sched/numa: Fix out of bounds read in sched_init_numa()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
729static inline void
5870db5b 730update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 731{
78becc27 732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
733}
734
bf0f6f24
IM
735/*
736 * Task is being enqueued - update stats:
737 */
d2417e5a 738static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
bf0f6f24
IM
740 /*
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
743 */
429d43bc 744 if (se != cfs_rq->curr)
5870db5b 745 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
746}
747
bf0f6f24 748static void
9ef0a961 749update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
41acab88 751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
756#ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760 }
761#endif
41acab88 762 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
763}
764
765static inline void
19b6a2e3 766update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 767{
bf0f6f24
IM
768 /*
769 * Mark the end of the wait period if dequeueing a
770 * waiting task:
771 */
429d43bc 772 if (se != cfs_rq->curr)
9ef0a961 773 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
774}
775
776/*
777 * We are picking a new current task - update its stats:
778 */
779static inline void
79303e9e 780update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
781{
782 /*
783 * We are starting a new run period:
784 */
78becc27 785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
786}
787
bf0f6f24
IM
788/**************************************************
789 * Scheduling class queueing methods:
790 */
791
cbee9f88
PZ
792#ifdef CONFIG_NUMA_BALANCING
793/*
598f0ec0
MG
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
cbee9f88 797 */
598f0ec0
MG
798unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
800
801/* Portion of address space to scan in MB */
802unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 803
4b96a29b
PZ
804/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805unsigned int sysctl_numa_balancing_scan_delay = 1000;
806
598f0ec0
MG
807static unsigned int task_nr_scan_windows(struct task_struct *p)
808{
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
811
812 /*
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
815 * on resident pages
816 */
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
819 if (!rss)
820 rss = nr_scan_pages;
821
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
824}
825
826/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827#define MAX_SCAN_WINDOW 2560
828
829static unsigned int task_scan_min(struct task_struct *p)
830{
64192658 831 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
832 unsigned int scan, floor;
833 unsigned int windows = 1;
834
64192658
KT
835 if (scan_size < MAX_SCAN_WINDOW)
836 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
837 floor = 1000 / windows;
838
839 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
840 return max_t(unsigned int, floor, scan);
841}
842
843static unsigned int task_scan_max(struct task_struct *p)
844{
845 unsigned int smin = task_scan_min(p);
846 unsigned int smax;
847
848 /* Watch for min being lower than max due to floor calculations */
849 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
850 return max(smin, smax);
851}
852
0ec8aa00
PZ
853static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
854{
855 rq->nr_numa_running += (p->numa_preferred_nid != -1);
856 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
857}
858
859static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
863}
864
8c8a743c
PZ
865struct numa_group {
866 atomic_t refcount;
867
868 spinlock_t lock; /* nr_tasks, tasks */
869 int nr_tasks;
e29cf08b 870 pid_t gid;
8c8a743c
PZ
871 struct list_head task_list;
872
873 struct rcu_head rcu;
20e07dea 874 nodemask_t active_nodes;
989348b5 875 unsigned long total_faults;
7e2703e6
RR
876 /*
877 * Faults_cpu is used to decide whether memory should move
878 * towards the CPU. As a consequence, these stats are weighted
879 * more by CPU use than by memory faults.
880 */
50ec8a40 881 unsigned long *faults_cpu;
989348b5 882 unsigned long faults[0];
8c8a743c
PZ
883};
884
be1e4e76
RR
885/* Shared or private faults. */
886#define NR_NUMA_HINT_FAULT_TYPES 2
887
888/* Memory and CPU locality */
889#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
890
891/* Averaged statistics, and temporary buffers. */
892#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
893
e29cf08b
MG
894pid_t task_numa_group_id(struct task_struct *p)
895{
896 return p->numa_group ? p->numa_group->gid : 0;
897}
898
ac8e895b
MG
899static inline int task_faults_idx(int nid, int priv)
900{
be1e4e76 901 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
902}
903
904static inline unsigned long task_faults(struct task_struct *p, int nid)
905{
ff1df896 906 if (!p->numa_faults_memory)
ac8e895b
MG
907 return 0;
908
ff1df896
RR
909 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
911}
912
83e1d2cd
MG
913static inline unsigned long group_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_group)
916 return 0;
917
82897b4f
WL
918 return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
920}
921
20e07dea
RR
922static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923{
924 return group->faults_cpu[task_faults_idx(nid, 0)] +
925 group->faults_cpu[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
934static inline unsigned long task_weight(struct task_struct *p, int nid)
935{
936 unsigned long total_faults;
937
ff1df896 938 if (!p->numa_faults_memory)
83e1d2cd
MG
939 return 0;
940
941 total_faults = p->total_numa_faults;
942
943 if (!total_faults)
944 return 0;
945
946 return 1000 * task_faults(p, nid) / total_faults;
947}
948
949static inline unsigned long group_weight(struct task_struct *p, int nid)
950{
989348b5 951 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
952 return 0;
953
989348b5 954 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
955}
956
10f39042
RR
957bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
958 int src_nid, int dst_cpu)
959{
960 struct numa_group *ng = p->numa_group;
961 int dst_nid = cpu_to_node(dst_cpu);
962 int last_cpupid, this_cpupid;
963
964 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
965
966 /*
967 * Multi-stage node selection is used in conjunction with a periodic
968 * migration fault to build a temporal task<->page relation. By using
969 * a two-stage filter we remove short/unlikely relations.
970 *
971 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
972 * a task's usage of a particular page (n_p) per total usage of this
973 * page (n_t) (in a given time-span) to a probability.
974 *
975 * Our periodic faults will sample this probability and getting the
976 * same result twice in a row, given these samples are fully
977 * independent, is then given by P(n)^2, provided our sample period
978 * is sufficiently short compared to the usage pattern.
979 *
980 * This quadric squishes small probabilities, making it less likely we
981 * act on an unlikely task<->page relation.
982 */
983 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
984 if (!cpupid_pid_unset(last_cpupid) &&
985 cpupid_to_nid(last_cpupid) != dst_nid)
986 return false;
987
988 /* Always allow migrate on private faults */
989 if (cpupid_match_pid(p, last_cpupid))
990 return true;
991
992 /* A shared fault, but p->numa_group has not been set up yet. */
993 if (!ng)
994 return true;
995
996 /*
997 * Do not migrate if the destination is not a node that
998 * is actively used by this numa group.
999 */
1000 if (!node_isset(dst_nid, ng->active_nodes))
1001 return false;
1002
1003 /*
1004 * Source is a node that is not actively used by this
1005 * numa group, while the destination is. Migrate.
1006 */
1007 if (!node_isset(src_nid, ng->active_nodes))
1008 return true;
1009
1010 /*
1011 * Both source and destination are nodes in active
1012 * use by this numa group. Maximize memory bandwidth
1013 * by migrating from more heavily used groups, to less
1014 * heavily used ones, spreading the load around.
1015 * Use a 1/4 hysteresis to avoid spurious page movement.
1016 */
1017 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1018}
1019
e6628d5b 1020static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1021static unsigned long source_load(int cpu, int type);
1022static unsigned long target_load(int cpu, int type);
ced549fa 1023static unsigned long capacity_of(int cpu);
58d081b5
MG
1024static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1025
fb13c7ee 1026/* Cached statistics for all CPUs within a node */
58d081b5 1027struct numa_stats {
fb13c7ee 1028 unsigned long nr_running;
58d081b5 1029 unsigned long load;
fb13c7ee
MG
1030
1031 /* Total compute capacity of CPUs on a node */
5ef20ca1 1032 unsigned long compute_capacity;
fb13c7ee
MG
1033
1034 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1035 unsigned long task_capacity;
1b6a7495 1036 int has_free_capacity;
58d081b5 1037};
e6628d5b 1038
fb13c7ee
MG
1039/*
1040 * XXX borrowed from update_sg_lb_stats
1041 */
1042static void update_numa_stats(struct numa_stats *ns, int nid)
1043{
83d7f242
RR
1044 int smt, cpu, cpus = 0;
1045 unsigned long capacity;
fb13c7ee
MG
1046
1047 memset(ns, 0, sizeof(*ns));
1048 for_each_cpu(cpu, cpumask_of_node(nid)) {
1049 struct rq *rq = cpu_rq(cpu);
1050
1051 ns->nr_running += rq->nr_running;
1052 ns->load += weighted_cpuload(cpu);
ced549fa 1053 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1054
1055 cpus++;
fb13c7ee
MG
1056 }
1057
5eca82a9
PZ
1058 /*
1059 * If we raced with hotplug and there are no CPUs left in our mask
1060 * the @ns structure is NULL'ed and task_numa_compare() will
1061 * not find this node attractive.
1062 *
1b6a7495
NP
1063 * We'll either bail at !has_free_capacity, or we'll detect a huge
1064 * imbalance and bail there.
5eca82a9
PZ
1065 */
1066 if (!cpus)
1067 return;
1068
83d7f242
RR
1069 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1070 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1071 capacity = cpus / smt; /* cores */
1072
1073 ns->task_capacity = min_t(unsigned, capacity,
1074 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1075 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1076}
1077
58d081b5
MG
1078struct task_numa_env {
1079 struct task_struct *p;
e6628d5b 1080
58d081b5
MG
1081 int src_cpu, src_nid;
1082 int dst_cpu, dst_nid;
e6628d5b 1083
58d081b5 1084 struct numa_stats src_stats, dst_stats;
e6628d5b 1085
40ea2b42 1086 int imbalance_pct;
fb13c7ee
MG
1087
1088 struct task_struct *best_task;
1089 long best_imp;
58d081b5
MG
1090 int best_cpu;
1091};
1092
fb13c7ee
MG
1093static void task_numa_assign(struct task_numa_env *env,
1094 struct task_struct *p, long imp)
1095{
1096 if (env->best_task)
1097 put_task_struct(env->best_task);
1098 if (p)
1099 get_task_struct(p);
1100
1101 env->best_task = p;
1102 env->best_imp = imp;
1103 env->best_cpu = env->dst_cpu;
1104}
1105
28a21745 1106static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1107 struct task_numa_env *env)
1108{
1109 long imb, old_imb;
28a21745
RR
1110 long orig_src_load, orig_dst_load;
1111 long src_capacity, dst_capacity;
1112
1113 /*
1114 * The load is corrected for the CPU capacity available on each node.
1115 *
1116 * src_load dst_load
1117 * ------------ vs ---------
1118 * src_capacity dst_capacity
1119 */
1120 src_capacity = env->src_stats.compute_capacity;
1121 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1122
1123 /* We care about the slope of the imbalance, not the direction. */
1124 if (dst_load < src_load)
1125 swap(dst_load, src_load);
1126
1127 /* Is the difference below the threshold? */
28a21745
RR
1128 imb = dst_load * src_capacity * 100 -
1129 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1130 if (imb <= 0)
1131 return false;
1132
1133 /*
1134 * The imbalance is above the allowed threshold.
1135 * Compare it with the old imbalance.
1136 */
28a21745
RR
1137 orig_src_load = env->src_stats.load;
1138 orig_dst_load = env->dst_stats.load;
1139
e63da036
RR
1140 if (orig_dst_load < orig_src_load)
1141 swap(orig_dst_load, orig_src_load);
1142
28a21745
RR
1143 old_imb = orig_dst_load * src_capacity * 100 -
1144 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1145
1146 /* Would this change make things worse? */
1662867a 1147 return (imb > old_imb);
e63da036
RR
1148}
1149
fb13c7ee
MG
1150/*
1151 * This checks if the overall compute and NUMA accesses of the system would
1152 * be improved if the source tasks was migrated to the target dst_cpu taking
1153 * into account that it might be best if task running on the dst_cpu should
1154 * be exchanged with the source task
1155 */
887c290e
RR
1156static void task_numa_compare(struct task_numa_env *env,
1157 long taskimp, long groupimp)
fb13c7ee
MG
1158{
1159 struct rq *src_rq = cpu_rq(env->src_cpu);
1160 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1161 struct task_struct *cur;
28a21745 1162 long src_load, dst_load;
fb13c7ee 1163 long load;
1c5d3eb3 1164 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1165 long moveimp = imp;
fb13c7ee
MG
1166
1167 rcu_read_lock();
1effd9f1
KT
1168
1169 raw_spin_lock_irq(&dst_rq->lock);
1170 cur = dst_rq->curr;
1171 /*
1172 * No need to move the exiting task, and this ensures that ->curr
1173 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1174 * is safe under RCU read lock.
1175 * Note that rcu_read_lock() itself can't protect from the final
1176 * put_task_struct() after the last schedule().
1177 */
1178 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1179 cur = NULL;
1effd9f1 1180 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee
MG
1181
1182 /*
1183 * "imp" is the fault differential for the source task between the
1184 * source and destination node. Calculate the total differential for
1185 * the source task and potential destination task. The more negative
1186 * the value is, the more rmeote accesses that would be expected to
1187 * be incurred if the tasks were swapped.
1188 */
1189 if (cur) {
1190 /* Skip this swap candidate if cannot move to the source cpu */
1191 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1192 goto unlock;
1193
887c290e
RR
1194 /*
1195 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1196 * in any group then look only at task weights.
887c290e 1197 */
ca28aa53 1198 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1199 imp = taskimp + task_weight(cur, env->src_nid) -
1200 task_weight(cur, env->dst_nid);
ca28aa53
RR
1201 /*
1202 * Add some hysteresis to prevent swapping the
1203 * tasks within a group over tiny differences.
1204 */
1205 if (cur->numa_group)
1206 imp -= imp/16;
887c290e 1207 } else {
ca28aa53
RR
1208 /*
1209 * Compare the group weights. If a task is all by
1210 * itself (not part of a group), use the task weight
1211 * instead.
1212 */
ca28aa53
RR
1213 if (cur->numa_group)
1214 imp += group_weight(cur, env->src_nid) -
1215 group_weight(cur, env->dst_nid);
1216 else
1217 imp += task_weight(cur, env->src_nid) -
1218 task_weight(cur, env->dst_nid);
887c290e 1219 }
fb13c7ee
MG
1220 }
1221
0132c3e1 1222 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1223 goto unlock;
1224
1225 if (!cur) {
1226 /* Is there capacity at our destination? */
b932c03c 1227 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1228 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1229 goto unlock;
1230
1231 goto balance;
1232 }
1233
1234 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1235 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1236 dst_rq->nr_running == 1)
fb13c7ee
MG
1237 goto assign;
1238
1239 /*
1240 * In the overloaded case, try and keep the load balanced.
1241 */
1242balance:
e720fff6
PZ
1243 load = task_h_load(env->p);
1244 dst_load = env->dst_stats.load + load;
1245 src_load = env->src_stats.load - load;
fb13c7ee 1246
0132c3e1
RR
1247 if (moveimp > imp && moveimp > env->best_imp) {
1248 /*
1249 * If the improvement from just moving env->p direction is
1250 * better than swapping tasks around, check if a move is
1251 * possible. Store a slightly smaller score than moveimp,
1252 * so an actually idle CPU will win.
1253 */
1254 if (!load_too_imbalanced(src_load, dst_load, env)) {
1255 imp = moveimp - 1;
1256 cur = NULL;
1257 goto assign;
1258 }
1259 }
1260
1261 if (imp <= env->best_imp)
1262 goto unlock;
1263
fb13c7ee 1264 if (cur) {
e720fff6
PZ
1265 load = task_h_load(cur);
1266 dst_load -= load;
1267 src_load += load;
fb13c7ee
MG
1268 }
1269
28a21745 1270 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1271 goto unlock;
1272
ba7e5a27
RR
1273 /*
1274 * One idle CPU per node is evaluated for a task numa move.
1275 * Call select_idle_sibling to maybe find a better one.
1276 */
1277 if (!cur)
1278 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1279
fb13c7ee
MG
1280assign:
1281 task_numa_assign(env, cur, imp);
1282unlock:
1283 rcu_read_unlock();
1284}
1285
887c290e
RR
1286static void task_numa_find_cpu(struct task_numa_env *env,
1287 long taskimp, long groupimp)
2c8a50aa
MG
1288{
1289 int cpu;
1290
1291 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1292 /* Skip this CPU if the source task cannot migrate */
1293 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1294 continue;
1295
1296 env->dst_cpu = cpu;
887c290e 1297 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1298 }
1299}
1300
58d081b5
MG
1301static int task_numa_migrate(struct task_struct *p)
1302{
58d081b5
MG
1303 struct task_numa_env env = {
1304 .p = p,
fb13c7ee 1305
58d081b5 1306 .src_cpu = task_cpu(p),
b32e86b4 1307 .src_nid = task_node(p),
fb13c7ee
MG
1308
1309 .imbalance_pct = 112,
1310
1311 .best_task = NULL,
1312 .best_imp = 0,
1313 .best_cpu = -1
58d081b5
MG
1314 };
1315 struct sched_domain *sd;
887c290e 1316 unsigned long taskweight, groupweight;
2c8a50aa 1317 int nid, ret;
887c290e 1318 long taskimp, groupimp;
e6628d5b 1319
58d081b5 1320 /*
fb13c7ee
MG
1321 * Pick the lowest SD_NUMA domain, as that would have the smallest
1322 * imbalance and would be the first to start moving tasks about.
1323 *
1324 * And we want to avoid any moving of tasks about, as that would create
1325 * random movement of tasks -- counter the numa conditions we're trying
1326 * to satisfy here.
58d081b5
MG
1327 */
1328 rcu_read_lock();
fb13c7ee 1329 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1330 if (sd)
1331 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1332 rcu_read_unlock();
1333
46a73e8a
RR
1334 /*
1335 * Cpusets can break the scheduler domain tree into smaller
1336 * balance domains, some of which do not cross NUMA boundaries.
1337 * Tasks that are "trapped" in such domains cannot be migrated
1338 * elsewhere, so there is no point in (re)trying.
1339 */
1340 if (unlikely(!sd)) {
de1b301a 1341 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1342 return -EINVAL;
1343 }
1344
887c290e
RR
1345 taskweight = task_weight(p, env.src_nid);
1346 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1347 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1348 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1349 taskimp = task_weight(p, env.dst_nid) - taskweight;
1350 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1351 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1352
a43455a1
RR
1353 /* Try to find a spot on the preferred nid. */
1354 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1355
1356 /* No space available on the preferred nid. Look elsewhere. */
1357 if (env.best_cpu == -1) {
2c8a50aa
MG
1358 for_each_online_node(nid) {
1359 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1360 continue;
58d081b5 1361
83e1d2cd 1362 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1363 taskimp = task_weight(p, nid) - taskweight;
1364 groupimp = group_weight(p, nid) - groupweight;
1365 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1366 continue;
1367
2c8a50aa
MG
1368 env.dst_nid = nid;
1369 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1370 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1371 }
1372 }
1373
68d1b02a
RR
1374 /*
1375 * If the task is part of a workload that spans multiple NUMA nodes,
1376 * and is migrating into one of the workload's active nodes, remember
1377 * this node as the task's preferred numa node, so the workload can
1378 * settle down.
1379 * A task that migrated to a second choice node will be better off
1380 * trying for a better one later. Do not set the preferred node here.
1381 */
db015dae
RR
1382 if (p->numa_group) {
1383 if (env.best_cpu == -1)
1384 nid = env.src_nid;
1385 else
1386 nid = env.dst_nid;
1387
1388 if (node_isset(nid, p->numa_group->active_nodes))
1389 sched_setnuma(p, env.dst_nid);
1390 }
1391
1392 /* No better CPU than the current one was found. */
1393 if (env.best_cpu == -1)
1394 return -EAGAIN;
0ec8aa00 1395
04bb2f94
RR
1396 /*
1397 * Reset the scan period if the task is being rescheduled on an
1398 * alternative node to recheck if the tasks is now properly placed.
1399 */
1400 p->numa_scan_period = task_scan_min(p);
1401
fb13c7ee 1402 if (env.best_task == NULL) {
286549dc
MG
1403 ret = migrate_task_to(p, env.best_cpu);
1404 if (ret != 0)
1405 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1406 return ret;
1407 }
1408
1409 ret = migrate_swap(p, env.best_task);
286549dc
MG
1410 if (ret != 0)
1411 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1412 put_task_struct(env.best_task);
1413 return ret;
e6628d5b
MG
1414}
1415
6b9a7460
MG
1416/* Attempt to migrate a task to a CPU on the preferred node. */
1417static void numa_migrate_preferred(struct task_struct *p)
1418{
5085e2a3
RR
1419 unsigned long interval = HZ;
1420
2739d3ee 1421 /* This task has no NUMA fault statistics yet */
ff1df896 1422 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1423 return;
1424
2739d3ee 1425 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1426 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1427 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1428
1429 /* Success if task is already running on preferred CPU */
de1b301a 1430 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1431 return;
1432
1433 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1434 task_numa_migrate(p);
6b9a7460
MG
1435}
1436
20e07dea
RR
1437/*
1438 * Find the nodes on which the workload is actively running. We do this by
1439 * tracking the nodes from which NUMA hinting faults are triggered. This can
1440 * be different from the set of nodes where the workload's memory is currently
1441 * located.
1442 *
1443 * The bitmask is used to make smarter decisions on when to do NUMA page
1444 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1445 * are added when they cause over 6/16 of the maximum number of faults, but
1446 * only removed when they drop below 3/16.
1447 */
1448static void update_numa_active_node_mask(struct numa_group *numa_group)
1449{
1450 unsigned long faults, max_faults = 0;
1451 int nid;
1452
1453 for_each_online_node(nid) {
1454 faults = group_faults_cpu(numa_group, nid);
1455 if (faults > max_faults)
1456 max_faults = faults;
1457 }
1458
1459 for_each_online_node(nid) {
1460 faults = group_faults_cpu(numa_group, nid);
1461 if (!node_isset(nid, numa_group->active_nodes)) {
1462 if (faults > max_faults * 6 / 16)
1463 node_set(nid, numa_group->active_nodes);
1464 } else if (faults < max_faults * 3 / 16)
1465 node_clear(nid, numa_group->active_nodes);
1466 }
1467}
1468
04bb2f94
RR
1469/*
1470 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1471 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1472 * period will be for the next scan window. If local/(local+remote) ratio is
1473 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1474 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1475 */
1476#define NUMA_PERIOD_SLOTS 10
a22b4b01 1477#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1478
1479/*
1480 * Increase the scan period (slow down scanning) if the majority of
1481 * our memory is already on our local node, or if the majority of
1482 * the page accesses are shared with other processes.
1483 * Otherwise, decrease the scan period.
1484 */
1485static void update_task_scan_period(struct task_struct *p,
1486 unsigned long shared, unsigned long private)
1487{
1488 unsigned int period_slot;
1489 int ratio;
1490 int diff;
1491
1492 unsigned long remote = p->numa_faults_locality[0];
1493 unsigned long local = p->numa_faults_locality[1];
1494
1495 /*
1496 * If there were no record hinting faults then either the task is
1497 * completely idle or all activity is areas that are not of interest
1498 * to automatic numa balancing. Scan slower
1499 */
1500 if (local + shared == 0) {
1501 p->numa_scan_period = min(p->numa_scan_period_max,
1502 p->numa_scan_period << 1);
1503
1504 p->mm->numa_next_scan = jiffies +
1505 msecs_to_jiffies(p->numa_scan_period);
1506
1507 return;
1508 }
1509
1510 /*
1511 * Prepare to scale scan period relative to the current period.
1512 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1513 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1514 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1515 */
1516 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1517 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1518 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1519 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1520 if (!slot)
1521 slot = 1;
1522 diff = slot * period_slot;
1523 } else {
1524 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1525
1526 /*
1527 * Scale scan rate increases based on sharing. There is an
1528 * inverse relationship between the degree of sharing and
1529 * the adjustment made to the scanning period. Broadly
1530 * speaking the intent is that there is little point
1531 * scanning faster if shared accesses dominate as it may
1532 * simply bounce migrations uselessly
1533 */
2847c90e 1534 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1535 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1536 }
1537
1538 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1539 task_scan_min(p), task_scan_max(p));
1540 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1541}
1542
7e2703e6
RR
1543/*
1544 * Get the fraction of time the task has been running since the last
1545 * NUMA placement cycle. The scheduler keeps similar statistics, but
1546 * decays those on a 32ms period, which is orders of magnitude off
1547 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1548 * stats only if the task is so new there are no NUMA statistics yet.
1549 */
1550static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1551{
1552 u64 runtime, delta, now;
1553 /* Use the start of this time slice to avoid calculations. */
1554 now = p->se.exec_start;
1555 runtime = p->se.sum_exec_runtime;
1556
1557 if (p->last_task_numa_placement) {
1558 delta = runtime - p->last_sum_exec_runtime;
1559 *period = now - p->last_task_numa_placement;
1560 } else {
1561 delta = p->se.avg.runnable_avg_sum;
1562 *period = p->se.avg.runnable_avg_period;
1563 }
1564
1565 p->last_sum_exec_runtime = runtime;
1566 p->last_task_numa_placement = now;
1567
1568 return delta;
1569}
1570
cbee9f88
PZ
1571static void task_numa_placement(struct task_struct *p)
1572{
83e1d2cd
MG
1573 int seq, nid, max_nid = -1, max_group_nid = -1;
1574 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1575 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1576 unsigned long total_faults;
1577 u64 runtime, period;
7dbd13ed 1578 spinlock_t *group_lock = NULL;
cbee9f88 1579
2832bc19 1580 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1581 if (p->numa_scan_seq == seq)
1582 return;
1583 p->numa_scan_seq = seq;
598f0ec0 1584 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1585
7e2703e6
RR
1586 total_faults = p->numa_faults_locality[0] +
1587 p->numa_faults_locality[1];
1588 runtime = numa_get_avg_runtime(p, &period);
1589
7dbd13ed
MG
1590 /* If the task is part of a group prevent parallel updates to group stats */
1591 if (p->numa_group) {
1592 group_lock = &p->numa_group->lock;
60e69eed 1593 spin_lock_irq(group_lock);
7dbd13ed
MG
1594 }
1595
688b7585
MG
1596 /* Find the node with the highest number of faults */
1597 for_each_online_node(nid) {
83e1d2cd 1598 unsigned long faults = 0, group_faults = 0;
ac8e895b 1599 int priv, i;
745d6147 1600
be1e4e76 1601 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1602 long diff, f_diff, f_weight;
8c8a743c 1603
ac8e895b 1604 i = task_faults_idx(nid, priv);
745d6147 1605
ac8e895b 1606 /* Decay existing window, copy faults since last scan */
35664fd4 1607 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1608 fault_types[priv] += p->numa_faults_buffer_memory[i];
1609 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1610
7e2703e6
RR
1611 /*
1612 * Normalize the faults_from, so all tasks in a group
1613 * count according to CPU use, instead of by the raw
1614 * number of faults. Tasks with little runtime have
1615 * little over-all impact on throughput, and thus their
1616 * faults are less important.
