hot:
4796 */
4797static int
4798task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4799{
4800 s64 delta;
4801
4802 if (p->sched_class != &fair_sched_class)
4803 return 0;
4804
4805 if (unlikely(p->policy == SCHED_IDLE))
4806 return 0;
4807
4808 /*
4809 * Buddy candidates are cache hot:
4810 */
4811 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4812 (&p->se == cfs_rq_of(&p->se)->next ||
4813 &p->se == cfs_rq_of(&p->se)->last))
4814 return 1;
4815
4816 if (sysctl_sched_migration_cost == -1)
4817 return 1;
4818 if (sysctl_sched_migration_cost == 0)
4819 return 0;
4820
4821 delta = now - p->se.exec_start;
4822
4823 return delta < (s64)sysctl_sched_migration_cost;
4824}
4825
3a7053b3
MG
4826#ifdef CONFIG_NUMA_BALANCING
4827/* Returns true if the destination node has incurred more faults */
4828static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4829{
4830 int src_nid, dst_nid;
4831
ff1df896 4832 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
4833 !(env->sd->flags & SD_NUMA)) {
4834 return false;
4835 }
4836
4837 src_nid = cpu_to_node(env->src_cpu);
4838 dst_nid = cpu_to_node(env->dst_cpu);
4839
83e1d2cd 4840 if (src_nid == dst_nid)
3a7053b3
MG
4841 return false;
4842
83e1d2cd
MG
4843 /* Always encourage migration to the preferred node. */
4844 if (dst_nid == p->numa_preferred_nid)
4845 return true;
4846
887c290e
RR
4847 /* If both task and group weight improve, this move is a winner. */
4848 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4849 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4850 return true;
4851
4852 return false;
4853}
7a0f3083
MG
4854
4855
4856static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4857{
4858 int src_nid, dst_nid;
4859
4860 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4861 return false;
4862
ff1df896 4863 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
4864 return false;
4865
4866 src_nid = cpu_to_node(env->src_cpu);
4867 dst_nid = cpu_to_node(env->dst_cpu);
4868
83e1d2cd 4869 if (src_nid == dst_nid)
7a0f3083
MG
4870 return false;
4871
83e1d2cd
MG
4872 /* Migrating away from the preferred node is always bad. */
4873 if (src_nid == p->numa_preferred_nid)
4874 return true;
4875
887c290e
RR
4876 /* If either task or group weight get worse, don't do it. */
4877 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4878 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4879 return true;
4880
4881 return false;
4882}
4883
3a7053b3
MG
4884#else
4885static inline bool migrate_improves_locality(struct task_struct *p,
4886 struct lb_env *env)
4887{
4888 return false;
4889}
7a0f3083
MG
4890
4891static inline bool migrate_degrades_locality(struct task_struct *p,
4892 struct lb_env *env)
4893{
4894 return false;
4895}
3a7053b3
MG
4896#endif
4897
1e3c88bd
PZ
4898/*
4899 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4900 */
4901static
8e45cb54 4902int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4903{
4904 int tsk_cache_hot = 0;
4905 /*
4906 * We do not migrate tasks that are:
d3198084 4907 * 1) throttled_lb_pair, or
1e3c88bd 4908 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4909 * 3) running (obviously), or
4910 * 4) are cache-hot on their current CPU.
1e3c88bd 4911 */
d3198084
JK
4912 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4913 return 0;
4914
ddcdf6e7 4915 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4916 int cpu;
88b8dac0 4917
41acab88 4918 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4919
6263322c
PZ
4920 env->flags |= LBF_SOME_PINNED;
4921
88b8dac0
SV
4922 /*
4923 * Remember if this task can be migrated to any other cpu in
4924 * our sched_group. We may want to revisit it if we couldn't
4925 * meet load balance goals by pulling other tasks on src_cpu.
4926 *
4927 * Also avoid computing new_dst_cpu if we have already computed
4928 * one in current iteration.
4929 */
6263322c 4930 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4931 return 0;
4932
e02e60c1
JK
4933 /* Prevent to re-select dst_cpu via env's cpus */
4934 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4935 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4936 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4937 env->new_dst_cpu = cpu;
4938 break;
4939 }
88b8dac0 4940 }
e02e60c1 4941
1e3c88bd
PZ
4942 return 0;
4943 }
88b8dac0
SV
4944
4945 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4946 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4947
ddcdf6e7 4948 if (task_running(env->src_rq, p)) {
41acab88 4949 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4950 return 0;
4951 }
4952
4953 /*
4954 * Aggressive migration if:
3a7053b3
MG
4955 * 1) destination numa is preferred
4956 * 2) task is cache cold, or
4957 * 3) too many balance attempts have failed.
1e3c88bd 4958 */
78becc27 4959 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4960 if (!tsk_cache_hot)
4961 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4962
4963 if (migrate_improves_locality(p, env)) {
4964#ifdef CONFIG_SCHEDSTATS
4965 if (tsk_cache_hot) {
4966 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4967 schedstat_inc(p, se.statistics.nr_forced_migrations);
4968 }
4969#endif
4970 return 1;
4971 }
4972
1e3c88bd 4973 if (!tsk_cache_hot ||
8e45cb54 4974 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4975
1e3c88bd 4976 if (tsk_cache_hot) {
8e45cb54 4977 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4978 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4979 }
4e2dcb73 4980
1e3c88bd
PZ
4981 return 1;
4982 }
4983
4e2dcb73
ZH
4984 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4985 return 0;
1e3c88bd
PZ
4986}
4987
897c395f
PZ
4988/*
4989 * move_one_task tries to move exactly one task from busiest to this_rq, as
4990 * part of active balancing operations within "domain".
4991 * Returns 1 if successful and 0 otherwise.
4992 *
4993 * Called with both runqueues locked.
4994 */
8e45cb54 4995static int move_one_task(struct lb_env *env)
897c395f
PZ
4996{
4997 struct task_struct *p, *n;
897c395f 4998
367456c7 4999 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5000 if (!can_migrate_task(p, env))
5001 continue;
897c395f 5002
367456c7
PZ
5003 move_task(p, env);
5004 /*
5005 * Right now, this is only the second place move_task()
5006 * is called, so we can safely collect move_task()
5007 * stats here rather than inside move_task().
5008 */
5009 schedstat_inc(env->sd, lb_gained[env->idle]);
5010 return 1;
897c395f 5011 }
897c395f
PZ
5012 return 0;
5013}
5014
eb95308e
PZ
5015static const unsigned int sched_nr_migrate_break = 32;
5016
5d6523eb 5017/*
bd939f45 5018 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5019 * this_rq, as part of a balancing operation within domain "sd".
5020 * Returns 1 if successful and 0 otherwise.
5021 *
5022 * Called with both runqueues locked.
5023 */
5024static int move_tasks(struct lb_env *env)
1e3c88bd 5025{
5d6523eb
PZ
5026 struct list_head *tasks = &env->src_rq->cfs_tasks;
5027 struct task_struct *p;
367456c7
PZ
5028 unsigned long load;
5029 int pulled = 0;
1e3c88bd 5030
bd939f45 5031 if (env->imbalance <= 0)
5d6523eb 5032 return 0;
1e3c88bd 5033
5d6523eb
PZ
5034 while (!list_empty(tasks)) {
5035 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5036
367456c7
PZ
5037 env->loop++;
5038 /* We've more or less seen every task there is, call it quits */
5d6523eb 5039 if (env->loop > env->loop_max)
367456c7 5040 break;
5d6523eb
PZ
5041
5042 /* take a breather every nr_migrate tasks */
367456c7 5043 if (env->loop > env->loop_break) {
eb95308e 5044 env->loop_break += sched_nr_migrate_break;
8e45cb54 5045 env->flags |= LBF_NEED_BREAK;
ee00e66f 5046 break;
a195f004 5047 }
1e3c88bd 5048
d3198084 5049 if (!can_migrate_task(p, env))
367456c7
PZ
5050 goto next;
5051
5052 load = task_h_load(p);
5d6523eb 5053
eb95308e 5054 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5055 goto next;
5056
bd939f45 5057 if ((load / 2) > env->imbalance)
367456c7 5058 goto next;
1e3c88bd 5059
ddcdf6e7 5060 move_task(p, env);
ee00e66f 5061 pulled++;
bd939f45 5062 env->imbalance -= load;
1e3c88bd
PZ
5063
5064#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5065 /*
5066 * NEWIDLE balancing is a source of latency, so preemptible
5067 * kernels will stop after the first task is pulled to minimize
5068 * the critical section.
5069 */
5d6523eb 5070 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5071 break;
1e3c88bd
PZ
5072#endif
5073
ee00e66f
PZ
5074 /*
5075 * We only want to steal up to the prescribed amount of
5076 * weighted load.
5077 */
bd939f45 5078 if (env->imbalance <= 0)
ee00e66f 5079 break;
367456c7
PZ
5080
5081 continue;
5082next:
5d6523eb 5083 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5084 }
5d6523eb 5085
1e3c88bd 5086 /*
ddcdf6e7
PZ
5087 * Right now, this is one of only two places move_task() is called,
5088 * so we can safely collect move_task() stats here rather than
5089 * inside move_task().
1e3c88bd 5090 */
8e45cb54 5091 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5092
5d6523eb 5093 return pulled;
1e3c88bd
PZ
5094}
5095
230059de 5096#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5097/*
5098 * update tg->load_weight by folding this cpu's load_avg
5099 */
48a16753 5100static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5101{
48a16753
PT
5102 struct sched_entity *se = tg->se[cpu];
5103 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5104
48a16753
PT
5105 /* throttled entities do not contribute to load */
5106 if (throttled_hierarchy(cfs_rq))
5107 return;
9e3081ca 5108
aff3e498 5109 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5110
82958366
PT
5111 if (se) {
5112 update_entity_load_avg(se, 1);
5113 /*
5114 * We pivot on our runnable average having decayed to zero for
5115 * list removal. This generally implies that all our children
5116 * have also been removed (modulo rounding error or bandwidth
5117 * control); however, such cases are rare and we can fix these
5118 * at enqueue.
5119 *
5120 * TODO: fix up out-of-order children on enqueue.
5121 */
5122 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5123 list_del_leaf_cfs_rq(cfs_rq);
5124 } else {
48a16753 5125 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5126 update_rq_runnable_avg(rq, rq->nr_running);
5127 }
9e3081ca
PZ
5128}
5129
48a16753 5130static void update_blocked_averages(int cpu)
9e3081ca 5131{
9e3081ca 5132 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5133 struct cfs_rq *cfs_rq;
5134 unsigned long flags;
9e3081ca 5135
48a16753
PT
5136 raw_spin_lock_irqsave(&rq->lock, flags);
5137 update_rq_clock(rq);
9763b67f
PZ
5138 /*
5139 * Iterates the task_group tree in a bottom up fashion, see
5140 * list_add_leaf_cfs_rq() for details.
