lockdep: Implement lock pinning
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 579 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9 672static inline void __update_task_entity_contrib(struct sched_entity *se);
36ee28e4 673static inline void __update_task_entity_utilization(struct sched_entity *se);
a75cdaa9
AS
674
675/* Give new task start runnable values to heavy its load in infant time */
676void init_task_runnable_average(struct task_struct *p)
677{
678 u32 slice;
679
a75cdaa9 680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
36ee28e4
VG
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
a75cdaa9 683 __update_task_entity_contrib(&p->se);
36ee28e4 684 __update_task_entity_utilization(&p->se);
a75cdaa9
AS
685}
686#else
687void init_task_runnable_average(struct task_struct *p)
688{
689}
690#endif
691
bf0f6f24 692/*
9dbdb155 693 * Update the current task's runtime statistics.
bf0f6f24 694 */
b7cc0896 695static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 696{
429d43bc 697 struct sched_entity *curr = cfs_rq->curr;
78becc27 698 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 699 u64 delta_exec;
bf0f6f24
IM
700
701 if (unlikely(!curr))
702 return;
703
9dbdb155
PZ
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
34f28ecd 706 return;
bf0f6f24 707
8ebc91d9 708 curr->exec_start = now;
d842de87 709
9dbdb155
PZ
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
d842de87
SV
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
f977bb49 722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 723 cpuacct_charge(curtask, delta_exec);
f06febc9 724 account_group_exec_runtime(curtask, delta_exec);
d842de87 725 }
ec12cb7f
PT
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
728}
729
6e998916
SG
730static void update_curr_fair(struct rq *rq)
731{
732 update_curr(cfs_rq_of(&rq->curr->se));
733}
734
bf0f6f24 735static inline void
5870db5b 736update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
78becc27 738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
739}
740
bf0f6f24
IM
741/*
742 * Task is being enqueued - update stats:
743 */
d2417e5a 744static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 745{
bf0f6f24
IM
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
429d43bc 750 if (se != cfs_rq->curr)
5870db5b 751 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
752}
753
bf0f6f24 754static void
9ef0a961 755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
41acab88 757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
762#ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
78becc27 765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
766 }
767#endif
41acab88 768 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
769}
770
771static inline void
19b6a2e3 772update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 773{
bf0f6f24
IM
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
429d43bc 778 if (se != cfs_rq->curr)
9ef0a961 779 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
780}
781
782/*
783 * We are picking a new current task - update its stats:
784 */
785static inline void
79303e9e 786update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
787{
788 /*
789 * We are starting a new run period:
790 */
78becc27 791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
792}
793
bf0f6f24
IM
794/**************************************************
795 * Scheduling class queueing methods:
796 */
797
cbee9f88
PZ
798#ifdef CONFIG_NUMA_BALANCING
799/*
598f0ec0
MG
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
cbee9f88 803 */
598f0ec0
MG
804unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
598f0ec0
MG
813static unsigned int task_nr_scan_windows(struct task_struct *p)
814{
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830}
831
832/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833#define MAX_SCAN_WINDOW 2560
834
835static unsigned int task_scan_min(struct task_struct *p)
836{
316c1608 837 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
64192658
KT
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847}
848
849static unsigned int task_scan_max(struct task_struct *p)
850{
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857}
858
0ec8aa00
PZ
859static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863}
864
865static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869}
870
8c8a743c
PZ
871struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
e29cf08b 876 pid_t gid;
8c8a743c
PZ
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
44dba3d5
IM
904/*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 911{
44dba3d5 912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
913}
914
915static inline unsigned long task_faults(struct task_struct *p, int nid)
916{
44dba3d5 917 if (!p->numa_faults)
ac8e895b
MG
918 return 0;
919
44dba3d5
IM
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
922}
923
83e1d2cd
MG
924static inline unsigned long group_faults(struct task_struct *p, int nid)
925{
926 if (!p->numa_group)
927 return 0;
928
44dba3d5
IM
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
931}
932
20e07dea
RR
933static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934{
44dba3d5
IM
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
937}
938
6c6b1193
RR
939/* Handle placement on systems where not all nodes are directly connected. */
940static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942{
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002}
1003
83e1d2cd
MG
1004/*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
7bd95320
RR
1010static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
83e1d2cd 1012{
7bd95320 1013 unsigned long faults, total_faults;
83e1d2cd 1014
44dba3d5 1015 if (!p->numa_faults)
83e1d2cd
MG
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
7bd95320 1023 faults = task_faults(p, nid);
6c6b1193
RR
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
7bd95320 1026 return 1000 * faults / total_faults;
83e1d2cd
MG
1027}
1028
7bd95320
RR
1029static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
83e1d2cd 1031{
7bd95320
RR
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
83e1d2cd
MG
1040 return 0;
1041
7bd95320 1042 faults = group_faults(p, nid);
6c6b1193
RR
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
7bd95320 1045 return 1000 * faults / total_faults;
83e1d2cd
MG
1046}
1047
10f39042
RR
1048bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050{
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109}
1110
e6628d5b 1111static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1112static unsigned long source_load(int cpu, int type);
1113static unsigned long target_load(int cpu, int type);
ced549fa 1114static unsigned long capacity_of(int cpu);
58d081b5
MG
1115static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
fb13c7ee 1117/* Cached statistics for all CPUs within a node */
58d081b5 1118struct numa_stats {
fb13c7ee 1119 unsigned long nr_running;
58d081b5 1120 unsigned long load;
fb13c7ee
MG
1121
1122 /* Total compute capacity of CPUs on a node */
5ef20ca1 1123 unsigned long compute_capacity;
fb13c7ee
MG
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1126 unsigned long task_capacity;
1b6a7495 1127 int has_free_capacity;
58d081b5 1128};
e6628d5b 1129
fb13c7ee
MG
1130/*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133static void update_numa_stats(struct numa_stats *ns, int nid)
1134{
83d7f242
RR
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
fb13c7ee
MG
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
ced549fa 1144 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1145
1146 cpus++;
fb13c7ee
MG
1147 }
1148
5eca82a9
PZ
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1b6a7495
NP
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
5eca82a9
PZ
1156 */
1157 if (!cpus)
1158 return;
1159
83d7f242
RR
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1167}
1168
58d081b5
MG
1169struct task_numa_env {
1170 struct task_struct *p;
e6628d5b 1171
58d081b5
MG
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
e6628d5b 1174
58d081b5 1175 struct numa_stats src_stats, dst_stats;
e6628d5b 1176
40ea2b42 1177 int imbalance_pct;
7bd95320 1178 int dist;
fb13c7ee
MG
1179
1180 struct task_struct *best_task;
1181 long best_imp;
58d081b5
MG
1182 int best_cpu;
1183};
1184
fb13c7ee
MG
1185static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187{
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196}
1197
28a21745 1198static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1199 struct task_numa_env *env)
1200{
e4991b24
RR
1201 long imb, old_imb;
1202 long orig_src_load, orig_dst_load;
28a21745
RR
1203 long src_capacity, dst_capacity;
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1214
1215 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1216 if (dst_load < src_load)
1217 swap(dst_load, src_load);
e63da036
RR
1218
1219 /* Is the difference below the threshold? */
e4991b24
RR
1220 imb = dst_load * src_capacity * 100 -
1221 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1222 if (imb <= 0)
1223 return false;
1224
1225 /*
1226 * The imbalance is above the allowed threshold.
e4991b24 1227 * Compare it with the old imbalance.
e63da036 1228 */
28a21745 1229 orig_src_load = env->src_stats.load;
e4991b24 1230 orig_dst_load = env->dst_stats.load;
28a21745 1231
e4991b24
RR
1232 if (orig_dst_load < orig_src_load)
1233 swap(orig_dst_load, orig_src_load);
e63da036 1234
e4991b24
RR
1235 old_imb = orig_dst_load * src_capacity * 100 -
1236 orig_src_load * dst_capacity * env->imbalance_pct;
1237
1238 /* Would this change make things worse? */
1239 return (imb > old_imb);
e63da036
RR
1240}
1241
fb13c7ee
MG
1242/*
1243 * This checks if the overall compute and NUMA accesses of the system would
1244 * be improved if the source tasks was migrated to the target dst_cpu taking
1245 * into account that it might be best if task running on the dst_cpu should
1246 * be exchanged with the source task
1247 */
887c290e
RR
1248static void task_numa_compare(struct task_numa_env *env,
1249 long taskimp, long groupimp)
fb13c7ee
MG
1250{
1251 struct rq *src_rq = cpu_rq(env->src_cpu);
1252 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1253 struct task_struct *cur;
28a21745 1254 long src_load, dst_load;
fb13c7ee 1255 long load;
1c5d3eb3 1256 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1257 long moveimp = imp;
7bd95320 1258 int dist = env->dist;
fb13c7ee
MG
1259
1260 rcu_read_lock();
1effd9f1
KT
1261
1262 raw_spin_lock_irq(&dst_rq->lock);
1263 cur = dst_rq->curr;
1264 /*
1265 * No need to move the exiting task, and this ensures that ->curr
1266 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1267 * is safe under RCU read lock.
1268 * Note that rcu_read_lock() itself can't protect from the final
1269 * put_task_struct() after the last schedule().
1270 */
1271 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1272 cur = NULL;
1effd9f1 1273 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1274
7af68335
PZ
1275 /*
1276 * Because we have preemption enabled we can get migrated around and
1277 * end try selecting ourselves (current == env->p) as a swap candidate.
1278 */
1279 if (cur == env->p)
1280 goto unlock;
1281
fb13c7ee
MG
1282 /*
1283 * "imp" is the fault differential for the source task between the
1284 * source and destination node. Calculate the total differential for
1285 * the source task and potential destination task. The more negative
1286 * the value is, the more rmeote accesses that would be expected to
1287 * be incurred if the tasks were swapped.
1288 */
1289 if (cur) {
1290 /* Skip this swap candidate if cannot move to the source cpu */
1291 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1292 goto unlock;
1293
887c290e
RR
1294 /*
1295 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1296 * in any group then look only at task weights.
887c290e 1297 */
ca28aa53 1298 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1299 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1300 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1301 /*
1302 * Add some hysteresis to prevent swapping the
1303 * tasks within a group over tiny differences.
1304 */
1305 if (cur->numa_group)
1306 imp -= imp/16;
887c290e 1307 } else {
ca28aa53
RR
1308 /*
1309 * Compare the group weights. If a task is all by
1310 * itself (not part of a group), use the task weight
1311 * instead.
1312 */
ca28aa53 1313 if (cur->numa_group)
7bd95320
RR
1314 imp += group_weight(cur, env->src_nid, dist) -
1315 group_weight(cur, env->dst_nid, dist);
ca28aa53 1316 else
7bd95320
RR
1317 imp += task_weight(cur, env->src_nid, dist) -
1318 task_weight(cur, env->dst_nid, dist);
887c290e 1319 }
fb13c7ee
MG
1320 }
1321
0132c3e1 1322 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1323 goto unlock;
1324
1325 if (!cur) {
1326 /* Is there capacity at our destination? */
b932c03c 1327 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1328 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1329 goto unlock;
1330
1331 goto balance;
1332 }
1333
1334 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1335 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1336 dst_rq->nr_running == 1)
fb13c7ee
MG
1337 goto assign;
1338
1339 /*
1340 * In the overloaded case, try and keep the load balanced.
1341 */
1342balance:
e720fff6
PZ
1343 load = task_h_load(env->p);
1344 dst_load = env->dst_stats.load + load;
1345 src_load = env->src_stats.load - load;
fb13c7ee 1346
0132c3e1
RR
1347 if (moveimp > imp && moveimp > env->best_imp) {
1348 /*
1349 * If the improvement from just moving env->p direction is
1350 * better than swapping tasks around, check if a move is
1351 * possible. Store a slightly smaller score than moveimp,
1352 * so an actually idle CPU will win.
1353 */
1354 if (!load_too_imbalanced(src_load, dst_load, env)) {
1355 imp = moveimp - 1;
1356 cur = NULL;
1357 goto assign;
1358 }
1359 }
1360
1361 if (imp <= env->best_imp)
1362 goto unlock;
1363
fb13c7ee 1364 if (cur) {
e720fff6
PZ
1365 load = task_h_load(cur);
1366 dst_load -= load;
1367 src_load += load;
fb13c7ee
MG
1368 }
1369
28a21745 1370 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1371 goto unlock;
1372
ba7e5a27
RR
1373 /*
1374 * One idle CPU per node is evaluated for a task numa move.
1375 * Call select_idle_sibling to maybe find a better one.
1376 */
1377 if (!cur)
1378 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1379
fb13c7ee
MG
1380assign:
1381 task_numa_assign(env, cur, imp);
1382unlock:
1383 rcu_read_unlock();
1384}
1385
887c290e
RR
1386static void task_numa_find_cpu(struct task_numa_env *env,
1387 long taskimp, long groupimp)
2c8a50aa
MG
1388{
1389 int cpu;
1390
1391 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1392 /* Skip this CPU if the source task cannot migrate */
1393 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1394 continue;
1395
1396 env->dst_cpu = cpu;
887c290e 1397 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1398 }
1399}
1400
6f9aad0b
RR
1401/* Only move tasks to a NUMA node less busy than the current node. */
1402static bool numa_has_capacity(struct task_numa_env *env)
1403{
1404 struct numa_stats *src = &env->src_stats;
1405 struct numa_stats *dst = &env->dst_stats;
1406
1407 if (src->has_free_capacity && !dst->has_free_capacity)
1408 return false;
1409
1410 /*
1411 * Only consider a task move if the source has a higher load
1412 * than the destination, corrected for CPU capacity on each node.
1413 *
1414 * src->load dst->load
1415 * --------------------- vs ---------------------
1416 * src->compute_capacity dst->compute_capacity
1417 */
1418 if (src->load * dst->compute_capacity >
1419 dst->load * src->compute_capacity)
1420 return true;
1421
1422 return false;
1423}
1424
58d081b5
MG
1425static int task_numa_migrate(struct task_struct *p)
1426{
58d081b5
MG
1427 struct task_numa_env env = {
1428 .p = p,
fb13c7ee 1429
58d081b5 1430 .src_cpu = task_cpu(p),
b32e86b4 1431 .src_nid = task_node(p),
fb13c7ee
MG
1432
1433 .imbalance_pct = 112,
1434
1435 .best_task = NULL,
1436 .best_imp = 0,
1437 .best_cpu = -1
58d081b5
MG
1438 };
1439 struct sched_domain *sd;
887c290e 1440 unsigned long taskweight, groupweight;
7bd95320 1441 int nid, ret, dist;
887c290e 1442 long taskimp, groupimp;
e6628d5b 1443
58d081b5 1444 /*
fb13c7ee
MG
1445 * Pick the lowest SD_NUMA domain, as that would have the smallest
1446 * imbalance and would be the first to start moving tasks about.
1447 *
1448 * And we want to avoid any moving of tasks about, as that would create
1449 * random movement of tasks -- counter the numa conditions we're trying
1450 * to satisfy here.
58d081b5
MG
1451 */
1452 rcu_read_lock();
fb13c7ee 1453 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1454 if (sd)
1455 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1456 rcu_read_unlock();
1457
46a73e8a
RR
1458 /*
1459 * Cpusets can break the scheduler domain tree into smaller
1460 * balance domains, some of which do not cross NUMA boundaries.
1461 * Tasks that are "trapped" in such domains cannot be migrated
1462 * elsewhere, so there is no point in (re)trying.
1463 */
1464 if (unlikely(!sd)) {
de1b301a 1465 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1466 return -EINVAL;
1467 }
1468
2c8a50aa 1469 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1470 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1471 taskweight = task_weight(p, env.src_nid, dist);
1472 groupweight = group_weight(p, env.src_nid, dist);
1473 update_numa_stats(&env.src_stats, env.src_nid);
1474 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1475 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1476 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1477
a43455a1 1478 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1479 if (numa_has_capacity(&env))
1480 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1481
9de05d48
RR
1482 /*
1483 * Look at other nodes in these cases:
1484 * - there is no space available on the preferred_nid
1485 * - the task is part of a numa_group that is interleaved across
1486 * multiple NUMA nodes; in order to better consolidate the group,
1487 * we need to check other locations.
1488 */
1489 if (env.best_cpu == -1 || (p->numa_group &&
1490 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1491 for_each_online_node(nid) {
1492 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1493 continue;
58d081b5 1494
7bd95320 1495 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1496 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1497 dist != env.dist) {
1498 taskweight = task_weight(p, env.src_nid, dist);
1499 groupweight = group_weight(p, env.src_nid, dist);
1500 }
7bd95320 1501
83e1d2cd 1502 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1503 taskimp = task_weight(p, nid, dist) - taskweight;
1504 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1505 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1506 continue;
1507
7bd95320 1508 env.dist = dist;
2c8a50aa
MG
1509 env.dst_nid = nid;
1510 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1511 if (numa_has_capacity(&env))
1512 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1513 }
1514 }
1515
68d1b02a
RR
1516 /*
1517 * If the task is part of a workload that spans multiple NUMA nodes,
1518 * and is migrating into one of the workload's active nodes, remember
1519 * this node as the task's preferred numa node, so the workload can
1520 * settle down.
1521 * A task that migrated to a second choice node will be better off
1522 * trying for a better one later. Do not set the preferred node here.
1523 */
db015dae
RR
1524 if (p->numa_group) {
1525 if (env.best_cpu == -1)
1526 nid = env.src_nid;
1527 else
1528 nid = env.dst_nid;
1529
1530 if (node_isset(nid, p->numa_group->active_nodes))
1531 sched_setnuma(p, env.dst_nid);
1532 }
1533
1534 /* No better CPU than the current one was found. */
1535 if (env.best_cpu == -1)
1536 return -EAGAIN;
0ec8aa00 1537
04bb2f94
RR
1538 /*
1539 * Reset the scan period if the task is being rescheduled on an
1540 * alternative node to recheck if the tasks is now properly placed.
1541 */
1542 p->numa_scan_period = task_scan_min(p);
1543
fb13c7ee 1544 if (env.best_task == NULL) {
286549dc
MG
1545 ret = migrate_task_to(p, env.best_cpu);
1546 if (ret != 0)
1547 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1548 return ret;
1549 }
1550
1551 ret = migrate_swap(p, env.best_task);
286549dc
MG
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1554 put_task_struct(env.best_task);
1555 return ret;
e6628d5b
MG
1556}
1557
6b9a7460
MG
1558/* Attempt to migrate a task to a CPU on the preferred node. */
1559static void numa_migrate_preferred(struct task_struct *p)
1560{
5085e2a3
RR
1561 unsigned long interval = HZ;
1562
2739d3ee 1563 /* This task has no NUMA fault statistics yet */
44dba3d5 1564 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1565 return;
1566
2739d3ee 1567 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1568 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1569 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1570
1571 /* Success if task is already running on preferred CPU */
de1b301a 1572 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1573 return;
1574
1575 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1576 task_numa_migrate(p);
6b9a7460
MG
1577}
1578
20e07dea
RR
1579/*
1580 * Find the nodes on which the workload is actively running. We do this by
1581 * tracking the nodes from which NUMA hinting faults are triggered. This can
1582 * be different from the set of nodes where the workload's memory is currently
1583 * located.
1584 *
1585 * The bitmask is used to make smarter decisions on when to do NUMA page
1586 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1587 * are added when they cause over 6/16 of the maximum number of faults, but
1588 * only removed when they drop below 3/16.
1589 */
1590static void update_numa_active_node_mask(struct numa_group *numa_group)
1591{
1592 unsigned long faults, max_faults = 0;
1593 int nid;
1594
1595 for_each_online_node(nid) {
1596 faults = group_faults_cpu(numa_group, nid);
1597 if (faults > max_faults)
1598 max_faults = faults;
1599 }
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (!node_isset(nid, numa_group->active_nodes)) {
1604 if (faults > max_faults * 6 / 16)
1605 node_set(nid, numa_group->active_nodes);
1606 } else if (faults < max_faults * 3 / 16)
1607 node_clear(nid, numa_group->active_nodes);
1608 }
1609}
1610
04bb2f94
RR
1611/*
1612 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1613 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1614 * period will be for the next scan window. If local/(local+remote) ratio is
1615 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1616 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1617 */
1618#define NUMA_PERIOD_SLOTS 10
a22b4b01 1619#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1620
1621/*
1622 * Increase the scan period (slow down scanning) if the majority of
1623 * our memory is already on our local node, or if the majority of
1624 * the page accesses are shared with other processes.
1625 * Otherwise, decrease the scan period.
1626 */
1627static void update_task_scan_period(struct task_struct *p,
1628 unsigned long shared, unsigned long private)
1629{
1630 unsigned int period_slot;
1631 int ratio;
1632 int diff;
1633
1634 unsigned long remote = p->numa_faults_locality[0];
1635 unsigned long local = p->numa_faults_locality[1];
1636
1637 /*
1638 * If there were no record hinting faults then either the task is
1639 * completely idle or all activity is areas that are not of interest
074c2381
MG
1640 * to automatic numa balancing. Related to that, if there were failed
1641 * migration then it implies we are migrating too quickly or the local
1642 * node is overloaded. In either case, scan slower
04bb2f94 1643 */
074c2381 1644 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1645 p->numa_scan_period = min(p->numa_scan_period_max,
1646 p->numa_scan_period << 1);
1647
1648 p->mm->numa_next_scan = jiffies +
1649 msecs_to_jiffies(p->numa_scan_period);
1650
1651 return;
1652 }
1653
1654 /*
1655 * Prepare to scale scan period relative to the current period.
1656 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1657 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1658 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1659 */
1660 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1661 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1662 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1663 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1664 if (!slot)
1665 slot = 1;
1666 diff = slot * period_slot;
1667 } else {
1668 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1669
1670 /*
1671 * Scale scan rate increases based on sharing. There is an
1672 * inverse relationship between the degree of sharing and
1673 * the adjustment made to the scanning period. Broadly
1674 * speaking the intent is that there is little point
1675 * scanning faster if shared accesses dominate as it may
1676 * simply bounce migrations uselessly
1677 */
2847c90e 1678 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1679 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1680 }
1681
1682 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1683 task_scan_min(p), task_scan_max(p));
1684 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1685}
1686
7e2703e6
RR
1687/*
1688 * Get the fraction of time the task has been running since the last
1689 * NUMA placement cycle. The scheduler keeps similar statistics, but
1690 * decays those on a 32ms period, which is orders of magnitude off
1691 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1692 * stats only if the task is so new there are no NUMA statistics yet.
1693 */
1694static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1695{
1696 u64 runtime, delta, now;
1697 /* Use the start of this time slice to avoid calculations. */
1698 now = p->se.exec_start;
1699 runtime = p->se.sum_exec_runtime;
1700
1701 if (p->last_task_numa_placement) {
1702 delta = runtime - p->last_sum_exec_runtime;
1703 *period = now - p->last_task_numa_placement;
1704 } else {
1705 delta = p->se.avg.runnable_avg_sum;
36ee28e4 1706 *period = p->se.avg.avg_period;
7e2703e6
RR
1707 }
1708
1709 p->last_sum_exec_runtime = runtime;
1710 p->last_task_numa_placement = now;
1711
1712 return delta;
1713}
1714
54009416
RR
1715/*
1716 * Determine the preferred nid for a task in a numa_group. This needs to
1717 * be done in a way that produces consistent results with group_weight,
1718 * otherwise workloads might not converge.
1719 */
1720static int preferred_group_nid(struct task_struct *p, int nid)
1721{
1722 nodemask_t nodes;
1723 int dist;
1724
1725 /* Direct connections between all NUMA nodes. */
1726 if (sched_numa_topology_type == NUMA_DIRECT)
1727 return nid;
1728
1729 /*
1730 * On a system with glueless mesh NUMA topology, group_weight
1731 * scores nodes according to the number of NUMA hinting faults on
1732 * both the node itself, and on nearby nodes.
1733 */
1734 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1735 unsigned long score, max_score = 0;
1736 int node, max_node = nid;
1737
1738 dist = sched_max_numa_distance;
1739
1740 for_each_online_node(node) {
1741 score = group_weight(p, node, dist);
1742 if (score > max_score) {
1743 max_score = score;
1744 max_node = node;
1745 }
1746 }
1747 return max_node;
1748 }
1749
1750 /*
1751 * Finding the preferred nid in a system with NUMA backplane
1752 * interconnect topology is more involved. The goal is to locate
1753 * tasks from numa_groups near each other in the system, and
1754 * untangle workloads from different sides of the system. This requires
1755 * searching down the hierarchy of node groups, recursively searching
1756 * inside the highest scoring group of nodes. The nodemask tricks
1757 * keep the complexity of the search down.
1758 */
1759 nodes = node_online_map;
1760 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1761 unsigned long max_faults = 0;
81907478 1762 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1763 int a, b;
1764
1765 /* Are there nodes at this distance from each other? */
1766 if (!find_numa_distance(dist))
1767 continue;
1768
1769 for_each_node_mask(a, nodes) {
1770 unsigned long faults = 0;
1771 nodemask_t this_group;
1772 nodes_clear(this_group);
1773
1774 /* Sum group's NUMA faults; includes a==b case. */
1775 for_each_node_mask(b, nodes) {
1776 if (node_distance(a, b) < dist) {
1777 faults += group_faults(p, b);
1778 node_set(b, this_group);
1779 node_clear(b, nodes);
1780 }
1781 }
1782
1783 /* Remember the top group. */
1784 if (faults > max_faults) {
1785 max_faults = faults;
1786 max_group = this_group;
1787 /*
1788 * subtle: at the smallest distance there is
1789 * just one node left in each "group", the
1790 * winner is the preferred nid.
1791 */
1792 nid = a;
1793 }
1794 }
1795 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1796 if (!max_faults)
1797 break;
54009416
RR
1798 nodes = max_group;
1799 }
1800 return nid;
1801}
1802
cbee9f88
PZ
1803static void task_numa_placement(struct task_struct *p)
1804{
83e1d2cd
MG
1805 int seq, nid, max_nid = -1, max_group_nid = -1;
1806 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1807 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1808 unsigned long total_faults;
1809 u64 runtime, period;
7dbd13ed 1810 spinlock_t *group_lock = NULL;
cbee9f88 1811
7e5a2c17
JL
1812 /*
1813 * The p->mm->numa_scan_seq field gets updated without
1814 * exclusive access. Use READ_ONCE() here to ensure
1815 * that the field is read in a single access:
1816 */
316c1608 1817 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1818 if (p->numa_scan_seq == seq)
1819 return;
1820 p->numa_scan_seq = seq;
598f0ec0 1821 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1822
7e2703e6
RR
1823 total_faults = p->numa_faults_locality[0] +
1824 p->numa_faults_locality[1];
1825 runtime = numa_get_avg_runtime(p, &period);
1826
7dbd13ed
MG
1827 /* If the task is part of a group prevent parallel updates to group stats */
1828 if (p->numa_group) {
1829 group_lock = &p->numa_group->lock;
60e69eed 1830 spin_lock_irq(group_lock);
7dbd13ed
MG
1831 }
1832
688b7585
MG
1833 /* Find the node with the highest number of faults */
1834 for_each_online_node(nid) {
44dba3d5
IM
1835 /* Keep track of the offsets in numa_faults array */
1836 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1837 unsigned long faults = 0, group_faults = 0;
44dba3d5 1838 int priv;
745d6147 1839
be1e4e76 1840 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1841 long diff, f_diff, f_weight;
8c8a743c 1842
44dba3d5
IM
1843 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1844 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1845 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1846 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1847
ac8e895b 1848 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1849 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1850 fault_types[priv] += p->numa_faults[membuf_idx];
1851 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1852
7e2703e6
RR
1853 /*
1854 * Normalize the faults_from, so all tasks in a group
1855 * count according to CPU use, instead of by the raw
1856 * number of faults. Tasks with little runtime have
1857 * little over-all impact on throughput, and thus their
1858 * faults are less important.
1859 */
1860 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1861 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1862 (total_faults + 1);
44dba3d5
IM
1863 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1864 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1865
44dba3d5
IM
1866 p->numa_faults[mem_idx] += diff;
1867 p->numa_faults[cpu_idx] += f_diff;
1868 faults += p->numa_faults[mem_idx];
83e1d2cd 1869 p->total_numa_faults += diff;
8c8a743c 1870 if (p->numa_group) {
44dba3d5
IM
1871 /*
1872 * safe because we can only change our own group
1873 *
1874 * mem_idx represents the offset for a given
1875 * nid and priv in a specific region because it
1876 * is at the beginning of the numa_faults array.
