sched: Push put_prev_task() into pick_next_task()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
fed14d45 418static inline struct cfs_rq *
b758149c
PZ
419is_same_group(struct sched_entity *se, struct sched_entity *pse)
420{
fed14d45 421 return cfs_rq_of(se); /* always the same rq */
b758149c
PZ
422}
423
424static inline struct sched_entity *parent_entity(struct sched_entity *se)
425{
426 return NULL;
427}
428
464b7527
PZ
429static inline void
430find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431{
432}
433
b758149c
PZ
434#endif /* CONFIG_FAIR_GROUP_SCHED */
435
6c16a6dc 436static __always_inline
9dbdb155 437void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
438
439/**************************************************************
440 * Scheduling class tree data structure manipulation methods:
441 */
442
1bf08230 443static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 444{
1bf08230 445 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 446 if (delta > 0)
1bf08230 447 max_vruntime = vruntime;
02e0431a 448
1bf08230 449 return max_vruntime;
02e0431a
PZ
450}
451
0702e3eb 452static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
453{
454 s64 delta = (s64)(vruntime - min_vruntime);
455 if (delta < 0)
456 min_vruntime = vruntime;
457
458 return min_vruntime;
459}
460
54fdc581
FC
461static inline int entity_before(struct sched_entity *a,
462 struct sched_entity *b)
463{
464 return (s64)(a->vruntime - b->vruntime) < 0;
465}
466
1af5f730
PZ
467static void update_min_vruntime(struct cfs_rq *cfs_rq)
468{
469 u64 vruntime = cfs_rq->min_vruntime;
470
471 if (cfs_rq->curr)
472 vruntime = cfs_rq->curr->vruntime;
473
474 if (cfs_rq->rb_leftmost) {
475 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
476 struct sched_entity,
477 run_node);
478
e17036da 479 if (!cfs_rq->curr)
1af5f730
PZ
480 vruntime = se->vruntime;
481 else
482 vruntime = min_vruntime(vruntime, se->vruntime);
483 }
484
1bf08230 485 /* ensure we never gain time by being placed backwards. */
1af5f730 486 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
487#ifndef CONFIG_64BIT
488 smp_wmb();
489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
490#endif
1af5f730
PZ
491}
492
bf0f6f24
IM
493/*
494 * Enqueue an entity into the rb-tree:
495 */
0702e3eb 496static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
497{
498 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
499 struct rb_node *parent = NULL;
500 struct sched_entity *entry;
bf0f6f24
IM
501 int leftmost = 1;
502
503 /*
504 * Find the right place in the rbtree:
505 */
506 while (*link) {
507 parent = *link;
508 entry = rb_entry(parent, struct sched_entity, run_node);
509 /*
510 * We dont care about collisions. Nodes with
511 * the same key stay together.
512 */
2bd2d6f2 513 if (entity_before(se, entry)) {
bf0f6f24
IM
514 link = &parent->rb_left;
515 } else {
516 link = &parent->rb_right;
517 leftmost = 0;
518 }
519 }
520
521 /*
522 * Maintain a cache of leftmost tree entries (it is frequently
523 * used):
524 */
1af5f730 525 if (leftmost)
57cb499d 526 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
527
528 rb_link_node(&se->run_node, parent, link);
529 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
530}
531
0702e3eb 532static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 533{
3fe69747
PZ
534 if (cfs_rq->rb_leftmost == &se->run_node) {
535 struct rb_node *next_node;
3fe69747
PZ
536
537 next_node = rb_next(&se->run_node);
538 cfs_rq->rb_leftmost = next_node;
3fe69747 539 }
e9acbff6 540
bf0f6f24 541 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
542}
543
029632fb 544struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 545{
f4b6755f
PZ
546 struct rb_node *left = cfs_rq->rb_leftmost;
547
548 if (!left)
549 return NULL;
550
551 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
552}
553
ac53db59
RR
554static struct sched_entity *__pick_next_entity(struct sched_entity *se)
555{
556 struct rb_node *next = rb_next(&se->run_node);
557
558 if (!next)
559 return NULL;
560
561 return rb_entry(next, struct sched_entity, run_node);
562}
563
564#ifdef CONFIG_SCHED_DEBUG
029632fb 565struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 566{
7eee3e67 567 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 568
70eee74b
BS
569 if (!last)
570 return NULL;
7eee3e67
IM
571
572 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
573}
574
bf0f6f24
IM
575/**************************************************************
576 * Scheduling class statistics methods:
577 */
578
acb4a848 579int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 580 void __user *buffer, size_t *lenp,
b2be5e96
PZ
581 loff_t *ppos)
582{
8d65af78 583 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 584 int factor = get_update_sysctl_factor();
b2be5e96
PZ
585
586 if (ret || !write)
587 return ret;
588
589 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
590 sysctl_sched_min_granularity);
591
acb4a848
CE
592#define WRT_SYSCTL(name) \
593 (normalized_sysctl_##name = sysctl_##name / (factor))
594 WRT_SYSCTL(sched_min_granularity);
595 WRT_SYSCTL(sched_latency);
596 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
597#undef WRT_SYSCTL
598
b2be5e96
PZ
599 return 0;
600}
601#endif
647e7cac 602
a7be37ac 603/*
f9c0b095 604 * delta /= w
a7be37ac 605 */
9dbdb155 606static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 607{
f9c0b095 608 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 609 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
610
611 return delta;
612}
613
647e7cac
IM
614/*
615 * The idea is to set a period in which each task runs once.
616 *
532b1858 617 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
618 * this period because otherwise the slices get too small.
619 *
620 * p = (nr <= nl) ? l : l*nr/nl
621 */
4d78e7b6
PZ
622static u64 __sched_period(unsigned long nr_running)
623{
624 u64 period = sysctl_sched_latency;
b2be5e96 625 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
626
627 if (unlikely(nr_running > nr_latency)) {
4bf0b771 628 period = sysctl_sched_min_granularity;
4d78e7b6 629 period *= nr_running;
4d78e7b6
PZ
630 }
631
632 return period;
633}
634
647e7cac
IM
635/*
636 * We calculate the wall-time slice from the period by taking a part
637 * proportional to the weight.
638 *
f9c0b095 639 * s = p*P[w/rw]
647e7cac 640 */
6d0f0ebd 641static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 642{
0a582440 643 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 644
0a582440 645 for_each_sched_entity(se) {
6272d68c 646 struct load_weight *load;
3104bf03 647 struct load_weight lw;
6272d68c
LM
648
649 cfs_rq = cfs_rq_of(se);
650 load = &cfs_rq->load;
f9c0b095 651
0a582440 652 if (unlikely(!se->on_rq)) {
3104bf03 653 lw = cfs_rq->load;
0a582440
MG
654
655 update_load_add(&lw, se->load.weight);
656 load = &lw;
657 }
9dbdb155 658 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
659 }
660 return slice;
bf0f6f24
IM
661}
662
647e7cac 663/*
660cc00f 664 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 665 *
f9c0b095 666 * vs = s/w
647e7cac 667 */
f9c0b095 668static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 669{
f9c0b095 670 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
671}
672
a75cdaa9 673#ifdef CONFIG_SMP
fb13c7ee
MG
674static unsigned long task_h_load(struct task_struct *p);
675
a75cdaa9
AS
676static inline void __update_task_entity_contrib(struct sched_entity *se);
677
678/* Give new task start runnable values to heavy its load in infant time */
679void init_task_runnable_average(struct task_struct *p)
680{
681 u32 slice;
682
683 p->se.avg.decay_count = 0;
684 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
685 p->se.avg.runnable_avg_sum = slice;
686 p->se.avg.runnable_avg_period = slice;
687 __update_task_entity_contrib(&p->se);
688}
689#else
690void init_task_runnable_average(struct task_struct *p)
691{
692}
693#endif
694
bf0f6f24 695/*
9dbdb155 696 * Update the current task's runtime statistics.
bf0f6f24 697 */
b7cc0896 698static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 699{
429d43bc 700 struct sched_entity *curr = cfs_rq->curr;
78becc27 701 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 702 u64 delta_exec;
bf0f6f24
IM
703
704 if (unlikely(!curr))
705 return;
706
9dbdb155
PZ
707 delta_exec = now - curr->exec_start;
708 if (unlikely((s64)delta_exec <= 0))
34f28ecd 709 return;
bf0f6f24 710
8ebc91d9 711 curr->exec_start = now;
d842de87 712
9dbdb155
PZ
713 schedstat_set(curr->statistics.exec_max,
714 max(delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718
719 curr->vruntime += calc_delta_fair(delta_exec, curr);
720 update_min_vruntime(cfs_rq);
721
d842de87
SV
722 if (entity_is_task(curr)) {
723 struct task_struct *curtask = task_of(curr);
724
f977bb49 725 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 726 cpuacct_charge(curtask, delta_exec);
f06febc9 727 account_group_exec_runtime(curtask, delta_exec);
d842de87 728 }
ec12cb7f
PT
729
730 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
731}
732
733static inline void
5870db5b 734update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
78becc27 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
737}
738
bf0f6f24
IM
739/*
740 * Task is being enqueued - update stats:
741 */
d2417e5a 742static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
bf0f6f24
IM
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
429d43bc 748 if (se != cfs_rq->curr)
5870db5b 749 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
750}
751
bf0f6f24 752static void
9ef0a961 753update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
41acab88 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760#ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764 }
765#endif
41acab88 766 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
767}
768
769static inline void
19b6a2e3 770update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 771{
bf0f6f24
IM
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
429d43bc 776 if (se != cfs_rq->curr)
9ef0a961 777 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
778}
779
780/*
781 * We are picking a new current task - update its stats:
782 */
783static inline void
79303e9e 784update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
785{
786 /*
787 * We are starting a new run period:
788 */
78becc27 789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
790}
791
bf0f6f24
IM
792/**************************************************
793 * Scheduling class queueing methods:
794 */
795
cbee9f88
PZ
796#ifdef CONFIG_NUMA_BALANCING
797/*
598f0ec0
MG
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
cbee9f88 801 */
598f0ec0
MG
802unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
804
805/* Portion of address space to scan in MB */
806unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 807
4b96a29b
PZ
808/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
598f0ec0
MG
811static unsigned int task_nr_scan_windows(struct task_struct *p)
812{
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828}
829
830/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831#define MAX_SCAN_WINDOW 2560
832
833static unsigned int task_scan_min(struct task_struct *p)
834{
835 unsigned int scan, floor;
836 unsigned int windows = 1;
837
838 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
839 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
840 floor = 1000 / windows;
841
842 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
843 return max_t(unsigned int, floor, scan);
844}
845
846static unsigned int task_scan_max(struct task_struct *p)
847{
848 unsigned int smin = task_scan_min(p);
849 unsigned int smax;
850
851 /* Watch for min being lower than max due to floor calculations */
852 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
853 return max(smin, smax);
854}
855
0ec8aa00
PZ
856static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running += (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
860}
861
862static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
863{
864 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
865 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
866}
867
8c8a743c
PZ
868struct numa_group {
869 atomic_t refcount;
870
871 spinlock_t lock; /* nr_tasks, tasks */
872 int nr_tasks;
e29cf08b 873 pid_t gid;
8c8a743c
PZ
874 struct list_head task_list;
875
876 struct rcu_head rcu;
20e07dea 877 nodemask_t active_nodes;
989348b5 878 unsigned long total_faults;
7e2703e6
RR
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
50ec8a40 884 unsigned long *faults_cpu;
989348b5 885 unsigned long faults[0];
8c8a743c
PZ
886};
887
be1e4e76
RR
888/* Shared or private faults. */
889#define NR_NUMA_HINT_FAULT_TYPES 2
890
891/* Memory and CPU locality */
892#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894/* Averaged statistics, and temporary buffers. */
895#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
e29cf08b
MG
897pid_t task_numa_group_id(struct task_struct *p)
898{
899 return p->numa_group ? p->numa_group->gid : 0;
900}
901
ac8e895b
MG
902static inline int task_faults_idx(int nid, int priv)
903{
be1e4e76 904 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
905}
906
907static inline unsigned long task_faults(struct task_struct *p, int nid)
908{
ff1df896 909 if (!p->numa_faults_memory)
ac8e895b
MG
910 return 0;
911
ff1df896
RR
912 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
913 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
914}
915
83e1d2cd
MG
916static inline unsigned long group_faults(struct task_struct *p, int nid)
917{
918 if (!p->numa_group)
919 return 0;
920
82897b4f
WL
921 return p->numa_group->faults[task_faults_idx(nid, 0)] +
922 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
923}
924
20e07dea
RR
925static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
926{
927 return group->faults_cpu[task_faults_idx(nid, 0)] +
928 group->faults_cpu[task_faults_idx(nid, 1)];
929}
930
83e1d2cd
MG
931/*
932 * These return the fraction of accesses done by a particular task, or
933 * task group, on a particular numa node. The group weight is given a
934 * larger multiplier, in order to group tasks together that are almost
935 * evenly spread out between numa nodes.
936 */
937static inline unsigned long task_weight(struct task_struct *p, int nid)
938{
939 unsigned long total_faults;
940
ff1df896 941 if (!p->numa_faults_memory)
83e1d2cd
MG
942 return 0;
943
944 total_faults = p->total_numa_faults;
945
946 if (!total_faults)
947 return 0;
948
949 return 1000 * task_faults(p, nid) / total_faults;
950}
951
952static inline unsigned long group_weight(struct task_struct *p, int nid)
953{
989348b5 954 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
955 return 0;
956
989348b5 957 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
958}
959
10f39042
RR
960bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
961 int src_nid, int dst_cpu)
962{
963 struct numa_group *ng = p->numa_group;
964 int dst_nid = cpu_to_node(dst_cpu);
965 int last_cpupid, this_cpupid;
966
967 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
968
969 /*
970 * Multi-stage node selection is used in conjunction with a periodic
971 * migration fault to build a temporal task<->page relation. By using
972 * a two-stage filter we remove short/unlikely relations.
973 *
974 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
975 * a task's usage of a particular page (n_p) per total usage of this
976 * page (n_t) (in a given time-span) to a probability.
977 *
978 * Our periodic faults will sample this probability and getting the
979 * same result twice in a row, given these samples are fully
980 * independent, is then given by P(n)^2, provided our sample period
981 * is sufficiently short compared to the usage pattern.
982 *
983 * This quadric squishes small probabilities, making it less likely we
984 * act on an unlikely task<->page relation.
985 */
986 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
987 if (!cpupid_pid_unset(last_cpupid) &&
988 cpupid_to_nid(last_cpupid) != dst_nid)
989 return false;
990
991 /* Always allow migrate on private faults */
992 if (cpupid_match_pid(p, last_cpupid))
993 return true;
994
995 /* A shared fault, but p->numa_group has not been set up yet. */
996 if (!ng)
997 return true;
998
999 /*
1000 * Do not migrate if the destination is not a node that
1001 * is actively used by this numa group.
1002 */
1003 if (!node_isset(dst_nid, ng->active_nodes))
1004 return false;
1005
1006 /*
1007 * Source is a node that is not actively used by this
1008 * numa group, while the destination is. Migrate.
1009 */
1010 if (!node_isset(src_nid, ng->active_nodes))
1011 return true;
1012
1013 /*
1014 * Both source and destination are nodes in active
1015 * use by this numa group. Maximize memory bandwidth
1016 * by migrating from more heavily used groups, to less
1017 * heavily used ones, spreading the load around.
1018 * Use a 1/4 hysteresis to avoid spurious page movement.
1019 */
1020 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1021}
1022
e6628d5b 1023static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1024static unsigned long source_load(int cpu, int type);
1025static unsigned long target_load(int cpu, int type);
1026static unsigned long power_of(int cpu);
1027static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1028
fb13c7ee 1029/* Cached statistics for all CPUs within a node */
58d081b5 1030struct numa_stats {
fb13c7ee 1031 unsigned long nr_running;
58d081b5 1032 unsigned long load;
fb13c7ee
MG
1033
1034 /* Total compute capacity of CPUs on a node */
1035 unsigned long power;
1036
1037 /* Approximate capacity in terms of runnable tasks on a node */
1038 unsigned long capacity;
1039 int has_capacity;
58d081b5 1040};
e6628d5b 1041
fb13c7ee
MG
1042/*
1043 * XXX borrowed from update_sg_lb_stats
1044 */
1045static void update_numa_stats(struct numa_stats *ns, int nid)
1046{
5eca82a9 1047 int cpu, cpus = 0;
fb13c7ee
MG
1048
1049 memset(ns, 0, sizeof(*ns));
1050 for_each_cpu(cpu, cpumask_of_node(nid)) {
1051 struct rq *rq = cpu_rq(cpu);
1052
1053 ns->nr_running += rq->nr_running;
1054 ns->load += weighted_cpuload(cpu);
1055 ns->power += power_of(cpu);
5eca82a9
PZ
1056
1057 cpus++;
fb13c7ee
MG
1058 }
1059
5eca82a9
PZ
1060 /*
1061 * If we raced with hotplug and there are no CPUs left in our mask
1062 * the @ns structure is NULL'ed and task_numa_compare() will
1063 * not find this node attractive.
1064 *
1065 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1066 * and bail there.
1067 */
1068 if (!cpus)
1069 return;
1070
fb13c7ee
MG
1071 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1072 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1073 ns->has_capacity = (ns->nr_running < ns->capacity);
1074}
1075
58d081b5
MG
1076struct task_numa_env {
1077 struct task_struct *p;
e6628d5b 1078
58d081b5
MG
1079 int src_cpu, src_nid;
1080 int dst_cpu, dst_nid;
e6628d5b 1081
58d081b5 1082 struct numa_stats src_stats, dst_stats;
e6628d5b 1083
40ea2b42 1084 int imbalance_pct;
fb13c7ee
MG
1085
1086 struct task_struct *best_task;
1087 long best_imp;
58d081b5
MG
1088 int best_cpu;
1089};
1090
fb13c7ee
MG
1091static void task_numa_assign(struct task_numa_env *env,
1092 struct task_struct *p, long imp)
1093{
1094 if (env->best_task)
1095 put_task_struct(env->best_task);
1096 if (p)
1097 get_task_struct(p);
1098
1099 env->best_task = p;
1100 env->best_imp = imp;
1101 env->best_cpu = env->dst_cpu;
1102}
1103
1104/*
1105 * This checks if the overall compute and NUMA accesses of the system would
1106 * be improved if the source tasks was migrated to the target dst_cpu taking
1107 * into account that it might be best if task running on the dst_cpu should
1108 * be exchanged with the source task
1109 */
887c290e
RR
1110static void task_numa_compare(struct task_numa_env *env,
1111 long taskimp, long groupimp)
fb13c7ee
MG
1112{
1113 struct rq *src_rq = cpu_rq(env->src_cpu);
1114 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1115 struct task_struct *cur;
1116 long dst_load, src_load;
1117 long load;
887c290e 1118 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1119
1120 rcu_read_lock();
1121 cur = ACCESS_ONCE(dst_rq->curr);
1122 if (cur->pid == 0) /* idle */
1123 cur = NULL;
1124
1125 /*
1126 * "imp" is the fault differential for the source task between the
1127 * source and destination node. Calculate the total differential for
1128 * the source task and potential destination task. The more negative
1129 * the value is, the more rmeote accesses that would be expected to
1130 * be incurred if the tasks were swapped.
1131 */
1132 if (cur) {
1133 /* Skip this swap candidate if cannot move to the source cpu */
1134 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1135 goto unlock;
1136
887c290e
RR
1137 /*
1138 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1139 * in any group then look only at task weights.
887c290e 1140 */
ca28aa53 1141 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1142 imp = taskimp + task_weight(cur, env->src_nid) -
1143 task_weight(cur, env->dst_nid);
ca28aa53
RR
1144 /*
1145 * Add some hysteresis to prevent swapping the
1146 * tasks within a group over tiny differences.
1147 */
1148 if (cur->numa_group)
1149 imp -= imp/16;
887c290e 1150 } else {
ca28aa53
RR
1151 /*
1152 * Compare the group weights. If a task is all by
1153 * itself (not part of a group), use the task weight
1154 * instead.
1155 */
1156 if (env->p->numa_group)
1157 imp = groupimp;
1158 else
1159 imp = taskimp;
1160
1161 if (cur->numa_group)
1162 imp += group_weight(cur, env->src_nid) -
1163 group_weight(cur, env->dst_nid);
1164 else
1165 imp += task_weight(cur, env->src_nid) -
1166 task_weight(cur, env->dst_nid);
887c290e 1167 }
fb13c7ee
MG
1168 }
1169
1170 if (imp < env->best_imp)
1171 goto unlock;
1172
1173 if (!cur) {
1174 /* Is there capacity at our destination? */
1175 if (env->src_stats.has_capacity &&
1176 !env->dst_stats.has_capacity)
1177 goto unlock;
1178
1179 goto balance;
1180 }
1181
1182 /* Balance doesn't matter much if we're running a task per cpu */
1183 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1184 goto assign;
1185
1186 /*
1187 * In the overloaded case, try and keep the load balanced.
1188 */
1189balance:
1190 dst_load = env->dst_stats.load;
1191 src_load = env->src_stats.load;
1192
1193 /* XXX missing power terms */
1194 load = task_h_load(env->p);
1195 dst_load += load;
1196 src_load -= load;
1197
1198 if (cur) {
1199 load = task_h_load(cur);
1200 dst_load -= load;
1201 src_load += load;
1202 }
1203
1204 /* make src_load the smaller */
1205 if (dst_load < src_load)
1206 swap(dst_load, src_load);
1207
1208 if (src_load * env->imbalance_pct < dst_load * 100)
1209 goto unlock;
1210
1211assign:
1212 task_numa_assign(env, cur, imp);
1213unlock:
1214 rcu_read_unlock();
1215}
1216
887c290e
RR
1217static void task_numa_find_cpu(struct task_numa_env *env,
1218 long taskimp, long groupimp)
2c8a50aa
MG
1219{
1220 int cpu;
1221
1222 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1223 /* Skip this CPU if the source task cannot migrate */
1224 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1225 continue;
1226
1227 env->dst_cpu = cpu;
887c290e 1228 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1229 }
1230}
1231
58d081b5
MG
1232static int task_numa_migrate(struct task_struct *p)
1233{
58d081b5
MG
1234 struct task_numa_env env = {
1235 .p = p,
fb13c7ee 1236
58d081b5 1237 .src_cpu = task_cpu(p),
b32e86b4 1238 .src_nid = task_node(p),
fb13c7ee
MG
1239
1240 .imbalance_pct = 112,
1241
1242 .best_task = NULL,
1243 .best_imp = 0,
1244 .best_cpu = -1
58d081b5
MG
1245 };
1246 struct sched_domain *sd;
887c290e 1247 unsigned long taskweight, groupweight;
2c8a50aa 1248 int nid, ret;
887c290e 1249 long taskimp, groupimp;
e6628d5b 1250
58d081b5 1251 /*
fb13c7ee
MG
1252 * Pick the lowest SD_NUMA domain, as that would have the smallest
1253 * imbalance and would be the first to start moving tasks about.
1254 *
1255 * And we want to avoid any moving of tasks about, as that would create
1256 * random movement of tasks -- counter the numa conditions we're trying
1257 * to satisfy here.
58d081b5
MG
1258 */
1259 rcu_read_lock();
fb13c7ee 1260 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1261 if (sd)
1262 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1263 rcu_read_unlock();
1264
46a73e8a
RR
1265 /*
1266 * Cpusets can break the scheduler domain tree into smaller
1267 * balance domains, some of which do not cross NUMA boundaries.
1268 * Tasks that are "trapped" in such domains cannot be migrated
1269 * elsewhere, so there is no point in (re)trying.
1270 */
1271 if (unlikely(!sd)) {
de1b301a 1272 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1273 return -EINVAL;
1274 }
1275
887c290e
RR
1276 taskweight = task_weight(p, env.src_nid);
1277 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1278 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1279 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1280 taskimp = task_weight(p, env.dst_nid) - taskweight;
1281 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1282 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1283
e1dda8a7
RR
1284 /* If the preferred nid has capacity, try to use it. */
1285 if (env.dst_stats.has_capacity)
887c290e 1286 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1287
1288 /* No space available on the preferred nid. Look elsewhere. */
1289 if (env.best_cpu == -1) {
2c8a50aa
MG
1290 for_each_online_node(nid) {
1291 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1292 continue;
58d081b5 1293
83e1d2cd 1294 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1295 taskimp = task_weight(p, nid) - taskweight;
1296 groupimp = group_weight(p, nid) - groupweight;
1297 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1298 continue;
1299
2c8a50aa
MG
1300 env.dst_nid = nid;
1301 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1302 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1303 }
1304 }
1305
fb13c7ee
MG
1306 /* No better CPU than the current one was found. */
1307 if (env.best_cpu == -1)
1308 return -EAGAIN;
1309
0ec8aa00
PZ
1310 sched_setnuma(p, env.dst_nid);
1311
04bb2f94
RR
1312 /*
1313 * Reset the scan period if the task is being rescheduled on an
1314 * alternative node to recheck if the tasks is now properly placed.
1315 */
1316 p->numa_scan_period = task_scan_min(p);
1317
fb13c7ee 1318 if (env.best_task == NULL) {
286549dc
MG
1319 ret = migrate_task_to(p, env.best_cpu);
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1322 return ret;
1323 }
1324
1325 ret = migrate_swap(p, env.best_task);
286549dc
MG
1326 if (ret != 0)
1327 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1328 put_task_struct(env.best_task);
1329 return ret;
e6628d5b
MG
1330}
1331
6b9a7460
MG
1332/* Attempt to migrate a task to a CPU on the preferred node. */
1333static void numa_migrate_preferred(struct task_struct *p)
1334{
2739d3ee 1335 /* This task has no NUMA fault statistics yet */
ff1df896 1336 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1337 return;
1338
2739d3ee
RR
1339 /* Periodically retry migrating the task to the preferred node */
1340 p->numa_migrate_retry = jiffies + HZ;
1341
1342 /* Success if task is already running on preferred CPU */
de1b301a 1343 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1344 return;
1345
1346 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1347 task_numa_migrate(p);
6b9a7460
MG
1348}
1349
20e07dea
RR
1350/*
1351 * Find the nodes on which the workload is actively running. We do this by
1352 * tracking the nodes from which NUMA hinting faults are triggered. This can
1353 * be different from the set of nodes where the workload's memory is currently
1354 * located.
1355 *
1356 * The bitmask is used to make smarter decisions on when to do NUMA page
1357 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1358 * are added when they cause over 6/16 of the maximum number of faults, but
1359 * only removed when they drop below 3/16.
1360 */
1361static void update_numa_active_node_mask(struct numa_group *numa_group)
1362{
1363 unsigned long faults, max_faults = 0;
1364 int nid;
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (faults > max_faults)
1369 max_faults = faults;
1370 }
1371
1372 for_each_online_node(nid) {
1373 faults = group_faults_cpu(numa_group, nid);
1374 if (!node_isset(nid, numa_group->active_nodes)) {
1375 if (faults > max_faults * 6 / 16)
1376 node_set(nid, numa_group->active_nodes);
1377 } else if (faults < max_faults * 3 / 16)
1378 node_clear(nid, numa_group->active_nodes);
1379 }
1380}
1381
04bb2f94
RR
1382/*
1383 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1384 * increments. The more local the fault statistics are, the higher the scan
1385 * period will be for the next scan window. If local/remote ratio is below
1386 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1387 * scan period will decrease
1388 */
1389#define NUMA_PERIOD_SLOTS 10
1390#define NUMA_PERIOD_THRESHOLD 3
1391
1392/*
1393 * Increase the scan period (slow down scanning) if the majority of
1394 * our memory is already on our local node, or if the majority of
1395 * the page accesses are shared with other processes.
