sched/cleanups: Add load balance cpumask pointer to 'struct lb_env'
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
3d4b47b4
PZ
262static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263{
264 if (!cfs_rq->on_list) {
67e86250
PT
265 /*
266 * Ensure we either appear before our parent (if already
267 * enqueued) or force our parent to appear after us when it is
268 * enqueued. The fact that we always enqueue bottom-up
269 * reduces this to two cases.
270 */
271 if (cfs_rq->tg->parent &&
272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 &rq_of(cfs_rq)->leaf_cfs_rq_list);
275 } else {
276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 278 }
3d4b47b4
PZ
279
280 cfs_rq->on_list = 1;
281 }
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286 if (cfs_rq->on_list) {
287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 cfs_rq->on_list = 0;
289 }
290}
291
b758149c
PZ
292/* Iterate thr' all leaf cfs_rq's on a runqueue */
293#define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295
296/* Do the two (enqueued) entities belong to the same group ? */
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 if (se->cfs_rq == pse->cfs_rq)
301 return 1;
302
303 return 0;
304}
305
306static inline struct sched_entity *parent_entity(struct sched_entity *se)
307{
308 return se->parent;
309}
310
464b7527
PZ
311/* return depth at which a sched entity is present in the hierarchy */
312static inline int depth_se(struct sched_entity *se)
313{
314 int depth = 0;
315
316 for_each_sched_entity(se)
317 depth++;
318
319 return depth;
320}
321
322static void
323find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324{
325 int se_depth, pse_depth;
326
327 /*
328 * preemption test can be made between sibling entities who are in the
329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 * both tasks until we find their ancestors who are siblings of common
331 * parent.
332 */
333
334 /* First walk up until both entities are at same depth */
335 se_depth = depth_se(*se);
336 pse_depth = depth_se(*pse);
337
338 while (se_depth > pse_depth) {
339 se_depth--;
340 *se = parent_entity(*se);
341 }
342
343 while (pse_depth > se_depth) {
344 pse_depth--;
345 *pse = parent_entity(*pse);
346 }
347
348 while (!is_same_group(*se, *pse)) {
349 *se = parent_entity(*se);
350 *pse = parent_entity(*pse);
351 }
352}
353
8f48894f
PZ
354#else /* !CONFIG_FAIR_GROUP_SCHED */
355
356static inline struct task_struct *task_of(struct sched_entity *se)
357{
358 return container_of(se, struct task_struct, se);
359}
bf0f6f24 360
62160e3f
IM
361static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362{
363 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
364}
365
366#define entity_is_task(se) 1
367
b758149c
PZ
368#define for_each_sched_entity(se) \
369 for (; se; se = NULL)
bf0f6f24 370
b758149c 371static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 372{
b758149c 373 return &task_rq(p)->cfs;
bf0f6f24
IM
374}
375
b758149c
PZ
376static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377{
378 struct task_struct *p = task_of(se);
379 struct rq *rq = task_rq(p);
380
381 return &rq->cfs;
382}
383
384/* runqueue "owned" by this group */
385static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386{
387 return NULL;
388}
389
3d4b47b4
PZ
390static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391{
392}
393
394static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395{
396}
397
b758149c
PZ
398#define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400
401static inline int
402is_same_group(struct sched_entity *se, struct sched_entity *pse)
403{
404 return 1;
405}
406
407static inline struct sched_entity *parent_entity(struct sched_entity *se)
408{
409 return NULL;
410}
411
464b7527
PZ
412static inline void
413find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414{
415}
416
b758149c
PZ
417#endif /* CONFIG_FAIR_GROUP_SCHED */
418
6c16a6dc
PZ
419static __always_inline
420void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
421
422/**************************************************************
423 * Scheduling class tree data structure manipulation methods:
424 */
425
0702e3eb 426static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 427{
368059a9
PZ
428 s64 delta = (s64)(vruntime - min_vruntime);
429 if (delta > 0)
02e0431a
PZ
430 min_vruntime = vruntime;
431
432 return min_vruntime;
433}
434
0702e3eb 435static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
436{
437 s64 delta = (s64)(vruntime - min_vruntime);
438 if (delta < 0)
439 min_vruntime = vruntime;
440
441 return min_vruntime;
442}
443
54fdc581
FC
444static inline int entity_before(struct sched_entity *a,
445 struct sched_entity *b)
446{
447 return (s64)(a->vruntime - b->vruntime) < 0;
448}
449
1af5f730
PZ
450static void update_min_vruntime(struct cfs_rq *cfs_rq)
451{
452 u64 vruntime = cfs_rq->min_vruntime;
453
454 if (cfs_rq->curr)
455 vruntime = cfs_rq->curr->vruntime;
456
457 if (cfs_rq->rb_leftmost) {
458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 struct sched_entity,
460 run_node);
461
e17036da 462 if (!cfs_rq->curr)
1af5f730
PZ
463 vruntime = se->vruntime;
464 else
465 vruntime = min_vruntime(vruntime, se->vruntime);
466 }
467
468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
469#ifndef CONFIG_64BIT
470 smp_wmb();
471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472#endif
1af5f730
PZ
473}
474
bf0f6f24
IM
475/*
476 * Enqueue an entity into the rb-tree:
477 */
0702e3eb 478static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
479{
480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 struct rb_node *parent = NULL;
482 struct sched_entity *entry;
bf0f6f24
IM
483 int leftmost = 1;
484
485 /*
486 * Find the right place in the rbtree:
487 */
488 while (*link) {
489 parent = *link;
490 entry = rb_entry(parent, struct sched_entity, run_node);
491 /*
492 * We dont care about collisions. Nodes with
493 * the same key stay together.
494 */
2bd2d6f2 495 if (entity_before(se, entry)) {
bf0f6f24
IM
496 link = &parent->rb_left;
497 } else {
498 link = &parent->rb_right;
499 leftmost = 0;
500 }
501 }
502
503 /*
504 * Maintain a cache of leftmost tree entries (it is frequently
505 * used):
506 */
1af5f730 507 if (leftmost)
57cb499d 508 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
509
510 rb_link_node(&se->run_node, parent, link);
511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
512}
513
0702e3eb 514static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 515{
3fe69747
PZ
516 if (cfs_rq->rb_leftmost == &se->run_node) {
517 struct rb_node *next_node;
3fe69747
PZ
518
519 next_node = rb_next(&se->run_node);
520 cfs_rq->rb_leftmost = next_node;
3fe69747 521 }
e9acbff6 522
bf0f6f24 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
029632fb 526struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 527{
f4b6755f
PZ
528 struct rb_node *left = cfs_rq->rb_leftmost;
529
530 if (!left)
531 return NULL;
532
533 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
534}
535
ac53db59
RR
536static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537{
538 struct rb_node *next = rb_next(&se->run_node);
539
540 if (!next)
541 return NULL;
542
543 return rb_entry(next, struct sched_entity, run_node);
544}
545
546#ifdef CONFIG_SCHED_DEBUG
029632fb 547struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 548{
7eee3e67 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 550
70eee74b
BS
551 if (!last)
552 return NULL;
7eee3e67
IM
553
554 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
555}
556
bf0f6f24
IM
557/**************************************************************
558 * Scheduling class statistics methods:
559 */
560
acb4a848 561int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 562 void __user *buffer, size_t *lenp,
b2be5e96
PZ
563 loff_t *ppos)
564{
8d65af78 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 566 int factor = get_update_sysctl_factor();
b2be5e96
PZ
567
568 if (ret || !write)
569 return ret;
570
571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 sysctl_sched_min_granularity);
573
acb4a848
CE
574#define WRT_SYSCTL(name) \
575 (normalized_sysctl_##name = sysctl_##name / (factor))
576 WRT_SYSCTL(sched_min_granularity);
577 WRT_SYSCTL(sched_latency);
578 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
579#undef WRT_SYSCTL
580
b2be5e96
PZ
581 return 0;
582}
583#endif
647e7cac 584
a7be37ac 585/*
f9c0b095 586 * delta /= w
a7be37ac
PZ
587 */
588static inline unsigned long
589calc_delta_fair(unsigned long delta, struct sched_entity *se)
590{
f9c0b095
PZ
591 if (unlikely(se->load.weight != NICE_0_LOAD))
592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
593
594 return delta;
595}
596
647e7cac
IM
597/*
598 * The idea is to set a period in which each task runs once.
599 *
600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601 * this period because otherwise the slices get too small.
602 *
603 * p = (nr <= nl) ? l : l*nr/nl
604 */
4d78e7b6
PZ
605static u64 __sched_period(unsigned long nr_running)
606{
607 u64 period = sysctl_sched_latency;
b2be5e96 608 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
609
610 if (unlikely(nr_running > nr_latency)) {
4bf0b771 611 period = sysctl_sched_min_granularity;
4d78e7b6 612 period *= nr_running;
4d78e7b6
PZ
613 }
614
615 return period;
616}
617
647e7cac
IM
618/*
619 * We calculate the wall-time slice from the period by taking a part
620 * proportional to the weight.
621 *
f9c0b095 622 * s = p*P[w/rw]
647e7cac 623 */
6d0f0ebd 624static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 625{
0a582440 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 627
0a582440 628 for_each_sched_entity(se) {
6272d68c 629 struct load_weight *load;
3104bf03 630 struct load_weight lw;
6272d68c
LM
631
632 cfs_rq = cfs_rq_of(se);
633 load = &cfs_rq->load;
f9c0b095 634
0a582440 635 if (unlikely(!se->on_rq)) {
3104bf03 636 lw = cfs_rq->load;
0a582440
MG
637
638 update_load_add(&lw, se->load.weight);
639 load = &lw;
640 }
641 slice = calc_delta_mine(slice, se->load.weight, load);
642 }
643 return slice;
bf0f6f24
IM
644}
645
647e7cac 646/*
ac884dec 647 * We calculate the vruntime slice of a to be inserted task
647e7cac 648 *
f9c0b095 649 * vs = s/w
647e7cac 650 */
f9c0b095 651static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 652{
f9c0b095 653 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
654}
655
d6b55918 656static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 657static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 658
bf0f6f24
IM
659/*
660 * Update the current task's runtime statistics. Skip current tasks that
661 * are not in our scheduling class.
662 */
663static inline void
8ebc91d9
IM
664__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 unsigned long delta_exec)
bf0f6f24 666{
bbdba7c0 667 unsigned long delta_exec_weighted;
bf0f6f24 668
41acab88
LDM
669 schedstat_set(curr->statistics.exec_max,
670 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
671
672 curr->sum_exec_runtime += delta_exec;
7a62eabc 673 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 675
e9acbff6 676 curr->vruntime += delta_exec_weighted;
1af5f730 677 update_min_vruntime(cfs_rq);
3b3d190e 678
70caf8a6 679#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 680 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 681#endif
bf0f6f24
IM
682}
683
b7cc0896 684static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 685{
429d43bc 686 struct sched_entity *curr = cfs_rq->curr;
305e6835 687 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
688 unsigned long delta_exec;
689
690 if (unlikely(!curr))
691 return;
692
693 /*
694 * Get the amount of time the current task was running
695 * since the last time we changed load (this cannot
696 * overflow on 32 bits):
697 */
8ebc91d9 698 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
699 if (!delta_exec)
700 return;
bf0f6f24 701
8ebc91d9
IM
702 __update_curr(cfs_rq, curr, delta_exec);
703 curr->exec_start = now;
d842de87
SV
704
705 if (entity_is_task(curr)) {
706 struct task_struct *curtask = task_of(curr);
707
f977bb49 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 709 cpuacct_charge(curtask, delta_exec);
f06febc9 710 account_group_exec_runtime(curtask, delta_exec);
d842de87 711 }
ec12cb7f
PT
712
713 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
714}
715
716static inline void
5870db5b 717update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 718{
41acab88 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
720}
721
bf0f6f24
IM
722/*
723 * Task is being enqueued - update stats:
724 */
d2417e5a 725static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 726{
bf0f6f24
IM
727 /*
728 * Are we enqueueing a waiting task? (for current tasks
729 * a dequeue/enqueue event is a NOP)
730 */
429d43bc 731 if (se != cfs_rq->curr)
5870db5b 732 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
733}
734
bf0f6f24 735static void
9ef0a961 736update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
41acab88
LDM
738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
743#ifdef CONFIG_SCHEDSTATS
744 if (entity_is_task(se)) {
745 trace_sched_stat_wait(task_of(se),
41acab88 746 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
747 }
748#endif
41acab88 749 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
750}
751
752static inline void
19b6a2e3 753update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Mark the end of the wait period if dequeueing a
757 * waiting task:
758 */
429d43bc 759 if (se != cfs_rq->curr)
9ef0a961 760 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
761}
762
763/*
764 * We are picking a new current task - update its stats:
765 */
766static inline void
79303e9e 767update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
768{
769 /*
770 * We are starting a new run period:
771 */
305e6835 772 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
773}
774
bf0f6f24
IM
775/**************************************************
776 * Scheduling class queueing methods:
777 */
778
30cfdcfc
DA
779static void
780account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781{
782 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 783 if (!parent_entity(se))
029632fb 784 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
785#ifdef CONFIG_SMP
786 if (entity_is_task(se))
eb95308e 787 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 788#endif
30cfdcfc 789 cfs_rq->nr_running++;
30cfdcfc
DA
790}
791
792static void
793account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794{
795 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 796 if (!parent_entity(se))
029632fb 797 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 798 if (entity_is_task(se))
b87f1724 799 list_del_init(&se->group_node);
30cfdcfc 800 cfs_rq->nr_running--;
30cfdcfc
DA
801}
802
3ff6dcac 803#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
804/* we need this in update_cfs_load and load-balance functions below */
805static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 806# ifdef CONFIG_SMP
d6b55918
PT
807static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 int global_update)
809{
810 struct task_group *tg = cfs_rq->tg;
811 long load_avg;
812
813 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 load_avg -= cfs_rq->load_contribution;
815
816 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 atomic_add(load_avg, &tg->load_weight);
818 cfs_rq->load_contribution += load_avg;
819 }
820}
821
822static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 823{
a7a4f8a7 824 u64 period = sysctl_sched_shares_window;
2069dd75 825 u64 now, delta;
e33078ba 826 unsigned long load = cfs_rq->load.weight;
2069dd75 827
64660c86 828 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
829 return;
830
05ca62c6 831 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
832 delta = now - cfs_rq->load_stamp;
833
e33078ba
PT
834 /* truncate load history at 4 idle periods */
835 if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 now - cfs_rq->load_last > 4 * period) {
837 cfs_rq->load_period = 0;
838 cfs_rq->load_avg = 0;
f07333bf 839 delta = period - 1;
e33078ba
PT
840 }
841
2069dd75 842 cfs_rq->load_stamp = now;
3b3d190e 843 cfs_rq->load_unacc_exec_time = 0;
2069dd75 844 cfs_rq->load_period += delta;
e33078ba
PT
845 if (load) {
846 cfs_rq->load_last = now;
847 cfs_rq->load_avg += delta * load;
848 }
2069dd75 849
d6b55918
PT
850 /* consider updating load contribution on each fold or truncate */
851 if (global_update || cfs_rq->load_period > period
852 || !cfs_rq->load_period)
853 update_cfs_rq_load_contribution(cfs_rq, global_update);
854
2069dd75
PZ
855 while (cfs_rq->load_period > period) {
856 /*
857 * Inline assembly required to prevent the compiler
858 * optimising this loop into a divmod call.
859 * See __iter_div_u64_rem() for another example of this.
860 */
861 asm("" : "+rm" (cfs_rq->load_period));
862 cfs_rq->load_period /= 2;
863 cfs_rq->load_avg /= 2;
864 }
3d4b47b4 865
e33078ba
PT
866 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
868}
869
cf5f0acf
PZ
870static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871{
872 long tg_weight;
873
874 /*
875 * Use this CPU's actual weight instead of the last load_contribution
876 * to gain a more accurate current total weight. See
877 * update_cfs_rq_load_contribution().
878 */
879 tg_weight = atomic_read(&tg->load_weight);
880 tg_weight -= cfs_rq->load_contribution;
881 tg_weight += cfs_rq->load.weight;
882
883 return tg_weight;
884}
885
6d5ab293 886static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 887{
cf5f0acf 888 long tg_weight, load, shares;
3ff6dcac 889
cf5f0acf 890 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 891 load = cfs_rq->load.weight;
3ff6dcac 892
3ff6dcac 893 shares = (tg->shares * load);
cf5f0acf
PZ
894 if (tg_weight)
895 shares /= tg_weight;
3ff6dcac
YZ
896
897 if (shares < MIN_SHARES)
898 shares = MIN_SHARES;
899 if (shares > tg->shares)
900 shares = tg->shares;
901
902 return shares;
903}
904
905static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906{
907 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 update_cfs_load(cfs_rq, 0);
6d5ab293 909 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
910 }
911}
912# else /* CONFIG_SMP */
913static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914{
915}
916
6d5ab293 917static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
918{
919 return tg->shares;
920}
921
922static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923{
924}
925# endif /* CONFIG_SMP */
2069dd75
PZ
926static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 unsigned long weight)
928{
19e5eebb
PT
929 if (se->on_rq) {
930 /* commit outstanding execution time */
931 if (cfs_rq->curr == se)
932 update_curr(cfs_rq);
2069dd75 933 account_entity_dequeue(cfs_rq, se);
19e5eebb 934 }
2069dd75
PZ
935
936 update_load_set(&se->load, weight);
937
938 if (se->on_rq)
939 account_entity_enqueue(cfs_rq, se);
940}
941
6d5ab293 942static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
943{
944 struct task_group *tg;
945 struct sched_entity *se;
3ff6dcac 946 long shares;
2069dd75 947
2069dd75
PZ
948 tg = cfs_rq->tg;
949 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 950 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 951 return;
3ff6dcac
YZ
952#ifndef CONFIG_SMP
953 if (likely(se->load.weight == tg->shares))
954 return;
955#endif
6d5ab293 956 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
957
958 reweight_entity(cfs_rq_of(se), se, shares);
959}
960#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 961static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
962{
963}
964
6d5ab293 965static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
966{
967}
43365bd7
PT
968
969static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970{
971}
2069dd75
PZ
972#endif /* CONFIG_FAIR_GROUP_SCHED */
973
2396af69 974static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 975{
bf0f6f24 976#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
977 struct task_struct *tsk = NULL;
978
979 if (entity_is_task(se))
980 tsk = task_of(se);
981
41acab88
LDM
982 if (se->statistics.sleep_start) {
983 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
984
985 if ((s64)delta < 0)
986 delta = 0;
987
41acab88
LDM
988 if (unlikely(delta > se->statistics.sleep_max))
989 se->statistics.sleep_max = delta;
bf0f6f24 990
8c79a045 991 se->statistics.sleep_start = 0;
41acab88 992 se->statistics.sum_sleep_runtime += delta;
9745512c 993
768d0c27 994 if (tsk) {
e414314c 995 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
996 trace_sched_stat_sleep(tsk, delta);
997 }
bf0f6f24 998 }
41acab88
LDM
999 if (se->statistics.block_start) {
1000 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1001
1002 if ((s64)delta < 0)
1003 delta = 0;
1004
41acab88
LDM
1005 if (unlikely(delta > se->statistics.block_max))
1006 se->statistics.block_max = delta;
bf0f6f24 1007
8c79a045 1008 se->statistics.block_start = 0;
41acab88 1009 se->statistics.sum_sleep_runtime += delta;
30084fbd 1010
e414314c 1011 if (tsk) {
8f0dfc34 1012 if (tsk->in_iowait) {
41acab88
LDM
1013 se->statistics.iowait_sum += delta;
1014 se->statistics.iowait_count++;
768d0c27 1015 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1016 }
1017
b781a602
AV
1018 trace_sched_stat_blocked(tsk, delta);
1019
e414314c
PZ
1020 /*
1021 * Blocking time is in units of nanosecs, so shift by
1022 * 20 to get a milliseconds-range estimation of the
1023 * amount of time that the task spent sleeping:
1024 */
1025 if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 profile_hits(SLEEP_PROFILING,
1027 (void *)get_wchan(tsk),
1028 delta >> 20);
1029 }
1030 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1031 }
bf0f6f24
IM
1032 }
1033#endif
1034}
1035
ddc97297
PZ
1036static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037{
1038#ifdef CONFIG_SCHED_DEBUG
1039 s64 d = se->vruntime - cfs_rq->min_vruntime;
1040
1041 if (d < 0)
1042 d = -d;
1043
1044 if (d > 3*sysctl_sched_latency)
1045 schedstat_inc(cfs_rq, nr_spread_over);
1046#endif
1047}
1048
aeb73b04
PZ
1049static void
1050place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051{
1af5f730 1052 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1053
2cb8600e
PZ
1054 /*
1055 * The 'current' period is already promised to the current tasks,
1056 * however the extra weight of the new task will slow them down a
1057 * little, place the new task so that it fits in the slot that
1058 * stays open at the end.