1877 */
1878 p->numa_group->faults[mem_idx] += diff;
1879 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1880 p->numa_group->total_faults += diff;
44dba3d5 1881 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1882 }
ac8e895b
MG
1883 }
1884
688b7585
MG
1885 if (faults > max_faults) {
1886 max_faults = faults;
1887 max_nid = nid;
1888 }
83e1d2cd
MG
1889
1890 if (group_faults > max_group_faults) {
1891 max_group_faults = group_faults;
1892 max_group_nid = nid;
1893 }
1894 }
1895
04bb2f94
RR
1896 update_task_scan_period(p, fault_types[0], fault_types[1]);
1897
7dbd13ed 1898 if (p->numa_group) {
20e07dea 1899 update_numa_active_node_mask(p->numa_group);
60e69eed 1900 spin_unlock_irq(group_lock);
54009416 1901 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1902 }
1903
bb97fc31
RR
1904 if (max_faults) {
1905 /* Set the new preferred node */
1906 if (max_nid != p->numa_preferred_nid)
1907 sched_setnuma(p, max_nid);
1908
1909 if (task_node(p) != p->numa_preferred_nid)
1910 numa_migrate_preferred(p);
3a7053b3 1911 }
cbee9f88
PZ
1912}
1913
8c8a743c
PZ
1914static inline int get_numa_group(struct numa_group *grp)
1915{
1916 return atomic_inc_not_zero(&grp->refcount);
1917}
1918
1919static inline void put_numa_group(struct numa_group *grp)
1920{
1921 if (atomic_dec_and_test(&grp->refcount))
1922 kfree_rcu(grp, rcu);
1923}
1924
3e6a9418
MG
1925static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1926 int *priv)
8c8a743c
PZ
1927{
1928 struct numa_group *grp, *my_grp;
1929 struct task_struct *tsk;
1930 bool join = false;
1931 int cpu = cpupid_to_cpu(cpupid);
1932 int i;
1933
1934 if (unlikely(!p->numa_group)) {
1935 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1936 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1937
1938 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1939 if (!grp)
1940 return;
1941
1942 atomic_set(&grp->refcount, 1);
1943 spin_lock_init(&grp->lock);
e29cf08b 1944 grp->gid = p->pid;
50ec8a40 1945 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1946 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1947 nr_node_ids;
8c8a743c 1948
20e07dea
RR
1949 node_set(task_node(current), grp->active_nodes);
1950
be1e4e76 1951 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1952 grp->faults[i] = p->numa_faults[i];
8c8a743c 1953
989348b5 1954 grp->total_faults = p->total_numa_faults;
83e1d2cd 1955
8c8a743c
PZ
1956 grp->nr_tasks++;
1957 rcu_assign_pointer(p->numa_group, grp);
1958 }
1959
1960 rcu_read_lock();
316c1608 1961 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1962
1963 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1964 goto no_join;
8c8a743c
PZ
1965
1966 grp = rcu_dereference(tsk->numa_group);
1967 if (!grp)
3354781a 1968 goto no_join;
8c8a743c
PZ
1969
1970 my_grp = p->numa_group;
1971 if (grp == my_grp)
3354781a 1972 goto no_join;
8c8a743c
PZ
1973
1974 /*
1975 * Only join the other group if its bigger; if we're the bigger group,
1976 * the other task will join us.
1977 */
1978 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1979 goto no_join;
8c8a743c
PZ
1980
1981 /*
1982 * Tie-break on the grp address.
1983 */
1984 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1985 goto no_join;
8c8a743c 1986
dabe1d99
RR
1987 /* Always join threads in the same process. */
1988 if (tsk->mm == current->mm)
1989 join = true;
1990
1991 /* Simple filter to avoid false positives due to PID collisions */
1992 if (flags & TNF_SHARED)
1993 join = true;
8c8a743c 1994
3e6a9418
MG
1995 /* Update priv based on whether false sharing was detected */
1996 *priv = !join;
1997
dabe1d99 1998 if (join && !get_numa_group(grp))
3354781a 1999 goto no_join;
8c8a743c 2000
8c8a743c
PZ
2001 rcu_read_unlock();
2002
2003 if (!join)
2004 return;
2005
60e69eed
MG
2006 BUG_ON(irqs_disabled());
2007 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2008
be1e4e76 2009 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2010 my_grp->faults[i] -= p->numa_faults[i];
2011 grp->faults[i] += p->numa_faults[i];
8c8a743c 2012 }
989348b5
MG
2013 my_grp->total_faults -= p->total_numa_faults;
2014 grp->total_faults += p->total_numa_faults;
8c8a743c 2015
8c8a743c
PZ
2016 my_grp->nr_tasks--;
2017 grp->nr_tasks++;
2018
2019 spin_unlock(&my_grp->lock);
60e69eed 2020 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2021
2022 rcu_assign_pointer(p->numa_group, grp);
2023
2024 put_numa_group(my_grp);
3354781a
PZ
2025 return;
2026
2027no_join:
2028 rcu_read_unlock();
2029 return;
8c8a743c
PZ
2030}
2031
2032void task_numa_free(struct task_struct *p)
2033{
2034 struct numa_group *grp = p->numa_group;
44dba3d5 2035 void *numa_faults = p->numa_faults;
e9dd685c
SR
2036 unsigned long flags;
2037 int i;
8c8a743c
PZ
2038
2039 if (grp) {
e9dd685c 2040 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2041 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2042 grp->faults[i] -= p->numa_faults[i];
989348b5 2043 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2044
8c8a743c 2045 grp->nr_tasks--;
e9dd685c 2046 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2047 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2048 put_numa_group(grp);
2049 }
2050
44dba3d5 2051 p->numa_faults = NULL;
82727018 2052 kfree(numa_faults);
8c8a743c
PZ
2053}
2054
cbee9f88
PZ
2055/*
2056 * Got a PROT_NONE fault for a page on @node.
2057 */
58b46da3 2058void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2059{
2060 struct task_struct *p = current;
6688cc05 2061 bool migrated = flags & TNF_MIGRATED;
58b46da3 2062 int cpu_node = task_node(current);
792568ec 2063 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2064 int priv;
cbee9f88 2065
10e84b97 2066 if (!numabalancing_enabled)
1a687c2e
MG
2067 return;
2068
9ff1d9ff
MG
2069 /* for example, ksmd faulting in a user's mm */
2070 if (!p->mm)
2071 return;
2072
f809ca9a 2073 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2074 if (unlikely(!p->numa_faults)) {
2075 int size = sizeof(*p->numa_faults) *
be1e4e76 2076 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2077
44dba3d5
IM
2078 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2079 if (!p->numa_faults)
f809ca9a 2080 return;
745d6147 2081
83e1d2cd 2082 p->total_numa_faults = 0;
04bb2f94 2083 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2084 }
cbee9f88 2085
8c8a743c
PZ
2086 /*
2087 * First accesses are treated as private, otherwise consider accesses
2088 * to be private if the accessing pid has not changed
2089 */
2090 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2091 priv = 1;
2092 } else {
2093 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2094 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2095 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2096 }
2097
792568ec
RR
2098 /*
2099 * If a workload spans multiple NUMA nodes, a shared fault that
2100 * occurs wholly within the set of nodes that the workload is
2101 * actively using should be counted as local. This allows the
2102 * scan rate to slow down when a workload has settled down.
2103 */
2104 if (!priv && !local && p->numa_group &&
2105 node_isset(cpu_node, p->numa_group->active_nodes) &&
2106 node_isset(mem_node, p->numa_group->active_nodes))
2107 local = 1;
2108
cbee9f88 2109 task_numa_placement(p);
f809ca9a 2110
2739d3ee
RR
2111 /*
2112 * Retry task to preferred node migration periodically, in case it
2113 * case it previously failed, or the scheduler moved us.
2114 */
2115 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2116 numa_migrate_preferred(p);
2117
b32e86b4
IM
2118 if (migrated)
2119 p->numa_pages_migrated += pages;
074c2381
MG
2120 if (flags & TNF_MIGRATE_FAIL)
2121 p->numa_faults_locality[2] += pages;
b32e86b4 2122
44dba3d5
IM
2123 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2124 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2125 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2126}
2127
6e5fb223
PZ
2128static void reset_ptenuma_scan(struct task_struct *p)
2129{
7e5a2c17
JL
2130 /*
2131 * We only did a read acquisition of the mmap sem, so
2132 * p->mm->numa_scan_seq is written to without exclusive access
2133 * and the update is not guaranteed to be atomic. That's not
2134 * much of an issue though, since this is just used for
2135 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2136 * expensive, to avoid any form of compiler optimizations:
2137 */
316c1608 2138 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2139 p->mm->numa_scan_offset = 0;
2140}
2141
cbee9f88
PZ
2142/*
2143 * The expensive part of numa migration is done from task_work context.
2144 * Triggered from task_tick_numa().
2145 */
2146void task_numa_work(struct callback_head *work)
2147{
2148 unsigned long migrate, next_scan, now = jiffies;
2149 struct task_struct *p = current;
2150 struct mm_struct *mm = p->mm;
6e5fb223 2151 struct vm_area_struct *vma;
9f40604c 2152 unsigned long start, end;
598f0ec0 2153 unsigned long nr_pte_updates = 0;
9f40604c 2154 long pages;
cbee9f88
PZ
2155
2156 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2157
2158 work->next = work; /* protect against double add */
2159 /*
2160 * Who cares about NUMA placement when they're dying.
2161 *
2162 * NOTE: make sure not to dereference p->mm before this check,
2163 * exit_task_work() happens _after_ exit_mm() so we could be called
2164 * without p->mm even though we still had it when we enqueued this
2165 * work.
2166 */
2167 if (p->flags & PF_EXITING)
2168 return;
2169
930aa174 2170 if (!mm->numa_next_scan) {
7e8d16b6
MG
2171 mm->numa_next_scan = now +
2172 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2173 }
2174
cbee9f88
PZ
2175 /*
2176 * Enforce maximal scan/migration frequency..
2177 */
2178 migrate = mm->numa_next_scan;
2179 if (time_before(now, migrate))
2180 return;
2181
598f0ec0
MG
2182 if (p->numa_scan_period == 0) {
2183 p->numa_scan_period_max = task_scan_max(p);
2184 p->numa_scan_period = task_scan_min(p);
2185 }
cbee9f88 2186
fb003b80 2187 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2188 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2189 return;
2190
19a78d11
PZ
2191 /*
2192 * Delay this task enough that another task of this mm will likely win
2193 * the next time around.
2194 */
2195 p->node_stamp += 2 * TICK_NSEC;
2196
9f40604c
MG
2197 start = mm->numa_scan_offset;
2198 pages = sysctl_numa_balancing_scan_size;
2199 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2200 if (!pages)
2201 return;
cbee9f88 2202
6e5fb223 2203 down_read(&mm->mmap_sem);
9f40604c 2204 vma = find_vma(mm, start);
6e5fb223
PZ
2205 if (!vma) {
2206 reset_ptenuma_scan(p);
9f40604c 2207 start = 0;
6e5fb223
PZ
2208 vma = mm->mmap;
2209 }
9f40604c 2210 for (; vma; vma = vma->vm_next) {
6b79c57b
NH
2211 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2212 is_vm_hugetlb_page(vma)) {
6e5fb223 2213 continue;
6b79c57b 2214 }
6e5fb223 2215
4591ce4f
MG
2216 /*
2217 * Shared library pages mapped by multiple processes are not
2218 * migrated as it is expected they are cache replicated. Avoid
2219 * hinting faults in read-only file-backed mappings or the vdso
2220 * as migrating the pages will be of marginal benefit.
2221 */
2222 if (!vma->vm_mm ||
2223 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2224 continue;
2225
3c67f474
MG
2226 /*
2227 * Skip inaccessible VMAs to avoid any confusion between
2228 * PROT_NONE and NUMA hinting ptes
2229 */
2230 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2231 continue;
4591ce4f 2232
9f40604c
MG
2233 do {
2234 start = max(start, vma->vm_start);
2235 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2236 end = min(end, vma->vm_end);
598f0ec0
MG
2237 nr_pte_updates += change_prot_numa(vma, start, end);
2238
2239 /*
2240 * Scan sysctl_numa_balancing_scan_size but ensure that
2241 * at least one PTE is updated so that unused virtual
2242 * address space is quickly skipped.
2243 */
2244 if (nr_pte_updates)
2245 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2246
9f40604c
MG
2247 start = end;
2248 if (pages <= 0)
2249 goto out;
3cf1962c
RR
2250
2251 cond_resched();
9f40604c 2252 } while (end != vma->vm_end);
cbee9f88 2253 }
6e5fb223 2254
9f40604c 2255out:
6e5fb223 2256 /*
c69307d5
PZ
2257 * It is possible to reach the end of the VMA list but the last few
2258 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2259 * would find the !migratable VMA on the next scan but not reset the
2260 * scanner to the start so check it now.
6e5fb223
PZ
2261 */
2262 if (vma)
9f40604c 2263 mm->numa_scan_offset = start;
6e5fb223
PZ
2264 else
2265 reset_ptenuma_scan(p);
2266 up_read(&mm->mmap_sem);
cbee9f88
PZ
2267}
2268
2269/*
2270 * Drive the periodic memory faults..
2271 */
2272void task_tick_numa(struct rq *rq, struct task_struct *curr)
2273{
2274 struct callback_head *work = &curr->numa_work;
2275 u64 period, now;
2276
2277 /*
2278 * We don't care about NUMA placement if we don't have memory.
2279 */
2280 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2281 return;
2282
2283 /*
2284 * Using runtime rather than walltime has the dual advantage that
2285 * we (mostly) drive the selection from busy threads and that the
2286 * task needs to have done some actual work before we bother with
2287 * NUMA placement.
2288 */
2289 now = curr->se.sum_exec_runtime;
2290 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2291
2292 if (now - curr->node_stamp > period) {
4b96a29b 2293 if (!curr->node_stamp)
598f0ec0 2294 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2295 curr->node_stamp += period;
cbee9f88
PZ
2296
2297 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2298 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2299 task_work_add(curr, work, true);
2300 }
2301 }
2302}
2303#else
2304static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2305{
2306}
0ec8aa00
PZ
2307
2308static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2309{
2310}
2311
2312static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2313{
2314}
cbee9f88
PZ
2315#endif /* CONFIG_NUMA_BALANCING */
2316
30cfdcfc
DA
2317static void
2318account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2319{
2320 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2321 if (!parent_entity(se))
029632fb 2322 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2323#ifdef CONFIG_SMP
0ec8aa00
PZ
2324 if (entity_is_task(se)) {
2325 struct rq *rq = rq_of(cfs_rq);
2326
2327 account_numa_enqueue(rq, task_of(se));
2328 list_add(&se->group_node, &rq->cfs_tasks);
2329 }
367456c7 2330#endif
30cfdcfc 2331 cfs_rq->nr_running++;
30cfdcfc
DA
2332}
2333
2334static void
2335account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2336{
2337 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2338 if (!parent_entity(se))
029632fb 2339 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2340 if (entity_is_task(se)) {
2341 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2342 list_del_init(&se->group_node);
0ec8aa00 2343 }
30cfdcfc 2344 cfs_rq->nr_running--;
30cfdcfc
DA
2345}
2346
3ff6dcac
YZ
2347#ifdef CONFIG_FAIR_GROUP_SCHED
2348# ifdef CONFIG_SMP
cf5f0acf
PZ
2349static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2350{
2351 long tg_weight;
2352
2353 /*
2354 * Use this CPU's actual weight instead of the last load_contribution
2355 * to gain a more accurate current total weight. See
2356 * update_cfs_rq_load_contribution().
2357 */
bf5b986e 2358 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2359 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2360 tg_weight += cfs_rq->load.weight;
2361
2362 return tg_weight;
2363}
2364
6d5ab293 2365static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2366{
cf5f0acf 2367 long tg_weight, load, shares;
3ff6dcac 2368
cf5f0acf 2369 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2370 load = cfs_rq->load.weight;
3ff6dcac 2371
3ff6dcac 2372 shares = (tg->shares * load);
cf5f0acf
PZ
2373 if (tg_weight)
2374 shares /= tg_weight;
3ff6dcac
YZ
2375
2376 if (shares < MIN_SHARES)
2377 shares = MIN_SHARES;
2378 if (shares > tg->shares)
2379 shares = tg->shares;
2380
2381 return shares;
2382}
3ff6dcac 2383# else /* CONFIG_SMP */
6d5ab293 2384static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2385{
2386 return tg->shares;
2387}
3ff6dcac 2388# endif /* CONFIG_SMP */
2069dd75
PZ
2389static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2390 unsigned long weight)
2391{
19e5eebb
PT
2392 if (se->on_rq) {
2393 /* commit outstanding execution time */
2394 if (cfs_rq->curr == se)
2395 update_curr(cfs_rq);
2069dd75 2396 account_entity_dequeue(cfs_rq, se);
19e5eebb 2397 }
2069dd75
PZ
2398
2399 update_load_set(&se->load, weight);
2400
2401 if (se->on_rq)
2402 account_entity_enqueue(cfs_rq, se);
2403}
2404
82958366
PT
2405static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2406
6d5ab293 2407static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2408{
2409 struct task_group *tg;
2410 struct sched_entity *se;
3ff6dcac 2411 long shares;
2069dd75 2412
2069dd75
PZ
2413 tg = cfs_rq->tg;
2414 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2415 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2416 return;
3ff6dcac
YZ
2417#ifndef CONFIG_SMP
2418 if (likely(se->load.weight == tg->shares))
2419 return;
2420#endif
6d5ab293 2421 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2422
2423 reweight_entity(cfs_rq_of(se), se, shares);
2424}
2425#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2426static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2427{
2428}
2429#endif /* CONFIG_FAIR_GROUP_SCHED */
2430
141965c7 2431#ifdef CONFIG_SMP
5b51f2f8
PT
2432/*
2433 * We choose a half-life close to 1 scheduling period.
2434 * Note: The tables below are dependent on this value.
2435 */
2436#define LOAD_AVG_PERIOD 32
2437#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2438#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2439
2440/* Precomputed fixed inverse multiplies for multiplication by y^n */
2441static const u32 runnable_avg_yN_inv[] = {
2442 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2443 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2444 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2445 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2446 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2447 0x85aac367, 0x82cd8698,
2448};
2449
2450/*
2451 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2452 * over-estimates when re-combining.
2453 */
2454static const u32 runnable_avg_yN_sum[] = {
2455 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2456 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2457 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2458};
2459
9d85f21c
PT
2460/*
2461 * Approximate:
2462 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2463 */
2464static __always_inline u64 decay_load(u64 val, u64 n)
2465{
5b51f2f8
PT
2466 unsigned int local_n;
2467
2468 if (!n)
2469 return val;
2470 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2471 return 0;
2472
2473 /* after bounds checking we can collapse to 32-bit */
2474 local_n = n;
2475
2476 /*
2477 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2478 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2479 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2480 *
2481 * To achieve constant time decay_load.
2482 */
2483 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2484 val >>= local_n / LOAD_AVG_PERIOD;
2485 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2486 }
2487
5b51f2f8
PT
2488 val *= runnable_avg_yN_inv[local_n];
2489 /* We don't use SRR here since we always want to round down. */
2490 return val >> 32;
2491}
2492
2493/*
2494 * For updates fully spanning n periods, the contribution to runnable
2495 * average will be: \Sum 1024*y^n
2496 *
2497 * We can compute this reasonably efficiently by combining:
2498 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2499 */
2500static u32 __compute_runnable_contrib(u64 n)
2501{
2502 u32 contrib = 0;
2503
2504 if (likely(n <= LOAD_AVG_PERIOD))
2505 return runnable_avg_yN_sum[n];
2506 else if (unlikely(n >= LOAD_AVG_MAX_N))
2507 return LOAD_AVG_MAX;
2508
2509 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2510 do {
2511 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2512 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2513
2514 n -= LOAD_AVG_PERIOD;
2515 } while (n > LOAD_AVG_PERIOD);
2516
2517 contrib = decay_load(contrib, n);
2518 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2519}
2520
2521/*
2522 * We can represent the historical contribution to runnable average as the
2523 * coefficients of a geometric series. To do this we sub-divide our runnable
2524 * history into segments of approximately 1ms (1024us); label the segment that
2525 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2526 *
2527 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2528 * p0 p1 p2
2529 * (now) (~1ms ago) (~2ms ago)
2530 *
2531 * Let u_i denote the fraction of p_i that the entity was runnable.
2532 *
2533 * We then designate the fractions u_i as our co-efficients, yielding the
2534 * following representation of historical load:
2535 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2536 *
2537 * We choose y based on the with of a reasonably scheduling period, fixing:
2538 * y^32 = 0.5
2539 *
2540 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2541 * approximately half as much as the contribution to load within the last ms
2542 * (u_0).
2543 *
2544 * When a period "rolls over" and we have new u_0`, multiplying the previous
2545 * sum again by y is sufficient to update:
2546 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2547 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2548 */
0c1dc6b2 2549static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
9d85f21c 2550 struct sched_avg *sa,
36ee28e4
VG
2551 int runnable,
2552 int running)
9d85f21c 2553{
5b51f2f8
PT
2554 u64 delta, periods;
2555 u32 runnable_contrib;
9d85f21c 2556 int delta_w, decayed = 0;
0c1dc6b2 2557 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
9d85f21c
PT
2558
2559 delta = now - sa->last_runnable_update;
2560 /*
2561 * This should only happen when time goes backwards, which it
2562 * unfortunately does during sched clock init when we swap over to TSC.
2563 */
2564 if ((s64)delta < 0) {
2565 sa->last_runnable_update = now;
2566 return 0;
2567 }
2568
2569 /*
2570 * Use 1024ns as the unit of measurement since it's a reasonable
2571 * approximation of 1us and fast to compute.
2572 */
2573 delta >>= 10;
2574 if (!delta)
2575 return 0;
2576 sa->last_runnable_update = now;
2577
2578 /* delta_w is the amount already accumulated against our next period */
36ee28e4 2579 delta_w = sa->avg_period % 1024;
9d85f21c
PT
2580 if (delta + delta_w >= 1024) {
2581 /* period roll-over */
2582 decayed = 1;
2583
2584 /*
2585 * Now that we know we're crossing a period boundary, figure
2586 * out how much from delta we need to complete the current
2587 * period and accrue it.
2588 */
2589 delta_w = 1024 - delta_w;
5b51f2f8
PT
2590 if (runnable)
2591 sa->runnable_avg_sum += delta_w;
36ee28e4 2592 if (running)
0c1dc6b2
MR
2593 sa->running_avg_sum += delta_w * scale_freq
2594 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2595 sa->avg_period += delta_w;
5b51f2f8
PT
2596
2597 delta -= delta_w;
2598
2599 /* Figure out how many additional periods this update spans */
2600 periods = delta / 1024;
2601 delta %= 1024;
2602
2603 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2604 periods + 1);
36ee28e4
VG
2605 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2606 periods + 1);
2607 sa->avg_period = decay_load(sa->avg_period,
5b51f2f8
PT
2608 periods + 1);
2609
2610 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2611 runnable_contrib = __compute_runnable_contrib(periods);
2612 if (runnable)
2613 sa->runnable_avg_sum += runnable_contrib;
36ee28e4 2614 if (running)
0c1dc6b2
MR
2615 sa->running_avg_sum += runnable_contrib * scale_freq
2616 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2617 sa->avg_period += runnable_contrib;
9d85f21c
PT
2618 }
2619
2620 /* Remainder of delta accrued against u_0` */
2621 if (runnable)
2622 sa->runnable_avg_sum += delta;
36ee28e4 2623 if (running)
0c1dc6b2
MR
2624 sa->running_avg_sum += delta * scale_freq
2625 >> SCHED_CAPACITY_SHIFT;
36ee28e4 2626 sa->avg_period += delta;
9d85f21c
PT
2627
2628 return decayed;
2629}
2630
9ee474f5 2631/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2632static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2633{
2634 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2635 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2636
2637 decays -= se->avg.decay_count;
63847600 2638 se->avg.decay_count = 0;
9ee474f5 2639 if (!decays)
aff3e498 2640 return 0;
9ee474f5
PT
2641
2642 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
36ee28e4
VG
2643 se->avg.utilization_avg_contrib =
2644 decay_load(se->avg.utilization_avg_contrib, decays);
aff3e498
PT
2645
2646 return decays;
9ee474f5
PT
2647}
2648
c566e8e9
PT
2649#ifdef CONFIG_FAIR_GROUP_SCHED
2650static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2651 int force_update)
2652{
2653 struct task_group *tg = cfs_rq->tg;
bf5b986e 2654 long tg_contrib;
c566e8e9
PT
2655
2656 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2657 tg_contrib -= cfs_rq->tg_load_contrib;
2658
8236d907
JL
2659 if (!tg_contrib)
2660 return;
2661
bf5b986e
AS
2662 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2663 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2664 cfs_rq->tg_load_contrib += tg_contrib;
2665 }
2666}
8165e145 2667
bb17f655
PT
2668/*
2669 * Aggregate cfs_rq runnable averages into an equivalent task_group
2670 * representation for computing load contributions.
2671 */
2672static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2673 struct cfs_rq *cfs_rq)
2674{
2675 struct task_group *tg = cfs_rq->tg;
2676 long contrib;
2677
2678 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2679 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
36ee28e4 2680 sa->avg_period + 1);
bb17f655
PT
2681 contrib -= cfs_rq->tg_runnable_contrib;
2682
2683 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2684 atomic_add(contrib, &tg->runnable_avg);
2685 cfs_rq->tg_runnable_contrib += contrib;
2686 }
2687}
2688
8165e145
PT
2689static inline void __update_group_entity_contrib(struct sched_entity *se)
2690{
2691 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2692 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2693 int runnable_avg;
2694
8165e145
PT
2695 u64 contrib;
2696
2697 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2698 se->avg.load_avg_contrib = div_u64(contrib,
2699 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2700
2701 /*
2702 * For group entities we need to compute a correction term in the case
2703 * that they are consuming <1 cpu so that we would contribute the same
2704 * load as a task of equal weight.
2705 *
2706 * Explicitly co-ordinating this measurement would be expensive, but
2707 * fortunately the sum of each cpus contribution forms a usable
2708 * lower-bound on the true value.
2709 *
2710 * Consider the aggregate of 2 contributions. Either they are disjoint
2711 * (and the sum represents true value) or they are disjoint and we are
2712 * understating by the aggregate of their overlap.
2713 *
2714 * Extending this to N cpus, for a given overlap, the maximum amount we
2715 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2716 * cpus that overlap for this interval and w_i is the interval width.
2717 *
2718 * On a small machine; the first term is well-bounded which bounds the
2719 * total error since w_i is a subset of the period. Whereas on a
2720 * larger machine, while this first term can be larger, if w_i is the
2721 * of consequential size guaranteed to see n_i*w_i quickly converge to
2722 * our upper bound of 1-cpu.
2723 */
2724 runnable_avg = atomic_read(&tg->runnable_avg);
2725 if (runnable_avg < NICE_0_LOAD) {
2726 se->avg.load_avg_contrib *= runnable_avg;
2727 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2728 }
8165e145 2729}
f5f9739d
DE
2730
2731static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2732{
0c1dc6b2
MR
2733 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2734 runnable, runnable);
f5f9739d
DE
2735 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2736}
6e83125c 2737#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2738static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2739 int force_update) {}
bb17f655
PT
2740static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2741 struct cfs_rq *cfs_rq) {}
8165e145 2742static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2743static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2744#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2745
8165e145
PT
2746static inline void __update_task_entity_contrib(struct sched_entity *se)
2747{
2748 u32 contrib;
2749
2750 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2751 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
36ee28e4 2752 contrib /= (se->avg.avg_period + 1);
8165e145
PT
2753 se->avg.load_avg_contrib = scale_load(contrib);
2754}
2755
2dac754e
PT
2756/* Compute the current contribution to load_avg by se, return any delta */
2757static long __update_entity_load_avg_contrib(struct sched_entity *se)
2758{
2759 long old_contrib = se->avg.load_avg_contrib;
2760
8165e145
PT
2761 if (entity_is_task(se)) {
2762 __update_task_entity_contrib(se);
2763 } else {
bb17f655 2764 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2765 __update_group_entity_contrib(se);
2766 }
2dac754e
PT
2767
2768 return se->avg.load_avg_contrib - old_contrib;
2769}
2770
36ee28e4
VG
2771
2772static inline void __update_task_entity_utilization(struct sched_entity *se)
2773{
2774 u32 contrib;
2775
2776 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2777 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2778 contrib /= (se->avg.avg_period + 1);
2779 se->avg.utilization_avg_contrib = scale_load(contrib);
2780}
2781
2782static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2783{
2784 long old_contrib = se->avg.utilization_avg_contrib;
2785
2786 if (entity_is_task(se))
2787 __update_task_entity_utilization(se);
21f44866
MR
2788 else
2789 se->avg.utilization_avg_contrib =
2790 group_cfs_rq(se)->utilization_load_avg;
36ee28e4
VG
2791
2792 return se->avg.utilization_avg_contrib - old_contrib;
2793}
2794
9ee474f5
PT
2795static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2796 long load_contrib)
2797{
2798 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2799 cfs_rq->blocked_load_avg -= load_contrib;
2800 else
2801 cfs_rq->blocked_load_avg = 0;
2802}
2803
f1b17280
PT
2804static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2805
9d85f21c 2806/* Update a sched_entity's runnable average */
9ee474f5
PT
2807static inline void update_entity_load_avg(struct sched_entity *se,
2808 int update_cfs_rq)
9d85f21c 2809{
2dac754e 2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
36ee28e4 2811 long contrib_delta, utilization_delta;
0c1dc6b2 2812 int cpu = cpu_of(rq_of(cfs_rq));
f1b17280 2813 u64 now;
2dac754e 2814
f1b17280
PT
2815 /*
2816 * For a group entity we need to use their owned cfs_rq_clock_task() in
2817 * case they are the parent of a throttled hierarchy.
2818 */
2819 if (entity_is_task(se))
2820 now = cfs_rq_clock_task(cfs_rq);
2821 else
2822 now = cfs_rq_clock_task(group_cfs_rq(se));
2823
0c1dc6b2 2824 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
36ee28e4 2825 cfs_rq->curr == se))
2dac754e
PT
2826 return;
2827
2828 contrib_delta = __update_entity_load_avg_contrib(se);
36ee28e4 2829 utilization_delta = __update_entity_utilization_avg_contrib(se);
9ee474f5
PT
2830
2831 if (!update_cfs_rq)
2832 return;
2833
36ee28e4 2834 if (se->on_rq) {
2dac754e 2835 cfs_rq->runnable_load_avg += contrib_delta;
36ee28e4
VG
2836 cfs_rq->utilization_load_avg += utilization_delta;
2837 } else {
9ee474f5 2838 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
36ee28e4 2839 }
9ee474f5
PT
2840}
2841
2842/*
2843 * Decay the load contributed by all blocked children and account this so that
2844 * their contribution may appropriately discounted when they wake up.