1396 * Otherwise, decrease the scan period.
1397 */
1398static void update_task_scan_period(struct task_struct *p,
1399 unsigned long shared, unsigned long private)
1400{
1401 unsigned int period_slot;
1402 int ratio;
1403 int diff;
1404
1405 unsigned long remote = p->numa_faults_locality[0];
1406 unsigned long local = p->numa_faults_locality[1];
1407
1408 /*
1409 * If there were no record hinting faults then either the task is
1410 * completely idle or all activity is areas that are not of interest
1411 * to automatic numa balancing. Scan slower
1412 */
1413 if (local + shared == 0) {
1414 p->numa_scan_period = min(p->numa_scan_period_max,
1415 p->numa_scan_period << 1);
1416
1417 p->mm->numa_next_scan = jiffies +
1418 msecs_to_jiffies(p->numa_scan_period);
1419
1420 return;
1421 }
1422
1423 /*
1424 * Prepare to scale scan period relative to the current period.
1425 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1426 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1427 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1428 */
1429 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1430 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1431 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1432 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1433 if (!slot)
1434 slot = 1;
1435 diff = slot * period_slot;
1436 } else {
1437 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1438
1439 /*
1440 * Scale scan rate increases based on sharing. There is an
1441 * inverse relationship between the degree of sharing and
1442 * the adjustment made to the scanning period. Broadly
1443 * speaking the intent is that there is little point
1444 * scanning faster if shared accesses dominate as it may
1445 * simply bounce migrations uselessly
1446 */
04bb2f94
RR
1447 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1448 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1449 }
1450
1451 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1452 task_scan_min(p), task_scan_max(p));
1453 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1454}
1455
7e2703e6
RR
1456/*
1457 * Get the fraction of time the task has been running since the last
1458 * NUMA placement cycle. The scheduler keeps similar statistics, but
1459 * decays those on a 32ms period, which is orders of magnitude off
1460 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1461 * stats only if the task is so new there are no NUMA statistics yet.
1462 */
1463static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1464{
1465 u64 runtime, delta, now;
1466 /* Use the start of this time slice to avoid calculations. */
1467 now = p->se.exec_start;
1468 runtime = p->se.sum_exec_runtime;
1469
1470 if (p->last_task_numa_placement) {
1471 delta = runtime - p->last_sum_exec_runtime;
1472 *period = now - p->last_task_numa_placement;
1473 } else {
1474 delta = p->se.avg.runnable_avg_sum;
1475 *period = p->se.avg.runnable_avg_period;
1476 }
1477
1478 p->last_sum_exec_runtime = runtime;
1479 p->last_task_numa_placement = now;
1480
1481 return delta;
1482}
1483
cbee9f88
PZ
1484static void task_numa_placement(struct task_struct *p)
1485{
83e1d2cd
MG
1486 int seq, nid, max_nid = -1, max_group_nid = -1;
1487 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1488 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1489 unsigned long total_faults;
1490 u64 runtime, period;
7dbd13ed 1491 spinlock_t *group_lock = NULL;
cbee9f88 1492
2832bc19 1493 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1494 if (p->numa_scan_seq == seq)
1495 return;
1496 p->numa_scan_seq = seq;
598f0ec0 1497 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1498
7e2703e6
RR
1499 total_faults = p->numa_faults_locality[0] +
1500 p->numa_faults_locality[1];
1501 runtime = numa_get_avg_runtime(p, &period);
1502
7dbd13ed
MG
1503 /* If the task is part of a group prevent parallel updates to group stats */
1504 if (p->numa_group) {
1505 group_lock = &p->numa_group->lock;
1506 spin_lock(group_lock);
1507 }
1508
688b7585
MG
1509 /* Find the node with the highest number of faults */
1510 for_each_online_node(nid) {
83e1d2cd 1511 unsigned long faults = 0, group_faults = 0;
ac8e895b 1512 int priv, i;
745d6147 1513
be1e4e76 1514 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1515 long diff, f_diff, f_weight;
8c8a743c 1516
ac8e895b 1517 i = task_faults_idx(nid, priv);
745d6147 1518
ac8e895b 1519 /* Decay existing window, copy faults since last scan */
35664fd4 1520 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1521 fault_types[priv] += p->numa_faults_buffer_memory[i];
1522 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1523
7e2703e6
RR
1524 /*
1525 * Normalize the faults_from, so all tasks in a group
1526 * count according to CPU use, instead of by the raw
1527 * number of faults. Tasks with little runtime have
1528 * little over-all impact on throughput, and thus their
1529 * faults are less important.
1530 */
1531 f_weight = div64_u64(runtime << 16, period + 1);
1532 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1533 (total_faults + 1);
35664fd4 1534 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1535 p->numa_faults_buffer_cpu[i] = 0;
1536
35664fd4
RR
1537 p->numa_faults_memory[i] += diff;
1538 p->numa_faults_cpu[i] += f_diff;
ff1df896 1539 faults += p->numa_faults_memory[i];
83e1d2cd 1540 p->total_numa_faults += diff;
8c8a743c
PZ
1541 if (p->numa_group) {
1542 /* safe because we can only change our own group */
989348b5 1543 p->numa_group->faults[i] += diff;
50ec8a40 1544 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1545 p->numa_group->total_faults += diff;
1546 group_faults += p->numa_group->faults[i];
8c8a743c 1547 }
ac8e895b
MG
1548 }
1549
688b7585
MG
1550 if (faults > max_faults) {
1551 max_faults = faults;
1552 max_nid = nid;
1553 }
83e1d2cd
MG
1554
1555 if (group_faults > max_group_faults) {
1556 max_group_faults = group_faults;
1557 max_group_nid = nid;
1558 }
1559 }
1560
04bb2f94
RR
1561 update_task_scan_period(p, fault_types[0], fault_types[1]);
1562
7dbd13ed 1563 if (p->numa_group) {
20e07dea 1564 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1565 /*
1566 * If the preferred task and group nids are different,
1567 * iterate over the nodes again to find the best place.
1568 */
1569 if (max_nid != max_group_nid) {
1570 unsigned long weight, max_weight = 0;
1571
1572 for_each_online_node(nid) {
1573 weight = task_weight(p, nid) + group_weight(p, nid);
1574 if (weight > max_weight) {
1575 max_weight = weight;
1576 max_nid = nid;
1577 }
83e1d2cd
MG
1578 }
1579 }
7dbd13ed
MG
1580
1581 spin_unlock(group_lock);
688b7585
MG
1582 }
1583
6b9a7460 1584 /* Preferred node as the node with the most faults */
3a7053b3 1585 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1586 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1587 sched_setnuma(p, max_nid);
6b9a7460 1588 numa_migrate_preferred(p);
3a7053b3 1589 }
cbee9f88
PZ
1590}
1591
8c8a743c
PZ
1592static inline int get_numa_group(struct numa_group *grp)
1593{
1594 return atomic_inc_not_zero(&grp->refcount);
1595}
1596
1597static inline void put_numa_group(struct numa_group *grp)
1598{
1599 if (atomic_dec_and_test(&grp->refcount))
1600 kfree_rcu(grp, rcu);
1601}
1602
3e6a9418
MG
1603static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1604 int *priv)
8c8a743c
PZ
1605{
1606 struct numa_group *grp, *my_grp;
1607 struct task_struct *tsk;
1608 bool join = false;
1609 int cpu = cpupid_to_cpu(cpupid);
1610 int i;
1611
1612 if (unlikely(!p->numa_group)) {
1613 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1614 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1615
1616 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1617 if (!grp)
1618 return;
1619
1620 atomic_set(&grp->refcount, 1);
1621 spin_lock_init(&grp->lock);
1622 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1623 grp->gid = p->pid;
50ec8a40 1624 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1625 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1626 nr_node_ids;
8c8a743c 1627
20e07dea
RR
1628 node_set(task_node(current), grp->active_nodes);
1629
be1e4e76 1630 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1631 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1632
989348b5 1633 grp->total_faults = p->total_numa_faults;
83e1d2cd 1634
8c8a743c
PZ
1635 list_add(&p->numa_entry, &grp->task_list);
1636 grp->nr_tasks++;
1637 rcu_assign_pointer(p->numa_group, grp);
1638 }
1639
1640 rcu_read_lock();
1641 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1642
1643 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1644 goto no_join;
8c8a743c
PZ
1645
1646 grp = rcu_dereference(tsk->numa_group);
1647 if (!grp)
3354781a 1648 goto no_join;
8c8a743c
PZ
1649
1650 my_grp = p->numa_group;
1651 if (grp == my_grp)
3354781a 1652 goto no_join;
8c8a743c
PZ
1653
1654 /*
1655 * Only join the other group if its bigger; if we're the bigger group,
1656 * the other task will join us.
1657 */
1658 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1659 goto no_join;
8c8a743c
PZ
1660
1661 /*
1662 * Tie-break on the grp address.
1663 */
1664 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1665 goto no_join;
8c8a743c 1666
dabe1d99
RR
1667 /* Always join threads in the same process. */
1668 if (tsk->mm == current->mm)
1669 join = true;
1670
1671 /* Simple filter to avoid false positives due to PID collisions */
1672 if (flags & TNF_SHARED)
1673 join = true;
8c8a743c 1674
3e6a9418
MG
1675 /* Update priv based on whether false sharing was detected */
1676 *priv = !join;
1677
dabe1d99 1678 if (join && !get_numa_group(grp))
3354781a 1679 goto no_join;
8c8a743c 1680
8c8a743c
PZ
1681 rcu_read_unlock();
1682
1683 if (!join)
1684 return;
1685
989348b5
MG
1686 double_lock(&my_grp->lock, &grp->lock);
1687
be1e4e76 1688 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1689 my_grp->faults[i] -= p->numa_faults_memory[i];
1690 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1691 }
989348b5
MG
1692 my_grp->total_faults -= p->total_numa_faults;
1693 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1694
1695 list_move(&p->numa_entry, &grp->task_list);
1696 my_grp->nr_tasks--;
1697 grp->nr_tasks++;
1698
1699 spin_unlock(&my_grp->lock);
1700 spin_unlock(&grp->lock);
1701
1702 rcu_assign_pointer(p->numa_group, grp);
1703
1704 put_numa_group(my_grp);
3354781a
PZ
1705 return;
1706
1707no_join:
1708 rcu_read_unlock();
1709 return;
8c8a743c
PZ
1710}
1711
1712void task_numa_free(struct task_struct *p)
1713{
1714 struct numa_group *grp = p->numa_group;
1715 int i;
ff1df896 1716 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1717
1718 if (grp) {
989348b5 1719 spin_lock(&grp->lock);
be1e4e76 1720 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1721 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1722 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1723
8c8a743c
PZ
1724 list_del(&p->numa_entry);
1725 grp->nr_tasks--;
1726 spin_unlock(&grp->lock);
1727 rcu_assign_pointer(p->numa_group, NULL);
1728 put_numa_group(grp);
1729 }
1730
ff1df896
RR
1731 p->numa_faults_memory = NULL;
1732 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1733 p->numa_faults_cpu= NULL;
1734 p->numa_faults_buffer_cpu = NULL;
82727018 1735 kfree(numa_faults);
8c8a743c
PZ
1736}
1737
cbee9f88
PZ
1738/*
1739 * Got a PROT_NONE fault for a page on @node.
1740 */
58b46da3 1741void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1742{
1743 struct task_struct *p = current;
6688cc05 1744 bool migrated = flags & TNF_MIGRATED;
58b46da3 1745 int cpu_node = task_node(current);
ac8e895b 1746 int priv;
cbee9f88 1747
10e84b97 1748 if (!numabalancing_enabled)
1a687c2e
MG
1749 return;
1750
9ff1d9ff
MG
1751 /* for example, ksmd faulting in a user's mm */
1752 if (!p->mm)
1753 return;
1754
82727018
RR
1755 /* Do not worry about placement if exiting */
1756 if (p->state == TASK_DEAD)
1757 return;
1758
f809ca9a 1759 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1760 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1761 int size = sizeof(*p->numa_faults_memory) *
1762 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1763
be1e4e76 1764 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1765 if (!p->numa_faults_memory)
f809ca9a 1766 return;
745d6147 1767
ff1df896 1768 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1769 /*
1770 * The averaged statistics, shared & private, memory & cpu,
1771 * occupy the first half of the array. The second half of the
1772 * array is for current counters, which are averaged into the
1773 * first set by task_numa_placement.
1774 */
50ec8a40
RR
1775 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1776 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1777 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1778 p->total_numa_faults = 0;
04bb2f94 1779 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1780 }
cbee9f88 1781
8c8a743c
PZ
1782 /*
1783 * First accesses are treated as private, otherwise consider accesses
1784 * to be private if the accessing pid has not changed
1785 */
1786 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1787 priv = 1;
1788 } else {
1789 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1790 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1791 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1792 }
1793
cbee9f88 1794 task_numa_placement(p);
f809ca9a 1795
2739d3ee
RR
1796 /*
1797 * Retry task to preferred node migration periodically, in case it
1798 * case it previously failed, or the scheduler moved us.
1799 */
1800 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1801 numa_migrate_preferred(p);
1802
b32e86b4
IM
1803 if (migrated)
1804 p->numa_pages_migrated += pages;
1805
58b46da3
RR
1806 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1807 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1808 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1809}
1810
6e5fb223
PZ
1811static void reset_ptenuma_scan(struct task_struct *p)
1812{
1813 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1814 p->mm->numa_scan_offset = 0;
1815}
1816
cbee9f88
PZ
1817/*
1818 * The expensive part of numa migration is done from task_work context.
1819 * Triggered from task_tick_numa().
1820 */
1821void task_numa_work(struct callback_head *work)
1822{
1823 unsigned long migrate, next_scan, now = jiffies;
1824 struct task_struct *p = current;
1825 struct mm_struct *mm = p->mm;
6e5fb223 1826 struct vm_area_struct *vma;
9f40604c 1827 unsigned long start, end;
598f0ec0 1828 unsigned long nr_pte_updates = 0;
9f40604c 1829 long pages;
cbee9f88
PZ
1830
1831 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1832
1833 work->next = work; /* protect against double add */
1834 /*
1835 * Who cares about NUMA placement when they're dying.
1836 *
1837 * NOTE: make sure not to dereference p->mm before this check,
1838 * exit_task_work() happens _after_ exit_mm() so we could be called
1839 * without p->mm even though we still had it when we enqueued this
1840 * work.
1841 */
1842 if (p->flags & PF_EXITING)
1843 return;
1844
930aa174 1845 if (!mm->numa_next_scan) {
7e8d16b6
MG
1846 mm->numa_next_scan = now +
1847 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1848 }
1849
cbee9f88
PZ
1850 /*
1851 * Enforce maximal scan/migration frequency..
1852 */
1853 migrate = mm->numa_next_scan;
1854 if (time_before(now, migrate))
1855 return;
1856
598f0ec0
MG
1857 if (p->numa_scan_period == 0) {
1858 p->numa_scan_period_max = task_scan_max(p);
1859 p->numa_scan_period = task_scan_min(p);
1860 }
cbee9f88 1861
fb003b80 1862 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1863 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1864 return;
1865
19a78d11
PZ
1866 /*
1867 * Delay this task enough that another task of this mm will likely win
1868 * the next time around.
1869 */
1870 p->node_stamp += 2 * TICK_NSEC;
1871
9f40604c
MG
1872 start = mm->numa_scan_offset;
1873 pages = sysctl_numa_balancing_scan_size;
1874 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1875 if (!pages)
1876 return;
cbee9f88 1877
6e5fb223 1878 down_read(&mm->mmap_sem);
9f40604c 1879 vma = find_vma(mm, start);
6e5fb223
PZ
1880 if (!vma) {
1881 reset_ptenuma_scan(p);
9f40604c 1882 start = 0;
6e5fb223
PZ
1883 vma = mm->mmap;
1884 }
9f40604c 1885 for (; vma; vma = vma->vm_next) {
fc314724 1886 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1887 continue;
1888
4591ce4f
MG
1889 /*
1890 * Shared library pages mapped by multiple processes are not
1891 * migrated as it is expected they are cache replicated. Avoid
1892 * hinting faults in read-only file-backed mappings or the vdso
1893 * as migrating the pages will be of marginal benefit.
1894 */
1895 if (!vma->vm_mm ||
1896 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1897 continue;
1898
3c67f474
MG
1899 /*
1900 * Skip inaccessible VMAs to avoid any confusion between
1901 * PROT_NONE and NUMA hinting ptes
1902 */
1903 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1904 continue;
4591ce4f 1905
9f40604c
MG
1906 do {
1907 start = max(start, vma->vm_start);
1908 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1909 end = min(end, vma->vm_end);
598f0ec0
MG
1910 nr_pte_updates += change_prot_numa(vma, start, end);
1911
1912 /*
1913 * Scan sysctl_numa_balancing_scan_size but ensure that
1914 * at least one PTE is updated so that unused virtual
1915 * address space is quickly skipped.
1916 */
1917 if (nr_pte_updates)
1918 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1919
9f40604c
MG
1920 start = end;
1921 if (pages <= 0)
1922 goto out;
1923 } while (end != vma->vm_end);
cbee9f88 1924 }
6e5fb223 1925
9f40604c 1926out:
6e5fb223 1927 /*
c69307d5
PZ
1928 * It is possible to reach the end of the VMA list but the last few
1929 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1930 * would find the !migratable VMA on the next scan but not reset the
1931 * scanner to the start so check it now.
6e5fb223
PZ
1932 */
1933 if (vma)
9f40604c 1934 mm->numa_scan_offset = start;
6e5fb223
PZ
1935 else
1936 reset_ptenuma_scan(p);
1937 up_read(&mm->mmap_sem);
cbee9f88
PZ
1938}
1939
1940/*
1941 * Drive the periodic memory faults..
1942 */
1943void task_tick_numa(struct rq *rq, struct task_struct *curr)
1944{
1945 struct callback_head *work = &curr->numa_work;
1946 u64 period, now;
1947
1948 /*
1949 * We don't care about NUMA placement if we don't have memory.
1950 */
1951 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1952 return;
1953
1954 /*
1955 * Using runtime rather than walltime has the dual advantage that
1956 * we (mostly) drive the selection from busy threads and that the
1957 * task needs to have done some actual work before we bother with
1958 * NUMA placement.
1959 */
1960 now = curr->se.sum_exec_runtime;
1961 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1962
1963 if (now - curr->node_stamp > period) {
4b96a29b 1964 if (!curr->node_stamp)
598f0ec0 1965 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1966 curr->node_stamp += period;
cbee9f88
PZ
1967
1968 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1969 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1970 task_work_add(curr, work, true);
1971 }
1972 }
1973}
1974#else
1975static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1976{
1977}
0ec8aa00
PZ
1978
1979static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1980{
1981}
1982
1983static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1984{
1985}
cbee9f88
PZ
1986#endif /* CONFIG_NUMA_BALANCING */
1987
30cfdcfc
DA
1988static void
1989account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1990{
1991 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1992 if (!parent_entity(se))
029632fb 1993 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1994#ifdef CONFIG_SMP
0ec8aa00
PZ
1995 if (entity_is_task(se)) {
1996 struct rq *rq = rq_of(cfs_rq);
1997
1998 account_numa_enqueue(rq, task_of(se));
1999 list_add(&se->group_node, &rq->cfs_tasks);
2000 }
367456c7 2001#endif
30cfdcfc 2002 cfs_rq->nr_running++;
30cfdcfc
DA
2003}
2004
2005static void
2006account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2007{
2008 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2009 if (!parent_entity(se))
029632fb 2010 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2011 if (entity_is_task(se)) {
2012 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2013 list_del_init(&se->group_node);
0ec8aa00 2014 }
30cfdcfc 2015 cfs_rq->nr_running--;
30cfdcfc
DA
2016}
2017
3ff6dcac
YZ
2018#ifdef CONFIG_FAIR_GROUP_SCHED
2019# ifdef CONFIG_SMP
cf5f0acf
PZ
2020static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2021{
2022 long tg_weight;
2023
2024 /*
2025 * Use this CPU's actual weight instead of the last load_contribution
2026 * to gain a more accurate current total weight. See
2027 * update_cfs_rq_load_contribution().
2028 */
bf5b986e 2029 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2030 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2031 tg_weight += cfs_rq->load.weight;
2032
2033 return tg_weight;
2034}
2035
6d5ab293 2036static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2037{
cf5f0acf 2038 long tg_weight, load, shares;
3ff6dcac 2039
cf5f0acf 2040 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2041 load = cfs_rq->load.weight;
3ff6dcac 2042
3ff6dcac 2043 shares = (tg->shares * load);
cf5f0acf
PZ
2044 if (tg_weight)
2045 shares /= tg_weight;
3ff6dcac
YZ
2046
2047 if (shares < MIN_SHARES)
2048 shares = MIN_SHARES;
2049 if (shares > tg->shares)
2050 shares = tg->shares;
2051
2052 return shares;
2053}
3ff6dcac 2054# else /* CONFIG_SMP */
6d5ab293 2055static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2056{
2057 return tg->shares;
2058}
3ff6dcac 2059# endif /* CONFIG_SMP */
2069dd75
PZ
2060static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2061 unsigned long weight)
2062{
19e5eebb
PT
2063 if (se->on_rq) {
2064 /* commit outstanding execution time */
2065 if (cfs_rq->curr == se)
2066 update_curr(cfs_rq);
2069dd75 2067 account_entity_dequeue(cfs_rq, se);
19e5eebb 2068 }
2069dd75
PZ
2069
2070 update_load_set(&se->load, weight);
2071
2072 if (se->on_rq)
2073 account_entity_enqueue(cfs_rq, se);
2074}
2075
82958366
PT
2076static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2077
6d5ab293 2078static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2079{
2080 struct task_group *tg;
2081 struct sched_entity *se;
3ff6dcac 2082 long shares;
2069dd75 2083
2069dd75
PZ
2084 tg = cfs_rq->tg;
2085 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2086 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2087 return;
3ff6dcac
YZ
2088#ifndef CONFIG_SMP
2089 if (likely(se->load.weight == tg->shares))
2090 return;
2091#endif
6d5ab293 2092 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2093
2094 reweight_entity(cfs_rq_of(se), se, shares);
2095}
2096#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2097static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2098{
2099}
2100#endif /* CONFIG_FAIR_GROUP_SCHED */
2101
141965c7 2102#ifdef CONFIG_SMP
5b51f2f8
PT
2103/*
2104 * We choose a half-life close to 1 scheduling period.
2105 * Note: The tables below are dependent on this value.
2106 */
2107#define LOAD_AVG_PERIOD 32
2108#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2109#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2110
2111/* Precomputed fixed inverse multiplies for multiplication by y^n */
2112static const u32 runnable_avg_yN_inv[] = {
2113 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2114 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2115 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2116 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2117 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2118 0x85aac367, 0x82cd8698,
2119};
2120
2121/*
2122 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2123 * over-estimates when re-combining.
2124 */
2125static const u32 runnable_avg_yN_sum[] = {
2126 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2127 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2128 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2129};
2130
9d85f21c
PT
2131/*
2132 * Approximate:
2133 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2134 */
2135static __always_inline u64 decay_load(u64 val, u64 n)
2136{
5b51f2f8
PT
2137 unsigned int local_n;
2138
2139 if (!n)
2140 return val;
2141 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2142 return 0;
2143
2144 /* after bounds checking we can collapse to 32-bit */
2145 local_n = n;
2146
2147 /*
2148 * As y^PERIOD = 1/2, we can combine
2149 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2150 * With a look-up table which covers k^n (n<PERIOD)
2151 *
2152 * To achieve constant time decay_load.
2153 */
2154 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2155 val >>= local_n / LOAD_AVG_PERIOD;
2156 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2157 }
2158
5b51f2f8
PT
2159 val *= runnable_avg_yN_inv[local_n];
2160 /* We don't use SRR here since we always want to round down. */
2161 return val >> 32;
2162}
2163
2164/*
2165 * For updates fully spanning n periods, the contribution to runnable
2166 * average will be: \Sum 1024*y^n
2167 *
2168 * We can compute this reasonably efficiently by combining:
2169 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2170 */
2171static u32 __compute_runnable_contrib(u64 n)
2172{
2173 u32 contrib = 0;
2174
2175 if (likely(n <= LOAD_AVG_PERIOD))
2176 return runnable_avg_yN_sum[n];
2177 else if (unlikely(n >= LOAD_AVG_MAX_N))
2178 return LOAD_AVG_MAX;
2179
2180 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2181 do {
2182 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2183 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2184
2185 n -= LOAD_AVG_PERIOD;
2186 } while (n > LOAD_AVG_PERIOD);
2187
2188 contrib = decay_load(contrib, n);
2189 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2190}
2191
2192/*
2193 * We can represent the historical contribution to runnable average as the
2194 * coefficients of a geometric series. To do this we sub-divide our runnable
2195 * history into segments of approximately 1ms (1024us); label the segment that
2196 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2197 *
2198 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2199 * p0 p1 p2
2200 * (now) (~1ms ago) (~2ms ago)
2201 *
2202 * Let u_i denote the fraction of p_i that the entity was runnable.
2203 *
2204 * We then designate the fractions u_i as our co-efficients, yielding the
2205 * following representation of historical load:
2206 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2207 *
2208 * We choose y based on the with of a reasonably scheduling period, fixing:
2209 * y^32 = 0.5
2210 *
2211 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2212 * approximately half as much as the contribution to load within the last ms
2213 * (u_0).
2214 *
2215 * When a period "rolls over" and we have new u_0`, multiplying the previous
2216 * sum again by y is sufficient to update:
2217 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2218 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2219 */
2220static __always_inline int __update_entity_runnable_avg(u64 now,
2221 struct sched_avg *sa,
2222 int runnable)
2223{
5b51f2f8
PT
2224 u64 delta, periods;
2225 u32 runnable_contrib;
9d85f21c
PT
2226 int delta_w, decayed = 0;
2227
2228 delta = now - sa->last_runnable_update;
2229 /*
2230 * This should only happen when time goes backwards, which it
2231 * unfortunately does during sched clock init when we swap over to TSC.
2232 */
2233 if ((s64)delta < 0) {
2234 sa->last_runnable_update = now;
2235 return 0;
2236 }
2237
2238 /*
2239 * Use 1024ns as the unit of measurement since it's a reasonable
2240 * approximation of 1us and fast to compute.
2241 */
2242 delta >>= 10;
2243 if (!delta)
2244 return 0;
2245 sa->last_runnable_update = now;
2246
2247 /* delta_w is the amount already accumulated against our next period */
2248 delta_w = sa->runnable_avg_period % 1024;
2249 if (delta + delta_w >= 1024) {
2250 /* period roll-over */
2251 decayed = 1;
2252
2253 /*
2254 * Now that we know we're crossing a period boundary, figure
2255 * out how much from delta we need to complete the current
2256 * period and accrue it.