1617 */
1618 f_weight = div64_u64(runtime << 16, period + 1);
1619 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1620 (total_faults + 1);
35664fd4 1621 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1622 p->numa_faults_buffer_cpu[i] = 0;
1623
35664fd4
RR
1624 p->numa_faults_memory[i] += diff;
1625 p->numa_faults_cpu[i] += f_diff;
ff1df896 1626 faults += p->numa_faults_memory[i];
83e1d2cd 1627 p->total_numa_faults += diff;
8c8a743c
PZ
1628 if (p->numa_group) {
1629 /* safe because we can only change our own group */
989348b5 1630 p->numa_group->faults[i] += diff;
50ec8a40 1631 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1632 p->numa_group->total_faults += diff;
1633 group_faults += p->numa_group->faults[i];
8c8a743c 1634 }
ac8e895b
MG
1635 }
1636
688b7585
MG
1637 if (faults > max_faults) {
1638 max_faults = faults;
1639 max_nid = nid;
1640 }
83e1d2cd
MG
1641
1642 if (group_faults > max_group_faults) {
1643 max_group_faults = group_faults;
1644 max_group_nid = nid;
1645 }
1646 }
1647
04bb2f94
RR
1648 update_task_scan_period(p, fault_types[0], fault_types[1]);
1649
7dbd13ed 1650 if (p->numa_group) {
20e07dea 1651 update_numa_active_node_mask(p->numa_group);
60e69eed 1652 spin_unlock_irq(group_lock);
f0b8a4af 1653 max_nid = max_group_nid;
688b7585
MG
1654 }
1655
bb97fc31
RR
1656 if (max_faults) {
1657 /* Set the new preferred node */
1658 if (max_nid != p->numa_preferred_nid)
1659 sched_setnuma(p, max_nid);
1660
1661 if (task_node(p) != p->numa_preferred_nid)
1662 numa_migrate_preferred(p);
3a7053b3 1663 }
cbee9f88
PZ
1664}
1665
8c8a743c
PZ
1666static inline int get_numa_group(struct numa_group *grp)
1667{
1668 return atomic_inc_not_zero(&grp->refcount);
1669}
1670
1671static inline void put_numa_group(struct numa_group *grp)
1672{
1673 if (atomic_dec_and_test(&grp->refcount))
1674 kfree_rcu(grp, rcu);
1675}
1676
3e6a9418
MG
1677static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1678 int *priv)
8c8a743c
PZ
1679{
1680 struct numa_group *grp, *my_grp;
1681 struct task_struct *tsk;
1682 bool join = false;
1683 int cpu = cpupid_to_cpu(cpupid);
1684 int i;
1685
1686 if (unlikely(!p->numa_group)) {
1687 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1688 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1689
1690 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1691 if (!grp)
1692 return;
1693
1694 atomic_set(&grp->refcount, 1);
1695 spin_lock_init(&grp->lock);
1696 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1697 grp->gid = p->pid;
50ec8a40 1698 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1699 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1700 nr_node_ids;
8c8a743c 1701
20e07dea
RR
1702 node_set(task_node(current), grp->active_nodes);
1703
be1e4e76 1704 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1705 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1706
989348b5 1707 grp->total_faults = p->total_numa_faults;
83e1d2cd 1708
8c8a743c
PZ
1709 list_add(&p->numa_entry, &grp->task_list);
1710 grp->nr_tasks++;
1711 rcu_assign_pointer(p->numa_group, grp);
1712 }
1713
1714 rcu_read_lock();
1715 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1716
1717 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1718 goto no_join;
8c8a743c
PZ
1719
1720 grp = rcu_dereference(tsk->numa_group);
1721 if (!grp)
3354781a 1722 goto no_join;
8c8a743c
PZ
1723
1724 my_grp = p->numa_group;
1725 if (grp == my_grp)
3354781a 1726 goto no_join;
8c8a743c
PZ
1727
1728 /*
1729 * Only join the other group if its bigger; if we're the bigger group,
1730 * the other task will join us.
1731 */
1732 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1733 goto no_join;
8c8a743c
PZ
1734
1735 /*
1736 * Tie-break on the grp address.
1737 */
1738 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1739 goto no_join;
8c8a743c 1740
dabe1d99
RR
1741 /* Always join threads in the same process. */
1742 if (tsk->mm == current->mm)
1743 join = true;
1744
1745 /* Simple filter to avoid false positives due to PID collisions */
1746 if (flags & TNF_SHARED)
1747 join = true;
8c8a743c 1748
3e6a9418
MG
1749 /* Update priv based on whether false sharing was detected */
1750 *priv = !join;
1751
dabe1d99 1752 if (join && !get_numa_group(grp))
3354781a 1753 goto no_join;
8c8a743c 1754
8c8a743c
PZ
1755 rcu_read_unlock();
1756
1757 if (!join)
1758 return;
1759
60e69eed
MG
1760 BUG_ON(irqs_disabled());
1761 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1762
be1e4e76 1763 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1764 my_grp->faults[i] -= p->numa_faults_memory[i];
1765 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1766 }
989348b5
MG
1767 my_grp->total_faults -= p->total_numa_faults;
1768 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1769
1770 list_move(&p->numa_entry, &grp->task_list);
1771 my_grp->nr_tasks--;
1772 grp->nr_tasks++;
1773
1774 spin_unlock(&my_grp->lock);
60e69eed 1775 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1776
1777 rcu_assign_pointer(p->numa_group, grp);
1778
1779 put_numa_group(my_grp);
3354781a
PZ
1780 return;
1781
1782no_join:
1783 rcu_read_unlock();
1784 return;
8c8a743c
PZ
1785}
1786
1787void task_numa_free(struct task_struct *p)
1788{
1789 struct numa_group *grp = p->numa_group;
ff1df896 1790 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1791 unsigned long flags;
1792 int i;
8c8a743c
PZ
1793
1794 if (grp) {
e9dd685c 1795 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1796 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1797 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1798 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1799
8c8a743c
PZ
1800 list_del(&p->numa_entry);
1801 grp->nr_tasks--;
e9dd685c 1802 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1803 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1804 put_numa_group(grp);
1805 }
1806
ff1df896
RR
1807 p->numa_faults_memory = NULL;
1808 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1809 p->numa_faults_cpu= NULL;
1810 p->numa_faults_buffer_cpu = NULL;
82727018 1811 kfree(numa_faults);
8c8a743c
PZ
1812}
1813
cbee9f88
PZ
1814/*
1815 * Got a PROT_NONE fault for a page on @node.
1816 */
58b46da3 1817void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1818{
1819 struct task_struct *p = current;
6688cc05 1820 bool migrated = flags & TNF_MIGRATED;
58b46da3 1821 int cpu_node = task_node(current);
792568ec 1822 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1823 int priv;
cbee9f88 1824
10e84b97 1825 if (!numabalancing_enabled)
1a687c2e
MG
1826 return;
1827
9ff1d9ff
MG
1828 /* for example, ksmd faulting in a user's mm */
1829 if (!p->mm)
1830 return;
1831
f809ca9a 1832 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1833 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1834 int size = sizeof(*p->numa_faults_memory) *
1835 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1836
be1e4e76 1837 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1838 if (!p->numa_faults_memory)
f809ca9a 1839 return;
745d6147 1840
ff1df896 1841 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1842 /*
1843 * The averaged statistics, shared & private, memory & cpu,
1844 * occupy the first half of the array. The second half of the
1845 * array is for current counters, which are averaged into the
1846 * first set by task_numa_placement.
1847 */
50ec8a40
RR
1848 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1849 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1850 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1851 p->total_numa_faults = 0;
04bb2f94 1852 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1853 }
cbee9f88 1854
8c8a743c
PZ
1855 /*
1856 * First accesses are treated as private, otherwise consider accesses
1857 * to be private if the accessing pid has not changed
1858 */
1859 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1860 priv = 1;
1861 } else {
1862 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1863 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1864 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1865 }
1866
792568ec
RR
1867 /*
1868 * If a workload spans multiple NUMA nodes, a shared fault that
1869 * occurs wholly within the set of nodes that the workload is
1870 * actively using should be counted as local. This allows the
1871 * scan rate to slow down when a workload has settled down.
1872 */
1873 if (!priv && !local && p->numa_group &&
1874 node_isset(cpu_node, p->numa_group->active_nodes) &&
1875 node_isset(mem_node, p->numa_group->active_nodes))
1876 local = 1;
1877
cbee9f88 1878 task_numa_placement(p);
f809ca9a 1879
2739d3ee
RR
1880 /*
1881 * Retry task to preferred node migration periodically, in case it
1882 * case it previously failed, or the scheduler moved us.
1883 */
1884 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1885 numa_migrate_preferred(p);
1886
b32e86b4
IM
1887 if (migrated)
1888 p->numa_pages_migrated += pages;
1889
58b46da3
RR
1890 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1891 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1892 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1893}
1894
6e5fb223
PZ
1895static void reset_ptenuma_scan(struct task_struct *p)
1896{
1897 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1898 p->mm->numa_scan_offset = 0;
1899}
1900
cbee9f88
PZ
1901/*
1902 * The expensive part of numa migration is done from task_work context.
1903 * Triggered from task_tick_numa().
1904 */
1905void task_numa_work(struct callback_head *work)
1906{
1907 unsigned long migrate, next_scan, now = jiffies;
1908 struct task_struct *p = current;
1909 struct mm_struct *mm = p->mm;
6e5fb223 1910 struct vm_area_struct *vma;
9f40604c 1911 unsigned long start, end;
598f0ec0 1912 unsigned long nr_pte_updates = 0;
9f40604c 1913 long pages;
cbee9f88
PZ
1914
1915 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1916
1917 work->next = work; /* protect against double add */
1918 /*
1919 * Who cares about NUMA placement when they're dying.
1920 *
1921 * NOTE: make sure not to dereference p->mm before this check,
1922 * exit_task_work() happens _after_ exit_mm() so we could be called
1923 * without p->mm even though we still had it when we enqueued this
1924 * work.
1925 */
1926 if (p->flags & PF_EXITING)
1927 return;
1928
930aa174 1929 if (!mm->numa_next_scan) {
7e8d16b6
MG
1930 mm->numa_next_scan = now +
1931 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1932 }
1933
cbee9f88
PZ
1934 /*
1935 * Enforce maximal scan/migration frequency..
1936 */
1937 migrate = mm->numa_next_scan;
1938 if (time_before(now, migrate))
1939 return;
1940
598f0ec0
MG
1941 if (p->numa_scan_period == 0) {
1942 p->numa_scan_period_max = task_scan_max(p);
1943 p->numa_scan_period = task_scan_min(p);
1944 }
cbee9f88 1945
fb003b80 1946 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1947 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1948 return;
1949
19a78d11
PZ
1950 /*
1951 * Delay this task enough that another task of this mm will likely win
1952 * the next time around.
1953 */
1954 p->node_stamp += 2 * TICK_NSEC;
1955
9f40604c
MG
1956 start = mm->numa_scan_offset;
1957 pages = sysctl_numa_balancing_scan_size;
1958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1959 if (!pages)
1960 return;
cbee9f88 1961
6e5fb223 1962 down_read(&mm->mmap_sem);
9f40604c 1963 vma = find_vma(mm, start);
6e5fb223
PZ
1964 if (!vma) {
1965 reset_ptenuma_scan(p);
9f40604c 1966 start = 0;
6e5fb223
PZ
1967 vma = mm->mmap;
1968 }
9f40604c 1969 for (; vma; vma = vma->vm_next) {
6b6482bb 1970 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
1971 continue;
1972
4591ce4f
MG
1973 /*
1974 * Shared library pages mapped by multiple processes are not
1975 * migrated as it is expected they are cache replicated. Avoid
1976 * hinting faults in read-only file-backed mappings or the vdso
1977 * as migrating the pages will be of marginal benefit.
1978 */
1979 if (!vma->vm_mm ||
1980 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1981 continue;
1982
3c67f474
MG
1983 /*
1984 * Skip inaccessible VMAs to avoid any confusion between
1985 * PROT_NONE and NUMA hinting ptes
1986 */
1987 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1988 continue;
4591ce4f 1989
9f40604c
MG
1990 do {
1991 start = max(start, vma->vm_start);
1992 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1993 end = min(end, vma->vm_end);
598f0ec0
MG
1994 nr_pte_updates += change_prot_numa(vma, start, end);
1995
1996 /*
1997 * Scan sysctl_numa_balancing_scan_size but ensure that
1998 * at least one PTE is updated so that unused virtual
1999 * address space is quickly skipped.
2000 */
2001 if (nr_pte_updates)
2002 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2003
9f40604c
MG
2004 start = end;
2005 if (pages <= 0)
2006 goto out;
3cf1962c
RR
2007
2008 cond_resched();
9f40604c 2009 } while (end != vma->vm_end);
cbee9f88 2010 }
6e5fb223 2011
9f40604c 2012out:
6e5fb223 2013 /*
c69307d5
PZ
2014 * It is possible to reach the end of the VMA list but the last few
2015 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2016 * would find the !migratable VMA on the next scan but not reset the
2017 * scanner to the start so check it now.
6e5fb223
PZ
2018 */
2019 if (vma)
9f40604c 2020 mm->numa_scan_offset = start;
6e5fb223
PZ
2021 else
2022 reset_ptenuma_scan(p);
2023 up_read(&mm->mmap_sem);
cbee9f88
PZ
2024}
2025
2026/*
2027 * Drive the periodic memory faults..
2028 */
2029void task_tick_numa(struct rq *rq, struct task_struct *curr)
2030{
2031 struct callback_head *work = &curr->numa_work;
2032 u64 period, now;
2033
2034 /*
2035 * We don't care about NUMA placement if we don't have memory.
2036 */
2037 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2038 return;
2039
2040 /*
2041 * Using runtime rather than walltime has the dual advantage that
2042 * we (mostly) drive the selection from busy threads and that the
2043 * task needs to have done some actual work before we bother with
2044 * NUMA placement.
2045 */
2046 now = curr->se.sum_exec_runtime;
2047 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2048
2049 if (now - curr->node_stamp > period) {
4b96a29b 2050 if (!curr->node_stamp)
598f0ec0 2051 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2052 curr->node_stamp += period;
cbee9f88
PZ
2053
2054 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2055 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2056 task_work_add(curr, work, true);
2057 }
2058 }
2059}
2060#else
2061static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2062{
2063}
0ec8aa00
PZ
2064
2065static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2066{
2067}
2068
2069static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2070{
2071}
cbee9f88
PZ
2072#endif /* CONFIG_NUMA_BALANCING */
2073
30cfdcfc
DA
2074static void
2075account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2076{
2077 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2078 if (!parent_entity(se))
029632fb 2079 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2080#ifdef CONFIG_SMP
0ec8aa00
PZ
2081 if (entity_is_task(se)) {
2082 struct rq *rq = rq_of(cfs_rq);
2083
2084 account_numa_enqueue(rq, task_of(se));
2085 list_add(&se->group_node, &rq->cfs_tasks);
2086 }
367456c7 2087#endif
30cfdcfc 2088 cfs_rq->nr_running++;
30cfdcfc
DA
2089}
2090
2091static void
2092account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2093{
2094 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2095 if (!parent_entity(se))
029632fb 2096 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2097 if (entity_is_task(se)) {
2098 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2099 list_del_init(&se->group_node);
0ec8aa00 2100 }
30cfdcfc 2101 cfs_rq->nr_running--;
30cfdcfc
DA
2102}
2103
3ff6dcac
YZ
2104#ifdef CONFIG_FAIR_GROUP_SCHED
2105# ifdef CONFIG_SMP
cf5f0acf
PZ
2106static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2107{
2108 long tg_weight;
2109
2110 /*
2111 * Use this CPU's actual weight instead of the last load_contribution
2112 * to gain a more accurate current total weight. See
2113 * update_cfs_rq_load_contribution().
2114 */
bf5b986e 2115 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2116 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2117 tg_weight += cfs_rq->load.weight;
2118
2119 return tg_weight;
2120}
2121
6d5ab293 2122static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2123{
cf5f0acf 2124 long tg_weight, load, shares;
3ff6dcac 2125
cf5f0acf 2126 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2127 load = cfs_rq->load.weight;
3ff6dcac 2128
3ff6dcac 2129 shares = (tg->shares * load);
cf5f0acf
PZ
2130 if (tg_weight)
2131 shares /= tg_weight;
3ff6dcac
YZ
2132
2133 if (shares < MIN_SHARES)
2134 shares = MIN_SHARES;
2135 if (shares > tg->shares)
2136 shares = tg->shares;
2137
2138 return shares;
2139}
3ff6dcac 2140# else /* CONFIG_SMP */
6d5ab293 2141static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2142{
2143 return tg->shares;
2144}
3ff6dcac 2145# endif /* CONFIG_SMP */
2069dd75
PZ
2146static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2147 unsigned long weight)
2148{
19e5eebb
PT
2149 if (se->on_rq) {
2150 /* commit outstanding execution time */
2151 if (cfs_rq->curr == se)
2152 update_curr(cfs_rq);
2069dd75 2153 account_entity_dequeue(cfs_rq, se);
19e5eebb 2154 }
2069dd75
PZ
2155
2156 update_load_set(&se->load, weight);
2157
2158 if (se->on_rq)
2159 account_entity_enqueue(cfs_rq, se);
2160}
2161
82958366
PT
2162static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2163
6d5ab293 2164static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2165{
2166 struct task_group *tg;
2167 struct sched_entity *se;
3ff6dcac 2168 long shares;
2069dd75 2169
2069dd75
PZ
2170 tg = cfs_rq->tg;
2171 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2172 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2173 return;
3ff6dcac
YZ
2174#ifndef CONFIG_SMP
2175 if (likely(se->load.weight == tg->shares))
2176 return;
2177#endif
6d5ab293 2178 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2179
2180 reweight_entity(cfs_rq_of(se), se, shares);
2181}
2182#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2183static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2184{
2185}
2186#endif /* CONFIG_FAIR_GROUP_SCHED */
2187
141965c7 2188#ifdef CONFIG_SMP
5b51f2f8
PT
2189/*
2190 * We choose a half-life close to 1 scheduling period.
2191 * Note: The tables below are dependent on this value.
2192 */
2193#define LOAD_AVG_PERIOD 32
2194#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2195#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2196
2197/* Precomputed fixed inverse multiplies for multiplication by y^n */
2198static const u32 runnable_avg_yN_inv[] = {
2199 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2200 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2201 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2202 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2203 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2204 0x85aac367, 0x82cd8698,
2205};
2206
2207/*
2208 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2209 * over-estimates when re-combining.
2210 */
2211static const u32 runnable_avg_yN_sum[] = {
2212 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2213 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2214 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2215};
2216
9d85f21c
PT
2217/*
2218 * Approximate:
2219 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2220 */
2221static __always_inline u64 decay_load(u64 val, u64 n)
2222{
5b51f2f8
PT
2223 unsigned int local_n;
2224
2225 if (!n)
2226 return val;
2227 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2228 return 0;
2229
2230 /* after bounds checking we can collapse to 32-bit */
2231 local_n = n;
2232
2233 /*
2234 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2235 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2236 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2237 *
2238 * To achieve constant time decay_load.
2239 */
2240 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2241 val >>= local_n / LOAD_AVG_PERIOD;
2242 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2243 }
2244
5b51f2f8
PT
2245 val *= runnable_avg_yN_inv[local_n];
2246 /* We don't use SRR here since we always want to round down. */
2247 return val >> 32;
2248}
2249
2250/*
2251 * For updates fully spanning n periods, the contribution to runnable
2252 * average will be: \Sum 1024*y^n
2253 *
2254 * We can compute this reasonably efficiently by combining:
2255 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2256 */
2257static u32 __compute_runnable_contrib(u64 n)
2258{
2259 u32 contrib = 0;
2260
2261 if (likely(n <= LOAD_AVG_PERIOD))
2262 return runnable_avg_yN_sum[n];
2263 else if (unlikely(n >= LOAD_AVG_MAX_N))
2264 return LOAD_AVG_MAX;
2265
2266 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2267 do {
2268 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2269 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2270
2271 n -= LOAD_AVG_PERIOD;
2272 } while (n > LOAD_AVG_PERIOD);
2273
2274 contrib = decay_load(contrib, n);
2275 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2276}
2277
2278/*
2279 * We can represent the historical contribution to runnable average as the
2280 * coefficients of a geometric series. To do this we sub-divide our runnable
2281 * history into segments of approximately 1ms (1024us); label the segment that
2282 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2283 *
2284 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2285 * p0 p1 p2
2286 * (now) (~1ms ago) (~2ms ago)
2287 *
2288 * Let u_i denote the fraction of p_i that the entity was runnable.
2289 *
2290 * We then designate the fractions u_i as our co-efficients, yielding the
2291 * following representation of historical load:
2292 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2293 *
2294 * We choose y based on the with of a reasonably scheduling period, fixing:
2295 * y^32 = 0.5
2296 *
2297 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2298 * approximately half as much as the contribution to load within the last ms
2299 * (u_0).
2300 *
2301 * When a period "rolls over" and we have new u_0`, multiplying the previous
2302 * sum again by y is sufficient to update:
2303 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2304 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2305 */
2306static __always_inline int __update_entity_runnable_avg(u64 now,
2307 struct sched_avg *sa,
2308 int runnable)
2309{
5b51f2f8
PT
2310 u64 delta, periods;
2311 u32 runnable_contrib;
9d85f21c
PT
2312 int delta_w, decayed = 0;
2313
2314 delta = now - sa->last_runnable_update;
2315 /*
2316 * This should only happen when time goes backwards, which it
2317 * unfortunately does during sched clock init when we swap over to TSC.
2318 */
2319 if ((s64)delta < 0) {
2320 sa->last_runnable_update = now;
2321 return 0;
2322 }
2323
2324 /*
2325 * Use 1024ns as the unit of measurement since it's a reasonable
2326 * approximation of 1us and fast to compute.
2327 */
2328 delta >>= 10;
2329 if (!delta)
2330 return 0;
2331 sa->last_runnable_update = now;
2332
2333 /* delta_w is the amount already accumulated against our next period */
2334 delta_w = sa->runnable_avg_period % 1024;
2335 if (delta + delta_w >= 1024) {
2336 /* period roll-over */
2337 decayed = 1;
2338
2339 /*
2340 * Now that we know we're crossing a period boundary, figure
2341 * out how much from delta we need to complete the current
2342 * period and accrue it.
2343 */
2344 delta_w = 1024 - delta_w;
5b51f2f8
PT
2345 if (runnable)
2346 sa->runnable_avg_sum += delta_w;
2347 sa->runnable_avg_period += delta_w;
2348
2349 delta -= delta_w;
2350
2351 /* Figure out how many additional periods this update spans */
2352 periods = delta / 1024;
2353 delta %= 1024;
2354
2355 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2356 periods + 1);
2357 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2358 periods + 1);
2359
2360 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2361 runnable_contrib = __compute_runnable_contrib(periods);
2362 if (runnable)
2363 sa->runnable_avg_sum += runnable_contrib;
2364 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2365 }
2366
2367 /* Remainder of delta accrued against u_0` */
2368 if (runnable)
2369 sa->runnable_avg_sum += delta;
2370 sa->runnable_avg_period += delta;
2371
2372 return decayed;
2373}
2374
9ee474f5 2375/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2376static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2377{
2378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2379 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2380
2381 decays -= se->avg.decay_count;
2382 if (!decays)
aff3e498 2383 return 0;
9ee474f5
PT
2384
2385 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2386 se->avg.decay_count = 0;
aff3e498
PT
2387
2388 return decays;
9ee474f5
PT
2389}
2390
c566e8e9
PT
2391#ifdef CONFIG_FAIR_GROUP_SCHED
2392static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2393 int force_update)
2394{
2395 struct task_group *tg = cfs_rq->tg;
bf5b986e 2396 long tg_contrib;
c566e8e9
PT
2397
2398 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2399 tg_contrib -= cfs_rq->tg_load_contrib;
2400
8236d907
JL
2401 if (!tg_contrib)
2402 return;
2403
bf5b986e
AS
2404 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2405 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2406 cfs_rq->tg_load_contrib += tg_contrib;
2407 }
2408}
8165e145 2409
bb17f655
PT
2410/*
2411 * Aggregate cfs_rq runnable averages into an equivalent task_group
2412 * representation for computing load contributions.
2413 */
2414static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2415 struct cfs_rq *cfs_rq)
2416{
2417 struct task_group *tg = cfs_rq->tg;
2418 long contrib;
2419
2420 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2421 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2422 sa->runnable_avg_period + 1);
2423 contrib -= cfs_rq->tg_runnable_contrib;
2424
2425 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2426 atomic_add(contrib, &tg->runnable_avg);
2427 cfs_rq->tg_runnable_contrib += contrib;
2428 }
2429}
2430
8165e145
PT
2431static inline void __update_group_entity_contrib(struct sched_entity *se)
2432{
2433 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2434 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2435 int runnable_avg;
2436
8165e145
PT
2437 u64 contrib;
2438
2439 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2440 se->avg.load_avg_contrib = div_u64(contrib,
2441 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2442
2443 /*
2444 * For group entities we need to compute a correction term in the case
2445 * that they are consuming <1 cpu so that we would contribute the same
2446 * load as a task of equal weight.
2447 *
2448 * Explicitly co-ordinating this measurement would be expensive, but
2449 * fortunately the sum of each cpus contribution forms a usable
2450 * lower-bound on the true value.
2451 *
2452 * Consider the aggregate of 2 contributions. Either they are disjoint
2453 * (and the sum represents true value) or they are disjoint and we are
2454 * understating by the aggregate of their overlap.
2455 *
2456 * Extending this to N cpus, for a given overlap, the maximum amount we
2457 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2458 * cpus that overlap for this interval and w_i is the interval width.
2459 *
2460 * On a small machine; the first term is well-bounded which bounds the
2461 * total error since w_i is a subset of the period. Whereas on a
2462 * larger machine, while this first term can be larger, if w_i is the
2463 * of consequential size guaranteed to see n_i*w_i quickly converge to
2464 * our upper bound of 1-cpu.
2465 */
2466 runnable_avg = atomic_read(&tg->runnable_avg);
2467 if (runnable_avg < NICE_0_LOAD) {
2468 se->avg.load_avg_contrib *= runnable_avg;
2469 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2470 }
8165e145 2471}
f5f9739d
DE
2472
2473static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2474{
2475 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2476 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2477}
6e83125c 2478#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2479static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2480 int force_update) {}
bb17f655
PT
2481static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2482 struct cfs_rq *cfs_rq) {}
8165e145 2483static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2484static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2485#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2486
8165e145
PT
2487static inline void __update_task_entity_contrib(struct sched_entity *se)
2488{
2489 u32 contrib;
2490
2491 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2492 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2493 contrib /= (se->avg.runnable_avg_period + 1);
2494 se->avg.load_avg_contrib = scale_load(contrib);
2495}
2496
2dac754e
PT
2497/* Compute the current contribution to load_avg by se, return any delta */
2498static long __update_entity_load_avg_contrib(struct sched_entity *se)
2499{
2500 long old_contrib = se->avg.load_avg_contrib;
2501
8165e145
PT
2502 if (entity_is_task(se)) {
2503 __update_task_entity_contrib(se);
2504 } else {
bb17f655 2505 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2506 __update_group_entity_contrib(se);
2507 }
2dac754e
PT
2508
2509 return se->avg.load_avg_contrib - old_contrib;
2510}
2511
9ee474f5
PT
2512static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2513 long load_contrib)
2514{
2515 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2516 cfs_rq->blocked_load_avg -= load_contrib;
2517 else
2518 cfs_rq->blocked_load_avg = 0;
2519}
2520
f1b17280
PT
2521static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2522
9d85f21c 2523/* Update a sched_entity's runnable average */
9ee474f5
PT
2524static inline void update_entity_load_avg(struct sched_entity *se,
2525 int update_cfs_rq)
9d85f21c 2526{
2dac754e
PT
2527 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2528 long contrib_delta;
f1b17280 2529 u64 now;
2dac754e 2530
f1b17280
PT
2531 /*
2532 * For a group entity we need to use their owned cfs_rq_clock_task() in
2533 * case they are the parent of a throttled hierarchy.
2534 */
2535 if (entity_is_task(se))
2536 now = cfs_rq_clock_task(cfs_rq);
2537 else
2538 now = cfs_rq_clock_task(group_cfs_rq(se));
2539
2540 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2541 return;
2542
2543 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2544
2545 if (!update_cfs_rq)
2546 return;
2547
2dac754e
PT
2548 if (se->on_rq)
2549 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2550 else
2551 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2552}
2553
2554/*
2555 * Decay the load contributed by all blocked children and account this so that
2556 * their contribution may appropriately discounted when they wake up.
2557 */
aff3e498 2558static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2559{
f1b17280 2560 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2561 u64 decays;
2562
2563 decays = now - cfs_rq->last_decay;
aff3e498 2564 if (!decays && !force_update)
9ee474f5
PT
2565 return;
2566
2509940f
AS
2567 if (atomic_long_read(&cfs_rq->removed_load)) {
2568 unsigned long removed_load;
2569 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2570 subtract_blocked_load_contrib(cfs_rq, removed_load);
2571 }
9ee474f5 2572
aff3e498
PT
2573 if (decays) {
2574 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2575 decays);
2576 atomic64_add(decays, &cfs_rq->decay_counter);
2577 cfs_rq->last_decay = now;
2578 }
c566e8e9
PT
2579
2580 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2581}
18bf2805 2582
2dac754e
PT
2583/* Add the load generated by se into cfs_rq's child load-average */
2584static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2585 struct sched_entity *se,
2586 int wakeup)
2dac754e 2587{
aff3e498
PT
2588 /*
2589 * We track migrations using entity decay_count <= 0, on a wake-up
2590 * migration we use a negative decay count to track the remote decays
2591 * accumulated while sleeping.
a75cdaa9
AS
2592 *
2593 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2594 * are seen by enqueue_entity_load_avg() as a migration with an already
2595 * constructed load_avg_contrib.
aff3e498
PT
2596 */
2597 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2598 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2599 if (se->avg.decay_count) {
2600 /*
2601 * In a wake-up migration we have to approximate the
2602 * time sleeping. This is because we can't synchronize
2603 * clock_task between the two cpus, and it is not
2604 * guaranteed to be read-safe. Instead, we can
2605 * approximate this using our carried decays, which are
2606 * explicitly atomically readable.
