sched: Remove sched_switch
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
4ec4412e
VG
218static unsigned long __read_mostly max_load_balance_interval = HZ/10;
219
bf0f6f24
IM
220/**************************************************************
221 * CFS operations on generic schedulable entities:
222 */
223
62160e3f 224#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 225
62160e3f 226/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
227static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
228{
62160e3f 229 return cfs_rq->rq;
bf0f6f24
IM
230}
231
62160e3f
IM
232/* An entity is a task if it doesn't "own" a runqueue */
233#define entity_is_task(se) (!se->my_q)
bf0f6f24 234
8f48894f
PZ
235static inline struct task_struct *task_of(struct sched_entity *se)
236{
237#ifdef CONFIG_SCHED_DEBUG
238 WARN_ON_ONCE(!entity_is_task(se));
239#endif
240 return container_of(se, struct task_struct, se);
241}
242
b758149c
PZ
243/* Walk up scheduling entities hierarchy */
244#define for_each_sched_entity(se) \
245 for (; se; se = se->parent)
246
247static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
248{
249 return p->se.cfs_rq;
250}
251
252/* runqueue on which this entity is (to be) queued */
253static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
254{
255 return se->cfs_rq;
256}
257
258/* runqueue "owned" by this group */
259static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
260{
261 return grp->my_q;
262}
263
3d4b47b4
PZ
264static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
265{
266 if (!cfs_rq->on_list) {
67e86250
PT
267 /*
268 * Ensure we either appear before our parent (if already
269 * enqueued) or force our parent to appear after us when it is
270 * enqueued. The fact that we always enqueue bottom-up
271 * reduces this to two cases.
272 */
273 if (cfs_rq->tg->parent &&
274 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
275 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
276 &rq_of(cfs_rq)->leaf_cfs_rq_list);
277 } else {
278 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 279 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 280 }
3d4b47b4
PZ
281
282 cfs_rq->on_list = 1;
283 }
284}
285
286static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (cfs_rq->on_list) {
289 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
290 cfs_rq->on_list = 0;
291 }
292}
293
b758149c
PZ
294/* Iterate thr' all leaf cfs_rq's on a runqueue */
295#define for_each_leaf_cfs_rq(rq, cfs_rq) \
296 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
297
298/* Do the two (enqueued) entities belong to the same group ? */
299static inline int
300is_same_group(struct sched_entity *se, struct sched_entity *pse)
301{
302 if (se->cfs_rq == pse->cfs_rq)
303 return 1;
304
305 return 0;
306}
307
308static inline struct sched_entity *parent_entity(struct sched_entity *se)
309{
310 return se->parent;
311}
312
464b7527
PZ
313/* return depth at which a sched entity is present in the hierarchy */
314static inline int depth_se(struct sched_entity *se)
315{
316 int depth = 0;
317
318 for_each_sched_entity(se)
319 depth++;
320
321 return depth;
322}
323
324static void
325find_matching_se(struct sched_entity **se, struct sched_entity **pse)
326{
327 int se_depth, pse_depth;
328
329 /*
330 * preemption test can be made between sibling entities who are in the
331 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
332 * both tasks until we find their ancestors who are siblings of common
333 * parent.
334 */
335
336 /* First walk up until both entities are at same depth */
337 se_depth = depth_se(*se);
338 pse_depth = depth_se(*pse);
339
340 while (se_depth > pse_depth) {
341 se_depth--;
342 *se = parent_entity(*se);
343 }
344
345 while (pse_depth > se_depth) {
346 pse_depth--;
347 *pse = parent_entity(*pse);
348 }
349
350 while (!is_same_group(*se, *pse)) {
351 *se = parent_entity(*se);
352 *pse = parent_entity(*pse);
353 }
354}
355
8f48894f
PZ
356#else /* !CONFIG_FAIR_GROUP_SCHED */
357
358static inline struct task_struct *task_of(struct sched_entity *se)
359{
360 return container_of(se, struct task_struct, se);
361}
bf0f6f24 362
62160e3f
IM
363static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
364{
365 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
366}
367
368#define entity_is_task(se) 1
369
b758149c
PZ
370#define for_each_sched_entity(se) \
371 for (; se; se = NULL)
bf0f6f24 372
b758149c 373static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 374{
b758149c 375 return &task_rq(p)->cfs;
bf0f6f24
IM
376}
377
b758149c
PZ
378static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
379{
380 struct task_struct *p = task_of(se);
381 struct rq *rq = task_rq(p);
382
383 return &rq->cfs;
384}
385
386/* runqueue "owned" by this group */
387static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
388{
389 return NULL;
390}
391
3d4b47b4
PZ
392static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
393{
394}
395
396static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
397{
398}
399
b758149c
PZ
400#define for_each_leaf_cfs_rq(rq, cfs_rq) \
401 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
402
403static inline int
404is_same_group(struct sched_entity *se, struct sched_entity *pse)
405{
406 return 1;
407}
408
409static inline struct sched_entity *parent_entity(struct sched_entity *se)
410{
411 return NULL;
412}
413
464b7527
PZ
414static inline void
415find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416{
417}
418
b758149c
PZ
419#endif /* CONFIG_FAIR_GROUP_SCHED */
420
ec12cb7f
PT
421static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
422 unsigned long delta_exec);
bf0f6f24
IM
423
424/**************************************************************
425 * Scheduling class tree data structure manipulation methods:
426 */
427
0702e3eb 428static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 429{
368059a9
PZ
430 s64 delta = (s64)(vruntime - min_vruntime);
431 if (delta > 0)
02e0431a
PZ
432 min_vruntime = vruntime;
433
434 return min_vruntime;
435}
436
0702e3eb 437static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
438{
439 s64 delta = (s64)(vruntime - min_vruntime);
440 if (delta < 0)
441 min_vruntime = vruntime;
442
443 return min_vruntime;
444}
445
54fdc581
FC
446static inline int entity_before(struct sched_entity *a,
447 struct sched_entity *b)
448{
449 return (s64)(a->vruntime - b->vruntime) < 0;
450}
451
1af5f730
PZ
452static void update_min_vruntime(struct cfs_rq *cfs_rq)
453{
454 u64 vruntime = cfs_rq->min_vruntime;
455
456 if (cfs_rq->curr)
457 vruntime = cfs_rq->curr->vruntime;
458
459 if (cfs_rq->rb_leftmost) {
460 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
461 struct sched_entity,
462 run_node);
463
e17036da 464 if (!cfs_rq->curr)
1af5f730
PZ
465 vruntime = se->vruntime;
466 else
467 vruntime = min_vruntime(vruntime, se->vruntime);
468 }
469
470 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
471#ifndef CONFIG_64BIT
472 smp_wmb();
473 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
474#endif
1af5f730
PZ
475}
476
bf0f6f24
IM
477/*
478 * Enqueue an entity into the rb-tree:
479 */
0702e3eb 480static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
481{
482 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
483 struct rb_node *parent = NULL;
484 struct sched_entity *entry;
bf0f6f24
IM
485 int leftmost = 1;
486
487 /*
488 * Find the right place in the rbtree:
489 */
490 while (*link) {
491 parent = *link;
492 entry = rb_entry(parent, struct sched_entity, run_node);
493 /*
494 * We dont care about collisions. Nodes with
495 * the same key stay together.
496 */
2bd2d6f2 497 if (entity_before(se, entry)) {
bf0f6f24
IM
498 link = &parent->rb_left;
499 } else {
500 link = &parent->rb_right;
501 leftmost = 0;
502 }
503 }
504
505 /*
506 * Maintain a cache of leftmost tree entries (it is frequently
507 * used):
508 */
1af5f730 509 if (leftmost)
57cb499d 510 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
511
512 rb_link_node(&se->run_node, parent, link);
513 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
514}
515
0702e3eb 516static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 517{
3fe69747
PZ
518 if (cfs_rq->rb_leftmost == &se->run_node) {
519 struct rb_node *next_node;
3fe69747
PZ
520
521 next_node = rb_next(&se->run_node);
522 cfs_rq->rb_leftmost = next_node;
3fe69747 523 }
e9acbff6 524
bf0f6f24 525 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
526}
527
029632fb 528struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 529{
f4b6755f
PZ
530 struct rb_node *left = cfs_rq->rb_leftmost;
531
532 if (!left)
533 return NULL;
534
535 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
536}
537
ac53db59
RR
538static struct sched_entity *__pick_next_entity(struct sched_entity *se)
539{
540 struct rb_node *next = rb_next(&se->run_node);
541
542 if (!next)
543 return NULL;
544
545 return rb_entry(next, struct sched_entity, run_node);
546}
547
548#ifdef CONFIG_SCHED_DEBUG
029632fb 549struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 550{
7eee3e67 551 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 552
70eee74b
BS
553 if (!last)
554 return NULL;
7eee3e67
IM
555
556 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
557}
558
bf0f6f24
IM
559/**************************************************************
560 * Scheduling class statistics methods:
561 */
562
acb4a848 563int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 564 void __user *buffer, size_t *lenp,
b2be5e96
PZ
565 loff_t *ppos)
566{
8d65af78 567 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 568 int factor = get_update_sysctl_factor();
b2be5e96
PZ
569
570 if (ret || !write)
571 return ret;
572
573 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
574 sysctl_sched_min_granularity);
575
acb4a848
CE
576#define WRT_SYSCTL(name) \
577 (normalized_sysctl_##name = sysctl_##name / (factor))
578 WRT_SYSCTL(sched_min_granularity);
579 WRT_SYSCTL(sched_latency);
580 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
581#undef WRT_SYSCTL
582
b2be5e96
PZ
583 return 0;
584}
585#endif
647e7cac 586
a7be37ac 587/*
f9c0b095 588 * delta /= w
a7be37ac
PZ
589 */
590static inline unsigned long
591calc_delta_fair(unsigned long delta, struct sched_entity *se)
592{
f9c0b095
PZ
593 if (unlikely(se->load.weight != NICE_0_LOAD))
594 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
595
596 return delta;
597}
598
647e7cac
IM
599/*
600 * The idea is to set a period in which each task runs once.
601 *
602 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
603 * this period because otherwise the slices get too small.
604 *
605 * p = (nr <= nl) ? l : l*nr/nl
606 */
4d78e7b6
PZ
607static u64 __sched_period(unsigned long nr_running)
608{
609 u64 period = sysctl_sched_latency;
b2be5e96 610 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
611
612 if (unlikely(nr_running > nr_latency)) {
4bf0b771 613 period = sysctl_sched_min_granularity;
4d78e7b6 614 period *= nr_running;
4d78e7b6
PZ
615 }
616
617 return period;
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = calc_delta_mine(slice, se->load.weight, load);
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
ac884dec 649 * We calculate the vruntime slice of a to be inserted task
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
d6b55918 658static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 659static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 660
bf0f6f24
IM
661/*
662 * Update the current task's runtime statistics. Skip current tasks that
663 * are not in our scheduling class.
664 */
665static inline void
8ebc91d9
IM
666__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
667 unsigned long delta_exec)
bf0f6f24 668{
bbdba7c0 669 unsigned long delta_exec_weighted;
bf0f6f24 670
41acab88
LDM
671 schedstat_set(curr->statistics.exec_max,
672 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
673
674 curr->sum_exec_runtime += delta_exec;
7a62eabc 675 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 676 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 677
e9acbff6 678 curr->vruntime += delta_exec_weighted;
1af5f730 679 update_min_vruntime(cfs_rq);
3b3d190e 680
70caf8a6 681#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 682 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 683#endif
bf0f6f24
IM
684}
685
b7cc0896 686static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 687{
429d43bc 688 struct sched_entity *curr = cfs_rq->curr;
305e6835 689 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
8ebc91d9 700 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
701 if (!delta_exec)
702 return;
bf0f6f24 703
8ebc91d9
IM
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
d842de87
SV
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
f977bb49 710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 711 cpuacct_charge(curtask, delta_exec);
f06febc9 712 account_group_exec_runtime(curtask, delta_exec);
d842de87 713 }
ec12cb7f
PT
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
716}
717
718static inline void
5870db5b 719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 720{
41acab88 721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
722}
723
bf0f6f24
IM
724/*
725 * Task is being enqueued - update stats:
726 */
d2417e5a 727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 728{
bf0f6f24
IM
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
429d43bc 733 if (se != cfs_rq->curr)
5870db5b 734 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
735}
736
bf0f6f24 737static void
9ef0a961 738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
41acab88
LDM
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745#ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
41acab88 748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
749 }
750#endif
41acab88 751 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
752}
753
754static inline void
19b6a2e3 755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
bf0f6f24
IM
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
429d43bc 761 if (se != cfs_rq->curr)
9ef0a961 762 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
763}
764
765/*
766 * We are picking a new current task - update its stats:
767 */
768static inline void
79303e9e 769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
770{
771 /*
772 * We are starting a new run period:
773 */
305e6835 774 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
775}
776
bf0f6f24
IM
777/**************************************************
778 * Scheduling class queueing methods:
779 */
780
c09595f6
PZ
781#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
782static void
783add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
784{
785 cfs_rq->task_weight += weight;
786}
787#else
788static inline void
789add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
790{
791}
792#endif
793
30cfdcfc
DA
794static void
795account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796{
797 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 798 if (!parent_entity(se))
029632fb 799 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 800 if (entity_is_task(se)) {
c09595f6 801 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
802 list_add(&se->group_node, &cfs_rq->tasks);
803 }
30cfdcfc 804 cfs_rq->nr_running++;
30cfdcfc
DA
805}
806
807static void
808account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
809{
810 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 811 if (!parent_entity(se))
029632fb 812 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
b87f1724 813 if (entity_is_task(se)) {
c09595f6 814 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
815 list_del_init(&se->group_node);
816 }
30cfdcfc 817 cfs_rq->nr_running--;
30cfdcfc
DA
818}
819
3ff6dcac 820#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
821/* we need this in update_cfs_load and load-balance functions below */
822static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 823# ifdef CONFIG_SMP
d6b55918
PT
824static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
825 int global_update)
826{
827 struct task_group *tg = cfs_rq->tg;
828 long load_avg;
829
830 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
831 load_avg -= cfs_rq->load_contribution;
832
833 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
834 atomic_add(load_avg, &tg->load_weight);
835 cfs_rq->load_contribution += load_avg;
836 }
837}
838
839static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 840{
a7a4f8a7 841 u64 period = sysctl_sched_shares_window;
2069dd75 842 u64 now, delta;
e33078ba 843 unsigned long load = cfs_rq->load.weight;
2069dd75 844
64660c86 845 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
846 return;
847
05ca62c6 848 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
849 delta = now - cfs_rq->load_stamp;
850
e33078ba
PT
851 /* truncate load history at 4 idle periods */
852 if (cfs_rq->load_stamp > cfs_rq->load_last &&
853 now - cfs_rq->load_last > 4 * period) {
854 cfs_rq->load_period = 0;
855 cfs_rq->load_avg = 0;
f07333bf 856 delta = period - 1;
e33078ba
PT
857 }
858
2069dd75 859 cfs_rq->load_stamp = now;
3b3d190e 860 cfs_rq->load_unacc_exec_time = 0;
2069dd75 861 cfs_rq->load_period += delta;
e33078ba
PT
862 if (load) {
863 cfs_rq->load_last = now;
864 cfs_rq->load_avg += delta * load;
865 }
2069dd75 866
d6b55918
PT
867 /* consider updating load contribution on each fold or truncate */
868 if (global_update || cfs_rq->load_period > period
869 || !cfs_rq->load_period)
870 update_cfs_rq_load_contribution(cfs_rq, global_update);
871
2069dd75
PZ
872 while (cfs_rq->load_period > period) {
873 /*
874 * Inline assembly required to prevent the compiler
875 * optimising this loop into a divmod call.
876 * See __iter_div_u64_rem() for another example of this.
877 */
878 asm("" : "+rm" (cfs_rq->load_period));
879 cfs_rq->load_period /= 2;
880 cfs_rq->load_avg /= 2;
881 }
3d4b47b4 882
e33078ba
PT
883 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
884 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
885}
886
cf5f0acf
PZ
887static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
888{
889 long tg_weight;
890
891 /*
892 * Use this CPU's actual weight instead of the last load_contribution
893 * to gain a more accurate current total weight. See
894 * update_cfs_rq_load_contribution().
895 */
896 tg_weight = atomic_read(&tg->load_weight);
897 tg_weight -= cfs_rq->load_contribution;
898 tg_weight += cfs_rq->load.weight;
899
900 return tg_weight;
901}
902
6d5ab293 903static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 904{
cf5f0acf 905 long tg_weight, load, shares;
3ff6dcac 906
cf5f0acf 907 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 908 load = cfs_rq->load.weight;
3ff6dcac 909
3ff6dcac 910 shares = (tg->shares * load);
cf5f0acf
PZ
911 if (tg_weight)
912 shares /= tg_weight;
3ff6dcac
YZ
913
914 if (shares < MIN_SHARES)
915 shares = MIN_SHARES;
916 if (shares > tg->shares)
917 shares = tg->shares;
918
919 return shares;
920}
921
922static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
925 update_cfs_load(cfs_rq, 0);
6d5ab293 926 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
927 }
928}
929# else /* CONFIG_SMP */
930static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
931{
932}
933
6d5ab293 934static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
935{
936 return tg->shares;
937}
938
939static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
940{
941}
942# endif /* CONFIG_SMP */
2069dd75
PZ
943static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
944 unsigned long weight)
945{
19e5eebb
PT
946 if (se->on_rq) {
947 /* commit outstanding execution time */
948 if (cfs_rq->curr == se)
949 update_curr(cfs_rq);
2069dd75 950 account_entity_dequeue(cfs_rq, se);
19e5eebb 951 }
2069dd75
PZ
952
953 update_load_set(&se->load, weight);
954
955 if (se->on_rq)
956 account_entity_enqueue(cfs_rq, se);
957}
958
6d5ab293 959static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
960{
961 struct task_group *tg;
962 struct sched_entity *se;
3ff6dcac 963 long shares;
2069dd75 964
2069dd75
PZ
965 tg = cfs_rq->tg;
966 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 967 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 968 return;
3ff6dcac
YZ
969#ifndef CONFIG_SMP
970 if (likely(se->load.weight == tg->shares))
971 return;
972#endif
6d5ab293 973 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
974
975 reweight_entity(cfs_rq_of(se), se, shares);
976}
977#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 978static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
979{
980}
981
6d5ab293 982static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
983{
984}
43365bd7
PT
985
986static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
987{
988}
2069dd75
PZ
989#endif /* CONFIG_FAIR_GROUP_SCHED */
990
2396af69 991static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 992{
bf0f6f24 993#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
994 struct task_struct *tsk = NULL;
995
996 if (entity_is_task(se))
997 tsk = task_of(se);
998
41acab88
LDM
999 if (se->statistics.sleep_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
41acab88
LDM
1005 if (unlikely(delta > se->statistics.sleep_max))
1006 se->statistics.sleep_max = delta;
bf0f6f24 1007
41acab88 1008 se->statistics.sum_sleep_runtime += delta;
9745512c 1009
768d0c27 1010 if (tsk) {
e414314c 1011 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1012 trace_sched_stat_sleep(tsk, delta);
1013 }
bf0f6f24 1014 }
41acab88
LDM
1015 if (se->statistics.block_start) {
1016 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1017
1018 if ((s64)delta < 0)
1019 delta = 0;
1020
41acab88
LDM
1021 if (unlikely(delta > se->statistics.block_max))
1022 se->statistics.block_max = delta;
bf0f6f24 1023
41acab88 1024 se->statistics.sum_sleep_runtime += delta;
30084fbd 1025
e414314c 1026 if (tsk) {
8f0dfc34 1027 if (tsk->in_iowait) {
41acab88
LDM
1028 se->statistics.iowait_sum += delta;
1029 se->statistics.iowait_count++;
768d0c27 1030 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1031 }
1032
b781a602
AV
1033 trace_sched_stat_blocked(tsk, delta);
1034
e414314c
PZ
1035 /*
1036 * Blocking time is in units of nanosecs, so shift by
1037 * 20 to get a milliseconds-range estimation of the
1038 * amount of time that the task spent sleeping:
1039 */
1040 if (unlikely(prof_on == SLEEP_PROFILING)) {
1041 profile_hits(SLEEP_PROFILING,
1042 (void *)get_wchan(tsk),
1043 delta >> 20);
1044 }
1045 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1046 }
bf0f6f24
IM
1047 }
1048#endif
1049}
1050
ddc97297
PZ
1051static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054 s64 d = se->vruntime - cfs_rq->min_vruntime;
1055
1056 if (d < 0)
1057 d = -d;
1058
1059 if (d > 3*sysctl_sched_latency)
1060 schedstat_inc(cfs_rq, nr_spread_over);
1061#endif
1062}
1063
aeb73b04
PZ
1064static void
1065place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1066{
1af5f730 1067 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1068
2cb8600e
PZ
1069 /*
1070 * The 'current' period is already promised to the current tasks,
1071 * however the extra weight of the new task will slow them down a
1072 * little, place the new task so that it fits in the slot that
1073 * stays open at the end.
