sched/numa: Select a preferred node with the most numa hinting faults
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
598f0ec0
MG
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
cbee9f88 824 */
598f0ec0
MG
825unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
828
829/* Portion of address space to scan in MB */
830unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 831
4b96a29b
PZ
832/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
598f0ec0
MG
835static unsigned int task_nr_scan_windows(struct task_struct *p)
836{
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852}
853
854/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855#define MAX_SCAN_WINDOW 2560
856
857static unsigned int task_scan_min(struct task_struct *p)
858{
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868}
869
870static unsigned int task_scan_max(struct task_struct *p)
871{
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878}
879
cbee9f88
PZ
880static void task_numa_placement(struct task_struct *p)
881{
688b7585
MG
882 int seq, nid, max_nid = -1;
883 unsigned long max_faults = 0;
cbee9f88 884
2832bc19
HD
885 if (!p->mm) /* for example, ksmd faulting in a user's mm */
886 return;
887 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
888 if (p->numa_scan_seq == seq)
889 return;
890 p->numa_scan_seq = seq;
598f0ec0 891 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 892
688b7585
MG
893 /* Find the node with the highest number of faults */
894 for_each_online_node(nid) {
895 unsigned long faults = p->numa_faults[nid];
896 p->numa_faults[nid] >>= 1;
897 if (faults > max_faults) {
898 max_faults = faults;
899 max_nid = nid;
900 }
901 }
902
903 /* Update the tasks preferred node if necessary */
904 if (max_faults && max_nid != p->numa_preferred_nid)
905 p->numa_preferred_nid = max_nid;
cbee9f88
PZ
906}
907
908/*
909 * Got a PROT_NONE fault for a page on @node.
910 */
b8593bfd 911void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
912{
913 struct task_struct *p = current;
914
10e84b97 915 if (!numabalancing_enabled)
1a687c2e
MG
916 return;
917
f809ca9a
MG
918 /* Allocate buffer to track faults on a per-node basis */
919 if (unlikely(!p->numa_faults)) {
920 int size = sizeof(*p->numa_faults) * nr_node_ids;
921
922 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
923 if (!p->numa_faults)
924 return;
925 }
cbee9f88 926
fb003b80 927 /*
b8593bfd
MG
928 * If pages are properly placed (did not migrate) then scan slower.
929 * This is reset periodically in case of phase changes
fb003b80 930 */
598f0ec0
MG
931 if (!migrated) {
932 /* Initialise if necessary */
933 if (!p->numa_scan_period_max)
934 p->numa_scan_period_max = task_scan_max(p);
935
936 p->numa_scan_period = min(p->numa_scan_period_max,
937 p->numa_scan_period + 10);
938 }
fb003b80 939
cbee9f88 940 task_numa_placement(p);
f809ca9a
MG
941
942 p->numa_faults[node] += pages;
cbee9f88
PZ
943}
944
6e5fb223
PZ
945static void reset_ptenuma_scan(struct task_struct *p)
946{
947 ACCESS_ONCE(p->mm->numa_scan_seq)++;
948 p->mm->numa_scan_offset = 0;
949}
950
cbee9f88
PZ
951/*
952 * The expensive part of numa migration is done from task_work context.
953 * Triggered from task_tick_numa().
954 */
955void task_numa_work(struct callback_head *work)
956{
957 unsigned long migrate, next_scan, now = jiffies;
958 struct task_struct *p = current;
959 struct mm_struct *mm = p->mm;
6e5fb223 960 struct vm_area_struct *vma;
9f40604c 961 unsigned long start, end;
598f0ec0 962 unsigned long nr_pte_updates = 0;
9f40604c 963 long pages;
cbee9f88
PZ
964
965 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
966
967 work->next = work; /* protect against double add */
968 /*
969 * Who cares about NUMA placement when they're dying.
970 *
971 * NOTE: make sure not to dereference p->mm before this check,
972 * exit_task_work() happens _after_ exit_mm() so we could be called
973 * without p->mm even though we still had it when we enqueued this
974 * work.
975 */
976 if (p->flags & PF_EXITING)
977 return;
978
7e8d16b6
MG
979 if (!mm->numa_next_reset || !mm->numa_next_scan) {
980 mm->numa_next_scan = now +
981 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
982 mm->numa_next_reset = now +
983 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
984 }
985
b8593bfd
MG
986 /*
987 * Reset the scan period if enough time has gone by. Objective is that
988 * scanning will be reduced if pages are properly placed. As tasks
989 * can enter different phases this needs to be re-examined. Lacking
990 * proper tracking of reference behaviour, this blunt hammer is used.
991 */
992 migrate = mm->numa_next_reset;
993 if (time_after(now, migrate)) {
598f0ec0 994 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
995 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
996 xchg(&mm->numa_next_reset, next_scan);
997 }
998
cbee9f88
PZ
999 /*
1000 * Enforce maximal scan/migration frequency..
1001 */
1002 migrate = mm->numa_next_scan;
1003 if (time_before(now, migrate))
1004 return;
1005
598f0ec0
MG
1006 if (p->numa_scan_period == 0) {
1007 p->numa_scan_period_max = task_scan_max(p);
1008 p->numa_scan_period = task_scan_min(p);
1009 }
cbee9f88 1010
fb003b80 1011 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1012 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1013 return;
1014
19a78d11
PZ
1015 /*
1016 * Delay this task enough that another task of this mm will likely win
1017 * the next time around.
1018 */
1019 p->node_stamp += 2 * TICK_NSEC;
1020
9f40604c
MG
1021 start = mm->numa_scan_offset;
1022 pages = sysctl_numa_balancing_scan_size;
1023 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1024 if (!pages)
1025 return;
cbee9f88 1026
6e5fb223 1027 down_read(&mm->mmap_sem);
9f40604c 1028 vma = find_vma(mm, start);
6e5fb223
PZ
1029 if (!vma) {
1030 reset_ptenuma_scan(p);
9f40604c 1031 start = 0;
6e5fb223
PZ
1032 vma = mm->mmap;
1033 }
9f40604c 1034 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
1035 if (!vma_migratable(vma))
1036 continue;
1037
1038 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 1039 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
1040 continue;
1041
9f40604c
MG
1042 do {
1043 start = max(start, vma->vm_start);
1044 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1045 end = min(end, vma->vm_end);
598f0ec0
MG
1046 nr_pte_updates += change_prot_numa(vma, start, end);
1047
1048 /*
1049 * Scan sysctl_numa_balancing_scan_size but ensure that
1050 * at least one PTE is updated so that unused virtual
1051 * address space is quickly skipped.
1052 */
1053 if (nr_pte_updates)
1054 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1055
9f40604c
MG
1056 start = end;
1057 if (pages <= 0)
1058 goto out;
1059 } while (end != vma->vm_end);
cbee9f88 1060 }
6e5fb223 1061
9f40604c 1062out:
f307cd1a
MG
1063 /*
1064 * If the whole process was scanned without updates then no NUMA
1065 * hinting faults are being recorded and scan rate should be lower.
1066 */
1067 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1068 p->numa_scan_period = min(p->numa_scan_period_max,
1069 p->numa_scan_period << 1);
1070
1071 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1072 mm->numa_next_scan = next_scan;
1073 }
1074
6e5fb223 1075 /*
c69307d5
PZ
1076 * It is possible to reach the end of the VMA list but the last few
1077 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1078 * would find the !migratable VMA on the next scan but not reset the
1079 * scanner to the start so check it now.
6e5fb223
PZ
1080 */
1081 if (vma)
9f40604c 1082 mm->numa_scan_offset = start;
6e5fb223
PZ
1083 else
1084 reset_ptenuma_scan(p);
1085 up_read(&mm->mmap_sem);
cbee9f88
PZ
1086}
1087
1088/*
1089 * Drive the periodic memory faults..
1090 */
1091void task_tick_numa(struct rq *rq, struct task_struct *curr)
1092{
1093 struct callback_head *work = &curr->numa_work;
1094 u64 period, now;
1095
1096 /*
1097 * We don't care about NUMA placement if we don't have memory.
1098 */
1099 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1100 return;
1101
1102 /*
1103 * Using runtime rather than walltime has the dual advantage that
1104 * we (mostly) drive the selection from busy threads and that the
1105 * task needs to have done some actual work before we bother with
1106 * NUMA placement.
1107 */
1108 now = curr->se.sum_exec_runtime;
1109 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1110
1111 if (now - curr->node_stamp > period) {
4b96a29b 1112 if (!curr->node_stamp)
598f0ec0 1113 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1114 curr->node_stamp += period;
cbee9f88
PZ
1115
1116 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1117 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1118 task_work_add(curr, work, true);
1119 }
1120 }
1121}
1122#else
1123static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1124{
1125}
1126#endif /* CONFIG_NUMA_BALANCING */
1127
30cfdcfc
DA
1128static void
1129account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1130{
1131 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1132 if (!parent_entity(se))
029632fb 1133 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1134#ifdef CONFIG_SMP
1135 if (entity_is_task(se))
eb95308e 1136 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1137#endif
30cfdcfc 1138 cfs_rq->nr_running++;
30cfdcfc
DA
1139}
1140
1141static void
1142account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1143{
1144 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1145 if (!parent_entity(se))
029632fb 1146 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1147 if (entity_is_task(se))
b87f1724 1148 list_del_init(&se->group_node);
30cfdcfc 1149 cfs_rq->nr_running--;
30cfdcfc
DA
1150}
1151
3ff6dcac
YZ
1152#ifdef CONFIG_FAIR_GROUP_SCHED
1153# ifdef CONFIG_SMP
cf5f0acf
PZ
1154static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1155{
1156 long tg_weight;
1157
1158 /*
1159 * Use this CPU's actual weight instead of the last load_contribution
1160 * to gain a more accurate current total weight. See
1161 * update_cfs_rq_load_contribution().
1162 */
bf5b986e 1163 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1164 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1165 tg_weight += cfs_rq->load.weight;
1166
1167 return tg_weight;
1168}
1169
6d5ab293 1170static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1171{
cf5f0acf 1172 long tg_weight, load, shares;
3ff6dcac 1173
cf5f0acf 1174 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1175 load = cfs_rq->load.weight;
3ff6dcac 1176
3ff6dcac 1177 shares = (tg->shares * load);
cf5f0acf
PZ
1178 if (tg_weight)
1179 shares /= tg_weight;
3ff6dcac
YZ
1180
1181 if (shares < MIN_SHARES)
1182 shares = MIN_SHARES;
1183 if (shares > tg->shares)
1184 shares = tg->shares;
1185
1186 return shares;
1187}
3ff6dcac 1188# else /* CONFIG_SMP */
6d5ab293 1189static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1190{
1191 return tg->shares;
1192}
3ff6dcac 1193# endif /* CONFIG_SMP */
2069dd75
PZ
1194static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1195 unsigned long weight)
1196{
19e5eebb
PT
1197 if (se->on_rq) {
1198 /* commit outstanding execution time */
1199 if (cfs_rq->curr == se)
1200 update_curr(cfs_rq);
2069dd75 1201 account_entity_dequeue(cfs_rq, se);
19e5eebb 1202 }
2069dd75
PZ
1203
1204 update_load_set(&se->load, weight);
1205
1206 if (se->on_rq)
1207 account_entity_enqueue(cfs_rq, se);
1208}
1209
82958366
PT
1210static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1211
6d5ab293 1212static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1213{
1214 struct task_group *tg;
1215 struct sched_entity *se;
3ff6dcac 1216 long shares;
2069dd75 1217
2069dd75
PZ
1218 tg = cfs_rq->tg;
1219 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1220 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1221 return;
3ff6dcac
YZ
1222#ifndef CONFIG_SMP
1223 if (likely(se->load.weight == tg->shares))
1224 return;
1225#endif
6d5ab293 1226 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1227
1228 reweight_entity(cfs_rq_of(se), se, shares);
1229}
1230#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1231static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1232{
1233}
1234#endif /* CONFIG_FAIR_GROUP_SCHED */
1235
141965c7 1236#ifdef CONFIG_SMP
5b51f2f8
PT
1237/*
1238 * We choose a half-life close to 1 scheduling period.
1239 * Note: The tables below are dependent on this value.
1240 */
1241#define LOAD_AVG_PERIOD 32
1242#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1243#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1244
1245/* Precomputed fixed inverse multiplies for multiplication by y^n */
1246static const u32 runnable_avg_yN_inv[] = {
1247 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1248 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1249 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1250 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1251 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1252 0x85aac367, 0x82cd8698,
1253};
1254
1255/*
1256 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1257 * over-estimates when re-combining.
1258 */
1259static const u32 runnable_avg_yN_sum[] = {
1260 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1261 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1262 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1263};
1264
9d85f21c
PT
1265/*
1266 * Approximate:
1267 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1268 */
1269static __always_inline u64 decay_load(u64 val, u64 n)
1270{
5b51f2f8
PT
1271 unsigned int local_n;
1272
1273 if (!n)
1274 return val;
1275 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1276 return 0;
1277
1278 /* after bounds checking we can collapse to 32-bit */
1279 local_n = n;
1280
1281 /*
1282 * As y^PERIOD = 1/2, we can combine
1283 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1284 * With a look-up table which covers k^n (n<PERIOD)
1285 *
1286 * To achieve constant time decay_load.
1287 */
1288 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1289 val >>= local_n / LOAD_AVG_PERIOD;
1290 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1291 }
1292
5b51f2f8
PT
1293 val *= runnable_avg_yN_inv[local_n];
1294 /* We don't use SRR here since we always want to round down. */
1295 return val >> 32;
1296}
1297
1298/*
1299 * For updates fully spanning n periods, the contribution to runnable
1300 * average will be: \Sum 1024*y^n
1301 *
1302 * We can compute this reasonably efficiently by combining:
1303 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1304 */
1305static u32 __compute_runnable_contrib(u64 n)
1306{
1307 u32 contrib = 0;
1308
1309 if (likely(n <= LOAD_AVG_PERIOD))
1310 return runnable_avg_yN_sum[n];
1311 else if (unlikely(n >= LOAD_AVG_MAX_N))
1312 return LOAD_AVG_MAX;
1313
1314 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1315 do {
1316 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1317 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1318
1319 n -= LOAD_AVG_PERIOD;
1320 } while (n > LOAD_AVG_PERIOD);
1321
1322 contrib = decay_load(contrib, n);
1323 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1324}
1325
1326/*
1327 * We can represent the historical contribution to runnable average as the
1328 * coefficients of a geometric series. To do this we sub-divide our runnable
1329 * history into segments of approximately 1ms (1024us); label the segment that
1330 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1331 *
1332 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1333 * p0 p1 p2
1334 * (now) (~1ms ago) (~2ms ago)
1335 *
1336 * Let u_i denote the fraction of p_i that the entity was runnable.
1337 *
1338 * We then designate the fractions u_i as our co-efficients, yielding the
1339 * following representation of historical load:
1340 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1341 *
1342 * We choose y based on the with of a reasonably scheduling period, fixing:
1343 * y^32 = 0.5
1344 *
1345 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1346 * approximately half as much as the contribution to load within the last ms
1347 * (u_0).
1348 *
1349 * When a period "rolls over" and we have new u_0`, multiplying the previous
1350 * sum again by y is sufficient to update:
1351 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1352 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1353 */
1354static __always_inline int __update_entity_runnable_avg(u64 now,
1355 struct sched_avg *sa,
1356 int runnable)
1357{
5b51f2f8
PT
1358 u64 delta, periods;
1359 u32 runnable_contrib;
9d85f21c
PT
1360 int delta_w, decayed = 0;
1361
1362 delta = now - sa->last_runnable_update;
1363 /*
1364 * This should only happen when time goes backwards, which it
1365 * unfortunately does during sched clock init when we swap over to TSC.
1366 */
1367 if ((s64)delta < 0) {
1368 sa->last_runnable_update = now;
1369 return 0;
1370 }
1371
1372 /*
1373 * Use 1024ns as the unit of measurement since it's a reasonable
1374 * approximation of 1us and fast to compute.
1375 */
1376 delta >>= 10;
1377 if (!delta)
1378 return 0;
1379 sa->last_runnable_update = now;
1380
1381 /* delta_w is the amount already accumulated against our next period */
1382 delta_w = sa->runnable_avg_period % 1024;
1383 if (delta + delta_w >= 1024) {
1384 /* period roll-over */
1385 decayed = 1;
1386
1387 /*
1388 * Now that we know we're crossing a period boundary, figure
1389 * out how much from delta we need to complete the current
1390 * period and accrue it.
1391 */
1392 delta_w = 1024 - delta_w;
5b51f2f8
PT
1393 if (runnable)
1394 sa->runnable_avg_sum += delta_w;
1395 sa->runnable_avg_period += delta_w;
1396
1397 delta -= delta_w;
1398
1399 /* Figure out how many additional periods this update spans */
1400 periods = delta / 1024;
1401 delta %= 1024;
1402
1403 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1404 periods + 1);
1405 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1406 periods + 1);
1407
1408 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1409 runnable_contrib = __compute_runnable_contrib(periods);
1410 if (runnable)
1411 sa->runnable_avg_sum += runnable_contrib;
1412 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1413 }
1414
1415 /* Remainder of delta accrued against u_0` */
1416 if (runnable)
1417 sa->runnable_avg_sum += delta;
1418 sa->runnable_avg_period += delta;
1419
1420 return decayed;
1421}
1422
9ee474f5 1423/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1424static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1425{
1426 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1427 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1428
1429 decays -= se->avg.decay_count;
1430 if (!decays)
aff3e498 1431 return 0;
9ee474f5
PT
1432
1433 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1434 se->avg.decay_count = 0;
aff3e498
PT
1435
1436 return decays;
9ee474f5
PT
1437}
1438
c566e8e9
PT
1439#ifdef CONFIG_FAIR_GROUP_SCHED
1440static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1441 int force_update)
1442{
1443 struct task_group *tg = cfs_rq->tg;
bf5b986e 1444 long tg_contrib;
c566e8e9
PT
1445
1446 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1447 tg_contrib -= cfs_rq->tg_load_contrib;
1448
bf5b986e
AS
1449 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1450 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1451 cfs_rq->tg_load_contrib += tg_contrib;
1452 }
1453}
8165e145 1454
bb17f655
PT
1455/*
1456 * Aggregate cfs_rq runnable averages into an equivalent task_group
1457 * representation for computing load contributions.
1458 */
1459static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1460 struct cfs_rq *cfs_rq)
1461{
1462 struct task_group *tg = cfs_rq->tg;
1463 long contrib;
1464
1465 /* The fraction of a cpu used by this cfs_rq */
1466 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1467 sa->runnable_avg_period + 1);
1468 contrib -= cfs_rq->tg_runnable_contrib;
1469
1470 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1471 atomic_add(contrib, &tg->runnable_avg);
1472 cfs_rq->tg_runnable_contrib += contrib;
1473 }
1474}
1475
8165e145
PT
1476static inline void __update_group_entity_contrib(struct sched_entity *se)
1477{
1478 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1479 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1480 int runnable_avg;
1481
8165e145
PT
1482 u64 contrib;
1483
1484 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1485 se->avg.load_avg_contrib = div_u64(contrib,
1486 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1487
1488 /*
1489 * For group entities we need to compute a correction term in the case
1490 * that they are consuming <1 cpu so that we would contribute the same
1491 * load as a task of equal weight.
1492 *
1493 * Explicitly co-ordinating this measurement would be expensive, but
1494 * fortunately the sum of each cpus contribution forms a usable
1495 * lower-bound on the true value.
1496 *
1497 * Consider the aggregate of 2 contributions. Either they are disjoint
1498 * (and the sum represents true value) or they are disjoint and we are
1499 * understating by the aggregate of their overlap.
1500 *
1501 * Extending this to N cpus, for a given overlap, the maximum amount we
1502 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1503 * cpus that overlap for this interval and w_i is the interval width.
1504 *
1505 * On a small machine; the first term is well-bounded which bounds the
1506 * total error since w_i is a subset of the period. Whereas on a
1507 * larger machine, while this first term can be larger, if w_i is the
1508 * of consequential size guaranteed to see n_i*w_i quickly converge to
1509 * our upper bound of 1-cpu.
1510 */
1511 runnable_avg = atomic_read(&tg->runnable_avg);
1512 if (runnable_avg < NICE_0_LOAD) {
1513 se->avg.load_avg_contrib *= runnable_avg;
1514 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1515 }
8165e145 1516}
c566e8e9
PT
1517#else
1518static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1519 int force_update) {}
bb17f655
PT
1520static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1521 struct cfs_rq *cfs_rq) {}
8165e145 1522static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1523#endif
1524
8165e145
PT
1525static inline void __update_task_entity_contrib(struct sched_entity *se)
1526{
1527 u32 contrib;
1528
1529 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1530 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1531 contrib /= (se->avg.runnable_avg_period + 1);
1532 se->avg.load_avg_contrib = scale_load(contrib);
1533}
1534
2dac754e
PT
1535/* Compute the current contribution to load_avg by se, return any delta */
1536static long __update_entity_load_avg_contrib(struct sched_entity *se)
1537{
1538 long old_contrib = se->avg.load_avg_contrib;
1539
8165e145
PT
1540 if (entity_is_task(se)) {
1541 __update_task_entity_contrib(se);
1542 } else {
bb17f655 1543 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1544 __update_group_entity_contrib(se);
1545 }
2dac754e
PT
1546
1547 return se->avg.load_avg_contrib - old_contrib;
1548}
1549
9ee474f5
PT
1550static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1551 long load_contrib)
1552{
1553 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1554 cfs_rq->blocked_load_avg -= load_contrib;
1555 else
1556 cfs_rq->blocked_load_avg = 0;
1557}
1558
f1b17280
PT
1559static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1560
9d85f21c 1561/* Update a sched_entity's runnable average */
9ee474f5
PT
1562static inline void update_entity_load_avg(struct sched_entity *se,
1563 int update_cfs_rq)
9d85f21c 1564{
2dac754e
PT
1565 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1566 long contrib_delta;
f1b17280 1567 u64 now;
2dac754e 1568
f1b17280
PT
1569 /*
1570 * For a group entity we need to use their owned cfs_rq_clock_task() in
1571 * case they are the parent of a throttled hierarchy.