2845 */
aff3e498 2846static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2847{
f1b17280 2848 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2849 u64 decays;
2850
2851 decays = now - cfs_rq->last_decay;
aff3e498 2852 if (!decays && !force_update)
9ee474f5
PT
2853 return;
2854
2509940f
AS
2855 if (atomic_long_read(&cfs_rq->removed_load)) {
2856 unsigned long removed_load;
2857 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2858 subtract_blocked_load_contrib(cfs_rq, removed_load);
2859 }
9ee474f5 2860
aff3e498
PT
2861 if (decays) {
2862 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2863 decays);
2864 atomic64_add(decays, &cfs_rq->decay_counter);
2865 cfs_rq->last_decay = now;
2866 }
c566e8e9
PT
2867
2868 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2869}
18bf2805 2870
2dac754e
PT
2871/* Add the load generated by se into cfs_rq's child load-average */
2872static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2873 struct sched_entity *se,
2874 int wakeup)
2dac754e 2875{
aff3e498
PT
2876 /*
2877 * We track migrations using entity decay_count <= 0, on a wake-up
2878 * migration we use a negative decay count to track the remote decays
2879 * accumulated while sleeping.
a75cdaa9
AS
2880 *
2881 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2882 * are seen by enqueue_entity_load_avg() as a migration with an already
2883 * constructed load_avg_contrib.
aff3e498
PT
2884 */
2885 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2886 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2887 if (se->avg.decay_count) {
2888 /*
2889 * In a wake-up migration we have to approximate the
2890 * time sleeping. This is because we can't synchronize
2891 * clock_task between the two cpus, and it is not
2892 * guaranteed to be read-safe. Instead, we can
2893 * approximate this using our carried decays, which are
2894 * explicitly atomically readable.
2895 */
2896 se->avg.last_runnable_update -= (-se->avg.decay_count)
2897 << 20;
2898 update_entity_load_avg(se, 0);
2899 /* Indicate that we're now synchronized and on-rq */
2900 se->avg.decay_count = 0;
2901 }
9ee474f5
PT
2902 wakeup = 0;
2903 } else {
9390675a 2904 __synchronize_entity_decay(se);
9ee474f5
PT
2905 }
2906
aff3e498
PT
2907 /* migrated tasks did not contribute to our blocked load */
2908 if (wakeup) {
9ee474f5 2909 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2910 update_entity_load_avg(se, 0);
2911 }
9ee474f5 2912
2dac754e 2913 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
36ee28e4 2914 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
aff3e498
PT
2915 /* we force update consideration on load-balancer moves */
2916 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2917}
2918
9ee474f5
PT
2919/*
2920 * Remove se's load from this cfs_rq child load-average, if the entity is
2921 * transitioning to a blocked state we track its projected decay using
2922 * blocked_load_avg.
2923 */
2dac754e 2924static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2925 struct sched_entity *se,
2926 int sleep)
2dac754e 2927{
9ee474f5 2928 update_entity_load_avg(se, 1);
aff3e498
PT
2929 /* we force update consideration on load-balancer moves */
2930 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2931
2dac754e 2932 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
36ee28e4 2933 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
9ee474f5
PT
2934 if (sleep) {
2935 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2936 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2937 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2938}
642dbc39
VG
2939
2940/*
2941 * Update the rq's load with the elapsed running time before entering
2942 * idle. if the last scheduled task is not a CFS task, idle_enter will
2943 * be the only way to update the runnable statistic.
2944 */
2945void idle_enter_fair(struct rq *this_rq)
2946{
2947 update_rq_runnable_avg(this_rq, 1);
2948}
2949
2950/*
2951 * Update the rq's load with the elapsed idle time before a task is
2952 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2953 * be the only way to update the runnable statistic.
2954 */
2955void idle_exit_fair(struct rq *this_rq)
2956{
2957 update_rq_runnable_avg(this_rq, 0);
2958}
2959
6e83125c
PZ
2960static int idle_balance(struct rq *this_rq);
2961
38033c37
PZ
2962#else /* CONFIG_SMP */
2963
9ee474f5
PT
2964static inline void update_entity_load_avg(struct sched_entity *se,
2965 int update_cfs_rq) {}
18bf2805 2966static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2967static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2968 struct sched_entity *se,
2969 int wakeup) {}
2dac754e 2970static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2971 struct sched_entity *se,
2972 int sleep) {}
aff3e498
PT
2973static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2974 int force_update) {}
6e83125c
PZ
2975
2976static inline int idle_balance(struct rq *rq)
2977{
2978 return 0;
2979}
2980
38033c37 2981#endif /* CONFIG_SMP */
9d85f21c 2982
2396af69 2983static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2984{
bf0f6f24 2985#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2986 struct task_struct *tsk = NULL;
2987
2988 if (entity_is_task(se))
2989 tsk = task_of(se);
2990
41acab88 2991 if (se->statistics.sleep_start) {
78becc27 2992 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2993
2994 if ((s64)delta < 0)
2995 delta = 0;
2996
41acab88
LDM
2997 if (unlikely(delta > se->statistics.sleep_max))
2998 se->statistics.sleep_max = delta;
bf0f6f24 2999
8c79a045 3000 se->statistics.sleep_start = 0;
41acab88 3001 se->statistics.sum_sleep_runtime += delta;
9745512c 3002
768d0c27 3003 if (tsk) {
e414314c 3004 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3005 trace_sched_stat_sleep(tsk, delta);
3006 }
bf0f6f24 3007 }
41acab88 3008 if (se->statistics.block_start) {
78becc27 3009 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3010
3011 if ((s64)delta < 0)
3012 delta = 0;
3013
41acab88
LDM
3014 if (unlikely(delta > se->statistics.block_max))
3015 se->statistics.block_max = delta;
bf0f6f24 3016
8c79a045 3017 se->statistics.block_start = 0;
41acab88 3018 se->statistics.sum_sleep_runtime += delta;
30084fbd 3019
e414314c 3020 if (tsk) {
8f0dfc34 3021 if (tsk->in_iowait) {
41acab88
LDM
3022 se->statistics.iowait_sum += delta;
3023 se->statistics.iowait_count++;
768d0c27 3024 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3025 }
3026
b781a602
AV
3027 trace_sched_stat_blocked(tsk, delta);
3028
e414314c
PZ
3029 /*
3030 * Blocking time is in units of nanosecs, so shift by
3031 * 20 to get a milliseconds-range estimation of the
3032 * amount of time that the task spent sleeping:
3033 */
3034 if (unlikely(prof_on == SLEEP_PROFILING)) {
3035 profile_hits(SLEEP_PROFILING,
3036 (void *)get_wchan(tsk),
3037 delta >> 20);
3038 }
3039 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3040 }
bf0f6f24
IM
3041 }
3042#endif
3043}
3044
ddc97297
PZ
3045static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3046{
3047#ifdef CONFIG_SCHED_DEBUG
3048 s64 d = se->vruntime - cfs_rq->min_vruntime;
3049
3050 if (d < 0)
3051 d = -d;
3052
3053 if (d > 3*sysctl_sched_latency)
3054 schedstat_inc(cfs_rq, nr_spread_over);
3055#endif
3056}
3057
aeb73b04
PZ
3058static void
3059place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3060{
1af5f730 3061 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3062
2cb8600e
PZ
3063 /*
3064 * The 'current' period is already promised to the current tasks,
3065 * however the extra weight of the new task will slow them down a
3066 * little, place the new task so that it fits in the slot that
3067 * stays open at the end.
3068 */
94dfb5e7 3069 if (initial && sched_feat(START_DEBIT))
f9c0b095 3070 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3071
a2e7a7eb 3072 /* sleeps up to a single latency don't count. */
5ca9880c 3073 if (!initial) {
a2e7a7eb 3074 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3075
a2e7a7eb
MG
3076 /*
3077 * Halve their sleep time's effect, to allow
3078 * for a gentler effect of sleepers:
3079 */
3080 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3081 thresh >>= 1;
51e0304c 3082
a2e7a7eb 3083 vruntime -= thresh;
aeb73b04
PZ
3084 }
3085
b5d9d734 3086 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3087 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3088}
3089
d3d9dc33
PT
3090static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3091
bf0f6f24 3092static void
88ec22d3 3093enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3094{
88ec22d3
PZ
3095 /*
3096 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3097 * through calling update_curr().
88ec22d3 3098 */
371fd7e7 3099 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3100 se->vruntime += cfs_rq->min_vruntime;
3101
bf0f6f24 3102 /*
a2a2d680 3103 * Update run-time statistics of the 'current'.
bf0f6f24 3104 */
b7cc0896 3105 update_curr(cfs_rq);
f269ae04 3106 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3107 account_entity_enqueue(cfs_rq, se);
3108 update_cfs_shares(cfs_rq);
bf0f6f24 3109
88ec22d3 3110 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3111 place_entity(cfs_rq, se, 0);
2396af69 3112 enqueue_sleeper(cfs_rq, se);
e9acbff6 3113 }
bf0f6f24 3114
d2417e5a 3115 update_stats_enqueue(cfs_rq, se);
ddc97297 3116 check_spread(cfs_rq, se);
83b699ed
SV
3117 if (se != cfs_rq->curr)
3118 __enqueue_entity(cfs_rq, se);
2069dd75 3119 se->on_rq = 1;
3d4b47b4 3120
d3d9dc33 3121 if (cfs_rq->nr_running == 1) {
3d4b47b4 3122 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3123 check_enqueue_throttle(cfs_rq);
3124 }
bf0f6f24
IM
3125}
3126
2c13c919 3127static void __clear_buddies_last(struct sched_entity *se)
2002c695 3128{
2c13c919
RR
3129 for_each_sched_entity(se) {
3130 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3131 if (cfs_rq->last != se)
2c13c919 3132 break;
f1044799
PZ
3133
3134 cfs_rq->last = NULL;
2c13c919
RR
3135 }
3136}
2002c695 3137
2c13c919
RR
3138static void __clear_buddies_next(struct sched_entity *se)
3139{
3140 for_each_sched_entity(se) {
3141 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3142 if (cfs_rq->next != se)
2c13c919 3143 break;
f1044799
PZ
3144
3145 cfs_rq->next = NULL;
2c13c919 3146 }
2002c695
PZ
3147}
3148
ac53db59
RR
3149static void __clear_buddies_skip(struct sched_entity *se)
3150{
3151 for_each_sched_entity(se) {
3152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3153 if (cfs_rq->skip != se)
ac53db59 3154 break;
f1044799
PZ
3155
3156 cfs_rq->skip = NULL;
ac53db59
RR
3157 }
3158}
3159
a571bbea
PZ
3160static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3161{
2c13c919
RR
3162 if (cfs_rq->last == se)
3163 __clear_buddies_last(se);
3164
3165 if (cfs_rq->next == se)
3166 __clear_buddies_next(se);
ac53db59
RR
3167
3168 if (cfs_rq->skip == se)
3169 __clear_buddies_skip(se);
a571bbea
PZ
3170}
3171
6c16a6dc 3172static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3173
bf0f6f24 3174static void
371fd7e7 3175dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3176{
a2a2d680
DA
3177 /*
3178 * Update run-time statistics of the 'current'.
3179 */
3180 update_curr(cfs_rq);
17bc14b7 3181 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3182
19b6a2e3 3183 update_stats_dequeue(cfs_rq, se);
371fd7e7 3184 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3185#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3186 if (entity_is_task(se)) {
3187 struct task_struct *tsk = task_of(se);
3188
3189 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3190 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3191 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3192 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3193 }
db36cc7d 3194#endif
67e9fb2a
PZ
3195 }
3196
2002c695 3197 clear_buddies(cfs_rq, se);
4793241b 3198
83b699ed 3199 if (se != cfs_rq->curr)
30cfdcfc 3200 __dequeue_entity(cfs_rq, se);
17bc14b7 3201 se->on_rq = 0;
30cfdcfc 3202 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3203
3204 /*
3205 * Normalize the entity after updating the min_vruntime because the
3206 * update can refer to the ->curr item and we need to reflect this
3207 * movement in our normalized position.
3208 */
371fd7e7 3209 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3210 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3211
d8b4986d
PT
3212 /* return excess runtime on last dequeue */
3213 return_cfs_rq_runtime(cfs_rq);
3214
1e876231 3215 update_min_vruntime(cfs_rq);
17bc14b7 3216 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3217}
3218
3219/*
3220 * Preempt the current task with a newly woken task if needed:
3221 */
7c92e54f 3222static void
2e09bf55 3223check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3224{
11697830 3225 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3226 struct sched_entity *se;
3227 s64 delta;
11697830 3228
6d0f0ebd 3229 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3230 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3231 if (delta_exec > ideal_runtime) {
8875125e 3232 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3233 /*
3234 * The current task ran long enough, ensure it doesn't get
3235 * re-elected due to buddy favours.
3236 */
3237 clear_buddies(cfs_rq, curr);
f685ceac
MG
3238 return;
3239 }
3240
3241 /*
3242 * Ensure that a task that missed wakeup preemption by a
3243 * narrow margin doesn't have to wait for a full slice.
3244 * This also mitigates buddy induced latencies under load.
3245 */
f685ceac
MG
3246 if (delta_exec < sysctl_sched_min_granularity)
3247 return;
3248
f4cfb33e
WX
3249 se = __pick_first_entity(cfs_rq);
3250 delta = curr->vruntime - se->vruntime;
f685ceac 3251
f4cfb33e
WX
3252 if (delta < 0)
3253 return;
d7d82944 3254
f4cfb33e 3255 if (delta > ideal_runtime)
8875125e 3256 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3257}
3258
83b699ed 3259static void
8494f412 3260set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3261{
83b699ed
SV
3262 /* 'current' is not kept within the tree. */
3263 if (se->on_rq) {
3264 /*
3265 * Any task has to be enqueued before it get to execute on
3266 * a CPU. So account for the time it spent waiting on the
3267 * runqueue.
3268 */
3269 update_stats_wait_end(cfs_rq, se);
3270 __dequeue_entity(cfs_rq, se);
36ee28e4 3271 update_entity_load_avg(se, 1);
83b699ed
SV
3272 }
3273
79303e9e 3274 update_stats_curr_start(cfs_rq, se);
429d43bc 3275 cfs_rq->curr = se;
eba1ed4b
IM
3276#ifdef CONFIG_SCHEDSTATS
3277 /*
3278 * Track our maximum slice length, if the CPU's load is at
3279 * least twice that of our own weight (i.e. dont track it
3280 * when there are only lesser-weight tasks around):
3281 */
495eca49 3282 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3283 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3284 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3285 }
3286#endif
4a55b450 3287 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3288}
3289
3f3a4904
PZ
3290static int
3291wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3292
ac53db59
RR
3293/*
3294 * Pick the next process, keeping these things in mind, in this order:
3295 * 1) keep things fair between processes/task groups
3296 * 2) pick the "next" process, since someone really wants that to run
3297 * 3) pick the "last" process, for cache locality
3298 * 4) do not run the "skip" process, if something else is available
3299 */
678d5718
PZ
3300static struct sched_entity *
3301pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3302{
678d5718
PZ
3303 struct sched_entity *left = __pick_first_entity(cfs_rq);
3304 struct sched_entity *se;
3305
3306 /*
3307 * If curr is set we have to see if its left of the leftmost entity
3308 * still in the tree, provided there was anything in the tree at all.
3309 */
3310 if (!left || (curr && entity_before(curr, left)))
3311 left = curr;
3312
3313 se = left; /* ideally we run the leftmost entity */
f4b6755f 3314
ac53db59
RR
3315 /*
3316 * Avoid running the skip buddy, if running something else can
3317 * be done without getting too unfair.
3318 */
3319 if (cfs_rq->skip == se) {
678d5718
PZ
3320 struct sched_entity *second;
3321
3322 if (se == curr) {
3323 second = __pick_first_entity(cfs_rq);
3324 } else {
3325 second = __pick_next_entity(se);
3326 if (!second || (curr && entity_before(curr, second)))
3327 second = curr;
3328 }
3329
ac53db59
RR
3330 if (second && wakeup_preempt_entity(second, left) < 1)
3331 se = second;
3332 }
aa2ac252 3333
f685ceac
MG
3334 /*
3335 * Prefer last buddy, try to return the CPU to a preempted task.
3336 */
3337 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3338 se = cfs_rq->last;
3339
ac53db59
RR
3340 /*
3341 * Someone really wants this to run. If it's not unfair, run it.
3342 */
3343 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3344 se = cfs_rq->next;
3345
f685ceac 3346 clear_buddies(cfs_rq, se);
4793241b
PZ
3347
3348 return se;
aa2ac252
PZ
3349}
3350
678d5718 3351static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3352
ab6cde26 3353static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3354{
3355 /*
3356 * If still on the runqueue then deactivate_task()
3357 * was not called and update_curr() has to be done:
3358 */
3359 if (prev->on_rq)
b7cc0896 3360 update_curr(cfs_rq);
bf0f6f24 3361
d3d9dc33
PT
3362 /* throttle cfs_rqs exceeding runtime */
3363 check_cfs_rq_runtime(cfs_rq);
3364
ddc97297 3365 check_spread(cfs_rq, prev);
30cfdcfc 3366 if (prev->on_rq) {
5870db5b 3367 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3368 /* Put 'current' back into the tree. */
3369 __enqueue_entity(cfs_rq, prev);
9d85f21c 3370 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3371 update_entity_load_avg(prev, 1);
30cfdcfc 3372 }
429d43bc 3373 cfs_rq->curr = NULL;
bf0f6f24
IM
3374}
3375
8f4d37ec
PZ
3376static void
3377entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3378{
bf0f6f24 3379 /*
30cfdcfc 3380 * Update run-time statistics of the 'current'.
bf0f6f24 3381 */
30cfdcfc 3382 update_curr(cfs_rq);
bf0f6f24 3383
9d85f21c
PT
3384 /*
3385 * Ensure that runnable average is periodically updated.
3386 */
9ee474f5 3387 update_entity_load_avg(curr, 1);
aff3e498 3388 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3389 update_cfs_shares(cfs_rq);
9d85f21c 3390
8f4d37ec
PZ
3391#ifdef CONFIG_SCHED_HRTICK
3392 /*
3393 * queued ticks are scheduled to match the slice, so don't bother
3394 * validating it and just reschedule.
3395 */
983ed7a6 3396 if (queued) {
8875125e 3397 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3398 return;
3399 }
8f4d37ec
PZ
3400 /*
3401 * don't let the period tick interfere with the hrtick preemption
3402 */
3403 if (!sched_feat(DOUBLE_TICK) &&
3404 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3405 return;
3406#endif
3407
2c2efaed 3408 if (cfs_rq->nr_running > 1)
2e09bf55 3409 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3410}
3411
ab84d31e
PT
3412
3413/**************************************************
3414 * CFS bandwidth control machinery
3415 */
3416
3417#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3418
3419#ifdef HAVE_JUMP_LABEL
c5905afb 3420static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3421
3422static inline bool cfs_bandwidth_used(void)
3423{
c5905afb 3424 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3425}
3426
1ee14e6c 3427void cfs_bandwidth_usage_inc(void)
029632fb 3428{
1ee14e6c
BS
3429 static_key_slow_inc(&__cfs_bandwidth_used);
3430}
3431
3432void cfs_bandwidth_usage_dec(void)
3433{
3434 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3435}
3436#else /* HAVE_JUMP_LABEL */
3437static bool cfs_bandwidth_used(void)
3438{
3439 return true;
3440}
3441
1ee14e6c
BS
3442void cfs_bandwidth_usage_inc(void) {}
3443void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3444#endif /* HAVE_JUMP_LABEL */
3445
ab84d31e
PT
3446/*
3447 * default period for cfs group bandwidth.
3448 * default: 0.1s, units: nanoseconds
3449 */
3450static inline u64 default_cfs_period(void)
3451{
3452 return 100000000ULL;
3453}
ec12cb7f
PT
3454
3455static inline u64 sched_cfs_bandwidth_slice(void)
3456{
3457 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3458}
3459
a9cf55b2
PT
3460/*
3461 * Replenish runtime according to assigned quota and update expiration time.
3462 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3463 * additional synchronization around rq->lock.
3464 *
3465 * requires cfs_b->lock
3466 */
029632fb 3467void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3468{
3469 u64 now;
3470
3471 if (cfs_b->quota == RUNTIME_INF)
3472 return;
3473
3474 now = sched_clock_cpu(smp_processor_id());
3475 cfs_b->runtime = cfs_b->quota;
3476 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3477}
3478
029632fb
PZ
3479static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3480{
3481 return &tg->cfs_bandwidth;
3482}
3483
f1b17280
PT
3484/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3485static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3486{
3487 if (unlikely(cfs_rq->throttle_count))
3488 return cfs_rq->throttled_clock_task;
3489
78becc27 3490 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3491}
3492
85dac906
PT
3493/* returns 0 on failure to allocate runtime */
3494static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3495{
3496 struct task_group *tg = cfs_rq->tg;
3497 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3498 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3499
3500 /* note: this is a positive sum as runtime_remaining <= 0 */
3501 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3502
3503 raw_spin_lock(&cfs_b->lock);
3504 if (cfs_b->quota == RUNTIME_INF)
3505 amount = min_amount;
58088ad0 3506 else {
77a4d1a1 3507 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3508
3509 if (cfs_b->runtime > 0) {
3510 amount = min(cfs_b->runtime, min_amount);
3511 cfs_b->runtime -= amount;
3512 cfs_b->idle = 0;
3513 }
ec12cb7f 3514 }
a9cf55b2 3515 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3516 raw_spin_unlock(&cfs_b->lock);
3517
3518 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3519 /*
3520 * we may have advanced our local expiration to account for allowed
3521 * spread between our sched_clock and the one on which runtime was
3522 * issued.
3523 */
3524 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3525 cfs_rq->runtime_expires = expires;
85dac906
PT
3526
3527 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3528}
3529
a9cf55b2
PT
3530/*
3531 * Note: This depends on the synchronization provided by sched_clock and the
3532 * fact that rq->clock snapshots this value.
3533 */
3534static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3535{
a9cf55b2 3536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3537
3538 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3539 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3540 return;
3541
a9cf55b2
PT
3542 if (cfs_rq->runtime_remaining < 0)
3543 return;
3544
3545 /*
3546 * If the local deadline has passed we have to consider the
3547 * possibility that our sched_clock is 'fast' and the global deadline
3548 * has not truly expired.
3549 *
3550 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3551 * whether the global deadline has advanced. It is valid to compare
3552 * cfs_b->runtime_expires without any locks since we only care about
3553 * exact equality, so a partial write will still work.
a9cf55b2
PT
3554 */
3555
51f2176d 3556 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3557 /* extend local deadline, drift is bounded above by 2 ticks */
3558 cfs_rq->runtime_expires += TICK_NSEC;
3559 } else {
3560 /* global deadline is ahead, expiration has passed */
3561 cfs_rq->runtime_remaining = 0;
3562 }
3563}
3564
9dbdb155 3565static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3566{
3567 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3568 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3569 expire_cfs_rq_runtime(cfs_rq);
3570
3571 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3572 return;
3573
85dac906
PT
3574 /*
3575 * if we're unable to extend our runtime we resched so that the active
3576 * hierarchy can be throttled
3577 */
3578 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3579 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3580}
3581
6c16a6dc 3582static __always_inline
9dbdb155 3583void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3584{
56f570e5 3585 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3586 return;
3587
3588 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3589}
3590
85dac906
PT
3591static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3592{
56f570e5 3593 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3594}
3595
64660c86
PT
3596/* check whether cfs_rq, or any parent, is throttled */
3597static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3598{
56f570e5 3599 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3600}
3601
3602/*
3603 * Ensure that neither of the group entities corresponding to src_cpu or
3604 * dest_cpu are members of a throttled hierarchy when performing group
3605 * load-balance operations.
3606 */
3607static inline int throttled_lb_pair(struct task_group *tg,
3608 int src_cpu, int dest_cpu)
3609{
3610 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3611
3612 src_cfs_rq = tg->cfs_rq[src_cpu];
3613 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3614
3615 return throttled_hierarchy(src_cfs_rq) ||
3616 throttled_hierarchy(dest_cfs_rq);
3617}
3618
3619/* updated child weight may affect parent so we have to do this bottom up */
3620static int tg_unthrottle_up(struct task_group *tg, void *data)
3621{
3622 struct rq *rq = data;
3623 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3624
3625 cfs_rq->throttle_count--;
3626#ifdef CONFIG_SMP
3627 if (!cfs_rq->throttle_count) {
f1b17280 3628 /* adjust cfs_rq_clock_task() */
78becc27 3629 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3630 cfs_rq->throttled_clock_task;
64660c86
PT
3631 }
3632#endif
3633
3634 return 0;
3635}
3636
3637static int tg_throttle_down(struct task_group *tg, void *data)
3638{
3639 struct rq *rq = data;
3640 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3641
82958366
PT
3642 /* group is entering throttled state, stop time */
3643 if (!cfs_rq->throttle_count)
78becc27 3644 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3645 cfs_rq->throttle_count++;
3646
3647 return 0;
3648}
3649
d3d9dc33 3650static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3651{
3652 struct rq *rq = rq_of(cfs_rq);
3653 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3654 struct sched_entity *se;
3655 long task_delta, dequeue = 1;
77a4d1a1 3656 bool empty;
85dac906
PT
3657
3658 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3659
f1b17280 3660 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3661 rcu_read_lock();
3662 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3663 rcu_read_unlock();
85dac906
PT
3664
3665 task_delta = cfs_rq->h_nr_running;
3666 for_each_sched_entity(se) {
3667 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3668 /* throttled entity or throttle-on-deactivate */
3669 if (!se->on_rq)
3670 break;
3671
3672 if (dequeue)
3673 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3674 qcfs_rq->h_nr_running -= task_delta;
3675
3676 if (qcfs_rq->load.weight)
3677 dequeue = 0;
3678 }
3679
3680 if (!se)
72465447 3681 sub_nr_running(rq, task_delta);
85dac906
PT
3682
3683 cfs_rq->throttled = 1;
78becc27 3684 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3685 raw_spin_lock(&cfs_b->lock);
77a4d1a1
PZ
3686 empty = list_empty(&cfs_rq->throttled_list);
3687
c06f04c7
BS
3688 /*
3689 * Add to the _head_ of the list, so that an already-started
3690 * distribute_cfs_runtime will not see us
3691 */
3692 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3693
3694 /*
3695 * If we're the first throttled task, make sure the bandwidth
3696 * timer is running.
3697 */
3698 if (empty)
3699 start_cfs_bandwidth(cfs_b);
3700
85dac906
PT
3701 raw_spin_unlock(&cfs_b->lock);
3702}
3703
029632fb 3704void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3705{
3706 struct rq *rq = rq_of(cfs_rq);
3707 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3708 struct sched_entity *se;
3709 int enqueue = 1;
3710 long task_delta;
3711
22b958d8 3712 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3713
3714 cfs_rq->throttled = 0;
1a55af2e
FW
3715
3716 update_rq_clock(rq);
3717
671fd9da 3718 raw_spin_lock(&cfs_b->lock);
78becc27 3719 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3720 list_del_rcu(&cfs_rq->throttled_list);
3721 raw_spin_unlock(&cfs_b->lock);
3722
64660c86
PT
3723 /* update hierarchical throttle state */
3724 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3725
671fd9da
PT
3726 if (!cfs_rq->load.weight)
3727 return;
3728
3729 task_delta = cfs_rq->h_nr_running;
3730 for_each_sched_entity(se) {
3731 if (se->on_rq)
3732 enqueue = 0;
3733
3734 cfs_rq = cfs_rq_of(se);
3735 if (enqueue)
3736 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3737 cfs_rq->h_nr_running += task_delta;
3738
3739 if (cfs_rq_throttled(cfs_rq))
3740 break;
3741 }
3742
3743 if (!se)
72465447 3744 add_nr_running(rq, task_delta);
671fd9da
PT
3745
3746 /* determine whether we need to wake up potentially idle cpu */
3747 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3748 resched_curr(rq);
671fd9da
PT
3749}
3750
3751static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3752 u64 remaining, u64 expires)
3753{
3754 struct cfs_rq *cfs_rq;
c06f04c7
BS
3755 u64 runtime;
3756 u64 starting_runtime = remaining;
671fd9da
PT
3757
3758 rcu_read_lock();
3759 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3760 throttled_list) {
3761 struct rq *rq = rq_of(cfs_rq);
3762
3763 raw_spin_lock(&rq->lock);
3764 if (!cfs_rq_throttled(cfs_rq))
3765 goto next;
3766
3767 runtime = -cfs_rq->runtime_remaining + 1;
3768 if (runtime > remaining)
3769 runtime = remaining;
3770 remaining -= runtime;
3771
3772 cfs_rq->runtime_remaining += runtime;
3773 cfs_rq->runtime_expires = expires;
3774
3775 /* we check whether we're throttled above */
3776 if (cfs_rq->runtime_remaining > 0)
3777 unthrottle_cfs_rq(cfs_rq);
3778
3779next:
3780 raw_spin_unlock(&rq->lock);
3781
3782 if (!remaining)
3783 break;
3784 }
3785 rcu_read_unlock();
3786
c06f04c7 3787 return starting_runtime - remaining;
671fd9da
PT
3788}
3789
58088ad0
PT
3790/*
3791 * Responsible for refilling a task_group's bandwidth and unthrottling its
3792 * cfs_rqs as appropriate. If there has been no activity within the last
3793 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3794 * used to track this state.
3795 */
3796static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3797{
671fd9da 3798 u64 runtime, runtime_expires;
51f2176d 3799 int throttled;
58088ad0 3800
58088ad0
PT
3801 /* no need to continue the timer with no bandwidth constraint */
3802 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3803 goto out_deactivate;
58088ad0 3804
671fd9da 3805 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3806 cfs_b->nr_periods += overrun;
671fd9da 3807
51f2176d
BS
3808 /*
3809 * idle depends on !throttled (for the case of a large deficit), and if
3810 * we're going inactive then everything else can be deferred
3811 */
3812 if (cfs_b->idle && !throttled)
3813 goto out_deactivate;
a9cf55b2
PT
3814
3815 __refill_cfs_bandwidth_runtime(cfs_b);
3816
671fd9da
PT
3817 if (!throttled) {
3818 /* mark as potentially idle for the upcoming period */
3819 cfs_b->idle = 1;
51f2176d 3820 return 0;
671fd9da
PT
3821 }
3822
e8da1b18
NR
3823 /* account preceding periods in which throttling occurred */
3824 cfs_b->nr_throttled += overrun;
3825
671fd9da 3826 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3827
3828 /*
c06f04c7
BS
3829 * This check is repeated as we are holding onto the new bandwidth while
3830 * we unthrottle. This can potentially race with an unthrottled group
3831 * trying to acquire new bandwidth from the global pool. This can result
3832 * in us over-using our runtime if it is all used during this loop, but
3833 * only by limited amounts in that extreme case.