1074 */
94dfb5e7 1075 if (initial && sched_feat(START_DEBIT))
f9c0b095 1076 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1077
a2e7a7eb 1078 /* sleeps up to a single latency don't count. */
5ca9880c 1079 if (!initial) {
a2e7a7eb 1080 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1081
a2e7a7eb
MG
1082 /*
1083 * Halve their sleep time's effect, to allow
1084 * for a gentler effect of sleepers:
1085 */
1086 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1087 thresh >>= 1;
51e0304c 1088
a2e7a7eb 1089 vruntime -= thresh;
aeb73b04
PZ
1090 }
1091
b5d9d734
MG
1092 /* ensure we never gain time by being placed backwards. */
1093 vruntime = max_vruntime(se->vruntime, vruntime);
1094
67e9fb2a 1095 se->vruntime = vruntime;
aeb73b04
PZ
1096}
1097
d3d9dc33
PT
1098static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1099
bf0f6f24 1100static void
88ec22d3 1101enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1102{
88ec22d3
PZ
1103 /*
1104 * Update the normalized vruntime before updating min_vruntime
1105 * through callig update_curr().
1106 */
371fd7e7 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1108 se->vruntime += cfs_rq->min_vruntime;
1109
bf0f6f24 1110 /*
a2a2d680 1111 * Update run-time statistics of the 'current'.
bf0f6f24 1112 */
b7cc0896 1113 update_curr(cfs_rq);
d6b55918 1114 update_cfs_load(cfs_rq, 0);
a992241d 1115 account_entity_enqueue(cfs_rq, se);
6d5ab293 1116 update_cfs_shares(cfs_rq);
bf0f6f24 1117
88ec22d3 1118 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1119 place_entity(cfs_rq, se, 0);
2396af69 1120 enqueue_sleeper(cfs_rq, se);
e9acbff6 1121 }
bf0f6f24 1122
d2417e5a 1123 update_stats_enqueue(cfs_rq, se);
ddc97297 1124 check_spread(cfs_rq, se);
83b699ed
SV
1125 if (se != cfs_rq->curr)
1126 __enqueue_entity(cfs_rq, se);
2069dd75 1127 se->on_rq = 1;
3d4b47b4 1128
d3d9dc33 1129 if (cfs_rq->nr_running == 1) {
3d4b47b4 1130 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1131 check_enqueue_throttle(cfs_rq);
1132 }
bf0f6f24
IM
1133}
1134
2c13c919 1135static void __clear_buddies_last(struct sched_entity *se)
2002c695 1136{
2c13c919
RR
1137 for_each_sched_entity(se) {
1138 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1139 if (cfs_rq->last == se)
1140 cfs_rq->last = NULL;
1141 else
1142 break;
1143 }
1144}
2002c695 1145
2c13c919
RR
1146static void __clear_buddies_next(struct sched_entity *se)
1147{
1148 for_each_sched_entity(se) {
1149 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1150 if (cfs_rq->next == se)
1151 cfs_rq->next = NULL;
1152 else
1153 break;
1154 }
2002c695
PZ
1155}
1156
ac53db59
RR
1157static void __clear_buddies_skip(struct sched_entity *se)
1158{
1159 for_each_sched_entity(se) {
1160 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1161 if (cfs_rq->skip == se)
1162 cfs_rq->skip = NULL;
1163 else
1164 break;
1165 }
1166}
1167
a571bbea
PZ
1168static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1169{
2c13c919
RR
1170 if (cfs_rq->last == se)
1171 __clear_buddies_last(se);
1172
1173 if (cfs_rq->next == se)
1174 __clear_buddies_next(se);
ac53db59
RR
1175
1176 if (cfs_rq->skip == se)
1177 __clear_buddies_skip(se);
a571bbea
PZ
1178}
1179
d8b4986d
PT
1180static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1181
bf0f6f24 1182static void
371fd7e7 1183dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1184{
a2a2d680
DA
1185 /*
1186 * Update run-time statistics of the 'current'.
1187 */
1188 update_curr(cfs_rq);
1189
19b6a2e3 1190 update_stats_dequeue(cfs_rq, se);
371fd7e7 1191 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1192#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1193 if (entity_is_task(se)) {
1194 struct task_struct *tsk = task_of(se);
1195
1196 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1198 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1199 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1200 }
db36cc7d 1201#endif
67e9fb2a
PZ
1202 }
1203
2002c695 1204 clear_buddies(cfs_rq, se);
4793241b 1205
83b699ed 1206 if (se != cfs_rq->curr)
30cfdcfc 1207 __dequeue_entity(cfs_rq, se);
2069dd75 1208 se->on_rq = 0;
d6b55918 1209 update_cfs_load(cfs_rq, 0);
30cfdcfc 1210 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1211
1212 /*
1213 * Normalize the entity after updating the min_vruntime because the
1214 * update can refer to the ->curr item and we need to reflect this
1215 * movement in our normalized position.
1216 */
371fd7e7 1217 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1218 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1219
d8b4986d
PT
1220 /* return excess runtime on last dequeue */
1221 return_cfs_rq_runtime(cfs_rq);
1222
1e876231
PZ
1223 update_min_vruntime(cfs_rq);
1224 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1225}
1226
1227/*
1228 * Preempt the current task with a newly woken task if needed:
1229 */
7c92e54f 1230static void
2e09bf55 1231check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1232{
11697830 1233 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1234 struct sched_entity *se;
1235 s64 delta;
11697830 1236
6d0f0ebd 1237 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1239 if (delta_exec > ideal_runtime) {
bf0f6f24 1240 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1241 /*
1242 * The current task ran long enough, ensure it doesn't get
1243 * re-elected due to buddy favours.
1244 */
1245 clear_buddies(cfs_rq, curr);
f685ceac
MG
1246 return;
1247 }
1248
1249 /*
1250 * Ensure that a task that missed wakeup preemption by a
1251 * narrow margin doesn't have to wait for a full slice.
1252 * This also mitigates buddy induced latencies under load.
1253 */
f685ceac
MG
1254 if (delta_exec < sysctl_sched_min_granularity)
1255 return;
1256
f4cfb33e
WX
1257 se = __pick_first_entity(cfs_rq);
1258 delta = curr->vruntime - se->vruntime;
f685ceac 1259
f4cfb33e
WX
1260 if (delta < 0)
1261 return;
d7d82944 1262
f4cfb33e
WX
1263 if (delta > ideal_runtime)
1264 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1265}
1266
83b699ed 1267static void
8494f412 1268set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1269{
83b699ed
SV
1270 /* 'current' is not kept within the tree. */
1271 if (se->on_rq) {
1272 /*
1273 * Any task has to be enqueued before it get to execute on
1274 * a CPU. So account for the time it spent waiting on the
1275 * runqueue.
1276 */
1277 update_stats_wait_end(cfs_rq, se);
1278 __dequeue_entity(cfs_rq, se);
1279 }
1280
79303e9e 1281 update_stats_curr_start(cfs_rq, se);
429d43bc 1282 cfs_rq->curr = se;
eba1ed4b
IM
1283#ifdef CONFIG_SCHEDSTATS
1284 /*
1285 * Track our maximum slice length, if the CPU's load is at
1286 * least twice that of our own weight (i.e. dont track it
1287 * when there are only lesser-weight tasks around):
1288 */
495eca49 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1290 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1291 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1292 }
1293#endif
4a55b450 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1295}
1296
3f3a4904
PZ
1297static int
1298wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1299
ac53db59
RR
1300/*
1301 * Pick the next process, keeping these things in mind, in this order:
1302 * 1) keep things fair between processes/task groups
1303 * 2) pick the "next" process, since someone really wants that to run
1304 * 3) pick the "last" process, for cache locality
1305 * 4) do not run the "skip" process, if something else is available
1306 */
f4b6755f 1307static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1308{
ac53db59 1309 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1310 struct sched_entity *left = se;
f4b6755f 1311
ac53db59
RR
1312 /*
1313 * Avoid running the skip buddy, if running something else can
1314 * be done without getting too unfair.
1315 */
1316 if (cfs_rq->skip == se) {
1317 struct sched_entity *second = __pick_next_entity(se);
1318 if (second && wakeup_preempt_entity(second, left) < 1)
1319 se = second;
1320 }
aa2ac252 1321
f685ceac
MG
1322 /*
1323 * Prefer last buddy, try to return the CPU to a preempted task.
1324 */
1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1326 se = cfs_rq->last;
1327
ac53db59
RR
1328 /*
1329 * Someone really wants this to run. If it's not unfair, run it.
1330 */
1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1332 se = cfs_rq->next;
1333
f685ceac 1334 clear_buddies(cfs_rq, se);
4793241b
PZ
1335
1336 return se;
aa2ac252
PZ
1337}
1338
d3d9dc33
PT
1339static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1340
ab6cde26 1341static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1342{
1343 /*
1344 * If still on the runqueue then deactivate_task()
1345 * was not called and update_curr() has to be done:
1346 */
1347 if (prev->on_rq)
b7cc0896 1348 update_curr(cfs_rq);
bf0f6f24 1349
d3d9dc33
PT
1350 /* throttle cfs_rqs exceeding runtime */
1351 check_cfs_rq_runtime(cfs_rq);
1352
ddc97297 1353 check_spread(cfs_rq, prev);
30cfdcfc 1354 if (prev->on_rq) {
5870db5b 1355 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1356 /* Put 'current' back into the tree. */
1357 __enqueue_entity(cfs_rq, prev);
1358 }
429d43bc 1359 cfs_rq->curr = NULL;
bf0f6f24
IM
1360}
1361
8f4d37ec
PZ
1362static void
1363entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1364{
bf0f6f24 1365 /*
30cfdcfc 1366 * Update run-time statistics of the 'current'.
bf0f6f24 1367 */
30cfdcfc 1368 update_curr(cfs_rq);
bf0f6f24 1369
43365bd7
PT
1370 /*
1371 * Update share accounting for long-running entities.
1372 */
1373 update_entity_shares_tick(cfs_rq);
1374
8f4d37ec
PZ
1375#ifdef CONFIG_SCHED_HRTICK
1376 /*
1377 * queued ticks are scheduled to match the slice, so don't bother
1378 * validating it and just reschedule.
1379 */
983ed7a6
HH
1380 if (queued) {
1381 resched_task(rq_of(cfs_rq)->curr);
1382 return;
1383 }
8f4d37ec
PZ
1384 /*
1385 * don't let the period tick interfere with the hrtick preemption
1386 */
1387 if (!sched_feat(DOUBLE_TICK) &&
1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1389 return;
1390#endif
1391
2c2efaed 1392 if (cfs_rq->nr_running > 1)
2e09bf55 1393 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1394}
1395
ab84d31e
PT
1396
1397/**************************************************
1398 * CFS bandwidth control machinery
1399 */
1400
1401#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1402
1403#ifdef HAVE_JUMP_LABEL
1404static struct jump_label_key __cfs_bandwidth_used;
1405
1406static inline bool cfs_bandwidth_used(void)
1407{
1408 return static_branch(&__cfs_bandwidth_used);
1409}
1410
1411void account_cfs_bandwidth_used(int enabled, int was_enabled)
1412{
1413 /* only need to count groups transitioning between enabled/!enabled */
1414 if (enabled && !was_enabled)
1415 jump_label_inc(&__cfs_bandwidth_used);
1416 else if (!enabled && was_enabled)
1417 jump_label_dec(&__cfs_bandwidth_used);
1418}
1419#else /* HAVE_JUMP_LABEL */
1420static bool cfs_bandwidth_used(void)
1421{
1422 return true;
1423}
1424
1425void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1426#endif /* HAVE_JUMP_LABEL */
1427
ab84d31e
PT
1428/*
1429 * default period for cfs group bandwidth.
1430 * default: 0.1s, units: nanoseconds
1431 */
1432static inline u64 default_cfs_period(void)
1433{
1434 return 100000000ULL;
1435}
ec12cb7f
PT
1436
1437static inline u64 sched_cfs_bandwidth_slice(void)
1438{
1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1440}
1441
a9cf55b2
PT
1442/*
1443 * Replenish runtime according to assigned quota and update expiration time.
1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1445 * additional synchronization around rq->lock.
1446 *
1447 * requires cfs_b->lock
1448 */
029632fb 1449void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1450{
1451 u64 now;
1452
1453 if (cfs_b->quota == RUNTIME_INF)
1454 return;
1455
1456 now = sched_clock_cpu(smp_processor_id());
1457 cfs_b->runtime = cfs_b->quota;
1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1459}
1460
029632fb
PZ
1461static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1462{
1463 return &tg->cfs_bandwidth;
1464}
1465
85dac906
PT
1466/* returns 0 on failure to allocate runtime */
1467static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1468{
1469 struct task_group *tg = cfs_rq->tg;
1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1471 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1472
1473 /* note: this is a positive sum as runtime_remaining <= 0 */
1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1475
1476 raw_spin_lock(&cfs_b->lock);
1477 if (cfs_b->quota == RUNTIME_INF)
1478 amount = min_amount;
58088ad0 1479 else {
a9cf55b2
PT
1480 /*
1481 * If the bandwidth pool has become inactive, then at least one
1482 * period must have elapsed since the last consumption.
1483 * Refresh the global state and ensure bandwidth timer becomes
1484 * active.
1485 */
1486 if (!cfs_b->timer_active) {
1487 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1488 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1489 }
58088ad0
PT
1490
1491 if (cfs_b->runtime > 0) {
1492 amount = min(cfs_b->runtime, min_amount);
1493 cfs_b->runtime -= amount;
1494 cfs_b->idle = 0;
1495 }
ec12cb7f 1496 }
a9cf55b2 1497 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1498 raw_spin_unlock(&cfs_b->lock);
1499
1500 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1501 /*
1502 * we may have advanced our local expiration to account for allowed
1503 * spread between our sched_clock and the one on which runtime was
1504 * issued.
1505 */
1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1507 cfs_rq->runtime_expires = expires;
85dac906
PT
1508
1509 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1510}
1511
a9cf55b2
PT
1512/*
1513 * Note: This depends on the synchronization provided by sched_clock and the
1514 * fact that rq->clock snapshots this value.
1515 */
1516static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1517{
a9cf55b2
PT
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct rq *rq = rq_of(cfs_rq);
1520
1521 /* if the deadline is ahead of our clock, nothing to do */
1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1523 return;
1524
a9cf55b2
PT
1525 if (cfs_rq->runtime_remaining < 0)
1526 return;
1527
1528 /*
1529 * If the local deadline has passed we have to consider the
1530 * possibility that our sched_clock is 'fast' and the global deadline
1531 * has not truly expired.
1532 *
1533 * Fortunately we can check determine whether this the case by checking
1534 * whether the global deadline has advanced.
1535 */
1536
1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1538 /* extend local deadline, drift is bounded above by 2 ticks */
1539 cfs_rq->runtime_expires += TICK_NSEC;
1540 } else {
1541 /* global deadline is ahead, expiration has passed */
1542 cfs_rq->runtime_remaining = 0;
1543 }
1544}
1545
1546static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1547 unsigned long delta_exec)
1548{
1549 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1550 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1551 expire_cfs_rq_runtime(cfs_rq);
1552
1553 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1554 return;
1555
85dac906
PT
1556 /*
1557 * if we're unable to extend our runtime we resched so that the active
1558 * hierarchy can be throttled
1559 */
1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1561 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1562}
1563
1564static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1565 unsigned long delta_exec)
1566{
56f570e5 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1568 return;
1569
1570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1571}
1572
85dac906
PT
1573static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1574{
56f570e5 1575 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1576}
1577
64660c86
PT
1578/* check whether cfs_rq, or any parent, is throttled */
1579static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1580{
56f570e5 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1582}
1583
1584/*
1585 * Ensure that neither of the group entities corresponding to src_cpu or
1586 * dest_cpu are members of a throttled hierarchy when performing group
1587 * load-balance operations.
1588 */
1589static inline int throttled_lb_pair(struct task_group *tg,
1590 int src_cpu, int dest_cpu)
1591{
1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1593
1594 src_cfs_rq = tg->cfs_rq[src_cpu];
1595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1596
1597 return throttled_hierarchy(src_cfs_rq) ||
1598 throttled_hierarchy(dest_cfs_rq);
1599}
1600
1601/* updated child weight may affect parent so we have to do this bottom up */
1602static int tg_unthrottle_up(struct task_group *tg, void *data)
1603{
1604 struct rq *rq = data;
1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1606
1607 cfs_rq->throttle_count--;
1608#ifdef CONFIG_SMP
1609 if (!cfs_rq->throttle_count) {
1610 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1611
1612 /* leaving throttled state, advance shares averaging windows */
1613 cfs_rq->load_stamp += delta;
1614 cfs_rq->load_last += delta;
1615
1616 /* update entity weight now that we are on_rq again */
1617 update_cfs_shares(cfs_rq);
1618 }
1619#endif
1620
1621 return 0;
1622}
1623
1624static int tg_throttle_down(struct task_group *tg, void *data)
1625{
1626 struct rq *rq = data;
1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1628
1629 /* group is entering throttled state, record last load */
1630 if (!cfs_rq->throttle_count)
1631 update_cfs_load(cfs_rq, 0);
1632 cfs_rq->throttle_count++;
1633
1634 return 0;
1635}
1636
d3d9dc33 1637static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1638{
1639 struct rq *rq = rq_of(cfs_rq);
1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1641 struct sched_entity *se;
1642 long task_delta, dequeue = 1;
1643
1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1645
1646 /* account load preceding throttle */
64660c86
PT
1647 rcu_read_lock();
1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1649 rcu_read_unlock();
85dac906
PT
1650
1651 task_delta = cfs_rq->h_nr_running;
1652 for_each_sched_entity(se) {
1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1654 /* throttled entity or throttle-on-deactivate */
1655 if (!se->on_rq)
1656 break;
1657
1658 if (dequeue)
1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1660 qcfs_rq->h_nr_running -= task_delta;
1661
1662 if (qcfs_rq->load.weight)
1663 dequeue = 0;
1664 }
1665
1666 if (!se)
1667 rq->nr_running -= task_delta;
1668
1669 cfs_rq->throttled = 1;
e8da1b18 1670 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1671 raw_spin_lock(&cfs_b->lock);
1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1673 raw_spin_unlock(&cfs_b->lock);
1674}
1675
029632fb 1676void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1677{
1678 struct rq *rq = rq_of(cfs_rq);
1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1680 struct sched_entity *se;
1681 int enqueue = 1;
1682 long task_delta;
1683
1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1685
1686 cfs_rq->throttled = 0;
1687 raw_spin_lock(&cfs_b->lock);
e8da1b18 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1689 list_del_rcu(&cfs_rq->throttled_list);
1690 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1691 cfs_rq->throttled_timestamp = 0;
671fd9da 1692
64660c86
PT
1693 update_rq_clock(rq);
1694 /* update hierarchical throttle state */
1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1696
671fd9da
PT
1697 if (!cfs_rq->load.weight)
1698 return;
1699
1700 task_delta = cfs_rq->h_nr_running;
1701 for_each_sched_entity(se) {
1702 if (se->on_rq)
1703 enqueue = 0;
1704
1705 cfs_rq = cfs_rq_of(se);
1706 if (enqueue)
1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1708 cfs_rq->h_nr_running += task_delta;
1709
1710 if (cfs_rq_throttled(cfs_rq))
1711 break;
1712 }
1713
1714 if (!se)
1715 rq->nr_running += task_delta;
1716
1717 /* determine whether we need to wake up potentially idle cpu */
1718 if (rq->curr == rq->idle && rq->cfs.nr_running)
1719 resched_task(rq->curr);
1720}
1721
1722static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1723 u64 remaining, u64 expires)
1724{
1725 struct cfs_rq *cfs_rq;
1726 u64 runtime = remaining;
1727
1728 rcu_read_lock();
1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1730 throttled_list) {
1731 struct rq *rq = rq_of(cfs_rq);
1732
1733 raw_spin_lock(&rq->lock);
1734 if (!cfs_rq_throttled(cfs_rq))
1735 goto next;
1736
1737 runtime = -cfs_rq->runtime_remaining + 1;
1738 if (runtime > remaining)
1739 runtime = remaining;
1740 remaining -= runtime;
1741
1742 cfs_rq->runtime_remaining += runtime;
1743 cfs_rq->runtime_expires = expires;
1744
1745 /* we check whether we're throttled above */
1746 if (cfs_rq->runtime_remaining > 0)
1747 unthrottle_cfs_rq(cfs_rq);
1748
1749next:
1750 raw_spin_unlock(&rq->lock);
1751
1752 if (!remaining)
1753 break;
1754 }
1755 rcu_read_unlock();
1756
1757 return remaining;
1758}
1759
58088ad0
PT
1760/*
1761 * Responsible for refilling a task_group's bandwidth and unthrottling its
1762 * cfs_rqs as appropriate. If there has been no activity within the last
1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1764 * used to track this state.