2257 */
2258 delta_w = 1024 - delta_w;
5b51f2f8
PT
2259 if (runnable)
2260 sa->runnable_avg_sum += delta_w;
2261 sa->runnable_avg_period += delta_w;
2262
2263 delta -= delta_w;
2264
2265 /* Figure out how many additional periods this update spans */
2266 periods = delta / 1024;
2267 delta %= 1024;
2268
2269 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2270 periods + 1);
2271 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2272 periods + 1);
2273
2274 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2275 runnable_contrib = __compute_runnable_contrib(periods);
2276 if (runnable)
2277 sa->runnable_avg_sum += runnable_contrib;
2278 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2279 }
2280
2281 /* Remainder of delta accrued against u_0` */
2282 if (runnable)
2283 sa->runnable_avg_sum += delta;
2284 sa->runnable_avg_period += delta;
2285
2286 return decayed;
2287}
2288
9ee474f5 2289/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2290static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2291{
2292 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2293 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2294
2295 decays -= se->avg.decay_count;
2296 if (!decays)
aff3e498 2297 return 0;
9ee474f5
PT
2298
2299 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2300 se->avg.decay_count = 0;
aff3e498
PT
2301
2302 return decays;
9ee474f5
PT
2303}
2304
c566e8e9
PT
2305#ifdef CONFIG_FAIR_GROUP_SCHED
2306static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2307 int force_update)
2308{
2309 struct task_group *tg = cfs_rq->tg;
bf5b986e 2310 long tg_contrib;
c566e8e9
PT
2311
2312 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2313 tg_contrib -= cfs_rq->tg_load_contrib;
2314
bf5b986e
AS
2315 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2316 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2317 cfs_rq->tg_load_contrib += tg_contrib;
2318 }
2319}
8165e145 2320
bb17f655
PT
2321/*
2322 * Aggregate cfs_rq runnable averages into an equivalent task_group
2323 * representation for computing load contributions.
2324 */
2325static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2326 struct cfs_rq *cfs_rq)
2327{
2328 struct task_group *tg = cfs_rq->tg;
2329 long contrib;
2330
2331 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2332 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2333 sa->runnable_avg_period + 1);
2334 contrib -= cfs_rq->tg_runnable_contrib;
2335
2336 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2337 atomic_add(contrib, &tg->runnable_avg);
2338 cfs_rq->tg_runnable_contrib += contrib;
2339 }
2340}
2341
8165e145
PT
2342static inline void __update_group_entity_contrib(struct sched_entity *se)
2343{
2344 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2345 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2346 int runnable_avg;
2347
8165e145
PT
2348 u64 contrib;
2349
2350 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2351 se->avg.load_avg_contrib = div_u64(contrib,
2352 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2353
2354 /*
2355 * For group entities we need to compute a correction term in the case
2356 * that they are consuming <1 cpu so that we would contribute the same
2357 * load as a task of equal weight.
2358 *
2359 * Explicitly co-ordinating this measurement would be expensive, but
2360 * fortunately the sum of each cpus contribution forms a usable
2361 * lower-bound on the true value.
2362 *
2363 * Consider the aggregate of 2 contributions. Either they are disjoint
2364 * (and the sum represents true value) or they are disjoint and we are
2365 * understating by the aggregate of their overlap.
2366 *
2367 * Extending this to N cpus, for a given overlap, the maximum amount we
2368 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2369 * cpus that overlap for this interval and w_i is the interval width.
2370 *
2371 * On a small machine; the first term is well-bounded which bounds the
2372 * total error since w_i is a subset of the period. Whereas on a
2373 * larger machine, while this first term can be larger, if w_i is the
2374 * of consequential size guaranteed to see n_i*w_i quickly converge to
2375 * our upper bound of 1-cpu.
2376 */
2377 runnable_avg = atomic_read(&tg->runnable_avg);
2378 if (runnable_avg < NICE_0_LOAD) {
2379 se->avg.load_avg_contrib *= runnable_avg;
2380 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2381 }
8165e145 2382}
c566e8e9
PT
2383#else
2384static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2385 int force_update) {}
bb17f655
PT
2386static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2387 struct cfs_rq *cfs_rq) {}
8165e145 2388static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2389#endif
2390
8165e145
PT
2391static inline void __update_task_entity_contrib(struct sched_entity *se)
2392{
2393 u32 contrib;
2394
2395 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2396 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2397 contrib /= (se->avg.runnable_avg_period + 1);
2398 se->avg.load_avg_contrib = scale_load(contrib);
2399}
2400
2dac754e
PT
2401/* Compute the current contribution to load_avg by se, return any delta */
2402static long __update_entity_load_avg_contrib(struct sched_entity *se)
2403{
2404 long old_contrib = se->avg.load_avg_contrib;
2405
8165e145
PT
2406 if (entity_is_task(se)) {
2407 __update_task_entity_contrib(se);
2408 } else {
bb17f655 2409 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2410 __update_group_entity_contrib(se);
2411 }
2dac754e
PT
2412
2413 return se->avg.load_avg_contrib - old_contrib;
2414}
2415
9ee474f5
PT
2416static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2417 long load_contrib)
2418{
2419 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2420 cfs_rq->blocked_load_avg -= load_contrib;
2421 else
2422 cfs_rq->blocked_load_avg = 0;
2423}
2424
f1b17280
PT
2425static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2426
9d85f21c 2427/* Update a sched_entity's runnable average */
9ee474f5
PT
2428static inline void update_entity_load_avg(struct sched_entity *se,
2429 int update_cfs_rq)
9d85f21c 2430{
2dac754e
PT
2431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2432 long contrib_delta;
f1b17280 2433 u64 now;
2dac754e 2434
f1b17280
PT
2435 /*
2436 * For a group entity we need to use their owned cfs_rq_clock_task() in
2437 * case they are the parent of a throttled hierarchy.
2438 */
2439 if (entity_is_task(se))
2440 now = cfs_rq_clock_task(cfs_rq);
2441 else
2442 now = cfs_rq_clock_task(group_cfs_rq(se));
2443
2444 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2445 return;
2446
2447 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2448
2449 if (!update_cfs_rq)
2450 return;
2451
2dac754e
PT
2452 if (se->on_rq)
2453 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2454 else
2455 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2456}
2457
2458/*
2459 * Decay the load contributed by all blocked children and account this so that
2460 * their contribution may appropriately discounted when they wake up.
2461 */
aff3e498 2462static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2463{
f1b17280 2464 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2465 u64 decays;
2466
2467 decays = now - cfs_rq->last_decay;
aff3e498 2468 if (!decays && !force_update)
9ee474f5
PT
2469 return;
2470
2509940f
AS
2471 if (atomic_long_read(&cfs_rq->removed_load)) {
2472 unsigned long removed_load;
2473 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2474 subtract_blocked_load_contrib(cfs_rq, removed_load);
2475 }
9ee474f5 2476
aff3e498
PT
2477 if (decays) {
2478 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2479 decays);
2480 atomic64_add(decays, &cfs_rq->decay_counter);
2481 cfs_rq->last_decay = now;
2482 }
c566e8e9
PT
2483
2484 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2485}
18bf2805
BS
2486
2487static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2488{
78becc27 2489 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2490 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2491}
2dac754e
PT
2492
2493/* Add the load generated by se into cfs_rq's child load-average */
2494static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2495 struct sched_entity *se,
2496 int wakeup)
2dac754e 2497{
aff3e498
PT
2498 /*
2499 * We track migrations using entity decay_count <= 0, on a wake-up
2500 * migration we use a negative decay count to track the remote decays
2501 * accumulated while sleeping.
a75cdaa9
AS
2502 *
2503 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2504 * are seen by enqueue_entity_load_avg() as a migration with an already
2505 * constructed load_avg_contrib.
aff3e498
PT
2506 */
2507 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2508 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2509 if (se->avg.decay_count) {
2510 /*
2511 * In a wake-up migration we have to approximate the
2512 * time sleeping. This is because we can't synchronize
2513 * clock_task between the two cpus, and it is not
2514 * guaranteed to be read-safe. Instead, we can
2515 * approximate this using our carried decays, which are
2516 * explicitly atomically readable.
2517 */
2518 se->avg.last_runnable_update -= (-se->avg.decay_count)
2519 << 20;
2520 update_entity_load_avg(se, 0);
2521 /* Indicate that we're now synchronized and on-rq */
2522 se->avg.decay_count = 0;
2523 }
9ee474f5
PT
2524 wakeup = 0;
2525 } else {
9390675a 2526 __synchronize_entity_decay(se);
9ee474f5
PT
2527 }
2528
aff3e498
PT
2529 /* migrated tasks did not contribute to our blocked load */
2530 if (wakeup) {
9ee474f5 2531 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2532 update_entity_load_avg(se, 0);
2533 }
9ee474f5 2534
2dac754e 2535 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2536 /* we force update consideration on load-balancer moves */
2537 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2538}
2539
9ee474f5
PT
2540/*
2541 * Remove se's load from this cfs_rq child load-average, if the entity is
2542 * transitioning to a blocked state we track its projected decay using
2543 * blocked_load_avg.
2544 */
2dac754e 2545static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2546 struct sched_entity *se,
2547 int sleep)
2dac754e 2548{
9ee474f5 2549 update_entity_load_avg(se, 1);
aff3e498
PT
2550 /* we force update consideration on load-balancer moves */
2551 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2552
2dac754e 2553 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2554 if (sleep) {
2555 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2556 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2557 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2558}
642dbc39
VG
2559
2560/*
2561 * Update the rq's load with the elapsed running time before entering
2562 * idle. if the last scheduled task is not a CFS task, idle_enter will
2563 * be the only way to update the runnable statistic.
2564 */
2565void idle_enter_fair(struct rq *this_rq)
2566{
2567 update_rq_runnable_avg(this_rq, 1);
2568}
2569
2570/*
2571 * Update the rq's load with the elapsed idle time before a task is
2572 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2573 * be the only way to update the runnable statistic.
2574 */
2575void idle_exit_fair(struct rq *this_rq)
2576{
2577 update_rq_runnable_avg(this_rq, 0);
2578}
2579
9d85f21c 2580#else
9ee474f5
PT
2581static inline void update_entity_load_avg(struct sched_entity *se,
2582 int update_cfs_rq) {}
18bf2805 2583static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2584static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2585 struct sched_entity *se,
2586 int wakeup) {}
2dac754e 2587static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2588 struct sched_entity *se,
2589 int sleep) {}
aff3e498
PT
2590static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2591 int force_update) {}
9d85f21c
PT
2592#endif
2593
2396af69 2594static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2595{
bf0f6f24 2596#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2597 struct task_struct *tsk = NULL;
2598
2599 if (entity_is_task(se))
2600 tsk = task_of(se);
2601
41acab88 2602 if (se->statistics.sleep_start) {
78becc27 2603 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2604
2605 if ((s64)delta < 0)
2606 delta = 0;
2607
41acab88
LDM
2608 if (unlikely(delta > se->statistics.sleep_max))
2609 se->statistics.sleep_max = delta;
bf0f6f24 2610
8c79a045 2611 se->statistics.sleep_start = 0;
41acab88 2612 se->statistics.sum_sleep_runtime += delta;
9745512c 2613
768d0c27 2614 if (tsk) {
e414314c 2615 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2616 trace_sched_stat_sleep(tsk, delta);
2617 }
bf0f6f24 2618 }
41acab88 2619 if (se->statistics.block_start) {
78becc27 2620 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2621
2622 if ((s64)delta < 0)
2623 delta = 0;
2624
41acab88
LDM
2625 if (unlikely(delta > se->statistics.block_max))
2626 se->statistics.block_max = delta;
bf0f6f24 2627
8c79a045 2628 se->statistics.block_start = 0;
41acab88 2629 se->statistics.sum_sleep_runtime += delta;
30084fbd 2630
e414314c 2631 if (tsk) {
8f0dfc34 2632 if (tsk->in_iowait) {
41acab88
LDM
2633 se->statistics.iowait_sum += delta;
2634 se->statistics.iowait_count++;
768d0c27 2635 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2636 }
2637
b781a602
AV
2638 trace_sched_stat_blocked(tsk, delta);
2639
e414314c
PZ
2640 /*
2641 * Blocking time is in units of nanosecs, so shift by
2642 * 20 to get a milliseconds-range estimation of the
2643 * amount of time that the task spent sleeping:
2644 */
2645 if (unlikely(prof_on == SLEEP_PROFILING)) {
2646 profile_hits(SLEEP_PROFILING,
2647 (void *)get_wchan(tsk),
2648 delta >> 20);
2649 }
2650 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2651 }
bf0f6f24
IM
2652 }
2653#endif
2654}
2655
ddc97297
PZ
2656static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2657{
2658#ifdef CONFIG_SCHED_DEBUG
2659 s64 d = se->vruntime - cfs_rq->min_vruntime;
2660
2661 if (d < 0)
2662 d = -d;
2663
2664 if (d > 3*sysctl_sched_latency)
2665 schedstat_inc(cfs_rq, nr_spread_over);
2666#endif
2667}
2668
aeb73b04
PZ
2669static void
2670place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2671{
1af5f730 2672 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2673
2cb8600e
PZ
2674 /*
2675 * The 'current' period is already promised to the current tasks,
2676 * however the extra weight of the new task will slow them down a
2677 * little, place the new task so that it fits in the slot that
2678 * stays open at the end.
2679 */
94dfb5e7 2680 if (initial && sched_feat(START_DEBIT))
f9c0b095 2681 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2682
a2e7a7eb 2683 /* sleeps up to a single latency don't count. */
5ca9880c 2684 if (!initial) {
a2e7a7eb 2685 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2686
a2e7a7eb
MG
2687 /*
2688 * Halve their sleep time's effect, to allow
2689 * for a gentler effect of sleepers:
2690 */
2691 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2692 thresh >>= 1;
51e0304c 2693
a2e7a7eb 2694 vruntime -= thresh;
aeb73b04
PZ
2695 }
2696
b5d9d734 2697 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2698 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2699}
2700
d3d9dc33
PT
2701static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2702
bf0f6f24 2703static void
88ec22d3 2704enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2705{
88ec22d3
PZ
2706 /*
2707 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2708 * through calling update_curr().
88ec22d3 2709 */
371fd7e7 2710 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2711 se->vruntime += cfs_rq->min_vruntime;
2712
bf0f6f24 2713 /*
a2a2d680 2714 * Update run-time statistics of the 'current'.
bf0f6f24 2715 */
b7cc0896 2716 update_curr(cfs_rq);
f269ae04 2717 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2718 account_entity_enqueue(cfs_rq, se);
2719 update_cfs_shares(cfs_rq);
bf0f6f24 2720
88ec22d3 2721 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2722 place_entity(cfs_rq, se, 0);
2396af69 2723 enqueue_sleeper(cfs_rq, se);
e9acbff6 2724 }
bf0f6f24 2725
d2417e5a 2726 update_stats_enqueue(cfs_rq, se);
ddc97297 2727 check_spread(cfs_rq, se);
83b699ed
SV
2728 if (se != cfs_rq->curr)
2729 __enqueue_entity(cfs_rq, se);
2069dd75 2730 se->on_rq = 1;
3d4b47b4 2731
d3d9dc33 2732 if (cfs_rq->nr_running == 1) {
3d4b47b4 2733 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2734 check_enqueue_throttle(cfs_rq);
2735 }
bf0f6f24
IM
2736}
2737
2c13c919 2738static void __clear_buddies_last(struct sched_entity *se)
2002c695 2739{
2c13c919
RR
2740 for_each_sched_entity(se) {
2741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2742 if (cfs_rq->last == se)
2743 cfs_rq->last = NULL;
2744 else
2745 break;
2746 }
2747}
2002c695 2748
2c13c919
RR
2749static void __clear_buddies_next(struct sched_entity *se)
2750{
2751 for_each_sched_entity(se) {
2752 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2753 if (cfs_rq->next == se)
2754 cfs_rq->next = NULL;
2755 else
2756 break;
2757 }
2002c695
PZ
2758}
2759
ac53db59
RR
2760static void __clear_buddies_skip(struct sched_entity *se)
2761{
2762 for_each_sched_entity(se) {
2763 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2764 if (cfs_rq->skip == se)
2765 cfs_rq->skip = NULL;
2766 else
2767 break;
2768 }
2769}
2770
a571bbea
PZ
2771static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2772{
2c13c919
RR
2773 if (cfs_rq->last == se)
2774 __clear_buddies_last(se);
2775
2776 if (cfs_rq->next == se)
2777 __clear_buddies_next(se);
ac53db59
RR
2778
2779 if (cfs_rq->skip == se)
2780 __clear_buddies_skip(se);
a571bbea
PZ
2781}
2782
6c16a6dc 2783static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2784
bf0f6f24 2785static void
371fd7e7 2786dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2787{
a2a2d680
DA
2788 /*
2789 * Update run-time statistics of the 'current'.
2790 */
2791 update_curr(cfs_rq);
17bc14b7 2792 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2793
19b6a2e3 2794 update_stats_dequeue(cfs_rq, se);
371fd7e7 2795 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2796#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2797 if (entity_is_task(se)) {
2798 struct task_struct *tsk = task_of(se);
2799
2800 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2801 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2802 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2803 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2804 }
db36cc7d 2805#endif
67e9fb2a
PZ
2806 }
2807
2002c695 2808 clear_buddies(cfs_rq, se);
4793241b 2809
83b699ed 2810 if (se != cfs_rq->curr)
30cfdcfc 2811 __dequeue_entity(cfs_rq, se);
17bc14b7 2812 se->on_rq = 0;
30cfdcfc 2813 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2814
2815 /*
2816 * Normalize the entity after updating the min_vruntime because the
2817 * update can refer to the ->curr item and we need to reflect this
2818 * movement in our normalized position.
2819 */
371fd7e7 2820 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2821 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2822
d8b4986d
PT
2823 /* return excess runtime on last dequeue */
2824 return_cfs_rq_runtime(cfs_rq);
2825
1e876231 2826 update_min_vruntime(cfs_rq);
17bc14b7 2827 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2828}
2829
2830/*
2831 * Preempt the current task with a newly woken task if needed:
2832 */
7c92e54f 2833static void
2e09bf55 2834check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2835{
11697830 2836 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2837 struct sched_entity *se;
2838 s64 delta;
11697830 2839
6d0f0ebd 2840 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2841 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2842 if (delta_exec > ideal_runtime) {
bf0f6f24 2843 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2844 /*
2845 * The current task ran long enough, ensure it doesn't get
2846 * re-elected due to buddy favours.
2847 */
2848 clear_buddies(cfs_rq, curr);
f685ceac
MG
2849 return;
2850 }
2851
2852 /*
2853 * Ensure that a task that missed wakeup preemption by a
2854 * narrow margin doesn't have to wait for a full slice.
2855 * This also mitigates buddy induced latencies under load.
2856 */
f685ceac
MG
2857 if (delta_exec < sysctl_sched_min_granularity)
2858 return;
2859
f4cfb33e
WX
2860 se = __pick_first_entity(cfs_rq);
2861 delta = curr->vruntime - se->vruntime;
f685ceac 2862
f4cfb33e
WX
2863 if (delta < 0)
2864 return;
d7d82944 2865
f4cfb33e
WX
2866 if (delta > ideal_runtime)
2867 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2868}
2869
83b699ed 2870static void
8494f412 2871set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2872{
83b699ed
SV
2873 /* 'current' is not kept within the tree. */
2874 if (se->on_rq) {
2875 /*
2876 * Any task has to be enqueued before it get to execute on
2877 * a CPU. So account for the time it spent waiting on the
2878 * runqueue.
2879 */
2880 update_stats_wait_end(cfs_rq, se);
2881 __dequeue_entity(cfs_rq, se);
2882 }
2883
79303e9e 2884 update_stats_curr_start(cfs_rq, se);
429d43bc 2885 cfs_rq->curr = se;
eba1ed4b
IM
2886#ifdef CONFIG_SCHEDSTATS
2887 /*
2888 * Track our maximum slice length, if the CPU's load is at
2889 * least twice that of our own weight (i.e. dont track it
2890 * when there are only lesser-weight tasks around):
2891 */
495eca49 2892 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2893 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2894 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2895 }
2896#endif
4a55b450 2897 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2898}
2899
3f3a4904
PZ
2900static int
2901wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2902
ac53db59
RR
2903/*
2904 * Pick the next process, keeping these things in mind, in this order:
2905 * 1) keep things fair between processes/task groups
2906 * 2) pick the "next" process, since someone really wants that to run
2907 * 3) pick the "last" process, for cache locality
2908 * 4) do not run the "skip" process, if something else is available
2909 */
f4b6755f 2910static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2911{
ac53db59 2912 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2913 struct sched_entity *left = se;
f4b6755f 2914
ac53db59
RR
2915 /*
2916 * Avoid running the skip buddy, if running something else can
2917 * be done without getting too unfair.
2918 */
2919 if (cfs_rq->skip == se) {
2920 struct sched_entity *second = __pick_next_entity(se);
2921 if (second && wakeup_preempt_entity(second, left) < 1)
2922 se = second;
2923 }
aa2ac252 2924
f685ceac
MG
2925 /*
2926 * Prefer last buddy, try to return the CPU to a preempted task.
2927 */
2928 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2929 se = cfs_rq->last;
2930
ac53db59
RR
2931 /*
2932 * Someone really wants this to run. If it's not unfair, run it.
2933 */
2934 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2935 se = cfs_rq->next;
2936
f685ceac 2937 clear_buddies(cfs_rq, se);
4793241b
PZ
2938
2939 return se;
aa2ac252
PZ
2940}
2941
d3d9dc33
PT
2942static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2943
ab6cde26 2944static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2945{
2946 /*
2947 * If still on the runqueue then deactivate_task()
2948 * was not called and update_curr() has to be done:
2949 */
2950 if (prev->on_rq)
b7cc0896 2951 update_curr(cfs_rq);
bf0f6f24 2952
d3d9dc33
PT
2953 /* throttle cfs_rqs exceeding runtime */
2954 check_cfs_rq_runtime(cfs_rq);
2955
ddc97297 2956 check_spread(cfs_rq, prev);
30cfdcfc 2957 if (prev->on_rq) {
5870db5b 2958 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2959 /* Put 'current' back into the tree. */
2960 __enqueue_entity(cfs_rq, prev);
9d85f21c 2961 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2962 update_entity_load_avg(prev, 1);
30cfdcfc 2963 }
429d43bc 2964 cfs_rq->curr = NULL;
bf0f6f24
IM
2965}
2966
8f4d37ec
PZ
2967static void
2968entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2969{
bf0f6f24 2970 /*
30cfdcfc 2971 * Update run-time statistics of the 'current'.
bf0f6f24 2972 */
30cfdcfc 2973 update_curr(cfs_rq);
bf0f6f24 2974
9d85f21c
PT
2975 /*
2976 * Ensure that runnable average is periodically updated.
2977 */
9ee474f5 2978 update_entity_load_avg(curr, 1);
aff3e498 2979 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2980 update_cfs_shares(cfs_rq);
9d85f21c 2981
8f4d37ec
PZ
2982#ifdef CONFIG_SCHED_HRTICK
2983 /*
2984 * queued ticks are scheduled to match the slice, so don't bother
2985 * validating it and just reschedule.
2986 */
983ed7a6
HH
2987 if (queued) {
2988 resched_task(rq_of(cfs_rq)->curr);
2989 return;
2990 }
8f4d37ec
PZ
2991 /*
2992 * don't let the period tick interfere with the hrtick preemption
2993 */
2994 if (!sched_feat(DOUBLE_TICK) &&
2995 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2996 return;
2997#endif
2998
2c2efaed 2999 if (cfs_rq->nr_running > 1)
2e09bf55 3000 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3001}
3002
ab84d31e
PT
3003
3004/**************************************************
3005 * CFS bandwidth control machinery
3006 */
3007
3008#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3009
3010#ifdef HAVE_JUMP_LABEL
c5905afb 3011static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3012
3013static inline bool cfs_bandwidth_used(void)
3014{
c5905afb 3015 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3016}
3017
1ee14e6c 3018void cfs_bandwidth_usage_inc(void)
029632fb 3019{
1ee14e6c
BS
3020 static_key_slow_inc(&__cfs_bandwidth_used);
3021}
3022
3023void cfs_bandwidth_usage_dec(void)
3024{
3025 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3026}
3027#else /* HAVE_JUMP_LABEL */
3028static bool cfs_bandwidth_used(void)
3029{
3030 return true;
3031}
3032
1ee14e6c
BS
3033void cfs_bandwidth_usage_inc(void) {}
3034void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3035#endif /* HAVE_JUMP_LABEL */
3036
ab84d31e
PT
3037/*
3038 * default period for cfs group bandwidth.
3039 * default: 0.1s, units: nanoseconds
3040 */
3041static inline u64 default_cfs_period(void)
3042{
3043 return 100000000ULL;
3044}
ec12cb7f
PT
3045
3046static inline u64 sched_cfs_bandwidth_slice(void)
3047{
3048 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3049}
3050
a9cf55b2
PT
3051/*
3052 * Replenish runtime according to assigned quota and update expiration time.
3053 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3054 * additional synchronization around rq->lock.
3055 *
3056 * requires cfs_b->lock
3057 */
029632fb 3058void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3059{
3060 u64 now;
3061
3062 if (cfs_b->quota == RUNTIME_INF)
3063 return;
3064
3065 now = sched_clock_cpu(smp_processor_id());
3066 cfs_b->runtime = cfs_b->quota;
3067 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3068}
3069
029632fb
PZ
3070static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3071{
3072 return &tg->cfs_bandwidth;
3073}
3074
f1b17280
PT
3075/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3076static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3077{
3078 if (unlikely(cfs_rq->throttle_count))
3079 return cfs_rq->throttled_clock_task;
3080
78becc27 3081 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3082}
3083
85dac906
PT
3084/* returns 0 on failure to allocate runtime */
3085static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3086{
3087 struct task_group *tg = cfs_rq->tg;
3088 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3089 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3090
3091 /* note: this is a positive sum as runtime_remaining <= 0 */
3092 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3093
3094 raw_spin_lock(&cfs_b->lock);
3095 if (cfs_b->quota == RUNTIME_INF)
3096 amount = min_amount;
58088ad0 3097 else {
a9cf55b2
PT
3098 /*
3099 * If the bandwidth pool has become inactive, then at least one
3100 * period must have elapsed since the last consumption.
3101 * Refresh the global state and ensure bandwidth timer becomes
3102 * active.
3103 */
3104 if (!cfs_b->timer_active) {
3105 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3106 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3107 }
58088ad0
PT
3108
3109 if (cfs_b->runtime > 0) {
3110 amount = min(cfs_b->runtime, min_amount);
3111 cfs_b->runtime -= amount;
3112 cfs_b->idle = 0;
3113 }
ec12cb7f 3114 }
a9cf55b2 3115 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3116 raw_spin_unlock(&cfs_b->lock);
3117
3118 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3119 /*
3120 * we may have advanced our local expiration to account for allowed
3121 * spread between our sched_clock and the one on which runtime was
3122 * issued.
3123 */
3124 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3125 cfs_rq->runtime_expires = expires;
85dac906
PT
3126
3127 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3128}
3129
a9cf55b2
PT
3130/*
3131 * Note: This depends on the synchronization provided by sched_clock and the
3132 * fact that rq->clock snapshots this value.
3133 */
3134static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3135{
a9cf55b2 3136 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3137
3138 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3139 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3140 return;
3141
a9cf55b2
PT
3142 if (cfs_rq->runtime_remaining < 0)
3143 return;
3144
3145 /*
3146 * If the local deadline has passed we have to consider the
3147 * possibility that our sched_clock is 'fast' and the global deadline
3148 * has not truly expired.
3149 *
3150 * Fortunately we can check determine whether this the case by checking
3151 * whether the global deadline has advanced.