2607 */
2608 se->avg.last_runnable_update -= (-se->avg.decay_count)
2609 << 20;
2610 update_entity_load_avg(se, 0);
2611 /* Indicate that we're now synchronized and on-rq */
2612 se->avg.decay_count = 0;
2613 }
9ee474f5
PT
2614 wakeup = 0;
2615 } else {
9390675a 2616 __synchronize_entity_decay(se);
9ee474f5
PT
2617 }
2618
aff3e498
PT
2619 /* migrated tasks did not contribute to our blocked load */
2620 if (wakeup) {
9ee474f5 2621 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2622 update_entity_load_avg(se, 0);
2623 }
9ee474f5 2624
2dac754e 2625 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2626 /* we force update consideration on load-balancer moves */
2627 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2628}
2629
9ee474f5
PT
2630/*
2631 * Remove se's load from this cfs_rq child load-average, if the entity is
2632 * transitioning to a blocked state we track its projected decay using
2633 * blocked_load_avg.
2634 */
2dac754e 2635static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2636 struct sched_entity *se,
2637 int sleep)
2dac754e 2638{
9ee474f5 2639 update_entity_load_avg(se, 1);
aff3e498
PT
2640 /* we force update consideration on load-balancer moves */
2641 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2642
2dac754e 2643 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2644 if (sleep) {
2645 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2646 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2647 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2648}
642dbc39
VG
2649
2650/*
2651 * Update the rq's load with the elapsed running time before entering
2652 * idle. if the last scheduled task is not a CFS task, idle_enter will
2653 * be the only way to update the runnable statistic.
2654 */
2655void idle_enter_fair(struct rq *this_rq)
2656{
2657 update_rq_runnable_avg(this_rq, 1);
2658}
2659
2660/*
2661 * Update the rq's load with the elapsed idle time before a task is
2662 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2663 * be the only way to update the runnable statistic.
2664 */
2665void idle_exit_fair(struct rq *this_rq)
2666{
2667 update_rq_runnable_avg(this_rq, 0);
2668}
2669
6e83125c
PZ
2670static int idle_balance(struct rq *this_rq);
2671
38033c37
PZ
2672#else /* CONFIG_SMP */
2673
9ee474f5
PT
2674static inline void update_entity_load_avg(struct sched_entity *se,
2675 int update_cfs_rq) {}
18bf2805 2676static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2677static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2678 struct sched_entity *se,
2679 int wakeup) {}
2dac754e 2680static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2681 struct sched_entity *se,
2682 int sleep) {}
aff3e498
PT
2683static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2684 int force_update) {}
6e83125c
PZ
2685
2686static inline int idle_balance(struct rq *rq)
2687{
2688 return 0;
2689}
2690
38033c37 2691#endif /* CONFIG_SMP */
9d85f21c 2692
2396af69 2693static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2694{
bf0f6f24 2695#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2696 struct task_struct *tsk = NULL;
2697
2698 if (entity_is_task(se))
2699 tsk = task_of(se);
2700
41acab88 2701 if (se->statistics.sleep_start) {
78becc27 2702 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2703
2704 if ((s64)delta < 0)
2705 delta = 0;
2706
41acab88
LDM
2707 if (unlikely(delta > se->statistics.sleep_max))
2708 se->statistics.sleep_max = delta;
bf0f6f24 2709
8c79a045 2710 se->statistics.sleep_start = 0;
41acab88 2711 se->statistics.sum_sleep_runtime += delta;
9745512c 2712
768d0c27 2713 if (tsk) {
e414314c 2714 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2715 trace_sched_stat_sleep(tsk, delta);
2716 }
bf0f6f24 2717 }
41acab88 2718 if (se->statistics.block_start) {
78becc27 2719 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2720
2721 if ((s64)delta < 0)
2722 delta = 0;
2723
41acab88
LDM
2724 if (unlikely(delta > se->statistics.block_max))
2725 se->statistics.block_max = delta;
bf0f6f24 2726
8c79a045 2727 se->statistics.block_start = 0;
41acab88 2728 se->statistics.sum_sleep_runtime += delta;
30084fbd 2729
e414314c 2730 if (tsk) {
8f0dfc34 2731 if (tsk->in_iowait) {
41acab88
LDM
2732 se->statistics.iowait_sum += delta;
2733 se->statistics.iowait_count++;
768d0c27 2734 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2735 }
2736
b781a602
AV
2737 trace_sched_stat_blocked(tsk, delta);
2738
e414314c
PZ
2739 /*
2740 * Blocking time is in units of nanosecs, so shift by
2741 * 20 to get a milliseconds-range estimation of the
2742 * amount of time that the task spent sleeping:
2743 */
2744 if (unlikely(prof_on == SLEEP_PROFILING)) {
2745 profile_hits(SLEEP_PROFILING,
2746 (void *)get_wchan(tsk),
2747 delta >> 20);
2748 }
2749 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2750 }
bf0f6f24
IM
2751 }
2752#endif
2753}
2754
ddc97297
PZ
2755static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2756{
2757#ifdef CONFIG_SCHED_DEBUG
2758 s64 d = se->vruntime - cfs_rq->min_vruntime;
2759
2760 if (d < 0)
2761 d = -d;
2762
2763 if (d > 3*sysctl_sched_latency)
2764 schedstat_inc(cfs_rq, nr_spread_over);
2765#endif
2766}
2767
aeb73b04
PZ
2768static void
2769place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2770{
1af5f730 2771 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2772
2cb8600e
PZ
2773 /*
2774 * The 'current' period is already promised to the current tasks,
2775 * however the extra weight of the new task will slow them down a
2776 * little, place the new task so that it fits in the slot that
2777 * stays open at the end.
2778 */
94dfb5e7 2779 if (initial && sched_feat(START_DEBIT))
f9c0b095 2780 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2781
a2e7a7eb 2782 /* sleeps up to a single latency don't count. */
5ca9880c 2783 if (!initial) {
a2e7a7eb 2784 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2785
a2e7a7eb
MG
2786 /*
2787 * Halve their sleep time's effect, to allow
2788 * for a gentler effect of sleepers:
2789 */
2790 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2791 thresh >>= 1;
51e0304c 2792
a2e7a7eb 2793 vruntime -= thresh;
aeb73b04
PZ
2794 }
2795
b5d9d734 2796 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2797 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2798}
2799
d3d9dc33
PT
2800static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2801
bf0f6f24 2802static void
88ec22d3 2803enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2804{
88ec22d3
PZ
2805 /*
2806 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2807 * through calling update_curr().
88ec22d3 2808 */
371fd7e7 2809 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2810 se->vruntime += cfs_rq->min_vruntime;
2811
bf0f6f24 2812 /*
a2a2d680 2813 * Update run-time statistics of the 'current'.
bf0f6f24 2814 */
b7cc0896 2815 update_curr(cfs_rq);
f269ae04 2816 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2817 account_entity_enqueue(cfs_rq, se);
2818 update_cfs_shares(cfs_rq);
bf0f6f24 2819
88ec22d3 2820 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2821 place_entity(cfs_rq, se, 0);
2396af69 2822 enqueue_sleeper(cfs_rq, se);
e9acbff6 2823 }
bf0f6f24 2824
d2417e5a 2825 update_stats_enqueue(cfs_rq, se);
ddc97297 2826 check_spread(cfs_rq, se);
83b699ed
SV
2827 if (se != cfs_rq->curr)
2828 __enqueue_entity(cfs_rq, se);
2069dd75 2829 se->on_rq = 1;
3d4b47b4 2830
d3d9dc33 2831 if (cfs_rq->nr_running == 1) {
3d4b47b4 2832 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2833 check_enqueue_throttle(cfs_rq);
2834 }
bf0f6f24
IM
2835}
2836
2c13c919 2837static void __clear_buddies_last(struct sched_entity *se)
2002c695 2838{
2c13c919
RR
2839 for_each_sched_entity(se) {
2840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2841 if (cfs_rq->last != se)
2c13c919 2842 break;
f1044799
PZ
2843
2844 cfs_rq->last = NULL;
2c13c919
RR
2845 }
2846}
2002c695 2847
2c13c919
RR
2848static void __clear_buddies_next(struct sched_entity *se)
2849{
2850 for_each_sched_entity(se) {
2851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2852 if (cfs_rq->next != se)
2c13c919 2853 break;
f1044799
PZ
2854
2855 cfs_rq->next = NULL;
2c13c919 2856 }
2002c695
PZ
2857}
2858
ac53db59
RR
2859static void __clear_buddies_skip(struct sched_entity *se)
2860{
2861 for_each_sched_entity(se) {
2862 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2863 if (cfs_rq->skip != se)
ac53db59 2864 break;
f1044799
PZ
2865
2866 cfs_rq->skip = NULL;
ac53db59
RR
2867 }
2868}
2869
a571bbea
PZ
2870static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2871{
2c13c919
RR
2872 if (cfs_rq->last == se)
2873 __clear_buddies_last(se);
2874
2875 if (cfs_rq->next == se)
2876 __clear_buddies_next(se);
ac53db59
RR
2877
2878 if (cfs_rq->skip == se)
2879 __clear_buddies_skip(se);
a571bbea
PZ
2880}
2881
6c16a6dc 2882static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2883
bf0f6f24 2884static void
371fd7e7 2885dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2886{
a2a2d680
DA
2887 /*
2888 * Update run-time statistics of the 'current'.
2889 */
2890 update_curr(cfs_rq);
17bc14b7 2891 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2892
19b6a2e3 2893 update_stats_dequeue(cfs_rq, se);
371fd7e7 2894 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2895#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2896 if (entity_is_task(se)) {
2897 struct task_struct *tsk = task_of(se);
2898
2899 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2900 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2901 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2902 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2903 }
db36cc7d 2904#endif
67e9fb2a
PZ
2905 }
2906
2002c695 2907 clear_buddies(cfs_rq, se);
4793241b 2908
83b699ed 2909 if (se != cfs_rq->curr)
30cfdcfc 2910 __dequeue_entity(cfs_rq, se);
17bc14b7 2911 se->on_rq = 0;
30cfdcfc 2912 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2913
2914 /*
2915 * Normalize the entity after updating the min_vruntime because the
2916 * update can refer to the ->curr item and we need to reflect this
2917 * movement in our normalized position.
2918 */
371fd7e7 2919 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2920 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2921
d8b4986d
PT
2922 /* return excess runtime on last dequeue */
2923 return_cfs_rq_runtime(cfs_rq);
2924
1e876231 2925 update_min_vruntime(cfs_rq);
17bc14b7 2926 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2927}
2928
2929/*
2930 * Preempt the current task with a newly woken task if needed:
2931 */
7c92e54f 2932static void
2e09bf55 2933check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2934{
11697830 2935 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2936 struct sched_entity *se;
2937 s64 delta;
11697830 2938
6d0f0ebd 2939 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2940 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2941 if (delta_exec > ideal_runtime) {
8875125e 2942 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2943 /*
2944 * The current task ran long enough, ensure it doesn't get
2945 * re-elected due to buddy favours.
2946 */
2947 clear_buddies(cfs_rq, curr);
f685ceac
MG
2948 return;
2949 }
2950
2951 /*
2952 * Ensure that a task that missed wakeup preemption by a
2953 * narrow margin doesn't have to wait for a full slice.
2954 * This also mitigates buddy induced latencies under load.
2955 */
f685ceac
MG
2956 if (delta_exec < sysctl_sched_min_granularity)
2957 return;
2958
f4cfb33e
WX
2959 se = __pick_first_entity(cfs_rq);
2960 delta = curr->vruntime - se->vruntime;
f685ceac 2961
f4cfb33e
WX
2962 if (delta < 0)
2963 return;
d7d82944 2964
f4cfb33e 2965 if (delta > ideal_runtime)
8875125e 2966 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2967}
2968
83b699ed 2969static void
8494f412 2970set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2971{
83b699ed
SV
2972 /* 'current' is not kept within the tree. */
2973 if (se->on_rq) {
2974 /*
2975 * Any task has to be enqueued before it get to execute on
2976 * a CPU. So account for the time it spent waiting on the
2977 * runqueue.
2978 */
2979 update_stats_wait_end(cfs_rq, se);
2980 __dequeue_entity(cfs_rq, se);
2981 }
2982
79303e9e 2983 update_stats_curr_start(cfs_rq, se);
429d43bc 2984 cfs_rq->curr = se;
eba1ed4b
IM
2985#ifdef CONFIG_SCHEDSTATS
2986 /*
2987 * Track our maximum slice length, if the CPU's load is at
2988 * least twice that of our own weight (i.e. dont track it
2989 * when there are only lesser-weight tasks around):
2990 */
495eca49 2991 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2992 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2993 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2994 }
2995#endif
4a55b450 2996 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2997}
2998
3f3a4904
PZ
2999static int
3000wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3001
ac53db59
RR
3002/*
3003 * Pick the next process, keeping these things in mind, in this order:
3004 * 1) keep things fair between processes/task groups
3005 * 2) pick the "next" process, since someone really wants that to run
3006 * 3) pick the "last" process, for cache locality
3007 * 4) do not run the "skip" process, if something else is available
3008 */
678d5718
PZ
3009static struct sched_entity *
3010pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3011{
678d5718
PZ
3012 struct sched_entity *left = __pick_first_entity(cfs_rq);
3013 struct sched_entity *se;
3014
3015 /*
3016 * If curr is set we have to see if its left of the leftmost entity
3017 * still in the tree, provided there was anything in the tree at all.
3018 */
3019 if (!left || (curr && entity_before(curr, left)))
3020 left = curr;
3021
3022 se = left; /* ideally we run the leftmost entity */
f4b6755f 3023
ac53db59
RR
3024 /*
3025 * Avoid running the skip buddy, if running something else can
3026 * be done without getting too unfair.
3027 */
3028 if (cfs_rq->skip == se) {
678d5718
PZ
3029 struct sched_entity *second;
3030
3031 if (se == curr) {
3032 second = __pick_first_entity(cfs_rq);
3033 } else {
3034 second = __pick_next_entity(se);
3035 if (!second || (curr && entity_before(curr, second)))
3036 second = curr;
3037 }
3038
ac53db59
RR
3039 if (second && wakeup_preempt_entity(second, left) < 1)
3040 se = second;
3041 }
aa2ac252 3042
f685ceac
MG
3043 /*
3044 * Prefer last buddy, try to return the CPU to a preempted task.
3045 */
3046 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3047 se = cfs_rq->last;
3048
ac53db59
RR
3049 /*
3050 * Someone really wants this to run. If it's not unfair, run it.
3051 */
3052 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3053 se = cfs_rq->next;
3054
f685ceac 3055 clear_buddies(cfs_rq, se);
4793241b
PZ
3056
3057 return se;
aa2ac252
PZ
3058}
3059
678d5718 3060static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3061
ab6cde26 3062static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3063{
3064 /*
3065 * If still on the runqueue then deactivate_task()
3066 * was not called and update_curr() has to be done:
3067 */
3068 if (prev->on_rq)
b7cc0896 3069 update_curr(cfs_rq);
bf0f6f24 3070
d3d9dc33
PT
3071 /* throttle cfs_rqs exceeding runtime */
3072 check_cfs_rq_runtime(cfs_rq);
3073
ddc97297 3074 check_spread(cfs_rq, prev);
30cfdcfc 3075 if (prev->on_rq) {
5870db5b 3076 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3077 /* Put 'current' back into the tree. */
3078 __enqueue_entity(cfs_rq, prev);
9d85f21c 3079 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3080 update_entity_load_avg(prev, 1);
30cfdcfc 3081 }
429d43bc 3082 cfs_rq->curr = NULL;
bf0f6f24
IM
3083}
3084
8f4d37ec
PZ
3085static void
3086entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3087{
bf0f6f24 3088 /*
30cfdcfc 3089 * Update run-time statistics of the 'current'.
bf0f6f24 3090 */
30cfdcfc 3091 update_curr(cfs_rq);
bf0f6f24 3092
9d85f21c
PT
3093 /*
3094 * Ensure that runnable average is periodically updated.
3095 */
9ee474f5 3096 update_entity_load_avg(curr, 1);
aff3e498 3097 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3098 update_cfs_shares(cfs_rq);
9d85f21c 3099
8f4d37ec
PZ
3100#ifdef CONFIG_SCHED_HRTICK
3101 /*
3102 * queued ticks are scheduled to match the slice, so don't bother
3103 * validating it and just reschedule.
3104 */
983ed7a6 3105 if (queued) {
8875125e 3106 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3107 return;
3108 }
8f4d37ec
PZ
3109 /*
3110 * don't let the period tick interfere with the hrtick preemption
3111 */
3112 if (!sched_feat(DOUBLE_TICK) &&
3113 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3114 return;
3115#endif
3116
2c2efaed 3117 if (cfs_rq->nr_running > 1)
2e09bf55 3118 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3119}
3120
ab84d31e
PT
3121
3122/**************************************************
3123 * CFS bandwidth control machinery
3124 */
3125
3126#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3127
3128#ifdef HAVE_JUMP_LABEL
c5905afb 3129static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3130
3131static inline bool cfs_bandwidth_used(void)
3132{
c5905afb 3133 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3134}
3135
1ee14e6c 3136void cfs_bandwidth_usage_inc(void)
029632fb 3137{
1ee14e6c
BS
3138 static_key_slow_inc(&__cfs_bandwidth_used);
3139}
3140
3141void cfs_bandwidth_usage_dec(void)
3142{
3143 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3144}
3145#else /* HAVE_JUMP_LABEL */
3146static bool cfs_bandwidth_used(void)
3147{
3148 return true;
3149}
3150
1ee14e6c
BS
3151void cfs_bandwidth_usage_inc(void) {}
3152void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3153#endif /* HAVE_JUMP_LABEL */
3154
ab84d31e
PT
3155/*
3156 * default period for cfs group bandwidth.
3157 * default: 0.1s, units: nanoseconds
3158 */
3159static inline u64 default_cfs_period(void)
3160{
3161 return 100000000ULL;
3162}
ec12cb7f
PT
3163
3164static inline u64 sched_cfs_bandwidth_slice(void)
3165{
3166 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3167}
3168
a9cf55b2
PT
3169/*
3170 * Replenish runtime according to assigned quota and update expiration time.
3171 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3172 * additional synchronization around rq->lock.
3173 *
3174 * requires cfs_b->lock
3175 */
029632fb 3176void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3177{
3178 u64 now;
3179
3180 if (cfs_b->quota == RUNTIME_INF)
3181 return;
3182
3183 now = sched_clock_cpu(smp_processor_id());
3184 cfs_b->runtime = cfs_b->quota;
3185 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3186}
3187
029632fb
PZ
3188static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3189{
3190 return &tg->cfs_bandwidth;
3191}
3192
f1b17280
PT
3193/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3194static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3195{
3196 if (unlikely(cfs_rq->throttle_count))
3197 return cfs_rq->throttled_clock_task;
3198
78becc27 3199 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3200}
3201
85dac906
PT
3202/* returns 0 on failure to allocate runtime */
3203static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3204{
3205 struct task_group *tg = cfs_rq->tg;
3206 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3207 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3208
3209 /* note: this is a positive sum as runtime_remaining <= 0 */
3210 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3211
3212 raw_spin_lock(&cfs_b->lock);
3213 if (cfs_b->quota == RUNTIME_INF)
3214 amount = min_amount;
58088ad0 3215 else {
a9cf55b2
PT
3216 /*
3217 * If the bandwidth pool has become inactive, then at least one
3218 * period must have elapsed since the last consumption.
3219 * Refresh the global state and ensure bandwidth timer becomes
3220 * active.
3221 */
3222 if (!cfs_b->timer_active) {
3223 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3224 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3225 }
58088ad0
PT
3226
3227 if (cfs_b->runtime > 0) {
3228 amount = min(cfs_b->runtime, min_amount);
3229 cfs_b->runtime -= amount;
3230 cfs_b->idle = 0;
3231 }
ec12cb7f 3232 }
a9cf55b2 3233 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3234 raw_spin_unlock(&cfs_b->lock);
3235
3236 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3237 /*
3238 * we may have advanced our local expiration to account for allowed
3239 * spread between our sched_clock and the one on which runtime was
3240 * issued.
3241 */
3242 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3243 cfs_rq->runtime_expires = expires;
85dac906
PT
3244
3245 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3246}
3247
a9cf55b2
PT
3248/*
3249 * Note: This depends on the synchronization provided by sched_clock and the
3250 * fact that rq->clock snapshots this value.
3251 */
3252static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3253{
a9cf55b2 3254 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3255
3256 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3257 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3258 return;
3259
a9cf55b2
PT
3260 if (cfs_rq->runtime_remaining < 0)
3261 return;
3262
3263 /*
3264 * If the local deadline has passed we have to consider the
3265 * possibility that our sched_clock is 'fast' and the global deadline
3266 * has not truly expired.
3267 *
3268 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3269 * whether the global deadline has advanced. It is valid to compare
3270 * cfs_b->runtime_expires without any locks since we only care about
3271 * exact equality, so a partial write will still work.
a9cf55b2
PT
3272 */
3273
51f2176d 3274 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3275 /* extend local deadline, drift is bounded above by 2 ticks */
3276 cfs_rq->runtime_expires += TICK_NSEC;
3277 } else {
3278 /* global deadline is ahead, expiration has passed */
3279 cfs_rq->runtime_remaining = 0;
3280 }
3281}
3282
9dbdb155 3283static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3284{
3285 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3286 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3287 expire_cfs_rq_runtime(cfs_rq);
3288
3289 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3290 return;
3291
85dac906
PT
3292 /*
3293 * if we're unable to extend our runtime we resched so that the active
3294 * hierarchy can be throttled
3295 */
3296 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3297 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3298}
3299
6c16a6dc 3300static __always_inline
9dbdb155 3301void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3302{
56f570e5 3303 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3304 return;
3305
3306 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3307}
3308
85dac906
PT
3309static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3310{
56f570e5 3311 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3312}
3313
64660c86
PT
3314/* check whether cfs_rq, or any parent, is throttled */
3315static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3316{
56f570e5 3317 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3318}
3319
3320/*
3321 * Ensure that neither of the group entities corresponding to src_cpu or
3322 * dest_cpu are members of a throttled hierarchy when performing group
3323 * load-balance operations.
3324 */
3325static inline int throttled_lb_pair(struct task_group *tg,
3326 int src_cpu, int dest_cpu)
3327{
3328 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3329
3330 src_cfs_rq = tg->cfs_rq[src_cpu];
3331 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3332
3333 return throttled_hierarchy(src_cfs_rq) ||
3334 throttled_hierarchy(dest_cfs_rq);
3335}
3336
3337/* updated child weight may affect parent so we have to do this bottom up */
3338static int tg_unthrottle_up(struct task_group *tg, void *data)
3339{
3340 struct rq *rq = data;
3341 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3342
3343 cfs_rq->throttle_count--;
3344#ifdef CONFIG_SMP
3345 if (!cfs_rq->throttle_count) {
f1b17280 3346 /* adjust cfs_rq_clock_task() */
78becc27 3347 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3348 cfs_rq->throttled_clock_task;
64660c86
PT
3349 }
3350#endif
3351
3352 return 0;
3353}
3354
3355static int tg_throttle_down(struct task_group *tg, void *data)
3356{
3357 struct rq *rq = data;
3358 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3359
82958366
PT
3360 /* group is entering throttled state, stop time */
3361 if (!cfs_rq->throttle_count)
78becc27 3362 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3363 cfs_rq->throttle_count++;
3364
3365 return 0;
3366}
3367
d3d9dc33 3368static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3369{
3370 struct rq *rq = rq_of(cfs_rq);
3371 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3372 struct sched_entity *se;
3373 long task_delta, dequeue = 1;
3374
3375 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3376
f1b17280 3377 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3378 rcu_read_lock();
3379 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3380 rcu_read_unlock();
85dac906
PT
3381
3382 task_delta = cfs_rq->h_nr_running;
3383 for_each_sched_entity(se) {
3384 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3385 /* throttled entity or throttle-on-deactivate */
3386 if (!se->on_rq)
3387 break;
3388
3389 if (dequeue)
3390 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3391 qcfs_rq->h_nr_running -= task_delta;
3392
3393 if (qcfs_rq->load.weight)
3394 dequeue = 0;
3395 }
3396
3397 if (!se)
72465447 3398 sub_nr_running(rq, task_delta);
85dac906
PT
3399
3400 cfs_rq->throttled = 1;
78becc27 3401 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3402 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3403 /*
3404 * Add to the _head_ of the list, so that an already-started
3405 * distribute_cfs_runtime will not see us
3406 */
3407 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3408 if (!cfs_b->timer_active)
09dc4ab0 3409 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3410 raw_spin_unlock(&cfs_b->lock);
3411}
3412
029632fb 3413void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3414{
3415 struct rq *rq = rq_of(cfs_rq);
3416 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3417 struct sched_entity *se;
3418 int enqueue = 1;
3419 long task_delta;
3420
22b958d8 3421 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3422
3423 cfs_rq->throttled = 0;
1a55af2e
FW
3424
3425 update_rq_clock(rq);
3426
671fd9da 3427 raw_spin_lock(&cfs_b->lock);
78becc27 3428 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3429 list_del_rcu(&cfs_rq->throttled_list);
3430 raw_spin_unlock(&cfs_b->lock);
3431
64660c86
PT
3432 /* update hierarchical throttle state */
3433 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3434
671fd9da
PT
3435 if (!cfs_rq->load.weight)
3436 return;
3437
3438 task_delta = cfs_rq->h_nr_running;
3439 for_each_sched_entity(se) {
3440 if (se->on_rq)
3441 enqueue = 0;
3442
3443 cfs_rq = cfs_rq_of(se);
3444 if (enqueue)
3445 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3446 cfs_rq->h_nr_running += task_delta;
3447
3448 if (cfs_rq_throttled(cfs_rq))
3449 break;
3450 }
3451
3452 if (!se)
72465447 3453 add_nr_running(rq, task_delta);
671fd9da
PT
3454
3455 /* determine whether we need to wake up potentially idle cpu */
3456 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3457 resched_curr(rq);
671fd9da
PT
3458}
3459
3460static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3461 u64 remaining, u64 expires)
3462{
3463 struct cfs_rq *cfs_rq;
c06f04c7
BS
3464 u64 runtime;
3465 u64 starting_runtime = remaining;
671fd9da
PT
3466
3467 rcu_read_lock();
3468 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3469 throttled_list) {
3470 struct rq *rq = rq_of(cfs_rq);
3471
3472 raw_spin_lock(&rq->lock);
3473 if (!cfs_rq_throttled(cfs_rq))
3474 goto next;
3475
3476 runtime = -cfs_rq->runtime_remaining + 1;
3477 if (runtime > remaining)
3478 runtime = remaining;
3479 remaining -= runtime;
3480
3481 cfs_rq->runtime_remaining += runtime;
3482 cfs_rq->runtime_expires = expires;
3483
3484 /* we check whether we're throttled above */
3485 if (cfs_rq->runtime_remaining > 0)
3486 unthrottle_cfs_rq(cfs_rq);
3487
3488next:
3489 raw_spin_unlock(&rq->lock);
3490
3491 if (!remaining)
3492 break;
3493 }
3494 rcu_read_unlock();
3495
c06f04c7 3496 return starting_runtime - remaining;
671fd9da
PT
3497}
3498
58088ad0
PT
3499/*
3500 * Responsible for refilling a task_group's bandwidth and unthrottling its
3501 * cfs_rqs as appropriate. If there has been no activity within the last
3502 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3503 * used to track this state.
