sched/fair: Reset se-depth when task switched to FAIR
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
1098/*
1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task
1103 */
887c290e
RR
1104static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp)
fb13c7ee
MG
1106{
1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur;
1110 long dst_load, src_load;
1111 long load;
887c290e 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1113
1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */
1117 cur = NULL;
1118
1119 /*
1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped.
1125 */
1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock;
1130
887c290e
RR
1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1133 * in any group then look only at task weights.
887c290e 1134 */
ca28aa53 1135 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid);
ca28aa53
RR
1138 /*
1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences.
1141 */
1142 if (cur->numa_group)
1143 imp -= imp/16;
887c290e 1144 } else {
ca28aa53
RR
1145 /*
1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight
1148 * instead.
1149 */
1150 if (env->p->numa_group)
1151 imp = groupimp;
1152 else
1153 imp = taskimp;
1154
1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid);
1158 else
1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid);
887c290e 1161 }
fb13c7ee
MG
1162 }
1163
1164 if (imp < env->best_imp)
1165 goto unlock;
1166
1167 if (!cur) {
1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity)
1171 goto unlock;
1172
1173 goto balance;
1174 }
1175
1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign;
1179
1180 /*
1181 * In the overloaded case, try and keep the load balanced.
1182 */
1183balance:
1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load;
1186
1187 /* XXX missing power terms */
1188 load = task_h_load(env->p);
1189 dst_load += load;
1190 src_load -= load;
1191
1192 if (cur) {
1193 load = task_h_load(cur);
1194 dst_load -= load;
1195 src_load += load;
1196 }
1197
1198 /* make src_load the smaller */
1199 if (dst_load < src_load)
1200 swap(dst_load, src_load);
1201
1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock;
1204
1205assign:
1206 task_numa_assign(env, cur, imp);
1207unlock:
1208 rcu_read_unlock();
1209}
1210
887c290e
RR
1211static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp)
2c8a50aa
MG
1213{
1214 int cpu;
1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue;
1220
1221 env->dst_cpu = cpu;
887c290e 1222 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1223 }
1224}
1225
58d081b5
MG
1226static int task_numa_migrate(struct task_struct *p)
1227{
58d081b5
MG
1228 struct task_numa_env env = {
1229 .p = p,
fb13c7ee 1230
58d081b5 1231 .src_cpu = task_cpu(p),
b32e86b4 1232 .src_nid = task_node(p),
fb13c7ee
MG
1233
1234 .imbalance_pct = 112,
1235
1236 .best_task = NULL,
1237 .best_imp = 0,
1238 .best_cpu = -1
58d081b5
MG
1239 };
1240 struct sched_domain *sd;
887c290e 1241 unsigned long taskweight, groupweight;
2c8a50aa 1242 int nid, ret;
887c290e 1243 long taskimp, groupimp;
e6628d5b 1244
58d081b5 1245 /*
fb13c7ee
MG
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about.
1248 *
1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here.
58d081b5
MG
1252 */
1253 rcu_read_lock();
fb13c7ee 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1257 rcu_read_unlock();
1258
46a73e8a
RR
1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying.
1264 */
1265 if (unlikely(!sd)) {
de1b301a 1266 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1267 return -EINVAL;
1268 }
1269
887c290e
RR
1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1272 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1273 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1277
e1dda8a7
RR
1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity)
887c290e 1280 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1281
1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) {
2c8a50aa
MG
1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue;
58d081b5 1287
83e1d2cd 1288 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1292 continue;
1293
2c8a50aa
MG
1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1296 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1297 }
1298 }
1299
fb13c7ee
MG
1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1)
1302 return -EAGAIN;
1303
0ec8aa00
PZ
1304 sched_setnuma(p, env.dst_nid);
1305
04bb2f94
RR
1306 /*
1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed.
1309 */
1310 p->numa_scan_period = task_scan_min(p);
1311
fb13c7ee 1312 if (env.best_task == NULL) {
286549dc
MG
1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1316 return ret;
1317 }
1318
1319 ret = migrate_swap(p, env.best_task);
286549dc
MG
1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1322 put_task_struct(env.best_task);
1323 return ret;
e6628d5b
MG
1324}
1325
6b9a7460
MG
1326/* Attempt to migrate a task to a CPU on the preferred node. */
1327static void numa_migrate_preferred(struct task_struct *p)
1328{
2739d3ee 1329 /* This task has no NUMA fault statistics yet */
ff1df896 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1331 return;
1332
2739d3ee
RR
1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ;
1335
1336 /* Success if task is already running on preferred CPU */
de1b301a 1337 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1338 return;
1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1341 task_numa_migrate(p);
6b9a7460
MG
1342}
1343
20e07dea
RR
1344/*
1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently
1348 * located.