3152 */
3153
3154 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3155 /* extend local deadline, drift is bounded above by 2 ticks */
3156 cfs_rq->runtime_expires += TICK_NSEC;
3157 } else {
3158 /* global deadline is ahead, expiration has passed */
3159 cfs_rq->runtime_remaining = 0;
3160 }
3161}
3162
9dbdb155 3163static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3164{
3165 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3166 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3167 expire_cfs_rq_runtime(cfs_rq);
3168
3169 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3170 return;
3171
85dac906
PT
3172 /*
3173 * if we're unable to extend our runtime we resched so that the active
3174 * hierarchy can be throttled
3175 */
3176 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3177 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3178}
3179
6c16a6dc 3180static __always_inline
9dbdb155 3181void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3182{
56f570e5 3183 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3184 return;
3185
3186 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3187}
3188
85dac906
PT
3189static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3190{
56f570e5 3191 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3192}
3193
64660c86
PT
3194/* check whether cfs_rq, or any parent, is throttled */
3195static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3196{
56f570e5 3197 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3198}
3199
3200/*
3201 * Ensure that neither of the group entities corresponding to src_cpu or
3202 * dest_cpu are members of a throttled hierarchy when performing group
3203 * load-balance operations.
3204 */
3205static inline int throttled_lb_pair(struct task_group *tg,
3206 int src_cpu, int dest_cpu)
3207{
3208 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3209
3210 src_cfs_rq = tg->cfs_rq[src_cpu];
3211 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3212
3213 return throttled_hierarchy(src_cfs_rq) ||
3214 throttled_hierarchy(dest_cfs_rq);
3215}
3216
3217/* updated child weight may affect parent so we have to do this bottom up */
3218static int tg_unthrottle_up(struct task_group *tg, void *data)
3219{
3220 struct rq *rq = data;
3221 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3222
3223 cfs_rq->throttle_count--;
3224#ifdef CONFIG_SMP
3225 if (!cfs_rq->throttle_count) {
f1b17280 3226 /* adjust cfs_rq_clock_task() */
78becc27 3227 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3228 cfs_rq->throttled_clock_task;
64660c86
PT
3229 }
3230#endif
3231
3232 return 0;
3233}
3234
3235static int tg_throttle_down(struct task_group *tg, void *data)
3236{
3237 struct rq *rq = data;
3238 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3239
82958366
PT
3240 /* group is entering throttled state, stop time */
3241 if (!cfs_rq->throttle_count)
78becc27 3242 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3243 cfs_rq->throttle_count++;
3244
3245 return 0;
3246}
3247
d3d9dc33 3248static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3249{
3250 struct rq *rq = rq_of(cfs_rq);
3251 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3252 struct sched_entity *se;
3253 long task_delta, dequeue = 1;
3254
3255 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3256
f1b17280 3257 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3258 rcu_read_lock();
3259 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3260 rcu_read_unlock();
85dac906
PT
3261
3262 task_delta = cfs_rq->h_nr_running;
3263 for_each_sched_entity(se) {
3264 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3265 /* throttled entity or throttle-on-deactivate */
3266 if (!se->on_rq)
3267 break;
3268
3269 if (dequeue)
3270 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3271 qcfs_rq->h_nr_running -= task_delta;
3272
3273 if (qcfs_rq->load.weight)
3274 dequeue = 0;
3275 }
3276
3277 if (!se)
3278 rq->nr_running -= task_delta;
3279
3280 cfs_rq->throttled = 1;
78becc27 3281 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3282 raw_spin_lock(&cfs_b->lock);
3283 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3284 if (!cfs_b->timer_active)
3285 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3286 raw_spin_unlock(&cfs_b->lock);
3287}
3288
029632fb 3289void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3290{
3291 struct rq *rq = rq_of(cfs_rq);
3292 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3293 struct sched_entity *se;
3294 int enqueue = 1;
3295 long task_delta;
3296
22b958d8 3297 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3298
3299 cfs_rq->throttled = 0;
1a55af2e
FW
3300
3301 update_rq_clock(rq);
3302
671fd9da 3303 raw_spin_lock(&cfs_b->lock);
78becc27 3304 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3305 list_del_rcu(&cfs_rq->throttled_list);
3306 raw_spin_unlock(&cfs_b->lock);
3307
64660c86
PT
3308 /* update hierarchical throttle state */
3309 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3310
671fd9da
PT
3311 if (!cfs_rq->load.weight)
3312 return;
3313
3314 task_delta = cfs_rq->h_nr_running;
3315 for_each_sched_entity(se) {
3316 if (se->on_rq)
3317 enqueue = 0;
3318
3319 cfs_rq = cfs_rq_of(se);
3320 if (enqueue)
3321 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3322 cfs_rq->h_nr_running += task_delta;
3323
3324 if (cfs_rq_throttled(cfs_rq))
3325 break;
3326 }
3327
3328 if (!se)
3329 rq->nr_running += task_delta;
3330
3331 /* determine whether we need to wake up potentially idle cpu */
3332 if (rq->curr == rq->idle && rq->cfs.nr_running)
3333 resched_task(rq->curr);
3334}
3335
3336static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3337 u64 remaining, u64 expires)
3338{
3339 struct cfs_rq *cfs_rq;
3340 u64 runtime = remaining;
3341
3342 rcu_read_lock();
3343 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3344 throttled_list) {
3345 struct rq *rq = rq_of(cfs_rq);
3346
3347 raw_spin_lock(&rq->lock);
3348 if (!cfs_rq_throttled(cfs_rq))
3349 goto next;
3350
3351 runtime = -cfs_rq->runtime_remaining + 1;
3352 if (runtime > remaining)
3353 runtime = remaining;
3354 remaining -= runtime;
3355
3356 cfs_rq->runtime_remaining += runtime;
3357 cfs_rq->runtime_expires = expires;
3358
3359 /* we check whether we're throttled above */
3360 if (cfs_rq->runtime_remaining > 0)
3361 unthrottle_cfs_rq(cfs_rq);
3362
3363next:
3364 raw_spin_unlock(&rq->lock);
3365
3366 if (!remaining)
3367 break;
3368 }
3369 rcu_read_unlock();
3370
3371 return remaining;
3372}
3373
58088ad0
PT
3374/*
3375 * Responsible for refilling a task_group's bandwidth and unthrottling its
3376 * cfs_rqs as appropriate. If there has been no activity within the last
3377 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3378 * used to track this state.
3379 */
3380static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3381{
671fd9da
PT
3382 u64 runtime, runtime_expires;
3383 int idle = 1, throttled;
58088ad0
PT
3384
3385 raw_spin_lock(&cfs_b->lock);
3386 /* no need to continue the timer with no bandwidth constraint */
3387 if (cfs_b->quota == RUNTIME_INF)
3388 goto out_unlock;
3389
671fd9da
PT
3390 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3391 /* idle depends on !throttled (for the case of a large deficit) */
3392 idle = cfs_b->idle && !throttled;
e8da1b18 3393 cfs_b->nr_periods += overrun;
671fd9da 3394
a9cf55b2
PT
3395 /* if we're going inactive then everything else can be deferred */
3396 if (idle)
3397 goto out_unlock;
3398
927b54fc
BS
3399 /*
3400 * if we have relooped after returning idle once, we need to update our
3401 * status as actually running, so that other cpus doing
3402 * __start_cfs_bandwidth will stop trying to cancel us.
3403 */
3404 cfs_b->timer_active = 1;
3405
a9cf55b2
PT
3406 __refill_cfs_bandwidth_runtime(cfs_b);
3407
671fd9da
PT
3408 if (!throttled) {
3409 /* mark as potentially idle for the upcoming period */
3410 cfs_b->idle = 1;
3411 goto out_unlock;
3412 }
3413
e8da1b18
NR
3414 /* account preceding periods in which throttling occurred */
3415 cfs_b->nr_throttled += overrun;
3416
671fd9da
PT
3417 /*
3418 * There are throttled entities so we must first use the new bandwidth
3419 * to unthrottle them before making it generally available. This
3420 * ensures that all existing debts will be paid before a new cfs_rq is
3421 * allowed to run.
3422 */
3423 runtime = cfs_b->runtime;
3424 runtime_expires = cfs_b->runtime_expires;
3425 cfs_b->runtime = 0;
3426
3427 /*
3428 * This check is repeated as we are holding onto the new bandwidth
3429 * while we unthrottle. This can potentially race with an unthrottled
3430 * group trying to acquire new bandwidth from the global pool.
3431 */
3432 while (throttled && runtime > 0) {
3433 raw_spin_unlock(&cfs_b->lock);
3434 /* we can't nest cfs_b->lock while distributing bandwidth */
3435 runtime = distribute_cfs_runtime(cfs_b, runtime,
3436 runtime_expires);
3437 raw_spin_lock(&cfs_b->lock);
3438
3439 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3440 }
58088ad0 3441
671fd9da
PT
3442 /* return (any) remaining runtime */
3443 cfs_b->runtime = runtime;
3444 /*
3445 * While we are ensured activity in the period following an
3446 * unthrottle, this also covers the case in which the new bandwidth is
3447 * insufficient to cover the existing bandwidth deficit. (Forcing the
3448 * timer to remain active while there are any throttled entities.)
3449 */
3450 cfs_b->idle = 0;
58088ad0
PT
3451out_unlock:
3452 if (idle)
3453 cfs_b->timer_active = 0;
3454 raw_spin_unlock(&cfs_b->lock);
3455
3456 return idle;
3457}
d3d9dc33 3458
d8b4986d
PT
3459/* a cfs_rq won't donate quota below this amount */
3460static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3461/* minimum remaining period time to redistribute slack quota */
3462static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3463/* how long we wait to gather additional slack before distributing */
3464static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3465
db06e78c
BS
3466/*
3467 * Are we near the end of the current quota period?
3468 *
3469 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3470 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3471 * migrate_hrtimers, base is never cleared, so we are fine.
3472 */
d8b4986d
PT
3473static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3474{
3475 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3476 u64 remaining;
3477
3478 /* if the call-back is running a quota refresh is already occurring */
3479 if (hrtimer_callback_running(refresh_timer))
3480 return 1;
3481
3482 /* is a quota refresh about to occur? */
3483 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3484 if (remaining < min_expire)
3485 return 1;
3486
3487 return 0;
3488}
3489
3490static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3491{
3492 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3493
3494 /* if there's a quota refresh soon don't bother with slack */
3495 if (runtime_refresh_within(cfs_b, min_left))
3496 return;
3497
3498 start_bandwidth_timer(&cfs_b->slack_timer,
3499 ns_to_ktime(cfs_bandwidth_slack_period));
3500}
3501
3502/* we know any runtime found here is valid as update_curr() precedes return */
3503static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3504{
3505 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3506 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3507
3508 if (slack_runtime <= 0)
3509 return;
3510
3511 raw_spin_lock(&cfs_b->lock);
3512 if (cfs_b->quota != RUNTIME_INF &&
3513 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3514 cfs_b->runtime += slack_runtime;
3515
3516 /* we are under rq->lock, defer unthrottling using a timer */
3517 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3518 !list_empty(&cfs_b->throttled_cfs_rq))
3519 start_cfs_slack_bandwidth(cfs_b);
3520 }
3521 raw_spin_unlock(&cfs_b->lock);
3522
3523 /* even if it's not valid for return we don't want to try again */
3524 cfs_rq->runtime_remaining -= slack_runtime;
3525}
3526
3527static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3528{
56f570e5
PT
3529 if (!cfs_bandwidth_used())
3530 return;
3531
fccfdc6f 3532 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3533 return;
3534
3535 __return_cfs_rq_runtime(cfs_rq);
3536}
3537
3538/*
3539 * This is done with a timer (instead of inline with bandwidth return) since
3540 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3541 */
3542static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3543{
3544 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3545 u64 expires;
3546
3547 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3548 raw_spin_lock(&cfs_b->lock);
3549 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3550 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3551 return;
db06e78c 3552 }
d8b4986d 3553
d8b4986d
PT
3554 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3555 runtime = cfs_b->runtime;
3556 cfs_b->runtime = 0;
3557 }
3558 expires = cfs_b->runtime_expires;
3559 raw_spin_unlock(&cfs_b->lock);
3560
3561 if (!runtime)
3562 return;
3563
3564 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3565
3566 raw_spin_lock(&cfs_b->lock);
3567 if (expires == cfs_b->runtime_expires)
3568 cfs_b->runtime = runtime;
3569 raw_spin_unlock(&cfs_b->lock);
3570}
3571
d3d9dc33
PT
3572/*
3573 * When a group wakes up we want to make sure that its quota is not already
3574 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3575 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3576 */
3577static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3578{
56f570e5
PT
3579 if (!cfs_bandwidth_used())
3580 return;
3581
d3d9dc33
PT
3582 /* an active group must be handled by the update_curr()->put() path */
3583 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3584 return;
3585
3586 /* ensure the group is not already throttled */
3587 if (cfs_rq_throttled(cfs_rq))
3588 return;
3589
3590 /* update runtime allocation */
3591 account_cfs_rq_runtime(cfs_rq, 0);
3592 if (cfs_rq->runtime_remaining <= 0)
3593 throttle_cfs_rq(cfs_rq);
3594}
3595
3596/* conditionally throttle active cfs_rq's from put_prev_entity() */
3597static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3598{
56f570e5
PT
3599 if (!cfs_bandwidth_used())
3600 return;
3601
d3d9dc33
PT
3602 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3603 return;
3604
3605 /*
3606 * it's possible for a throttled entity to be forced into a running
3607 * state (e.g. set_curr_task), in this case we're finished.
3608 */
3609 if (cfs_rq_throttled(cfs_rq))
3610 return;
3611
3612 throttle_cfs_rq(cfs_rq);
3613}
029632fb 3614
029632fb
PZ
3615static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3616{
3617 struct cfs_bandwidth *cfs_b =
3618 container_of(timer, struct cfs_bandwidth, slack_timer);
3619 do_sched_cfs_slack_timer(cfs_b);
3620
3621 return HRTIMER_NORESTART;
3622}
3623
3624static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3625{
3626 struct cfs_bandwidth *cfs_b =
3627 container_of(timer, struct cfs_bandwidth, period_timer);
3628 ktime_t now;
3629 int overrun;
3630 int idle = 0;
3631
3632 for (;;) {
3633 now = hrtimer_cb_get_time(timer);
3634 overrun = hrtimer_forward(timer, now, cfs_b->period);
3635
3636 if (!overrun)
3637 break;
3638
3639 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3640 }
3641
3642 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3643}
3644
3645void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3646{
3647 raw_spin_lock_init(&cfs_b->lock);
3648 cfs_b->runtime = 0;
3649 cfs_b->quota = RUNTIME_INF;
3650 cfs_b->period = ns_to_ktime(default_cfs_period());
3651
3652 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3653 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3654 cfs_b->period_timer.function = sched_cfs_period_timer;
3655 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3656 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3657}
3658
3659static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3660{
3661 cfs_rq->runtime_enabled = 0;
3662 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3663}
3664
3665/* requires cfs_b->lock, may release to reprogram timer */
3666void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3667{
3668 /*
3669 * The timer may be active because we're trying to set a new bandwidth
3670 * period or because we're racing with the tear-down path
3671 * (timer_active==0 becomes visible before the hrtimer call-back
3672 * terminates). In either case we ensure that it's re-programmed
3673 */
927b54fc
BS
3674 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3675 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3676 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3677 raw_spin_unlock(&cfs_b->lock);
927b54fc 3678 cpu_relax();
029632fb
PZ
3679 raw_spin_lock(&cfs_b->lock);
3680 /* if someone else restarted the timer then we're done */
3681 if (cfs_b->timer_active)
3682 return;
3683 }
3684
3685 cfs_b->timer_active = 1;
3686 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3687}
3688
3689static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3690{
3691 hrtimer_cancel(&cfs_b->period_timer);
3692 hrtimer_cancel(&cfs_b->slack_timer);
3693}
3694
38dc3348 3695static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3696{
3697 struct cfs_rq *cfs_rq;
3698
3699 for_each_leaf_cfs_rq(rq, cfs_rq) {
3700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3701
3702 if (!cfs_rq->runtime_enabled)
3703 continue;
3704
3705 /*
3706 * clock_task is not advancing so we just need to make sure
3707 * there's some valid quota amount
3708 */
3709 cfs_rq->runtime_remaining = cfs_b->quota;
3710 if (cfs_rq_throttled(cfs_rq))
3711 unthrottle_cfs_rq(cfs_rq);
3712 }
3713}
3714
3715#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3716static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3717{
78becc27 3718 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3719}
3720
9dbdb155 3721static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3722static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3723static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3724static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3725
3726static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3727{
3728 return 0;
3729}
64660c86
PT
3730
3731static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3732{
3733 return 0;
3734}
3735
3736static inline int throttled_lb_pair(struct task_group *tg,
3737 int src_cpu, int dest_cpu)
3738{
3739 return 0;
3740}
029632fb
PZ
3741
3742void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3743
3744#ifdef CONFIG_FAIR_GROUP_SCHED
3745static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3746#endif
3747
029632fb
PZ
3748static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3749{
3750 return NULL;
3751}
3752static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3753static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3754
3755#endif /* CONFIG_CFS_BANDWIDTH */
3756
bf0f6f24
IM
3757/**************************************************
3758 * CFS operations on tasks:
3759 */
3760
8f4d37ec
PZ
3761#ifdef CONFIG_SCHED_HRTICK
3762static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3763{
8f4d37ec
PZ
3764 struct sched_entity *se = &p->se;
3765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3766
3767 WARN_ON(task_rq(p) != rq);
3768
b39e66ea 3769 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3770 u64 slice = sched_slice(cfs_rq, se);
3771 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3772 s64 delta = slice - ran;
3773
3774 if (delta < 0) {
3775 if (rq->curr == p)
3776 resched_task(p);
3777 return;
3778 }
3779
3780 /*
3781 * Don't schedule slices shorter than 10000ns, that just
3782 * doesn't make sense. Rely on vruntime for fairness.
3783 */
31656519 3784 if (rq->curr != p)
157124c1 3785 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3786
31656519 3787 hrtick_start(rq, delta);
8f4d37ec
PZ
3788 }
3789}
a4c2f00f
PZ
3790
3791/*
3792 * called from enqueue/dequeue and updates the hrtick when the
3793 * current task is from our class and nr_running is low enough
3794 * to matter.
3795 */
3796static void hrtick_update(struct rq *rq)
3797{
3798 struct task_struct *curr = rq->curr;
3799
b39e66ea 3800 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3801 return;
3802
3803 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3804 hrtick_start_fair(rq, curr);
3805}
55e12e5e 3806#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3807static inline void
3808hrtick_start_fair(struct rq *rq, struct task_struct *p)
3809{
3810}
a4c2f00f
PZ
3811
3812static inline void hrtick_update(struct rq *rq)
3813{
3814}
8f4d37ec
PZ
3815#endif
3816
bf0f6f24
IM
3817/*
3818 * The enqueue_task method is called before nr_running is
3819 * increased. Here we update the fair scheduling stats and
3820 * then put the task into the rbtree:
3821 */
ea87bb78 3822static void
371fd7e7 3823enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3824{
3825 struct cfs_rq *cfs_rq;
62fb1851 3826 struct sched_entity *se = &p->se;
bf0f6f24
IM
3827
3828 for_each_sched_entity(se) {
62fb1851 3829 if (se->on_rq)
bf0f6f24
IM
3830 break;
3831 cfs_rq = cfs_rq_of(se);
88ec22d3 3832 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3833
3834 /*
3835 * end evaluation on encountering a throttled cfs_rq
3836 *
3837 * note: in the case of encountering a throttled cfs_rq we will
3838 * post the final h_nr_running increment below.
3839 */
3840 if (cfs_rq_throttled(cfs_rq))
3841 break;
953bfcd1 3842 cfs_rq->h_nr_running++;
85dac906 3843
88ec22d3 3844 flags = ENQUEUE_WAKEUP;
bf0f6f24 3845 }
8f4d37ec 3846
2069dd75 3847 for_each_sched_entity(se) {
0f317143 3848 cfs_rq = cfs_rq_of(se);
953bfcd1 3849 cfs_rq->h_nr_running++;
2069dd75 3850
85dac906
PT
3851 if (cfs_rq_throttled(cfs_rq))
3852 break;
3853
17bc14b7 3854 update_cfs_shares(cfs_rq);
9ee474f5 3855 update_entity_load_avg(se, 1);
2069dd75
PZ
3856 }
3857
18bf2805
BS
3858 if (!se) {
3859 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3860 inc_nr_running(rq);
18bf2805 3861 }
a4c2f00f 3862 hrtick_update(rq);
bf0f6f24
IM
3863}
3864
2f36825b
VP
3865static void set_next_buddy(struct sched_entity *se);
3866
bf0f6f24
IM
3867/*
3868 * The dequeue_task method is called before nr_running is
3869 * decreased. We remove the task from the rbtree and
3870 * update the fair scheduling stats:
3871 */
371fd7e7 3872static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3873{
3874 struct cfs_rq *cfs_rq;
62fb1851 3875 struct sched_entity *se = &p->se;
2f36825b 3876 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3877
3878 for_each_sched_entity(se) {
3879 cfs_rq = cfs_rq_of(se);
371fd7e7 3880 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3881
3882 /*
3883 * end evaluation on encountering a throttled cfs_rq
3884 *
3885 * note: in the case of encountering a throttled cfs_rq we will
3886 * post the final h_nr_running decrement below.
3887 */
3888 if (cfs_rq_throttled(cfs_rq))
3889 break;
953bfcd1 3890 cfs_rq->h_nr_running--;
2069dd75 3891
bf0f6f24 3892 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3893 if (cfs_rq->load.weight) {
3894 /*
3895 * Bias pick_next to pick a task from this cfs_rq, as
3896 * p is sleeping when it is within its sched_slice.
3897 */
3898 if (task_sleep && parent_entity(se))
3899 set_next_buddy(parent_entity(se));
9598c82d
PT
3900
3901 /* avoid re-evaluating load for this entity */
3902 se = parent_entity(se);
bf0f6f24 3903 break;
2f36825b 3904 }
371fd7e7 3905 flags |= DEQUEUE_SLEEP;
bf0f6f24 3906 }
8f4d37ec 3907
2069dd75 3908 for_each_sched_entity(se) {
0f317143 3909 cfs_rq = cfs_rq_of(se);
953bfcd1 3910 cfs_rq->h_nr_running--;
2069dd75 3911
85dac906
PT
3912 if (cfs_rq_throttled(cfs_rq))
3913 break;
3914
17bc14b7 3915 update_cfs_shares(cfs_rq);
9ee474f5 3916 update_entity_load_avg(se, 1);
2069dd75
PZ
3917 }
3918
18bf2805 3919 if (!se) {
85dac906 3920 dec_nr_running(rq);
18bf2805
BS
3921 update_rq_runnable_avg(rq, 1);
3922 }
a4c2f00f 3923 hrtick_update(rq);
bf0f6f24
IM
3924}
3925
e7693a36 3926#ifdef CONFIG_SMP
029632fb
PZ
3927/* Used instead of source_load when we know the type == 0 */
3928static unsigned long weighted_cpuload(const int cpu)
3929{
b92486cb 3930 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3931}
3932
3933/*
3934 * Return a low guess at the load of a migration-source cpu weighted
3935 * according to the scheduling class and "nice" value.
3936 *
3937 * We want to under-estimate the load of migration sources, to
3938 * balance conservatively.
3939 */
3940static unsigned long source_load(int cpu, int type)
3941{
3942 struct rq *rq = cpu_rq(cpu);
3943 unsigned long total = weighted_cpuload(cpu);
3944
3945 if (type == 0 || !sched_feat(LB_BIAS))
3946 return total;
3947
3948 return min(rq->cpu_load[type-1], total);
3949}
3950
3951/*
3952 * Return a high guess at the load of a migration-target cpu weighted
3953 * according to the scheduling class and "nice" value.
3954 */
3955static unsigned long target_load(int cpu, int type)
3956{
3957 struct rq *rq = cpu_rq(cpu);
3958 unsigned long total = weighted_cpuload(cpu);
3959
3960 if (type == 0 || !sched_feat(LB_BIAS))
3961 return total;
3962
3963 return max(rq->cpu_load[type-1], total);
3964}
3965
3966static unsigned long power_of(int cpu)
3967{
3968 return cpu_rq(cpu)->cpu_power;
3969}
3970
3971static unsigned long cpu_avg_load_per_task(int cpu)
3972{
3973 struct rq *rq = cpu_rq(cpu);
3974 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3975 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3976
3977 if (nr_running)
b92486cb 3978 return load_avg / nr_running;
029632fb
PZ
3979
3980 return 0;
3981}
3982
62470419
MW
3983static void record_wakee(struct task_struct *p)
3984{
3985 /*
3986 * Rough decay (wiping) for cost saving, don't worry
3987 * about the boundary, really active task won't care
3988 * about the loss.
3989 */
3990 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3991 current->wakee_flips = 0;
3992 current->wakee_flip_decay_ts = jiffies;
3993 }
3994
3995 if (current->last_wakee != p) {
3996 current->last_wakee = p;
3997 current->wakee_flips++;
3998 }
3999}
098fb9db 4000
74f8e4b2 4001static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4002{
4003 struct sched_entity *se = &p->se;
4004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4005 u64 min_vruntime;
4006
4007#ifndef CONFIG_64BIT
4008 u64 min_vruntime_copy;
88ec22d3 4009
3fe1698b
PZ
4010 do {
4011 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4012 smp_rmb();
4013 min_vruntime = cfs_rq->min_vruntime;
4014 } while (min_vruntime != min_vruntime_copy);
4015#else
4016 min_vruntime = cfs_rq->min_vruntime;
4017#endif
88ec22d3 4018
3fe1698b 4019 se->vruntime -= min_vruntime;
62470419 4020 record_wakee(p);
88ec22d3
PZ
4021}
4022
bb3469ac 4023#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4024/*
4025 * effective_load() calculates the load change as seen from the root_task_group
4026 *
4027 * Adding load to a group doesn't make a group heavier, but can cause movement
4028 * of group shares between cpus. Assuming the shares were perfectly aligned one
4029 * can calculate the shift in shares.
cf5f0acf
PZ
4030 *
4031 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4032 * on this @cpu and results in a total addition (subtraction) of @wg to the
4033 * total group weight.
4034 *
4035 * Given a runqueue weight distribution (rw_i) we can compute a shares
4036 * distribution (s_i) using:
4037 *
4038 * s_i = rw_i / \Sum rw_j (1)
4039 *
4040 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4041 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4042 * shares distribution (s_i):
4043 *
4044 * rw_i = { 2, 4, 1, 0 }
4045 * s_i = { 2/7, 4/7, 1/7, 0 }
4046 *
4047 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4048 * task used to run on and the CPU the waker is running on), we need to
4049 * compute the effect of waking a task on either CPU and, in case of a sync
4050 * wakeup, compute the effect of the current task going to sleep.
4051 *
4052 * So for a change of @wl to the local @cpu with an overall group weight change
4053 * of @wl we can compute the new shares distribution (s'_i) using:
4054 *
4055 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4056 *
4057 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4058 * differences in waking a task to CPU 0. The additional task changes the
4059 * weight and shares distributions like:
4060 *
4061 * rw'_i = { 3, 4, 1, 0 }
4062 * s'_i = { 3/8, 4/8, 1/8, 0 }
4063 *
4064 * We can then compute the difference in effective weight by using:
4065 *
4066 * dw_i = S * (s'_i - s_i) (3)
4067 *
4068 * Where 'S' is the group weight as seen by its parent.