5141 */
64660c86 5142 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5143 /*
5144 * Note: We may want to consider periodically releasing
5145 * rq->lock about these updates so that creating many task
5146 * groups does not result in continually extending hold time.
5147 */
5148 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5149 }
48a16753
PT
5150
5151 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5152}
5153
9763b67f 5154/*
68520796 5155 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5156 * This needs to be done in a top-down fashion because the load of a child
5157 * group is a fraction of its parents load.
5158 */
68520796 5159static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5160{
68520796
VD
5161 struct rq *rq = rq_of(cfs_rq);
5162 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5163 unsigned long now = jiffies;
68520796 5164 unsigned long load;
a35b6466 5165
68520796 5166 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5167 return;
5168
68520796
VD
5169 cfs_rq->h_load_next = NULL;
5170 for_each_sched_entity(se) {
5171 cfs_rq = cfs_rq_of(se);
5172 cfs_rq->h_load_next = se;
5173 if (cfs_rq->last_h_load_update == now)
5174 break;
5175 }
a35b6466 5176
68520796 5177 if (!se) {
7e3115ef 5178 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5179 cfs_rq->last_h_load_update = now;
5180 }
5181
5182 while ((se = cfs_rq->h_load_next) != NULL) {
5183 load = cfs_rq->h_load;
5184 load = div64_ul(load * se->avg.load_avg_contrib,
5185 cfs_rq->runnable_load_avg + 1);
5186 cfs_rq = group_cfs_rq(se);
5187 cfs_rq->h_load = load;
5188 cfs_rq->last_h_load_update = now;
5189 }
9763b67f
PZ
5190}
5191
367456c7 5192static unsigned long task_h_load(struct task_struct *p)
230059de 5193{
367456c7 5194 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5195
68520796 5196 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5197 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5198 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5199}
5200#else
48a16753 5201static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5202{
5203}
5204
367456c7 5205static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5206{
a003a25b 5207 return p->se.avg.load_avg_contrib;
1e3c88bd 5208}
230059de 5209#endif
1e3c88bd 5210
1e3c88bd 5211/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5212/*
5213 * sg_lb_stats - stats of a sched_group required for load_balancing
5214 */
5215struct sg_lb_stats {
5216 unsigned long avg_load; /*Avg load across the CPUs of the group */
5217 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5218 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5219 unsigned long load_per_task;
3ae11c90 5220 unsigned long group_power;
147c5fc2
PZ
5221 unsigned int sum_nr_running; /* Nr tasks running in the group */
5222 unsigned int group_capacity;
5223 unsigned int idle_cpus;
5224 unsigned int group_weight;
1e3c88bd 5225 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5226 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5227#ifdef CONFIG_NUMA_BALANCING
5228 unsigned int nr_numa_running;
5229 unsigned int nr_preferred_running;
5230#endif
1e3c88bd
PZ
5231};
5232
56cf515b
JK
5233/*
5234 * sd_lb_stats - Structure to store the statistics of a sched_domain
5235 * during load balancing.
5236 */
5237struct sd_lb_stats {
5238 struct sched_group *busiest; /* Busiest group in this sd */
5239 struct sched_group *local; /* Local group in this sd */
5240 unsigned long total_load; /* Total load of all groups in sd */
5241 unsigned long total_pwr; /* Total power of all groups in sd */
5242 unsigned long avg_load; /* Average load across all groups in sd */
5243
56cf515b 5244 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5245 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5246};
5247
147c5fc2
PZ
5248static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5249{
5250 /*
5251 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5252 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5253 * We must however clear busiest_stat::avg_load because
5254 * update_sd_pick_busiest() reads this before assignment.
5255 */
5256 *sds = (struct sd_lb_stats){
5257 .busiest = NULL,
5258 .local = NULL,
5259 .total_load = 0UL,
5260 .total_pwr = 0UL,
5261 .busiest_stat = {
5262 .avg_load = 0UL,
5263 },
5264 };
5265}
5266
1e3c88bd
PZ
5267/**
5268 * get_sd_load_idx - Obtain the load index for a given sched domain.
5269 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5270 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5271 *
5272 * Return: The load index.
1e3c88bd
PZ
5273 */
5274static inline int get_sd_load_idx(struct sched_domain *sd,
5275 enum cpu_idle_type idle)
5276{
5277 int load_idx;
5278
5279 switch (idle) {
5280 case CPU_NOT_IDLE:
5281 load_idx = sd->busy_idx;
5282 break;
5283
5284 case CPU_NEWLY_IDLE:
5285 load_idx = sd->newidle_idx;
5286 break;
5287 default:
5288 load_idx = sd->idle_idx;
5289 break;
5290 }
5291
5292 return load_idx;
5293}
5294
15f803c9 5295static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5296{
1399fa78 5297 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5298}
5299
5300unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5301{
5302 return default_scale_freq_power(sd, cpu);
5303}
5304
15f803c9 5305static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5306{
669c55e9 5307 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5308 unsigned long smt_gain = sd->smt_gain;
5309
5310 smt_gain /= weight;
5311
5312 return smt_gain;
5313}
5314
5315unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5316{
5317 return default_scale_smt_power(sd, cpu);
5318}
5319
15f803c9 5320static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5321{
5322 struct rq *rq = cpu_rq(cpu);
b654f7de 5323 u64 total, available, age_stamp, avg;
1e3c88bd 5324
b654f7de
PZ
5325 /*
5326 * Since we're reading these variables without serialization make sure
5327 * we read them once before doing sanity checks on them.
5328 */
5329 age_stamp = ACCESS_ONCE(rq->age_stamp);
5330 avg = ACCESS_ONCE(rq->rt_avg);
5331
78becc27 5332 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5333
b654f7de 5334 if (unlikely(total < avg)) {
aa483808
VP
5335 /* Ensures that power won't end up being negative */
5336 available = 0;
5337 } else {
b654f7de 5338 available = total - avg;
aa483808 5339 }
1e3c88bd 5340
1399fa78
NR
5341 if (unlikely((s64)total < SCHED_POWER_SCALE))
5342 total = SCHED_POWER_SCALE;
1e3c88bd 5343
1399fa78 5344 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5345
5346 return div_u64(available, total);
5347}
5348
5349static void update_cpu_power(struct sched_domain *sd, int cpu)
5350{
669c55e9 5351 unsigned long weight = sd->span_weight;
1399fa78 5352 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5353 struct sched_group *sdg = sd->groups;
5354
1e3c88bd
PZ
5355 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5356 if (sched_feat(ARCH_POWER))
5357 power *= arch_scale_smt_power(sd, cpu);
5358 else
5359 power *= default_scale_smt_power(sd, cpu);
5360
1399fa78 5361 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5362 }
5363
9c3f75cb 5364 sdg->sgp->power_orig = power;
9d5efe05
SV
5365
5366 if (sched_feat(ARCH_POWER))
5367 power *= arch_scale_freq_power(sd, cpu);
5368 else
5369 power *= default_scale_freq_power(sd, cpu);
5370
1399fa78 5371 power >>= SCHED_POWER_SHIFT;
9d5efe05 5372
1e3c88bd 5373 power *= scale_rt_power(cpu);
1399fa78 5374 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5375
5376 if (!power)
5377 power = 1;
5378
e51fd5e2 5379 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5380 sdg->sgp->power = power;
1e3c88bd
PZ
5381}
5382
029632fb 5383void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5384{
5385 struct sched_domain *child = sd->child;
5386 struct sched_group *group, *sdg = sd->groups;
863bffc8 5387 unsigned long power, power_orig;
4ec4412e
VG
5388 unsigned long interval;
5389
5390 interval = msecs_to_jiffies(sd->balance_interval);
5391 interval = clamp(interval, 1UL, max_load_balance_interval);
5392 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5393
5394 if (!child) {
5395 update_cpu_power(sd, cpu);
5396 return;
5397 }
5398
863bffc8 5399 power_orig = power = 0;
1e3c88bd 5400
74a5ce20
PZ
5401 if (child->flags & SD_OVERLAP) {
5402 /*
5403 * SD_OVERLAP domains cannot assume that child groups
5404 * span the current group.
5405 */
5406
863bffc8 5407 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5408 struct sched_group_power *sgp;
5409 struct rq *rq = cpu_rq(cpu);
863bffc8 5410
9abf24d4
SD
5411 /*
5412 * build_sched_domains() -> init_sched_groups_power()
5413 * gets here before we've attached the domains to the
5414 * runqueues.
5415 *
5416 * Use power_of(), which is set irrespective of domains
5417 * in update_cpu_power().
5418 *
5419 * This avoids power/power_orig from being 0 and
5420 * causing divide-by-zero issues on boot.
5421 *
5422 * Runtime updates will correct power_orig.
5423 */
5424 if (unlikely(!rq->sd)) {
5425 power_orig += power_of(cpu);
5426 power += power_of(cpu);
5427 continue;
5428 }
863bffc8 5429
9abf24d4
SD
5430 sgp = rq->sd->groups->sgp;
5431 power_orig += sgp->power_orig;
5432 power += sgp->power;
863bffc8 5433 }
74a5ce20
PZ
5434 } else {
5435 /*
5436 * !SD_OVERLAP domains can assume that child groups
5437 * span the current group.
5438 */
5439
5440 group = child->groups;
5441 do {
863bffc8 5442 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5443 power += group->sgp->power;
5444 group = group->next;
5445 } while (group != child->groups);
5446 }
1e3c88bd 5447
863bffc8
PZ
5448 sdg->sgp->power_orig = power_orig;
5449 sdg->sgp->power = power;
1e3c88bd
PZ
5450}
5451
9d5efe05
SV
5452/*
5453 * Try and fix up capacity for tiny siblings, this is needed when
5454 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5455 * which on its own isn't powerful enough.
5456 *
5457 * See update_sd_pick_busiest() and check_asym_packing().
5458 */
5459static inline int
5460fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5461{
5462 /*
1399fa78 5463 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5464 */
a6c75f2f 5465 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5466 return 0;
5467
5468 /*
5469 * If ~90% of the cpu_power is still there, we're good.
5470 */
9c3f75cb 5471 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5472 return 1;
5473
5474 return 0;
5475}
5476
30ce5dab
PZ
5477/*
5478 * Group imbalance indicates (and tries to solve) the problem where balancing
5479 * groups is inadequate due to tsk_cpus_allowed() constraints.