671fd9da 3834 */
c06f04c7
BS
3835 while (throttled && cfs_b->runtime > 0) {
3836 runtime = cfs_b->runtime;
671fd9da
PT
3837 raw_spin_unlock(&cfs_b->lock);
3838 /* we can't nest cfs_b->lock while distributing bandwidth */
3839 runtime = distribute_cfs_runtime(cfs_b, runtime,
3840 runtime_expires);
3841 raw_spin_lock(&cfs_b->lock);
3842
3843 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3844
3845 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3846 }
58088ad0 3847
671fd9da
PT
3848 /*
3849 * While we are ensured activity in the period following an
3850 * unthrottle, this also covers the case in which the new bandwidth is
3851 * insufficient to cover the existing bandwidth deficit. (Forcing the
3852 * timer to remain active while there are any throttled entities.)
3853 */
3854 cfs_b->idle = 0;
58088ad0 3855
51f2176d
BS
3856 return 0;
3857
3858out_deactivate:
51f2176d 3859 return 1;
58088ad0 3860}
d3d9dc33 3861
d8b4986d
PT
3862/* a cfs_rq won't donate quota below this amount */
3863static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3864/* minimum remaining period time to redistribute slack quota */
3865static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3866/* how long we wait to gather additional slack before distributing */
3867static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3868
db06e78c
BS
3869/*
3870 * Are we near the end of the current quota period?
3871 *
3872 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3873 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3874 * migrate_hrtimers, base is never cleared, so we are fine.
3875 */
d8b4986d
PT
3876static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3877{
3878 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3879 u64 remaining;
3880
3881 /* if the call-back is running a quota refresh is already occurring */
3882 if (hrtimer_callback_running(refresh_timer))
3883 return 1;
3884
3885 /* is a quota refresh about to occur? */
3886 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3887 if (remaining < min_expire)
3888 return 1;
3889
3890 return 0;
3891}
3892
3893static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3894{
3895 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3896
3897 /* if there's a quota refresh soon don't bother with slack */
3898 if (runtime_refresh_within(cfs_b, min_left))
3899 return;
3900
4cfafd30
PZ
3901 hrtimer_start(&cfs_b->slack_timer,
3902 ns_to_ktime(cfs_bandwidth_slack_period),
3903 HRTIMER_MODE_REL);
d8b4986d
PT
3904}
3905
3906/* we know any runtime found here is valid as update_curr() precedes return */
3907static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3908{
3909 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3910 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3911
3912 if (slack_runtime <= 0)
3913 return;
3914
3915 raw_spin_lock(&cfs_b->lock);
3916 if (cfs_b->quota != RUNTIME_INF &&
3917 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3918 cfs_b->runtime += slack_runtime;
3919
3920 /* we are under rq->lock, defer unthrottling using a timer */
3921 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3922 !list_empty(&cfs_b->throttled_cfs_rq))
3923 start_cfs_slack_bandwidth(cfs_b);
3924 }
3925 raw_spin_unlock(&cfs_b->lock);
3926
3927 /* even if it's not valid for return we don't want to try again */
3928 cfs_rq->runtime_remaining -= slack_runtime;
3929}
3930
3931static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3932{
56f570e5
PT
3933 if (!cfs_bandwidth_used())
3934 return;
3935
fccfdc6f 3936 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3937 return;
3938
3939 __return_cfs_rq_runtime(cfs_rq);
3940}
3941
3942/*
3943 * This is done with a timer (instead of inline with bandwidth return) since
3944 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3945 */
3946static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3947{
3948 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3949 u64 expires;
3950
3951 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3952 raw_spin_lock(&cfs_b->lock);
3953 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3954 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3955 return;
db06e78c 3956 }
d8b4986d 3957
c06f04c7 3958 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3959 runtime = cfs_b->runtime;
c06f04c7 3960
d8b4986d
PT
3961 expires = cfs_b->runtime_expires;
3962 raw_spin_unlock(&cfs_b->lock);
3963
3964 if (!runtime)
3965 return;
3966
3967 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3968
3969 raw_spin_lock(&cfs_b->lock);
3970 if (expires == cfs_b->runtime_expires)
c06f04c7 3971 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3972 raw_spin_unlock(&cfs_b->lock);
3973}
3974
d3d9dc33
PT
3975/*
3976 * When a group wakes up we want to make sure that its quota is not already
3977 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3978 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3979 */
3980static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3981{
56f570e5
PT
3982 if (!cfs_bandwidth_used())
3983 return;
3984
d3d9dc33
PT
3985 /* an active group must be handled by the update_curr()->put() path */
3986 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3987 return;
3988
3989 /* ensure the group is not already throttled */
3990 if (cfs_rq_throttled(cfs_rq))
3991 return;
3992
3993 /* update runtime allocation */
3994 account_cfs_rq_runtime(cfs_rq, 0);
3995 if (cfs_rq->runtime_remaining <= 0)
3996 throttle_cfs_rq(cfs_rq);
3997}
3998
3999/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4000static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4001{
56f570e5 4002 if (!cfs_bandwidth_used())
678d5718 4003 return false;
56f570e5 4004
d3d9dc33 4005 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4006 return false;
d3d9dc33
PT
4007
4008 /*
4009 * it's possible for a throttled entity to be forced into a running
4010 * state (e.g. set_curr_task), in this case we're finished.
4011 */
4012 if (cfs_rq_throttled(cfs_rq))
678d5718 4013 return true;
d3d9dc33
PT
4014
4015 throttle_cfs_rq(cfs_rq);
678d5718 4016 return true;
d3d9dc33 4017}
029632fb 4018
029632fb
PZ
4019static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4020{
4021 struct cfs_bandwidth *cfs_b =
4022 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4023
029632fb
PZ
4024 do_sched_cfs_slack_timer(cfs_b);
4025
4026 return HRTIMER_NORESTART;
4027}
4028
4029static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4030{
4031 struct cfs_bandwidth *cfs_b =
4032 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4033 int overrun;
4034 int idle = 0;
4035
51f2176d 4036 raw_spin_lock(&cfs_b->lock);
029632fb 4037 for (;;) {
77a4d1a1 4038 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4039 if (!overrun)
4040 break;
4041
4042 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4043 }
4cfafd30
PZ
4044 if (idle)
4045 cfs_b->period_active = 0;
51f2176d 4046 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4047
4048 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4049}
4050
4051void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4052{
4053 raw_spin_lock_init(&cfs_b->lock);
4054 cfs_b->runtime = 0;
4055 cfs_b->quota = RUNTIME_INF;
4056 cfs_b->period = ns_to_ktime(default_cfs_period());
4057
4058 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4059 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4060 cfs_b->period_timer.function = sched_cfs_period_timer;
4061 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4062 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4063}
4064
4065static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4066{
4067 cfs_rq->runtime_enabled = 0;
4068 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4069}
4070
77a4d1a1 4071void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4072{
4cfafd30 4073 lockdep_assert_held(&cfs_b->lock);
029632fb 4074
4cfafd30
PZ
4075 if (!cfs_b->period_active) {
4076 cfs_b->period_active = 1;
4077 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4078 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4079 }
029632fb
PZ
4080}
4081
4082static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4083{
7f1a169b
TH
4084 /* init_cfs_bandwidth() was not called */
4085 if (!cfs_b->throttled_cfs_rq.next)
4086 return;
4087
029632fb
PZ
4088 hrtimer_cancel(&cfs_b->period_timer);
4089 hrtimer_cancel(&cfs_b->slack_timer);
4090}
4091
0e59bdae
KT
4092static void __maybe_unused update_runtime_enabled(struct rq *rq)
4093{
4094 struct cfs_rq *cfs_rq;
4095
4096 for_each_leaf_cfs_rq(rq, cfs_rq) {
4097 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4098
4099 raw_spin_lock(&cfs_b->lock);
4100 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4101 raw_spin_unlock(&cfs_b->lock);
4102 }
4103}
4104
38dc3348 4105static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4106{
4107 struct cfs_rq *cfs_rq;
4108
4109 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4110 if (!cfs_rq->runtime_enabled)
4111 continue;
4112
4113 /*
4114 * clock_task is not advancing so we just need to make sure
4115 * there's some valid quota amount
4116 */
51f2176d 4117 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4118 /*
4119 * Offline rq is schedulable till cpu is completely disabled
4120 * in take_cpu_down(), so we prevent new cfs throttling here.
4121 */
4122 cfs_rq->runtime_enabled = 0;
4123
029632fb
PZ
4124 if (cfs_rq_throttled(cfs_rq))
4125 unthrottle_cfs_rq(cfs_rq);
4126 }
4127}
4128
4129#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4130static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4131{
78becc27 4132 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4133}
4134
9dbdb155 4135static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4136static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4137static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4138static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4139
4140static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4141{
4142 return 0;
4143}
64660c86
PT
4144
4145static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4146{
4147 return 0;
4148}
4149
4150static inline int throttled_lb_pair(struct task_group *tg,
4151 int src_cpu, int dest_cpu)
4152{
4153 return 0;
4154}
029632fb
PZ
4155
4156void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4157
4158#ifdef CONFIG_FAIR_GROUP_SCHED
4159static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4160#endif
4161
029632fb
PZ
4162static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4163{
4164 return NULL;
4165}
4166static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4167static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4168static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4169
4170#endif /* CONFIG_CFS_BANDWIDTH */
4171
bf0f6f24
IM
4172/**************************************************
4173 * CFS operations on tasks:
4174 */
4175
8f4d37ec
PZ
4176#ifdef CONFIG_SCHED_HRTICK
4177static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4178{
8f4d37ec
PZ
4179 struct sched_entity *se = &p->se;
4180 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4181
4182 WARN_ON(task_rq(p) != rq);
4183
b39e66ea 4184 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4185 u64 slice = sched_slice(cfs_rq, se);
4186 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4187 s64 delta = slice - ran;
4188
4189 if (delta < 0) {
4190 if (rq->curr == p)
8875125e 4191 resched_curr(rq);
8f4d37ec
PZ
4192 return;
4193 }
31656519 4194 hrtick_start(rq, delta);
8f4d37ec
PZ
4195 }
4196}
a4c2f00f
PZ
4197
4198/*
4199 * called from enqueue/dequeue and updates the hrtick when the
4200 * current task is from our class and nr_running is low enough
4201 * to matter.
4202 */
4203static void hrtick_update(struct rq *rq)
4204{
4205 struct task_struct *curr = rq->curr;
4206
b39e66ea 4207 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4208 return;
4209
4210 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4211 hrtick_start_fair(rq, curr);
4212}
55e12e5e 4213#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4214static inline void
4215hrtick_start_fair(struct rq *rq, struct task_struct *p)
4216{
4217}
a4c2f00f
PZ
4218
4219static inline void hrtick_update(struct rq *rq)
4220{
4221}
8f4d37ec
PZ
4222#endif
4223
bf0f6f24
IM
4224/*
4225 * The enqueue_task method is called before nr_running is
4226 * increased. Here we update the fair scheduling stats and
4227 * then put the task into the rbtree:
4228 */
ea87bb78 4229static void
371fd7e7 4230enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4231{
4232 struct cfs_rq *cfs_rq;
62fb1851 4233 struct sched_entity *se = &p->se;
bf0f6f24
IM
4234
4235 for_each_sched_entity(se) {
62fb1851 4236 if (se->on_rq)
bf0f6f24
IM
4237 break;
4238 cfs_rq = cfs_rq_of(se);
88ec22d3 4239 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4240
4241 /*
4242 * end evaluation on encountering a throttled cfs_rq
4243 *
4244 * note: in the case of encountering a throttled cfs_rq we will
4245 * post the final h_nr_running increment below.
4246 */
4247 if (cfs_rq_throttled(cfs_rq))
4248 break;
953bfcd1 4249 cfs_rq->h_nr_running++;
85dac906 4250
88ec22d3 4251 flags = ENQUEUE_WAKEUP;
bf0f6f24 4252 }
8f4d37ec 4253
2069dd75 4254 for_each_sched_entity(se) {
0f317143 4255 cfs_rq = cfs_rq_of(se);
953bfcd1 4256 cfs_rq->h_nr_running++;
2069dd75 4257
85dac906
PT
4258 if (cfs_rq_throttled(cfs_rq))
4259 break;
4260
17bc14b7 4261 update_cfs_shares(cfs_rq);
9ee474f5 4262 update_entity_load_avg(se, 1);
2069dd75
PZ
4263 }
4264
18bf2805
BS
4265 if (!se) {
4266 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4267 add_nr_running(rq, 1);
18bf2805 4268 }
a4c2f00f 4269 hrtick_update(rq);
bf0f6f24
IM
4270}
4271
2f36825b
VP
4272static void set_next_buddy(struct sched_entity *se);
4273
bf0f6f24
IM
4274/*
4275 * The dequeue_task method is called before nr_running is
4276 * decreased. We remove the task from the rbtree and
4277 * update the fair scheduling stats:
4278 */
371fd7e7 4279static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4280{
4281 struct cfs_rq *cfs_rq;
62fb1851 4282 struct sched_entity *se = &p->se;
2f36825b 4283 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4284
4285 for_each_sched_entity(se) {
4286 cfs_rq = cfs_rq_of(se);
371fd7e7 4287 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4288
4289 /*
4290 * end evaluation on encountering a throttled cfs_rq
4291 *
4292 * note: in the case of encountering a throttled cfs_rq we will
4293 * post the final h_nr_running decrement below.
4294 */
4295 if (cfs_rq_throttled(cfs_rq))
4296 break;
953bfcd1 4297 cfs_rq->h_nr_running--;
2069dd75 4298
bf0f6f24 4299 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4300 if (cfs_rq->load.weight) {
4301 /*
4302 * Bias pick_next to pick a task from this cfs_rq, as
4303 * p is sleeping when it is within its sched_slice.
4304 */
4305 if (task_sleep && parent_entity(se))
4306 set_next_buddy(parent_entity(se));
9598c82d
PT
4307
4308 /* avoid re-evaluating load for this entity */
4309 se = parent_entity(se);
bf0f6f24 4310 break;
2f36825b 4311 }
371fd7e7 4312 flags |= DEQUEUE_SLEEP;
bf0f6f24 4313 }
8f4d37ec 4314
2069dd75 4315 for_each_sched_entity(se) {
0f317143 4316 cfs_rq = cfs_rq_of(se);
953bfcd1 4317 cfs_rq->h_nr_running--;
2069dd75 4318
85dac906
PT
4319 if (cfs_rq_throttled(cfs_rq))
4320 break;
4321
17bc14b7 4322 update_cfs_shares(cfs_rq);
9ee474f5 4323 update_entity_load_avg(se, 1);
2069dd75
PZ
4324 }
4325
18bf2805 4326 if (!se) {
72465447 4327 sub_nr_running(rq, 1);
18bf2805
BS
4328 update_rq_runnable_avg(rq, 1);
4329 }
a4c2f00f 4330 hrtick_update(rq);
bf0f6f24
IM
4331}
4332
e7693a36 4333#ifdef CONFIG_SMP
3289bdb4
PZ
4334
4335/*
4336 * per rq 'load' arrray crap; XXX kill this.
4337 */
4338
4339/*
4340 * The exact cpuload at various idx values, calculated at every tick would be
4341 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4342 *
4343 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4344 * on nth tick when cpu may be busy, then we have:
4345 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4346 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4347 *
4348 * decay_load_missed() below does efficient calculation of
4349 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4350 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4351 *
4352 * The calculation is approximated on a 128 point scale.
4353 * degrade_zero_ticks is the number of ticks after which load at any
4354 * particular idx is approximated to be zero.
4355 * degrade_factor is a precomputed table, a row for each load idx.
4356 * Each column corresponds to degradation factor for a power of two ticks,
4357 * based on 128 point scale.
4358 * Example:
4359 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4360 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4361 *
4362 * With this power of 2 load factors, we can degrade the load n times
4363 * by looking at 1 bits in n and doing as many mult/shift instead of
4364 * n mult/shifts needed by the exact degradation.
4365 */
4366#define DEGRADE_SHIFT 7
4367static const unsigned char
4368 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4369static const unsigned char
4370 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4371 {0, 0, 0, 0, 0, 0, 0, 0},
4372 {64, 32, 8, 0, 0, 0, 0, 0},
4373 {96, 72, 40, 12, 1, 0, 0},
4374 {112, 98, 75, 43, 15, 1, 0},
4375 {120, 112, 98, 76, 45, 16, 2} };
4376
4377/*
4378 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4379 * would be when CPU is idle and so we just decay the old load without
4380 * adding any new load.
4381 */
4382static unsigned long
4383decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4384{
4385 int j = 0;
4386
4387 if (!missed_updates)
4388 return load;
4389
4390 if (missed_updates >= degrade_zero_ticks[idx])
4391 return 0;
4392
4393 if (idx == 1)
4394 return load >> missed_updates;
4395
4396 while (missed_updates) {
4397 if (missed_updates % 2)
4398 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4399
4400 missed_updates >>= 1;
4401 j++;
4402 }
4403 return load;
4404}
4405
4406/*
4407 * Update rq->cpu_load[] statistics. This function is usually called every
4408 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4409 * every tick. We fix it up based on jiffies.
4410 */
4411static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4412 unsigned long pending_updates)
4413{
4414 int i, scale;
4415
4416 this_rq->nr_load_updates++;
4417
4418 /* Update our load: */
4419 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4420 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4421 unsigned long old_load, new_load;
4422
4423 /* scale is effectively 1 << i now, and >> i divides by scale */
4424
4425 old_load = this_rq->cpu_load[i];
4426 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4427 new_load = this_load;
4428 /*
4429 * Round up the averaging division if load is increasing. This
4430 * prevents us from getting stuck on 9 if the load is 10, for
4431 * example.
4432 */
4433 if (new_load > old_load)
4434 new_load += scale - 1;
4435
4436 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4437 }
4438
4439 sched_avg_update(this_rq);
4440}
4441
4442#ifdef CONFIG_NO_HZ_COMMON
4443/*
4444 * There is no sane way to deal with nohz on smp when using jiffies because the
4445 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4446 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4447 *
4448 * Therefore we cannot use the delta approach from the regular tick since that
4449 * would seriously skew the load calculation. However we'll make do for those
4450 * updates happening while idle (nohz_idle_balance) or coming out of idle
4451 * (tick_nohz_idle_exit).
4452 *
4453 * This means we might still be one tick off for nohz periods.
4454 */
4455
4456/*
4457 * Called from nohz_idle_balance() to update the load ratings before doing the
4458 * idle balance.
4459 */
4460static void update_idle_cpu_load(struct rq *this_rq)
4461{
316c1608 4462 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4463 unsigned long load = this_rq->cfs.runnable_load_avg;
4464 unsigned long pending_updates;
4465
4466 /*
4467 * bail if there's load or we're actually up-to-date.
4468 */
4469 if (load || curr_jiffies == this_rq->last_load_update_tick)
4470 return;
4471
4472 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4473 this_rq->last_load_update_tick = curr_jiffies;
4474
4475 __update_cpu_load(this_rq, load, pending_updates);
4476}
4477
4478/*
4479 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4480 */
4481void update_cpu_load_nohz(void)
4482{
4483 struct rq *this_rq = this_rq();
316c1608 4484 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4485 unsigned long pending_updates;
4486
4487 if (curr_jiffies == this_rq->last_load_update_tick)
4488 return;
4489
4490 raw_spin_lock(&this_rq->lock);
4491 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4492 if (pending_updates) {
4493 this_rq->last_load_update_tick = curr_jiffies;
4494 /*
4495 * We were idle, this means load 0, the current load might be
4496 * !0 due to remote wakeups and the sort.
4497 */
4498 __update_cpu_load(this_rq, 0, pending_updates);
4499 }
4500 raw_spin_unlock(&this_rq->lock);
4501}
4502#endif /* CONFIG_NO_HZ */
4503
4504/*
4505 * Called from scheduler_tick()
4506 */
4507void update_cpu_load_active(struct rq *this_rq)
4508{
4509 unsigned long load = this_rq->cfs.runnable_load_avg;
4510 /*
4511 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4512 */
4513 this_rq->last_load_update_tick = jiffies;
4514 __update_cpu_load(this_rq, load, 1);
4515}
4516
029632fb
PZ
4517/* Used instead of source_load when we know the type == 0 */
4518static unsigned long weighted_cpuload(const int cpu)
4519{
b92486cb 4520 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4521}
4522
4523/*
4524 * Return a low guess at the load of a migration-source cpu weighted
4525 * according to the scheduling class and "nice" value.
4526 *
4527 * We want to under-estimate the load of migration sources, to
4528 * balance conservatively.
4529 */
4530static unsigned long source_load(int cpu, int type)
4531{
4532 struct rq *rq = cpu_rq(cpu);
4533 unsigned long total = weighted_cpuload(cpu);
4534
4535 if (type == 0 || !sched_feat(LB_BIAS))
4536 return total;
4537
4538 return min(rq->cpu_load[type-1], total);
4539}
4540
4541/*
4542 * Return a high guess at the load of a migration-target cpu weighted
4543 * according to the scheduling class and "nice" value.
4544 */
4545static unsigned long target_load(int cpu, int type)
4546{
4547 struct rq *rq = cpu_rq(cpu);
4548 unsigned long total = weighted_cpuload(cpu);
4549
4550 if (type == 0 || !sched_feat(LB_BIAS))
4551 return total;
4552
4553 return max(rq->cpu_load[type-1], total);
4554}
4555
ced549fa 4556static unsigned long capacity_of(int cpu)
029632fb 4557{
ced549fa 4558 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4559}
4560
ca6d75e6
VG
4561static unsigned long capacity_orig_of(int cpu)
4562{
4563 return cpu_rq(cpu)->cpu_capacity_orig;
4564}
4565
029632fb
PZ
4566static unsigned long cpu_avg_load_per_task(int cpu)
4567{
4568 struct rq *rq = cpu_rq(cpu);
316c1608 4569 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
b92486cb 4570 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4571
4572 if (nr_running)
b92486cb 4573 return load_avg / nr_running;
029632fb
PZ
4574
4575 return 0;
4576}
4577
62470419
MW
4578static void record_wakee(struct task_struct *p)
4579{
4580 /*
4581 * Rough decay (wiping) for cost saving, don't worry
4582 * about the boundary, really active task won't care
4583 * about the loss.
4584 */
2538d960 4585 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4586 current->wakee_flips >>= 1;
62470419
MW
4587 current->wakee_flip_decay_ts = jiffies;
4588 }
4589
4590 if (current->last_wakee != p) {
4591 current->last_wakee = p;
4592 current->wakee_flips++;
4593 }
4594}
098fb9db 4595
74f8e4b2 4596static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4597{
4598 struct sched_entity *se = &p->se;
4599 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4600 u64 min_vruntime;
4601
4602#ifndef CONFIG_64BIT
4603 u64 min_vruntime_copy;
88ec22d3 4604
3fe1698b
PZ
4605 do {
4606 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4607 smp_rmb();
4608 min_vruntime = cfs_rq->min_vruntime;
4609 } while (min_vruntime != min_vruntime_copy);
4610#else
4611 min_vruntime = cfs_rq->min_vruntime;
4612#endif
88ec22d3 4613
3fe1698b 4614 se->vruntime -= min_vruntime;
62470419 4615 record_wakee(p);
88ec22d3
PZ
4616}
4617
bb3469ac 4618#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4619/*
4620 * effective_load() calculates the load change as seen from the root_task_group
4621 *
4622 * Adding load to a group doesn't make a group heavier, but can cause movement
4623 * of group shares between cpus. Assuming the shares were perfectly aligned one
4624 * can calculate the shift in shares.
cf5f0acf
PZ
4625 *
4626 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4627 * on this @cpu and results in a total addition (subtraction) of @wg to the
4628 * total group weight.
4629 *
4630 * Given a runqueue weight distribution (rw_i) we can compute a shares
4631 * distribution (s_i) using:
4632 *
4633 * s_i = rw_i / \Sum rw_j (1)
4634 *
4635 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4636 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4637 * shares distribution (s_i):
4638 *
4639 * rw_i = { 2, 4, 1, 0 }
4640 * s_i = { 2/7, 4/7, 1/7, 0 }
4641 *
4642 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4643 * task used to run on and the CPU the waker is running on), we need to
4644 * compute the effect of waking a task on either CPU and, in case of a sync
4645 * wakeup, compute the effect of the current task going to sleep.
4646 *
4647 * So for a change of @wl to the local @cpu with an overall group weight change
4648 * of @wl we can compute the new shares distribution (s'_i) using:
4649 *
4650 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4651 *
4652 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4653 * differences in waking a task to CPU 0. The additional task changes the
4654 * weight and shares distributions like:
4655 *
4656 * rw'_i = { 3, 4, 1, 0 }
4657 * s'_i = { 3/8, 4/8, 1/8, 0 }
4658 *
4659 * We can then compute the difference in effective weight by using:
4660 *
4661 * dw_i = S * (s'_i - s_i) (3)
4662 *
4663 * Where 'S' is the group weight as seen by its parent.
4664 *
4665 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4666 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4667 * 4/7) times the weight of the group.
f5bfb7d9 4668 */
2069dd75 4669static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4670{
4be9daaa 4671 struct sched_entity *se = tg->se[cpu];
f1d239f7 4672
9722c2da 4673 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4674 return wl;
4675
4be9daaa 4676 for_each_sched_entity(se) {
cf5f0acf 4677 long w, W;
4be9daaa 4678
977dda7c 4679 tg = se->my_q->tg;
bb3469ac 4680
cf5f0acf
PZ
4681 /*
4682 * W = @wg + \Sum rw_j
4683 */
4684 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4685
cf5f0acf
PZ
4686 /*
4687 * w = rw_i + @wl
4688 */
4689 w = se->my_q->load.weight + wl;
940959e9 4690
cf5f0acf
PZ
4691 /*
4692 * wl = S * s'_i; see (2)
4693 */
4694 if (W > 0 && w < W)
32a8df4e 4695 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4696 else
4697 wl = tg->shares;
940959e9 4698
cf5f0acf
PZ
4699 /*
4700 * Per the above, wl is the new se->load.weight value; since
4701 * those are clipped to [MIN_SHARES, ...) do so now. See
4702 * calc_cfs_shares().
4703 */
977dda7c
PT
4704 if (wl < MIN_SHARES)
4705 wl = MIN_SHARES;
cf5f0acf
PZ
4706
4707 /*
4708 * wl = dw_i = S * (s'_i - s_i); see (3)
4709 */
977dda7c 4710 wl -= se->load.weight;
cf5f0acf
PZ
4711
4712 /*
4713 * Recursively apply this logic to all parent groups to compute
4714 * the final effective load change on the root group. Since
4715 * only the @tg group gets extra weight, all parent groups can
4716 * only redistribute existing shares. @wl is the shift in shares
4717 * resulting from this level per the above.
4718 */
4be9daaa 4719 wg = 0;
4be9daaa 4720 }
bb3469ac 4721
4be9daaa 4722 return wl;
bb3469ac
PZ
4723}
4724#else
4be9daaa 4725
58d081b5 4726static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4727{
83378269 4728 return wl;
bb3469ac 4729}
4be9daaa 4730
bb3469ac
PZ
4731#endif
4732
62470419
MW
4733static int wake_wide(struct task_struct *p)
4734{
7d9ffa89 4735 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4736
4737 /*
4738 * Yeah, it's the switching-frequency, could means many wakee or
4739 * rapidly switch, use factor here will just help to automatically
4740 * adjust the loose-degree, so bigger node will lead to more pull.
4741 */
4742 if (p->wakee_flips > factor) {
4743 /*
4744 * wakee is somewhat hot, it needs certain amount of cpu
4745 * resource, so if waker is far more hot, prefer to leave
4746 * it alone.
4747 */
4748 if (current->wakee_flips > (factor * p->wakee_flips))
4749 return 1;
4750 }
4751
4752 return 0;
4753}
4754
c88d5910 4755static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4756{
e37b6a7b 4757 s64 this_load, load;
bd61c98f 4758 s64 this_eff_load, prev_eff_load;
c88d5910 4759 int idx, this_cpu, prev_cpu;
c88d5910 4760 struct task_group *tg;
83378269 4761 unsigned long weight;
b3137bc8 4762 int balanced;
098fb9db 4763
62470419
MW
4764 /*
4765 * If we wake multiple tasks be careful to not bounce
4766 * ourselves around too much.
4767 */
4768 if (wake_wide(p))
4769 return 0;
4770
c88d5910
PZ
4771 idx = sd->wake_idx;
4772 this_cpu = smp_processor_id();
4773 prev_cpu = task_cpu(p);
4774 load = source_load(prev_cpu, idx);
4775 this_load = target_load(this_cpu, idx);
098fb9db 4776
b3137bc8
MG
4777 /*
4778 * If sync wakeup then subtract the (maximum possible)
4779 * effect of the currently running task from the load
4780 * of the current CPU:
4781 */
83378269
PZ
4782 if (sync) {
4783 tg = task_group(current);
4784 weight = current->se.load.weight;
4785
c88d5910 4786 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4787 load += effective_load(tg, prev_cpu, 0, -weight);
4788 }
b3137bc8 4789
83378269
PZ
4790 tg = task_group(p);
4791 weight = p->se.load.weight;
b3137bc8 4792
71a29aa7
PZ
4793 /*
4794 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4795 * due to the sync cause above having dropped this_load to 0, we'll
4796 * always have an imbalance, but there's really nothing you can do
4797 * about that, so that's good too.
