Revert "mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node"
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9
AS
683#ifdef CONFIG_SMP
684static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686/* Give new task start runnable values to heavy its load in infant time */
687void init_task_runnable_average(struct task_struct *p)
688{
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696}
697#else
698void init_task_runnable_average(struct task_struct *p)
699{
700}
701#endif
702
bf0f6f24
IM
703/*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707static inline void
8ebc91d9
IM
708__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
bf0f6f24 710{
bbdba7c0 711 unsigned long delta_exec_weighted;
bf0f6f24 712
41acab88
LDM
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
715
716 curr->sum_exec_runtime += delta_exec;
7a62eabc 717 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 719
e9acbff6 720 curr->vruntime += delta_exec_weighted;
1af5f730 721 update_min_vruntime(cfs_rq);
bf0f6f24
IM
722}
723
b7cc0896 724static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 725{
429d43bc 726 struct sched_entity *curr = cfs_rq->curr;
78becc27 727 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
8ebc91d9 738 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
739 if (!delta_exec)
740 return;
bf0f6f24 741
8ebc91d9
IM
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
d842de87
SV
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
f977bb49 748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 749 cpuacct_charge(curtask, delta_exec);
f06febc9 750 account_group_exec_runtime(curtask, delta_exec);
d842de87 751 }
ec12cb7f
PT
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
754}
755
756static inline void
5870db5b 757update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 758{
78becc27 759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
760}
761
bf0f6f24
IM
762/*
763 * Task is being enqueued - update stats:
764 */
d2417e5a 765static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 766{
bf0f6f24
IM
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
429d43bc 771 if (se != cfs_rq->curr)
5870db5b 772 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
773}
774
bf0f6f24 775static void
9ef0a961 776update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
41acab88 778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
783#ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
78becc27 786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
787 }
788#endif
41acab88 789 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
790}
791
792static inline void
19b6a2e3 793update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 794{
bf0f6f24
IM
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
429d43bc 799 if (se != cfs_rq->curr)
9ef0a961 800 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
801}
802
803/*
804 * We are picking a new current task - update its stats:
805 */
806static inline void
79303e9e 807update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
808{
809 /*
810 * We are starting a new run period:
811 */
78becc27 812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
813}
814
bf0f6f24
IM
815/**************************************************
816 * Scheduling class queueing methods:
817 */
818
cbee9f88
PZ
819#ifdef CONFIG_NUMA_BALANCING
820/*
6e5fb223 821 * numa task sample period in ms
cbee9f88 822 */
6e5fb223 823unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
824unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
826
827/* Portion of address space to scan in MB */
828unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 829
4b96a29b
PZ
830/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
cbee9f88
PZ
833static void task_numa_placement(struct task_struct *p)
834{
2832bc19 835 int seq;
cbee9f88 836
2832bc19
HD
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845}
846
847/*
848 * Got a PROT_NONE fault for a page on @node.
849 */
b8593bfd 850void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
851{
852 struct task_struct *p = current;
853
10e84b97 854 if (!numabalancing_enabled)
1a687c2e
MG
855 return;
856
cbee9f88
PZ
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
fb003b80 859 /*
b8593bfd
MG
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
fb003b80 862 */
b8593bfd
MG
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 866
cbee9f88
PZ
867 task_numa_placement(p);
868}
869
6e5fb223
PZ
870static void reset_ptenuma_scan(struct task_struct *p)
871{
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874}
875
cbee9f88
PZ
876/*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880void task_numa_work(struct callback_head *work)
881{
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
6e5fb223 885 struct vm_area_struct *vma;
9f40604c
MG
886 unsigned long start, end;
887 long pages;
cbee9f88
PZ
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
b8593bfd
MG
903 /*
904 * Reset the scan period if enough time has gone by. Objective is that
905 * scanning will be reduced if pages are properly placed. As tasks
906 * can enter different phases this needs to be re-examined. Lacking
907 * proper tracking of reference behaviour, this blunt hammer is used.
908 */
909 migrate = mm->numa_next_reset;
910 if (time_after(now, migrate)) {
911 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
912 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
913 xchg(&mm->numa_next_reset, next_scan);
914 }
915
cbee9f88
PZ
916 /*
917 * Enforce maximal scan/migration frequency..
918 */
919 migrate = mm->numa_next_scan;
920 if (time_before(now, migrate))
921 return;
922
923 if (p->numa_scan_period == 0)
924 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
925
fb003b80 926 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
927 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
928 return;
929
19a78d11
PZ
930 /*
931 * Delay this task enough that another task of this mm will likely win
932 * the next time around.
933 */
934 p->node_stamp += 2 * TICK_NSEC;
935
9f40604c
MG
936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
cbee9f88 941
6e5fb223 942 down_read(&mm->mmap_sem);
9f40604c 943 vma = find_vma(mm, start);
6e5fb223
PZ
944 if (!vma) {
945 reset_ptenuma_scan(p);
9f40604c 946 start = 0;
6e5fb223
PZ
947 vma = mm->mmap;
948 }
9f40604c 949 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
955 continue;
956
9f40604c
MG
957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
6e5fb223 962
9f40604c
MG
963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
cbee9f88 967 }
6e5fb223 968
9f40604c 969out:
6e5fb223 970 /*
c69307d5
PZ
971 * It is possible to reach the end of the VMA list but the last few
972 * VMAs are not guaranteed to the vma_migratable. If they are not, we
973 * would find the !migratable VMA on the next scan but not reset the
974 * scanner to the start so check it now.
6e5fb223
PZ
975 */
976 if (vma)
9f40604c 977 mm->numa_scan_offset = start;
6e5fb223
PZ
978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
cbee9f88
PZ
981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
19a78d11 1009 curr->node_stamp += period;
cbee9f88
PZ
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
30cfdcfc
DA
1023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1027 if (!parent_entity(se))
029632fb 1028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
eb95308e 1031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1032#endif
30cfdcfc 1033 cfs_rq->nr_running++;
30cfdcfc
DA
1034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1040 if (!parent_entity(se))
029632fb 1041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1042 if (entity_is_task(se))
b87f1724 1043 list_del_init(&se->group_node);
30cfdcfc 1044 cfs_rq->nr_running--;
30cfdcfc
DA
1045}
1046
3ff6dcac
YZ
1047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
cf5f0acf
PZ
1049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
bf5b986e 1058 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1059 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
6d5ab293 1065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1066{
cf5f0acf 1067 long tg_weight, load, shares;
3ff6dcac 1068
cf5f0acf 1069 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1070 load = cfs_rq->load.weight;
3ff6dcac 1071
3ff6dcac 1072 shares = (tg->shares * load);
cf5f0acf
PZ
1073 if (tg_weight)
1074 shares /= tg_weight;
3ff6dcac
YZ
1075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
3ff6dcac 1083# else /* CONFIG_SMP */
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
3ff6dcac 1088# endif /* CONFIG_SMP */
2069dd75
PZ
1089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
19e5eebb
PT
1092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
2069dd75 1096 account_entity_dequeue(cfs_rq, se);
19e5eebb 1097 }
2069dd75
PZ
1098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
82958366
PT
1105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
6d5ab293 1107static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
3ff6dcac 1111 long shares;
2069dd75 1112
2069dd75
PZ
1113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1115 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1116 return;
3ff6dcac
YZ
1117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
6d5ab293 1121 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
141965c7 1131#ifdef CONFIG_SMP
5b51f2f8
PT
1132/*
1133 * We choose a half-life close to 1 scheduling period.
1134 * Note: The tables below are dependent on this value.
1135 */
1136#define LOAD_AVG_PERIOD 32
1137#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1138#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1139
1140/* Precomputed fixed inverse multiplies for multiplication by y^n */
1141static const u32 runnable_avg_yN_inv[] = {
1142 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1143 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1144 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1145 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1146 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1147 0x85aac367, 0x82cd8698,
1148};
1149
1150/*
1151 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1152 * over-estimates when re-combining.
1153 */
1154static const u32 runnable_avg_yN_sum[] = {
1155 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1156 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1157 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1158};
1159
9d85f21c
PT
1160/*
1161 * Approximate:
1162 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1163 */
1164static __always_inline u64 decay_load(u64 val, u64 n)
1165{
5b51f2f8
PT
1166 unsigned int local_n;
1167
1168 if (!n)
1169 return val;
1170 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1171 return 0;
1172
1173 /* after bounds checking we can collapse to 32-bit */
1174 local_n = n;
1175
1176 /*
1177 * As y^PERIOD = 1/2, we can combine
1178 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1179 * With a look-up table which covers k^n (n<PERIOD)
1180 *
1181 * To achieve constant time decay_load.
1182 */
1183 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1184 val >>= local_n / LOAD_AVG_PERIOD;
1185 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1186 }
1187
5b51f2f8
PT
1188 val *= runnable_avg_yN_inv[local_n];
1189 /* We don't use SRR here since we always want to round down. */
1190 return val >> 32;
1191}
1192
1193/*
1194 * For updates fully spanning n periods, the contribution to runnable
1195 * average will be: \Sum 1024*y^n
1196 *
1197 * We can compute this reasonably efficiently by combining:
1198 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1199 */
1200static u32 __compute_runnable_contrib(u64 n)
1201{
1202 u32 contrib = 0;
1203
1204 if (likely(n <= LOAD_AVG_PERIOD))
1205 return runnable_avg_yN_sum[n];
1206 else if (unlikely(n >= LOAD_AVG_MAX_N))
1207 return LOAD_AVG_MAX;
1208
1209 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1210 do {
1211 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1212 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1213
1214 n -= LOAD_AVG_PERIOD;
1215 } while (n > LOAD_AVG_PERIOD);
1216
1217 contrib = decay_load(contrib, n);
1218 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1219}
1220
1221/*
1222 * We can represent the historical contribution to runnable average as the
1223 * coefficients of a geometric series. To do this we sub-divide our runnable
1224 * history into segments of approximately 1ms (1024us); label the segment that
1225 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1226 *
1227 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1228 * p0 p1 p2
1229 * (now) (~1ms ago) (~2ms ago)
1230 *
1231 * Let u_i denote the fraction of p_i that the entity was runnable.
1232 *
1233 * We then designate the fractions u_i as our co-efficients, yielding the
1234 * following representation of historical load:
1235 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1236 *
1237 * We choose y based on the with of a reasonably scheduling period, fixing:
1238 * y^32 = 0.5
1239 *
1240 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1241 * approximately half as much as the contribution to load within the last ms
1242 * (u_0).
1243 *
1244 * When a period "rolls over" and we have new u_0`, multiplying the previous
1245 * sum again by y is sufficient to update:
1246 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1247 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1248 */
1249static __always_inline int __update_entity_runnable_avg(u64 now,
1250 struct sched_avg *sa,
1251 int runnable)
1252{
5b51f2f8
PT
1253 u64 delta, periods;
1254 u32 runnable_contrib;
9d85f21c
PT
1255 int delta_w, decayed = 0;
1256
1257 delta = now - sa->last_runnable_update;
1258 /*
1259 * This should only happen when time goes backwards, which it
1260 * unfortunately does during sched clock init when we swap over to TSC.
1261 */
1262 if ((s64)delta < 0) {
1263 sa->last_runnable_update = now;
1264 return 0;
1265 }
1266
1267 /*
1268 * Use 1024ns as the unit of measurement since it's a reasonable
1269 * approximation of 1us and fast to compute.
1270 */
1271 delta >>= 10;
1272 if (!delta)
1273 return 0;
1274 sa->last_runnable_update = now;
1275
1276 /* delta_w is the amount already accumulated against our next period */
1277 delta_w = sa->runnable_avg_period % 1024;
1278 if (delta + delta_w >= 1024) {
1279 /* period roll-over */
1280 decayed = 1;
1281
1282 /*
1283 * Now that we know we're crossing a period boundary, figure
1284 * out how much from delta we need to complete the current
1285 * period and accrue it.
1286 */
1287 delta_w = 1024 - delta_w;
5b51f2f8
PT
1288 if (runnable)
1289 sa->runnable_avg_sum += delta_w;
1290 sa->runnable_avg_period += delta_w;
1291
1292 delta -= delta_w;
1293
1294 /* Figure out how many additional periods this update spans */
1295 periods = delta / 1024;
1296 delta %= 1024;
1297
1298 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1299 periods + 1);
1300 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1301 periods + 1);
1302
1303 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1304 runnable_contrib = __compute_runnable_contrib(periods);
1305 if (runnable)
1306 sa->runnable_avg_sum += runnable_contrib;
1307 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1308 }
1309
1310 /* Remainder of delta accrued against u_0` */
1311 if (runnable)
1312 sa->runnable_avg_sum += delta;
1313 sa->runnable_avg_period += delta;
1314
1315 return decayed;
1316}
1317
9ee474f5 1318/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1319static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1320{
1321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1322 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1323
1324 decays -= se->avg.decay_count;
1325 if (!decays)
aff3e498 1326 return 0;
9ee474f5
PT
1327
1328 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1329 se->avg.decay_count = 0;
aff3e498
PT
1330
1331 return decays;
9ee474f5
PT
1332}
1333
c566e8e9
PT
1334#ifdef CONFIG_FAIR_GROUP_SCHED
1335static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1336 int force_update)
1337{
1338 struct task_group *tg = cfs_rq->tg;
bf5b986e 1339 long tg_contrib;
c566e8e9
PT
1340
1341 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1342 tg_contrib -= cfs_rq->tg_load_contrib;
1343
bf5b986e
AS
1344 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1345 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
1346 cfs_rq->tg_load_contrib += tg_contrib;
1347 }
1348}
8165e145 1349
bb17f655
PT
1350/*
1351 * Aggregate cfs_rq runnable averages into an equivalent task_group
1352 * representation for computing load contributions.
1353 */
1354static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1355 struct cfs_rq *cfs_rq)
1356{
1357 struct task_group *tg = cfs_rq->tg;
1358 long contrib;
1359
1360 /* The fraction of a cpu used by this cfs_rq */
1361 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1362 sa->runnable_avg_period + 1);
1363 contrib -= cfs_rq->tg_runnable_contrib;
1364
1365 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1366 atomic_add(contrib, &tg->runnable_avg);
1367 cfs_rq->tg_runnable_contrib += contrib;
1368 }
1369}
1370
8165e145
PT
1371static inline void __update_group_entity_contrib(struct sched_entity *se)
1372{
1373 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1374 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1375 int runnable_avg;
1376
8165e145
PT
1377 u64 contrib;
1378
1379 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
1380 se->avg.load_avg_contrib = div_u64(contrib,
1381 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
1382
1383 /*
1384 * For group entities we need to compute a correction term in the case
1385 * that they are consuming <1 cpu so that we would contribute the same
1386 * load as a task of equal weight.
1387 *
1388 * Explicitly co-ordinating this measurement would be expensive, but
1389 * fortunately the sum of each cpus contribution forms a usable
1390 * lower-bound on the true value.
1391 *
1392 * Consider the aggregate of 2 contributions. Either they are disjoint
1393 * (and the sum represents true value) or they are disjoint and we are
1394 * understating by the aggregate of their overlap.
1395 *
1396 * Extending this to N cpus, for a given overlap, the maximum amount we
1397 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1398 * cpus that overlap for this interval and w_i is the interval width.
1399 *
1400 * On a small machine; the first term is well-bounded which bounds the
1401 * total error since w_i is a subset of the period. Whereas on a
1402 * larger machine, while this first term can be larger, if w_i is the
1403 * of consequential size guaranteed to see n_i*w_i quickly converge to
1404 * our upper bound of 1-cpu.
1405 */
1406 runnable_avg = atomic_read(&tg->runnable_avg);
1407 if (runnable_avg < NICE_0_LOAD) {
1408 se->avg.load_avg_contrib *= runnable_avg;
1409 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1410 }
8165e145 1411}
c566e8e9
PT
1412#else
1413static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1414 int force_update) {}
bb17f655
PT
1415static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1416 struct cfs_rq *cfs_rq) {}
8165e145 1417static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1418#endif
1419
8165e145
PT
1420static inline void __update_task_entity_contrib(struct sched_entity *se)
1421{
1422 u32 contrib;
1423
1424 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1425 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1426 contrib /= (se->avg.runnable_avg_period + 1);
1427 se->avg.load_avg_contrib = scale_load(contrib);
1428}
1429
2dac754e
PT
1430/* Compute the current contribution to load_avg by se, return any delta */
1431static long __update_entity_load_avg_contrib(struct sched_entity *se)
1432{
1433 long old_contrib = se->avg.load_avg_contrib;
1434
8165e145
PT
1435 if (entity_is_task(se)) {
1436 __update_task_entity_contrib(se);
1437 } else {
bb17f655 1438 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1439 __update_group_entity_contrib(se);
1440 }
2dac754e
PT
1441
1442 return se->avg.load_avg_contrib - old_contrib;
1443}
1444
9ee474f5
PT
1445static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1446 long load_contrib)
1447{
1448 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1449 cfs_rq->blocked_load_avg -= load_contrib;
1450 else
1451 cfs_rq->blocked_load_avg = 0;
1452}
1453
f1b17280
PT
1454static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1455
9d85f21c 1456/* Update a sched_entity's runnable average */
9ee474f5
PT
1457static inline void update_entity_load_avg(struct sched_entity *se,
1458 int update_cfs_rq)
9d85f21c 1459{
2dac754e
PT
1460 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1461 long contrib_delta;
f1b17280 1462 u64 now;
2dac754e 1463
f1b17280
PT
1464 /*
1465 * For a group entity we need to use their owned cfs_rq_clock_task() in
1466 * case they are the parent of a throttled hierarchy.
1467 */
1468 if (entity_is_task(se))
1469 now = cfs_rq_clock_task(cfs_rq);
1470 else
1471 now = cfs_rq_clock_task(group_cfs_rq(se));
1472
1473 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1474 return;
1475
1476 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1477
1478 if (!update_cfs_rq)
1479 return;
1480
2dac754e
PT
1481 if (se->on_rq)
1482 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1483 else
1484 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1485}
1486
1487/*
1488 * Decay the load contributed by all blocked children and account this so that
1489 * their contribution may appropriately discounted when they wake up.
1490 */
aff3e498 1491static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1492{
f1b17280 1493 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1494 u64 decays;
1495
1496 decays = now - cfs_rq->last_decay;
aff3e498 1497 if (!decays && !force_update)
9ee474f5
PT
1498 return;
1499
2509940f
AS
1500 if (atomic_long_read(&cfs_rq->removed_load)) {
1501 unsigned long removed_load;
1502 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
1503 subtract_blocked_load_contrib(cfs_rq, removed_load);
1504 }
9ee474f5 1505
aff3e498
PT
1506 if (decays) {
1507 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1508 decays);
1509 atomic64_add(decays, &cfs_rq->decay_counter);
1510 cfs_rq->last_decay = now;
1511 }
c566e8e9
PT
1512
1513 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1514}
18bf2805
BS
1515
1516static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1517{
78becc27 1518 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1519 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1520}
2dac754e
PT
1521
1522/* Add the load generated by se into cfs_rq's child load-average */
1523static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1524 struct sched_entity *se,
1525 int wakeup)
2dac754e 1526{
aff3e498
PT
1527 /*
1528 * We track migrations using entity decay_count <= 0, on a wake-up
1529 * migration we use a negative decay count to track the remote decays
1530 * accumulated while sleeping.
a75cdaa9
AS
1531 *
1532 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1533 * are seen by enqueue_entity_load_avg() as a migration with an already
1534 * constructed load_avg_contrib.
aff3e498
PT
1535 */
1536 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1537 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1538 if (se->avg.decay_count) {
1539 /*
1540 * In a wake-up migration we have to approximate the
1541 * time sleeping. This is because we can't synchronize
1542 * clock_task between the two cpus, and it is not
1543 * guaranteed to be read-safe. Instead, we can
1544 * approximate this using our carried decays, which are
1545 * explicitly atomically readable.
1546 */
1547 se->avg.last_runnable_update -= (-se->avg.decay_count)
1548 << 20;
1549 update_entity_load_avg(se, 0);
1550 /* Indicate that we're now synchronized and on-rq */
1551 se->avg.decay_count = 0;
1552 }
9ee474f5
PT
1553 wakeup = 0;
1554 } else {
282cf499
AS
1555 /*
1556 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1557 * would have made count negative); we must be careful to avoid
1558 * double-accounting blocked time after synchronizing decays.
1559 */
1560 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1561 << 20;
9ee474f5
PT
1562 }
1563
aff3e498
PT
1564 /* migrated tasks did not contribute to our blocked load */
1565 if (wakeup) {
9ee474f5 1566 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1567 update_entity_load_avg(se, 0);
1568 }
9ee474f5 1569
2dac754e 1570 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1571 /* we force update consideration on load-balancer moves */
1572 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1573}
1574
9ee474f5
PT
1575/*
1576 * Remove se's load from this cfs_rq child load-average, if the entity is
1577 * transitioning to a blocked state we track its projected decay using
1578 * blocked_load_avg.
1579 */
2dac754e 1580static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1581 struct sched_entity *se,
1582 int sleep)
2dac754e 1583{
9ee474f5 1584 update_entity_load_avg(se, 1);
aff3e498
PT
1585 /* we force update consideration on load-balancer moves */
1586 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1587
2dac754e 1588 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1589 if (sleep) {
1590 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1591 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1592 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1593}
642dbc39
VG
1594
1595/*
1596 * Update the rq's load with the elapsed running time before entering
1597 * idle. if the last scheduled task is not a CFS task, idle_enter will
1598 * be the only way to update the runnable statistic.
1599 */
1600void idle_enter_fair(struct rq *this_rq)
1601{
1602 update_rq_runnable_avg(this_rq, 1);
1603}
1604
1605/*
1606 * Update the rq's load with the elapsed idle time before a task is
1607 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1608 * be the only way to update the runnable statistic.