1059 */
94dfb5e7 1060 if (initial && sched_feat(START_DEBIT))
f9c0b095 1061 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1062
a2e7a7eb 1063 /* sleeps up to a single latency don't count. */
5ca9880c 1064 if (!initial) {
a2e7a7eb 1065 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1066
a2e7a7eb
MG
1067 /*
1068 * Halve their sleep time's effect, to allow
1069 * for a gentler effect of sleepers:
1070 */
1071 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 thresh >>= 1;
51e0304c 1073
a2e7a7eb 1074 vruntime -= thresh;
aeb73b04
PZ
1075 }
1076
b5d9d734
MG
1077 /* ensure we never gain time by being placed backwards. */
1078 vruntime = max_vruntime(se->vruntime, vruntime);
1079
67e9fb2a 1080 se->vruntime = vruntime;
aeb73b04
PZ
1081}
1082
d3d9dc33
PT
1083static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084
bf0f6f24 1085static void
88ec22d3 1086enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1087{
88ec22d3
PZ
1088 /*
1089 * Update the normalized vruntime before updating min_vruntime
1090 * through callig update_curr().
1091 */
371fd7e7 1092 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1093 se->vruntime += cfs_rq->min_vruntime;
1094
bf0f6f24 1095 /*
a2a2d680 1096 * Update run-time statistics of the 'current'.
bf0f6f24 1097 */
b7cc0896 1098 update_curr(cfs_rq);
d6b55918 1099 update_cfs_load(cfs_rq, 0);
a992241d 1100 account_entity_enqueue(cfs_rq, se);
6d5ab293 1101 update_cfs_shares(cfs_rq);
bf0f6f24 1102
88ec22d3 1103 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1104 place_entity(cfs_rq, se, 0);
2396af69 1105 enqueue_sleeper(cfs_rq, se);
e9acbff6 1106 }
bf0f6f24 1107
d2417e5a 1108 update_stats_enqueue(cfs_rq, se);
ddc97297 1109 check_spread(cfs_rq, se);
83b699ed
SV
1110 if (se != cfs_rq->curr)
1111 __enqueue_entity(cfs_rq, se);
2069dd75 1112 se->on_rq = 1;
3d4b47b4 1113
d3d9dc33 1114 if (cfs_rq->nr_running == 1) {
3d4b47b4 1115 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1116 check_enqueue_throttle(cfs_rq);
1117 }
bf0f6f24
IM
1118}
1119
2c13c919 1120static void __clear_buddies_last(struct sched_entity *se)
2002c695 1121{
2c13c919
RR
1122 for_each_sched_entity(se) {
1123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 if (cfs_rq->last == se)
1125 cfs_rq->last = NULL;
1126 else
1127 break;
1128 }
1129}
2002c695 1130
2c13c919
RR
1131static void __clear_buddies_next(struct sched_entity *se)
1132{
1133 for_each_sched_entity(se) {
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 if (cfs_rq->next == se)
1136 cfs_rq->next = NULL;
1137 else
1138 break;
1139 }
2002c695
PZ
1140}
1141
ac53db59
RR
1142static void __clear_buddies_skip(struct sched_entity *se)
1143{
1144 for_each_sched_entity(se) {
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 if (cfs_rq->skip == se)
1147 cfs_rq->skip = NULL;
1148 else
1149 break;
1150 }
1151}
1152
a571bbea
PZ
1153static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154{
2c13c919
RR
1155 if (cfs_rq->last == se)
1156 __clear_buddies_last(se);
1157
1158 if (cfs_rq->next == se)
1159 __clear_buddies_next(se);
ac53db59
RR
1160
1161 if (cfs_rq->skip == se)
1162 __clear_buddies_skip(se);
a571bbea
PZ
1163}
1164
6c16a6dc 1165static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1166
bf0f6f24 1167static void
371fd7e7 1168dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1169{
a2a2d680
DA
1170 /*
1171 * Update run-time statistics of the 'current'.
1172 */
1173 update_curr(cfs_rq);
1174
19b6a2e3 1175 update_stats_dequeue(cfs_rq, se);
371fd7e7 1176 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1177#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1178 if (entity_is_task(se)) {
1179 struct task_struct *tsk = task_of(se);
1180
1181 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1182 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1183 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1184 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1185 }
db36cc7d 1186#endif
67e9fb2a
PZ
1187 }
1188
2002c695 1189 clear_buddies(cfs_rq, se);
4793241b 1190
83b699ed 1191 if (se != cfs_rq->curr)
30cfdcfc 1192 __dequeue_entity(cfs_rq, se);
2069dd75 1193 se->on_rq = 0;
d6b55918 1194 update_cfs_load(cfs_rq, 0);
30cfdcfc 1195 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1196
1197 /*
1198 * Normalize the entity after updating the min_vruntime because the
1199 * update can refer to the ->curr item and we need to reflect this
1200 * movement in our normalized position.
1201 */
371fd7e7 1202 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1203 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1204
d8b4986d
PT
1205 /* return excess runtime on last dequeue */
1206 return_cfs_rq_runtime(cfs_rq);
1207
1e876231
PZ
1208 update_min_vruntime(cfs_rq);
1209 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1210}
1211
1212/*
1213 * Preempt the current task with a newly woken task if needed:
1214 */
7c92e54f 1215static void
2e09bf55 1216check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1217{
11697830 1218 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1219 struct sched_entity *se;
1220 s64 delta;
11697830 1221
6d0f0ebd 1222 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1223 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1224 if (delta_exec > ideal_runtime) {
bf0f6f24 1225 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1226 /*
1227 * The current task ran long enough, ensure it doesn't get
1228 * re-elected due to buddy favours.
1229 */
1230 clear_buddies(cfs_rq, curr);
f685ceac
MG
1231 return;
1232 }
1233
1234 /*
1235 * Ensure that a task that missed wakeup preemption by a
1236 * narrow margin doesn't have to wait for a full slice.
1237 * This also mitigates buddy induced latencies under load.
1238 */
f685ceac
MG
1239 if (delta_exec < sysctl_sched_min_granularity)
1240 return;
1241
f4cfb33e
WX
1242 se = __pick_first_entity(cfs_rq);
1243 delta = curr->vruntime - se->vruntime;
f685ceac 1244
f4cfb33e
WX
1245 if (delta < 0)
1246 return;
d7d82944 1247
f4cfb33e
WX
1248 if (delta > ideal_runtime)
1249 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1250}
1251
83b699ed 1252static void
8494f412 1253set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1254{
83b699ed
SV
1255 /* 'current' is not kept within the tree. */
1256 if (se->on_rq) {
1257 /*
1258 * Any task has to be enqueued before it get to execute on
1259 * a CPU. So account for the time it spent waiting on the
1260 * runqueue.
1261 */
1262 update_stats_wait_end(cfs_rq, se);
1263 __dequeue_entity(cfs_rq, se);
1264 }
1265
79303e9e 1266 update_stats_curr_start(cfs_rq, se);
429d43bc 1267 cfs_rq->curr = se;
eba1ed4b
IM
1268#ifdef CONFIG_SCHEDSTATS
1269 /*
1270 * Track our maximum slice length, if the CPU's load is at
1271 * least twice that of our own weight (i.e. dont track it
1272 * when there are only lesser-weight tasks around):
1273 */
495eca49 1274 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1275 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1276 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 }
1278#endif
4a55b450 1279 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1280}
1281
3f3a4904
PZ
1282static int
1283wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284
ac53db59
RR
1285/*
1286 * Pick the next process, keeping these things in mind, in this order:
1287 * 1) keep things fair between processes/task groups
1288 * 2) pick the "next" process, since someone really wants that to run
1289 * 3) pick the "last" process, for cache locality
1290 * 4) do not run the "skip" process, if something else is available
1291 */
f4b6755f 1292static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1293{
ac53db59 1294 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1295 struct sched_entity *left = se;
f4b6755f 1296
ac53db59
RR
1297 /*
1298 * Avoid running the skip buddy, if running something else can
1299 * be done without getting too unfair.
1300 */
1301 if (cfs_rq->skip == se) {
1302 struct sched_entity *second = __pick_next_entity(se);
1303 if (second && wakeup_preempt_entity(second, left) < 1)
1304 se = second;
1305 }
aa2ac252 1306
f685ceac
MG
1307 /*
1308 * Prefer last buddy, try to return the CPU to a preempted task.
1309 */
1310 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 se = cfs_rq->last;
1312
ac53db59
RR
1313 /*
1314 * Someone really wants this to run. If it's not unfair, run it.
1315 */
1316 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 se = cfs_rq->next;
1318
f685ceac 1319 clear_buddies(cfs_rq, se);
4793241b
PZ
1320
1321 return se;
aa2ac252
PZ
1322}
1323
d3d9dc33
PT
1324static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325
ab6cde26 1326static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1327{
1328 /*
1329 * If still on the runqueue then deactivate_task()
1330 * was not called and update_curr() has to be done:
1331 */
1332 if (prev->on_rq)
b7cc0896 1333 update_curr(cfs_rq);
bf0f6f24 1334
d3d9dc33
PT
1335 /* throttle cfs_rqs exceeding runtime */
1336 check_cfs_rq_runtime(cfs_rq);
1337
ddc97297 1338 check_spread(cfs_rq, prev);
30cfdcfc 1339 if (prev->on_rq) {
5870db5b 1340 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1341 /* Put 'current' back into the tree. */
1342 __enqueue_entity(cfs_rq, prev);
1343 }
429d43bc 1344 cfs_rq->curr = NULL;
bf0f6f24
IM
1345}
1346
8f4d37ec
PZ
1347static void
1348entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1349{
bf0f6f24 1350 /*
30cfdcfc 1351 * Update run-time statistics of the 'current'.
bf0f6f24 1352 */
30cfdcfc 1353 update_curr(cfs_rq);
bf0f6f24 1354
43365bd7
PT
1355 /*
1356 * Update share accounting for long-running entities.
1357 */
1358 update_entity_shares_tick(cfs_rq);
1359
8f4d37ec
PZ
1360#ifdef CONFIG_SCHED_HRTICK
1361 /*
1362 * queued ticks are scheduled to match the slice, so don't bother
1363 * validating it and just reschedule.
1364 */
983ed7a6
HH
1365 if (queued) {
1366 resched_task(rq_of(cfs_rq)->curr);
1367 return;
1368 }
8f4d37ec
PZ
1369 /*
1370 * don't let the period tick interfere with the hrtick preemption
1371 */
1372 if (!sched_feat(DOUBLE_TICK) &&
1373 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 return;
1375#endif
1376
2c2efaed 1377 if (cfs_rq->nr_running > 1)
2e09bf55 1378 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1379}
1380
ab84d31e
PT
1381
1382/**************************************************
1383 * CFS bandwidth control machinery
1384 */
1385
1386#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1387
1388#ifdef HAVE_JUMP_LABEL
c5905afb 1389static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1390
1391static inline bool cfs_bandwidth_used(void)
1392{
c5905afb 1393 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1394}
1395
1396void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397{
1398 /* only need to count groups transitioning between enabled/!enabled */
1399 if (enabled && !was_enabled)
c5905afb 1400 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1401 else if (!enabled && was_enabled)
c5905afb 1402 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1403}
1404#else /* HAVE_JUMP_LABEL */
1405static bool cfs_bandwidth_used(void)
1406{
1407 return true;
1408}
1409
1410void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411#endif /* HAVE_JUMP_LABEL */
1412
ab84d31e
PT
1413/*
1414 * default period for cfs group bandwidth.
1415 * default: 0.1s, units: nanoseconds
1416 */
1417static inline u64 default_cfs_period(void)
1418{
1419 return 100000000ULL;
1420}
ec12cb7f
PT
1421
1422static inline u64 sched_cfs_bandwidth_slice(void)
1423{
1424 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425}
1426
a9cf55b2
PT
1427/*
1428 * Replenish runtime according to assigned quota and update expiration time.
1429 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430 * additional synchronization around rq->lock.
1431 *
1432 * requires cfs_b->lock
1433 */
029632fb 1434void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1435{
1436 u64 now;
1437
1438 if (cfs_b->quota == RUNTIME_INF)
1439 return;
1440
1441 now = sched_clock_cpu(smp_processor_id());
1442 cfs_b->runtime = cfs_b->quota;
1443 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444}
1445
029632fb
PZ
1446static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447{
1448 return &tg->cfs_bandwidth;
1449}
1450
85dac906
PT
1451/* returns 0 on failure to allocate runtime */
1452static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1453{
1454 struct task_group *tg = cfs_rq->tg;
1455 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1456 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1457
1458 /* note: this is a positive sum as runtime_remaining <= 0 */
1459 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460
1461 raw_spin_lock(&cfs_b->lock);
1462 if (cfs_b->quota == RUNTIME_INF)
1463 amount = min_amount;
58088ad0 1464 else {
a9cf55b2
PT
1465 /*
1466 * If the bandwidth pool has become inactive, then at least one
1467 * period must have elapsed since the last consumption.
1468 * Refresh the global state and ensure bandwidth timer becomes
1469 * active.
1470 */
1471 if (!cfs_b->timer_active) {
1472 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1473 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1474 }
58088ad0
PT
1475
1476 if (cfs_b->runtime > 0) {
1477 amount = min(cfs_b->runtime, min_amount);
1478 cfs_b->runtime -= amount;
1479 cfs_b->idle = 0;
1480 }
ec12cb7f 1481 }
a9cf55b2 1482 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1483 raw_spin_unlock(&cfs_b->lock);
1484
1485 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1486 /*
1487 * we may have advanced our local expiration to account for allowed
1488 * spread between our sched_clock and the one on which runtime was
1489 * issued.
1490 */
1491 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 cfs_rq->runtime_expires = expires;
85dac906
PT
1493
1494 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1495}
1496
a9cf55b2
PT
1497/*
1498 * Note: This depends on the synchronization provided by sched_clock and the
1499 * fact that rq->clock snapshots this value.
1500 */
1501static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1502{
a9cf55b2
PT
1503 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 struct rq *rq = rq_of(cfs_rq);
1505
1506 /* if the deadline is ahead of our clock, nothing to do */
1507 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1508 return;
1509
a9cf55b2
PT
1510 if (cfs_rq->runtime_remaining < 0)
1511 return;
1512
1513 /*
1514 * If the local deadline has passed we have to consider the
1515 * possibility that our sched_clock is 'fast' and the global deadline
1516 * has not truly expired.
1517 *
1518 * Fortunately we can check determine whether this the case by checking
1519 * whether the global deadline has advanced.
1520 */
1521
1522 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 /* extend local deadline, drift is bounded above by 2 ticks */
1524 cfs_rq->runtime_expires += TICK_NSEC;
1525 } else {
1526 /* global deadline is ahead, expiration has passed */
1527 cfs_rq->runtime_remaining = 0;
1528 }
1529}
1530
1531static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 unsigned long delta_exec)
1533{
1534 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1535 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1536 expire_cfs_rq_runtime(cfs_rq);
1537
1538 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1539 return;
1540
85dac906
PT
1541 /*
1542 * if we're unable to extend our runtime we resched so that the active
1543 * hierarchy can be throttled
1544 */
1545 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1547}
1548
6c16a6dc
PZ
1549static __always_inline
1550void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1551{
56f570e5 1552 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1553 return;
1554
1555 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1556}
1557
85dac906
PT
1558static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559{
56f570e5 1560 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1561}
1562
64660c86
PT
1563/* check whether cfs_rq, or any parent, is throttled */
1564static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565{
56f570e5 1566 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1567}
1568
1569/*
1570 * Ensure that neither of the group entities corresponding to src_cpu or
1571 * dest_cpu are members of a throttled hierarchy when performing group
1572 * load-balance operations.
1573 */
1574static inline int throttled_lb_pair(struct task_group *tg,
1575 int src_cpu, int dest_cpu)
1576{
1577 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578
1579 src_cfs_rq = tg->cfs_rq[src_cpu];
1580 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581
1582 return throttled_hierarchy(src_cfs_rq) ||
1583 throttled_hierarchy(dest_cfs_rq);
1584}
1585
1586/* updated child weight may affect parent so we have to do this bottom up */
1587static int tg_unthrottle_up(struct task_group *tg, void *data)
1588{
1589 struct rq *rq = data;
1590 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591
1592 cfs_rq->throttle_count--;
1593#ifdef CONFIG_SMP
1594 if (!cfs_rq->throttle_count) {
1595 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596
1597 /* leaving throttled state, advance shares averaging windows */
1598 cfs_rq->load_stamp += delta;
1599 cfs_rq->load_last += delta;
1600
1601 /* update entity weight now that we are on_rq again */
1602 update_cfs_shares(cfs_rq);
1603 }
1604#endif
1605
1606 return 0;
1607}
1608
1609static int tg_throttle_down(struct task_group *tg, void *data)
1610{
1611 struct rq *rq = data;
1612 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613
1614 /* group is entering throttled state, record last load */
1615 if (!cfs_rq->throttle_count)
1616 update_cfs_load(cfs_rq, 0);
1617 cfs_rq->throttle_count++;
1618
1619 return 0;
1620}
1621
d3d9dc33 1622static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1623{
1624 struct rq *rq = rq_of(cfs_rq);
1625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 struct sched_entity *se;
1627 long task_delta, dequeue = 1;
1628
1629 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630
1631 /* account load preceding throttle */
64660c86
PT
1632 rcu_read_lock();
1633 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 rcu_read_unlock();
85dac906
PT
1635
1636 task_delta = cfs_rq->h_nr_running;
1637 for_each_sched_entity(se) {
1638 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 /* throttled entity or throttle-on-deactivate */
1640 if (!se->on_rq)
1641 break;
1642
1643 if (dequeue)
1644 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 qcfs_rq->h_nr_running -= task_delta;
1646
1647 if (qcfs_rq->load.weight)
1648 dequeue = 0;
1649 }
1650
1651 if (!se)
1652 rq->nr_running -= task_delta;
1653
1654 cfs_rq->throttled = 1;
e8da1b18 1655 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1656 raw_spin_lock(&cfs_b->lock);
1657 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 raw_spin_unlock(&cfs_b->lock);
1659}
1660
029632fb 1661void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
1662{
1663 struct rq *rq = rq_of(cfs_rq);
1664 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 struct sched_entity *se;
1666 int enqueue = 1;
1667 long task_delta;
1668
1669 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670
1671 cfs_rq->throttled = 0;
1672 raw_spin_lock(&cfs_b->lock);
e8da1b18 1673 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1674 list_del_rcu(&cfs_rq->throttled_list);
1675 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1676 cfs_rq->throttled_timestamp = 0;
671fd9da 1677
64660c86
PT
1678 update_rq_clock(rq);
1679 /* update hierarchical throttle state */
1680 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681
671fd9da
PT
1682 if (!cfs_rq->load.weight)
1683 return;
1684
1685 task_delta = cfs_rq->h_nr_running;
1686 for_each_sched_entity(se) {
1687 if (se->on_rq)
1688 enqueue = 0;
1689
1690 cfs_rq = cfs_rq_of(se);
1691 if (enqueue)
1692 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 cfs_rq->h_nr_running += task_delta;
1694
1695 if (cfs_rq_throttled(cfs_rq))
1696 break;
1697 }
1698
1699 if (!se)
1700 rq->nr_running += task_delta;
1701
1702 /* determine whether we need to wake up potentially idle cpu */
1703 if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 resched_task(rq->curr);
1705}
1706
1707static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 u64 remaining, u64 expires)
1709{
1710 struct cfs_rq *cfs_rq;
1711 u64 runtime = remaining;
1712
1713 rcu_read_lock();
1714 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 throttled_list) {
1716 struct rq *rq = rq_of(cfs_rq);
1717
1718 raw_spin_lock(&rq->lock);
1719 if (!cfs_rq_throttled(cfs_rq))
1720 goto next;
1721
1722 runtime = -cfs_rq->runtime_remaining + 1;
1723 if (runtime > remaining)
1724 runtime = remaining;
1725 remaining -= runtime;
1726
1727 cfs_rq->runtime_remaining += runtime;
1728 cfs_rq->runtime_expires = expires;
1729
1730 /* we check whether we're throttled above */
1731 if (cfs_rq->runtime_remaining > 0)
1732 unthrottle_cfs_rq(cfs_rq);
1733
1734next:
1735 raw_spin_unlock(&rq->lock);
1736
1737 if (!remaining)
1738 break;
1739 }
1740 rcu_read_unlock();
1741
1742 return remaining;
1743}
1744
58088ad0
PT
1745/*
1746 * Responsible for refilling a task_group's bandwidth and unthrottling its
1747 * cfs_rqs as appropriate. If there has been no activity within the last
1748 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749 * used to track this state.