4069 *
4070 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4071 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4072 * 4/7) times the weight of the group.
f5bfb7d9 4073 */
2069dd75 4074static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4075{
4be9daaa 4076 struct sched_entity *se = tg->se[cpu];
f1d239f7 4077
9722c2da 4078 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4079 return wl;
4080
4be9daaa 4081 for_each_sched_entity(se) {
cf5f0acf 4082 long w, W;
4be9daaa 4083
977dda7c 4084 tg = se->my_q->tg;
bb3469ac 4085
cf5f0acf
PZ
4086 /*
4087 * W = @wg + \Sum rw_j
4088 */
4089 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4090
cf5f0acf
PZ
4091 /*
4092 * w = rw_i + @wl
4093 */
4094 w = se->my_q->load.weight + wl;
940959e9 4095
cf5f0acf
PZ
4096 /*
4097 * wl = S * s'_i; see (2)
4098 */
4099 if (W > 0 && w < W)
4100 wl = (w * tg->shares) / W;
977dda7c
PT
4101 else
4102 wl = tg->shares;
940959e9 4103
cf5f0acf
PZ
4104 /*
4105 * Per the above, wl is the new se->load.weight value; since
4106 * those are clipped to [MIN_SHARES, ...) do so now. See
4107 * calc_cfs_shares().
4108 */
977dda7c
PT
4109 if (wl < MIN_SHARES)
4110 wl = MIN_SHARES;
cf5f0acf
PZ
4111
4112 /*
4113 * wl = dw_i = S * (s'_i - s_i); see (3)
4114 */
977dda7c 4115 wl -= se->load.weight;
cf5f0acf
PZ
4116
4117 /*
4118 * Recursively apply this logic to all parent groups to compute
4119 * the final effective load change on the root group. Since
4120 * only the @tg group gets extra weight, all parent groups can
4121 * only redistribute existing shares. @wl is the shift in shares
4122 * resulting from this level per the above.
4123 */
4be9daaa 4124 wg = 0;
4be9daaa 4125 }
bb3469ac 4126
4be9daaa 4127 return wl;
bb3469ac
PZ
4128}
4129#else
4be9daaa 4130
58d081b5 4131static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4132{
83378269 4133 return wl;
bb3469ac 4134}
4be9daaa 4135
bb3469ac
PZ
4136#endif
4137
62470419
MW
4138static int wake_wide(struct task_struct *p)
4139{
7d9ffa89 4140 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4141
4142 /*
4143 * Yeah, it's the switching-frequency, could means many wakee or
4144 * rapidly switch, use factor here will just help to automatically
4145 * adjust the loose-degree, so bigger node will lead to more pull.
4146 */
4147 if (p->wakee_flips > factor) {
4148 /*
4149 * wakee is somewhat hot, it needs certain amount of cpu
4150 * resource, so if waker is far more hot, prefer to leave
4151 * it alone.
4152 */
4153 if (current->wakee_flips > (factor * p->wakee_flips))
4154 return 1;
4155 }
4156
4157 return 0;
4158}
4159
c88d5910 4160static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4161{
e37b6a7b 4162 s64 this_load, load;
c88d5910 4163 int idx, this_cpu, prev_cpu;
098fb9db 4164 unsigned long tl_per_task;
c88d5910 4165 struct task_group *tg;
83378269 4166 unsigned long weight;
b3137bc8 4167 int balanced;
098fb9db 4168
62470419
MW
4169 /*
4170 * If we wake multiple tasks be careful to not bounce
4171 * ourselves around too much.
4172 */
4173 if (wake_wide(p))
4174 return 0;
4175
c88d5910
PZ
4176 idx = sd->wake_idx;
4177 this_cpu = smp_processor_id();
4178 prev_cpu = task_cpu(p);
4179 load = source_load(prev_cpu, idx);
4180 this_load = target_load(this_cpu, idx);
098fb9db 4181
b3137bc8
MG
4182 /*
4183 * If sync wakeup then subtract the (maximum possible)
4184 * effect of the currently running task from the load
4185 * of the current CPU:
4186 */
83378269
PZ
4187 if (sync) {
4188 tg = task_group(current);
4189 weight = current->se.load.weight;
4190
c88d5910 4191 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4192 load += effective_load(tg, prev_cpu, 0, -weight);
4193 }
b3137bc8 4194
83378269
PZ
4195 tg = task_group(p);
4196 weight = p->se.load.weight;
b3137bc8 4197
71a29aa7
PZ
4198 /*
4199 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4200 * due to the sync cause above having dropped this_load to 0, we'll
4201 * always have an imbalance, but there's really nothing you can do
4202 * about that, so that's good too.
71a29aa7
PZ
4203 *
4204 * Otherwise check if either cpus are near enough in load to allow this
4205 * task to be woken on this_cpu.
4206 */
e37b6a7b
PT
4207 if (this_load > 0) {
4208 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4209
4210 this_eff_load = 100;
4211 this_eff_load *= power_of(prev_cpu);
4212 this_eff_load *= this_load +
4213 effective_load(tg, this_cpu, weight, weight);
4214
4215 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4216 prev_eff_load *= power_of(this_cpu);
4217 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4218
4219 balanced = this_eff_load <= prev_eff_load;
4220 } else
4221 balanced = true;
b3137bc8 4222
098fb9db 4223 /*
4ae7d5ce
IM
4224 * If the currently running task will sleep within
4225 * a reasonable amount of time then attract this newly
4226 * woken task:
098fb9db 4227 */
2fb7635c
PZ
4228 if (sync && balanced)
4229 return 1;
098fb9db 4230
41acab88 4231 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4232 tl_per_task = cpu_avg_load_per_task(this_cpu);
4233
c88d5910
PZ
4234 if (balanced ||
4235 (this_load <= load &&
4236 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4237 /*
4238 * This domain has SD_WAKE_AFFINE and
4239 * p is cache cold in this domain, and
4240 * there is no bad imbalance.
4241 */
c88d5910 4242 schedstat_inc(sd, ttwu_move_affine);
41acab88 4243 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4244
4245 return 1;
4246 }
4247 return 0;
4248}
4249
aaee1203
PZ
4250/*
4251 * find_idlest_group finds and returns the least busy CPU group within the
4252 * domain.
4253 */
4254static struct sched_group *
78e7ed53 4255find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4256 int this_cpu, int sd_flag)
e7693a36 4257{
b3bd3de6 4258 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4259 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4260 int load_idx = sd->forkexec_idx;
aaee1203 4261 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4262
c44f2a02
VG
4263 if (sd_flag & SD_BALANCE_WAKE)
4264 load_idx = sd->wake_idx;
4265
aaee1203
PZ
4266 do {
4267 unsigned long load, avg_load;
4268 int local_group;
4269 int i;
e7693a36 4270
aaee1203
PZ
4271 /* Skip over this group if it has no CPUs allowed */
4272 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4273 tsk_cpus_allowed(p)))
aaee1203
PZ
4274 continue;
4275
4276 local_group = cpumask_test_cpu(this_cpu,
4277 sched_group_cpus(group));
4278
4279 /* Tally up the load of all CPUs in the group */
4280 avg_load = 0;
4281
4282 for_each_cpu(i, sched_group_cpus(group)) {
4283 /* Bias balancing toward cpus of our domain */
4284 if (local_group)
4285 load = source_load(i, load_idx);
4286 else
4287 load = target_load(i, load_idx);
4288
4289 avg_load += load;
4290 }
4291
4292 /* Adjust by relative CPU power of the group */
9c3f75cb 4293 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4294
4295 if (local_group) {
4296 this_load = avg_load;
aaee1203
PZ
4297 } else if (avg_load < min_load) {
4298 min_load = avg_load;
4299 idlest = group;
4300 }
4301 } while (group = group->next, group != sd->groups);
4302
4303 if (!idlest || 100*this_load < imbalance*min_load)
4304 return NULL;
4305 return idlest;
4306}
4307
4308/*
4309 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4310 */
4311static int
4312find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4313{
4314 unsigned long load, min_load = ULONG_MAX;
4315 int idlest = -1;
4316 int i;
4317
4318 /* Traverse only the allowed CPUs */
fa17b507 4319 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4320 load = weighted_cpuload(i);
4321
4322 if (load < min_load || (load == min_load && i == this_cpu)) {
4323 min_load = load;
4324 idlest = i;
e7693a36
GH
4325 }
4326 }
4327
aaee1203
PZ
4328 return idlest;
4329}
e7693a36 4330
a50bde51
PZ
4331/*
4332 * Try and locate an idle CPU in the sched_domain.
4333 */
99bd5e2f 4334static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4335{
99bd5e2f 4336 struct sched_domain *sd;
37407ea7 4337 struct sched_group *sg;
e0a79f52 4338 int i = task_cpu(p);
a50bde51 4339
e0a79f52
MG
4340 if (idle_cpu(target))
4341 return target;
99bd5e2f
SS
4342
4343 /*
e0a79f52 4344 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4345 */
e0a79f52
MG
4346 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4347 return i;
a50bde51
PZ
4348
4349 /*
37407ea7 4350 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4351 */
518cd623 4352 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4353 for_each_lower_domain(sd) {
37407ea7
LT
4354 sg = sd->groups;
4355 do {
4356 if (!cpumask_intersects(sched_group_cpus(sg),
4357 tsk_cpus_allowed(p)))
4358 goto next;
4359
4360 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4361 if (i == target || !idle_cpu(i))
37407ea7
LT
4362 goto next;
4363 }
970e1789 4364
37407ea7
LT
4365 target = cpumask_first_and(sched_group_cpus(sg),
4366 tsk_cpus_allowed(p));
4367 goto done;
4368next:
4369 sg = sg->next;
4370 } while (sg != sd->groups);
4371 }
4372done:
a50bde51
PZ
4373 return target;
4374}
4375
aaee1203
PZ
4376/*
4377 * sched_balance_self: balance the current task (running on cpu) in domains
4378 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4379 * SD_BALANCE_EXEC.
4380 *
4381 * Balance, ie. select the least loaded group.
4382 *
4383 * Returns the target CPU number, or the same CPU if no balancing is needed.
4384 *
4385 * preempt must be disabled.
4386 */
0017d735 4387static int
ac66f547 4388select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4389{
29cd8bae 4390 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4391 int cpu = smp_processor_id();
c88d5910 4392 int new_cpu = cpu;
99bd5e2f 4393 int want_affine = 0;
5158f4e4 4394 int sync = wake_flags & WF_SYNC;
c88d5910 4395
29baa747 4396 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4397 return prev_cpu;
4398
0763a660 4399 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4400 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4401 want_affine = 1;
4402 new_cpu = prev_cpu;
4403 }
aaee1203 4404
dce840a0 4405 rcu_read_lock();
aaee1203 4406 for_each_domain(cpu, tmp) {
e4f42888
PZ
4407 if (!(tmp->flags & SD_LOAD_BALANCE))
4408 continue;
4409
fe3bcfe1 4410 /*
99bd5e2f
SS
4411 * If both cpu and prev_cpu are part of this domain,
4412 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4413 */
99bd5e2f
SS
4414 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4415 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4416 affine_sd = tmp;
29cd8bae 4417 break;
f03542a7 4418 }
29cd8bae 4419
f03542a7 4420 if (tmp->flags & sd_flag)
29cd8bae
PZ
4421 sd = tmp;
4422 }
4423
8b911acd 4424 if (affine_sd) {
f03542a7 4425 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4426 prev_cpu = cpu;
4427
4428 new_cpu = select_idle_sibling(p, prev_cpu);
4429 goto unlock;
8b911acd 4430 }
e7693a36 4431
aaee1203
PZ
4432 while (sd) {
4433 struct sched_group *group;
c88d5910 4434 int weight;
098fb9db 4435
0763a660 4436 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4437 sd = sd->child;
4438 continue;
4439 }
098fb9db 4440
c44f2a02 4441 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4442 if (!group) {
4443 sd = sd->child;
4444 continue;
4445 }
4ae7d5ce 4446
d7c33c49 4447 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4448 if (new_cpu == -1 || new_cpu == cpu) {
4449 /* Now try balancing at a lower domain level of cpu */
4450 sd = sd->child;
4451 continue;
e7693a36 4452 }
aaee1203
PZ
4453
4454 /* Now try balancing at a lower domain level of new_cpu */
4455 cpu = new_cpu;
669c55e9 4456 weight = sd->span_weight;
aaee1203
PZ
4457 sd = NULL;
4458 for_each_domain(cpu, tmp) {
669c55e9 4459 if (weight <= tmp->span_weight)
aaee1203 4460 break;
0763a660 4461 if (tmp->flags & sd_flag)
aaee1203
PZ
4462 sd = tmp;
4463 }
4464 /* while loop will break here if sd == NULL */
e7693a36 4465 }
dce840a0
PZ
4466unlock:
4467 rcu_read_unlock();
e7693a36 4468
c88d5910 4469 return new_cpu;
e7693a36 4470}
0a74bef8
PT
4471
4472/*
4473 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4474 * cfs_rq_of(p) references at time of call are still valid and identify the
4475 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4476 * other assumptions, including the state of rq->lock, should be made.
4477 */
4478static void
4479migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4480{
aff3e498
PT
4481 struct sched_entity *se = &p->se;
4482 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4483
4484 /*
4485 * Load tracking: accumulate removed load so that it can be processed
4486 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4487 * to blocked load iff they have a positive decay-count. It can never
4488 * be negative here since on-rq tasks have decay-count == 0.
4489 */
4490 if (se->avg.decay_count) {
4491 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4492 atomic_long_add(se->avg.load_avg_contrib,
4493 &cfs_rq->removed_load);
aff3e498 4494 }
0a74bef8 4495}
e7693a36
GH
4496#endif /* CONFIG_SMP */
4497
e52fb7c0
PZ
4498static unsigned long
4499wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4500{
4501 unsigned long gran = sysctl_sched_wakeup_granularity;
4502
4503 /*
e52fb7c0
PZ
4504 * Since its curr running now, convert the gran from real-time
4505 * to virtual-time in his units.
13814d42
MG
4506 *
4507 * By using 'se' instead of 'curr' we penalize light tasks, so
4508 * they get preempted easier. That is, if 'se' < 'curr' then
4509 * the resulting gran will be larger, therefore penalizing the
4510 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4511 * be smaller, again penalizing the lighter task.
4512 *
4513 * This is especially important for buddies when the leftmost
4514 * task is higher priority than the buddy.
0bbd3336 4515 */
f4ad9bd2 4516 return calc_delta_fair(gran, se);
0bbd3336
PZ
4517}
4518
464b7527
PZ
4519/*
4520 * Should 'se' preempt 'curr'.
4521 *
4522 * |s1
4523 * |s2
4524 * |s3
4525 * g
4526 * |<--->|c
4527 *
4528 * w(c, s1) = -1
4529 * w(c, s2) = 0
4530 * w(c, s3) = 1
4531 *
4532 */
4533static int
4534wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4535{
4536 s64 gran, vdiff = curr->vruntime - se->vruntime;
4537
4538 if (vdiff <= 0)
4539 return -1;
4540
e52fb7c0 4541 gran = wakeup_gran(curr, se);
464b7527
PZ
4542 if (vdiff > gran)
4543 return 1;
4544
4545 return 0;
4546}
4547
02479099
PZ
4548static void set_last_buddy(struct sched_entity *se)
4549{
69c80f3e
VP
4550 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4551 return;
4552
4553 for_each_sched_entity(se)
4554 cfs_rq_of(se)->last = se;
02479099
PZ
4555}
4556
4557static void set_next_buddy(struct sched_entity *se)
4558{
69c80f3e
VP
4559 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4560 return;
4561
4562 for_each_sched_entity(se)
4563 cfs_rq_of(se)->next = se;
02479099
PZ
4564}
4565
ac53db59
RR
4566static void set_skip_buddy(struct sched_entity *se)
4567{
69c80f3e
VP
4568 for_each_sched_entity(se)
4569 cfs_rq_of(se)->skip = se;
ac53db59
RR
4570}
4571
bf0f6f24
IM
4572/*
4573 * Preempt the current task with a newly woken task if needed:
4574 */
5a9b86f6 4575static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4576{
4577 struct task_struct *curr = rq->curr;
8651a86c 4578 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4579 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4580 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4581 int next_buddy_marked = 0;
bf0f6f24 4582
4ae7d5ce
IM
4583 if (unlikely(se == pse))
4584 return;
4585
5238cdd3 4586 /*
ddcdf6e7 4587 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4588 * unconditionally check_prempt_curr() after an enqueue (which may have
4589 * lead to a throttle). This both saves work and prevents false
4590 * next-buddy nomination below.
4591 */
4592 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4593 return;
4594
2f36825b 4595 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4596 set_next_buddy(pse);
2f36825b
VP
4597 next_buddy_marked = 1;
4598 }
57fdc26d 4599
aec0a514
BR
4600 /*
4601 * We can come here with TIF_NEED_RESCHED already set from new task
4602 * wake up path.
5238cdd3
PT
4603 *
4604 * Note: this also catches the edge-case of curr being in a throttled
4605 * group (e.g. via set_curr_task), since update_curr() (in the
4606 * enqueue of curr) will have resulted in resched being set. This
4607 * prevents us from potentially nominating it as a false LAST_BUDDY
4608 * below.
aec0a514
BR
4609 */
4610 if (test_tsk_need_resched(curr))
4611 return;
4612
a2f5c9ab
DH
4613 /* Idle tasks are by definition preempted by non-idle tasks. */
4614 if (unlikely(curr->policy == SCHED_IDLE) &&
4615 likely(p->policy != SCHED_IDLE))
4616 goto preempt;
4617
91c234b4 4618 /*
a2f5c9ab
DH
4619 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4620 * is driven by the tick):
91c234b4 4621 */
8ed92e51 4622 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4623 return;
bf0f6f24 4624
464b7527 4625 find_matching_se(&se, &pse);
9bbd7374 4626 update_curr(cfs_rq_of(se));
002f128b 4627 BUG_ON(!pse);
2f36825b
VP
4628 if (wakeup_preempt_entity(se, pse) == 1) {
4629 /*
4630 * Bias pick_next to pick the sched entity that is
4631 * triggering this preemption.
4632 */
4633 if (!next_buddy_marked)
4634 set_next_buddy(pse);
3a7e73a2 4635 goto preempt;
2f36825b 4636 }
464b7527 4637
3a7e73a2 4638 return;
a65ac745 4639
3a7e73a2
PZ
4640preempt:
4641 resched_task(curr);
4642 /*
4643 * Only set the backward buddy when the current task is still
4644 * on the rq. This can happen when a wakeup gets interleaved
4645 * with schedule on the ->pre_schedule() or idle_balance()
4646 * point, either of which can * drop the rq lock.
4647 *
4648 * Also, during early boot the idle thread is in the fair class,
4649 * for obvious reasons its a bad idea to schedule back to it.
4650 */
4651 if (unlikely(!se->on_rq || curr == rq->idle))
4652 return;
4653
4654 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4655 set_last_buddy(se);
bf0f6f24
IM
4656}
4657
606dba2e
PZ
4658static struct task_struct *
4659pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24 4660{
8f4d37ec 4661 struct task_struct *p;
bf0f6f24
IM
4662 struct cfs_rq *cfs_rq = &rq->cfs;
4663 struct sched_entity *se;
4664
36ace27e 4665 if (!cfs_rq->nr_running)
bf0f6f24
IM
4666 return NULL;
4667
606dba2e
PZ
4668 if (prev)
4669 prev->sched_class->put_prev_task(rq, prev);
4670
bf0f6f24 4671 do {
9948f4b2 4672 se = pick_next_entity(cfs_rq);
f4b6755f 4673 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4674 cfs_rq = group_cfs_rq(se);
4675 } while (cfs_rq);
4676
8f4d37ec 4677 p = task_of(se);
b39e66ea
MG
4678 if (hrtick_enabled(rq))
4679 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4680
4681 return p;
bf0f6f24
IM
4682}
4683
4684/*
4685 * Account for a descheduled task:
4686 */
31ee529c 4687static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4688{
4689 struct sched_entity *se = &prev->se;
4690 struct cfs_rq *cfs_rq;
4691
4692 for_each_sched_entity(se) {
4693 cfs_rq = cfs_rq_of(se);
ab6cde26 4694 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4695 }
4696}
4697
ac53db59
RR
4698/*
4699 * sched_yield() is very simple
4700 *
4701 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4702 */
4703static void yield_task_fair(struct rq *rq)
4704{
4705 struct task_struct *curr = rq->curr;
4706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4707 struct sched_entity *se = &curr->se;
4708
4709 /*
4710 * Are we the only task in the tree?
4711 */
4712 if (unlikely(rq->nr_running == 1))
4713 return;
4714
4715 clear_buddies(cfs_rq, se);
4716
4717 if (curr->policy != SCHED_BATCH) {
4718 update_rq_clock(rq);
4719 /*
4720 * Update run-time statistics of the 'current'.
4721 */
4722 update_curr(cfs_rq);
916671c0
MG
4723 /*
4724 * Tell update_rq_clock() that we've just updated,
4725 * so we don't do microscopic update in schedule()
4726 * and double the fastpath cost.
4727 */
4728 rq->skip_clock_update = 1;
ac53db59
RR
4729 }
4730
4731 set_skip_buddy(se);
4732}
4733
d95f4122
MG
4734static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4735{
4736 struct sched_entity *se = &p->se;
4737
5238cdd3
PT
4738 /* throttled hierarchies are not runnable */
4739 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4740 return false;
4741
4742 /* Tell the scheduler that we'd really like pse to run next. */
4743 set_next_buddy(se);
4744
d95f4122
MG
4745 yield_task_fair(rq);
4746
4747 return true;
4748}
4749
681f3e68 4750#ifdef CONFIG_SMP
bf0f6f24 4751/**************************************************
e9c84cb8
PZ
4752 * Fair scheduling class load-balancing methods.
4753 *
4754 * BASICS
4755 *
4756 * The purpose of load-balancing is to achieve the same basic fairness the
4757 * per-cpu scheduler provides, namely provide a proportional amount of compute
4758 * time to each task. This is expressed in the following equation:
4759 *
4760 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4761 *
4762 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4763 * W_i,0 is defined as:
4764 *
4765 * W_i,0 = \Sum_j w_i,j (2)
4766 *
4767 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4768 * is derived from the nice value as per prio_to_weight[].
4769 *
4770 * The weight average is an exponential decay average of the instantaneous
4771 * weight:
4772 *
4773 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4774 *
4775 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4776 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4777 * can also include other factors [XXX].
4778 *
4779 * To achieve this balance we define a measure of imbalance which follows
4780 * directly from (1):
4781 *
4782 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4783 *
4784 * We them move tasks around to minimize the imbalance. In the continuous
4785 * function space it is obvious this converges, in the discrete case we get
4786 * a few fun cases generally called infeasible weight scenarios.
4787 *
4788 * [XXX expand on:
4789 * - infeasible weights;
4790 * - local vs global optima in the discrete case. ]
4791 *
4792 *
4793 * SCHED DOMAINS
4794 *
4795 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4796 * for all i,j solution, we create a tree of cpus that follows the hardware
4797 * topology where each level pairs two lower groups (or better). This results
4798 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4799 * tree to only the first of the previous level and we decrease the frequency
4800 * of load-balance at each level inv. proportional to the number of cpus in
4801 * the groups.
4802 *
4803 * This yields:
4804 *
4805 * log_2 n 1 n
4806 * \Sum { --- * --- * 2^i } = O(n) (5)
4807 * i = 0 2^i 2^i
4808 * `- size of each group
4809 * | | `- number of cpus doing load-balance
4810 * | `- freq
4811 * `- sum over all levels
4812 *
4813 * Coupled with a limit on how many tasks we can migrate every balance pass,
4814 * this makes (5) the runtime complexity of the balancer.
4815 *
4816 * An important property here is that each CPU is still (indirectly) connected
4817 * to every other cpu in at most O(log n) steps:
4818 *
4819 * The adjacency matrix of the resulting graph is given by:
4820 *
4821 * log_2 n
4822 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4823 * k = 0
4824 *
4825 * And you'll find that:
4826 *
4827 * A^(log_2 n)_i,j != 0 for all i,j (7)
4828 *
4829 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4830 * The task movement gives a factor of O(m), giving a convergence complexity
4831 * of:
4832 *
4833 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4834 *
4835 *
4836 * WORK CONSERVING
4837 *
4838 * In order to avoid CPUs going idle while there's still work to do, new idle
4839 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4840 * tree itself instead of relying on other CPUs to bring it work.
4841 *
4842 * This adds some complexity to both (5) and (8) but it reduces the total idle
4843 * time.
4844 *
4845 * [XXX more?]
4846 *
4847 *
4848 * CGROUPS
4849 *
4850 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4851 *
4852 * s_k,i
4853 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4854 * S_k
4855 *
4856 * Where
4857 *
4858 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4859 *
4860 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4861 *
4862 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4863 * property.
4864 *
4865 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4866 * rewrite all of this once again.]
4867 */
bf0f6f24 4868
ed387b78
HS
4869static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4870
0ec8aa00
PZ
4871enum fbq_type { regular, remote, all };
4872
ddcdf6e7 4873#define LBF_ALL_PINNED 0x01
367456c7 4874#define LBF_NEED_BREAK 0x02
6263322c
PZ
4875#define LBF_DST_PINNED 0x04
4876#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4877
4878struct lb_env {
4879 struct sched_domain *sd;
4880
ddcdf6e7 4881 struct rq *src_rq;
85c1e7da 4882 int src_cpu;
ddcdf6e7
PZ
4883
4884 int dst_cpu;
4885 struct rq *dst_rq;
4886
88b8dac0
SV
4887 struct cpumask *dst_grpmask;
4888 int new_dst_cpu;
ddcdf6e7 4889 enum cpu_idle_type idle;
bd939f45 4890 long imbalance;
b9403130
MW
4891 /* The set of CPUs under consideration for load-balancing */
4892 struct cpumask *cpus;
4893
ddcdf6e7 4894 unsigned int flags;
367456c7
PZ
4895
4896 unsigned int loop;
4897 unsigned int loop_break;
4898 unsigned int loop_max;
0ec8aa00
PZ
4899
4900 enum fbq_type fbq_type;
ddcdf6e7
PZ
4901};
4902
1e3c88bd 4903/*
ddcdf6e7 4904 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4905 * Both runqueues must be locked.
4906 */
ddcdf6e7 4907static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4908{
ddcdf6e7
PZ
4909 deactivate_task(env->src_rq, p, 0);
4910 set_task_cpu(p, env->dst_cpu);
4911 activate_task(env->dst_rq, p, 0);
4912 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4913}
4914
029632fb
PZ
4915/*
4916 * Is this task likely cache-hot:
4917 */
4918static int
4919task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4920{
4921 s64 delta;
4922
4923 if (p->sched_class != &fair_sched_class)
4924 return 0;
4925
4926 if (unlikely(p->policy == SCHED_IDLE))
4927 return 0;
4928
4929 /*
4930 * Buddy candidates are cache hot:
4931 */
4932 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4933 (&p->se == cfs_rq_of(&p->se)->next ||
4934 &p->se == cfs_rq_of(&p->se)->last))
4935 return 1;
4936
4937 if (sysctl_sched_migration_cost == -1)
4938 return 1;
4939 if (sysctl_sched_migration_cost == 0)
4940 return 0;
4941
4942 delta = now - p->se.exec_start;
4943
4944 return delta < (s64)sysctl_sched_migration_cost;
4945}
4946
3a7053b3
MG
4947#ifdef CONFIG_NUMA_BALANCING
4948/* Returns true if the destination node has incurred more faults */
4949static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4950{
4951 int src_nid, dst_nid;
4952
ff1df896 4953 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
4954 !(env->sd->flags & SD_NUMA)) {
4955 return false;
4956 }
4957
4958 src_nid = cpu_to_node(env->src_cpu);
4959 dst_nid = cpu_to_node(env->dst_cpu);
4960
83e1d2cd 4961 if (src_nid == dst_nid)
3a7053b3
MG
4962 return false;
4963
83e1d2cd
MG
4964 /* Always encourage migration to the preferred node. */
4965 if (dst_nid == p->numa_preferred_nid)
4966 return true;
4967
887c290e
RR
4968 /* If both task and group weight improve, this move is a winner. */
4969 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4970 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4971 return true;
4972
4973 return false;
4974}
7a0f3083
MG
4975
4976
4977static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4978{
4979 int src_nid, dst_nid;
4980
4981 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4982 return false;
4983
ff1df896 4984 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
4985 return false;
4986
4987 src_nid = cpu_to_node(env->src_cpu);
4988 dst_nid = cpu_to_node(env->dst_cpu);
4989
83e1d2cd 4990 if (src_nid == dst_nid)
7a0f3083
MG
4991 return false;
4992
83e1d2cd
MG
4993 /* Migrating away from the preferred node is always bad. */
4994 if (src_nid == p->numa_preferred_nid)
4995 return true;
4996
887c290e
RR
4997 /* If either task or group weight get worse, don't do it. */
4998 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4999 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5000 return true;
5001
5002 return false;
5003}
5004
3a7053b3
MG
5005#else
5006static inline bool migrate_improves_locality(struct task_struct *p,
5007 struct lb_env *env)
5008{
5009 return false;
5010}
7a0f3083
MG
5011
5012static inline bool migrate_degrades_locality(struct task_struct *p,
5013 struct lb_env *env)
5014{
5015 return false;
5016}
3a7053b3
MG
5017#endif
5018
1e3c88bd
PZ
5019/*
5020 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5021 */
5022static
8e45cb54 5023int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5024{
5025 int tsk_cache_hot = 0;
5026 /*
5027 * We do not migrate tasks that are:
d3198084 5028 * 1) throttled_lb_pair, or
1e3c88bd 5029 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5030 * 3) running (obviously), or
5031 * 4) are cache-hot on their current CPU.