3504 */
3505static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3506{
671fd9da 3507 u64 runtime, runtime_expires;
51f2176d 3508 int throttled;
58088ad0 3509
58088ad0
PT
3510 /* no need to continue the timer with no bandwidth constraint */
3511 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3512 goto out_deactivate;
58088ad0 3513
671fd9da 3514 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3515 cfs_b->nr_periods += overrun;
671fd9da 3516
51f2176d
BS
3517 /*
3518 * idle depends on !throttled (for the case of a large deficit), and if
3519 * we're going inactive then everything else can be deferred
3520 */
3521 if (cfs_b->idle && !throttled)
3522 goto out_deactivate;
a9cf55b2 3523
927b54fc
BS
3524 /*
3525 * if we have relooped after returning idle once, we need to update our
3526 * status as actually running, so that other cpus doing
3527 * __start_cfs_bandwidth will stop trying to cancel us.
3528 */
3529 cfs_b->timer_active = 1;
3530
a9cf55b2
PT
3531 __refill_cfs_bandwidth_runtime(cfs_b);
3532
671fd9da
PT
3533 if (!throttled) {
3534 /* mark as potentially idle for the upcoming period */
3535 cfs_b->idle = 1;
51f2176d 3536 return 0;
671fd9da
PT
3537 }
3538
e8da1b18
NR
3539 /* account preceding periods in which throttling occurred */
3540 cfs_b->nr_throttled += overrun;
3541
671fd9da 3542 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3543
3544 /*
c06f04c7
BS
3545 * This check is repeated as we are holding onto the new bandwidth while
3546 * we unthrottle. This can potentially race with an unthrottled group
3547 * trying to acquire new bandwidth from the global pool. This can result
3548 * in us over-using our runtime if it is all used during this loop, but
3549 * only by limited amounts in that extreme case.
671fd9da 3550 */
c06f04c7
BS
3551 while (throttled && cfs_b->runtime > 0) {
3552 runtime = cfs_b->runtime;
671fd9da
PT
3553 raw_spin_unlock(&cfs_b->lock);
3554 /* we can't nest cfs_b->lock while distributing bandwidth */
3555 runtime = distribute_cfs_runtime(cfs_b, runtime,
3556 runtime_expires);
3557 raw_spin_lock(&cfs_b->lock);
3558
3559 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3560
3561 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3562 }
58088ad0 3563
671fd9da
PT
3564 /*
3565 * While we are ensured activity in the period following an
3566 * unthrottle, this also covers the case in which the new bandwidth is
3567 * insufficient to cover the existing bandwidth deficit. (Forcing the
3568 * timer to remain active while there are any throttled entities.)
3569 */
3570 cfs_b->idle = 0;
58088ad0 3571
51f2176d
BS
3572 return 0;
3573
3574out_deactivate:
3575 cfs_b->timer_active = 0;
3576 return 1;
58088ad0 3577}
d3d9dc33 3578
d8b4986d
PT
3579/* a cfs_rq won't donate quota below this amount */
3580static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3581/* minimum remaining period time to redistribute slack quota */
3582static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3583/* how long we wait to gather additional slack before distributing */
3584static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3585
db06e78c
BS
3586/*
3587 * Are we near the end of the current quota period?
3588 *
3589 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3590 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3591 * migrate_hrtimers, base is never cleared, so we are fine.
3592 */
d8b4986d
PT
3593static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3594{
3595 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3596 u64 remaining;
3597
3598 /* if the call-back is running a quota refresh is already occurring */
3599 if (hrtimer_callback_running(refresh_timer))
3600 return 1;
3601
3602 /* is a quota refresh about to occur? */
3603 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3604 if (remaining < min_expire)
3605 return 1;
3606
3607 return 0;
3608}
3609
3610static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3611{
3612 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3613
3614 /* if there's a quota refresh soon don't bother with slack */
3615 if (runtime_refresh_within(cfs_b, min_left))
3616 return;
3617
3618 start_bandwidth_timer(&cfs_b->slack_timer,
3619 ns_to_ktime(cfs_bandwidth_slack_period));
3620}
3621
3622/* we know any runtime found here is valid as update_curr() precedes return */
3623static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624{
3625 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3626 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3627
3628 if (slack_runtime <= 0)
3629 return;
3630
3631 raw_spin_lock(&cfs_b->lock);
3632 if (cfs_b->quota != RUNTIME_INF &&
3633 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3634 cfs_b->runtime += slack_runtime;
3635
3636 /* we are under rq->lock, defer unthrottling using a timer */
3637 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3638 !list_empty(&cfs_b->throttled_cfs_rq))
3639 start_cfs_slack_bandwidth(cfs_b);
3640 }
3641 raw_spin_unlock(&cfs_b->lock);
3642
3643 /* even if it's not valid for return we don't want to try again */
3644 cfs_rq->runtime_remaining -= slack_runtime;
3645}
3646
3647static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3648{
56f570e5
PT
3649 if (!cfs_bandwidth_used())
3650 return;
3651
fccfdc6f 3652 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3653 return;
3654
3655 __return_cfs_rq_runtime(cfs_rq);
3656}
3657
3658/*
3659 * This is done with a timer (instead of inline with bandwidth return) since
3660 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3661 */
3662static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3663{
3664 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3665 u64 expires;
3666
3667 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3668 raw_spin_lock(&cfs_b->lock);
3669 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3670 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3671 return;
db06e78c 3672 }
d8b4986d 3673
c06f04c7 3674 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3675 runtime = cfs_b->runtime;
c06f04c7 3676
d8b4986d
PT
3677 expires = cfs_b->runtime_expires;
3678 raw_spin_unlock(&cfs_b->lock);
3679
3680 if (!runtime)
3681 return;
3682
3683 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3684
3685 raw_spin_lock(&cfs_b->lock);
3686 if (expires == cfs_b->runtime_expires)
c06f04c7 3687 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3688 raw_spin_unlock(&cfs_b->lock);
3689}
3690
d3d9dc33
PT
3691/*
3692 * When a group wakes up we want to make sure that its quota is not already
3693 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3694 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3695 */
3696static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3697{
56f570e5
PT
3698 if (!cfs_bandwidth_used())
3699 return;
3700
d3d9dc33
PT
3701 /* an active group must be handled by the update_curr()->put() path */
3702 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3703 return;
3704
3705 /* ensure the group is not already throttled */
3706 if (cfs_rq_throttled(cfs_rq))
3707 return;
3708
3709 /* update runtime allocation */
3710 account_cfs_rq_runtime(cfs_rq, 0);
3711 if (cfs_rq->runtime_remaining <= 0)
3712 throttle_cfs_rq(cfs_rq);
3713}
3714
3715/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3716static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3717{
56f570e5 3718 if (!cfs_bandwidth_used())
678d5718 3719 return false;
56f570e5 3720
d3d9dc33 3721 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3722 return false;
d3d9dc33
PT
3723
3724 /*
3725 * it's possible for a throttled entity to be forced into a running
3726 * state (e.g. set_curr_task), in this case we're finished.
3727 */
3728 if (cfs_rq_throttled(cfs_rq))
678d5718 3729 return true;
d3d9dc33
PT
3730
3731 throttle_cfs_rq(cfs_rq);
678d5718 3732 return true;
d3d9dc33 3733}
029632fb 3734
029632fb
PZ
3735static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3736{
3737 struct cfs_bandwidth *cfs_b =
3738 container_of(timer, struct cfs_bandwidth, slack_timer);
3739 do_sched_cfs_slack_timer(cfs_b);
3740
3741 return HRTIMER_NORESTART;
3742}
3743
3744static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3745{
3746 struct cfs_bandwidth *cfs_b =
3747 container_of(timer, struct cfs_bandwidth, period_timer);
3748 ktime_t now;
3749 int overrun;
3750 int idle = 0;
3751
51f2176d 3752 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3753 for (;;) {
3754 now = hrtimer_cb_get_time(timer);
3755 overrun = hrtimer_forward(timer, now, cfs_b->period);
3756
3757 if (!overrun)
3758 break;
3759
3760 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3761 }
51f2176d 3762 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3763
3764 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3765}
3766
3767void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3768{
3769 raw_spin_lock_init(&cfs_b->lock);
3770 cfs_b->runtime = 0;
3771 cfs_b->quota = RUNTIME_INF;
3772 cfs_b->period = ns_to_ktime(default_cfs_period());
3773
3774 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3775 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3776 cfs_b->period_timer.function = sched_cfs_period_timer;
3777 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3778 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3779}
3780
3781static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3782{
3783 cfs_rq->runtime_enabled = 0;
3784 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3785}
3786
3787/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3788void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3789{
3790 /*
3791 * The timer may be active because we're trying to set a new bandwidth
3792 * period or because we're racing with the tear-down path
3793 * (timer_active==0 becomes visible before the hrtimer call-back
3794 * terminates). In either case we ensure that it's re-programmed
3795 */
927b54fc
BS
3796 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3797 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3798 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3799 raw_spin_unlock(&cfs_b->lock);
927b54fc 3800 cpu_relax();
029632fb
PZ
3801 raw_spin_lock(&cfs_b->lock);
3802 /* if someone else restarted the timer then we're done */
09dc4ab0 3803 if (!force && cfs_b->timer_active)
029632fb
PZ
3804 return;
3805 }
3806
3807 cfs_b->timer_active = 1;
3808 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3809}
3810
3811static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3812{
3813 hrtimer_cancel(&cfs_b->period_timer);
3814 hrtimer_cancel(&cfs_b->slack_timer);
3815}
3816
0e59bdae
KT
3817static void __maybe_unused update_runtime_enabled(struct rq *rq)
3818{
3819 struct cfs_rq *cfs_rq;
3820
3821 for_each_leaf_cfs_rq(rq, cfs_rq) {
3822 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3823
3824 raw_spin_lock(&cfs_b->lock);
3825 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3826 raw_spin_unlock(&cfs_b->lock);
3827 }
3828}
3829
38dc3348 3830static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3831{
3832 struct cfs_rq *cfs_rq;
3833
3834 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3835 if (!cfs_rq->runtime_enabled)
3836 continue;
3837
3838 /*
3839 * clock_task is not advancing so we just need to make sure
3840 * there's some valid quota amount
3841 */
51f2176d 3842 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3843 /*
3844 * Offline rq is schedulable till cpu is completely disabled
3845 * in take_cpu_down(), so we prevent new cfs throttling here.
3846 */
3847 cfs_rq->runtime_enabled = 0;
3848
029632fb
PZ
3849 if (cfs_rq_throttled(cfs_rq))
3850 unthrottle_cfs_rq(cfs_rq);
3851 }
3852}
3853
3854#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3855static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3856{
78becc27 3857 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3858}
3859
9dbdb155 3860static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3861static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3862static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3863static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3864
3865static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3866{
3867 return 0;
3868}
64660c86
PT
3869
3870static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3871{
3872 return 0;
3873}
3874
3875static inline int throttled_lb_pair(struct task_group *tg,
3876 int src_cpu, int dest_cpu)
3877{
3878 return 0;
3879}
029632fb
PZ
3880
3881void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3882
3883#ifdef CONFIG_FAIR_GROUP_SCHED
3884static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3885#endif
3886
029632fb
PZ
3887static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3888{
3889 return NULL;
3890}
3891static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3892static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3893static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3894
3895#endif /* CONFIG_CFS_BANDWIDTH */
3896
bf0f6f24
IM
3897/**************************************************
3898 * CFS operations on tasks:
3899 */
3900
8f4d37ec
PZ
3901#ifdef CONFIG_SCHED_HRTICK
3902static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3903{
8f4d37ec
PZ
3904 struct sched_entity *se = &p->se;
3905 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3906
3907 WARN_ON(task_rq(p) != rq);
3908
b39e66ea 3909 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3910 u64 slice = sched_slice(cfs_rq, se);
3911 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3912 s64 delta = slice - ran;
3913
3914 if (delta < 0) {
3915 if (rq->curr == p)
8875125e 3916 resched_curr(rq);
8f4d37ec
PZ
3917 return;
3918 }
31656519 3919 hrtick_start(rq, delta);
8f4d37ec
PZ
3920 }
3921}
a4c2f00f
PZ
3922
3923/*
3924 * called from enqueue/dequeue and updates the hrtick when the
3925 * current task is from our class and nr_running is low enough
3926 * to matter.
3927 */
3928static void hrtick_update(struct rq *rq)
3929{
3930 struct task_struct *curr = rq->curr;
3931
b39e66ea 3932 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3933 return;
3934
3935 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3936 hrtick_start_fair(rq, curr);
3937}
55e12e5e 3938#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3939static inline void
3940hrtick_start_fair(struct rq *rq, struct task_struct *p)
3941{
3942}
a4c2f00f
PZ
3943
3944static inline void hrtick_update(struct rq *rq)
3945{
3946}
8f4d37ec
PZ
3947#endif
3948
bf0f6f24
IM
3949/*
3950 * The enqueue_task method is called before nr_running is
3951 * increased. Here we update the fair scheduling stats and
3952 * then put the task into the rbtree:
3953 */
ea87bb78 3954static void
371fd7e7 3955enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3956{
3957 struct cfs_rq *cfs_rq;
62fb1851 3958 struct sched_entity *se = &p->se;
bf0f6f24
IM
3959
3960 for_each_sched_entity(se) {
62fb1851 3961 if (se->on_rq)
bf0f6f24
IM
3962 break;
3963 cfs_rq = cfs_rq_of(se);
88ec22d3 3964 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3965
3966 /*
3967 * end evaluation on encountering a throttled cfs_rq
3968 *
3969 * note: in the case of encountering a throttled cfs_rq we will
3970 * post the final h_nr_running increment below.
3971 */
3972 if (cfs_rq_throttled(cfs_rq))
3973 break;
953bfcd1 3974 cfs_rq->h_nr_running++;
85dac906 3975
88ec22d3 3976 flags = ENQUEUE_WAKEUP;
bf0f6f24 3977 }
8f4d37ec 3978
2069dd75 3979 for_each_sched_entity(se) {
0f317143 3980 cfs_rq = cfs_rq_of(se);
953bfcd1 3981 cfs_rq->h_nr_running++;
2069dd75 3982
85dac906
PT
3983 if (cfs_rq_throttled(cfs_rq))
3984 break;
3985
17bc14b7 3986 update_cfs_shares(cfs_rq);
9ee474f5 3987 update_entity_load_avg(se, 1);
2069dd75
PZ
3988 }
3989
18bf2805
BS
3990 if (!se) {
3991 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3992 add_nr_running(rq, 1);
18bf2805 3993 }
a4c2f00f 3994 hrtick_update(rq);
bf0f6f24
IM
3995}
3996
2f36825b
VP
3997static void set_next_buddy(struct sched_entity *se);
3998
bf0f6f24
IM
3999/*
4000 * The dequeue_task method is called before nr_running is
4001 * decreased. We remove the task from the rbtree and
4002 * update the fair scheduling stats:
4003 */
371fd7e7 4004static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4005{
4006 struct cfs_rq *cfs_rq;
62fb1851 4007 struct sched_entity *se = &p->se;
2f36825b 4008 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4009
4010 for_each_sched_entity(se) {
4011 cfs_rq = cfs_rq_of(se);
371fd7e7 4012 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4013
4014 /*
4015 * end evaluation on encountering a throttled cfs_rq
4016 *
4017 * note: in the case of encountering a throttled cfs_rq we will
4018 * post the final h_nr_running decrement below.
4019 */
4020 if (cfs_rq_throttled(cfs_rq))
4021 break;
953bfcd1 4022 cfs_rq->h_nr_running--;
2069dd75 4023
bf0f6f24 4024 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4025 if (cfs_rq->load.weight) {
4026 /*
4027 * Bias pick_next to pick a task from this cfs_rq, as
4028 * p is sleeping when it is within its sched_slice.
4029 */
4030 if (task_sleep && parent_entity(se))
4031 set_next_buddy(parent_entity(se));
9598c82d
PT
4032
4033 /* avoid re-evaluating load for this entity */
4034 se = parent_entity(se);
bf0f6f24 4035 break;
2f36825b 4036 }
371fd7e7 4037 flags |= DEQUEUE_SLEEP;
bf0f6f24 4038 }
8f4d37ec 4039
2069dd75 4040 for_each_sched_entity(se) {
0f317143 4041 cfs_rq = cfs_rq_of(se);
953bfcd1 4042 cfs_rq->h_nr_running--;
2069dd75 4043
85dac906
PT
4044 if (cfs_rq_throttled(cfs_rq))
4045 break;
4046
17bc14b7 4047 update_cfs_shares(cfs_rq);
9ee474f5 4048 update_entity_load_avg(se, 1);
2069dd75
PZ
4049 }
4050
18bf2805 4051 if (!se) {
72465447 4052 sub_nr_running(rq, 1);
18bf2805
BS
4053 update_rq_runnable_avg(rq, 1);
4054 }
a4c2f00f 4055 hrtick_update(rq);
bf0f6f24
IM
4056}
4057
e7693a36 4058#ifdef CONFIG_SMP
029632fb
PZ
4059/* Used instead of source_load when we know the type == 0 */
4060static unsigned long weighted_cpuload(const int cpu)
4061{
b92486cb 4062 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4063}
4064
4065/*
4066 * Return a low guess at the load of a migration-source cpu weighted
4067 * according to the scheduling class and "nice" value.
4068 *
4069 * We want to under-estimate the load of migration sources, to
4070 * balance conservatively.
4071 */
4072static unsigned long source_load(int cpu, int type)
4073{
4074 struct rq *rq = cpu_rq(cpu);
4075 unsigned long total = weighted_cpuload(cpu);
4076
4077 if (type == 0 || !sched_feat(LB_BIAS))
4078 return total;
4079
4080 return min(rq->cpu_load[type-1], total);
4081}
4082
4083/*
4084 * Return a high guess at the load of a migration-target cpu weighted
4085 * according to the scheduling class and "nice" value.
4086 */
4087static unsigned long target_load(int cpu, int type)
4088{
4089 struct rq *rq = cpu_rq(cpu);
4090 unsigned long total = weighted_cpuload(cpu);
4091
4092 if (type == 0 || !sched_feat(LB_BIAS))
4093 return total;
4094
4095 return max(rq->cpu_load[type-1], total);
4096}
4097
ced549fa 4098static unsigned long capacity_of(int cpu)
029632fb 4099{
ced549fa 4100 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4101}
4102
4103static unsigned long cpu_avg_load_per_task(int cpu)
4104{
4105 struct rq *rq = cpu_rq(cpu);
65fdac08 4106 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4107 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4108
4109 if (nr_running)
b92486cb 4110 return load_avg / nr_running;
029632fb
PZ
4111
4112 return 0;
4113}
4114
62470419
MW
4115static void record_wakee(struct task_struct *p)
4116{
4117 /*
4118 * Rough decay (wiping) for cost saving, don't worry
4119 * about the boundary, really active task won't care
4120 * about the loss.
4121 */
2538d960 4122 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4123 current->wakee_flips >>= 1;
62470419
MW
4124 current->wakee_flip_decay_ts = jiffies;
4125 }
4126
4127 if (current->last_wakee != p) {
4128 current->last_wakee = p;
4129 current->wakee_flips++;
4130 }
4131}
098fb9db 4132
74f8e4b2 4133static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4134{
4135 struct sched_entity *se = &p->se;
4136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4137 u64 min_vruntime;
4138
4139#ifndef CONFIG_64BIT
4140 u64 min_vruntime_copy;
88ec22d3 4141
3fe1698b
PZ
4142 do {
4143 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4144 smp_rmb();
4145 min_vruntime = cfs_rq->min_vruntime;
4146 } while (min_vruntime != min_vruntime_copy);
4147#else
4148 min_vruntime = cfs_rq->min_vruntime;
4149#endif
88ec22d3 4150
3fe1698b 4151 se->vruntime -= min_vruntime;
62470419 4152 record_wakee(p);
88ec22d3
PZ
4153}
4154
bb3469ac 4155#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4156/*
4157 * effective_load() calculates the load change as seen from the root_task_group
4158 *
4159 * Adding load to a group doesn't make a group heavier, but can cause movement
4160 * of group shares between cpus. Assuming the shares were perfectly aligned one
4161 * can calculate the shift in shares.
cf5f0acf
PZ
4162 *
4163 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4164 * on this @cpu and results in a total addition (subtraction) of @wg to the
4165 * total group weight.
4166 *
4167 * Given a runqueue weight distribution (rw_i) we can compute a shares
4168 * distribution (s_i) using:
4169 *
4170 * s_i = rw_i / \Sum rw_j (1)
4171 *
4172 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4173 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4174 * shares distribution (s_i):
4175 *
4176 * rw_i = { 2, 4, 1, 0 }
4177 * s_i = { 2/7, 4/7, 1/7, 0 }
4178 *
4179 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4180 * task used to run on and the CPU the waker is running on), we need to
4181 * compute the effect of waking a task on either CPU and, in case of a sync
4182 * wakeup, compute the effect of the current task going to sleep.
4183 *
4184 * So for a change of @wl to the local @cpu with an overall group weight change
4185 * of @wl we can compute the new shares distribution (s'_i) using:
4186 *
4187 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4188 *
4189 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4190 * differences in waking a task to CPU 0. The additional task changes the
4191 * weight and shares distributions like:
4192 *
4193 * rw'_i = { 3, 4, 1, 0 }
4194 * s'_i = { 3/8, 4/8, 1/8, 0 }
4195 *
4196 * We can then compute the difference in effective weight by using:
4197 *
4198 * dw_i = S * (s'_i - s_i) (3)
4199 *
4200 * Where 'S' is the group weight as seen by its parent.
4201 *
4202 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4203 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4204 * 4/7) times the weight of the group.
f5bfb7d9 4205 */
2069dd75 4206static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4207{
4be9daaa 4208 struct sched_entity *se = tg->se[cpu];
f1d239f7 4209
9722c2da 4210 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4211 return wl;
4212
4be9daaa 4213 for_each_sched_entity(se) {
cf5f0acf 4214 long w, W;
4be9daaa 4215
977dda7c 4216 tg = se->my_q->tg;
bb3469ac 4217
cf5f0acf
PZ
4218 /*
4219 * W = @wg + \Sum rw_j
4220 */
4221 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4222
cf5f0acf
PZ
4223 /*
4224 * w = rw_i + @wl
4225 */
4226 w = se->my_q->load.weight + wl;
940959e9 4227
cf5f0acf
PZ
4228 /*
4229 * wl = S * s'_i; see (2)
4230 */
4231 if (W > 0 && w < W)
4232 wl = (w * tg->shares) / W;
977dda7c
PT
4233 else
4234 wl = tg->shares;
940959e9 4235
cf5f0acf
PZ
4236 /*
4237 * Per the above, wl is the new se->load.weight value; since
4238 * those are clipped to [MIN_SHARES, ...) do so now. See
4239 * calc_cfs_shares().
4240 */
977dda7c
PT
4241 if (wl < MIN_SHARES)
4242 wl = MIN_SHARES;
cf5f0acf
PZ
4243
4244 /*
4245 * wl = dw_i = S * (s'_i - s_i); see (3)
4246 */
977dda7c 4247 wl -= se->load.weight;
cf5f0acf
PZ
4248
4249 /*
4250 * Recursively apply this logic to all parent groups to compute
4251 * the final effective load change on the root group. Since
4252 * only the @tg group gets extra weight, all parent groups can
4253 * only redistribute existing shares. @wl is the shift in shares
4254 * resulting from this level per the above.
4255 */
4be9daaa 4256 wg = 0;
4be9daaa 4257 }
bb3469ac 4258
4be9daaa 4259 return wl;
bb3469ac
PZ
4260}
4261#else
4be9daaa 4262
58d081b5 4263static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4264{
83378269 4265 return wl;
bb3469ac 4266}
4be9daaa 4267
bb3469ac
PZ
4268#endif
4269
62470419
MW
4270static int wake_wide(struct task_struct *p)
4271{
7d9ffa89 4272 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4273
4274 /*
4275 * Yeah, it's the switching-frequency, could means many wakee or
4276 * rapidly switch, use factor here will just help to automatically
4277 * adjust the loose-degree, so bigger node will lead to more pull.
4278 */
4279 if (p->wakee_flips > factor) {
4280 /*
4281 * wakee is somewhat hot, it needs certain amount of cpu
4282 * resource, so if waker is far more hot, prefer to leave
4283 * it alone.
4284 */
4285 if (current->wakee_flips > (factor * p->wakee_flips))
4286 return 1;
4287 }
4288
4289 return 0;
4290}
4291
c88d5910 4292static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4293{
e37b6a7b 4294 s64 this_load, load;
bd61c98f 4295 s64 this_eff_load, prev_eff_load;
c88d5910 4296 int idx, this_cpu, prev_cpu;
c88d5910 4297 struct task_group *tg;
83378269 4298 unsigned long weight;
b3137bc8 4299 int balanced;
098fb9db 4300
62470419
MW
4301 /*
4302 * If we wake multiple tasks be careful to not bounce
4303 * ourselves around too much.
4304 */
4305 if (wake_wide(p))
4306 return 0;
4307
c88d5910
PZ
4308 idx = sd->wake_idx;
4309 this_cpu = smp_processor_id();
4310 prev_cpu = task_cpu(p);
4311 load = source_load(prev_cpu, idx);
4312 this_load = target_load(this_cpu, idx);
098fb9db 4313
b3137bc8
MG
4314 /*
4315 * If sync wakeup then subtract the (maximum possible)
4316 * effect of the currently running task from the load
4317 * of the current CPU:
4318 */
83378269
PZ
4319 if (sync) {
4320 tg = task_group(current);
4321 weight = current->se.load.weight;
4322
c88d5910 4323 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4324 load += effective_load(tg, prev_cpu, 0, -weight);
4325 }
b3137bc8 4326
83378269
PZ
4327 tg = task_group(p);
4328 weight = p->se.load.weight;
b3137bc8 4329
71a29aa7
PZ
4330 /*
4331 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4332 * due to the sync cause above having dropped this_load to 0, we'll
4333 * always have an imbalance, but there's really nothing you can do
4334 * about that, so that's good too.
71a29aa7
PZ
4335 *
4336 * Otherwise check if either cpus are near enough in load to allow this
4337 * task to be woken on this_cpu.
4338 */
bd61c98f
VG
4339 this_eff_load = 100;
4340 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4341
bd61c98f
VG
4342 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4343 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4344
bd61c98f 4345 if (this_load > 0) {
e51fd5e2
PZ
4346 this_eff_load *= this_load +
4347 effective_load(tg, this_cpu, weight, weight);
4348
e51fd5e2 4349 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4350 }
e51fd5e2 4351
bd61c98f 4352 balanced = this_eff_load <= prev_eff_load;
098fb9db 4353
41acab88 4354 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4355
05bfb65f
VG
4356 if (!balanced)
4357 return 0;
098fb9db 4358
05bfb65f
VG
4359 schedstat_inc(sd, ttwu_move_affine);
4360 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4361
4362 return 1;
098fb9db
IM
4363}
4364
aaee1203
PZ
4365/*
4366 * find_idlest_group finds and returns the least busy CPU group within the
4367 * domain.
4368 */
4369static struct sched_group *
78e7ed53 4370find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4371 int this_cpu, int sd_flag)
e7693a36 4372{
b3bd3de6 4373 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4374 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4375 int load_idx = sd->forkexec_idx;
aaee1203 4376 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4377
c44f2a02
VG
4378 if (sd_flag & SD_BALANCE_WAKE)
4379 load_idx = sd->wake_idx;
4380
aaee1203
PZ
4381 do {
4382 unsigned long load, avg_load;
4383 int local_group;
4384 int i;
e7693a36 4385
aaee1203
PZ
4386 /* Skip over this group if it has no CPUs allowed */
4387 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4388 tsk_cpus_allowed(p)))
aaee1203
PZ
4389 continue;
4390
4391 local_group = cpumask_test_cpu(this_cpu,
4392 sched_group_cpus(group));
4393
4394 /* Tally up the load of all CPUs in the group */
4395 avg_load = 0;
4396
4397 for_each_cpu(i, sched_group_cpus(group)) {
4398 /* Bias balancing toward cpus of our domain */
4399 if (local_group)
4400 load = source_load(i, load_idx);
4401 else
4402 load = target_load(i, load_idx);
4403
4404 avg_load += load;
4405 }
4406
63b2ca30 4407 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4408 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4409
4410 if (local_group) {
4411 this_load = avg_load;
aaee1203
PZ
4412 } else if (avg_load < min_load) {
4413 min_load = avg_load;
4414 idlest = group;
4415 }
4416 } while (group = group->next, group != sd->groups);
4417
4418 if (!idlest || 100*this_load < imbalance*min_load)
4419 return NULL;
4420 return idlest;
4421}
4422
4423/*
4424 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4425 */
4426static int
4427find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4428{
4429 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4430 unsigned int min_exit_latency = UINT_MAX;
4431 u64 latest_idle_timestamp = 0;
4432 int least_loaded_cpu = this_cpu;
4433 int shallowest_idle_cpu = -1;
aaee1203
PZ
4434 int i;
4435
4436 /* Traverse only the allowed CPUs */
fa17b507 4437 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4438 if (idle_cpu(i)) {
4439 struct rq *rq = cpu_rq(i);
4440 struct cpuidle_state *idle = idle_get_state(rq);
4441 if (idle && idle->exit_latency < min_exit_latency) {
4442 /*
4443 * We give priority to a CPU whose idle state
4444 * has the smallest exit latency irrespective
4445 * of any idle timestamp.