5480 *
5481 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5482 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5483 * Something like:
5484 *
5485 * { 0 1 2 3 } { 4 5 6 7 }
5486 * * * * *
5487 *
5488 * If we were to balance group-wise we'd place two tasks in the first group and
5489 * two tasks in the second group. Clearly this is undesired as it will overload
5490 * cpu 3 and leave one of the cpus in the second group unused.
5491 *
5492 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5493 * by noticing the lower domain failed to reach balance and had difficulty
5494 * moving tasks due to affinity constraints.
30ce5dab
PZ
5495 *
5496 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5497 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5498 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5499 * to create an effective group imbalance.
5500 *
5501 * This is a somewhat tricky proposition since the next run might not find the
5502 * group imbalance and decide the groups need to be balanced again. A most
5503 * subtle and fragile situation.
5504 */
5505
6263322c 5506static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5507{
6263322c 5508 return group->sgp->imbalance;
30ce5dab
PZ
5509}
5510
b37d9316
PZ
5511/*
5512 * Compute the group capacity.
5513 *
c61037e9
PZ
5514 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5515 * first dividing out the smt factor and computing the actual number of cores
5516 * and limit power unit capacity with that.
b37d9316
PZ
5517 */
5518static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5519{
c61037e9
PZ
5520 unsigned int capacity, smt, cpus;
5521 unsigned int power, power_orig;
5522
5523 power = group->sgp->power;
5524 power_orig = group->sgp->power_orig;
5525 cpus = group->group_weight;
b37d9316 5526
c61037e9
PZ
5527 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5528 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5529 capacity = cpus / smt; /* cores */
b37d9316 5530
c61037e9 5531 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5532 if (!capacity)
5533 capacity = fix_small_capacity(env->sd, group);
5534
5535 return capacity;
5536}
5537
1e3c88bd
PZ
5538/**
5539 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5540 * @env: The load balancing environment.
1e3c88bd 5541 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5542 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5543 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5544 * @sgs: variable to hold the statistics for this group.
5545 */
bd939f45
PZ
5546static inline void update_sg_lb_stats(struct lb_env *env,
5547 struct sched_group *group, int load_idx,
23f0d209 5548 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5549{
30ce5dab 5550 unsigned long load;
bd939f45 5551 int i;
1e3c88bd 5552
b72ff13c
PZ
5553 memset(sgs, 0, sizeof(*sgs));
5554
b9403130 5555 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5556 struct rq *rq = cpu_rq(i);
5557
1e3c88bd 5558 /* Bias balancing toward cpus of our domain */
6263322c 5559 if (local_group)
04f733b4 5560 load = target_load(i, load_idx);
6263322c 5561 else
1e3c88bd 5562 load = source_load(i, load_idx);
1e3c88bd
PZ
5563
5564 sgs->group_load += load;
380c9077 5565 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5566#ifdef CONFIG_NUMA_BALANCING
5567 sgs->nr_numa_running += rq->nr_numa_running;
5568 sgs->nr_preferred_running += rq->nr_preferred_running;
5569#endif
1e3c88bd 5570 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5571 if (idle_cpu(i))
5572 sgs->idle_cpus++;
1e3c88bd
PZ
5573 }
5574
1e3c88bd 5575 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5576 sgs->group_power = group->sgp->power;
5577 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5578
dd5feea1 5579 if (sgs->sum_nr_running)
38d0f770 5580 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5581
aae6d3dd 5582 sgs->group_weight = group->group_weight;
fab47622 5583
b37d9316
PZ
5584 sgs->group_imb = sg_imbalanced(group);
5585 sgs->group_capacity = sg_capacity(env, group);
5586
fab47622
NR
5587 if (sgs->group_capacity > sgs->sum_nr_running)
5588 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5589}
5590
532cb4c4
MN
5591/**
5592 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5593 * @env: The load balancing environment.
532cb4c4
MN
5594 * @sds: sched_domain statistics
5595 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5596 * @sgs: sched_group statistics
532cb4c4
MN
5597 *
5598 * Determine if @sg is a busier group than the previously selected
5599 * busiest group.
e69f6186
YB
5600 *
5601 * Return: %true if @sg is a busier group than the previously selected
5602 * busiest group. %false otherwise.
532cb4c4 5603 */
bd939f45 5604static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5605 struct sd_lb_stats *sds,
5606 struct sched_group *sg,
bd939f45 5607 struct sg_lb_stats *sgs)
532cb4c4 5608{
56cf515b 5609 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5610 return false;
5611
5612 if (sgs->sum_nr_running > sgs->group_capacity)
5613 return true;
5614
5615 if (sgs->group_imb)
5616 return true;
5617
5618 /*
5619 * ASYM_PACKING needs to move all the work to the lowest
5620 * numbered CPUs in the group, therefore mark all groups
5621 * higher than ourself as busy.
5622 */
bd939f45
PZ
5623 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5624 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5625 if (!sds->busiest)
5626 return true;
5627
5628 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5629 return true;
5630 }
5631
5632 return false;
5633}
5634
0ec8aa00
PZ
5635#ifdef CONFIG_NUMA_BALANCING
5636static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5637{
5638 if (sgs->sum_nr_running > sgs->nr_numa_running)
5639 return regular;
5640 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5641 return remote;
5642 return all;
5643}
5644
5645static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5646{
5647 if (rq->nr_running > rq->nr_numa_running)
5648 return regular;
5649 if (rq->nr_running > rq->nr_preferred_running)
5650 return remote;
5651 return all;
5652}
5653#else
5654static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5655{
5656 return all;
5657}
5658
5659static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5660{
5661 return regular;
5662}
5663#endif /* CONFIG_NUMA_BALANCING */
5664
1e3c88bd 5665/**
461819ac 5666 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5667 * @env: The load balancing environment.
1e3c88bd
PZ
5668 * @sds: variable to hold the statistics for this sched_domain.
5669 */
0ec8aa00 5670static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5671{
bd939f45
PZ
5672 struct sched_domain *child = env->sd->child;
5673 struct sched_group *sg = env->sd->groups;
56cf515b 5674 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5675 int load_idx, prefer_sibling = 0;
5676
5677 if (child && child->flags & SD_PREFER_SIBLING)
5678 prefer_sibling = 1;
5679
bd939f45 5680 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5681
5682 do {
56cf515b 5683 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5684 int local_group;
5685
bd939f45 5686 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5687 if (local_group) {
5688 sds->local = sg;
5689 sgs = &sds->local_stat;
b72ff13c
PZ
5690
5691 if (env->idle != CPU_NEWLY_IDLE ||
5692 time_after_eq(jiffies, sg->sgp->next_update))
5693 update_group_power(env->sd, env->dst_cpu);
56cf515b 5694 }
1e3c88bd 5695
56cf515b 5696 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5697
b72ff13c
PZ
5698 if (local_group)
5699 goto next_group;
5700
1e3c88bd
PZ
5701 /*
5702 * In case the child domain prefers tasks go to siblings
532cb4c4 5703 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5704 * and move all the excess tasks away. We lower the capacity
5705 * of a group only if the local group has the capacity to fit
5706 * these excess tasks, i.e. nr_running < group_capacity. The
5707 * extra check prevents the case where you always pull from the
5708 * heaviest group when it is already under-utilized (possible
5709 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5710 */
b72ff13c
PZ
5711 if (prefer_sibling && sds->local &&
5712 sds->local_stat.group_has_capacity)
147c5fc2 5713 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5714
b72ff13c 5715 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5716 sds->busiest = sg;
56cf515b 5717 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5718 }
5719
b72ff13c
PZ
5720next_group:
5721 /* Now, start updating sd_lb_stats */
5722 sds->total_load += sgs->group_load;
5723 sds->total_pwr += sgs->group_power;
5724
532cb4c4 5725 sg = sg->next;
bd939f45 5726 } while (sg != env->sd->groups);
0ec8aa00
PZ
5727
5728 if (env->sd->flags & SD_NUMA)
5729 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5730}
5731
532cb4c4
MN
5732/**
5733 * check_asym_packing - Check to see if the group is packed into the
5734 * sched doman.
5735 *
5736 * This is primarily intended to used at the sibling level. Some
5737 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5738 * case of POWER7, it can move to lower SMT modes only when higher
5739 * threads are idle. When in lower SMT modes, the threads will
5740 * perform better since they share less core resources. Hence when we
5741 * have idle threads, we want them to be the higher ones.
5742 *
5743 * This packing function is run on idle threads. It checks to see if
5744 * the busiest CPU in this domain (core in the P7 case) has a higher
5745 * CPU number than the packing function is being run on. Here we are
5746 * assuming lower CPU number will be equivalent to lower a SMT thread
5747 * number.
5748 *
e69f6186 5749 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5750 * this CPU. The amount of the imbalance is returned in *imbalance.
5751 *
cd96891d 5752 * @env: The load balancing environment.
532cb4c4 5753 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5754 */
bd939f45 5755static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5756{
5757 int busiest_cpu;
5758
bd939f45 5759 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5760 return 0;
5761
5762 if (!sds->busiest)
5763 return 0;
5764
5765 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5766 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5767 return 0;
5768
bd939f45 5769 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5770 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5771 SCHED_POWER_SCALE);
bd939f45 5772
532cb4c4 5773 return 1;
1e3c88bd
PZ
5774}
5775
5776/**
5777 * fix_small_imbalance - Calculate the minor imbalance that exists
5778 * amongst the groups of a sched_domain, during
5779 * load balancing.
cd96891d 5780 * @env: The load balancing environment.
1e3c88bd 5781 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5782 */
bd939f45
PZ
5783static inline
5784void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5785{
5786 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5787 unsigned int imbn = 2;
dd5feea1 5788 unsigned long scaled_busy_load_per_task;
56cf515b 5789 struct sg_lb_stats *local, *busiest;
1e3c88bd 5790
56cf515b
JK
5791 local = &sds->local_stat;
5792 busiest = &sds->busiest_stat;
1e3c88bd 5793
56cf515b
JK
5794 if (!local->sum_nr_running)
5795 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5796 else if (busiest->load_per_task > local->load_per_task)
5797 imbn = 1;
dd5feea1 5798
56cf515b
JK
5799 scaled_busy_load_per_task =
5800 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5801 busiest->group_power;
56cf515b 5802
3029ede3
VD
5803 if (busiest->avg_load + scaled_busy_load_per_task >=
5804 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5805 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5806 return;
5807 }
5808
5809 /*
5810 * OK, we don't have enough imbalance to justify moving tasks,
5811 * however we may be able to increase total CPU power used by
5812 * moving them.