1750 */
1751static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752{
671fd9da
PT
1753 u64 runtime, runtime_expires;
1754 int idle = 1, throttled;
58088ad0
PT
1755
1756 raw_spin_lock(&cfs_b->lock);
1757 /* no need to continue the timer with no bandwidth constraint */
1758 if (cfs_b->quota == RUNTIME_INF)
1759 goto out_unlock;
1760
671fd9da
PT
1761 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 /* idle depends on !throttled (for the case of a large deficit) */
1763 idle = cfs_b->idle && !throttled;
e8da1b18 1764 cfs_b->nr_periods += overrun;
671fd9da 1765
a9cf55b2
PT
1766 /* if we're going inactive then everything else can be deferred */
1767 if (idle)
1768 goto out_unlock;
1769
1770 __refill_cfs_bandwidth_runtime(cfs_b);
1771
671fd9da
PT
1772 if (!throttled) {
1773 /* mark as potentially idle for the upcoming period */
1774 cfs_b->idle = 1;
1775 goto out_unlock;
1776 }
1777
e8da1b18
NR
1778 /* account preceding periods in which throttling occurred */
1779 cfs_b->nr_throttled += overrun;
1780
671fd9da
PT
1781 /*
1782 * There are throttled entities so we must first use the new bandwidth
1783 * to unthrottle them before making it generally available. This
1784 * ensures that all existing debts will be paid before a new cfs_rq is
1785 * allowed to run.
1786 */
1787 runtime = cfs_b->runtime;
1788 runtime_expires = cfs_b->runtime_expires;
1789 cfs_b->runtime = 0;
1790
1791 /*
1792 * This check is repeated as we are holding onto the new bandwidth
1793 * while we unthrottle. This can potentially race with an unthrottled
1794 * group trying to acquire new bandwidth from the global pool.
1795 */
1796 while (throttled && runtime > 0) {
1797 raw_spin_unlock(&cfs_b->lock);
1798 /* we can't nest cfs_b->lock while distributing bandwidth */
1799 runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 runtime_expires);
1801 raw_spin_lock(&cfs_b->lock);
1802
1803 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 }
58088ad0 1805
671fd9da
PT
1806 /* return (any) remaining runtime */
1807 cfs_b->runtime = runtime;
1808 /*
1809 * While we are ensured activity in the period following an
1810 * unthrottle, this also covers the case in which the new bandwidth is
1811 * insufficient to cover the existing bandwidth deficit. (Forcing the
1812 * timer to remain active while there are any throttled entities.)
1813 */
1814 cfs_b->idle = 0;
58088ad0
PT
1815out_unlock:
1816 if (idle)
1817 cfs_b->timer_active = 0;
1818 raw_spin_unlock(&cfs_b->lock);
1819
1820 return idle;
1821}
d3d9dc33 1822
d8b4986d
PT
1823/* a cfs_rq won't donate quota below this amount */
1824static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825/* minimum remaining period time to redistribute slack quota */
1826static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827/* how long we wait to gather additional slack before distributing */
1828static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829
1830/* are we near the end of the current quota period? */
1831static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832{
1833 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 u64 remaining;
1835
1836 /* if the call-back is running a quota refresh is already occurring */
1837 if (hrtimer_callback_running(refresh_timer))
1838 return 1;
1839
1840 /* is a quota refresh about to occur? */
1841 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 if (remaining < min_expire)
1843 return 1;
1844
1845 return 0;
1846}
1847
1848static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849{
1850 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851
1852 /* if there's a quota refresh soon don't bother with slack */
1853 if (runtime_refresh_within(cfs_b, min_left))
1854 return;
1855
1856 start_bandwidth_timer(&cfs_b->slack_timer,
1857 ns_to_ktime(cfs_bandwidth_slack_period));
1858}
1859
1860/* we know any runtime found here is valid as update_curr() precedes return */
1861static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862{
1863 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865
1866 if (slack_runtime <= 0)
1867 return;
1868
1869 raw_spin_lock(&cfs_b->lock);
1870 if (cfs_b->quota != RUNTIME_INF &&
1871 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 cfs_b->runtime += slack_runtime;
1873
1874 /* we are under rq->lock, defer unthrottling using a timer */
1875 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 !list_empty(&cfs_b->throttled_cfs_rq))
1877 start_cfs_slack_bandwidth(cfs_b);
1878 }
1879 raw_spin_unlock(&cfs_b->lock);
1880
1881 /* even if it's not valid for return we don't want to try again */
1882 cfs_rq->runtime_remaining -= slack_runtime;
1883}
1884
1885static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886{
56f570e5
PT
1887 if (!cfs_bandwidth_used())
1888 return;
1889
fccfdc6f 1890 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1891 return;
1892
1893 __return_cfs_rq_runtime(cfs_rq);
1894}
1895
1896/*
1897 * This is done with a timer (instead of inline with bandwidth return) since
1898 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899 */
1900static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901{
1902 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 u64 expires;
1904
1905 /* confirm we're still not at a refresh boundary */
1906 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 return;
1908
1909 raw_spin_lock(&cfs_b->lock);
1910 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 runtime = cfs_b->runtime;
1912 cfs_b->runtime = 0;
1913 }
1914 expires = cfs_b->runtime_expires;
1915 raw_spin_unlock(&cfs_b->lock);
1916
1917 if (!runtime)
1918 return;
1919
1920 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921
1922 raw_spin_lock(&cfs_b->lock);
1923 if (expires == cfs_b->runtime_expires)
1924 cfs_b->runtime = runtime;
1925 raw_spin_unlock(&cfs_b->lock);
1926}
1927
d3d9dc33
PT
1928/*
1929 * When a group wakes up we want to make sure that its quota is not already
1930 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932 */
1933static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934{
56f570e5
PT
1935 if (!cfs_bandwidth_used())
1936 return;
1937
d3d9dc33
PT
1938 /* an active group must be handled by the update_curr()->put() path */
1939 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 return;
1941
1942 /* ensure the group is not already throttled */
1943 if (cfs_rq_throttled(cfs_rq))
1944 return;
1945
1946 /* update runtime allocation */
1947 account_cfs_rq_runtime(cfs_rq, 0);
1948 if (cfs_rq->runtime_remaining <= 0)
1949 throttle_cfs_rq(cfs_rq);
1950}
1951
1952/* conditionally throttle active cfs_rq's from put_prev_entity() */
1953static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954{
56f570e5
PT
1955 if (!cfs_bandwidth_used())
1956 return;
1957
d3d9dc33
PT
1958 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 return;
1960
1961 /*
1962 * it's possible for a throttled entity to be forced into a running
1963 * state (e.g. set_curr_task), in this case we're finished.
1964 */
1965 if (cfs_rq_throttled(cfs_rq))
1966 return;
1967
1968 throttle_cfs_rq(cfs_rq);
1969}
029632fb
PZ
1970
1971static inline u64 default_cfs_period(void);
1972static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974
1975static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976{
1977 struct cfs_bandwidth *cfs_b =
1978 container_of(timer, struct cfs_bandwidth, slack_timer);
1979 do_sched_cfs_slack_timer(cfs_b);
1980
1981 return HRTIMER_NORESTART;
1982}
1983
1984static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985{
1986 struct cfs_bandwidth *cfs_b =
1987 container_of(timer, struct cfs_bandwidth, period_timer);
1988 ktime_t now;
1989 int overrun;
1990 int idle = 0;
1991
1992 for (;;) {
1993 now = hrtimer_cb_get_time(timer);
1994 overrun = hrtimer_forward(timer, now, cfs_b->period);
1995
1996 if (!overrun)
1997 break;
1998
1999 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 }
2001
2002 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003}
2004
2005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006{
2007 raw_spin_lock_init(&cfs_b->lock);
2008 cfs_b->runtime = 0;
2009 cfs_b->quota = RUNTIME_INF;
2010 cfs_b->period = ns_to_ktime(default_cfs_period());
2011
2012 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 cfs_b->period_timer.function = sched_cfs_period_timer;
2015 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017}
2018
2019static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020{
2021 cfs_rq->runtime_enabled = 0;
2022 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023}
2024
2025/* requires cfs_b->lock, may release to reprogram timer */
2026void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027{
2028 /*
2029 * The timer may be active because we're trying to set a new bandwidth
2030 * period or because we're racing with the tear-down path
2031 * (timer_active==0 becomes visible before the hrtimer call-back
2032 * terminates). In either case we ensure that it's re-programmed
2033 */
2034 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 raw_spin_unlock(&cfs_b->lock);
2036 /* ensure cfs_b->lock is available while we wait */
2037 hrtimer_cancel(&cfs_b->period_timer);
2038
2039 raw_spin_lock(&cfs_b->lock);
2040 /* if someone else restarted the timer then we're done */
2041 if (cfs_b->timer_active)
2042 return;
2043 }
2044
2045 cfs_b->timer_active = 1;
2046 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047}
2048
2049static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050{
2051 hrtimer_cancel(&cfs_b->period_timer);
2052 hrtimer_cancel(&cfs_b->slack_timer);
2053}
2054
2055void unthrottle_offline_cfs_rqs(struct rq *rq)
2056{
2057 struct cfs_rq *cfs_rq;
2058
2059 for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061
2062 if (!cfs_rq->runtime_enabled)
2063 continue;
2064
2065 /*
2066 * clock_task is not advancing so we just need to make sure
2067 * there's some valid quota amount
2068 */
2069 cfs_rq->runtime_remaining = cfs_b->quota;
2070 if (cfs_rq_throttled(cfs_rq))
2071 unthrottle_cfs_rq(cfs_rq);
2072 }
2073}
2074
2075#else /* CONFIG_CFS_BANDWIDTH */
6c16a6dc
PZ
2076static __always_inline
2077void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
d3d9dc33
PT
2078static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2080static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2081
2082static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083{
2084 return 0;
2085}
64660c86
PT
2086
2087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088{
2089 return 0;
2090}
2091
2092static inline int throttled_lb_pair(struct task_group *tg,
2093 int src_cpu, int dest_cpu)
2094{
2095 return 0;
2096}
029632fb
PZ
2097
2098void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099
2100#ifdef CONFIG_FAIR_GROUP_SCHED
2101static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2102#endif
2103
029632fb
PZ
2104static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105{
2106 return NULL;
2107}
2108static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110
2111#endif /* CONFIG_CFS_BANDWIDTH */
2112
bf0f6f24
IM
2113/**************************************************
2114 * CFS operations on tasks:
2115 */
2116
8f4d37ec
PZ
2117#ifdef CONFIG_SCHED_HRTICK
2118static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119{
8f4d37ec
PZ
2120 struct sched_entity *se = &p->se;
2121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122
2123 WARN_ON(task_rq(p) != rq);
2124
b39e66ea 2125 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2126 u64 slice = sched_slice(cfs_rq, se);
2127 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 s64 delta = slice - ran;
2129
2130 if (delta < 0) {
2131 if (rq->curr == p)
2132 resched_task(p);
2133 return;
2134 }
2135
2136 /*
2137 * Don't schedule slices shorter than 10000ns, that just
2138 * doesn't make sense. Rely on vruntime for fairness.
2139 */
31656519 2140 if (rq->curr != p)
157124c1 2141 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2142
31656519 2143 hrtick_start(rq, delta);
8f4d37ec
PZ
2144 }
2145}
a4c2f00f
PZ
2146
2147/*
2148 * called from enqueue/dequeue and updates the hrtick when the
2149 * current task is from our class and nr_running is low enough
2150 * to matter.
2151 */
2152static void hrtick_update(struct rq *rq)
2153{
2154 struct task_struct *curr = rq->curr;
2155
b39e66ea 2156 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2157 return;
2158
2159 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 hrtick_start_fair(rq, curr);
2161}
55e12e5e 2162#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2163static inline void
2164hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165{
2166}
a4c2f00f
PZ
2167
2168static inline void hrtick_update(struct rq *rq)
2169{
2170}
8f4d37ec
PZ
2171#endif
2172
bf0f6f24
IM
2173/*
2174 * The enqueue_task method is called before nr_running is
2175 * increased. Here we update the fair scheduling stats and
2176 * then put the task into the rbtree:
2177 */
ea87bb78 2178static void
371fd7e7 2179enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2180{
2181 struct cfs_rq *cfs_rq;
62fb1851 2182 struct sched_entity *se = &p->se;
bf0f6f24
IM
2183
2184 for_each_sched_entity(se) {
62fb1851 2185 if (se->on_rq)
bf0f6f24
IM
2186 break;
2187 cfs_rq = cfs_rq_of(se);
88ec22d3 2188 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2189
2190 /*
2191 * end evaluation on encountering a throttled cfs_rq
2192 *
2193 * note: in the case of encountering a throttled cfs_rq we will
2194 * post the final h_nr_running increment below.
2195 */
2196 if (cfs_rq_throttled(cfs_rq))
2197 break;
953bfcd1 2198 cfs_rq->h_nr_running++;
85dac906 2199
88ec22d3 2200 flags = ENQUEUE_WAKEUP;
bf0f6f24 2201 }
8f4d37ec 2202
2069dd75 2203 for_each_sched_entity(se) {
0f317143 2204 cfs_rq = cfs_rq_of(se);
953bfcd1 2205 cfs_rq->h_nr_running++;
2069dd75 2206
85dac906
PT
2207 if (cfs_rq_throttled(cfs_rq))
2208 break;
2209
d6b55918 2210 update_cfs_load(cfs_rq, 0);
6d5ab293 2211 update_cfs_shares(cfs_rq);
2069dd75
PZ
2212 }
2213
85dac906
PT
2214 if (!se)
2215 inc_nr_running(rq);
a4c2f00f 2216 hrtick_update(rq);
bf0f6f24
IM
2217}
2218
2f36825b
VP
2219static void set_next_buddy(struct sched_entity *se);
2220
bf0f6f24
IM
2221/*
2222 * The dequeue_task method is called before nr_running is
2223 * decreased. We remove the task from the rbtree and
2224 * update the fair scheduling stats:
2225 */
371fd7e7 2226static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2227{
2228 struct cfs_rq *cfs_rq;
62fb1851 2229 struct sched_entity *se = &p->se;
2f36825b 2230 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2231
2232 for_each_sched_entity(se) {
2233 cfs_rq = cfs_rq_of(se);
371fd7e7 2234 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2235
2236 /*
2237 * end evaluation on encountering a throttled cfs_rq
2238 *
2239 * note: in the case of encountering a throttled cfs_rq we will
2240 * post the final h_nr_running decrement below.
2241 */
2242 if (cfs_rq_throttled(cfs_rq))
2243 break;
953bfcd1 2244 cfs_rq->h_nr_running--;
2069dd75 2245
bf0f6f24 2246 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2247 if (cfs_rq->load.weight) {
2248 /*
2249 * Bias pick_next to pick a task from this cfs_rq, as
2250 * p is sleeping when it is within its sched_slice.
2251 */
2252 if (task_sleep && parent_entity(se))
2253 set_next_buddy(parent_entity(se));
9598c82d
PT
2254
2255 /* avoid re-evaluating load for this entity */
2256 se = parent_entity(se);
bf0f6f24 2257 break;
2f36825b 2258 }
371fd7e7 2259 flags |= DEQUEUE_SLEEP;
bf0f6f24 2260 }
8f4d37ec 2261
2069dd75 2262 for_each_sched_entity(se) {
0f317143 2263 cfs_rq = cfs_rq_of(se);
953bfcd1 2264 cfs_rq->h_nr_running--;
2069dd75 2265
85dac906
PT
2266 if (cfs_rq_throttled(cfs_rq))
2267 break;
2268
d6b55918 2269 update_cfs_load(cfs_rq, 0);
6d5ab293 2270 update_cfs_shares(cfs_rq);
2069dd75
PZ
2271 }
2272
85dac906
PT
2273 if (!se)
2274 dec_nr_running(rq);
a4c2f00f 2275 hrtick_update(rq);
bf0f6f24
IM
2276}
2277
e7693a36 2278#ifdef CONFIG_SMP
029632fb
PZ
2279/* Used instead of source_load when we know the type == 0 */
2280static unsigned long weighted_cpuload(const int cpu)
2281{
2282 return cpu_rq(cpu)->load.weight;
2283}
2284
2285/*
2286 * Return a low guess at the load of a migration-source cpu weighted
2287 * according to the scheduling class and "nice" value.
2288 *
2289 * We want to under-estimate the load of migration sources, to
2290 * balance conservatively.
2291 */
2292static unsigned long source_load(int cpu, int type)
2293{
2294 struct rq *rq = cpu_rq(cpu);
2295 unsigned long total = weighted_cpuload(cpu);
2296
2297 if (type == 0 || !sched_feat(LB_BIAS))
2298 return total;
2299
2300 return min(rq->cpu_load[type-1], total);
2301}
2302
2303/*
2304 * Return a high guess at the load of a migration-target cpu weighted
2305 * according to the scheduling class and "nice" value.