1765 */
1766static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1767{
671fd9da
PT
1768 u64 runtime, runtime_expires;
1769 int idle = 1, throttled;
58088ad0
PT
1770
1771 raw_spin_lock(&cfs_b->lock);
1772 /* no need to continue the timer with no bandwidth constraint */
1773 if (cfs_b->quota == RUNTIME_INF)
1774 goto out_unlock;
1775
671fd9da
PT
1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1777 /* idle depends on !throttled (for the case of a large deficit) */
1778 idle = cfs_b->idle && !throttled;
e8da1b18 1779 cfs_b->nr_periods += overrun;
671fd9da 1780
a9cf55b2
PT
1781 /* if we're going inactive then everything else can be deferred */
1782 if (idle)
1783 goto out_unlock;
1784
1785 __refill_cfs_bandwidth_runtime(cfs_b);
1786
671fd9da
PT
1787 if (!throttled) {
1788 /* mark as potentially idle for the upcoming period */
1789 cfs_b->idle = 1;
1790 goto out_unlock;
1791 }
1792
e8da1b18
NR
1793 /* account preceding periods in which throttling occurred */
1794 cfs_b->nr_throttled += overrun;
1795
671fd9da
PT
1796 /*
1797 * There are throttled entities so we must first use the new bandwidth
1798 * to unthrottle them before making it generally available. This
1799 * ensures that all existing debts will be paid before a new cfs_rq is
1800 * allowed to run.
1801 */
1802 runtime = cfs_b->runtime;
1803 runtime_expires = cfs_b->runtime_expires;
1804 cfs_b->runtime = 0;
1805
1806 /*
1807 * This check is repeated as we are holding onto the new bandwidth
1808 * while we unthrottle. This can potentially race with an unthrottled
1809 * group trying to acquire new bandwidth from the global pool.
1810 */
1811 while (throttled && runtime > 0) {
1812 raw_spin_unlock(&cfs_b->lock);
1813 /* we can't nest cfs_b->lock while distributing bandwidth */
1814 runtime = distribute_cfs_runtime(cfs_b, runtime,
1815 runtime_expires);
1816 raw_spin_lock(&cfs_b->lock);
1817
1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1819 }
58088ad0 1820
671fd9da
PT
1821 /* return (any) remaining runtime */
1822 cfs_b->runtime = runtime;
1823 /*
1824 * While we are ensured activity in the period following an
1825 * unthrottle, this also covers the case in which the new bandwidth is
1826 * insufficient to cover the existing bandwidth deficit. (Forcing the
1827 * timer to remain active while there are any throttled entities.)
1828 */
1829 cfs_b->idle = 0;
58088ad0
PT
1830out_unlock:
1831 if (idle)
1832 cfs_b->timer_active = 0;
1833 raw_spin_unlock(&cfs_b->lock);
1834
1835 return idle;
1836}
d3d9dc33 1837
d8b4986d
PT
1838/* a cfs_rq won't donate quota below this amount */
1839static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1840/* minimum remaining period time to redistribute slack quota */
1841static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1842/* how long we wait to gather additional slack before distributing */
1843static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1844
1845/* are we near the end of the current quota period? */
1846static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1847{
1848 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1849 u64 remaining;
1850
1851 /* if the call-back is running a quota refresh is already occurring */
1852 if (hrtimer_callback_running(refresh_timer))
1853 return 1;
1854
1855 /* is a quota refresh about to occur? */
1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1857 if (remaining < min_expire)
1858 return 1;
1859
1860 return 0;
1861}
1862
1863static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1864{
1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1866
1867 /* if there's a quota refresh soon don't bother with slack */
1868 if (runtime_refresh_within(cfs_b, min_left))
1869 return;
1870
1871 start_bandwidth_timer(&cfs_b->slack_timer,
1872 ns_to_ktime(cfs_bandwidth_slack_period));
1873}
1874
1875/* we know any runtime found here is valid as update_curr() precedes return */
1876static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1877{
1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1880
1881 if (slack_runtime <= 0)
1882 return;
1883
1884 raw_spin_lock(&cfs_b->lock);
1885 if (cfs_b->quota != RUNTIME_INF &&
1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1887 cfs_b->runtime += slack_runtime;
1888
1889 /* we are under rq->lock, defer unthrottling using a timer */
1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1891 !list_empty(&cfs_b->throttled_cfs_rq))
1892 start_cfs_slack_bandwidth(cfs_b);
1893 }
1894 raw_spin_unlock(&cfs_b->lock);
1895
1896 /* even if it's not valid for return we don't want to try again */
1897 cfs_rq->runtime_remaining -= slack_runtime;
1898}
1899
1900static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1901{
56f570e5
PT
1902 if (!cfs_bandwidth_used())
1903 return;
1904
fccfdc6f 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1906 return;
1907
1908 __return_cfs_rq_runtime(cfs_rq);
1909}
1910
1911/*
1912 * This is done with a timer (instead of inline with bandwidth return) since
1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1914 */
1915static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1916{
1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1918 u64 expires;
1919
1920 /* confirm we're still not at a refresh boundary */
1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1922 return;
1923
1924 raw_spin_lock(&cfs_b->lock);
1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1926 runtime = cfs_b->runtime;
1927 cfs_b->runtime = 0;
1928 }
1929 expires = cfs_b->runtime_expires;
1930 raw_spin_unlock(&cfs_b->lock);
1931
1932 if (!runtime)
1933 return;
1934
1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1936
1937 raw_spin_lock(&cfs_b->lock);
1938 if (expires == cfs_b->runtime_expires)
1939 cfs_b->runtime = runtime;
1940 raw_spin_unlock(&cfs_b->lock);
1941}
1942
d3d9dc33
PT
1943/*
1944 * When a group wakes up we want to make sure that its quota is not already
1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1946 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1947 */
1948static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1949{
56f570e5
PT
1950 if (!cfs_bandwidth_used())
1951 return;
1952
d3d9dc33
PT
1953 /* an active group must be handled by the update_curr()->put() path */
1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1955 return;
1956
1957 /* ensure the group is not already throttled */
1958 if (cfs_rq_throttled(cfs_rq))
1959 return;
1960
1961 /* update runtime allocation */
1962 account_cfs_rq_runtime(cfs_rq, 0);
1963 if (cfs_rq->runtime_remaining <= 0)
1964 throttle_cfs_rq(cfs_rq);
1965}
1966
1967/* conditionally throttle active cfs_rq's from put_prev_entity() */
1968static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1969{
56f570e5
PT
1970 if (!cfs_bandwidth_used())
1971 return;
1972
d3d9dc33
PT
1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1974 return;
1975
1976 /*
1977 * it's possible for a throttled entity to be forced into a running
1978 * state (e.g. set_curr_task), in this case we're finished.
1979 */
1980 if (cfs_rq_throttled(cfs_rq))
1981 return;
1982
1983 throttle_cfs_rq(cfs_rq);
1984}
029632fb
PZ
1985
1986static inline u64 default_cfs_period(void);
1987static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1988static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1989
1990static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1991{
1992 struct cfs_bandwidth *cfs_b =
1993 container_of(timer, struct cfs_bandwidth, slack_timer);
1994 do_sched_cfs_slack_timer(cfs_b);
1995
1996 return HRTIMER_NORESTART;
1997}
1998
1999static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2000{
2001 struct cfs_bandwidth *cfs_b =
2002 container_of(timer, struct cfs_bandwidth, period_timer);
2003 ktime_t now;
2004 int overrun;
2005 int idle = 0;
2006
2007 for (;;) {
2008 now = hrtimer_cb_get_time(timer);
2009 overrun = hrtimer_forward(timer, now, cfs_b->period);
2010
2011 if (!overrun)
2012 break;
2013
2014 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2015 }
2016
2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2018}
2019
2020void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2021{
2022 raw_spin_lock_init(&cfs_b->lock);
2023 cfs_b->runtime = 0;
2024 cfs_b->quota = RUNTIME_INF;
2025 cfs_b->period = ns_to_ktime(default_cfs_period());
2026
2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2029 cfs_b->period_timer.function = sched_cfs_period_timer;
2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2031 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2032}
2033
2034static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2035{
2036 cfs_rq->runtime_enabled = 0;
2037 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2038}
2039
2040/* requires cfs_b->lock, may release to reprogram timer */
2041void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2042{
2043 /*
2044 * The timer may be active because we're trying to set a new bandwidth
2045 * period or because we're racing with the tear-down path
2046 * (timer_active==0 becomes visible before the hrtimer call-back
2047 * terminates). In either case we ensure that it's re-programmed
2048 */
2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2050 raw_spin_unlock(&cfs_b->lock);
2051 /* ensure cfs_b->lock is available while we wait */
2052 hrtimer_cancel(&cfs_b->period_timer);
2053
2054 raw_spin_lock(&cfs_b->lock);
2055 /* if someone else restarted the timer then we're done */
2056 if (cfs_b->timer_active)
2057 return;
2058 }
2059
2060 cfs_b->timer_active = 1;
2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2062}
2063
2064static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2065{
2066 hrtimer_cancel(&cfs_b->period_timer);
2067 hrtimer_cancel(&cfs_b->slack_timer);
2068}
2069
2070void unthrottle_offline_cfs_rqs(struct rq *rq)
2071{
2072 struct cfs_rq *cfs_rq;
2073
2074 for_each_leaf_cfs_rq(rq, cfs_rq) {
2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2076
2077 if (!cfs_rq->runtime_enabled)
2078 continue;
2079
2080 /*
2081 * clock_task is not advancing so we just need to make sure
2082 * there's some valid quota amount
2083 */
2084 cfs_rq->runtime_remaining = cfs_b->quota;
2085 if (cfs_rq_throttled(cfs_rq))
2086 unthrottle_cfs_rq(cfs_rq);
2087 }
2088}
2089
2090#else /* CONFIG_CFS_BANDWIDTH */
ec12cb7f
PT
2091static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2092 unsigned long delta_exec) {}
d3d9dc33
PT
2093static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2094static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 2095static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2096
2097static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2098{
2099 return 0;
2100}
64660c86
PT
2101
2102static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2103{
2104 return 0;
2105}
2106
2107static inline int throttled_lb_pair(struct task_group *tg,
2108 int src_cpu, int dest_cpu)
2109{
2110 return 0;
2111}
029632fb
PZ
2112
2113void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2114
2115#ifdef CONFIG_FAIR_GROUP_SCHED
2116static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2117#endif
2118
029632fb
PZ
2119static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2120{
2121 return NULL;
2122}
2123static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2124void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2125
2126#endif /* CONFIG_CFS_BANDWIDTH */
2127
bf0f6f24
IM
2128/**************************************************
2129 * CFS operations on tasks:
2130 */
2131
8f4d37ec
PZ
2132#ifdef CONFIG_SCHED_HRTICK
2133static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2134{
8f4d37ec
PZ
2135 struct sched_entity *se = &p->se;
2136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2137
2138 WARN_ON(task_rq(p) != rq);
2139
b39e66ea 2140 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2141 u64 slice = sched_slice(cfs_rq, se);
2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2143 s64 delta = slice - ran;
2144
2145 if (delta < 0) {
2146 if (rq->curr == p)
2147 resched_task(p);
2148 return;
2149 }
2150
2151 /*
2152 * Don't schedule slices shorter than 10000ns, that just
2153 * doesn't make sense. Rely on vruntime for fairness.
2154 */
31656519 2155 if (rq->curr != p)
157124c1 2156 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2157
31656519 2158 hrtick_start(rq, delta);
8f4d37ec
PZ
2159 }
2160}
a4c2f00f
PZ
2161
2162/*
2163 * called from enqueue/dequeue and updates the hrtick when the
2164 * current task is from our class and nr_running is low enough
2165 * to matter.
2166 */
2167static void hrtick_update(struct rq *rq)
2168{
2169 struct task_struct *curr = rq->curr;
2170
b39e66ea 2171 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2172 return;
2173
2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2175 hrtick_start_fair(rq, curr);
2176}
55e12e5e 2177#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2178static inline void
2179hrtick_start_fair(struct rq *rq, struct task_struct *p)
2180{
2181}
a4c2f00f
PZ
2182
2183static inline void hrtick_update(struct rq *rq)
2184{
2185}
8f4d37ec
PZ
2186#endif
2187
bf0f6f24
IM
2188/*
2189 * The enqueue_task method is called before nr_running is
2190 * increased. Here we update the fair scheduling stats and
2191 * then put the task into the rbtree:
2192 */
ea87bb78 2193static void
371fd7e7 2194enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2195{
2196 struct cfs_rq *cfs_rq;
62fb1851 2197 struct sched_entity *se = &p->se;
bf0f6f24
IM
2198
2199 for_each_sched_entity(se) {
62fb1851 2200 if (se->on_rq)
bf0f6f24
IM
2201 break;
2202 cfs_rq = cfs_rq_of(se);
88ec22d3 2203 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2204
2205 /*
2206 * end evaluation on encountering a throttled cfs_rq
2207 *
2208 * note: in the case of encountering a throttled cfs_rq we will
2209 * post the final h_nr_running increment below.
2210 */
2211 if (cfs_rq_throttled(cfs_rq))
2212 break;
953bfcd1 2213 cfs_rq->h_nr_running++;
85dac906 2214
88ec22d3 2215 flags = ENQUEUE_WAKEUP;
bf0f6f24 2216 }
8f4d37ec 2217
2069dd75 2218 for_each_sched_entity(se) {
0f317143 2219 cfs_rq = cfs_rq_of(se);
953bfcd1 2220 cfs_rq->h_nr_running++;
2069dd75 2221
85dac906
PT
2222 if (cfs_rq_throttled(cfs_rq))
2223 break;
2224
d6b55918 2225 update_cfs_load(cfs_rq, 0);
6d5ab293 2226 update_cfs_shares(cfs_rq);
2069dd75
PZ
2227 }
2228
85dac906
PT
2229 if (!se)
2230 inc_nr_running(rq);
a4c2f00f 2231 hrtick_update(rq);
bf0f6f24
IM
2232}
2233
2f36825b
VP
2234static void set_next_buddy(struct sched_entity *se);
2235
bf0f6f24
IM
2236/*
2237 * The dequeue_task method is called before nr_running is
2238 * decreased. We remove the task from the rbtree and
2239 * update the fair scheduling stats:
2240 */
371fd7e7 2241static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2242{
2243 struct cfs_rq *cfs_rq;
62fb1851 2244 struct sched_entity *se = &p->se;
2f36825b 2245 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2246
2247 for_each_sched_entity(se) {
2248 cfs_rq = cfs_rq_of(se);
371fd7e7 2249 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2250
2251 /*
2252 * end evaluation on encountering a throttled cfs_rq
2253 *
2254 * note: in the case of encountering a throttled cfs_rq we will
2255 * post the final h_nr_running decrement below.
2256 */
2257 if (cfs_rq_throttled(cfs_rq))
2258 break;
953bfcd1 2259 cfs_rq->h_nr_running--;
2069dd75 2260
bf0f6f24 2261 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2262 if (cfs_rq->load.weight) {
2263 /*
2264 * Bias pick_next to pick a task from this cfs_rq, as
2265 * p is sleeping when it is within its sched_slice.
2266 */
2267 if (task_sleep && parent_entity(se))
2268 set_next_buddy(parent_entity(se));
9598c82d
PT
2269
2270 /* avoid re-evaluating load for this entity */
2271 se = parent_entity(se);
bf0f6f24 2272 break;
2f36825b 2273 }
371fd7e7 2274 flags |= DEQUEUE_SLEEP;
bf0f6f24 2275 }
8f4d37ec 2276
2069dd75 2277 for_each_sched_entity(se) {
0f317143 2278 cfs_rq = cfs_rq_of(se);
953bfcd1 2279 cfs_rq->h_nr_running--;
2069dd75 2280
85dac906
PT
2281 if (cfs_rq_throttled(cfs_rq))
2282 break;
2283
d6b55918 2284 update_cfs_load(cfs_rq, 0);
6d5ab293 2285 update_cfs_shares(cfs_rq);
2069dd75
PZ
2286 }
2287
85dac906
PT
2288 if (!se)
2289 dec_nr_running(rq);
a4c2f00f 2290 hrtick_update(rq);
bf0f6f24
IM
2291}
2292
e7693a36 2293#ifdef CONFIG_SMP
029632fb
PZ
2294/* Used instead of source_load when we know the type == 0 */
2295static unsigned long weighted_cpuload(const int cpu)
2296{
2297 return cpu_rq(cpu)->load.weight;
2298}
2299
2300/*
2301 * Return a low guess at the load of a migration-source cpu weighted
2302 * according to the scheduling class and "nice" value.
2303 *
2304 * We want to under-estimate the load of migration sources, to
2305 * balance conservatively.
2306 */
2307static unsigned long source_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return min(rq->cpu_load[type-1], total);
2316}
2317
2318/*
2319 * Return a high guess at the load of a migration-target cpu weighted
2320 * according to the scheduling class and "nice" value.
2321 */
2322static unsigned long target_load(int cpu, int type)
2323{
2324 struct rq *rq = cpu_rq(cpu);
2325 unsigned long total = weighted_cpuload(cpu);
2326
2327 if (type == 0 || !sched_feat(LB_BIAS))
2328 return total;
2329
2330 return max(rq->cpu_load[type-1], total);
2331}
2332
2333static unsigned long power_of(int cpu)
2334{
2335 return cpu_rq(cpu)->cpu_power;
2336}
2337
2338static unsigned long cpu_avg_load_per_task(int cpu)
2339{
2340 struct rq *rq = cpu_rq(cpu);
2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2342
2343 if (nr_running)
2344 return rq->load.weight / nr_running;
2345
2346 return 0;
2347}
2348
098fb9db 2349
74f8e4b2 2350static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2351{
2352 struct sched_entity *se = &p->se;
2353 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2354 u64 min_vruntime;
2355
2356#ifndef CONFIG_64BIT
2357 u64 min_vruntime_copy;
88ec22d3 2358
3fe1698b
PZ
2359 do {
2360 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2361 smp_rmb();
2362 min_vruntime = cfs_rq->min_vruntime;
2363 } while (min_vruntime != min_vruntime_copy);
2364#else
2365 min_vruntime = cfs_rq->min_vruntime;
2366#endif
88ec22d3 2367
3fe1698b 2368 se->vruntime -= min_vruntime;
88ec22d3
PZ
2369}
2370
bb3469ac 2371#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2372/*
2373 * effective_load() calculates the load change as seen from the root_task_group
2374 *
2375 * Adding load to a group doesn't make a group heavier, but can cause movement
2376 * of group shares between cpus. Assuming the shares were perfectly aligned one
2377 * can calculate the shift in shares.
cf5f0acf
PZ
2378 *
2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2380 * on this @cpu and results in a total addition (subtraction) of @wg to the
2381 * total group weight.
2382 *
2383 * Given a runqueue weight distribution (rw_i) we can compute a shares
2384 * distribution (s_i) using:
2385 *
2386 * s_i = rw_i / \Sum rw_j (1)
2387 *
2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2390 * shares distribution (s_i):
2391 *
2392 * rw_i = { 2, 4, 1, 0 }
2393 * s_i = { 2/7, 4/7, 1/7, 0 }
2394 *
2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2396 * task used to run on and the CPU the waker is running on), we need to
2397 * compute the effect of waking a task on either CPU and, in case of a sync
2398 * wakeup, compute the effect of the current task going to sleep.
2399 *
2400 * So for a change of @wl to the local @cpu with an overall group weight change
2401 * of @wl we can compute the new shares distribution (s'_i) using:
2402 *
2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2404 *
2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2406 * differences in waking a task to CPU 0. The additional task changes the
2407 * weight and shares distributions like:
2408 *
2409 * rw'_i = { 3, 4, 1, 0 }
2410 * s'_i = { 3/8, 4/8, 1/8, 0 }
2411 *
2412 * We can then compute the difference in effective weight by using:
2413 *
2414 * dw_i = S * (s'_i - s_i) (3)
2415 *
2416 * Where 'S' is the group weight as seen by its parent.