1572 */
1573 if (entity_is_task(se))
1574 now = cfs_rq_clock_task(cfs_rq);
1575 else
1576 now = cfs_rq_clock_task(group_cfs_rq(se));
1577
1578 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1579 return;
1580
1581 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1582
1583 if (!update_cfs_rq)
1584 return;
1585
2dac754e
PT
1586 if (se->on_rq)
1587 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1588 else
1589 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1590}
1591
1592/*
1593 * Decay the load contributed by all blocked children and account this so that
1594 * their contribution may appropriately discounted when they wake up.
1595 */
aff3e498 1596static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1597{
f1b17280 1598 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1599 u64 decays;
1600
1601 decays = now - cfs_rq->last_decay;
aff3e498 1602 if (!decays && !force_update)
9ee474f5
PT
1603 return;
1604
2509940f
AS
1605 if (atomic_long_read(&cfs_rq->removed_load)) {
1606 unsigned long removed_load;
1607 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1608 subtract_blocked_load_contrib(cfs_rq, removed_load);
1609 }
9ee474f5 1610
aff3e498
PT
1611 if (decays) {
1612 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1613 decays);
1614 atomic64_add(decays, &cfs_rq->decay_counter);
1615 cfs_rq->last_decay = now;
1616 }
c566e8e9
PT
1617
1618 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1619}
18bf2805
BS
1620
1621static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1622{
78becc27 1623 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1624 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1625}
2dac754e
PT
1626
1627/* Add the load generated by se into cfs_rq's child load-average */
1628static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1629 struct sched_entity *se,
1630 int wakeup)
2dac754e 1631{
aff3e498
PT
1632 /*
1633 * We track migrations using entity decay_count <= 0, on a wake-up
1634 * migration we use a negative decay count to track the remote decays
1635 * accumulated while sleeping.
a75cdaa9
AS
1636 *
1637 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1638 * are seen by enqueue_entity_load_avg() as a migration with an already
1639 * constructed load_avg_contrib.
aff3e498
PT
1640 */
1641 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1642 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1643 if (se->avg.decay_count) {
1644 /*
1645 * In a wake-up migration we have to approximate the
1646 * time sleeping. This is because we can't synchronize
1647 * clock_task between the two cpus, and it is not
1648 * guaranteed to be read-safe. Instead, we can
1649 * approximate this using our carried decays, which are
1650 * explicitly atomically readable.
1651 */
1652 se->avg.last_runnable_update -= (-se->avg.decay_count)
1653 << 20;
1654 update_entity_load_avg(se, 0);
1655 /* Indicate that we're now synchronized and on-rq */
1656 se->avg.decay_count = 0;
1657 }
9ee474f5
PT
1658 wakeup = 0;
1659 } else {
282cf499
AS
1660 /*
1661 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1662 * would have made count negative); we must be careful to avoid
1663 * double-accounting blocked time after synchronizing decays.
1664 */
1665 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1666 << 20;
9ee474f5
PT
1667 }
1668
aff3e498
PT
1669 /* migrated tasks did not contribute to our blocked load */
1670 if (wakeup) {
9ee474f5 1671 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1672 update_entity_load_avg(se, 0);
1673 }
9ee474f5 1674
2dac754e 1675 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1676 /* we force update consideration on load-balancer moves */
1677 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1678}
1679
9ee474f5
PT
1680/*
1681 * Remove se's load from this cfs_rq child load-average, if the entity is
1682 * transitioning to a blocked state we track its projected decay using
1683 * blocked_load_avg.
1684 */
2dac754e 1685static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1686 struct sched_entity *se,
1687 int sleep)
2dac754e 1688{
9ee474f5 1689 update_entity_load_avg(se, 1);
aff3e498
PT
1690 /* we force update consideration on load-balancer moves */
1691 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1692
2dac754e 1693 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1694 if (sleep) {
1695 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1696 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1697 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1698}
642dbc39
VG
1699
1700/*
1701 * Update the rq's load with the elapsed running time before entering
1702 * idle. if the last scheduled task is not a CFS task, idle_enter will
1703 * be the only way to update the runnable statistic.
1704 */
1705void idle_enter_fair(struct rq *this_rq)
1706{
1707 update_rq_runnable_avg(this_rq, 1);
1708}
1709
1710/*
1711 * Update the rq's load with the elapsed idle time before a task is
1712 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1713 * be the only way to update the runnable statistic.
1714 */
1715void idle_exit_fair(struct rq *this_rq)
1716{
1717 update_rq_runnable_avg(this_rq, 0);
1718}
1719
9d85f21c 1720#else
9ee474f5
PT
1721static inline void update_entity_load_avg(struct sched_entity *se,
1722 int update_cfs_rq) {}
18bf2805 1723static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1724static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1725 struct sched_entity *se,
1726 int wakeup) {}
2dac754e 1727static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1728 struct sched_entity *se,
1729 int sleep) {}
aff3e498
PT
1730static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1731 int force_update) {}
9d85f21c
PT
1732#endif
1733
2396af69 1734static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1735{
bf0f6f24 1736#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1737 struct task_struct *tsk = NULL;
1738
1739 if (entity_is_task(se))
1740 tsk = task_of(se);
1741
41acab88 1742 if (se->statistics.sleep_start) {
78becc27 1743 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1744
1745 if ((s64)delta < 0)
1746 delta = 0;
1747
41acab88
LDM
1748 if (unlikely(delta > se->statistics.sleep_max))
1749 se->statistics.sleep_max = delta;
bf0f6f24 1750
8c79a045 1751 se->statistics.sleep_start = 0;
41acab88 1752 se->statistics.sum_sleep_runtime += delta;
9745512c 1753
768d0c27 1754 if (tsk) {
e414314c 1755 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1756 trace_sched_stat_sleep(tsk, delta);
1757 }
bf0f6f24 1758 }
41acab88 1759 if (se->statistics.block_start) {
78becc27 1760 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1761
1762 if ((s64)delta < 0)
1763 delta = 0;
1764
41acab88
LDM
1765 if (unlikely(delta > se->statistics.block_max))
1766 se->statistics.block_max = delta;
bf0f6f24 1767
8c79a045 1768 se->statistics.block_start = 0;
41acab88 1769 se->statistics.sum_sleep_runtime += delta;
30084fbd 1770
e414314c 1771 if (tsk) {
8f0dfc34 1772 if (tsk->in_iowait) {
41acab88
LDM
1773 se->statistics.iowait_sum += delta;
1774 se->statistics.iowait_count++;
768d0c27 1775 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1776 }
1777
b781a602
AV
1778 trace_sched_stat_blocked(tsk, delta);
1779
e414314c
PZ
1780 /*
1781 * Blocking time is in units of nanosecs, so shift by
1782 * 20 to get a milliseconds-range estimation of the
1783 * amount of time that the task spent sleeping:
1784 */
1785 if (unlikely(prof_on == SLEEP_PROFILING)) {
1786 profile_hits(SLEEP_PROFILING,
1787 (void *)get_wchan(tsk),
1788 delta >> 20);
1789 }
1790 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1791 }
bf0f6f24
IM
1792 }
1793#endif
1794}
1795
ddc97297
PZ
1796static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1797{
1798#ifdef CONFIG_SCHED_DEBUG
1799 s64 d = se->vruntime - cfs_rq->min_vruntime;
1800
1801 if (d < 0)
1802 d = -d;
1803
1804 if (d > 3*sysctl_sched_latency)
1805 schedstat_inc(cfs_rq, nr_spread_over);
1806#endif
1807}
1808
aeb73b04
PZ
1809static void
1810place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1811{
1af5f730 1812 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1813
2cb8600e
PZ
1814 /*
1815 * The 'current' period is already promised to the current tasks,
1816 * however the extra weight of the new task will slow them down a
1817 * little, place the new task so that it fits in the slot that
1818 * stays open at the end.
1819 */
94dfb5e7 1820 if (initial && sched_feat(START_DEBIT))
f9c0b095 1821 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1822
a2e7a7eb 1823 /* sleeps up to a single latency don't count. */
5ca9880c 1824 if (!initial) {
a2e7a7eb 1825 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1826
a2e7a7eb
MG
1827 /*
1828 * Halve their sleep time's effect, to allow
1829 * for a gentler effect of sleepers:
1830 */
1831 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1832 thresh >>= 1;
51e0304c 1833
a2e7a7eb 1834 vruntime -= thresh;
aeb73b04
PZ
1835 }
1836
b5d9d734 1837 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1838 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1839}
1840
d3d9dc33
PT
1841static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1842
bf0f6f24 1843static void
88ec22d3 1844enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1845{
88ec22d3
PZ
1846 /*
1847 * Update the normalized vruntime before updating min_vruntime
0fc576d5 1848 * through calling update_curr().
88ec22d3 1849 */
371fd7e7 1850 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1851 se->vruntime += cfs_rq->min_vruntime;
1852
bf0f6f24 1853 /*
a2a2d680 1854 * Update run-time statistics of the 'current'.
bf0f6f24 1855 */
b7cc0896 1856 update_curr(cfs_rq);
f269ae04 1857 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1858 account_entity_enqueue(cfs_rq, se);
1859 update_cfs_shares(cfs_rq);
bf0f6f24 1860
88ec22d3 1861 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1862 place_entity(cfs_rq, se, 0);
2396af69 1863 enqueue_sleeper(cfs_rq, se);
e9acbff6 1864 }
bf0f6f24 1865
d2417e5a 1866 update_stats_enqueue(cfs_rq, se);
ddc97297 1867 check_spread(cfs_rq, se);
83b699ed
SV
1868 if (se != cfs_rq->curr)
1869 __enqueue_entity(cfs_rq, se);
2069dd75 1870 se->on_rq = 1;
3d4b47b4 1871
d3d9dc33 1872 if (cfs_rq->nr_running == 1) {
3d4b47b4 1873 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1874 check_enqueue_throttle(cfs_rq);
1875 }
bf0f6f24
IM
1876}
1877
2c13c919 1878static void __clear_buddies_last(struct sched_entity *se)
2002c695 1879{
2c13c919
RR
1880 for_each_sched_entity(se) {
1881 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1882 if (cfs_rq->last == se)
1883 cfs_rq->last = NULL;
1884 else
1885 break;
1886 }
1887}
2002c695 1888
2c13c919
RR
1889static void __clear_buddies_next(struct sched_entity *se)
1890{
1891 for_each_sched_entity(se) {
1892 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1893 if (cfs_rq->next == se)
1894 cfs_rq->next = NULL;
1895 else
1896 break;
1897 }
2002c695
PZ
1898}
1899
ac53db59
RR
1900static void __clear_buddies_skip(struct sched_entity *se)
1901{
1902 for_each_sched_entity(se) {
1903 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1904 if (cfs_rq->skip == se)
1905 cfs_rq->skip = NULL;
1906 else
1907 break;
1908 }
1909}
1910
a571bbea
PZ
1911static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1912{
2c13c919
RR
1913 if (cfs_rq->last == se)
1914 __clear_buddies_last(se);
1915
1916 if (cfs_rq->next == se)
1917 __clear_buddies_next(se);
ac53db59
RR
1918
1919 if (cfs_rq->skip == se)
1920 __clear_buddies_skip(se);
a571bbea
PZ
1921}
1922
6c16a6dc 1923static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1924
bf0f6f24 1925static void
371fd7e7 1926dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1927{
a2a2d680
DA
1928 /*
1929 * Update run-time statistics of the 'current'.
1930 */
1931 update_curr(cfs_rq);
17bc14b7 1932 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1933
19b6a2e3 1934 update_stats_dequeue(cfs_rq, se);
371fd7e7 1935 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1936#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1937 if (entity_is_task(se)) {
1938 struct task_struct *tsk = task_of(se);
1939
1940 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1941 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1942 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1943 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1944 }
db36cc7d 1945#endif
67e9fb2a
PZ
1946 }
1947
2002c695 1948 clear_buddies(cfs_rq, se);
4793241b 1949
83b699ed 1950 if (se != cfs_rq->curr)
30cfdcfc 1951 __dequeue_entity(cfs_rq, se);
17bc14b7 1952 se->on_rq = 0;
30cfdcfc 1953 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1954
1955 /*
1956 * Normalize the entity after updating the min_vruntime because the
1957 * update can refer to the ->curr item and we need to reflect this
1958 * movement in our normalized position.
1959 */
371fd7e7 1960 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1961 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1962
d8b4986d
PT
1963 /* return excess runtime on last dequeue */
1964 return_cfs_rq_runtime(cfs_rq);
1965
1e876231 1966 update_min_vruntime(cfs_rq);
17bc14b7 1967 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1968}
1969
1970/*
1971 * Preempt the current task with a newly woken task if needed:
1972 */
7c92e54f 1973static void
2e09bf55 1974check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1975{
11697830 1976 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1977 struct sched_entity *se;
1978 s64 delta;
11697830 1979
6d0f0ebd 1980 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1981 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1982 if (delta_exec > ideal_runtime) {
bf0f6f24 1983 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1984 /*
1985 * The current task ran long enough, ensure it doesn't get
1986 * re-elected due to buddy favours.
1987 */
1988 clear_buddies(cfs_rq, curr);
f685ceac
MG
1989 return;
1990 }
1991
1992 /*
1993 * Ensure that a task that missed wakeup preemption by a
1994 * narrow margin doesn't have to wait for a full slice.
1995 * This also mitigates buddy induced latencies under load.
1996 */
f685ceac
MG
1997 if (delta_exec < sysctl_sched_min_granularity)
1998 return;
1999
f4cfb33e
WX
2000 se = __pick_first_entity(cfs_rq);
2001 delta = curr->vruntime - se->vruntime;
f685ceac 2002
f4cfb33e
WX
2003 if (delta < 0)
2004 return;
d7d82944 2005
f4cfb33e
WX
2006 if (delta > ideal_runtime)
2007 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2008}
2009
83b699ed 2010static void
8494f412 2011set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2012{
83b699ed
SV
2013 /* 'current' is not kept within the tree. */
2014 if (se->on_rq) {
2015 /*
2016 * Any task has to be enqueued before it get to execute on
2017 * a CPU. So account for the time it spent waiting on the
2018 * runqueue.
2019 */
2020 update_stats_wait_end(cfs_rq, se);
2021 __dequeue_entity(cfs_rq, se);
2022 }
2023
79303e9e 2024 update_stats_curr_start(cfs_rq, se);
429d43bc 2025 cfs_rq->curr = se;
eba1ed4b
IM
2026#ifdef CONFIG_SCHEDSTATS
2027 /*
2028 * Track our maximum slice length, if the CPU's load is at
2029 * least twice that of our own weight (i.e. dont track it
2030 * when there are only lesser-weight tasks around):
2031 */
495eca49 2032 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2033 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2034 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2035 }
2036#endif
4a55b450 2037 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2038}
2039
3f3a4904
PZ
2040static int
2041wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2042
ac53db59
RR
2043/*
2044 * Pick the next process, keeping these things in mind, in this order:
2045 * 1) keep things fair between processes/task groups
2046 * 2) pick the "next" process, since someone really wants that to run
2047 * 3) pick the "last" process, for cache locality
2048 * 4) do not run the "skip" process, if something else is available
2049 */
f4b6755f 2050static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2051{
ac53db59 2052 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2053 struct sched_entity *left = se;
f4b6755f 2054
ac53db59
RR
2055 /*
2056 * Avoid running the skip buddy, if running something else can
2057 * be done without getting too unfair.
2058 */
2059 if (cfs_rq->skip == se) {
2060 struct sched_entity *second = __pick_next_entity(se);
2061 if (second && wakeup_preempt_entity(second, left) < 1)
2062 se = second;
2063 }
aa2ac252 2064
f685ceac
MG
2065 /*
2066 * Prefer last buddy, try to return the CPU to a preempted task.
2067 */
2068 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2069 se = cfs_rq->last;
2070
ac53db59
RR
2071 /*
2072 * Someone really wants this to run. If it's not unfair, run it.
2073 */
2074 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2075 se = cfs_rq->next;
2076
f685ceac 2077 clear_buddies(cfs_rq, se);
4793241b
PZ
2078
2079 return se;
aa2ac252
PZ
2080}
2081
d3d9dc33
PT
2082static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2083
ab6cde26 2084static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2085{
2086 /*
2087 * If still on the runqueue then deactivate_task()
2088 * was not called and update_curr() has to be done:
2089 */
2090 if (prev->on_rq)
b7cc0896 2091 update_curr(cfs_rq);
bf0f6f24 2092
d3d9dc33
PT
2093 /* throttle cfs_rqs exceeding runtime */
2094 check_cfs_rq_runtime(cfs_rq);
2095
ddc97297 2096 check_spread(cfs_rq, prev);
30cfdcfc 2097 if (prev->on_rq) {
5870db5b 2098 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2099 /* Put 'current' back into the tree. */
2100 __enqueue_entity(cfs_rq, prev);
9d85f21c 2101 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2102 update_entity_load_avg(prev, 1);
30cfdcfc 2103 }
429d43bc 2104 cfs_rq->curr = NULL;
bf0f6f24
IM
2105}
2106
8f4d37ec
PZ
2107static void
2108entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2109{
bf0f6f24 2110 /*
30cfdcfc 2111 * Update run-time statistics of the 'current'.
bf0f6f24 2112 */
30cfdcfc 2113 update_curr(cfs_rq);
bf0f6f24 2114
9d85f21c
PT
2115 /*
2116 * Ensure that runnable average is periodically updated.
2117 */
9ee474f5 2118 update_entity_load_avg(curr, 1);
aff3e498 2119 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2120 update_cfs_shares(cfs_rq);
9d85f21c 2121
8f4d37ec
PZ
2122#ifdef CONFIG_SCHED_HRTICK
2123 /*
2124 * queued ticks are scheduled to match the slice, so don't bother
2125 * validating it and just reschedule.
2126 */
983ed7a6
HH
2127 if (queued) {
2128 resched_task(rq_of(cfs_rq)->curr);
2129 return;
2130 }
8f4d37ec
PZ
2131 /*
2132 * don't let the period tick interfere with the hrtick preemption
2133 */
2134 if (!sched_feat(DOUBLE_TICK) &&
2135 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2136 return;
2137#endif
2138
2c2efaed 2139 if (cfs_rq->nr_running > 1)
2e09bf55 2140 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2141}
2142
ab84d31e
PT
2143
2144/**************************************************
2145 * CFS bandwidth control machinery
2146 */
2147
2148#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2149
2150#ifdef HAVE_JUMP_LABEL
c5905afb 2151static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2152
2153static inline bool cfs_bandwidth_used(void)
2154{
c5905afb 2155 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2156}
2157
2158void account_cfs_bandwidth_used(int enabled, int was_enabled)
2159{
2160 /* only need to count groups transitioning between enabled/!enabled */
2161 if (enabled && !was_enabled)
c5905afb 2162 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2163 else if (!enabled && was_enabled)
c5905afb 2164 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2165}
2166#else /* HAVE_JUMP_LABEL */
2167static bool cfs_bandwidth_used(void)
2168{
2169 return true;
2170}
2171
2172void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2173#endif /* HAVE_JUMP_LABEL */
2174
ab84d31e
PT
2175/*
2176 * default period for cfs group bandwidth.
2177 * default: 0.1s, units: nanoseconds
2178 */
2179static inline u64 default_cfs_period(void)
2180{
2181 return 100000000ULL;
2182}
ec12cb7f
PT
2183
2184static inline u64 sched_cfs_bandwidth_slice(void)
2185{
2186 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2187}
2188
a9cf55b2
PT
2189/*
2190 * Replenish runtime according to assigned quota and update expiration time.
2191 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2192 * additional synchronization around rq->lock.
2193 *
2194 * requires cfs_b->lock
2195 */
029632fb 2196void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2197{
2198 u64 now;
2199
2200 if (cfs_b->quota == RUNTIME_INF)
2201 return;
2202
2203 now = sched_clock_cpu(smp_processor_id());
2204 cfs_b->runtime = cfs_b->quota;
2205 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2206}
2207
029632fb
PZ
2208static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2209{
2210 return &tg->cfs_bandwidth;
2211}
2212
f1b17280
PT
2213/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2214static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2215{
2216 if (unlikely(cfs_rq->throttle_count))
2217 return cfs_rq->throttled_clock_task;
2218
78becc27 2219 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2220}
2221
85dac906
PT
2222/* returns 0 on failure to allocate runtime */
2223static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2224{
2225 struct task_group *tg = cfs_rq->tg;
2226 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2227 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2228
2229 /* note: this is a positive sum as runtime_remaining <= 0 */
2230 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2231
2232 raw_spin_lock(&cfs_b->lock);
2233 if (cfs_b->quota == RUNTIME_INF)
2234 amount = min_amount;
58088ad0 2235 else {
a9cf55b2
PT
2236 /*
2237 * If the bandwidth pool has become inactive, then at least one
2238 * period must have elapsed since the last consumption.
2239 * Refresh the global state and ensure bandwidth timer becomes
2240 * active.
2241 */
2242 if (!cfs_b->timer_active) {
2243 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2244 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2245 }
58088ad0
PT
2246
2247 if (cfs_b->runtime > 0) {
2248 amount = min(cfs_b->runtime, min_amount);
2249 cfs_b->runtime -= amount;
2250 cfs_b->idle = 0;
2251 }
ec12cb7f 2252 }
a9cf55b2 2253 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2254 raw_spin_unlock(&cfs_b->lock);
2255
2256 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2257 /*
2258 * we may have advanced our local expiration to account for allowed
2259 * spread between our sched_clock and the one on which runtime was
2260 * issued.
2261 */
2262 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2263 cfs_rq->runtime_expires = expires;
85dac906
PT
2264
2265 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2266}
2267
a9cf55b2
PT
2268/*
2269 * Note: This depends on the synchronization provided by sched_clock and the
2270 * fact that rq->clock snapshots this value.
2271 */
2272static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2273{
a9cf55b2 2274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2275
2276 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2277 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2278 return;
2279
a9cf55b2
PT
2280 if (cfs_rq->runtime_remaining < 0)
2281 return;
2282
2283 /*
2284 * If the local deadline has passed we have to consider the
2285 * possibility that our sched_clock is 'fast' and the global deadline
2286 * has not truly expired.