1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16.
1354 */
1355static void update_numa_active_node_mask(struct numa_group *numa_group)
1356{
1357 unsigned long faults, max_faults = 0;
1358 int nid;
1359
1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults)
1363 max_faults = faults;
1364 }
1365
1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes);
1373 }
1374}
1375
04bb2f94
RR
1376/*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease
1382 */
1383#define NUMA_PERIOD_SLOTS 10
1384#define NUMA_PERIOD_THRESHOLD 3
1385
1386/*
1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period.
1391 */
1392static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private)
1394{
1395 unsigned int period_slot;
1396 int ratio;
1397 int diff;
1398
1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1];
1401
1402 /*
1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower
1406 */
1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1);
1410
1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period);
1413
1414 return;
1415 }
1416
1417 /*
1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot)
1428 slot = 1;
1429 diff = slot * period_slot;
1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432
1433 /*
1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly
1440 */
04bb2f94
RR
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 }
1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448}
1449
7e2703e6
RR
1450/*
1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */
1457static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458{
1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime;
1463
1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement;
1467 } else {
1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period;
1470 }
1471
1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now;
1474
1475 return delta;
1476}
1477
cbee9f88
PZ
1478static void task_numa_placement(struct task_struct *p)
1479{
83e1d2cd
MG
1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1482 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1483 unsigned long total_faults;
1484 u64 runtime, period;
7dbd13ed 1485 spinlock_t *group_lock = NULL;
cbee9f88 1486
2832bc19 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1488 if (p->numa_scan_seq == seq)
1489 return;
1490 p->numa_scan_seq = seq;
598f0ec0 1491 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1492
7e2703e6
RR
1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period);
1496
7dbd13ed
MG
1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock;
1500 spin_lock(group_lock);
1501 }
1502
688b7585
MG
1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) {
83e1d2cd 1505 unsigned long faults = 0, group_faults = 0;
ac8e895b 1506 int priv, i;
745d6147 1507
be1e4e76 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1509 long diff, f_diff, f_weight;
8c8a743c 1510
ac8e895b 1511 i = task_faults_idx(nid, priv);
745d6147 1512
ac8e895b 1513 /* Decay existing window, copy faults since last scan */
35664fd4 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1517
7e2703e6
RR
1518 /*
1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their
1523 * faults are less important.
1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1);
35664fd4 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1529 p->numa_faults_buffer_cpu[i] = 0;
1530
35664fd4
RR
1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff;
ff1df896 1533 faults += p->numa_faults_memory[i];
83e1d2cd 1534 p->total_numa_faults += diff;
8c8a743c
PZ
1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */
989348b5 1537 p->numa_group->faults[i] += diff;
50ec8a40 1538 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i];
8c8a743c 1541 }
ac8e895b
MG
1542 }
1543
688b7585
MG
1544 if (faults > max_faults) {
1545 max_faults = faults;
1546 max_nid = nid;
1547 }
83e1d2cd
MG
1548
1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults;
1551 max_group_nid = nid;
1552 }
1553 }
1554
04bb2f94
RR
1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556
7dbd13ed 1557 if (p->numa_group) {
20e07dea 1558 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1559 /*
1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place.
1562 */
1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0;
1565
1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) {
1569 max_weight = weight;
1570 max_nid = nid;
1571 }
83e1d2cd
MG
1572 }
1573 }
7dbd13ed
MG
1574
1575 spin_unlock(group_lock);
688b7585
MG
1576 }
1577
6b9a7460 1578 /* Preferred node as the node with the most faults */
3a7053b3 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1580 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1581 sched_setnuma(p, max_nid);
6b9a7460 1582 numa_migrate_preferred(p);
3a7053b3 1583 }
cbee9f88
PZ
1584}
1585
8c8a743c
PZ
1586static inline int get_numa_group(struct numa_group *grp)
1587{
1588 return atomic_inc_not_zero(&grp->refcount);
1589}
1590
1591static inline void put_numa_group(struct numa_group *grp)
1592{
1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu);
1595}
1596
3e6a9418
MG
1597static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv)
8c8a743c
PZ
1599{
1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk;
1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i;
1605
1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1608 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp)
1612 return;
1613
1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1617 grp->gid = p->pid;
50ec8a40 1618 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids;
8c8a743c 1621
20e07dea
RR
1622 node_set(task_node(current), grp->active_nodes);
1623
be1e4e76 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1625 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1626
989348b5 1627 grp->total_faults = p->total_numa_faults;
83e1d2cd 1628
8c8a743c
PZ
1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp);
1632 }
1633
1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636
1637 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1638 goto no_join;
8c8a743c
PZ
1639
1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp)
3354781a 1642 goto no_join;
8c8a743c
PZ
1643
1644 my_grp = p->numa_group;
1645 if (grp == my_grp)
3354781a 1646 goto no_join;
8c8a743c
PZ
1647
1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us.