1609 */
1610void idle_exit_fair(struct rq *this_rq)
1611{
1612 update_rq_runnable_avg(this_rq, 0);
1613}
1614
9d85f21c 1615#else
9ee474f5
PT
1616static inline void update_entity_load_avg(struct sched_entity *se,
1617 int update_cfs_rq) {}
18bf2805 1618static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1619static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1620 struct sched_entity *se,
1621 int wakeup) {}
2dac754e 1622static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1623 struct sched_entity *se,
1624 int sleep) {}
aff3e498
PT
1625static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1626 int force_update) {}
9d85f21c
PT
1627#endif
1628
2396af69 1629static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1630{
bf0f6f24 1631#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1632 struct task_struct *tsk = NULL;
1633
1634 if (entity_is_task(se))
1635 tsk = task_of(se);
1636
41acab88 1637 if (se->statistics.sleep_start) {
78becc27 1638 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1639
1640 if ((s64)delta < 0)
1641 delta = 0;
1642
41acab88
LDM
1643 if (unlikely(delta > se->statistics.sleep_max))
1644 se->statistics.sleep_max = delta;
bf0f6f24 1645
8c79a045 1646 se->statistics.sleep_start = 0;
41acab88 1647 se->statistics.sum_sleep_runtime += delta;
9745512c 1648
768d0c27 1649 if (tsk) {
e414314c 1650 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1651 trace_sched_stat_sleep(tsk, delta);
1652 }
bf0f6f24 1653 }
41acab88 1654 if (se->statistics.block_start) {
78becc27 1655 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1656
1657 if ((s64)delta < 0)
1658 delta = 0;
1659
41acab88
LDM
1660 if (unlikely(delta > se->statistics.block_max))
1661 se->statistics.block_max = delta;
bf0f6f24 1662
8c79a045 1663 se->statistics.block_start = 0;
41acab88 1664 se->statistics.sum_sleep_runtime += delta;
30084fbd 1665
e414314c 1666 if (tsk) {
8f0dfc34 1667 if (tsk->in_iowait) {
41acab88
LDM
1668 se->statistics.iowait_sum += delta;
1669 se->statistics.iowait_count++;
768d0c27 1670 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1671 }
1672
b781a602
AV
1673 trace_sched_stat_blocked(tsk, delta);
1674
e414314c
PZ
1675 /*
1676 * Blocking time is in units of nanosecs, so shift by
1677 * 20 to get a milliseconds-range estimation of the
1678 * amount of time that the task spent sleeping:
1679 */
1680 if (unlikely(prof_on == SLEEP_PROFILING)) {
1681 profile_hits(SLEEP_PROFILING,
1682 (void *)get_wchan(tsk),
1683 delta >> 20);
1684 }
1685 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1686 }
bf0f6f24
IM
1687 }
1688#endif
1689}
1690
ddc97297
PZ
1691static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1692{
1693#ifdef CONFIG_SCHED_DEBUG
1694 s64 d = se->vruntime - cfs_rq->min_vruntime;
1695
1696 if (d < 0)
1697 d = -d;
1698
1699 if (d > 3*sysctl_sched_latency)
1700 schedstat_inc(cfs_rq, nr_spread_over);
1701#endif
1702}
1703
aeb73b04
PZ
1704static void
1705place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1706{
1af5f730 1707 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1708
2cb8600e
PZ
1709 /*
1710 * The 'current' period is already promised to the current tasks,
1711 * however the extra weight of the new task will slow them down a
1712 * little, place the new task so that it fits in the slot that
1713 * stays open at the end.
1714 */
94dfb5e7 1715 if (initial && sched_feat(START_DEBIT))
f9c0b095 1716 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1717
a2e7a7eb 1718 /* sleeps up to a single latency don't count. */
5ca9880c 1719 if (!initial) {
a2e7a7eb 1720 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1721
a2e7a7eb
MG
1722 /*
1723 * Halve their sleep time's effect, to allow
1724 * for a gentler effect of sleepers:
1725 */
1726 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1727 thresh >>= 1;
51e0304c 1728
a2e7a7eb 1729 vruntime -= thresh;
aeb73b04
PZ
1730 }
1731
b5d9d734 1732 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1733 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1734}
1735
d3d9dc33
PT
1736static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1737
bf0f6f24 1738static void
88ec22d3 1739enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1740{
88ec22d3
PZ
1741 /*
1742 * Update the normalized vruntime before updating min_vruntime
0fc576d5 1743 * through calling update_curr().
88ec22d3 1744 */
371fd7e7 1745 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1746 se->vruntime += cfs_rq->min_vruntime;
1747
bf0f6f24 1748 /*
a2a2d680 1749 * Update run-time statistics of the 'current'.
bf0f6f24 1750 */
b7cc0896 1751 update_curr(cfs_rq);
f269ae04 1752 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1753 account_entity_enqueue(cfs_rq, se);
1754 update_cfs_shares(cfs_rq);
bf0f6f24 1755
88ec22d3 1756 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1757 place_entity(cfs_rq, se, 0);
2396af69 1758 enqueue_sleeper(cfs_rq, se);
e9acbff6 1759 }
bf0f6f24 1760
d2417e5a 1761 update_stats_enqueue(cfs_rq, se);
ddc97297 1762 check_spread(cfs_rq, se);
83b699ed
SV
1763 if (se != cfs_rq->curr)
1764 __enqueue_entity(cfs_rq, se);
2069dd75 1765 se->on_rq = 1;
3d4b47b4 1766
d3d9dc33 1767 if (cfs_rq->nr_running == 1) {
3d4b47b4 1768 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1769 check_enqueue_throttle(cfs_rq);
1770 }
bf0f6f24
IM
1771}
1772
2c13c919 1773static void __clear_buddies_last(struct sched_entity *se)
2002c695 1774{
2c13c919
RR
1775 for_each_sched_entity(se) {
1776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1777 if (cfs_rq->last == se)
1778 cfs_rq->last = NULL;
1779 else
1780 break;
1781 }
1782}
2002c695 1783
2c13c919
RR
1784static void __clear_buddies_next(struct sched_entity *se)
1785{
1786 for_each_sched_entity(se) {
1787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1788 if (cfs_rq->next == se)
1789 cfs_rq->next = NULL;
1790 else
1791 break;
1792 }
2002c695
PZ
1793}
1794
ac53db59
RR
1795static void __clear_buddies_skip(struct sched_entity *se)
1796{
1797 for_each_sched_entity(se) {
1798 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1799 if (cfs_rq->skip == se)
1800 cfs_rq->skip = NULL;
1801 else
1802 break;
1803 }
1804}
1805
a571bbea
PZ
1806static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1807{
2c13c919
RR
1808 if (cfs_rq->last == se)
1809 __clear_buddies_last(se);
1810
1811 if (cfs_rq->next == se)
1812 __clear_buddies_next(se);
ac53db59
RR
1813
1814 if (cfs_rq->skip == se)
1815 __clear_buddies_skip(se);
a571bbea
PZ
1816}
1817
6c16a6dc 1818static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1819
bf0f6f24 1820static void
371fd7e7 1821dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1822{
a2a2d680
DA
1823 /*
1824 * Update run-time statistics of the 'current'.
1825 */
1826 update_curr(cfs_rq);
17bc14b7 1827 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1828
19b6a2e3 1829 update_stats_dequeue(cfs_rq, se);
371fd7e7 1830 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1831#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1832 if (entity_is_task(se)) {
1833 struct task_struct *tsk = task_of(se);
1834
1835 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1836 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1837 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1838 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1839 }
db36cc7d 1840#endif
67e9fb2a
PZ
1841 }
1842
2002c695 1843 clear_buddies(cfs_rq, se);
4793241b 1844
83b699ed 1845 if (se != cfs_rq->curr)
30cfdcfc 1846 __dequeue_entity(cfs_rq, se);
17bc14b7 1847 se->on_rq = 0;
30cfdcfc 1848 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1849
1850 /*
1851 * Normalize the entity after updating the min_vruntime because the
1852 * update can refer to the ->curr item and we need to reflect this
1853 * movement in our normalized position.
1854 */
371fd7e7 1855 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1856 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1857
d8b4986d
PT
1858 /* return excess runtime on last dequeue */
1859 return_cfs_rq_runtime(cfs_rq);
1860
1e876231 1861 update_min_vruntime(cfs_rq);
17bc14b7 1862 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1863}
1864
1865/*
1866 * Preempt the current task with a newly woken task if needed:
1867 */
7c92e54f 1868static void
2e09bf55 1869check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1870{
11697830 1871 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1872 struct sched_entity *se;
1873 s64 delta;
11697830 1874
6d0f0ebd 1875 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1876 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1877 if (delta_exec > ideal_runtime) {
bf0f6f24 1878 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1879 /*
1880 * The current task ran long enough, ensure it doesn't get
1881 * re-elected due to buddy favours.
1882 */
1883 clear_buddies(cfs_rq, curr);
f685ceac
MG
1884 return;
1885 }
1886
1887 /*
1888 * Ensure that a task that missed wakeup preemption by a
1889 * narrow margin doesn't have to wait for a full slice.
1890 * This also mitigates buddy induced latencies under load.
1891 */
f685ceac
MG
1892 if (delta_exec < sysctl_sched_min_granularity)
1893 return;
1894
f4cfb33e
WX
1895 se = __pick_first_entity(cfs_rq);
1896 delta = curr->vruntime - se->vruntime;
f685ceac 1897
f4cfb33e
WX
1898 if (delta < 0)
1899 return;
d7d82944 1900
f4cfb33e
WX
1901 if (delta > ideal_runtime)
1902 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1903}
1904
83b699ed 1905static void
8494f412 1906set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1907{
83b699ed
SV
1908 /* 'current' is not kept within the tree. */
1909 if (se->on_rq) {
1910 /*
1911 * Any task has to be enqueued before it get to execute on
1912 * a CPU. So account for the time it spent waiting on the
1913 * runqueue.
1914 */
1915 update_stats_wait_end(cfs_rq, se);
1916 __dequeue_entity(cfs_rq, se);
1917 }
1918
79303e9e 1919 update_stats_curr_start(cfs_rq, se);
429d43bc 1920 cfs_rq->curr = se;
eba1ed4b
IM
1921#ifdef CONFIG_SCHEDSTATS
1922 /*
1923 * Track our maximum slice length, if the CPU's load is at
1924 * least twice that of our own weight (i.e. dont track it
1925 * when there are only lesser-weight tasks around):
1926 */
495eca49 1927 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1928 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1929 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1930 }
1931#endif
4a55b450 1932 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1933}
1934
3f3a4904
PZ
1935static int
1936wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1937
ac53db59
RR
1938/*
1939 * Pick the next process, keeping these things in mind, in this order:
1940 * 1) keep things fair between processes/task groups
1941 * 2) pick the "next" process, since someone really wants that to run
1942 * 3) pick the "last" process, for cache locality
1943 * 4) do not run the "skip" process, if something else is available
1944 */
f4b6755f 1945static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1946{
ac53db59 1947 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1948 struct sched_entity *left = se;
f4b6755f 1949
ac53db59
RR
1950 /*
1951 * Avoid running the skip buddy, if running something else can
1952 * be done without getting too unfair.
1953 */
1954 if (cfs_rq->skip == se) {
1955 struct sched_entity *second = __pick_next_entity(se);
1956 if (second && wakeup_preempt_entity(second, left) < 1)
1957 se = second;
1958 }
aa2ac252 1959
f685ceac
MG
1960 /*
1961 * Prefer last buddy, try to return the CPU to a preempted task.
1962 */
1963 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1964 se = cfs_rq->last;
1965
ac53db59
RR
1966 /*
1967 * Someone really wants this to run. If it's not unfair, run it.
1968 */
1969 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1970 se = cfs_rq->next;
1971
f685ceac 1972 clear_buddies(cfs_rq, se);
4793241b
PZ
1973
1974 return se;
aa2ac252
PZ
1975}
1976
d3d9dc33
PT
1977static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1978
ab6cde26 1979static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1980{
1981 /*
1982 * If still on the runqueue then deactivate_task()
1983 * was not called and update_curr() has to be done:
1984 */
1985 if (prev->on_rq)
b7cc0896 1986 update_curr(cfs_rq);
bf0f6f24 1987
d3d9dc33
PT
1988 /* throttle cfs_rqs exceeding runtime */
1989 check_cfs_rq_runtime(cfs_rq);
1990
ddc97297 1991 check_spread(cfs_rq, prev);
30cfdcfc 1992 if (prev->on_rq) {
5870db5b 1993 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1994 /* Put 'current' back into the tree. */
1995 __enqueue_entity(cfs_rq, prev);
9d85f21c 1996 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1997 update_entity_load_avg(prev, 1);
30cfdcfc 1998 }
429d43bc 1999 cfs_rq->curr = NULL;
bf0f6f24
IM
2000}
2001
8f4d37ec
PZ
2002static void
2003entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2004{
bf0f6f24 2005 /*
30cfdcfc 2006 * Update run-time statistics of the 'current'.
bf0f6f24 2007 */
30cfdcfc 2008 update_curr(cfs_rq);
bf0f6f24 2009
9d85f21c
PT
2010 /*
2011 * Ensure that runnable average is periodically updated.
2012 */
9ee474f5 2013 update_entity_load_avg(curr, 1);
aff3e498 2014 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2015 update_cfs_shares(cfs_rq);
9d85f21c 2016
8f4d37ec
PZ
2017#ifdef CONFIG_SCHED_HRTICK
2018 /*
2019 * queued ticks are scheduled to match the slice, so don't bother
2020 * validating it and just reschedule.
2021 */
983ed7a6
HH
2022 if (queued) {
2023 resched_task(rq_of(cfs_rq)->curr);
2024 return;
2025 }
8f4d37ec
PZ
2026 /*
2027 * don't let the period tick interfere with the hrtick preemption
2028 */
2029 if (!sched_feat(DOUBLE_TICK) &&
2030 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2031 return;
2032#endif
2033
2c2efaed 2034 if (cfs_rq->nr_running > 1)
2e09bf55 2035 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2036}
2037
ab84d31e
PT
2038
2039/**************************************************
2040 * CFS bandwidth control machinery
2041 */
2042
2043#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2044
2045#ifdef HAVE_JUMP_LABEL
c5905afb 2046static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2047
2048static inline bool cfs_bandwidth_used(void)
2049{
c5905afb 2050 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2051}
2052
2053void account_cfs_bandwidth_used(int enabled, int was_enabled)
2054{
2055 /* only need to count groups transitioning between enabled/!enabled */
2056 if (enabled && !was_enabled)
c5905afb 2057 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2058 else if (!enabled && was_enabled)
c5905afb 2059 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2060}
2061#else /* HAVE_JUMP_LABEL */
2062static bool cfs_bandwidth_used(void)
2063{
2064 return true;
2065}
2066
2067void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2068#endif /* HAVE_JUMP_LABEL */
2069
ab84d31e
PT
2070/*
2071 * default period for cfs group bandwidth.
2072 * default: 0.1s, units: nanoseconds
2073 */
2074static inline u64 default_cfs_period(void)
2075{
2076 return 100000000ULL;
2077}
ec12cb7f
PT
2078
2079static inline u64 sched_cfs_bandwidth_slice(void)
2080{
2081 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2082}
2083
a9cf55b2
PT
2084/*
2085 * Replenish runtime according to assigned quota and update expiration time.
2086 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2087 * additional synchronization around rq->lock.
2088 *
2089 * requires cfs_b->lock
2090 */
029632fb 2091void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2092{
2093 u64 now;
2094
2095 if (cfs_b->quota == RUNTIME_INF)
2096 return;
2097
2098 now = sched_clock_cpu(smp_processor_id());
2099 cfs_b->runtime = cfs_b->quota;
2100 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2101}
2102
029632fb
PZ
2103static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2104{
2105 return &tg->cfs_bandwidth;
2106}
2107
f1b17280
PT
2108/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2109static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2110{
2111 if (unlikely(cfs_rq->throttle_count))
2112 return cfs_rq->throttled_clock_task;
2113
78becc27 2114 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2115}
2116
85dac906
PT
2117/* returns 0 on failure to allocate runtime */
2118static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2119{
2120 struct task_group *tg = cfs_rq->tg;
2121 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2122 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2123
2124 /* note: this is a positive sum as runtime_remaining <= 0 */
2125 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2126
2127 raw_spin_lock(&cfs_b->lock);
2128 if (cfs_b->quota == RUNTIME_INF)
2129 amount = min_amount;
58088ad0 2130 else {
a9cf55b2
PT
2131 /*
2132 * If the bandwidth pool has become inactive, then at least one
2133 * period must have elapsed since the last consumption.
2134 * Refresh the global state and ensure bandwidth timer becomes
2135 * active.
2136 */
2137 if (!cfs_b->timer_active) {
2138 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2139 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2140 }
58088ad0
PT
2141
2142 if (cfs_b->runtime > 0) {
2143 amount = min(cfs_b->runtime, min_amount);
2144 cfs_b->runtime -= amount;
2145 cfs_b->idle = 0;
2146 }
ec12cb7f 2147 }
a9cf55b2 2148 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2149 raw_spin_unlock(&cfs_b->lock);
2150
2151 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2152 /*
2153 * we may have advanced our local expiration to account for allowed
2154 * spread between our sched_clock and the one on which runtime was
2155 * issued.
2156 */
2157 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2158 cfs_rq->runtime_expires = expires;
85dac906
PT
2159
2160 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2161}
2162
a9cf55b2
PT
2163/*
2164 * Note: This depends on the synchronization provided by sched_clock and the
2165 * fact that rq->clock snapshots this value.
2166 */
2167static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2168{
a9cf55b2 2169 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2170
2171 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2172 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2173 return;
2174
a9cf55b2
PT
2175 if (cfs_rq->runtime_remaining < 0)
2176 return;
2177
2178 /*
2179 * If the local deadline has passed we have to consider the
2180 * possibility that our sched_clock is 'fast' and the global deadline
2181 * has not truly expired.
2182 *
2183 * Fortunately we can check determine whether this the case by checking
2184 * whether the global deadline has advanced.
2185 */
2186
2187 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2188 /* extend local deadline, drift is bounded above by 2 ticks */
2189 cfs_rq->runtime_expires += TICK_NSEC;
2190 } else {
2191 /* global deadline is ahead, expiration has passed */
2192 cfs_rq->runtime_remaining = 0;
2193 }
2194}
2195
2196static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2197 unsigned long delta_exec)
2198{
2199 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2200 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2201 expire_cfs_rq_runtime(cfs_rq);
2202
2203 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2204 return;
2205
85dac906
PT
2206 /*
2207 * if we're unable to extend our runtime we resched so that the active
2208 * hierarchy can be throttled
2209 */
2210 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2211 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2212}
2213
6c16a6dc
PZ
2214static __always_inline
2215void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2216{
56f570e5 2217 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2218 return;
2219
2220 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2221}
2222
85dac906
PT
2223static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2224{
56f570e5 2225 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2226}
2227
64660c86
PT
2228/* check whether cfs_rq, or any parent, is throttled */
2229static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2230{
56f570e5 2231 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2232}
2233
2234/*
2235 * Ensure that neither of the group entities corresponding to src_cpu or
2236 * dest_cpu are members of a throttled hierarchy when performing group
2237 * load-balance operations.