5813 */
5814
3ae11c90 5815 pwr_now += busiest->group_power *
56cf515b 5816 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5817 pwr_now += local->group_power *
56cf515b 5818 min(local->load_per_task, local->avg_load);
1399fa78 5819 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5820
5821 /* Amount of load we'd subtract */
56cf515b 5822 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5823 busiest->group_power;
56cf515b 5824 if (busiest->avg_load > tmp) {
3ae11c90 5825 pwr_move += busiest->group_power *
56cf515b
JK
5826 min(busiest->load_per_task,
5827 busiest->avg_load - tmp);
5828 }
1e3c88bd
PZ
5829
5830 /* Amount of load we'd add */
3ae11c90 5831 if (busiest->avg_load * busiest->group_power <
56cf515b 5832 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5833 tmp = (busiest->avg_load * busiest->group_power) /
5834 local->group_power;
56cf515b
JK
5835 } else {
5836 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5837 local->group_power;
56cf515b 5838 }
3ae11c90
PZ
5839 pwr_move += local->group_power *
5840 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5841 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5842
5843 /* Move if we gain throughput */
5844 if (pwr_move > pwr_now)
56cf515b 5845 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5846}
5847
5848/**
5849 * calculate_imbalance - Calculate the amount of imbalance present within the
5850 * groups of a given sched_domain during load balance.
bd939f45 5851 * @env: load balance environment
1e3c88bd 5852 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5853 */
bd939f45 5854static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5855{
dd5feea1 5856 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5857 struct sg_lb_stats *local, *busiest;
5858
5859 local = &sds->local_stat;
56cf515b 5860 busiest = &sds->busiest_stat;
dd5feea1 5861
56cf515b 5862 if (busiest->group_imb) {
30ce5dab
PZ
5863 /*
5864 * In the group_imb case we cannot rely on group-wide averages
5865 * to ensure cpu-load equilibrium, look at wider averages. XXX
5866 */
56cf515b
JK
5867 busiest->load_per_task =
5868 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5869 }
5870
1e3c88bd
PZ
5871 /*
5872 * In the presence of smp nice balancing, certain scenarios can have
5873 * max load less than avg load(as we skip the groups at or below
5874 * its cpu_power, while calculating max_load..)
5875 */
b1885550
VD
5876 if (busiest->avg_load <= sds->avg_load ||
5877 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5878 env->imbalance = 0;
5879 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5880 }
5881
56cf515b 5882 if (!busiest->group_imb) {
dd5feea1
SS
5883 /*
5884 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5885 * Except of course for the group_imb case, since then we might
5886 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5887 */
56cf515b
JK
5888 load_above_capacity =
5889 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5890
1399fa78 5891 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5892 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5893 }
5894
5895 /*
5896 * We're trying to get all the cpus to the average_load, so we don't
5897 * want to push ourselves above the average load, nor do we wish to
5898 * reduce the max loaded cpu below the average load. At the same time,
5899 * we also don't want to reduce the group load below the group capacity
5900 * (so that we can implement power-savings policies etc). Thus we look
5901 * for the minimum possible imbalance.
dd5feea1 5902 */
30ce5dab 5903 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5904
5905 /* How much load to actually move to equalise the imbalance */
56cf515b 5906 env->imbalance = min(
3ae11c90
PZ
5907 max_pull * busiest->group_power,
5908 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5909 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5910
5911 /*
5912 * if *imbalance is less than the average load per runnable task
25985edc 5913 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5914 * a think about bumping its value to force at least one task to be
5915 * moved
5916 */
56cf515b 5917 if (env->imbalance < busiest->load_per_task)
bd939f45 5918 return fix_small_imbalance(env, sds);
1e3c88bd 5919}
fab47622 5920
1e3c88bd
PZ
5921/******* find_busiest_group() helpers end here *********************/
5922
5923/**
5924 * find_busiest_group - Returns the busiest group within the sched_domain
5925 * if there is an imbalance. If there isn't an imbalance, and
5926 * the user has opted for power-savings, it returns a group whose
5927 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5928 * such a group exists.
5929 *
5930 * Also calculates the amount of weighted load which should be moved
5931 * to restore balance.
5932 *
cd96891d 5933 * @env: The load balancing environment.
1e3c88bd 5934 *
e69f6186 5935 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5936 * - If no imbalance and user has opted for power-savings balance,
5937 * return the least loaded group whose CPUs can be
5938 * put to idle by rebalancing its tasks onto our group.
5939 */
56cf515b 5940static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5941{
56cf515b 5942 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5943 struct sd_lb_stats sds;
5944
147c5fc2 5945 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5946
5947 /*
5948 * Compute the various statistics relavent for load balancing at
5949 * this level.
5950 */
23f0d209 5951 update_sd_lb_stats(env, &sds);
56cf515b
JK
5952 local = &sds.local_stat;
5953 busiest = &sds.busiest_stat;
1e3c88bd 5954
bd939f45
PZ
5955 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5956 check_asym_packing(env, &sds))
532cb4c4
MN
5957 return sds.busiest;
5958
cc57aa8f 5959 /* There is no busy sibling group to pull tasks from */
56cf515b 5960 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5961 goto out_balanced;
5962
1399fa78 5963 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5964
866ab43e
PZ
5965 /*
5966 * If the busiest group is imbalanced the below checks don't
30ce5dab 5967 * work because they assume all things are equal, which typically
866ab43e
PZ
5968 * isn't true due to cpus_allowed constraints and the like.
5969 */
56cf515b 5970 if (busiest->group_imb)
866ab43e
PZ
5971 goto force_balance;
5972
cc57aa8f 5973 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5974 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5975 !busiest->group_has_capacity)
fab47622
NR
5976 goto force_balance;
5977
cc57aa8f
PZ
5978 /*
5979 * If the local group is more busy than the selected busiest group
5980 * don't try and pull any tasks.
5981 */
56cf515b 5982 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5983 goto out_balanced;
5984
cc57aa8f
PZ
5985 /*
5986 * Don't pull any tasks if this group is already above the domain
5987 * average load.
5988 */
56cf515b 5989 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5990 goto out_balanced;
5991
bd939f45 5992 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5993 /*
5994 * This cpu is idle. If the busiest group load doesn't
5995 * have more tasks than the number of available cpu's and
5996 * there is no imbalance between this and busiest group
5997 * wrt to idle cpu's, it is balanced.
5998 */
56cf515b
JK
5999 if ((local->idle_cpus < busiest->idle_cpus) &&
6000 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6001 goto out_balanced;
c186fafe
PZ
6002 } else {
6003 /*
6004 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6005 * imbalance_pct to be conservative.
6006 */
56cf515b
JK
6007 if (100 * busiest->avg_load <=
6008 env->sd->imbalance_pct * local->avg_load)
c186fafe 6009 goto out_balanced;
aae6d3dd 6010 }
1e3c88bd 6011
fab47622 6012force_balance:
1e3c88bd 6013 /* Looks like there is an imbalance. Compute it */
bd939f45 6014 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6015 return sds.busiest;
6016
6017out_balanced:
bd939f45 6018 env->imbalance = 0;
1e3c88bd
PZ
6019 return NULL;
6020}
6021
6022/*
6023 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6024 */
bd939f45 6025static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6026 struct sched_group *group)
1e3c88bd
PZ
6027{
6028 struct rq *busiest = NULL, *rq;
95a79b80 6029 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6030 int i;
6031
6906a408 6032 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6033 unsigned long power, capacity, wl;
6034 enum fbq_type rt;
6035
6036 rq = cpu_rq(i);
6037 rt = fbq_classify_rq(rq);
1e3c88bd 6038
0ec8aa00
PZ
6039 /*
6040 * We classify groups/runqueues into three groups:
6041 * - regular: there are !numa tasks
6042 * - remote: there are numa tasks that run on the 'wrong' node
6043 * - all: there is no distinction
6044 *
6045 * In order to avoid migrating ideally placed numa tasks,
6046 * ignore those when there's better options.
6047 *
6048 * If we ignore the actual busiest queue to migrate another
6049 * task, the next balance pass can still reduce the busiest
6050 * queue by moving tasks around inside the node.
6051 *
6052 * If we cannot move enough load due to this classification
6053 * the next pass will adjust the group classification and
6054 * allow migration of more tasks.
6055 *
6056 * Both cases only affect the total convergence complexity.
6057 */
6058 if (rt > env->fbq_type)
6059 continue;
6060
6061 power = power_of(i);
6062 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6063 if (!capacity)
bd939f45 6064 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6065
6e40f5bb 6066 wl = weighted_cpuload(i);
1e3c88bd 6067
6e40f5bb
TG
6068 /*
6069 * When comparing with imbalance, use weighted_cpuload()
6070 * which is not scaled with the cpu power.
6071 */
bd939f45 6072 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6073 continue;
6074
6e40f5bb
TG
6075 /*
6076 * For the load comparisons with the other cpu's, consider
6077 * the weighted_cpuload() scaled with the cpu power, so that
6078 * the load can be moved away from the cpu that is potentially
6079 * running at a lower capacity.
95a79b80
JK
6080 *
6081 * Thus we're looking for max(wl_i / power_i), crosswise
6082 * multiplication to rid ourselves of the division works out
6083 * to: wl_i * power_j > wl_j * power_i; where j is our
6084 * previous maximum.
6e40f5bb 6085 */
95a79b80
JK
6086 if (wl * busiest_power > busiest_load * power) {
6087 busiest_load = wl;
6088 busiest_power = power;
1e3c88bd
PZ
6089 busiest = rq;
6090 }
6091 }
6092
6093 return busiest;
6094}
6095
6096/*
6097 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6098 * so long as it is large enough.
6099 */
6100#define MAX_PINNED_INTERVAL 512
6101
6102/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6103DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6104
bd939f45 6105static int need_active_balance(struct lb_env *env)
1af3ed3d 6106{
bd939f45
PZ
6107 struct sched_domain *sd = env->sd;
6108
6109 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6110
6111 /*
6112 * ASYM_PACKING needs to force migrate tasks from busy but
6113 * higher numbered CPUs in order to pack all tasks in the
6114 * lowest numbered CPUs.
6115 */
bd939f45 6116 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6117 return 1;
1af3ed3d
PZ
6118 }
6119
6120 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6121}
6122
969c7921
TH
6123static int active_load_balance_cpu_stop(void *data);
6124
23f0d209
JK
6125static int should_we_balance(struct lb_env *env)
6126{
6127 struct sched_group *sg = env->sd->groups;
6128 struct cpumask *sg_cpus, *sg_mask;
6129 int cpu, balance_cpu = -1;
6130
6131 /*
6132 * In the newly idle case, we will allow all the cpu's
6133 * to do the newly idle load balance.