2417 *
2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2420 * 4/7) times the weight of the group.
f5bfb7d9 2421 */
2069dd75 2422static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2423{
4be9daaa 2424 struct sched_entity *se = tg->se[cpu];
f1d239f7 2425
cf5f0acf 2426 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2427 return wl;
2428
4be9daaa 2429 for_each_sched_entity(se) {
cf5f0acf 2430 long w, W;
4be9daaa 2431
977dda7c 2432 tg = se->my_q->tg;
bb3469ac 2433
cf5f0acf
PZ
2434 /*
2435 * W = @wg + \Sum rw_j
2436 */
2437 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2438
cf5f0acf
PZ
2439 /*
2440 * w = rw_i + @wl
2441 */
2442 w = se->my_q->load.weight + wl;
940959e9 2443
cf5f0acf
PZ
2444 /*
2445 * wl = S * s'_i; see (2)
2446 */
2447 if (W > 0 && w < W)
2448 wl = (w * tg->shares) / W;
977dda7c
PT
2449 else
2450 wl = tg->shares;
940959e9 2451
cf5f0acf
PZ
2452 /*
2453 * Per the above, wl is the new se->load.weight value; since
2454 * those are clipped to [MIN_SHARES, ...) do so now. See
2455 * calc_cfs_shares().
2456 */
977dda7c
PT
2457 if (wl < MIN_SHARES)
2458 wl = MIN_SHARES;
cf5f0acf
PZ
2459
2460 /*
2461 * wl = dw_i = S * (s'_i - s_i); see (3)
2462 */
977dda7c 2463 wl -= se->load.weight;
cf5f0acf
PZ
2464
2465 /*
2466 * Recursively apply this logic to all parent groups to compute
2467 * the final effective load change on the root group. Since
2468 * only the @tg group gets extra weight, all parent groups can
2469 * only redistribute existing shares. @wl is the shift in shares
2470 * resulting from this level per the above.
2471 */
4be9daaa 2472 wg = 0;
4be9daaa 2473 }
bb3469ac 2474
4be9daaa 2475 return wl;
bb3469ac
PZ
2476}
2477#else
4be9daaa 2478
83378269
PZ
2479static inline unsigned long effective_load(struct task_group *tg, int cpu,
2480 unsigned long wl, unsigned long wg)
4be9daaa 2481{
83378269 2482 return wl;
bb3469ac 2483}
4be9daaa 2484
bb3469ac
PZ
2485#endif
2486
c88d5910 2487static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2488{
e37b6a7b 2489 s64 this_load, load;
c88d5910 2490 int idx, this_cpu, prev_cpu;
098fb9db 2491 unsigned long tl_per_task;
c88d5910 2492 struct task_group *tg;
83378269 2493 unsigned long weight;
b3137bc8 2494 int balanced;
098fb9db 2495
c88d5910
PZ
2496 idx = sd->wake_idx;
2497 this_cpu = smp_processor_id();
2498 prev_cpu = task_cpu(p);
2499 load = source_load(prev_cpu, idx);
2500 this_load = target_load(this_cpu, idx);
098fb9db 2501
b3137bc8
MG
2502 /*
2503 * If sync wakeup then subtract the (maximum possible)
2504 * effect of the currently running task from the load
2505 * of the current CPU:
2506 */
83378269
PZ
2507 if (sync) {
2508 tg = task_group(current);
2509 weight = current->se.load.weight;
2510
c88d5910 2511 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2512 load += effective_load(tg, prev_cpu, 0, -weight);
2513 }
b3137bc8 2514
83378269
PZ
2515 tg = task_group(p);
2516 weight = p->se.load.weight;
b3137bc8 2517
71a29aa7
PZ
2518 /*
2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2520 * due to the sync cause above having dropped this_load to 0, we'll
2521 * always have an imbalance, but there's really nothing you can do
2522 * about that, so that's good too.
71a29aa7
PZ
2523 *
2524 * Otherwise check if either cpus are near enough in load to allow this
2525 * task to be woken on this_cpu.
2526 */
e37b6a7b
PT
2527 if (this_load > 0) {
2528 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2529
2530 this_eff_load = 100;
2531 this_eff_load *= power_of(prev_cpu);
2532 this_eff_load *= this_load +
2533 effective_load(tg, this_cpu, weight, weight);
2534
2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2536 prev_eff_load *= power_of(this_cpu);
2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2538
2539 balanced = this_eff_load <= prev_eff_load;
2540 } else
2541 balanced = true;
b3137bc8 2542
098fb9db 2543 /*
4ae7d5ce
IM
2544 * If the currently running task will sleep within
2545 * a reasonable amount of time then attract this newly
2546 * woken task:
098fb9db 2547 */
2fb7635c
PZ
2548 if (sync && balanced)
2549 return 1;
098fb9db 2550
41acab88 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2552 tl_per_task = cpu_avg_load_per_task(this_cpu);
2553
c88d5910
PZ
2554 if (balanced ||
2555 (this_load <= load &&
2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2557 /*
2558 * This domain has SD_WAKE_AFFINE and
2559 * p is cache cold in this domain, and
2560 * there is no bad imbalance.
2561 */
c88d5910 2562 schedstat_inc(sd, ttwu_move_affine);
41acab88 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2564
2565 return 1;
2566 }
2567 return 0;
2568}
2569
aaee1203
PZ
2570/*
2571 * find_idlest_group finds and returns the least busy CPU group within the
2572 * domain.
2573 */
2574static struct sched_group *
78e7ed53 2575find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2576 int this_cpu, int load_idx)
e7693a36 2577{
b3bd3de6 2578 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2579 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2581
aaee1203
PZ
2582 do {
2583 unsigned long load, avg_load;
2584 int local_group;
2585 int i;
e7693a36 2586
aaee1203
PZ
2587 /* Skip over this group if it has no CPUs allowed */
2588 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2589 tsk_cpus_allowed(p)))
aaee1203
PZ
2590 continue;
2591
2592 local_group = cpumask_test_cpu(this_cpu,
2593 sched_group_cpus(group));
2594
2595 /* Tally up the load of all CPUs in the group */
2596 avg_load = 0;
2597
2598 for_each_cpu(i, sched_group_cpus(group)) {
2599 /* Bias balancing toward cpus of our domain */
2600 if (local_group)
2601 load = source_load(i, load_idx);
2602 else
2603 load = target_load(i, load_idx);
2604
2605 avg_load += load;
2606 }
2607
2608 /* Adjust by relative CPU power of the group */
9c3f75cb 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2610
2611 if (local_group) {
2612 this_load = avg_load;
aaee1203
PZ
2613 } else if (avg_load < min_load) {
2614 min_load = avg_load;
2615 idlest = group;
2616 }
2617 } while (group = group->next, group != sd->groups);
2618
2619 if (!idlest || 100*this_load < imbalance*min_load)
2620 return NULL;
2621 return idlest;
2622}
2623
2624/*
2625 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2626 */
2627static int
2628find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2629{
2630 unsigned long load, min_load = ULONG_MAX;
2631 int idlest = -1;
2632 int i;
2633
2634 /* Traverse only the allowed CPUs */
fa17b507 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2636 load = weighted_cpuload(i);
2637
2638 if (load < min_load || (load == min_load && i == this_cpu)) {
2639 min_load = load;
2640 idlest = i;
e7693a36
GH
2641 }
2642 }
2643
aaee1203
PZ
2644 return idlest;
2645}
e7693a36 2646
a50bde51
PZ
2647/*
2648 * Try and locate an idle CPU in the sched_domain.
2649 */
99bd5e2f 2650static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2651{
2652 int cpu = smp_processor_id();
2653 int prev_cpu = task_cpu(p);
99bd5e2f 2654 struct sched_domain *sd;
4dcfe102 2655 struct sched_group *sg;
77e81365 2656 int i;
a50bde51
PZ
2657
2658 /*
99bd5e2f
SS
2659 * If the task is going to be woken-up on this cpu and if it is
2660 * already idle, then it is the right target.
a50bde51 2661 */
99bd5e2f
SS
2662 if (target == cpu && idle_cpu(cpu))
2663 return cpu;
2664
2665 /*
2666 * If the task is going to be woken-up on the cpu where it previously
2667 * ran and if it is currently idle, then it the right target.
2668 */
2669 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2670 return prev_cpu;
a50bde51
PZ
2671
2672 /*
99bd5e2f 2673 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2674 */
dce840a0 2675 rcu_read_lock();
99bd5e2f 2676
518cd623 2677 sd = rcu_dereference(per_cpu(sd_llc, target));
77e81365 2678 for_each_lower_domain(sd) {
4dcfe102
PZ
2679 sg = sd->groups;
2680 do {
2681 if (!cpumask_intersects(sched_group_cpus(sg),
2682 tsk_cpus_allowed(p)))
2683 goto next;
2684
2685 for_each_cpu(i, sched_group_cpus(sg)) {
2686 if (!idle_cpu(i))
2687 goto next;
2688 }
2689
2690 target = cpumask_first_and(sched_group_cpus(sg),
2691 tsk_cpus_allowed(p));
2692 goto done;
2693next:
2694 sg = sg->next;
2695 } while (sg != sd->groups);
a50bde51 2696 }
4dcfe102 2697done:
dce840a0 2698 rcu_read_unlock();
a50bde51
PZ
2699
2700 return target;
2701}
2702
aaee1203
PZ
2703/*
2704 * sched_balance_self: balance the current task (running on cpu) in domains
2705 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2706 * SD_BALANCE_EXEC.
2707 *
2708 * Balance, ie. select the least loaded group.
2709 *
2710 * Returns the target CPU number, or the same CPU if no balancing is needed.
2711 *
2712 * preempt must be disabled.
2713 */
0017d735 2714static int
7608dec2 2715select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2716{
29cd8bae 2717 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2718 int cpu = smp_processor_id();
2719 int prev_cpu = task_cpu(p);
2720 int new_cpu = cpu;
99bd5e2f 2721 int want_affine = 0;
29cd8bae 2722 int want_sd = 1;
5158f4e4 2723 int sync = wake_flags & WF_SYNC;
c88d5910 2724
76854c7e
MG
2725 if (p->rt.nr_cpus_allowed == 1)
2726 return prev_cpu;
2727
0763a660 2728 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2729 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2730 want_affine = 1;
2731 new_cpu = prev_cpu;
2732 }
aaee1203 2733
dce840a0 2734 rcu_read_lock();
aaee1203 2735 for_each_domain(cpu, tmp) {
e4f42888
PZ
2736 if (!(tmp->flags & SD_LOAD_BALANCE))
2737 continue;
2738
aaee1203 2739 /*
ae154be1
PZ
2740 * If power savings logic is enabled for a domain, see if we
2741 * are not overloaded, if so, don't balance wider.
aaee1203 2742 */
59abf026 2743 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2744 unsigned long power = 0;
2745 unsigned long nr_running = 0;
2746 unsigned long capacity;
2747 int i;
2748
2749 for_each_cpu(i, sched_domain_span(tmp)) {
2750 power += power_of(i);
2751 nr_running += cpu_rq(i)->cfs.nr_running;
2752 }
2753
1399fa78 2754 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2755
59abf026
PZ
2756 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2757 nr_running /= 2;
2758
2759 if (nr_running < capacity)
29cd8bae 2760 want_sd = 0;
ae154be1 2761 }
aaee1203 2762
fe3bcfe1 2763 /*
99bd5e2f
SS
2764 * If both cpu and prev_cpu are part of this domain,
2765 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2766 */
99bd5e2f
SS
2767 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2768 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2769 affine_sd = tmp;
2770 want_affine = 0;
c88d5910
PZ
2771 }
2772
29cd8bae
PZ
2773 if (!want_sd && !want_affine)
2774 break;
2775
0763a660 2776 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2777 continue;
2778
29cd8bae
PZ
2779 if (want_sd)
2780 sd = tmp;
2781 }
2782
8b911acd 2783 if (affine_sd) {
99bd5e2f 2784 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2785 prev_cpu = cpu;
2786
2787 new_cpu = select_idle_sibling(p, prev_cpu);
2788 goto unlock;
8b911acd 2789 }
e7693a36 2790
aaee1203 2791 while (sd) {
5158f4e4 2792 int load_idx = sd->forkexec_idx;
aaee1203 2793 struct sched_group *group;
c88d5910 2794 int weight;
098fb9db 2795
0763a660 2796 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2797 sd = sd->child;
2798 continue;
2799 }
098fb9db 2800
5158f4e4
PZ
2801 if (sd_flag & SD_BALANCE_WAKE)
2802 load_idx = sd->wake_idx;
098fb9db 2803
5158f4e4 2804 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2805 if (!group) {
2806 sd = sd->child;
2807 continue;
2808 }
4ae7d5ce 2809
d7c33c49 2810 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2811 if (new_cpu == -1 || new_cpu == cpu) {
2812 /* Now try balancing at a lower domain level of cpu */
2813 sd = sd->child;
2814 continue;
e7693a36 2815 }
aaee1203
PZ
2816
2817 /* Now try balancing at a lower domain level of new_cpu */
2818 cpu = new_cpu;
669c55e9 2819 weight = sd->span_weight;
aaee1203
PZ
2820 sd = NULL;
2821 for_each_domain(cpu, tmp) {
669c55e9 2822 if (weight <= tmp->span_weight)
aaee1203 2823 break;
0763a660 2824 if (tmp->flags & sd_flag)
aaee1203
PZ
2825 sd = tmp;
2826 }
2827 /* while loop will break here if sd == NULL */
e7693a36 2828 }
dce840a0
PZ
2829unlock:
2830 rcu_read_unlock();
e7693a36 2831
c88d5910 2832 return new_cpu;
e7693a36
GH
2833}
2834#endif /* CONFIG_SMP */
2835
e52fb7c0
PZ
2836static unsigned long
2837wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2838{
2839 unsigned long gran = sysctl_sched_wakeup_granularity;
2840
2841 /*
e52fb7c0
PZ
2842 * Since its curr running now, convert the gran from real-time
2843 * to virtual-time in his units.
13814d42
MG
2844 *
2845 * By using 'se' instead of 'curr' we penalize light tasks, so
2846 * they get preempted easier. That is, if 'se' < 'curr' then
2847 * the resulting gran will be larger, therefore penalizing the
2848 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2849 * be smaller, again penalizing the lighter task.
2850 *
2851 * This is especially important for buddies when the leftmost
2852 * task is higher priority than the buddy.
0bbd3336 2853 */
f4ad9bd2 2854 return calc_delta_fair(gran, se);
0bbd3336
PZ
2855}
2856
464b7527
PZ
2857/*
2858 * Should 'se' preempt 'curr'.
2859 *
2860 * |s1
2861 * |s2
2862 * |s3
2863 * g
2864 * |<--->|c
2865 *
2866 * w(c, s1) = -1
2867 * w(c, s2) = 0
2868 * w(c, s3) = 1
2869 *
2870 */
2871static int
2872wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2873{
2874 s64 gran, vdiff = curr->vruntime - se->vruntime;
2875
2876 if (vdiff <= 0)
2877 return -1;
2878
e52fb7c0 2879 gran = wakeup_gran(curr, se);
464b7527
PZ
2880 if (vdiff > gran)
2881 return 1;
2882
2883 return 0;
2884}
2885
02479099
PZ
2886static void set_last_buddy(struct sched_entity *se)
2887{
69c80f3e
VP
2888 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2889 return;
2890
2891 for_each_sched_entity(se)
2892 cfs_rq_of(se)->last = se;
02479099
PZ
2893}
2894
2895static void set_next_buddy(struct sched_entity *se)
2896{
69c80f3e
VP
2897 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2898 return;
2899
2900 for_each_sched_entity(se)
2901 cfs_rq_of(se)->next = se;
02479099
PZ
2902}
2903
ac53db59
RR
2904static void set_skip_buddy(struct sched_entity *se)
2905{
69c80f3e
VP
2906 for_each_sched_entity(se)
2907 cfs_rq_of(se)->skip = se;
ac53db59
RR
2908}
2909
bf0f6f24
IM
2910/*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
5a9b86f6 2913static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2914{
2915 struct task_struct *curr = rq->curr;
8651a86c 2916 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2917 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2918 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2919 int next_buddy_marked = 0;
bf0f6f24 2920
4ae7d5ce
IM
2921 if (unlikely(se == pse))
2922 return;
2923
5238cdd3
PT
2924 /*
2925 * This is possible from callers such as pull_task(), in which we
2926 * unconditionally check_prempt_curr() after an enqueue (which may have
2927 * lead to a throttle). This both saves work and prevents false
2928 * next-buddy nomination below.
2929 */
2930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2931 return;
2932
2f36825b 2933 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2934 set_next_buddy(pse);
2f36825b
VP
2935 next_buddy_marked = 1;
2936 }
57fdc26d 2937
aec0a514
BR
2938 /*
2939 * We can come here with TIF_NEED_RESCHED already set from new task
2940 * wake up path.
5238cdd3
PT
2941 *
2942 * Note: this also catches the edge-case of curr being in a throttled
2943 * group (e.g. via set_curr_task), since update_curr() (in the
2944 * enqueue of curr) will have resulted in resched being set. This
2945 * prevents us from potentially nominating it as a false LAST_BUDDY
2946 * below.
aec0a514
BR
2947 */
2948 if (test_tsk_need_resched(curr))
2949 return;
2950
a2f5c9ab
DH
2951 /* Idle tasks are by definition preempted by non-idle tasks. */
2952 if (unlikely(curr->policy == SCHED_IDLE) &&
2953 likely(p->policy != SCHED_IDLE))
2954 goto preempt;
2955
91c234b4 2956 /*
a2f5c9ab
DH
2957 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2958 * is driven by the tick):
91c234b4 2959 */
6bc912b7 2960 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2961 return;
bf0f6f24 2962
464b7527 2963 find_matching_se(&se, &pse);
9bbd7374 2964 update_curr(cfs_rq_of(se));
002f128b 2965 BUG_ON(!pse);
2f36825b
VP
2966 if (wakeup_preempt_entity(se, pse) == 1) {
2967 /*
2968 * Bias pick_next to pick the sched entity that is
2969 * triggering this preemption.
2970 */
2971 if (!next_buddy_marked)
2972 set_next_buddy(pse);
3a7e73a2 2973 goto preempt;
2f36825b 2974 }
464b7527 2975
3a7e73a2 2976 return;
a65ac745 2977
3a7e73a2
PZ
2978preempt:
2979 resched_task(curr);
2980 /*
2981 * Only set the backward buddy when the current task is still
2982 * on the rq. This can happen when a wakeup gets interleaved
2983 * with schedule on the ->pre_schedule() or idle_balance()
2984 * point, either of which can * drop the rq lock.
2985 *
2986 * Also, during early boot the idle thread is in the fair class,
2987 * for obvious reasons its a bad idea to schedule back to it.
2988 */
2989 if (unlikely(!se->on_rq || curr == rq->idle))
2990 return;
2991
2992 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2993 set_last_buddy(se);
bf0f6f24
IM
2994}
2995
fb8d4724 2996static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2997{
8f4d37ec 2998 struct task_struct *p;
bf0f6f24
IM
2999 struct cfs_rq *cfs_rq = &rq->cfs;
3000 struct sched_entity *se;
3001
36ace27e 3002 if (!cfs_rq->nr_running)
bf0f6f24
IM
3003 return NULL;
3004
3005 do {
9948f4b2 3006 se = pick_next_entity(cfs_rq);
f4b6755f 3007 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3008 cfs_rq = group_cfs_rq(se);
3009 } while (cfs_rq);
3010
8f4d37ec 3011 p = task_of(se);
b39e66ea
MG
3012 if (hrtick_enabled(rq))
3013 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3014
3015 return p;
bf0f6f24
IM
3016}
3017
3018/*
3019 * Account for a descheduled task:
3020 */
31ee529c 3021static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3022{
3023 struct sched_entity *se = &prev->se;
3024 struct cfs_rq *cfs_rq;
3025
3026 for_each_sched_entity(se) {
3027 cfs_rq = cfs_rq_of(se);
ab6cde26 3028 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3029 }
3030}
3031
ac53db59
RR
3032/*
3033 * sched_yield() is very simple
3034 *
3035 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3036 */
3037static void yield_task_fair(struct rq *rq)
3038{
3039 struct task_struct *curr = rq->curr;
3040 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3041 struct sched_entity *se = &curr->se;
3042
3043 /*
3044 * Are we the only task in the tree?
3045 */
3046 if (unlikely(rq->nr_running == 1))
3047 return;
3048
3049 clear_buddies(cfs_rq, se);
3050
3051 if (curr->policy != SCHED_BATCH) {
3052 update_rq_clock(rq);
3053 /*
3054 * Update run-time statistics of the 'current'.
3055 */
3056 update_curr(cfs_rq);
916671c0
MG
3057 /*
3058 * Tell update_rq_clock() that we've just updated,
3059 * so we don't do microscopic update in schedule()
3060 * and double the fastpath cost.