1e3c88bd 5032 */
d3198084
JK
5033 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5034 return 0;
5035
ddcdf6e7 5036 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5037 int cpu;
88b8dac0 5038
41acab88 5039 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5040
6263322c
PZ
5041 env->flags |= LBF_SOME_PINNED;
5042
88b8dac0
SV
5043 /*
5044 * Remember if this task can be migrated to any other cpu in
5045 * our sched_group. We may want to revisit it if we couldn't
5046 * meet load balance goals by pulling other tasks on src_cpu.
5047 *
5048 * Also avoid computing new_dst_cpu if we have already computed
5049 * one in current iteration.
5050 */
6263322c 5051 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5052 return 0;
5053
e02e60c1
JK
5054 /* Prevent to re-select dst_cpu via env's cpus */
5055 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5056 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5057 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5058 env->new_dst_cpu = cpu;
5059 break;
5060 }
88b8dac0 5061 }
e02e60c1 5062
1e3c88bd
PZ
5063 return 0;
5064 }
88b8dac0
SV
5065
5066 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5067 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5068
ddcdf6e7 5069 if (task_running(env->src_rq, p)) {
41acab88 5070 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5071 return 0;
5072 }
5073
5074 /*
5075 * Aggressive migration if:
3a7053b3
MG
5076 * 1) destination numa is preferred
5077 * 2) task is cache cold, or
5078 * 3) too many balance attempts have failed.
1e3c88bd 5079 */
78becc27 5080 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
5081 if (!tsk_cache_hot)
5082 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5083
5084 if (migrate_improves_locality(p, env)) {
5085#ifdef CONFIG_SCHEDSTATS
5086 if (tsk_cache_hot) {
5087 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5088 schedstat_inc(p, se.statistics.nr_forced_migrations);
5089 }
5090#endif
5091 return 1;
5092 }
5093
1e3c88bd 5094 if (!tsk_cache_hot ||
8e45cb54 5095 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5096
1e3c88bd 5097 if (tsk_cache_hot) {
8e45cb54 5098 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5099 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5100 }
4e2dcb73 5101
1e3c88bd
PZ
5102 return 1;
5103 }
5104
4e2dcb73
ZH
5105 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5106 return 0;
1e3c88bd
PZ
5107}
5108
897c395f
PZ
5109/*
5110 * move_one_task tries to move exactly one task from busiest to this_rq, as
5111 * part of active balancing operations within "domain".
5112 * Returns 1 if successful and 0 otherwise.
5113 *
5114 * Called with both runqueues locked.
5115 */
8e45cb54 5116static int move_one_task(struct lb_env *env)
897c395f
PZ
5117{
5118 struct task_struct *p, *n;
897c395f 5119
367456c7 5120 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5121 if (!can_migrate_task(p, env))
5122 continue;
897c395f 5123
367456c7
PZ
5124 move_task(p, env);
5125 /*
5126 * Right now, this is only the second place move_task()
5127 * is called, so we can safely collect move_task()
5128 * stats here rather than inside move_task().
5129 */
5130 schedstat_inc(env->sd, lb_gained[env->idle]);
5131 return 1;
897c395f 5132 }
897c395f
PZ
5133 return 0;
5134}
5135
eb95308e
PZ
5136static const unsigned int sched_nr_migrate_break = 32;
5137
5d6523eb 5138/*
bd939f45 5139 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5140 * this_rq, as part of a balancing operation within domain "sd".
5141 * Returns 1 if successful and 0 otherwise.
5142 *
5143 * Called with both runqueues locked.
5144 */
5145static int move_tasks(struct lb_env *env)
1e3c88bd 5146{
5d6523eb
PZ
5147 struct list_head *tasks = &env->src_rq->cfs_tasks;
5148 struct task_struct *p;
367456c7
PZ
5149 unsigned long load;
5150 int pulled = 0;
1e3c88bd 5151
bd939f45 5152 if (env->imbalance <= 0)
5d6523eb 5153 return 0;
1e3c88bd 5154
5d6523eb
PZ
5155 while (!list_empty(tasks)) {
5156 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5157
367456c7
PZ
5158 env->loop++;
5159 /* We've more or less seen every task there is, call it quits */
5d6523eb 5160 if (env->loop > env->loop_max)
367456c7 5161 break;
5d6523eb
PZ
5162
5163 /* take a breather every nr_migrate tasks */
367456c7 5164 if (env->loop > env->loop_break) {
eb95308e 5165 env->loop_break += sched_nr_migrate_break;
8e45cb54 5166 env->flags |= LBF_NEED_BREAK;
ee00e66f 5167 break;
a195f004 5168 }
1e3c88bd 5169
d3198084 5170 if (!can_migrate_task(p, env))
367456c7
PZ
5171 goto next;
5172
5173 load = task_h_load(p);
5d6523eb 5174
eb95308e 5175 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5176 goto next;
5177
bd939f45 5178 if ((load / 2) > env->imbalance)
367456c7 5179 goto next;
1e3c88bd 5180
ddcdf6e7 5181 move_task(p, env);
ee00e66f 5182 pulled++;
bd939f45 5183 env->imbalance -= load;
1e3c88bd
PZ
5184
5185#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5186 /*
5187 * NEWIDLE balancing is a source of latency, so preemptible
5188 * kernels will stop after the first task is pulled to minimize
5189 * the critical section.
5190 */
5d6523eb 5191 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5192 break;
1e3c88bd
PZ
5193#endif
5194
ee00e66f
PZ
5195 /*
5196 * We only want to steal up to the prescribed amount of
5197 * weighted load.
5198 */
bd939f45 5199 if (env->imbalance <= 0)
ee00e66f 5200 break;
367456c7
PZ
5201
5202 continue;
5203next:
5d6523eb 5204 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5205 }
5d6523eb 5206
1e3c88bd 5207 /*
ddcdf6e7
PZ
5208 * Right now, this is one of only two places move_task() is called,
5209 * so we can safely collect move_task() stats here rather than
5210 * inside move_task().
1e3c88bd 5211 */
8e45cb54 5212 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5213
5d6523eb 5214 return pulled;
1e3c88bd
PZ
5215}
5216
230059de 5217#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5218/*
5219 * update tg->load_weight by folding this cpu's load_avg
5220 */
48a16753 5221static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5222{
48a16753
PT
5223 struct sched_entity *se = tg->se[cpu];
5224 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5225
48a16753
PT
5226 /* throttled entities do not contribute to load */
5227 if (throttled_hierarchy(cfs_rq))
5228 return;
9e3081ca 5229
aff3e498 5230 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5231
82958366
PT
5232 if (se) {
5233 update_entity_load_avg(se, 1);
5234 /*
5235 * We pivot on our runnable average having decayed to zero for
5236 * list removal. This generally implies that all our children
5237 * have also been removed (modulo rounding error or bandwidth
5238 * control); however, such cases are rare and we can fix these
5239 * at enqueue.
5240 *
5241 * TODO: fix up out-of-order children on enqueue.
5242 */
5243 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5244 list_del_leaf_cfs_rq(cfs_rq);
5245 } else {
48a16753 5246 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5247 update_rq_runnable_avg(rq, rq->nr_running);
5248 }
9e3081ca
PZ
5249}
5250
48a16753 5251static void update_blocked_averages(int cpu)
9e3081ca 5252{
9e3081ca 5253 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5254 struct cfs_rq *cfs_rq;
5255 unsigned long flags;
9e3081ca 5256
48a16753
PT
5257 raw_spin_lock_irqsave(&rq->lock, flags);
5258 update_rq_clock(rq);
9763b67f
PZ
5259 /*
5260 * Iterates the task_group tree in a bottom up fashion, see
5261 * list_add_leaf_cfs_rq() for details.
5262 */
64660c86 5263 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5264 /*
5265 * Note: We may want to consider periodically releasing
5266 * rq->lock about these updates so that creating many task
5267 * groups does not result in continually extending hold time.
5268 */
5269 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5270 }
48a16753
PT
5271
5272 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5273}
5274
9763b67f 5275/*
68520796 5276 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5277 * This needs to be done in a top-down fashion because the load of a child
5278 * group is a fraction of its parents load.
5279 */
68520796 5280static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5281{
68520796
VD
5282 struct rq *rq = rq_of(cfs_rq);
5283 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5284 unsigned long now = jiffies;
68520796 5285 unsigned long load;
a35b6466 5286
68520796 5287 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5288 return;
5289
68520796
VD
5290 cfs_rq->h_load_next = NULL;
5291 for_each_sched_entity(se) {
5292 cfs_rq = cfs_rq_of(se);
5293 cfs_rq->h_load_next = se;
5294 if (cfs_rq->last_h_load_update == now)
5295 break;
5296 }
a35b6466 5297
68520796 5298 if (!se) {
7e3115ef 5299 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5300 cfs_rq->last_h_load_update = now;
5301 }
5302
5303 while ((se = cfs_rq->h_load_next) != NULL) {
5304 load = cfs_rq->h_load;
5305 load = div64_ul(load * se->avg.load_avg_contrib,
5306 cfs_rq->runnable_load_avg + 1);
5307 cfs_rq = group_cfs_rq(se);
5308 cfs_rq->h_load = load;
5309 cfs_rq->last_h_load_update = now;
5310 }
9763b67f
PZ
5311}
5312
367456c7 5313static unsigned long task_h_load(struct task_struct *p)
230059de 5314{
367456c7 5315 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5316
68520796 5317 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5318 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5319 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5320}
5321#else
48a16753 5322static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5323{
5324}
5325
367456c7 5326static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5327{
a003a25b 5328 return p->se.avg.load_avg_contrib;
1e3c88bd 5329}
230059de 5330#endif
1e3c88bd 5331
1e3c88bd 5332/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5333/*
5334 * sg_lb_stats - stats of a sched_group required for load_balancing
5335 */
5336struct sg_lb_stats {
5337 unsigned long avg_load; /*Avg load across the CPUs of the group */
5338 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5339 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5340 unsigned long load_per_task;
3ae11c90 5341 unsigned long group_power;
147c5fc2
PZ
5342 unsigned int sum_nr_running; /* Nr tasks running in the group */
5343 unsigned int group_capacity;
5344 unsigned int idle_cpus;
5345 unsigned int group_weight;
1e3c88bd 5346 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5347 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5348#ifdef CONFIG_NUMA_BALANCING
5349 unsigned int nr_numa_running;
5350 unsigned int nr_preferred_running;
5351#endif
1e3c88bd
PZ
5352};
5353
56cf515b
JK
5354/*
5355 * sd_lb_stats - Structure to store the statistics of a sched_domain
5356 * during load balancing.
5357 */
5358struct sd_lb_stats {
5359 struct sched_group *busiest; /* Busiest group in this sd */
5360 struct sched_group *local; /* Local group in this sd */
5361 unsigned long total_load; /* Total load of all groups in sd */
5362 unsigned long total_pwr; /* Total power of all groups in sd */
5363 unsigned long avg_load; /* Average load across all groups in sd */
5364
56cf515b 5365 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5366 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5367};
5368
147c5fc2
PZ
5369static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5370{
5371 /*
5372 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5373 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5374 * We must however clear busiest_stat::avg_load because
5375 * update_sd_pick_busiest() reads this before assignment.
5376 */
5377 *sds = (struct sd_lb_stats){
5378 .busiest = NULL,
5379 .local = NULL,
5380 .total_load = 0UL,
5381 .total_pwr = 0UL,
5382 .busiest_stat = {
5383 .avg_load = 0UL,
5384 },
5385 };
5386}
5387
1e3c88bd
PZ
5388/**
5389 * get_sd_load_idx - Obtain the load index for a given sched domain.
5390 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5391 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5392 *
5393 * Return: The load index.
1e3c88bd
PZ
5394 */
5395static inline int get_sd_load_idx(struct sched_domain *sd,
5396 enum cpu_idle_type idle)
5397{
5398 int load_idx;
5399
5400 switch (idle) {
5401 case CPU_NOT_IDLE:
5402 load_idx = sd->busy_idx;
5403 break;
5404
5405 case CPU_NEWLY_IDLE:
5406 load_idx = sd->newidle_idx;
5407 break;
5408 default:
5409 load_idx = sd->idle_idx;
5410 break;
5411 }
5412
5413 return load_idx;
5414}
5415
15f803c9 5416static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5417{
1399fa78 5418 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5419}
5420
5421unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5422{
5423 return default_scale_freq_power(sd, cpu);
5424}
5425
15f803c9 5426static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5427{
669c55e9 5428 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5429 unsigned long smt_gain = sd->smt_gain;
5430
5431 smt_gain /= weight;
5432
5433 return smt_gain;
5434}
5435
5436unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5437{
5438 return default_scale_smt_power(sd, cpu);
5439}
5440
15f803c9 5441static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5442{
5443 struct rq *rq = cpu_rq(cpu);
b654f7de 5444 u64 total, available, age_stamp, avg;
1e3c88bd 5445
b654f7de
PZ
5446 /*
5447 * Since we're reading these variables without serialization make sure
5448 * we read them once before doing sanity checks on them.
5449 */
5450 age_stamp = ACCESS_ONCE(rq->age_stamp);
5451 avg = ACCESS_ONCE(rq->rt_avg);
5452
78becc27 5453 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5454
b654f7de 5455 if (unlikely(total < avg)) {
aa483808
VP
5456 /* Ensures that power won't end up being negative */
5457 available = 0;
5458 } else {
b654f7de 5459 available = total - avg;
aa483808 5460 }
1e3c88bd 5461
1399fa78
NR
5462 if (unlikely((s64)total < SCHED_POWER_SCALE))
5463 total = SCHED_POWER_SCALE;
1e3c88bd 5464
1399fa78 5465 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5466
5467 return div_u64(available, total);
5468}
5469
5470static void update_cpu_power(struct sched_domain *sd, int cpu)
5471{
669c55e9 5472 unsigned long weight = sd->span_weight;
1399fa78 5473 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5474 struct sched_group *sdg = sd->groups;
5475
1e3c88bd
PZ
5476 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5477 if (sched_feat(ARCH_POWER))
5478 power *= arch_scale_smt_power(sd, cpu);
5479 else
5480 power *= default_scale_smt_power(sd, cpu);
5481
1399fa78 5482 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5483 }
5484
9c3f75cb 5485 sdg->sgp->power_orig = power;
9d5efe05
SV
5486
5487 if (sched_feat(ARCH_POWER))
5488 power *= arch_scale_freq_power(sd, cpu);
5489 else
5490 power *= default_scale_freq_power(sd, cpu);
5491
1399fa78 5492 power >>= SCHED_POWER_SHIFT;
9d5efe05 5493
1e3c88bd 5494 power *= scale_rt_power(cpu);
1399fa78 5495 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5496
5497 if (!power)
5498 power = 1;
5499
e51fd5e2 5500 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5501 sdg->sgp->power = power;
1e3c88bd
PZ
5502}
5503
029632fb 5504void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5505{
5506 struct sched_domain *child = sd->child;
5507 struct sched_group *group, *sdg = sd->groups;
863bffc8 5508 unsigned long power, power_orig;
4ec4412e
VG
5509 unsigned long interval;
5510
5511 interval = msecs_to_jiffies(sd->balance_interval);
5512 interval = clamp(interval, 1UL, max_load_balance_interval);
5513 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5514
5515 if (!child) {
5516 update_cpu_power(sd, cpu);
5517 return;
5518 }
5519
863bffc8 5520 power_orig = power = 0;
1e3c88bd 5521
74a5ce20
PZ
5522 if (child->flags & SD_OVERLAP) {
5523 /*
5524 * SD_OVERLAP domains cannot assume that child groups
5525 * span the current group.
5526 */
5527
863bffc8 5528 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5529 struct sched_group_power *sgp;
5530 struct rq *rq = cpu_rq(cpu);
863bffc8 5531
9abf24d4
SD
5532 /*
5533 * build_sched_domains() -> init_sched_groups_power()
5534 * gets here before we've attached the domains to the
5535 * runqueues.
5536 *
5537 * Use power_of(), which is set irrespective of domains
5538 * in update_cpu_power().
5539 *
5540 * This avoids power/power_orig from being 0 and
5541 * causing divide-by-zero issues on boot.
5542 *
5543 * Runtime updates will correct power_orig.
5544 */
5545 if (unlikely(!rq->sd)) {
5546 power_orig += power_of(cpu);
5547 power += power_of(cpu);
5548 continue;
5549 }
863bffc8 5550
9abf24d4
SD
5551 sgp = rq->sd->groups->sgp;
5552 power_orig += sgp->power_orig;
5553 power += sgp->power;
863bffc8 5554 }
74a5ce20
PZ
5555 } else {
5556 /*
5557 * !SD_OVERLAP domains can assume that child groups
5558 * span the current group.
5559 */
5560
5561 group = child->groups;
5562 do {
863bffc8 5563 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5564 power += group->sgp->power;
5565 group = group->next;
5566 } while (group != child->groups);
5567 }
1e3c88bd 5568
863bffc8
PZ
5569 sdg->sgp->power_orig = power_orig;
5570 sdg->sgp->power = power;
1e3c88bd
PZ
5571}
5572
9d5efe05
SV
5573/*
5574 * Try and fix up capacity for tiny siblings, this is needed when
5575 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5576 * which on its own isn't powerful enough.
5577 *
5578 * See update_sd_pick_busiest() and check_asym_packing().
5579 */
5580static inline int
5581fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5582{
5583 /*
1399fa78 5584 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5585 */
a6c75f2f 5586 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5587 return 0;
5588
5589 /*
5590 * If ~90% of the cpu_power is still there, we're good.
5591 */
9c3f75cb 5592 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5593 return 1;
5594
5595 return 0;
5596}
5597
30ce5dab
PZ
5598/*
5599 * Group imbalance indicates (and tries to solve) the problem where balancing
5600 * groups is inadequate due to tsk_cpus_allowed() constraints.
5601 *
5602 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5603 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5604 * Something like:
5605 *
5606 * { 0 1 2 3 } { 4 5 6 7 }
5607 * * * * *
5608 *
5609 * If we were to balance group-wise we'd place two tasks in the first group and
5610 * two tasks in the second group. Clearly this is undesired as it will overload
5611 * cpu 3 and leave one of the cpus in the second group unused.
5612 *
5613 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5614 * by noticing the lower domain failed to reach balance and had difficulty
5615 * moving tasks due to affinity constraints.
30ce5dab
PZ
5616 *
5617 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5618 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5619 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5620 * to create an effective group imbalance.
5621 *
5622 * This is a somewhat tricky proposition since the next run might not find the
5623 * group imbalance and decide the groups need to be balanced again. A most
5624 * subtle and fragile situation.
5625 */
5626
6263322c 5627static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5628{
6263322c 5629 return group->sgp->imbalance;
30ce5dab
PZ
5630}
5631
b37d9316
PZ
5632/*
5633 * Compute the group capacity.
5634 *
c61037e9
PZ
5635 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5636 * first dividing out the smt factor and computing the actual number of cores
5637 * and limit power unit capacity with that.
b37d9316
PZ
5638 */
5639static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5640{
c61037e9
PZ
5641 unsigned int capacity, smt, cpus;
5642 unsigned int power, power_orig;
5643
5644 power = group->sgp->power;
5645 power_orig = group->sgp->power_orig;
5646 cpus = group->group_weight;
b37d9316 5647
c61037e9
PZ
5648 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5649 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5650 capacity = cpus / smt; /* cores */
b37d9316 5651
c61037e9 5652 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5653 if (!capacity)
5654 capacity = fix_small_capacity(env->sd, group);
5655
5656 return capacity;
5657}
5658
1e3c88bd
PZ
5659/**
5660 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5661 * @env: The load balancing environment.
1e3c88bd 5662 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5663 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5664 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5665 * @sgs: variable to hold the statistics for this group.
5666 */
bd939f45
PZ
5667static inline void update_sg_lb_stats(struct lb_env *env,
5668 struct sched_group *group, int load_idx,
23f0d209 5669 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5670{
30ce5dab 5671 unsigned long load;
bd939f45 5672 int i;
1e3c88bd 5673
b72ff13c
PZ
5674 memset(sgs, 0, sizeof(*sgs));
5675
b9403130 5676 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5677 struct rq *rq = cpu_rq(i);
5678
1e3c88bd 5679 /* Bias balancing toward cpus of our domain */
6263322c 5680 if (local_group)
04f733b4 5681 load = target_load(i, load_idx);
6263322c 5682 else
1e3c88bd 5683 load = source_load(i, load_idx);
1e3c88bd
PZ
5684
5685 sgs->group_load += load;
380c9077 5686 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5687#ifdef CONFIG_NUMA_BALANCING
5688 sgs->nr_numa_running += rq->nr_numa_running;
5689 sgs->nr_preferred_running += rq->nr_preferred_running;
5690#endif
1e3c88bd 5691 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5692 if (idle_cpu(i))
5693 sgs->idle_cpus++;
1e3c88bd
PZ
5694 }
5695
1e3c88bd 5696 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5697 sgs->group_power = group->sgp->power;
5698 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5699
dd5feea1 5700 if (sgs->sum_nr_running)
38d0f770 5701 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5702
aae6d3dd 5703 sgs->group_weight = group->group_weight;
fab47622 5704
b37d9316
PZ
5705 sgs->group_imb = sg_imbalanced(group);
5706 sgs->group_capacity = sg_capacity(env, group);
5707
fab47622
NR
5708 if (sgs->group_capacity > sgs->sum_nr_running)
5709 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5710}
5711
532cb4c4
MN
5712/**
5713 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5714 * @env: The load balancing environment.
532cb4c4
MN
5715 * @sds: sched_domain statistics
5716 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5717 * @sgs: sched_group statistics
532cb4c4
MN
5718 *
5719 * Determine if @sg is a busier group than the previously selected
5720 * busiest group.
e69f6186
YB
5721 *
5722 * Return: %true if @sg is a busier group than the previously selected
5723 * busiest group. %false otherwise.
532cb4c4 5724 */
bd939f45 5725static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5726 struct sd_lb_stats *sds,
5727 struct sched_group *sg,
bd939f45 5728 struct sg_lb_stats *sgs)
532cb4c4 5729{
56cf515b 5730 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5731 return false;
5732
5733 if (sgs->sum_nr_running > sgs->group_capacity)
5734 return true;
5735
5736 if (sgs->group_imb)
5737 return true;
5738
5739 /*
5740 * ASYM_PACKING needs to move all the work to the lowest
5741 * numbered CPUs in the group, therefore mark all groups
5742 * higher than ourself as busy.
5743 */
bd939f45
PZ
5744 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5745 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5746 if (!sds->busiest)
5747 return true;
5748
5749 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5750 return true;
5751 }
5752
5753 return false;
5754}
5755
0ec8aa00
PZ
5756#ifdef CONFIG_NUMA_BALANCING
5757static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5758{
5759 if (sgs->sum_nr_running > sgs->nr_numa_running)
5760 return regular;
5761 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5762 return remote;
5763 return all;
5764}
5765
5766static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5767{
5768 if (rq->nr_running > rq->nr_numa_running)
5769 return regular;
5770 if (rq->nr_running > rq->nr_preferred_running)
5771 return remote;
5772 return all;
5773}
5774#else
5775static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5776{
5777 return all;
5778}
5779
5780static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5781{
5782 return regular;
5783}
5784#endif /* CONFIG_NUMA_BALANCING */
5785
1e3c88bd 5786/**
461819ac 5787 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5788 * @env: The load balancing environment.
1e3c88bd
PZ
5789 * @sds: variable to hold the statistics for this sched_domain.
5790 */
0ec8aa00 5791static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5792{
bd939f45
PZ
5793 struct sched_domain *child = env->sd->child;
5794 struct sched_group *sg = env->sd->groups;
56cf515b 5795 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5796 int load_idx, prefer_sibling = 0;
5797
5798 if (child && child->flags & SD_PREFER_SIBLING)
5799 prefer_sibling = 1;
5800
bd939f45 5801 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5802
5803 do {
56cf515b 5804 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5805 int local_group;
5806
bd939f45 5807 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5808 if (local_group) {
5809 sds->local = sg;
5810 sgs = &sds->local_stat;
b72ff13c
PZ
5811
5812 if (env->idle != CPU_NEWLY_IDLE ||
5813 time_after_eq(jiffies, sg->sgp->next_update))
5814 update_group_power(env->sd, env->dst_cpu);
56cf515b 5815 }
1e3c88bd 5816
56cf515b 5817 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5818
b72ff13c
PZ
5819 if (local_group)
5820 goto next_group;
5821
1e3c88bd
PZ
5822 /*
5823 * In case the child domain prefers tasks go to siblings
532cb4c4 5824 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5825 * and move all the excess tasks away. We lower the capacity
5826 * of a group only if the local group has the capacity to fit
5827 * these excess tasks, i.e. nr_running < group_capacity. The
5828 * extra check prevents the case where you always pull from the
5829 * heaviest group when it is already under-utilized (possible
5830 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5831 */
b72ff13c
PZ
5832 if (prefer_sibling && sds->local &&
5833 sds->local_stat.group_has_capacity)
147c5fc2 5834 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5835
b72ff13c 5836 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5837 sds->busiest = sg;
56cf515b 5838 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5839 }
5840
b72ff13c
PZ
5841next_group:
5842 /* Now, start updating sd_lb_stats */
5843 sds->total_load += sgs->group_load;
5844 sds->total_pwr += sgs->group_power;
5845
532cb4c4 5846 sg = sg->next;
bd939f45 5847 } while (sg != env->sd->groups);
0ec8aa00
PZ
5848
5849 if (env->sd->flags & SD_NUMA)
5850 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5851}
5852
532cb4c4
MN
5853/**
5854 * check_asym_packing - Check to see if the group is packed into the
5855 * sched doman.
5856 *
5857 * This is primarily intended to used at the sibling level. Some
5858 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5859 * case of POWER7, it can move to lower SMT modes only when higher
5860 * threads are idle. When in lower SMT modes, the threads will
5861 * perform better since they share less core resources. Hence when we
5862 * have idle threads, we want them to be the higher ones.