71a29aa7
PZ
4798 *
4799 * Otherwise check if either cpus are near enough in load to allow this
4800 * task to be woken on this_cpu.
4801 */
bd61c98f
VG
4802 this_eff_load = 100;
4803 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4804
bd61c98f
VG
4805 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4806 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4807
bd61c98f 4808 if (this_load > 0) {
e51fd5e2
PZ
4809 this_eff_load *= this_load +
4810 effective_load(tg, this_cpu, weight, weight);
4811
e51fd5e2 4812 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4813 }
e51fd5e2 4814
bd61c98f 4815 balanced = this_eff_load <= prev_eff_load;
098fb9db 4816
41acab88 4817 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4818
05bfb65f
VG
4819 if (!balanced)
4820 return 0;
098fb9db 4821
05bfb65f
VG
4822 schedstat_inc(sd, ttwu_move_affine);
4823 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4824
4825 return 1;
098fb9db
IM
4826}
4827
aaee1203
PZ
4828/*
4829 * find_idlest_group finds and returns the least busy CPU group within the
4830 * domain.
4831 */
4832static struct sched_group *
78e7ed53 4833find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4834 int this_cpu, int sd_flag)
e7693a36 4835{
b3bd3de6 4836 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4837 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4838 int load_idx = sd->forkexec_idx;
aaee1203 4839 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4840
c44f2a02
VG
4841 if (sd_flag & SD_BALANCE_WAKE)
4842 load_idx = sd->wake_idx;
4843
aaee1203
PZ
4844 do {
4845 unsigned long load, avg_load;
4846 int local_group;
4847 int i;
e7693a36 4848
aaee1203
PZ
4849 /* Skip over this group if it has no CPUs allowed */
4850 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4851 tsk_cpus_allowed(p)))
aaee1203
PZ
4852 continue;
4853
4854 local_group = cpumask_test_cpu(this_cpu,
4855 sched_group_cpus(group));
4856
4857 /* Tally up the load of all CPUs in the group */
4858 avg_load = 0;
4859
4860 for_each_cpu(i, sched_group_cpus(group)) {
4861 /* Bias balancing toward cpus of our domain */
4862 if (local_group)
4863 load = source_load(i, load_idx);
4864 else
4865 load = target_load(i, load_idx);
4866
4867 avg_load += load;
4868 }
4869
63b2ca30 4870 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4871 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4872
4873 if (local_group) {
4874 this_load = avg_load;
aaee1203
PZ
4875 } else if (avg_load < min_load) {
4876 min_load = avg_load;
4877 idlest = group;
4878 }
4879 } while (group = group->next, group != sd->groups);
4880
4881 if (!idlest || 100*this_load < imbalance*min_load)
4882 return NULL;
4883 return idlest;
4884}
4885
4886/*
4887 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4888 */
4889static int
4890find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4891{
4892 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4893 unsigned int min_exit_latency = UINT_MAX;
4894 u64 latest_idle_timestamp = 0;
4895 int least_loaded_cpu = this_cpu;
4896 int shallowest_idle_cpu = -1;
aaee1203
PZ
4897 int i;
4898
4899 /* Traverse only the allowed CPUs */
fa17b507 4900 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4901 if (idle_cpu(i)) {
4902 struct rq *rq = cpu_rq(i);
4903 struct cpuidle_state *idle = idle_get_state(rq);
4904 if (idle && idle->exit_latency < min_exit_latency) {
4905 /*
4906 * We give priority to a CPU whose idle state
4907 * has the smallest exit latency irrespective
4908 * of any idle timestamp.
4909 */
4910 min_exit_latency = idle->exit_latency;
4911 latest_idle_timestamp = rq->idle_stamp;
4912 shallowest_idle_cpu = i;
4913 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4914 rq->idle_stamp > latest_idle_timestamp) {
4915 /*
4916 * If equal or no active idle state, then
4917 * the most recently idled CPU might have
4918 * a warmer cache.
4919 */
4920 latest_idle_timestamp = rq->idle_stamp;
4921 shallowest_idle_cpu = i;
4922 }
9f96742a 4923 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4924 load = weighted_cpuload(i);
4925 if (load < min_load || (load == min_load && i == this_cpu)) {
4926 min_load = load;
4927 least_loaded_cpu = i;
4928 }
e7693a36
GH
4929 }
4930 }
4931
83a0a96a 4932 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4933}
e7693a36 4934
a50bde51
PZ
4935/*
4936 * Try and locate an idle CPU in the sched_domain.
4937 */
99bd5e2f 4938static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4939{
99bd5e2f 4940 struct sched_domain *sd;
37407ea7 4941 struct sched_group *sg;
e0a79f52 4942 int i = task_cpu(p);
a50bde51 4943
e0a79f52
MG
4944 if (idle_cpu(target))
4945 return target;
99bd5e2f
SS
4946
4947 /*
e0a79f52 4948 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4949 */
e0a79f52
MG
4950 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4951 return i;
a50bde51
PZ
4952
4953 /*
37407ea7 4954 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4955 */
518cd623 4956 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4957 for_each_lower_domain(sd) {
37407ea7
LT
4958 sg = sd->groups;
4959 do {
4960 if (!cpumask_intersects(sched_group_cpus(sg),
4961 tsk_cpus_allowed(p)))
4962 goto next;
4963
4964 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4965 if (i == target || !idle_cpu(i))
37407ea7
LT
4966 goto next;
4967 }
970e1789 4968
37407ea7
LT
4969 target = cpumask_first_and(sched_group_cpus(sg),
4970 tsk_cpus_allowed(p));
4971 goto done;
4972next:
4973 sg = sg->next;
4974 } while (sg != sd->groups);
4975 }
4976done:
a50bde51
PZ
4977 return target;
4978}
8bb5b00c
VG
4979/*
4980 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4981 * tasks. The unit of the return value must be the one of capacity so we can
4982 * compare the usage with the capacity of the CPU that is available for CFS
4983 * task (ie cpu_capacity).
4984 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4985 * CPU. It represents the amount of utilization of a CPU in the range
4986 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4987 * capacity of the CPU because it's about the running time on this CPU.
4988 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4989 * because of unfortunate rounding in avg_period and running_load_avg or just
4990 * after migrating tasks until the average stabilizes with the new running
4991 * time. So we need to check that the usage stays into the range
4992 * [0..cpu_capacity_orig] and cap if necessary.
4993 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4994 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4995 */
4996static int get_cpu_usage(int cpu)
4997{
4998 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4999 unsigned long capacity = capacity_orig_of(cpu);
5000
5001 if (usage >= SCHED_LOAD_SCALE)
5002 return capacity;
5003
5004 return (usage * capacity) >> SCHED_LOAD_SHIFT;
5005}
a50bde51 5006
aaee1203 5007/*
de91b9cb
MR
5008 * select_task_rq_fair: Select target runqueue for the waking task in domains
5009 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5010 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5011 *
de91b9cb
MR
5012 * Balances load by selecting the idlest cpu in the idlest group, or under
5013 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5014 *
de91b9cb 5015 * Returns the target cpu number.
aaee1203
PZ
5016 *
5017 * preempt must be disabled.
5018 */
0017d735 5019static int
ac66f547 5020select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5021{
29cd8bae 5022 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5023 int cpu = smp_processor_id();
c88d5910 5024 int new_cpu = cpu;
99bd5e2f 5025 int want_affine = 0;
5158f4e4 5026 int sync = wake_flags & WF_SYNC;
c88d5910 5027
a8edd075
KT
5028 if (sd_flag & SD_BALANCE_WAKE)
5029 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5030
dce840a0 5031 rcu_read_lock();
aaee1203 5032 for_each_domain(cpu, tmp) {
e4f42888
PZ
5033 if (!(tmp->flags & SD_LOAD_BALANCE))
5034 continue;
5035
fe3bcfe1 5036 /*
99bd5e2f
SS
5037 * If both cpu and prev_cpu are part of this domain,
5038 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5039 */
99bd5e2f
SS
5040 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5041 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5042 affine_sd = tmp;
29cd8bae 5043 break;
f03542a7 5044 }
29cd8bae 5045
f03542a7 5046 if (tmp->flags & sd_flag)
29cd8bae
PZ
5047 sd = tmp;
5048 }
5049
8bf21433
RR
5050 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5051 prev_cpu = cpu;
dce840a0 5052
8bf21433 5053 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
5054 new_cpu = select_idle_sibling(p, prev_cpu);
5055 goto unlock;
8b911acd 5056 }
e7693a36 5057
aaee1203
PZ
5058 while (sd) {
5059 struct sched_group *group;
c88d5910 5060 int weight;
098fb9db 5061
0763a660 5062 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5063 sd = sd->child;
5064 continue;
5065 }
098fb9db 5066
c44f2a02 5067 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5068 if (!group) {
5069 sd = sd->child;
5070 continue;
5071 }
4ae7d5ce 5072
d7c33c49 5073 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5074 if (new_cpu == -1 || new_cpu == cpu) {
5075 /* Now try balancing at a lower domain level of cpu */
5076 sd = sd->child;
5077 continue;
e7693a36 5078 }
aaee1203
PZ
5079
5080 /* Now try balancing at a lower domain level of new_cpu */
5081 cpu = new_cpu;
669c55e9 5082 weight = sd->span_weight;
aaee1203
PZ
5083 sd = NULL;
5084 for_each_domain(cpu, tmp) {
669c55e9 5085 if (weight <= tmp->span_weight)
aaee1203 5086 break;
0763a660 5087 if (tmp->flags & sd_flag)
aaee1203
PZ
5088 sd = tmp;
5089 }
5090 /* while loop will break here if sd == NULL */
e7693a36 5091 }
dce840a0
PZ
5092unlock:
5093 rcu_read_unlock();
e7693a36 5094
c88d5910 5095 return new_cpu;
e7693a36 5096}
0a74bef8
PT
5097
5098/*
5099 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5100 * cfs_rq_of(p) references at time of call are still valid and identify the
5101 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
5102 * other assumptions, including the state of rq->lock, should be made.
5103 */
5104static void
5105migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5106{
aff3e498
PT
5107 struct sched_entity *se = &p->se;
5108 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5109
5110 /*
5111 * Load tracking: accumulate removed load so that it can be processed
5112 * when we next update owning cfs_rq under rq->lock. Tasks contribute
5113 * to blocked load iff they have a positive decay-count. It can never
5114 * be negative here since on-rq tasks have decay-count == 0.
5115 */
5116 if (se->avg.decay_count) {
5117 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
5118 atomic_long_add(se->avg.load_avg_contrib,
5119 &cfs_rq->removed_load);
aff3e498 5120 }
3944a927
BS
5121
5122 /* We have migrated, no longer consider this task hot */
5123 se->exec_start = 0;
0a74bef8 5124}
e7693a36
GH
5125#endif /* CONFIG_SMP */
5126
e52fb7c0
PZ
5127static unsigned long
5128wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5129{
5130 unsigned long gran = sysctl_sched_wakeup_granularity;
5131
5132 /*
e52fb7c0
PZ
5133 * Since its curr running now, convert the gran from real-time
5134 * to virtual-time in his units.
13814d42
MG
5135 *
5136 * By using 'se' instead of 'curr' we penalize light tasks, so
5137 * they get preempted easier. That is, if 'se' < 'curr' then
5138 * the resulting gran will be larger, therefore penalizing the
5139 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5140 * be smaller, again penalizing the lighter task.
5141 *
5142 * This is especially important for buddies when the leftmost
5143 * task is higher priority than the buddy.
0bbd3336 5144 */
f4ad9bd2 5145 return calc_delta_fair(gran, se);
0bbd3336
PZ
5146}
5147
464b7527
PZ
5148/*
5149 * Should 'se' preempt 'curr'.
5150 *
5151 * |s1
5152 * |s2
5153 * |s3
5154 * g
5155 * |<--->|c
5156 *
5157 * w(c, s1) = -1
5158 * w(c, s2) = 0
5159 * w(c, s3) = 1
5160 *
5161 */
5162static int
5163wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5164{
5165 s64 gran, vdiff = curr->vruntime - se->vruntime;
5166
5167 if (vdiff <= 0)
5168 return -1;
5169
e52fb7c0 5170 gran = wakeup_gran(curr, se);
464b7527
PZ
5171 if (vdiff > gran)
5172 return 1;
5173
5174 return 0;
5175}
5176
02479099
PZ
5177static void set_last_buddy(struct sched_entity *se)
5178{
69c80f3e
VP
5179 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5180 return;
5181
5182 for_each_sched_entity(se)
5183 cfs_rq_of(se)->last = se;
02479099
PZ
5184}
5185
5186static void set_next_buddy(struct sched_entity *se)
5187{
69c80f3e
VP
5188 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5189 return;
5190
5191 for_each_sched_entity(se)
5192 cfs_rq_of(se)->next = se;
02479099
PZ
5193}
5194
ac53db59
RR
5195static void set_skip_buddy(struct sched_entity *se)
5196{
69c80f3e
VP
5197 for_each_sched_entity(se)
5198 cfs_rq_of(se)->skip = se;
ac53db59
RR
5199}
5200
bf0f6f24
IM
5201/*
5202 * Preempt the current task with a newly woken task if needed:
5203 */
5a9b86f6 5204static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5205{
5206 struct task_struct *curr = rq->curr;
8651a86c 5207 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5208 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5209 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5210 int next_buddy_marked = 0;
bf0f6f24 5211
4ae7d5ce
IM
5212 if (unlikely(se == pse))
5213 return;
5214
5238cdd3 5215 /*
163122b7 5216 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5217 * unconditionally check_prempt_curr() after an enqueue (which may have
5218 * lead to a throttle). This both saves work and prevents false
5219 * next-buddy nomination below.
5220 */
5221 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5222 return;
5223
2f36825b 5224 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5225 set_next_buddy(pse);
2f36825b
VP
5226 next_buddy_marked = 1;
5227 }
57fdc26d 5228
aec0a514
BR
5229 /*
5230 * We can come here with TIF_NEED_RESCHED already set from new task
5231 * wake up path.
5238cdd3
PT
5232 *
5233 * Note: this also catches the edge-case of curr being in a throttled
5234 * group (e.g. via set_curr_task), since update_curr() (in the
5235 * enqueue of curr) will have resulted in resched being set. This
5236 * prevents us from potentially nominating it as a false LAST_BUDDY
5237 * below.
aec0a514
BR
5238 */
5239 if (test_tsk_need_resched(curr))
5240 return;
5241
a2f5c9ab
DH
5242 /* Idle tasks are by definition preempted by non-idle tasks. */
5243 if (unlikely(curr->policy == SCHED_IDLE) &&
5244 likely(p->policy != SCHED_IDLE))
5245 goto preempt;
5246
91c234b4 5247 /*
a2f5c9ab
DH
5248 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5249 * is driven by the tick):
91c234b4 5250 */
8ed92e51 5251 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5252 return;
bf0f6f24 5253
464b7527 5254 find_matching_se(&se, &pse);
9bbd7374 5255 update_curr(cfs_rq_of(se));
002f128b 5256 BUG_ON(!pse);
2f36825b
VP
5257 if (wakeup_preempt_entity(se, pse) == 1) {
5258 /*
5259 * Bias pick_next to pick the sched entity that is
5260 * triggering this preemption.
5261 */
5262 if (!next_buddy_marked)
5263 set_next_buddy(pse);
3a7e73a2 5264 goto preempt;
2f36825b 5265 }
464b7527 5266
3a7e73a2 5267 return;
a65ac745 5268
3a7e73a2 5269preempt:
8875125e 5270 resched_curr(rq);
3a7e73a2
PZ
5271 /*
5272 * Only set the backward buddy when the current task is still
5273 * on the rq. This can happen when a wakeup gets interleaved
5274 * with schedule on the ->pre_schedule() or idle_balance()
5275 * point, either of which can * drop the rq lock.
5276 *
5277 * Also, during early boot the idle thread is in the fair class,
5278 * for obvious reasons its a bad idea to schedule back to it.
5279 */
5280 if (unlikely(!se->on_rq || curr == rq->idle))
5281 return;
5282
5283 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5284 set_last_buddy(se);
bf0f6f24
IM
5285}
5286
606dba2e
PZ
5287static struct task_struct *
5288pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5289{
5290 struct cfs_rq *cfs_rq = &rq->cfs;
5291 struct sched_entity *se;
678d5718 5292 struct task_struct *p;
37e117c0 5293 int new_tasks;
678d5718 5294
6e83125c 5295again:
678d5718
PZ
5296#ifdef CONFIG_FAIR_GROUP_SCHED
5297 if (!cfs_rq->nr_running)
38033c37 5298 goto idle;
678d5718 5299
3f1d2a31 5300 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5301 goto simple;
5302
5303 /*
5304 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5305 * likely that a next task is from the same cgroup as the current.
5306 *
5307 * Therefore attempt to avoid putting and setting the entire cgroup
5308 * hierarchy, only change the part that actually changes.
5309 */
5310
5311 do {
5312 struct sched_entity *curr = cfs_rq->curr;
5313
5314 /*
5315 * Since we got here without doing put_prev_entity() we also
5316 * have to consider cfs_rq->curr. If it is still a runnable
5317 * entity, update_curr() will update its vruntime, otherwise
5318 * forget we've ever seen it.
5319 */
54d27365
BS
5320 if (curr) {
5321 if (curr->on_rq)
5322 update_curr(cfs_rq);
5323 else
5324 curr = NULL;
678d5718 5325
54d27365
BS
5326 /*
5327 * This call to check_cfs_rq_runtime() will do the
5328 * throttle and dequeue its entity in the parent(s).
5329 * Therefore the 'simple' nr_running test will indeed
5330 * be correct.
5331 */
5332 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5333 goto simple;
5334 }
678d5718
PZ
5335
5336 se = pick_next_entity(cfs_rq, curr);
5337 cfs_rq = group_cfs_rq(se);
5338 } while (cfs_rq);
5339
5340 p = task_of(se);
5341
5342 /*
5343 * Since we haven't yet done put_prev_entity and if the selected task
5344 * is a different task than we started out with, try and touch the
5345 * least amount of cfs_rqs.
5346 */
5347 if (prev != p) {
5348 struct sched_entity *pse = &prev->se;
5349
5350 while (!(cfs_rq = is_same_group(se, pse))) {
5351 int se_depth = se->depth;
5352 int pse_depth = pse->depth;
5353
5354 if (se_depth <= pse_depth) {
5355 put_prev_entity(cfs_rq_of(pse), pse);
5356 pse = parent_entity(pse);
5357 }
5358 if (se_depth >= pse_depth) {
5359 set_next_entity(cfs_rq_of(se), se);
5360 se = parent_entity(se);
5361 }
5362 }
5363
5364 put_prev_entity(cfs_rq, pse);
5365 set_next_entity(cfs_rq, se);
5366 }
5367
5368 if (hrtick_enabled(rq))
5369 hrtick_start_fair(rq, p);
5370
5371 return p;
5372simple:
5373 cfs_rq = &rq->cfs;
5374#endif
bf0f6f24 5375
36ace27e 5376 if (!cfs_rq->nr_running)
38033c37 5377 goto idle;
bf0f6f24 5378
3f1d2a31 5379 put_prev_task(rq, prev);
606dba2e 5380
bf0f6f24 5381 do {
678d5718 5382 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5383 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5384 cfs_rq = group_cfs_rq(se);
5385 } while (cfs_rq);
5386
8f4d37ec 5387 p = task_of(se);
678d5718 5388
b39e66ea
MG
5389 if (hrtick_enabled(rq))
5390 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5391
5392 return p;
38033c37
PZ
5393
5394idle:
e4aa358b 5395 new_tasks = idle_balance(rq);
37e117c0
PZ
5396 /*
5397 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5398 * possible for any higher priority task to appear. In that case we
5399 * must re-start the pick_next_entity() loop.
5400 */
e4aa358b 5401 if (new_tasks < 0)
37e117c0
PZ
5402 return RETRY_TASK;
5403
e4aa358b 5404 if (new_tasks > 0)
38033c37 5405 goto again;
38033c37
PZ
5406
5407 return NULL;
bf0f6f24
IM
5408}
5409
5410/*
5411 * Account for a descheduled task:
5412 */
31ee529c 5413static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5414{
5415 struct sched_entity *se = &prev->se;
5416 struct cfs_rq *cfs_rq;
5417
5418 for_each_sched_entity(se) {
5419 cfs_rq = cfs_rq_of(se);
ab6cde26 5420 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5421 }
5422}
5423
ac53db59
RR
5424/*
5425 * sched_yield() is very simple
5426 *
5427 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5428 */
5429static void yield_task_fair(struct rq *rq)
5430{
5431 struct task_struct *curr = rq->curr;
5432 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5433 struct sched_entity *se = &curr->se;
5434
5435 /*
5436 * Are we the only task in the tree?
5437 */
5438 if (unlikely(rq->nr_running == 1))
5439 return;
5440
5441 clear_buddies(cfs_rq, se);
5442
5443 if (curr->policy != SCHED_BATCH) {
5444 update_rq_clock(rq);
5445 /*
5446 * Update run-time statistics of the 'current'.
5447 */
5448 update_curr(cfs_rq);
916671c0
MG
5449 /*
5450 * Tell update_rq_clock() that we've just updated,
5451 * so we don't do microscopic update in schedule()
5452 * and double the fastpath cost.
5453 */
9edfbfed 5454 rq_clock_skip_update(rq, true);
ac53db59
RR
5455 }
5456
5457 set_skip_buddy(se);
5458}
5459
d95f4122
MG
5460static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5461{
5462 struct sched_entity *se = &p->se;
5463
5238cdd3
PT
5464 /* throttled hierarchies are not runnable */
5465 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5466 return false;
5467
5468 /* Tell the scheduler that we'd really like pse to run next. */
5469 set_next_buddy(se);
5470
d95f4122
MG
5471 yield_task_fair(rq);
5472
5473 return true;
5474}
5475
681f3e68 5476#ifdef CONFIG_SMP
bf0f6f24 5477/**************************************************
e9c84cb8
PZ
5478 * Fair scheduling class load-balancing methods.
5479 *
5480 * BASICS
5481 *
5482 * The purpose of load-balancing is to achieve the same basic fairness the
5483 * per-cpu scheduler provides, namely provide a proportional amount of compute
5484 * time to each task. This is expressed in the following equation:
5485 *
5486 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5487 *
5488 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5489 * W_i,0 is defined as:
5490 *
5491 * W_i,0 = \Sum_j w_i,j (2)
5492 *
5493 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5494 * is derived from the nice value as per prio_to_weight[].
5495 *
5496 * The weight average is an exponential decay average of the instantaneous
5497 * weight:
5498 *
5499 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5500 *
ced549fa 5501 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5502 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5503 * can also include other factors [XXX].
5504 *
5505 * To achieve this balance we define a measure of imbalance which follows
5506 * directly from (1):
5507 *
ced549fa 5508 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5509 *
5510 * We them move tasks around to minimize the imbalance. In the continuous
5511 * function space it is obvious this converges, in the discrete case we get
5512 * a few fun cases generally called infeasible weight scenarios.
5513 *
5514 * [XXX expand on:
5515 * - infeasible weights;
5516 * - local vs global optima in the discrete case. ]
5517 *
5518 *
5519 * SCHED DOMAINS
5520 *
5521 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5522 * for all i,j solution, we create a tree of cpus that follows the hardware
5523 * topology where each level pairs two lower groups (or better). This results
5524 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5525 * tree to only the first of the previous level and we decrease the frequency
5526 * of load-balance at each level inv. proportional to the number of cpus in
5527 * the groups.
5528 *
5529 * This yields:
5530 *
5531 * log_2 n 1 n
5532 * \Sum { --- * --- * 2^i } = O(n) (5)
5533 * i = 0 2^i 2^i
5534 * `- size of each group
5535 * | | `- number of cpus doing load-balance
5536 * | `- freq
5537 * `- sum over all levels
5538 *
5539 * Coupled with a limit on how many tasks we can migrate every balance pass,
5540 * this makes (5) the runtime complexity of the balancer.
5541 *
5542 * An important property here is that each CPU is still (indirectly) connected
5543 * to every other cpu in at most O(log n) steps:
5544 *
5545 * The adjacency matrix of the resulting graph is given by:
5546 *
5547 * log_2 n
5548 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5549 * k = 0
5550 *
5551 * And you'll find that:
5552 *
5553 * A^(log_2 n)_i,j != 0 for all i,j (7)
5554 *
5555 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5556 * The task movement gives a factor of O(m), giving a convergence complexity
5557 * of:
5558 *
5559 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5560 *
5561 *
5562 * WORK CONSERVING
5563 *
5564 * In order to avoid CPUs going idle while there's still work to do, new idle
5565 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5566 * tree itself instead of relying on other CPUs to bring it work.
5567 *
5568 * This adds some complexity to both (5) and (8) but it reduces the total idle
5569 * time.
5570 *
5571 * [XXX more?]
5572 *
5573 *
5574 * CGROUPS
5575 *
5576 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5577 *
5578 * s_k,i
5579 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5580 * S_k
5581 *
5582 * Where
5583 *
5584 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5585 *
5586 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5587 *
5588 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5589 * property.
5590 *
5591 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5592 * rewrite all of this once again.]
5593 */
bf0f6f24 5594
ed387b78
HS
5595static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5596
0ec8aa00
PZ
5597enum fbq_type { regular, remote, all };
5598
ddcdf6e7 5599#define LBF_ALL_PINNED 0x01
367456c7 5600#define LBF_NEED_BREAK 0x02
6263322c
PZ
5601#define LBF_DST_PINNED 0x04
5602#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5603
5604struct lb_env {
5605 struct sched_domain *sd;
5606
ddcdf6e7 5607 struct rq *src_rq;
85c1e7da 5608 int src_cpu;
ddcdf6e7
PZ
5609
5610 int dst_cpu;
5611 struct rq *dst_rq;
5612
88b8dac0
SV
5613 struct cpumask *dst_grpmask;
5614 int new_dst_cpu;
ddcdf6e7 5615 enum cpu_idle_type idle;
bd939f45 5616 long imbalance;
b9403130
MW
5617 /* The set of CPUs under consideration for load-balancing */
5618 struct cpumask *cpus;
5619
ddcdf6e7 5620 unsigned int flags;
367456c7
PZ
5621
5622 unsigned int loop;
5623 unsigned int loop_break;
5624 unsigned int loop_max;
0ec8aa00
PZ
5625
5626 enum fbq_type fbq_type;
163122b7 5627 struct list_head tasks;
ddcdf6e7
PZ
5628};
5629
029632fb
PZ
5630/*
5631 * Is this task likely cache-hot:
5632 */
5d5e2b1b 5633static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5634{
5635 s64 delta;
5636
e5673f28
KT
5637 lockdep_assert_held(&env->src_rq->lock);
5638
029632fb
PZ
5639 if (p->sched_class != &fair_sched_class)
5640 return 0;
5641
5642 if (unlikely(p->policy == SCHED_IDLE))
5643 return 0;
5644
5645 /*
5646 * Buddy candidates are cache hot:
5647 */
5d5e2b1b 5648 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5649 (&p->se == cfs_rq_of(&p->se)->next ||
5650 &p->se == cfs_rq_of(&p->se)->last))
5651 return 1;
5652
5653 if (sysctl_sched_migration_cost == -1)
5654 return 1;
5655 if (sysctl_sched_migration_cost == 0)
5656 return 0;
5657
5d5e2b1b 5658 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5659
5660 return delta < (s64)sysctl_sched_migration_cost;
5661}
5662
3a7053b3 5663#ifdef CONFIG_NUMA_BALANCING
c1ceac62
RR
5664/*
5665 * Returns true if the destination node is the preferred node.
5666 * Needs to match fbq_classify_rq(): if there is a runnable task
5667 * that is not on its preferred node, we should identify it.
5668 */
3a7053b3
MG
5669static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5670{
b1ad065e 5671 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5672 unsigned long src_faults, dst_faults;
3a7053b3
MG
5673 int src_nid, dst_nid;
5674
44dba3d5 5675 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5676 !(env->sd->flags & SD_NUMA)) {
5677 return false;
5678 }
5679
5680 src_nid = cpu_to_node(env->src_cpu);
5681 dst_nid = cpu_to_node(env->dst_cpu);
5682
83e1d2cd 5683 if (src_nid == dst_nid)
3a7053b3
MG
5684 return false;
5685
b1ad065e
RR
5686 /* Encourage migration to the preferred node. */
5687 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5688 return true;
5689
c1ceac62
RR
5690 /* Migrating away from the preferred node is bad. */
5691 if (src_nid == p->numa_preferred_nid)
5692 return false;
5693
5694 if (numa_group) {
5695 src_faults = group_faults(p, src_nid);
5696 dst_faults = group_faults(p, dst_nid);
5697 } else {
5698 src_faults = task_faults(p, src_nid);
5699 dst_faults = task_faults(p, dst_nid);
5700 }
5701
5702 return dst_faults > src_faults;
3a7053b3 5703}
7a0f3083
MG
5704
5705
5706static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5707{
b1ad065e 5708 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5709 unsigned long src_faults, dst_faults;
7a0f3083
MG
5710 int src_nid, dst_nid;
5711
5712 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5713 return false;
5714
44dba3d5 5715 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5716 return false;
5717
5718 src_nid = cpu_to_node(env->src_cpu);
5719 dst_nid = cpu_to_node(env->dst_cpu);
5720
83e1d2cd 5721 if (src_nid == dst_nid)
7a0f3083
MG
5722 return false;
5723
c1ceac62
RR
5724 /* Migrating away from the preferred node is bad. */
5725 if (src_nid == p->numa_preferred_nid)
5726 return true;
b1ad065e 5727
c1ceac62
RR
5728 /* Encourage migration to the preferred node. */
5729 if (dst_nid == p->numa_preferred_nid)
5730 return false;
b1ad065e 5731
c1ceac62
RR
5732 if (numa_group) {
5733 src_faults = group_faults(p, src_nid);
5734 dst_faults = group_faults(p, dst_nid);
5735 } else {
5736 src_faults = task_faults(p, src_nid);
5737 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5738 }
5739
c1ceac62 5740 return dst_faults < src_faults;
7a0f3083
MG
5741}
5742
3a7053b3
MG
5743#else
5744static inline bool migrate_improves_locality(struct task_struct *p,
5745 struct lb_env *env)
5746{
5747 return false;
5748}
7a0f3083
MG
5749
5750static inline bool migrate_degrades_locality(struct task_struct *p,
5751 struct lb_env *env)
5752{
5753 return false;
5754}
3a7053b3
MG
5755#endif
5756
1e3c88bd
PZ
5757/*
5758 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5759 */
5760static
8e45cb54 5761int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5762{
5763 int tsk_cache_hot = 0;
e5673f28
KT
5764
5765 lockdep_assert_held(&env->src_rq->lock);
5766
1e3c88bd
PZ
5767 /*
5768 * We do not migrate tasks that are:
d3198084 5769 * 1) throttled_lb_pair, or
1e3c88bd 5770 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5771 * 3) running (obviously), or
5772 * 4) are cache-hot on their current CPU.