2287 *
2288 * Fortunately we can check determine whether this the case by checking
2289 * whether the global deadline has advanced.
2290 */
2291
2292 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2293 /* extend local deadline, drift is bounded above by 2 ticks */
2294 cfs_rq->runtime_expires += TICK_NSEC;
2295 } else {
2296 /* global deadline is ahead, expiration has passed */
2297 cfs_rq->runtime_remaining = 0;
2298 }
2299}
2300
2301static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2302 unsigned long delta_exec)
2303{
2304 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2305 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2306 expire_cfs_rq_runtime(cfs_rq);
2307
2308 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2309 return;
2310
85dac906
PT
2311 /*
2312 * if we're unable to extend our runtime we resched so that the active
2313 * hierarchy can be throttled
2314 */
2315 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2316 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2317}
2318
6c16a6dc
PZ
2319static __always_inline
2320void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2321{
56f570e5 2322 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2323 return;
2324
2325 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2326}
2327
85dac906
PT
2328static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2329{
56f570e5 2330 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2331}
2332
64660c86
PT
2333/* check whether cfs_rq, or any parent, is throttled */
2334static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2335{
56f570e5 2336 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2337}
2338
2339/*
2340 * Ensure that neither of the group entities corresponding to src_cpu or
2341 * dest_cpu are members of a throttled hierarchy when performing group
2342 * load-balance operations.
2343 */
2344static inline int throttled_lb_pair(struct task_group *tg,
2345 int src_cpu, int dest_cpu)
2346{
2347 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2348
2349 src_cfs_rq = tg->cfs_rq[src_cpu];
2350 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2351
2352 return throttled_hierarchy(src_cfs_rq) ||
2353 throttled_hierarchy(dest_cfs_rq);
2354}
2355
2356/* updated child weight may affect parent so we have to do this bottom up */
2357static int tg_unthrottle_up(struct task_group *tg, void *data)
2358{
2359 struct rq *rq = data;
2360 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2361
2362 cfs_rq->throttle_count--;
2363#ifdef CONFIG_SMP
2364 if (!cfs_rq->throttle_count) {
f1b17280 2365 /* adjust cfs_rq_clock_task() */
78becc27 2366 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2367 cfs_rq->throttled_clock_task;
64660c86
PT
2368 }
2369#endif
2370
2371 return 0;
2372}
2373
2374static int tg_throttle_down(struct task_group *tg, void *data)
2375{
2376 struct rq *rq = data;
2377 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2378
82958366
PT
2379 /* group is entering throttled state, stop time */
2380 if (!cfs_rq->throttle_count)
78becc27 2381 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2382 cfs_rq->throttle_count++;
2383
2384 return 0;
2385}
2386
d3d9dc33 2387static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2388{
2389 struct rq *rq = rq_of(cfs_rq);
2390 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2391 struct sched_entity *se;
2392 long task_delta, dequeue = 1;
2393
2394 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2395
f1b17280 2396 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2397 rcu_read_lock();
2398 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2399 rcu_read_unlock();
85dac906
PT
2400
2401 task_delta = cfs_rq->h_nr_running;
2402 for_each_sched_entity(se) {
2403 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2404 /* throttled entity or throttle-on-deactivate */
2405 if (!se->on_rq)
2406 break;
2407
2408 if (dequeue)
2409 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2410 qcfs_rq->h_nr_running -= task_delta;
2411
2412 if (qcfs_rq->load.weight)
2413 dequeue = 0;
2414 }
2415
2416 if (!se)
2417 rq->nr_running -= task_delta;
2418
2419 cfs_rq->throttled = 1;
78becc27 2420 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2421 raw_spin_lock(&cfs_b->lock);
2422 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2423 raw_spin_unlock(&cfs_b->lock);
2424}
2425
029632fb 2426void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2427{
2428 struct rq *rq = rq_of(cfs_rq);
2429 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2430 struct sched_entity *se;
2431 int enqueue = 1;
2432 long task_delta;
2433
22b958d8 2434 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2435
2436 cfs_rq->throttled = 0;
1a55af2e
FW
2437
2438 update_rq_clock(rq);
2439
671fd9da 2440 raw_spin_lock(&cfs_b->lock);
78becc27 2441 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2442 list_del_rcu(&cfs_rq->throttled_list);
2443 raw_spin_unlock(&cfs_b->lock);
2444
64660c86
PT
2445 /* update hierarchical throttle state */
2446 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2447
671fd9da
PT
2448 if (!cfs_rq->load.weight)
2449 return;
2450
2451 task_delta = cfs_rq->h_nr_running;
2452 for_each_sched_entity(se) {
2453 if (se->on_rq)
2454 enqueue = 0;
2455
2456 cfs_rq = cfs_rq_of(se);
2457 if (enqueue)
2458 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2459 cfs_rq->h_nr_running += task_delta;
2460
2461 if (cfs_rq_throttled(cfs_rq))
2462 break;
2463 }
2464
2465 if (!se)
2466 rq->nr_running += task_delta;
2467
2468 /* determine whether we need to wake up potentially idle cpu */
2469 if (rq->curr == rq->idle && rq->cfs.nr_running)
2470 resched_task(rq->curr);
2471}
2472
2473static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2474 u64 remaining, u64 expires)
2475{
2476 struct cfs_rq *cfs_rq;
2477 u64 runtime = remaining;
2478
2479 rcu_read_lock();
2480 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2481 throttled_list) {
2482 struct rq *rq = rq_of(cfs_rq);
2483
2484 raw_spin_lock(&rq->lock);
2485 if (!cfs_rq_throttled(cfs_rq))
2486 goto next;
2487
2488 runtime = -cfs_rq->runtime_remaining + 1;
2489 if (runtime > remaining)
2490 runtime = remaining;
2491 remaining -= runtime;
2492
2493 cfs_rq->runtime_remaining += runtime;
2494 cfs_rq->runtime_expires = expires;
2495
2496 /* we check whether we're throttled above */
2497 if (cfs_rq->runtime_remaining > 0)
2498 unthrottle_cfs_rq(cfs_rq);
2499
2500next:
2501 raw_spin_unlock(&rq->lock);
2502
2503 if (!remaining)
2504 break;
2505 }
2506 rcu_read_unlock();
2507
2508 return remaining;
2509}
2510
58088ad0
PT
2511/*
2512 * Responsible for refilling a task_group's bandwidth and unthrottling its
2513 * cfs_rqs as appropriate. If there has been no activity within the last
2514 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2515 * used to track this state.
2516 */
2517static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2518{
671fd9da
PT
2519 u64 runtime, runtime_expires;
2520 int idle = 1, throttled;
58088ad0
PT
2521
2522 raw_spin_lock(&cfs_b->lock);
2523 /* no need to continue the timer with no bandwidth constraint */
2524 if (cfs_b->quota == RUNTIME_INF)
2525 goto out_unlock;
2526
671fd9da
PT
2527 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2528 /* idle depends on !throttled (for the case of a large deficit) */
2529 idle = cfs_b->idle && !throttled;
e8da1b18 2530 cfs_b->nr_periods += overrun;
671fd9da 2531
a9cf55b2
PT
2532 /* if we're going inactive then everything else can be deferred */
2533 if (idle)
2534 goto out_unlock;
2535
2536 __refill_cfs_bandwidth_runtime(cfs_b);
2537
671fd9da
PT
2538 if (!throttled) {
2539 /* mark as potentially idle for the upcoming period */
2540 cfs_b->idle = 1;
2541 goto out_unlock;
2542 }
2543
e8da1b18
NR
2544 /* account preceding periods in which throttling occurred */
2545 cfs_b->nr_throttled += overrun;
2546
671fd9da
PT
2547 /*
2548 * There are throttled entities so we must first use the new bandwidth
2549 * to unthrottle them before making it generally available. This
2550 * ensures that all existing debts will be paid before a new cfs_rq is
2551 * allowed to run.
2552 */
2553 runtime = cfs_b->runtime;
2554 runtime_expires = cfs_b->runtime_expires;
2555 cfs_b->runtime = 0;
2556
2557 /*
2558 * This check is repeated as we are holding onto the new bandwidth
2559 * while we unthrottle. This can potentially race with an unthrottled
2560 * group trying to acquire new bandwidth from the global pool.
2561 */
2562 while (throttled && runtime > 0) {
2563 raw_spin_unlock(&cfs_b->lock);
2564 /* we can't nest cfs_b->lock while distributing bandwidth */
2565 runtime = distribute_cfs_runtime(cfs_b, runtime,
2566 runtime_expires);
2567 raw_spin_lock(&cfs_b->lock);
2568
2569 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2570 }
58088ad0 2571
671fd9da
PT
2572 /* return (any) remaining runtime */
2573 cfs_b->runtime = runtime;
2574 /*
2575 * While we are ensured activity in the period following an
2576 * unthrottle, this also covers the case in which the new bandwidth is
2577 * insufficient to cover the existing bandwidth deficit. (Forcing the
2578 * timer to remain active while there are any throttled entities.)
2579 */
2580 cfs_b->idle = 0;
58088ad0
PT
2581out_unlock:
2582 if (idle)
2583 cfs_b->timer_active = 0;
2584 raw_spin_unlock(&cfs_b->lock);
2585
2586 return idle;
2587}
d3d9dc33 2588
d8b4986d
PT
2589/* a cfs_rq won't donate quota below this amount */
2590static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2591/* minimum remaining period time to redistribute slack quota */
2592static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2593/* how long we wait to gather additional slack before distributing */
2594static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2595
2596/* are we near the end of the current quota period? */
2597static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2598{
2599 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2600 u64 remaining;
2601
2602 /* if the call-back is running a quota refresh is already occurring */
2603 if (hrtimer_callback_running(refresh_timer))
2604 return 1;
2605
2606 /* is a quota refresh about to occur? */
2607 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2608 if (remaining < min_expire)
2609 return 1;
2610
2611 return 0;
2612}
2613
2614static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2615{
2616 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2617
2618 /* if there's a quota refresh soon don't bother with slack */
2619 if (runtime_refresh_within(cfs_b, min_left))
2620 return;
2621
2622 start_bandwidth_timer(&cfs_b->slack_timer,
2623 ns_to_ktime(cfs_bandwidth_slack_period));
2624}
2625
2626/* we know any runtime found here is valid as update_curr() precedes return */
2627static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2628{
2629 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2630 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2631
2632 if (slack_runtime <= 0)
2633 return;
2634
2635 raw_spin_lock(&cfs_b->lock);
2636 if (cfs_b->quota != RUNTIME_INF &&
2637 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2638 cfs_b->runtime += slack_runtime;
2639
2640 /* we are under rq->lock, defer unthrottling using a timer */
2641 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2642 !list_empty(&cfs_b->throttled_cfs_rq))
2643 start_cfs_slack_bandwidth(cfs_b);
2644 }
2645 raw_spin_unlock(&cfs_b->lock);
2646
2647 /* even if it's not valid for return we don't want to try again */
2648 cfs_rq->runtime_remaining -= slack_runtime;
2649}
2650
2651static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2652{
56f570e5
PT
2653 if (!cfs_bandwidth_used())
2654 return;
2655
fccfdc6f 2656 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2657 return;
2658
2659 __return_cfs_rq_runtime(cfs_rq);
2660}
2661
2662/*
2663 * This is done with a timer (instead of inline with bandwidth return) since
2664 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2665 */
2666static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2667{
2668 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2669 u64 expires;
2670
2671 /* confirm we're still not at a refresh boundary */
2672 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2673 return;
2674
2675 raw_spin_lock(&cfs_b->lock);
2676 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2677 runtime = cfs_b->runtime;
2678 cfs_b->runtime = 0;
2679 }
2680 expires = cfs_b->runtime_expires;
2681 raw_spin_unlock(&cfs_b->lock);
2682
2683 if (!runtime)
2684 return;
2685
2686 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2687
2688 raw_spin_lock(&cfs_b->lock);
2689 if (expires == cfs_b->runtime_expires)
2690 cfs_b->runtime = runtime;
2691 raw_spin_unlock(&cfs_b->lock);
2692}
2693
d3d9dc33
PT
2694/*
2695 * When a group wakes up we want to make sure that its quota is not already
2696 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2697 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2698 */
2699static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2700{
56f570e5
PT
2701 if (!cfs_bandwidth_used())
2702 return;
2703
d3d9dc33
PT
2704 /* an active group must be handled by the update_curr()->put() path */
2705 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2706 return;
2707
2708 /* ensure the group is not already throttled */
2709 if (cfs_rq_throttled(cfs_rq))
2710 return;
2711
2712 /* update runtime allocation */
2713 account_cfs_rq_runtime(cfs_rq, 0);
2714 if (cfs_rq->runtime_remaining <= 0)
2715 throttle_cfs_rq(cfs_rq);
2716}
2717
2718/* conditionally throttle active cfs_rq's from put_prev_entity() */
2719static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2720{
56f570e5
PT
2721 if (!cfs_bandwidth_used())
2722 return;
2723
d3d9dc33
PT
2724 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2725 return;
2726
2727 /*
2728 * it's possible for a throttled entity to be forced into a running
2729 * state (e.g. set_curr_task), in this case we're finished.
2730 */
2731 if (cfs_rq_throttled(cfs_rq))
2732 return;
2733
2734 throttle_cfs_rq(cfs_rq);
2735}
029632fb 2736
029632fb
PZ
2737static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2738{
2739 struct cfs_bandwidth *cfs_b =
2740 container_of(timer, struct cfs_bandwidth, slack_timer);
2741 do_sched_cfs_slack_timer(cfs_b);
2742
2743 return HRTIMER_NORESTART;
2744}
2745
2746static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2747{
2748 struct cfs_bandwidth *cfs_b =
2749 container_of(timer, struct cfs_bandwidth, period_timer);
2750 ktime_t now;
2751 int overrun;
2752 int idle = 0;
2753
2754 for (;;) {
2755 now = hrtimer_cb_get_time(timer);
2756 overrun = hrtimer_forward(timer, now, cfs_b->period);
2757
2758 if (!overrun)
2759 break;
2760
2761 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2762 }
2763
2764 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2765}
2766
2767void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2768{
2769 raw_spin_lock_init(&cfs_b->lock);
2770 cfs_b->runtime = 0;
2771 cfs_b->quota = RUNTIME_INF;
2772 cfs_b->period = ns_to_ktime(default_cfs_period());
2773
2774 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2775 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2776 cfs_b->period_timer.function = sched_cfs_period_timer;
2777 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2778 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2779}
2780
2781static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2782{
2783 cfs_rq->runtime_enabled = 0;
2784 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2785}
2786
2787/* requires cfs_b->lock, may release to reprogram timer */
2788void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2789{
2790 /*
2791 * The timer may be active because we're trying to set a new bandwidth
2792 * period or because we're racing with the tear-down path
2793 * (timer_active==0 becomes visible before the hrtimer call-back
2794 * terminates). In either case we ensure that it's re-programmed
2795 */
2796 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2797 raw_spin_unlock(&cfs_b->lock);
2798 /* ensure cfs_b->lock is available while we wait */
2799 hrtimer_cancel(&cfs_b->period_timer);
2800
2801 raw_spin_lock(&cfs_b->lock);
2802 /* if someone else restarted the timer then we're done */
2803 if (cfs_b->timer_active)
2804 return;
2805 }
2806
2807 cfs_b->timer_active = 1;
2808 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2809}
2810
2811static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2812{
2813 hrtimer_cancel(&cfs_b->period_timer);
2814 hrtimer_cancel(&cfs_b->slack_timer);
2815}
2816
38dc3348 2817static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2818{
2819 struct cfs_rq *cfs_rq;
2820
2821 for_each_leaf_cfs_rq(rq, cfs_rq) {
2822 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2823
2824 if (!cfs_rq->runtime_enabled)
2825 continue;
2826
2827 /*
2828 * clock_task is not advancing so we just need to make sure
2829 * there's some valid quota amount
2830 */
2831 cfs_rq->runtime_remaining = cfs_b->quota;
2832 if (cfs_rq_throttled(cfs_rq))
2833 unthrottle_cfs_rq(cfs_rq);
2834 }
2835}
2836
2837#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2838static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2839{
78becc27 2840 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2841}
2842
2843static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2844 unsigned long delta_exec) {}
d3d9dc33
PT
2845static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2846static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2847static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2848
2849static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2850{
2851 return 0;
2852}
64660c86
PT
2853
2854static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2855{
2856 return 0;
2857}
2858
2859static inline int throttled_lb_pair(struct task_group *tg,
2860 int src_cpu, int dest_cpu)
2861{
2862 return 0;
2863}
029632fb
PZ
2864
2865void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2866
2867#ifdef CONFIG_FAIR_GROUP_SCHED
2868static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2869#endif
2870
029632fb
PZ
2871static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2872{
2873 return NULL;
2874}
2875static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2876static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2877
2878#endif /* CONFIG_CFS_BANDWIDTH */
2879
bf0f6f24
IM
2880/**************************************************
2881 * CFS operations on tasks:
2882 */
2883
8f4d37ec
PZ
2884#ifdef CONFIG_SCHED_HRTICK
2885static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2886{
8f4d37ec
PZ
2887 struct sched_entity *se = &p->se;
2888 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2889
2890 WARN_ON(task_rq(p) != rq);
2891
b39e66ea 2892 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2893 u64 slice = sched_slice(cfs_rq, se);
2894 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2895 s64 delta = slice - ran;
2896
2897 if (delta < 0) {
2898 if (rq->curr == p)
2899 resched_task(p);
2900 return;
2901 }
2902
2903 /*
2904 * Don't schedule slices shorter than 10000ns, that just
2905 * doesn't make sense. Rely on vruntime for fairness.
2906 */
31656519 2907 if (rq->curr != p)
157124c1 2908 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2909
31656519 2910 hrtick_start(rq, delta);
8f4d37ec
PZ
2911 }
2912}
a4c2f00f
PZ
2913
2914/*
2915 * called from enqueue/dequeue and updates the hrtick when the
2916 * current task is from our class and nr_running is low enough
2917 * to matter.
2918 */
2919static void hrtick_update(struct rq *rq)
2920{
2921 struct task_struct *curr = rq->curr;
2922
b39e66ea 2923 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2924 return;
2925
2926 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2927 hrtick_start_fair(rq, curr);
2928}
55e12e5e 2929#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2930static inline void
2931hrtick_start_fair(struct rq *rq, struct task_struct *p)
2932{
2933}
a4c2f00f
PZ
2934
2935static inline void hrtick_update(struct rq *rq)
2936{
2937}
8f4d37ec
PZ
2938#endif
2939
bf0f6f24
IM
2940/*
2941 * The enqueue_task method is called before nr_running is
2942 * increased. Here we update the fair scheduling stats and
2943 * then put the task into the rbtree:
2944 */
ea87bb78 2945static void
371fd7e7 2946enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2947{
2948 struct cfs_rq *cfs_rq;
62fb1851 2949 struct sched_entity *se = &p->se;
bf0f6f24
IM
2950
2951 for_each_sched_entity(se) {
62fb1851 2952 if (se->on_rq)
bf0f6f24
IM
2953 break;
2954 cfs_rq = cfs_rq_of(se);
88ec22d3 2955 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2956
2957 /*
2958 * end evaluation on encountering a throttled cfs_rq
2959 *
2960 * note: in the case of encountering a throttled cfs_rq we will
2961 * post the final h_nr_running increment below.
2962 */
2963 if (cfs_rq_throttled(cfs_rq))
2964 break;
953bfcd1 2965 cfs_rq->h_nr_running++;
85dac906 2966
88ec22d3 2967 flags = ENQUEUE_WAKEUP;
bf0f6f24 2968 }
8f4d37ec 2969
2069dd75 2970 for_each_sched_entity(se) {
0f317143 2971 cfs_rq = cfs_rq_of(se);
953bfcd1 2972 cfs_rq->h_nr_running++;
2069dd75 2973
85dac906
PT
2974 if (cfs_rq_throttled(cfs_rq))
2975 break;
2976
17bc14b7 2977 update_cfs_shares(cfs_rq);
9ee474f5 2978 update_entity_load_avg(se, 1);
2069dd75
PZ
2979 }
2980
18bf2805
BS
2981 if (!se) {
2982 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2983 inc_nr_running(rq);
18bf2805 2984 }
a4c2f00f 2985 hrtick_update(rq);
bf0f6f24
IM
2986}
2987
2f36825b
VP
2988static void set_next_buddy(struct sched_entity *se);
2989
bf0f6f24
IM
2990/*
2991 * The dequeue_task method is called before nr_running is
2992 * decreased. We remove the task from the rbtree and
2993 * update the fair scheduling stats:
2994 */
371fd7e7 2995static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2996{
2997 struct cfs_rq *cfs_rq;
62fb1851 2998 struct sched_entity *se = &p->se;
2f36825b 2999 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3000
3001 for_each_sched_entity(se) {
3002 cfs_rq = cfs_rq_of(se);
371fd7e7 3003 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3004
3005 /*
3006 * end evaluation on encountering a throttled cfs_rq
3007 *
3008 * note: in the case of encountering a throttled cfs_rq we will
3009 * post the final h_nr_running decrement below.
3010 */
3011 if (cfs_rq_throttled(cfs_rq))
3012 break;
953bfcd1 3013 cfs_rq->h_nr_running--;
2069dd75 3014
bf0f6f24 3015 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3016 if (cfs_rq->load.weight) {
3017 /*
3018 * Bias pick_next to pick a task from this cfs_rq, as
3019 * p is sleeping when it is within its sched_slice.