6134 */
6135 if (env->idle == CPU_NEWLY_IDLE)
6136 return 1;
6137
6138 sg_cpus = sched_group_cpus(sg);
6139 sg_mask = sched_group_mask(sg);
6140 /* Try to find first idle cpu */
6141 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6142 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6143 continue;
6144
6145 balance_cpu = cpu;
6146 break;
6147 }
6148
6149 if (balance_cpu == -1)
6150 balance_cpu = group_balance_cpu(sg);
6151
6152 /*
6153 * First idle cpu or the first cpu(busiest) in this sched group
6154 * is eligible for doing load balancing at this and above domains.
6155 */
b0cff9d8 6156 return balance_cpu == env->dst_cpu;
23f0d209
JK
6157}
6158
1e3c88bd
PZ
6159/*
6160 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6161 * tasks if there is an imbalance.
6162 */
6163static int load_balance(int this_cpu, struct rq *this_rq,
6164 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6165 int *continue_balancing)
1e3c88bd 6166{
88b8dac0 6167 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6168 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6169 struct sched_group *group;
1e3c88bd
PZ
6170 struct rq *busiest;
6171 unsigned long flags;
e6252c3e 6172 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6173
8e45cb54
PZ
6174 struct lb_env env = {
6175 .sd = sd,
ddcdf6e7
PZ
6176 .dst_cpu = this_cpu,
6177 .dst_rq = this_rq,
88b8dac0 6178 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6179 .idle = idle,
eb95308e 6180 .loop_break = sched_nr_migrate_break,
b9403130 6181 .cpus = cpus,
0ec8aa00 6182 .fbq_type = all,
8e45cb54
PZ
6183 };
6184
cfc03118
JK
6185 /*
6186 * For NEWLY_IDLE load_balancing, we don't need to consider
6187 * other cpus in our group
6188 */
e02e60c1 6189 if (idle == CPU_NEWLY_IDLE)
cfc03118 6190 env.dst_grpmask = NULL;
cfc03118 6191
1e3c88bd
PZ
6192 cpumask_copy(cpus, cpu_active_mask);
6193
1e3c88bd
PZ
6194 schedstat_inc(sd, lb_count[idle]);
6195
6196redo:
23f0d209
JK
6197 if (!should_we_balance(&env)) {
6198 *continue_balancing = 0;
1e3c88bd 6199 goto out_balanced;
23f0d209 6200 }
1e3c88bd 6201
23f0d209 6202 group = find_busiest_group(&env);
1e3c88bd
PZ
6203 if (!group) {
6204 schedstat_inc(sd, lb_nobusyg[idle]);
6205 goto out_balanced;
6206 }
6207
b9403130 6208 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6209 if (!busiest) {
6210 schedstat_inc(sd, lb_nobusyq[idle]);
6211 goto out_balanced;
6212 }
6213
78feefc5 6214 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6215
bd939f45 6216 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6217
6218 ld_moved = 0;
6219 if (busiest->nr_running > 1) {
6220 /*
6221 * Attempt to move tasks. If find_busiest_group has found
6222 * an imbalance but busiest->nr_running <= 1, the group is
6223 * still unbalanced. ld_moved simply stays zero, so it is
6224 * correctly treated as an imbalance.
6225 */
8e45cb54 6226 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6227 env.src_cpu = busiest->cpu;
6228 env.src_rq = busiest;
6229 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6230
5d6523eb 6231more_balance:
1e3c88bd 6232 local_irq_save(flags);
78feefc5 6233 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6234
6235 /*
6236 * cur_ld_moved - load moved in current iteration
6237 * ld_moved - cumulative load moved across iterations
6238 */
6239 cur_ld_moved = move_tasks(&env);
6240 ld_moved += cur_ld_moved;
78feefc5 6241 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6242 local_irq_restore(flags);
6243
6244 /*
6245 * some other cpu did the load balance for us.
6246 */
88b8dac0
SV
6247 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6248 resched_cpu(env.dst_cpu);
6249
f1cd0858
JK
6250 if (env.flags & LBF_NEED_BREAK) {
6251 env.flags &= ~LBF_NEED_BREAK;
6252 goto more_balance;
6253 }
6254
88b8dac0
SV
6255 /*
6256 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6257 * us and move them to an alternate dst_cpu in our sched_group
6258 * where they can run. The upper limit on how many times we
6259 * iterate on same src_cpu is dependent on number of cpus in our
6260 * sched_group.
6261 *
6262 * This changes load balance semantics a bit on who can move
6263 * load to a given_cpu. In addition to the given_cpu itself
6264 * (or a ilb_cpu acting on its behalf where given_cpu is
6265 * nohz-idle), we now have balance_cpu in a position to move
6266 * load to given_cpu. In rare situations, this may cause
6267 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6268 * _independently_ and at _same_ time to move some load to
6269 * given_cpu) causing exceess load to be moved to given_cpu.
6270 * This however should not happen so much in practice and
6271 * moreover subsequent load balance cycles should correct the
6272 * excess load moved.
6273 */
6263322c 6274 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6275
7aff2e3a
VD
6276 /* Prevent to re-select dst_cpu via env's cpus */
6277 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6278
78feefc5 6279 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6280 env.dst_cpu = env.new_dst_cpu;
6263322c 6281 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6282 env.loop = 0;
6283 env.loop_break = sched_nr_migrate_break;
e02e60c1 6284
88b8dac0
SV
6285 /*
6286 * Go back to "more_balance" rather than "redo" since we
6287 * need to continue with same src_cpu.
6288 */
6289 goto more_balance;
6290 }
1e3c88bd 6291
6263322c
PZ
6292 /*
6293 * We failed to reach balance because of affinity.
6294 */
6295 if (sd_parent) {
6296 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6297
6298 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6299 *group_imbalance = 1;
6300 } else if (*group_imbalance)
6301 *group_imbalance = 0;
6302 }
6303
1e3c88bd 6304 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6305 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6306 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6307 if (!cpumask_empty(cpus)) {
6308 env.loop = 0;
6309 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6310 goto redo;
bbf18b19 6311 }
1e3c88bd
PZ
6312 goto out_balanced;
6313 }
6314 }
6315
6316 if (!ld_moved) {
6317 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6318 /*
6319 * Increment the failure counter only on periodic balance.
6320 * We do not want newidle balance, which can be very
6321 * frequent, pollute the failure counter causing
6322 * excessive cache_hot migrations and active balances.
6323 */
6324 if (idle != CPU_NEWLY_IDLE)
6325 sd->nr_balance_failed++;
1e3c88bd 6326
bd939f45 6327 if (need_active_balance(&env)) {
1e3c88bd
PZ
6328 raw_spin_lock_irqsave(&busiest->lock, flags);
6329
969c7921
TH
6330 /* don't kick the active_load_balance_cpu_stop,
6331 * if the curr task on busiest cpu can't be
6332 * moved to this_cpu
1e3c88bd
PZ
6333 */
6334 if (!cpumask_test_cpu(this_cpu,
fa17b507 6335 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6336 raw_spin_unlock_irqrestore(&busiest->lock,
6337 flags);
8e45cb54 6338 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6339 goto out_one_pinned;
6340 }
6341
969c7921
TH
6342 /*
6343 * ->active_balance synchronizes accesses to
6344 * ->active_balance_work. Once set, it's cleared
6345 * only after active load balance is finished.
6346 */
1e3c88bd
PZ
6347 if (!busiest->active_balance) {
6348 busiest->active_balance = 1;
6349 busiest->push_cpu = this_cpu;
6350 active_balance = 1;
6351 }
6352 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6353
bd939f45 6354 if (active_balance) {
969c7921
TH
6355 stop_one_cpu_nowait(cpu_of(busiest),
6356 active_load_balance_cpu_stop, busiest,
6357 &busiest->active_balance_work);
bd939f45 6358 }
1e3c88bd
PZ
6359
6360 /*
6361 * We've kicked active balancing, reset the failure
6362 * counter.
6363 */
6364 sd->nr_balance_failed = sd->cache_nice_tries+1;
6365 }
6366 } else
6367 sd->nr_balance_failed = 0;
6368
6369 if (likely(!active_balance)) {
6370 /* We were unbalanced, so reset the balancing interval */
6371 sd->balance_interval = sd->min_interval;
6372 } else {
6373 /*
6374 * If we've begun active balancing, start to back off. This
6375 * case may not be covered by the all_pinned logic if there
6376 * is only 1 task on the busy runqueue (because we don't call
6377 * move_tasks).
6378 */
6379 if (sd->balance_interval < sd->max_interval)
6380 sd->balance_interval *= 2;
6381 }
6382
1e3c88bd
PZ
6383 goto out;
6384
6385out_balanced:
6386 schedstat_inc(sd, lb_balanced[idle]);
6387
6388 sd->nr_balance_failed = 0;
6389
6390out_one_pinned:
6391 /* tune up the balancing interval */
8e45cb54 6392 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6393 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6394 (sd->balance_interval < sd->max_interval))
6395 sd->balance_interval *= 2;
6396
46e49b38 6397 ld_moved = 0;
1e3c88bd 6398out:
1e3c88bd
PZ
6399 return ld_moved;
6400}
6401
1e3c88bd
PZ
6402/*
6403 * idle_balance is called by schedule() if this_cpu is about to become
6404 * idle. Attempts to pull tasks from other CPUs.
6405 */
029632fb 6406void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6407{
6408 struct sched_domain *sd;
6409 int pulled_task = 0;
6410 unsigned long next_balance = jiffies + HZ;
9bd721c5 6411 u64 curr_cost = 0;
1e3c88bd 6412
78becc27 6413 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6414
6415 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6416 return;
6417
f492e12e
PZ
6418 /*
6419 * Drop the rq->lock, but keep IRQ/preempt disabled.