1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1653 goto no_join;
8c8a743c
PZ
1654
1655 /*
1656 * Tie-break on the grp address.
1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1659 goto no_join;
8c8a743c 1660
dabe1d99
RR
1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm)
1663 join = true;
1664
1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED)
1667 join = true;
8c8a743c 1668
3e6a9418
MG
1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join;
1671
dabe1d99 1672 if (join && !get_numa_group(grp))
3354781a 1673 goto no_join;
8c8a743c 1674
8c8a743c
PZ
1675 rcu_read_unlock();
1676
1677 if (!join)
1678 return;
1679
989348b5
MG
1680 double_lock(&my_grp->lock, &grp->lock);
1681
be1e4e76 1682 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1683 my_grp->faults[i] -= p->numa_faults_memory[i];
1684 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1685 }
989348b5
MG
1686 my_grp->total_faults -= p->total_numa_faults;
1687 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1688
1689 list_move(&p->numa_entry, &grp->task_list);
1690 my_grp->nr_tasks--;
1691 grp->nr_tasks++;
1692
1693 spin_unlock(&my_grp->lock);
1694 spin_unlock(&grp->lock);
1695
1696 rcu_assign_pointer(p->numa_group, grp);
1697
1698 put_numa_group(my_grp);
3354781a
PZ
1699 return;
1700
1701no_join:
1702 rcu_read_unlock();
1703 return;
8c8a743c
PZ
1704}
1705
1706void task_numa_free(struct task_struct *p)
1707{
1708 struct numa_group *grp = p->numa_group;
1709 int i;
ff1df896 1710 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1711
1712 if (grp) {
989348b5 1713 spin_lock(&grp->lock);
be1e4e76 1714 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1715 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1716 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1717
8c8a743c
PZ
1718 list_del(&p->numa_entry);
1719 grp->nr_tasks--;
1720 spin_unlock(&grp->lock);
1721 rcu_assign_pointer(p->numa_group, NULL);
1722 put_numa_group(grp);
1723 }
1724
ff1df896
RR
1725 p->numa_faults_memory = NULL;
1726 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1727 p->numa_faults_cpu= NULL;
1728 p->numa_faults_buffer_cpu = NULL;
82727018 1729 kfree(numa_faults);
8c8a743c
PZ
1730}
1731
cbee9f88
PZ
1732/*
1733 * Got a PROT_NONE fault for a page on @node.
1734 */
58b46da3 1735void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1736{
1737 struct task_struct *p = current;
6688cc05 1738 bool migrated = flags & TNF_MIGRATED;
58b46da3 1739 int cpu_node = task_node(current);
ac8e895b 1740 int priv;
cbee9f88 1741
10e84b97 1742 if (!numabalancing_enabled)
1a687c2e
MG
1743 return;
1744
9ff1d9ff
MG
1745 /* for example, ksmd faulting in a user's mm */
1746 if (!p->mm)
1747 return;
1748
82727018
RR
1749 /* Do not worry about placement if exiting */
1750 if (p->state == TASK_DEAD)
1751 return;
1752
f809ca9a 1753 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1754 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1755 int size = sizeof(*p->numa_faults_memory) *
1756 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1757
be1e4e76 1758 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1759 if (!p->numa_faults_memory)
f809ca9a 1760 return;
745d6147 1761
ff1df896 1762 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1763 /*
1764 * The averaged statistics, shared & private, memory & cpu,
1765 * occupy the first half of the array. The second half of the
1766 * array is for current counters, which are averaged into the
1767 * first set by task_numa_placement.
1768 */
50ec8a40
RR
1769 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1770 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1771 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1772 p->total_numa_faults = 0;
04bb2f94 1773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1774 }
cbee9f88 1775
8c8a743c
PZ
1776 /*
1777 * First accesses are treated as private, otherwise consider accesses
1778 * to be private if the accessing pid has not changed
1779 */
1780 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1781 priv = 1;
1782 } else {
1783 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1784 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1785 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1786 }
1787
cbee9f88 1788 task_numa_placement(p);
f809ca9a 1789
2739d3ee
RR
1790 /*
1791 * Retry task to preferred node migration periodically, in case it
1792 * case it previously failed, or the scheduler moved us.
1793 */
1794 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1795 numa_migrate_preferred(p);
1796
b32e86b4
IM
1797 if (migrated)
1798 p->numa_pages_migrated += pages;
1799
58b46da3
RR
1800 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1801 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
04bb2f94 1802 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1803}
1804
6e5fb223
PZ
1805static void reset_ptenuma_scan(struct task_struct *p)
1806{
1807 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1808 p->mm->numa_scan_offset = 0;
1809}
1810
cbee9f88
PZ
1811/*
1812 * The expensive part of numa migration is done from task_work context.