2306 */
2307static unsigned long target_load(int cpu, int type)
2308{
2309 struct rq *rq = cpu_rq(cpu);
2310 unsigned long total = weighted_cpuload(cpu);
2311
2312 if (type == 0 || !sched_feat(LB_BIAS))
2313 return total;
2314
2315 return max(rq->cpu_load[type-1], total);
2316}
2317
2318static unsigned long power_of(int cpu)
2319{
2320 return cpu_rq(cpu)->cpu_power;
2321}
2322
2323static unsigned long cpu_avg_load_per_task(int cpu)
2324{
2325 struct rq *rq = cpu_rq(cpu);
2326 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327
2328 if (nr_running)
2329 return rq->load.weight / nr_running;
2330
2331 return 0;
2332}
2333
098fb9db 2334
74f8e4b2 2335static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2336{
2337 struct sched_entity *se = &p->se;
2338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2339 u64 min_vruntime;
2340
2341#ifndef CONFIG_64BIT
2342 u64 min_vruntime_copy;
88ec22d3 2343
3fe1698b
PZ
2344 do {
2345 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 smp_rmb();
2347 min_vruntime = cfs_rq->min_vruntime;
2348 } while (min_vruntime != min_vruntime_copy);
2349#else
2350 min_vruntime = cfs_rq->min_vruntime;
2351#endif
88ec22d3 2352
3fe1698b 2353 se->vruntime -= min_vruntime;
88ec22d3
PZ
2354}
2355
bb3469ac 2356#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2357/*
2358 * effective_load() calculates the load change as seen from the root_task_group
2359 *
2360 * Adding load to a group doesn't make a group heavier, but can cause movement
2361 * of group shares between cpus. Assuming the shares were perfectly aligned one
2362 * can calculate the shift in shares.
cf5f0acf
PZ
2363 *
2364 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365 * on this @cpu and results in a total addition (subtraction) of @wg to the
2366 * total group weight.
2367 *
2368 * Given a runqueue weight distribution (rw_i) we can compute a shares
2369 * distribution (s_i) using:
2370 *
2371 * s_i = rw_i / \Sum rw_j (1)
2372 *
2373 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375 * shares distribution (s_i):
2376 *
2377 * rw_i = { 2, 4, 1, 0 }
2378 * s_i = { 2/7, 4/7, 1/7, 0 }
2379 *
2380 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381 * task used to run on and the CPU the waker is running on), we need to
2382 * compute the effect of waking a task on either CPU and, in case of a sync
2383 * wakeup, compute the effect of the current task going to sleep.
2384 *
2385 * So for a change of @wl to the local @cpu with an overall group weight change
2386 * of @wl we can compute the new shares distribution (s'_i) using:
2387 *
2388 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2389 *
2390 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391 * differences in waking a task to CPU 0. The additional task changes the
2392 * weight and shares distributions like:
2393 *
2394 * rw'_i = { 3, 4, 1, 0 }
2395 * s'_i = { 3/8, 4/8, 1/8, 0 }
2396 *
2397 * We can then compute the difference in effective weight by using:
2398 *
2399 * dw_i = S * (s'_i - s_i) (3)
2400 *
2401 * Where 'S' is the group weight as seen by its parent.
2402 *
2403 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405 * 4/7) times the weight of the group.
f5bfb7d9 2406 */
2069dd75 2407static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2408{
4be9daaa 2409 struct sched_entity *se = tg->se[cpu];
f1d239f7 2410
cf5f0acf 2411 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2412 return wl;
2413
4be9daaa 2414 for_each_sched_entity(se) {
cf5f0acf 2415 long w, W;
4be9daaa 2416
977dda7c 2417 tg = se->my_q->tg;
bb3469ac 2418
cf5f0acf
PZ
2419 /*
2420 * W = @wg + \Sum rw_j
2421 */
2422 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2423
cf5f0acf
PZ
2424 /*
2425 * w = rw_i + @wl
2426 */
2427 w = se->my_q->load.weight + wl;
940959e9 2428
cf5f0acf
PZ
2429 /*
2430 * wl = S * s'_i; see (2)
2431 */
2432 if (W > 0 && w < W)
2433 wl = (w * tg->shares) / W;
977dda7c
PT
2434 else
2435 wl = tg->shares;
940959e9 2436
cf5f0acf
PZ
2437 /*
2438 * Per the above, wl is the new se->load.weight value; since
2439 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 * calc_cfs_shares().
2441 */
977dda7c
PT
2442 if (wl < MIN_SHARES)
2443 wl = MIN_SHARES;
cf5f0acf
PZ
2444
2445 /*
2446 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 */
977dda7c 2448 wl -= se->load.weight;
cf5f0acf
PZ
2449
2450 /*
2451 * Recursively apply this logic to all parent groups to compute
2452 * the final effective load change on the root group. Since
2453 * only the @tg group gets extra weight, all parent groups can
2454 * only redistribute existing shares. @wl is the shift in shares
2455 * resulting from this level per the above.
2456 */
4be9daaa 2457 wg = 0;
4be9daaa 2458 }
bb3469ac 2459
4be9daaa 2460 return wl;
bb3469ac
PZ
2461}
2462#else
4be9daaa 2463
83378269
PZ
2464static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 unsigned long wl, unsigned long wg)
4be9daaa 2466{
83378269 2467 return wl;
bb3469ac 2468}
4be9daaa 2469
bb3469ac
PZ
2470#endif
2471
c88d5910 2472static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2473{
e37b6a7b 2474 s64 this_load, load;
c88d5910 2475 int idx, this_cpu, prev_cpu;
098fb9db 2476 unsigned long tl_per_task;
c88d5910 2477 struct task_group *tg;
83378269 2478 unsigned long weight;
b3137bc8 2479 int balanced;
098fb9db 2480
c88d5910
PZ
2481 idx = sd->wake_idx;
2482 this_cpu = smp_processor_id();
2483 prev_cpu = task_cpu(p);
2484 load = source_load(prev_cpu, idx);
2485 this_load = target_load(this_cpu, idx);
098fb9db 2486
b3137bc8
MG
2487 /*
2488 * If sync wakeup then subtract the (maximum possible)
2489 * effect of the currently running task from the load
2490 * of the current CPU:
2491 */
83378269
PZ
2492 if (sync) {
2493 tg = task_group(current);
2494 weight = current->se.load.weight;
2495
c88d5910 2496 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2497 load += effective_load(tg, prev_cpu, 0, -weight);
2498 }
b3137bc8 2499
83378269
PZ
2500 tg = task_group(p);
2501 weight = p->se.load.weight;
b3137bc8 2502
71a29aa7
PZ
2503 /*
2504 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2505 * due to the sync cause above having dropped this_load to 0, we'll
2506 * always have an imbalance, but there's really nothing you can do
2507 * about that, so that's good too.
71a29aa7
PZ
2508 *
2509 * Otherwise check if either cpus are near enough in load to allow this
2510 * task to be woken on this_cpu.
2511 */
e37b6a7b
PT
2512 if (this_load > 0) {
2513 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2514
2515 this_eff_load = 100;
2516 this_eff_load *= power_of(prev_cpu);
2517 this_eff_load *= this_load +
2518 effective_load(tg, this_cpu, weight, weight);
2519
2520 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 prev_eff_load *= power_of(this_cpu);
2522 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523
2524 balanced = this_eff_load <= prev_eff_load;
2525 } else
2526 balanced = true;
b3137bc8 2527
098fb9db 2528 /*
4ae7d5ce
IM
2529 * If the currently running task will sleep within
2530 * a reasonable amount of time then attract this newly
2531 * woken task:
098fb9db 2532 */
2fb7635c
PZ
2533 if (sync && balanced)
2534 return 1;
098fb9db 2535
41acab88 2536 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2537 tl_per_task = cpu_avg_load_per_task(this_cpu);
2538
c88d5910
PZ
2539 if (balanced ||
2540 (this_load <= load &&
2541 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2542 /*
2543 * This domain has SD_WAKE_AFFINE and
2544 * p is cache cold in this domain, and
2545 * there is no bad imbalance.
2546 */
c88d5910 2547 schedstat_inc(sd, ttwu_move_affine);
41acab88 2548 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2549
2550 return 1;
2551 }
2552 return 0;
2553}
2554
aaee1203
PZ
2555/*
2556 * find_idlest_group finds and returns the least busy CPU group within the
2557 * domain.
2558 */
2559static struct sched_group *
78e7ed53 2560find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2561 int this_cpu, int load_idx)
e7693a36 2562{
b3bd3de6 2563 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2564 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2565 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2566
aaee1203
PZ
2567 do {
2568 unsigned long load, avg_load;
2569 int local_group;
2570 int i;
e7693a36 2571
aaee1203
PZ
2572 /* Skip over this group if it has no CPUs allowed */
2573 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2574 tsk_cpus_allowed(p)))
aaee1203
PZ
2575 continue;
2576
2577 local_group = cpumask_test_cpu(this_cpu,
2578 sched_group_cpus(group));
2579
2580 /* Tally up the load of all CPUs in the group */
2581 avg_load = 0;
2582
2583 for_each_cpu(i, sched_group_cpus(group)) {
2584 /* Bias balancing toward cpus of our domain */
2585 if (local_group)
2586 load = source_load(i, load_idx);
2587 else
2588 load = target_load(i, load_idx);
2589
2590 avg_load += load;
2591 }
2592
2593 /* Adjust by relative CPU power of the group */
9c3f75cb 2594 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2595
2596 if (local_group) {
2597 this_load = avg_load;
aaee1203
PZ
2598 } else if (avg_load < min_load) {
2599 min_load = avg_load;
2600 idlest = group;
2601 }
2602 } while (group = group->next, group != sd->groups);
2603
2604 if (!idlest || 100*this_load < imbalance*min_load)
2605 return NULL;
2606 return idlest;
2607}
2608
2609/*
2610 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611 */
2612static int
2613find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614{
2615 unsigned long load, min_load = ULONG_MAX;
2616 int idlest = -1;
2617 int i;
2618
2619 /* Traverse only the allowed CPUs */
fa17b507 2620 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2621 load = weighted_cpuload(i);
2622
2623 if (load < min_load || (load == min_load && i == this_cpu)) {
2624 min_load = load;
2625 idlest = i;
e7693a36
GH
2626 }
2627 }
2628
aaee1203
PZ
2629 return idlest;
2630}
e7693a36 2631
a50bde51
PZ
2632/*
2633 * Try and locate an idle CPU in the sched_domain.
2634 */
99bd5e2f 2635static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2636{
2637 int cpu = smp_processor_id();
2638 int prev_cpu = task_cpu(p);
99bd5e2f 2639 struct sched_domain *sd;
a50bde51
PZ
2640
2641 /*
99bd5e2f
SS
2642 * If the task is going to be woken-up on this cpu and if it is
2643 * already idle, then it is the right target.
a50bde51 2644 */
99bd5e2f
SS
2645 if (target == cpu && idle_cpu(cpu))
2646 return cpu;
2647
2648 /*
2649 * If the task is going to be woken-up on the cpu where it previously
2650 * ran and if it is currently idle, then it the right target.
2651 */
2652 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2653 return prev_cpu;
a50bde51
PZ
2654
2655 /*
970e1789 2656 * Otherwise, check assigned siblings to find an elegible idle cpu.
a50bde51 2657 */
518cd623 2658 sd = rcu_dereference(per_cpu(sd_llc, target));
4dcfe102 2659
970e1789
MG
2660 for_each_lower_domain(sd) {
2661 if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
2662 continue;
2663 if (idle_cpu(sd->idle_buddy))
2664 return sd->idle_buddy;
a50bde51 2665 }
970e1789 2666
a50bde51
PZ
2667 return target;
2668}
2669
aaee1203
PZ
2670/*
2671 * sched_balance_self: balance the current task (running on cpu) in domains
2672 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2673 * SD_BALANCE_EXEC.
2674 *
2675 * Balance, ie. select the least loaded group.
2676 *
2677 * Returns the target CPU number, or the same CPU if no balancing is needed.
2678 *
2679 * preempt must be disabled.
2680 */
0017d735 2681static int
7608dec2 2682select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2683{
29cd8bae 2684 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2685 int cpu = smp_processor_id();
2686 int prev_cpu = task_cpu(p);
2687 int new_cpu = cpu;
99bd5e2f 2688 int want_affine = 0;
29cd8bae 2689 int want_sd = 1;
5158f4e4 2690 int sync = wake_flags & WF_SYNC;
c88d5910 2691
29baa747 2692 if (p->nr_cpus_allowed == 1)
76854c7e
MG
2693 return prev_cpu;
2694
0763a660 2695 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2696 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2697 want_affine = 1;
2698 new_cpu = prev_cpu;
2699 }
aaee1203 2700
dce840a0 2701 rcu_read_lock();
aaee1203 2702 for_each_domain(cpu, tmp) {
e4f42888
PZ
2703 if (!(tmp->flags & SD_LOAD_BALANCE))
2704 continue;
2705
aaee1203 2706 /*
ae154be1
PZ
2707 * If power savings logic is enabled for a domain, see if we
2708 * are not overloaded, if so, don't balance wider.
aaee1203 2709 */
8e7fbcbc 2710 if (tmp->flags & (SD_PREFER_LOCAL)) {
ae154be1
PZ
2711 unsigned long power = 0;
2712 unsigned long nr_running = 0;
2713 unsigned long capacity;
2714 int i;
2715
2716 for_each_cpu(i, sched_domain_span(tmp)) {
2717 power += power_of(i);
2718 nr_running += cpu_rq(i)->cfs.nr_running;
2719 }
2720
1399fa78 2721 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2722
59abf026 2723 if (nr_running < capacity)
29cd8bae 2724 want_sd = 0;
ae154be1 2725 }
aaee1203 2726
fe3bcfe1 2727 /*
99bd5e2f
SS
2728 * If both cpu and prev_cpu are part of this domain,
2729 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2730 */
99bd5e2f
SS
2731 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2732 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2733 affine_sd = tmp;
2734 want_affine = 0;
c88d5910
PZ
2735 }
2736
29cd8bae
PZ
2737 if (!want_sd && !want_affine)
2738 break;
2739
0763a660 2740 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2741 continue;
2742
29cd8bae
PZ
2743 if (want_sd)
2744 sd = tmp;
2745 }
2746
8b911acd 2747 if (affine_sd) {
99bd5e2f 2748 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2749 prev_cpu = cpu;
2750
2751 new_cpu = select_idle_sibling(p, prev_cpu);
2752 goto unlock;
8b911acd 2753 }
e7693a36 2754
aaee1203 2755 while (sd) {
5158f4e4 2756 int load_idx = sd->forkexec_idx;
aaee1203 2757 struct sched_group *group;
c88d5910 2758 int weight;
098fb9db 2759
0763a660 2760 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2761 sd = sd->child;
2762 continue;
2763 }
098fb9db 2764
5158f4e4
PZ
2765 if (sd_flag & SD_BALANCE_WAKE)
2766 load_idx = sd->wake_idx;
098fb9db 2767
5158f4e4 2768 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2769 if (!group) {
2770 sd = sd->child;
2771 continue;
2772 }
4ae7d5ce 2773
d7c33c49 2774 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2775 if (new_cpu == -1 || new_cpu == cpu) {
2776 /* Now try balancing at a lower domain level of cpu */
2777 sd = sd->child;
2778 continue;
e7693a36 2779 }
aaee1203
PZ
2780
2781 /* Now try balancing at a lower domain level of new_cpu */
2782 cpu = new_cpu;
669c55e9 2783 weight = sd->span_weight;
aaee1203
PZ
2784 sd = NULL;
2785 for_each_domain(cpu, tmp) {
669c55e9 2786 if (weight <= tmp->span_weight)
aaee1203 2787 break;
0763a660 2788 if (tmp->flags & sd_flag)
aaee1203
PZ
2789 sd = tmp;
2790 }
2791 /* while loop will break here if sd == NULL */
e7693a36 2792 }
dce840a0
PZ
2793unlock:
2794 rcu_read_unlock();
e7693a36 2795
c88d5910 2796 return new_cpu;
e7693a36
GH
2797}
2798#endif /* CONFIG_SMP */
2799
e52fb7c0
PZ
2800static unsigned long
2801wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2802{
2803 unsigned long gran = sysctl_sched_wakeup_granularity;
2804
2805 /*
e52fb7c0
PZ
2806 * Since its curr running now, convert the gran from real-time
2807 * to virtual-time in his units.
13814d42
MG
2808 *
2809 * By using 'se' instead of 'curr' we penalize light tasks, so
2810 * they get preempted easier. That is, if 'se' < 'curr' then
2811 * the resulting gran will be larger, therefore penalizing the
2812 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2813 * be smaller, again penalizing the lighter task.
2814 *
2815 * This is especially important for buddies when the leftmost
2816 * task is higher priority than the buddy.
0bbd3336 2817 */
f4ad9bd2 2818 return calc_delta_fair(gran, se);
0bbd3336
PZ
2819}
2820
464b7527
PZ
2821/*
2822 * Should 'se' preempt 'curr'.
2823 *
2824 * |s1
2825 * |s2
2826 * |s3
2827 * g
2828 * |<--->|c
2829 *
2830 * w(c, s1) = -1
2831 * w(c, s2) = 0
2832 * w(c, s3) = 1
2833 *
2834 */
2835static int
2836wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2837{
2838 s64 gran, vdiff = curr->vruntime - se->vruntime;
2839
2840 if (vdiff <= 0)
2841 return -1;
2842
e52fb7c0 2843 gran = wakeup_gran(curr, se);
464b7527
PZ
2844 if (vdiff > gran)
2845 return 1;
2846
2847 return 0;
2848}
2849
02479099
PZ
2850static void set_last_buddy(struct sched_entity *se)
2851{
69c80f3e
VP
2852 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2853 return;
2854
2855 for_each_sched_entity(se)
2856 cfs_rq_of(se)->last = se;
02479099
PZ
2857}
2858
2859static void set_next_buddy(struct sched_entity *se)
2860{
69c80f3e
VP
2861 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2862 return;
2863
2864 for_each_sched_entity(se)
2865 cfs_rq_of(se)->next = se;
02479099
PZ
2866}
2867
ac53db59
RR
2868static void set_skip_buddy(struct sched_entity *se)
2869{
69c80f3e
VP
2870 for_each_sched_entity(se)
2871 cfs_rq_of(se)->skip = se;
ac53db59
RR
2872}
2873
bf0f6f24
IM
2874/*
2875 * Preempt the current task with a newly woken task if needed:
2876 */
5a9b86f6 2877static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2878{
2879 struct task_struct *curr = rq->curr;
8651a86c 2880 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2881 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2882 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2883 int next_buddy_marked = 0;
bf0f6f24 2884
4ae7d5ce
IM
2885 if (unlikely(se == pse))
2886 return;
2887
5238cdd3 2888 /*
ddcdf6e7 2889 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
2890 * unconditionally check_prempt_curr() after an enqueue (which may have
2891 * lead to a throttle). This both saves work and prevents false
2892 * next-buddy nomination below.
2893 */
2894 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2895 return;
2896
2f36825b 2897 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2898 set_next_buddy(pse);
2f36825b
VP
2899 next_buddy_marked = 1;
2900 }
57fdc26d 2901
aec0a514
BR
2902 /*
2903 * We can come here with TIF_NEED_RESCHED already set from new task
2904 * wake up path.
5238cdd3
PT
2905 *
2906 * Note: this also catches the edge-case of curr being in a throttled
2907 * group (e.g. via set_curr_task), since update_curr() (in the
2908 * enqueue of curr) will have resulted in resched being set. This
2909 * prevents us from potentially nominating it as a false LAST_BUDDY
2910 * below.
aec0a514
BR
2911 */
2912 if (test_tsk_need_resched(curr))
2913 return;
2914
a2f5c9ab
DH
2915 /* Idle tasks are by definition preempted by non-idle tasks. */
2916 if (unlikely(curr->policy == SCHED_IDLE) &&
2917 likely(p->policy != SCHED_IDLE))
2918 goto preempt;
2919
91c234b4 2920 /*
a2f5c9ab
DH
2921 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2922 * is driven by the tick):
91c234b4 2923 */
6bc912b7 2924 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2925 return;
bf0f6f24 2926
464b7527 2927 find_matching_se(&se, &pse);
9bbd7374 2928 update_curr(cfs_rq_of(se));
002f128b 2929 BUG_ON(!pse);
2f36825b
VP
2930 if (wakeup_preempt_entity(se, pse) == 1) {
2931 /*
2932 * Bias pick_next to pick the sched entity that is
2933 * triggering this preemption.