6420 */
6421 raw_spin_unlock(&this_rq->lock);
6422
48a16753 6423 update_blocked_averages(this_cpu);
dce840a0 6424 rcu_read_lock();
1e3c88bd
PZ
6425 for_each_domain(this_cpu, sd) {
6426 unsigned long interval;
23f0d209 6427 int continue_balancing = 1;
9bd721c5 6428 u64 t0, domain_cost;
1e3c88bd
PZ
6429
6430 if (!(sd->flags & SD_LOAD_BALANCE))
6431 continue;
6432
9bd721c5
JL
6433 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6434 break;
6435
f492e12e 6436 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6437 t0 = sched_clock_cpu(this_cpu);
6438
1e3c88bd 6439 /* If we've pulled tasks over stop searching: */
f492e12e 6440 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6441 sd, CPU_NEWLY_IDLE,
6442 &continue_balancing);
9bd721c5
JL
6443
6444 domain_cost = sched_clock_cpu(this_cpu) - t0;
6445 if (domain_cost > sd->max_newidle_lb_cost)
6446 sd->max_newidle_lb_cost = domain_cost;
6447
6448 curr_cost += domain_cost;
f492e12e 6449 }
1e3c88bd
PZ
6450
6451 interval = msecs_to_jiffies(sd->balance_interval);
6452 if (time_after(next_balance, sd->last_balance + interval))
6453 next_balance = sd->last_balance + interval;
d5ad140b
NR
6454 if (pulled_task) {
6455 this_rq->idle_stamp = 0;
1e3c88bd 6456 break;
d5ad140b 6457 }
1e3c88bd 6458 }
dce840a0 6459 rcu_read_unlock();
f492e12e
PZ
6460
6461 raw_spin_lock(&this_rq->lock);
6462
1e3c88bd
PZ
6463 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6464 /*
6465 * We are going idle. next_balance may be set based on
6466 * a busy processor. So reset next_balance.
6467 */
6468 this_rq->next_balance = next_balance;
6469 }
9bd721c5
JL
6470
6471 if (curr_cost > this_rq->max_idle_balance_cost)
6472 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6473}
6474
6475/*
969c7921
TH
6476 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6477 * running tasks off the busiest CPU onto idle CPUs. It requires at
6478 * least 1 task to be running on each physical CPU where possible, and
6479 * avoids physical / logical imbalances.
1e3c88bd 6480 */
969c7921 6481static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6482{
969c7921
TH
6483 struct rq *busiest_rq = data;
6484 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6485 int target_cpu = busiest_rq->push_cpu;
969c7921 6486 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6487 struct sched_domain *sd;
969c7921
TH
6488
6489 raw_spin_lock_irq(&busiest_rq->lock);
6490
6491 /* make sure the requested cpu hasn't gone down in the meantime */
6492 if (unlikely(busiest_cpu != smp_processor_id() ||
6493 !busiest_rq->active_balance))
6494 goto out_unlock;
1e3c88bd
PZ
6495
6496 /* Is there any task to move? */
6497 if (busiest_rq->nr_running <= 1)
969c7921 6498 goto out_unlock;
1e3c88bd
PZ
6499
6500 /*
6501 * This condition is "impossible", if it occurs
6502 * we need to fix it. Originally reported by
6503 * Bjorn Helgaas on a 128-cpu setup.
6504 */
6505 BUG_ON(busiest_rq == target_rq);
6506
6507 /* move a task from busiest_rq to target_rq */
6508 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6509
6510 /* Search for an sd spanning us and the target CPU. */
dce840a0 6511 rcu_read_lock();
1e3c88bd
PZ
6512 for_each_domain(target_cpu, sd) {
6513 if ((sd->flags & SD_LOAD_BALANCE) &&
6514 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6515 break;
6516 }
6517
6518 if (likely(sd)) {
8e45cb54
PZ
6519 struct lb_env env = {
6520 .sd = sd,
ddcdf6e7
PZ
6521 .dst_cpu = target_cpu,
6522 .dst_rq = target_rq,
6523 .src_cpu = busiest_rq->cpu,
6524 .src_rq = busiest_rq,
8e45cb54
PZ
6525 .idle = CPU_IDLE,
6526 };
6527
1e3c88bd
PZ
6528 schedstat_inc(sd, alb_count);
6529
8e45cb54 6530 if (move_one_task(&env))
1e3c88bd
PZ
6531 schedstat_inc(sd, alb_pushed);
6532 else
6533 schedstat_inc(sd, alb_failed);
6534 }
dce840a0 6535 rcu_read_unlock();
1e3c88bd 6536 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6537out_unlock:
6538 busiest_rq->active_balance = 0;
6539 raw_spin_unlock_irq(&busiest_rq->lock);
6540 return 0;
1e3c88bd
PZ
6541}
6542
3451d024 6543#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6544/*
6545 * idle load balancing details
83cd4fe2
VP
6546 * - When one of the busy CPUs notice that there may be an idle rebalancing
6547 * needed, they will kick the idle load balancer, which then does idle
6548 * load balancing for all the idle CPUs.
6549 */
1e3c88bd 6550static struct {
83cd4fe2 6551 cpumask_var_t idle_cpus_mask;
0b005cf5 6552 atomic_t nr_cpus;
83cd4fe2
VP
6553 unsigned long next_balance; /* in jiffy units */
6554} nohz ____cacheline_aligned;
1e3c88bd 6555
3dd0337d 6556static inline int find_new_ilb(void)
1e3c88bd 6557{
0b005cf5 6558 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6559
786d6dc7
SS
6560 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6561 return ilb;
6562
6563 return nr_cpu_ids;
1e3c88bd 6564}
1e3c88bd 6565
83cd4fe2
VP
6566/*
6567 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6568 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6569 * CPU (if there is one).
6570 */
0aeeeeba 6571static void nohz_balancer_kick(void)
83cd4fe2
VP
6572{
6573 int ilb_cpu;
6574
6575 nohz.next_balance++;
6576
3dd0337d 6577 ilb_cpu = find_new_ilb();
83cd4fe2 6578
0b005cf5
SS
6579 if (ilb_cpu >= nr_cpu_ids)
6580 return;
83cd4fe2 6581
cd490c5b 6582 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6583 return;
6584 /*
6585 * Use smp_send_reschedule() instead of resched_cpu().
6586 * This way we generate a sched IPI on the target cpu which
6587 * is idle. And the softirq performing nohz idle load balance
6588 * will be run before returning from the IPI.
6589 */
6590 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6591 return;
6592}
6593
c1cc017c 6594static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6595{
6596 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6597 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6598 atomic_dec(&nohz.nr_cpus);
6599 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6600 }
6601}
6602
69e1e811
SS
6603static inline void set_cpu_sd_state_busy(void)
6604{
6605 struct sched_domain *sd;
37dc6b50 6606 int cpu = smp_processor_id();
69e1e811 6607
69e1e811 6608 rcu_read_lock();
37dc6b50 6609 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6610
6611 if (!sd || !sd->nohz_idle)
6612 goto unlock;
6613 sd->nohz_idle = 0;
6614
37dc6b50 6615 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6616unlock:
69e1e811
SS
6617 rcu_read_unlock();
6618}
6619
6620void set_cpu_sd_state_idle(void)
6621{
6622 struct sched_domain *sd;
37dc6b50 6623 int cpu = smp_processor_id();
69e1e811 6624
69e1e811 6625 rcu_read_lock();
37dc6b50 6626 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6627
6628 if (!sd || sd->nohz_idle)
6629 goto unlock;
6630 sd->nohz_idle = 1;
6631
37dc6b50 6632 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6633unlock:
69e1e811
SS
6634 rcu_read_unlock();
6635}
6636
1e3c88bd 6637/*
c1cc017c 6638 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6639 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6640 */
c1cc017c 6641void nohz_balance_enter_idle(int cpu)
1e3c88bd 6642{
71325960
SS
6643 /*
6644 * If this cpu is going down, then nothing needs to be done.
6645 */
6646 if (!cpu_active(cpu))
6647 return;
6648
c1cc017c
AS
6649 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6650 return;
1e3c88bd 6651
c1cc017c
AS
6652 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6653 atomic_inc(&nohz.nr_cpus);
6654 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6655}
71325960 6656
0db0628d 6657static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6658 unsigned long action, void *hcpu)
6659{
6660 switch (action & ~CPU_TASKS_FROZEN) {
6661 case CPU_DYING:
c1cc017c 6662 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6663 return NOTIFY_OK;
6664 default:
6665 return NOTIFY_DONE;
6666 }
6667}
1e3c88bd
PZ
6668#endif
6669
6670static DEFINE_SPINLOCK(balancing);
6671
49c022e6
PZ
6672/*
6673 * Scale the max load_balance interval with the number of CPUs in the system.
6674 * This trades load-balance latency on larger machines for less cross talk.
6675 */
029632fb 6676void update_max_interval(void)
49c022e6
PZ
6677{
6678 max_load_balance_interval = HZ*num_online_cpus()/10;
6679}
6680
1e3c88bd
PZ
6681/*
6682 * It checks each scheduling domain to see if it is due to be balanced,
6683 * and initiates a balancing operation if so.
6684 *
b9b0853a 6685 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6686 */
f7ed0a89 6687static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6688{
23f0d209 6689 int continue_balancing = 1;
f7ed0a89 6690 int cpu = rq->cpu;
1e3c88bd 6691 unsigned long interval;
04f733b4 6692 struct sched_domain *sd;
1e3c88bd
PZ
6693 /* Earliest time when we have to do rebalance again */
6694 unsigned long next_balance = jiffies + 60*HZ;
6695 int update_next_balance = 0;
f48627e6
JL
6696 int need_serialize, need_decay = 0;
6697 u64 max_cost = 0;
1e3c88bd 6698
48a16753 6699 update_blocked_averages(cpu);
2069dd75 6700
dce840a0 6701 rcu_read_lock();
1e3c88bd 6702 for_each_domain(cpu, sd) {
f48627e6
JL
6703 /*
6704 * Decay the newidle max times here because this is a regular
6705 * visit to all the domains. Decay ~1% per second.
6706 */
6707 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6708 sd->max_newidle_lb_cost =
6709 (sd->max_newidle_lb_cost * 253) / 256;
6710 sd->next_decay_max_lb_cost = jiffies + HZ;
6711 need_decay = 1;
6712 }
6713 max_cost += sd->max_newidle_lb_cost;
6714
1e3c88bd
PZ
6715 if (!(sd->flags & SD_LOAD_BALANCE))
6716 continue;
6717
f48627e6
JL
6718 /*
6719 * Stop the load balance at this level. There is another
6720 * CPU in our sched group which is doing load balancing more
6721 * actively.
6722 */
6723 if (!continue_balancing) {
6724 if (need_decay)
6725 continue;
6726 break;
6727 }
6728
1e3c88bd
PZ
6729 interval = sd->balance_interval;
6730 if (idle != CPU_IDLE)
6731 interval *= sd->busy_factor;
6732
6733 /* scale ms to jiffies */
6734 interval = msecs_to_jiffies(interval);
49c022e6 6735 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6736
6737 need_serialize = sd->flags & SD_SERIALIZE;
6738
6739 if (need_serialize) {
6740 if (!spin_trylock(&balancing))
6741 goto out;
6742 }
6743
6744 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6745 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6746 /*
6263322c 6747 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6748 * env->dst_cpu, so we can't know our idle
6749 * state even if we migrated tasks. Update it.