5863 *
5864 * This packing function is run on idle threads. It checks to see if
5865 * the busiest CPU in this domain (core in the P7 case) has a higher
5866 * CPU number than the packing function is being run on. Here we are
5867 * assuming lower CPU number will be equivalent to lower a SMT thread
5868 * number.
5869 *
e69f6186 5870 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5871 * this CPU. The amount of the imbalance is returned in *imbalance.
5872 *
cd96891d 5873 * @env: The load balancing environment.
532cb4c4 5874 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5875 */
bd939f45 5876static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5877{
5878 int busiest_cpu;
5879
bd939f45 5880 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5881 return 0;
5882
5883 if (!sds->busiest)
5884 return 0;
5885
5886 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5887 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5888 return 0;
5889
bd939f45 5890 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5891 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5892 SCHED_POWER_SCALE);
bd939f45 5893
532cb4c4 5894 return 1;
1e3c88bd
PZ
5895}
5896
5897/**
5898 * fix_small_imbalance - Calculate the minor imbalance that exists
5899 * amongst the groups of a sched_domain, during
5900 * load balancing.
cd96891d 5901 * @env: The load balancing environment.
1e3c88bd 5902 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5903 */
bd939f45
PZ
5904static inline
5905void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5906{
5907 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5908 unsigned int imbn = 2;
dd5feea1 5909 unsigned long scaled_busy_load_per_task;
56cf515b 5910 struct sg_lb_stats *local, *busiest;
1e3c88bd 5911
56cf515b
JK
5912 local = &sds->local_stat;
5913 busiest = &sds->busiest_stat;
1e3c88bd 5914
56cf515b
JK
5915 if (!local->sum_nr_running)
5916 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5917 else if (busiest->load_per_task > local->load_per_task)
5918 imbn = 1;
dd5feea1 5919
56cf515b
JK
5920 scaled_busy_load_per_task =
5921 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5922 busiest->group_power;
56cf515b 5923
3029ede3
VD
5924 if (busiest->avg_load + scaled_busy_load_per_task >=
5925 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5926 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5927 return;
5928 }
5929
5930 /*
5931 * OK, we don't have enough imbalance to justify moving tasks,
5932 * however we may be able to increase total CPU power used by
5933 * moving them.
5934 */
5935
3ae11c90 5936 pwr_now += busiest->group_power *
56cf515b 5937 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5938 pwr_now += local->group_power *
56cf515b 5939 min(local->load_per_task, local->avg_load);
1399fa78 5940 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5941
5942 /* Amount of load we'd subtract */
56cf515b 5943 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5944 busiest->group_power;
56cf515b 5945 if (busiest->avg_load > tmp) {
3ae11c90 5946 pwr_move += busiest->group_power *
56cf515b
JK
5947 min(busiest->load_per_task,
5948 busiest->avg_load - tmp);
5949 }
1e3c88bd
PZ
5950
5951 /* Amount of load we'd add */
3ae11c90 5952 if (busiest->avg_load * busiest->group_power <
56cf515b 5953 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5954 tmp = (busiest->avg_load * busiest->group_power) /
5955 local->group_power;
56cf515b
JK
5956 } else {
5957 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5958 local->group_power;
56cf515b 5959 }
3ae11c90
PZ
5960 pwr_move += local->group_power *
5961 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5962 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5963
5964 /* Move if we gain throughput */
5965 if (pwr_move > pwr_now)
56cf515b 5966 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5967}
5968
5969/**
5970 * calculate_imbalance - Calculate the amount of imbalance present within the
5971 * groups of a given sched_domain during load balance.
bd939f45 5972 * @env: load balance environment
1e3c88bd 5973 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5974 */
bd939f45 5975static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5976{
dd5feea1 5977 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5978 struct sg_lb_stats *local, *busiest;
5979
5980 local = &sds->local_stat;
56cf515b 5981 busiest = &sds->busiest_stat;
dd5feea1 5982
56cf515b 5983 if (busiest->group_imb) {
30ce5dab
PZ
5984 /*
5985 * In the group_imb case we cannot rely on group-wide averages
5986 * to ensure cpu-load equilibrium, look at wider averages. XXX
5987 */
56cf515b
JK
5988 busiest->load_per_task =
5989 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5990 }
5991
1e3c88bd
PZ
5992 /*
5993 * In the presence of smp nice balancing, certain scenarios can have
5994 * max load less than avg load(as we skip the groups at or below
5995 * its cpu_power, while calculating max_load..)
5996 */
b1885550
VD
5997 if (busiest->avg_load <= sds->avg_load ||
5998 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5999 env->imbalance = 0;
6000 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6001 }
6002
56cf515b 6003 if (!busiest->group_imb) {
dd5feea1
SS
6004 /*
6005 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6006 * Except of course for the group_imb case, since then we might
6007 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6008 */
56cf515b
JK
6009 load_above_capacity =
6010 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6011
1399fa78 6012 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6013 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6014 }
6015
6016 /*
6017 * We're trying to get all the cpus to the average_load, so we don't
6018 * want to push ourselves above the average load, nor do we wish to
6019 * reduce the max loaded cpu below the average load. At the same time,
6020 * we also don't want to reduce the group load below the group capacity
6021 * (so that we can implement power-savings policies etc). Thus we look
6022 * for the minimum possible imbalance.
dd5feea1 6023 */
30ce5dab 6024 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6025
6026 /* How much load to actually move to equalise the imbalance */
56cf515b 6027 env->imbalance = min(
3ae11c90
PZ
6028 max_pull * busiest->group_power,
6029 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6030 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6031
6032 /*
6033 * if *imbalance is less than the average load per runnable task
25985edc 6034 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6035 * a think about bumping its value to force at least one task to be
6036 * moved
6037 */
56cf515b 6038 if (env->imbalance < busiest->load_per_task)
bd939f45 6039 return fix_small_imbalance(env, sds);
1e3c88bd 6040}
fab47622 6041
1e3c88bd
PZ
6042/******* find_busiest_group() helpers end here *********************/
6043
6044/**
6045 * find_busiest_group - Returns the busiest group within the sched_domain
6046 * if there is an imbalance. If there isn't an imbalance, and
6047 * the user has opted for power-savings, it returns a group whose
6048 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6049 * such a group exists.
6050 *
6051 * Also calculates the amount of weighted load which should be moved
6052 * to restore balance.
6053 *
cd96891d 6054 * @env: The load balancing environment.
1e3c88bd 6055 *
e69f6186 6056 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6057 * - If no imbalance and user has opted for power-savings balance,
6058 * return the least loaded group whose CPUs can be
6059 * put to idle by rebalancing its tasks onto our group.
6060 */
56cf515b 6061static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6062{
56cf515b 6063 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6064 struct sd_lb_stats sds;
6065
147c5fc2 6066 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6067
6068 /*
6069 * Compute the various statistics relavent for load balancing at
6070 * this level.
6071 */
23f0d209 6072 update_sd_lb_stats(env, &sds);
56cf515b
JK
6073 local = &sds.local_stat;
6074 busiest = &sds.busiest_stat;
1e3c88bd 6075
bd939f45
PZ
6076 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6077 check_asym_packing(env, &sds))
532cb4c4
MN
6078 return sds.busiest;
6079
cc57aa8f 6080 /* There is no busy sibling group to pull tasks from */
56cf515b 6081 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6082 goto out_balanced;
6083
1399fa78 6084 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6085
866ab43e
PZ
6086 /*
6087 * If the busiest group is imbalanced the below checks don't
30ce5dab 6088 * work because they assume all things are equal, which typically
866ab43e
PZ
6089 * isn't true due to cpus_allowed constraints and the like.
6090 */
56cf515b 6091 if (busiest->group_imb)
866ab43e
PZ
6092 goto force_balance;
6093
cc57aa8f 6094 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6095 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6096 !busiest->group_has_capacity)
fab47622
NR
6097 goto force_balance;
6098
cc57aa8f
PZ
6099 /*
6100 * If the local group is more busy than the selected busiest group
6101 * don't try and pull any tasks.
6102 */
56cf515b 6103 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6104 goto out_balanced;
6105
cc57aa8f
PZ
6106 /*
6107 * Don't pull any tasks if this group is already above the domain
6108 * average load.
6109 */
56cf515b 6110 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6111 goto out_balanced;
6112
bd939f45 6113 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6114 /*
6115 * This cpu is idle. If the busiest group load doesn't
6116 * have more tasks than the number of available cpu's and
6117 * there is no imbalance between this and busiest group
6118 * wrt to idle cpu's, it is balanced.
6119 */
56cf515b
JK
6120 if ((local->idle_cpus < busiest->idle_cpus) &&
6121 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6122 goto out_balanced;
c186fafe
PZ
6123 } else {
6124 /*
6125 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6126 * imbalance_pct to be conservative.
6127 */
56cf515b
JK
6128 if (100 * busiest->avg_load <=
6129 env->sd->imbalance_pct * local->avg_load)
c186fafe 6130 goto out_balanced;
aae6d3dd 6131 }
1e3c88bd 6132
fab47622 6133force_balance:
1e3c88bd 6134 /* Looks like there is an imbalance. Compute it */
bd939f45 6135 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6136 return sds.busiest;
6137
6138out_balanced:
bd939f45 6139 env->imbalance = 0;
1e3c88bd
PZ
6140 return NULL;
6141}
6142
6143/*
6144 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6145 */
bd939f45 6146static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6147 struct sched_group *group)
1e3c88bd
PZ
6148{
6149 struct rq *busiest = NULL, *rq;
95a79b80 6150 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6151 int i;
6152
6906a408 6153 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6154 unsigned long power, capacity, wl;
6155 enum fbq_type rt;
6156
6157 rq = cpu_rq(i);
6158 rt = fbq_classify_rq(rq);
1e3c88bd 6159
0ec8aa00
PZ
6160 /*
6161 * We classify groups/runqueues into three groups:
6162 * - regular: there are !numa tasks
6163 * - remote: there are numa tasks that run on the 'wrong' node
6164 * - all: there is no distinction
6165 *
6166 * In order to avoid migrating ideally placed numa tasks,
6167 * ignore those when there's better options.
6168 *
6169 * If we ignore the actual busiest queue to migrate another
6170 * task, the next balance pass can still reduce the busiest
6171 * queue by moving tasks around inside the node.
6172 *
6173 * If we cannot move enough load due to this classification
6174 * the next pass will adjust the group classification and
6175 * allow migration of more tasks.
6176 *
6177 * Both cases only affect the total convergence complexity.
6178 */
6179 if (rt > env->fbq_type)
6180 continue;
6181
6182 power = power_of(i);
6183 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6184 if (!capacity)
bd939f45 6185 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6186
6e40f5bb 6187 wl = weighted_cpuload(i);
1e3c88bd 6188
6e40f5bb
TG
6189 /*
6190 * When comparing with imbalance, use weighted_cpuload()
6191 * which is not scaled with the cpu power.
6192 */
bd939f45 6193 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6194 continue;
6195
6e40f5bb
TG
6196 /*
6197 * For the load comparisons with the other cpu's, consider
6198 * the weighted_cpuload() scaled with the cpu power, so that
6199 * the load can be moved away from the cpu that is potentially
6200 * running at a lower capacity.
95a79b80
JK
6201 *
6202 * Thus we're looking for max(wl_i / power_i), crosswise
6203 * multiplication to rid ourselves of the division works out
6204 * to: wl_i * power_j > wl_j * power_i; where j is our
6205 * previous maximum.
6e40f5bb 6206 */
95a79b80
JK
6207 if (wl * busiest_power > busiest_load * power) {
6208 busiest_load = wl;
6209 busiest_power = power;
1e3c88bd
PZ
6210 busiest = rq;
6211 }
6212 }
6213
6214 return busiest;
6215}
6216
6217/*
6218 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6219 * so long as it is large enough.
6220 */
6221#define MAX_PINNED_INTERVAL 512
6222
6223/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6224DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6225
bd939f45 6226static int need_active_balance(struct lb_env *env)
1af3ed3d 6227{
bd939f45
PZ
6228 struct sched_domain *sd = env->sd;
6229
6230 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6231
6232 /*
6233 * ASYM_PACKING needs to force migrate tasks from busy but
6234 * higher numbered CPUs in order to pack all tasks in the
6235 * lowest numbered CPUs.
6236 */
bd939f45 6237 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6238 return 1;
1af3ed3d
PZ
6239 }
6240
6241 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6242}
6243
969c7921
TH
6244static int active_load_balance_cpu_stop(void *data);
6245
23f0d209
JK
6246static int should_we_balance(struct lb_env *env)
6247{
6248 struct sched_group *sg = env->sd->groups;
6249 struct cpumask *sg_cpus, *sg_mask;
6250 int cpu, balance_cpu = -1;
6251
6252 /*
6253 * In the newly idle case, we will allow all the cpu's
6254 * to do the newly idle load balance.
6255 */
6256 if (env->idle == CPU_NEWLY_IDLE)
6257 return 1;
6258
6259 sg_cpus = sched_group_cpus(sg);
6260 sg_mask = sched_group_mask(sg);
6261 /* Try to find first idle cpu */
6262 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6263 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6264 continue;
6265
6266 balance_cpu = cpu;
6267 break;
6268 }
6269
6270 if (balance_cpu == -1)
6271 balance_cpu = group_balance_cpu(sg);
6272
6273 /*
6274 * First idle cpu or the first cpu(busiest) in this sched group
6275 * is eligible for doing load balancing at this and above domains.
6276 */
b0cff9d8 6277 return balance_cpu == env->dst_cpu;
23f0d209
JK
6278}
6279
1e3c88bd
PZ
6280/*
6281 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6282 * tasks if there is an imbalance.
6283 */
6284static int load_balance(int this_cpu, struct rq *this_rq,
6285 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6286 int *continue_balancing)
1e3c88bd 6287{
88b8dac0 6288 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6289 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6290 struct sched_group *group;
1e3c88bd
PZ
6291 struct rq *busiest;
6292 unsigned long flags;
e6252c3e 6293 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6294
8e45cb54
PZ
6295 struct lb_env env = {
6296 .sd = sd,
ddcdf6e7
PZ
6297 .dst_cpu = this_cpu,
6298 .dst_rq = this_rq,
88b8dac0 6299 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6300 .idle = idle,
eb95308e 6301 .loop_break = sched_nr_migrate_break,
b9403130 6302 .cpus = cpus,
0ec8aa00 6303 .fbq_type = all,
8e45cb54
PZ
6304 };
6305
cfc03118
JK
6306 /*
6307 * For NEWLY_IDLE load_balancing, we don't need to consider
6308 * other cpus in our group
6309 */
e02e60c1 6310 if (idle == CPU_NEWLY_IDLE)
cfc03118 6311 env.dst_grpmask = NULL;
cfc03118 6312
1e3c88bd
PZ
6313 cpumask_copy(cpus, cpu_active_mask);
6314
1e3c88bd
PZ
6315 schedstat_inc(sd, lb_count[idle]);
6316
6317redo:
23f0d209
JK
6318 if (!should_we_balance(&env)) {
6319 *continue_balancing = 0;
1e3c88bd 6320 goto out_balanced;
23f0d209 6321 }
1e3c88bd 6322
23f0d209 6323 group = find_busiest_group(&env);
1e3c88bd
PZ
6324 if (!group) {
6325 schedstat_inc(sd, lb_nobusyg[idle]);
6326 goto out_balanced;
6327 }
6328
b9403130 6329 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6330 if (!busiest) {
6331 schedstat_inc(sd, lb_nobusyq[idle]);
6332 goto out_balanced;
6333 }
6334
78feefc5 6335 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6336
bd939f45 6337 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6338
6339 ld_moved = 0;
6340 if (busiest->nr_running > 1) {
6341 /*
6342 * Attempt to move tasks. If find_busiest_group has found
6343 * an imbalance but busiest->nr_running <= 1, the group is
6344 * still unbalanced. ld_moved simply stays zero, so it is
6345 * correctly treated as an imbalance.
6346 */
8e45cb54 6347 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6348 env.src_cpu = busiest->cpu;
6349 env.src_rq = busiest;
6350 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6351
5d6523eb 6352more_balance:
1e3c88bd 6353 local_irq_save(flags);
78feefc5 6354 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6355
6356 /*
6357 * cur_ld_moved - load moved in current iteration
6358 * ld_moved - cumulative load moved across iterations
6359 */
6360 cur_ld_moved = move_tasks(&env);
6361 ld_moved += cur_ld_moved;
78feefc5 6362 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6363 local_irq_restore(flags);
6364
6365 /*
6366 * some other cpu did the load balance for us.
6367 */
88b8dac0
SV
6368 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6369 resched_cpu(env.dst_cpu);
6370
f1cd0858
JK
6371 if (env.flags & LBF_NEED_BREAK) {
6372 env.flags &= ~LBF_NEED_BREAK;
6373 goto more_balance;
6374 }
6375
88b8dac0
SV
6376 /*
6377 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6378 * us and move them to an alternate dst_cpu in our sched_group
6379 * where they can run. The upper limit on how many times we
6380 * iterate on same src_cpu is dependent on number of cpus in our
6381 * sched_group.
6382 *
6383 * This changes load balance semantics a bit on who can move
6384 * load to a given_cpu. In addition to the given_cpu itself
6385 * (or a ilb_cpu acting on its behalf where given_cpu is
6386 * nohz-idle), we now have balance_cpu in a position to move
6387 * load to given_cpu. In rare situations, this may cause
6388 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6389 * _independently_ and at _same_ time to move some load to
6390 * given_cpu) causing exceess load to be moved to given_cpu.
6391 * This however should not happen so much in practice and
6392 * moreover subsequent load balance cycles should correct the
6393 * excess load moved.
6394 */
6263322c 6395 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6396
7aff2e3a
VD
6397 /* Prevent to re-select dst_cpu via env's cpus */
6398 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6399
78feefc5 6400 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6401 env.dst_cpu = env.new_dst_cpu;
6263322c 6402 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6403 env.loop = 0;
6404 env.loop_break = sched_nr_migrate_break;
e02e60c1 6405
88b8dac0
SV
6406 /*
6407 * Go back to "more_balance" rather than "redo" since we
6408 * need to continue with same src_cpu.
6409 */
6410 goto more_balance;
6411 }
1e3c88bd 6412
6263322c
PZ
6413 /*
6414 * We failed to reach balance because of affinity.
6415 */
6416 if (sd_parent) {
6417 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6418
6419 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6420 *group_imbalance = 1;
6421 } else if (*group_imbalance)
6422 *group_imbalance = 0;
6423 }
6424
1e3c88bd 6425 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6426 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6427 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6428 if (!cpumask_empty(cpus)) {
6429 env.loop = 0;
6430 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6431 goto redo;
bbf18b19 6432 }
1e3c88bd
PZ
6433 goto out_balanced;
6434 }
6435 }
6436
6437 if (!ld_moved) {
6438 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6439 /*
6440 * Increment the failure counter only on periodic balance.
6441 * We do not want newidle balance, which can be very
6442 * frequent, pollute the failure counter causing
6443 * excessive cache_hot migrations and active balances.
6444 */
6445 if (idle != CPU_NEWLY_IDLE)
6446 sd->nr_balance_failed++;
1e3c88bd 6447
bd939f45 6448 if (need_active_balance(&env)) {
1e3c88bd
PZ
6449 raw_spin_lock_irqsave(&busiest->lock, flags);
6450
969c7921
TH
6451 /* don't kick the active_load_balance_cpu_stop,
6452 * if the curr task on busiest cpu can't be
6453 * moved to this_cpu
1e3c88bd
PZ
6454 */
6455 if (!cpumask_test_cpu(this_cpu,
fa17b507 6456 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6457 raw_spin_unlock_irqrestore(&busiest->lock,
6458 flags);
8e45cb54 6459 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6460 goto out_one_pinned;
6461 }
6462
969c7921
TH
6463 /*
6464 * ->active_balance synchronizes accesses to
6465 * ->active_balance_work. Once set, it's cleared
6466 * only after active load balance is finished.
6467 */
1e3c88bd
PZ
6468 if (!busiest->active_balance) {
6469 busiest->active_balance = 1;
6470 busiest->push_cpu = this_cpu;
6471 active_balance = 1;
6472 }
6473 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6474
bd939f45 6475 if (active_balance) {
969c7921
TH
6476 stop_one_cpu_nowait(cpu_of(busiest),
6477 active_load_balance_cpu_stop, busiest,
6478 &busiest->active_balance_work);
bd939f45 6479 }
1e3c88bd
PZ
6480
6481 /*
6482 * We've kicked active balancing, reset the failure
6483 * counter.
6484 */
6485 sd->nr_balance_failed = sd->cache_nice_tries+1;
6486 }
6487 } else
6488 sd->nr_balance_failed = 0;
6489
6490 if (likely(!active_balance)) {
6491 /* We were unbalanced, so reset the balancing interval */
6492 sd->balance_interval = sd->min_interval;
6493 } else {
6494 /*
6495 * If we've begun active balancing, start to back off. This
6496 * case may not be covered by the all_pinned logic if there
6497 * is only 1 task on the busy runqueue (because we don't call
6498 * move_tasks).
6499 */
6500 if (sd->balance_interval < sd->max_interval)
6501 sd->balance_interval *= 2;
6502 }
6503
1e3c88bd
PZ
6504 goto out;
6505
6506out_balanced:
6507 schedstat_inc(sd, lb_balanced[idle]);
6508
6509 sd->nr_balance_failed = 0;
6510
6511out_one_pinned:
6512 /* tune up the balancing interval */
8e45cb54 6513 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6514 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6515 (sd->balance_interval < sd->max_interval))
6516 sd->balance_interval *= 2;
6517
46e49b38 6518 ld_moved = 0;
1e3c88bd 6519out:
1e3c88bd
PZ
6520 return ld_moved;
6521}
6522
1e3c88bd
PZ
6523/*
6524 * idle_balance is called by schedule() if this_cpu is about to become
6525 * idle. Attempts to pull tasks from other CPUs.
6526 */
3c4017c1 6527int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6528{
6529 struct sched_domain *sd;
6530 int pulled_task = 0;
6531 unsigned long next_balance = jiffies + HZ;
9bd721c5 6532 u64 curr_cost = 0;
b4f2ab43 6533 int this_cpu = this_rq->cpu;
1e3c88bd 6534
1e3c88bd 6535 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3c4017c1 6536 return 0;
1e3c88bd 6537
f492e12e
PZ
6538 /*
6539 * Drop the rq->lock, but keep IRQ/preempt disabled.
6540 */
6541 raw_spin_unlock(&this_rq->lock);
6542
48a16753 6543 update_blocked_averages(this_cpu);
dce840a0 6544 rcu_read_lock();
1e3c88bd
PZ
6545 for_each_domain(this_cpu, sd) {
6546 unsigned long interval;
23f0d209 6547 int continue_balancing = 1;
9bd721c5 6548 u64 t0, domain_cost;
1e3c88bd
PZ
6549
6550 if (!(sd->flags & SD_LOAD_BALANCE))
6551 continue;
6552
9bd721c5
JL
6553 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6554 break;
6555
f492e12e 6556 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6557 t0 = sched_clock_cpu(this_cpu);
6558
1e3c88bd 6559 /* If we've pulled tasks over stop searching: */
f492e12e 6560 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6561 sd, CPU_NEWLY_IDLE,
6562 &continue_balancing);
9bd721c5
JL
6563
6564 domain_cost = sched_clock_cpu(this_cpu) - t0;
6565 if (domain_cost > sd->max_newidle_lb_cost)
6566 sd->max_newidle_lb_cost = domain_cost;
6567
6568 curr_cost += domain_cost;
f492e12e 6569 }
1e3c88bd
PZ
6570
6571 interval = msecs_to_jiffies(sd->balance_interval);
6572 if (time_after(next_balance, sd->last_balance + interval))
6573 next_balance = sd->last_balance + interval;
3c4017c1 6574 if (pulled_task)
1e3c88bd 6575 break;
1e3c88bd 6576 }
dce840a0 6577 rcu_read_unlock();
f492e12e
PZ
6578
6579 raw_spin_lock(&this_rq->lock);
6580
e5fc6611
DL
6581 /*
6582 * While browsing the domains, we released the rq lock.
6583 * A task could have be enqueued in the meantime
6584 */
6585 if (this_rq->nr_running && !pulled_task)
3c4017c1 6586 return 1;
e5fc6611 6587
1e3c88bd
PZ
6588 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6589 /*
6590 * We are going idle. next_balance may be set based on
6591 * a busy processor. So reset next_balance.
6592 */
6593 this_rq->next_balance = next_balance;
6594 }
9bd721c5
JL
6595
6596 if (curr_cost > this_rq->max_idle_balance_cost)
6597 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1
DL
6598
6599 return pulled_task;
1e3c88bd
PZ
6600}
6601
6602/*
969c7921
TH
6603 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6604 * running tasks off the busiest CPU onto idle CPUs. It requires at
6605 * least 1 task to be running on each physical CPU where possible, and
6606 * avoids physical / logical imbalances.
1e3c88bd 6607 */
969c7921 6608static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6609{
969c7921
TH
6610 struct rq *busiest_rq = data;
6611 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6612 int target_cpu = busiest_rq->push_cpu;
969c7921 6613 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6614 struct sched_domain *sd;
969c7921
TH
6615
6616 raw_spin_lock_irq(&busiest_rq->lock);
6617
6618 /* make sure the requested cpu hasn't gone down in the meantime */
6619 if (unlikely(busiest_cpu != smp_processor_id() ||
6620 !busiest_rq->active_balance))
6621 goto out_unlock;
1e3c88bd
PZ
6622
6623 /* Is there any task to move? */
6624 if (busiest_rq->nr_running <= 1)
969c7921 6625 goto out_unlock;
1e3c88bd
PZ
6626
6627 /*
6628 * This condition is "impossible", if it occurs
6629 * we need to fix it. Originally reported by
6630 * Bjorn Helgaas on a 128-cpu setup.
6631 */
6632 BUG_ON(busiest_rq == target_rq);
6633
6634 /* move a task from busiest_rq to target_rq */
6635 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6636
6637 /* Search for an sd spanning us and the target CPU. */
dce840a0 6638 rcu_read_lock();
1e3c88bd
PZ
6639 for_each_domain(target_cpu, sd) {
6640 if ((sd->flags & SD_LOAD_BALANCE) &&
6641 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6642 break;
6643 }
6644
6645 if (likely(sd)) {
8e45cb54
PZ
6646 struct lb_env env = {
6647 .sd = sd,
ddcdf6e7
PZ
6648 .dst_cpu = target_cpu,
6649 .dst_rq = target_rq,
6650 .src_cpu = busiest_rq->cpu,
6651 .src_rq = busiest_rq,
8e45cb54
PZ
6652 .idle = CPU_IDLE,
6653 };
6654
1e3c88bd
PZ
6655 schedstat_inc(sd, alb_count);
6656
8e45cb54 6657 if (move_one_task(&env))
1e3c88bd
PZ
6658 schedstat_inc(sd, alb_pushed);
6659 else
6660 schedstat_inc(sd, alb_failed);
6661 }
dce840a0 6662 rcu_read_unlock();
1e3c88bd 6663 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6664out_unlock:
6665 busiest_rq->active_balance = 0;
6666 raw_spin_unlock_irq(&busiest_rq->lock);
6667 return 0;
1e3c88bd
PZ
6668}
6669
3451d024 6670#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6671/*
6672 * idle load balancing details
83cd4fe2
VP
6673 * - When one of the busy CPUs notice that there may be an idle rebalancing
6674 * needed, they will kick the idle load balancer, which then does idle
6675 * load balancing for all the idle CPUs.