4446 */
4447 min_exit_latency = idle->exit_latency;
4448 latest_idle_timestamp = rq->idle_stamp;
4449 shallowest_idle_cpu = i;
4450 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4451 rq->idle_stamp > latest_idle_timestamp) {
4452 /*
4453 * If equal or no active idle state, then
4454 * the most recently idled CPU might have
4455 * a warmer cache.
4456 */
4457 latest_idle_timestamp = rq->idle_stamp;
4458 shallowest_idle_cpu = i;
4459 }
4460 } else {
4461 load = weighted_cpuload(i);
4462 if (load < min_load || (load == min_load && i == this_cpu)) {
4463 min_load = load;
4464 least_loaded_cpu = i;
4465 }
e7693a36
GH
4466 }
4467 }
4468
83a0a96a 4469 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4470}
e7693a36 4471
a50bde51
PZ
4472/*
4473 * Try and locate an idle CPU in the sched_domain.
4474 */
99bd5e2f 4475static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4476{
99bd5e2f 4477 struct sched_domain *sd;
37407ea7 4478 struct sched_group *sg;
e0a79f52 4479 int i = task_cpu(p);
a50bde51 4480
e0a79f52
MG
4481 if (idle_cpu(target))
4482 return target;
99bd5e2f
SS
4483
4484 /*
e0a79f52 4485 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4486 */
e0a79f52
MG
4487 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4488 return i;
a50bde51
PZ
4489
4490 /*
37407ea7 4491 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4492 */
518cd623 4493 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4494 for_each_lower_domain(sd) {
37407ea7
LT
4495 sg = sd->groups;
4496 do {
4497 if (!cpumask_intersects(sched_group_cpus(sg),
4498 tsk_cpus_allowed(p)))
4499 goto next;
4500
4501 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4502 if (i == target || !idle_cpu(i))
37407ea7
LT
4503 goto next;
4504 }
970e1789 4505
37407ea7
LT
4506 target = cpumask_first_and(sched_group_cpus(sg),
4507 tsk_cpus_allowed(p));
4508 goto done;
4509next:
4510 sg = sg->next;
4511 } while (sg != sd->groups);
4512 }
4513done:
a50bde51
PZ
4514 return target;
4515}
4516
aaee1203 4517/*
de91b9cb
MR
4518 * select_task_rq_fair: Select target runqueue for the waking task in domains
4519 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4520 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4521 *
de91b9cb
MR
4522 * Balances load by selecting the idlest cpu in the idlest group, or under
4523 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4524 *
de91b9cb 4525 * Returns the target cpu number.
aaee1203
PZ
4526 *
4527 * preempt must be disabled.
4528 */
0017d735 4529static int
ac66f547 4530select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4531{
29cd8bae 4532 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4533 int cpu = smp_processor_id();
c88d5910 4534 int new_cpu = cpu;
99bd5e2f 4535 int want_affine = 0;
5158f4e4 4536 int sync = wake_flags & WF_SYNC;
c88d5910 4537
29baa747 4538 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4539 return prev_cpu;
4540
a8edd075
KT
4541 if (sd_flag & SD_BALANCE_WAKE)
4542 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4543
dce840a0 4544 rcu_read_lock();
aaee1203 4545 for_each_domain(cpu, tmp) {
e4f42888
PZ
4546 if (!(tmp->flags & SD_LOAD_BALANCE))
4547 continue;
4548
fe3bcfe1 4549 /*
99bd5e2f
SS
4550 * If both cpu and prev_cpu are part of this domain,
4551 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4552 */
99bd5e2f
SS
4553 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4554 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4555 affine_sd = tmp;
29cd8bae 4556 break;
f03542a7 4557 }
29cd8bae 4558
f03542a7 4559 if (tmp->flags & sd_flag)
29cd8bae
PZ
4560 sd = tmp;
4561 }
4562
8bf21433
RR
4563 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4564 prev_cpu = cpu;
dce840a0 4565
8bf21433 4566 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4567 new_cpu = select_idle_sibling(p, prev_cpu);
4568 goto unlock;
8b911acd 4569 }
e7693a36 4570
aaee1203
PZ
4571 while (sd) {
4572 struct sched_group *group;
c88d5910 4573 int weight;
098fb9db 4574
0763a660 4575 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4576 sd = sd->child;
4577 continue;
4578 }
098fb9db 4579
c44f2a02 4580 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4581 if (!group) {
4582 sd = sd->child;
4583 continue;
4584 }
4ae7d5ce 4585
d7c33c49 4586 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4587 if (new_cpu == -1 || new_cpu == cpu) {
4588 /* Now try balancing at a lower domain level of cpu */
4589 sd = sd->child;
4590 continue;
e7693a36 4591 }
aaee1203
PZ
4592
4593 /* Now try balancing at a lower domain level of new_cpu */
4594 cpu = new_cpu;
669c55e9 4595 weight = sd->span_weight;
aaee1203
PZ
4596 sd = NULL;
4597 for_each_domain(cpu, tmp) {
669c55e9 4598 if (weight <= tmp->span_weight)
aaee1203 4599 break;
0763a660 4600 if (tmp->flags & sd_flag)
aaee1203
PZ
4601 sd = tmp;
4602 }
4603 /* while loop will break here if sd == NULL */
e7693a36 4604 }
dce840a0
PZ
4605unlock:
4606 rcu_read_unlock();
e7693a36 4607
c88d5910 4608 return new_cpu;
e7693a36 4609}
0a74bef8
PT
4610
4611/*
4612 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4613 * cfs_rq_of(p) references at time of call are still valid and identify the
4614 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4615 * other assumptions, including the state of rq->lock, should be made.
4616 */
4617static void
4618migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4619{
aff3e498
PT
4620 struct sched_entity *se = &p->se;
4621 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4622
4623 /*
4624 * Load tracking: accumulate removed load so that it can be processed
4625 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4626 * to blocked load iff they have a positive decay-count. It can never
4627 * be negative here since on-rq tasks have decay-count == 0.
4628 */
4629 if (se->avg.decay_count) {
4630 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4631 atomic_long_add(se->avg.load_avg_contrib,
4632 &cfs_rq->removed_load);
aff3e498 4633 }
3944a927
BS
4634
4635 /* We have migrated, no longer consider this task hot */
4636 se->exec_start = 0;
0a74bef8 4637}
e7693a36
GH
4638#endif /* CONFIG_SMP */
4639
e52fb7c0
PZ
4640static unsigned long
4641wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4642{
4643 unsigned long gran = sysctl_sched_wakeup_granularity;
4644
4645 /*
e52fb7c0
PZ
4646 * Since its curr running now, convert the gran from real-time
4647 * to virtual-time in his units.
13814d42
MG
4648 *
4649 * By using 'se' instead of 'curr' we penalize light tasks, so
4650 * they get preempted easier. That is, if 'se' < 'curr' then
4651 * the resulting gran will be larger, therefore penalizing the
4652 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4653 * be smaller, again penalizing the lighter task.
4654 *
4655 * This is especially important for buddies when the leftmost
4656 * task is higher priority than the buddy.
0bbd3336 4657 */
f4ad9bd2 4658 return calc_delta_fair(gran, se);
0bbd3336
PZ
4659}
4660
464b7527
PZ
4661/*
4662 * Should 'se' preempt 'curr'.
4663 *
4664 * |s1
4665 * |s2
4666 * |s3
4667 * g
4668 * |<--->|c
4669 *
4670 * w(c, s1) = -1
4671 * w(c, s2) = 0
4672 * w(c, s3) = 1
4673 *
4674 */
4675static int
4676wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4677{
4678 s64 gran, vdiff = curr->vruntime - se->vruntime;
4679
4680 if (vdiff <= 0)
4681 return -1;
4682
e52fb7c0 4683 gran = wakeup_gran(curr, se);
464b7527
PZ
4684 if (vdiff > gran)
4685 return 1;
4686
4687 return 0;
4688}
4689
02479099
PZ
4690static void set_last_buddy(struct sched_entity *se)
4691{
69c80f3e
VP
4692 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4693 return;
4694
4695 for_each_sched_entity(se)
4696 cfs_rq_of(se)->last = se;
02479099
PZ
4697}
4698
4699static void set_next_buddy(struct sched_entity *se)
4700{
69c80f3e
VP
4701 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4702 return;
4703
4704 for_each_sched_entity(se)
4705 cfs_rq_of(se)->next = se;
02479099
PZ
4706}
4707
ac53db59
RR
4708static void set_skip_buddy(struct sched_entity *se)
4709{
69c80f3e
VP
4710 for_each_sched_entity(se)
4711 cfs_rq_of(se)->skip = se;
ac53db59
RR
4712}
4713
bf0f6f24
IM
4714/*
4715 * Preempt the current task with a newly woken task if needed:
4716 */
5a9b86f6 4717static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4718{
4719 struct task_struct *curr = rq->curr;
8651a86c 4720 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4721 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4722 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4723 int next_buddy_marked = 0;
bf0f6f24 4724
4ae7d5ce
IM
4725 if (unlikely(se == pse))
4726 return;
4727
5238cdd3 4728 /*
163122b7 4729 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4730 * unconditionally check_prempt_curr() after an enqueue (which may have
4731 * lead to a throttle). This both saves work and prevents false
4732 * next-buddy nomination below.
4733 */
4734 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4735 return;
4736
2f36825b 4737 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4738 set_next_buddy(pse);
2f36825b
VP
4739 next_buddy_marked = 1;
4740 }
57fdc26d 4741
aec0a514
BR
4742 /*
4743 * We can come here with TIF_NEED_RESCHED already set from new task
4744 * wake up path.
5238cdd3
PT
4745 *
4746 * Note: this also catches the edge-case of curr being in a throttled
4747 * group (e.g. via set_curr_task), since update_curr() (in the
4748 * enqueue of curr) will have resulted in resched being set. This
4749 * prevents us from potentially nominating it as a false LAST_BUDDY
4750 * below.
aec0a514
BR
4751 */
4752 if (test_tsk_need_resched(curr))
4753 return;
4754
a2f5c9ab
DH
4755 /* Idle tasks are by definition preempted by non-idle tasks. */
4756 if (unlikely(curr->policy == SCHED_IDLE) &&
4757 likely(p->policy != SCHED_IDLE))
4758 goto preempt;
4759
91c234b4 4760 /*
a2f5c9ab
DH
4761 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4762 * is driven by the tick):
91c234b4 4763 */
8ed92e51 4764 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4765 return;
bf0f6f24 4766
464b7527 4767 find_matching_se(&se, &pse);
9bbd7374 4768 update_curr(cfs_rq_of(se));
002f128b 4769 BUG_ON(!pse);
2f36825b
VP
4770 if (wakeup_preempt_entity(se, pse) == 1) {
4771 /*
4772 * Bias pick_next to pick the sched entity that is
4773 * triggering this preemption.
4774 */
4775 if (!next_buddy_marked)
4776 set_next_buddy(pse);
3a7e73a2 4777 goto preempt;
2f36825b 4778 }
464b7527 4779
3a7e73a2 4780 return;
a65ac745 4781
3a7e73a2 4782preempt:
8875125e 4783 resched_curr(rq);
3a7e73a2
PZ
4784 /*
4785 * Only set the backward buddy when the current task is still
4786 * on the rq. This can happen when a wakeup gets interleaved
4787 * with schedule on the ->pre_schedule() or idle_balance()
4788 * point, either of which can * drop the rq lock.
4789 *
4790 * Also, during early boot the idle thread is in the fair class,
4791 * for obvious reasons its a bad idea to schedule back to it.
4792 */
4793 if (unlikely(!se->on_rq || curr == rq->idle))
4794 return;
4795
4796 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4797 set_last_buddy(se);
bf0f6f24
IM
4798}
4799
606dba2e
PZ
4800static struct task_struct *
4801pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4802{
4803 struct cfs_rq *cfs_rq = &rq->cfs;
4804 struct sched_entity *se;
678d5718 4805 struct task_struct *p;
37e117c0 4806 int new_tasks;
678d5718 4807
6e83125c 4808again:
678d5718
PZ
4809#ifdef CONFIG_FAIR_GROUP_SCHED
4810 if (!cfs_rq->nr_running)
38033c37 4811 goto idle;
678d5718 4812
3f1d2a31 4813 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4814 goto simple;
4815
4816 /*
4817 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4818 * likely that a next task is from the same cgroup as the current.
4819 *
4820 * Therefore attempt to avoid putting and setting the entire cgroup
4821 * hierarchy, only change the part that actually changes.
4822 */
4823
4824 do {
4825 struct sched_entity *curr = cfs_rq->curr;
4826
4827 /*
4828 * Since we got here without doing put_prev_entity() we also
4829 * have to consider cfs_rq->curr. If it is still a runnable
4830 * entity, update_curr() will update its vruntime, otherwise
4831 * forget we've ever seen it.
4832 */
4833 if (curr && curr->on_rq)
4834 update_curr(cfs_rq);
4835 else
4836 curr = NULL;
4837
4838 /*
4839 * This call to check_cfs_rq_runtime() will do the throttle and
4840 * dequeue its entity in the parent(s). Therefore the 'simple'
4841 * nr_running test will indeed be correct.
4842 */
4843 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4844 goto simple;
4845
4846 se = pick_next_entity(cfs_rq, curr);
4847 cfs_rq = group_cfs_rq(se);
4848 } while (cfs_rq);
4849
4850 p = task_of(se);
4851
4852 /*
4853 * Since we haven't yet done put_prev_entity and if the selected task
4854 * is a different task than we started out with, try and touch the
4855 * least amount of cfs_rqs.
4856 */
4857 if (prev != p) {
4858 struct sched_entity *pse = &prev->se;
4859
4860 while (!(cfs_rq = is_same_group(se, pse))) {
4861 int se_depth = se->depth;
4862 int pse_depth = pse->depth;
4863
4864 if (se_depth <= pse_depth) {
4865 put_prev_entity(cfs_rq_of(pse), pse);
4866 pse = parent_entity(pse);
4867 }
4868 if (se_depth >= pse_depth) {
4869 set_next_entity(cfs_rq_of(se), se);
4870 se = parent_entity(se);
4871 }
4872 }
4873
4874 put_prev_entity(cfs_rq, pse);
4875 set_next_entity(cfs_rq, se);
4876 }
4877
4878 if (hrtick_enabled(rq))
4879 hrtick_start_fair(rq, p);
4880
4881 return p;
4882simple:
4883 cfs_rq = &rq->cfs;
4884#endif
bf0f6f24 4885
36ace27e 4886 if (!cfs_rq->nr_running)
38033c37 4887 goto idle;
bf0f6f24 4888
3f1d2a31 4889 put_prev_task(rq, prev);
606dba2e 4890
bf0f6f24 4891 do {
678d5718 4892 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4893 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4894 cfs_rq = group_cfs_rq(se);
4895 } while (cfs_rq);
4896
8f4d37ec 4897 p = task_of(se);
678d5718 4898
b39e66ea
MG
4899 if (hrtick_enabled(rq))
4900 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4901
4902 return p;
38033c37
PZ
4903
4904idle:
e4aa358b 4905 new_tasks = idle_balance(rq);
37e117c0
PZ
4906 /*
4907 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4908 * possible for any higher priority task to appear. In that case we
4909 * must re-start the pick_next_entity() loop.
4910 */
e4aa358b 4911 if (new_tasks < 0)
37e117c0
PZ
4912 return RETRY_TASK;
4913
e4aa358b 4914 if (new_tasks > 0)
38033c37 4915 goto again;
38033c37
PZ
4916
4917 return NULL;
bf0f6f24
IM
4918}
4919
4920/*
4921 * Account for a descheduled task:
4922 */
31ee529c 4923static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4924{
4925 struct sched_entity *se = &prev->se;
4926 struct cfs_rq *cfs_rq;
4927
4928 for_each_sched_entity(se) {
4929 cfs_rq = cfs_rq_of(se);
ab6cde26 4930 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4931 }
4932}
4933
ac53db59
RR
4934/*
4935 * sched_yield() is very simple
4936 *
4937 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4938 */
4939static void yield_task_fair(struct rq *rq)
4940{
4941 struct task_struct *curr = rq->curr;
4942 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4943 struct sched_entity *se = &curr->se;
4944
4945 /*
4946 * Are we the only task in the tree?
4947 */
4948 if (unlikely(rq->nr_running == 1))
4949 return;
4950
4951 clear_buddies(cfs_rq, se);
4952
4953 if (curr->policy != SCHED_BATCH) {
4954 update_rq_clock(rq);
4955 /*
4956 * Update run-time statistics of the 'current'.
4957 */
4958 update_curr(cfs_rq);
916671c0
MG
4959 /*
4960 * Tell update_rq_clock() that we've just updated,
4961 * so we don't do microscopic update in schedule()
4962 * and double the fastpath cost.
4963 */
4964 rq->skip_clock_update = 1;
ac53db59
RR
4965 }
4966
4967 set_skip_buddy(se);
4968}
4969
d95f4122
MG
4970static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4971{
4972 struct sched_entity *se = &p->se;
4973
5238cdd3
PT
4974 /* throttled hierarchies are not runnable */
4975 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4976 return false;
4977
4978 /* Tell the scheduler that we'd really like pse to run next. */
4979 set_next_buddy(se);
4980
d95f4122
MG
4981 yield_task_fair(rq);
4982
4983 return true;
4984}
4985
681f3e68 4986#ifdef CONFIG_SMP
bf0f6f24 4987/**************************************************
e9c84cb8
PZ
4988 * Fair scheduling class load-balancing methods.
4989 *
4990 * BASICS
4991 *
4992 * The purpose of load-balancing is to achieve the same basic fairness the
4993 * per-cpu scheduler provides, namely provide a proportional amount of compute
4994 * time to each task. This is expressed in the following equation:
4995 *
4996 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4997 *
4998 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4999 * W_i,0 is defined as:
5000 *
5001 * W_i,0 = \Sum_j w_i,j (2)
5002 *
5003 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5004 * is derived from the nice value as per prio_to_weight[].
5005 *
5006 * The weight average is an exponential decay average of the instantaneous
5007 * weight:
5008 *
5009 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5010 *
ced549fa 5011 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5012 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5013 * can also include other factors [XXX].
5014 *
5015 * To achieve this balance we define a measure of imbalance which follows
5016 * directly from (1):
5017 *
ced549fa 5018 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5019 *
5020 * We them move tasks around to minimize the imbalance. In the continuous
5021 * function space it is obvious this converges, in the discrete case we get
5022 * a few fun cases generally called infeasible weight scenarios.
5023 *
5024 * [XXX expand on:
5025 * - infeasible weights;
5026 * - local vs global optima in the discrete case. ]
5027 *
5028 *
5029 * SCHED DOMAINS
5030 *
5031 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5032 * for all i,j solution, we create a tree of cpus that follows the hardware
5033 * topology where each level pairs two lower groups (or better). This results
5034 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5035 * tree to only the first of the previous level and we decrease the frequency
5036 * of load-balance at each level inv. proportional to the number of cpus in
5037 * the groups.
5038 *
5039 * This yields:
5040 *
5041 * log_2 n 1 n
5042 * \Sum { --- * --- * 2^i } = O(n) (5)
5043 * i = 0 2^i 2^i
5044 * `- size of each group
5045 * | | `- number of cpus doing load-balance
5046 * | `- freq
5047 * `- sum over all levels
5048 *
5049 * Coupled with a limit on how many tasks we can migrate every balance pass,
5050 * this makes (5) the runtime complexity of the balancer.
5051 *
5052 * An important property here is that each CPU is still (indirectly) connected
5053 * to every other cpu in at most O(log n) steps:
5054 *
5055 * The adjacency matrix of the resulting graph is given by:
5056 *
5057 * log_2 n
5058 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5059 * k = 0
5060 *
5061 * And you'll find that:
5062 *
5063 * A^(log_2 n)_i,j != 0 for all i,j (7)
5064 *
5065 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5066 * The task movement gives a factor of O(m), giving a convergence complexity
5067 * of:
5068 *
5069 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5070 *
5071 *
5072 * WORK CONSERVING
5073 *
5074 * In order to avoid CPUs going idle while there's still work to do, new idle
5075 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5076 * tree itself instead of relying on other CPUs to bring it work.
5077 *
5078 * This adds some complexity to both (5) and (8) but it reduces the total idle
5079 * time.
5080 *
5081 * [XXX more?]
5082 *
5083 *
5084 * CGROUPS
5085 *
5086 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5087 *
5088 * s_k,i
5089 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5090 * S_k
5091 *
5092 * Where
5093 *
5094 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5095 *
5096 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5097 *
5098 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5099 * property.
5100 *
5101 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5102 * rewrite all of this once again.]
5103 */
bf0f6f24 5104
ed387b78
HS
5105static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5106
0ec8aa00
PZ
5107enum fbq_type { regular, remote, all };
5108
ddcdf6e7 5109#define LBF_ALL_PINNED 0x01
367456c7 5110#define LBF_NEED_BREAK 0x02
6263322c
PZ
5111#define LBF_DST_PINNED 0x04
5112#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5113
5114struct lb_env {
5115 struct sched_domain *sd;
5116
ddcdf6e7 5117 struct rq *src_rq;
85c1e7da 5118 int src_cpu;
ddcdf6e7
PZ
5119
5120 int dst_cpu;
5121 struct rq *dst_rq;
5122
88b8dac0
SV
5123 struct cpumask *dst_grpmask;
5124 int new_dst_cpu;
ddcdf6e7 5125 enum cpu_idle_type idle;
bd939f45 5126 long imbalance;
b9403130
MW
5127 /* The set of CPUs under consideration for load-balancing */
5128 struct cpumask *cpus;
5129
ddcdf6e7 5130 unsigned int flags;
367456c7
PZ
5131
5132 unsigned int loop;
5133 unsigned int loop_break;
5134 unsigned int loop_max;
0ec8aa00
PZ
5135
5136 enum fbq_type fbq_type;
163122b7 5137 struct list_head tasks;
ddcdf6e7
PZ
5138};
5139
029632fb
PZ
5140/*
5141 * Is this task likely cache-hot:
5142 */
5d5e2b1b 5143static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5144{
5145 s64 delta;
5146
e5673f28
KT
5147 lockdep_assert_held(&env->src_rq->lock);
5148
029632fb
PZ
5149 if (p->sched_class != &fair_sched_class)
5150 return 0;
5151
5152 if (unlikely(p->policy == SCHED_IDLE))
5153 return 0;
5154
5155 /*
5156 * Buddy candidates are cache hot:
5157 */
5d5e2b1b 5158 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5159 (&p->se == cfs_rq_of(&p->se)->next ||
5160 &p->se == cfs_rq_of(&p->se)->last))
5161 return 1;
5162
5163 if (sysctl_sched_migration_cost == -1)
5164 return 1;
5165 if (sysctl_sched_migration_cost == 0)
5166 return 0;
5167
5d5e2b1b 5168 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5169
5170 return delta < (s64)sysctl_sched_migration_cost;
5171}
5172
3a7053b3
MG
5173#ifdef CONFIG_NUMA_BALANCING
5174/* Returns true if the destination node has incurred more faults */
5175static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5176{
b1ad065e 5177 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5178 int src_nid, dst_nid;
5179
ff1df896 5180 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5181 !(env->sd->flags & SD_NUMA)) {
5182 return false;
5183 }
5184
5185 src_nid = cpu_to_node(env->src_cpu);
5186 dst_nid = cpu_to_node(env->dst_cpu);
5187
83e1d2cd 5188 if (src_nid == dst_nid)
3a7053b3
MG
5189 return false;
5190
b1ad065e
RR
5191 if (numa_group) {
5192 /* Task is already in the group's interleave set. */
5193 if (node_isset(src_nid, numa_group->active_nodes))
5194 return false;
83e1d2cd 5195
b1ad065e
RR
5196 /* Task is moving into the group's interleave set. */
5197 if (node_isset(dst_nid, numa_group->active_nodes))
5198 return true;
83e1d2cd 5199
b1ad065e
RR
5200 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5201 }
5202
5203 /* Encourage migration to the preferred node. */
5204 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5205 return true;
5206
b1ad065e 5207 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5208}
7a0f3083
MG
5209
5210
5211static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5212{
b1ad065e 5213 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5214 int src_nid, dst_nid;
5215
5216 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5217 return false;
5218
ff1df896 5219 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5220 return false;
5221
5222 src_nid = cpu_to_node(env->src_cpu);
5223 dst_nid = cpu_to_node(env->dst_cpu);
5224
83e1d2cd 5225 if (src_nid == dst_nid)
7a0f3083
MG
5226 return false;
5227
b1ad065e
RR
5228 if (numa_group) {
5229 /* Task is moving within/into the group's interleave set. */
5230 if (node_isset(dst_nid, numa_group->active_nodes))
5231 return false;
5232
5233 /* Task is moving out of the group's interleave set. */
5234 if (node_isset(src_nid, numa_group->active_nodes))
5235 return true;
5236
5237 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5238 }
5239
83e1d2cd
MG
5240 /* Migrating away from the preferred node is always bad. */
5241 if (src_nid == p->numa_preferred_nid)
5242 return true;
5243
b1ad065e 5244 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5245}
5246
3a7053b3
MG
5247#else
5248static inline bool migrate_improves_locality(struct task_struct *p,
5249 struct lb_env *env)
5250{
5251 return false;
5252}
7a0f3083
MG
5253
5254static inline bool migrate_degrades_locality(struct task_struct *p,
5255 struct lb_env *env)
5256{
5257 return false;
5258}
3a7053b3
MG
5259#endif
5260
1e3c88bd
PZ
5261/*
5262 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5263 */
5264static
8e45cb54 5265int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5266{
5267 int tsk_cache_hot = 0;
e5673f28
KT
5268
5269 lockdep_assert_held(&env->src_rq->lock);
5270
1e3c88bd
PZ
5271 /*
5272 * We do not migrate tasks that are:
d3198084 5273 * 1) throttled_lb_pair, or
1e3c88bd 5274 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5275 * 3) running (obviously), or
5276 * 4) are cache-hot on their current CPU.
1e3c88bd 5277 */
d3198084
JK
5278 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5279 return 0;
5280
ddcdf6e7 5281 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5282 int cpu;
88b8dac0 5283
41acab88 5284 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5285
6263322c
PZ
5286 env->flags |= LBF_SOME_PINNED;
5287
88b8dac0
SV
5288 /*
5289 * Remember if this task can be migrated to any other cpu in
5290 * our sched_group. We may want to revisit it if we couldn't
5291 * meet load balance goals by pulling other tasks on src_cpu.
5292 *
5293 * Also avoid computing new_dst_cpu if we have already computed
5294 * one in current iteration.
5295 */
6263322c 5296 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5297 return 0;
5298
e02e60c1
JK
5299 /* Prevent to re-select dst_cpu via env's cpus */
5300 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5301 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5302 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5303 env->new_dst_cpu = cpu;
5304 break;
5305 }
88b8dac0 5306 }
e02e60c1 5307
1e3c88bd
PZ
5308 return 0;
5309 }
88b8dac0
SV
5310
5311 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5312 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5313
ddcdf6e7 5314 if (task_running(env->src_rq, p)) {
41acab88 5315 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5316 return 0;
5317 }
5318
5319 /*
5320 * Aggressive migration if:
3a7053b3
MG
5321 * 1) destination numa is preferred
5322 * 2) task is cache cold, or
5323 * 3) too many balance attempts have failed.