2238 */
2239static inline int throttled_lb_pair(struct task_group *tg,
2240 int src_cpu, int dest_cpu)
2241{
2242 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2243
2244 src_cfs_rq = tg->cfs_rq[src_cpu];
2245 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2246
2247 return throttled_hierarchy(src_cfs_rq) ||
2248 throttled_hierarchy(dest_cfs_rq);
2249}
2250
2251/* updated child weight may affect parent so we have to do this bottom up */
2252static int tg_unthrottle_up(struct task_group *tg, void *data)
2253{
2254 struct rq *rq = data;
2255 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2256
2257 cfs_rq->throttle_count--;
2258#ifdef CONFIG_SMP
2259 if (!cfs_rq->throttle_count) {
f1b17280 2260 /* adjust cfs_rq_clock_task() */
78becc27 2261 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2262 cfs_rq->throttled_clock_task;
64660c86
PT
2263 }
2264#endif
2265
2266 return 0;
2267}
2268
2269static int tg_throttle_down(struct task_group *tg, void *data)
2270{
2271 struct rq *rq = data;
2272 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2273
82958366
PT
2274 /* group is entering throttled state, stop time */
2275 if (!cfs_rq->throttle_count)
78becc27 2276 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2277 cfs_rq->throttle_count++;
2278
2279 return 0;
2280}
2281
d3d9dc33 2282static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2283{
2284 struct rq *rq = rq_of(cfs_rq);
2285 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2286 struct sched_entity *se;
2287 long task_delta, dequeue = 1;
2288
2289 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2290
f1b17280 2291 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2292 rcu_read_lock();
2293 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2294 rcu_read_unlock();
85dac906
PT
2295
2296 task_delta = cfs_rq->h_nr_running;
2297 for_each_sched_entity(se) {
2298 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2299 /* throttled entity or throttle-on-deactivate */
2300 if (!se->on_rq)
2301 break;
2302
2303 if (dequeue)
2304 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2305 qcfs_rq->h_nr_running -= task_delta;
2306
2307 if (qcfs_rq->load.weight)
2308 dequeue = 0;
2309 }
2310
2311 if (!se)
2312 rq->nr_running -= task_delta;
2313
2314 cfs_rq->throttled = 1;
78becc27 2315 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2316 raw_spin_lock(&cfs_b->lock);
2317 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2318 raw_spin_unlock(&cfs_b->lock);
2319}
2320
029632fb 2321void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2322{
2323 struct rq *rq = rq_of(cfs_rq);
2324 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2325 struct sched_entity *se;
2326 int enqueue = 1;
2327 long task_delta;
2328
22b958d8 2329 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
2330
2331 cfs_rq->throttled = 0;
1a55af2e
FW
2332
2333 update_rq_clock(rq);
2334
671fd9da 2335 raw_spin_lock(&cfs_b->lock);
78becc27 2336 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2337 list_del_rcu(&cfs_rq->throttled_list);
2338 raw_spin_unlock(&cfs_b->lock);
2339
64660c86
PT
2340 /* update hierarchical throttle state */
2341 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2342
671fd9da
PT
2343 if (!cfs_rq->load.weight)
2344 return;
2345
2346 task_delta = cfs_rq->h_nr_running;
2347 for_each_sched_entity(se) {
2348 if (se->on_rq)
2349 enqueue = 0;
2350
2351 cfs_rq = cfs_rq_of(se);
2352 if (enqueue)
2353 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2354 cfs_rq->h_nr_running += task_delta;
2355
2356 if (cfs_rq_throttled(cfs_rq))
2357 break;
2358 }
2359
2360 if (!se)
2361 rq->nr_running += task_delta;
2362
2363 /* determine whether we need to wake up potentially idle cpu */
2364 if (rq->curr == rq->idle && rq->cfs.nr_running)
2365 resched_task(rq->curr);
2366}
2367
2368static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2369 u64 remaining, u64 expires)
2370{
2371 struct cfs_rq *cfs_rq;
2372 u64 runtime = remaining;
2373
2374 rcu_read_lock();
2375 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2376 throttled_list) {
2377 struct rq *rq = rq_of(cfs_rq);
2378
2379 raw_spin_lock(&rq->lock);
2380 if (!cfs_rq_throttled(cfs_rq))
2381 goto next;
2382
2383 runtime = -cfs_rq->runtime_remaining + 1;
2384 if (runtime > remaining)
2385 runtime = remaining;
2386 remaining -= runtime;
2387
2388 cfs_rq->runtime_remaining += runtime;
2389 cfs_rq->runtime_expires = expires;
2390
2391 /* we check whether we're throttled above */
2392 if (cfs_rq->runtime_remaining > 0)
2393 unthrottle_cfs_rq(cfs_rq);
2394
2395next:
2396 raw_spin_unlock(&rq->lock);
2397
2398 if (!remaining)
2399 break;
2400 }
2401 rcu_read_unlock();
2402
2403 return remaining;
2404}
2405
58088ad0
PT
2406/*
2407 * Responsible for refilling a task_group's bandwidth and unthrottling its
2408 * cfs_rqs as appropriate. If there has been no activity within the last
2409 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2410 * used to track this state.
2411 */
2412static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2413{
671fd9da
PT
2414 u64 runtime, runtime_expires;
2415 int idle = 1, throttled;
58088ad0
PT
2416
2417 raw_spin_lock(&cfs_b->lock);
2418 /* no need to continue the timer with no bandwidth constraint */
2419 if (cfs_b->quota == RUNTIME_INF)
2420 goto out_unlock;
2421
671fd9da
PT
2422 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2423 /* idle depends on !throttled (for the case of a large deficit) */
2424 idle = cfs_b->idle && !throttled;
e8da1b18 2425 cfs_b->nr_periods += overrun;
671fd9da 2426
a9cf55b2
PT
2427 /* if we're going inactive then everything else can be deferred */
2428 if (idle)
2429 goto out_unlock;
2430
2431 __refill_cfs_bandwidth_runtime(cfs_b);
2432
671fd9da
PT
2433 if (!throttled) {
2434 /* mark as potentially idle for the upcoming period */
2435 cfs_b->idle = 1;
2436 goto out_unlock;
2437 }
2438
e8da1b18
NR
2439 /* account preceding periods in which throttling occurred */
2440 cfs_b->nr_throttled += overrun;
2441
671fd9da
PT
2442 /*
2443 * There are throttled entities so we must first use the new bandwidth
2444 * to unthrottle them before making it generally available. This
2445 * ensures that all existing debts will be paid before a new cfs_rq is
2446 * allowed to run.
2447 */
2448 runtime = cfs_b->runtime;
2449 runtime_expires = cfs_b->runtime_expires;
2450 cfs_b->runtime = 0;
2451
2452 /*
2453 * This check is repeated as we are holding onto the new bandwidth
2454 * while we unthrottle. This can potentially race with an unthrottled
2455 * group trying to acquire new bandwidth from the global pool.
2456 */
2457 while (throttled && runtime > 0) {
2458 raw_spin_unlock(&cfs_b->lock);
2459 /* we can't nest cfs_b->lock while distributing bandwidth */
2460 runtime = distribute_cfs_runtime(cfs_b, runtime,
2461 runtime_expires);
2462 raw_spin_lock(&cfs_b->lock);
2463
2464 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2465 }
58088ad0 2466
671fd9da
PT
2467 /* return (any) remaining runtime */
2468 cfs_b->runtime = runtime;
2469 /*
2470 * While we are ensured activity in the period following an
2471 * unthrottle, this also covers the case in which the new bandwidth is
2472 * insufficient to cover the existing bandwidth deficit. (Forcing the
2473 * timer to remain active while there are any throttled entities.)
2474 */
2475 cfs_b->idle = 0;
58088ad0
PT
2476out_unlock:
2477 if (idle)
2478 cfs_b->timer_active = 0;
2479 raw_spin_unlock(&cfs_b->lock);
2480
2481 return idle;
2482}
d3d9dc33 2483
d8b4986d
PT
2484/* a cfs_rq won't donate quota below this amount */
2485static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2486/* minimum remaining period time to redistribute slack quota */
2487static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2488/* how long we wait to gather additional slack before distributing */
2489static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2490
2491/* are we near the end of the current quota period? */
2492static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2493{
2494 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2495 u64 remaining;
2496
2497 /* if the call-back is running a quota refresh is already occurring */
2498 if (hrtimer_callback_running(refresh_timer))
2499 return 1;
2500
2501 /* is a quota refresh about to occur? */
2502 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2503 if (remaining < min_expire)
2504 return 1;
2505
2506 return 0;
2507}
2508
2509static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2510{
2511 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2512
2513 /* if there's a quota refresh soon don't bother with slack */
2514 if (runtime_refresh_within(cfs_b, min_left))
2515 return;
2516
2517 start_bandwidth_timer(&cfs_b->slack_timer,
2518 ns_to_ktime(cfs_bandwidth_slack_period));
2519}
2520
2521/* we know any runtime found here is valid as update_curr() precedes return */
2522static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2523{
2524 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2525 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2526
2527 if (slack_runtime <= 0)
2528 return;
2529
2530 raw_spin_lock(&cfs_b->lock);
2531 if (cfs_b->quota != RUNTIME_INF &&
2532 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2533 cfs_b->runtime += slack_runtime;
2534
2535 /* we are under rq->lock, defer unthrottling using a timer */
2536 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2537 !list_empty(&cfs_b->throttled_cfs_rq))
2538 start_cfs_slack_bandwidth(cfs_b);
2539 }
2540 raw_spin_unlock(&cfs_b->lock);
2541
2542 /* even if it's not valid for return we don't want to try again */
2543 cfs_rq->runtime_remaining -= slack_runtime;
2544}
2545
2546static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2547{
56f570e5
PT
2548 if (!cfs_bandwidth_used())
2549 return;
2550
fccfdc6f 2551 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2552 return;
2553
2554 __return_cfs_rq_runtime(cfs_rq);
2555}
2556
2557/*
2558 * This is done with a timer (instead of inline with bandwidth return) since
2559 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2560 */
2561static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2562{
2563 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2564 u64 expires;
2565
2566 /* confirm we're still not at a refresh boundary */
2567 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2568 return;
2569
2570 raw_spin_lock(&cfs_b->lock);
2571 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2572 runtime = cfs_b->runtime;
2573 cfs_b->runtime = 0;
2574 }
2575 expires = cfs_b->runtime_expires;
2576 raw_spin_unlock(&cfs_b->lock);
2577
2578 if (!runtime)
2579 return;
2580
2581 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2582
2583 raw_spin_lock(&cfs_b->lock);
2584 if (expires == cfs_b->runtime_expires)
2585 cfs_b->runtime = runtime;
2586 raw_spin_unlock(&cfs_b->lock);
2587}
2588
d3d9dc33
PT
2589/*
2590 * When a group wakes up we want to make sure that its quota is not already
2591 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2592 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2593 */
2594static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2595{
56f570e5
PT
2596 if (!cfs_bandwidth_used())
2597 return;
2598
d3d9dc33
PT
2599 /* an active group must be handled by the update_curr()->put() path */
2600 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2601 return;
2602
2603 /* ensure the group is not already throttled */
2604 if (cfs_rq_throttled(cfs_rq))
2605 return;
2606
2607 /* update runtime allocation */
2608 account_cfs_rq_runtime(cfs_rq, 0);
2609 if (cfs_rq->runtime_remaining <= 0)
2610 throttle_cfs_rq(cfs_rq);
2611}
2612
2613/* conditionally throttle active cfs_rq's from put_prev_entity() */
2614static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2615{
56f570e5
PT
2616 if (!cfs_bandwidth_used())
2617 return;
2618
d3d9dc33
PT
2619 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2620 return;
2621
2622 /*
2623 * it's possible for a throttled entity to be forced into a running
2624 * state (e.g. set_curr_task), in this case we're finished.
2625 */
2626 if (cfs_rq_throttled(cfs_rq))
2627 return;
2628
2629 throttle_cfs_rq(cfs_rq);
2630}
029632fb 2631
029632fb
PZ
2632static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2633{
2634 struct cfs_bandwidth *cfs_b =
2635 container_of(timer, struct cfs_bandwidth, slack_timer);
2636 do_sched_cfs_slack_timer(cfs_b);
2637
2638 return HRTIMER_NORESTART;
2639}
2640
2641static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2642{
2643 struct cfs_bandwidth *cfs_b =
2644 container_of(timer, struct cfs_bandwidth, period_timer);
2645 ktime_t now;
2646 int overrun;
2647 int idle = 0;
2648
2649 for (;;) {
2650 now = hrtimer_cb_get_time(timer);
2651 overrun = hrtimer_forward(timer, now, cfs_b->period);
2652
2653 if (!overrun)
2654 break;
2655
2656 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2657 }
2658
2659 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2660}
2661
2662void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2663{
2664 raw_spin_lock_init(&cfs_b->lock);
2665 cfs_b->runtime = 0;
2666 cfs_b->quota = RUNTIME_INF;
2667 cfs_b->period = ns_to_ktime(default_cfs_period());
2668
2669 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2670 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2671 cfs_b->period_timer.function = sched_cfs_period_timer;
2672 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2673 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2674}
2675
2676static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2677{
2678 cfs_rq->runtime_enabled = 0;
2679 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2680}
2681
2682/* requires cfs_b->lock, may release to reprogram timer */
2683void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2684{
2685 /*
2686 * The timer may be active because we're trying to set a new bandwidth
2687 * period or because we're racing with the tear-down path
2688 * (timer_active==0 becomes visible before the hrtimer call-back
2689 * terminates). In either case we ensure that it's re-programmed
2690 */
2691 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2692 raw_spin_unlock(&cfs_b->lock);
2693 /* ensure cfs_b->lock is available while we wait */
2694 hrtimer_cancel(&cfs_b->period_timer);
2695
2696 raw_spin_lock(&cfs_b->lock);
2697 /* if someone else restarted the timer then we're done */
2698 if (cfs_b->timer_active)
2699 return;
2700 }
2701
2702 cfs_b->timer_active = 1;
2703 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2704}
2705
2706static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2707{
2708 hrtimer_cancel(&cfs_b->period_timer);
2709 hrtimer_cancel(&cfs_b->slack_timer);
2710}
2711
38dc3348 2712static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2713{
2714 struct cfs_rq *cfs_rq;
2715
2716 for_each_leaf_cfs_rq(rq, cfs_rq) {
2717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2718
2719 if (!cfs_rq->runtime_enabled)
2720 continue;
2721
2722 /*
2723 * clock_task is not advancing so we just need to make sure
2724 * there's some valid quota amount
2725 */
2726 cfs_rq->runtime_remaining = cfs_b->quota;
2727 if (cfs_rq_throttled(cfs_rq))
2728 unthrottle_cfs_rq(cfs_rq);
2729 }
2730}
2731
2732#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2733static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2734{
78becc27 2735 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2736}
2737
2738static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2739 unsigned long delta_exec) {}
d3d9dc33
PT
2740static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2741static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2742static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2743
2744static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2745{
2746 return 0;
2747}
64660c86
PT
2748
2749static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2750{
2751 return 0;
2752}
2753
2754static inline int throttled_lb_pair(struct task_group *tg,
2755 int src_cpu, int dest_cpu)
2756{
2757 return 0;
2758}
029632fb
PZ
2759
2760void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2761
2762#ifdef CONFIG_FAIR_GROUP_SCHED
2763static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2764#endif
2765
029632fb
PZ
2766static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2767{
2768 return NULL;
2769}
2770static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2771static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2772
2773#endif /* CONFIG_CFS_BANDWIDTH */
2774
bf0f6f24
IM
2775/**************************************************
2776 * CFS operations on tasks:
2777 */
2778
8f4d37ec
PZ
2779#ifdef CONFIG_SCHED_HRTICK
2780static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2781{
8f4d37ec
PZ
2782 struct sched_entity *se = &p->se;
2783 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2784
2785 WARN_ON(task_rq(p) != rq);
2786
b39e66ea 2787 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2788 u64 slice = sched_slice(cfs_rq, se);
2789 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2790 s64 delta = slice - ran;
2791
2792 if (delta < 0) {
2793 if (rq->curr == p)
2794 resched_task(p);
2795 return;
2796 }
2797
2798 /*
2799 * Don't schedule slices shorter than 10000ns, that just
2800 * doesn't make sense. Rely on vruntime for fairness.
2801 */
31656519 2802 if (rq->curr != p)
157124c1 2803 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2804
31656519 2805 hrtick_start(rq, delta);
8f4d37ec
PZ
2806 }
2807}
a4c2f00f
PZ
2808
2809/*
2810 * called from enqueue/dequeue and updates the hrtick when the
2811 * current task is from our class and nr_running is low enough
2812 * to matter.
2813 */
2814static void hrtick_update(struct rq *rq)
2815{
2816 struct task_struct *curr = rq->curr;
2817
b39e66ea 2818 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2819 return;
2820
2821 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2822 hrtick_start_fair(rq, curr);
2823}
55e12e5e 2824#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2825static inline void
2826hrtick_start_fair(struct rq *rq, struct task_struct *p)
2827{
2828}
a4c2f00f
PZ
2829
2830static inline void hrtick_update(struct rq *rq)
2831{
2832}
8f4d37ec
PZ
2833#endif
2834
bf0f6f24
IM
2835/*
2836 * The enqueue_task method is called before nr_running is
2837 * increased. Here we update the fair scheduling stats and
2838 * then put the task into the rbtree:
2839 */
ea87bb78 2840static void
371fd7e7 2841enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2842{
2843 struct cfs_rq *cfs_rq;
62fb1851 2844 struct sched_entity *se = &p->se;
bf0f6f24
IM
2845
2846 for_each_sched_entity(se) {
62fb1851 2847 if (se->on_rq)
bf0f6f24
IM
2848 break;
2849 cfs_rq = cfs_rq_of(se);
88ec22d3 2850 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2851
2852 /*
2853 * end evaluation on encountering a throttled cfs_rq
2854 *
2855 * note: in the case of encountering a throttled cfs_rq we will
2856 * post the final h_nr_running increment below.
2857 */
2858 if (cfs_rq_throttled(cfs_rq))
2859 break;
953bfcd1 2860 cfs_rq->h_nr_running++;
85dac906 2861
88ec22d3 2862 flags = ENQUEUE_WAKEUP;
bf0f6f24 2863 }
8f4d37ec 2864
2069dd75 2865 for_each_sched_entity(se) {
0f317143 2866 cfs_rq = cfs_rq_of(se);
953bfcd1 2867 cfs_rq->h_nr_running++;
2069dd75 2868
85dac906
PT
2869 if (cfs_rq_throttled(cfs_rq))
2870 break;
2871
17bc14b7 2872 update_cfs_shares(cfs_rq);
9ee474f5 2873 update_entity_load_avg(se, 1);
2069dd75
PZ
2874 }
2875
18bf2805
BS
2876 if (!se) {
2877 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2878 inc_nr_running(rq);
18bf2805 2879 }
a4c2f00f 2880 hrtick_update(rq);
bf0f6f24
IM
2881}
2882
2f36825b
VP
2883static void set_next_buddy(struct sched_entity *se);
2884
bf0f6f24
IM
2885/*
2886 * The dequeue_task method is called before nr_running is
2887 * decreased. We remove the task from the rbtree and
2888 * update the fair scheduling stats:
2889 */
371fd7e7 2890static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2891{
2892 struct cfs_rq *cfs_rq;
62fb1851 2893 struct sched_entity *se = &p->se;
2f36825b 2894 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2895
2896 for_each_sched_entity(se) {
2897 cfs_rq = cfs_rq_of(se);
371fd7e7 2898 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2899
2900 /*
2901 * end evaluation on encountering a throttled cfs_rq
2902 *
2903 * note: in the case of encountering a throttled cfs_rq we will
2904 * post the final h_nr_running decrement below.
2905 */
2906 if (cfs_rq_throttled(cfs_rq))
2907 break;
953bfcd1 2908 cfs_rq->h_nr_running--;
2069dd75 2909
bf0f6f24 2910 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2911 if (cfs_rq->load.weight) {
2912 /*
2913 * Bias pick_next to pick a task from this cfs_rq, as
2914 * p is sleeping when it is within its sched_slice.
2915 */
2916 if (task_sleep && parent_entity(se))
2917 set_next_buddy(parent_entity(se));
9598c82d
PT
2918
2919 /* avoid re-evaluating load for this entity */
2920 se = parent_entity(se);
bf0f6f24 2921 break;
2f36825b 2922 }
371fd7e7 2923 flags |= DEQUEUE_SLEEP;
bf0f6f24 2924 }
8f4d37ec 2925
2069dd75 2926 for_each_sched_entity(se) {
0f317143 2927 cfs_rq = cfs_rq_of(se);
953bfcd1 2928 cfs_rq->h_nr_running--;
2069dd75 2929
85dac906
PT
2930 if (cfs_rq_throttled(cfs_rq))
2931 break;
2932
17bc14b7 2933 update_cfs_shares(cfs_rq);
9ee474f5 2934 update_entity_load_avg(se, 1);
2069dd75
PZ
2935 }
2936
18bf2805 2937 if (!se) {
85dac906 2938 dec_nr_running(rq);
18bf2805
BS
2939 update_rq_runnable_avg(rq, 1);
2940 }
a4c2f00f 2941 hrtick_update(rq);
bf0f6f24
IM
2942}
2943
e7693a36 2944#ifdef CONFIG_SMP
029632fb
PZ
2945/* Used instead of source_load when we know the type == 0 */
2946static unsigned long weighted_cpuload(const int cpu)
2947{
b92486cb 2948 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
2949}
2950
2951/*
2952 * Return a low guess at the load of a migration-source cpu weighted
2953 * according to the scheduling class and "nice" value.
2954 *
2955 * We want to under-estimate the load of migration sources, to
2956 * balance conservatively.
2957 */
2958static unsigned long source_load(int cpu, int type)
2959{
2960 struct rq *rq = cpu_rq(cpu);
2961 unsigned long total = weighted_cpuload(cpu);
2962
2963 if (type == 0 || !sched_feat(LB_BIAS))
2964 return total;
2965
2966 return min(rq->cpu_load[type-1], total);
2967}
2968
2969/*
2970 * Return a high guess at the load of a migration-target cpu weighted
2971 * according to the scheduling class and "nice" value.
2972 */
2973static unsigned long target_load(int cpu, int type)
2974{
2975 struct rq *rq = cpu_rq(cpu);
2976 unsigned long total = weighted_cpuload(cpu);
2977
2978 if (type == 0 || !sched_feat(LB_BIAS))
2979 return total;
2980
2981 return max(rq->cpu_load[type-1], total);
2982}
2983
2984static unsigned long power_of(int cpu)
2985{
2986 return cpu_rq(cpu)->cpu_power;
2987}
2988
2989static unsigned long cpu_avg_load_per_task(int cpu)
2990{
2991 struct rq *rq = cpu_rq(cpu);
2992 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 2993 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
2994
2995 if (nr_running)
b92486cb 2996 return load_avg / nr_running;
029632fb
PZ
2997
2998 return 0;
2999}
3000
62470419
MW
3001static void record_wakee(struct task_struct *p)
3002{
3003 /*
3004 * Rough decay (wiping) for cost saving, don't worry
3005 * about the boundary, really active task won't care
3006 * about the loss.