1e3c88bd 5773 */
d3198084
JK
5774 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5775 return 0;
5776
ddcdf6e7 5777 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5778 int cpu;
88b8dac0 5779
41acab88 5780 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5781
6263322c
PZ
5782 env->flags |= LBF_SOME_PINNED;
5783
88b8dac0
SV
5784 /*
5785 * Remember if this task can be migrated to any other cpu in
5786 * our sched_group. We may want to revisit it if we couldn't
5787 * meet load balance goals by pulling other tasks on src_cpu.
5788 *
5789 * Also avoid computing new_dst_cpu if we have already computed
5790 * one in current iteration.
5791 */
6263322c 5792 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5793 return 0;
5794
e02e60c1
JK
5795 /* Prevent to re-select dst_cpu via env's cpus */
5796 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5797 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5798 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5799 env->new_dst_cpu = cpu;
5800 break;
5801 }
88b8dac0 5802 }
e02e60c1 5803
1e3c88bd
PZ
5804 return 0;
5805 }
88b8dac0
SV
5806
5807 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5808 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5809
ddcdf6e7 5810 if (task_running(env->src_rq, p)) {
41acab88 5811 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5812 return 0;
5813 }
5814
5815 /*
5816 * Aggressive migration if:
3a7053b3
MG
5817 * 1) destination numa is preferred
5818 * 2) task is cache cold, or
5819 * 3) too many balance attempts have failed.
1e3c88bd 5820 */
5d5e2b1b 5821 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5822 if (!tsk_cache_hot)
5823 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5824
7a96c231
KT
5825 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5826 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5827 if (tsk_cache_hot) {
5828 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5829 schedstat_inc(p, se.statistics.nr_forced_migrations);
5830 }
1e3c88bd
PZ
5831 return 1;
5832 }
5833
4e2dcb73
ZH
5834 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5835 return 0;
1e3c88bd
PZ
5836}
5837
897c395f 5838/*
163122b7
KT
5839 * detach_task() -- detach the task for the migration specified in env
5840 */
5841static void detach_task(struct task_struct *p, struct lb_env *env)
5842{
5843 lockdep_assert_held(&env->src_rq->lock);
5844
5845 deactivate_task(env->src_rq, p, 0);
5846 p->on_rq = TASK_ON_RQ_MIGRATING;
5847 set_task_cpu(p, env->dst_cpu);
5848}
5849
897c395f 5850/*
e5673f28 5851 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5852 * part of active balancing operations within "domain".
897c395f 5853 *
e5673f28 5854 * Returns a task if successful and NULL otherwise.
897c395f 5855 */
e5673f28 5856static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5857{
5858 struct task_struct *p, *n;
897c395f 5859
e5673f28
KT
5860 lockdep_assert_held(&env->src_rq->lock);
5861
367456c7 5862 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5863 if (!can_migrate_task(p, env))
5864 continue;
897c395f 5865
163122b7 5866 detach_task(p, env);
e5673f28 5867
367456c7 5868 /*
e5673f28 5869 * Right now, this is only the second place where
163122b7 5870 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5871 * so we can safely collect stats here rather than
163122b7 5872 * inside detach_tasks().
367456c7
PZ
5873 */
5874 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5875 return p;
897c395f 5876 }
e5673f28 5877 return NULL;
897c395f
PZ
5878}
5879
eb95308e
PZ
5880static const unsigned int sched_nr_migrate_break = 32;
5881
5d6523eb 5882/*
163122b7
KT
5883 * detach_tasks() -- tries to detach up to imbalance weighted load from
5884 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5885 *
163122b7 5886 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5887 */
163122b7 5888static int detach_tasks(struct lb_env *env)
1e3c88bd 5889{
5d6523eb
PZ
5890 struct list_head *tasks = &env->src_rq->cfs_tasks;
5891 struct task_struct *p;
367456c7 5892 unsigned long load;
163122b7
KT
5893 int detached = 0;
5894
5895 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5896
bd939f45 5897 if (env->imbalance <= 0)
5d6523eb 5898 return 0;
1e3c88bd 5899
5d6523eb
PZ
5900 while (!list_empty(tasks)) {
5901 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5902
367456c7
PZ
5903 env->loop++;
5904 /* We've more or less seen every task there is, call it quits */
5d6523eb 5905 if (env->loop > env->loop_max)
367456c7 5906 break;
5d6523eb
PZ
5907
5908 /* take a breather every nr_migrate tasks */
367456c7 5909 if (env->loop > env->loop_break) {
eb95308e 5910 env->loop_break += sched_nr_migrate_break;
8e45cb54 5911 env->flags |= LBF_NEED_BREAK;
ee00e66f 5912 break;
a195f004 5913 }
1e3c88bd 5914
d3198084 5915 if (!can_migrate_task(p, env))
367456c7
PZ
5916 goto next;
5917
5918 load = task_h_load(p);
5d6523eb 5919
eb95308e 5920 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5921 goto next;
5922
bd939f45 5923 if ((load / 2) > env->imbalance)
367456c7 5924 goto next;
1e3c88bd 5925
163122b7
KT
5926 detach_task(p, env);
5927 list_add(&p->se.group_node, &env->tasks);
5928
5929 detached++;
bd939f45 5930 env->imbalance -= load;
1e3c88bd
PZ
5931
5932#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5933 /*
5934 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5935 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5936 * the critical section.
5937 */
5d6523eb 5938 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5939 break;
1e3c88bd
PZ
5940#endif
5941
ee00e66f
PZ
5942 /*
5943 * We only want to steal up to the prescribed amount of
5944 * weighted load.
5945 */
bd939f45 5946 if (env->imbalance <= 0)
ee00e66f 5947 break;
367456c7
PZ
5948
5949 continue;
5950next:
5d6523eb 5951 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5952 }
5d6523eb 5953
1e3c88bd 5954 /*
163122b7
KT
5955 * Right now, this is one of only two places we collect this stat
5956 * so we can safely collect detach_one_task() stats here rather
5957 * than inside detach_one_task().
1e3c88bd 5958 */
163122b7 5959 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5960
163122b7
KT
5961 return detached;
5962}
5963
5964/*
5965 * attach_task() -- attach the task detached by detach_task() to its new rq.
5966 */
5967static void attach_task(struct rq *rq, struct task_struct *p)
5968{
5969 lockdep_assert_held(&rq->lock);
5970
5971 BUG_ON(task_rq(p) != rq);
5972 p->on_rq = TASK_ON_RQ_QUEUED;
5973 activate_task(rq, p, 0);
5974 check_preempt_curr(rq, p, 0);
5975}
5976
5977/*
5978 * attach_one_task() -- attaches the task returned from detach_one_task() to
5979 * its new rq.
5980 */
5981static void attach_one_task(struct rq *rq, struct task_struct *p)
5982{
5983 raw_spin_lock(&rq->lock);
5984 attach_task(rq, p);
5985 raw_spin_unlock(&rq->lock);
5986}
5987
5988/*
5989 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5990 * new rq.
5991 */
5992static void attach_tasks(struct lb_env *env)
5993{
5994 struct list_head *tasks = &env->tasks;
5995 struct task_struct *p;
5996
5997 raw_spin_lock(&env->dst_rq->lock);
5998
5999 while (!list_empty(tasks)) {
6000 p = list_first_entry(tasks, struct task_struct, se.group_node);
6001 list_del_init(&p->se.group_node);
1e3c88bd 6002
163122b7
KT
6003 attach_task(env->dst_rq, p);
6004 }
6005
6006 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6007}
6008
230059de 6009#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
6010/*
6011 * update tg->load_weight by folding this cpu's load_avg
6012 */
48a16753 6013static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 6014{
48a16753
PT
6015 struct sched_entity *se = tg->se[cpu];
6016 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 6017
48a16753
PT
6018 /* throttled entities do not contribute to load */
6019 if (throttled_hierarchy(cfs_rq))
6020 return;
9e3081ca 6021
aff3e498 6022 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 6023
82958366
PT
6024 if (se) {
6025 update_entity_load_avg(se, 1);
6026 /*
6027 * We pivot on our runnable average having decayed to zero for
6028 * list removal. This generally implies that all our children
6029 * have also been removed (modulo rounding error or bandwidth
6030 * control); however, such cases are rare and we can fix these
6031 * at enqueue.
6032 *
6033 * TODO: fix up out-of-order children on enqueue.
6034 */
6035 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
6036 list_del_leaf_cfs_rq(cfs_rq);
6037 } else {
48a16753 6038 struct rq *rq = rq_of(cfs_rq);
82958366
PT
6039 update_rq_runnable_avg(rq, rq->nr_running);
6040 }
9e3081ca
PZ
6041}
6042
48a16753 6043static void update_blocked_averages(int cpu)
9e3081ca 6044{
9e3081ca 6045 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6046 struct cfs_rq *cfs_rq;
6047 unsigned long flags;
9e3081ca 6048
48a16753
PT
6049 raw_spin_lock_irqsave(&rq->lock, flags);
6050 update_rq_clock(rq);
9763b67f
PZ
6051 /*
6052 * Iterates the task_group tree in a bottom up fashion, see
6053 * list_add_leaf_cfs_rq() for details.
6054 */
64660c86 6055 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
6056 /*
6057 * Note: We may want to consider periodically releasing
6058 * rq->lock about these updates so that creating many task
6059 * groups does not result in continually extending hold time.
6060 */
6061 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 6062 }
48a16753
PT
6063
6064 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6065}
6066
9763b67f 6067/*
68520796 6068 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6069 * This needs to be done in a top-down fashion because the load of a child
6070 * group is a fraction of its parents load.
6071 */
68520796 6072static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6073{
68520796
VD
6074 struct rq *rq = rq_of(cfs_rq);
6075 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6076 unsigned long now = jiffies;
68520796 6077 unsigned long load;
a35b6466 6078
68520796 6079 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6080 return;
6081
68520796
VD
6082 cfs_rq->h_load_next = NULL;
6083 for_each_sched_entity(se) {
6084 cfs_rq = cfs_rq_of(se);
6085 cfs_rq->h_load_next = se;
6086 if (cfs_rq->last_h_load_update == now)
6087 break;
6088 }
a35b6466 6089
68520796 6090 if (!se) {
7e3115ef 6091 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
6092 cfs_rq->last_h_load_update = now;
6093 }
6094
6095 while ((se = cfs_rq->h_load_next) != NULL) {
6096 load = cfs_rq->h_load;
6097 load = div64_ul(load * se->avg.load_avg_contrib,
6098 cfs_rq->runnable_load_avg + 1);
6099 cfs_rq = group_cfs_rq(se);
6100 cfs_rq->h_load = load;
6101 cfs_rq->last_h_load_update = now;
6102 }
9763b67f
PZ
6103}
6104
367456c7 6105static unsigned long task_h_load(struct task_struct *p)
230059de 6106{
367456c7 6107 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6108
68520796 6109 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
6110 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
6111 cfs_rq->runnable_load_avg + 1);
230059de
PZ
6112}
6113#else
48a16753 6114static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
6115{
6116}
6117
367456c7 6118static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6119{
a003a25b 6120 return p->se.avg.load_avg_contrib;
1e3c88bd 6121}
230059de 6122#endif
1e3c88bd 6123
1e3c88bd 6124/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6125
6126enum group_type {
6127 group_other = 0,
6128 group_imbalanced,
6129 group_overloaded,
6130};
6131
1e3c88bd
PZ
6132/*
6133 * sg_lb_stats - stats of a sched_group required for load_balancing
6134 */
6135struct sg_lb_stats {
6136 unsigned long avg_load; /*Avg load across the CPUs of the group */
6137 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6138 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6139 unsigned long load_per_task;
63b2ca30 6140 unsigned long group_capacity;
8bb5b00c 6141 unsigned long group_usage; /* Total usage of the group */
147c5fc2 6142 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6143 unsigned int idle_cpus;
6144 unsigned int group_weight;
caeb178c 6145 enum group_type group_type;
ea67821b 6146 int group_no_capacity;
0ec8aa00
PZ
6147#ifdef CONFIG_NUMA_BALANCING
6148 unsigned int nr_numa_running;
6149 unsigned int nr_preferred_running;
6150#endif
1e3c88bd
PZ
6151};
6152
56cf515b
JK
6153/*
6154 * sd_lb_stats - Structure to store the statistics of a sched_domain
6155 * during load balancing.
6156 */
6157struct sd_lb_stats {
6158 struct sched_group *busiest; /* Busiest group in this sd */
6159 struct sched_group *local; /* Local group in this sd */
6160 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6161 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6162 unsigned long avg_load; /* Average load across all groups in sd */
6163
56cf515b 6164 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6165 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6166};
6167
147c5fc2
PZ
6168static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6169{
6170 /*
6171 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6172 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6173 * We must however clear busiest_stat::avg_load because
6174 * update_sd_pick_busiest() reads this before assignment.
6175 */
6176 *sds = (struct sd_lb_stats){
6177 .busiest = NULL,
6178 .local = NULL,
6179 .total_load = 0UL,
63b2ca30 6180 .total_capacity = 0UL,
147c5fc2
PZ
6181 .busiest_stat = {
6182 .avg_load = 0UL,
caeb178c
RR
6183 .sum_nr_running = 0,
6184 .group_type = group_other,
147c5fc2
PZ
6185 },
6186 };
6187}
6188
1e3c88bd
PZ
6189/**
6190 * get_sd_load_idx - Obtain the load index for a given sched domain.
6191 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6192 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6193 *
6194 * Return: The load index.
1e3c88bd
PZ
6195 */
6196static inline int get_sd_load_idx(struct sched_domain *sd,
6197 enum cpu_idle_type idle)
6198{
6199 int load_idx;
6200
6201 switch (idle) {
6202 case CPU_NOT_IDLE:
6203 load_idx = sd->busy_idx;
6204 break;
6205
6206 case CPU_NEWLY_IDLE:
6207 load_idx = sd->newidle_idx;
6208 break;
6209 default:
6210 load_idx = sd->idle_idx;
6211 break;
6212 }
6213
6214 return load_idx;
6215}
6216
26bc3c50 6217static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6218{
26bc3c50
VG
6219 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6220 return sd->smt_gain / sd->span_weight;
1e3c88bd 6221
26bc3c50 6222 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6223}
6224
26bc3c50 6225unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6226{
26bc3c50 6227 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6228}
6229
ced549fa 6230static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6231{
6232 struct rq *rq = cpu_rq(cpu);
b5b4860d 6233 u64 total, used, age_stamp, avg;
cadefd3d 6234 s64 delta;
1e3c88bd 6235
b654f7de
PZ
6236 /*
6237 * Since we're reading these variables without serialization make sure
6238 * we read them once before doing sanity checks on them.
6239 */
316c1608
JL
6240 age_stamp = READ_ONCE(rq->age_stamp);
6241 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6242 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6243
cadefd3d
PZ
6244 if (unlikely(delta < 0))
6245 delta = 0;
6246
6247 total = sched_avg_period() + delta;
aa483808 6248
b5b4860d 6249 used = div_u64(avg, total);
1e3c88bd 6250
b5b4860d
VG
6251 if (likely(used < SCHED_CAPACITY_SCALE))
6252 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6253
b5b4860d 6254 return 1;
1e3c88bd
PZ
6255}
6256
ced549fa 6257static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6258{
ca8ce3d0 6259 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6260 struct sched_group *sdg = sd->groups;
6261
26bc3c50
VG
6262 if (sched_feat(ARCH_CAPACITY))
6263 capacity *= arch_scale_cpu_capacity(sd, cpu);
6264 else
6265 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 6266
26bc3c50 6267 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6268
ca6d75e6 6269 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6270
ced549fa 6271 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6272 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6273
ced549fa
NP
6274 if (!capacity)
6275 capacity = 1;
1e3c88bd 6276
ced549fa
NP
6277 cpu_rq(cpu)->cpu_capacity = capacity;
6278 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6279}
6280
63b2ca30 6281void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6282{
6283 struct sched_domain *child = sd->child;
6284 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6285 unsigned long capacity;
4ec4412e
VG
6286 unsigned long interval;
6287
6288 interval = msecs_to_jiffies(sd->balance_interval);
6289 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6290 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6291
6292 if (!child) {
ced549fa 6293 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6294 return;
6295 }
6296
dc7ff76e 6297 capacity = 0;
1e3c88bd 6298
74a5ce20
PZ
6299 if (child->flags & SD_OVERLAP) {
6300 /*
6301 * SD_OVERLAP domains cannot assume that child groups
6302 * span the current group.
6303 */
6304
863bffc8 6305 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6306 struct sched_group_capacity *sgc;
9abf24d4 6307 struct rq *rq = cpu_rq(cpu);
863bffc8 6308
9abf24d4 6309 /*
63b2ca30 6310 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6311 * gets here before we've attached the domains to the
6312 * runqueues.
6313 *
ced549fa
NP
6314 * Use capacity_of(), which is set irrespective of domains
6315 * in update_cpu_capacity().
9abf24d4 6316 *
dc7ff76e 6317 * This avoids capacity from being 0 and
9abf24d4 6318 * causing divide-by-zero issues on boot.
9abf24d4
SD
6319 */
6320 if (unlikely(!rq->sd)) {
ced549fa 6321 capacity += capacity_of(cpu);
9abf24d4
SD
6322 continue;
6323 }
863bffc8 6324
63b2ca30 6325 sgc = rq->sd->groups->sgc;
63b2ca30 6326 capacity += sgc->capacity;
863bffc8 6327 }
74a5ce20
PZ
6328 } else {
6329 /*
6330 * !SD_OVERLAP domains can assume that child groups
6331 * span the current group.
6332 */
6333
6334 group = child->groups;
6335 do {
63b2ca30 6336 capacity += group->sgc->capacity;
74a5ce20
PZ
6337 group = group->next;
6338 } while (group != child->groups);
6339 }
1e3c88bd 6340
63b2ca30 6341 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6342}
6343
9d5efe05 6344/*
ea67821b
VG
6345 * Check whether the capacity of the rq has been noticeably reduced by side
6346 * activity. The imbalance_pct is used for the threshold.
6347 * Return true is the capacity is reduced
9d5efe05
SV
6348 */
6349static inline int
ea67821b 6350check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6351{
ea67821b
VG
6352 return ((rq->cpu_capacity * sd->imbalance_pct) <
6353 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6354}
6355
30ce5dab
PZ
6356/*
6357 * Group imbalance indicates (and tries to solve) the problem where balancing
6358 * groups is inadequate due to tsk_cpus_allowed() constraints.
6359 *
6360 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6361 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6362 * Something like:
6363 *
6364 * { 0 1 2 3 } { 4 5 6 7 }
6365 * * * * *
6366 *
6367 * If we were to balance group-wise we'd place two tasks in the first group and
6368 * two tasks in the second group. Clearly this is undesired as it will overload
6369 * cpu 3 and leave one of the cpus in the second group unused.
6370 *
6371 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6372 * by noticing the lower domain failed to reach balance and had difficulty
6373 * moving tasks due to affinity constraints.
30ce5dab
PZ
6374 *
6375 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6376 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6377 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6378 * to create an effective group imbalance.
6379 *
6380 * This is a somewhat tricky proposition since the next run might not find the
6381 * group imbalance and decide the groups need to be balanced again. A most
6382 * subtle and fragile situation.
6383 */
6384
6263322c 6385static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6386{
63b2ca30 6387 return group->sgc->imbalance;
30ce5dab
PZ
6388}
6389
b37d9316 6390/*
ea67821b
VG
6391 * group_has_capacity returns true if the group has spare capacity that could
6392 * be used by some tasks.
6393 * We consider that a group has spare capacity if the * number of task is
6394 * smaller than the number of CPUs or if the usage is lower than the available
6395 * capacity for CFS tasks.
6396 * For the latter, we use a threshold to stabilize the state, to take into
6397 * account the variance of the tasks' load and to return true if the available
6398 * capacity in meaningful for the load balancer.
6399 * As an example, an available capacity of 1% can appear but it doesn't make
6400 * any benefit for the load balance.
b37d9316 6401 */
ea67821b
VG
6402static inline bool
6403group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6404{
ea67821b
VG
6405 if (sgs->sum_nr_running < sgs->group_weight)
6406 return true;
c61037e9 6407
ea67821b
VG
6408 if ((sgs->group_capacity * 100) >
6409 (sgs->group_usage * env->sd->imbalance_pct))
6410 return true;
b37d9316 6411
ea67821b
VG
6412 return false;
6413}
6414
6415/*
6416 * group_is_overloaded returns true if the group has more tasks than it can
6417 * handle.
6418 * group_is_overloaded is not equals to !group_has_capacity because a group
6419 * with the exact right number of tasks, has no more spare capacity but is not
6420 * overloaded so both group_has_capacity and group_is_overloaded return
6421 * false.
6422 */
6423static inline bool
6424group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6425{
6426 if (sgs->sum_nr_running <= sgs->group_weight)
6427 return false;
b37d9316 6428
ea67821b
VG
6429 if ((sgs->group_capacity * 100) <
6430 (sgs->group_usage * env->sd->imbalance_pct))
6431 return true;
b37d9316 6432
ea67821b 6433 return false;
b37d9316
PZ
6434}
6435
ea67821b
VG
6436static enum group_type group_classify(struct lb_env *env,
6437 struct sched_group *group,
6438 struct sg_lb_stats *sgs)
caeb178c 6439{
ea67821b 6440 if (sgs->group_no_capacity)
caeb178c
RR
6441 return group_overloaded;
6442
6443 if (sg_imbalanced(group))
6444 return group_imbalanced;
6445
6446 return group_other;
6447}
6448
1e3c88bd
PZ
6449/**
6450 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6451 * @env: The load balancing environment.
1e3c88bd 6452 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6453 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6454 * @local_group: Does group contain this_cpu.
1e3c88bd 6455 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6456 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6457 */
bd939f45
PZ
6458static inline void update_sg_lb_stats(struct lb_env *env,
6459 struct sched_group *group, int load_idx,
4486edd1
TC
6460 int local_group, struct sg_lb_stats *sgs,
6461 bool *overload)
1e3c88bd 6462{
30ce5dab 6463 unsigned long load;
bd939f45 6464 int i;
1e3c88bd 6465
b72ff13c
PZ
6466 memset(sgs, 0, sizeof(*sgs));
6467
b9403130 6468 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6469 struct rq *rq = cpu_rq(i);
6470
1e3c88bd 6471 /* Bias balancing toward cpus of our domain */
6263322c 6472 if (local_group)
04f733b4 6473 load = target_load(i, load_idx);
6263322c 6474 else
1e3c88bd 6475 load = source_load(i, load_idx);
1e3c88bd
PZ
6476
6477 sgs->group_load += load;
8bb5b00c 6478 sgs->group_usage += get_cpu_usage(i);
65fdac08 6479 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6480
6481 if (rq->nr_running > 1)
6482 *overload = true;
6483
0ec8aa00
PZ
6484#ifdef CONFIG_NUMA_BALANCING
6485 sgs->nr_numa_running += rq->nr_numa_running;
6486 sgs->nr_preferred_running += rq->nr_preferred_running;
6487#endif
1e3c88bd 6488 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6489 if (idle_cpu(i))
6490 sgs->idle_cpus++;
1e3c88bd
PZ
6491 }
6492
63b2ca30
NP
6493 /* Adjust by relative CPU capacity of the group */
6494 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6495 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6496
dd5feea1 6497 if (sgs->sum_nr_running)
38d0f770 6498 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6499
aae6d3dd 6500 sgs->group_weight = group->group_weight;
b37d9316 6501
ea67821b
VG
6502 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6503 sgs->group_type = group_classify(env, group, sgs);
1e3c88bd
PZ
6504}
6505
532cb4c4
MN
6506/**
6507 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6508 * @env: The load balancing environment.
532cb4c4
MN
6509 * @sds: sched_domain statistics
6510 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6511 * @sgs: sched_group statistics
532cb4c4
MN
6512 *
6513 * Determine if @sg is a busier group than the previously selected
6514 * busiest group.
e69f6186
YB
6515 *
6516 * Return: %true if @sg is a busier group than the previously selected
6517 * busiest group. %false otherwise.
532cb4c4 6518 */
bd939f45 6519static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6520 struct sd_lb_stats *sds,
6521 struct sched_group *sg,
bd939f45 6522 struct sg_lb_stats *sgs)
532cb4c4 6523{
caeb178c 6524 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6525
caeb178c 6526 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6527 return true;
6528
caeb178c
RR
6529 if (sgs->group_type < busiest->group_type)
6530 return false;
6531
6532 if (sgs->avg_load <= busiest->avg_load)
6533 return false;
6534
6535 /* This is the busiest node in its class. */
6536 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6537 return true;
6538
6539 /*
6540 * ASYM_PACKING needs to move all the work to the lowest
6541 * numbered CPUs in the group, therefore mark all groups
6542 * higher than ourself as busy.
6543 */
caeb178c 6544 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6545 if (!sds->busiest)
6546 return true;
6547
6548 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6549 return true;
6550 }
6551
6552 return false;
6553}
6554
0ec8aa00
PZ
6555#ifdef CONFIG_NUMA_BALANCING
6556static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6557{
6558 if (sgs->sum_nr_running > sgs->nr_numa_running)
6559 return regular;
6560 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6561 return remote;
6562 return all;
6563}
6564
6565static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6566{
6567 if (rq->nr_running > rq->nr_numa_running)
6568 return regular;
6569 if (rq->nr_running > rq->nr_preferred_running)
6570 return remote;
6571 return all;
6572}
6573#else
6574static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6575{
6576 return all;
6577}
6578
6579static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6580{
6581 return regular;
6582}
6583#endif /* CONFIG_NUMA_BALANCING */
6584
1e3c88bd 6585/**
461819ac 6586 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6587 * @env: The load balancing environment.
1e3c88bd
PZ
6588 * @sds: variable to hold the statistics for this sched_domain.
6589 */
0ec8aa00 6590static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6591{
bd939f45
PZ
6592 struct sched_domain *child = env->sd->child;
6593 struct sched_group *sg = env->sd->groups;
56cf515b 6594 struct sg_lb_stats tmp_sgs;
1e3c88bd 6595 int load_idx, prefer_sibling = 0;
4486edd1 6596 bool overload = false;
1e3c88bd
PZ
6597
6598 if (child && child->flags & SD_PREFER_SIBLING)
6599 prefer_sibling = 1;
6600
bd939f45 6601 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6602
6603 do {
56cf515b 6604 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6605 int local_group;
6606
bd939f45 6607 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6608 if (local_group) {
6609 sds->local = sg;
6610 sgs = &sds->local_stat;
b72ff13c
PZ
6611
6612 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6613 time_after_eq(jiffies, sg->sgc->next_update))
6614 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6615 }
1e3c88bd 6616
4486edd1
TC
6617 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6618 &overload);
1e3c88bd 6619
b72ff13c
PZ
6620 if (local_group)
6621 goto next_group;
6622
1e3c88bd
PZ
6623 /*
6624 * In case the child domain prefers tasks go to siblings
ea67821b 6625 * first, lower the sg capacity so that we'll try
75dd321d
NR
6626 * and move all the excess tasks away. We lower the capacity
6627 * of a group only if the local group has the capacity to fit
ea67821b
VG
6628 * these excess tasks. The extra check prevents the case where
6629 * you always pull from the heaviest group when it is already
6630 * under-utilized (possible with a large weight task outweighs
6631 * the tasks on the system).
1e3c88bd 6632 */
b72ff13c 6633 if (prefer_sibling && sds->local &&
ea67821b
VG
6634 group_has_capacity(env, &sds->local_stat) &&
6635 (sgs->sum_nr_running > 1)) {
6636 sgs->group_no_capacity = 1;
6637 sgs->group_type = group_overloaded;
cb0b9f24 6638 }
1e3c88bd 6639
b72ff13c 6640 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6641 sds->busiest = sg;
56cf515b 6642 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6643 }
6644
b72ff13c
PZ
6645next_group:
6646 /* Now, start updating sd_lb_stats */
6647 sds->total_load += sgs->group_load;
63b2ca30 6648 sds->total_capacity += sgs->group_capacity;
b72ff13c 6649
532cb4c4 6650 sg = sg->next;
bd939f45 6651 } while (sg != env->sd->groups);
0ec8aa00
PZ
6652
6653 if (env->sd->flags & SD_NUMA)
6654 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6655
6656 if (!env->sd->parent) {
6657 /* update overload indicator if we are at root domain */
6658 if (env->dst_rq->rd->overload != overload)
6659 env->dst_rq->rd->overload = overload;
6660 }
6661
532cb4c4
MN
6662}
6663
532cb4c4
MN
6664/**
6665 * check_asym_packing - Check to see if the group is packed into the
6666 * sched doman.