2934 */
2935 if (!next_buddy_marked)
2936 set_next_buddy(pse);
3a7e73a2 2937 goto preempt;
2f36825b 2938 }
464b7527 2939
3a7e73a2 2940 return;
a65ac745 2941
3a7e73a2
PZ
2942preempt:
2943 resched_task(curr);
2944 /*
2945 * Only set the backward buddy when the current task is still
2946 * on the rq. This can happen when a wakeup gets interleaved
2947 * with schedule on the ->pre_schedule() or idle_balance()
2948 * point, either of which can * drop the rq lock.
2949 *
2950 * Also, during early boot the idle thread is in the fair class,
2951 * for obvious reasons its a bad idea to schedule back to it.
2952 */
2953 if (unlikely(!se->on_rq || curr == rq->idle))
2954 return;
2955
2956 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2957 set_last_buddy(se);
bf0f6f24
IM
2958}
2959
fb8d4724 2960static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2961{
8f4d37ec 2962 struct task_struct *p;
bf0f6f24
IM
2963 struct cfs_rq *cfs_rq = &rq->cfs;
2964 struct sched_entity *se;
2965
36ace27e 2966 if (!cfs_rq->nr_running)
bf0f6f24
IM
2967 return NULL;
2968
2969 do {
9948f4b2 2970 se = pick_next_entity(cfs_rq);
f4b6755f 2971 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2972 cfs_rq = group_cfs_rq(se);
2973 } while (cfs_rq);
2974
8f4d37ec 2975 p = task_of(se);
b39e66ea
MG
2976 if (hrtick_enabled(rq))
2977 hrtick_start_fair(rq, p);
8f4d37ec
PZ
2978
2979 return p;
bf0f6f24
IM
2980}
2981
2982/*
2983 * Account for a descheduled task:
2984 */
31ee529c 2985static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2986{
2987 struct sched_entity *se = &prev->se;
2988 struct cfs_rq *cfs_rq;
2989
2990 for_each_sched_entity(se) {
2991 cfs_rq = cfs_rq_of(se);
ab6cde26 2992 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2993 }
2994}
2995
ac53db59
RR
2996/*
2997 * sched_yield() is very simple
2998 *
2999 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3000 */
3001static void yield_task_fair(struct rq *rq)
3002{
3003 struct task_struct *curr = rq->curr;
3004 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3005 struct sched_entity *se = &curr->se;
3006
3007 /*
3008 * Are we the only task in the tree?
3009 */
3010 if (unlikely(rq->nr_running == 1))
3011 return;
3012
3013 clear_buddies(cfs_rq, se);
3014
3015 if (curr->policy != SCHED_BATCH) {
3016 update_rq_clock(rq);
3017 /*
3018 * Update run-time statistics of the 'current'.
3019 */
3020 update_curr(cfs_rq);
916671c0
MG
3021 /*
3022 * Tell update_rq_clock() that we've just updated,
3023 * so we don't do microscopic update in schedule()
3024 * and double the fastpath cost.
3025 */
3026 rq->skip_clock_update = 1;
ac53db59
RR
3027 }
3028
3029 set_skip_buddy(se);
3030}
3031
d95f4122
MG
3032static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3033{
3034 struct sched_entity *se = &p->se;
3035
5238cdd3
PT
3036 /* throttled hierarchies are not runnable */
3037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3038 return false;
3039
3040 /* Tell the scheduler that we'd really like pse to run next. */
3041 set_next_buddy(se);
3042
d95f4122
MG
3043 yield_task_fair(rq);
3044
3045 return true;
3046}
3047
681f3e68 3048#ifdef CONFIG_SMP
bf0f6f24
IM
3049/**************************************************
3050 * Fair scheduling class load-balancing methods:
3051 */
3052
ed387b78
HS
3053static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3054
ddcdf6e7 3055#define LBF_ALL_PINNED 0x01
367456c7 3056#define LBF_NEED_BREAK 0x02
88b8dac0 3057#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3058
3059struct lb_env {
3060 struct sched_domain *sd;
3061
ddcdf6e7 3062 struct rq *src_rq;
85c1e7da 3063 int src_cpu;
ddcdf6e7
PZ
3064
3065 int dst_cpu;
3066 struct rq *dst_rq;
3067
88b8dac0
SV
3068 struct cpumask *dst_grpmask;
3069 int new_dst_cpu;
ddcdf6e7 3070 enum cpu_idle_type idle;
bd939f45 3071 long imbalance;
b9403130
MW
3072 /* The set of CPUs under consideration for load-balancing */
3073 struct cpumask *cpus;
3074
ddcdf6e7 3075 unsigned int flags;
367456c7
PZ
3076
3077 unsigned int loop;
3078 unsigned int loop_break;
3079 unsigned int loop_max;
ddcdf6e7
PZ
3080};
3081
1e3c88bd 3082/*
ddcdf6e7 3083 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3084 * Both runqueues must be locked.
3085 */
ddcdf6e7 3086static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3087{
ddcdf6e7
PZ
3088 deactivate_task(env->src_rq, p, 0);
3089 set_task_cpu(p, env->dst_cpu);
3090 activate_task(env->dst_rq, p, 0);
3091 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3092}
3093
029632fb
PZ
3094/*
3095 * Is this task likely cache-hot:
3096 */
3097static int
3098task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3099{
3100 s64 delta;
3101
3102 if (p->sched_class != &fair_sched_class)
3103 return 0;
3104
3105 if (unlikely(p->policy == SCHED_IDLE))
3106 return 0;
3107
3108 /*
3109 * Buddy candidates are cache hot:
3110 */
3111 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3112 (&p->se == cfs_rq_of(&p->se)->next ||
3113 &p->se == cfs_rq_of(&p->se)->last))
3114 return 1;
3115
3116 if (sysctl_sched_migration_cost == -1)
3117 return 1;
3118 if (sysctl_sched_migration_cost == 0)
3119 return 0;
3120
3121 delta = now - p->se.exec_start;
3122
3123 return delta < (s64)sysctl_sched_migration_cost;
3124}
3125
1e3c88bd
PZ
3126/*
3127 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3128 */
3129static
8e45cb54 3130int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3131{
3132 int tsk_cache_hot = 0;
3133 /*
3134 * We do not migrate tasks that are:
3135 * 1) running (obviously), or
3136 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3137 * 3) are cache-hot on their current CPU.
3138 */
ddcdf6e7 3139 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3140 int new_dst_cpu;
3141
41acab88 3142 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3143
3144 /*
3145 * Remember if this task can be migrated to any other cpu in
3146 * our sched_group. We may want to revisit it if we couldn't
3147 * meet load balance goals by pulling other tasks on src_cpu.
3148 *
3149 * Also avoid computing new_dst_cpu if we have already computed
3150 * one in current iteration.
3151 */
3152 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3153 return 0;
3154
3155 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3156 tsk_cpus_allowed(p));
3157 if (new_dst_cpu < nr_cpu_ids) {
3158 env->flags |= LBF_SOME_PINNED;
3159 env->new_dst_cpu = new_dst_cpu;
3160 }
1e3c88bd
PZ
3161 return 0;
3162 }
88b8dac0
SV
3163
3164 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3165 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3166
ddcdf6e7 3167 if (task_running(env->src_rq, p)) {
41acab88 3168 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3169 return 0;
3170 }
3171
3172 /*
3173 * Aggressive migration if:
3174 * 1) task is cache cold, or
3175 * 2) too many balance attempts have failed.
3176 */
3177
ddcdf6e7 3178 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3179 if (!tsk_cache_hot ||
8e45cb54 3180 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3181#ifdef CONFIG_SCHEDSTATS
3182 if (tsk_cache_hot) {
8e45cb54 3183 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3184 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3185 }
3186#endif
3187 return 1;
3188 }
3189
3190 if (tsk_cache_hot) {
41acab88 3191 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3192 return 0;
3193 }
3194 return 1;
3195}
3196
897c395f
PZ
3197/*
3198 * move_one_task tries to move exactly one task from busiest to this_rq, as
3199 * part of active balancing operations within "domain".
3200 * Returns 1 if successful and 0 otherwise.
3201 *
3202 * Called with both runqueues locked.
3203 */
8e45cb54 3204static int move_one_task(struct lb_env *env)
897c395f
PZ
3205{
3206 struct task_struct *p, *n;
897c395f 3207
367456c7
PZ
3208 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3209 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3210 continue;
897c395f 3211
367456c7
PZ
3212 if (!can_migrate_task(p, env))
3213 continue;
897c395f 3214
367456c7
PZ
3215 move_task(p, env);
3216 /*
3217 * Right now, this is only the second place move_task()
3218 * is called, so we can safely collect move_task()
3219 * stats here rather than inside move_task().
3220 */
3221 schedstat_inc(env->sd, lb_gained[env->idle]);
3222 return 1;
897c395f 3223 }
897c395f
PZ
3224 return 0;
3225}
3226
367456c7
PZ
3227static unsigned long task_h_load(struct task_struct *p);
3228
eb95308e
PZ
3229static const unsigned int sched_nr_migrate_break = 32;
3230
5d6523eb 3231/*
bd939f45 3232 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3233 * this_rq, as part of a balancing operation within domain "sd".
3234 * Returns 1 if successful and 0 otherwise.
3235 *
3236 * Called with both runqueues locked.
3237 */
3238static int move_tasks(struct lb_env *env)
1e3c88bd 3239{
5d6523eb
PZ
3240 struct list_head *tasks = &env->src_rq->cfs_tasks;
3241 struct task_struct *p;
367456c7
PZ
3242 unsigned long load;
3243 int pulled = 0;
1e3c88bd 3244
bd939f45 3245 if (env->imbalance <= 0)
5d6523eb 3246 return 0;
1e3c88bd 3247
5d6523eb
PZ
3248 while (!list_empty(tasks)) {
3249 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3250
367456c7
PZ
3251 env->loop++;
3252 /* We've more or less seen every task there is, call it quits */
5d6523eb 3253 if (env->loop > env->loop_max)
367456c7 3254 break;
5d6523eb
PZ
3255
3256 /* take a breather every nr_migrate tasks */
367456c7 3257 if (env->loop > env->loop_break) {
eb95308e 3258 env->loop_break += sched_nr_migrate_break;
8e45cb54 3259 env->flags |= LBF_NEED_BREAK;
ee00e66f 3260 break;
a195f004 3261 }
1e3c88bd 3262
5d6523eb 3263 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3264 goto next;
3265
3266 load = task_h_load(p);
5d6523eb 3267
eb95308e 3268 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3269 goto next;
3270
bd939f45 3271 if ((load / 2) > env->imbalance)
367456c7 3272 goto next;
1e3c88bd 3273
367456c7
PZ
3274 if (!can_migrate_task(p, env))
3275 goto next;
1e3c88bd 3276
ddcdf6e7 3277 move_task(p, env);
ee00e66f 3278 pulled++;
bd939f45 3279 env->imbalance -= load;
1e3c88bd
PZ
3280
3281#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3282 /*
3283 * NEWIDLE balancing is a source of latency, so preemptible
3284 * kernels will stop after the first task is pulled to minimize
3285 * the critical section.
3286 */
5d6523eb 3287 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3288 break;
1e3c88bd
PZ
3289#endif
3290
ee00e66f
PZ
3291 /*
3292 * We only want to steal up to the prescribed amount of
3293 * weighted load.
3294 */
bd939f45 3295 if (env->imbalance <= 0)
ee00e66f 3296 break;
367456c7
PZ
3297
3298 continue;
3299next:
5d6523eb 3300 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3301 }
5d6523eb 3302
1e3c88bd 3303 /*
ddcdf6e7
PZ
3304 * Right now, this is one of only two places move_task() is called,
3305 * so we can safely collect move_task() stats here rather than
3306 * inside move_task().
1e3c88bd 3307 */
8e45cb54 3308 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3309
5d6523eb 3310 return pulled;
1e3c88bd
PZ
3311}
3312
230059de 3313#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3314/*
3315 * update tg->load_weight by folding this cpu's load_avg
3316 */
67e86250 3317static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
3318{
3319 struct cfs_rq *cfs_rq;
3320 unsigned long flags;
3321 struct rq *rq;
9e3081ca
PZ
3322
3323 if (!tg->se[cpu])
3324 return 0;
3325
3326 rq = cpu_rq(cpu);
3327 cfs_rq = tg->cfs_rq[cpu];
3328
3329 raw_spin_lock_irqsave(&rq->lock, flags);
3330
3331 update_rq_clock(rq);
d6b55918 3332 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
3333
3334 /*
3335 * We need to update shares after updating tg->load_weight in
3336 * order to adjust the weight of groups with long running tasks.
3337 */
6d5ab293 3338 update_cfs_shares(cfs_rq);
9e3081ca
PZ
3339
3340 raw_spin_unlock_irqrestore(&rq->lock, flags);
3341
3342 return 0;
3343}
3344
3345static void update_shares(int cpu)
3346{
3347 struct cfs_rq *cfs_rq;
3348 struct rq *rq = cpu_rq(cpu);
3349
3350 rcu_read_lock();
9763b67f
PZ
3351 /*
3352 * Iterates the task_group tree in a bottom up fashion, see
3353 * list_add_leaf_cfs_rq() for details.
3354 */
64660c86
PT
3355 for_each_leaf_cfs_rq(rq, cfs_rq) {
3356 /* throttled entities do not contribute to load */
3357 if (throttled_hierarchy(cfs_rq))
3358 continue;
3359
67e86250 3360 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 3361 }
9e3081ca
PZ
3362 rcu_read_unlock();
3363}
3364
9763b67f
PZ
3365/*
3366 * Compute the cpu's hierarchical load factor for each task group.
3367 * This needs to be done in a top-down fashion because the load of a child
3368 * group is a fraction of its parents load.
3369 */
3370static int tg_load_down(struct task_group *tg, void *data)
3371{
3372 unsigned long load;
3373 long cpu = (long)data;
3374
3375 if (!tg->parent) {
3376 load = cpu_rq(cpu)->load.weight;
3377 } else {
3378 load = tg->parent->cfs_rq[cpu]->h_load;
3379 load *= tg->se[cpu]->load.weight;
3380 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3381 }
3382
3383 tg->cfs_rq[cpu]->h_load = load;
3384
3385 return 0;
3386}
3387
3388static void update_h_load(long cpu)
3389{
367456c7 3390 rcu_read_lock();
9763b67f 3391 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3392 rcu_read_unlock();
9763b67f
PZ
3393}
3394
367456c7 3395static unsigned long task_h_load(struct task_struct *p)
230059de 3396{
367456c7
PZ
3397 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3398 unsigned long load;
230059de 3399
367456c7
PZ
3400 load = p->se.load.weight;
3401 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3402
367456c7 3403 return load;
230059de
PZ
3404}
3405#else
9e3081ca
PZ
3406static inline void update_shares(int cpu)
3407{
3408}
3409
367456c7 3410static inline void update_h_load(long cpu)
230059de 3411{
230059de 3412}
230059de 3413
367456c7 3414static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3415{
367456c7 3416 return p->se.load.weight;
1e3c88bd 3417}
230059de 3418#endif
1e3c88bd 3419
1e3c88bd
PZ
3420/********** Helpers for find_busiest_group ************************/
3421/*
3422 * sd_lb_stats - Structure to store the statistics of a sched_domain
3423 * during load balancing.
3424 */
3425struct sd_lb_stats {
3426 struct sched_group *busiest; /* Busiest group in this sd */
3427 struct sched_group *this; /* Local group in this sd */
3428 unsigned long total_load; /* Total load of all groups in sd */
3429 unsigned long total_pwr; /* Total power of all groups in sd */
3430 unsigned long avg_load; /* Average load across all groups in sd */
3431
3432 /** Statistics of this group */
3433 unsigned long this_load;
3434 unsigned long this_load_per_task;
3435 unsigned long this_nr_running;
fab47622 3436 unsigned long this_has_capacity;
aae6d3dd 3437 unsigned int this_idle_cpus;
1e3c88bd
PZ
3438
3439 /* Statistics of the busiest group */
aae6d3dd 3440 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3441 unsigned long max_load;
3442 unsigned long busiest_load_per_task;
3443 unsigned long busiest_nr_running;
dd5feea1 3444 unsigned long busiest_group_capacity;
fab47622 3445 unsigned long busiest_has_capacity;
aae6d3dd 3446 unsigned int busiest_group_weight;
1e3c88bd
PZ
3447
3448 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3449};
3450
3451/*
3452 * sg_lb_stats - stats of a sched_group required for load_balancing
3453 */
3454struct sg_lb_stats {
3455 unsigned long avg_load; /*Avg load across the CPUs of the group */
3456 unsigned long group_load; /* Total load over the CPUs of the group */
3457 unsigned long sum_nr_running; /* Nr tasks running in the group */
3458 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3459 unsigned long group_capacity;
aae6d3dd
SS
3460 unsigned long idle_cpus;
3461 unsigned long group_weight;
1e3c88bd 3462 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3463 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3464};
3465
1e3c88bd
PZ
3466/**
3467 * get_sd_load_idx - Obtain the load index for a given sched domain.
3468 * @sd: The sched_domain whose load_idx is to be obtained.
3469 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3470 */
3471static inline int get_sd_load_idx(struct sched_domain *sd,
3472 enum cpu_idle_type idle)
3473{
3474 int load_idx;
3475
3476 switch (idle) {
3477 case CPU_NOT_IDLE:
3478 load_idx = sd->busy_idx;
3479 break;
3480
3481 case CPU_NEWLY_IDLE:
3482 load_idx = sd->newidle_idx;
3483 break;
3484 default:
3485 load_idx = sd->idle_idx;
3486 break;
3487 }
3488
3489 return load_idx;
3490}
3491
1e3c88bd
PZ
3492unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3493{
1399fa78 3494 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3495}
3496
3497unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3498{
3499 return default_scale_freq_power(sd, cpu);
3500}
3501
3502unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3503{
669c55e9 3504 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3505 unsigned long smt_gain = sd->smt_gain;
3506
3507 smt_gain /= weight;
3508
3509 return smt_gain;
3510}
3511
3512unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3513{
3514 return default_scale_smt_power(sd, cpu);
3515}
3516
3517unsigned long scale_rt_power(int cpu)
3518{
3519 struct rq *rq = cpu_rq(cpu);
b654f7de 3520 u64 total, available, age_stamp, avg;
1e3c88bd 3521
b654f7de
PZ
3522 /*
3523 * Since we're reading these variables without serialization make sure
3524 * we read them once before doing sanity checks on them.