3007 */
3008 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3009 current->wakee_flips = 0;
3010 current->wakee_flip_decay_ts = jiffies;
3011 }
3012
3013 if (current->last_wakee != p) {
3014 current->last_wakee = p;
3015 current->wakee_flips++;
3016 }
3017}
098fb9db 3018
74f8e4b2 3019static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3020{
3021 struct sched_entity *se = &p->se;
3022 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3023 u64 min_vruntime;
3024
3025#ifndef CONFIG_64BIT
3026 u64 min_vruntime_copy;
88ec22d3 3027
3fe1698b
PZ
3028 do {
3029 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3030 smp_rmb();
3031 min_vruntime = cfs_rq->min_vruntime;
3032 } while (min_vruntime != min_vruntime_copy);
3033#else
3034 min_vruntime = cfs_rq->min_vruntime;
3035#endif
88ec22d3 3036
3fe1698b 3037 se->vruntime -= min_vruntime;
62470419 3038 record_wakee(p);
88ec22d3
PZ
3039}
3040
bb3469ac 3041#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3042/*
3043 * effective_load() calculates the load change as seen from the root_task_group
3044 *
3045 * Adding load to a group doesn't make a group heavier, but can cause movement
3046 * of group shares between cpus. Assuming the shares were perfectly aligned one
3047 * can calculate the shift in shares.
cf5f0acf
PZ
3048 *
3049 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3050 * on this @cpu and results in a total addition (subtraction) of @wg to the
3051 * total group weight.
3052 *
3053 * Given a runqueue weight distribution (rw_i) we can compute a shares
3054 * distribution (s_i) using:
3055 *
3056 * s_i = rw_i / \Sum rw_j (1)
3057 *
3058 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3059 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3060 * shares distribution (s_i):
3061 *
3062 * rw_i = { 2, 4, 1, 0 }
3063 * s_i = { 2/7, 4/7, 1/7, 0 }
3064 *
3065 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3066 * task used to run on and the CPU the waker is running on), we need to
3067 * compute the effect of waking a task on either CPU and, in case of a sync
3068 * wakeup, compute the effect of the current task going to sleep.
3069 *
3070 * So for a change of @wl to the local @cpu with an overall group weight change
3071 * of @wl we can compute the new shares distribution (s'_i) using:
3072 *
3073 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3074 *
3075 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3076 * differences in waking a task to CPU 0. The additional task changes the
3077 * weight and shares distributions like:
3078 *
3079 * rw'_i = { 3, 4, 1, 0 }
3080 * s'_i = { 3/8, 4/8, 1/8, 0 }
3081 *
3082 * We can then compute the difference in effective weight by using:
3083 *
3084 * dw_i = S * (s'_i - s_i) (3)
3085 *
3086 * Where 'S' is the group weight as seen by its parent.
3087 *
3088 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3089 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3090 * 4/7) times the weight of the group.
f5bfb7d9 3091 */
2069dd75 3092static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3093{
4be9daaa 3094 struct sched_entity *se = tg->se[cpu];
f1d239f7 3095
cf5f0acf 3096 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3097 return wl;
3098
4be9daaa 3099 for_each_sched_entity(se) {
cf5f0acf 3100 long w, W;
4be9daaa 3101
977dda7c 3102 tg = se->my_q->tg;
bb3469ac 3103
cf5f0acf
PZ
3104 /*
3105 * W = @wg + \Sum rw_j
3106 */
3107 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3108
cf5f0acf
PZ
3109 /*
3110 * w = rw_i + @wl
3111 */
3112 w = se->my_q->load.weight + wl;
940959e9 3113
cf5f0acf
PZ
3114 /*
3115 * wl = S * s'_i; see (2)
3116 */
3117 if (W > 0 && w < W)
3118 wl = (w * tg->shares) / W;
977dda7c
PT
3119 else
3120 wl = tg->shares;
940959e9 3121
cf5f0acf
PZ
3122 /*
3123 * Per the above, wl is the new se->load.weight value; since
3124 * those are clipped to [MIN_SHARES, ...) do so now. See
3125 * calc_cfs_shares().
3126 */
977dda7c
PT
3127 if (wl < MIN_SHARES)
3128 wl = MIN_SHARES;
cf5f0acf
PZ
3129
3130 /*
3131 * wl = dw_i = S * (s'_i - s_i); see (3)
3132 */
977dda7c 3133 wl -= se->load.weight;
cf5f0acf
PZ
3134
3135 /*
3136 * Recursively apply this logic to all parent groups to compute
3137 * the final effective load change on the root group. Since
3138 * only the @tg group gets extra weight, all parent groups can
3139 * only redistribute existing shares. @wl is the shift in shares
3140 * resulting from this level per the above.
3141 */
4be9daaa 3142 wg = 0;
4be9daaa 3143 }
bb3469ac 3144
4be9daaa 3145 return wl;
bb3469ac
PZ
3146}
3147#else
4be9daaa 3148
83378269
PZ
3149static inline unsigned long effective_load(struct task_group *tg, int cpu,
3150 unsigned long wl, unsigned long wg)
4be9daaa 3151{
83378269 3152 return wl;
bb3469ac 3153}
4be9daaa 3154
bb3469ac
PZ
3155#endif
3156
62470419
MW
3157static int wake_wide(struct task_struct *p)
3158{
7d9ffa89 3159 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3160
3161 /*
3162 * Yeah, it's the switching-frequency, could means many wakee or
3163 * rapidly switch, use factor here will just help to automatically
3164 * adjust the loose-degree, so bigger node will lead to more pull.
3165 */
3166 if (p->wakee_flips > factor) {
3167 /*
3168 * wakee is somewhat hot, it needs certain amount of cpu
3169 * resource, so if waker is far more hot, prefer to leave
3170 * it alone.
3171 */
3172 if (current->wakee_flips > (factor * p->wakee_flips))
3173 return 1;
3174 }
3175
3176 return 0;
3177}
3178
c88d5910 3179static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3180{
e37b6a7b 3181 s64 this_load, load;
c88d5910 3182 int idx, this_cpu, prev_cpu;
098fb9db 3183 unsigned long tl_per_task;
c88d5910 3184 struct task_group *tg;
83378269 3185 unsigned long weight;
b3137bc8 3186 int balanced;
098fb9db 3187
62470419
MW
3188 /*
3189 * If we wake multiple tasks be careful to not bounce
3190 * ourselves around too much.
3191 */
3192 if (wake_wide(p))
3193 return 0;
3194
c88d5910
PZ
3195 idx = sd->wake_idx;
3196 this_cpu = smp_processor_id();
3197 prev_cpu = task_cpu(p);
3198 load = source_load(prev_cpu, idx);
3199 this_load = target_load(this_cpu, idx);
098fb9db 3200
b3137bc8
MG
3201 /*
3202 * If sync wakeup then subtract the (maximum possible)
3203 * effect of the currently running task from the load
3204 * of the current CPU:
3205 */
83378269
PZ
3206 if (sync) {
3207 tg = task_group(current);
3208 weight = current->se.load.weight;
3209
c88d5910 3210 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3211 load += effective_load(tg, prev_cpu, 0, -weight);
3212 }
b3137bc8 3213
83378269
PZ
3214 tg = task_group(p);
3215 weight = p->se.load.weight;
b3137bc8 3216
71a29aa7
PZ
3217 /*
3218 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3219 * due to the sync cause above having dropped this_load to 0, we'll
3220 * always have an imbalance, but there's really nothing you can do
3221 * about that, so that's good too.
71a29aa7
PZ
3222 *
3223 * Otherwise check if either cpus are near enough in load to allow this
3224 * task to be woken on this_cpu.
3225 */
e37b6a7b
PT
3226 if (this_load > 0) {
3227 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3228
3229 this_eff_load = 100;
3230 this_eff_load *= power_of(prev_cpu);
3231 this_eff_load *= this_load +
3232 effective_load(tg, this_cpu, weight, weight);
3233
3234 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3235 prev_eff_load *= power_of(this_cpu);
3236 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3237
3238 balanced = this_eff_load <= prev_eff_load;
3239 } else
3240 balanced = true;
b3137bc8 3241
098fb9db 3242 /*
4ae7d5ce
IM
3243 * If the currently running task will sleep within
3244 * a reasonable amount of time then attract this newly
3245 * woken task:
098fb9db 3246 */
2fb7635c
PZ
3247 if (sync && balanced)
3248 return 1;
098fb9db 3249
41acab88 3250 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3251 tl_per_task = cpu_avg_load_per_task(this_cpu);
3252
c88d5910
PZ
3253 if (balanced ||
3254 (this_load <= load &&
3255 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3256 /*
3257 * This domain has SD_WAKE_AFFINE and
3258 * p is cache cold in this domain, and
3259 * there is no bad imbalance.
3260 */
c88d5910 3261 schedstat_inc(sd, ttwu_move_affine);
41acab88 3262 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3263
3264 return 1;
3265 }
3266 return 0;
3267}
3268
aaee1203
PZ
3269/*
3270 * find_idlest_group finds and returns the least busy CPU group within the
3271 * domain.
3272 */
3273static struct sched_group *
78e7ed53 3274find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3275 int this_cpu, int load_idx)
e7693a36 3276{
b3bd3de6 3277 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3278 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3279 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3280
aaee1203
PZ
3281 do {
3282 unsigned long load, avg_load;
3283 int local_group;
3284 int i;
e7693a36 3285
aaee1203
PZ
3286 /* Skip over this group if it has no CPUs allowed */
3287 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3288 tsk_cpus_allowed(p)))
aaee1203
PZ
3289 continue;
3290
3291 local_group = cpumask_test_cpu(this_cpu,
3292 sched_group_cpus(group));
3293
3294 /* Tally up the load of all CPUs in the group */
3295 avg_load = 0;
3296
3297 for_each_cpu(i, sched_group_cpus(group)) {
3298 /* Bias balancing toward cpus of our domain */
3299 if (local_group)
3300 load = source_load(i, load_idx);
3301 else
3302 load = target_load(i, load_idx);
3303
3304 avg_load += load;
3305 }
3306
3307 /* Adjust by relative CPU power of the group */
9c3f75cb 3308 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3309
3310 if (local_group) {
3311 this_load = avg_load;
aaee1203
PZ
3312 } else if (avg_load < min_load) {
3313 min_load = avg_load;
3314 idlest = group;
3315 }
3316 } while (group = group->next, group != sd->groups);
3317
3318 if (!idlest || 100*this_load < imbalance*min_load)
3319 return NULL;
3320 return idlest;
3321}
3322
3323/*
3324 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3325 */
3326static int
3327find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3328{
3329 unsigned long load, min_load = ULONG_MAX;
3330 int idlest = -1;
3331 int i;
3332
3333 /* Traverse only the allowed CPUs */
fa17b507 3334 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3335 load = weighted_cpuload(i);
3336
3337 if (load < min_load || (load == min_load && i == this_cpu)) {
3338 min_load = load;
3339 idlest = i;
e7693a36
GH
3340 }
3341 }
3342
aaee1203
PZ
3343 return idlest;
3344}
e7693a36 3345
a50bde51
PZ
3346/*
3347 * Try and locate an idle CPU in the sched_domain.
3348 */
99bd5e2f 3349static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3350{
99bd5e2f 3351 struct sched_domain *sd;
37407ea7 3352 struct sched_group *sg;
e0a79f52 3353 int i = task_cpu(p);
a50bde51 3354
e0a79f52
MG
3355 if (idle_cpu(target))
3356 return target;
99bd5e2f
SS
3357
3358 /*
e0a79f52 3359 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3360 */
e0a79f52
MG
3361 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3362 return i;
a50bde51
PZ
3363
3364 /*
37407ea7 3365 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3366 */
518cd623 3367 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3368 for_each_lower_domain(sd) {
37407ea7
LT
3369 sg = sd->groups;
3370 do {
3371 if (!cpumask_intersects(sched_group_cpus(sg),
3372 tsk_cpus_allowed(p)))
3373 goto next;
3374
3375 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3376 if (i == target || !idle_cpu(i))
37407ea7
LT
3377 goto next;
3378 }
970e1789 3379
37407ea7
LT
3380 target = cpumask_first_and(sched_group_cpus(sg),
3381 tsk_cpus_allowed(p));
3382 goto done;
3383next:
3384 sg = sg->next;
3385 } while (sg != sd->groups);
3386 }
3387done:
a50bde51
PZ
3388 return target;
3389}
3390
aaee1203
PZ
3391/*
3392 * sched_balance_self: balance the current task (running on cpu) in domains
3393 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3394 * SD_BALANCE_EXEC.
3395 *
3396 * Balance, ie. select the least loaded group.
3397 *
3398 * Returns the target CPU number, or the same CPU if no balancing is needed.
3399 *
3400 * preempt must be disabled.
3401 */
0017d735 3402static int
7608dec2 3403select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3404{
29cd8bae 3405 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3406 int cpu = smp_processor_id();
3407 int prev_cpu = task_cpu(p);
3408 int new_cpu = cpu;
99bd5e2f 3409 int want_affine = 0;
5158f4e4 3410 int sync = wake_flags & WF_SYNC;
c88d5910 3411
29baa747 3412 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3413 return prev_cpu;
3414
0763a660 3415 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3416 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3417 want_affine = 1;
3418 new_cpu = prev_cpu;
3419 }
aaee1203 3420
dce840a0 3421 rcu_read_lock();
aaee1203 3422 for_each_domain(cpu, tmp) {
e4f42888
PZ
3423 if (!(tmp->flags & SD_LOAD_BALANCE))
3424 continue;
3425
fe3bcfe1 3426 /*
99bd5e2f
SS
3427 * If both cpu and prev_cpu are part of this domain,
3428 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3429 */
99bd5e2f
SS
3430 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3431 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3432 affine_sd = tmp;
29cd8bae 3433 break;
f03542a7 3434 }
29cd8bae 3435
f03542a7 3436 if (tmp->flags & sd_flag)
29cd8bae
PZ
3437 sd = tmp;
3438 }
3439
8b911acd 3440 if (affine_sd) {
f03542a7 3441 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3442 prev_cpu = cpu;
3443
3444 new_cpu = select_idle_sibling(p, prev_cpu);
3445 goto unlock;
8b911acd 3446 }
e7693a36 3447
aaee1203 3448 while (sd) {
5158f4e4 3449 int load_idx = sd->forkexec_idx;
aaee1203 3450 struct sched_group *group;
c88d5910 3451 int weight;
098fb9db 3452
0763a660 3453 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3454 sd = sd->child;
3455 continue;
3456 }
098fb9db 3457
5158f4e4
PZ
3458 if (sd_flag & SD_BALANCE_WAKE)
3459 load_idx = sd->wake_idx;
098fb9db 3460
5158f4e4 3461 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3462 if (!group) {
3463 sd = sd->child;
3464 continue;
3465 }
4ae7d5ce 3466
d7c33c49 3467 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3468 if (new_cpu == -1 || new_cpu == cpu) {
3469 /* Now try balancing at a lower domain level of cpu */
3470 sd = sd->child;
3471 continue;
e7693a36 3472 }
aaee1203
PZ
3473
3474 /* Now try balancing at a lower domain level of new_cpu */
3475 cpu = new_cpu;
669c55e9 3476 weight = sd->span_weight;
aaee1203
PZ
3477 sd = NULL;
3478 for_each_domain(cpu, tmp) {
669c55e9 3479 if (weight <= tmp->span_weight)
aaee1203 3480 break;
0763a660 3481 if (tmp->flags & sd_flag)
aaee1203
PZ
3482 sd = tmp;
3483 }
3484 /* while loop will break here if sd == NULL */
e7693a36 3485 }
dce840a0
PZ
3486unlock:
3487 rcu_read_unlock();
e7693a36 3488
c88d5910 3489 return new_cpu;
e7693a36 3490}
0a74bef8
PT
3491
3492/*
3493 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3494 * cfs_rq_of(p) references at time of call are still valid and identify the
3495 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3496 * other assumptions, including the state of rq->lock, should be made.
3497 */
3498static void
3499migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3500{
aff3e498
PT
3501 struct sched_entity *se = &p->se;
3502 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3503
3504 /*
3505 * Load tracking: accumulate removed load so that it can be processed
3506 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3507 * to blocked load iff they have a positive decay-count. It can never
3508 * be negative here since on-rq tasks have decay-count == 0.
3509 */
3510 if (se->avg.decay_count) {
3511 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
3512 atomic_long_add(se->avg.load_avg_contrib,
3513 &cfs_rq->removed_load);
aff3e498 3514 }
0a74bef8 3515}
e7693a36
GH
3516#endif /* CONFIG_SMP */
3517
e52fb7c0
PZ
3518static unsigned long
3519wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3520{
3521 unsigned long gran = sysctl_sched_wakeup_granularity;
3522
3523 /*
e52fb7c0
PZ
3524 * Since its curr running now, convert the gran from real-time
3525 * to virtual-time in his units.
13814d42
MG
3526 *
3527 * By using 'se' instead of 'curr' we penalize light tasks, so
3528 * they get preempted easier. That is, if 'se' < 'curr' then
3529 * the resulting gran will be larger, therefore penalizing the
3530 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3531 * be smaller, again penalizing the lighter task.
3532 *
3533 * This is especially important for buddies when the leftmost
3534 * task is higher priority than the buddy.
0bbd3336 3535 */
f4ad9bd2 3536 return calc_delta_fair(gran, se);
0bbd3336
PZ
3537}
3538
464b7527
PZ
3539/*
3540 * Should 'se' preempt 'curr'.
3541 *
3542 * |s1
3543 * |s2
3544 * |s3
3545 * g
3546 * |<--->|c
3547 *
3548 * w(c, s1) = -1
3549 * w(c, s2) = 0
3550 * w(c, s3) = 1
3551 *
3552 */
3553static int
3554wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3555{
3556 s64 gran, vdiff = curr->vruntime - se->vruntime;
3557
3558 if (vdiff <= 0)
3559 return -1;
3560
e52fb7c0 3561 gran = wakeup_gran(curr, se);
464b7527
PZ
3562 if (vdiff > gran)
3563 return 1;
3564
3565 return 0;
3566}
3567
02479099
PZ
3568static void set_last_buddy(struct sched_entity *se)
3569{
69c80f3e
VP
3570 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3571 return;
3572
3573 for_each_sched_entity(se)
3574 cfs_rq_of(se)->last = se;
02479099
PZ
3575}
3576
3577static void set_next_buddy(struct sched_entity *se)
3578{
69c80f3e
VP
3579 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3580 return;
3581
3582 for_each_sched_entity(se)
3583 cfs_rq_of(se)->next = se;
02479099
PZ
3584}
3585
ac53db59
RR
3586static void set_skip_buddy(struct sched_entity *se)
3587{
69c80f3e
VP
3588 for_each_sched_entity(se)
3589 cfs_rq_of(se)->skip = se;
ac53db59
RR
3590}
3591
bf0f6f24
IM
3592/*
3593 * Preempt the current task with a newly woken task if needed:
3594 */
5a9b86f6 3595static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3596{
3597 struct task_struct *curr = rq->curr;
8651a86c 3598 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3599 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3600 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3601 int next_buddy_marked = 0;
bf0f6f24 3602
4ae7d5ce
IM
3603 if (unlikely(se == pse))
3604 return;
3605
5238cdd3 3606 /*
ddcdf6e7 3607 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3608 * unconditionally check_prempt_curr() after an enqueue (which may have
3609 * lead to a throttle). This both saves work and prevents false
3610 * next-buddy nomination below.
3611 */
3612 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3613 return;
3614
2f36825b 3615 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3616 set_next_buddy(pse);
2f36825b
VP
3617 next_buddy_marked = 1;
3618 }
57fdc26d 3619
aec0a514
BR
3620 /*
3621 * We can come here with TIF_NEED_RESCHED already set from new task
3622 * wake up path.
5238cdd3
PT
3623 *
3624 * Note: this also catches the edge-case of curr being in a throttled
3625 * group (e.g. via set_curr_task), since update_curr() (in the
3626 * enqueue of curr) will have resulted in resched being set. This
3627 * prevents us from potentially nominating it as a false LAST_BUDDY
3628 * below.
aec0a514
BR
3629 */
3630 if (test_tsk_need_resched(curr))
3631 return;
3632
a2f5c9ab
DH
3633 /* Idle tasks are by definition preempted by non-idle tasks. */
3634 if (unlikely(curr->policy == SCHED_IDLE) &&
3635 likely(p->policy != SCHED_IDLE))
3636 goto preempt;
3637
91c234b4 3638 /*
a2f5c9ab
DH
3639 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3640 * is driven by the tick):
91c234b4 3641 */
8ed92e51 3642 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3643 return;
bf0f6f24 3644
464b7527 3645 find_matching_se(&se, &pse);
9bbd7374 3646 update_curr(cfs_rq_of(se));
002f128b 3647 BUG_ON(!pse);
2f36825b
VP
3648 if (wakeup_preempt_entity(se, pse) == 1) {
3649 /*
3650 * Bias pick_next to pick the sched entity that is
3651 * triggering this preemption.
3652 */
3653 if (!next_buddy_marked)
3654 set_next_buddy(pse);
3a7e73a2 3655 goto preempt;
2f36825b 3656 }
464b7527 3657
3a7e73a2 3658 return;
a65ac745 3659
3a7e73a2
PZ
3660preempt:
3661 resched_task(curr);
3662 /*
3663 * Only set the backward buddy when the current task is still
3664 * on the rq. This can happen when a wakeup gets interleaved
3665 * with schedule on the ->pre_schedule() or idle_balance()
3666 * point, either of which can * drop the rq lock.
3667 *
3668 * Also, during early boot the idle thread is in the fair class,
3669 * for obvious reasons its a bad idea to schedule back to it.