3020 */
3021 if (task_sleep && parent_entity(se))
3022 set_next_buddy(parent_entity(se));
9598c82d
PT
3023
3024 /* avoid re-evaluating load for this entity */
3025 se = parent_entity(se);
bf0f6f24 3026 break;
2f36825b 3027 }
371fd7e7 3028 flags |= DEQUEUE_SLEEP;
bf0f6f24 3029 }
8f4d37ec 3030
2069dd75 3031 for_each_sched_entity(se) {
0f317143 3032 cfs_rq = cfs_rq_of(se);
953bfcd1 3033 cfs_rq->h_nr_running--;
2069dd75 3034
85dac906
PT
3035 if (cfs_rq_throttled(cfs_rq))
3036 break;
3037
17bc14b7 3038 update_cfs_shares(cfs_rq);
9ee474f5 3039 update_entity_load_avg(se, 1);
2069dd75
PZ
3040 }
3041
18bf2805 3042 if (!se) {
85dac906 3043 dec_nr_running(rq);
18bf2805
BS
3044 update_rq_runnable_avg(rq, 1);
3045 }
a4c2f00f 3046 hrtick_update(rq);
bf0f6f24
IM
3047}
3048
e7693a36 3049#ifdef CONFIG_SMP
029632fb
PZ
3050/* Used instead of source_load when we know the type == 0 */
3051static unsigned long weighted_cpuload(const int cpu)
3052{
b92486cb 3053 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3054}
3055
3056/*
3057 * Return a low guess at the load of a migration-source cpu weighted
3058 * according to the scheduling class and "nice" value.
3059 *
3060 * We want to under-estimate the load of migration sources, to
3061 * balance conservatively.
3062 */
3063static unsigned long source_load(int cpu, int type)
3064{
3065 struct rq *rq = cpu_rq(cpu);
3066 unsigned long total = weighted_cpuload(cpu);
3067
3068 if (type == 0 || !sched_feat(LB_BIAS))
3069 return total;
3070
3071 return min(rq->cpu_load[type-1], total);
3072}
3073
3074/*
3075 * Return a high guess at the load of a migration-target cpu weighted
3076 * according to the scheduling class and "nice" value.
3077 */
3078static unsigned long target_load(int cpu, int type)
3079{
3080 struct rq *rq = cpu_rq(cpu);
3081 unsigned long total = weighted_cpuload(cpu);
3082
3083 if (type == 0 || !sched_feat(LB_BIAS))
3084 return total;
3085
3086 return max(rq->cpu_load[type-1], total);
3087}
3088
3089static unsigned long power_of(int cpu)
3090{
3091 return cpu_rq(cpu)->cpu_power;
3092}
3093
3094static unsigned long cpu_avg_load_per_task(int cpu)
3095{
3096 struct rq *rq = cpu_rq(cpu);
3097 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3098 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3099
3100 if (nr_running)
b92486cb 3101 return load_avg / nr_running;
029632fb
PZ
3102
3103 return 0;
3104}
3105
62470419
MW
3106static void record_wakee(struct task_struct *p)
3107{
3108 /*
3109 * Rough decay (wiping) for cost saving, don't worry
3110 * about the boundary, really active task won't care
3111 * about the loss.
3112 */
3113 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3114 current->wakee_flips = 0;
3115 current->wakee_flip_decay_ts = jiffies;
3116 }
3117
3118 if (current->last_wakee != p) {
3119 current->last_wakee = p;
3120 current->wakee_flips++;
3121 }
3122}
098fb9db 3123
74f8e4b2 3124static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3125{
3126 struct sched_entity *se = &p->se;
3127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3128 u64 min_vruntime;
3129
3130#ifndef CONFIG_64BIT
3131 u64 min_vruntime_copy;
88ec22d3 3132
3fe1698b
PZ
3133 do {
3134 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3135 smp_rmb();
3136 min_vruntime = cfs_rq->min_vruntime;
3137 } while (min_vruntime != min_vruntime_copy);
3138#else
3139 min_vruntime = cfs_rq->min_vruntime;
3140#endif
88ec22d3 3141
3fe1698b 3142 se->vruntime -= min_vruntime;
62470419 3143 record_wakee(p);
88ec22d3
PZ
3144}
3145
bb3469ac 3146#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3147/*
3148 * effective_load() calculates the load change as seen from the root_task_group
3149 *
3150 * Adding load to a group doesn't make a group heavier, but can cause movement
3151 * of group shares between cpus. Assuming the shares were perfectly aligned one
3152 * can calculate the shift in shares.
cf5f0acf
PZ
3153 *
3154 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3155 * on this @cpu and results in a total addition (subtraction) of @wg to the
3156 * total group weight.
3157 *
3158 * Given a runqueue weight distribution (rw_i) we can compute a shares
3159 * distribution (s_i) using:
3160 *
3161 * s_i = rw_i / \Sum rw_j (1)
3162 *
3163 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3164 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3165 * shares distribution (s_i):
3166 *
3167 * rw_i = { 2, 4, 1, 0 }
3168 * s_i = { 2/7, 4/7, 1/7, 0 }
3169 *
3170 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3171 * task used to run on and the CPU the waker is running on), we need to
3172 * compute the effect of waking a task on either CPU and, in case of a sync
3173 * wakeup, compute the effect of the current task going to sleep.
3174 *
3175 * So for a change of @wl to the local @cpu with an overall group weight change
3176 * of @wl we can compute the new shares distribution (s'_i) using:
3177 *
3178 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3179 *
3180 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3181 * differences in waking a task to CPU 0. The additional task changes the
3182 * weight and shares distributions like:
3183 *
3184 * rw'_i = { 3, 4, 1, 0 }
3185 * s'_i = { 3/8, 4/8, 1/8, 0 }
3186 *
3187 * We can then compute the difference in effective weight by using:
3188 *
3189 * dw_i = S * (s'_i - s_i) (3)
3190 *
3191 * Where 'S' is the group weight as seen by its parent.
3192 *
3193 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3194 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3195 * 4/7) times the weight of the group.
f5bfb7d9 3196 */
2069dd75 3197static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3198{
4be9daaa 3199 struct sched_entity *se = tg->se[cpu];
f1d239f7 3200
cf5f0acf 3201 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3202 return wl;
3203
4be9daaa 3204 for_each_sched_entity(se) {
cf5f0acf 3205 long w, W;
4be9daaa 3206
977dda7c 3207 tg = se->my_q->tg;
bb3469ac 3208
cf5f0acf
PZ
3209 /*
3210 * W = @wg + \Sum rw_j
3211 */
3212 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3213
cf5f0acf
PZ
3214 /*
3215 * w = rw_i + @wl
3216 */
3217 w = se->my_q->load.weight + wl;
940959e9 3218
cf5f0acf
PZ
3219 /*
3220 * wl = S * s'_i; see (2)
3221 */
3222 if (W > 0 && w < W)
3223 wl = (w * tg->shares) / W;
977dda7c
PT
3224 else
3225 wl = tg->shares;
940959e9 3226
cf5f0acf
PZ
3227 /*
3228 * Per the above, wl is the new se->load.weight value; since
3229 * those are clipped to [MIN_SHARES, ...) do so now. See
3230 * calc_cfs_shares().
3231 */
977dda7c
PT
3232 if (wl < MIN_SHARES)
3233 wl = MIN_SHARES;
cf5f0acf
PZ
3234
3235 /*
3236 * wl = dw_i = S * (s'_i - s_i); see (3)
3237 */
977dda7c 3238 wl -= se->load.weight;
cf5f0acf
PZ
3239
3240 /*
3241 * Recursively apply this logic to all parent groups to compute
3242 * the final effective load change on the root group. Since
3243 * only the @tg group gets extra weight, all parent groups can
3244 * only redistribute existing shares. @wl is the shift in shares
3245 * resulting from this level per the above.
3246 */
4be9daaa 3247 wg = 0;
4be9daaa 3248 }
bb3469ac 3249
4be9daaa 3250 return wl;
bb3469ac
PZ
3251}
3252#else
4be9daaa 3253
83378269
PZ
3254static inline unsigned long effective_load(struct task_group *tg, int cpu,
3255 unsigned long wl, unsigned long wg)
4be9daaa 3256{
83378269 3257 return wl;
bb3469ac 3258}
4be9daaa 3259
bb3469ac
PZ
3260#endif
3261
62470419
MW
3262static int wake_wide(struct task_struct *p)
3263{
7d9ffa89 3264 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3265
3266 /*
3267 * Yeah, it's the switching-frequency, could means many wakee or
3268 * rapidly switch, use factor here will just help to automatically
3269 * adjust the loose-degree, so bigger node will lead to more pull.
3270 */
3271 if (p->wakee_flips > factor) {
3272 /*
3273 * wakee is somewhat hot, it needs certain amount of cpu
3274 * resource, so if waker is far more hot, prefer to leave
3275 * it alone.
3276 */
3277 if (current->wakee_flips > (factor * p->wakee_flips))
3278 return 1;
3279 }
3280
3281 return 0;
3282}
3283
c88d5910 3284static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3285{
e37b6a7b 3286 s64 this_load, load;
c88d5910 3287 int idx, this_cpu, prev_cpu;
098fb9db 3288 unsigned long tl_per_task;
c88d5910 3289 struct task_group *tg;
83378269 3290 unsigned long weight;
b3137bc8 3291 int balanced;
098fb9db 3292
62470419
MW
3293 /*
3294 * If we wake multiple tasks be careful to not bounce
3295 * ourselves around too much.
3296 */
3297 if (wake_wide(p))
3298 return 0;
3299
c88d5910
PZ
3300 idx = sd->wake_idx;
3301 this_cpu = smp_processor_id();
3302 prev_cpu = task_cpu(p);
3303 load = source_load(prev_cpu, idx);
3304 this_load = target_load(this_cpu, idx);
098fb9db 3305
b3137bc8
MG
3306 /*
3307 * If sync wakeup then subtract the (maximum possible)
3308 * effect of the currently running task from the load
3309 * of the current CPU:
3310 */
83378269
PZ
3311 if (sync) {
3312 tg = task_group(current);
3313 weight = current->se.load.weight;
3314
c88d5910 3315 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3316 load += effective_load(tg, prev_cpu, 0, -weight);
3317 }
b3137bc8 3318
83378269
PZ
3319 tg = task_group(p);
3320 weight = p->se.load.weight;
b3137bc8 3321
71a29aa7
PZ
3322 /*
3323 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3324 * due to the sync cause above having dropped this_load to 0, we'll
3325 * always have an imbalance, but there's really nothing you can do
3326 * about that, so that's good too.
71a29aa7
PZ
3327 *
3328 * Otherwise check if either cpus are near enough in load to allow this
3329 * task to be woken on this_cpu.
3330 */
e37b6a7b
PT
3331 if (this_load > 0) {
3332 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3333
3334 this_eff_load = 100;
3335 this_eff_load *= power_of(prev_cpu);
3336 this_eff_load *= this_load +
3337 effective_load(tg, this_cpu, weight, weight);
3338
3339 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3340 prev_eff_load *= power_of(this_cpu);
3341 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3342
3343 balanced = this_eff_load <= prev_eff_load;
3344 } else
3345 balanced = true;
b3137bc8 3346
098fb9db 3347 /*
4ae7d5ce
IM
3348 * If the currently running task will sleep within
3349 * a reasonable amount of time then attract this newly
3350 * woken task:
098fb9db 3351 */
2fb7635c
PZ
3352 if (sync && balanced)
3353 return 1;
098fb9db 3354
41acab88 3355 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3356 tl_per_task = cpu_avg_load_per_task(this_cpu);
3357
c88d5910
PZ
3358 if (balanced ||
3359 (this_load <= load &&
3360 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3361 /*
3362 * This domain has SD_WAKE_AFFINE and
3363 * p is cache cold in this domain, and
3364 * there is no bad imbalance.
3365 */
c88d5910 3366 schedstat_inc(sd, ttwu_move_affine);
41acab88 3367 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3368
3369 return 1;
3370 }
3371 return 0;
3372}
3373
aaee1203
PZ
3374/*
3375 * find_idlest_group finds and returns the least busy CPU group within the
3376 * domain.
3377 */
3378static struct sched_group *
78e7ed53 3379find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3380 int this_cpu, int load_idx)
e7693a36 3381{
b3bd3de6 3382 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3383 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3384 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3385
aaee1203
PZ
3386 do {
3387 unsigned long load, avg_load;
3388 int local_group;
3389 int i;
e7693a36 3390
aaee1203
PZ
3391 /* Skip over this group if it has no CPUs allowed */
3392 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3393 tsk_cpus_allowed(p)))
aaee1203
PZ
3394 continue;
3395
3396 local_group = cpumask_test_cpu(this_cpu,
3397 sched_group_cpus(group));
3398
3399 /* Tally up the load of all CPUs in the group */
3400 avg_load = 0;
3401
3402 for_each_cpu(i, sched_group_cpus(group)) {
3403 /* Bias balancing toward cpus of our domain */
3404 if (local_group)
3405 load = source_load(i, load_idx);
3406 else
3407 load = target_load(i, load_idx);
3408
3409 avg_load += load;
3410 }
3411
3412 /* Adjust by relative CPU power of the group */
9c3f75cb 3413 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3414
3415 if (local_group) {
3416 this_load = avg_load;
aaee1203
PZ
3417 } else if (avg_load < min_load) {
3418 min_load = avg_load;
3419 idlest = group;
3420 }
3421 } while (group = group->next, group != sd->groups);
3422
3423 if (!idlest || 100*this_load < imbalance*min_load)
3424 return NULL;
3425 return idlest;
3426}
3427
3428/*
3429 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3430 */
3431static int
3432find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3433{
3434 unsigned long load, min_load = ULONG_MAX;
3435 int idlest = -1;
3436 int i;
3437
3438 /* Traverse only the allowed CPUs */
fa17b507 3439 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3440 load = weighted_cpuload(i);
3441
3442 if (load < min_load || (load == min_load && i == this_cpu)) {
3443 min_load = load;
3444 idlest = i;
e7693a36
GH
3445 }
3446 }
3447
aaee1203
PZ
3448 return idlest;
3449}
e7693a36 3450
a50bde51
PZ
3451/*
3452 * Try and locate an idle CPU in the sched_domain.
3453 */
99bd5e2f 3454static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3455{
99bd5e2f 3456 struct sched_domain *sd;
37407ea7 3457 struct sched_group *sg;
e0a79f52 3458 int i = task_cpu(p);
a50bde51 3459
e0a79f52
MG
3460 if (idle_cpu(target))
3461 return target;
99bd5e2f
SS
3462
3463 /*
e0a79f52 3464 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3465 */
e0a79f52
MG
3466 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3467 return i;
a50bde51
PZ
3468
3469 /*
37407ea7 3470 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3471 */
518cd623 3472 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3473 for_each_lower_domain(sd) {
37407ea7
LT
3474 sg = sd->groups;
3475 do {
3476 if (!cpumask_intersects(sched_group_cpus(sg),
3477 tsk_cpus_allowed(p)))
3478 goto next;
3479
3480 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3481 if (i == target || !idle_cpu(i))
37407ea7
LT
3482 goto next;
3483 }
970e1789 3484
37407ea7
LT
3485 target = cpumask_first_and(sched_group_cpus(sg),
3486 tsk_cpus_allowed(p));
3487 goto done;
3488next:
3489 sg = sg->next;
3490 } while (sg != sd->groups);
3491 }
3492done:
a50bde51
PZ
3493 return target;
3494}
3495
aaee1203
PZ
3496/*
3497 * sched_balance_self: balance the current task (running on cpu) in domains
3498 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3499 * SD_BALANCE_EXEC.
3500 *
3501 * Balance, ie. select the least loaded group.
3502 *
3503 * Returns the target CPU number, or the same CPU if no balancing is needed.
3504 *
3505 * preempt must be disabled.
3506 */
0017d735 3507static int
7608dec2 3508select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3509{
29cd8bae 3510 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3511 int cpu = smp_processor_id();
3512 int prev_cpu = task_cpu(p);
3513 int new_cpu = cpu;
99bd5e2f 3514 int want_affine = 0;
5158f4e4 3515 int sync = wake_flags & WF_SYNC;
c88d5910 3516
29baa747 3517 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3518 return prev_cpu;
3519
0763a660 3520 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3521 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3522 want_affine = 1;
3523 new_cpu = prev_cpu;
3524 }
aaee1203 3525
dce840a0 3526 rcu_read_lock();
aaee1203 3527 for_each_domain(cpu, tmp) {
e4f42888
PZ
3528 if (!(tmp->flags & SD_LOAD_BALANCE))
3529 continue;
3530
fe3bcfe1 3531 /*
99bd5e2f
SS
3532 * If both cpu and prev_cpu are part of this domain,
3533 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3534 */
99bd5e2f
SS
3535 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3536 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3537 affine_sd = tmp;
29cd8bae 3538 break;
f03542a7 3539 }
29cd8bae 3540
f03542a7 3541 if (tmp->flags & sd_flag)
29cd8bae
PZ
3542 sd = tmp;
3543 }
3544
8b911acd 3545 if (affine_sd) {
f03542a7 3546 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3547 prev_cpu = cpu;
3548
3549 new_cpu = select_idle_sibling(p, prev_cpu);
3550 goto unlock;
8b911acd 3551 }
e7693a36 3552
aaee1203 3553 while (sd) {
5158f4e4 3554 int load_idx = sd->forkexec_idx;
aaee1203 3555 struct sched_group *group;
c88d5910 3556 int weight;
098fb9db 3557
0763a660 3558 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3559 sd = sd->child;
3560 continue;
3561 }
098fb9db 3562
5158f4e4
PZ
3563 if (sd_flag & SD_BALANCE_WAKE)
3564 load_idx = sd->wake_idx;
098fb9db 3565
5158f4e4 3566 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3567 if (!group) {
3568 sd = sd->child;
3569 continue;
3570 }
4ae7d5ce 3571
d7c33c49 3572 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3573 if (new_cpu == -1 || new_cpu == cpu) {
3574 /* Now try balancing at a lower domain level of cpu */
3575 sd = sd->child;
3576 continue;
e7693a36 3577 }
aaee1203
PZ
3578
3579 /* Now try balancing at a lower domain level of new_cpu */
3580 cpu = new_cpu;
669c55e9 3581 weight = sd->span_weight;
aaee1203
PZ
3582 sd = NULL;
3583 for_each_domain(cpu, tmp) {
669c55e9 3584 if (weight <= tmp->span_weight)
aaee1203 3585 break;
0763a660 3586 if (tmp->flags & sd_flag)
aaee1203
PZ
3587 sd = tmp;
3588 }
3589 /* while loop will break here if sd == NULL */
e7693a36 3590 }
dce840a0
PZ
3591unlock:
3592 rcu_read_unlock();
e7693a36 3593
c88d5910 3594 return new_cpu;
e7693a36 3595}
0a74bef8
PT
3596
3597/*
3598 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3599 * cfs_rq_of(p) references at time of call are still valid and identify the
3600 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3601 * other assumptions, including the state of rq->lock, should be made.
3602 */
3603static void
3604migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3605{
aff3e498
PT
3606 struct sched_entity *se = &p->se;
3607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3608
3609 /*
3610 * Load tracking: accumulate removed load so that it can be processed
3611 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3612 * to blocked load iff they have a positive decay-count. It can never
3613 * be negative here since on-rq tasks have decay-count == 0.
3614 */
3615 if (se->avg.decay_count) {
3616 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3617 atomic_long_add(se->avg.load_avg_contrib,
3618 &cfs_rq->removed_load);
aff3e498 3619 }
0a74bef8 3620}
e7693a36
GH
3621#endif /* CONFIG_SMP */
3622
e52fb7c0
PZ
3623static unsigned long
3624wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3625{
3626 unsigned long gran = sysctl_sched_wakeup_granularity;
3627
3628 /*
e52fb7c0
PZ
3629 * Since its curr running now, convert the gran from real-time
3630 * to virtual-time in his units.
13814d42
MG
3631 *
3632 * By using 'se' instead of 'curr' we penalize light tasks, so
3633 * they get preempted easier. That is, if 'se' < 'curr' then
3634 * the resulting gran will be larger, therefore penalizing the
3635 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3636 * be smaller, again penalizing the lighter task.
3637 *
3638 * This is especially important for buddies when the leftmost
3639 * task is higher priority than the buddy.
0bbd3336 3640 */
f4ad9bd2 3641 return calc_delta_fair(gran, se);
0bbd3336
PZ
3642}
3643
464b7527
PZ
3644/*
3645 * Should 'se' preempt 'curr'.
3646 *
3647 * |s1
3648 * |s2
3649 * |s3
3650 * g
3651 * |<--->|c
3652 *
3653 * w(c, s1) = -1
3654 * w(c, s2) = 0
3655 * w(c, s3) = 1
3656 *
3657 */
3658static int
3659wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3660{
3661 s64 gran, vdiff = curr->vruntime - se->vruntime;
3662
3663 if (vdiff <= 0)
3664 return -1;
3665
e52fb7c0 3666 gran = wakeup_gran(curr, se);
464b7527
PZ
3667 if (vdiff > gran)
3668 return 1;
3669
3670 return 0;
3671}
3672
02479099
PZ
3673static void set_last_buddy(struct sched_entity *se)
3674{
69c80f3e
VP
3675 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3676 return;
3677
3678 for_each_sched_entity(se)
3679 cfs_rq_of(se)->last = se;
02479099
PZ
3680}
3681
3682static void set_next_buddy(struct sched_entity *se)
3683{
69c80f3e
VP
3684 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3685 return;
3686
3687 for_each_sched_entity(se)
3688 cfs_rq_of(se)->next = se;
02479099
PZ
3689}
3690
ac53db59
RR
3691static void set_skip_buddy(struct sched_entity *se)
3692{
69c80f3e
VP
3693 for_each_sched_entity(se)
3694 cfs_rq_of(se)->skip = se;
ac53db59
RR
3695}
3696
bf0f6f24
IM
3697/*
3698 * Preempt the current task with a newly woken task if needed:
3699 */
5a9b86f6 3700static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3701{
3702 struct task_struct *curr = rq->curr;
8651a86c 3703 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3704 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3705 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3706 int next_buddy_marked = 0;
bf0f6f24 3707
4ae7d5ce
IM
3708 if (unlikely(se == pse))
3709 return;
3710
5238cdd3 3711 /*
ddcdf6e7 3712 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3713 * unconditionally check_prempt_curr() after an enqueue (which may have
3714 * lead to a throttle). This both saves work and prevents false
3715 * next-buddy nomination below.
3716 */
3717 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3718 return;
3719
2f36825b 3720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3721 set_next_buddy(pse);
2f36825b
VP
3722 next_buddy_marked = 1;
3723 }
57fdc26d 3724
aec0a514
BR
3725 /*
3726 * We can come here with TIF_NEED_RESCHED already set from new task
3727 * wake up path.