3525 */
3526 age_stamp = ACCESS_ONCE(rq->age_stamp);
3527 avg = ACCESS_ONCE(rq->rt_avg);
3528
3529 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 3530
b654f7de 3531 if (unlikely(total < avg)) {
aa483808
VP
3532 /* Ensures that power won't end up being negative */
3533 available = 0;
3534 } else {
b654f7de 3535 available = total - avg;
aa483808 3536 }
1e3c88bd 3537
1399fa78
NR
3538 if (unlikely((s64)total < SCHED_POWER_SCALE))
3539 total = SCHED_POWER_SCALE;
1e3c88bd 3540
1399fa78 3541 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3542
3543 return div_u64(available, total);
3544}
3545
3546static void update_cpu_power(struct sched_domain *sd, int cpu)
3547{
669c55e9 3548 unsigned long weight = sd->span_weight;
1399fa78 3549 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3550 struct sched_group *sdg = sd->groups;
3551
1e3c88bd
PZ
3552 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3553 if (sched_feat(ARCH_POWER))
3554 power *= arch_scale_smt_power(sd, cpu);
3555 else
3556 power *= default_scale_smt_power(sd, cpu);
3557
1399fa78 3558 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3559 }
3560
9c3f75cb 3561 sdg->sgp->power_orig = power;
9d5efe05
SV
3562
3563 if (sched_feat(ARCH_POWER))
3564 power *= arch_scale_freq_power(sd, cpu);
3565 else
3566 power *= default_scale_freq_power(sd, cpu);
3567
1399fa78 3568 power >>= SCHED_POWER_SHIFT;
9d5efe05 3569
1e3c88bd 3570 power *= scale_rt_power(cpu);
1399fa78 3571 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3572
3573 if (!power)
3574 power = 1;
3575
e51fd5e2 3576 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3577 sdg->sgp->power = power;
1e3c88bd
PZ
3578}
3579
029632fb 3580void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
3581{
3582 struct sched_domain *child = sd->child;
3583 struct sched_group *group, *sdg = sd->groups;
3584 unsigned long power;
4ec4412e
VG
3585 unsigned long interval;
3586
3587 interval = msecs_to_jiffies(sd->balance_interval);
3588 interval = clamp(interval, 1UL, max_load_balance_interval);
3589 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
3590
3591 if (!child) {
3592 update_cpu_power(sd, cpu);
3593 return;
3594 }
3595
3596 power = 0;
3597
74a5ce20
PZ
3598 if (child->flags & SD_OVERLAP) {
3599 /*
3600 * SD_OVERLAP domains cannot assume that child groups
3601 * span the current group.
3602 */
3603
3604 for_each_cpu(cpu, sched_group_cpus(sdg))
3605 power += power_of(cpu);
3606 } else {
3607 /*
3608 * !SD_OVERLAP domains can assume that child groups
3609 * span the current group.
3610 */
3611
3612 group = child->groups;
3613 do {
3614 power += group->sgp->power;
3615 group = group->next;
3616 } while (group != child->groups);
3617 }
1e3c88bd 3618
c3decf0d 3619 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
3620}
3621
9d5efe05
SV
3622/*
3623 * Try and fix up capacity for tiny siblings, this is needed when
3624 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3625 * which on its own isn't powerful enough.
3626 *
3627 * See update_sd_pick_busiest() and check_asym_packing().
3628 */
3629static inline int
3630fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3631{
3632 /*
1399fa78 3633 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3634 */
a6c75f2f 3635 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3636 return 0;
3637
3638 /*
3639 * If ~90% of the cpu_power is still there, we're good.
3640 */
9c3f75cb 3641 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3642 return 1;
3643
3644 return 0;
3645}
3646
1e3c88bd
PZ
3647/**
3648 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 3649 * @env: The load balancing environment.
1e3c88bd 3650 * @group: sched_group whose statistics are to be updated.
1e3c88bd 3651 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3652 * @local_group: Does group contain this_cpu.
3653 * @cpus: Set of cpus considered for load balancing.
3654 * @balance: Should we balance.
3655 * @sgs: variable to hold the statistics for this group.
3656 */
bd939f45
PZ
3657static inline void update_sg_lb_stats(struct lb_env *env,
3658 struct sched_group *group, int load_idx,
b9403130 3659 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 3660{
e44bc5c5
PZ
3661 unsigned long nr_running, max_nr_running, min_nr_running;
3662 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 3663 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3664 unsigned long avg_load_per_task = 0;
bd939f45 3665 int i;
1e3c88bd 3666
871e35bc 3667 if (local_group)
c1174876 3668 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
3669
3670 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3671 max_cpu_load = 0;
3672 min_cpu_load = ~0UL;
2582f0eb 3673 max_nr_running = 0;
e44bc5c5 3674 min_nr_running = ~0UL;
1e3c88bd 3675
b9403130 3676 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
3677 struct rq *rq = cpu_rq(i);
3678
e44bc5c5
PZ
3679 nr_running = rq->nr_running;
3680
1e3c88bd
PZ
3681 /* Bias balancing toward cpus of our domain */
3682 if (local_group) {
c1174876
PZ
3683 if (idle_cpu(i) && !first_idle_cpu &&
3684 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 3685 first_idle_cpu = 1;
1e3c88bd
PZ
3686 balance_cpu = i;
3687 }
04f733b4
PZ
3688
3689 load = target_load(i, load_idx);
1e3c88bd
PZ
3690 } else {
3691 load = source_load(i, load_idx);
e44bc5c5 3692 if (load > max_cpu_load)
1e3c88bd
PZ
3693 max_cpu_load = load;
3694 if (min_cpu_load > load)
3695 min_cpu_load = load;
e44bc5c5
PZ
3696
3697 if (nr_running > max_nr_running)
3698 max_nr_running = nr_running;
3699 if (min_nr_running > nr_running)
3700 min_nr_running = nr_running;
1e3c88bd
PZ
3701 }
3702
3703 sgs->group_load += load;
e44bc5c5 3704 sgs->sum_nr_running += nr_running;
1e3c88bd 3705 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3706 if (idle_cpu(i))
3707 sgs->idle_cpus++;
1e3c88bd
PZ
3708 }
3709
3710 /*
3711 * First idle cpu or the first cpu(busiest) in this sched group
3712 * is eligible for doing load balancing at this and above
3713 * domains. In the newly idle case, we will allow all the cpu's
3714 * to do the newly idle load balance.
3715 */
4ec4412e 3716 if (local_group) {
bd939f45 3717 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 3718 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
3719 *balance = 0;
3720 return;
3721 }
bd939f45 3722 update_group_power(env->sd, env->dst_cpu);
4ec4412e 3723 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 3724 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
3725 }
3726
3727 /* Adjust by relative CPU power of the group */
9c3f75cb 3728 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3729
1e3c88bd
PZ
3730 /*
3731 * Consider the group unbalanced when the imbalance is larger
866ab43e 3732 * than the average weight of a task.
1e3c88bd
PZ
3733 *
3734 * APZ: with cgroup the avg task weight can vary wildly and
3735 * might not be a suitable number - should we keep a
3736 * normalized nr_running number somewhere that negates
3737 * the hierarchy?
3738 */
dd5feea1
SS
3739 if (sgs->sum_nr_running)
3740 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3741
e44bc5c5
PZ
3742 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3743 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
3744 sgs->group_imb = 1;
3745
9c3f75cb 3746 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3747 SCHED_POWER_SCALE);
9d5efe05 3748 if (!sgs->group_capacity)
bd939f45 3749 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 3750 sgs->group_weight = group->group_weight;
fab47622
NR
3751
3752 if (sgs->group_capacity > sgs->sum_nr_running)
3753 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3754}
3755
532cb4c4
MN
3756/**
3757 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 3758 * @env: The load balancing environment.
532cb4c4
MN
3759 * @sds: sched_domain statistics
3760 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 3761 * @sgs: sched_group statistics
532cb4c4
MN
3762 *
3763 * Determine if @sg is a busier group than the previously selected
3764 * busiest group.
3765 */
bd939f45 3766static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
3767 struct sd_lb_stats *sds,
3768 struct sched_group *sg,
bd939f45 3769 struct sg_lb_stats *sgs)
532cb4c4
MN
3770{
3771 if (sgs->avg_load <= sds->max_load)
3772 return false;
3773
3774 if (sgs->sum_nr_running > sgs->group_capacity)
3775 return true;
3776
3777 if (sgs->group_imb)
3778 return true;
3779
3780 /*
3781 * ASYM_PACKING needs to move all the work to the lowest
3782 * numbered CPUs in the group, therefore mark all groups
3783 * higher than ourself as busy.
3784 */
bd939f45
PZ
3785 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3786 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
3787 if (!sds->busiest)
3788 return true;
3789
3790 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3791 return true;
3792 }
3793
3794 return false;
3795}
3796
1e3c88bd 3797/**
461819ac 3798 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 3799 * @env: The load balancing environment.
1e3c88bd
PZ
3800 * @cpus: Set of cpus considered for load balancing.
3801 * @balance: Should we balance.
3802 * @sds: variable to hold the statistics for this sched_domain.
3803 */
bd939f45 3804static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 3805 int *balance, struct sd_lb_stats *sds)
1e3c88bd 3806{
bd939f45
PZ
3807 struct sched_domain *child = env->sd->child;
3808 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
3809 struct sg_lb_stats sgs;
3810 int load_idx, prefer_sibling = 0;
3811
3812 if (child && child->flags & SD_PREFER_SIBLING)
3813 prefer_sibling = 1;
3814
bd939f45 3815 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
3816
3817 do {
3818 int local_group;
3819
bd939f45 3820 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 3821 memset(&sgs, 0, sizeof(sgs));
b9403130 3822 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 3823
8f190fb3 3824 if (local_group && !(*balance))
1e3c88bd
PZ
3825 return;
3826
3827 sds->total_load += sgs.group_load;
9c3f75cb 3828 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3829
3830 /*
3831 * In case the child domain prefers tasks go to siblings
532cb4c4 3832 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3833 * and move all the excess tasks away. We lower the capacity
3834 * of a group only if the local group has the capacity to fit
3835 * these excess tasks, i.e. nr_running < group_capacity. The
3836 * extra check prevents the case where you always pull from the
3837 * heaviest group when it is already under-utilized (possible
3838 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3839 */
75dd321d 3840 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3841 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3842
3843 if (local_group) {
3844 sds->this_load = sgs.avg_load;
532cb4c4 3845 sds->this = sg;
1e3c88bd
PZ
3846 sds->this_nr_running = sgs.sum_nr_running;
3847 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3848 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3849 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 3850 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 3851 sds->max_load = sgs.avg_load;
532cb4c4 3852 sds->busiest = sg;
1e3c88bd 3853 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3854 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3855 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3856 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3857 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3858 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3859 sds->group_imb = sgs.group_imb;
3860 }
3861
532cb4c4 3862 sg = sg->next;
bd939f45 3863 } while (sg != env->sd->groups);
532cb4c4
MN
3864}
3865
532cb4c4
MN
3866/**
3867 * check_asym_packing - Check to see if the group is packed into the
3868 * sched doman.
3869 *
3870 * This is primarily intended to used at the sibling level. Some
3871 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3872 * case of POWER7, it can move to lower SMT modes only when higher
3873 * threads are idle. When in lower SMT modes, the threads will
3874 * perform better since they share less core resources. Hence when we
3875 * have idle threads, we want them to be the higher ones.
3876 *
3877 * This packing function is run on idle threads. It checks to see if
3878 * the busiest CPU in this domain (core in the P7 case) has a higher
3879 * CPU number than the packing function is being run on. Here we are
3880 * assuming lower CPU number will be equivalent to lower a SMT thread
3881 * number.
3882 *
b6b12294
MN
3883 * Returns 1 when packing is required and a task should be moved to
3884 * this CPU. The amount of the imbalance is returned in *imbalance.
3885 *
cd96891d 3886 * @env: The load balancing environment.
532cb4c4 3887 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 3888 */
bd939f45 3889static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
3890{
3891 int busiest_cpu;
3892
bd939f45 3893 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
3894 return 0;
3895
3896 if (!sds->busiest)
3897 return 0;
3898
3899 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 3900 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
3901 return 0;
3902
bd939f45
PZ
3903 env->imbalance = DIV_ROUND_CLOSEST(
3904 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3905
532cb4c4 3906 return 1;
1e3c88bd
PZ
3907}
3908
3909/**
3910 * fix_small_imbalance - Calculate the minor imbalance that exists
3911 * amongst the groups of a sched_domain, during
3912 * load balancing.
cd96891d 3913 * @env: The load balancing environment.
1e3c88bd 3914 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 3915 */
bd939f45
PZ
3916static inline
3917void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
3918{
3919 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3920 unsigned int imbn = 2;
dd5feea1 3921 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3922
3923 if (sds->this_nr_running) {
3924 sds->this_load_per_task /= sds->this_nr_running;
3925 if (sds->busiest_load_per_task >
3926 sds->this_load_per_task)
3927 imbn = 1;
bd939f45 3928 } else {
1e3c88bd 3929 sds->this_load_per_task =
bd939f45
PZ
3930 cpu_avg_load_per_task(env->dst_cpu);
3931 }
1e3c88bd 3932
dd5feea1 3933 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3934 * SCHED_POWER_SCALE;
9c3f75cb 3935 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3936
3937 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3938 (scaled_busy_load_per_task * imbn)) {
bd939f45 3939 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
3940 return;
3941 }
3942
3943 /*
3944 * OK, we don't have enough imbalance to justify moving tasks,
3945 * however we may be able to increase total CPU power used by
3946 * moving them.
3947 */
3948
9c3f75cb 3949 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3950 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3951 pwr_now += sds->this->sgp->power *
1e3c88bd 3952 min(sds->this_load_per_task, sds->this_load);
1399fa78 3953 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3954
3955 /* Amount of load we'd subtract */
1399fa78 3956 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3957 sds->busiest->sgp->power;
1e3c88bd 3958 if (sds->max_load > tmp)
9c3f75cb 3959 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3960 min(sds->busiest_load_per_task, sds->max_load - tmp);
3961
3962 /* Amount of load we'd add */
9c3f75cb 3963 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3964 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3965 tmp = (sds->max_load * sds->busiest->sgp->power) /
3966 sds->this->sgp->power;
1e3c88bd 3967 else
1399fa78 3968 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3969 sds->this->sgp->power;
3970 pwr_move += sds->this->sgp->power *
1e3c88bd 3971 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3972 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3973
3974 /* Move if we gain throughput */
3975 if (pwr_move > pwr_now)
bd939f45 3976 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
3977}
3978
3979/**
3980 * calculate_imbalance - Calculate the amount of imbalance present within the
3981 * groups of a given sched_domain during load balance.
bd939f45 3982 * @env: load balance environment
1e3c88bd 3983 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 3984 */
bd939f45 3985static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 3986{
dd5feea1
SS
3987 unsigned long max_pull, load_above_capacity = ~0UL;
3988
3989 sds->busiest_load_per_task /= sds->busiest_nr_running;
3990 if (sds->group_imb) {
3991 sds->busiest_load_per_task =
3992 min(sds->busiest_load_per_task, sds->avg_load);
3993 }
3994
1e3c88bd
PZ
3995 /*
3996 * In the presence of smp nice balancing, certain scenarios can have
3997 * max load less than avg load(as we skip the groups at or below
3998 * its cpu_power, while calculating max_load..)
3999 */
4000 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4001 env->imbalance = 0;
4002 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4003 }
4004
dd5feea1
SS
4005 if (!sds->group_imb) {
4006 /*
4007 * Don't want to pull so many tasks that a group would go idle.
4008 */
4009 load_above_capacity = (sds->busiest_nr_running -
4010 sds->busiest_group_capacity);
4011
1399fa78 4012 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4013
9c3f75cb 4014 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4015 }
4016
4017 /*
4018 * We're trying to get all the cpus to the average_load, so we don't
4019 * want to push ourselves above the average load, nor do we wish to
4020 * reduce the max loaded cpu below the average load. At the same time,
4021 * we also don't want to reduce the group load below the group capacity
4022 * (so that we can implement power-savings policies etc). Thus we look
4023 * for the minimum possible imbalance.
4024 * Be careful of negative numbers as they'll appear as very large values
4025 * with unsigned longs.
4026 */
4027 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4028
4029 /* How much load to actually move to equalise the imbalance */
bd939f45 4030 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4031 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4032 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4033
4034 /*
4035 * if *imbalance is less than the average load per runnable task
25985edc 4036 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4037 * a think about bumping its value to force at least one task to be
4038 * moved
4039 */
bd939f45
PZ
4040 if (env->imbalance < sds->busiest_load_per_task)
4041 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4042
4043}
fab47622 4044
1e3c88bd
PZ
4045/******* find_busiest_group() helpers end here *********************/
4046
4047/**
4048 * find_busiest_group - Returns the busiest group within the sched_domain
4049 * if there is an imbalance. If there isn't an imbalance, and
4050 * the user has opted for power-savings, it returns a group whose
4051 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4052 * such a group exists.
4053 *
4054 * Also calculates the amount of weighted load which should be moved
4055 * to restore balance.
4056 *
cd96891d 4057 * @env: The load balancing environment.
1e3c88bd
PZ
4058 * @balance: Pointer to a variable indicating if this_cpu
4059 * is the appropriate cpu to perform load balancing at this_level.
4060 *
4061 * Returns: - the busiest group if imbalance exists.
4062 * - If no imbalance and user has opted for power-savings balance,
4063 * return the least loaded group whose CPUs can be
4064 * put to idle by rebalancing its tasks onto our group.
4065 */
4066static struct sched_group *
b9403130 4067find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4068{
4069 struct sd_lb_stats sds;
4070
4071 memset(&sds, 0, sizeof(sds));
4072
4073 /*
4074 * Compute the various statistics relavent for load balancing at
4075 * this level.
4076 */
b9403130 4077 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4078
cc57aa8f
PZ
4079 /*
4080 * this_cpu is not the appropriate cpu to perform load balancing at
4081 * this level.
1e3c88bd 4082 */
8f190fb3 4083 if (!(*balance))
1e3c88bd
PZ
4084 goto ret;
4085
bd939f45
PZ
4086 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4087 check_asym_packing(env, &sds))
532cb4c4
MN
4088 return sds.busiest;
4089
cc57aa8f 4090 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4091 if (!sds.busiest || sds.busiest_nr_running == 0)
4092 goto out_balanced;
4093
1399fa78 4094 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4095
866ab43e
PZ
4096 /*
4097 * If the busiest group is imbalanced the below checks don't
4098 * work because they assumes all things are equal, which typically
4099 * isn't true due to cpus_allowed constraints and the like.
4100 */
4101 if (sds.group_imb)
4102 goto force_balance;
4103
cc57aa8f 4104 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4105 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4106 !sds.busiest_has_capacity)
4107 goto force_balance;
4108
cc57aa8f
PZ
4109 /*
4110 * If the local group is more busy than the selected busiest group
4111 * don't try and pull any tasks.
4112 */
1e3c88bd
PZ
4113 if (sds.this_load >= sds.max_load)
4114 goto out_balanced;
4115
cc57aa8f
PZ
4116 /*
4117 * Don't pull any tasks if this group is already above the domain
4118 * average load.
4119 */
1e3c88bd
PZ
4120 if (sds.this_load >= sds.avg_load)
4121 goto out_balanced;
4122
bd939f45 4123 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4124 /*
4125 * This cpu is idle. If the busiest group load doesn't
4126 * have more tasks than the number of available cpu's and
4127 * there is no imbalance between this and busiest group
4128 * wrt to idle cpu's, it is balanced.
4129 */
c186fafe 4130 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4131 sds.busiest_nr_running <= sds.busiest_group_weight)
4132 goto out_balanced;
c186fafe
PZ
4133 } else {
4134 /*
4135 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4136 * imbalance_pct to be conservative.
4137 */
bd939f45 4138 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4139 goto out_balanced;
aae6d3dd 4140 }
1e3c88bd 4141
fab47622 4142force_balance:
1e3c88bd 4143 /* Looks like there is an imbalance. Compute it */
bd939f45 4144 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4145 return sds.busiest;
4146
4147out_balanced:
1e3c88bd 4148ret:
bd939f45 4149 env->imbalance = 0;
1e3c88bd
PZ
4150 return NULL;
4151}
4152
4153/*
4154 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4155 */
bd939f45 4156static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4157 struct sched_group *group)
1e3c88bd
PZ
4158{
4159 struct rq *busiest = NULL, *rq;
4160 unsigned long max_load = 0;
4161 int i;
4162
4163 for_each_cpu(i, sched_group_cpus(group)) {
4164 unsigned long power = power_of(i);
1399fa78
NR
4165 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4166 SCHED_POWER_SCALE);
1e3c88bd
PZ
4167 unsigned long wl;
4168
9d5efe05 4169 if (!capacity)
bd939f45 4170 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4171
b9403130 4172 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4173 continue;
4174
4175 rq = cpu_rq(i);
6e40f5bb 4176 wl = weighted_cpuload(i);
1e3c88bd 4177
6e40f5bb
TG
4178 /*
4179 * When comparing with imbalance, use weighted_cpuload()
4180 * which is not scaled with the cpu power.