6676 */
1e3c88bd 6677static struct {
83cd4fe2 6678 cpumask_var_t idle_cpus_mask;
0b005cf5 6679 atomic_t nr_cpus;
83cd4fe2
VP
6680 unsigned long next_balance; /* in jiffy units */
6681} nohz ____cacheline_aligned;
1e3c88bd 6682
3dd0337d 6683static inline int find_new_ilb(void)
1e3c88bd 6684{
0b005cf5 6685 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6686
786d6dc7
SS
6687 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6688 return ilb;
6689
6690 return nr_cpu_ids;
1e3c88bd 6691}
1e3c88bd 6692
83cd4fe2
VP
6693/*
6694 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6695 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6696 * CPU (if there is one).
6697 */
0aeeeeba 6698static void nohz_balancer_kick(void)
83cd4fe2
VP
6699{
6700 int ilb_cpu;
6701
6702 nohz.next_balance++;
6703
3dd0337d 6704 ilb_cpu = find_new_ilb();
83cd4fe2 6705
0b005cf5
SS
6706 if (ilb_cpu >= nr_cpu_ids)
6707 return;
83cd4fe2 6708
cd490c5b 6709 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6710 return;
6711 /*
6712 * Use smp_send_reschedule() instead of resched_cpu().
6713 * This way we generate a sched IPI on the target cpu which
6714 * is idle. And the softirq performing nohz idle load balance
6715 * will be run before returning from the IPI.
6716 */
6717 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6718 return;
6719}
6720
c1cc017c 6721static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6722{
6723 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6724 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6725 atomic_dec(&nohz.nr_cpus);
6726 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6727 }
6728}
6729
69e1e811
SS
6730static inline void set_cpu_sd_state_busy(void)
6731{
6732 struct sched_domain *sd;
37dc6b50 6733 int cpu = smp_processor_id();
69e1e811 6734
69e1e811 6735 rcu_read_lock();
37dc6b50 6736 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6737
6738 if (!sd || !sd->nohz_idle)
6739 goto unlock;
6740 sd->nohz_idle = 0;
6741
37dc6b50 6742 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6743unlock:
69e1e811
SS
6744 rcu_read_unlock();
6745}
6746
6747void set_cpu_sd_state_idle(void)
6748{
6749 struct sched_domain *sd;
37dc6b50 6750 int cpu = smp_processor_id();
69e1e811 6751
69e1e811 6752 rcu_read_lock();
37dc6b50 6753 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6754
6755 if (!sd || sd->nohz_idle)
6756 goto unlock;
6757 sd->nohz_idle = 1;
6758
37dc6b50 6759 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6760unlock:
69e1e811
SS
6761 rcu_read_unlock();
6762}
6763
1e3c88bd 6764/*
c1cc017c 6765 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6766 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6767 */
c1cc017c 6768void nohz_balance_enter_idle(int cpu)
1e3c88bd 6769{
71325960
SS
6770 /*
6771 * If this cpu is going down, then nothing needs to be done.
6772 */
6773 if (!cpu_active(cpu))
6774 return;
6775
c1cc017c
AS
6776 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6777 return;
1e3c88bd 6778
c1cc017c
AS
6779 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6780 atomic_inc(&nohz.nr_cpus);
6781 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6782}
71325960 6783
0db0628d 6784static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6785 unsigned long action, void *hcpu)
6786{
6787 switch (action & ~CPU_TASKS_FROZEN) {
6788 case CPU_DYING:
c1cc017c 6789 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6790 return NOTIFY_OK;
6791 default:
6792 return NOTIFY_DONE;
6793 }
6794}
1e3c88bd
PZ
6795#endif
6796
6797static DEFINE_SPINLOCK(balancing);
6798
49c022e6
PZ
6799/*
6800 * Scale the max load_balance interval with the number of CPUs in the system.
6801 * This trades load-balance latency on larger machines for less cross talk.
6802 */
029632fb 6803void update_max_interval(void)
49c022e6
PZ
6804{
6805 max_load_balance_interval = HZ*num_online_cpus()/10;
6806}
6807
1e3c88bd
PZ
6808/*
6809 * It checks each scheduling domain to see if it is due to be balanced,
6810 * and initiates a balancing operation if so.
6811 *
b9b0853a 6812 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6813 */
f7ed0a89 6814static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6815{
23f0d209 6816 int continue_balancing = 1;
f7ed0a89 6817 int cpu = rq->cpu;
1e3c88bd 6818 unsigned long interval;
04f733b4 6819 struct sched_domain *sd;
1e3c88bd
PZ
6820 /* Earliest time when we have to do rebalance again */
6821 unsigned long next_balance = jiffies + 60*HZ;
6822 int update_next_balance = 0;
f48627e6
JL
6823 int need_serialize, need_decay = 0;
6824 u64 max_cost = 0;
1e3c88bd 6825
48a16753 6826 update_blocked_averages(cpu);
2069dd75 6827
dce840a0 6828 rcu_read_lock();
1e3c88bd 6829 for_each_domain(cpu, sd) {
f48627e6
JL
6830 /*
6831 * Decay the newidle max times here because this is a regular
6832 * visit to all the domains. Decay ~1% per second.
6833 */
6834 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6835 sd->max_newidle_lb_cost =
6836 (sd->max_newidle_lb_cost * 253) / 256;
6837 sd->next_decay_max_lb_cost = jiffies + HZ;
6838 need_decay = 1;
6839 }
6840 max_cost += sd->max_newidle_lb_cost;
6841
1e3c88bd
PZ
6842 if (!(sd->flags & SD_LOAD_BALANCE))
6843 continue;
6844
f48627e6
JL
6845 /*
6846 * Stop the load balance at this level. There is another
6847 * CPU in our sched group which is doing load balancing more
6848 * actively.
6849 */
6850 if (!continue_balancing) {
6851 if (need_decay)
6852 continue;
6853 break;
6854 }
6855
1e3c88bd
PZ
6856 interval = sd->balance_interval;
6857 if (idle != CPU_IDLE)
6858 interval *= sd->busy_factor;
6859
6860 /* scale ms to jiffies */
6861 interval = msecs_to_jiffies(interval);
49c022e6 6862 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6863
6864 need_serialize = sd->flags & SD_SERIALIZE;
6865
6866 if (need_serialize) {
6867 if (!spin_trylock(&balancing))
6868 goto out;
6869 }
6870
6871 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6872 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6873 /*
6263322c 6874 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6875 * env->dst_cpu, so we can't know our idle
6876 * state even if we migrated tasks. Update it.
1e3c88bd 6877 */
de5eb2dd 6878 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6879 }
6880 sd->last_balance = jiffies;
6881 }
6882 if (need_serialize)
6883 spin_unlock(&balancing);
6884out:
6885 if (time_after(next_balance, sd->last_balance + interval)) {
6886 next_balance = sd->last_balance + interval;
6887 update_next_balance = 1;
6888 }
f48627e6
JL
6889 }
6890 if (need_decay) {
1e3c88bd 6891 /*
f48627e6
JL
6892 * Ensure the rq-wide value also decays but keep it at a
6893 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6894 */
f48627e6
JL
6895 rq->max_idle_balance_cost =
6896 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6897 }
dce840a0 6898 rcu_read_unlock();
1e3c88bd
PZ
6899
6900 /*
6901 * next_balance will be updated only when there is a need.
6902 * When the cpu is attached to null domain for ex, it will not be
6903 * updated.
6904 */
6905 if (likely(update_next_balance))
6906 rq->next_balance = next_balance;
6907}
6908
3451d024 6909#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6910/*
3451d024 6911 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6912 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6913 */
208cb16b 6914static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 6915{
208cb16b 6916 int this_cpu = this_rq->cpu;
83cd4fe2
VP
6917 struct rq *rq;
6918 int balance_cpu;
6919
1c792db7
SS
6920 if (idle != CPU_IDLE ||
6921 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6922 goto end;
83cd4fe2
VP
6923
6924 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6925 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6926 continue;
6927
6928 /*
6929 * If this cpu gets work to do, stop the load balancing
6930 * work being done for other cpus. Next load
6931 * balancing owner will pick it up.
6932 */
1c792db7 6933 if (need_resched())
83cd4fe2 6934 break;
83cd4fe2 6935
5ed4f1d9
VG
6936 rq = cpu_rq(balance_cpu);
6937
6938 raw_spin_lock_irq(&rq->lock);
6939 update_rq_clock(rq);
6940 update_idle_cpu_load(rq);
6941 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 6942
f7ed0a89 6943 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 6944
83cd4fe2
VP
6945 if (time_after(this_rq->next_balance, rq->next_balance))
6946 this_rq->next_balance = rq->next_balance;
6947 }
6948 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6949end:
6950 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6951}
6952
6953/*
0b005cf5
SS
6954 * Current heuristic for kicking the idle load balancer in the presence
6955 * of an idle cpu is the system.
6956 * - This rq has more than one task.
6957 * - At any scheduler domain level, this cpu's scheduler group has multiple
6958 * busy cpu's exceeding the group's power.
6959 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6960 * domain span are idle.
83cd4fe2 6961 */
4a725627 6962static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
6963{
6964 unsigned long now = jiffies;
0b005cf5 6965 struct sched_domain *sd;
37dc6b50 6966 struct sched_group_power *sgp;
4a725627 6967 int nr_busy, cpu = rq->cpu;
83cd4fe2 6968
4a725627 6969 if (unlikely(rq->idle_balance))
83cd4fe2
VP
6970 return 0;
6971
1c792db7
SS
6972 /*
6973 * We may be recently in ticked or tickless idle mode. At the first
6974 * busy tick after returning from idle, we will update the busy stats.
6975 */
69e1e811 6976 set_cpu_sd_state_busy();
c1cc017c 6977 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6978
6979 /*
6980 * None are in tickless mode and hence no need for NOHZ idle load
6981 * balancing.
6982 */
6983 if (likely(!atomic_read(&nohz.nr_cpus)))
6984 return 0;
1c792db7
SS
6985
6986 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6987 return 0;
6988
0b005cf5
SS
6989 if (rq->nr_running >= 2)
6990 goto need_kick;
83cd4fe2 6991
067491b7 6992 rcu_read_lock();
37dc6b50 6993 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6994
37dc6b50
PM
6995 if (sd) {
6996 sgp = sd->groups->sgp;
6997 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6998
37dc6b50 6999 if (nr_busy > 1)
067491b7 7000 goto need_kick_unlock;
83cd4fe2 7001 }
37dc6b50
PM
7002
7003 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7004
7005 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7006 sched_domain_span(sd)) < cpu))
7007 goto need_kick_unlock;
7008
067491b7 7009 rcu_read_unlock();
83cd4fe2 7010 return 0;
067491b7
PZ
7011
7012need_kick_unlock:
7013 rcu_read_unlock();
0b005cf5
SS
7014need_kick:
7015 return 1;
83cd4fe2
VP
7016}
7017#else
208cb16b 7018static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7019#endif
7020
7021/*
7022 * run_rebalance_domains is triggered when needed from the scheduler tick.
7023 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7024 */
1e3c88bd
PZ
7025static void run_rebalance_domains(struct softirq_action *h)
7026{
208cb16b 7027 struct rq *this_rq = this_rq();
6eb57e0d 7028 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7029 CPU_IDLE : CPU_NOT_IDLE;
7030
f7ed0a89 7031 rebalance_domains(this_rq, idle);
1e3c88bd 7032
1e3c88bd 7033 /*
83cd4fe2 7034 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7035 * balancing on behalf of the other idle cpus whose ticks are
7036 * stopped.
7037 */
208cb16b 7038 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7039}
7040
63f609b1 7041static inline int on_null_domain(struct rq *rq)
1e3c88bd 7042{
63f609b1 7043 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
7044}
7045
7046/*
7047 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7048 */
7caff66f 7049void trigger_load_balance(struct rq *rq)
1e3c88bd 7050{
1e3c88bd 7051 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7052 if (unlikely(on_null_domain(rq)))
7053 return;
7054
7055 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7056 raise_softirq(SCHED_SOFTIRQ);
3451d024 7057#ifdef CONFIG_NO_HZ_COMMON
c726099e 7058 if (nohz_kick_needed(rq))
0aeeeeba 7059 nohz_balancer_kick();
83cd4fe2 7060#endif
1e3c88bd
PZ
7061}
7062
0bcdcf28
CE
7063static void rq_online_fair(struct rq *rq)
7064{
7065 update_sysctl();
7066}
7067
7068static void rq_offline_fair(struct rq *rq)
7069{
7070 update_sysctl();
a4c96ae3
PB
7071
7072 /* Ensure any throttled groups are reachable by pick_next_task */
7073 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7074}
7075
55e12e5e 7076#endif /* CONFIG_SMP */
e1d1484f 7077
bf0f6f24
IM
7078/*
7079 * scheduler tick hitting a task of our scheduling class:
7080 */
8f4d37ec 7081static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7082{
7083 struct cfs_rq *cfs_rq;
7084 struct sched_entity *se = &curr->se;
7085
7086 for_each_sched_entity(se) {
7087 cfs_rq = cfs_rq_of(se);
8f4d37ec 7088 entity_tick(cfs_rq, se, queued);
bf0f6f24 7089 }
18bf2805 7090
10e84b97 7091 if (numabalancing_enabled)
cbee9f88 7092 task_tick_numa(rq, curr);
3d59eebc 7093
18bf2805 7094 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7095}
7096
7097/*
cd29fe6f
PZ
7098 * called on fork with the child task as argument from the parent's context
7099 * - child not yet on the tasklist
7100 * - preemption disabled
bf0f6f24 7101 */
cd29fe6f 7102static void task_fork_fair(struct task_struct *p)
bf0f6f24 7103{
4fc420c9
DN
7104 struct cfs_rq *cfs_rq;
7105 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7106 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7107 struct rq *rq = this_rq();
7108 unsigned long flags;
7109
05fa785c 7110 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7111
861d034e
PZ
7112 update_rq_clock(rq);
7113
4fc420c9
DN
7114 cfs_rq = task_cfs_rq(current);
7115 curr = cfs_rq->curr;
7116
6c9a27f5
DN
7117 /*
7118 * Not only the cpu but also the task_group of the parent might have
7119 * been changed after parent->se.parent,cfs_rq were copied to
7120 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7121 * of child point to valid ones.
7122 */
7123 rcu_read_lock();
7124 __set_task_cpu(p, this_cpu);
7125 rcu_read_unlock();
bf0f6f24 7126
7109c442 7127 update_curr(cfs_rq);
cd29fe6f 7128
b5d9d734
MG
7129 if (curr)
7130 se->vruntime = curr->vruntime;
aeb73b04 7131 place_entity(cfs_rq, se, 1);
4d78e7b6 7132
cd29fe6f 7133 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7134 /*
edcb60a3
IM
7135 * Upon rescheduling, sched_class::put_prev_task() will place
7136 * 'current' within the tree based on its new key value.
7137 */
4d78e7b6 7138 swap(curr->vruntime, se->vruntime);
aec0a514 7139 resched_task(rq->curr);
4d78e7b6 7140 }
bf0f6f24 7141
88ec22d3
PZ
7142 se->vruntime -= cfs_rq->min_vruntime;
7143
05fa785c 7144 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7145}
7146
cb469845
SR
7147/*
7148 * Priority of the task has changed. Check to see if we preempt
7149 * the current task.
7150 */
da7a735e
PZ
7151static void
7152prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7153{
da7a735e
PZ
7154 if (!p->se.on_rq)
7155 return;
7156
cb469845
SR
7157 /*
7158 * Reschedule if we are currently running on this runqueue and
7159 * our priority decreased, or if we are not currently running on
7160 * this runqueue and our priority is higher than the current's
7161 */
da7a735e 7162 if (rq->curr == p) {
cb469845
SR
7163 if (p->prio > oldprio)
7164 resched_task(rq->curr);
7165 } else
15afe09b 7166 check_preempt_curr(rq, p, 0);
cb469845
SR
7167}
7168
da7a735e
PZ
7169static void switched_from_fair(struct rq *rq, struct task_struct *p)
7170{
7171 struct sched_entity *se = &p->se;
7172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7173
7174 /*
7175 * Ensure the task's vruntime is normalized, so that when its
7176 * switched back to the fair class the enqueue_entity(.flags=0) will
7177 * do the right thing.
7178 *
7179 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7180 * have normalized the vruntime, if it was !on_rq, then only when
7181 * the task is sleeping will it still have non-normalized vruntime.
7182 */
7183 if (!se->on_rq && p->state != TASK_RUNNING) {
7184 /*
7185 * Fix up our vruntime so that the current sleep doesn't
7186 * cause 'unlimited' sleep bonus.
7187 */
7188 place_entity(cfs_rq, se, 0);
7189 se->vruntime -= cfs_rq->min_vruntime;
7190 }
9ee474f5 7191
141965c7 7192#ifdef CONFIG_SMP
9ee474f5
PT
7193 /*
7194 * Remove our load from contribution when we leave sched_fair
7195 * and ensure we don't carry in an old decay_count if we
7196 * switch back.
7197 */
87e3c8ae
KT
7198 if (se->avg.decay_count) {
7199 __synchronize_entity_decay(se);
7200 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7201 }
7202#endif
da7a735e
PZ
7203}
7204
cb469845
SR
7205/*
7206 * We switched to the sched_fair class.
7207 */
da7a735e 7208static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7209{
da7a735e
PZ
7210 if (!p->se.on_rq)
7211 return;
7212
cb469845
SR
7213 /*
7214 * We were most likely switched from sched_rt, so
7215 * kick off the schedule if running, otherwise just see
7216 * if we can still preempt the current task.
7217 */
da7a735e 7218 if (rq->curr == p)
cb469845
SR
7219 resched_task(rq->curr);
7220 else
15afe09b 7221 check_preempt_curr(rq, p, 0);
cb469845
SR
7222}
7223
83b699ed
SV
7224/* Account for a task changing its policy or group.
7225 *
7226 * This routine is mostly called to set cfs_rq->curr field when a task
7227 * migrates between groups/classes.
7228 */
7229static void set_curr_task_fair(struct rq *rq)
7230{
7231 struct sched_entity *se = &rq->curr->se;
7232
ec12cb7f
PT
7233 for_each_sched_entity(se) {
7234 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7235
7236 set_next_entity(cfs_rq, se);
7237 /* ensure bandwidth has been allocated on our new cfs_rq */
7238 account_cfs_rq_runtime(cfs_rq, 0);
7239 }
83b699ed
SV
7240}
7241
029632fb
PZ
7242void init_cfs_rq(struct cfs_rq *cfs_rq)
7243{
7244 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7245 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7246#ifndef CONFIG_64BIT
7247 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7248#endif
141965c7 7249#ifdef CONFIG_SMP
9ee474f5 7250 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7251 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7252#endif
029632fb
PZ
7253}
7254
810b3817 7255#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7256static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7257{
fed14d45 7258 struct sched_entity *se = &p->se;
aff3e498 7259 struct cfs_rq *cfs_rq;
fed14d45 7260
b2b5ce02
PZ
7261 /*
7262 * If the task was not on the rq at the time of this cgroup movement
7263 * it must have been asleep, sleeping tasks keep their ->vruntime
7264 * absolute on their old rq until wakeup (needed for the fair sleeper
7265 * bonus in place_entity()).
7266 *
7267 * If it was on the rq, we've just 'preempted' it, which does convert
7268 * ->vruntime to a relative base.
7269 *
7270 * Make sure both cases convert their relative position when migrating
7271 * to another cgroup's rq. This does somewhat interfere with the
7272 * fair sleeper stuff for the first placement, but who cares.
7273 */
7ceff013
DN
7274 /*
7275 * When !on_rq, vruntime of the task has usually NOT been normalized.
7276 * But there are some cases where it has already been normalized:
7277 *
7278 * - Moving a forked child which is waiting for being woken up by
7279 * wake_up_new_task().
62af3783
DN
7280 * - Moving a task which has been woken up by try_to_wake_up() and
7281 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7282 *
7283 * To prevent boost or penalty in the new cfs_rq caused by delta
7284 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7285 */
fed14d45 7286 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7287 on_rq = 1;
7288
b2b5ce02 7289 if (!on_rq)
fed14d45 7290 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7291 set_task_rq(p, task_cpu(p));
fed14d45 7292 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7293 if (!on_rq) {
fed14d45
PZ
7294 cfs_rq = cfs_rq_of(se);
7295 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7296#ifdef CONFIG_SMP
7297 /*
7298 * migrate_task_rq_fair() will have removed our previous
7299 * contribution, but we must synchronize for ongoing future
7300 * decay.
7301 */
fed14d45
PZ
7302 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7303 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7304#endif
7305 }
810b3817 7306}
029632fb
PZ
7307
7308void free_fair_sched_group(struct task_group *tg)
7309{
7310 int i;
7311
7312 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7313
7314 for_each_possible_cpu(i) {
7315 if (tg->cfs_rq)
7316 kfree(tg->cfs_rq[i]);
7317 if (tg->se)
7318 kfree(tg->se[i]);
7319 }
7320
7321 kfree(tg->cfs_rq);
7322 kfree(tg->se);
7323}
7324
7325int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7326{
7327 struct cfs_rq *cfs_rq;
7328 struct sched_entity *se;
7329 int i;
7330
7331 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7332 if (!tg->cfs_rq)
7333 goto err;
7334 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7335 if (!tg->se)
7336 goto err;
7337
7338 tg->shares = NICE_0_LOAD;
7339
7340 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7341
7342 for_each_possible_cpu(i) {
7343 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7344 GFP_KERNEL, cpu_to_node(i));
7345 if (!cfs_rq)
7346 goto err;
7347
7348 se = kzalloc_node(sizeof(struct sched_entity),
7349 GFP_KERNEL, cpu_to_node(i));
7350 if (!se)
7351 goto err_free_rq;
7352
7353 init_cfs_rq(cfs_rq);
7354 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7355 }
7356
7357 return 1;
7358
7359err_free_rq:
7360 kfree(cfs_rq);
7361err:
7362 return 0;
7363}
7364
7365void unregister_fair_sched_group(struct task_group *tg, int cpu)
7366{
7367 struct rq *rq = cpu_rq(cpu);
7368 unsigned long flags;
7369
7370 /*
7371 * Only empty task groups can be destroyed; so we can speculatively
7372 * check on_list without danger of it being re-added.
7373 */
7374 if (!tg->cfs_rq[cpu]->on_list)
7375 return;
7376
7377 raw_spin_lock_irqsave(&rq->lock, flags);
7378 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7379 raw_spin_unlock_irqrestore(&rq->lock, flags);
7380}
7381
7382void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7383 struct sched_entity *se, int cpu,
7384 struct sched_entity *parent)
7385{
7386 struct rq *rq = cpu_rq(cpu);
7387
7388 cfs_rq->tg = tg;
7389 cfs_rq->rq = rq;
029632fb
PZ
7390 init_cfs_rq_runtime(cfs_rq);
7391
7392 tg->cfs_rq[cpu] = cfs_rq;
7393 tg->se[cpu] = se;
7394
7395 /* se could be NULL for root_task_group */
7396 if (!se)
7397 return;
7398
fed14d45 7399 if (!parent) {
029632fb 7400 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7401 se->depth = 0;
7402 } else {
029632fb 7403 se->cfs_rq = parent->my_q;
fed14d45
PZ
7404 se->depth = parent->depth + 1;
7405 }
029632fb
PZ
7406
7407 se->my_q = cfs_rq;
0ac9b1c2
PT
7408 /* guarantee group entities always have weight */
7409 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7410 se->parent = parent;
7411}
7412
7413static DEFINE_MUTEX(shares_mutex);
7414
7415int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7416{
7417 int i;
7418 unsigned long flags;
7419
7420 /*
7421 * We can't change the weight of the root cgroup.
7422 */
7423 if (!tg->se[0])
7424 return -EINVAL;
7425
7426 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7427
7428 mutex_lock(&shares_mutex);
7429 if (tg->shares == shares)
7430 goto done;
7431
7432 tg->shares = shares;
7433 for_each_possible_cpu(i) {
7434 struct rq *rq = cpu_rq(i);
7435 struct sched_entity *se;
7436
7437 se = tg->se[i];
7438 /* Propagate contribution to hierarchy */
7439 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7440
7441 /* Possible calls to update_curr() need rq clock */
7442 update_rq_clock(rq);
17bc14b7 7443 for_each_sched_entity(se)
029632fb
PZ
7444 update_cfs_shares(group_cfs_rq(se));
7445 raw_spin_unlock_irqrestore(&rq->lock, flags);
7446 }
7447
7448done:
7449 mutex_unlock(&shares_mutex);
7450 return 0;
7451}
7452#else /* CONFIG_FAIR_GROUP_SCHED */
7453
7454void free_fair_sched_group(struct task_group *tg) { }
7455
7456int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7457{
7458 return 1;
7459}
7460
7461void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7462
7463#endif /* CONFIG_FAIR_GROUP_SCHED */
7464
810b3817 7465
6d686f45 7466static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7467{
7468 struct sched_entity *se = &task->se;
0d721cea
PW
7469 unsigned int rr_interval = 0;
7470
7471 /*
7472 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7473 * idle runqueue:
7474 */
0d721cea 7475 if (rq->cfs.load.weight)
a59f4e07 7476 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7477
7478 return rr_interval;
7479}
7480
bf0f6f24
IM
7481/*
7482 * All the scheduling class methods:
7483 */
029632fb 7484const struct sched_class fair_sched_class = {
5522d5d5 7485 .next = &idle_sched_class,
bf0f6f24
IM
7486 .enqueue_task = enqueue_task_fair,
7487 .dequeue_task = dequeue_task_fair,
7488 .yield_task = yield_task_fair,
d95f4122 7489 .yield_to_task = yield_to_task_fair,
bf0f6f24 7490
2e09bf55 7491 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7492
7493 .pick_next_task = pick_next_task_fair,
7494 .put_prev_task = put_prev_task_fair,
7495
681f3e68 7496#ifdef CONFIG_SMP
4ce72a2c 7497 .select_task_rq = select_task_rq_fair,
0a74bef8 7498 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7499
0bcdcf28
CE
7500 .rq_online = rq_online_fair,
7501 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7502
7503 .task_waking = task_waking_fair,
681f3e68 7504#endif
bf0f6f24 7505
83b699ed 7506 .set_curr_task = set_curr_task_fair,
bf0f6f24 7507 .task_tick = task_tick_fair,
cd29fe6f 7508 .task_fork = task_fork_fair,
cb469845
SR
7509
7510 .prio_changed = prio_changed_fair,
da7a735e 7511 .switched_from = switched_from_fair,
cb469845 7512 .switched_to = switched_to_fair,
810b3817 7513
0d721cea
PW
7514 .get_rr_interval = get_rr_interval_fair,
7515
810b3817 7516#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7517 .task_move_group = task_move_group_fair,
810b3817 7518#endif
bf0f6f24
IM
7519};
7520
7521#ifdef CONFIG_SCHED_DEBUG
029632fb 7522void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7523{
bf0f6f24
IM
7524 struct cfs_rq *cfs_rq;
7525
5973e5b9 7526 rcu_read_lock();
c3b64f1e 7527 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7528 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7529 rcu_read_unlock();
bf0f6f24
IM
7530}
7531#endif
029632fb
PZ
7532
7533__init void init_sched_fair_class(void)
7534{
7535#ifdef CONFIG_SMP
7536 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7537
3451d024 7538#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7539 nohz.next_balance = jiffies;
029632fb 7540 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7541 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7542#endif
7543#endif /* SMP */
7544
7545}
This page took 1.010116 seconds and 5 git commands to generate.