3670 */
3671 if (unlikely(!se->on_rq || curr == rq->idle))
3672 return;
3673
3674 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3675 set_last_buddy(se);
bf0f6f24
IM
3676}
3677
fb8d4724 3678static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3679{
8f4d37ec 3680 struct task_struct *p;
bf0f6f24
IM
3681 struct cfs_rq *cfs_rq = &rq->cfs;
3682 struct sched_entity *se;
3683
36ace27e 3684 if (!cfs_rq->nr_running)
bf0f6f24
IM
3685 return NULL;
3686
3687 do {
9948f4b2 3688 se = pick_next_entity(cfs_rq);
f4b6755f 3689 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3690 cfs_rq = group_cfs_rq(se);
3691 } while (cfs_rq);
3692
8f4d37ec 3693 p = task_of(se);
b39e66ea
MG
3694 if (hrtick_enabled(rq))
3695 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3696
3697 return p;
bf0f6f24
IM
3698}
3699
3700/*
3701 * Account for a descheduled task:
3702 */
31ee529c 3703static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3704{
3705 struct sched_entity *se = &prev->se;
3706 struct cfs_rq *cfs_rq;
3707
3708 for_each_sched_entity(se) {
3709 cfs_rq = cfs_rq_of(se);
ab6cde26 3710 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3711 }
3712}
3713
ac53db59
RR
3714/*
3715 * sched_yield() is very simple
3716 *
3717 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3718 */
3719static void yield_task_fair(struct rq *rq)
3720{
3721 struct task_struct *curr = rq->curr;
3722 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3723 struct sched_entity *se = &curr->se;
3724
3725 /*
3726 * Are we the only task in the tree?
3727 */
3728 if (unlikely(rq->nr_running == 1))
3729 return;
3730
3731 clear_buddies(cfs_rq, se);
3732
3733 if (curr->policy != SCHED_BATCH) {
3734 update_rq_clock(rq);
3735 /*
3736 * Update run-time statistics of the 'current'.
3737 */
3738 update_curr(cfs_rq);
916671c0
MG
3739 /*
3740 * Tell update_rq_clock() that we've just updated,
3741 * so we don't do microscopic update in schedule()
3742 * and double the fastpath cost.
3743 */
3744 rq->skip_clock_update = 1;
ac53db59
RR
3745 }
3746
3747 set_skip_buddy(se);
3748}
3749
d95f4122
MG
3750static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3751{
3752 struct sched_entity *se = &p->se;
3753
5238cdd3
PT
3754 /* throttled hierarchies are not runnable */
3755 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3756 return false;
3757
3758 /* Tell the scheduler that we'd really like pse to run next. */
3759 set_next_buddy(se);
3760
d95f4122
MG
3761 yield_task_fair(rq);
3762
3763 return true;
3764}
3765
681f3e68 3766#ifdef CONFIG_SMP
bf0f6f24 3767/**************************************************
e9c84cb8
PZ
3768 * Fair scheduling class load-balancing methods.
3769 *
3770 * BASICS
3771 *
3772 * The purpose of load-balancing is to achieve the same basic fairness the
3773 * per-cpu scheduler provides, namely provide a proportional amount of compute
3774 * time to each task. This is expressed in the following equation:
3775 *
3776 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3777 *
3778 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3779 * W_i,0 is defined as:
3780 *
3781 * W_i,0 = \Sum_j w_i,j (2)
3782 *
3783 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3784 * is derived from the nice value as per prio_to_weight[].
3785 *
3786 * The weight average is an exponential decay average of the instantaneous
3787 * weight:
3788 *
3789 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3790 *
3791 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3792 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3793 * can also include other factors [XXX].
3794 *
3795 * To achieve this balance we define a measure of imbalance which follows
3796 * directly from (1):
3797 *
3798 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3799 *
3800 * We them move tasks around to minimize the imbalance. In the continuous
3801 * function space it is obvious this converges, in the discrete case we get
3802 * a few fun cases generally called infeasible weight scenarios.
3803 *
3804 * [XXX expand on:
3805 * - infeasible weights;
3806 * - local vs global optima in the discrete case. ]
3807 *
3808 *
3809 * SCHED DOMAINS
3810 *
3811 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3812 * for all i,j solution, we create a tree of cpus that follows the hardware
3813 * topology where each level pairs two lower groups (or better). This results
3814 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3815 * tree to only the first of the previous level and we decrease the frequency
3816 * of load-balance at each level inv. proportional to the number of cpus in
3817 * the groups.
3818 *
3819 * This yields:
3820 *
3821 * log_2 n 1 n
3822 * \Sum { --- * --- * 2^i } = O(n) (5)
3823 * i = 0 2^i 2^i
3824 * `- size of each group
3825 * | | `- number of cpus doing load-balance
3826 * | `- freq
3827 * `- sum over all levels
3828 *
3829 * Coupled with a limit on how many tasks we can migrate every balance pass,
3830 * this makes (5) the runtime complexity of the balancer.
3831 *
3832 * An important property here is that each CPU is still (indirectly) connected
3833 * to every other cpu in at most O(log n) steps:
3834 *
3835 * The adjacency matrix of the resulting graph is given by:
3836 *
3837 * log_2 n
3838 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3839 * k = 0
3840 *
3841 * And you'll find that:
3842 *
3843 * A^(log_2 n)_i,j != 0 for all i,j (7)
3844 *
3845 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3846 * The task movement gives a factor of O(m), giving a convergence complexity
3847 * of:
3848 *
3849 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3850 *
3851 *
3852 * WORK CONSERVING
3853 *
3854 * In order to avoid CPUs going idle while there's still work to do, new idle
3855 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3856 * tree itself instead of relying on other CPUs to bring it work.
3857 *
3858 * This adds some complexity to both (5) and (8) but it reduces the total idle
3859 * time.
3860 *
3861 * [XXX more?]
3862 *
3863 *
3864 * CGROUPS
3865 *
3866 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3867 *
3868 * s_k,i
3869 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3870 * S_k
3871 *
3872 * Where
3873 *
3874 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3875 *
3876 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3877 *
3878 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3879 * property.
3880 *
3881 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3882 * rewrite all of this once again.]
3883 */
bf0f6f24 3884
ed387b78
HS
3885static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3886
ddcdf6e7 3887#define LBF_ALL_PINNED 0x01
367456c7 3888#define LBF_NEED_BREAK 0x02
6263322c
PZ
3889#define LBF_DST_PINNED 0x04
3890#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
3891
3892struct lb_env {
3893 struct sched_domain *sd;
3894
ddcdf6e7 3895 struct rq *src_rq;
85c1e7da 3896 int src_cpu;
ddcdf6e7
PZ
3897
3898 int dst_cpu;
3899 struct rq *dst_rq;
3900
88b8dac0
SV
3901 struct cpumask *dst_grpmask;
3902 int new_dst_cpu;
ddcdf6e7 3903 enum cpu_idle_type idle;
bd939f45 3904 long imbalance;
b9403130
MW
3905 /* The set of CPUs under consideration for load-balancing */
3906 struct cpumask *cpus;
3907
ddcdf6e7 3908 unsigned int flags;
367456c7
PZ
3909
3910 unsigned int loop;
3911 unsigned int loop_break;
3912 unsigned int loop_max;
ddcdf6e7
PZ
3913};
3914
1e3c88bd 3915/*
ddcdf6e7 3916 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3917 * Both runqueues must be locked.
3918 */
ddcdf6e7 3919static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3920{
ddcdf6e7
PZ
3921 deactivate_task(env->src_rq, p, 0);
3922 set_task_cpu(p, env->dst_cpu);
3923 activate_task(env->dst_rq, p, 0);
3924 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3925}
3926
029632fb
PZ
3927/*
3928 * Is this task likely cache-hot:
3929 */
3930static int
3931task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3932{
3933 s64 delta;
3934
3935 if (p->sched_class != &fair_sched_class)
3936 return 0;
3937
3938 if (unlikely(p->policy == SCHED_IDLE))
3939 return 0;
3940
3941 /*
3942 * Buddy candidates are cache hot:
3943 */
3944 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3945 (&p->se == cfs_rq_of(&p->se)->next ||
3946 &p->se == cfs_rq_of(&p->se)->last))
3947 return 1;
3948
3949 if (sysctl_sched_migration_cost == -1)
3950 return 1;
3951 if (sysctl_sched_migration_cost == 0)
3952 return 0;
3953
3954 delta = now - p->se.exec_start;
3955
3956 return delta < (s64)sysctl_sched_migration_cost;
3957}
3958
1e3c88bd
PZ
3959/*
3960 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3961 */
3962static
8e45cb54 3963int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3964{
3965 int tsk_cache_hot = 0;
3966 /*
3967 * We do not migrate tasks that are:
d3198084 3968 * 1) throttled_lb_pair, or
1e3c88bd 3969 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3970 * 3) running (obviously), or
3971 * 4) are cache-hot on their current CPU.
1e3c88bd 3972 */
d3198084
JK
3973 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3974 return 0;
3975
ddcdf6e7 3976 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3977 int cpu;
88b8dac0 3978
41acab88 3979 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 3980
6263322c
PZ
3981 env->flags |= LBF_SOME_PINNED;
3982
88b8dac0
SV
3983 /*
3984 * Remember if this task can be migrated to any other cpu in
3985 * our sched_group. We may want to revisit it if we couldn't
3986 * meet load balance goals by pulling other tasks on src_cpu.
3987 *
3988 * Also avoid computing new_dst_cpu if we have already computed
3989 * one in current iteration.
3990 */
6263322c 3991 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
3992 return 0;
3993
e02e60c1
JK
3994 /* Prevent to re-select dst_cpu via env's cpus */
3995 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3996 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 3997 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
3998 env->new_dst_cpu = cpu;
3999 break;
4000 }
88b8dac0 4001 }
e02e60c1 4002
1e3c88bd
PZ
4003 return 0;
4004 }
88b8dac0
SV
4005
4006 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4007 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4008
ddcdf6e7 4009 if (task_running(env->src_rq, p)) {
41acab88 4010 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4011 return 0;
4012 }
4013
4014 /*
4015 * Aggressive migration if:
4016 * 1) task is cache cold, or
4017 * 2) too many balance attempts have failed.
4018 */
4019
78becc27 4020 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 4021 if (!tsk_cache_hot ||
8e45cb54 4022 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4023
1e3c88bd 4024 if (tsk_cache_hot) {
8e45cb54 4025 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4026 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4027 }
4e2dcb73 4028
1e3c88bd
PZ
4029 return 1;
4030 }
4031
4e2dcb73
ZH
4032 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4033 return 0;
1e3c88bd
PZ
4034}
4035
897c395f
PZ
4036/*
4037 * move_one_task tries to move exactly one task from busiest to this_rq, as
4038 * part of active balancing operations within "domain".
4039 * Returns 1 if successful and 0 otherwise.
4040 *
4041 * Called with both runqueues locked.
4042 */
8e45cb54 4043static int move_one_task(struct lb_env *env)
897c395f
PZ
4044{
4045 struct task_struct *p, *n;
897c395f 4046
367456c7 4047 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4048 if (!can_migrate_task(p, env))
4049 continue;
897c395f 4050
367456c7
PZ
4051 move_task(p, env);
4052 /*
4053 * Right now, this is only the second place move_task()
4054 * is called, so we can safely collect move_task()
4055 * stats here rather than inside move_task().
4056 */
4057 schedstat_inc(env->sd, lb_gained[env->idle]);
4058 return 1;
897c395f 4059 }
897c395f
PZ
4060 return 0;
4061}
4062
367456c7
PZ
4063static unsigned long task_h_load(struct task_struct *p);
4064
eb95308e
PZ
4065static const unsigned int sched_nr_migrate_break = 32;
4066
5d6523eb 4067/*
bd939f45 4068 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4069 * this_rq, as part of a balancing operation within domain "sd".
4070 * Returns 1 if successful and 0 otherwise.
4071 *
4072 * Called with both runqueues locked.
4073 */
4074static int move_tasks(struct lb_env *env)
1e3c88bd 4075{
5d6523eb
PZ
4076 struct list_head *tasks = &env->src_rq->cfs_tasks;
4077 struct task_struct *p;
367456c7
PZ
4078 unsigned long load;
4079 int pulled = 0;
1e3c88bd 4080
bd939f45 4081 if (env->imbalance <= 0)
5d6523eb 4082 return 0;
1e3c88bd 4083
5d6523eb
PZ
4084 while (!list_empty(tasks)) {
4085 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4086
367456c7
PZ
4087 env->loop++;
4088 /* We've more or less seen every task there is, call it quits */
5d6523eb 4089 if (env->loop > env->loop_max)
367456c7 4090 break;
5d6523eb
PZ
4091
4092 /* take a breather every nr_migrate tasks */
367456c7 4093 if (env->loop > env->loop_break) {
eb95308e 4094 env->loop_break += sched_nr_migrate_break;
8e45cb54 4095 env->flags |= LBF_NEED_BREAK;
ee00e66f 4096 break;
a195f004 4097 }
1e3c88bd 4098
d3198084 4099 if (!can_migrate_task(p, env))
367456c7
PZ
4100 goto next;
4101
4102 load = task_h_load(p);
5d6523eb 4103
eb95308e 4104 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4105 goto next;
4106
bd939f45 4107 if ((load / 2) > env->imbalance)
367456c7 4108 goto next;
1e3c88bd 4109
ddcdf6e7 4110 move_task(p, env);
ee00e66f 4111 pulled++;
bd939f45 4112 env->imbalance -= load;
1e3c88bd
PZ
4113
4114#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4115 /*
4116 * NEWIDLE balancing is a source of latency, so preemptible
4117 * kernels will stop after the first task is pulled to minimize
4118 * the critical section.
4119 */
5d6523eb 4120 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4121 break;
1e3c88bd
PZ
4122#endif
4123
ee00e66f
PZ
4124 /*
4125 * We only want to steal up to the prescribed amount of
4126 * weighted load.
4127 */
bd939f45 4128 if (env->imbalance <= 0)
ee00e66f 4129 break;
367456c7
PZ
4130
4131 continue;
4132next:
5d6523eb 4133 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4134 }
5d6523eb 4135
1e3c88bd 4136 /*
ddcdf6e7
PZ
4137 * Right now, this is one of only two places move_task() is called,
4138 * so we can safely collect move_task() stats here rather than
4139 * inside move_task().
1e3c88bd 4140 */
8e45cb54 4141 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4142
5d6523eb 4143 return pulled;
1e3c88bd
PZ
4144}
4145
230059de 4146#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4147/*
4148 * update tg->load_weight by folding this cpu's load_avg
4149 */
48a16753 4150static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4151{
48a16753
PT
4152 struct sched_entity *se = tg->se[cpu];
4153 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4154
48a16753
PT
4155 /* throttled entities do not contribute to load */
4156 if (throttled_hierarchy(cfs_rq))
4157 return;
9e3081ca 4158
aff3e498 4159 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4160
82958366
PT
4161 if (se) {
4162 update_entity_load_avg(se, 1);
4163 /*
4164 * We pivot on our runnable average having decayed to zero for
4165 * list removal. This generally implies that all our children
4166 * have also been removed (modulo rounding error or bandwidth
4167 * control); however, such cases are rare and we can fix these
4168 * at enqueue.
4169 *
4170 * TODO: fix up out-of-order children on enqueue.
4171 */
4172 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4173 list_del_leaf_cfs_rq(cfs_rq);
4174 } else {
48a16753 4175 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4176 update_rq_runnable_avg(rq, rq->nr_running);
4177 }
9e3081ca
PZ
4178}
4179
48a16753 4180static void update_blocked_averages(int cpu)
9e3081ca 4181{
9e3081ca 4182 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4183 struct cfs_rq *cfs_rq;
4184 unsigned long flags;
9e3081ca 4185
48a16753
PT
4186 raw_spin_lock_irqsave(&rq->lock, flags);
4187 update_rq_clock(rq);
9763b67f
PZ
4188 /*
4189 * Iterates the task_group tree in a bottom up fashion, see
4190 * list_add_leaf_cfs_rq() for details.
4191 */
64660c86 4192 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4193 /*
4194 * Note: We may want to consider periodically releasing
4195 * rq->lock about these updates so that creating many task
4196 * groups does not result in continually extending hold time.
4197 */
4198 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4199 }
48a16753
PT
4200
4201 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4202}
4203
9763b67f 4204/*
68520796 4205 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
4206 * This needs to be done in a top-down fashion because the load of a child
4207 * group is a fraction of its parents load.
4208 */
68520796 4209static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 4210{
68520796
VD
4211 struct rq *rq = rq_of(cfs_rq);
4212 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 4213 unsigned long now = jiffies;
68520796 4214 unsigned long load;
a35b6466 4215
68520796 4216 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
4217 return;
4218
68520796
VD
4219 cfs_rq->h_load_next = NULL;
4220 for_each_sched_entity(se) {
4221 cfs_rq = cfs_rq_of(se);
4222 cfs_rq->h_load_next = se;
4223 if (cfs_rq->last_h_load_update == now)
4224 break;
4225 }
a35b6466 4226
68520796 4227 if (!se) {
7e3115ef 4228 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
4229 cfs_rq->last_h_load_update = now;
4230 }
4231
4232 while ((se = cfs_rq->h_load_next) != NULL) {
4233 load = cfs_rq->h_load;
4234 load = div64_ul(load * se->avg.load_avg_contrib,
4235 cfs_rq->runnable_load_avg + 1);
4236 cfs_rq = group_cfs_rq(se);
4237 cfs_rq->h_load = load;
4238 cfs_rq->last_h_load_update = now;
4239 }
9763b67f
PZ
4240}
4241
367456c7 4242static unsigned long task_h_load(struct task_struct *p)
230059de 4243{
367456c7 4244 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 4245
68520796 4246 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
4247 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4248 cfs_rq->runnable_load_avg + 1);
230059de
PZ
4249}
4250#else
48a16753 4251static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4252{
4253}
4254
367456c7 4255static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4256{
a003a25b 4257 return p->se.avg.load_avg_contrib;
1e3c88bd 4258}
230059de 4259#endif
1e3c88bd 4260
1e3c88bd 4261/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
4262/*
4263 * sg_lb_stats - stats of a sched_group required for load_balancing
4264 */
4265struct sg_lb_stats {
4266 unsigned long avg_load; /*Avg load across the CPUs of the group */
4267 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 4268 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 4269 unsigned long load_per_task;
3ae11c90 4270 unsigned long group_power;
147c5fc2
PZ
4271 unsigned int sum_nr_running; /* Nr tasks running in the group */
4272 unsigned int group_capacity;
4273 unsigned int idle_cpus;
4274 unsigned int group_weight;
1e3c88bd 4275 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4276 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4277};
4278
56cf515b
JK
4279/*
4280 * sd_lb_stats - Structure to store the statistics of a sched_domain
4281 * during load balancing.
4282 */
4283struct sd_lb_stats {
4284 struct sched_group *busiest; /* Busiest group in this sd */
4285 struct sched_group *local; /* Local group in this sd */
4286 unsigned long total_load; /* Total load of all groups in sd */
4287 unsigned long total_pwr; /* Total power of all groups in sd */
4288 unsigned long avg_load; /* Average load across all groups in sd */
4289
56cf515b 4290 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 4291 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
4292};
4293
147c5fc2
PZ
4294static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4295{
4296 /*
4297 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4298 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4299 * We must however clear busiest_stat::avg_load because
4300 * update_sd_pick_busiest() reads this before assignment.
4301 */
4302 *sds = (struct sd_lb_stats){
4303 .busiest = NULL,
4304 .local = NULL,
4305 .total_load = 0UL,
4306 .total_pwr = 0UL,
4307 .busiest_stat = {
4308 .avg_load = 0UL,
4309 },
4310 };
4311}
4312
1e3c88bd
PZ
4313/**
4314 * get_sd_load_idx - Obtain the load index for a given sched domain.
4315 * @sd: The sched_domain whose load_idx is to be obtained.
4316 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
4317 *
4318 * Return: The load index.
1e3c88bd
PZ
4319 */
4320static inline int get_sd_load_idx(struct sched_domain *sd,
4321 enum cpu_idle_type idle)
4322{
4323 int load_idx;
4324
4325 switch (idle) {
4326 case CPU_NOT_IDLE:
4327 load_idx = sd->busy_idx;
4328 break;
4329
4330 case CPU_NEWLY_IDLE:
4331 load_idx = sd->newidle_idx;
4332 break;
4333 default:
4334 load_idx = sd->idle_idx;
4335 break;
4336 }
4337
4338 return load_idx;
4339}
4340
15f803c9 4341static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4342{
1399fa78 4343 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4344}
4345
4346unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4347{
4348 return default_scale_freq_power(sd, cpu);
4349}
4350
15f803c9 4351static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4352{
669c55e9 4353 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4354 unsigned long smt_gain = sd->smt_gain;
4355
4356 smt_gain /= weight;
4357
4358 return smt_gain;
4359}
4360
4361unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4362{
4363 return default_scale_smt_power(sd, cpu);
4364}
4365
15f803c9 4366static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4367{
4368 struct rq *rq = cpu_rq(cpu);
b654f7de 4369 u64 total, available, age_stamp, avg;
1e3c88bd 4370
b654f7de
PZ
4371 /*
4372 * Since we're reading these variables without serialization make sure
4373 * we read them once before doing sanity checks on them.