4181 */
bd939f45 4182 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4183 continue;
4184
6e40f5bb
TG
4185 /*
4186 * For the load comparisons with the other cpu's, consider
4187 * the weighted_cpuload() scaled with the cpu power, so that
4188 * the load can be moved away from the cpu that is potentially
4189 * running at a lower capacity.
4190 */
1399fa78 4191 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4192
1e3c88bd
PZ
4193 if (wl > max_load) {
4194 max_load = wl;
4195 busiest = rq;
4196 }
4197 }
4198
4199 return busiest;
4200}
4201
4202/*
4203 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4204 * so long as it is large enough.
4205 */
4206#define MAX_PINNED_INTERVAL 512
4207
4208/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4209DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4210
bd939f45 4211static int need_active_balance(struct lb_env *env)
1af3ed3d 4212{
bd939f45
PZ
4213 struct sched_domain *sd = env->sd;
4214
4215 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4216
4217 /*
4218 * ASYM_PACKING needs to force migrate tasks from busy but
4219 * higher numbered CPUs in order to pack all tasks in the
4220 * lowest numbered CPUs.
4221 */
bd939f45 4222 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4223 return 1;
1af3ed3d
PZ
4224 }
4225
4226 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4227}
4228
969c7921
TH
4229static int active_load_balance_cpu_stop(void *data);
4230
1e3c88bd
PZ
4231/*
4232 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4233 * tasks if there is an imbalance.
4234 */
4235static int load_balance(int this_cpu, struct rq *this_rq,
4236 struct sched_domain *sd, enum cpu_idle_type idle,
4237 int *balance)
4238{
88b8dac0
SV
4239 int ld_moved, cur_ld_moved, active_balance = 0;
4240 int lb_iterations, max_lb_iterations;
1e3c88bd 4241 struct sched_group *group;
1e3c88bd
PZ
4242 struct rq *busiest;
4243 unsigned long flags;
4244 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4245
8e45cb54
PZ
4246 struct lb_env env = {
4247 .sd = sd,
ddcdf6e7
PZ
4248 .dst_cpu = this_cpu,
4249 .dst_rq = this_rq,
88b8dac0 4250 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4251 .idle = idle,
eb95308e 4252 .loop_break = sched_nr_migrate_break,
b9403130 4253 .cpus = cpus,
8e45cb54
PZ
4254 };
4255
1e3c88bd 4256 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4257 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4258
1e3c88bd
PZ
4259 schedstat_inc(sd, lb_count[idle]);
4260
4261redo:
b9403130 4262 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4263
4264 if (*balance == 0)
4265 goto out_balanced;
4266
4267 if (!group) {
4268 schedstat_inc(sd, lb_nobusyg[idle]);
4269 goto out_balanced;
4270 }
4271
b9403130 4272 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4273 if (!busiest) {
4274 schedstat_inc(sd, lb_nobusyq[idle]);
4275 goto out_balanced;
4276 }
4277
4278 BUG_ON(busiest == this_rq);
4279
bd939f45 4280 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4281
4282 ld_moved = 0;
88b8dac0 4283 lb_iterations = 1;
1e3c88bd
PZ
4284 if (busiest->nr_running > 1) {
4285 /*
4286 * Attempt to move tasks. If find_busiest_group has found
4287 * an imbalance but busiest->nr_running <= 1, the group is
4288 * still unbalanced. ld_moved simply stays zero, so it is
4289 * correctly treated as an imbalance.
4290 */
8e45cb54 4291 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4292 env.src_cpu = busiest->cpu;
4293 env.src_rq = busiest;
4294 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4295
5d6523eb 4296more_balance:
1e3c88bd
PZ
4297 local_irq_save(flags);
4298 double_rq_lock(this_rq, busiest);
5d6523eb
PZ
4299 if (!env.loop)
4300 update_h_load(env.src_cpu);
88b8dac0
SV
4301
4302 /*
4303 * cur_ld_moved - load moved in current iteration
4304 * ld_moved - cumulative load moved across iterations
4305 */
4306 cur_ld_moved = move_tasks(&env);
4307 ld_moved += cur_ld_moved;
1e3c88bd
PZ
4308 double_rq_unlock(this_rq, busiest);
4309 local_irq_restore(flags);
4310
5d6523eb
PZ
4311 if (env.flags & LBF_NEED_BREAK) {
4312 env.flags &= ~LBF_NEED_BREAK;
4313 goto more_balance;
4314 }
4315
1e3c88bd
PZ
4316 /*
4317 * some other cpu did the load balance for us.
4318 */
88b8dac0
SV
4319 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4320 resched_cpu(env.dst_cpu);
4321
4322 /*
4323 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4324 * us and move them to an alternate dst_cpu in our sched_group
4325 * where they can run. The upper limit on how many times we
4326 * iterate on same src_cpu is dependent on number of cpus in our
4327 * sched_group.
4328 *
4329 * This changes load balance semantics a bit on who can move
4330 * load to a given_cpu. In addition to the given_cpu itself
4331 * (or a ilb_cpu acting on its behalf where given_cpu is
4332 * nohz-idle), we now have balance_cpu in a position to move
4333 * load to given_cpu. In rare situations, this may cause
4334 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4335 * _independently_ and at _same_ time to move some load to
4336 * given_cpu) causing exceess load to be moved to given_cpu.
4337 * This however should not happen so much in practice and
4338 * moreover subsequent load balance cycles should correct the
4339 * excess load moved.
4340 */
4341 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4342 lb_iterations++ < max_lb_iterations) {
4343
4344 this_rq = cpu_rq(env.new_dst_cpu);
4345 env.dst_rq = this_rq;
4346 env.dst_cpu = env.new_dst_cpu;
4347 env.flags &= ~LBF_SOME_PINNED;
4348 env.loop = 0;
4349 env.loop_break = sched_nr_migrate_break;
4350 /*
4351 * Go back to "more_balance" rather than "redo" since we
4352 * need to continue with same src_cpu.
4353 */
4354 goto more_balance;
4355 }
1e3c88bd
PZ
4356
4357 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4358 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4359 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4360 if (!cpumask_empty(cpus)) {
4361 env.loop = 0;
4362 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4363 goto redo;
bbf18b19 4364 }
1e3c88bd
PZ
4365 goto out_balanced;
4366 }
4367 }
4368
4369 if (!ld_moved) {
4370 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4371 /*
4372 * Increment the failure counter only on periodic balance.
4373 * We do not want newidle balance, which can be very
4374 * frequent, pollute the failure counter causing
4375 * excessive cache_hot migrations and active balances.
4376 */
4377 if (idle != CPU_NEWLY_IDLE)
4378 sd->nr_balance_failed++;
1e3c88bd 4379
bd939f45 4380 if (need_active_balance(&env)) {
1e3c88bd
PZ
4381 raw_spin_lock_irqsave(&busiest->lock, flags);
4382
969c7921
TH
4383 /* don't kick the active_load_balance_cpu_stop,
4384 * if the curr task on busiest cpu can't be
4385 * moved to this_cpu
1e3c88bd
PZ
4386 */
4387 if (!cpumask_test_cpu(this_cpu,
fa17b507 4388 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4389 raw_spin_unlock_irqrestore(&busiest->lock,
4390 flags);
8e45cb54 4391 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4392 goto out_one_pinned;
4393 }
4394
969c7921
TH
4395 /*
4396 * ->active_balance synchronizes accesses to
4397 * ->active_balance_work. Once set, it's cleared
4398 * only after active load balance is finished.
4399 */
1e3c88bd
PZ
4400 if (!busiest->active_balance) {
4401 busiest->active_balance = 1;
4402 busiest->push_cpu = this_cpu;
4403 active_balance = 1;
4404 }
4405 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4406
bd939f45 4407 if (active_balance) {
969c7921
TH
4408 stop_one_cpu_nowait(cpu_of(busiest),
4409 active_load_balance_cpu_stop, busiest,
4410 &busiest->active_balance_work);
bd939f45 4411 }
1e3c88bd
PZ
4412
4413 /*
4414 * We've kicked active balancing, reset the failure
4415 * counter.
4416 */
4417 sd->nr_balance_failed = sd->cache_nice_tries+1;
4418 }
4419 } else
4420 sd->nr_balance_failed = 0;
4421
4422 if (likely(!active_balance)) {
4423 /* We were unbalanced, so reset the balancing interval */
4424 sd->balance_interval = sd->min_interval;
4425 } else {
4426 /*
4427 * If we've begun active balancing, start to back off. This
4428 * case may not be covered by the all_pinned logic if there
4429 * is only 1 task on the busy runqueue (because we don't call
4430 * move_tasks).
4431 */
4432 if (sd->balance_interval < sd->max_interval)
4433 sd->balance_interval *= 2;
4434 }
4435
1e3c88bd
PZ
4436 goto out;
4437
4438out_balanced:
4439 schedstat_inc(sd, lb_balanced[idle]);
4440
4441 sd->nr_balance_failed = 0;
4442
4443out_one_pinned:
4444 /* tune up the balancing interval */
8e45cb54 4445 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4446 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4447 (sd->balance_interval < sd->max_interval))
4448 sd->balance_interval *= 2;
4449
46e49b38 4450 ld_moved = 0;
1e3c88bd 4451out:
1e3c88bd
PZ
4452 return ld_moved;
4453}
4454
1e3c88bd
PZ
4455/*
4456 * idle_balance is called by schedule() if this_cpu is about to become
4457 * idle. Attempts to pull tasks from other CPUs.
4458 */
029632fb 4459void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4460{
4461 struct sched_domain *sd;
4462 int pulled_task = 0;
4463 unsigned long next_balance = jiffies + HZ;
4464
4465 this_rq->idle_stamp = this_rq->clock;
4466
4467 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4468 return;
4469
f492e12e
PZ
4470 /*
4471 * Drop the rq->lock, but keep IRQ/preempt disabled.
4472 */
4473 raw_spin_unlock(&this_rq->lock);
4474
c66eaf61 4475 update_shares(this_cpu);
dce840a0 4476 rcu_read_lock();
1e3c88bd
PZ
4477 for_each_domain(this_cpu, sd) {
4478 unsigned long interval;
f492e12e 4479 int balance = 1;
1e3c88bd
PZ
4480
4481 if (!(sd->flags & SD_LOAD_BALANCE))
4482 continue;
4483
f492e12e 4484 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4485 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4486 pulled_task = load_balance(this_cpu, this_rq,
4487 sd, CPU_NEWLY_IDLE, &balance);
4488 }
1e3c88bd
PZ
4489
4490 interval = msecs_to_jiffies(sd->balance_interval);
4491 if (time_after(next_balance, sd->last_balance + interval))
4492 next_balance = sd->last_balance + interval;
d5ad140b
NR
4493 if (pulled_task) {
4494 this_rq->idle_stamp = 0;
1e3c88bd 4495 break;
d5ad140b 4496 }
1e3c88bd 4497 }
dce840a0 4498 rcu_read_unlock();
f492e12e
PZ
4499
4500 raw_spin_lock(&this_rq->lock);
4501
1e3c88bd
PZ
4502 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4503 /*
4504 * We are going idle. next_balance may be set based on
4505 * a busy processor. So reset next_balance.
4506 */
4507 this_rq->next_balance = next_balance;
4508 }
4509}
4510
4511/*
969c7921
TH
4512 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4513 * running tasks off the busiest CPU onto idle CPUs. It requires at
4514 * least 1 task to be running on each physical CPU where possible, and
4515 * avoids physical / logical imbalances.
1e3c88bd 4516 */
969c7921 4517static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4518{
969c7921
TH
4519 struct rq *busiest_rq = data;
4520 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4521 int target_cpu = busiest_rq->push_cpu;
969c7921 4522 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4523 struct sched_domain *sd;
969c7921
TH
4524
4525 raw_spin_lock_irq(&busiest_rq->lock);
4526
4527 /* make sure the requested cpu hasn't gone down in the meantime */
4528 if (unlikely(busiest_cpu != smp_processor_id() ||
4529 !busiest_rq->active_balance))
4530 goto out_unlock;
1e3c88bd
PZ
4531
4532 /* Is there any task to move? */
4533 if (busiest_rq->nr_running <= 1)
969c7921 4534 goto out_unlock;
1e3c88bd
PZ
4535
4536 /*
4537 * This condition is "impossible", if it occurs
4538 * we need to fix it. Originally reported by
4539 * Bjorn Helgaas on a 128-cpu setup.
4540 */
4541 BUG_ON(busiest_rq == target_rq);
4542
4543 /* move a task from busiest_rq to target_rq */
4544 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4545
4546 /* Search for an sd spanning us and the target CPU. */
dce840a0 4547 rcu_read_lock();
1e3c88bd
PZ
4548 for_each_domain(target_cpu, sd) {
4549 if ((sd->flags & SD_LOAD_BALANCE) &&
4550 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4551 break;
4552 }
4553
4554 if (likely(sd)) {
8e45cb54
PZ
4555 struct lb_env env = {
4556 .sd = sd,
ddcdf6e7
PZ
4557 .dst_cpu = target_cpu,
4558 .dst_rq = target_rq,
4559 .src_cpu = busiest_rq->cpu,
4560 .src_rq = busiest_rq,
8e45cb54
PZ
4561 .idle = CPU_IDLE,
4562 };
4563
1e3c88bd
PZ
4564 schedstat_inc(sd, alb_count);
4565
8e45cb54 4566 if (move_one_task(&env))
1e3c88bd
PZ
4567 schedstat_inc(sd, alb_pushed);
4568 else
4569 schedstat_inc(sd, alb_failed);
4570 }
dce840a0 4571 rcu_read_unlock();
1e3c88bd 4572 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4573out_unlock:
4574 busiest_rq->active_balance = 0;
4575 raw_spin_unlock_irq(&busiest_rq->lock);
4576 return 0;
1e3c88bd
PZ
4577}
4578
4579#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4580/*
4581 * idle load balancing details
83cd4fe2
VP
4582 * - When one of the busy CPUs notice that there may be an idle rebalancing
4583 * needed, they will kick the idle load balancer, which then does idle
4584 * load balancing for all the idle CPUs.
4585 */
1e3c88bd 4586static struct {
83cd4fe2 4587 cpumask_var_t idle_cpus_mask;
0b005cf5 4588 atomic_t nr_cpus;
83cd4fe2
VP
4589 unsigned long next_balance; /* in jiffy units */
4590} nohz ____cacheline_aligned;
1e3c88bd 4591
8e7fbcbc 4592static inline int find_new_ilb(int call_cpu)
1e3c88bd 4593{
0b005cf5 4594 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 4595
786d6dc7
SS
4596 if (ilb < nr_cpu_ids && idle_cpu(ilb))
4597 return ilb;
4598
4599 return nr_cpu_ids;
1e3c88bd 4600}
1e3c88bd 4601
83cd4fe2
VP
4602/*
4603 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4604 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4605 * CPU (if there is one).
4606 */
4607static void nohz_balancer_kick(int cpu)
4608{
4609 int ilb_cpu;
4610
4611 nohz.next_balance++;
4612
0b005cf5 4613 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 4614
0b005cf5
SS
4615 if (ilb_cpu >= nr_cpu_ids)
4616 return;
83cd4fe2 4617
cd490c5b 4618 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
4619 return;
4620 /*
4621 * Use smp_send_reschedule() instead of resched_cpu().
4622 * This way we generate a sched IPI on the target cpu which
4623 * is idle. And the softirq performing nohz idle load balance
4624 * will be run before returning from the IPI.
4625 */
4626 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4627 return;
4628}
4629
71325960
SS
4630static inline void clear_nohz_tick_stopped(int cpu)
4631{
4632 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4633 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4634 atomic_dec(&nohz.nr_cpus);
4635 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4636 }
4637}
4638
69e1e811
SS
4639static inline void set_cpu_sd_state_busy(void)
4640{
4641 struct sched_domain *sd;
4642 int cpu = smp_processor_id();
4643
4644 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4645 return;
4646 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4647
4648 rcu_read_lock();
4649 for_each_domain(cpu, sd)
4650 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4651 rcu_read_unlock();
4652}
4653
4654void set_cpu_sd_state_idle(void)
4655{
4656 struct sched_domain *sd;
4657 int cpu = smp_processor_id();
4658
4659 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4660 return;
4661 set_bit(NOHZ_IDLE, nohz_flags(cpu));
4662
4663 rcu_read_lock();
4664 for_each_domain(cpu, sd)
4665 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4666 rcu_read_unlock();
4667}
4668
1e3c88bd 4669/*
0b005cf5
SS
4670 * This routine will record that this cpu is going idle with tick stopped.
4671 * This info will be used in performing idle load balancing in the future.
1e3c88bd 4672 */
83cd4fe2 4673void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4674{
4675 int cpu = smp_processor_id();
4676
71325960
SS
4677 /*
4678 * If this cpu is going down, then nothing needs to be done.
4679 */
4680 if (!cpu_active(cpu))
4681 return;
4682
1e3c88bd 4683 if (stop_tick) {
0b005cf5 4684 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
83cd4fe2 4685 return;
1e3c88bd 4686
83cd4fe2 4687 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
0b005cf5 4688 atomic_inc(&nohz.nr_cpus);
1c792db7 4689 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 4690 }
83cd4fe2 4691 return;
1e3c88bd 4692}
71325960
SS
4693
4694static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4695 unsigned long action, void *hcpu)
4696{
4697 switch (action & ~CPU_TASKS_FROZEN) {
4698 case CPU_DYING:
4699 clear_nohz_tick_stopped(smp_processor_id());
4700 return NOTIFY_OK;
4701 default:
4702 return NOTIFY_DONE;
4703 }
4704}
1e3c88bd
PZ
4705#endif
4706
4707static DEFINE_SPINLOCK(balancing);
4708
49c022e6
PZ
4709/*
4710 * Scale the max load_balance interval with the number of CPUs in the system.
4711 * This trades load-balance latency on larger machines for less cross talk.
4712 */
029632fb 4713void update_max_interval(void)
49c022e6
PZ
4714{
4715 max_load_balance_interval = HZ*num_online_cpus()/10;
4716}
4717
1e3c88bd
PZ
4718/*
4719 * It checks each scheduling domain to see if it is due to be balanced,
4720 * and initiates a balancing operation if so.
4721 *
4722 * Balancing parameters are set up in arch_init_sched_domains.
4723 */
4724static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4725{
4726 int balance = 1;
4727 struct rq *rq = cpu_rq(cpu);
4728 unsigned long interval;
04f733b4 4729 struct sched_domain *sd;
1e3c88bd
PZ
4730 /* Earliest time when we have to do rebalance again */
4731 unsigned long next_balance = jiffies + 60*HZ;
4732 int update_next_balance = 0;
4733 int need_serialize;
4734
2069dd75
PZ
4735 update_shares(cpu);
4736
dce840a0 4737 rcu_read_lock();
1e3c88bd
PZ
4738 for_each_domain(cpu, sd) {
4739 if (!(sd->flags & SD_LOAD_BALANCE))
4740 continue;
4741
4742 interval = sd->balance_interval;
4743 if (idle != CPU_IDLE)
4744 interval *= sd->busy_factor;
4745
4746 /* scale ms to jiffies */
4747 interval = msecs_to_jiffies(interval);
49c022e6 4748 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4749
4750 need_serialize = sd->flags & SD_SERIALIZE;
4751
4752 if (need_serialize) {
4753 if (!spin_trylock(&balancing))
4754 goto out;
4755 }
4756
4757 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4758 if (load_balance(cpu, rq, sd, idle, &balance)) {
4759 /*
4760 * We've pulled tasks over so either we're no
c186fafe 4761 * longer idle.