1e3c88bd 5324 */
5d5e2b1b 5325 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5326 if (!tsk_cache_hot)
5327 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5328
7a96c231
KT
5329 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5330 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5331 if (tsk_cache_hot) {
5332 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5333 schedstat_inc(p, se.statistics.nr_forced_migrations);
5334 }
1e3c88bd
PZ
5335 return 1;
5336 }
5337
4e2dcb73
ZH
5338 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5339 return 0;
1e3c88bd
PZ
5340}
5341
897c395f 5342/*
163122b7
KT
5343 * detach_task() -- detach the task for the migration specified in env
5344 */
5345static void detach_task(struct task_struct *p, struct lb_env *env)
5346{
5347 lockdep_assert_held(&env->src_rq->lock);
5348
5349 deactivate_task(env->src_rq, p, 0);
5350 p->on_rq = TASK_ON_RQ_MIGRATING;
5351 set_task_cpu(p, env->dst_cpu);
5352}
5353
897c395f 5354/*
e5673f28 5355 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5356 * part of active balancing operations within "domain".
897c395f 5357 *
e5673f28 5358 * Returns a task if successful and NULL otherwise.
897c395f 5359 */
e5673f28 5360static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5361{
5362 struct task_struct *p, *n;
897c395f 5363
e5673f28
KT
5364 lockdep_assert_held(&env->src_rq->lock);
5365
367456c7 5366 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5367 if (!can_migrate_task(p, env))
5368 continue;
897c395f 5369
163122b7 5370 detach_task(p, env);
e5673f28 5371
367456c7 5372 /*
e5673f28 5373 * Right now, this is only the second place where
163122b7 5374 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5375 * so we can safely collect stats here rather than
163122b7 5376 * inside detach_tasks().
367456c7
PZ
5377 */
5378 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5379 return p;
897c395f 5380 }
e5673f28 5381 return NULL;
897c395f
PZ
5382}
5383
eb95308e
PZ
5384static const unsigned int sched_nr_migrate_break = 32;
5385
5d6523eb 5386/*
163122b7
KT
5387 * detach_tasks() -- tries to detach up to imbalance weighted load from
5388 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5389 *
163122b7 5390 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5391 */
163122b7 5392static int detach_tasks(struct lb_env *env)
1e3c88bd 5393{
5d6523eb
PZ
5394 struct list_head *tasks = &env->src_rq->cfs_tasks;
5395 struct task_struct *p;
367456c7 5396 unsigned long load;
163122b7
KT
5397 int detached = 0;
5398
5399 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5400
bd939f45 5401 if (env->imbalance <= 0)
5d6523eb 5402 return 0;
1e3c88bd 5403
5d6523eb
PZ
5404 while (!list_empty(tasks)) {
5405 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5406
367456c7
PZ
5407 env->loop++;
5408 /* We've more or less seen every task there is, call it quits */
5d6523eb 5409 if (env->loop > env->loop_max)
367456c7 5410 break;
5d6523eb
PZ
5411
5412 /* take a breather every nr_migrate tasks */
367456c7 5413 if (env->loop > env->loop_break) {
eb95308e 5414 env->loop_break += sched_nr_migrate_break;
8e45cb54 5415 env->flags |= LBF_NEED_BREAK;
ee00e66f 5416 break;
a195f004 5417 }
1e3c88bd 5418
d3198084 5419 if (!can_migrate_task(p, env))
367456c7
PZ
5420 goto next;
5421
5422 load = task_h_load(p);
5d6523eb 5423
eb95308e 5424 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5425 goto next;
5426
bd939f45 5427 if ((load / 2) > env->imbalance)
367456c7 5428 goto next;
1e3c88bd 5429
163122b7
KT
5430 detach_task(p, env);
5431 list_add(&p->se.group_node, &env->tasks);
5432
5433 detached++;
bd939f45 5434 env->imbalance -= load;
1e3c88bd
PZ
5435
5436#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5437 /*
5438 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5439 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5440 * the critical section.
5441 */
5d6523eb 5442 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5443 break;
1e3c88bd
PZ
5444#endif
5445
ee00e66f
PZ
5446 /*
5447 * We only want to steal up to the prescribed amount of
5448 * weighted load.
5449 */
bd939f45 5450 if (env->imbalance <= 0)
ee00e66f 5451 break;
367456c7
PZ
5452
5453 continue;
5454next:
5d6523eb 5455 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5456 }
5d6523eb 5457
1e3c88bd 5458 /*
163122b7
KT
5459 * Right now, this is one of only two places we collect this stat
5460 * so we can safely collect detach_one_task() stats here rather
5461 * than inside detach_one_task().
1e3c88bd 5462 */
163122b7 5463 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5464
163122b7
KT
5465 return detached;
5466}
5467
5468/*
5469 * attach_task() -- attach the task detached by detach_task() to its new rq.
5470 */
5471static void attach_task(struct rq *rq, struct task_struct *p)
5472{
5473 lockdep_assert_held(&rq->lock);
5474
5475 BUG_ON(task_rq(p) != rq);
5476 p->on_rq = TASK_ON_RQ_QUEUED;
5477 activate_task(rq, p, 0);
5478 check_preempt_curr(rq, p, 0);
5479}
5480
5481/*
5482 * attach_one_task() -- attaches the task returned from detach_one_task() to
5483 * its new rq.
5484 */
5485static void attach_one_task(struct rq *rq, struct task_struct *p)
5486{
5487 raw_spin_lock(&rq->lock);
5488 attach_task(rq, p);
5489 raw_spin_unlock(&rq->lock);
5490}
5491
5492/*
5493 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5494 * new rq.
5495 */
5496static void attach_tasks(struct lb_env *env)
5497{
5498 struct list_head *tasks = &env->tasks;
5499 struct task_struct *p;
5500
5501 raw_spin_lock(&env->dst_rq->lock);
5502
5503 while (!list_empty(tasks)) {
5504 p = list_first_entry(tasks, struct task_struct, se.group_node);
5505 list_del_init(&p->se.group_node);
1e3c88bd 5506
163122b7
KT
5507 attach_task(env->dst_rq, p);
5508 }
5509
5510 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5511}
5512
230059de 5513#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5514/*
5515 * update tg->load_weight by folding this cpu's load_avg
5516 */
48a16753 5517static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5518{
48a16753
PT
5519 struct sched_entity *se = tg->se[cpu];
5520 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5521
48a16753
PT
5522 /* throttled entities do not contribute to load */
5523 if (throttled_hierarchy(cfs_rq))
5524 return;
9e3081ca 5525
aff3e498 5526 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5527
82958366
PT
5528 if (se) {
5529 update_entity_load_avg(se, 1);
5530 /*
5531 * We pivot on our runnable average having decayed to zero for
5532 * list removal. This generally implies that all our children
5533 * have also been removed (modulo rounding error or bandwidth
5534 * control); however, such cases are rare and we can fix these
5535 * at enqueue.
5536 *
5537 * TODO: fix up out-of-order children on enqueue.
5538 */
5539 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5540 list_del_leaf_cfs_rq(cfs_rq);
5541 } else {
48a16753 5542 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5543 update_rq_runnable_avg(rq, rq->nr_running);
5544 }
9e3081ca
PZ
5545}
5546
48a16753 5547static void update_blocked_averages(int cpu)
9e3081ca 5548{
9e3081ca 5549 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5550 struct cfs_rq *cfs_rq;
5551 unsigned long flags;
9e3081ca 5552
48a16753
PT
5553 raw_spin_lock_irqsave(&rq->lock, flags);
5554 update_rq_clock(rq);
9763b67f
PZ
5555 /*
5556 * Iterates the task_group tree in a bottom up fashion, see
5557 * list_add_leaf_cfs_rq() for details.
5558 */
64660c86 5559 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5560 /*
5561 * Note: We may want to consider periodically releasing
5562 * rq->lock about these updates so that creating many task
5563 * groups does not result in continually extending hold time.
5564 */
5565 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5566 }
48a16753
PT
5567
5568 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5569}
5570
9763b67f 5571/*
68520796 5572 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5573 * This needs to be done in a top-down fashion because the load of a child
5574 * group is a fraction of its parents load.
5575 */
68520796 5576static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5577{
68520796
VD
5578 struct rq *rq = rq_of(cfs_rq);
5579 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5580 unsigned long now = jiffies;
68520796 5581 unsigned long load;
a35b6466 5582
68520796 5583 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5584 return;
5585
68520796
VD
5586 cfs_rq->h_load_next = NULL;
5587 for_each_sched_entity(se) {
5588 cfs_rq = cfs_rq_of(se);
5589 cfs_rq->h_load_next = se;
5590 if (cfs_rq->last_h_load_update == now)
5591 break;
5592 }
a35b6466 5593
68520796 5594 if (!se) {
7e3115ef 5595 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5596 cfs_rq->last_h_load_update = now;
5597 }
5598
5599 while ((se = cfs_rq->h_load_next) != NULL) {
5600 load = cfs_rq->h_load;
5601 load = div64_ul(load * se->avg.load_avg_contrib,
5602 cfs_rq->runnable_load_avg + 1);
5603 cfs_rq = group_cfs_rq(se);
5604 cfs_rq->h_load = load;
5605 cfs_rq->last_h_load_update = now;
5606 }
9763b67f
PZ
5607}
5608
367456c7 5609static unsigned long task_h_load(struct task_struct *p)
230059de 5610{
367456c7 5611 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5612
68520796 5613 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5614 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5615 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5616}
5617#else
48a16753 5618static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5619{
5620}
5621
367456c7 5622static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5623{
a003a25b 5624 return p->se.avg.load_avg_contrib;
1e3c88bd 5625}
230059de 5626#endif
1e3c88bd 5627
1e3c88bd 5628/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5629
5630enum group_type {
5631 group_other = 0,
5632 group_imbalanced,
5633 group_overloaded,
5634};
5635
1e3c88bd
PZ
5636/*
5637 * sg_lb_stats - stats of a sched_group required for load_balancing
5638 */
5639struct sg_lb_stats {
5640 unsigned long avg_load; /*Avg load across the CPUs of the group */
5641 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5642 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5643 unsigned long load_per_task;
63b2ca30 5644 unsigned long group_capacity;
147c5fc2 5645 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5646 unsigned int group_capacity_factor;
147c5fc2
PZ
5647 unsigned int idle_cpus;
5648 unsigned int group_weight;
caeb178c 5649 enum group_type group_type;
1b6a7495 5650 int group_has_free_capacity;
0ec8aa00
PZ
5651#ifdef CONFIG_NUMA_BALANCING
5652 unsigned int nr_numa_running;
5653 unsigned int nr_preferred_running;
5654#endif
1e3c88bd
PZ
5655};
5656
56cf515b
JK
5657/*
5658 * sd_lb_stats - Structure to store the statistics of a sched_domain
5659 * during load balancing.
5660 */
5661struct sd_lb_stats {
5662 struct sched_group *busiest; /* Busiest group in this sd */
5663 struct sched_group *local; /* Local group in this sd */
5664 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5665 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5666 unsigned long avg_load; /* Average load across all groups in sd */
5667
56cf515b 5668 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5669 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5670};
5671
147c5fc2
PZ
5672static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5673{
5674 /*
5675 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5676 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5677 * We must however clear busiest_stat::avg_load because
5678 * update_sd_pick_busiest() reads this before assignment.
5679 */
5680 *sds = (struct sd_lb_stats){
5681 .busiest = NULL,
5682 .local = NULL,
5683 .total_load = 0UL,
63b2ca30 5684 .total_capacity = 0UL,
147c5fc2
PZ
5685 .busiest_stat = {
5686 .avg_load = 0UL,
caeb178c
RR
5687 .sum_nr_running = 0,
5688 .group_type = group_other,
147c5fc2
PZ
5689 },
5690 };
5691}
5692
1e3c88bd
PZ
5693/**
5694 * get_sd_load_idx - Obtain the load index for a given sched domain.
5695 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5696 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5697 *
5698 * Return: The load index.
1e3c88bd
PZ
5699 */
5700static inline int get_sd_load_idx(struct sched_domain *sd,
5701 enum cpu_idle_type idle)
5702{
5703 int load_idx;
5704
5705 switch (idle) {
5706 case CPU_NOT_IDLE:
5707 load_idx = sd->busy_idx;
5708 break;
5709
5710 case CPU_NEWLY_IDLE:
5711 load_idx = sd->newidle_idx;
5712 break;
5713 default:
5714 load_idx = sd->idle_idx;
5715 break;
5716 }
5717
5718 return load_idx;
5719}
5720
ced549fa 5721static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5722{
ca8ce3d0 5723 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5724}
5725
ca8ce3d0 5726unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5727{
ced549fa 5728 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5729}
5730
26bc3c50 5731static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5732{
26bc3c50
VG
5733 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5734 return sd->smt_gain / sd->span_weight;
1e3c88bd 5735
26bc3c50 5736 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5737}
5738
26bc3c50 5739unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5740{
26bc3c50 5741 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5742}
5743
ced549fa 5744static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5745{
5746 struct rq *rq = cpu_rq(cpu);
b654f7de 5747 u64 total, available, age_stamp, avg;
cadefd3d 5748 s64 delta;
1e3c88bd 5749
b654f7de
PZ
5750 /*
5751 * Since we're reading these variables without serialization make sure
5752 * we read them once before doing sanity checks on them.
5753 */
5754 age_stamp = ACCESS_ONCE(rq->age_stamp);
5755 avg = ACCESS_ONCE(rq->rt_avg);
5756
cadefd3d
PZ
5757 delta = rq_clock(rq) - age_stamp;
5758 if (unlikely(delta < 0))
5759 delta = 0;
5760
5761 total = sched_avg_period() + delta;
aa483808 5762
b654f7de 5763 if (unlikely(total < avg)) {
ced549fa 5764 /* Ensures that capacity won't end up being negative */
aa483808
VP
5765 available = 0;
5766 } else {
b654f7de 5767 available = total - avg;
aa483808 5768 }
1e3c88bd 5769
ca8ce3d0
NP
5770 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5771 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5772
ca8ce3d0 5773 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5774
5775 return div_u64(available, total);
5776}
5777
ced549fa 5778static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5779{
ca8ce3d0 5780 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5781 struct sched_group *sdg = sd->groups;
5782
26bc3c50
VG
5783 if (sched_feat(ARCH_CAPACITY))
5784 capacity *= arch_scale_cpu_capacity(sd, cpu);
5785 else
5786 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5787
26bc3c50 5788 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5789
ced549fa 5790 sdg->sgc->capacity_orig = capacity;
9d5efe05 5791
5d4dfddd 5792 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5793 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5794 else
ced549fa 5795 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5796
ca8ce3d0 5797 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5798
ced549fa 5799 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5800 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5801
ced549fa
NP
5802 if (!capacity)
5803 capacity = 1;
1e3c88bd 5804
ced549fa
NP
5805 cpu_rq(cpu)->cpu_capacity = capacity;
5806 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5807}
5808
63b2ca30 5809void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5810{
5811 struct sched_domain *child = sd->child;
5812 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5813 unsigned long capacity, capacity_orig;
4ec4412e
VG
5814 unsigned long interval;
5815
5816 interval = msecs_to_jiffies(sd->balance_interval);
5817 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5818 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5819
5820 if (!child) {
ced549fa 5821 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5822 return;
5823 }
5824
63b2ca30 5825 capacity_orig = capacity = 0;
1e3c88bd 5826
74a5ce20
PZ
5827 if (child->flags & SD_OVERLAP) {
5828 /*
5829 * SD_OVERLAP domains cannot assume that child groups
5830 * span the current group.
5831 */
5832
863bffc8 5833 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5834 struct sched_group_capacity *sgc;
9abf24d4 5835 struct rq *rq = cpu_rq(cpu);
863bffc8 5836
9abf24d4 5837 /*
63b2ca30 5838 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5839 * gets here before we've attached the domains to the
5840 * runqueues.
5841 *
ced549fa
NP
5842 * Use capacity_of(), which is set irrespective of domains
5843 * in update_cpu_capacity().
9abf24d4 5844 *
63b2ca30 5845 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5846 * causing divide-by-zero issues on boot.
5847 *
63b2ca30 5848 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5849 */
5850 if (unlikely(!rq->sd)) {
ced549fa
NP
5851 capacity_orig += capacity_of(cpu);
5852 capacity += capacity_of(cpu);
9abf24d4
SD
5853 continue;
5854 }
863bffc8 5855
63b2ca30
NP
5856 sgc = rq->sd->groups->sgc;
5857 capacity_orig += sgc->capacity_orig;
5858 capacity += sgc->capacity;
863bffc8 5859 }
74a5ce20
PZ
5860 } else {
5861 /*
5862 * !SD_OVERLAP domains can assume that child groups
5863 * span the current group.
5864 */
5865
5866 group = child->groups;
5867 do {
63b2ca30
NP
5868 capacity_orig += group->sgc->capacity_orig;
5869 capacity += group->sgc->capacity;
74a5ce20
PZ
5870 group = group->next;
5871 } while (group != child->groups);
5872 }
1e3c88bd 5873
63b2ca30
NP
5874 sdg->sgc->capacity_orig = capacity_orig;
5875 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5876}
5877
9d5efe05
SV
5878/*
5879 * Try and fix up capacity for tiny siblings, this is needed when
5880 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5881 * which on its own isn't powerful enough.
5882 *
5883 * See update_sd_pick_busiest() and check_asym_packing().
5884 */
5885static inline int
5886fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5887{
5888 /*
ca8ce3d0 5889 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5890 */
5d4dfddd 5891 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5892 return 0;
5893
5894 /*
63b2ca30 5895 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5896 */
63b2ca30 5897 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5898 return 1;
5899
5900 return 0;
5901}
5902
30ce5dab
PZ
5903/*
5904 * Group imbalance indicates (and tries to solve) the problem where balancing
5905 * groups is inadequate due to tsk_cpus_allowed() constraints.
5906 *
5907 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5908 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5909 * Something like:
5910 *
5911 * { 0 1 2 3 } { 4 5 6 7 }
5912 * * * * *
5913 *
5914 * If we were to balance group-wise we'd place two tasks in the first group and
5915 * two tasks in the second group. Clearly this is undesired as it will overload
5916 * cpu 3 and leave one of the cpus in the second group unused.
5917 *
5918 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5919 * by noticing the lower domain failed to reach balance and had difficulty
5920 * moving tasks due to affinity constraints.
30ce5dab
PZ
5921 *
5922 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5923 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5924 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5925 * to create an effective group imbalance.
5926 *
5927 * This is a somewhat tricky proposition since the next run might not find the
5928 * group imbalance and decide the groups need to be balanced again. A most
5929 * subtle and fragile situation.
5930 */
5931
6263322c 5932static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5933{
63b2ca30 5934 return group->sgc->imbalance;
30ce5dab
PZ
5935}
5936
b37d9316 5937/*
0fedc6c8 5938 * Compute the group capacity factor.
b37d9316 5939 *
ced549fa 5940 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5941 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5942 * and limit unit capacity with that.
b37d9316 5943 */
0fedc6c8 5944static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5945{
0fedc6c8 5946 unsigned int capacity_factor, smt, cpus;
63b2ca30 5947 unsigned int capacity, capacity_orig;
c61037e9 5948
63b2ca30
NP
5949 capacity = group->sgc->capacity;
5950 capacity_orig = group->sgc->capacity_orig;
c61037e9 5951 cpus = group->group_weight;
b37d9316 5952
63b2ca30 5953 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5954 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5955 capacity_factor = cpus / smt; /* cores */
b37d9316 5956
63b2ca30 5957 capacity_factor = min_t(unsigned,
ca8ce3d0 5958 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5959 if (!capacity_factor)
5960 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5961
0fedc6c8 5962 return capacity_factor;
b37d9316
PZ
5963}
5964
caeb178c
RR
5965static enum group_type
5966group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5967{
5968 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5969 return group_overloaded;
5970
5971 if (sg_imbalanced(group))
5972 return group_imbalanced;
5973
5974 return group_other;
5975}
5976
1e3c88bd
PZ
5977/**
5978 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5979 * @env: The load balancing environment.
1e3c88bd 5980 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5981 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5982 * @local_group: Does group contain this_cpu.
1e3c88bd 5983 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5984 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5985 */
bd939f45
PZ
5986static inline void update_sg_lb_stats(struct lb_env *env,
5987 struct sched_group *group, int load_idx,
4486edd1
TC
5988 int local_group, struct sg_lb_stats *sgs,
5989 bool *overload)
1e3c88bd 5990{
30ce5dab 5991 unsigned long load;
bd939f45 5992 int i;
1e3c88bd 5993
b72ff13c
PZ
5994 memset(sgs, 0, sizeof(*sgs));
5995
b9403130 5996 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5997 struct rq *rq = cpu_rq(i);
5998
1e3c88bd 5999 /* Bias balancing toward cpus of our domain */
6263322c 6000 if (local_group)
04f733b4 6001 load = target_load(i, load_idx);
6263322c 6002 else
1e3c88bd 6003 load = source_load(i, load_idx);
1e3c88bd
PZ
6004
6005 sgs->group_load += load;
65fdac08 6006 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6007
6008 if (rq->nr_running > 1)
6009 *overload = true;
6010
0ec8aa00
PZ
6011#ifdef CONFIG_NUMA_BALANCING
6012 sgs->nr_numa_running += rq->nr_numa_running;
6013 sgs->nr_preferred_running += rq->nr_preferred_running;
6014#endif
1e3c88bd 6015 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6016 if (idle_cpu(i))
6017 sgs->idle_cpus++;
1e3c88bd
PZ
6018 }
6019
63b2ca30
NP
6020 /* Adjust by relative CPU capacity of the group */
6021 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6022 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6023
dd5feea1 6024 if (sgs->sum_nr_running)
38d0f770 6025 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6026
aae6d3dd 6027 sgs->group_weight = group->group_weight;
0fedc6c8 6028 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6029 sgs->group_type = group_classify(group, sgs);
b37d9316 6030
0fedc6c8 6031 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6032 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6033}
6034
532cb4c4
MN
6035/**
6036 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6037 * @env: The load balancing environment.
532cb4c4
MN
6038 * @sds: sched_domain statistics
6039 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6040 * @sgs: sched_group statistics
532cb4c4
MN
6041 *
6042 * Determine if @sg is a busier group than the previously selected
6043 * busiest group.
e69f6186
YB
6044 *
6045 * Return: %true if @sg is a busier group than the previously selected
6046 * busiest group. %false otherwise.
532cb4c4 6047 */
bd939f45 6048static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6049 struct sd_lb_stats *sds,
6050 struct sched_group *sg,
bd939f45 6051 struct sg_lb_stats *sgs)
532cb4c4 6052{
caeb178c 6053 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6054
caeb178c 6055 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6056 return true;
6057
caeb178c
RR
6058 if (sgs->group_type < busiest->group_type)
6059 return false;
6060
6061 if (sgs->avg_load <= busiest->avg_load)
6062 return false;
6063
6064 /* This is the busiest node in its class. */
6065 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6066 return true;
6067
6068 /*
6069 * ASYM_PACKING needs to move all the work to the lowest
6070 * numbered CPUs in the group, therefore mark all groups
6071 * higher than ourself as busy.
6072 */
caeb178c 6073 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6074 if (!sds->busiest)
6075 return true;
6076
6077 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6078 return true;
6079 }
6080
6081 return false;
6082}
6083
0ec8aa00
PZ
6084#ifdef CONFIG_NUMA_BALANCING
6085static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6086{
6087 if (sgs->sum_nr_running > sgs->nr_numa_running)
6088 return regular;
6089 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6090 return remote;
6091 return all;
6092}
6093
6094static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6095{
6096 if (rq->nr_running > rq->nr_numa_running)
6097 return regular;
6098 if (rq->nr_running > rq->nr_preferred_running)
6099 return remote;
6100 return all;
6101}
6102#else
6103static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6104{
6105 return all;
6106}
6107
6108static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6109{
6110 return regular;
6111}
6112#endif /* CONFIG_NUMA_BALANCING */
6113
1e3c88bd 6114/**
461819ac 6115 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6116 * @env: The load balancing environment.
1e3c88bd
PZ
6117 * @sds: variable to hold the statistics for this sched_domain.
6118 */
0ec8aa00 6119static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6120{
bd939f45
PZ
6121 struct sched_domain *child = env->sd->child;
6122 struct sched_group *sg = env->sd->groups;
56cf515b 6123 struct sg_lb_stats tmp_sgs;
1e3c88bd 6124 int load_idx, prefer_sibling = 0;
4486edd1 6125 bool overload = false;
1e3c88bd
PZ
6126
6127 if (child && child->flags & SD_PREFER_SIBLING)
6128 prefer_sibling = 1;
6129
bd939f45 6130 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6131
6132 do {
56cf515b 6133 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6134 int local_group;
6135
bd939f45 6136 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6137 if (local_group) {
6138 sds->local = sg;
6139 sgs = &sds->local_stat;
b72ff13c
PZ
6140
6141 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6142 time_after_eq(jiffies, sg->sgc->next_update))
6143 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6144 }
1e3c88bd 6145
4486edd1
TC
6146 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6147 &overload);
1e3c88bd 6148
b72ff13c
PZ
6149 if (local_group)
6150 goto next_group;
6151
1e3c88bd
PZ
6152 /*
6153 * In case the child domain prefers tasks go to siblings
0fedc6c8 6154 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6155 * and move all the excess tasks away. We lower the capacity
6156 * of a group only if the local group has the capacity to fit
0fedc6c8 6157 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6158 * extra check prevents the case where you always pull from the
6159 * heaviest group when it is already under-utilized (possible
6160 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6161 */
b72ff13c 6162 if (prefer_sibling && sds->local &&
1b6a7495 6163 sds->local_stat.group_has_free_capacity)
0fedc6c8 6164 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6165
b72ff13c 6166 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6167 sds->busiest = sg;
56cf515b 6168 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6169 }
6170
b72ff13c
PZ
6171next_group:
6172 /* Now, start updating sd_lb_stats */
6173 sds->total_load += sgs->group_load;
63b2ca30 6174 sds->total_capacity += sgs->group_capacity;
b72ff13c 6175
532cb4c4 6176 sg = sg->next;
bd939f45 6177 } while (sg != env->sd->groups);
0ec8aa00
PZ
6178
6179 if (env->sd->flags & SD_NUMA)
6180 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6181
6182 if (!env->sd->parent) {
6183 /* update overload indicator if we are at root domain */
6184 if (env->dst_rq->rd->overload != overload)
6185 env->dst_rq->rd->overload = overload;
6186 }
6187
532cb4c4
MN
6188}
6189
532cb4c4
MN
6190/**
6191 * check_asym_packing - Check to see if the group is packed into the
6192 * sched doman.
6193 *
6194 * This is primarily intended to used at the sibling level. Some
6195 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6196 * case of POWER7, it can move to lower SMT modes only when higher
6197 * threads are idle. When in lower SMT modes, the threads will
6198 * perform better since they share less core resources. Hence when we
6199 * have idle threads, we want them to be the higher ones.
6200 *
6201 * This packing function is run on idle threads. It checks to see if
6202 * the busiest CPU in this domain (core in the P7 case) has a higher
6203 * CPU number than the packing function is being run on. Here we are
6204 * assuming lower CPU number will be equivalent to lower a SMT thread
6205 * number.
6206 *
e69f6186 6207 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6208 * this CPU. The amount of the imbalance is returned in *imbalance.
6209 *
cd96891d 6210 * @env: The load balancing environment.
532cb4c4 6211 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6212 */
bd939f45 6213static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6214{
6215 int busiest_cpu;
6216
bd939f45 6217 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6218 return 0;
6219
6220 if (!sds->busiest)
6221 return 0;
6222
6223 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6224 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6225 return 0;
6226
bd939f45 6227 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6228 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6229 SCHED_CAPACITY_SCALE);
bd939f45 6230
532cb4c4 6231 return 1;
1e3c88bd
PZ
6232}
6233
6234/**
6235 * fix_small_imbalance - Calculate the minor imbalance that exists
6236 * amongst the groups of a sched_domain, during
6237 * load balancing.
cd96891d 6238 * @env: The load balancing environment.