3061 */
3062 rq->skip_clock_update = 1;
ac53db59
RR
3063 }
3064
3065 set_skip_buddy(se);
3066}
3067
d95f4122
MG
3068static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3069{
3070 struct sched_entity *se = &p->se;
3071
5238cdd3
PT
3072 /* throttled hierarchies are not runnable */
3073 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3074 return false;
3075
3076 /* Tell the scheduler that we'd really like pse to run next. */
3077 set_next_buddy(se);
3078
d95f4122
MG
3079 yield_task_fair(rq);
3080
3081 return true;
3082}
3083
681f3e68 3084#ifdef CONFIG_SMP
bf0f6f24
IM
3085/**************************************************
3086 * Fair scheduling class load-balancing methods:
3087 */
3088
1e3c88bd
PZ
3089/*
3090 * pull_task - move a task from a remote runqueue to the local runqueue.
3091 * Both runqueues must be locked.
3092 */
3093static void pull_task(struct rq *src_rq, struct task_struct *p,
3094 struct rq *this_rq, int this_cpu)
3095{
3096 deactivate_task(src_rq, p, 0);
3097 set_task_cpu(p, this_cpu);
3098 activate_task(this_rq, p, 0);
3099 check_preempt_curr(this_rq, p, 0);
3100}
3101
029632fb
PZ
3102/*
3103 * Is this task likely cache-hot:
3104 */
3105static int
3106task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3107{
3108 s64 delta;
3109
3110 if (p->sched_class != &fair_sched_class)
3111 return 0;
3112
3113 if (unlikely(p->policy == SCHED_IDLE))
3114 return 0;
3115
3116 /*
3117 * Buddy candidates are cache hot:
3118 */
3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3120 (&p->se == cfs_rq_of(&p->se)->next ||
3121 &p->se == cfs_rq_of(&p->se)->last))
3122 return 1;
3123
3124 if (sysctl_sched_migration_cost == -1)
3125 return 1;
3126 if (sysctl_sched_migration_cost == 0)
3127 return 0;
3128
3129 delta = now - p->se.exec_start;
3130
3131 return delta < (s64)sysctl_sched_migration_cost;
3132}
3133
5b54b56b 3134#define LBF_ALL_PINNED 0x01
bced76ae
PZ
3135#define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */
3136#define LBF_HAD_BREAK 0x04
3137#define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */
3138#define LBF_ABORT 0x10
5b54b56b 3139
1e3c88bd
PZ
3140/*
3141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3142 */
3143static
3144int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3145 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3146 int *lb_flags)
1e3c88bd
PZ
3147{
3148 int tsk_cache_hot = 0;
3149 /*
3150 * We do not migrate tasks that are:
3151 * 1) running (obviously), or
3152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3153 * 3) are cache-hot on their current CPU.
3154 */
fa17b507 3155 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 3156 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
3157 return 0;
3158 }
5b54b56b 3159 *lb_flags &= ~LBF_ALL_PINNED;
1e3c88bd
PZ
3160
3161 if (task_running(rq, p)) {
41acab88 3162 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3163 return 0;
3164 }
3165
3166 /*
3167 * Aggressive migration if:
3168 * 1) task is cache cold, or
3169 * 2) too many balance attempts have failed.
3170 */
3171
305e6835 3172 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
3173 if (!tsk_cache_hot ||
3174 sd->nr_balance_failed > sd->cache_nice_tries) {
3175#ifdef CONFIG_SCHEDSTATS
3176 if (tsk_cache_hot) {
3177 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 3178 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3179 }
3180#endif
3181 return 1;
3182 }
3183
3184 if (tsk_cache_hot) {
41acab88 3185 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3186 return 0;
3187 }
3188 return 1;
3189}
3190
897c395f
PZ
3191/*
3192 * move_one_task tries to move exactly one task from busiest to this_rq, as
3193 * part of active balancing operations within "domain".
3194 * Returns 1 if successful and 0 otherwise.
3195 *
3196 * Called with both runqueues locked.
3197 */
3198static int
3199move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3200 struct sched_domain *sd, enum cpu_idle_type idle)
3201{
3202 struct task_struct *p, *n;
3203 struct cfs_rq *cfs_rq;
3204 int pinned = 0;
3205
3206 for_each_leaf_cfs_rq(busiest, cfs_rq) {
3207 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
3208 if (throttled_lb_pair(task_group(p),
3209 busiest->cpu, this_cpu))
3210 break;
897c395f
PZ
3211
3212 if (!can_migrate_task(p, busiest, this_cpu,
3213 sd, idle, &pinned))
3214 continue;
3215
3216 pull_task(busiest, p, this_rq, this_cpu);
3217 /*
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3221 */
3222 schedstat_inc(sd, lb_gained[idle]);
3223 return 1;
3224 }
3225 }
3226
3227 return 0;
3228}
3229
1e3c88bd
PZ
3230static unsigned long
3231balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3232 unsigned long max_load_move, struct sched_domain *sd,
5b54b56b 3233 enum cpu_idle_type idle, int *lb_flags,
931aeeda 3234 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 3235{
b30aef17 3236 int loops = 0, pulled = 0;
1e3c88bd 3237 long rem_load_move = max_load_move;
ee00e66f 3238 struct task_struct *p, *n;
1e3c88bd
PZ
3239
3240 if (max_load_move == 0)
3241 goto out;
3242
ee00e66f 3243 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
a195f004
PZ
3244 if (loops++ > sysctl_sched_nr_migrate) {
3245 *lb_flags |= LBF_NEED_BREAK;
ee00e66f 3246 break;
a195f004 3247 }
1e3c88bd 3248
ee00e66f 3249 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17 3250 !can_migrate_task(p, busiest, this_cpu, sd, idle,
5b54b56b 3251 lb_flags))
ee00e66f 3252 continue;
1e3c88bd 3253
ee00e66f
PZ
3254 pull_task(busiest, p, this_rq, this_cpu);
3255 pulled++;
3256 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
3257
3258#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3259 /*
3260 * NEWIDLE balancing is a source of latency, so preemptible
3261 * kernels will stop after the first task is pulled to minimize
3262 * the critical section.
3263 */
a195f004
PZ
3264 if (idle == CPU_NEWLY_IDLE) {
3265 *lb_flags |= LBF_ABORT;
ee00e66f 3266 break;
a195f004 3267 }
1e3c88bd
PZ
3268#endif
3269
ee00e66f
PZ
3270 /*
3271 * We only want to steal up to the prescribed amount of
3272 * weighted load.
3273 */
3274 if (rem_load_move <= 0)
3275 break;
1e3c88bd
PZ
3276 }
3277out:
3278 /*
3279 * Right now, this is one of only two places pull_task() is called,
3280 * so we can safely collect pull_task() stats here rather than
3281 * inside pull_task().
3282 */
3283 schedstat_add(sd, lb_gained[idle], pulled);
3284
1e3c88bd
PZ
3285 return max_load_move - rem_load_move;
3286}
3287
230059de 3288#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3289/*
3290 * update tg->load_weight by folding this cpu's load_avg
3291 */
67e86250 3292static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3293{
3294 struct cfs_rq *cfs_rq;
3295 unsigned long flags;
3296 struct rq *rq;
9e3081ca
PZ
3297
3298 if (!tg->se[cpu])
3299 return 0;
3300
3301 rq = cpu_rq(cpu);
3302 cfs_rq = tg->cfs_rq[cpu];
3303
3304 raw_spin_lock_irqsave(&rq->lock, flags);
3305
3306 update_rq_clock(rq);
d6b55918 3307 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3308
3309 /*
3310 * We need to update shares after updating tg->load_weight in
3311 * order to adjust the weight of groups with long running tasks.
3312 */
6d5ab293 3313 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3314
3315 raw_spin_unlock_irqrestore(&rq->lock, flags);
3316
3317 return 0;
3318}
3319
3320static void update_shares(int cpu)
3321{
3322 struct cfs_rq *cfs_rq;
3323 struct rq *rq = cpu_rq(cpu);
3324
3325 rcu_read_lock();
9763b67f
PZ
3326 /*
3327 * Iterates the task_group tree in a bottom up fashion, see
3328 * list_add_leaf_cfs_rq() for details.
3329 */
64660c86
PT
3330 for_each_leaf_cfs_rq(rq, cfs_rq) {
3331 /* throttled entities do not contribute to load */
3332 if (throttled_hierarchy(cfs_rq))
3333 continue;
3334
67e86250 3335 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3336 }
9e3081ca
PZ
3337 rcu_read_unlock();
3338}
3339
9763b67f
PZ
3340/*
3341 * Compute the cpu's hierarchical load factor for each task group.
3342 * This needs to be done in a top-down fashion because the load of a child
3343 * group is a fraction of its parents load.
3344 */
3345static int tg_load_down(struct task_group *tg, void *data)
3346{
3347 unsigned long load;
3348 long cpu = (long)data;
3349
3350 if (!tg->parent) {
3351 load = cpu_rq(cpu)->load.weight;
3352 } else {
3353 load = tg->parent->cfs_rq[cpu]->h_load;
3354 load *= tg->se[cpu]->load.weight;
3355 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3356 }
3357
3358 tg->cfs_rq[cpu]->h_load = load;
3359
3360 return 0;
3361}
3362
3363static void update_h_load(long cpu)
3364{
3365 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3366}
3367
230059de
PZ
3368static unsigned long
3369load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3370 unsigned long max_load_move,
3371 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3372 int *lb_flags)
230059de
PZ
3373{
3374 long rem_load_move = max_load_move;
9763b67f 3375 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3376
3377 rcu_read_lock();
9763b67f 3378 update_h_load(cpu_of(busiest));
230059de 3379
9763b67f 3380 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3381 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3382 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3383 u64 rem_load, moved_load;
3384
a195f004
PZ
3385 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3386 break;
3387
230059de 3388 /*
64660c86 3389 * empty group or part of a throttled hierarchy
230059de 3390 */
64660c86
PT
3391 if (!busiest_cfs_rq->task_weight ||
3392 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3393 continue;
3394
3395 rem_load = (u64)rem_load_move * busiest_weight;
3396 rem_load = div_u64(rem_load, busiest_h_load + 1);
3397
3398 moved_load = balance_tasks(this_rq, this_cpu, busiest,
5b54b56b 3399 rem_load, sd, idle, lb_flags,
230059de
PZ
3400 busiest_cfs_rq);
3401
3402 if (!moved_load)
3403 continue;
3404
3405 moved_load *= busiest_h_load;
3406 moved_load = div_u64(moved_load, busiest_weight + 1);
3407
3408 rem_load_move -= moved_load;
3409 if (rem_load_move < 0)
3410 break;
3411 }
3412 rcu_read_unlock();
3413
3414 return max_load_move - rem_load_move;
3415}
3416#else
9e3081ca
PZ
3417static inline void update_shares(int cpu)
3418{
3419}
3420
230059de
PZ
3421static unsigned long
3422load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3423 unsigned long max_load_move,
3424 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3425 int *lb_flags)
230059de
PZ
3426{
3427 return balance_tasks(this_rq, this_cpu, busiest,
5b54b56b 3428 max_load_move, sd, idle, lb_flags,
931aeeda 3429 &busiest->cfs);
230059de
PZ
3430}
3431#endif
3432
1e3c88bd
PZ
3433/*
3434 * move_tasks tries to move up to max_load_move weighted load from busiest to
3435 * this_rq, as part of a balancing operation within domain "sd".
3436 * Returns 1 if successful and 0 otherwise.
3437 *
3438 * Called with both runqueues locked.
3439 */
3440static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3441 unsigned long max_load_move,
3442 struct sched_domain *sd, enum cpu_idle_type idle,
5b54b56b 3443 int *lb_flags)
1e3c88bd 3444{
3d45fd80 3445 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3446
3447 do {
3d45fd80 3448 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3449 max_load_move - total_load_moved,
5b54b56b 3450 sd, idle, lb_flags);
3d45fd80
PZ
3451
3452 total_load_moved += load_moved;
1e3c88bd 3453
a195f004
PZ
3454 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT))
3455 break;
3456
1e3c88bd
PZ
3457#ifdef CONFIG_PREEMPT
3458 /*
3459 * NEWIDLE balancing is a source of latency, so preemptible
3460 * kernels will stop after the first task is pulled to minimize
3461 * the critical section.
3462 */
a195f004
PZ
3463 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) {
3464 *lb_flags |= LBF_ABORT;
baa8c110 3465 break;
a195f004 3466 }
1e3c88bd 3467#endif
3d45fd80 3468 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3469
3470 return total_load_moved > 0;
3471}
3472
1e3c88bd
PZ
3473/********** Helpers for find_busiest_group ************************/
3474/*
3475 * sd_lb_stats - Structure to store the statistics of a sched_domain
3476 * during load balancing.
3477 */
3478struct sd_lb_stats {
3479 struct sched_group *busiest; /* Busiest group in this sd */
3480 struct sched_group *this; /* Local group in this sd */
3481 unsigned long total_load; /* Total load of all groups in sd */
3482 unsigned long total_pwr; /* Total power of all groups in sd */
3483 unsigned long avg_load; /* Average load across all groups in sd */
3484
3485 /** Statistics of this group */
3486 unsigned long this_load;
3487 unsigned long this_load_per_task;
3488 unsigned long this_nr_running;
fab47622 3489 unsigned long this_has_capacity;
aae6d3dd 3490 unsigned int this_idle_cpus;
1e3c88bd
PZ
3491
3492 /* Statistics of the busiest group */
aae6d3dd 3493 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3494 unsigned long max_load;
3495 unsigned long busiest_load_per_task;
3496 unsigned long busiest_nr_running;
dd5feea1 3497 unsigned long busiest_group_capacity;
fab47622 3498 unsigned long busiest_has_capacity;
aae6d3dd 3499 unsigned int busiest_group_weight;
1e3c88bd
PZ
3500
3501 int group_imb; /* Is there imbalance in this sd */
3502#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3503 int power_savings_balance; /* Is powersave balance needed for this sd */
3504 struct sched_group *group_min; /* Least loaded group in sd */
3505 struct sched_group *group_leader; /* Group which relieves group_min */
3506 unsigned long min_load_per_task; /* load_per_task in group_min */
3507 unsigned long leader_nr_running; /* Nr running of group_leader */
3508 unsigned long min_nr_running; /* Nr running of group_min */
3509#endif
3510};
3511
3512/*
3513 * sg_lb_stats - stats of a sched_group required for load_balancing
3514 */
3515struct sg_lb_stats {
3516 unsigned long avg_load; /*Avg load across the CPUs of the group */
3517 unsigned long group_load; /* Total load over the CPUs of the group */
3518 unsigned long sum_nr_running; /* Nr tasks running in the group */
3519 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3520 unsigned long group_capacity;
aae6d3dd
SS
3521 unsigned long idle_cpus;
3522 unsigned long group_weight;
1e3c88bd 3523 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3524 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3525};
3526
1e3c88bd
PZ
3527/**
3528 * get_sd_load_idx - Obtain the load index for a given sched domain.
3529 * @sd: The sched_domain whose load_idx is to be obtained.
3530 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3531 */
3532static inline int get_sd_load_idx(struct sched_domain *sd,
3533 enum cpu_idle_type idle)
3534{
3535 int load_idx;
3536
3537 switch (idle) {
3538 case CPU_NOT_IDLE:
3539 load_idx = sd->busy_idx;
3540 break;
3541
3542 case CPU_NEWLY_IDLE:
3543 load_idx = sd->newidle_idx;
3544 break;
3545 default:
3546 load_idx = sd->idle_idx;
3547 break;
3548 }
3549
3550 return load_idx;
3551}
3552
3553
3554#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3555/**
3556 * init_sd_power_savings_stats - Initialize power savings statistics for
3557 * the given sched_domain, during load balancing.
3558 *
3559 * @sd: Sched domain whose power-savings statistics are to be initialized.
3560 * @sds: Variable containing the statistics for sd.
3561 * @idle: Idle status of the CPU at which we're performing load-balancing.
3562 */
3563static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3564 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3565{
3566 /*
3567 * Busy processors will not participate in power savings
3568 * balance.
3569 */
3570 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3571 sds->power_savings_balance = 0;
3572 else {
3573 sds->power_savings_balance = 1;
3574 sds->min_nr_running = ULONG_MAX;
3575 sds->leader_nr_running = 0;
3576 }
3577}
3578
3579/**
3580 * update_sd_power_savings_stats - Update the power saving stats for a
3581 * sched_domain while performing load balancing.
3582 *
3583 * @group: sched_group belonging to the sched_domain under consideration.
3584 * @sds: Variable containing the statistics of the sched_domain
3585 * @local_group: Does group contain the CPU for which we're performing
3586 * load balancing ?
3587 * @sgs: Variable containing the statistics of the group.
3588 */
3589static inline void update_sd_power_savings_stats(struct sched_group *group,
3590 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3591{
3592
3593 if (!sds->power_savings_balance)
3594 return;
3595
3596 /*
3597 * If the local group is idle or completely loaded
3598 * no need to do power savings balance at this domain
3599 */
3600 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3601 !sds->this_nr_running))
3602 sds->power_savings_balance = 0;
3603
3604 /*
3605 * If a group is already running at full capacity or idle,
3606 * don't include that group in power savings calculations
3607 */
3608 if (!sds->power_savings_balance ||
3609 sgs->sum_nr_running >= sgs->group_capacity ||
3610 !sgs->sum_nr_running)
3611 return;
3612
3613 /*
3614 * Calculate the group which has the least non-idle load.
3615 * This is the group from where we need to pick up the load
3616 * for saving power
3617 */
3618 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3619 (sgs->sum_nr_running == sds->min_nr_running &&
3620 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3621 sds->group_min = group;
3622 sds->min_nr_running = sgs->sum_nr_running;
3623 sds->min_load_per_task = sgs->sum_weighted_load /
3624 sgs->sum_nr_running;
3625 }
3626
3627 /*
3628 * Calculate the group which is almost near its
3629 * capacity but still has some space to pick up some load
3630 * from other group and save more power
3631 */
3632 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3633 return;
3634
3635 if (sgs->sum_nr_running > sds->leader_nr_running ||
3636 (sgs->sum_nr_running == sds->leader_nr_running &&
3637 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3638 sds->group_leader = group;
3639 sds->leader_nr_running = sgs->sum_nr_running;
3640 }
3641}
3642
3643/**
3644 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3645 * @sds: Variable containing the statistics of the sched_domain
3646 * under consideration.
3647 * @this_cpu: Cpu at which we're currently performing load-balancing.
3648 * @imbalance: Variable to store the imbalance.
3649 *
3650 * Description:
3651 * Check if we have potential to perform some power-savings balance.
3652 * If yes, set the busiest group to be the least loaded group in the
3653 * sched_domain, so that it's CPUs can be put to idle.
3654 *
3655 * Returns 1 if there is potential to perform power-savings balance.
3656 * Else returns 0.