1e3c88bd 6750 */
de5eb2dd 6751 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6752 }
6753 sd->last_balance = jiffies;
6754 }
6755 if (need_serialize)
6756 spin_unlock(&balancing);
6757out:
6758 if (time_after(next_balance, sd->last_balance + interval)) {
6759 next_balance = sd->last_balance + interval;
6760 update_next_balance = 1;
6761 }
f48627e6
JL
6762 }
6763 if (need_decay) {
1e3c88bd 6764 /*
f48627e6
JL
6765 * Ensure the rq-wide value also decays but keep it at a
6766 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6767 */
f48627e6
JL
6768 rq->max_idle_balance_cost =
6769 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6770 }
dce840a0 6771 rcu_read_unlock();
1e3c88bd
PZ
6772
6773 /*
6774 * next_balance will be updated only when there is a need.
6775 * When the cpu is attached to null domain for ex, it will not be
6776 * updated.
6777 */
6778 if (likely(update_next_balance))
6779 rq->next_balance = next_balance;
6780}
6781
3451d024 6782#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6783/*
3451d024 6784 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6785 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6786 */
208cb16b 6787static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 6788{
208cb16b 6789 int this_cpu = this_rq->cpu;
83cd4fe2
VP
6790 struct rq *rq;
6791 int balance_cpu;
6792
1c792db7
SS
6793 if (idle != CPU_IDLE ||
6794 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6795 goto end;
83cd4fe2
VP
6796
6797 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6798 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6799 continue;
6800
6801 /*
6802 * If this cpu gets work to do, stop the load balancing
6803 * work being done for other cpus. Next load
6804 * balancing owner will pick it up.
6805 */
1c792db7 6806 if (need_resched())
83cd4fe2 6807 break;
83cd4fe2 6808
5ed4f1d9
VG
6809 rq = cpu_rq(balance_cpu);
6810
6811 raw_spin_lock_irq(&rq->lock);
6812 update_rq_clock(rq);
6813 update_idle_cpu_load(rq);
6814 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6815
f7ed0a89 6816 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6817
83cd4fe2
VP
6818 if (time_after(this_rq->next_balance, rq->next_balance))
6819 this_rq->next_balance = rq->next_balance;
6820 }
6821 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6822end:
6823 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6824}
6825
6826/*
0b005cf5
SS
6827 * Current heuristic for kicking the idle load balancer in the presence
6828 * of an idle cpu is the system.
6829 * - This rq has more than one task.
6830 * - At any scheduler domain level, this cpu's scheduler group has multiple
6831 * busy cpu's exceeding the group's power.
6832 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6833 * domain span are idle.
83cd4fe2 6834 */
4a725627 6835static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6836{
6837 unsigned long now = jiffies;
0b005cf5 6838 struct sched_domain *sd;
37dc6b50 6839 struct sched_group_power *sgp;
4a725627 6840 int nr_busy, cpu = rq->cpu;
83cd4fe2 6841
4a725627 6842 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6843 return 0;
6844
1c792db7
SS
6845 /*
6846 * We may be recently in ticked or tickless idle mode. At the first
6847 * busy tick after returning from idle, we will update the busy stats.
6848 */
69e1e811 6849 set_cpu_sd_state_busy();
c1cc017c 6850 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6851
6852 /*
6853 * None are in tickless mode and hence no need for NOHZ idle load
6854 * balancing.
6855 */
6856 if (likely(!atomic_read(&nohz.nr_cpus)))
6857 return 0;
1c792db7
SS
6858
6859 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6860 return 0;
6861
0b005cf5
SS
6862 if (rq->nr_running >= 2)
6863 goto need_kick;
83cd4fe2 6864
067491b7 6865 rcu_read_lock();
37dc6b50 6866 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6867
37dc6b50
PM
6868 if (sd) {
6869 sgp = sd->groups->sgp;
6870 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6871
37dc6b50 6872 if (nr_busy > 1)
067491b7 6873 goto need_kick_unlock;
83cd4fe2 6874 }
37dc6b50
PM
6875
6876 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6877
6878 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6879 sched_domain_span(sd)) < cpu))
6880 goto need_kick_unlock;
6881
067491b7 6882 rcu_read_unlock();
83cd4fe2 6883 return 0;
067491b7
PZ
6884
6885need_kick_unlock:
6886 rcu_read_unlock();
0b005cf5
SS
6887need_kick:
6888 return 1;
83cd4fe2
VP
6889}
6890#else
208cb16b 6891static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
6892#endif
6893
6894/*
6895 * run_rebalance_domains is triggered when needed from the scheduler tick.
6896 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6897 */
1e3c88bd
PZ
6898static void run_rebalance_domains(struct softirq_action *h)
6899{
208cb16b 6900 struct rq *this_rq = this_rq();
6eb57e0d 6901 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6902 CPU_IDLE : CPU_NOT_IDLE;
6903
f7ed0a89 6904 rebalance_domains(this_rq, idle);
1e3c88bd 6905
1e3c88bd 6906 /*
83cd4fe2 6907 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6908 * balancing on behalf of the other idle cpus whose ticks are
6909 * stopped.
6910 */
208cb16b 6911 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
6912}
6913
63f609b1 6914static inline int on_null_domain(struct rq *rq)
1e3c88bd 6915{
63f609b1 6916 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
6917}
6918
6919/*
6920 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6921 */
7caff66f 6922void trigger_load_balance(struct rq *rq)
1e3c88bd 6923{
1e3c88bd 6924 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
6925 if (unlikely(on_null_domain(rq)))
6926 return;
6927
6928 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 6929 raise_softirq(SCHED_SOFTIRQ);
3451d024 6930#ifdef CONFIG_NO_HZ_COMMON
c726099e 6931 if (nohz_kick_needed(rq))
0aeeeeba 6932 nohz_balancer_kick();
83cd4fe2 6933#endif
1e3c88bd
PZ
6934}
6935
0bcdcf28
CE
6936static void rq_online_fair(struct rq *rq)
6937{
6938 update_sysctl();
6939}
6940
6941static void rq_offline_fair(struct rq *rq)
6942{
6943 update_sysctl();
a4c96ae3
PB
6944
6945 /* Ensure any throttled groups are reachable by pick_next_task */
6946 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6947}
6948
55e12e5e 6949#endif /* CONFIG_SMP */
e1d1484f 6950
bf0f6f24
IM
6951/*
6952 * scheduler tick hitting a task of our scheduling class:
6953 */
8f4d37ec 6954static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6955{
6956 struct cfs_rq *cfs_rq;
6957 struct sched_entity *se = &curr->se;
6958
6959 for_each_sched_entity(se) {
6960 cfs_rq = cfs_rq_of(se);
8f4d37ec 6961 entity_tick(cfs_rq, se, queued);
bf0f6f24 6962 }
18bf2805 6963
10e84b97 6964 if (numabalancing_enabled)
cbee9f88 6965 task_tick_numa(rq, curr);
3d59eebc 6966
18bf2805 6967 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6968}
6969
6970/*
cd29fe6f
PZ
6971 * called on fork with the child task as argument from the parent's context
6972 * - child not yet on the tasklist
6973 * - preemption disabled
bf0f6f24 6974 */
cd29fe6f 6975static void task_fork_fair(struct task_struct *p)
bf0f6f24 6976{
4fc420c9
DN
6977 struct cfs_rq *cfs_rq;
6978 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6979 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6980 struct rq *rq = this_rq();
6981 unsigned long flags;
6982
05fa785c 6983 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6984
861d034e
PZ
6985 update_rq_clock(rq);
6986
4fc420c9
DN
6987 cfs_rq = task_cfs_rq(current);
6988 curr = cfs_rq->curr;
6989
6c9a27f5
DN
6990 /*
6991 * Not only the cpu but also the task_group of the parent might have
6992 * been changed after parent->se.parent,cfs_rq were copied to
6993 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6994 * of child point to valid ones.
6995 */
6996 rcu_read_lock();
6997 __set_task_cpu(p, this_cpu);
6998 rcu_read_unlock();
bf0f6f24 6999
7109c442 7000 update_curr(cfs_rq);
cd29fe6f 7001
b5d9d734
MG
7002 if (curr)
7003 se->vruntime = curr->vruntime;
aeb73b04 7004 place_entity(cfs_rq, se, 1);
4d78e7b6 7005
cd29fe6f 7006 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7007 /*
edcb60a3
IM
7008 * Upon rescheduling, sched_class::put_prev_task() will place
7009 * 'current' within the tree based on its new key value.
7010 */
4d78e7b6 7011 swap(curr->vruntime, se->vruntime);
aec0a514 7012 resched_task(rq->curr);
4d78e7b6 7013 }
bf0f6f24 7014
88ec22d3
PZ
7015 se->vruntime -= cfs_rq->min_vruntime;
7016
05fa785c 7017 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7018}
7019
cb469845
SR
7020/*
7021 * Priority of the task has changed. Check to see if we preempt
7022 * the current task.
7023 */
da7a735e
PZ
7024static void
7025prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7026{
da7a735e
PZ
7027 if (!p->se.on_rq)
7028 return;
7029
cb469845
SR
7030 /*
7031 * Reschedule if we are currently running on this runqueue and
7032 * our priority decreased, or if we are not currently running on
7033 * this runqueue and our priority is higher than the current's
7034 */
da7a735e 7035 if (rq->curr == p) {
cb469845
SR
7036 if (p->prio > oldprio)
7037 resched_task(rq->curr);
7038 } else
15afe09b 7039 check_preempt_curr(rq, p, 0);
cb469845
SR
7040}
7041
da7a735e
PZ
7042static void switched_from_fair(struct rq *rq, struct task_struct *p)
7043{
7044 struct sched_entity *se = &p->se;
7045 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7046
7047 /*
7048 * Ensure the task's vruntime is normalized, so that when its
7049 * switched back to the fair class the enqueue_entity(.flags=0) will
7050 * do the right thing.
7051 *
7052 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7053 * have normalized the vruntime, if it was !on_rq, then only when
7054 * the task is sleeping will it still have non-normalized vruntime.
7055 */
7056 if (!se->on_rq && p->state != TASK_RUNNING) {
7057 /*
7058 * Fix up our vruntime so that the current sleep doesn't
7059 * cause 'unlimited' sleep bonus.
7060 */
7061 place_entity(cfs_rq, se, 0);
7062 se->vruntime -= cfs_rq->min_vruntime;
7063 }
9ee474f5 7064
141965c7 7065#ifdef CONFIG_SMP
9ee474f5
PT
7066 /*
7067 * Remove our load from contribution when we leave sched_fair
7068 * and ensure we don't carry in an old decay_count if we
7069 * switch back.