4374 */
4375 age_stamp = ACCESS_ONCE(rq->age_stamp);
4376 avg = ACCESS_ONCE(rq->rt_avg);
4377
78becc27 4378 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4379
b654f7de 4380 if (unlikely(total < avg)) {
aa483808
VP
4381 /* Ensures that power won't end up being negative */
4382 available = 0;
4383 } else {
b654f7de 4384 available = total - avg;
aa483808 4385 }
1e3c88bd 4386
1399fa78
NR
4387 if (unlikely((s64)total < SCHED_POWER_SCALE))
4388 total = SCHED_POWER_SCALE;
1e3c88bd 4389
1399fa78 4390 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4391
4392 return div_u64(available, total);
4393}
4394
4395static void update_cpu_power(struct sched_domain *sd, int cpu)
4396{
669c55e9 4397 unsigned long weight = sd->span_weight;
1399fa78 4398 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4399 struct sched_group *sdg = sd->groups;
4400
1e3c88bd
PZ
4401 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4402 if (sched_feat(ARCH_POWER))
4403 power *= arch_scale_smt_power(sd, cpu);
4404 else
4405 power *= default_scale_smt_power(sd, cpu);
4406
1399fa78 4407 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4408 }
4409
9c3f75cb 4410 sdg->sgp->power_orig = power;
9d5efe05
SV
4411
4412 if (sched_feat(ARCH_POWER))
4413 power *= arch_scale_freq_power(sd, cpu);
4414 else
4415 power *= default_scale_freq_power(sd, cpu);
4416
1399fa78 4417 power >>= SCHED_POWER_SHIFT;
9d5efe05 4418
1e3c88bd 4419 power *= scale_rt_power(cpu);
1399fa78 4420 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4421
4422 if (!power)
4423 power = 1;
4424
e51fd5e2 4425 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4426 sdg->sgp->power = power;
1e3c88bd
PZ
4427}
4428
029632fb 4429void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4430{
4431 struct sched_domain *child = sd->child;
4432 struct sched_group *group, *sdg = sd->groups;
863bffc8 4433 unsigned long power, power_orig;
4ec4412e
VG
4434 unsigned long interval;
4435
4436 interval = msecs_to_jiffies(sd->balance_interval);
4437 interval = clamp(interval, 1UL, max_load_balance_interval);
4438 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4439
4440 if (!child) {
4441 update_cpu_power(sd, cpu);
4442 return;
4443 }
4444
863bffc8 4445 power_orig = power = 0;
1e3c88bd 4446
74a5ce20
PZ
4447 if (child->flags & SD_OVERLAP) {
4448 /*
4449 * SD_OVERLAP domains cannot assume that child groups
4450 * span the current group.
4451 */
4452
863bffc8
PZ
4453 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4454 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4455
4456 power_orig += sg->sgp->power_orig;
4457 power += sg->sgp->power;
4458 }
74a5ce20
PZ
4459 } else {
4460 /*
4461 * !SD_OVERLAP domains can assume that child groups
4462 * span the current group.
4463 */
4464
4465 group = child->groups;
4466 do {
863bffc8 4467 power_orig += group->sgp->power_orig;
74a5ce20
PZ
4468 power += group->sgp->power;
4469 group = group->next;
4470 } while (group != child->groups);
4471 }
1e3c88bd 4472
863bffc8
PZ
4473 sdg->sgp->power_orig = power_orig;
4474 sdg->sgp->power = power;
1e3c88bd
PZ
4475}
4476
9d5efe05
SV
4477/*
4478 * Try and fix up capacity for tiny siblings, this is needed when
4479 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4480 * which on its own isn't powerful enough.
4481 *
4482 * See update_sd_pick_busiest() and check_asym_packing().
4483 */
4484static inline int
4485fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4486{
4487 /*
1399fa78 4488 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4489 */
a6c75f2f 4490 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4491 return 0;
4492
4493 /*
4494 * If ~90% of the cpu_power is still there, we're good.
4495 */
9c3f75cb 4496 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4497 return 1;
4498
4499 return 0;
4500}
4501
30ce5dab
PZ
4502/*
4503 * Group imbalance indicates (and tries to solve) the problem where balancing
4504 * groups is inadequate due to tsk_cpus_allowed() constraints.
4505 *
4506 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4507 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4508 * Something like:
4509 *
4510 * { 0 1 2 3 } { 4 5 6 7 }
4511 * * * * *
4512 *
4513 * If we were to balance group-wise we'd place two tasks in the first group and
4514 * two tasks in the second group. Clearly this is undesired as it will overload
4515 * cpu 3 and leave one of the cpus in the second group unused.
4516 *
4517 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
4518 * by noticing the lower domain failed to reach balance and had difficulty
4519 * moving tasks due to affinity constraints.
30ce5dab
PZ
4520 *
4521 * When this is so detected; this group becomes a candidate for busiest; see
4522 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 4523 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
4524 * to create an effective group imbalance.
4525 *
4526 * This is a somewhat tricky proposition since the next run might not find the
4527 * group imbalance and decide the groups need to be balanced again. A most
4528 * subtle and fragile situation.
4529 */
4530
6263322c 4531static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 4532{
6263322c 4533 return group->sgp->imbalance;
30ce5dab
PZ
4534}
4535
b37d9316
PZ
4536/*
4537 * Compute the group capacity.
4538 *
c61037e9
PZ
4539 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4540 * first dividing out the smt factor and computing the actual number of cores
4541 * and limit power unit capacity with that.
b37d9316
PZ
4542 */
4543static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4544{
c61037e9
PZ
4545 unsigned int capacity, smt, cpus;
4546 unsigned int power, power_orig;
4547
4548 power = group->sgp->power;
4549 power_orig = group->sgp->power_orig;
4550 cpus = group->group_weight;
b37d9316 4551
c61037e9
PZ
4552 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4553 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4554 capacity = cpus / smt; /* cores */
b37d9316 4555
c61037e9 4556 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
4557 if (!capacity)
4558 capacity = fix_small_capacity(env->sd, group);
4559
4560 return capacity;
4561}
4562
1e3c88bd
PZ
4563/**
4564 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4565 * @env: The load balancing environment.
1e3c88bd 4566 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4567 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4568 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4569 * @sgs: variable to hold the statistics for this group.
4570 */
bd939f45
PZ
4571static inline void update_sg_lb_stats(struct lb_env *env,
4572 struct sched_group *group, int load_idx,
23f0d209 4573 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 4574{
30ce5dab
PZ
4575 unsigned long nr_running;
4576 unsigned long load;
bd939f45 4577 int i;
1e3c88bd 4578
b72ff13c
PZ
4579 memset(sgs, 0, sizeof(*sgs));
4580
b9403130 4581 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4582 struct rq *rq = cpu_rq(i);
4583
e44bc5c5
PZ
4584 nr_running = rq->nr_running;
4585
1e3c88bd 4586 /* Bias balancing toward cpus of our domain */
6263322c 4587 if (local_group)
04f733b4 4588 load = target_load(i, load_idx);
6263322c 4589 else
1e3c88bd 4590 load = source_load(i, load_idx);
1e3c88bd
PZ
4591
4592 sgs->group_load += load;
e44bc5c5 4593 sgs->sum_nr_running += nr_running;
1e3c88bd 4594 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4595 if (idle_cpu(i))
4596 sgs->idle_cpus++;
1e3c88bd
PZ
4597 }
4598
1e3c88bd 4599 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
4600 sgs->group_power = group->sgp->power;
4601 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 4602
dd5feea1 4603 if (sgs->sum_nr_running)
38d0f770 4604 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4605
aae6d3dd 4606 sgs->group_weight = group->group_weight;
fab47622 4607
b37d9316
PZ
4608 sgs->group_imb = sg_imbalanced(group);
4609 sgs->group_capacity = sg_capacity(env, group);
4610
fab47622
NR
4611 if (sgs->group_capacity > sgs->sum_nr_running)
4612 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4613}
4614
532cb4c4
MN
4615/**
4616 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4617 * @env: The load balancing environment.
532cb4c4
MN
4618 * @sds: sched_domain statistics
4619 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4620 * @sgs: sched_group statistics
532cb4c4
MN
4621 *
4622 * Determine if @sg is a busier group than the previously selected
4623 * busiest group.
e69f6186
YB
4624 *
4625 * Return: %true if @sg is a busier group than the previously selected
4626 * busiest group. %false otherwise.
532cb4c4 4627 */
bd939f45 4628static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4629 struct sd_lb_stats *sds,
4630 struct sched_group *sg,
bd939f45 4631 struct sg_lb_stats *sgs)
532cb4c4 4632{
56cf515b 4633 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
4634 return false;
4635
4636 if (sgs->sum_nr_running > sgs->group_capacity)
4637 return true;
4638
4639 if (sgs->group_imb)
4640 return true;
4641
4642 /*
4643 * ASYM_PACKING needs to move all the work to the lowest
4644 * numbered CPUs in the group, therefore mark all groups
4645 * higher than ourself as busy.
4646 */
bd939f45
PZ
4647 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4648 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4649 if (!sds->busiest)
4650 return true;
4651
4652 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4653 return true;
4654 }
4655
4656 return false;
4657}
4658
1e3c88bd 4659/**
461819ac 4660 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4661 * @env: The load balancing environment.
1e3c88bd
PZ
4662 * @balance: Should we balance.
4663 * @sds: variable to hold the statistics for this sched_domain.
4664 */
bd939f45 4665static inline void update_sd_lb_stats(struct lb_env *env,
23f0d209 4666 struct sd_lb_stats *sds)
1e3c88bd 4667{
bd939f45
PZ
4668 struct sched_domain *child = env->sd->child;
4669 struct sched_group *sg = env->sd->groups;
56cf515b 4670 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
4671 int load_idx, prefer_sibling = 0;
4672
4673 if (child && child->flags & SD_PREFER_SIBLING)
4674 prefer_sibling = 1;
4675
bd939f45 4676 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4677
4678 do {
56cf515b 4679 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
4680 int local_group;
4681
bd939f45 4682 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
4683 if (local_group) {
4684 sds->local = sg;
4685 sgs = &sds->local_stat;
b72ff13c
PZ
4686
4687 if (env->idle != CPU_NEWLY_IDLE ||
4688 time_after_eq(jiffies, sg->sgp->next_update))
4689 update_group_power(env->sd, env->dst_cpu);
56cf515b 4690 }
1e3c88bd 4691
56cf515b 4692 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 4693
b72ff13c
PZ
4694 if (local_group)
4695 goto next_group;
4696
1e3c88bd
PZ
4697 /*
4698 * In case the child domain prefers tasks go to siblings
532cb4c4 4699 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4700 * and move all the excess tasks away. We lower the capacity
4701 * of a group only if the local group has the capacity to fit
4702 * these excess tasks, i.e. nr_running < group_capacity. The
4703 * extra check prevents the case where you always pull from the
4704 * heaviest group when it is already under-utilized (possible
4705 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4706 */
b72ff13c
PZ
4707 if (prefer_sibling && sds->local &&
4708 sds->local_stat.group_has_capacity)
147c5fc2 4709 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 4710
b72ff13c 4711 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 4712 sds->busiest = sg;
56cf515b 4713 sds->busiest_stat = *sgs;
1e3c88bd
PZ
4714 }
4715
b72ff13c
PZ
4716next_group:
4717 /* Now, start updating sd_lb_stats */
4718 sds->total_load += sgs->group_load;
4719 sds->total_pwr += sgs->group_power;
4720
532cb4c4 4721 sg = sg->next;
bd939f45 4722 } while (sg != env->sd->groups);
532cb4c4
MN
4723}
4724
532cb4c4
MN
4725/**
4726 * check_asym_packing - Check to see if the group is packed into the
4727 * sched doman.
4728 *
4729 * This is primarily intended to used at the sibling level. Some
4730 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4731 * case of POWER7, it can move to lower SMT modes only when higher
4732 * threads are idle. When in lower SMT modes, the threads will
4733 * perform better since they share less core resources. Hence when we
4734 * have idle threads, we want them to be the higher ones.
4735 *
4736 * This packing function is run on idle threads. It checks to see if
4737 * the busiest CPU in this domain (core in the P7 case) has a higher
4738 * CPU number than the packing function is being run on. Here we are
4739 * assuming lower CPU number will be equivalent to lower a SMT thread
4740 * number.
4741 *
e69f6186 4742 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
4743 * this CPU. The amount of the imbalance is returned in *imbalance.
4744 *
cd96891d 4745 * @env: The load balancing environment.
532cb4c4 4746 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4747 */
bd939f45 4748static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4749{
4750 int busiest_cpu;
4751
bd939f45 4752 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4753 return 0;
4754
4755 if (!sds->busiest)
4756 return 0;
4757
4758 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4759 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4760 return 0;
4761
bd939f45 4762 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
4763 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
4764 SCHED_POWER_SCALE);
bd939f45 4765
532cb4c4 4766 return 1;
1e3c88bd
PZ
4767}
4768
4769/**
4770 * fix_small_imbalance - Calculate the minor imbalance that exists
4771 * amongst the groups of a sched_domain, during
4772 * load balancing.
cd96891d 4773 * @env: The load balancing environment.
1e3c88bd 4774 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4775 */
bd939f45
PZ
4776static inline
4777void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4778{
4779 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4780 unsigned int imbn = 2;
dd5feea1 4781 unsigned long scaled_busy_load_per_task;
56cf515b 4782 struct sg_lb_stats *local, *busiest;
1e3c88bd 4783
56cf515b
JK
4784 local = &sds->local_stat;
4785 busiest = &sds->busiest_stat;
1e3c88bd 4786
56cf515b
JK
4787 if (!local->sum_nr_running)
4788 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
4789 else if (busiest->load_per_task > local->load_per_task)
4790 imbn = 1;
dd5feea1 4791
56cf515b
JK
4792 scaled_busy_load_per_task =
4793 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4794 busiest->group_power;
56cf515b 4795
3029ede3
VD
4796 if (busiest->avg_load + scaled_busy_load_per_task >=
4797 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 4798 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4799 return;
4800 }
4801
4802 /*
4803 * OK, we don't have enough imbalance to justify moving tasks,
4804 * however we may be able to increase total CPU power used by
4805 * moving them.
4806 */
4807
3ae11c90 4808 pwr_now += busiest->group_power *
56cf515b 4809 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 4810 pwr_now += local->group_power *
56cf515b 4811 min(local->load_per_task, local->avg_load);
1399fa78 4812 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4813
4814 /* Amount of load we'd subtract */
56cf515b 4815 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4816 busiest->group_power;
56cf515b 4817 if (busiest->avg_load > tmp) {
3ae11c90 4818 pwr_move += busiest->group_power *
56cf515b
JK
4819 min(busiest->load_per_task,
4820 busiest->avg_load - tmp);
4821 }
1e3c88bd
PZ
4822
4823 /* Amount of load we'd add */
3ae11c90 4824 if (busiest->avg_load * busiest->group_power <
56cf515b 4825 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
4826 tmp = (busiest->avg_load * busiest->group_power) /
4827 local->group_power;
56cf515b
JK
4828 } else {
4829 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 4830 local->group_power;
56cf515b 4831 }
3ae11c90
PZ
4832 pwr_move += local->group_power *
4833 min(local->load_per_task, local->avg_load + tmp);
1399fa78 4834 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4835
4836 /* Move if we gain throughput */
4837 if (pwr_move > pwr_now)
56cf515b 4838 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
4839}
4840
4841/**
4842 * calculate_imbalance - Calculate the amount of imbalance present within the
4843 * groups of a given sched_domain during load balance.
bd939f45 4844 * @env: load balance environment
1e3c88bd 4845 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4846 */
bd939f45 4847static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4848{
dd5feea1 4849 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
4850 struct sg_lb_stats *local, *busiest;
4851
4852 local = &sds->local_stat;
56cf515b 4853 busiest = &sds->busiest_stat;
dd5feea1 4854
56cf515b 4855 if (busiest->group_imb) {
30ce5dab
PZ
4856 /*
4857 * In the group_imb case we cannot rely on group-wide averages
4858 * to ensure cpu-load equilibrium, look at wider averages. XXX
4859 */
56cf515b
JK
4860 busiest->load_per_task =
4861 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
4862 }
4863
1e3c88bd
PZ
4864 /*
4865 * In the presence of smp nice balancing, certain scenarios can have
4866 * max load less than avg load(as we skip the groups at or below
4867 * its cpu_power, while calculating max_load..)
4868 */
b1885550
VD
4869 if (busiest->avg_load <= sds->avg_load ||
4870 local->avg_load >= sds->avg_load) {
bd939f45
PZ
4871 env->imbalance = 0;
4872 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4873 }
4874
56cf515b 4875 if (!busiest->group_imb) {
dd5feea1
SS
4876 /*
4877 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
4878 * Except of course for the group_imb case, since then we might
4879 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 4880 */
56cf515b
JK
4881 load_above_capacity =
4882 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 4883
1399fa78 4884 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 4885 load_above_capacity /= busiest->group_power;
dd5feea1
SS
4886 }
4887
4888 /*
4889 * We're trying to get all the cpus to the average_load, so we don't
4890 * want to push ourselves above the average load, nor do we wish to
4891 * reduce the max loaded cpu below the average load. At the same time,
4892 * we also don't want to reduce the group load below the group capacity
4893 * (so that we can implement power-savings policies etc). Thus we look
4894 * for the minimum possible imbalance.
dd5feea1 4895 */
30ce5dab 4896 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4897
4898 /* How much load to actually move to equalise the imbalance */
56cf515b 4899 env->imbalance = min(
3ae11c90
PZ
4900 max_pull * busiest->group_power,
4901 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 4902 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
4903
4904 /*
4905 * if *imbalance is less than the average load per runnable task
25985edc 4906 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4907 * a think about bumping its value to force at least one task to be
4908 * moved
4909 */
56cf515b 4910 if (env->imbalance < busiest->load_per_task)
bd939f45 4911 return fix_small_imbalance(env, sds);
1e3c88bd 4912}
fab47622 4913
1e3c88bd
PZ
4914/******* find_busiest_group() helpers end here *********************/
4915
4916/**
4917 * find_busiest_group - Returns the busiest group within the sched_domain
4918 * if there is an imbalance. If there isn't an imbalance, and
4919 * the user has opted for power-savings, it returns a group whose
4920 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4921 * such a group exists.
4922 *
4923 * Also calculates the amount of weighted load which should be moved
4924 * to restore balance.
4925 *
cd96891d 4926 * @env: The load balancing environment.
1e3c88bd 4927 *
e69f6186 4928 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
4929 * - If no imbalance and user has opted for power-savings balance,
4930 * return the least loaded group whose CPUs can be
4931 * put to idle by rebalancing its tasks onto our group.
4932 */
56cf515b 4933static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 4934{
56cf515b 4935 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
4936 struct sd_lb_stats sds;
4937
147c5fc2 4938 init_sd_lb_stats(&sds);
1e3c88bd
PZ
4939
4940 /*
4941 * Compute the various statistics relavent for load balancing at
4942 * this level.
4943 */
23f0d209 4944 update_sd_lb_stats(env, &sds);
56cf515b
JK
4945 local = &sds.local_stat;
4946 busiest = &sds.busiest_stat;
1e3c88bd 4947
bd939f45
PZ
4948 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4949 check_asym_packing(env, &sds))
532cb4c4
MN
4950 return sds.busiest;
4951
cc57aa8f 4952 /* There is no busy sibling group to pull tasks from */
56cf515b 4953 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
4954 goto out_balanced;
4955
1399fa78 4956 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4957
866ab43e
PZ
4958 /*
4959 * If the busiest group is imbalanced the below checks don't
30ce5dab 4960 * work because they assume all things are equal, which typically
866ab43e
PZ
4961 * isn't true due to cpus_allowed constraints and the like.
4962 */
56cf515b 4963 if (busiest->group_imb)
866ab43e
PZ
4964 goto force_balance;
4965
cc57aa8f 4966 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
4967 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
4968 !busiest->group_has_capacity)
fab47622
NR
4969 goto force_balance;
4970
cc57aa8f
PZ
4971 /*
4972 * If the local group is more busy than the selected busiest group
4973 * don't try and pull any tasks.
4974 */
56cf515b 4975 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
4976 goto out_balanced;
4977
cc57aa8f
PZ
4978 /*
4979 * Don't pull any tasks if this group is already above the domain
4980 * average load.
4981 */
56cf515b 4982 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
4983 goto out_balanced;
4984
bd939f45 4985 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4986 /*
4987 * This cpu is idle. If the busiest group load doesn't
4988 * have more tasks than the number of available cpu's and
4989 * there is no imbalance between this and busiest group
4990 * wrt to idle cpu's, it is balanced.
4991 */
56cf515b
JK
4992 if ((local->idle_cpus < busiest->idle_cpus) &&
4993 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 4994 goto out_balanced;
c186fafe
PZ
4995 } else {
4996 /*
4997 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4998 * imbalance_pct to be conservative.
4999 */
56cf515b
JK
5000 if (100 * busiest->avg_load <=
5001 env->sd->imbalance_pct * local->avg_load)
c186fafe 5002 goto out_balanced;
aae6d3dd 5003 }
1e3c88bd 5004
fab47622 5005force_balance:
1e3c88bd 5006 /* Looks like there is an imbalance. Compute it */
bd939f45 5007 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5008 return sds.busiest;
5009
5010out_balanced:
bd939f45 5011 env->imbalance = 0;
1e3c88bd
PZ
5012 return NULL;
5013}
5014
5015/*
5016 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5017 */
bd939f45 5018static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5019 struct sched_group *group)
1e3c88bd
PZ
5020{
5021 struct rq *busiest = NULL, *rq;
95a79b80 5022 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5023 int i;
5024
6906a408 5025 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd 5026 unsigned long power = power_of(i);
1399fa78
NR
5027 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5028 SCHED_POWER_SCALE);
1e3c88bd
PZ
5029 unsigned long wl;
5030
9d5efe05 5031 if (!capacity)
bd939f45 5032 capacity = fix_small_capacity(env->sd, group);
9d5efe05 5033
1e3c88bd 5034 rq = cpu_rq(i);
6e40f5bb 5035 wl = weighted_cpuload(i);
1e3c88bd 5036
6e40f5bb
TG
5037 /*
5038 * When comparing with imbalance, use weighted_cpuload()
5039 * which is not scaled with the cpu power.
5040 */
bd939f45 5041 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
5042 continue;
5043
6e40f5bb
TG
5044 /*
5045 * For the load comparisons with the other cpu's, consider
5046 * the weighted_cpuload() scaled with the cpu power, so that
5047 * the load can be moved away from the cpu that is potentially
5048 * running at a lower capacity.