5238cdd3
PT
3728 *
3729 * Note: this also catches the edge-case of curr being in a throttled
3730 * group (e.g. via set_curr_task), since update_curr() (in the
3731 * enqueue of curr) will have resulted in resched being set. This
3732 * prevents us from potentially nominating it as a false LAST_BUDDY
3733 * below.
aec0a514
BR
3734 */
3735 if (test_tsk_need_resched(curr))
3736 return;
3737
a2f5c9ab
DH
3738 /* Idle tasks are by definition preempted by non-idle tasks. */
3739 if (unlikely(curr->policy == SCHED_IDLE) &&
3740 likely(p->policy != SCHED_IDLE))
3741 goto preempt;
3742
91c234b4 3743 /*
a2f5c9ab
DH
3744 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3745 * is driven by the tick):
91c234b4 3746 */
8ed92e51 3747 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3748 return;
bf0f6f24 3749
464b7527 3750 find_matching_se(&se, &pse);
9bbd7374 3751 update_curr(cfs_rq_of(se));
002f128b 3752 BUG_ON(!pse);
2f36825b
VP
3753 if (wakeup_preempt_entity(se, pse) == 1) {
3754 /*
3755 * Bias pick_next to pick the sched entity that is
3756 * triggering this preemption.
3757 */
3758 if (!next_buddy_marked)
3759 set_next_buddy(pse);
3a7e73a2 3760 goto preempt;
2f36825b 3761 }
464b7527 3762
3a7e73a2 3763 return;
a65ac745 3764
3a7e73a2
PZ
3765preempt:
3766 resched_task(curr);
3767 /*
3768 * Only set the backward buddy when the current task is still
3769 * on the rq. This can happen when a wakeup gets interleaved
3770 * with schedule on the ->pre_schedule() or idle_balance()
3771 * point, either of which can * drop the rq lock.
3772 *
3773 * Also, during early boot the idle thread is in the fair class,
3774 * for obvious reasons its a bad idea to schedule back to it.
3775 */
3776 if (unlikely(!se->on_rq || curr == rq->idle))
3777 return;
3778
3779 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3780 set_last_buddy(se);
bf0f6f24
IM
3781}
3782
fb8d4724 3783static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3784{
8f4d37ec 3785 struct task_struct *p;
bf0f6f24
IM
3786 struct cfs_rq *cfs_rq = &rq->cfs;
3787 struct sched_entity *se;
3788
36ace27e 3789 if (!cfs_rq->nr_running)
bf0f6f24
IM
3790 return NULL;
3791
3792 do {
9948f4b2 3793 se = pick_next_entity(cfs_rq);
f4b6755f 3794 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3795 cfs_rq = group_cfs_rq(se);
3796 } while (cfs_rq);
3797
8f4d37ec 3798 p = task_of(se);
b39e66ea
MG
3799 if (hrtick_enabled(rq))
3800 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3801
3802 return p;
bf0f6f24
IM
3803}
3804
3805/*
3806 * Account for a descheduled task:
3807 */
31ee529c 3808static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3809{
3810 struct sched_entity *se = &prev->se;
3811 struct cfs_rq *cfs_rq;
3812
3813 for_each_sched_entity(se) {
3814 cfs_rq = cfs_rq_of(se);
ab6cde26 3815 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3816 }
3817}
3818
ac53db59
RR
3819/*
3820 * sched_yield() is very simple
3821 *
3822 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3823 */
3824static void yield_task_fair(struct rq *rq)
3825{
3826 struct task_struct *curr = rq->curr;
3827 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3828 struct sched_entity *se = &curr->se;
3829
3830 /*
3831 * Are we the only task in the tree?
3832 */
3833 if (unlikely(rq->nr_running == 1))
3834 return;
3835
3836 clear_buddies(cfs_rq, se);
3837
3838 if (curr->policy != SCHED_BATCH) {
3839 update_rq_clock(rq);
3840 /*
3841 * Update run-time statistics of the 'current'.
3842 */
3843 update_curr(cfs_rq);
916671c0
MG
3844 /*
3845 * Tell update_rq_clock() that we've just updated,
3846 * so we don't do microscopic update in schedule()
3847 * and double the fastpath cost.
3848 */
3849 rq->skip_clock_update = 1;
ac53db59
RR
3850 }
3851
3852 set_skip_buddy(se);
3853}
3854
d95f4122
MG
3855static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3856{
3857 struct sched_entity *se = &p->se;
3858
5238cdd3
PT
3859 /* throttled hierarchies are not runnable */
3860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3861 return false;
3862
3863 /* Tell the scheduler that we'd really like pse to run next. */
3864 set_next_buddy(se);
3865
d95f4122
MG
3866 yield_task_fair(rq);
3867
3868 return true;
3869}
3870
681f3e68 3871#ifdef CONFIG_SMP
bf0f6f24 3872/**************************************************
e9c84cb8
PZ
3873 * Fair scheduling class load-balancing methods.
3874 *
3875 * BASICS
3876 *
3877 * The purpose of load-balancing is to achieve the same basic fairness the
3878 * per-cpu scheduler provides, namely provide a proportional amount of compute
3879 * time to each task. This is expressed in the following equation:
3880 *
3881 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3882 *
3883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3884 * W_i,0 is defined as:
3885 *
3886 * W_i,0 = \Sum_j w_i,j (2)
3887 *
3888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3889 * is derived from the nice value as per prio_to_weight[].
3890 *
3891 * The weight average is an exponential decay average of the instantaneous
3892 * weight:
3893 *
3894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3895 *
3896 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3898 * can also include other factors [XXX].
3899 *
3900 * To achieve this balance we define a measure of imbalance which follows
3901 * directly from (1):
3902 *
3903 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3904 *
3905 * We them move tasks around to minimize the imbalance. In the continuous
3906 * function space it is obvious this converges, in the discrete case we get
3907 * a few fun cases generally called infeasible weight scenarios.
3908 *
3909 * [XXX expand on:
3910 * - infeasible weights;
3911 * - local vs global optima in the discrete case. ]
3912 *
3913 *
3914 * SCHED DOMAINS
3915 *
3916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3917 * for all i,j solution, we create a tree of cpus that follows the hardware
3918 * topology where each level pairs two lower groups (or better). This results
3919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3920 * tree to only the first of the previous level and we decrease the frequency
3921 * of load-balance at each level inv. proportional to the number of cpus in
3922 * the groups.
3923 *
3924 * This yields:
3925 *
3926 * log_2 n 1 n
3927 * \Sum { --- * --- * 2^i } = O(n) (5)
3928 * i = 0 2^i 2^i
3929 * `- size of each group
3930 * | | `- number of cpus doing load-balance
3931 * | `- freq
3932 * `- sum over all levels
3933 *
3934 * Coupled with a limit on how many tasks we can migrate every balance pass,
3935 * this makes (5) the runtime complexity of the balancer.
3936 *
3937 * An important property here is that each CPU is still (indirectly) connected
3938 * to every other cpu in at most O(log n) steps:
3939 *
3940 * The adjacency matrix of the resulting graph is given by:
3941 *
3942 * log_2 n
3943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3944 * k = 0
3945 *
3946 * And you'll find that:
3947 *
3948 * A^(log_2 n)_i,j != 0 for all i,j (7)
3949 *
3950 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3951 * The task movement gives a factor of O(m), giving a convergence complexity
3952 * of:
3953 *
3954 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3955 *
3956 *
3957 * WORK CONSERVING
3958 *
3959 * In order to avoid CPUs going idle while there's still work to do, new idle
3960 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3961 * tree itself instead of relying on other CPUs to bring it work.
3962 *
3963 * This adds some complexity to both (5) and (8) but it reduces the total idle
3964 * time.
3965 *
3966 * [XXX more?]
3967 *
3968 *
3969 * CGROUPS
3970 *
3971 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3972 *
3973 * s_k,i
3974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3975 * S_k
3976 *
3977 * Where
3978 *
3979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3980 *
3981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3982 *
3983 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3984 * property.
3985 *
3986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3987 * rewrite all of this once again.]
3988 */
bf0f6f24 3989
ed387b78
HS
3990static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3991
ddcdf6e7 3992#define LBF_ALL_PINNED 0x01
367456c7 3993#define LBF_NEED_BREAK 0x02
6263322c
PZ
3994#define LBF_DST_PINNED 0x04
3995#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
3996
3997struct lb_env {
3998 struct sched_domain *sd;
3999
ddcdf6e7 4000 struct rq *src_rq;
85c1e7da 4001 int src_cpu;
ddcdf6e7
PZ
4002
4003 int dst_cpu;
4004 struct rq *dst_rq;
4005
88b8dac0
SV
4006 struct cpumask *dst_grpmask;
4007 int new_dst_cpu;
ddcdf6e7 4008 enum cpu_idle_type idle;
bd939f45 4009 long imbalance;
b9403130
MW
4010 /* The set of CPUs under consideration for load-balancing */
4011 struct cpumask *cpus;
4012
ddcdf6e7 4013 unsigned int flags;
367456c7
PZ
4014
4015 unsigned int loop;
4016 unsigned int loop_break;
4017 unsigned int loop_max;
ddcdf6e7
PZ
4018};
4019
1e3c88bd 4020/*
ddcdf6e7 4021 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4022 * Both runqueues must be locked.
4023 */
ddcdf6e7 4024static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4025{
ddcdf6e7
PZ
4026 deactivate_task(env->src_rq, p, 0);
4027 set_task_cpu(p, env->dst_cpu);
4028 activate_task(env->dst_rq, p, 0);
4029 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4030}
4031
029632fb
PZ
4032/*
4033 * Is this task likely cache-hot:
4034 */
4035static int
4036task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4037{
4038 s64 delta;
4039
4040 if (p->sched_class != &fair_sched_class)
4041 return 0;
4042
4043 if (unlikely(p->policy == SCHED_IDLE))
4044 return 0;
4045
4046 /*
4047 * Buddy candidates are cache hot:
4048 */
4049 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4050 (&p->se == cfs_rq_of(&p->se)->next ||
4051 &p->se == cfs_rq_of(&p->se)->last))
4052 return 1;
4053
4054 if (sysctl_sched_migration_cost == -1)
4055 return 1;
4056 if (sysctl_sched_migration_cost == 0)
4057 return 0;
4058
4059 delta = now - p->se.exec_start;
4060
4061 return delta < (s64)sysctl_sched_migration_cost;
4062}
4063
1e3c88bd
PZ
4064/*
4065 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4066 */
4067static
8e45cb54 4068int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4069{
4070 int tsk_cache_hot = 0;
4071 /*
4072 * We do not migrate tasks that are:
d3198084 4073 * 1) throttled_lb_pair, or
1e3c88bd 4074 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4075 * 3) running (obviously), or
4076 * 4) are cache-hot on their current CPU.
1e3c88bd 4077 */
d3198084
JK
4078 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4079 return 0;
4080
ddcdf6e7 4081 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4082 int cpu;
88b8dac0 4083
41acab88 4084 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4085
6263322c
PZ
4086 env->flags |= LBF_SOME_PINNED;
4087
88b8dac0
SV
4088 /*
4089 * Remember if this task can be migrated to any other cpu in
4090 * our sched_group. We may want to revisit it if we couldn't
4091 * meet load balance goals by pulling other tasks on src_cpu.
4092 *
4093 * Also avoid computing new_dst_cpu if we have already computed
4094 * one in current iteration.
4095 */
6263322c 4096 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4097 return 0;
4098
e02e60c1
JK
4099 /* Prevent to re-select dst_cpu via env's cpus */
4100 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4101 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4102 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4103 env->new_dst_cpu = cpu;
4104 break;
4105 }
88b8dac0 4106 }
e02e60c1 4107
1e3c88bd
PZ
4108 return 0;
4109 }
88b8dac0
SV
4110
4111 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4112 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4113
ddcdf6e7 4114 if (task_running(env->src_rq, p)) {
41acab88 4115 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4116 return 0;
4117 }
4118
4119 /*
4120 * Aggressive migration if:
4121 * 1) task is cache cold, or
4122 * 2) too many balance attempts have failed.
4123 */
4124
78becc27 4125 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 4126 if (!tsk_cache_hot ||
8e45cb54 4127 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4128
1e3c88bd 4129 if (tsk_cache_hot) {
8e45cb54 4130 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4131 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4132 }
4e2dcb73 4133
1e3c88bd
PZ
4134 return 1;
4135 }
4136
4e2dcb73
ZH
4137 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4138 return 0;
1e3c88bd
PZ
4139}
4140
897c395f
PZ
4141/*
4142 * move_one_task tries to move exactly one task from busiest to this_rq, as
4143 * part of active balancing operations within "domain".
4144 * Returns 1 if successful and 0 otherwise.
4145 *
4146 * Called with both runqueues locked.
4147 */
8e45cb54 4148static int move_one_task(struct lb_env *env)
897c395f
PZ
4149{
4150 struct task_struct *p, *n;
897c395f 4151
367456c7 4152 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4153 if (!can_migrate_task(p, env))
4154 continue;
897c395f 4155
367456c7
PZ
4156 move_task(p, env);
4157 /*
4158 * Right now, this is only the second place move_task()
4159 * is called, so we can safely collect move_task()
4160 * stats here rather than inside move_task().
4161 */
4162 schedstat_inc(env->sd, lb_gained[env->idle]);
4163 return 1;
897c395f 4164 }
897c395f
PZ
4165 return 0;
4166}
4167
367456c7
PZ
4168static unsigned long task_h_load(struct task_struct *p);
4169
eb95308e
PZ
4170static const unsigned int sched_nr_migrate_break = 32;
4171
5d6523eb 4172/*
bd939f45 4173 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4174 * this_rq, as part of a balancing operation within domain "sd".
4175 * Returns 1 if successful and 0 otherwise.
4176 *
4177 * Called with both runqueues locked.
4178 */
4179static int move_tasks(struct lb_env *env)
1e3c88bd 4180{
5d6523eb
PZ
4181 struct list_head *tasks = &env->src_rq->cfs_tasks;
4182 struct task_struct *p;
367456c7
PZ
4183 unsigned long load;
4184 int pulled = 0;
1e3c88bd 4185
bd939f45 4186 if (env->imbalance <= 0)
5d6523eb 4187 return 0;
1e3c88bd 4188
5d6523eb
PZ
4189 while (!list_empty(tasks)) {
4190 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4191
367456c7
PZ
4192 env->loop++;
4193 /* We've more or less seen every task there is, call it quits */
5d6523eb 4194 if (env->loop > env->loop_max)
367456c7 4195 break;
5d6523eb
PZ
4196
4197 /* take a breather every nr_migrate tasks */
367456c7 4198 if (env->loop > env->loop_break) {
eb95308e 4199 env->loop_break += sched_nr_migrate_break;
8e45cb54 4200 env->flags |= LBF_NEED_BREAK;
ee00e66f 4201 break;
a195f004 4202 }
1e3c88bd 4203
d3198084 4204 if (!can_migrate_task(p, env))
367456c7
PZ
4205 goto next;
4206
4207 load = task_h_load(p);
5d6523eb 4208
eb95308e 4209 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4210 goto next;
4211
bd939f45 4212 if ((load / 2) > env->imbalance)
367456c7 4213 goto next;
1e3c88bd 4214
ddcdf6e7 4215 move_task(p, env);
ee00e66f 4216 pulled++;
bd939f45 4217 env->imbalance -= load;
1e3c88bd
PZ
4218
4219#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4220 /*
4221 * NEWIDLE balancing is a source of latency, so preemptible
4222 * kernels will stop after the first task is pulled to minimize
4223 * the critical section.
4224 */
5d6523eb 4225 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4226 break;
1e3c88bd
PZ
4227#endif
4228
ee00e66f
PZ
4229 /*
4230 * We only want to steal up to the prescribed amount of
4231 * weighted load.
4232 */
bd939f45 4233 if (env->imbalance <= 0)
ee00e66f 4234 break;
367456c7
PZ
4235
4236 continue;
4237next:
5d6523eb 4238 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4239 }
5d6523eb 4240
1e3c88bd 4241 /*
ddcdf6e7
PZ
4242 * Right now, this is one of only two places move_task() is called,
4243 * so we can safely collect move_task() stats here rather than
4244 * inside move_task().
1e3c88bd 4245 */
8e45cb54 4246 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4247
5d6523eb 4248 return pulled;
1e3c88bd
PZ
4249}
4250
230059de 4251#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4252/*
4253 * update tg->load_weight by folding this cpu's load_avg
4254 */
48a16753 4255static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4256{
48a16753
PT
4257 struct sched_entity *se = tg->se[cpu];
4258 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4259
48a16753
PT
4260 /* throttled entities do not contribute to load */
4261 if (throttled_hierarchy(cfs_rq))
4262 return;
9e3081ca 4263
aff3e498 4264 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4265
82958366
PT
4266 if (se) {
4267 update_entity_load_avg(se, 1);
4268 /*
4269 * We pivot on our runnable average having decayed to zero for
4270 * list removal. This generally implies that all our children
4271 * have also been removed (modulo rounding error or bandwidth
4272 * control); however, such cases are rare and we can fix these
4273 * at enqueue.
4274 *
4275 * TODO: fix up out-of-order children on enqueue.
4276 */
4277 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4278 list_del_leaf_cfs_rq(cfs_rq);
4279 } else {
48a16753 4280 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4281 update_rq_runnable_avg(rq, rq->nr_running);
4282 }
9e3081ca
PZ
4283}
4284
48a16753 4285static void update_blocked_averages(int cpu)
9e3081ca 4286{
9e3081ca 4287 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4288 struct cfs_rq *cfs_rq;
4289 unsigned long flags;
9e3081ca 4290
48a16753
PT
4291 raw_spin_lock_irqsave(&rq->lock, flags);
4292 update_rq_clock(rq);
9763b67f
PZ
4293 /*
4294 * Iterates the task_group tree in a bottom up fashion, see
4295 * list_add_leaf_cfs_rq() for details.
4296 */
64660c86 4297 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4298 /*
4299 * Note: We may want to consider periodically releasing
4300 * rq->lock about these updates so that creating many task
4301 * groups does not result in continually extending hold time.
4302 */
4303 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4304 }
48a16753
PT
4305
4306 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4307}
4308
9763b67f 4309/*
68520796 4310 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4311 * This needs to be done in a top-down fashion because the load of a child
4312 * group is a fraction of its parents load.
4313 */
68520796 4314static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4315{
68520796
VD
4316 struct rq *rq = rq_of(cfs_rq);
4317 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4318 unsigned long now = jiffies;
68520796 4319 unsigned long load;
a35b6466 4320
68520796 4321 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4322 return;
4323
68520796
VD
4324 cfs_rq->h_load_next = NULL;
4325 for_each_sched_entity(se) {
4326 cfs_rq = cfs_rq_of(se);
4327 cfs_rq->h_load_next = se;
4328 if (cfs_rq->last_h_load_update == now)
4329 break;
4330 }
a35b6466 4331
68520796 4332 if (!se) {
7e3115ef 4333 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4334 cfs_rq->last_h_load_update = now;
4335 }
4336
4337 while ((se = cfs_rq->h_load_next) != NULL) {
4338 load = cfs_rq->h_load;
4339 load = div64_ul(load * se->avg.load_avg_contrib,
4340 cfs_rq->runnable_load_avg + 1);
4341 cfs_rq = group_cfs_rq(se);
4342 cfs_rq->h_load = load;
4343 cfs_rq->last_h_load_update = now;
4344 }
9763b67f
PZ
4345}
4346
367456c7 4347static unsigned long task_h_load(struct task_struct *p)
230059de 4348{
367456c7 4349 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4350
68520796 4351 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4352 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4353 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4354}
4355#else
48a16753 4356static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4357{
4358}
4359
367456c7 4360static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4361{
a003a25b 4362 return p->se.avg.load_avg_contrib;
1e3c88bd 4363}
230059de 4364#endif
1e3c88bd 4365
1e3c88bd 4366/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4367/*
4368 * sg_lb_stats - stats of a sched_group required for load_balancing
4369 */
4370struct sg_lb_stats {
4371 unsigned long avg_load; /*Avg load across the CPUs of the group */
4372 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4373 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4374 unsigned long load_per_task;
3ae11c90 4375 unsigned long group_power;
147c5fc2
PZ
4376 unsigned int sum_nr_running; /* Nr tasks running in the group */
4377 unsigned int group_capacity;
4378 unsigned int idle_cpus;
4379 unsigned int group_weight;
1e3c88bd 4380 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4381 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4382};
4383
56cf515b
JK
4384/*
4385 * sd_lb_stats - Structure to store the statistics of a sched_domain
4386 * during load balancing.
4387 */
4388struct sd_lb_stats {
4389 struct sched_group *busiest; /* Busiest group in this sd */
4390 struct sched_group *local; /* Local group in this sd */
4391 unsigned long total_load; /* Total load of all groups in sd */
4392 unsigned long total_pwr; /* Total power of all groups in sd */
4393 unsigned long avg_load; /* Average load across all groups in sd */
4394
56cf515b 4395 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4396 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4397};
4398
147c5fc2
PZ
4399static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4400{
4401 /*
4402 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4403 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4404 * We must however clear busiest_stat::avg_load because
4405 * update_sd_pick_busiest() reads this before assignment.
4406 */
4407 *sds = (struct sd_lb_stats){
4408 .busiest = NULL,
4409 .local = NULL,
4410 .total_load = 0UL,
4411 .total_pwr = 0UL,
4412 .busiest_stat = {
4413 .avg_load = 0UL,
4414 },
4415 };
4416}
4417
1e3c88bd
PZ
4418/**
4419 * get_sd_load_idx - Obtain the load index for a given sched domain.
4420 * @sd: The sched_domain whose load_idx is to be obtained.
4421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4422 *
4423 * Return: The load index.