3657 */
3658static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3659 int this_cpu, unsigned long *imbalance)
3660{
3661 if (!sds->power_savings_balance)
3662 return 0;
3663
3664 if (sds->this != sds->group_leader ||
3665 sds->group_leader == sds->group_min)
3666 return 0;
3667
3668 *imbalance = sds->min_load_per_task;
3669 sds->busiest = sds->group_min;
3670
3671 return 1;
3672
3673}
3674#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3675static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3676 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3677{
3678 return;
3679}
3680
3681static inline void update_sd_power_savings_stats(struct sched_group *group,
3682 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3683{
3684 return;
3685}
3686
3687static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3688 int this_cpu, unsigned long *imbalance)
3689{
3690 return 0;
3691}
3692#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3693
3694
3695unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3696{
1399fa78 3697 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3698}
3699
3700unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3701{
3702 return default_scale_freq_power(sd, cpu);
3703}
3704
3705unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3706{
669c55e9 3707 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3708 unsigned long smt_gain = sd->smt_gain;
3709
3710 smt_gain /= weight;
3711
3712 return smt_gain;
3713}
3714
3715unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3716{
3717 return default_scale_smt_power(sd, cpu);
3718}
3719
3720unsigned long scale_rt_power(int cpu)
3721{
3722 struct rq *rq = cpu_rq(cpu);
3723 u64 total, available;
3724
1e3c88bd 3725 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3726
3727 if (unlikely(total < rq->rt_avg)) {
3728 /* Ensures that power won't end up being negative */
3729 available = 0;
3730 } else {
3731 available = total - rq->rt_avg;
3732 }
1e3c88bd 3733
1399fa78
NR
3734 if (unlikely((s64)total < SCHED_POWER_SCALE))
3735 total = SCHED_POWER_SCALE;
1e3c88bd 3736
1399fa78 3737 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3738
3739 return div_u64(available, total);
3740}
3741
3742static void update_cpu_power(struct sched_domain *sd, int cpu)
3743{
669c55e9 3744 unsigned long weight = sd->span_weight;
1399fa78 3745 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3746 struct sched_group *sdg = sd->groups;
3747
1e3c88bd
PZ
3748 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3749 if (sched_feat(ARCH_POWER))
3750 power *= arch_scale_smt_power(sd, cpu);
3751 else
3752 power *= default_scale_smt_power(sd, cpu);
3753
1399fa78 3754 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3755 }
3756
9c3f75cb 3757 sdg->sgp->power_orig = power;
9d5efe05
SV
3758
3759 if (sched_feat(ARCH_POWER))
3760 power *= arch_scale_freq_power(sd, cpu);
3761 else
3762 power *= default_scale_freq_power(sd, cpu);
3763
1399fa78 3764 power >>= SCHED_POWER_SHIFT;
9d5efe05 3765
1e3c88bd 3766 power *= scale_rt_power(cpu);
1399fa78 3767 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3768
3769 if (!power)
3770 power = 1;
3771
e51fd5e2 3772 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3773 sdg->sgp->power = power;
1e3c88bd
PZ
3774}
3775
029632fb 3776void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3777{
3778 struct sched_domain *child = sd->child;
3779 struct sched_group *group, *sdg = sd->groups;
3780 unsigned long power;
4ec4412e
VG
3781 unsigned long interval;
3782
3783 interval = msecs_to_jiffies(sd->balance_interval);
3784 interval = clamp(interval, 1UL, max_load_balance_interval);
3785 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3786
3787 if (!child) {
3788 update_cpu_power(sd, cpu);
3789 return;
3790 }
3791
3792 power = 0;
3793
3794 group = child->groups;
3795 do {
9c3f75cb 3796 power += group->sgp->power;
1e3c88bd
PZ
3797 group = group->next;
3798 } while (group != child->groups);
3799
9c3f75cb 3800 sdg->sgp->power = power;
1e3c88bd
PZ
3801}
3802
9d5efe05
SV
3803/*
3804 * Try and fix up capacity for tiny siblings, this is needed when
3805 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3806 * which on its own isn't powerful enough.
3807 *
3808 * See update_sd_pick_busiest() and check_asym_packing().
3809 */
3810static inline int
3811fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3812{
3813 /*
1399fa78 3814 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3815 */
a6c75f2f 3816 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3817 return 0;
3818
3819 /*
3820 * If ~90% of the cpu_power is still there, we're good.
3821 */
9c3f75cb 3822 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3823 return 1;
3824
3825 return 0;
3826}
3827
1e3c88bd
PZ
3828/**
3829 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3830 * @sd: The sched_domain whose statistics are to be updated.
3831 * @group: sched_group whose statistics are to be updated.
3832 * @this_cpu: Cpu for which load balance is currently performed.
3833 * @idle: Idle status of this_cpu
3834 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3835 * @local_group: Does group contain this_cpu.
3836 * @cpus: Set of cpus considered for load balancing.
3837 * @balance: Should we balance.
3838 * @sgs: variable to hold the statistics for this group.
3839 */
3840static inline void update_sg_lb_stats(struct sched_domain *sd,
3841 struct sched_group *group, int this_cpu,
46e49b38 3842 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3843 int local_group, const struct cpumask *cpus,
3844 int *balance, struct sg_lb_stats *sgs)
3845{
2582f0eb 3846 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3847 int i;
3848 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3849 unsigned long avg_load_per_task = 0;
1e3c88bd 3850
871e35bc 3851 if (local_group)
1e3c88bd 3852 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3853
3854 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3855 max_cpu_load = 0;
3856 min_cpu_load = ~0UL;
2582f0eb 3857 max_nr_running = 0;
1e3c88bd
PZ
3858
3859 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3860 struct rq *rq = cpu_rq(i);
3861
1e3c88bd
PZ
3862 /* Bias balancing toward cpus of our domain */
3863 if (local_group) {
3864 if (idle_cpu(i) && !first_idle_cpu) {
3865 first_idle_cpu = 1;
3866 balance_cpu = i;
3867 }
3868
3869 load = target_load(i, load_idx);
3870 } else {
3871 load = source_load(i, load_idx);
2582f0eb 3872 if (load > max_cpu_load) {
1e3c88bd 3873 max_cpu_load = load;
2582f0eb
NR
3874 max_nr_running = rq->nr_running;
3875 }
1e3c88bd
PZ
3876 if (min_cpu_load > load)
3877 min_cpu_load = load;
3878 }
3879
3880 sgs->group_load += load;
3881 sgs->sum_nr_running += rq->nr_running;
3882 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3883 if (idle_cpu(i))
3884 sgs->idle_cpus++;
1e3c88bd
PZ
3885 }
3886
3887 /*
3888 * First idle cpu or the first cpu(busiest) in this sched group
3889 * is eligible for doing load balancing at this and above
3890 * domains. In the newly idle case, we will allow all the cpu's
3891 * to do the newly idle load balance.
3892 */
4ec4412e
VG
3893 if (local_group) {
3894 if (idle != CPU_NEWLY_IDLE) {
3895 if (balance_cpu != this_cpu) {
3896 *balance = 0;
3897 return;
3898 }
3899 update_group_power(sd, this_cpu);
3900 } else if (time_after_eq(jiffies, group->sgp->next_update))
3901 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3902 }
3903
3904 /* Adjust by relative CPU power of the group */
9c3f75cb 3905 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3906
1e3c88bd
PZ
3907 /*
3908 * Consider the group unbalanced when the imbalance is larger
866ab43e 3909 * than the average weight of a task.
1e3c88bd
PZ
3910 *
3911 * APZ: with cgroup the avg task weight can vary wildly and
3912 * might not be a suitable number - should we keep a
3913 * normalized nr_running number somewhere that negates
3914 * the hierarchy?
3915 */
dd5feea1
SS
3916 if (sgs->sum_nr_running)
3917 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3918
866ab43e 3919 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3920 sgs->group_imb = 1;
3921
9c3f75cb 3922 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3923 SCHED_POWER_SCALE);
9d5efe05
SV
3924 if (!sgs->group_capacity)
3925 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3926 sgs->group_weight = group->group_weight;
fab47622
NR
3927
3928 if (sgs->group_capacity > sgs->sum_nr_running)
3929 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3930}
3931
532cb4c4
MN
3932/**
3933 * update_sd_pick_busiest - return 1 on busiest group
3934 * @sd: sched_domain whose statistics are to be checked
3935 * @sds: sched_domain statistics
3936 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3937 * @sgs: sched_group statistics
3938 * @this_cpu: the current cpu
532cb4c4
MN
3939 *
3940 * Determine if @sg is a busier group than the previously selected
3941 * busiest group.
3942 */
3943static bool update_sd_pick_busiest(struct sched_domain *sd,
3944 struct sd_lb_stats *sds,
3945 struct sched_group *sg,
3946 struct sg_lb_stats *sgs,
3947 int this_cpu)
3948{
3949 if (sgs->avg_load <= sds->max_load)
3950 return false;
3951
3952 if (sgs->sum_nr_running > sgs->group_capacity)
3953 return true;
3954
3955 if (sgs->group_imb)
3956 return true;
3957
3958 /*
3959 * ASYM_PACKING needs to move all the work to the lowest
3960 * numbered CPUs in the group, therefore mark all groups
3961 * higher than ourself as busy.
3962 */
3963 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3964 this_cpu < group_first_cpu(sg)) {
3965 if (!sds->busiest)
3966 return true;
3967
3968 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3969 return true;
3970 }
3971
3972 return false;
3973}
3974
1e3c88bd 3975/**
461819ac 3976 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3977 * @sd: sched_domain whose statistics are to be updated.
3978 * @this_cpu: Cpu for which load balance is currently performed.
3979 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3980 * @cpus: Set of cpus considered for load balancing.
3981 * @balance: Should we balance.
3982 * @sds: variable to hold the statistics for this sched_domain.
3983 */
3984static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3985 enum cpu_idle_type idle, const struct cpumask *cpus,
3986 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3987{
3988 struct sched_domain *child = sd->child;
532cb4c4 3989 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3990 struct sg_lb_stats sgs;
3991 int load_idx, prefer_sibling = 0;
3992
3993 if (child && child->flags & SD_PREFER_SIBLING)
3994 prefer_sibling = 1;
3995
3996 init_sd_power_savings_stats(sd, sds, idle);
3997 load_idx = get_sd_load_idx(sd, idle);
3998
3999 do {
4000 int local_group;
4001
532cb4c4 4002 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 4003 memset(&sgs, 0, sizeof(sgs));
46e49b38 4004 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
4005 local_group, cpus, balance, &sgs);
4006
8f190fb3 4007 if (local_group && !(*balance))
1e3c88bd
PZ
4008 return;
4009
4010 sds->total_load += sgs.group_load;
9c3f75cb 4011 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4012
4013 /*
4014 * In case the child domain prefers tasks go to siblings
532cb4c4 4015 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4016 * and move all the excess tasks away. We lower the capacity
4017 * of a group only if the local group has the capacity to fit
4018 * these excess tasks, i.e. nr_running < group_capacity. The
4019 * extra check prevents the case where you always pull from the
4020 * heaviest group when it is already under-utilized (possible
4021 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4022 */
75dd321d 4023 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4024 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4025
4026 if (local_group) {
4027 sds->this_load = sgs.avg_load;
532cb4c4 4028 sds->this = sg;
1e3c88bd
PZ
4029 sds->this_nr_running = sgs.sum_nr_running;
4030 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4031 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4032 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 4033 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 4034 sds->max_load = sgs.avg_load;
532cb4c4 4035 sds->busiest = sg;
1e3c88bd 4036 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4037 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4038 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4039 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4040 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4041 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4042 sds->group_imb = sgs.group_imb;
4043 }
4044
532cb4c4
MN
4045 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
4046 sg = sg->next;
4047 } while (sg != sd->groups);
4048}
4049
532cb4c4
MN
4050/**
4051 * check_asym_packing - Check to see if the group is packed into the
4052 * sched doman.
4053 *
4054 * This is primarily intended to used at the sibling level. Some
4055 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4056 * case of POWER7, it can move to lower SMT modes only when higher
4057 * threads are idle. When in lower SMT modes, the threads will
4058 * perform better since they share less core resources. Hence when we
4059 * have idle threads, we want them to be the higher ones.
4060 *
4061 * This packing function is run on idle threads. It checks to see if
4062 * the busiest CPU in this domain (core in the P7 case) has a higher
4063 * CPU number than the packing function is being run on. Here we are
4064 * assuming lower CPU number will be equivalent to lower a SMT thread
4065 * number.
4066 *
b6b12294
MN
4067 * Returns 1 when packing is required and a task should be moved to
4068 * this CPU. The amount of the imbalance is returned in *imbalance.
4069 *
532cb4c4
MN
4070 * @sd: The sched_domain whose packing is to be checked.
4071 * @sds: Statistics of the sched_domain which is to be packed
4072 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4073 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
4074 */
4075static int check_asym_packing(struct sched_domain *sd,
4076 struct sd_lb_stats *sds,
4077 int this_cpu, unsigned long *imbalance)
4078{
4079 int busiest_cpu;
4080
4081 if (!(sd->flags & SD_ASYM_PACKING))
4082 return 0;
4083
4084 if (!sds->busiest)
4085 return 0;
4086
4087 busiest_cpu = group_first_cpu(sds->busiest);
4088 if (this_cpu > busiest_cpu)
4089 return 0;
4090
9c3f75cb 4091 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 4092 SCHED_POWER_SCALE);
532cb4c4 4093 return 1;
1e3c88bd
PZ
4094}
4095
4096/**
4097 * fix_small_imbalance - Calculate the minor imbalance that exists
4098 * amongst the groups of a sched_domain, during
4099 * load balancing.
4100 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4101 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
4102 * @imbalance: Variable to store the imbalance.
4103 */
4104static inline void fix_small_imbalance(struct sd_lb_stats *sds,
4105 int this_cpu, unsigned long *imbalance)
4106{
4107 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4108 unsigned int imbn = 2;
dd5feea1 4109 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4110
4111 if (sds->this_nr_running) {
4112 sds->this_load_per_task /= sds->this_nr_running;
4113 if (sds->busiest_load_per_task >
4114 sds->this_load_per_task)
4115 imbn = 1;
4116 } else
4117 sds->this_load_per_task =
4118 cpu_avg_load_per_task(this_cpu);
4119
dd5feea1 4120 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4121 * SCHED_POWER_SCALE;
9c3f75cb 4122 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4123
4124 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4125 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
4126 *imbalance = sds->busiest_load_per_task;
4127 return;
4128 }
4129
4130 /*
4131 * OK, we don't have enough imbalance to justify moving tasks,
4132 * however we may be able to increase total CPU power used by
4133 * moving them.
4134 */
4135
9c3f75cb 4136 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4137 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4138 pwr_now += sds->this->sgp->power *
1e3c88bd 4139 min(sds->this_load_per_task, sds->this_load);
1399fa78 4140 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4141
4142 /* Amount of load we'd subtract */
1399fa78 4143 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4144 sds->busiest->sgp->power;
1e3c88bd 4145 if (sds->max_load > tmp)
9c3f75cb 4146 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4147 min(sds->busiest_load_per_task, sds->max_load - tmp);
4148
4149 /* Amount of load we'd add */
9c3f75cb 4150 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4151 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4152 tmp = (sds->max_load * sds->busiest->sgp->power) /
4153 sds->this->sgp->power;
1e3c88bd 4154 else
1399fa78 4155 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4156 sds->this->sgp->power;
4157 pwr_move += sds->this->sgp->power *
1e3c88bd 4158 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4159 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4160
4161 /* Move if we gain throughput */
4162 if (pwr_move > pwr_now)
4163 *imbalance = sds->busiest_load_per_task;
4164}
4165
4166/**
4167 * calculate_imbalance - Calculate the amount of imbalance present within the
4168 * groups of a given sched_domain during load balance.
4169 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4170 * @this_cpu: Cpu for which currently load balance is being performed.
4171 * @imbalance: The variable to store the imbalance.
4172 */
4173static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4174 unsigned long *imbalance)
4175{
dd5feea1
SS
4176 unsigned long max_pull, load_above_capacity = ~0UL;
4177
4178 sds->busiest_load_per_task /= sds->busiest_nr_running;
4179 if (sds->group_imb) {
4180 sds->busiest_load_per_task =
4181 min(sds->busiest_load_per_task, sds->avg_load);
4182 }
4183
1e3c88bd
PZ
4184 /*
4185 * In the presence of smp nice balancing, certain scenarios can have
4186 * max load less than avg load(as we skip the groups at or below
4187 * its cpu_power, while calculating max_load..)
4188 */
4189 if (sds->max_load < sds->avg_load) {
4190 *imbalance = 0;
4191 return fix_small_imbalance(sds, this_cpu, imbalance);
4192 }
4193
dd5feea1
SS
4194 if (!sds->group_imb) {
4195 /*
4196 * Don't want to pull so many tasks that a group would go idle.
4197 */
4198 load_above_capacity = (sds->busiest_nr_running -
4199 sds->busiest_group_capacity);
4200
1399fa78 4201 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4202
9c3f75cb 4203 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4204 }
4205
4206 /*
4207 * We're trying to get all the cpus to the average_load, so we don't
4208 * want to push ourselves above the average load, nor do we wish to
4209 * reduce the max loaded cpu below the average load. At the same time,
4210 * we also don't want to reduce the group load below the group capacity
4211 * (so that we can implement power-savings policies etc). Thus we look
4212 * for the minimum possible imbalance.
4213 * Be careful of negative numbers as they'll appear as very large values
4214 * with unsigned longs.
4215 */
4216 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4217
4218 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
4219 *imbalance = min(max_pull * sds->busiest->sgp->power,
4220 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4221 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4222
4223 /*
4224 * if *imbalance is less than the average load per runnable task
25985edc 4225 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4226 * a think about bumping its value to force at least one task to be
4227 * moved
4228 */
4229 if (*imbalance < sds->busiest_load_per_task)
4230 return fix_small_imbalance(sds, this_cpu, imbalance);
4231
4232}
fab47622 4233
1e3c88bd
PZ
4234/******* find_busiest_group() helpers end here *********************/
4235
4236/**
4237 * find_busiest_group - Returns the busiest group within the sched_domain
4238 * if there is an imbalance. If there isn't an imbalance, and
4239 * the user has opted for power-savings, it returns a group whose
4240 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4241 * such a group exists.
4242 *
4243 * Also calculates the amount of weighted load which should be moved
4244 * to restore balance.
4245 *
4246 * @sd: The sched_domain whose busiest group is to be returned.
4247 * @this_cpu: The cpu for which load balancing is currently being performed.
4248 * @imbalance: Variable which stores amount of weighted load which should
4249 * be moved to restore balance/put a group to idle.
4250 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
4251 * @cpus: The set of CPUs under consideration for load-balancing.
4252 * @balance: Pointer to a variable indicating if this_cpu
4253 * is the appropriate cpu to perform load balancing at this_level.
4254 *
4255 * Returns: - the busiest group if imbalance exists.
4256 * - If no imbalance and user has opted for power-savings balance,
4257 * return the least loaded group whose CPUs can be
4258 * put to idle by rebalancing its tasks onto our group.
4259 */
4260static struct sched_group *
4261find_busiest_group(struct sched_domain *sd, int this_cpu,
4262 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 4263 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
4264{
4265 struct sd_lb_stats sds;
4266
4267 memset(&sds, 0, sizeof(sds));
4268
4269 /*
4270 * Compute the various statistics relavent for load balancing at
4271 * this level.
4272 */
46e49b38 4273 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 4274
cc57aa8f
PZ
4275 /*
4276 * this_cpu is not the appropriate cpu to perform load balancing at
4277 * this level.
1e3c88bd 4278 */
8f190fb3 4279 if (!(*balance))
1e3c88bd
PZ
4280 goto ret;
4281
532cb4c4
MN
4282 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
4283 check_asym_packing(sd, &sds, this_cpu, imbalance))
4284 return sds.busiest;
4285
cc57aa8f 4286 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4287 if (!sds.busiest || sds.busiest_nr_running == 0)
4288 goto out_balanced;
4289
1399fa78 4290 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4291
866ab43e
PZ
4292 /*
4293 * If the busiest group is imbalanced the below checks don't
4294 * work because they assumes all things are equal, which typically
4295 * isn't true due to cpus_allowed constraints and the like.
4296 */
4297 if (sds.group_imb)
4298 goto force_balance;
4299
cc57aa8f 4300 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
4301 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4302 !sds.busiest_has_capacity)
4303 goto force_balance;
4304
cc57aa8f
PZ
4305 /*
4306 * If the local group is more busy than the selected busiest group
4307 * don't try and pull any tasks.
4308 */
1e3c88bd
PZ
4309 if (sds.this_load >= sds.max_load)
4310 goto out_balanced;
4311
cc57aa8f
PZ
4312 /*
4313 * Don't pull any tasks if this group is already above the domain
4314 * average load.
4315 */
1e3c88bd
PZ
4316 if (sds.this_load >= sds.avg_load)
4317 goto out_balanced;
4318
c186fafe 4319 if (idle == CPU_IDLE) {
aae6d3dd
SS
4320 /*
4321 * This cpu is idle. If the busiest group load doesn't
4322 * have more tasks than the number of available cpu's and
4323 * there is no imbalance between this and busiest group
4324 * wrt to idle cpu's, it is balanced.
4325 */
c186fafe 4326 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4327 sds.busiest_nr_running <= sds.busiest_group_weight)
4328 goto out_balanced;
c186fafe
PZ
4329 } else {
4330 /*
4331 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4332 * imbalance_pct to be conservative.
4333 */
4334 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4335 goto out_balanced;
aae6d3dd 4336 }
1e3c88bd 4337
fab47622 4338force_balance:
1e3c88bd
PZ
4339 /* Looks like there is an imbalance. Compute it */
4340 calculate_imbalance(&sds, this_cpu, imbalance);
4341 return sds.busiest;
4342
4343out_balanced:
4344 /*
4345 * There is no obvious imbalance. But check if we can do some balancing
4346 * to save power.