7070 */
87e3c8ae
KT
7071 if (se->avg.decay_count) {
7072 __synchronize_entity_decay(se);
7073 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7074 }
7075#endif
da7a735e
PZ
7076}
7077
cb469845
SR
7078/*
7079 * We switched to the sched_fair class.
7080 */
da7a735e 7081static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7082{
da7a735e
PZ
7083 if (!p->se.on_rq)
7084 return;
7085
cb469845
SR
7086 /*
7087 * We were most likely switched from sched_rt, so
7088 * kick off the schedule if running, otherwise just see
7089 * if we can still preempt the current task.
7090 */
da7a735e 7091 if (rq->curr == p)
cb469845
SR
7092 resched_task(rq->curr);
7093 else
15afe09b 7094 check_preempt_curr(rq, p, 0);
cb469845
SR
7095}
7096
83b699ed
SV
7097/* Account for a task changing its policy or group.
7098 *
7099 * This routine is mostly called to set cfs_rq->curr field when a task
7100 * migrates between groups/classes.
7101 */
7102static void set_curr_task_fair(struct rq *rq)
7103{
7104 struct sched_entity *se = &rq->curr->se;
7105
ec12cb7f
PT
7106 for_each_sched_entity(se) {
7107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7108
7109 set_next_entity(cfs_rq, se);
7110 /* ensure bandwidth has been allocated on our new cfs_rq */
7111 account_cfs_rq_runtime(cfs_rq, 0);
7112 }
83b699ed
SV
7113}
7114
029632fb
PZ
7115void init_cfs_rq(struct cfs_rq *cfs_rq)
7116{
7117 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7118 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7119#ifndef CONFIG_64BIT
7120 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7121#endif
141965c7 7122#ifdef CONFIG_SMP
9ee474f5 7123 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7124 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7125#endif
029632fb
PZ
7126}
7127
810b3817 7128#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7129static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7130{
aff3e498 7131 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7132 /*
7133 * If the task was not on the rq at the time of this cgroup movement
7134 * it must have been asleep, sleeping tasks keep their ->vruntime
7135 * absolute on their old rq until wakeup (needed for the fair sleeper
7136 * bonus in place_entity()).
7137 *
7138 * If it was on the rq, we've just 'preempted' it, which does convert
7139 * ->vruntime to a relative base.
7140 *
7141 * Make sure both cases convert their relative position when migrating
7142 * to another cgroup's rq. This does somewhat interfere with the
7143 * fair sleeper stuff for the first placement, but who cares.
7144 */
7ceff013
DN
7145 /*
7146 * When !on_rq, vruntime of the task has usually NOT been normalized.
7147 * But there are some cases where it has already been normalized:
7148 *
7149 * - Moving a forked child which is waiting for being woken up by
7150 * wake_up_new_task().
62af3783
DN
7151 * - Moving a task which has been woken up by try_to_wake_up() and
7152 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7153 *
7154 * To prevent boost or penalty in the new cfs_rq caused by delta
7155 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7156 */
62af3783 7157 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7158 on_rq = 1;
7159
b2b5ce02
PZ
7160 if (!on_rq)
7161 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7162 set_task_rq(p, task_cpu(p));
aff3e498
PT
7163 if (!on_rq) {
7164 cfs_rq = cfs_rq_of(&p->se);
7165 p->se.vruntime += cfs_rq->min_vruntime;
7166#ifdef CONFIG_SMP
7167 /*
7168 * migrate_task_rq_fair() will have removed our previous
7169 * contribution, but we must synchronize for ongoing future
7170 * decay.
7171 */
7172 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7173 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7174#endif
7175 }
810b3817 7176}
029632fb
PZ
7177
7178void free_fair_sched_group(struct task_group *tg)
7179{
7180 int i;
7181
7182 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7183
7184 for_each_possible_cpu(i) {
7185 if (tg->cfs_rq)
7186 kfree(tg->cfs_rq[i]);
7187 if (tg->se)
7188 kfree(tg->se[i]);
7189 }
7190
7191 kfree(tg->cfs_rq);
7192 kfree(tg->se);
7193}
7194
7195int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7196{
7197 struct cfs_rq *cfs_rq;
7198 struct sched_entity *se;
7199 int i;
7200
7201 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7202 if (!tg->cfs_rq)
7203 goto err;
7204 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7205 if (!tg->se)
7206 goto err;
7207
7208 tg->shares = NICE_0_LOAD;
7209
7210 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7211
7212 for_each_possible_cpu(i) {
7213 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7214 GFP_KERNEL, cpu_to_node(i));
7215 if (!cfs_rq)
7216 goto err;
7217
7218 se = kzalloc_node(sizeof(struct sched_entity),
7219 GFP_KERNEL, cpu_to_node(i));
7220 if (!se)
7221 goto err_free_rq;
7222
7223 init_cfs_rq(cfs_rq);
7224 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7225 }
7226
7227 return 1;
7228
7229err_free_rq:
7230 kfree(cfs_rq);
7231err:
7232 return 0;
7233}
7234
7235void unregister_fair_sched_group(struct task_group *tg, int cpu)
7236{
7237 struct rq *rq = cpu_rq(cpu);
7238 unsigned long flags;
7239
7240 /*
7241 * Only empty task groups can be destroyed; so we can speculatively
7242 * check on_list without danger of it being re-added.
7243 */
7244 if (!tg->cfs_rq[cpu]->on_list)
7245 return;
7246
7247 raw_spin_lock_irqsave(&rq->lock, flags);
7248 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7249 raw_spin_unlock_irqrestore(&rq->lock, flags);
7250}
7251
7252void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7253 struct sched_entity *se, int cpu,
7254 struct sched_entity *parent)
7255{
7256 struct rq *rq = cpu_rq(cpu);
7257
7258 cfs_rq->tg = tg;
7259 cfs_rq->rq = rq;
029632fb
PZ
7260 init_cfs_rq_runtime(cfs_rq);
7261
7262 tg->cfs_rq[cpu] = cfs_rq;
7263 tg->se[cpu] = se;
7264
7265 /* se could be NULL for root_task_group */
7266 if (!se)
7267 return;
7268
7269 if (!parent)
7270 se->cfs_rq = &rq->cfs;
7271 else
7272 se->cfs_rq = parent->my_q;
7273
7274 se->my_q = cfs_rq;
0ac9b1c2
PT
7275 /* guarantee group entities always have weight */
7276 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7277 se->parent = parent;
7278}
7279
7280static DEFINE_MUTEX(shares_mutex);
7281
7282int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7283{
7284 int i;
7285 unsigned long flags;
7286
7287 /*
7288 * We can't change the weight of the root cgroup.
7289 */
7290 if (!tg->se[0])
7291 return -EINVAL;
7292
7293 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7294
7295 mutex_lock(&shares_mutex);
7296 if (tg->shares == shares)
7297 goto done;
7298
7299 tg->shares = shares;
7300 for_each_possible_cpu(i) {
7301 struct rq *rq = cpu_rq(i);
7302 struct sched_entity *se;
7303
7304 se = tg->se[i];
7305 /* Propagate contribution to hierarchy */
7306 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7307
7308 /* Possible calls to update_curr() need rq clock */
7309 update_rq_clock(rq);
17bc14b7 7310 for_each_sched_entity(se)
029632fb
PZ
7311 update_cfs_shares(group_cfs_rq(se));
7312 raw_spin_unlock_irqrestore(&rq->lock, flags);
7313 }
7314
7315done:
7316 mutex_unlock(&shares_mutex);
7317 return 0;
7318}
7319#else /* CONFIG_FAIR_GROUP_SCHED */
7320
7321void free_fair_sched_group(struct task_group *tg) { }
7322
7323int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7324{
7325 return 1;
7326}
7327
7328void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7329
7330#endif /* CONFIG_FAIR_GROUP_SCHED */
7331
810b3817 7332
6d686f45 7333static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7334{
7335 struct sched_entity *se = &task->se;
0d721cea
PW
7336 unsigned int rr_interval = 0;
7337
7338 /*
7339 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7340 * idle runqueue:
7341 */
0d721cea 7342 if (rq->cfs.load.weight)
a59f4e07 7343 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7344
7345 return rr_interval;
7346}
7347
bf0f6f24
IM
7348/*
7349 * All the scheduling class methods:
7350 */
029632fb 7351const struct sched_class fair_sched_class = {
5522d5d5 7352 .next = &idle_sched_class,
bf0f6f24
IM
7353 .enqueue_task = enqueue_task_fair,
7354 .dequeue_task = dequeue_task_fair,
7355 .yield_task = yield_task_fair,
d95f4122 7356 .yield_to_task = yield_to_task_fair,
bf0f6f24 7357
2e09bf55 7358 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7359
7360 .pick_next_task = pick_next_task_fair,
7361 .put_prev_task = put_prev_task_fair,
7362
681f3e68 7363#ifdef CONFIG_SMP
4ce72a2c 7364 .select_task_rq = select_task_rq_fair,
0a74bef8 7365 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7366
0bcdcf28
CE
7367 .rq_online = rq_online_fair,
7368 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7369
7370 .task_waking = task_waking_fair,
681f3e68 7371#endif
bf0f6f24 7372
83b699ed 7373 .set_curr_task = set_curr_task_fair,
bf0f6f24 7374 .task_tick = task_tick_fair,
cd29fe6f 7375 .task_fork = task_fork_fair,
cb469845
SR
7376
7377 .prio_changed = prio_changed_fair,
da7a735e 7378 .switched_from = switched_from_fair,
cb469845 7379 .switched_to = switched_to_fair,
810b3817 7380
0d721cea
PW
7381 .get_rr_interval = get_rr_interval_fair,
7382
810b3817 7383#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7384 .task_move_group = task_move_group_fair,
810b3817 7385#endif
bf0f6f24
IM
7386};
7387
7388#ifdef CONFIG_SCHED_DEBUG
029632fb 7389void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7390{
bf0f6f24
IM
7391 struct cfs_rq *cfs_rq;
7392
5973e5b9 7393 rcu_read_lock();
c3b64f1e 7394 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7395 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7396 rcu_read_unlock();
bf0f6f24
IM
7397}
7398#endif
029632fb
PZ
7399
7400__init void init_sched_fair_class(void)
7401{
7402#ifdef CONFIG_SMP
7403 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7404
3451d024 7405#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7406 nohz.next_balance = jiffies;
029632fb 7407 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7408 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7409#endif
7410#endif /* SMP */
7411
7412}
This page took 1.030148 seconds and 5 git commands to generate.