95a79b80
JK
5049 *
5050 * Thus we're looking for max(wl_i / power_i), crosswise
5051 * multiplication to rid ourselves of the division works out
5052 * to: wl_i * power_j > wl_j * power_i; where j is our
5053 * previous maximum.
6e40f5bb 5054 */
95a79b80
JK
5055 if (wl * busiest_power > busiest_load * power) {
5056 busiest_load = wl;
5057 busiest_power = power;
1e3c88bd
PZ
5058 busiest = rq;
5059 }
5060 }
5061
5062 return busiest;
5063}
5064
5065/*
5066 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5067 * so long as it is large enough.
5068 */
5069#define MAX_PINNED_INTERVAL 512
5070
5071/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5072DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5073
bd939f45 5074static int need_active_balance(struct lb_env *env)
1af3ed3d 5075{
bd939f45
PZ
5076 struct sched_domain *sd = env->sd;
5077
5078 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5079
5080 /*
5081 * ASYM_PACKING needs to force migrate tasks from busy but
5082 * higher numbered CPUs in order to pack all tasks in the
5083 * lowest numbered CPUs.
5084 */
bd939f45 5085 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5086 return 1;
1af3ed3d
PZ
5087 }
5088
5089 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5090}
5091
969c7921
TH
5092static int active_load_balance_cpu_stop(void *data);
5093
23f0d209
JK
5094static int should_we_balance(struct lb_env *env)
5095{
5096 struct sched_group *sg = env->sd->groups;
5097 struct cpumask *sg_cpus, *sg_mask;
5098 int cpu, balance_cpu = -1;
5099
5100 /*
5101 * In the newly idle case, we will allow all the cpu's
5102 * to do the newly idle load balance.
5103 */
5104 if (env->idle == CPU_NEWLY_IDLE)
5105 return 1;
5106
5107 sg_cpus = sched_group_cpus(sg);
5108 sg_mask = sched_group_mask(sg);
5109 /* Try to find first idle cpu */
5110 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5111 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5112 continue;
5113
5114 balance_cpu = cpu;
5115 break;
5116 }
5117
5118 if (balance_cpu == -1)
5119 balance_cpu = group_balance_cpu(sg);
5120
5121 /*
5122 * First idle cpu or the first cpu(busiest) in this sched group
5123 * is eligible for doing load balancing at this and above domains.
5124 */
b0cff9d8 5125 return balance_cpu == env->dst_cpu;
23f0d209
JK
5126}
5127
1e3c88bd
PZ
5128/*
5129 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5130 * tasks if there is an imbalance.
5131 */
5132static int load_balance(int this_cpu, struct rq *this_rq,
5133 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 5134 int *continue_balancing)
1e3c88bd 5135{
88b8dac0 5136 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 5137 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 5138 struct sched_group *group;
1e3c88bd
PZ
5139 struct rq *busiest;
5140 unsigned long flags;
e6252c3e 5141 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5142
8e45cb54
PZ
5143 struct lb_env env = {
5144 .sd = sd,
ddcdf6e7
PZ
5145 .dst_cpu = this_cpu,
5146 .dst_rq = this_rq,
88b8dac0 5147 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5148 .idle = idle,
eb95308e 5149 .loop_break = sched_nr_migrate_break,
b9403130 5150 .cpus = cpus,
8e45cb54
PZ
5151 };
5152
cfc03118
JK
5153 /*
5154 * For NEWLY_IDLE load_balancing, we don't need to consider
5155 * other cpus in our group
5156 */
e02e60c1 5157 if (idle == CPU_NEWLY_IDLE)
cfc03118 5158 env.dst_grpmask = NULL;
cfc03118 5159
1e3c88bd
PZ
5160 cpumask_copy(cpus, cpu_active_mask);
5161
1e3c88bd
PZ
5162 schedstat_inc(sd, lb_count[idle]);
5163
5164redo:
23f0d209
JK
5165 if (!should_we_balance(&env)) {
5166 *continue_balancing = 0;
1e3c88bd 5167 goto out_balanced;
23f0d209 5168 }
1e3c88bd 5169
23f0d209 5170 group = find_busiest_group(&env);
1e3c88bd
PZ
5171 if (!group) {
5172 schedstat_inc(sd, lb_nobusyg[idle]);
5173 goto out_balanced;
5174 }
5175
b9403130 5176 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5177 if (!busiest) {
5178 schedstat_inc(sd, lb_nobusyq[idle]);
5179 goto out_balanced;
5180 }
5181
78feefc5 5182 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5183
bd939f45 5184 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5185
5186 ld_moved = 0;
5187 if (busiest->nr_running > 1) {
5188 /*
5189 * Attempt to move tasks. If find_busiest_group has found
5190 * an imbalance but busiest->nr_running <= 1, the group is
5191 * still unbalanced. ld_moved simply stays zero, so it is
5192 * correctly treated as an imbalance.
5193 */
8e45cb54 5194 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5195 env.src_cpu = busiest->cpu;
5196 env.src_rq = busiest;
5197 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5198
5d6523eb 5199more_balance:
1e3c88bd 5200 local_irq_save(flags);
78feefc5 5201 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5202
5203 /*
5204 * cur_ld_moved - load moved in current iteration
5205 * ld_moved - cumulative load moved across iterations
5206 */
5207 cur_ld_moved = move_tasks(&env);
5208 ld_moved += cur_ld_moved;
78feefc5 5209 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5210 local_irq_restore(flags);
5211
5212 /*
5213 * some other cpu did the load balance for us.
5214 */
88b8dac0
SV
5215 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5216 resched_cpu(env.dst_cpu);
5217
f1cd0858
JK
5218 if (env.flags & LBF_NEED_BREAK) {
5219 env.flags &= ~LBF_NEED_BREAK;
5220 goto more_balance;
5221 }
5222
88b8dac0
SV
5223 /*
5224 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5225 * us and move them to an alternate dst_cpu in our sched_group
5226 * where they can run. The upper limit on how many times we
5227 * iterate on same src_cpu is dependent on number of cpus in our
5228 * sched_group.
5229 *
5230 * This changes load balance semantics a bit on who can move
5231 * load to a given_cpu. In addition to the given_cpu itself
5232 * (or a ilb_cpu acting on its behalf where given_cpu is
5233 * nohz-idle), we now have balance_cpu in a position to move
5234 * load to given_cpu. In rare situations, this may cause
5235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5236 * _independently_ and at _same_ time to move some load to
5237 * given_cpu) causing exceess load to be moved to given_cpu.
5238 * This however should not happen so much in practice and
5239 * moreover subsequent load balance cycles should correct the
5240 * excess load moved.
5241 */
6263322c 5242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 5243
7aff2e3a
VD
5244 /* Prevent to re-select dst_cpu via env's cpus */
5245 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5246
78feefc5 5247 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 5248 env.dst_cpu = env.new_dst_cpu;
6263322c 5249 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
5250 env.loop = 0;
5251 env.loop_break = sched_nr_migrate_break;
e02e60c1 5252
88b8dac0
SV
5253 /*
5254 * Go back to "more_balance" rather than "redo" since we
5255 * need to continue with same src_cpu.
5256 */
5257 goto more_balance;
5258 }
1e3c88bd 5259
6263322c
PZ
5260 /*
5261 * We failed to reach balance because of affinity.
5262 */
5263 if (sd_parent) {
5264 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5265
5266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5267 *group_imbalance = 1;
5268 } else if (*group_imbalance)
5269 *group_imbalance = 0;
5270 }
5271
1e3c88bd 5272 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5273 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5274 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5275 if (!cpumask_empty(cpus)) {
5276 env.loop = 0;
5277 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5278 goto redo;
bbf18b19 5279 }
1e3c88bd
PZ
5280 goto out_balanced;
5281 }
5282 }
5283
5284 if (!ld_moved) {
5285 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5286 /*
5287 * Increment the failure counter only on periodic balance.
5288 * We do not want newidle balance, which can be very
5289 * frequent, pollute the failure counter causing
5290 * excessive cache_hot migrations and active balances.
5291 */
5292 if (idle != CPU_NEWLY_IDLE)
5293 sd->nr_balance_failed++;
1e3c88bd 5294
bd939f45 5295 if (need_active_balance(&env)) {
1e3c88bd
PZ
5296 raw_spin_lock_irqsave(&busiest->lock, flags);
5297
969c7921
TH
5298 /* don't kick the active_load_balance_cpu_stop,
5299 * if the curr task on busiest cpu can't be
5300 * moved to this_cpu
1e3c88bd
PZ
5301 */
5302 if (!cpumask_test_cpu(this_cpu,
fa17b507 5303 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5304 raw_spin_unlock_irqrestore(&busiest->lock,
5305 flags);
8e45cb54 5306 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5307 goto out_one_pinned;
5308 }
5309
969c7921
TH
5310 /*
5311 * ->active_balance synchronizes accesses to
5312 * ->active_balance_work. Once set, it's cleared
5313 * only after active load balance is finished.
5314 */
1e3c88bd
PZ
5315 if (!busiest->active_balance) {
5316 busiest->active_balance = 1;
5317 busiest->push_cpu = this_cpu;
5318 active_balance = 1;
5319 }
5320 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5321
bd939f45 5322 if (active_balance) {
969c7921
TH
5323 stop_one_cpu_nowait(cpu_of(busiest),
5324 active_load_balance_cpu_stop, busiest,
5325 &busiest->active_balance_work);
bd939f45 5326 }
1e3c88bd
PZ
5327
5328 /*
5329 * We've kicked active balancing, reset the failure
5330 * counter.
5331 */
5332 sd->nr_balance_failed = sd->cache_nice_tries+1;
5333 }
5334 } else
5335 sd->nr_balance_failed = 0;
5336
5337 if (likely(!active_balance)) {
5338 /* We were unbalanced, so reset the balancing interval */
5339 sd->balance_interval = sd->min_interval;
5340 } else {
5341 /*
5342 * If we've begun active balancing, start to back off. This
5343 * case may not be covered by the all_pinned logic if there
5344 * is only 1 task on the busy runqueue (because we don't call
5345 * move_tasks).
5346 */
5347 if (sd->balance_interval < sd->max_interval)
5348 sd->balance_interval *= 2;
5349 }
5350
1e3c88bd
PZ
5351 goto out;
5352
5353out_balanced:
5354 schedstat_inc(sd, lb_balanced[idle]);
5355
5356 sd->nr_balance_failed = 0;
5357
5358out_one_pinned:
5359 /* tune up the balancing interval */
8e45cb54 5360 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5361 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5362 (sd->balance_interval < sd->max_interval))
5363 sd->balance_interval *= 2;
5364
46e49b38 5365 ld_moved = 0;
1e3c88bd 5366out:
1e3c88bd
PZ
5367 return ld_moved;
5368}
5369
1e3c88bd
PZ
5370/*
5371 * idle_balance is called by schedule() if this_cpu is about to become
5372 * idle. Attempts to pull tasks from other CPUs.
5373 */
029632fb 5374void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5375{
5376 struct sched_domain *sd;
5377 int pulled_task = 0;
5378 unsigned long next_balance = jiffies + HZ;
9bd721c5 5379 u64 curr_cost = 0;
1e3c88bd 5380
78becc27 5381 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5382
5383 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5384 return;
5385
f492e12e
PZ
5386 /*
5387 * Drop the rq->lock, but keep IRQ/preempt disabled.
5388 */
5389 raw_spin_unlock(&this_rq->lock);
5390
48a16753 5391 update_blocked_averages(this_cpu);
dce840a0 5392 rcu_read_lock();
1e3c88bd
PZ
5393 for_each_domain(this_cpu, sd) {
5394 unsigned long interval;
23f0d209 5395 int continue_balancing = 1;
9bd721c5 5396 u64 t0, domain_cost;
1e3c88bd
PZ
5397
5398 if (!(sd->flags & SD_LOAD_BALANCE))
5399 continue;
5400
9bd721c5
JL
5401 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5402 break;
5403
f492e12e 5404 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
5405 t0 = sched_clock_cpu(this_cpu);
5406
1e3c88bd 5407 /* If we've pulled tasks over stop searching: */
f492e12e 5408 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
5409 sd, CPU_NEWLY_IDLE,
5410 &continue_balancing);
9bd721c5
JL
5411
5412 domain_cost = sched_clock_cpu(this_cpu) - t0;
5413 if (domain_cost > sd->max_newidle_lb_cost)
5414 sd->max_newidle_lb_cost = domain_cost;
5415
5416 curr_cost += domain_cost;
f492e12e 5417 }
1e3c88bd
PZ
5418
5419 interval = msecs_to_jiffies(sd->balance_interval);
5420 if (time_after(next_balance, sd->last_balance + interval))
5421 next_balance = sd->last_balance + interval;
d5ad140b
NR
5422 if (pulled_task) {
5423 this_rq->idle_stamp = 0;
1e3c88bd 5424 break;
d5ad140b 5425 }
1e3c88bd 5426 }
dce840a0 5427 rcu_read_unlock();
f492e12e
PZ
5428
5429 raw_spin_lock(&this_rq->lock);
5430
1e3c88bd
PZ
5431 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5432 /*
5433 * We are going idle. next_balance may be set based on
5434 * a busy processor. So reset next_balance.
5435 */
5436 this_rq->next_balance = next_balance;
5437 }
9bd721c5
JL
5438
5439 if (curr_cost > this_rq->max_idle_balance_cost)
5440 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
5441}
5442
5443/*
969c7921
TH
5444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5445 * running tasks off the busiest CPU onto idle CPUs. It requires at
5446 * least 1 task to be running on each physical CPU where possible, and
5447 * avoids physical / logical imbalances.
1e3c88bd 5448 */
969c7921 5449static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5450{
969c7921
TH
5451 struct rq *busiest_rq = data;
5452 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5453 int target_cpu = busiest_rq->push_cpu;
969c7921 5454 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5455 struct sched_domain *sd;
969c7921
TH
5456
5457 raw_spin_lock_irq(&busiest_rq->lock);
5458
5459 /* make sure the requested cpu hasn't gone down in the meantime */
5460 if (unlikely(busiest_cpu != smp_processor_id() ||
5461 !busiest_rq->active_balance))
5462 goto out_unlock;
1e3c88bd
PZ
5463
5464 /* Is there any task to move? */
5465 if (busiest_rq->nr_running <= 1)
969c7921 5466 goto out_unlock;
1e3c88bd
PZ
5467
5468 /*
5469 * This condition is "impossible", if it occurs
5470 * we need to fix it. Originally reported by
5471 * Bjorn Helgaas on a 128-cpu setup.
5472 */
5473 BUG_ON(busiest_rq == target_rq);
5474
5475 /* move a task from busiest_rq to target_rq */
5476 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5477
5478 /* Search for an sd spanning us and the target CPU. */
dce840a0 5479 rcu_read_lock();
1e3c88bd
PZ
5480 for_each_domain(target_cpu, sd) {
5481 if ((sd->flags & SD_LOAD_BALANCE) &&
5482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5483 break;
5484 }
5485
5486 if (likely(sd)) {
8e45cb54
PZ
5487 struct lb_env env = {
5488 .sd = sd,
ddcdf6e7
PZ
5489 .dst_cpu = target_cpu,
5490 .dst_rq = target_rq,
5491 .src_cpu = busiest_rq->cpu,
5492 .src_rq = busiest_rq,
8e45cb54
PZ
5493 .idle = CPU_IDLE,
5494 };
5495
1e3c88bd
PZ
5496 schedstat_inc(sd, alb_count);
5497
8e45cb54 5498 if (move_one_task(&env))
1e3c88bd
PZ
5499 schedstat_inc(sd, alb_pushed);
5500 else
5501 schedstat_inc(sd, alb_failed);
5502 }
dce840a0 5503 rcu_read_unlock();
1e3c88bd 5504 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5505out_unlock:
5506 busiest_rq->active_balance = 0;
5507 raw_spin_unlock_irq(&busiest_rq->lock);
5508 return 0;
1e3c88bd
PZ
5509}
5510
3451d024 5511#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5512/*
5513 * idle load balancing details
83cd4fe2
VP
5514 * - When one of the busy CPUs notice that there may be an idle rebalancing
5515 * needed, they will kick the idle load balancer, which then does idle
5516 * load balancing for all the idle CPUs.
5517 */
1e3c88bd 5518static struct {
83cd4fe2 5519 cpumask_var_t idle_cpus_mask;
0b005cf5 5520 atomic_t nr_cpus;
83cd4fe2
VP
5521 unsigned long next_balance; /* in jiffy units */
5522} nohz ____cacheline_aligned;
1e3c88bd 5523
8e7fbcbc 5524static inline int find_new_ilb(int call_cpu)
1e3c88bd 5525{
0b005cf5 5526 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5527
786d6dc7
SS
5528 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5529 return ilb;
5530
5531 return nr_cpu_ids;
1e3c88bd 5532}
1e3c88bd 5533
83cd4fe2
VP
5534/*
5535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5537 * CPU (if there is one).
5538 */
5539static void nohz_balancer_kick(int cpu)
5540{
5541 int ilb_cpu;
5542
5543 nohz.next_balance++;
5544
0b005cf5 5545 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5546
0b005cf5
SS
5547 if (ilb_cpu >= nr_cpu_ids)
5548 return;
83cd4fe2 5549
cd490c5b 5550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5551 return;
5552 /*
5553 * Use smp_send_reschedule() instead of resched_cpu().
5554 * This way we generate a sched IPI on the target cpu which
5555 * is idle. And the softirq performing nohz idle load balance
5556 * will be run before returning from the IPI.
5557 */
5558 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5559 return;
5560}
5561
c1cc017c 5562static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5563{
5564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5565 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5566 atomic_dec(&nohz.nr_cpus);
5567 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5568 }
5569}
5570
69e1e811
SS
5571static inline void set_cpu_sd_state_busy(void)
5572{
5573 struct sched_domain *sd;
69e1e811 5574
69e1e811 5575 rcu_read_lock();
424c93fe 5576 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5577
5578 if (!sd || !sd->nohz_idle)
5579 goto unlock;
5580 sd->nohz_idle = 0;
5581
5582 for (; sd; sd = sd->parent)
69e1e811 5583 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5584unlock:
69e1e811
SS
5585 rcu_read_unlock();
5586}
5587
5588void set_cpu_sd_state_idle(void)
5589{
5590 struct sched_domain *sd;
69e1e811 5591
69e1e811 5592 rcu_read_lock();
424c93fe 5593 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5594
5595 if (!sd || sd->nohz_idle)
5596 goto unlock;
5597 sd->nohz_idle = 1;
5598
5599 for (; sd; sd = sd->parent)
69e1e811 5600 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5601unlock:
69e1e811
SS
5602 rcu_read_unlock();
5603}
5604
1e3c88bd 5605/*
c1cc017c 5606 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5607 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5608 */
c1cc017c 5609void nohz_balance_enter_idle(int cpu)
1e3c88bd 5610{
71325960
SS
5611 /*
5612 * If this cpu is going down, then nothing needs to be done.
5613 */
5614 if (!cpu_active(cpu))
5615 return;
5616
c1cc017c
AS
5617 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5618 return;
1e3c88bd 5619
c1cc017c
AS
5620 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5621 atomic_inc(&nohz.nr_cpus);
5622 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5623}
71325960 5624
0db0628d 5625static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
5626 unsigned long action, void *hcpu)
5627{
5628 switch (action & ~CPU_TASKS_FROZEN) {
5629 case CPU_DYING:
c1cc017c 5630 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5631 return NOTIFY_OK;
5632 default:
5633 return NOTIFY_DONE;
5634 }
5635}
1e3c88bd
PZ
5636#endif
5637
5638static DEFINE_SPINLOCK(balancing);
5639
49c022e6
PZ
5640/*
5641 * Scale the max load_balance interval with the number of CPUs in the system.
5642 * This trades load-balance latency on larger machines for less cross talk.
5643 */
029632fb 5644void update_max_interval(void)
49c022e6
PZ
5645{
5646 max_load_balance_interval = HZ*num_online_cpus()/10;
5647}
5648
1e3c88bd
PZ
5649/*
5650 * It checks each scheduling domain to see if it is due to be balanced,
5651 * and initiates a balancing operation if so.
5652 *
b9b0853a 5653 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5654 */
5655static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5656{
23f0d209 5657 int continue_balancing = 1;
1e3c88bd
PZ
5658 struct rq *rq = cpu_rq(cpu);
5659 unsigned long interval;
04f733b4 5660 struct sched_domain *sd;
1e3c88bd
PZ
5661 /* Earliest time when we have to do rebalance again */
5662 unsigned long next_balance = jiffies + 60*HZ;
5663 int update_next_balance = 0;
f48627e6
JL
5664 int need_serialize, need_decay = 0;
5665 u64 max_cost = 0;
1e3c88bd 5666
48a16753 5667 update_blocked_averages(cpu);
2069dd75 5668
dce840a0 5669 rcu_read_lock();
1e3c88bd 5670 for_each_domain(cpu, sd) {
f48627e6
JL
5671 /*
5672 * Decay the newidle max times here because this is a regular
5673 * visit to all the domains. Decay ~1% per second.
5674 */
5675 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5676 sd->max_newidle_lb_cost =
5677 (sd->max_newidle_lb_cost * 253) / 256;
5678 sd->next_decay_max_lb_cost = jiffies + HZ;
5679 need_decay = 1;
5680 }
5681 max_cost += sd->max_newidle_lb_cost;
5682
1e3c88bd
PZ
5683 if (!(sd->flags & SD_LOAD_BALANCE))
5684 continue;
5685
f48627e6
JL
5686 /*
5687 * Stop the load balance at this level. There is another
5688 * CPU in our sched group which is doing load balancing more
5689 * actively.