1e3c88bd
PZ
4424 */
4425static inline int get_sd_load_idx(struct sched_domain *sd,
4426 enum cpu_idle_type idle)
4427{
4428 int load_idx;
4429
4430 switch (idle) {
4431 case CPU_NOT_IDLE:
4432 load_idx = sd->busy_idx;
4433 break;
4434
4435 case CPU_NEWLY_IDLE:
4436 load_idx = sd->newidle_idx;
4437 break;
4438 default:
4439 load_idx = sd->idle_idx;
4440 break;
4441 }
4442
4443 return load_idx;
4444}
4445
15f803c9 4446static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4447{
1399fa78 4448 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4449}
4450
4451unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4452{
4453 return default_scale_freq_power(sd, cpu);
4454}
4455
15f803c9 4456static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4457{
669c55e9 4458 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4459 unsigned long smt_gain = sd->smt_gain;
4460
4461 smt_gain /= weight;
4462
4463 return smt_gain;
4464}
4465
4466unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4467{
4468 return default_scale_smt_power(sd, cpu);
4469}
4470
15f803c9 4471static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4472{
4473 struct rq *rq = cpu_rq(cpu);
b654f7de 4474 u64 total, available, age_stamp, avg;
1e3c88bd 4475
b654f7de
PZ
4476 /*
4477 * Since we're reading these variables without serialization make sure
4478 * we read them once before doing sanity checks on them.
4479 */
4480 age_stamp = ACCESS_ONCE(rq->age_stamp);
4481 avg = ACCESS_ONCE(rq->rt_avg);
4482
78becc27 4483 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4484
b654f7de 4485 if (unlikely(total < avg)) {
aa483808
VP
4486 /* Ensures that power won't end up being negative */
4487 available = 0;
4488 } else {
b654f7de 4489 available = total - avg;
aa483808 4490 }
1e3c88bd 4491
1399fa78
NR
4492 if (unlikely((s64)total < SCHED_POWER_SCALE))
4493 total = SCHED_POWER_SCALE;
1e3c88bd 4494
1399fa78 4495 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4496
4497 return div_u64(available, total);
4498}
4499
4500static void update_cpu_power(struct sched_domain *sd, int cpu)
4501{
669c55e9 4502 unsigned long weight = sd->span_weight;
1399fa78 4503 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4504 struct sched_group *sdg = sd->groups;
4505
1e3c88bd
PZ
4506 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4507 if (sched_feat(ARCH_POWER))
4508 power *= arch_scale_smt_power(sd, cpu);
4509 else
4510 power *= default_scale_smt_power(sd, cpu);
4511
1399fa78 4512 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4513 }
4514
9c3f75cb 4515 sdg->sgp->power_orig = power;
9d5efe05
SV
4516
4517 if (sched_feat(ARCH_POWER))
4518 power *= arch_scale_freq_power(sd, cpu);
4519 else
4520 power *= default_scale_freq_power(sd, cpu);
4521
1399fa78 4522 power >>= SCHED_POWER_SHIFT;
9d5efe05 4523
1e3c88bd 4524 power *= scale_rt_power(cpu);
1399fa78 4525 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4526
4527 if (!power)
4528 power = 1;
4529
e51fd5e2 4530 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4531 sdg->sgp->power = power;
1e3c88bd
PZ
4532}
4533
029632fb 4534void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4535{
4536 struct sched_domain *child = sd->child;
4537 struct sched_group *group, *sdg = sd->groups;
863bffc8 4538 unsigned long power, power_orig;
4ec4412e
VG
4539 unsigned long interval;
4540
4541 interval = msecs_to_jiffies(sd->balance_interval);
4542 interval = clamp(interval, 1UL, max_load_balance_interval);
4543 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4544
4545 if (!child) {
4546 update_cpu_power(sd, cpu);
4547 return;
4548 }
4549
863bffc8 4550 power_orig = power = 0;
1e3c88bd 4551
74a5ce20
PZ
4552 if (child->flags & SD_OVERLAP) {
4553 /*
4554 * SD_OVERLAP domains cannot assume that child groups
4555 * span the current group.
4556 */
4557
863bffc8
PZ
4558 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4559 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4560
4561 power_orig += sg->sgp->power_orig;
4562 power += sg->sgp->power;
4563 }
74a5ce20
PZ
4564 } else {
4565 /*
4566 * !SD_OVERLAP domains can assume that child groups
4567 * span the current group.
4568 */
4569
4570 group = child->groups;
4571 do {
863bffc8 4572 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4573 power += group->sgp->power;
4574 group = group->next;
4575 } while (group != child->groups);
4576 }
1e3c88bd 4577
863bffc8
PZ
4578 sdg->sgp->power_orig = power_orig;
4579 sdg->sgp->power = power;
1e3c88bd
PZ
4580}
4581
9d5efe05
SV
4582/*
4583 * Try and fix up capacity for tiny siblings, this is needed when
4584 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4585 * which on its own isn't powerful enough.
4586 *
4587 * See update_sd_pick_busiest() and check_asym_packing().
4588 */
4589static inline int
4590fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4591{
4592 /*
1399fa78 4593 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4594 */
a6c75f2f 4595 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4596 return 0;
4597
4598 /*
4599 * If ~90% of the cpu_power is still there, we're good.
4600 */
9c3f75cb 4601 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4602 return 1;
4603
4604 return 0;
4605}
4606
30ce5dab
PZ
4607/*
4608 * Group imbalance indicates (and tries to solve) the problem where balancing
4609 * groups is inadequate due to tsk_cpus_allowed() constraints.
4610 *
4611 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4612 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4613 * Something like:
4614 *
4615 * { 0 1 2 3 } { 4 5 6 7 }
4616 * * * * *
4617 *
4618 * If we were to balance group-wise we'd place two tasks in the first group and
4619 * two tasks in the second group. Clearly this is undesired as it will overload
4620 * cpu 3 and leave one of the cpus in the second group unused.
4621 *
4622 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
4623 * by noticing the lower domain failed to reach balance and had difficulty
4624 * moving tasks due to affinity constraints.
30ce5dab
PZ
4625 *
4626 * When this is so detected; this group becomes a candidate for busiest; see
4627 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 4628 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
4629 * to create an effective group imbalance.
4630 *
4631 * This is a somewhat tricky proposition since the next run might not find the
4632 * group imbalance and decide the groups need to be balanced again. A most
4633 * subtle and fragile situation.
4634 */
4635
6263322c 4636static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 4637{
6263322c 4638 return group->sgp->imbalance;
30ce5dab
PZ
4639}
4640
b37d9316
PZ
4641/*
4642 * Compute the group capacity.
4643 *
c61037e9
PZ
4644 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4645 * first dividing out the smt factor and computing the actual number of cores
4646 * and limit power unit capacity with that.
b37d9316
PZ
4647 */
4648static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4649{
c61037e9
PZ
4650 unsigned int capacity, smt, cpus;
4651 unsigned int power, power_orig;
4652
4653 power = group->sgp->power;
4654 power_orig = group->sgp->power_orig;
4655 cpus = group->group_weight;
b37d9316 4656
c61037e9
PZ
4657 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4658 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4659 capacity = cpus / smt; /* cores */
b37d9316 4660
c61037e9 4661 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
4662 if (!capacity)
4663 capacity = fix_small_capacity(env->sd, group);
4664
4665 return capacity;
4666}
4667
1e3c88bd
PZ
4668/**
4669 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4670 * @env: The load balancing environment.
1e3c88bd 4671 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4672 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4673 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4674 * @sgs: variable to hold the statistics for this group.
4675 */
bd939f45
PZ
4676static inline void update_sg_lb_stats(struct lb_env *env,
4677 struct sched_group *group, int load_idx,
23f0d209 4678 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4679{
30ce5dab
PZ
4680 unsigned long nr_running;
4681 unsigned long load;
bd939f45 4682 int i;
1e3c88bd 4683
b72ff13c
PZ
4684 memset(sgs, 0, sizeof(*sgs));
4685
b9403130 4686 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4687 struct rq *rq = cpu_rq(i);
4688
e44bc5c5
PZ
4689 nr_running = rq->nr_running;
4690
1e3c88bd 4691 /* Bias balancing toward cpus of our domain */
6263322c 4692 if (local_group)
04f733b4 4693 load = target_load(i, load_idx);
6263322c 4694 else
1e3c88bd 4695 load = source_load(i, load_idx);
1e3c88bd
PZ
4696
4697 sgs->group_load += load;
e44bc5c5 4698 sgs->sum_nr_running += nr_running;
1e3c88bd 4699 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4700 if (idle_cpu(i))
4701 sgs->idle_cpus++;
1e3c88bd
PZ
4702 }
4703
1e3c88bd 4704 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
4705 sgs->group_power = group->sgp->power;
4706 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 4707
dd5feea1 4708 if (sgs->sum_nr_running)
38d0f770 4709 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4710
aae6d3dd 4711 sgs->group_weight = group->group_weight;
fab47622 4712
b37d9316
PZ
4713 sgs->group_imb = sg_imbalanced(group);
4714 sgs->group_capacity = sg_capacity(env, group);
4715
fab47622
NR
4716 if (sgs->group_capacity > sgs->sum_nr_running)
4717 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4718}
4719
532cb4c4
MN
4720/**
4721 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4722 * @env: The load balancing environment.
532cb4c4
MN
4723 * @sds: sched_domain statistics
4724 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4725 * @sgs: sched_group statistics
532cb4c4
MN
4726 *
4727 * Determine if @sg is a busier group than the previously selected
4728 * busiest group.
e69f6186
YB
4729 *
4730 * Return: %true if @sg is a busier group than the previously selected
4731 * busiest group. %false otherwise.
532cb4c4 4732 */
bd939f45 4733static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4734 struct sd_lb_stats *sds,
4735 struct sched_group *sg,
bd939f45 4736 struct sg_lb_stats *sgs)
532cb4c4 4737{
56cf515b 4738 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
4739 return false;
4740
4741 if (sgs->sum_nr_running > sgs->group_capacity)
4742 return true;
4743
4744 if (sgs->group_imb)
4745 return true;
4746
4747 /*
4748 * ASYM_PACKING needs to move all the work to the lowest
4749 * numbered CPUs in the group, therefore mark all groups
4750 * higher than ourself as busy.
4751 */
bd939f45
PZ
4752 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4753 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4754 if (!sds->busiest)
4755 return true;
4756
4757 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4758 return true;
4759 }
4760
4761 return false;
4762}
4763
1e3c88bd 4764/**
461819ac 4765 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4766 * @env: The load balancing environment.
1e3c88bd
PZ
4767 * @balance: Should we balance.
4768 * @sds: variable to hold the statistics for this sched_domain.
4769 */
bd939f45 4770static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 4771 struct sd_lb_stats *sds)
1e3c88bd 4772{
bd939f45
PZ
4773 struct sched_domain *child = env->sd->child;
4774 struct sched_group *sg = env->sd->groups;
56cf515b 4775 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
4776 int load_idx, prefer_sibling = 0;
4777
4778 if (child && child->flags & SD_PREFER_SIBLING)
4779 prefer_sibling = 1;
4780
bd939f45 4781 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4782
4783 do {
56cf515b 4784 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
4785 int local_group;
4786
bd939f45 4787 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
4788 if (local_group) {
4789 sds->local = sg;
4790 sgs = &sds->local_stat;
b72ff13c
PZ
4791
4792 if (env->idle != CPU_NEWLY_IDLE ||
4793 time_after_eq(jiffies, sg->sgp->next_update))
4794 update_group_power(env->sd, env->dst_cpu);
56cf515b 4795 }
1e3c88bd 4796
56cf515b 4797 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 4798
b72ff13c
PZ
4799 if (local_group)
4800 goto next_group;
4801
1e3c88bd
PZ
4802 /*
4803 * In case the child domain prefers tasks go to siblings
532cb4c4 4804 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4805 * and move all the excess tasks away. We lower the capacity
4806 * of a group only if the local group has the capacity to fit
4807 * these excess tasks, i.e. nr_running < group_capacity. The
4808 * extra check prevents the case where you always pull from the
4809 * heaviest group when it is already under-utilized (possible
4810 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4811 */
b72ff13c
PZ
4812 if (prefer_sibling && sds->local &&
4813 sds->local_stat.group_has_capacity)
147c5fc2 4814 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 4815
b72ff13c 4816 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 4817 sds->busiest = sg;
56cf515b 4818 sds->busiest_stat = *sgs;
1e3c88bd
PZ
4819 }
4820
b72ff13c
PZ
4821next_group:
4822 /* Now, start updating sd_lb_stats */
4823 sds->total_load += sgs->group_load;
4824 sds->total_pwr += sgs->group_power;
4825
532cb4c4 4826 sg = sg->next;
bd939f45 4827 } while (sg != env->sd->groups);
532cb4c4
MN
4828}
4829
532cb4c4
MN
4830/**
4831 * check_asym_packing - Check to see if the group is packed into the
4832 * sched doman.
4833 *
4834 * This is primarily intended to used at the sibling level. Some
4835 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4836 * case of POWER7, it can move to lower SMT modes only when higher
4837 * threads are idle. When in lower SMT modes, the threads will
4838 * perform better since they share less core resources. Hence when we
4839 * have idle threads, we want them to be the higher ones.
4840 *
4841 * This packing function is run on idle threads. It checks to see if
4842 * the busiest CPU in this domain (core in the P7 case) has a higher
4843 * CPU number than the packing function is being run on. Here we are
4844 * assuming lower CPU number will be equivalent to lower a SMT thread
4845 * number.
4846 *
e69f6186 4847 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
4848 * this CPU. The amount of the imbalance is returned in *imbalance.
4849 *
cd96891d 4850 * @env: The load balancing environment.
532cb4c4 4851 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4852 */
bd939f45 4853static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4854{
4855 int busiest_cpu;
4856
bd939f45 4857 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4858 return 0;
4859
4860 if (!sds->busiest)
4861 return 0;
4862
4863 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4864 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4865 return 0;
4866
bd939f45 4867 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
4868 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
4869 SCHED_POWER_SCALE);
bd939f45 4870
532cb4c4 4871 return 1;
1e3c88bd
PZ
4872}
4873
4874/**
4875 * fix_small_imbalance - Calculate the minor imbalance that exists
4876 * amongst the groups of a sched_domain, during
4877 * load balancing.
cd96891d 4878 * @env: The load balancing environment.
1e3c88bd 4879 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4880 */
bd939f45
PZ
4881static inline
4882void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4883{
4884 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4885 unsigned int imbn = 2;
dd5feea1 4886 unsigned long scaled_busy_load_per_task;
56cf515b 4887 struct sg_lb_stats *local, *busiest;
1e3c88bd 4888
56cf515b
JK
4889 local = &sds->local_stat;
4890 busiest = &sds->busiest_stat;
1e3c88bd 4891
56cf515b
JK
4892 if (!local->sum_nr_running)
4893 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
4894 else if (busiest->load_per_task > local->load_per_task)
4895 imbn = 1;
dd5feea1 4896
56cf515b
JK
4897 scaled_busy_load_per_task =
4898 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4899 busiest->group_power;
56cf515b 4900
3029ede3
VD
4901 if (busiest->avg_load + scaled_busy_load_per_task >=
4902 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 4903 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4904 return;
4905 }
4906
4907 /*
4908 * OK, we don't have enough imbalance to justify moving tasks,
4909 * however we may be able to increase total CPU power used by
4910 * moving them.
4911 */
4912
3ae11c90 4913 pwr_now += busiest->group_power *
56cf515b 4914 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 4915 pwr_now += local->group_power *
56cf515b 4916 min(local->load_per_task, local->avg_load);
1399fa78 4917 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4918
4919 /* Amount of load we'd subtract */
56cf515b 4920 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4921 busiest->group_power;
56cf515b 4922 if (busiest->avg_load > tmp) {
3ae11c90 4923 pwr_move += busiest->group_power *
56cf515b
JK
4924 min(busiest->load_per_task,
4925 busiest->avg_load - tmp);
4926 }
1e3c88bd
PZ
4927
4928 /* Amount of load we'd add */
3ae11c90 4929 if (busiest->avg_load * busiest->group_power <
56cf515b 4930 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
4931 tmp = (busiest->avg_load * busiest->group_power) /
4932 local->group_power;
56cf515b
JK
4933 } else {
4934 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4935 local->group_power;
56cf515b 4936 }
3ae11c90
PZ
4937 pwr_move += local->group_power *
4938 min(local->load_per_task, local->avg_load + tmp);
1399fa78 4939 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4940
4941 /* Move if we gain throughput */
4942 if (pwr_move > pwr_now)
56cf515b 4943 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4944}
4945
4946/**
4947 * calculate_imbalance - Calculate the amount of imbalance present within the
4948 * groups of a given sched_domain during load balance.
bd939f45 4949 * @env: load balance environment
1e3c88bd 4950 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4951 */
bd939f45 4952static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4953{
dd5feea1 4954 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
4955 struct sg_lb_stats *local, *busiest;
4956
4957 local = &sds->local_stat;
56cf515b 4958 busiest = &sds->busiest_stat;
dd5feea1 4959
56cf515b 4960 if (busiest->group_imb) {
30ce5dab
PZ
4961 /*
4962 * In the group_imb case we cannot rely on group-wide averages
4963 * to ensure cpu-load equilibrium, look at wider averages. XXX
4964 */
56cf515b
JK
4965 busiest->load_per_task =
4966 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
4967 }
4968
1e3c88bd
PZ
4969 /*
4970 * In the presence of smp nice balancing, certain scenarios can have
4971 * max load less than avg load(as we skip the groups at or below
4972 * its cpu_power, while calculating max_load..)
4973 */
b1885550
VD
4974 if (busiest->avg_load <= sds->avg_load ||
4975 local->avg_load >= sds->avg_load) {
bd939f45
PZ
4976 env->imbalance = 0;
4977 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4978 }
4979
56cf515b 4980 if (!busiest->group_imb) {
dd5feea1
SS
4981 /*
4982 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
4983 * Except of course for the group_imb case, since then we might
4984 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 4985 */
56cf515b
JK
4986 load_above_capacity =
4987 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 4988
1399fa78 4989 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 4990 load_above_capacity /= busiest->group_power;
dd5feea1
SS
4991 }
4992
4993 /*
4994 * We're trying to get all the cpus to the average_load, so we don't
4995 * want to push ourselves above the average load, nor do we wish to
4996 * reduce the max loaded cpu below the average load. At the same time,
4997 * we also don't want to reduce the group load below the group capacity
4998 * (so that we can implement power-savings policies etc). Thus we look
4999 * for the minimum possible imbalance.
dd5feea1 5000 */
30ce5dab 5001 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5002
5003 /* How much load to actually move to equalise the imbalance */
56cf515b 5004 env->imbalance = min(
3ae11c90
PZ
5005 max_pull * busiest->group_power,
5006 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5007 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5008
5009 /*
5010 * if *imbalance is less than the average load per runnable task
25985edc 5011 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5012 * a think about bumping its value to force at least one task to be
5013 * moved
5014 */
56cf515b 5015 if (env->imbalance < busiest->load_per_task)
bd939f45 5016 return fix_small_imbalance(env, sds);
1e3c88bd 5017}
fab47622 5018
1e3c88bd
PZ
5019/******* find_busiest_group() helpers end here *********************/
5020
5021/**
5022 * find_busiest_group - Returns the busiest group within the sched_domain
5023 * if there is an imbalance. If there isn't an imbalance, and
5024 * the user has opted for power-savings, it returns a group whose
5025 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5026 * such a group exists.
5027 *
5028 * Also calculates the amount of weighted load which should be moved
5029 * to restore balance.
5030 *
cd96891d 5031 * @env: The load balancing environment.
1e3c88bd 5032 *
e69f6186 5033 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5034 * - If no imbalance and user has opted for power-savings balance,
5035 * return the least loaded group whose CPUs can be
5036 * put to idle by rebalancing its tasks onto our group.
5037 */
56cf515b 5038static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5039{
56cf515b 5040 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5041 struct sd_lb_stats sds;
5042
147c5fc2 5043 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5044
5045 /*
5046 * Compute the various statistics relavent for load balancing at
5047 * this level.
5048 */
23f0d209 5049 update_sd_lb_stats(env, &sds);
56cf515b
JK
5050 local = &sds.local_stat;
5051 busiest = &sds.busiest_stat;
1e3c88bd 5052
bd939f45
PZ
5053 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5054 check_asym_packing(env, &sds))
532cb4c4
MN
5055 return sds.busiest;
5056
cc57aa8f 5057 /* There is no busy sibling group to pull tasks from */
56cf515b 5058 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5059 goto out_balanced;
5060
1399fa78 5061 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5062
866ab43e
PZ
5063 /*
5064 * If the busiest group is imbalanced the below checks don't
30ce5dab 5065 * work because they assume all things are equal, which typically
866ab43e
PZ
5066 * isn't true due to cpus_allowed constraints and the like.
5067 */
56cf515b 5068 if (busiest->group_imb)
866ab43e
PZ
5069 goto force_balance;
5070
cc57aa8f 5071 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5072 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5073 !busiest->group_has_capacity)
fab47622
NR
5074 goto force_balance;
5075
cc57aa8f
PZ
5076 /*
5077 * If the local group is more busy than the selected busiest group
5078 * don't try and pull any tasks.
5079 */
56cf515b 5080 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5081 goto out_balanced;
5082
cc57aa8f
PZ
5083 /*
5084 * Don't pull any tasks if this group is already above the domain
5085 * average load.
5086 */
56cf515b 5087 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5088 goto out_balanced;
5089
bd939f45 5090 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5091 /*
5092 * This cpu is idle. If the busiest group load doesn't
5093 * have more tasks than the number of available cpu's and
5094 * there is no imbalance between this and busiest group
5095 * wrt to idle cpu's, it is balanced.
5096 */
56cf515b
JK
5097 if ((local->idle_cpus < busiest->idle_cpus) &&
5098 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5099 goto out_balanced;
c186fafe
PZ
5100 } else {
5101 /*
5102 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5103 * imbalance_pct to be conservative.