4347 */
4348 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4349 return sds.busiest;
4350ret:
4351 *imbalance = 0;
4352 return NULL;
4353}
4354
4355/*
4356 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4357 */
4358static struct rq *
9d5efe05
SV
4359find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4360 enum cpu_idle_type idle, unsigned long imbalance,
4361 const struct cpumask *cpus)
1e3c88bd
PZ
4362{
4363 struct rq *busiest = NULL, *rq;
4364 unsigned long max_load = 0;
4365 int i;
4366
4367 for_each_cpu(i, sched_group_cpus(group)) {
4368 unsigned long power = power_of(i);
1399fa78
NR
4369 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4370 SCHED_POWER_SCALE);
1e3c88bd
PZ
4371 unsigned long wl;
4372
9d5efe05
SV
4373 if (!capacity)
4374 capacity = fix_small_capacity(sd, group);
4375
1e3c88bd
PZ
4376 if (!cpumask_test_cpu(i, cpus))
4377 continue;
4378
4379 rq = cpu_rq(i);
6e40f5bb 4380 wl = weighted_cpuload(i);
1e3c88bd 4381
6e40f5bb
TG
4382 /*
4383 * When comparing with imbalance, use weighted_cpuload()
4384 * which is not scaled with the cpu power.
4385 */
1e3c88bd
PZ
4386 if (capacity && rq->nr_running == 1 && wl > imbalance)
4387 continue;
4388
6e40f5bb
TG
4389 /*
4390 * For the load comparisons with the other cpu's, consider
4391 * the weighted_cpuload() scaled with the cpu power, so that
4392 * the load can be moved away from the cpu that is potentially
4393 * running at a lower capacity.
4394 */
1399fa78 4395 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4396
1e3c88bd
PZ
4397 if (wl > max_load) {
4398 max_load = wl;
4399 busiest = rq;
4400 }
4401 }
4402
4403 return busiest;
4404}
4405
4406/*
4407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4408 * so long as it is large enough.
4409 */
4410#define MAX_PINNED_INTERVAL 512
4411
4412/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4413DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4414
46e49b38 4415static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4416 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4417{
4418 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4419
4420 /*
4421 * ASYM_PACKING needs to force migrate tasks from busy but
4422 * higher numbered CPUs in order to pack all tasks in the
4423 * lowest numbered CPUs.
4424 */
4425 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4426 return 1;
4427
1af3ed3d
PZ
4428 /*
4429 * The only task running in a non-idle cpu can be moved to this
4430 * cpu in an attempt to completely freeup the other CPU
4431 * package.
4432 *
4433 * The package power saving logic comes from
4434 * find_busiest_group(). If there are no imbalance, then
4435 * f_b_g() will return NULL. However when sched_mc={1,2} then
4436 * f_b_g() will select a group from which a running task may be
4437 * pulled to this cpu in order to make the other package idle.
4438 * If there is no opportunity to make a package idle and if
4439 * there are no imbalance, then f_b_g() will return NULL and no
4440 * action will be taken in load_balance_newidle().
4441 *
4442 * Under normal task pull operation due to imbalance, there
4443 * will be more than one task in the source run queue and
4444 * move_tasks() will succeed. ld_moved will be true and this
4445 * active balance code will not be triggered.
4446 */
1af3ed3d
PZ
4447 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4448 return 0;
4449 }
4450
4451 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4452}
4453
969c7921
TH
4454static int active_load_balance_cpu_stop(void *data);
4455
1e3c88bd
PZ
4456/*
4457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4458 * tasks if there is an imbalance.
4459 */
4460static int load_balance(int this_cpu, struct rq *this_rq,
4461 struct sched_domain *sd, enum cpu_idle_type idle,
4462 int *balance)
4463{
5b54b56b 4464 int ld_moved, lb_flags = 0, active_balance = 0;
1e3c88bd
PZ
4465 struct sched_group *group;
4466 unsigned long imbalance;
4467 struct rq *busiest;
4468 unsigned long flags;
4469 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4470
4471 cpumask_copy(cpus, cpu_active_mask);
4472
1e3c88bd
PZ
4473 schedstat_inc(sd, lb_count[idle]);
4474
4475redo:
46e49b38 4476 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4477 cpus, balance);
4478
4479 if (*balance == 0)
4480 goto out_balanced;
4481
4482 if (!group) {
4483 schedstat_inc(sd, lb_nobusyg[idle]);
4484 goto out_balanced;
4485 }
4486
9d5efe05 4487 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4488 if (!busiest) {
4489 schedstat_inc(sd, lb_nobusyq[idle]);
4490 goto out_balanced;
4491 }
4492
4493 BUG_ON(busiest == this_rq);
4494
4495 schedstat_add(sd, lb_imbalance[idle], imbalance);
4496
4497 ld_moved = 0;
4498 if (busiest->nr_running > 1) {
4499 /*
4500 * Attempt to move tasks. If find_busiest_group has found
4501 * an imbalance but busiest->nr_running <= 1, the group is
4502 * still unbalanced. ld_moved simply stays zero, so it is
4503 * correctly treated as an imbalance.
4504 */
5b54b56b 4505 lb_flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4506 local_irq_save(flags);
4507 double_rq_lock(this_rq, busiest);
4508 ld_moved = move_tasks(this_rq, this_cpu, busiest,
5b54b56b 4509 imbalance, sd, idle, &lb_flags);
1e3c88bd
PZ
4510 double_rq_unlock(this_rq, busiest);
4511 local_irq_restore(flags);
4512
4513 /*
4514 * some other cpu did the load balance for us.
4515 */
4516 if (ld_moved && this_cpu != smp_processor_id())
4517 resched_cpu(this_cpu);
4518
a195f004
PZ
4519 if (lb_flags & LBF_ABORT)
4520 goto out_balanced;
4521
4522 if (lb_flags & LBF_NEED_BREAK) {
bced76ae
PZ
4523 lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK;
4524 if (lb_flags & LBF_ABORT)
4525 goto out_balanced;
a195f004
PZ
4526 goto redo;
4527 }
4528
1e3c88bd 4529 /* All tasks on this runqueue were pinned by CPU affinity */
5b54b56b 4530 if (unlikely(lb_flags & LBF_ALL_PINNED)) {
1e3c88bd
PZ
4531 cpumask_clear_cpu(cpu_of(busiest), cpus);
4532 if (!cpumask_empty(cpus))
4533 goto redo;
4534 goto out_balanced;
4535 }
4536 }
4537
4538 if (!ld_moved) {
4539 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4540 /*
4541 * Increment the failure counter only on periodic balance.
4542 * We do not want newidle balance, which can be very
4543 * frequent, pollute the failure counter causing
4544 * excessive cache_hot migrations and active balances.
4545 */
4546 if (idle != CPU_NEWLY_IDLE)
4547 sd->nr_balance_failed++;
1e3c88bd 4548
46e49b38 4549 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4550 raw_spin_lock_irqsave(&busiest->lock, flags);
4551
969c7921
TH
4552 /* don't kick the active_load_balance_cpu_stop,
4553 * if the curr task on busiest cpu can't be
4554 * moved to this_cpu
1e3c88bd
PZ
4555 */
4556 if (!cpumask_test_cpu(this_cpu,
fa17b507 4557 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4558 raw_spin_unlock_irqrestore(&busiest->lock,
4559 flags);
5b54b56b 4560 lb_flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4561 goto out_one_pinned;
4562 }
4563
969c7921
TH
4564 /*
4565 * ->active_balance synchronizes accesses to
4566 * ->active_balance_work. Once set, it's cleared
4567 * only after active load balance is finished.
4568 */
1e3c88bd
PZ
4569 if (!busiest->active_balance) {
4570 busiest->active_balance = 1;
4571 busiest->push_cpu = this_cpu;
4572 active_balance = 1;
4573 }
4574 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4575
1e3c88bd 4576 if (active_balance)
969c7921
TH
4577 stop_one_cpu_nowait(cpu_of(busiest),
4578 active_load_balance_cpu_stop, busiest,
4579 &busiest->active_balance_work);
1e3c88bd
PZ
4580
4581 /*
4582 * We've kicked active balancing, reset the failure
4583 * counter.
4584 */
4585 sd->nr_balance_failed = sd->cache_nice_tries+1;
4586 }
4587 } else
4588 sd->nr_balance_failed = 0;
4589
4590 if (likely(!active_balance)) {
4591 /* We were unbalanced, so reset the balancing interval */
4592 sd->balance_interval = sd->min_interval;
4593 } else {
4594 /*
4595 * If we've begun active balancing, start to back off. This
4596 * case may not be covered by the all_pinned logic if there
4597 * is only 1 task on the busy runqueue (because we don't call
4598 * move_tasks).
4599 */
4600 if (sd->balance_interval < sd->max_interval)
4601 sd->balance_interval *= 2;
4602 }
4603
1e3c88bd
PZ
4604 goto out;
4605
4606out_balanced:
4607 schedstat_inc(sd, lb_balanced[idle]);
4608
4609 sd->nr_balance_failed = 0;
4610
4611out_one_pinned:
4612 /* tune up the balancing interval */
5b54b56b
PZ
4613 if (((lb_flags & LBF_ALL_PINNED) &&
4614 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4615 (sd->balance_interval < sd->max_interval))
4616 sd->balance_interval *= 2;
4617
46e49b38 4618 ld_moved = 0;
1e3c88bd 4619out:
1e3c88bd
PZ
4620 return ld_moved;
4621}
4622
1e3c88bd
PZ
4623/*
4624 * idle_balance is called by schedule() if this_cpu is about to become
4625 * idle. Attempts to pull tasks from other CPUs.
4626 */
029632fb 4627void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4628{
4629 struct sched_domain *sd;
4630 int pulled_task = 0;
4631 unsigned long next_balance = jiffies + HZ;
4632
4633 this_rq->idle_stamp = this_rq->clock;
4634
4635 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4636 return;
4637
f492e12e
PZ
4638 /*
4639 * Drop the rq->lock, but keep IRQ/preempt disabled.
4640 */
4641 raw_spin_unlock(&this_rq->lock);
4642
c66eaf61 4643 update_shares(this_cpu);
dce840a0 4644 rcu_read_lock();
1e3c88bd
PZ
4645 for_each_domain(this_cpu, sd) {
4646 unsigned long interval;
f492e12e 4647 int balance = 1;
1e3c88bd
PZ
4648
4649 if (!(sd->flags & SD_LOAD_BALANCE))
4650 continue;
4651
f492e12e 4652 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4653 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4654 pulled_task = load_balance(this_cpu, this_rq,
4655 sd, CPU_NEWLY_IDLE, &balance);
4656 }
1e3c88bd
PZ
4657
4658 interval = msecs_to_jiffies(sd->balance_interval);
4659 if (time_after(next_balance, sd->last_balance + interval))
4660 next_balance = sd->last_balance + interval;
d5ad140b
NR
4661 if (pulled_task) {
4662 this_rq->idle_stamp = 0;
1e3c88bd 4663 break;
d5ad140b 4664 }
1e3c88bd 4665 }
dce840a0 4666 rcu_read_unlock();
f492e12e
PZ
4667
4668 raw_spin_lock(&this_rq->lock);
4669
1e3c88bd
PZ
4670 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4671 /*
4672 * We are going idle. next_balance may be set based on
4673 * a busy processor. So reset next_balance.
4674 */
4675 this_rq->next_balance = next_balance;
4676 }
4677}
4678
4679/*
969c7921
TH
4680 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4681 * running tasks off the busiest CPU onto idle CPUs. It requires at
4682 * least 1 task to be running on each physical CPU where possible, and
4683 * avoids physical / logical imbalances.
1e3c88bd 4684 */
969c7921 4685static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4686{
969c7921
TH
4687 struct rq *busiest_rq = data;
4688 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4689 int target_cpu = busiest_rq->push_cpu;
969c7921 4690 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4691 struct sched_domain *sd;
969c7921
TH
4692
4693 raw_spin_lock_irq(&busiest_rq->lock);
4694
4695 /* make sure the requested cpu hasn't gone down in the meantime */
4696 if (unlikely(busiest_cpu != smp_processor_id() ||
4697 !busiest_rq->active_balance))
4698 goto out_unlock;
1e3c88bd
PZ
4699
4700 /* Is there any task to move? */
4701 if (busiest_rq->nr_running <= 1)
969c7921 4702 goto out_unlock;
1e3c88bd
PZ
4703
4704 /*
4705 * This condition is "impossible", if it occurs
4706 * we need to fix it. Originally reported by
4707 * Bjorn Helgaas on a 128-cpu setup.
4708 */
4709 BUG_ON(busiest_rq == target_rq);
4710
4711 /* move a task from busiest_rq to target_rq */
4712 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4713
4714 /* Search for an sd spanning us and the target CPU. */
dce840a0 4715 rcu_read_lock();
1e3c88bd
PZ
4716 for_each_domain(target_cpu, sd) {
4717 if ((sd->flags & SD_LOAD_BALANCE) &&
4718 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4719 break;
4720 }
4721
4722 if (likely(sd)) {
4723 schedstat_inc(sd, alb_count);
4724
4725 if (move_one_task(target_rq, target_cpu, busiest_rq,
4726 sd, CPU_IDLE))
4727 schedstat_inc(sd, alb_pushed);
4728 else
4729 schedstat_inc(sd, alb_failed);
4730 }
dce840a0 4731 rcu_read_unlock();
1e3c88bd 4732 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4733out_unlock:
4734 busiest_rq->active_balance = 0;
4735 raw_spin_unlock_irq(&busiest_rq->lock);
4736 return 0;
1e3c88bd
PZ
4737}
4738
4739#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4740/*
4741 * idle load balancing details
83cd4fe2
VP
4742 * - When one of the busy CPUs notice that there may be an idle rebalancing
4743 * needed, they will kick the idle load balancer, which then does idle
4744 * load balancing for all the idle CPUs.
4745 */
1e3c88bd 4746static struct {
83cd4fe2 4747 cpumask_var_t idle_cpus_mask;
0b005cf5 4748 atomic_t nr_cpus;
83cd4fe2
VP
4749 unsigned long next_balance; /* in jiffy units */
4750} nohz ____cacheline_aligned;
1e3c88bd 4751
1e3c88bd
PZ
4752#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4753/**
4754 * lowest_flag_domain - Return lowest sched_domain containing flag.
4755 * @cpu: The cpu whose lowest level of sched domain is to
4756 * be returned.
4757 * @flag: The flag to check for the lowest sched_domain
4758 * for the given cpu.
4759 *
4760 * Returns the lowest sched_domain of a cpu which contains the given flag.
4761 */
4762static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4763{
4764 struct sched_domain *sd;
4765
4766 for_each_domain(cpu, sd)
08354716 4767 if (sd->flags & flag)
1e3c88bd
PZ
4768 break;
4769
4770 return sd;
4771}
4772
4773/**
4774 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4775 * @cpu: The cpu whose domains we're iterating over.
4776 * @sd: variable holding the value of the power_savings_sd
4777 * for cpu.
4778 * @flag: The flag to filter the sched_domains to be iterated.
4779 *
4780 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4781 * set, starting from the lowest sched_domain to the highest.
4782 */
4783#define for_each_flag_domain(cpu, sd, flag) \
4784 for (sd = lowest_flag_domain(cpu, flag); \
4785 (sd && (sd->flags & flag)); sd = sd->parent)
4786
1e3c88bd
PZ
4787/**
4788 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4789 * @cpu: The cpu which is nominating a new idle_load_balancer.
4790 *
4791 * Returns: Returns the id of the idle load balancer if it exists,
4792 * Else, returns >= nr_cpu_ids.
4793 *
4794 * This algorithm picks the idle load balancer such that it belongs to a
4795 * semi-idle powersavings sched_domain. The idea is to try and avoid
4796 * completely idle packages/cores just for the purpose of idle load balancing
4797 * when there are other idle cpu's which are better suited for that job.
4798 */
4799static int find_new_ilb(int cpu)
4800{
0b005cf5 4801 int ilb = cpumask_first(nohz.idle_cpus_mask);
786d6dc7 4802 struct sched_group *ilbg;
1e3c88bd 4803 struct sched_domain *sd;
1e3c88bd
PZ
4804
4805 /*
4806 * Have idle load balancer selection from semi-idle packages only
4807 * when power-aware load balancing is enabled
4808 */
4809 if (!(sched_smt_power_savings || sched_mc_power_savings))
4810 goto out_done;
4811
4812 /*
4813 * Optimize for the case when we have no idle CPUs or only one
4814 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4815 */
83cd4fe2 4816 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4817 goto out_done;
4818
dce840a0 4819 rcu_read_lock();
1e3c88bd 4820 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
786d6dc7 4821 ilbg = sd->groups;
1e3c88bd
PZ
4822
4823 do {
786d6dc7
SS
4824 if (ilbg->group_weight !=
4825 atomic_read(&ilbg->sgp->nr_busy_cpus)) {
4826 ilb = cpumask_first_and(nohz.idle_cpus_mask,
4827 sched_group_cpus(ilbg));
dce840a0
PZ
4828 goto unlock;
4829 }
1e3c88bd 4830
786d6dc7 4831 ilbg = ilbg->next;
1e3c88bd 4832
786d6dc7 4833 } while (ilbg != sd->groups);
1e3c88bd 4834 }
dce840a0
PZ
4835unlock:
4836 rcu_read_unlock();
1e3c88bd
PZ
4837
4838out_done:
786d6dc7
SS
4839 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4840 return ilb;
4841
4842 return nr_cpu_ids;
1e3c88bd
PZ
4843}
4844#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4845static inline int find_new_ilb(int call_cpu)
4846{
83cd4fe2 4847 return nr_cpu_ids;
1e3c88bd
PZ
4848}
4849#endif
4850
83cd4fe2
VP
4851/*
4852 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4853 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4854 * CPU (if there is one).
4855 */
4856static void nohz_balancer_kick(int cpu)
4857{
4858 int ilb_cpu;
4859
4860 nohz.next_balance++;
4861
0b005cf5 4862 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4863
0b005cf5
SS
4864 if (ilb_cpu >= nr_cpu_ids)
4865 return;
83cd4fe2 4866
cd490c5b 4867 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4868 return;
4869 /*
4870 * Use smp_send_reschedule() instead of resched_cpu().
4871 * This way we generate a sched IPI on the target cpu which
4872 * is idle. And the softirq performing nohz idle load balance
4873 * will be run before returning from the IPI.
4874 */
4875 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4876 return;
4877}
4878
71325960
SS
4879static inline void clear_nohz_tick_stopped(int cpu)
4880{
4881 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4882 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4883 atomic_dec(&nohz.nr_cpus);
4884 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4885 }
4886}
4887
69e1e811
SS
4888static inline void set_cpu_sd_state_busy(void)
4889{
4890 struct sched_domain *sd;
4891 int cpu = smp_processor_id();
4892
4893 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4894 return;
4895 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4896
4897 rcu_read_lock();
4898 for_each_domain(cpu, sd)
4899 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4900 rcu_read_unlock();
4901}
4902
4903void set_cpu_sd_state_idle(void)
4904{
4905 struct sched_domain *sd;
4906 int cpu = smp_processor_id();
4907
4908 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4909 return;
4910 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4911
4912 rcu_read_lock();
4913 for_each_domain(cpu, sd)
4914 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4915 rcu_read_unlock();
4916}
4917
1e3c88bd 4918/*
0b005cf5
SS
4919 * This routine will record that this cpu is going idle with tick stopped.
4920 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4921 */
83cd4fe2 4922void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4923{
4924 int cpu = smp_processor_id();
4925
71325960
SS
4926 /*
4927 * If this cpu is going down, then nothing needs to be done.
4928 */
4929 if (!cpu_active(cpu))
4930 return;
4931
1e3c88bd 4932 if (stop_tick) {
0b005cf5 4933 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4934 return;
1e3c88bd 4935
83cd4fe2 4936 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4937 atomic_inc(&nohz.nr_cpus);
1c792db7 4938 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4939 }
83cd4fe2 4940 return;
1e3c88bd 4941}
71325960
SS
4942
4943static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4944 unsigned long action, void *hcpu)
4945{
4946 switch (action & ~CPU_TASKS_FROZEN) {
4947 case CPU_DYING:
4948 clear_nohz_tick_stopped(smp_processor_id());
4949 return NOTIFY_OK;
4950 default:
4951 return NOTIFY_DONE;
4952 }
4953}
1e3c88bd
PZ
4954#endif
4955
4956static DEFINE_SPINLOCK(balancing);
4957
49c022e6
PZ
4958/*
4959 * Scale the max load_balance interval with the number of CPUs in the system.
4960 * This trades load-balance latency on larger machines for less cross talk.
4961 */
029632fb 4962void update_max_interval(void)
49c022e6
PZ
4963{
4964 max_load_balance_interval = HZ*num_online_cpus()/10;
4965}
4966
1e3c88bd
PZ
4967/*
4968 * It checks each scheduling domain to see if it is due to be balanced,
4969 * and initiates a balancing operation if so.
4970 *
4971 * Balancing parameters are set up in arch_init_sched_domains.