6667 *
6668 * This is primarily intended to used at the sibling level. Some
6669 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6670 * case of POWER7, it can move to lower SMT modes only when higher
6671 * threads are idle. When in lower SMT modes, the threads will
6672 * perform better since they share less core resources. Hence when we
6673 * have idle threads, we want them to be the higher ones.
6674 *
6675 * This packing function is run on idle threads. It checks to see if
6676 * the busiest CPU in this domain (core in the P7 case) has a higher
6677 * CPU number than the packing function is being run on. Here we are
6678 * assuming lower CPU number will be equivalent to lower a SMT thread
6679 * number.
6680 *
e69f6186 6681 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6682 * this CPU. The amount of the imbalance is returned in *imbalance.
6683 *
cd96891d 6684 * @env: The load balancing environment.
532cb4c4 6685 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6686 */
bd939f45 6687static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6688{
6689 int busiest_cpu;
6690
bd939f45 6691 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6692 return 0;
6693
6694 if (!sds->busiest)
6695 return 0;
6696
6697 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6698 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6699 return 0;
6700
bd939f45 6701 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6702 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6703 SCHED_CAPACITY_SCALE);
bd939f45 6704
532cb4c4 6705 return 1;
1e3c88bd
PZ
6706}
6707
6708/**
6709 * fix_small_imbalance - Calculate the minor imbalance that exists
6710 * amongst the groups of a sched_domain, during
6711 * load balancing.
cd96891d 6712 * @env: The load balancing environment.
1e3c88bd 6713 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6714 */
bd939f45
PZ
6715static inline
6716void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6717{
63b2ca30 6718 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6719 unsigned int imbn = 2;
dd5feea1 6720 unsigned long scaled_busy_load_per_task;
56cf515b 6721 struct sg_lb_stats *local, *busiest;
1e3c88bd 6722
56cf515b
JK
6723 local = &sds->local_stat;
6724 busiest = &sds->busiest_stat;
1e3c88bd 6725
56cf515b
JK
6726 if (!local->sum_nr_running)
6727 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6728 else if (busiest->load_per_task > local->load_per_task)
6729 imbn = 1;
dd5feea1 6730
56cf515b 6731 scaled_busy_load_per_task =
ca8ce3d0 6732 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6733 busiest->group_capacity;
56cf515b 6734
3029ede3
VD
6735 if (busiest->avg_load + scaled_busy_load_per_task >=
6736 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6737 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6738 return;
6739 }
6740
6741 /*
6742 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6743 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6744 * moving them.
6745 */
6746
63b2ca30 6747 capa_now += busiest->group_capacity *
56cf515b 6748 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6749 capa_now += local->group_capacity *
56cf515b 6750 min(local->load_per_task, local->avg_load);
ca8ce3d0 6751 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6752
6753 /* Amount of load we'd subtract */
a2cd4260 6754 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6755 capa_move += busiest->group_capacity *
56cf515b 6756 min(busiest->load_per_task,
a2cd4260 6757 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6758 }
1e3c88bd
PZ
6759
6760 /* Amount of load we'd add */
63b2ca30 6761 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6762 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6763 tmp = (busiest->avg_load * busiest->group_capacity) /
6764 local->group_capacity;
56cf515b 6765 } else {
ca8ce3d0 6766 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6767 local->group_capacity;
56cf515b 6768 }
63b2ca30 6769 capa_move += local->group_capacity *
3ae11c90 6770 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6771 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6772
6773 /* Move if we gain throughput */
63b2ca30 6774 if (capa_move > capa_now)
56cf515b 6775 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6776}
6777
6778/**
6779 * calculate_imbalance - Calculate the amount of imbalance present within the
6780 * groups of a given sched_domain during load balance.
bd939f45 6781 * @env: load balance environment
1e3c88bd 6782 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6783 */
bd939f45 6784static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6785{
dd5feea1 6786 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6787 struct sg_lb_stats *local, *busiest;
6788
6789 local = &sds->local_stat;
56cf515b 6790 busiest = &sds->busiest_stat;
dd5feea1 6791
caeb178c 6792 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6793 /*
6794 * In the group_imb case we cannot rely on group-wide averages
6795 * to ensure cpu-load equilibrium, look at wider averages. XXX
6796 */
56cf515b
JK
6797 busiest->load_per_task =
6798 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6799 }
6800
1e3c88bd
PZ
6801 /*
6802 * In the presence of smp nice balancing, certain scenarios can have
6803 * max load less than avg load(as we skip the groups at or below
ced549fa 6804 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6805 */
b1885550
VD
6806 if (busiest->avg_load <= sds->avg_load ||
6807 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6808 env->imbalance = 0;
6809 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6810 }
6811
9a5d9ba6
PZ
6812 /*
6813 * If there aren't any idle cpus, avoid creating some.
6814 */
6815 if (busiest->group_type == group_overloaded &&
6816 local->group_type == group_overloaded) {
ea67821b
VG
6817 load_above_capacity = busiest->sum_nr_running *
6818 SCHED_LOAD_SCALE;
6819 if (load_above_capacity > busiest->group_capacity)
6820 load_above_capacity -= busiest->group_capacity;
6821 else
6822 load_above_capacity = ~0UL;
dd5feea1
SS
6823 }
6824
6825 /*
6826 * We're trying to get all the cpus to the average_load, so we don't
6827 * want to push ourselves above the average load, nor do we wish to
6828 * reduce the max loaded cpu below the average load. At the same time,
6829 * we also don't want to reduce the group load below the group capacity
6830 * (so that we can implement power-savings policies etc). Thus we look
6831 * for the minimum possible imbalance.
dd5feea1 6832 */
30ce5dab 6833 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6834
6835 /* How much load to actually move to equalise the imbalance */
56cf515b 6836 env->imbalance = min(
63b2ca30
NP
6837 max_pull * busiest->group_capacity,
6838 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6839 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6840
6841 /*
6842 * if *imbalance is less than the average load per runnable task
25985edc 6843 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6844 * a think about bumping its value to force at least one task to be
6845 * moved
6846 */
56cf515b 6847 if (env->imbalance < busiest->load_per_task)
bd939f45 6848 return fix_small_imbalance(env, sds);
1e3c88bd 6849}
fab47622 6850
1e3c88bd
PZ
6851/******* find_busiest_group() helpers end here *********************/
6852
6853/**
6854 * find_busiest_group - Returns the busiest group within the sched_domain
6855 * if there is an imbalance. If there isn't an imbalance, and
6856 * the user has opted for power-savings, it returns a group whose
6857 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6858 * such a group exists.
6859 *
6860 * Also calculates the amount of weighted load which should be moved
6861 * to restore balance.
6862 *
cd96891d 6863 * @env: The load balancing environment.
1e3c88bd 6864 *
e69f6186 6865 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6866 * - If no imbalance and user has opted for power-savings balance,
6867 * return the least loaded group whose CPUs can be
6868 * put to idle by rebalancing its tasks onto our group.
6869 */
56cf515b 6870static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6871{
56cf515b 6872 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6873 struct sd_lb_stats sds;
6874
147c5fc2 6875 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6876
6877 /*
6878 * Compute the various statistics relavent for load balancing at
6879 * this level.
6880 */
23f0d209 6881 update_sd_lb_stats(env, &sds);
56cf515b
JK
6882 local = &sds.local_stat;
6883 busiest = &sds.busiest_stat;
1e3c88bd 6884
ea67821b 6885 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6886 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6887 check_asym_packing(env, &sds))
532cb4c4
MN
6888 return sds.busiest;
6889
cc57aa8f 6890 /* There is no busy sibling group to pull tasks from */
56cf515b 6891 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6892 goto out_balanced;
6893
ca8ce3d0
NP
6894 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6895 / sds.total_capacity;
b0432d8f 6896
866ab43e
PZ
6897 /*
6898 * If the busiest group is imbalanced the below checks don't
30ce5dab 6899 * work because they assume all things are equal, which typically
866ab43e
PZ
6900 * isn't true due to cpus_allowed constraints and the like.
6901 */
caeb178c 6902 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6903 goto force_balance;
6904
cc57aa8f 6905 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6906 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6907 busiest->group_no_capacity)
fab47622
NR
6908 goto force_balance;
6909
cc57aa8f 6910 /*
9c58c79a 6911 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6912 * don't try and pull any tasks.
6913 */
56cf515b 6914 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6915 goto out_balanced;
6916
cc57aa8f
PZ
6917 /*
6918 * Don't pull any tasks if this group is already above the domain
6919 * average load.
6920 */
56cf515b 6921 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6922 goto out_balanced;
6923
bd939f45 6924 if (env->idle == CPU_IDLE) {
aae6d3dd 6925 /*
43f4d666
VG
6926 * This cpu is idle. If the busiest group is not overloaded
6927 * and there is no imbalance between this and busiest group
6928 * wrt idle cpus, it is balanced. The imbalance becomes
6929 * significant if the diff is greater than 1 otherwise we
6930 * might end up to just move the imbalance on another group
aae6d3dd 6931 */
43f4d666
VG
6932 if ((busiest->group_type != group_overloaded) &&
6933 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6934 goto out_balanced;
c186fafe
PZ
6935 } else {
6936 /*
6937 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6938 * imbalance_pct to be conservative.
6939 */
56cf515b
JK
6940 if (100 * busiest->avg_load <=
6941 env->sd->imbalance_pct * local->avg_load)
c186fafe 6942 goto out_balanced;
aae6d3dd 6943 }
1e3c88bd 6944
fab47622 6945force_balance:
1e3c88bd 6946 /* Looks like there is an imbalance. Compute it */
bd939f45 6947 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6948 return sds.busiest;
6949
6950out_balanced:
bd939f45 6951 env->imbalance = 0;
1e3c88bd
PZ
6952 return NULL;
6953}
6954
6955/*
6956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6957 */
bd939f45 6958static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6959 struct sched_group *group)
1e3c88bd
PZ
6960{
6961 struct rq *busiest = NULL, *rq;
ced549fa 6962 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6963 int i;
6964
6906a408 6965 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6966 unsigned long capacity, wl;
0ec8aa00
PZ
6967 enum fbq_type rt;
6968
6969 rq = cpu_rq(i);
6970 rt = fbq_classify_rq(rq);
1e3c88bd 6971
0ec8aa00
PZ
6972 /*
6973 * We classify groups/runqueues into three groups:
6974 * - regular: there are !numa tasks
6975 * - remote: there are numa tasks that run on the 'wrong' node
6976 * - all: there is no distinction
6977 *
6978 * In order to avoid migrating ideally placed numa tasks,
6979 * ignore those when there's better options.
6980 *
6981 * If we ignore the actual busiest queue to migrate another
6982 * task, the next balance pass can still reduce the busiest
6983 * queue by moving tasks around inside the node.
6984 *
6985 * If we cannot move enough load due to this classification
6986 * the next pass will adjust the group classification and
6987 * allow migration of more tasks.
6988 *
6989 * Both cases only affect the total convergence complexity.
6990 */
6991 if (rt > env->fbq_type)
6992 continue;
6993
ced549fa 6994 capacity = capacity_of(i);
9d5efe05 6995
6e40f5bb 6996 wl = weighted_cpuload(i);
1e3c88bd 6997
6e40f5bb
TG
6998 /*
6999 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7000 * which is not scaled with the cpu capacity.
6e40f5bb 7001 */
ea67821b
VG
7002
7003 if (rq->nr_running == 1 && wl > env->imbalance &&
7004 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7005 continue;
7006
6e40f5bb
TG
7007 /*
7008 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7009 * the weighted_cpuload() scaled with the cpu capacity, so
7010 * that the load can be moved away from the cpu that is
7011 * potentially running at a lower capacity.
95a79b80 7012 *
ced549fa 7013 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7014 * multiplication to rid ourselves of the division works out
ced549fa
NP
7015 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7016 * our previous maximum.
6e40f5bb 7017 */
ced549fa 7018 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7019 busiest_load = wl;
ced549fa 7020 busiest_capacity = capacity;
1e3c88bd
PZ
7021 busiest = rq;
7022 }
7023 }
7024
7025 return busiest;
7026}
7027
7028/*
7029 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7030 * so long as it is large enough.
7031 */
7032#define MAX_PINNED_INTERVAL 512
7033
7034/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7035DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7036
bd939f45 7037static int need_active_balance(struct lb_env *env)
1af3ed3d 7038{
bd939f45
PZ
7039 struct sched_domain *sd = env->sd;
7040
7041 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7042
7043 /*
7044 * ASYM_PACKING needs to force migrate tasks from busy but
7045 * higher numbered CPUs in order to pack all tasks in the
7046 * lowest numbered CPUs.
7047 */
bd939f45 7048 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7049 return 1;
1af3ed3d
PZ
7050 }
7051
1aaf90a4
VG
7052 /*
7053 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7054 * It's worth migrating the task if the src_cpu's capacity is reduced
7055 * because of other sched_class or IRQs if more capacity stays
7056 * available on dst_cpu.
7057 */
7058 if ((env->idle != CPU_NOT_IDLE) &&
7059 (env->src_rq->cfs.h_nr_running == 1)) {
7060 if ((check_cpu_capacity(env->src_rq, sd)) &&
7061 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7062 return 1;
7063 }
7064
1af3ed3d
PZ
7065 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7066}
7067
969c7921
TH
7068static int active_load_balance_cpu_stop(void *data);
7069
23f0d209
JK
7070static int should_we_balance(struct lb_env *env)
7071{
7072 struct sched_group *sg = env->sd->groups;
7073 struct cpumask *sg_cpus, *sg_mask;
7074 int cpu, balance_cpu = -1;
7075
7076 /*
7077 * In the newly idle case, we will allow all the cpu's
7078 * to do the newly idle load balance.
7079 */
7080 if (env->idle == CPU_NEWLY_IDLE)
7081 return 1;
7082
7083 sg_cpus = sched_group_cpus(sg);
7084 sg_mask = sched_group_mask(sg);
7085 /* Try to find first idle cpu */
7086 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7087 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7088 continue;
7089
7090 balance_cpu = cpu;
7091 break;
7092 }
7093
7094 if (balance_cpu == -1)
7095 balance_cpu = group_balance_cpu(sg);
7096
7097 /*
7098 * First idle cpu or the first cpu(busiest) in this sched group
7099 * is eligible for doing load balancing at this and above domains.
7100 */
b0cff9d8 7101 return balance_cpu == env->dst_cpu;
23f0d209
JK
7102}
7103
1e3c88bd
PZ
7104/*
7105 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7106 * tasks if there is an imbalance.
7107 */
7108static int load_balance(int this_cpu, struct rq *this_rq,
7109 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7110 int *continue_balancing)
1e3c88bd 7111{
88b8dac0 7112 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7113 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7114 struct sched_group *group;
1e3c88bd
PZ
7115 struct rq *busiest;
7116 unsigned long flags;
4ba29684 7117 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7118
8e45cb54
PZ
7119 struct lb_env env = {
7120 .sd = sd,
ddcdf6e7
PZ
7121 .dst_cpu = this_cpu,
7122 .dst_rq = this_rq,
88b8dac0 7123 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7124 .idle = idle,
eb95308e 7125 .loop_break = sched_nr_migrate_break,
b9403130 7126 .cpus = cpus,
0ec8aa00 7127 .fbq_type = all,
163122b7 7128 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7129 };
7130
cfc03118
JK
7131 /*
7132 * For NEWLY_IDLE load_balancing, we don't need to consider
7133 * other cpus in our group
7134 */
e02e60c1 7135 if (idle == CPU_NEWLY_IDLE)
cfc03118 7136 env.dst_grpmask = NULL;
cfc03118 7137
1e3c88bd
PZ
7138 cpumask_copy(cpus, cpu_active_mask);
7139
1e3c88bd
PZ
7140 schedstat_inc(sd, lb_count[idle]);
7141
7142redo:
23f0d209
JK
7143 if (!should_we_balance(&env)) {
7144 *continue_balancing = 0;
1e3c88bd 7145 goto out_balanced;
23f0d209 7146 }
1e3c88bd 7147
23f0d209 7148 group = find_busiest_group(&env);
1e3c88bd
PZ
7149 if (!group) {
7150 schedstat_inc(sd, lb_nobusyg[idle]);
7151 goto out_balanced;
7152 }
7153
b9403130 7154 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7155 if (!busiest) {
7156 schedstat_inc(sd, lb_nobusyq[idle]);
7157 goto out_balanced;
7158 }
7159
78feefc5 7160 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7161
bd939f45 7162 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7163
1aaf90a4
VG
7164 env.src_cpu = busiest->cpu;
7165 env.src_rq = busiest;
7166
1e3c88bd
PZ
7167 ld_moved = 0;
7168 if (busiest->nr_running > 1) {
7169 /*
7170 * Attempt to move tasks. If find_busiest_group has found
7171 * an imbalance but busiest->nr_running <= 1, the group is
7172 * still unbalanced. ld_moved simply stays zero, so it is
7173 * correctly treated as an imbalance.
7174 */
8e45cb54 7175 env.flags |= LBF_ALL_PINNED;
c82513e5 7176 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7177
5d6523eb 7178more_balance:
163122b7 7179 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7180
7181 /*
7182 * cur_ld_moved - load moved in current iteration
7183 * ld_moved - cumulative load moved across iterations
7184 */
163122b7 7185 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7186
7187 /*
163122b7
KT
7188 * We've detached some tasks from busiest_rq. Every
7189 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7190 * unlock busiest->lock, and we are able to be sure
7191 * that nobody can manipulate the tasks in parallel.
7192 * See task_rq_lock() family for the details.
1e3c88bd 7193 */
163122b7
KT
7194
7195 raw_spin_unlock(&busiest->lock);
7196
7197 if (cur_ld_moved) {
7198 attach_tasks(&env);
7199 ld_moved += cur_ld_moved;
7200 }
7201
1e3c88bd 7202 local_irq_restore(flags);
88b8dac0 7203
f1cd0858
JK
7204 if (env.flags & LBF_NEED_BREAK) {
7205 env.flags &= ~LBF_NEED_BREAK;
7206 goto more_balance;
7207 }
7208
88b8dac0
SV
7209 /*
7210 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7211 * us and move them to an alternate dst_cpu in our sched_group
7212 * where they can run. The upper limit on how many times we
7213 * iterate on same src_cpu is dependent on number of cpus in our
7214 * sched_group.
7215 *
7216 * This changes load balance semantics a bit on who can move
7217 * load to a given_cpu. In addition to the given_cpu itself
7218 * (or a ilb_cpu acting on its behalf where given_cpu is
7219 * nohz-idle), we now have balance_cpu in a position to move
7220 * load to given_cpu. In rare situations, this may cause
7221 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7222 * _independently_ and at _same_ time to move some load to
7223 * given_cpu) causing exceess load to be moved to given_cpu.
7224 * This however should not happen so much in practice and
7225 * moreover subsequent load balance cycles should correct the
7226 * excess load moved.
7227 */
6263322c 7228 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7229
7aff2e3a
VD
7230 /* Prevent to re-select dst_cpu via env's cpus */
7231 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7232
78feefc5 7233 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7234 env.dst_cpu = env.new_dst_cpu;
6263322c 7235 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7236 env.loop = 0;
7237 env.loop_break = sched_nr_migrate_break;
e02e60c1 7238
88b8dac0
SV
7239 /*
7240 * Go back to "more_balance" rather than "redo" since we
7241 * need to continue with same src_cpu.
7242 */
7243 goto more_balance;
7244 }
1e3c88bd 7245
6263322c
PZ
7246 /*
7247 * We failed to reach balance because of affinity.
7248 */
7249 if (sd_parent) {
63b2ca30 7250 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7251
afdeee05 7252 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7253 *group_imbalance = 1;
6263322c
PZ
7254 }
7255
1e3c88bd 7256 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7257 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7258 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7259 if (!cpumask_empty(cpus)) {
7260 env.loop = 0;
7261 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7262 goto redo;
bbf18b19 7263 }
afdeee05 7264 goto out_all_pinned;
1e3c88bd
PZ
7265 }
7266 }
7267
7268 if (!ld_moved) {
7269 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7270 /*
7271 * Increment the failure counter only on periodic balance.
7272 * We do not want newidle balance, which can be very
7273 * frequent, pollute the failure counter causing
7274 * excessive cache_hot migrations and active balances.
7275 */
7276 if (idle != CPU_NEWLY_IDLE)
7277 sd->nr_balance_failed++;
1e3c88bd 7278
bd939f45 7279 if (need_active_balance(&env)) {
1e3c88bd
PZ
7280 raw_spin_lock_irqsave(&busiest->lock, flags);
7281
969c7921
TH
7282 /* don't kick the active_load_balance_cpu_stop,
7283 * if the curr task on busiest cpu can't be
7284 * moved to this_cpu
1e3c88bd
PZ
7285 */
7286 if (!cpumask_test_cpu(this_cpu,
fa17b507 7287 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7288 raw_spin_unlock_irqrestore(&busiest->lock,
7289 flags);
8e45cb54 7290 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7291 goto out_one_pinned;
7292 }
7293
969c7921
TH
7294 /*
7295 * ->active_balance synchronizes accesses to
7296 * ->active_balance_work. Once set, it's cleared
7297 * only after active load balance is finished.
7298 */
1e3c88bd
PZ
7299 if (!busiest->active_balance) {
7300 busiest->active_balance = 1;
7301 busiest->push_cpu = this_cpu;
7302 active_balance = 1;
7303 }
7304 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7305
bd939f45 7306 if (active_balance) {
969c7921
TH
7307 stop_one_cpu_nowait(cpu_of(busiest),
7308 active_load_balance_cpu_stop, busiest,
7309 &busiest->active_balance_work);
bd939f45 7310 }
1e3c88bd
PZ
7311
7312 /*
7313 * We've kicked active balancing, reset the failure
7314 * counter.
7315 */
7316 sd->nr_balance_failed = sd->cache_nice_tries+1;
7317 }
7318 } else
7319 sd->nr_balance_failed = 0;
7320
7321 if (likely(!active_balance)) {
7322 /* We were unbalanced, so reset the balancing interval */
7323 sd->balance_interval = sd->min_interval;
7324 } else {
7325 /*
7326 * If we've begun active balancing, start to back off. This
7327 * case may not be covered by the all_pinned logic if there
7328 * is only 1 task on the busy runqueue (because we don't call
163122b7 7329 * detach_tasks).
1e3c88bd
PZ
7330 */
7331 if (sd->balance_interval < sd->max_interval)
7332 sd->balance_interval *= 2;
7333 }
7334
1e3c88bd
PZ
7335 goto out;
7336
7337out_balanced:
afdeee05
VG
7338 /*
7339 * We reach balance although we may have faced some affinity
7340 * constraints. Clear the imbalance flag if it was set.
7341 */
7342 if (sd_parent) {
7343 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7344
7345 if (*group_imbalance)
7346 *group_imbalance = 0;
7347 }
7348
7349out_all_pinned:
7350 /*
7351 * We reach balance because all tasks are pinned at this level so
7352 * we can't migrate them. Let the imbalance flag set so parent level
7353 * can try to migrate them.
7354 */
1e3c88bd
PZ
7355 schedstat_inc(sd, lb_balanced[idle]);
7356
7357 sd->nr_balance_failed = 0;
7358
7359out_one_pinned:
7360 /* tune up the balancing interval */
8e45cb54 7361 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7362 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7363 (sd->balance_interval < sd->max_interval))
7364 sd->balance_interval *= 2;
7365
46e49b38 7366 ld_moved = 0;
1e3c88bd 7367out:
1e3c88bd
PZ
7368 return ld_moved;
7369}
7370
52a08ef1
JL
7371static inline unsigned long
7372get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7373{
7374 unsigned long interval = sd->balance_interval;
7375
7376 if (cpu_busy)
7377 interval *= sd->busy_factor;
7378
7379 /* scale ms to jiffies */
7380 interval = msecs_to_jiffies(interval);
7381 interval = clamp(interval, 1UL, max_load_balance_interval);
7382
7383 return interval;
7384}
7385
7386static inline void
7387update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7388{
7389 unsigned long interval, next;
7390
7391 interval = get_sd_balance_interval(sd, cpu_busy);
7392 next = sd->last_balance + interval;
7393
7394 if (time_after(*next_balance, next))
7395 *next_balance = next;
7396}
7397
1e3c88bd
PZ
7398/*
7399 * idle_balance is called by schedule() if this_cpu is about to become
7400 * idle. Attempts to pull tasks from other CPUs.
7401 */
6e83125c 7402static int idle_balance(struct rq *this_rq)
1e3c88bd 7403{
52a08ef1
JL
7404 unsigned long next_balance = jiffies + HZ;
7405 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7406 struct sched_domain *sd;
7407 int pulled_task = 0;
9bd721c5 7408 u64 curr_cost = 0;
1e3c88bd 7409
6e83125c 7410 idle_enter_fair(this_rq);
0e5b5337 7411
6e83125c
PZ
7412 /*
7413 * We must set idle_stamp _before_ calling idle_balance(), such that we
7414 * measure the duration of idle_balance() as idle time.
7415 */
7416 this_rq->idle_stamp = rq_clock(this_rq);
7417
4486edd1
TC
7418 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7419 !this_rq->rd->overload) {
52a08ef1
JL
7420 rcu_read_lock();
7421 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7422 if (sd)
7423 update_next_balance(sd, 0, &next_balance);
7424 rcu_read_unlock();
7425
6e83125c 7426 goto out;
52a08ef1 7427 }
1e3c88bd 7428
f492e12e
PZ
7429 /*
7430 * Drop the rq->lock, but keep IRQ/preempt disabled.
7431 */
7432 raw_spin_unlock(&this_rq->lock);
7433
48a16753 7434 update_blocked_averages(this_cpu);
dce840a0 7435 rcu_read_lock();
1e3c88bd 7436 for_each_domain(this_cpu, sd) {
23f0d209 7437 int continue_balancing = 1;
9bd721c5 7438 u64 t0, domain_cost;
1e3c88bd
PZ
7439
7440 if (!(sd->flags & SD_LOAD_BALANCE))
7441 continue;
7442
52a08ef1
JL
7443 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7444 update_next_balance(sd, 0, &next_balance);
9bd721c5 7445 break;
52a08ef1 7446 }
9bd721c5 7447
f492e12e 7448 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7449 t0 = sched_clock_cpu(this_cpu);
7450
f492e12e 7451 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7452 sd, CPU_NEWLY_IDLE,
7453 &continue_balancing);
9bd721c5
JL
7454
7455 domain_cost = sched_clock_cpu(this_cpu) - t0;
7456 if (domain_cost > sd->max_newidle_lb_cost)
7457 sd->max_newidle_lb_cost = domain_cost;
7458
7459 curr_cost += domain_cost;
f492e12e 7460 }
1e3c88bd 7461
52a08ef1 7462 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7463
7464 /*
7465 * Stop searching for tasks to pull if there are
7466 * now runnable tasks on this rq.
7467 */
7468 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7469 break;
1e3c88bd 7470 }
dce840a0 7471 rcu_read_unlock();
f492e12e
PZ
7472
7473 raw_spin_lock(&this_rq->lock);
7474
0e5b5337
JL
7475 if (curr_cost > this_rq->max_idle_balance_cost)
7476 this_rq->max_idle_balance_cost = curr_cost;
7477
e5fc6611 7478 /*
0e5b5337
JL
7479 * While browsing the domains, we released the rq lock, a task could
7480 * have been enqueued in the meantime. Since we're not going idle,
7481 * pretend we pulled a task.
e5fc6611 7482 */
0e5b5337 7483 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7484 pulled_task = 1;
e5fc6611 7485
52a08ef1
JL
7486out:
7487 /* Move the next balance forward */
7488 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7489 this_rq->next_balance = next_balance;
9bd721c5 7490
e4aa358b 7491 /* Is there a task of a high priority class? */
46383648 7492 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7493 pulled_task = -1;
7494
7495 if (pulled_task) {
7496 idle_exit_fair(this_rq);
6e83125c 7497 this_rq->idle_stamp = 0;
e4aa358b 7498 }
6e83125c 7499
3c4017c1 7500 return pulled_task;
1e3c88bd
PZ
7501}
7502
7503/*
969c7921
TH
7504 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7505 * running tasks off the busiest CPU onto idle CPUs. It requires at
7506 * least 1 task to be running on each physical CPU where possible, and
7507 * avoids physical / logical imbalances.
1e3c88bd 7508 */
969c7921 7509static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7510{
969c7921
TH
7511 struct rq *busiest_rq = data;
7512 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7513 int target_cpu = busiest_rq->push_cpu;
969c7921 7514 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7515 struct sched_domain *sd;
e5673f28 7516 struct task_struct *p = NULL;
969c7921
TH
7517
7518 raw_spin_lock_irq(&busiest_rq->lock);
7519
7520 /* make sure the requested cpu hasn't gone down in the meantime */
7521 if (unlikely(busiest_cpu != smp_processor_id() ||
7522 !busiest_rq->active_balance))
7523 goto out_unlock;
1e3c88bd
PZ
7524
7525 /* Is there any task to move? */
7526 if (busiest_rq->nr_running <= 1)
969c7921 7527 goto out_unlock;
1e3c88bd
PZ
7528
7529 /*
7530 * This condition is "impossible", if it occurs
7531 * we need to fix it. Originally reported by
7532 * Bjorn Helgaas on a 128-cpu setup.