5104 */
56cf515b
JK
5105 if (100 * busiest->avg_load <=
5106 env->sd->imbalance_pct * local->avg_load)
c186fafe 5107 goto out_balanced;
aae6d3dd 5108 }
1e3c88bd 5109
fab47622 5110force_balance:
1e3c88bd 5111 /* Looks like there is an imbalance. Compute it */
bd939f45 5112 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5113 return sds.busiest;
5114
5115out_balanced:
bd939f45 5116 env->imbalance = 0;
1e3c88bd
PZ
5117 return NULL;
5118}
5119
5120/*
5121 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5122 */
bd939f45 5123static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5124 struct sched_group *group)
1e3c88bd
PZ
5125{
5126 struct rq *busiest = NULL, *rq;
95a79b80 5127 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5128 int i;
5129
6906a408 5130 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5131 unsigned long power = power_of(i);
1399fa78
NR
5132 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5133 SCHED_POWER_SCALE);
1e3c88bd
PZ
5134 unsigned long wl;
5135
9d5efe05 5136 if (!capacity)
bd939f45 5137 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5138
1e3c88bd 5139 rq = cpu_rq(i);
6e40f5bb 5140 wl = weighted_cpuload(i);
1e3c88bd 5141
6e40f5bb
TG
5142 /*
5143 * When comparing with imbalance, use weighted_cpuload()
5144 * which is not scaled with the cpu power.
5145 */
bd939f45 5146 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5147 continue;
5148
6e40f5bb
TG
5149 /*
5150 * For the load comparisons with the other cpu's, consider
5151 * the weighted_cpuload() scaled with the cpu power, so that
5152 * the load can be moved away from the cpu that is potentially
5153 * running at a lower capacity.
95a79b80
JK
5154 *
5155 * Thus we're looking for max(wl_i / power_i), crosswise
5156 * multiplication to rid ourselves of the division works out
5157 * to: wl_i * power_j > wl_j * power_i; where j is our
5158 * previous maximum.
6e40f5bb 5159 */
95a79b80
JK
5160 if (wl * busiest_power > busiest_load * power) {
5161 busiest_load = wl;
5162 busiest_power = power;
1e3c88bd
PZ
5163 busiest = rq;
5164 }
5165 }
5166
5167 return busiest;
5168}
5169
5170/*
5171 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5172 * so long as it is large enough.
5173 */
5174#define MAX_PINNED_INTERVAL 512
5175
5176/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5177DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5178
bd939f45 5179static int need_active_balance(struct lb_env *env)
1af3ed3d 5180{
bd939f45
PZ
5181 struct sched_domain *sd = env->sd;
5182
5183 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5184
5185 /*
5186 * ASYM_PACKING needs to force migrate tasks from busy but
5187 * higher numbered CPUs in order to pack all tasks in the
5188 * lowest numbered CPUs.
5189 */
bd939f45 5190 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5191 return 1;
1af3ed3d
PZ
5192 }
5193
5194 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5195}
5196
969c7921
TH
5197static int active_load_balance_cpu_stop(void *data);
5198
23f0d209
JK
5199static int should_we_balance(struct lb_env *env)
5200{
5201 struct sched_group *sg = env->sd->groups;
5202 struct cpumask *sg_cpus, *sg_mask;
5203 int cpu, balance_cpu = -1;
5204
5205 /*
5206 * In the newly idle case, we will allow all the cpu's
5207 * to do the newly idle load balance.
5208 */
5209 if (env->idle == CPU_NEWLY_IDLE)
5210 return 1;
5211
5212 sg_cpus = sched_group_cpus(sg);
5213 sg_mask = sched_group_mask(sg);
5214 /* Try to find first idle cpu */
5215 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5216 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5217 continue;
5218
5219 balance_cpu = cpu;
5220 break;
5221 }
5222
5223 if (balance_cpu == -1)
5224 balance_cpu = group_balance_cpu(sg);
5225
5226 /*
5227 * First idle cpu or the first cpu(busiest) in this sched group
5228 * is eligible for doing load balancing at this and above domains.
5229 */
b0cff9d8 5230 return balance_cpu == env->dst_cpu;
23f0d209
JK
5231}
5232
1e3c88bd
PZ
5233/*
5234 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5235 * tasks if there is an imbalance.
5236 */
5237static int load_balance(int this_cpu, struct rq *this_rq,
5238 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5239 int *continue_balancing)
1e3c88bd 5240{
88b8dac0 5241 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5242 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5243 struct sched_group *group;
1e3c88bd
PZ
5244 struct rq *busiest;
5245 unsigned long flags;
e6252c3e 5246 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5247
8e45cb54
PZ
5248 struct lb_env env = {
5249 .sd = sd,
ddcdf6e7
PZ
5250 .dst_cpu = this_cpu,
5251 .dst_rq = this_rq,
88b8dac0 5252 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5253 .idle = idle,
eb95308e 5254 .loop_break = sched_nr_migrate_break,
b9403130 5255 .cpus = cpus,
8e45cb54
PZ
5256 };
5257
cfc03118
JK
5258 /*
5259 * For NEWLY_IDLE load_balancing, we don't need to consider
5260 * other cpus in our group
5261 */
e02e60c1 5262 if (idle == CPU_NEWLY_IDLE)
cfc03118 5263 env.dst_grpmask = NULL;
cfc03118 5264
1e3c88bd
PZ
5265 cpumask_copy(cpus, cpu_active_mask);
5266
1e3c88bd
PZ
5267 schedstat_inc(sd, lb_count[idle]);
5268
5269redo:
23f0d209
JK
5270 if (!should_we_balance(&env)) {
5271 *continue_balancing = 0;
1e3c88bd 5272 goto out_balanced;
23f0d209 5273 }
1e3c88bd 5274
23f0d209 5275 group = find_busiest_group(&env);
1e3c88bd
PZ
5276 if (!group) {
5277 schedstat_inc(sd, lb_nobusyg[idle]);
5278 goto out_balanced;
5279 }
5280
b9403130 5281 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5282 if (!busiest) {
5283 schedstat_inc(sd, lb_nobusyq[idle]);
5284 goto out_balanced;
5285 }
5286
78feefc5 5287 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5288
bd939f45 5289 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5290
5291 ld_moved = 0;
5292 if (busiest->nr_running > 1) {
5293 /*
5294 * Attempt to move tasks. If find_busiest_group has found
5295 * an imbalance but busiest->nr_running <= 1, the group is
5296 * still unbalanced. ld_moved simply stays zero, so it is
5297 * correctly treated as an imbalance.
5298 */
8e45cb54 5299 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5300 env.src_cpu = busiest->cpu;
5301 env.src_rq = busiest;
5302 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5303
5d6523eb 5304more_balance:
1e3c88bd 5305 local_irq_save(flags);
78feefc5 5306 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5307
5308 /*
5309 * cur_ld_moved - load moved in current iteration
5310 * ld_moved - cumulative load moved across iterations
5311 */
5312 cur_ld_moved = move_tasks(&env);
5313 ld_moved += cur_ld_moved;
78feefc5 5314 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5315 local_irq_restore(flags);
5316
5317 /*
5318 * some other cpu did the load balance for us.
5319 */
88b8dac0
SV
5320 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5321 resched_cpu(env.dst_cpu);
5322
f1cd0858
JK
5323 if (env.flags & LBF_NEED_BREAK) {
5324 env.flags &= ~LBF_NEED_BREAK;
5325 goto more_balance;
5326 }
5327
88b8dac0
SV
5328 /*
5329 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5330 * us and move them to an alternate dst_cpu in our sched_group
5331 * where they can run. The upper limit on how many times we
5332 * iterate on same src_cpu is dependent on number of cpus in our
5333 * sched_group.
5334 *
5335 * This changes load balance semantics a bit on who can move
5336 * load to a given_cpu. In addition to the given_cpu itself
5337 * (or a ilb_cpu acting on its behalf where given_cpu is
5338 * nohz-idle), we now have balance_cpu in a position to move
5339 * load to given_cpu. In rare situations, this may cause
5340 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5341 * _independently_ and at _same_ time to move some load to
5342 * given_cpu) causing exceess load to be moved to given_cpu.
5343 * This however should not happen so much in practice and
5344 * moreover subsequent load balance cycles should correct the
5345 * excess load moved.
5346 */
6263322c 5347 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5348
7aff2e3a
VD
5349 /* Prevent to re-select dst_cpu via env's cpus */
5350 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5351
78feefc5 5352 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5353 env.dst_cpu = env.new_dst_cpu;
6263322c 5354 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5355 env.loop = 0;
5356 env.loop_break = sched_nr_migrate_break;
e02e60c1 5357
88b8dac0
SV
5358 /*
5359 * Go back to "more_balance" rather than "redo" since we
5360 * need to continue with same src_cpu.
5361 */
5362 goto more_balance;
5363 }
1e3c88bd 5364
6263322c
PZ
5365 /*
5366 * We failed to reach balance because of affinity.
5367 */
5368 if (sd_parent) {
5369 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5370
5371 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5372 *group_imbalance = 1;
5373 } else if (*group_imbalance)
5374 *group_imbalance = 0;
5375 }
5376
1e3c88bd 5377 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5378 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5379 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5380 if (!cpumask_empty(cpus)) {
5381 env.loop = 0;
5382 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5383 goto redo;
bbf18b19 5384 }
1e3c88bd
PZ
5385 goto out_balanced;
5386 }
5387 }
5388
5389 if (!ld_moved) {
5390 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5391 /*
5392 * Increment the failure counter only on periodic balance.
5393 * We do not want newidle balance, which can be very
5394 * frequent, pollute the failure counter causing
5395 * excessive cache_hot migrations and active balances.
5396 */
5397 if (idle != CPU_NEWLY_IDLE)
5398 sd->nr_balance_failed++;
1e3c88bd 5399
bd939f45 5400 if (need_active_balance(&env)) {
1e3c88bd
PZ
5401 raw_spin_lock_irqsave(&busiest->lock, flags);
5402
969c7921
TH
5403 /* don't kick the active_load_balance_cpu_stop,
5404 * if the curr task on busiest cpu can't be
5405 * moved to this_cpu
1e3c88bd
PZ
5406 */
5407 if (!cpumask_test_cpu(this_cpu,
fa17b507 5408 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5409 raw_spin_unlock_irqrestore(&busiest->lock,
5410 flags);
8e45cb54 5411 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5412 goto out_one_pinned;
5413 }
5414
969c7921
TH
5415 /*
5416 * ->active_balance synchronizes accesses to
5417 * ->active_balance_work. Once set, it's cleared
5418 * only after active load balance is finished.
5419 */
1e3c88bd
PZ
5420 if (!busiest->active_balance) {
5421 busiest->active_balance = 1;
5422 busiest->push_cpu = this_cpu;
5423 active_balance = 1;
5424 }
5425 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5426
bd939f45 5427 if (active_balance) {
969c7921
TH
5428 stop_one_cpu_nowait(cpu_of(busiest),
5429 active_load_balance_cpu_stop, busiest,
5430 &busiest->active_balance_work);
bd939f45 5431 }
1e3c88bd
PZ
5432
5433 /*
5434 * We've kicked active balancing, reset the failure
5435 * counter.
5436 */
5437 sd->nr_balance_failed = sd->cache_nice_tries+1;
5438 }
5439 } else
5440 sd->nr_balance_failed = 0;
5441
5442 if (likely(!active_balance)) {
5443 /* We were unbalanced, so reset the balancing interval */
5444 sd->balance_interval = sd->min_interval;
5445 } else {
5446 /*
5447 * If we've begun active balancing, start to back off. This
5448 * case may not be covered by the all_pinned logic if there
5449 * is only 1 task on the busy runqueue (because we don't call
5450 * move_tasks).
5451 */
5452 if (sd->balance_interval < sd->max_interval)
5453 sd->balance_interval *= 2;
5454 }
5455
1e3c88bd
PZ
5456 goto out;
5457
5458out_balanced:
5459 schedstat_inc(sd, lb_balanced[idle]);
5460
5461 sd->nr_balance_failed = 0;
5462
5463out_one_pinned:
5464 /* tune up the balancing interval */
8e45cb54 5465 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5466 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5467 (sd->balance_interval < sd->max_interval))
5468 sd->balance_interval *= 2;
5469
46e49b38 5470 ld_moved = 0;
1e3c88bd 5471out:
1e3c88bd
PZ
5472 return ld_moved;
5473}
5474
1e3c88bd
PZ
5475/*
5476 * idle_balance is called by schedule() if this_cpu is about to become
5477 * idle. Attempts to pull tasks from other CPUs.
5478 */
029632fb 5479void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5480{
5481 struct sched_domain *sd;
5482 int pulled_task = 0;
5483 unsigned long next_balance = jiffies + HZ;
9bd721c5 5484 u64 curr_cost = 0;
1e3c88bd 5485
78becc27 5486 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5487
5488 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5489 return;
5490
f492e12e
PZ
5491 /*
5492 * Drop the rq->lock, but keep IRQ/preempt disabled.
5493 */
5494 raw_spin_unlock(&this_rq->lock);
5495
48a16753 5496 update_blocked_averages(this_cpu);
dce840a0 5497 rcu_read_lock();
1e3c88bd
PZ
5498 for_each_domain(this_cpu, sd) {
5499 unsigned long interval;
23f0d209 5500 int continue_balancing = 1;
9bd721c5 5501 u64 t0, domain_cost;
1e3c88bd
PZ
5502
5503 if (!(sd->flags & SD_LOAD_BALANCE))
5504 continue;
5505
9bd721c5
JL
5506 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5507 break;
5508
f492e12e 5509 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5510 t0 = sched_clock_cpu(this_cpu);
5511
1e3c88bd 5512 /* If we've pulled tasks over stop searching: */
f492e12e 5513 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5514 sd, CPU_NEWLY_IDLE,
5515 &continue_balancing);
9bd721c5
JL
5516
5517 domain_cost = sched_clock_cpu(this_cpu) - t0;
5518 if (domain_cost > sd->max_newidle_lb_cost)
5519 sd->max_newidle_lb_cost = domain_cost;
5520
5521 curr_cost += domain_cost;
f492e12e 5522 }
1e3c88bd
PZ
5523
5524 interval = msecs_to_jiffies(sd->balance_interval);
5525 if (time_after(next_balance, sd->last_balance + interval))
5526 next_balance = sd->last_balance + interval;
d5ad140b
NR
5527 if (pulled_task) {
5528 this_rq->idle_stamp = 0;
1e3c88bd 5529 break;
d5ad140b 5530 }
1e3c88bd 5531 }
dce840a0 5532 rcu_read_unlock();
f492e12e
PZ
5533
5534 raw_spin_lock(&this_rq->lock);
5535
1e3c88bd
PZ
5536 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5537 /*
5538 * We are going idle. next_balance may be set based on
5539 * a busy processor. So reset next_balance.
5540 */
5541 this_rq->next_balance = next_balance;
5542 }
9bd721c5
JL
5543
5544 if (curr_cost > this_rq->max_idle_balance_cost)
5545 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5546}
5547
5548/*
969c7921
TH
5549 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5550 * running tasks off the busiest CPU onto idle CPUs. It requires at
5551 * least 1 task to be running on each physical CPU where possible, and
5552 * avoids physical / logical imbalances.
1e3c88bd 5553 */
969c7921 5554static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5555{
969c7921
TH
5556 struct rq *busiest_rq = data;
5557 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5558 int target_cpu = busiest_rq->push_cpu;
969c7921 5559 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5560 struct sched_domain *sd;
969c7921
TH
5561
5562 raw_spin_lock_irq(&busiest_rq->lock);
5563
5564 /* make sure the requested cpu hasn't gone down in the meantime */
5565 if (unlikely(busiest_cpu != smp_processor_id() ||
5566 !busiest_rq->active_balance))
5567 goto out_unlock;
1e3c88bd
PZ
5568
5569 /* Is there any task to move? */
5570 if (busiest_rq->nr_running <= 1)
969c7921 5571 goto out_unlock;
1e3c88bd
PZ
5572
5573 /*
5574 * This condition is "impossible", if it occurs
5575 * we need to fix it. Originally reported by
5576 * Bjorn Helgaas on a 128-cpu setup.
5577 */
5578 BUG_ON(busiest_rq == target_rq);
5579
5580 /* move a task from busiest_rq to target_rq */
5581 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5582
5583 /* Search for an sd spanning us and the target CPU. */
dce840a0 5584 rcu_read_lock();
1e3c88bd
PZ
5585 for_each_domain(target_cpu, sd) {
5586 if ((sd->flags & SD_LOAD_BALANCE) &&
5587 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5588 break;
5589 }
5590
5591 if (likely(sd)) {
8e45cb54
PZ
5592 struct lb_env env = {
5593 .sd = sd,
ddcdf6e7
PZ
5594 .dst_cpu = target_cpu,
5595 .dst_rq = target_rq,
5596 .src_cpu = busiest_rq->cpu,
5597 .src_rq = busiest_rq,
8e45cb54
PZ
5598 .idle = CPU_IDLE,
5599 };
5600
1e3c88bd
PZ
5601 schedstat_inc(sd, alb_count);
5602
8e45cb54 5603 if (move_one_task(&env))
1e3c88bd
PZ
5604 schedstat_inc(sd, alb_pushed);
5605 else
5606 schedstat_inc(sd, alb_failed);
5607 }
dce840a0 5608 rcu_read_unlock();
1e3c88bd 5609 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5610out_unlock:
5611 busiest_rq->active_balance = 0;
5612 raw_spin_unlock_irq(&busiest_rq->lock);
5613 return 0;
1e3c88bd
PZ
5614}
5615
3451d024 5616#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5617/*
5618 * idle load balancing details
83cd4fe2
VP
5619 * - When one of the busy CPUs notice that there may be an idle rebalancing
5620 * needed, they will kick the idle load balancer, which then does idle
5621 * load balancing for all the idle CPUs.
5622 */
1e3c88bd 5623static struct {
83cd4fe2 5624 cpumask_var_t idle_cpus_mask;
0b005cf5 5625 atomic_t nr_cpus;
83cd4fe2
VP
5626 unsigned long next_balance; /* in jiffy units */
5627} nohz ____cacheline_aligned;
1e3c88bd 5628
8e7fbcbc 5629static inline int find_new_ilb(int call_cpu)
1e3c88bd 5630{
0b005cf5 5631 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5632
786d6dc7
SS
5633 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5634 return ilb;
5635
5636 return nr_cpu_ids;
1e3c88bd 5637}
1e3c88bd 5638
83cd4fe2
VP
5639/*
5640 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5641 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5642 * CPU (if there is one).
5643 */
5644static void nohz_balancer_kick(int cpu)
5645{
5646 int ilb_cpu;
5647
5648 nohz.next_balance++;
5649
0b005cf5 5650 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5651
0b005cf5
SS
5652 if (ilb_cpu >= nr_cpu_ids)
5653 return;
83cd4fe2 5654
cd490c5b 5655 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5656 return;
5657 /*
5658 * Use smp_send_reschedule() instead of resched_cpu().
5659 * This way we generate a sched IPI on the target cpu which
5660 * is idle. And the softirq performing nohz idle load balance
5661 * will be run before returning from the IPI.
5662 */
5663 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5664 return;
5665}
5666
c1cc017c 5667static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5668{
5669 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5670 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5671 atomic_dec(&nohz.nr_cpus);
5672 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5673 }
5674}
5675
69e1e811
SS
5676static inline void set_cpu_sd_state_busy(void)
5677{
5678 struct sched_domain *sd;
69e1e811 5679
69e1e811 5680 rcu_read_lock();
424c93fe 5681 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5682
5683 if (!sd || !sd->nohz_idle)
5684 goto unlock;
5685 sd->nohz_idle = 0;
5686
5687 for (; sd; sd = sd->parent)
69e1e811 5688 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5689unlock:
69e1e811
SS
5690 rcu_read_unlock();
5691}
5692
5693void set_cpu_sd_state_idle(void)
5694{
5695 struct sched_domain *sd;
69e1e811 5696
69e1e811 5697 rcu_read_lock();
424c93fe 5698 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5699
5700 if (!sd || sd->nohz_idle)
5701 goto unlock;
5702 sd->nohz_idle = 1;
5703
5704 for (; sd; sd = sd->parent)
69e1e811 5705 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5706unlock:
69e1e811
SS
5707 rcu_read_unlock();
5708}
5709
1e3c88bd 5710/*
c1cc017c 5711 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5712 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5713 */
c1cc017c 5714void nohz_balance_enter_idle(int cpu)
1e3c88bd 5715{
71325960
SS
5716 /*
5717 * If this cpu is going down, then nothing needs to be done.
5718 */
5719 if (!cpu_active(cpu))
5720 return;
5721
c1cc017c
AS
5722 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5723 return;
1e3c88bd 5724
c1cc017c
AS
5725 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5726 atomic_inc(&nohz.nr_cpus);
5727 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5728}
71325960 5729
0db0628d 5730static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
5731 unsigned long action, void *hcpu)
5732{
5733 switch (action & ~CPU_TASKS_FROZEN) {
5734 case CPU_DYING:
c1cc017c 5735 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5736 return NOTIFY_OK;
5737 default:
5738 return NOTIFY_DONE;
5739 }
5740}
1e3c88bd
PZ
5741#endif
5742
5743static DEFINE_SPINLOCK(balancing);
5744
49c022e6
PZ
5745/*
5746 * Scale the max load_balance interval with the number of CPUs in the system.
5747 * This trades load-balance latency on larger machines for less cross talk.
5748 */
029632fb 5749void update_max_interval(void)
49c022e6
PZ
5750{
5751 max_load_balance_interval = HZ*num_online_cpus()/10;
5752}
5753
1e3c88bd
PZ
5754/*
5755 * It checks each scheduling domain to see if it is due to be balanced,
5756 * and initiates a balancing operation if so.
5757 *
b9b0853a 5758 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5759 */
5760static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5761{
23f0d209 5762 int continue_balancing = 1;
1e3c88bd
PZ
5763 struct rq *rq = cpu_rq(cpu);
5764 unsigned long interval;
04f733b4 5765 struct sched_domain *sd;
1e3c88bd
PZ
5766 /* Earliest time when we have to do rebalance again */
5767 unsigned long next_balance = jiffies + 60*HZ;
5768 int update_next_balance = 0;
f48627e6
JL
5769 int need_serialize, need_decay = 0;
5770 u64 max_cost = 0;
1e3c88bd 5771
48a16753 5772 update_blocked_averages(cpu);
2069dd75 5773
dce840a0 5774 rcu_read_lock();
1e3c88bd 5775 for_each_domain(cpu, sd) {
f48627e6
JL
5776 /*
5777 * Decay the newidle max times here because this is a regular
5778 * visit to all the domains. Decay ~1% per second.