5690 */
5691 if (!continue_balancing) {
5692 if (need_decay)
5693 continue;
5694 break;
5695 }
5696
1e3c88bd
PZ
5697 interval = sd->balance_interval;
5698 if (idle != CPU_IDLE)
5699 interval *= sd->busy_factor;
5700
5701 /* scale ms to jiffies */
5702 interval = msecs_to_jiffies(interval);
49c022e6 5703 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5704
5705 need_serialize = sd->flags & SD_SERIALIZE;
5706
5707 if (need_serialize) {
5708 if (!spin_trylock(&balancing))
5709 goto out;
5710 }
5711
5712 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 5713 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 5714 /*
6263322c 5715 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
5716 * env->dst_cpu, so we can't know our idle
5717 * state even if we migrated tasks. Update it.
1e3c88bd 5718 */
de5eb2dd 5719 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5720 }
5721 sd->last_balance = jiffies;
5722 }
5723 if (need_serialize)
5724 spin_unlock(&balancing);
5725out:
5726 if (time_after(next_balance, sd->last_balance + interval)) {
5727 next_balance = sd->last_balance + interval;
5728 update_next_balance = 1;
5729 }
f48627e6
JL
5730 }
5731 if (need_decay) {
1e3c88bd 5732 /*
f48627e6
JL
5733 * Ensure the rq-wide value also decays but keep it at a
5734 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 5735 */
f48627e6
JL
5736 rq->max_idle_balance_cost =
5737 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 5738 }
dce840a0 5739 rcu_read_unlock();
1e3c88bd
PZ
5740
5741 /*
5742 * next_balance will be updated only when there is a need.
5743 * When the cpu is attached to null domain for ex, it will not be
5744 * updated.
5745 */
5746 if (likely(update_next_balance))
5747 rq->next_balance = next_balance;
5748}
5749
3451d024 5750#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5751/*
3451d024 5752 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5753 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5754 */
83cd4fe2
VP
5755static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5756{
5757 struct rq *this_rq = cpu_rq(this_cpu);
5758 struct rq *rq;
5759 int balance_cpu;
5760
1c792db7
SS
5761 if (idle != CPU_IDLE ||
5762 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5763 goto end;
83cd4fe2
VP
5764
5765 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5766 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5767 continue;
5768
5769 /*
5770 * If this cpu gets work to do, stop the load balancing
5771 * work being done for other cpus. Next load
5772 * balancing owner will pick it up.
5773 */
1c792db7 5774 if (need_resched())
83cd4fe2 5775 break;
83cd4fe2 5776
5ed4f1d9
VG
5777 rq = cpu_rq(balance_cpu);
5778
5779 raw_spin_lock_irq(&rq->lock);
5780 update_rq_clock(rq);
5781 update_idle_cpu_load(rq);
5782 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5783
5784 rebalance_domains(balance_cpu, CPU_IDLE);
5785
83cd4fe2
VP
5786 if (time_after(this_rq->next_balance, rq->next_balance))
5787 this_rq->next_balance = rq->next_balance;
5788 }
5789 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5790end:
5791 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5792}
5793
5794/*
0b005cf5
SS
5795 * Current heuristic for kicking the idle load balancer in the presence
5796 * of an idle cpu is the system.
5797 * - This rq has more than one task.
5798 * - At any scheduler domain level, this cpu's scheduler group has multiple
5799 * busy cpu's exceeding the group's power.
5800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5801 * domain span are idle.
83cd4fe2
VP
5802 */
5803static inline int nohz_kick_needed(struct rq *rq, int cpu)
5804{
5805 unsigned long now = jiffies;
0b005cf5 5806 struct sched_domain *sd;
83cd4fe2 5807
1c792db7 5808 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5809 return 0;
5810
1c792db7
SS
5811 /*
5812 * We may be recently in ticked or tickless idle mode. At the first
5813 * busy tick after returning from idle, we will update the busy stats.
5814 */
69e1e811 5815 set_cpu_sd_state_busy();
c1cc017c 5816 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5817
5818 /*
5819 * None are in tickless mode and hence no need for NOHZ idle load
5820 * balancing.
5821 */
5822 if (likely(!atomic_read(&nohz.nr_cpus)))
5823 return 0;
1c792db7
SS
5824
5825 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5826 return 0;
5827
0b005cf5
SS
5828 if (rq->nr_running >= 2)
5829 goto need_kick;
83cd4fe2 5830
067491b7 5831 rcu_read_lock();
0b005cf5
SS
5832 for_each_domain(cpu, sd) {
5833 struct sched_group *sg = sd->groups;
5834 struct sched_group_power *sgp = sg->sgp;
5835 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5836
0b005cf5 5837 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5838 goto need_kick_unlock;
0b005cf5
SS
5839
5840 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5841 && (cpumask_first_and(nohz.idle_cpus_mask,
5842 sched_domain_span(sd)) < cpu))
067491b7 5843 goto need_kick_unlock;
0b005cf5
SS
5844
5845 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5846 break;
83cd4fe2 5847 }
067491b7 5848 rcu_read_unlock();
83cd4fe2 5849 return 0;
067491b7
PZ
5850
5851need_kick_unlock:
5852 rcu_read_unlock();
0b005cf5
SS
5853need_kick:
5854 return 1;
83cd4fe2
VP
5855}
5856#else
5857static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5858#endif
5859
5860/*
5861 * run_rebalance_domains is triggered when needed from the scheduler tick.
5862 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5863 */
1e3c88bd
PZ
5864static void run_rebalance_domains(struct softirq_action *h)
5865{
5866 int this_cpu = smp_processor_id();
5867 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5868 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5869 CPU_IDLE : CPU_NOT_IDLE;
5870
5871 rebalance_domains(this_cpu, idle);
5872
1e3c88bd 5873 /*
83cd4fe2 5874 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5875 * balancing on behalf of the other idle cpus whose ticks are
5876 * stopped.
5877 */
83cd4fe2 5878 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5879}
5880
5881static inline int on_null_domain(int cpu)
5882{
90a6501f 5883 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5884}
5885
5886/*
5887 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5888 */
029632fb 5889void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5890{
1e3c88bd
PZ
5891 /* Don't need to rebalance while attached to NULL domain */
5892 if (time_after_eq(jiffies, rq->next_balance) &&
5893 likely(!on_null_domain(cpu)))
5894 raise_softirq(SCHED_SOFTIRQ);
3451d024 5895#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5896 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5897 nohz_balancer_kick(cpu);
5898#endif
1e3c88bd
PZ
5899}
5900
0bcdcf28
CE
5901static void rq_online_fair(struct rq *rq)
5902{
5903 update_sysctl();
5904}
5905
5906static void rq_offline_fair(struct rq *rq)
5907{
5908 update_sysctl();
a4c96ae3
PB
5909
5910 /* Ensure any throttled groups are reachable by pick_next_task */
5911 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5912}
5913
55e12e5e 5914#endif /* CONFIG_SMP */
e1d1484f 5915
bf0f6f24
IM
5916/*
5917 * scheduler tick hitting a task of our scheduling class:
5918 */
8f4d37ec 5919static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5920{
5921 struct cfs_rq *cfs_rq;
5922 struct sched_entity *se = &curr->se;
5923
5924 for_each_sched_entity(se) {
5925 cfs_rq = cfs_rq_of(se);
8f4d37ec 5926 entity_tick(cfs_rq, se, queued);
bf0f6f24 5927 }
18bf2805 5928
10e84b97 5929 if (numabalancing_enabled)
cbee9f88 5930 task_tick_numa(rq, curr);
3d59eebc 5931
18bf2805 5932 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5933}
5934
5935/*
cd29fe6f
PZ
5936 * called on fork with the child task as argument from the parent's context
5937 * - child not yet on the tasklist
5938 * - preemption disabled
bf0f6f24 5939 */
cd29fe6f 5940static void task_fork_fair(struct task_struct *p)
bf0f6f24 5941{
4fc420c9
DN
5942 struct cfs_rq *cfs_rq;
5943 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5944 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5945 struct rq *rq = this_rq();
5946 unsigned long flags;
5947
05fa785c 5948 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5949
861d034e
PZ
5950 update_rq_clock(rq);
5951
4fc420c9
DN
5952 cfs_rq = task_cfs_rq(current);
5953 curr = cfs_rq->curr;
5954
6c9a27f5
DN
5955 /*
5956 * Not only the cpu but also the task_group of the parent might have
5957 * been changed after parent->se.parent,cfs_rq were copied to
5958 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
5959 * of child point to valid ones.
5960 */
5961 rcu_read_lock();
5962 __set_task_cpu(p, this_cpu);
5963 rcu_read_unlock();
bf0f6f24 5964
7109c442 5965 update_curr(cfs_rq);
cd29fe6f 5966
b5d9d734
MG
5967 if (curr)
5968 se->vruntime = curr->vruntime;
aeb73b04 5969 place_entity(cfs_rq, se, 1);
4d78e7b6 5970
cd29fe6f 5971 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5972 /*
edcb60a3
IM
5973 * Upon rescheduling, sched_class::put_prev_task() will place
5974 * 'current' within the tree based on its new key value.
5975 */
4d78e7b6 5976 swap(curr->vruntime, se->vruntime);
aec0a514 5977 resched_task(rq->curr);
4d78e7b6 5978 }
bf0f6f24 5979
88ec22d3
PZ
5980 se->vruntime -= cfs_rq->min_vruntime;
5981
05fa785c 5982 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5983}
5984
cb469845
SR
5985/*
5986 * Priority of the task has changed. Check to see if we preempt
5987 * the current task.
5988 */
da7a735e
PZ
5989static void
5990prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5991{
da7a735e
PZ
5992 if (!p->se.on_rq)
5993 return;
5994
cb469845
SR
5995 /*
5996 * Reschedule if we are currently running on this runqueue and
5997 * our priority decreased, or if we are not currently running on
5998 * this runqueue and our priority is higher than the current's
5999 */
da7a735e 6000 if (rq->curr == p) {
cb469845
SR
6001 if (p->prio > oldprio)
6002 resched_task(rq->curr);
6003 } else
15afe09b 6004 check_preempt_curr(rq, p, 0);
cb469845
SR
6005}
6006
da7a735e
PZ
6007static void switched_from_fair(struct rq *rq, struct task_struct *p)
6008{
6009 struct sched_entity *se = &p->se;
6010 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6011
6012 /*
6013 * Ensure the task's vruntime is normalized, so that when its
6014 * switched back to the fair class the enqueue_entity(.flags=0) will
6015 * do the right thing.
6016 *
6017 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6018 * have normalized the vruntime, if it was !on_rq, then only when
6019 * the task is sleeping will it still have non-normalized vruntime.
6020 */
6021 if (!se->on_rq && p->state != TASK_RUNNING) {
6022 /*
6023 * Fix up our vruntime so that the current sleep doesn't
6024 * cause 'unlimited' sleep bonus.
6025 */
6026 place_entity(cfs_rq, se, 0);
6027 se->vruntime -= cfs_rq->min_vruntime;
6028 }
9ee474f5 6029
141965c7 6030#ifdef CONFIG_SMP
9ee474f5
PT
6031 /*
6032 * Remove our load from contribution when we leave sched_fair
6033 * and ensure we don't carry in an old decay_count if we
6034 * switch back.
6035 */
87e3c8ae
KT
6036 if (se->avg.decay_count) {
6037 __synchronize_entity_decay(se);
6038 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
6039 }
6040#endif
da7a735e
PZ
6041}
6042
cb469845
SR
6043/*
6044 * We switched to the sched_fair class.
6045 */
da7a735e 6046static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 6047{
da7a735e
PZ
6048 if (!p->se.on_rq)
6049 return;
6050
cb469845
SR
6051 /*
6052 * We were most likely switched from sched_rt, so
6053 * kick off the schedule if running, otherwise just see
6054 * if we can still preempt the current task.
6055 */
da7a735e 6056 if (rq->curr == p)
cb469845
SR
6057 resched_task(rq->curr);
6058 else
15afe09b 6059 check_preempt_curr(rq, p, 0);
cb469845
SR
6060}
6061
83b699ed
SV
6062/* Account for a task changing its policy or group.
6063 *
6064 * This routine is mostly called to set cfs_rq->curr field when a task
6065 * migrates between groups/classes.
6066 */
6067static void set_curr_task_fair(struct rq *rq)
6068{
6069 struct sched_entity *se = &rq->curr->se;
6070
ec12cb7f
PT
6071 for_each_sched_entity(se) {
6072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6073
6074 set_next_entity(cfs_rq, se);
6075 /* ensure bandwidth has been allocated on our new cfs_rq */
6076 account_cfs_rq_runtime(cfs_rq, 0);
6077 }
83b699ed
SV
6078}
6079
029632fb
PZ
6080void init_cfs_rq(struct cfs_rq *cfs_rq)
6081{
6082 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
6083 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6084#ifndef CONFIG_64BIT
6085 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6086#endif
141965c7 6087#ifdef CONFIG_SMP
9ee474f5 6088 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 6089 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 6090#endif
029632fb
PZ
6091}
6092
810b3817 6093#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6094static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 6095{
aff3e498 6096 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
6097 /*
6098 * If the task was not on the rq at the time of this cgroup movement
6099 * it must have been asleep, sleeping tasks keep their ->vruntime
6100 * absolute on their old rq until wakeup (needed for the fair sleeper
6101 * bonus in place_entity()).
6102 *
6103 * If it was on the rq, we've just 'preempted' it, which does convert
6104 * ->vruntime to a relative base.
6105 *
6106 * Make sure both cases convert their relative position when migrating
6107 * to another cgroup's rq. This does somewhat interfere with the
6108 * fair sleeper stuff for the first placement, but who cares.
6109 */
7ceff013
DN
6110 /*
6111 * When !on_rq, vruntime of the task has usually NOT been normalized.
6112 * But there are some cases where it has already been normalized:
6113 *
6114 * - Moving a forked child which is waiting for being woken up by
6115 * wake_up_new_task().
62af3783
DN
6116 * - Moving a task which has been woken up by try_to_wake_up() and
6117 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
6118 *
6119 * To prevent boost or penalty in the new cfs_rq caused by delta
6120 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6121 */
62af3783 6122 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
6123 on_rq = 1;
6124
b2b5ce02
PZ
6125 if (!on_rq)
6126 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6127 set_task_rq(p, task_cpu(p));
aff3e498
PT
6128 if (!on_rq) {
6129 cfs_rq = cfs_rq_of(&p->se);
6130 p->se.vruntime += cfs_rq->min_vruntime;
6131#ifdef CONFIG_SMP
6132 /*
6133 * migrate_task_rq_fair() will have removed our previous
6134 * contribution, but we must synchronize for ongoing future
6135 * decay.
6136 */
6137 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6138 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6139#endif
6140 }
810b3817 6141}
029632fb
PZ
6142
6143void free_fair_sched_group(struct task_group *tg)
6144{
6145 int i;
6146
6147 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6148
6149 for_each_possible_cpu(i) {
6150 if (tg->cfs_rq)
6151 kfree(tg->cfs_rq[i]);
6152 if (tg->se)
6153 kfree(tg->se[i]);
6154 }
6155
6156 kfree(tg->cfs_rq);
6157 kfree(tg->se);
6158}
6159
6160int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6161{
6162 struct cfs_rq *cfs_rq;
6163 struct sched_entity *se;
6164 int i;
6165
6166 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6167 if (!tg->cfs_rq)
6168 goto err;
6169 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6170 if (!tg->se)
6171 goto err;
6172
6173 tg->shares = NICE_0_LOAD;
6174
6175 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6176
6177 for_each_possible_cpu(i) {
6178 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6179 GFP_KERNEL, cpu_to_node(i));
6180 if (!cfs_rq)
6181 goto err;
6182
6183 se = kzalloc_node(sizeof(struct sched_entity),
6184 GFP_KERNEL, cpu_to_node(i));
6185 if (!se)
6186 goto err_free_rq;
6187
6188 init_cfs_rq(cfs_rq);
6189 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6190 }
6191
6192 return 1;
6193
6194err_free_rq:
6195 kfree(cfs_rq);
6196err:
6197 return 0;
6198}
6199
6200void unregister_fair_sched_group(struct task_group *tg, int cpu)
6201{
6202 struct rq *rq = cpu_rq(cpu);
6203 unsigned long flags;
6204
6205 /*
6206 * Only empty task groups can be destroyed; so we can speculatively
6207 * check on_list without danger of it being re-added.
6208 */
6209 if (!tg->cfs_rq[cpu]->on_list)
6210 return;
6211
6212 raw_spin_lock_irqsave(&rq->lock, flags);
6213 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6214 raw_spin_unlock_irqrestore(&rq->lock, flags);
6215}
6216
6217void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6218 struct sched_entity *se, int cpu,
6219 struct sched_entity *parent)
6220{
6221 struct rq *rq = cpu_rq(cpu);
6222
6223 cfs_rq->tg = tg;
6224 cfs_rq->rq = rq;
029632fb
PZ
6225 init_cfs_rq_runtime(cfs_rq);
6226
6227 tg->cfs_rq[cpu] = cfs_rq;
6228 tg->se[cpu] = se;
6229
6230 /* se could be NULL for root_task_group */
6231 if (!se)
6232 return;
6233
6234 if (!parent)
6235 se->cfs_rq = &rq->cfs;
6236 else
6237 se->cfs_rq = parent->my_q;
6238
6239 se->my_q = cfs_rq;
6240 update_load_set(&se->load, 0);
6241 se->parent = parent;
6242}
6243
6244static DEFINE_MUTEX(shares_mutex);
6245
6246int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6247{
6248 int i;
6249 unsigned long flags;
6250
6251 /*
6252 * We can't change the weight of the root cgroup.
6253 */
6254 if (!tg->se[0])
6255 return -EINVAL;
6256
6257 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6258
6259 mutex_lock(&shares_mutex);
6260 if (tg->shares == shares)
6261 goto done;
6262
6263 tg->shares = shares;
6264 for_each_possible_cpu(i) {
6265 struct rq *rq = cpu_rq(i);
6266 struct sched_entity *se;
6267
6268 se = tg->se[i];
6269 /* Propagate contribution to hierarchy */
6270 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6271
6272 /* Possible calls to update_curr() need rq clock */
6273 update_rq_clock(rq);
17bc14b7 6274 for_each_sched_entity(se)
029632fb
PZ
6275 update_cfs_shares(group_cfs_rq(se));
6276 raw_spin_unlock_irqrestore(&rq->lock, flags);
6277 }
6278
6279done:
6280 mutex_unlock(&shares_mutex);
6281 return 0;
6282}
6283#else /* CONFIG_FAIR_GROUP_SCHED */
6284
6285void free_fair_sched_group(struct task_group *tg) { }
6286
6287int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6288{
6289 return 1;
6290}
6291
6292void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6293
6294#endif /* CONFIG_FAIR_GROUP_SCHED */
6295
810b3817 6296
6d686f45 6297static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6298{
6299 struct sched_entity *se = &task->se;
0d721cea
PW
6300 unsigned int rr_interval = 0;
6301
6302 /*
6303 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6304 * idle runqueue:
6305 */
0d721cea 6306 if (rq->cfs.load.weight)
a59f4e07 6307 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6308
6309 return rr_interval;
6310}
6311
bf0f6f24
IM
6312/*
6313 * All the scheduling class methods:
6314 */
029632fb 6315const struct sched_class fair_sched_class = {
5522d5d5 6316 .next = &idle_sched_class,
bf0f6f24
IM
6317 .enqueue_task = enqueue_task_fair,
6318 .dequeue_task = dequeue_task_fair,
6319 .yield_task = yield_task_fair,
d95f4122 6320 .yield_to_task = yield_to_task_fair,
bf0f6f24 6321
2e09bf55 6322 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6323
6324 .pick_next_task = pick_next_task_fair,
6325 .put_prev_task = put_prev_task_fair,
6326
681f3e68 6327#ifdef CONFIG_SMP
4ce72a2c 6328 .select_task_rq = select_task_rq_fair,
0a74bef8 6329 .migrate_task_rq = migrate_task_rq_fair,
141965c7 6330
0bcdcf28
CE
6331 .rq_online = rq_online_fair,
6332 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6333
6334 .task_waking = task_waking_fair,
681f3e68 6335#endif
bf0f6f24 6336
83b699ed 6337 .set_curr_task = set_curr_task_fair,
bf0f6f24 6338 .task_tick = task_tick_fair,
cd29fe6f 6339 .task_fork = task_fork_fair,
cb469845
SR
6340
6341 .prio_changed = prio_changed_fair,
da7a735e 6342 .switched_from = switched_from_fair,
cb469845 6343 .switched_to = switched_to_fair,
810b3817 6344
0d721cea
PW
6345 .get_rr_interval = get_rr_interval_fair,
6346
810b3817 6347#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6348 .task_move_group = task_move_group_fair,
810b3817 6349#endif
bf0f6f24
IM
6350};
6351
6352#ifdef CONFIG_SCHED_DEBUG
029632fb 6353void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6354{
bf0f6f24
IM
6355 struct cfs_rq *cfs_rq;
6356
5973e5b9 6357 rcu_read_lock();
c3b64f1e 6358 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6359 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6360 rcu_read_unlock();
bf0f6f24
IM
6361}
6362#endif
029632fb
PZ
6363
6364__init void init_sched_fair_class(void)
6365{
6366#ifdef CONFIG_SMP
6367 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6368
3451d024 6369#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6370 nohz.next_balance = jiffies;
029632fb 6371 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6372 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6373#endif
6374#endif /* SMP */
6375
6376}
This page took 0.935732 seconds and 5 git commands to generate.