7533 */
7534 BUG_ON(busiest_rq == target_rq);
7535
1e3c88bd 7536 /* Search for an sd spanning us and the target CPU. */
dce840a0 7537 rcu_read_lock();
1e3c88bd
PZ
7538 for_each_domain(target_cpu, sd) {
7539 if ((sd->flags & SD_LOAD_BALANCE) &&
7540 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7541 break;
7542 }
7543
7544 if (likely(sd)) {
8e45cb54
PZ
7545 struct lb_env env = {
7546 .sd = sd,
ddcdf6e7
PZ
7547 .dst_cpu = target_cpu,
7548 .dst_rq = target_rq,
7549 .src_cpu = busiest_rq->cpu,
7550 .src_rq = busiest_rq,
8e45cb54
PZ
7551 .idle = CPU_IDLE,
7552 };
7553
1e3c88bd
PZ
7554 schedstat_inc(sd, alb_count);
7555
e5673f28
KT
7556 p = detach_one_task(&env);
7557 if (p)
1e3c88bd
PZ
7558 schedstat_inc(sd, alb_pushed);
7559 else
7560 schedstat_inc(sd, alb_failed);
7561 }
dce840a0 7562 rcu_read_unlock();
969c7921
TH
7563out_unlock:
7564 busiest_rq->active_balance = 0;
e5673f28
KT
7565 raw_spin_unlock(&busiest_rq->lock);
7566
7567 if (p)
7568 attach_one_task(target_rq, p);
7569
7570 local_irq_enable();
7571
969c7921 7572 return 0;
1e3c88bd
PZ
7573}
7574
d987fc7f
MG
7575static inline int on_null_domain(struct rq *rq)
7576{
7577 return unlikely(!rcu_dereference_sched(rq->sd));
7578}
7579
3451d024 7580#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7581/*
7582 * idle load balancing details
83cd4fe2
VP
7583 * - When one of the busy CPUs notice that there may be an idle rebalancing
7584 * needed, they will kick the idle load balancer, which then does idle
7585 * load balancing for all the idle CPUs.
7586 */
1e3c88bd 7587static struct {
83cd4fe2 7588 cpumask_var_t idle_cpus_mask;
0b005cf5 7589 atomic_t nr_cpus;
83cd4fe2
VP
7590 unsigned long next_balance; /* in jiffy units */
7591} nohz ____cacheline_aligned;
1e3c88bd 7592
3dd0337d 7593static inline int find_new_ilb(void)
1e3c88bd 7594{
0b005cf5 7595 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7596
786d6dc7
SS
7597 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7598 return ilb;
7599
7600 return nr_cpu_ids;
1e3c88bd 7601}
1e3c88bd 7602
83cd4fe2
VP
7603/*
7604 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7605 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7606 * CPU (if there is one).
7607 */
0aeeeeba 7608static void nohz_balancer_kick(void)
83cd4fe2
VP
7609{
7610 int ilb_cpu;
7611
7612 nohz.next_balance++;
7613
3dd0337d 7614 ilb_cpu = find_new_ilb();
83cd4fe2 7615
0b005cf5
SS
7616 if (ilb_cpu >= nr_cpu_ids)
7617 return;
83cd4fe2 7618
cd490c5b 7619 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7620 return;
7621 /*
7622 * Use smp_send_reschedule() instead of resched_cpu().
7623 * This way we generate a sched IPI on the target cpu which
7624 * is idle. And the softirq performing nohz idle load balance
7625 * will be run before returning from the IPI.
7626 */
7627 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7628 return;
7629}
7630
c1cc017c 7631static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7632{
7633 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7634 /*
7635 * Completely isolated CPUs don't ever set, so we must test.
7636 */
7637 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7638 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7639 atomic_dec(&nohz.nr_cpus);
7640 }
71325960
SS
7641 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7642 }
7643}
7644
69e1e811
SS
7645static inline void set_cpu_sd_state_busy(void)
7646{
7647 struct sched_domain *sd;
37dc6b50 7648 int cpu = smp_processor_id();
69e1e811 7649
69e1e811 7650 rcu_read_lock();
37dc6b50 7651 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7652
7653 if (!sd || !sd->nohz_idle)
7654 goto unlock;
7655 sd->nohz_idle = 0;
7656
63b2ca30 7657 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7658unlock:
69e1e811
SS
7659 rcu_read_unlock();
7660}
7661
7662void set_cpu_sd_state_idle(void)
7663{
7664 struct sched_domain *sd;
37dc6b50 7665 int cpu = smp_processor_id();
69e1e811 7666
69e1e811 7667 rcu_read_lock();
37dc6b50 7668 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7669
7670 if (!sd || sd->nohz_idle)
7671 goto unlock;
7672 sd->nohz_idle = 1;
7673
63b2ca30 7674 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7675unlock:
69e1e811
SS
7676 rcu_read_unlock();
7677}
7678
1e3c88bd 7679/*
c1cc017c 7680 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7681 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7682 */
c1cc017c 7683void nohz_balance_enter_idle(int cpu)
1e3c88bd 7684{
71325960
SS
7685 /*
7686 * If this cpu is going down, then nothing needs to be done.
7687 */
7688 if (!cpu_active(cpu))
7689 return;
7690
c1cc017c
AS
7691 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7692 return;
1e3c88bd 7693
d987fc7f
MG
7694 /*
7695 * If we're a completely isolated CPU, we don't play.
7696 */
7697 if (on_null_domain(cpu_rq(cpu)))
7698 return;
7699
c1cc017c
AS
7700 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7701 atomic_inc(&nohz.nr_cpus);
7702 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7703}
71325960 7704
0db0628d 7705static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7706 unsigned long action, void *hcpu)
7707{
7708 switch (action & ~CPU_TASKS_FROZEN) {
7709 case CPU_DYING:
c1cc017c 7710 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7711 return NOTIFY_OK;
7712 default:
7713 return NOTIFY_DONE;
7714 }
7715}
1e3c88bd
PZ
7716#endif
7717
7718static DEFINE_SPINLOCK(balancing);
7719
49c022e6
PZ
7720/*
7721 * Scale the max load_balance interval with the number of CPUs in the system.
7722 * This trades load-balance latency on larger machines for less cross talk.
7723 */
029632fb 7724void update_max_interval(void)
49c022e6
PZ
7725{
7726 max_load_balance_interval = HZ*num_online_cpus()/10;
7727}
7728
1e3c88bd
PZ
7729/*
7730 * It checks each scheduling domain to see if it is due to be balanced,
7731 * and initiates a balancing operation if so.
7732 *
b9b0853a 7733 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7734 */
f7ed0a89 7735static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7736{
23f0d209 7737 int continue_balancing = 1;
f7ed0a89 7738 int cpu = rq->cpu;
1e3c88bd 7739 unsigned long interval;
04f733b4 7740 struct sched_domain *sd;
1e3c88bd
PZ
7741 /* Earliest time when we have to do rebalance again */
7742 unsigned long next_balance = jiffies + 60*HZ;
7743 int update_next_balance = 0;
f48627e6
JL
7744 int need_serialize, need_decay = 0;
7745 u64 max_cost = 0;
1e3c88bd 7746
48a16753 7747 update_blocked_averages(cpu);
2069dd75 7748
dce840a0 7749 rcu_read_lock();
1e3c88bd 7750 for_each_domain(cpu, sd) {
f48627e6
JL
7751 /*
7752 * Decay the newidle max times here because this is a regular
7753 * visit to all the domains. Decay ~1% per second.
7754 */
7755 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7756 sd->max_newidle_lb_cost =
7757 (sd->max_newidle_lb_cost * 253) / 256;
7758 sd->next_decay_max_lb_cost = jiffies + HZ;
7759 need_decay = 1;
7760 }
7761 max_cost += sd->max_newidle_lb_cost;
7762
1e3c88bd
PZ
7763 if (!(sd->flags & SD_LOAD_BALANCE))
7764 continue;
7765
f48627e6
JL
7766 /*
7767 * Stop the load balance at this level. There is another
7768 * CPU in our sched group which is doing load balancing more
7769 * actively.
7770 */
7771 if (!continue_balancing) {
7772 if (need_decay)
7773 continue;
7774 break;
7775 }
7776
52a08ef1 7777 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7778
7779 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7780 if (need_serialize) {
7781 if (!spin_trylock(&balancing))
7782 goto out;
7783 }
7784
7785 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7786 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7787 /*
6263322c 7788 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7789 * env->dst_cpu, so we can't know our idle
7790 * state even if we migrated tasks. Update it.
1e3c88bd 7791 */
de5eb2dd 7792 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7793 }
7794 sd->last_balance = jiffies;
52a08ef1 7795 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7796 }
7797 if (need_serialize)
7798 spin_unlock(&balancing);
7799out:
7800 if (time_after(next_balance, sd->last_balance + interval)) {
7801 next_balance = sd->last_balance + interval;
7802 update_next_balance = 1;
7803 }
f48627e6
JL
7804 }
7805 if (need_decay) {
1e3c88bd 7806 /*
f48627e6
JL
7807 * Ensure the rq-wide value also decays but keep it at a
7808 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7809 */
f48627e6
JL
7810 rq->max_idle_balance_cost =
7811 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7812 }
dce840a0 7813 rcu_read_unlock();
1e3c88bd
PZ
7814
7815 /*
7816 * next_balance will be updated only when there is a need.
7817 * When the cpu is attached to null domain for ex, it will not be
7818 * updated.
7819 */
7820 if (likely(update_next_balance))
7821 rq->next_balance = next_balance;
7822}
7823
3451d024 7824#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7825/*
3451d024 7826 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7827 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7828 */
208cb16b 7829static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7830{
208cb16b 7831 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7832 struct rq *rq;
7833 int balance_cpu;
7834
1c792db7
SS
7835 if (idle != CPU_IDLE ||
7836 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7837 goto end;
83cd4fe2
VP
7838
7839 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7840 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7841 continue;
7842
7843 /*
7844 * If this cpu gets work to do, stop the load balancing
7845 * work being done for other cpus. Next load
7846 * balancing owner will pick it up.
7847 */
1c792db7 7848 if (need_resched())
83cd4fe2 7849 break;
83cd4fe2 7850
5ed4f1d9
VG
7851 rq = cpu_rq(balance_cpu);
7852
ed61bbc6
TC
7853 /*
7854 * If time for next balance is due,
7855 * do the balance.
7856 */
7857 if (time_after_eq(jiffies, rq->next_balance)) {
7858 raw_spin_lock_irq(&rq->lock);
7859 update_rq_clock(rq);
7860 update_idle_cpu_load(rq);
7861 raw_spin_unlock_irq(&rq->lock);
7862 rebalance_domains(rq, CPU_IDLE);
7863 }
83cd4fe2 7864
83cd4fe2
VP
7865 if (time_after(this_rq->next_balance, rq->next_balance))
7866 this_rq->next_balance = rq->next_balance;
7867 }
7868 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7869end:
7870 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7871}
7872
7873/*
0b005cf5 7874 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7875 * of an idle cpu in the system.
0b005cf5 7876 * - This rq has more than one task.
1aaf90a4
VG
7877 * - This rq has at least one CFS task and the capacity of the CPU is
7878 * significantly reduced because of RT tasks or IRQs.
7879 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7880 * multiple busy cpu.
0b005cf5
SS
7881 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7882 * domain span are idle.
83cd4fe2 7883 */
1aaf90a4 7884static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7885{
7886 unsigned long now = jiffies;
0b005cf5 7887 struct sched_domain *sd;
63b2ca30 7888 struct sched_group_capacity *sgc;
4a725627 7889 int nr_busy, cpu = rq->cpu;
1aaf90a4 7890 bool kick = false;
83cd4fe2 7891
4a725627 7892 if (unlikely(rq->idle_balance))
1aaf90a4 7893 return false;
83cd4fe2 7894
1c792db7
SS
7895 /*
7896 * We may be recently in ticked or tickless idle mode. At the first
7897 * busy tick after returning from idle, we will update the busy stats.
7898 */
69e1e811 7899 set_cpu_sd_state_busy();
c1cc017c 7900 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7901
7902 /*
7903 * None are in tickless mode and hence no need for NOHZ idle load
7904 * balancing.
7905 */
7906 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7907 return false;
1c792db7
SS
7908
7909 if (time_before(now, nohz.next_balance))
1aaf90a4 7910 return false;
83cd4fe2 7911
0b005cf5 7912 if (rq->nr_running >= 2)
1aaf90a4 7913 return true;
83cd4fe2 7914
067491b7 7915 rcu_read_lock();
37dc6b50 7916 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7917 if (sd) {
63b2ca30
NP
7918 sgc = sd->groups->sgc;
7919 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7920
1aaf90a4
VG
7921 if (nr_busy > 1) {
7922 kick = true;
7923 goto unlock;
7924 }
7925
83cd4fe2 7926 }
37dc6b50 7927
1aaf90a4
VG
7928 sd = rcu_dereference(rq->sd);
7929 if (sd) {
7930 if ((rq->cfs.h_nr_running >= 1) &&
7931 check_cpu_capacity(rq, sd)) {
7932 kick = true;
7933 goto unlock;
7934 }
7935 }
37dc6b50 7936
1aaf90a4 7937 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7938 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7939 sched_domain_span(sd)) < cpu)) {
7940 kick = true;
7941 goto unlock;
7942 }
067491b7 7943
1aaf90a4 7944unlock:
067491b7 7945 rcu_read_unlock();
1aaf90a4 7946 return kick;
83cd4fe2
VP
7947}
7948#else
208cb16b 7949static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7950#endif
7951
7952/*
7953 * run_rebalance_domains is triggered when needed from the scheduler tick.
7954 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7955 */
1e3c88bd
PZ
7956static void run_rebalance_domains(struct softirq_action *h)
7957{
208cb16b 7958 struct rq *this_rq = this_rq();
6eb57e0d 7959 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7960 CPU_IDLE : CPU_NOT_IDLE;
7961
1e3c88bd 7962 /*
83cd4fe2 7963 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7964 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7965 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7966 * give the idle cpus a chance to load balance. Else we may
7967 * load balance only within the local sched_domain hierarchy
7968 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7969 */
208cb16b 7970 nohz_idle_balance(this_rq, idle);
d4573c3e 7971 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7972}
7973
1e3c88bd
PZ
7974/*
7975 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7976 */
7caff66f 7977void trigger_load_balance(struct rq *rq)
1e3c88bd 7978{
1e3c88bd 7979 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7980 if (unlikely(on_null_domain(rq)))
7981 return;
7982
7983 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7984 raise_softirq(SCHED_SOFTIRQ);
3451d024 7985#ifdef CONFIG_NO_HZ_COMMON
c726099e 7986 if (nohz_kick_needed(rq))
0aeeeeba 7987 nohz_balancer_kick();
83cd4fe2 7988#endif
1e3c88bd
PZ
7989}
7990
0bcdcf28
CE
7991static void rq_online_fair(struct rq *rq)
7992{
7993 update_sysctl();
0e59bdae
KT
7994
7995 update_runtime_enabled(rq);
0bcdcf28
CE
7996}
7997
7998static void rq_offline_fair(struct rq *rq)
7999{
8000 update_sysctl();
a4c96ae3
PB
8001
8002 /* Ensure any throttled groups are reachable by pick_next_task */
8003 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8004}
8005
55e12e5e 8006#endif /* CONFIG_SMP */
e1d1484f 8007
bf0f6f24
IM
8008/*
8009 * scheduler tick hitting a task of our scheduling class:
8010 */
8f4d37ec 8011static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8012{
8013 struct cfs_rq *cfs_rq;
8014 struct sched_entity *se = &curr->se;
8015
8016 for_each_sched_entity(se) {
8017 cfs_rq = cfs_rq_of(se);
8f4d37ec 8018 entity_tick(cfs_rq, se, queued);
bf0f6f24 8019 }
18bf2805 8020
10e84b97 8021 if (numabalancing_enabled)
cbee9f88 8022 task_tick_numa(rq, curr);
3d59eebc 8023
18bf2805 8024 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
8025}
8026
8027/*
cd29fe6f
PZ
8028 * called on fork with the child task as argument from the parent's context
8029 * - child not yet on the tasklist
8030 * - preemption disabled
bf0f6f24 8031 */
cd29fe6f 8032static void task_fork_fair(struct task_struct *p)
bf0f6f24 8033{
4fc420c9
DN
8034 struct cfs_rq *cfs_rq;
8035 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8036 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8037 struct rq *rq = this_rq();
8038 unsigned long flags;
8039
05fa785c 8040 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8041
861d034e
PZ
8042 update_rq_clock(rq);
8043
4fc420c9
DN
8044 cfs_rq = task_cfs_rq(current);
8045 curr = cfs_rq->curr;
8046
6c9a27f5
DN
8047 /*
8048 * Not only the cpu but also the task_group of the parent might have
8049 * been changed after parent->se.parent,cfs_rq were copied to
8050 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8051 * of child point to valid ones.
8052 */
8053 rcu_read_lock();
8054 __set_task_cpu(p, this_cpu);
8055 rcu_read_unlock();
bf0f6f24 8056
7109c442 8057 update_curr(cfs_rq);
cd29fe6f 8058
b5d9d734
MG
8059 if (curr)
8060 se->vruntime = curr->vruntime;
aeb73b04 8061 place_entity(cfs_rq, se, 1);
4d78e7b6 8062
cd29fe6f 8063 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8064 /*
edcb60a3
IM
8065 * Upon rescheduling, sched_class::put_prev_task() will place
8066 * 'current' within the tree based on its new key value.
8067 */
4d78e7b6 8068 swap(curr->vruntime, se->vruntime);
8875125e 8069 resched_curr(rq);
4d78e7b6 8070 }
bf0f6f24 8071
88ec22d3
PZ
8072 se->vruntime -= cfs_rq->min_vruntime;
8073
05fa785c 8074 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8075}
8076
cb469845
SR
8077/*
8078 * Priority of the task has changed. Check to see if we preempt
8079 * the current task.
8080 */
da7a735e
PZ
8081static void
8082prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8083{
da0c1e65 8084 if (!task_on_rq_queued(p))
da7a735e
PZ
8085 return;
8086
cb469845
SR
8087 /*
8088 * Reschedule if we are currently running on this runqueue and
8089 * our priority decreased, or if we are not currently running on
8090 * this runqueue and our priority is higher than the current's
8091 */
da7a735e 8092 if (rq->curr == p) {
cb469845 8093 if (p->prio > oldprio)
8875125e 8094 resched_curr(rq);
cb469845 8095 } else
15afe09b 8096 check_preempt_curr(rq, p, 0);
cb469845
SR
8097}
8098
da7a735e
PZ
8099static void switched_from_fair(struct rq *rq, struct task_struct *p)
8100{
8101 struct sched_entity *se = &p->se;
8102 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8103
8104 /*
791c9e02 8105 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
8106 * switched back to the fair class the enqueue_entity(.flags=0) will
8107 * do the right thing.
8108 *
da0c1e65
KT
8109 * If it's queued, then the dequeue_entity(.flags=0) will already
8110 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
8111 * the task is sleeping will it still have non-normalized vruntime.
8112 */
da0c1e65 8113 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
8114 /*
8115 * Fix up our vruntime so that the current sleep doesn't
8116 * cause 'unlimited' sleep bonus.
8117 */
8118 place_entity(cfs_rq, se, 0);
8119 se->vruntime -= cfs_rq->min_vruntime;
8120 }
9ee474f5 8121
141965c7 8122#ifdef CONFIG_SMP
9ee474f5
PT
8123 /*
8124 * Remove our load from contribution when we leave sched_fair
8125 * and ensure we don't carry in an old decay_count if we
8126 * switch back.
8127 */
87e3c8ae
KT
8128 if (se->avg.decay_count) {
8129 __synchronize_entity_decay(se);
8130 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
8131 }
8132#endif
da7a735e
PZ
8133}
8134
cb469845
SR
8135/*
8136 * We switched to the sched_fair class.
8137 */
da7a735e 8138static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 8139{
eb7a59b2 8140#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 8141 struct sched_entity *se = &p->se;
eb7a59b2
M
8142 /*
8143 * Since the real-depth could have been changed (only FAIR
8144 * class maintain depth value), reset depth properly.
8145 */
8146 se->depth = se->parent ? se->parent->depth + 1 : 0;
8147#endif
da0c1e65 8148 if (!task_on_rq_queued(p))
da7a735e
PZ
8149 return;
8150
cb469845
SR
8151 /*
8152 * We were most likely switched from sched_rt, so
8153 * kick off the schedule if running, otherwise just see
8154 * if we can still preempt the current task.
8155 */
da7a735e 8156 if (rq->curr == p)
8875125e 8157 resched_curr(rq);
cb469845 8158 else
15afe09b 8159 check_preempt_curr(rq, p, 0);
cb469845
SR
8160}
8161
83b699ed
SV
8162/* Account for a task changing its policy or group.
8163 *
8164 * This routine is mostly called to set cfs_rq->curr field when a task
8165 * migrates between groups/classes.
8166 */
8167static void set_curr_task_fair(struct rq *rq)
8168{
8169 struct sched_entity *se = &rq->curr->se;
8170
ec12cb7f
PT
8171 for_each_sched_entity(se) {
8172 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8173
8174 set_next_entity(cfs_rq, se);
8175 /* ensure bandwidth has been allocated on our new cfs_rq */
8176 account_cfs_rq_runtime(cfs_rq, 0);
8177 }
83b699ed
SV
8178}
8179
029632fb
PZ
8180void init_cfs_rq(struct cfs_rq *cfs_rq)
8181{
8182 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8183 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8184#ifndef CONFIG_64BIT
8185 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8186#endif
141965c7 8187#ifdef CONFIG_SMP
9ee474f5 8188 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 8189 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 8190#endif
029632fb
PZ
8191}
8192
810b3817 8193#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 8194static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 8195{
fed14d45 8196 struct sched_entity *se = &p->se;
aff3e498 8197 struct cfs_rq *cfs_rq;
fed14d45 8198
b2b5ce02
PZ
8199 /*
8200 * If the task was not on the rq at the time of this cgroup movement
8201 * it must have been asleep, sleeping tasks keep their ->vruntime
8202 * absolute on their old rq until wakeup (needed for the fair sleeper
8203 * bonus in place_entity()).
8204 *
8205 * If it was on the rq, we've just 'preempted' it, which does convert
8206 * ->vruntime to a relative base.
8207 *
8208 * Make sure both cases convert their relative position when migrating
8209 * to another cgroup's rq. This does somewhat interfere with the
8210 * fair sleeper stuff for the first placement, but who cares.
8211 */
7ceff013 8212 /*
da0c1e65 8213 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
8214 * But there are some cases where it has already been normalized:
8215 *
8216 * - Moving a forked child which is waiting for being woken up by
8217 * wake_up_new_task().
62af3783
DN
8218 * - Moving a task which has been woken up by try_to_wake_up() and
8219 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
8220 *
8221 * To prevent boost or penalty in the new cfs_rq caused by delta
8222 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8223 */
da0c1e65
KT
8224 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8225 queued = 1;
7ceff013 8226
da0c1e65 8227 if (!queued)
fed14d45 8228 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 8229 set_task_rq(p, task_cpu(p));
fed14d45 8230 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 8231 if (!queued) {
fed14d45
PZ
8232 cfs_rq = cfs_rq_of(se);
8233 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
8234#ifdef CONFIG_SMP
8235 /*
8236 * migrate_task_rq_fair() will have removed our previous
8237 * contribution, but we must synchronize for ongoing future
8238 * decay.
8239 */
fed14d45
PZ
8240 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8241 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
8242#endif
8243 }
810b3817 8244}
029632fb
PZ
8245
8246void free_fair_sched_group(struct task_group *tg)
8247{
8248 int i;
8249
8250 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8251
8252 for_each_possible_cpu(i) {
8253 if (tg->cfs_rq)
8254 kfree(tg->cfs_rq[i]);
8255 if (tg->se)
8256 kfree(tg->se[i]);
8257 }
8258
8259 kfree(tg->cfs_rq);
8260 kfree(tg->se);
8261}
8262
8263int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8264{
8265 struct cfs_rq *cfs_rq;
8266 struct sched_entity *se;
8267 int i;
8268
8269 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8270 if (!tg->cfs_rq)
8271 goto err;
8272 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8273 if (!tg->se)
8274 goto err;
8275
8276 tg->shares = NICE_0_LOAD;
8277
8278 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8279
8280 for_each_possible_cpu(i) {
8281 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8282 GFP_KERNEL, cpu_to_node(i));
8283 if (!cfs_rq)
8284 goto err;
8285
8286 se = kzalloc_node(sizeof(struct sched_entity),
8287 GFP_KERNEL, cpu_to_node(i));
8288 if (!se)
8289 goto err_free_rq;
8290
8291 init_cfs_rq(cfs_rq);
8292 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8293 }
8294
8295 return 1;
8296
8297err_free_rq:
8298 kfree(cfs_rq);
8299err:
8300 return 0;
8301}
8302
8303void unregister_fair_sched_group(struct task_group *tg, int cpu)
8304{
8305 struct rq *rq = cpu_rq(cpu);
8306 unsigned long flags;
8307
8308 /*
8309 * Only empty task groups can be destroyed; so we can speculatively
8310 * check on_list without danger of it being re-added.
8311 */
8312 if (!tg->cfs_rq[cpu]->on_list)
8313 return;
8314
8315 raw_spin_lock_irqsave(&rq->lock, flags);
8316 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8317 raw_spin_unlock_irqrestore(&rq->lock, flags);
8318}
8319
8320void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8321 struct sched_entity *se, int cpu,
8322 struct sched_entity *parent)
8323{
8324 struct rq *rq = cpu_rq(cpu);
8325
8326 cfs_rq->tg = tg;
8327 cfs_rq->rq = rq;
029632fb
PZ
8328 init_cfs_rq_runtime(cfs_rq);
8329
8330 tg->cfs_rq[cpu] = cfs_rq;
8331 tg->se[cpu] = se;
8332
8333 /* se could be NULL for root_task_group */
8334 if (!se)
8335 return;
8336
fed14d45 8337 if (!parent) {
029632fb 8338 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8339 se->depth = 0;
8340 } else {
029632fb 8341 se->cfs_rq = parent->my_q;
fed14d45
PZ
8342 se->depth = parent->depth + 1;
8343 }
029632fb
PZ
8344
8345 se->my_q = cfs_rq;
0ac9b1c2
PT
8346 /* guarantee group entities always have weight */
8347 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8348 se->parent = parent;
8349}
8350
8351static DEFINE_MUTEX(shares_mutex);
8352
8353int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8354{
8355 int i;
8356 unsigned long flags;
8357
8358 /*
8359 * We can't change the weight of the root cgroup.
8360 */
8361 if (!tg->se[0])
8362 return -EINVAL;
8363
8364 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8365
8366 mutex_lock(&shares_mutex);
8367 if (tg->shares == shares)
8368 goto done;
8369
8370 tg->shares = shares;
8371 for_each_possible_cpu(i) {
8372 struct rq *rq = cpu_rq(i);
8373 struct sched_entity *se;
8374
8375 se = tg->se[i];
8376 /* Propagate contribution to hierarchy */
8377 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8378
8379 /* Possible calls to update_curr() need rq clock */
8380 update_rq_clock(rq);
17bc14b7 8381 for_each_sched_entity(se)
029632fb
PZ
8382 update_cfs_shares(group_cfs_rq(se));
8383 raw_spin_unlock_irqrestore(&rq->lock, flags);
8384 }
8385
8386done:
8387 mutex_unlock(&shares_mutex);
8388 return 0;
8389}
8390#else /* CONFIG_FAIR_GROUP_SCHED */
8391
8392void free_fair_sched_group(struct task_group *tg) { }
8393
8394int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8395{
8396 return 1;
8397}
8398
8399void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8400
8401#endif /* CONFIG_FAIR_GROUP_SCHED */
8402
810b3817 8403
6d686f45 8404static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8405{
8406 struct sched_entity *se = &task->se;
0d721cea
PW
8407 unsigned int rr_interval = 0;
8408
8409 /*
8410 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8411 * idle runqueue:
8412 */
0d721cea 8413 if (rq->cfs.load.weight)
a59f4e07 8414 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8415
8416 return rr_interval;
8417}
8418
bf0f6f24
IM
8419/*
8420 * All the scheduling class methods:
8421 */
029632fb 8422const struct sched_class fair_sched_class = {
5522d5d5 8423 .next = &idle_sched_class,
bf0f6f24
IM
8424 .enqueue_task = enqueue_task_fair,
8425 .dequeue_task = dequeue_task_fair,
8426 .yield_task = yield_task_fair,
d95f4122 8427 .yield_to_task = yield_to_task_fair,
bf0f6f24 8428
2e09bf55 8429 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8430
8431 .pick_next_task = pick_next_task_fair,
8432 .put_prev_task = put_prev_task_fair,
8433
681f3e68 8434#ifdef CONFIG_SMP
4ce72a2c 8435 .select_task_rq = select_task_rq_fair,
0a74bef8 8436 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8437
0bcdcf28
CE
8438 .rq_online = rq_online_fair,
8439 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8440
8441 .task_waking = task_waking_fair,
681f3e68 8442#endif
bf0f6f24 8443
83b699ed 8444 .set_curr_task = set_curr_task_fair,
bf0f6f24 8445 .task_tick = task_tick_fair,
cd29fe6f 8446 .task_fork = task_fork_fair,
cb469845
SR
8447
8448 .prio_changed = prio_changed_fair,
da7a735e 8449 .switched_from = switched_from_fair,
cb469845 8450 .switched_to = switched_to_fair,
810b3817 8451
0d721cea
PW
8452 .get_rr_interval = get_rr_interval_fair,
8453
6e998916
SG
8454 .update_curr = update_curr_fair,
8455
810b3817 8456#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8457 .task_move_group = task_move_group_fair,
810b3817 8458#endif
bf0f6f24
IM
8459};
8460
8461#ifdef CONFIG_SCHED_DEBUG
029632fb 8462void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8463{
bf0f6f24
IM
8464 struct cfs_rq *cfs_rq;
8465
5973e5b9 8466 rcu_read_lock();
c3b64f1e 8467 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8468 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8469 rcu_read_unlock();
bf0f6f24
IM
8470}
8471#endif
029632fb
PZ
8472
8473__init void init_sched_fair_class(void)
8474{
8475#ifdef CONFIG_SMP
8476 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8477
3451d024 8478#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8479 nohz.next_balance = jiffies;
029632fb 8480 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8481 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8482#endif
8483#endif /* SMP */
8484
8485}
This page took 1.153535 seconds and 5 git commands to generate.