1e3c88bd 6239 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6240 */
bd939f45
PZ
6241static inline
6242void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6243{
63b2ca30 6244 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6245 unsigned int imbn = 2;
dd5feea1 6246 unsigned long scaled_busy_load_per_task;
56cf515b 6247 struct sg_lb_stats *local, *busiest;
1e3c88bd 6248
56cf515b
JK
6249 local = &sds->local_stat;
6250 busiest = &sds->busiest_stat;
1e3c88bd 6251
56cf515b
JK
6252 if (!local->sum_nr_running)
6253 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6254 else if (busiest->load_per_task > local->load_per_task)
6255 imbn = 1;
dd5feea1 6256
56cf515b 6257 scaled_busy_load_per_task =
ca8ce3d0 6258 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6259 busiest->group_capacity;
56cf515b 6260
3029ede3
VD
6261 if (busiest->avg_load + scaled_busy_load_per_task >=
6262 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6263 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6264 return;
6265 }
6266
6267 /*
6268 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6269 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6270 * moving them.
6271 */
6272
63b2ca30 6273 capa_now += busiest->group_capacity *
56cf515b 6274 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6275 capa_now += local->group_capacity *
56cf515b 6276 min(local->load_per_task, local->avg_load);
ca8ce3d0 6277 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6278
6279 /* Amount of load we'd subtract */
a2cd4260 6280 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6281 capa_move += busiest->group_capacity *
56cf515b 6282 min(busiest->load_per_task,
a2cd4260 6283 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6284 }
1e3c88bd
PZ
6285
6286 /* Amount of load we'd add */
63b2ca30 6287 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6288 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6289 tmp = (busiest->avg_load * busiest->group_capacity) /
6290 local->group_capacity;
56cf515b 6291 } else {
ca8ce3d0 6292 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6293 local->group_capacity;
56cf515b 6294 }
63b2ca30 6295 capa_move += local->group_capacity *
3ae11c90 6296 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6297 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6298
6299 /* Move if we gain throughput */
63b2ca30 6300 if (capa_move > capa_now)
56cf515b 6301 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6302}
6303
6304/**
6305 * calculate_imbalance - Calculate the amount of imbalance present within the
6306 * groups of a given sched_domain during load balance.
bd939f45 6307 * @env: load balance environment
1e3c88bd 6308 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6309 */
bd939f45 6310static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6311{
dd5feea1 6312 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6313 struct sg_lb_stats *local, *busiest;
6314
6315 local = &sds->local_stat;
56cf515b 6316 busiest = &sds->busiest_stat;
dd5feea1 6317
caeb178c 6318 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6319 /*
6320 * In the group_imb case we cannot rely on group-wide averages
6321 * to ensure cpu-load equilibrium, look at wider averages. XXX
6322 */
56cf515b
JK
6323 busiest->load_per_task =
6324 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6325 }
6326
1e3c88bd
PZ
6327 /*
6328 * In the presence of smp nice balancing, certain scenarios can have
6329 * max load less than avg load(as we skip the groups at or below
ced549fa 6330 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6331 */
b1885550
VD
6332 if (busiest->avg_load <= sds->avg_load ||
6333 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6334 env->imbalance = 0;
6335 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6336 }
6337
9a5d9ba6
PZ
6338 /*
6339 * If there aren't any idle cpus, avoid creating some.
6340 */
6341 if (busiest->group_type == group_overloaded &&
6342 local->group_type == group_overloaded) {
56cf515b 6343 load_above_capacity =
0fedc6c8 6344 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6345
ca8ce3d0 6346 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6347 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6348 }
6349
6350 /*
6351 * We're trying to get all the cpus to the average_load, so we don't
6352 * want to push ourselves above the average load, nor do we wish to
6353 * reduce the max loaded cpu below the average load. At the same time,
6354 * we also don't want to reduce the group load below the group capacity
6355 * (so that we can implement power-savings policies etc). Thus we look
6356 * for the minimum possible imbalance.
dd5feea1 6357 */
30ce5dab 6358 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6359
6360 /* How much load to actually move to equalise the imbalance */
56cf515b 6361 env->imbalance = min(
63b2ca30
NP
6362 max_pull * busiest->group_capacity,
6363 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6364 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6365
6366 /*
6367 * if *imbalance is less than the average load per runnable task
25985edc 6368 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6369 * a think about bumping its value to force at least one task to be
6370 * moved
6371 */
56cf515b 6372 if (env->imbalance < busiest->load_per_task)
bd939f45 6373 return fix_small_imbalance(env, sds);
1e3c88bd 6374}
fab47622 6375
1e3c88bd
PZ
6376/******* find_busiest_group() helpers end here *********************/
6377
6378/**
6379 * find_busiest_group - Returns the busiest group within the sched_domain
6380 * if there is an imbalance. If there isn't an imbalance, and
6381 * the user has opted for power-savings, it returns a group whose
6382 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6383 * such a group exists.
6384 *
6385 * Also calculates the amount of weighted load which should be moved
6386 * to restore balance.
6387 *
cd96891d 6388 * @env: The load balancing environment.
1e3c88bd 6389 *
e69f6186 6390 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6391 * - If no imbalance and user has opted for power-savings balance,
6392 * return the least loaded group whose CPUs can be
6393 * put to idle by rebalancing its tasks onto our group.
6394 */
56cf515b 6395static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6396{
56cf515b 6397 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6398 struct sd_lb_stats sds;
6399
147c5fc2 6400 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6401
6402 /*
6403 * Compute the various statistics relavent for load balancing at
6404 * this level.
6405 */
23f0d209 6406 update_sd_lb_stats(env, &sds);
56cf515b
JK
6407 local = &sds.local_stat;
6408 busiest = &sds.busiest_stat;
1e3c88bd 6409
bd939f45
PZ
6410 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6411 check_asym_packing(env, &sds))
532cb4c4
MN
6412 return sds.busiest;
6413
cc57aa8f 6414 /* There is no busy sibling group to pull tasks from */
56cf515b 6415 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6416 goto out_balanced;
6417
ca8ce3d0
NP
6418 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6419 / sds.total_capacity;
b0432d8f 6420
866ab43e
PZ
6421 /*
6422 * If the busiest group is imbalanced the below checks don't
30ce5dab 6423 * work because they assume all things are equal, which typically
866ab43e
PZ
6424 * isn't true due to cpus_allowed constraints and the like.
6425 */
caeb178c 6426 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6427 goto force_balance;
6428
cc57aa8f 6429 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6430 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6431 !busiest->group_has_free_capacity)
fab47622
NR
6432 goto force_balance;
6433
cc57aa8f 6434 /*
9c58c79a 6435 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6436 * don't try and pull any tasks.
6437 */
56cf515b 6438 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6439 goto out_balanced;
6440
cc57aa8f
PZ
6441 /*
6442 * Don't pull any tasks if this group is already above the domain
6443 * average load.
6444 */
56cf515b 6445 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6446 goto out_balanced;
6447
bd939f45 6448 if (env->idle == CPU_IDLE) {
aae6d3dd 6449 /*
43f4d666
VG
6450 * This cpu is idle. If the busiest group is not overloaded
6451 * and there is no imbalance between this and busiest group
6452 * wrt idle cpus, it is balanced. The imbalance becomes
6453 * significant if the diff is greater than 1 otherwise we
6454 * might end up to just move the imbalance on another group
aae6d3dd 6455 */
43f4d666
VG
6456 if ((busiest->group_type != group_overloaded) &&
6457 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6458 goto out_balanced;
c186fafe
PZ
6459 } else {
6460 /*
6461 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6462 * imbalance_pct to be conservative.
6463 */
56cf515b
JK
6464 if (100 * busiest->avg_load <=
6465 env->sd->imbalance_pct * local->avg_load)
c186fafe 6466 goto out_balanced;
aae6d3dd 6467 }
1e3c88bd 6468
fab47622 6469force_balance:
1e3c88bd 6470 /* Looks like there is an imbalance. Compute it */
bd939f45 6471 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6472 return sds.busiest;
6473
6474out_balanced:
bd939f45 6475 env->imbalance = 0;
1e3c88bd
PZ
6476 return NULL;
6477}
6478
6479/*
6480 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6481 */
bd939f45 6482static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6483 struct sched_group *group)
1e3c88bd
PZ
6484{
6485 struct rq *busiest = NULL, *rq;
ced549fa 6486 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6487 int i;
6488
6906a408 6489 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6490 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6491 enum fbq_type rt;
6492
6493 rq = cpu_rq(i);
6494 rt = fbq_classify_rq(rq);
1e3c88bd 6495
0ec8aa00
PZ
6496 /*
6497 * We classify groups/runqueues into three groups:
6498 * - regular: there are !numa tasks
6499 * - remote: there are numa tasks that run on the 'wrong' node
6500 * - all: there is no distinction
6501 *
6502 * In order to avoid migrating ideally placed numa tasks,
6503 * ignore those when there's better options.
6504 *
6505 * If we ignore the actual busiest queue to migrate another
6506 * task, the next balance pass can still reduce the busiest
6507 * queue by moving tasks around inside the node.
6508 *
6509 * If we cannot move enough load due to this classification
6510 * the next pass will adjust the group classification and
6511 * allow migration of more tasks.
6512 *
6513 * Both cases only affect the total convergence complexity.
6514 */
6515 if (rt > env->fbq_type)
6516 continue;
6517
ced549fa 6518 capacity = capacity_of(i);
ca8ce3d0 6519 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6520 if (!capacity_factor)
6521 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6522
6e40f5bb 6523 wl = weighted_cpuload(i);
1e3c88bd 6524
6e40f5bb
TG
6525 /*
6526 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6527 * which is not scaled with the cpu capacity.
6e40f5bb 6528 */
0fedc6c8 6529 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6530 continue;
6531
6e40f5bb
TG
6532 /*
6533 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6534 * the weighted_cpuload() scaled with the cpu capacity, so
6535 * that the load can be moved away from the cpu that is
6536 * potentially running at a lower capacity.
95a79b80 6537 *
ced549fa 6538 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6539 * multiplication to rid ourselves of the division works out
ced549fa
NP
6540 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6541 * our previous maximum.
6e40f5bb 6542 */
ced549fa 6543 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6544 busiest_load = wl;
ced549fa 6545 busiest_capacity = capacity;
1e3c88bd
PZ
6546 busiest = rq;
6547 }
6548 }
6549
6550 return busiest;
6551}
6552
6553/*
6554 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6555 * so long as it is large enough.
6556 */
6557#define MAX_PINNED_INTERVAL 512
6558
6559/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6560DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6561
bd939f45 6562static int need_active_balance(struct lb_env *env)
1af3ed3d 6563{
bd939f45
PZ
6564 struct sched_domain *sd = env->sd;
6565
6566 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6567
6568 /*
6569 * ASYM_PACKING needs to force migrate tasks from busy but
6570 * higher numbered CPUs in order to pack all tasks in the
6571 * lowest numbered CPUs.
6572 */
bd939f45 6573 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6574 return 1;
1af3ed3d
PZ
6575 }
6576
6577 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6578}
6579
969c7921
TH
6580static int active_load_balance_cpu_stop(void *data);
6581
23f0d209
JK
6582static int should_we_balance(struct lb_env *env)
6583{
6584 struct sched_group *sg = env->sd->groups;
6585 struct cpumask *sg_cpus, *sg_mask;
6586 int cpu, balance_cpu = -1;
6587
6588 /*
6589 * In the newly idle case, we will allow all the cpu's
6590 * to do the newly idle load balance.
6591 */
6592 if (env->idle == CPU_NEWLY_IDLE)
6593 return 1;
6594
6595 sg_cpus = sched_group_cpus(sg);
6596 sg_mask = sched_group_mask(sg);
6597 /* Try to find first idle cpu */
6598 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6599 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6600 continue;
6601
6602 balance_cpu = cpu;
6603 break;
6604 }
6605
6606 if (balance_cpu == -1)
6607 balance_cpu = group_balance_cpu(sg);
6608
6609 /*
6610 * First idle cpu or the first cpu(busiest) in this sched group
6611 * is eligible for doing load balancing at this and above domains.
6612 */
b0cff9d8 6613 return balance_cpu == env->dst_cpu;
23f0d209
JK
6614}
6615
1e3c88bd
PZ
6616/*
6617 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6618 * tasks if there is an imbalance.
6619 */
6620static int load_balance(int this_cpu, struct rq *this_rq,
6621 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6622 int *continue_balancing)
1e3c88bd 6623{
88b8dac0 6624 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6625 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6626 struct sched_group *group;
1e3c88bd
PZ
6627 struct rq *busiest;
6628 unsigned long flags;
4ba29684 6629 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6630
8e45cb54
PZ
6631 struct lb_env env = {
6632 .sd = sd,
ddcdf6e7
PZ
6633 .dst_cpu = this_cpu,
6634 .dst_rq = this_rq,
88b8dac0 6635 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6636 .idle = idle,
eb95308e 6637 .loop_break = sched_nr_migrate_break,
b9403130 6638 .cpus = cpus,
0ec8aa00 6639 .fbq_type = all,
163122b7 6640 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6641 };
6642
cfc03118
JK
6643 /*
6644 * For NEWLY_IDLE load_balancing, we don't need to consider
6645 * other cpus in our group
6646 */
e02e60c1 6647 if (idle == CPU_NEWLY_IDLE)
cfc03118 6648 env.dst_grpmask = NULL;
cfc03118 6649
1e3c88bd
PZ
6650 cpumask_copy(cpus, cpu_active_mask);
6651
1e3c88bd
PZ
6652 schedstat_inc(sd, lb_count[idle]);
6653
6654redo:
23f0d209
JK
6655 if (!should_we_balance(&env)) {
6656 *continue_balancing = 0;
1e3c88bd 6657 goto out_balanced;
23f0d209 6658 }
1e3c88bd 6659
23f0d209 6660 group = find_busiest_group(&env);
1e3c88bd
PZ
6661 if (!group) {
6662 schedstat_inc(sd, lb_nobusyg[idle]);
6663 goto out_balanced;
6664 }
6665
b9403130 6666 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6667 if (!busiest) {
6668 schedstat_inc(sd, lb_nobusyq[idle]);
6669 goto out_balanced;
6670 }
6671
78feefc5 6672 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6673
bd939f45 6674 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6675
6676 ld_moved = 0;
6677 if (busiest->nr_running > 1) {
6678 /*
6679 * Attempt to move tasks. If find_busiest_group has found
6680 * an imbalance but busiest->nr_running <= 1, the group is
6681 * still unbalanced. ld_moved simply stays zero, so it is
6682 * correctly treated as an imbalance.
6683 */
8e45cb54 6684 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6685 env.src_cpu = busiest->cpu;
6686 env.src_rq = busiest;
6687 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6688
5d6523eb 6689more_balance:
163122b7 6690 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6691
6692 /*
6693 * cur_ld_moved - load moved in current iteration
6694 * ld_moved - cumulative load moved across iterations
6695 */
163122b7 6696 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6697
6698 /*
163122b7
KT
6699 * We've detached some tasks from busiest_rq. Every
6700 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6701 * unlock busiest->lock, and we are able to be sure
6702 * that nobody can manipulate the tasks in parallel.
6703 * See task_rq_lock() family for the details.
1e3c88bd 6704 */
163122b7
KT
6705
6706 raw_spin_unlock(&busiest->lock);
6707
6708 if (cur_ld_moved) {
6709 attach_tasks(&env);
6710 ld_moved += cur_ld_moved;
6711 }
6712
1e3c88bd 6713 local_irq_restore(flags);
88b8dac0 6714
f1cd0858
JK
6715 if (env.flags & LBF_NEED_BREAK) {
6716 env.flags &= ~LBF_NEED_BREAK;
6717 goto more_balance;
6718 }
6719
88b8dac0
SV
6720 /*
6721 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6722 * us and move them to an alternate dst_cpu in our sched_group
6723 * where they can run. The upper limit on how many times we
6724 * iterate on same src_cpu is dependent on number of cpus in our
6725 * sched_group.
6726 *
6727 * This changes load balance semantics a bit on who can move
6728 * load to a given_cpu. In addition to the given_cpu itself
6729 * (or a ilb_cpu acting on its behalf where given_cpu is
6730 * nohz-idle), we now have balance_cpu in a position to move
6731 * load to given_cpu. In rare situations, this may cause
6732 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6733 * _independently_ and at _same_ time to move some load to
6734 * given_cpu) causing exceess load to be moved to given_cpu.
6735 * This however should not happen so much in practice and
6736 * moreover subsequent load balance cycles should correct the
6737 * excess load moved.
6738 */
6263322c 6739 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6740
7aff2e3a
VD
6741 /* Prevent to re-select dst_cpu via env's cpus */
6742 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6743
78feefc5 6744 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6745 env.dst_cpu = env.new_dst_cpu;
6263322c 6746 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6747 env.loop = 0;
6748 env.loop_break = sched_nr_migrate_break;
e02e60c1 6749
88b8dac0
SV
6750 /*
6751 * Go back to "more_balance" rather than "redo" since we
6752 * need to continue with same src_cpu.
6753 */
6754 goto more_balance;
6755 }
1e3c88bd 6756
6263322c
PZ
6757 /*
6758 * We failed to reach balance because of affinity.
6759 */
6760 if (sd_parent) {
63b2ca30 6761 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6762
afdeee05 6763 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6764 *group_imbalance = 1;
6263322c
PZ
6765 }
6766
1e3c88bd 6767 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6768 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6769 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6770 if (!cpumask_empty(cpus)) {
6771 env.loop = 0;
6772 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6773 goto redo;
bbf18b19 6774 }
afdeee05 6775 goto out_all_pinned;
1e3c88bd
PZ
6776 }
6777 }
6778
6779 if (!ld_moved) {
6780 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6781 /*
6782 * Increment the failure counter only on periodic balance.
6783 * We do not want newidle balance, which can be very
6784 * frequent, pollute the failure counter causing
6785 * excessive cache_hot migrations and active balances.
6786 */
6787 if (idle != CPU_NEWLY_IDLE)
6788 sd->nr_balance_failed++;
1e3c88bd 6789
bd939f45 6790 if (need_active_balance(&env)) {
1e3c88bd
PZ
6791 raw_spin_lock_irqsave(&busiest->lock, flags);
6792
969c7921
TH
6793 /* don't kick the active_load_balance_cpu_stop,
6794 * if the curr task on busiest cpu can't be
6795 * moved to this_cpu
1e3c88bd
PZ
6796 */
6797 if (!cpumask_test_cpu(this_cpu,
fa17b507 6798 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6799 raw_spin_unlock_irqrestore(&busiest->lock,
6800 flags);
8e45cb54 6801 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6802 goto out_one_pinned;
6803 }
6804
969c7921
TH
6805 /*
6806 * ->active_balance synchronizes accesses to
6807 * ->active_balance_work. Once set, it's cleared
6808 * only after active load balance is finished.
6809 */
1e3c88bd
PZ
6810 if (!busiest->active_balance) {
6811 busiest->active_balance = 1;
6812 busiest->push_cpu = this_cpu;
6813 active_balance = 1;
6814 }
6815 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6816
bd939f45 6817 if (active_balance) {
969c7921
TH
6818 stop_one_cpu_nowait(cpu_of(busiest),
6819 active_load_balance_cpu_stop, busiest,
6820 &busiest->active_balance_work);
bd939f45 6821 }
1e3c88bd
PZ
6822
6823 /*
6824 * We've kicked active balancing, reset the failure
6825 * counter.
6826 */
6827 sd->nr_balance_failed = sd->cache_nice_tries+1;
6828 }
6829 } else
6830 sd->nr_balance_failed = 0;
6831
6832 if (likely(!active_balance)) {
6833 /* We were unbalanced, so reset the balancing interval */
6834 sd->balance_interval = sd->min_interval;
6835 } else {
6836 /*
6837 * If we've begun active balancing, start to back off. This
6838 * case may not be covered by the all_pinned logic if there
6839 * is only 1 task on the busy runqueue (because we don't call
163122b7 6840 * detach_tasks).
1e3c88bd
PZ
6841 */
6842 if (sd->balance_interval < sd->max_interval)
6843 sd->balance_interval *= 2;
6844 }
6845
1e3c88bd
PZ
6846 goto out;
6847
6848out_balanced:
afdeee05
VG
6849 /*
6850 * We reach balance although we may have faced some affinity
6851 * constraints. Clear the imbalance flag if it was set.
6852 */
6853 if (sd_parent) {
6854 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6855
6856 if (*group_imbalance)
6857 *group_imbalance = 0;
6858 }
6859
6860out_all_pinned:
6861 /*
6862 * We reach balance because all tasks are pinned at this level so
6863 * we can't migrate them. Let the imbalance flag set so parent level
6864 * can try to migrate them.
6865 */
1e3c88bd
PZ
6866 schedstat_inc(sd, lb_balanced[idle]);
6867
6868 sd->nr_balance_failed = 0;
6869
6870out_one_pinned:
6871 /* tune up the balancing interval */
8e45cb54 6872 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6873 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6874 (sd->balance_interval < sd->max_interval))
6875 sd->balance_interval *= 2;
6876
46e49b38 6877 ld_moved = 0;
1e3c88bd 6878out:
1e3c88bd
PZ
6879 return ld_moved;
6880}
6881
52a08ef1
JL
6882static inline unsigned long
6883get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6884{
6885 unsigned long interval = sd->balance_interval;
6886
6887 if (cpu_busy)
6888 interval *= sd->busy_factor;
6889
6890 /* scale ms to jiffies */
6891 interval = msecs_to_jiffies(interval);
6892 interval = clamp(interval, 1UL, max_load_balance_interval);
6893
6894 return interval;
6895}
6896
6897static inline void
6898update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6899{
6900 unsigned long interval, next;
6901
6902 interval = get_sd_balance_interval(sd, cpu_busy);
6903 next = sd->last_balance + interval;
6904
6905 if (time_after(*next_balance, next))
6906 *next_balance = next;
6907}
6908
1e3c88bd
PZ
6909/*
6910 * idle_balance is called by schedule() if this_cpu is about to become
6911 * idle. Attempts to pull tasks from other CPUs.
6912 */
6e83125c 6913static int idle_balance(struct rq *this_rq)
1e3c88bd 6914{
52a08ef1
JL
6915 unsigned long next_balance = jiffies + HZ;
6916 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6917 struct sched_domain *sd;
6918 int pulled_task = 0;
9bd721c5 6919 u64 curr_cost = 0;
1e3c88bd 6920
6e83125c 6921 idle_enter_fair(this_rq);
0e5b5337 6922
6e83125c
PZ
6923 /*
6924 * We must set idle_stamp _before_ calling idle_balance(), such that we
6925 * measure the duration of idle_balance() as idle time.
6926 */
6927 this_rq->idle_stamp = rq_clock(this_rq);
6928
4486edd1
TC
6929 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6930 !this_rq->rd->overload) {
52a08ef1
JL
6931 rcu_read_lock();
6932 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6933 if (sd)
6934 update_next_balance(sd, 0, &next_balance);
6935 rcu_read_unlock();
6936
6e83125c 6937 goto out;
52a08ef1 6938 }
1e3c88bd 6939
f492e12e
PZ
6940 /*
6941 * Drop the rq->lock, but keep IRQ/preempt disabled.
6942 */
6943 raw_spin_unlock(&this_rq->lock);
6944
48a16753 6945 update_blocked_averages(this_cpu);
dce840a0 6946 rcu_read_lock();
1e3c88bd 6947 for_each_domain(this_cpu, sd) {
23f0d209 6948 int continue_balancing = 1;
9bd721c5 6949 u64 t0, domain_cost;
1e3c88bd
PZ
6950
6951 if (!(sd->flags & SD_LOAD_BALANCE))
6952 continue;
6953
52a08ef1
JL
6954 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6955 update_next_balance(sd, 0, &next_balance);
9bd721c5 6956 break;
52a08ef1 6957 }
9bd721c5 6958
f492e12e 6959 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6960 t0 = sched_clock_cpu(this_cpu);
6961
f492e12e 6962 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6963 sd, CPU_NEWLY_IDLE,
6964 &continue_balancing);
9bd721c5
JL
6965
6966 domain_cost = sched_clock_cpu(this_cpu) - t0;
6967 if (domain_cost > sd->max_newidle_lb_cost)
6968 sd->max_newidle_lb_cost = domain_cost;
6969
6970 curr_cost += domain_cost;
f492e12e 6971 }
1e3c88bd 6972
52a08ef1 6973 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6974
6975 /*
6976 * Stop searching for tasks to pull if there are
6977 * now runnable tasks on this rq.
6978 */
6979 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6980 break;
1e3c88bd 6981 }
dce840a0 6982 rcu_read_unlock();
f492e12e
PZ
6983
6984 raw_spin_lock(&this_rq->lock);
6985
0e5b5337
JL
6986 if (curr_cost > this_rq->max_idle_balance_cost)
6987 this_rq->max_idle_balance_cost = curr_cost;
6988
e5fc6611 6989 /*
0e5b5337
JL
6990 * While browsing the domains, we released the rq lock, a task could
6991 * have been enqueued in the meantime. Since we're not going idle,
6992 * pretend we pulled a task.
e5fc6611 6993 */
0e5b5337 6994 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6995 pulled_task = 1;
e5fc6611 6996
52a08ef1
JL
6997out:
6998 /* Move the next balance forward */
6999 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7000 this_rq->next_balance = next_balance;
9bd721c5 7001
e4aa358b 7002 /* Is there a task of a high priority class? */
46383648 7003 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7004 pulled_task = -1;
7005
7006 if (pulled_task) {
7007 idle_exit_fair(this_rq);
6e83125c 7008 this_rq->idle_stamp = 0;
e4aa358b 7009 }
6e83125c 7010
3c4017c1 7011 return pulled_task;
1e3c88bd
PZ
7012}
7013
7014/*
969c7921
TH
7015 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7016 * running tasks off the busiest CPU onto idle CPUs. It requires at
7017 * least 1 task to be running on each physical CPU where possible, and
7018 * avoids physical / logical imbalances.
1e3c88bd 7019 */
969c7921 7020static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7021{
969c7921
TH
7022 struct rq *busiest_rq = data;
7023 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7024 int target_cpu = busiest_rq->push_cpu;
969c7921 7025 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7026 struct sched_domain *sd;
e5673f28 7027 struct task_struct *p = NULL;
969c7921
TH
7028
7029 raw_spin_lock_irq(&busiest_rq->lock);
7030
7031 /* make sure the requested cpu hasn't gone down in the meantime */
7032 if (unlikely(busiest_cpu != smp_processor_id() ||
7033 !busiest_rq->active_balance))
7034 goto out_unlock;
1e3c88bd
PZ
7035
7036 /* Is there any task to move? */
7037 if (busiest_rq->nr_running <= 1)
969c7921 7038 goto out_unlock;
1e3c88bd
PZ
7039
7040 /*
7041 * This condition is "impossible", if it occurs
7042 * we need to fix it. Originally reported by
7043 * Bjorn Helgaas on a 128-cpu setup.
7044 */
7045 BUG_ON(busiest_rq == target_rq);
7046
1e3c88bd 7047 /* Search for an sd spanning us and the target CPU. */
dce840a0 7048 rcu_read_lock();
1e3c88bd
PZ
7049 for_each_domain(target_cpu, sd) {
7050 if ((sd->flags & SD_LOAD_BALANCE) &&
7051 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7052 break;
7053 }
7054
7055 if (likely(sd)) {
8e45cb54
PZ
7056 struct lb_env env = {
7057 .sd = sd,
ddcdf6e7
PZ
7058 .dst_cpu = target_cpu,
7059 .dst_rq = target_rq,
7060 .src_cpu = busiest_rq->cpu,
7061 .src_rq = busiest_rq,
8e45cb54
PZ
7062 .idle = CPU_IDLE,
7063 };
7064
1e3c88bd
PZ
7065 schedstat_inc(sd, alb_count);
7066
e5673f28
KT
7067 p = detach_one_task(&env);
7068 if (p)
1e3c88bd
PZ
7069 schedstat_inc(sd, alb_pushed);
7070 else
7071 schedstat_inc(sd, alb_failed);
7072 }
dce840a0 7073 rcu_read_unlock();
969c7921
TH
7074out_unlock:
7075 busiest_rq->active_balance = 0;
e5673f28
KT
7076 raw_spin_unlock(&busiest_rq->lock);
7077
7078 if (p)
7079 attach_one_task(target_rq, p);
7080
7081 local_irq_enable();
7082
969c7921 7083 return 0;
1e3c88bd
PZ
7084}
7085
d987fc7f
MG
7086static inline int on_null_domain(struct rq *rq)
7087{
7088 return unlikely(!rcu_dereference_sched(rq->sd));
7089}
7090
3451d024 7091#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7092/*
7093 * idle load balancing details
83cd4fe2
VP
7094 * - When one of the busy CPUs notice that there may be an idle rebalancing
7095 * needed, they will kick the idle load balancer, which then does idle
7096 * load balancing for all the idle CPUs.