4972 */
4973static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4974{
4975 int balance = 1;
4976 struct rq *rq = cpu_rq(cpu);
4977 unsigned long interval;
4978 struct sched_domain *sd;
4979 /* Earliest time when we have to do rebalance again */
4980 unsigned long next_balance = jiffies + 60*HZ;
4981 int update_next_balance = 0;
4982 int need_serialize;
4983
2069dd75
PZ
4984 update_shares(cpu);
4985
dce840a0 4986 rcu_read_lock();
1e3c88bd
PZ
4987 for_each_domain(cpu, sd) {
4988 if (!(sd->flags & SD_LOAD_BALANCE))
4989 continue;
4990
4991 interval = sd->balance_interval;
4992 if (idle != CPU_IDLE)
4993 interval *= sd->busy_factor;
4994
4995 /* scale ms to jiffies */
4996 interval = msecs_to_jiffies(interval);
49c022e6 4997 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4998
4999 need_serialize = sd->flags & SD_SERIALIZE;
5000
5001 if (need_serialize) {
5002 if (!spin_trylock(&balancing))
5003 goto out;
5004 }
5005
5006 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5007 if (load_balance(cpu, rq, sd, idle, &balance)) {
5008 /*
5009 * We've pulled tasks over so either we're no
c186fafe 5010 * longer idle.
1e3c88bd
PZ
5011 */
5012 idle = CPU_NOT_IDLE;
5013 }
5014 sd->last_balance = jiffies;
5015 }
5016 if (need_serialize)
5017 spin_unlock(&balancing);
5018out:
5019 if (time_after(next_balance, sd->last_balance + interval)) {
5020 next_balance = sd->last_balance + interval;
5021 update_next_balance = 1;
5022 }
5023
5024 /*
5025 * Stop the load balance at this level. There is another
5026 * CPU in our sched group which is doing load balancing more
5027 * actively.
5028 */
5029 if (!balance)
5030 break;
5031 }
dce840a0 5032 rcu_read_unlock();
1e3c88bd
PZ
5033
5034 /*
5035 * next_balance will be updated only when there is a need.
5036 * When the cpu is attached to null domain for ex, it will not be
5037 * updated.
5038 */
5039 if (likely(update_next_balance))
5040 rq->next_balance = next_balance;
5041}
5042
83cd4fe2 5043#ifdef CONFIG_NO_HZ
1e3c88bd 5044/*
83cd4fe2 5045 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5046 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5047 */
83cd4fe2
VP
5048static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5049{
5050 struct rq *this_rq = cpu_rq(this_cpu);
5051 struct rq *rq;
5052 int balance_cpu;
5053
1c792db7
SS
5054 if (idle != CPU_IDLE ||
5055 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5056 goto end;
83cd4fe2
VP
5057
5058 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5059 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5060 continue;
5061
5062 /*
5063 * If this cpu gets work to do, stop the load balancing
5064 * work being done for other cpus. Next load
5065 * balancing owner will pick it up.
5066 */
1c792db7 5067 if (need_resched())
83cd4fe2 5068 break;
83cd4fe2
VP
5069
5070 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 5071 update_rq_clock(this_rq);
83cd4fe2
VP
5072 update_cpu_load(this_rq);
5073 raw_spin_unlock_irq(&this_rq->lock);
5074
5075 rebalance_domains(balance_cpu, CPU_IDLE);
5076
5077 rq = cpu_rq(balance_cpu);
5078 if (time_after(this_rq->next_balance, rq->next_balance))
5079 this_rq->next_balance = rq->next_balance;
5080 }
5081 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5082end:
5083 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5084}
5085
5086/*
0b005cf5
SS
5087 * Current heuristic for kicking the idle load balancer in the presence
5088 * of an idle cpu is the system.
5089 * - This rq has more than one task.
5090 * - At any scheduler domain level, this cpu's scheduler group has multiple
5091 * busy cpu's exceeding the group's power.
5092 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5093 * domain span are idle.
83cd4fe2
VP
5094 */
5095static inline int nohz_kick_needed(struct rq *rq, int cpu)
5096{
5097 unsigned long now = jiffies;
0b005cf5 5098 struct sched_domain *sd;
83cd4fe2 5099
1c792db7 5100 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5101 return 0;
5102
1c792db7
SS
5103 /*
5104 * We may be recently in ticked or tickless idle mode. At the first
5105 * busy tick after returning from idle, we will update the busy stats.
5106 */
69e1e811 5107 set_cpu_sd_state_busy();
71325960 5108 clear_nohz_tick_stopped(cpu);
0b005cf5
SS
5109
5110 /*
5111 * None are in tickless mode and hence no need for NOHZ idle load
5112 * balancing.
5113 */
5114 if (likely(!atomic_read(&nohz.nr_cpus)))
5115 return 0;
1c792db7
SS
5116
5117 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5118 return 0;
5119
0b005cf5
SS
5120 if (rq->nr_running >= 2)
5121 goto need_kick;
83cd4fe2 5122
067491b7 5123 rcu_read_lock();
0b005cf5
SS
5124 for_each_domain(cpu, sd) {
5125 struct sched_group *sg = sd->groups;
5126 struct sched_group_power *sgp = sg->sgp;
5127 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5128
0b005cf5 5129 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5130 goto need_kick_unlock;
0b005cf5
SS
5131
5132 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5133 && (cpumask_first_and(nohz.idle_cpus_mask,
5134 sched_domain_span(sd)) < cpu))
067491b7 5135 goto need_kick_unlock;
0b005cf5
SS
5136
5137 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5138 break;
83cd4fe2 5139 }
067491b7 5140 rcu_read_unlock();
83cd4fe2 5141 return 0;
067491b7
PZ
5142
5143need_kick_unlock:
5144 rcu_read_unlock();
0b005cf5
SS
5145need_kick:
5146 return 1;
83cd4fe2
VP
5147}
5148#else
5149static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5150#endif
5151
5152/*
5153 * run_rebalance_domains is triggered when needed from the scheduler tick.
5154 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5155 */
1e3c88bd
PZ
5156static void run_rebalance_domains(struct softirq_action *h)
5157{
5158 int this_cpu = smp_processor_id();
5159 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5160 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5161 CPU_IDLE : CPU_NOT_IDLE;
5162
5163 rebalance_domains(this_cpu, idle);
5164
1e3c88bd 5165 /*
83cd4fe2 5166 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5167 * balancing on behalf of the other idle cpus whose ticks are
5168 * stopped.
5169 */
83cd4fe2 5170 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5171}
5172
5173static inline int on_null_domain(int cpu)
5174{
90a6501f 5175 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5176}
5177
5178/*
5179 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5180 */
029632fb 5181void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5182{
1e3c88bd
PZ
5183 /* Don't need to rebalance while attached to NULL domain */
5184 if (time_after_eq(jiffies, rq->next_balance) &&
5185 likely(!on_null_domain(cpu)))
5186 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5187#ifdef CONFIG_NO_HZ
1c792db7 5188 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5189 nohz_balancer_kick(cpu);
5190#endif
1e3c88bd
PZ
5191}
5192
0bcdcf28
CE
5193static void rq_online_fair(struct rq *rq)
5194{
5195 update_sysctl();
5196}
5197
5198static void rq_offline_fair(struct rq *rq)
5199{
5200 update_sysctl();
5201}
5202
55e12e5e 5203#endif /* CONFIG_SMP */
e1d1484f 5204
bf0f6f24
IM
5205/*
5206 * scheduler tick hitting a task of our scheduling class:
5207 */
8f4d37ec 5208static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5209{
5210 struct cfs_rq *cfs_rq;
5211 struct sched_entity *se = &curr->se;
5212
5213 for_each_sched_entity(se) {
5214 cfs_rq = cfs_rq_of(se);
8f4d37ec 5215 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
5216 }
5217}
5218
5219/*
cd29fe6f
PZ
5220 * called on fork with the child task as argument from the parent's context
5221 * - child not yet on the tasklist
5222 * - preemption disabled
bf0f6f24 5223 */
cd29fe6f 5224static void task_fork_fair(struct task_struct *p)
bf0f6f24 5225{
4fc420c9
DN
5226 struct cfs_rq *cfs_rq;
5227 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5228 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5229 struct rq *rq = this_rq();
5230 unsigned long flags;
5231
05fa785c 5232 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5233
861d034e
PZ
5234 update_rq_clock(rq);
5235
4fc420c9
DN
5236 cfs_rq = task_cfs_rq(current);
5237 curr = cfs_rq->curr;
5238
b0a0f667
PM
5239 if (unlikely(task_cpu(p) != this_cpu)) {
5240 rcu_read_lock();
cd29fe6f 5241 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5242 rcu_read_unlock();
5243 }
bf0f6f24 5244
7109c442 5245 update_curr(cfs_rq);
cd29fe6f 5246
b5d9d734
MG
5247 if (curr)
5248 se->vruntime = curr->vruntime;
aeb73b04 5249 place_entity(cfs_rq, se, 1);
4d78e7b6 5250
cd29fe6f 5251 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5252 /*
edcb60a3
IM
5253 * Upon rescheduling, sched_class::put_prev_task() will place
5254 * 'current' within the tree based on its new key value.
5255 */
4d78e7b6 5256 swap(curr->vruntime, se->vruntime);
aec0a514 5257 resched_task(rq->curr);
4d78e7b6 5258 }
bf0f6f24 5259
88ec22d3
PZ
5260 se->vruntime -= cfs_rq->min_vruntime;
5261
05fa785c 5262 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5263}
5264
cb469845
SR
5265/*
5266 * Priority of the task has changed. Check to see if we preempt
5267 * the current task.
5268 */
da7a735e
PZ
5269static void
5270prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5271{
da7a735e
PZ
5272 if (!p->se.on_rq)
5273 return;
5274
cb469845
SR
5275 /*
5276 * Reschedule if we are currently running on this runqueue and
5277 * our priority decreased, or if we are not currently running on
5278 * this runqueue and our priority is higher than the current's
5279 */
da7a735e 5280 if (rq->curr == p) {
cb469845
SR
5281 if (p->prio > oldprio)
5282 resched_task(rq->curr);
5283 } else
15afe09b 5284 check_preempt_curr(rq, p, 0);
cb469845
SR
5285}
5286
da7a735e
PZ
5287static void switched_from_fair(struct rq *rq, struct task_struct *p)
5288{
5289 struct sched_entity *se = &p->se;
5290 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5291
5292 /*
5293 * Ensure the task's vruntime is normalized, so that when its
5294 * switched back to the fair class the enqueue_entity(.flags=0) will
5295 * do the right thing.
5296 *
5297 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5298 * have normalized the vruntime, if it was !on_rq, then only when
5299 * the task is sleeping will it still have non-normalized vruntime.
5300 */
5301 if (!se->on_rq && p->state != TASK_RUNNING) {
5302 /*
5303 * Fix up our vruntime so that the current sleep doesn't
5304 * cause 'unlimited' sleep bonus.
5305 */
5306 place_entity(cfs_rq, se, 0);
5307 se->vruntime -= cfs_rq->min_vruntime;
5308 }
5309}
5310
cb469845
SR
5311/*
5312 * We switched to the sched_fair class.
5313 */
da7a735e 5314static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5315{
da7a735e
PZ
5316 if (!p->se.on_rq)
5317 return;
5318
cb469845
SR
5319 /*
5320 * We were most likely switched from sched_rt, so
5321 * kick off the schedule if running, otherwise just see
5322 * if we can still preempt the current task.
5323 */
da7a735e 5324 if (rq->curr == p)
cb469845
SR
5325 resched_task(rq->curr);
5326 else
15afe09b 5327 check_preempt_curr(rq, p, 0);
cb469845
SR
5328}
5329
83b699ed
SV
5330/* Account for a task changing its policy or group.
5331 *
5332 * This routine is mostly called to set cfs_rq->curr field when a task
5333 * migrates between groups/classes.
5334 */
5335static void set_curr_task_fair(struct rq *rq)
5336{
5337 struct sched_entity *se = &rq->curr->se;
5338
ec12cb7f
PT
5339 for_each_sched_entity(se) {
5340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5341
5342 set_next_entity(cfs_rq, se);
5343 /* ensure bandwidth has been allocated on our new cfs_rq */
5344 account_cfs_rq_runtime(cfs_rq, 0);
5345 }
83b699ed
SV
5346}
5347
029632fb
PZ
5348void init_cfs_rq(struct cfs_rq *cfs_rq)
5349{
5350 cfs_rq->tasks_timeline = RB_ROOT;
5351 INIT_LIST_HEAD(&cfs_rq->tasks);
5352 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5353#ifndef CONFIG_64BIT
5354 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5355#endif
5356}
5357
810b3817 5358#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5359static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5360{
b2b5ce02
PZ
5361 /*
5362 * If the task was not on the rq at the time of this cgroup movement
5363 * it must have been asleep, sleeping tasks keep their ->vruntime
5364 * absolute on their old rq until wakeup (needed for the fair sleeper
5365 * bonus in place_entity()).
5366 *
5367 * If it was on the rq, we've just 'preempted' it, which does convert
5368 * ->vruntime to a relative base.
5369 *
5370 * Make sure both cases convert their relative position when migrating
5371 * to another cgroup's rq. This does somewhat interfere with the
5372 * fair sleeper stuff for the first placement, but who cares.
5373 */
7ceff013
DN
5374 /*
5375 * When !on_rq, vruntime of the task has usually NOT been normalized.
5376 * But there are some cases where it has already been normalized:
5377 *
5378 * - Moving a forked child which is waiting for being woken up by
5379 * wake_up_new_task().
62af3783
DN
5380 * - Moving a task which has been woken up by try_to_wake_up() and
5381 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5382 *
5383 * To prevent boost or penalty in the new cfs_rq caused by delta
5384 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5385 */
62af3783 5386 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5387 on_rq = 1;
5388
b2b5ce02
PZ
5389 if (!on_rq)
5390 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5391 set_task_rq(p, task_cpu(p));
88ec22d3 5392 if (!on_rq)
b2b5ce02 5393 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5394}
029632fb
PZ
5395
5396void free_fair_sched_group(struct task_group *tg)
5397{
5398 int i;
5399
5400 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5401
5402 for_each_possible_cpu(i) {
5403 if (tg->cfs_rq)
5404 kfree(tg->cfs_rq[i]);
5405 if (tg->se)
5406 kfree(tg->se[i]);
5407 }
5408
5409 kfree(tg->cfs_rq);
5410 kfree(tg->se);
5411}
5412
5413int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5414{
5415 struct cfs_rq *cfs_rq;
5416 struct sched_entity *se;
5417 int i;
5418
5419 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5420 if (!tg->cfs_rq)
5421 goto err;
5422 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5423 if (!tg->se)
5424 goto err;
5425
5426 tg->shares = NICE_0_LOAD;
5427
5428 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5429
5430 for_each_possible_cpu(i) {
5431 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5432 GFP_KERNEL, cpu_to_node(i));
5433 if (!cfs_rq)
5434 goto err;
5435
5436 se = kzalloc_node(sizeof(struct sched_entity),
5437 GFP_KERNEL, cpu_to_node(i));
5438 if (!se)
5439 goto err_free_rq;
5440
5441 init_cfs_rq(cfs_rq);
5442 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5443 }
5444
5445 return 1;
5446
5447err_free_rq:
5448 kfree(cfs_rq);
5449err:
5450 return 0;
5451}
5452
5453void unregister_fair_sched_group(struct task_group *tg, int cpu)
5454{
5455 struct rq *rq = cpu_rq(cpu);
5456 unsigned long flags;
5457
5458 /*
5459 * Only empty task groups can be destroyed; so we can speculatively
5460 * check on_list without danger of it being re-added.
5461 */
5462 if (!tg->cfs_rq[cpu]->on_list)
5463 return;
5464
5465 raw_spin_lock_irqsave(&rq->lock, flags);
5466 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5467 raw_spin_unlock_irqrestore(&rq->lock, flags);
5468}
5469
5470void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5471 struct sched_entity *se, int cpu,
5472 struct sched_entity *parent)
5473{
5474 struct rq *rq = cpu_rq(cpu);
5475
5476 cfs_rq->tg = tg;
5477 cfs_rq->rq = rq;
5478#ifdef CONFIG_SMP
5479 /* allow initial update_cfs_load() to truncate */
5480 cfs_rq->load_stamp = 1;
810b3817 5481#endif
029632fb
PZ
5482 init_cfs_rq_runtime(cfs_rq);
5483
5484 tg->cfs_rq[cpu] = cfs_rq;
5485 tg->se[cpu] = se;
5486
5487 /* se could be NULL for root_task_group */
5488 if (!se)
5489 return;
5490
5491 if (!parent)
5492 se->cfs_rq = &rq->cfs;
5493 else
5494 se->cfs_rq = parent->my_q;
5495
5496 se->my_q = cfs_rq;
5497 update_load_set(&se->load, 0);
5498 se->parent = parent;
5499}
5500
5501static DEFINE_MUTEX(shares_mutex);
5502
5503int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5504{
5505 int i;
5506 unsigned long flags;
5507
5508 /*
5509 * We can't change the weight of the root cgroup.
5510 */
5511 if (!tg->se[0])
5512 return -EINVAL;
5513
5514 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5515
5516 mutex_lock(&shares_mutex);
5517 if (tg->shares == shares)
5518 goto done;
5519
5520 tg->shares = shares;
5521 for_each_possible_cpu(i) {
5522 struct rq *rq = cpu_rq(i);
5523 struct sched_entity *se;
5524
5525 se = tg->se[i];
5526 /* Propagate contribution to hierarchy */
5527 raw_spin_lock_irqsave(&rq->lock, flags);
5528 for_each_sched_entity(se)
5529 update_cfs_shares(group_cfs_rq(se));
5530 raw_spin_unlock_irqrestore(&rq->lock, flags);
5531 }
5532
5533done:
5534 mutex_unlock(&shares_mutex);
5535 return 0;
5536}
5537#else /* CONFIG_FAIR_GROUP_SCHED */
5538
5539void free_fair_sched_group(struct task_group *tg) { }
5540
5541int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5542{
5543 return 1;
5544}
5545
5546void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5547
5548#endif /* CONFIG_FAIR_GROUP_SCHED */
5549
810b3817 5550
6d686f45 5551static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5552{
5553 struct sched_entity *se = &task->se;
0d721cea
PW
5554 unsigned int rr_interval = 0;
5555
5556 /*
5557 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5558 * idle runqueue:
5559 */
0d721cea
PW
5560 if (rq->cfs.load.weight)
5561 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5562
5563 return rr_interval;
5564}
5565
bf0f6f24
IM
5566/*
5567 * All the scheduling class methods:
5568 */
029632fb 5569const struct sched_class fair_sched_class = {
5522d5d5 5570 .next = &idle_sched_class,
bf0f6f24
IM
5571 .enqueue_task = enqueue_task_fair,
5572 .dequeue_task = dequeue_task_fair,
5573 .yield_task = yield_task_fair,
d95f4122 5574 .yield_to_task = yield_to_task_fair,
bf0f6f24 5575
2e09bf55 5576 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5577
5578 .pick_next_task = pick_next_task_fair,
5579 .put_prev_task = put_prev_task_fair,
5580
681f3e68 5581#ifdef CONFIG_SMP
4ce72a2c
LZ
5582 .select_task_rq = select_task_rq_fair,
5583
0bcdcf28
CE
5584 .rq_online = rq_online_fair,
5585 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5586
5587 .task_waking = task_waking_fair,
681f3e68 5588#endif
bf0f6f24 5589
83b699ed 5590 .set_curr_task = set_curr_task_fair,
bf0f6f24 5591 .task_tick = task_tick_fair,
cd29fe6f 5592 .task_fork = task_fork_fair,
cb469845
SR
5593
5594 .prio_changed = prio_changed_fair,
da7a735e 5595 .switched_from = switched_from_fair,
cb469845 5596 .switched_to = switched_to_fair,
810b3817 5597
0d721cea
PW
5598 .get_rr_interval = get_rr_interval_fair,
5599
810b3817 5600#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5601 .task_move_group = task_move_group_fair,
810b3817 5602#endif
bf0f6f24
IM
5603};
5604
5605#ifdef CONFIG_SCHED_DEBUG
029632fb 5606void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5607{
bf0f6f24
IM
5608 struct cfs_rq *cfs_rq;
5609
5973e5b9 5610 rcu_read_lock();
c3b64f1e 5611 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5612 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5613 rcu_read_unlock();
bf0f6f24
IM
5614}
5615#endif
029632fb
PZ
5616
5617__init void init_sched_fair_class(void)
5618{
5619#ifdef CONFIG_SMP
5620 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5621
5622#ifdef CONFIG_NO_HZ
5623 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5624 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5625#endif
5626#endif /* SMP */
5627
5628}
This page took 0.689623 seconds and 5 git commands to generate.