1e3c88bd
PZ
4762 */
4763 idle = CPU_NOT_IDLE;
4764 }
4765 sd->last_balance = jiffies;
4766 }
4767 if (need_serialize)
4768 spin_unlock(&balancing);
4769out:
4770 if (time_after(next_balance, sd->last_balance + interval)) {
4771 next_balance = sd->last_balance + interval;
4772 update_next_balance = 1;
4773 }
4774
4775 /*
4776 * Stop the load balance at this level. There is another
4777 * CPU in our sched group which is doing load balancing more
4778 * actively.
4779 */
4780 if (!balance)
4781 break;
4782 }
dce840a0 4783 rcu_read_unlock();
1e3c88bd
PZ
4784
4785 /*
4786 * next_balance will be updated only when there is a need.
4787 * When the cpu is attached to null domain for ex, it will not be
4788 * updated.
4789 */
4790 if (likely(update_next_balance))
4791 rq->next_balance = next_balance;
4792}
4793
83cd4fe2 4794#ifdef CONFIG_NO_HZ
1e3c88bd 4795/*
83cd4fe2 4796 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4797 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4798 */
83cd4fe2
VP
4799static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4800{
4801 struct rq *this_rq = cpu_rq(this_cpu);
4802 struct rq *rq;
4803 int balance_cpu;
4804
1c792db7
SS
4805 if (idle != CPU_IDLE ||
4806 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4807 goto end;
83cd4fe2
VP
4808
4809 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 4810 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
4811 continue;
4812
4813 /*
4814 * If this cpu gets work to do, stop the load balancing
4815 * work being done for other cpus. Next load
4816 * balancing owner will pick it up.
4817 */
1c792db7 4818 if (need_resched())
83cd4fe2 4819 break;
83cd4fe2
VP
4820
4821 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4822 update_rq_clock(this_rq);
556061b0 4823 update_idle_cpu_load(this_rq);
83cd4fe2
VP
4824 raw_spin_unlock_irq(&this_rq->lock);
4825
4826 rebalance_domains(balance_cpu, CPU_IDLE);
4827
4828 rq = cpu_rq(balance_cpu);
4829 if (time_after(this_rq->next_balance, rq->next_balance))
4830 this_rq->next_balance = rq->next_balance;
4831 }
4832 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
4833end:
4834 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
4835}
4836
4837/*
0b005cf5
SS
4838 * Current heuristic for kicking the idle load balancer in the presence
4839 * of an idle cpu is the system.
4840 * - This rq has more than one task.
4841 * - At any scheduler domain level, this cpu's scheduler group has multiple
4842 * busy cpu's exceeding the group's power.
4843 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4844 * domain span are idle.
83cd4fe2
VP
4845 */
4846static inline int nohz_kick_needed(struct rq *rq, int cpu)
4847{
4848 unsigned long now = jiffies;
0b005cf5 4849 struct sched_domain *sd;
83cd4fe2 4850
1c792db7 4851 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
4852 return 0;
4853
1c792db7
SS
4854 /*
4855 * We may be recently in ticked or tickless idle mode. At the first
4856 * busy tick after returning from idle, we will update the busy stats.
4857 */
69e1e811 4858 set_cpu_sd_state_busy();
71325960 4859 clear_nohz_tick_stopped(cpu);
0b005cf5
SS
4860
4861 /*
4862 * None are in tickless mode and hence no need for NOHZ idle load
4863 * balancing.
4864 */
4865 if (likely(!atomic_read(&nohz.nr_cpus)))
4866 return 0;
1c792db7
SS
4867
4868 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
4869 return 0;
4870
0b005cf5
SS
4871 if (rq->nr_running >= 2)
4872 goto need_kick;
83cd4fe2 4873
067491b7 4874 rcu_read_lock();
0b005cf5
SS
4875 for_each_domain(cpu, sd) {
4876 struct sched_group *sg = sd->groups;
4877 struct sched_group_power *sgp = sg->sgp;
4878 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 4879
0b005cf5 4880 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 4881 goto need_kick_unlock;
0b005cf5
SS
4882
4883 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4884 && (cpumask_first_and(nohz.idle_cpus_mask,
4885 sched_domain_span(sd)) < cpu))
067491b7 4886 goto need_kick_unlock;
0b005cf5
SS
4887
4888 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4889 break;
83cd4fe2 4890 }
067491b7 4891 rcu_read_unlock();
83cd4fe2 4892 return 0;
067491b7
PZ
4893
4894need_kick_unlock:
4895 rcu_read_unlock();
0b005cf5
SS
4896need_kick:
4897 return 1;
83cd4fe2
VP
4898}
4899#else
4900static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4901#endif
4902
4903/*
4904 * run_rebalance_domains is triggered when needed from the scheduler tick.
4905 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4906 */
1e3c88bd
PZ
4907static void run_rebalance_domains(struct softirq_action *h)
4908{
4909 int this_cpu = smp_processor_id();
4910 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 4911 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
4912 CPU_IDLE : CPU_NOT_IDLE;
4913
4914 rebalance_domains(this_cpu, idle);
4915
1e3c88bd 4916 /*
83cd4fe2 4917 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4918 * balancing on behalf of the other idle cpus whose ticks are
4919 * stopped.
4920 */
83cd4fe2 4921 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4922}
4923
4924static inline int on_null_domain(int cpu)
4925{
90a6501f 4926 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4927}
4928
4929/*
4930 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 4931 */
029632fb 4932void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 4933{
1e3c88bd
PZ
4934 /* Don't need to rebalance while attached to NULL domain */
4935 if (time_after_eq(jiffies, rq->next_balance) &&
4936 likely(!on_null_domain(cpu)))
4937 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 4938#ifdef CONFIG_NO_HZ
1c792db7 4939 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
4940 nohz_balancer_kick(cpu);
4941#endif
1e3c88bd
PZ
4942}
4943
0bcdcf28
CE
4944static void rq_online_fair(struct rq *rq)
4945{
4946 update_sysctl();
4947}
4948
4949static void rq_offline_fair(struct rq *rq)
4950{
4951 update_sysctl();
4952}
4953
55e12e5e 4954#endif /* CONFIG_SMP */
e1d1484f 4955
bf0f6f24
IM
4956/*
4957 * scheduler tick hitting a task of our scheduling class:
4958 */
8f4d37ec 4959static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4960{
4961 struct cfs_rq *cfs_rq;
4962 struct sched_entity *se = &curr->se;
4963
4964 for_each_sched_entity(se) {
4965 cfs_rq = cfs_rq_of(se);
8f4d37ec 4966 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4967 }
4968}
4969
4970/*
cd29fe6f
PZ
4971 * called on fork with the child task as argument from the parent's context
4972 * - child not yet on the tasklist
4973 * - preemption disabled
bf0f6f24 4974 */
cd29fe6f 4975static void task_fork_fair(struct task_struct *p)
bf0f6f24 4976{
4fc420c9
DN
4977 struct cfs_rq *cfs_rq;
4978 struct sched_entity *se = &p->se, *curr;
00bf7bfc 4979 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4980 struct rq *rq = this_rq();
4981 unsigned long flags;
4982
05fa785c 4983 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4984
861d034e
PZ
4985 update_rq_clock(rq);
4986
4fc420c9
DN
4987 cfs_rq = task_cfs_rq(current);
4988 curr = cfs_rq->curr;
4989
b0a0f667
PM
4990 if (unlikely(task_cpu(p) != this_cpu)) {
4991 rcu_read_lock();
cd29fe6f 4992 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4993 rcu_read_unlock();
4994 }
bf0f6f24 4995
7109c442 4996 update_curr(cfs_rq);
cd29fe6f 4997
b5d9d734
MG
4998 if (curr)
4999 se->vruntime = curr->vruntime;
aeb73b04 5000 place_entity(cfs_rq, se, 1);
4d78e7b6 5001
cd29fe6f 5002 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5003 /*
edcb60a3
IM
5004 * Upon rescheduling, sched_class::put_prev_task() will place
5005 * 'current' within the tree based on its new key value.
5006 */
4d78e7b6 5007 swap(curr->vruntime, se->vruntime);
aec0a514 5008 resched_task(rq->curr);
4d78e7b6 5009 }
bf0f6f24 5010
88ec22d3
PZ
5011 se->vruntime -= cfs_rq->min_vruntime;
5012
05fa785c 5013 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5014}
5015
cb469845
SR
5016/*
5017 * Priority of the task has changed. Check to see if we preempt
5018 * the current task.
5019 */
da7a735e
PZ
5020static void
5021prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5022{
da7a735e
PZ
5023 if (!p->se.on_rq)
5024 return;
5025
cb469845
SR
5026 /*
5027 * Reschedule if we are currently running on this runqueue and
5028 * our priority decreased, or if we are not currently running on
5029 * this runqueue and our priority is higher than the current's
5030 */
da7a735e 5031 if (rq->curr == p) {
cb469845
SR
5032 if (p->prio > oldprio)
5033 resched_task(rq->curr);
5034 } else
15afe09b 5035 check_preempt_curr(rq, p, 0);
cb469845
SR
5036}
5037
da7a735e
PZ
5038static void switched_from_fair(struct rq *rq, struct task_struct *p)
5039{
5040 struct sched_entity *se = &p->se;
5041 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5042
5043 /*
5044 * Ensure the task's vruntime is normalized, so that when its
5045 * switched back to the fair class the enqueue_entity(.flags=0) will
5046 * do the right thing.
5047 *
5048 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5049 * have normalized the vruntime, if it was !on_rq, then only when
5050 * the task is sleeping will it still have non-normalized vruntime.
5051 */
5052 if (!se->on_rq && p->state != TASK_RUNNING) {
5053 /*
5054 * Fix up our vruntime so that the current sleep doesn't
5055 * cause 'unlimited' sleep bonus.
5056 */
5057 place_entity(cfs_rq, se, 0);
5058 se->vruntime -= cfs_rq->min_vruntime;
5059 }
5060}
5061
cb469845
SR
5062/*
5063 * We switched to the sched_fair class.
5064 */
da7a735e 5065static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5066{
da7a735e
PZ
5067 if (!p->se.on_rq)
5068 return;
5069
cb469845
SR
5070 /*
5071 * We were most likely switched from sched_rt, so
5072 * kick off the schedule if running, otherwise just see
5073 * if we can still preempt the current task.
5074 */
da7a735e 5075 if (rq->curr == p)
cb469845
SR
5076 resched_task(rq->curr);
5077 else
15afe09b 5078 check_preempt_curr(rq, p, 0);
cb469845
SR
5079}
5080
83b699ed
SV
5081/* Account for a task changing its policy or group.
5082 *
5083 * This routine is mostly called to set cfs_rq->curr field when a task
5084 * migrates between groups/classes.
5085 */
5086static void set_curr_task_fair(struct rq *rq)
5087{
5088 struct sched_entity *se = &rq->curr->se;
5089
ec12cb7f
PT
5090 for_each_sched_entity(se) {
5091 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5092
5093 set_next_entity(cfs_rq, se);
5094 /* ensure bandwidth has been allocated on our new cfs_rq */
5095 account_cfs_rq_runtime(cfs_rq, 0);
5096 }
83b699ed
SV
5097}
5098
029632fb
PZ
5099void init_cfs_rq(struct cfs_rq *cfs_rq)
5100{
5101 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5102 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5103#ifndef CONFIG_64BIT
5104 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5105#endif
5106}
5107
810b3817 5108#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5109static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5110{
b2b5ce02
PZ
5111 /*
5112 * If the task was not on the rq at the time of this cgroup movement
5113 * it must have been asleep, sleeping tasks keep their ->vruntime
5114 * absolute on their old rq until wakeup (needed for the fair sleeper
5115 * bonus in place_entity()).
5116 *
5117 * If it was on the rq, we've just 'preempted' it, which does convert
5118 * ->vruntime to a relative base.
5119 *
5120 * Make sure both cases convert their relative position when migrating
5121 * to another cgroup's rq. This does somewhat interfere with the
5122 * fair sleeper stuff for the first placement, but who cares.
5123 */
7ceff013
DN
5124 /*
5125 * When !on_rq, vruntime of the task has usually NOT been normalized.
5126 * But there are some cases where it has already been normalized:
5127 *
5128 * - Moving a forked child which is waiting for being woken up by
5129 * wake_up_new_task().
62af3783
DN
5130 * - Moving a task which has been woken up by try_to_wake_up() and
5131 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5132 *
5133 * To prevent boost or penalty in the new cfs_rq caused by delta
5134 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5135 */
62af3783 5136 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5137 on_rq = 1;
5138
b2b5ce02
PZ
5139 if (!on_rq)
5140 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5141 set_task_rq(p, task_cpu(p));
88ec22d3 5142 if (!on_rq)
b2b5ce02 5143 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817 5144}
029632fb
PZ
5145
5146void free_fair_sched_group(struct task_group *tg)
5147{
5148 int i;
5149
5150 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5151
5152 for_each_possible_cpu(i) {
5153 if (tg->cfs_rq)
5154 kfree(tg->cfs_rq[i]);
5155 if (tg->se)
5156 kfree(tg->se[i]);
5157 }
5158
5159 kfree(tg->cfs_rq);
5160 kfree(tg->se);
5161}
5162
5163int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5164{
5165 struct cfs_rq *cfs_rq;
5166 struct sched_entity *se;
5167 int i;
5168
5169 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5170 if (!tg->cfs_rq)
5171 goto err;
5172 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5173 if (!tg->se)
5174 goto err;
5175
5176 tg->shares = NICE_0_LOAD;
5177
5178 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5179
5180 for_each_possible_cpu(i) {
5181 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5182 GFP_KERNEL, cpu_to_node(i));
5183 if (!cfs_rq)
5184 goto err;
5185
5186 se = kzalloc_node(sizeof(struct sched_entity),
5187 GFP_KERNEL, cpu_to_node(i));
5188 if (!se)
5189 goto err_free_rq;
5190
5191 init_cfs_rq(cfs_rq);
5192 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5193 }
5194
5195 return 1;
5196
5197err_free_rq:
5198 kfree(cfs_rq);
5199err:
5200 return 0;
5201}
5202
5203void unregister_fair_sched_group(struct task_group *tg, int cpu)
5204{
5205 struct rq *rq = cpu_rq(cpu);
5206 unsigned long flags;
5207
5208 /*
5209 * Only empty task groups can be destroyed; so we can speculatively
5210 * check on_list without danger of it being re-added.
5211 */
5212 if (!tg->cfs_rq[cpu]->on_list)
5213 return;
5214
5215 raw_spin_lock_irqsave(&rq->lock, flags);
5216 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5217 raw_spin_unlock_irqrestore(&rq->lock, flags);
5218}
5219
5220void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5221 struct sched_entity *se, int cpu,
5222 struct sched_entity *parent)
5223{
5224 struct rq *rq = cpu_rq(cpu);
5225
5226 cfs_rq->tg = tg;
5227 cfs_rq->rq = rq;
5228#ifdef CONFIG_SMP
5229 /* allow initial update_cfs_load() to truncate */
5230 cfs_rq->load_stamp = 1;
810b3817 5231#endif
029632fb
PZ
5232 init_cfs_rq_runtime(cfs_rq);
5233
5234 tg->cfs_rq[cpu] = cfs_rq;
5235 tg->se[cpu] = se;
5236
5237 /* se could be NULL for root_task_group */
5238 if (!se)
5239 return;
5240
5241 if (!parent)
5242 se->cfs_rq = &rq->cfs;
5243 else
5244 se->cfs_rq = parent->my_q;
5245
5246 se->my_q = cfs_rq;
5247 update_load_set(&se->load, 0);
5248 se->parent = parent;
5249}
5250
5251static DEFINE_MUTEX(shares_mutex);
5252
5253int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5254{
5255 int i;
5256 unsigned long flags;
5257
5258 /*
5259 * We can't change the weight of the root cgroup.
5260 */
5261 if (!tg->se[0])
5262 return -EINVAL;
5263
5264 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5265
5266 mutex_lock(&shares_mutex);
5267 if (tg->shares == shares)
5268 goto done;
5269
5270 tg->shares = shares;
5271 for_each_possible_cpu(i) {
5272 struct rq *rq = cpu_rq(i);
5273 struct sched_entity *se;
5274
5275 se = tg->se[i];
5276 /* Propagate contribution to hierarchy */
5277 raw_spin_lock_irqsave(&rq->lock, flags);
5278 for_each_sched_entity(se)
5279 update_cfs_shares(group_cfs_rq(se));
5280 raw_spin_unlock_irqrestore(&rq->lock, flags);
5281 }
5282
5283done:
5284 mutex_unlock(&shares_mutex);
5285 return 0;
5286}
5287#else /* CONFIG_FAIR_GROUP_SCHED */
5288
5289void free_fair_sched_group(struct task_group *tg) { }
5290
5291int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5292{
5293 return 1;
5294}
5295
5296void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5297
5298#endif /* CONFIG_FAIR_GROUP_SCHED */
5299
810b3817 5300
6d686f45 5301static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5302{
5303 struct sched_entity *se = &task->se;
0d721cea
PW
5304 unsigned int rr_interval = 0;
5305
5306 /*
5307 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5308 * idle runqueue:
5309 */
0d721cea
PW
5310 if (rq->cfs.load.weight)
5311 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5312
5313 return rr_interval;
5314}
5315
bf0f6f24
IM
5316/*
5317 * All the scheduling class methods:
5318 */
029632fb 5319const struct sched_class fair_sched_class = {
5522d5d5 5320 .next = &idle_sched_class,
bf0f6f24
IM
5321 .enqueue_task = enqueue_task_fair,
5322 .dequeue_task = dequeue_task_fair,
5323 .yield_task = yield_task_fair,
d95f4122 5324 .yield_to_task = yield_to_task_fair,
bf0f6f24 5325
2e09bf55 5326 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5327
5328 .pick_next_task = pick_next_task_fair,
5329 .put_prev_task = put_prev_task_fair,
5330
681f3e68 5331#ifdef CONFIG_SMP
4ce72a2c
LZ
5332 .select_task_rq = select_task_rq_fair,
5333
0bcdcf28
CE
5334 .rq_online = rq_online_fair,
5335 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5336
5337 .task_waking = task_waking_fair,
681f3e68 5338#endif
bf0f6f24 5339
83b699ed 5340 .set_curr_task = set_curr_task_fair,
bf0f6f24 5341 .task_tick = task_tick_fair,
cd29fe6f 5342 .task_fork = task_fork_fair,
cb469845
SR
5343
5344 .prio_changed = prio_changed_fair,
da7a735e 5345 .switched_from = switched_from_fair,
cb469845 5346 .switched_to = switched_to_fair,
810b3817 5347
0d721cea
PW
5348 .get_rr_interval = get_rr_interval_fair,
5349
810b3817 5350#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5351 .task_move_group = task_move_group_fair,
810b3817 5352#endif
bf0f6f24
IM
5353};
5354
5355#ifdef CONFIG_SCHED_DEBUG
029632fb 5356void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5357{
bf0f6f24
IM
5358 struct cfs_rq *cfs_rq;
5359
5973e5b9 5360 rcu_read_lock();
c3b64f1e 5361 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5362 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5363 rcu_read_unlock();
bf0f6f24
IM
5364}
5365#endif
029632fb
PZ
5366
5367__init void init_sched_fair_class(void)
5368{
5369#ifdef CONFIG_SMP
5370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5371
5372#ifdef CONFIG_NO_HZ
554cecaf 5373 nohz.next_balance = jiffies;
029632fb 5374 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5375 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5376#endif
5377#endif /* SMP */
5378
5379}
This page took 0.802765 seconds and 5 git commands to generate.