5779 */
5780 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5781 sd->max_newidle_lb_cost =
5782 (sd->max_newidle_lb_cost * 253) / 256;
5783 sd->next_decay_max_lb_cost = jiffies + HZ;
5784 need_decay = 1;
5785 }
5786 max_cost += sd->max_newidle_lb_cost;
5787
1e3c88bd
PZ
5788 if (!(sd->flags & SD_LOAD_BALANCE))
5789 continue;
5790
f48627e6
JL
5791 /*
5792 * Stop the load balance at this level. There is another
5793 * CPU in our sched group which is doing load balancing more
5794 * actively.
5795 */
5796 if (!continue_balancing) {
5797 if (need_decay)
5798 continue;
5799 break;
5800 }
5801
1e3c88bd
PZ
5802 interval = sd->balance_interval;
5803 if (idle != CPU_IDLE)
5804 interval *= sd->busy_factor;
5805
5806 /* scale ms to jiffies */
5807 interval = msecs_to_jiffies(interval);
49c022e6 5808 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5809
5810 need_serialize = sd->flags & SD_SERIALIZE;
5811
5812 if (need_serialize) {
5813 if (!spin_trylock(&balancing))
5814 goto out;
5815 }
5816
5817 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 5818 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 5819 /*
6263322c 5820 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
5821 * env->dst_cpu, so we can't know our idle
5822 * state even if we migrated tasks. Update it.
1e3c88bd 5823 */
de5eb2dd 5824 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5825 }
5826 sd->last_balance = jiffies;
5827 }
5828 if (need_serialize)
5829 spin_unlock(&balancing);
5830out:
5831 if (time_after(next_balance, sd->last_balance + interval)) {
5832 next_balance = sd->last_balance + interval;
5833 update_next_balance = 1;
5834 }
f48627e6
JL
5835 }
5836 if (need_decay) {
1e3c88bd 5837 /*
f48627e6
JL
5838 * Ensure the rq-wide value also decays but keep it at a
5839 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 5840 */
f48627e6
JL
5841 rq->max_idle_balance_cost =
5842 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 5843 }
dce840a0 5844 rcu_read_unlock();
1e3c88bd
PZ
5845
5846 /*
5847 * next_balance will be updated only when there is a need.
5848 * When the cpu is attached to null domain for ex, it will not be
5849 * updated.
5850 */
5851 if (likely(update_next_balance))
5852 rq->next_balance = next_balance;
5853}
5854
3451d024 5855#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5856/*
3451d024 5857 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5858 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5859 */
83cd4fe2
VP
5860static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5861{
5862 struct rq *this_rq = cpu_rq(this_cpu);
5863 struct rq *rq;
5864 int balance_cpu;
5865
1c792db7
SS
5866 if (idle != CPU_IDLE ||
5867 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5868 goto end;
83cd4fe2
VP
5869
5870 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5871 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5872 continue;
5873
5874 /*
5875 * If this cpu gets work to do, stop the load balancing
5876 * work being done for other cpus. Next load
5877 * balancing owner will pick it up.
5878 */
1c792db7 5879 if (need_resched())
83cd4fe2 5880 break;
83cd4fe2 5881
5ed4f1d9
VG
5882 rq = cpu_rq(balance_cpu);
5883
5884 raw_spin_lock_irq(&rq->lock);
5885 update_rq_clock(rq);
5886 update_idle_cpu_load(rq);
5887 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5888
5889 rebalance_domains(balance_cpu, CPU_IDLE);
5890
83cd4fe2
VP
5891 if (time_after(this_rq->next_balance, rq->next_balance))
5892 this_rq->next_balance = rq->next_balance;
5893 }
5894 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5895end:
5896 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5897}
5898
5899/*
0b005cf5
SS
5900 * Current heuristic for kicking the idle load balancer in the presence
5901 * of an idle cpu is the system.
5902 * - This rq has more than one task.
5903 * - At any scheduler domain level, this cpu's scheduler group has multiple
5904 * busy cpu's exceeding the group's power.
5905 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5906 * domain span are idle.
83cd4fe2
VP
5907 */
5908static inline int nohz_kick_needed(struct rq *rq, int cpu)
5909{
5910 unsigned long now = jiffies;
0b005cf5 5911 struct sched_domain *sd;
83cd4fe2 5912
1c792db7 5913 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5914 return 0;
5915
1c792db7
SS
5916 /*
5917 * We may be recently in ticked or tickless idle mode. At the first
5918 * busy tick after returning from idle, we will update the busy stats.
5919 */
69e1e811 5920 set_cpu_sd_state_busy();
c1cc017c 5921 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5922
5923 /*
5924 * None are in tickless mode and hence no need for NOHZ idle load
5925 * balancing.
5926 */
5927 if (likely(!atomic_read(&nohz.nr_cpus)))
5928 return 0;
1c792db7
SS
5929
5930 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5931 return 0;
5932
0b005cf5
SS
5933 if (rq->nr_running >= 2)
5934 goto need_kick;
83cd4fe2 5935
067491b7 5936 rcu_read_lock();
0b005cf5
SS
5937 for_each_domain(cpu, sd) {
5938 struct sched_group *sg = sd->groups;
5939 struct sched_group_power *sgp = sg->sgp;
5940 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5941
0b005cf5 5942 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5943 goto need_kick_unlock;
0b005cf5
SS
5944
5945 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5946 && (cpumask_first_and(nohz.idle_cpus_mask,
5947 sched_domain_span(sd)) < cpu))
067491b7 5948 goto need_kick_unlock;
0b005cf5
SS
5949
5950 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5951 break;
83cd4fe2 5952 }
067491b7 5953 rcu_read_unlock();
83cd4fe2 5954 return 0;
067491b7
PZ
5955
5956need_kick_unlock:
5957 rcu_read_unlock();
0b005cf5
SS
5958need_kick:
5959 return 1;
83cd4fe2
VP
5960}
5961#else
5962static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5963#endif
5964
5965/*
5966 * run_rebalance_domains is triggered when needed from the scheduler tick.
5967 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5968 */
1e3c88bd
PZ
5969static void run_rebalance_domains(struct softirq_action *h)
5970{
5971 int this_cpu = smp_processor_id();
5972 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5973 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5974 CPU_IDLE : CPU_NOT_IDLE;
5975
5976 rebalance_domains(this_cpu, idle);
5977
1e3c88bd 5978 /*
83cd4fe2 5979 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5980 * balancing on behalf of the other idle cpus whose ticks are
5981 * stopped.
5982 */
83cd4fe2 5983 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5984}
5985
5986static inline int on_null_domain(int cpu)
5987{
90a6501f 5988 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5989}
5990
5991/*
5992 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5993 */
029632fb 5994void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5995{
1e3c88bd
PZ
5996 /* Don't need to rebalance while attached to NULL domain */
5997 if (time_after_eq(jiffies, rq->next_balance) &&
5998 likely(!on_null_domain(cpu)))
5999 raise_softirq(SCHED_SOFTIRQ);
3451d024 6000#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6001 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6002 nohz_balancer_kick(cpu);
6003#endif
1e3c88bd
PZ
6004}
6005
0bcdcf28
CE
6006static void rq_online_fair(struct rq *rq)
6007{
6008 update_sysctl();
6009}
6010
6011static void rq_offline_fair(struct rq *rq)
6012{
6013 update_sysctl();
a4c96ae3
PB
6014
6015 /* Ensure any throttled groups are reachable by pick_next_task */
6016 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6017}
6018
55e12e5e 6019#endif /* CONFIG_SMP */
e1d1484f 6020
bf0f6f24
IM
6021/*
6022 * scheduler tick hitting a task of our scheduling class:
6023 */
8f4d37ec 6024static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6025{
6026 struct cfs_rq *cfs_rq;
6027 struct sched_entity *se = &curr->se;
6028
6029 for_each_sched_entity(se) {
6030 cfs_rq = cfs_rq_of(se);
8f4d37ec 6031 entity_tick(cfs_rq, se, queued);
bf0f6f24 6032 }
18bf2805 6033
10e84b97 6034 if (numabalancing_enabled)
cbee9f88 6035 task_tick_numa(rq, curr);
3d59eebc 6036
18bf2805 6037 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6038}
6039
6040/*
cd29fe6f
PZ
6041 * called on fork with the child task as argument from the parent's context
6042 * - child not yet on the tasklist
6043 * - preemption disabled
bf0f6f24 6044 */
cd29fe6f 6045static void task_fork_fair(struct task_struct *p)
bf0f6f24 6046{
4fc420c9
DN
6047 struct cfs_rq *cfs_rq;
6048 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6049 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6050 struct rq *rq = this_rq();
6051 unsigned long flags;
6052
05fa785c 6053 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6054
861d034e
PZ
6055 update_rq_clock(rq);
6056
4fc420c9
DN
6057 cfs_rq = task_cfs_rq(current);
6058 curr = cfs_rq->curr;
6059
6c9a27f5
DN
6060 /*
6061 * Not only the cpu but also the task_group of the parent might have
6062 * been changed after parent->se.parent,cfs_rq were copied to
6063 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6064 * of child point to valid ones.
6065 */
6066 rcu_read_lock();
6067 __set_task_cpu(p, this_cpu);
6068 rcu_read_unlock();
bf0f6f24 6069
7109c442 6070 update_curr(cfs_rq);
cd29fe6f 6071
b5d9d734
MG
6072 if (curr)
6073 se->vruntime = curr->vruntime;
aeb73b04 6074 place_entity(cfs_rq, se, 1);
4d78e7b6 6075
cd29fe6f 6076 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6077 /*
edcb60a3
IM
6078 * Upon rescheduling, sched_class::put_prev_task() will place
6079 * 'current' within the tree based on its new key value.
6080 */
4d78e7b6 6081 swap(curr->vruntime, se->vruntime);
aec0a514 6082 resched_task(rq->curr);
4d78e7b6 6083 }
bf0f6f24 6084
88ec22d3
PZ
6085 se->vruntime -= cfs_rq->min_vruntime;
6086
05fa785c 6087 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6088}
6089
cb469845
SR
6090/*
6091 * Priority of the task has changed. Check to see if we preempt
6092 * the current task.
6093 */
da7a735e
PZ
6094static void
6095prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6096{
da7a735e
PZ
6097 if (!p->se.on_rq)
6098 return;
6099
cb469845
SR
6100 /*
6101 * Reschedule if we are currently running on this runqueue and
6102 * our priority decreased, or if we are not currently running on
6103 * this runqueue and our priority is higher than the current's
6104 */
da7a735e 6105 if (rq->curr == p) {
cb469845
SR
6106 if (p->prio > oldprio)
6107 resched_task(rq->curr);
6108 } else
15afe09b 6109 check_preempt_curr(rq, p, 0);
cb469845
SR
6110}
6111
da7a735e
PZ
6112static void switched_from_fair(struct rq *rq, struct task_struct *p)
6113{
6114 struct sched_entity *se = &p->se;
6115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6116
6117 /*
6118 * Ensure the task's vruntime is normalized, so that when its
6119 * switched back to the fair class the enqueue_entity(.flags=0) will
6120 * do the right thing.
6121 *
6122 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6123 * have normalized the vruntime, if it was !on_rq, then only when
6124 * the task is sleeping will it still have non-normalized vruntime.
6125 */
6126 if (!se->on_rq && p->state != TASK_RUNNING) {
6127 /*
6128 * Fix up our vruntime so that the current sleep doesn't
6129 * cause 'unlimited' sleep bonus.
6130 */
6131 place_entity(cfs_rq, se, 0);
6132 se->vruntime -= cfs_rq->min_vruntime;
6133 }
9ee474f5 6134
141965c7 6135#ifdef CONFIG_SMP
9ee474f5
PT
6136 /*
6137 * Remove our load from contribution when we leave sched_fair
6138 * and ensure we don't carry in an old decay_count if we
6139 * switch back.
6140 */
87e3c8ae
KT
6141 if (se->avg.decay_count) {
6142 __synchronize_entity_decay(se);
6143 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6144 }
6145#endif
da7a735e
PZ
6146}
6147
cb469845
SR
6148/*
6149 * We switched to the sched_fair class.
6150 */
da7a735e 6151static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6152{
da7a735e
PZ
6153 if (!p->se.on_rq)
6154 return;
6155
cb469845
SR
6156 /*
6157 * We were most likely switched from sched_rt, so
6158 * kick off the schedule if running, otherwise just see
6159 * if we can still preempt the current task.
6160 */
da7a735e 6161 if (rq->curr == p)
cb469845
SR
6162 resched_task(rq->curr);
6163 else
15afe09b 6164 check_preempt_curr(rq, p, 0);
cb469845
SR
6165}
6166
83b699ed
SV
6167/* Account for a task changing its policy or group.
6168 *
6169 * This routine is mostly called to set cfs_rq->curr field when a task
6170 * migrates between groups/classes.
6171 */
6172static void set_curr_task_fair(struct rq *rq)
6173{
6174 struct sched_entity *se = &rq->curr->se;
6175
ec12cb7f
PT
6176 for_each_sched_entity(se) {
6177 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6178
6179 set_next_entity(cfs_rq, se);
6180 /* ensure bandwidth has been allocated on our new cfs_rq */
6181 account_cfs_rq_runtime(cfs_rq, 0);
6182 }
83b699ed
SV
6183}
6184
029632fb
PZ
6185void init_cfs_rq(struct cfs_rq *cfs_rq)
6186{
6187 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6188 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6189#ifndef CONFIG_64BIT
6190 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6191#endif
141965c7 6192#ifdef CONFIG_SMP
9ee474f5 6193 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6194 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6195#endif
029632fb
PZ
6196}
6197
810b3817 6198#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6199static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6200{
aff3e498 6201 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6202 /*
6203 * If the task was not on the rq at the time of this cgroup movement
6204 * it must have been asleep, sleeping tasks keep their ->vruntime
6205 * absolute on their old rq until wakeup (needed for the fair sleeper
6206 * bonus in place_entity()).
6207 *
6208 * If it was on the rq, we've just 'preempted' it, which does convert
6209 * ->vruntime to a relative base.
6210 *
6211 * Make sure both cases convert their relative position when migrating
6212 * to another cgroup's rq. This does somewhat interfere with the
6213 * fair sleeper stuff for the first placement, but who cares.
6214 */
7ceff013
DN
6215 /*
6216 * When !on_rq, vruntime of the task has usually NOT been normalized.
6217 * But there are some cases where it has already been normalized:
6218 *
6219 * - Moving a forked child which is waiting for being woken up by
6220 * wake_up_new_task().
62af3783
DN
6221 * - Moving a task which has been woken up by try_to_wake_up() and
6222 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6223 *
6224 * To prevent boost or penalty in the new cfs_rq caused by delta
6225 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6226 */
62af3783 6227 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6228 on_rq = 1;
6229
b2b5ce02
PZ
6230 if (!on_rq)
6231 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6232 set_task_rq(p, task_cpu(p));
aff3e498
PT
6233 if (!on_rq) {
6234 cfs_rq = cfs_rq_of(&p->se);
6235 p->se.vruntime += cfs_rq->min_vruntime;
6236#ifdef CONFIG_SMP
6237 /*
6238 * migrate_task_rq_fair() will have removed our previous
6239 * contribution, but we must synchronize for ongoing future
6240 * decay.
6241 */
6242 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6243 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6244#endif
6245 }
810b3817 6246}
029632fb
PZ
6247
6248void free_fair_sched_group(struct task_group *tg)
6249{
6250 int i;
6251
6252 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6253
6254 for_each_possible_cpu(i) {
6255 if (tg->cfs_rq)
6256 kfree(tg->cfs_rq[i]);
6257 if (tg->se)
6258 kfree(tg->se[i]);
6259 }
6260
6261 kfree(tg->cfs_rq);
6262 kfree(tg->se);
6263}
6264
6265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6266{
6267 struct cfs_rq *cfs_rq;
6268 struct sched_entity *se;
6269 int i;
6270
6271 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6272 if (!tg->cfs_rq)
6273 goto err;
6274 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6275 if (!tg->se)
6276 goto err;
6277
6278 tg->shares = NICE_0_LOAD;
6279
6280 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6281
6282 for_each_possible_cpu(i) {
6283 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6284 GFP_KERNEL, cpu_to_node(i));
6285 if (!cfs_rq)
6286 goto err;
6287
6288 se = kzalloc_node(sizeof(struct sched_entity),
6289 GFP_KERNEL, cpu_to_node(i));
6290 if (!se)
6291 goto err_free_rq;
6292
6293 init_cfs_rq(cfs_rq);
6294 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6295 }
6296
6297 return 1;
6298
6299err_free_rq:
6300 kfree(cfs_rq);
6301err:
6302 return 0;
6303}
6304
6305void unregister_fair_sched_group(struct task_group *tg, int cpu)
6306{
6307 struct rq *rq = cpu_rq(cpu);
6308 unsigned long flags;
6309
6310 /*
6311 * Only empty task groups can be destroyed; so we can speculatively
6312 * check on_list without danger of it being re-added.
6313 */
6314 if (!tg->cfs_rq[cpu]->on_list)
6315 return;
6316
6317 raw_spin_lock_irqsave(&rq->lock, flags);
6318 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6319 raw_spin_unlock_irqrestore(&rq->lock, flags);
6320}
6321
6322void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6323 struct sched_entity *se, int cpu,
6324 struct sched_entity *parent)
6325{
6326 struct rq *rq = cpu_rq(cpu);
6327
6328 cfs_rq->tg = tg;
6329 cfs_rq->rq = rq;
029632fb
PZ
6330 init_cfs_rq_runtime(cfs_rq);
6331
6332 tg->cfs_rq[cpu] = cfs_rq;
6333 tg->se[cpu] = se;
6334
6335 /* se could be NULL for root_task_group */
6336 if (!se)
6337 return;
6338
6339 if (!parent)
6340 se->cfs_rq = &rq->cfs;
6341 else
6342 se->cfs_rq = parent->my_q;
6343
6344 se->my_q = cfs_rq;
6345 update_load_set(&se->load, 0);
6346 se->parent = parent;
6347}
6348
6349static DEFINE_MUTEX(shares_mutex);
6350
6351int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6352{
6353 int i;
6354 unsigned long flags;
6355
6356 /*
6357 * We can't change the weight of the root cgroup.
6358 */
6359 if (!tg->se[0])
6360 return -EINVAL;
6361
6362 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6363
6364 mutex_lock(&shares_mutex);
6365 if (tg->shares == shares)
6366 goto done;
6367
6368 tg->shares = shares;
6369 for_each_possible_cpu(i) {
6370 struct rq *rq = cpu_rq(i);
6371 struct sched_entity *se;
6372
6373 se = tg->se[i];
6374 /* Propagate contribution to hierarchy */
6375 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6376
6377 /* Possible calls to update_curr() need rq clock */
6378 update_rq_clock(rq);
17bc14b7 6379 for_each_sched_entity(se)
029632fb
PZ
6380 update_cfs_shares(group_cfs_rq(se));
6381 raw_spin_unlock_irqrestore(&rq->lock, flags);
6382 }
6383
6384done:
6385 mutex_unlock(&shares_mutex);
6386 return 0;
6387}
6388#else /* CONFIG_FAIR_GROUP_SCHED */
6389
6390void free_fair_sched_group(struct task_group *tg) { }
6391
6392int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6393{
6394 return 1;
6395}
6396
6397void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6398
6399#endif /* CONFIG_FAIR_GROUP_SCHED */
6400
810b3817 6401
6d686f45 6402static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6403{
6404 struct sched_entity *se = &task->se;
0d721cea
PW
6405 unsigned int rr_interval = 0;
6406
6407 /*
6408 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6409 * idle runqueue:
6410 */
0d721cea 6411 if (rq->cfs.load.weight)
a59f4e07 6412 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6413
6414 return rr_interval;
6415}
6416
bf0f6f24
IM
6417/*
6418 * All the scheduling class methods:
6419 */
029632fb 6420const struct sched_class fair_sched_class = {
5522d5d5 6421 .next = &idle_sched_class,
bf0f6f24
IM
6422 .enqueue_task = enqueue_task_fair,
6423 .dequeue_task = dequeue_task_fair,
6424 .yield_task = yield_task_fair,
d95f4122 6425 .yield_to_task = yield_to_task_fair,
bf0f6f24 6426
2e09bf55 6427 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6428
6429 .pick_next_task = pick_next_task_fair,
6430 .put_prev_task = put_prev_task_fair,
6431
681f3e68 6432#ifdef CONFIG_SMP
4ce72a2c 6433 .select_task_rq = select_task_rq_fair,
0a74bef8 6434 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6435
0bcdcf28
CE
6436 .rq_online = rq_online_fair,
6437 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6438
6439 .task_waking = task_waking_fair,
681f3e68 6440#endif
bf0f6f24 6441
83b699ed 6442 .set_curr_task = set_curr_task_fair,
bf0f6f24 6443 .task_tick = task_tick_fair,
cd29fe6f 6444 .task_fork = task_fork_fair,
cb469845
SR
6445
6446 .prio_changed = prio_changed_fair,
da7a735e 6447 .switched_from = switched_from_fair,
cb469845 6448 .switched_to = switched_to_fair,
810b3817 6449
0d721cea
PW
6450 .get_rr_interval = get_rr_interval_fair,
6451
810b3817 6452#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6453 .task_move_group = task_move_group_fair,
810b3817 6454#endif
bf0f6f24
IM
6455};
6456
6457#ifdef CONFIG_SCHED_DEBUG
029632fb 6458void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6459{
bf0f6f24
IM
6460 struct cfs_rq *cfs_rq;
6461
5973e5b9 6462 rcu_read_lock();
c3b64f1e 6463 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6464 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6465 rcu_read_unlock();
bf0f6f24
IM
6466}
6467#endif
029632fb
PZ
6468
6469__init void init_sched_fair_class(void)
6470{
6471#ifdef CONFIG_SMP
6472 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6473
3451d024 6474#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6475 nohz.next_balance = jiffies;
029632fb 6476 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6477 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6478#endif
6479#endif /* SMP */
6480
6481}
This page took 0.877472 seconds and 5 git commands to generate.