7097 */
1e3c88bd 7098static struct {
83cd4fe2 7099 cpumask_var_t idle_cpus_mask;
0b005cf5 7100 atomic_t nr_cpus;
83cd4fe2
VP
7101 unsigned long next_balance; /* in jiffy units */
7102} nohz ____cacheline_aligned;
1e3c88bd 7103
3dd0337d 7104static inline int find_new_ilb(void)
1e3c88bd 7105{
0b005cf5 7106 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7107
786d6dc7
SS
7108 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7109 return ilb;
7110
7111 return nr_cpu_ids;
1e3c88bd 7112}
1e3c88bd 7113
83cd4fe2
VP
7114/*
7115 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7116 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7117 * CPU (if there is one).
7118 */
0aeeeeba 7119static void nohz_balancer_kick(void)
83cd4fe2
VP
7120{
7121 int ilb_cpu;
7122
7123 nohz.next_balance++;
7124
3dd0337d 7125 ilb_cpu = find_new_ilb();
83cd4fe2 7126
0b005cf5
SS
7127 if (ilb_cpu >= nr_cpu_ids)
7128 return;
83cd4fe2 7129
cd490c5b 7130 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7131 return;
7132 /*
7133 * Use smp_send_reschedule() instead of resched_cpu().
7134 * This way we generate a sched IPI on the target cpu which
7135 * is idle. And the softirq performing nohz idle load balance
7136 * will be run before returning from the IPI.
7137 */
7138 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7139 return;
7140}
7141
c1cc017c 7142static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7143{
7144 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7145 /*
7146 * Completely isolated CPUs don't ever set, so we must test.
7147 */
7148 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7149 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7150 atomic_dec(&nohz.nr_cpus);
7151 }
71325960
SS
7152 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7153 }
7154}
7155
69e1e811
SS
7156static inline void set_cpu_sd_state_busy(void)
7157{
7158 struct sched_domain *sd;
37dc6b50 7159 int cpu = smp_processor_id();
69e1e811 7160
69e1e811 7161 rcu_read_lock();
37dc6b50 7162 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7163
7164 if (!sd || !sd->nohz_idle)
7165 goto unlock;
7166 sd->nohz_idle = 0;
7167
63b2ca30 7168 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7169unlock:
69e1e811
SS
7170 rcu_read_unlock();
7171}
7172
7173void set_cpu_sd_state_idle(void)
7174{
7175 struct sched_domain *sd;
37dc6b50 7176 int cpu = smp_processor_id();
69e1e811 7177
69e1e811 7178 rcu_read_lock();
37dc6b50 7179 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7180
7181 if (!sd || sd->nohz_idle)
7182 goto unlock;
7183 sd->nohz_idle = 1;
7184
63b2ca30 7185 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7186unlock:
69e1e811
SS
7187 rcu_read_unlock();
7188}
7189
1e3c88bd 7190/*
c1cc017c 7191 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7192 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7193 */
c1cc017c 7194void nohz_balance_enter_idle(int cpu)
1e3c88bd 7195{
71325960
SS
7196 /*
7197 * If this cpu is going down, then nothing needs to be done.
7198 */
7199 if (!cpu_active(cpu))
7200 return;
7201
c1cc017c
AS
7202 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7203 return;
1e3c88bd 7204
d987fc7f
MG
7205 /*
7206 * If we're a completely isolated CPU, we don't play.
7207 */
7208 if (on_null_domain(cpu_rq(cpu)))
7209 return;
7210
c1cc017c
AS
7211 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7212 atomic_inc(&nohz.nr_cpus);
7213 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7214}
71325960 7215
0db0628d 7216static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7217 unsigned long action, void *hcpu)
7218{
7219 switch (action & ~CPU_TASKS_FROZEN) {
7220 case CPU_DYING:
c1cc017c 7221 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7222 return NOTIFY_OK;
7223 default:
7224 return NOTIFY_DONE;
7225 }
7226}
1e3c88bd
PZ
7227#endif
7228
7229static DEFINE_SPINLOCK(balancing);
7230
49c022e6
PZ
7231/*
7232 * Scale the max load_balance interval with the number of CPUs in the system.
7233 * This trades load-balance latency on larger machines for less cross talk.
7234 */
029632fb 7235void update_max_interval(void)
49c022e6
PZ
7236{
7237 max_load_balance_interval = HZ*num_online_cpus()/10;
7238}
7239
1e3c88bd
PZ
7240/*
7241 * It checks each scheduling domain to see if it is due to be balanced,
7242 * and initiates a balancing operation if so.
7243 *
b9b0853a 7244 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7245 */
f7ed0a89 7246static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7247{
23f0d209 7248 int continue_balancing = 1;
f7ed0a89 7249 int cpu = rq->cpu;
1e3c88bd 7250 unsigned long interval;
04f733b4 7251 struct sched_domain *sd;
1e3c88bd
PZ
7252 /* Earliest time when we have to do rebalance again */
7253 unsigned long next_balance = jiffies + 60*HZ;
7254 int update_next_balance = 0;
f48627e6
JL
7255 int need_serialize, need_decay = 0;
7256 u64 max_cost = 0;
1e3c88bd 7257
48a16753 7258 update_blocked_averages(cpu);
2069dd75 7259
dce840a0 7260 rcu_read_lock();
1e3c88bd 7261 for_each_domain(cpu, sd) {
f48627e6
JL
7262 /*
7263 * Decay the newidle max times here because this is a regular
7264 * visit to all the domains. Decay ~1% per second.
7265 */
7266 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7267 sd->max_newidle_lb_cost =
7268 (sd->max_newidle_lb_cost * 253) / 256;
7269 sd->next_decay_max_lb_cost = jiffies + HZ;
7270 need_decay = 1;
7271 }
7272 max_cost += sd->max_newidle_lb_cost;
7273
1e3c88bd
PZ
7274 if (!(sd->flags & SD_LOAD_BALANCE))
7275 continue;
7276
f48627e6
JL
7277 /*
7278 * Stop the load balance at this level. There is another
7279 * CPU in our sched group which is doing load balancing more
7280 * actively.
7281 */
7282 if (!continue_balancing) {
7283 if (need_decay)
7284 continue;
7285 break;
7286 }
7287
52a08ef1 7288 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7289
7290 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7291 if (need_serialize) {
7292 if (!spin_trylock(&balancing))
7293 goto out;
7294 }
7295
7296 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7297 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7298 /*
6263322c 7299 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7300 * env->dst_cpu, so we can't know our idle
7301 * state even if we migrated tasks. Update it.
1e3c88bd 7302 */
de5eb2dd 7303 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7304 }
7305 sd->last_balance = jiffies;
52a08ef1 7306 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7307 }
7308 if (need_serialize)
7309 spin_unlock(&balancing);
7310out:
7311 if (time_after(next_balance, sd->last_balance + interval)) {
7312 next_balance = sd->last_balance + interval;
7313 update_next_balance = 1;
7314 }
f48627e6
JL
7315 }
7316 if (need_decay) {
1e3c88bd 7317 /*
f48627e6
JL
7318 * Ensure the rq-wide value also decays but keep it at a
7319 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7320 */
f48627e6
JL
7321 rq->max_idle_balance_cost =
7322 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7323 }
dce840a0 7324 rcu_read_unlock();
1e3c88bd
PZ
7325
7326 /*
7327 * next_balance will be updated only when there is a need.
7328 * When the cpu is attached to null domain for ex, it will not be
7329 * updated.
7330 */
7331 if (likely(update_next_balance))
7332 rq->next_balance = next_balance;
7333}
7334
3451d024 7335#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7336/*
3451d024 7337 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7338 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7339 */
208cb16b 7340static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7341{
208cb16b 7342 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7343 struct rq *rq;
7344 int balance_cpu;
7345
1c792db7
SS
7346 if (idle != CPU_IDLE ||
7347 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7348 goto end;
83cd4fe2
VP
7349
7350 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7351 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7352 continue;
7353
7354 /*
7355 * If this cpu gets work to do, stop the load balancing
7356 * work being done for other cpus. Next load
7357 * balancing owner will pick it up.
7358 */
1c792db7 7359 if (need_resched())
83cd4fe2 7360 break;
83cd4fe2 7361
5ed4f1d9
VG
7362 rq = cpu_rq(balance_cpu);
7363
ed61bbc6
TC
7364 /*
7365 * If time for next balance is due,
7366 * do the balance.
7367 */
7368 if (time_after_eq(jiffies, rq->next_balance)) {
7369 raw_spin_lock_irq(&rq->lock);
7370 update_rq_clock(rq);
7371 update_idle_cpu_load(rq);
7372 raw_spin_unlock_irq(&rq->lock);
7373 rebalance_domains(rq, CPU_IDLE);
7374 }
83cd4fe2 7375
83cd4fe2
VP
7376 if (time_after(this_rq->next_balance, rq->next_balance))
7377 this_rq->next_balance = rq->next_balance;
7378 }
7379 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7380end:
7381 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7382}
7383
7384/*
0b005cf5
SS
7385 * Current heuristic for kicking the idle load balancer in the presence
7386 * of an idle cpu is the system.
7387 * - This rq has more than one task.
7388 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7389 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7390 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7391 * domain span are idle.
83cd4fe2 7392 */
4a725627 7393static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7394{
7395 unsigned long now = jiffies;
0b005cf5 7396 struct sched_domain *sd;
63b2ca30 7397 struct sched_group_capacity *sgc;
4a725627 7398 int nr_busy, cpu = rq->cpu;
83cd4fe2 7399
4a725627 7400 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7401 return 0;
7402
1c792db7
SS
7403 /*
7404 * We may be recently in ticked or tickless idle mode. At the first
7405 * busy tick after returning from idle, we will update the busy stats.
7406 */
69e1e811 7407 set_cpu_sd_state_busy();
c1cc017c 7408 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7409
7410 /*
7411 * None are in tickless mode and hence no need for NOHZ idle load
7412 * balancing.
7413 */
7414 if (likely(!atomic_read(&nohz.nr_cpus)))
7415 return 0;
1c792db7
SS
7416
7417 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7418 return 0;
7419
0b005cf5
SS
7420 if (rq->nr_running >= 2)
7421 goto need_kick;
83cd4fe2 7422
067491b7 7423 rcu_read_lock();
37dc6b50 7424 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7425
37dc6b50 7426 if (sd) {
63b2ca30
NP
7427 sgc = sd->groups->sgc;
7428 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7429
37dc6b50 7430 if (nr_busy > 1)
067491b7 7431 goto need_kick_unlock;
83cd4fe2 7432 }
37dc6b50
PM
7433
7434 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7435
7436 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7437 sched_domain_span(sd)) < cpu))
7438 goto need_kick_unlock;
7439
067491b7 7440 rcu_read_unlock();
83cd4fe2 7441 return 0;
067491b7
PZ
7442
7443need_kick_unlock:
7444 rcu_read_unlock();
0b005cf5
SS
7445need_kick:
7446 return 1;
83cd4fe2
VP
7447}
7448#else
208cb16b 7449static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7450#endif
7451
7452/*
7453 * run_rebalance_domains is triggered when needed from the scheduler tick.
7454 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7455 */
1e3c88bd
PZ
7456static void run_rebalance_domains(struct softirq_action *h)
7457{
208cb16b 7458 struct rq *this_rq = this_rq();
6eb57e0d 7459 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7460 CPU_IDLE : CPU_NOT_IDLE;
7461
f7ed0a89 7462 rebalance_domains(this_rq, idle);
1e3c88bd 7463
1e3c88bd 7464 /*
83cd4fe2 7465 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7466 * balancing on behalf of the other idle cpus whose ticks are
7467 * stopped.
7468 */
208cb16b 7469 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7470}
7471
1e3c88bd
PZ
7472/*
7473 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7474 */
7caff66f 7475void trigger_load_balance(struct rq *rq)
1e3c88bd 7476{
1e3c88bd 7477 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7478 if (unlikely(on_null_domain(rq)))
7479 return;
7480
7481 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7482 raise_softirq(SCHED_SOFTIRQ);
3451d024 7483#ifdef CONFIG_NO_HZ_COMMON
c726099e 7484 if (nohz_kick_needed(rq))
0aeeeeba 7485 nohz_balancer_kick();
83cd4fe2 7486#endif
1e3c88bd
PZ
7487}
7488
0bcdcf28
CE
7489static void rq_online_fair(struct rq *rq)
7490{
7491 update_sysctl();
0e59bdae
KT
7492
7493 update_runtime_enabled(rq);
0bcdcf28
CE
7494}
7495
7496static void rq_offline_fair(struct rq *rq)
7497{
7498 update_sysctl();
a4c96ae3
PB
7499
7500 /* Ensure any throttled groups are reachable by pick_next_task */
7501 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7502}
7503
55e12e5e 7504#endif /* CONFIG_SMP */
e1d1484f 7505
bf0f6f24
IM
7506/*
7507 * scheduler tick hitting a task of our scheduling class:
7508 */
8f4d37ec 7509static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7510{
7511 struct cfs_rq *cfs_rq;
7512 struct sched_entity *se = &curr->se;
7513
7514 for_each_sched_entity(se) {
7515 cfs_rq = cfs_rq_of(se);
8f4d37ec 7516 entity_tick(cfs_rq, se, queued);
bf0f6f24 7517 }
18bf2805 7518
10e84b97 7519 if (numabalancing_enabled)
cbee9f88 7520 task_tick_numa(rq, curr);
3d59eebc 7521
18bf2805 7522 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7523}
7524
7525/*
cd29fe6f
PZ
7526 * called on fork with the child task as argument from the parent's context
7527 * - child not yet on the tasklist
7528 * - preemption disabled
bf0f6f24 7529 */
cd29fe6f 7530static void task_fork_fair(struct task_struct *p)
bf0f6f24 7531{
4fc420c9
DN
7532 struct cfs_rq *cfs_rq;
7533 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7534 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7535 struct rq *rq = this_rq();
7536 unsigned long flags;
7537
05fa785c 7538 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7539
861d034e
PZ
7540 update_rq_clock(rq);
7541
4fc420c9
DN
7542 cfs_rq = task_cfs_rq(current);
7543 curr = cfs_rq->curr;
7544
6c9a27f5
DN
7545 /*
7546 * Not only the cpu but also the task_group of the parent might have
7547 * been changed after parent->se.parent,cfs_rq were copied to
7548 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7549 * of child point to valid ones.
7550 */
7551 rcu_read_lock();
7552 __set_task_cpu(p, this_cpu);
7553 rcu_read_unlock();
bf0f6f24 7554
7109c442 7555 update_curr(cfs_rq);
cd29fe6f 7556
b5d9d734
MG
7557 if (curr)
7558 se->vruntime = curr->vruntime;
aeb73b04 7559 place_entity(cfs_rq, se, 1);
4d78e7b6 7560
cd29fe6f 7561 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7562 /*
edcb60a3
IM
7563 * Upon rescheduling, sched_class::put_prev_task() will place
7564 * 'current' within the tree based on its new key value.
7565 */
4d78e7b6 7566 swap(curr->vruntime, se->vruntime);
8875125e 7567 resched_curr(rq);
4d78e7b6 7568 }
bf0f6f24 7569
88ec22d3
PZ
7570 se->vruntime -= cfs_rq->min_vruntime;
7571
05fa785c 7572 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7573}
7574
cb469845
SR
7575/*
7576 * Priority of the task has changed. Check to see if we preempt
7577 * the current task.
7578 */
da7a735e
PZ
7579static void
7580prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7581{
da0c1e65 7582 if (!task_on_rq_queued(p))
da7a735e
PZ
7583 return;
7584
cb469845
SR
7585 /*
7586 * Reschedule if we are currently running on this runqueue and
7587 * our priority decreased, or if we are not currently running on
7588 * this runqueue and our priority is higher than the current's
7589 */
da7a735e 7590 if (rq->curr == p) {
cb469845 7591 if (p->prio > oldprio)
8875125e 7592 resched_curr(rq);
cb469845 7593 } else
15afe09b 7594 check_preempt_curr(rq, p, 0);
cb469845
SR
7595}
7596
da7a735e
PZ
7597static void switched_from_fair(struct rq *rq, struct task_struct *p)
7598{
7599 struct sched_entity *se = &p->se;
7600 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7601
7602 /*
791c9e02 7603 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7604 * switched back to the fair class the enqueue_entity(.flags=0) will
7605 * do the right thing.
7606 *
da0c1e65
KT
7607 * If it's queued, then the dequeue_entity(.flags=0) will already
7608 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7609 * the task is sleeping will it still have non-normalized vruntime.
7610 */
da0c1e65 7611 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7612 /*
7613 * Fix up our vruntime so that the current sleep doesn't
7614 * cause 'unlimited' sleep bonus.
7615 */
7616 place_entity(cfs_rq, se, 0);
7617 se->vruntime -= cfs_rq->min_vruntime;
7618 }
9ee474f5 7619
141965c7 7620#ifdef CONFIG_SMP
9ee474f5
PT
7621 /*
7622 * Remove our load from contribution when we leave sched_fair
7623 * and ensure we don't carry in an old decay_count if we
7624 * switch back.
7625 */
87e3c8ae
KT
7626 if (se->avg.decay_count) {
7627 __synchronize_entity_decay(se);
7628 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7629 }
7630#endif
da7a735e
PZ
7631}
7632
cb469845
SR
7633/*
7634 * We switched to the sched_fair class.
7635 */
da7a735e 7636static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7637{
eb7a59b2 7638#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7639 struct sched_entity *se = &p->se;
eb7a59b2
M
7640 /*
7641 * Since the real-depth could have been changed (only FAIR
7642 * class maintain depth value), reset depth properly.
7643 */
7644 se->depth = se->parent ? se->parent->depth + 1 : 0;
7645#endif
da0c1e65 7646 if (!task_on_rq_queued(p))
da7a735e
PZ
7647 return;
7648
cb469845
SR
7649 /*
7650 * We were most likely switched from sched_rt, so
7651 * kick off the schedule if running, otherwise just see
7652 * if we can still preempt the current task.
7653 */
da7a735e 7654 if (rq->curr == p)
8875125e 7655 resched_curr(rq);
cb469845 7656 else
15afe09b 7657 check_preempt_curr(rq, p, 0);
cb469845
SR
7658}
7659
83b699ed
SV
7660/* Account for a task changing its policy or group.
7661 *
7662 * This routine is mostly called to set cfs_rq->curr field when a task
7663 * migrates between groups/classes.
7664 */
7665static void set_curr_task_fair(struct rq *rq)
7666{
7667 struct sched_entity *se = &rq->curr->se;
7668
ec12cb7f
PT
7669 for_each_sched_entity(se) {
7670 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7671
7672 set_next_entity(cfs_rq, se);
7673 /* ensure bandwidth has been allocated on our new cfs_rq */
7674 account_cfs_rq_runtime(cfs_rq, 0);
7675 }
83b699ed
SV
7676}
7677
029632fb
PZ
7678void init_cfs_rq(struct cfs_rq *cfs_rq)
7679{
7680 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7681 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7682#ifndef CONFIG_64BIT
7683 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7684#endif
141965c7 7685#ifdef CONFIG_SMP
9ee474f5 7686 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7687 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7688#endif
029632fb
PZ
7689}
7690
810b3817 7691#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7692static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7693{
fed14d45 7694 struct sched_entity *se = &p->se;
aff3e498 7695 struct cfs_rq *cfs_rq;
fed14d45 7696
b2b5ce02
PZ
7697 /*
7698 * If the task was not on the rq at the time of this cgroup movement
7699 * it must have been asleep, sleeping tasks keep their ->vruntime
7700 * absolute on their old rq until wakeup (needed for the fair sleeper
7701 * bonus in place_entity()).
7702 *
7703 * If it was on the rq, we've just 'preempted' it, which does convert
7704 * ->vruntime to a relative base.
7705 *
7706 * Make sure both cases convert their relative position when migrating
7707 * to another cgroup's rq. This does somewhat interfere with the
7708 * fair sleeper stuff for the first placement, but who cares.
7709 */
7ceff013 7710 /*
da0c1e65 7711 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7712 * But there are some cases where it has already been normalized:
7713 *
7714 * - Moving a forked child which is waiting for being woken up by
7715 * wake_up_new_task().
62af3783
DN
7716 * - Moving a task which has been woken up by try_to_wake_up() and
7717 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7718 *
7719 * To prevent boost or penalty in the new cfs_rq caused by delta
7720 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7721 */
da0c1e65
KT
7722 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7723 queued = 1;
7ceff013 7724
da0c1e65 7725 if (!queued)
fed14d45 7726 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7727 set_task_rq(p, task_cpu(p));
fed14d45 7728 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7729 if (!queued) {
fed14d45
PZ
7730 cfs_rq = cfs_rq_of(se);
7731 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7732#ifdef CONFIG_SMP
7733 /*
7734 * migrate_task_rq_fair() will have removed our previous
7735 * contribution, but we must synchronize for ongoing future
7736 * decay.
7737 */
fed14d45
PZ
7738 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7739 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7740#endif
7741 }
810b3817 7742}
029632fb
PZ
7743
7744void free_fair_sched_group(struct task_group *tg)
7745{
7746 int i;
7747
7748 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7749
7750 for_each_possible_cpu(i) {
7751 if (tg->cfs_rq)
7752 kfree(tg->cfs_rq[i]);
7753 if (tg->se)
7754 kfree(tg->se[i]);
7755 }
7756
7757 kfree(tg->cfs_rq);
7758 kfree(tg->se);
7759}
7760
7761int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7762{
7763 struct cfs_rq *cfs_rq;
7764 struct sched_entity *se;
7765 int i;
7766
7767 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7768 if (!tg->cfs_rq)
7769 goto err;
7770 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7771 if (!tg->se)
7772 goto err;
7773
7774 tg->shares = NICE_0_LOAD;
7775
7776 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7777
7778 for_each_possible_cpu(i) {
7779 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7780 GFP_KERNEL, cpu_to_node(i));
7781 if (!cfs_rq)
7782 goto err;
7783
7784 se = kzalloc_node(sizeof(struct sched_entity),
7785 GFP_KERNEL, cpu_to_node(i));
7786 if (!se)
7787 goto err_free_rq;
7788
7789 init_cfs_rq(cfs_rq);
7790 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7791 }
7792
7793 return 1;
7794
7795err_free_rq:
7796 kfree(cfs_rq);
7797err:
7798 return 0;
7799}
7800
7801void unregister_fair_sched_group(struct task_group *tg, int cpu)
7802{
7803 struct rq *rq = cpu_rq(cpu);
7804 unsigned long flags;
7805
7806 /*
7807 * Only empty task groups can be destroyed; so we can speculatively
7808 * check on_list without danger of it being re-added.
7809 */
7810 if (!tg->cfs_rq[cpu]->on_list)
7811 return;
7812
7813 raw_spin_lock_irqsave(&rq->lock, flags);
7814 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7815 raw_spin_unlock_irqrestore(&rq->lock, flags);
7816}
7817
7818void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7819 struct sched_entity *se, int cpu,
7820 struct sched_entity *parent)
7821{
7822 struct rq *rq = cpu_rq(cpu);
7823
7824 cfs_rq->tg = tg;
7825 cfs_rq->rq = rq;
029632fb
PZ
7826 init_cfs_rq_runtime(cfs_rq);
7827
7828 tg->cfs_rq[cpu] = cfs_rq;
7829 tg->se[cpu] = se;
7830
7831 /* se could be NULL for root_task_group */
7832 if (!se)
7833 return;
7834
fed14d45 7835 if (!parent) {
029632fb 7836 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7837 se->depth = 0;
7838 } else {
029632fb 7839 se->cfs_rq = parent->my_q;
fed14d45
PZ
7840 se->depth = parent->depth + 1;
7841 }
029632fb
PZ
7842
7843 se->my_q = cfs_rq;
0ac9b1c2
PT
7844 /* guarantee group entities always have weight */
7845 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7846 se->parent = parent;
7847}
7848
7849static DEFINE_MUTEX(shares_mutex);
7850
7851int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7852{
7853 int i;
7854 unsigned long flags;
7855
7856 /*
7857 * We can't change the weight of the root cgroup.
7858 */
7859 if (!tg->se[0])
7860 return -EINVAL;
7861
7862 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7863
7864 mutex_lock(&shares_mutex);
7865 if (tg->shares == shares)
7866 goto done;
7867
7868 tg->shares = shares;
7869 for_each_possible_cpu(i) {
7870 struct rq *rq = cpu_rq(i);
7871 struct sched_entity *se;
7872
7873 se = tg->se[i];
7874 /* Propagate contribution to hierarchy */
7875 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7876
7877 /* Possible calls to update_curr() need rq clock */
7878 update_rq_clock(rq);
17bc14b7 7879 for_each_sched_entity(se)
029632fb
PZ
7880 update_cfs_shares(group_cfs_rq(se));
7881 raw_spin_unlock_irqrestore(&rq->lock, flags);
7882 }
7883
7884done:
7885 mutex_unlock(&shares_mutex);
7886 return 0;
7887}
7888#else /* CONFIG_FAIR_GROUP_SCHED */
7889
7890void free_fair_sched_group(struct task_group *tg) { }
7891
7892int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7893{
7894 return 1;
7895}
7896
7897void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7898
7899#endif /* CONFIG_FAIR_GROUP_SCHED */
7900
810b3817 7901
6d686f45 7902static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7903{
7904 struct sched_entity *se = &task->se;
0d721cea
PW
7905 unsigned int rr_interval = 0;
7906
7907 /*
7908 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7909 * idle runqueue:
7910 */
0d721cea 7911 if (rq->cfs.load.weight)
a59f4e07 7912 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7913
7914 return rr_interval;
7915}
7916
bf0f6f24
IM
7917/*
7918 * All the scheduling class methods:
7919 */
029632fb 7920const struct sched_class fair_sched_class = {
5522d5d5 7921 .next = &idle_sched_class,
bf0f6f24
IM
7922 .enqueue_task = enqueue_task_fair,
7923 .dequeue_task = dequeue_task_fair,
7924 .yield_task = yield_task_fair,
d95f4122 7925 .yield_to_task = yield_to_task_fair,
bf0f6f24 7926
2e09bf55 7927 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7928
7929 .pick_next_task = pick_next_task_fair,
7930 .put_prev_task = put_prev_task_fair,
7931
681f3e68 7932#ifdef CONFIG_SMP
4ce72a2c 7933 .select_task_rq = select_task_rq_fair,
0a74bef8 7934 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7935
0bcdcf28
CE
7936 .rq_online = rq_online_fair,
7937 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7938
7939 .task_waking = task_waking_fair,
681f3e68 7940#endif
bf0f6f24 7941
83b699ed 7942 .set_curr_task = set_curr_task_fair,
bf0f6f24 7943 .task_tick = task_tick_fair,
cd29fe6f 7944 .task_fork = task_fork_fair,
cb469845
SR
7945
7946 .prio_changed = prio_changed_fair,
da7a735e 7947 .switched_from = switched_from_fair,
cb469845 7948 .switched_to = switched_to_fair,
810b3817 7949
0d721cea
PW
7950 .get_rr_interval = get_rr_interval_fair,
7951
810b3817 7952#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7953 .task_move_group = task_move_group_fair,
810b3817 7954#endif
bf0f6f24
IM
7955};
7956
7957#ifdef CONFIG_SCHED_DEBUG
029632fb 7958void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7959{
bf0f6f24
IM
7960 struct cfs_rq *cfs_rq;
7961
5973e5b9 7962 rcu_read_lock();
c3b64f1e 7963 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7964 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7965 rcu_read_unlock();
bf0f6f24
IM
7966}
7967#endif
029632fb
PZ
7968
7969__init void init_sched_fair_class(void)
7970{
7971#ifdef CONFIG_SMP
7972 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7973
3451d024 7974#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7975 nohz.next_balance = jiffies;
029632fb 7976 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7977 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7978#endif
7979#endif /* SMP */
7980
7981}
This page took 1.099908 seconds and 5 git commands to generate.