1813 * Triggered from task_tick_numa().
1814 */
1815void task_numa_work(struct callback_head *work)
1816{
1817 unsigned long migrate, next_scan, now = jiffies;
1818 struct task_struct *p = current;
1819 struct mm_struct *mm = p->mm;
6e5fb223 1820 struct vm_area_struct *vma;
9f40604c 1821 unsigned long start, end;
598f0ec0 1822 unsigned long nr_pte_updates = 0;
9f40604c 1823 long pages;
cbee9f88
PZ
1824
1825 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1826
1827 work->next = work; /* protect against double add */
1828 /*
1829 * Who cares about NUMA placement when they're dying.
1830 *
1831 * NOTE: make sure not to dereference p->mm before this check,
1832 * exit_task_work() happens _after_ exit_mm() so we could be called
1833 * without p->mm even though we still had it when we enqueued this
1834 * work.
1835 */
1836 if (p->flags & PF_EXITING)
1837 return;
1838
930aa174 1839 if (!mm->numa_next_scan) {
7e8d16b6
MG
1840 mm->numa_next_scan = now +
1841 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1842 }
1843
cbee9f88
PZ
1844 /*
1845 * Enforce maximal scan/migration frequency..
1846 */
1847 migrate = mm->numa_next_scan;
1848 if (time_before(now, migrate))
1849 return;
1850
598f0ec0
MG
1851 if (p->numa_scan_period == 0) {
1852 p->numa_scan_period_max = task_scan_max(p);
1853 p->numa_scan_period = task_scan_min(p);
1854 }
cbee9f88 1855
fb003b80 1856 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1857 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1858 return;
1859
19a78d11
PZ
1860 /*
1861 * Delay this task enough that another task of this mm will likely win
1862 * the next time around.
1863 */
1864 p->node_stamp += 2 * TICK_NSEC;
1865
9f40604c
MG
1866 start = mm->numa_scan_offset;
1867 pages = sysctl_numa_balancing_scan_size;
1868 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1869 if (!pages)
1870 return;
cbee9f88 1871
6e5fb223 1872 down_read(&mm->mmap_sem);
9f40604c 1873 vma = find_vma(mm, start);
6e5fb223
PZ
1874 if (!vma) {
1875 reset_ptenuma_scan(p);
9f40604c 1876 start = 0;
6e5fb223
PZ
1877 vma = mm->mmap;
1878 }
9f40604c 1879 for (; vma; vma = vma->vm_next) {
fc314724 1880 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1881 continue;
1882
4591ce4f
MG
1883 /*
1884 * Shared library pages mapped by multiple processes are not
1885 * migrated as it is expected they are cache replicated. Avoid
1886 * hinting faults in read-only file-backed mappings or the vdso
1887 * as migrating the pages will be of marginal benefit.
1888 */
1889 if (!vma->vm_mm ||
1890 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1891 continue;
1892
3c67f474
MG
1893 /*
1894 * Skip inaccessible VMAs to avoid any confusion between
1895 * PROT_NONE and NUMA hinting ptes
1896 */
1897 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1898 continue;
4591ce4f 1899
9f40604c
MG
1900 do {
1901 start = max(start, vma->vm_start);
1902 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1903 end = min(end, vma->vm_end);
598f0ec0
MG
1904 nr_pte_updates += change_prot_numa(vma, start, end);
1905
1906 /*
1907 * Scan sysctl_numa_balancing_scan_size but ensure that
1908 * at least one PTE is updated so that unused virtual
1909 * address space is quickly skipped.
1910 */
1911 if (nr_pte_updates)
1912 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1913
9f40604c
MG
1914 start = end;
1915 if (pages <= 0)
1916 goto out;
1917 } while (end != vma->vm_end);
cbee9f88 1918 }
6e5fb223 1919
9f40604c 1920out:
6e5fb223 1921 /*
c69307d5
PZ
1922 * It is possible to reach the end of the VMA list but the last few
1923 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1924 * would find the !migratable VMA on the next scan but not reset the
1925 * scanner to the start so check it now.
6e5fb223
PZ
1926 */
1927 if (vma)
9f40604c 1928 mm->numa_scan_offset = start;
6e5fb223
PZ
1929 else
1930 reset_ptenuma_scan(p);
1931 up_read(&mm->mmap_sem);
cbee9f88
PZ
1932}
1933
1934/*
1935 * Drive the periodic memory faults..
1936 */
1937void task_tick_numa(struct rq *rq, struct task_struct *curr)
1938{
1939 struct callback_head *work = &curr->numa_work;
1940 u64 period, now;
1941
1942 /*
1943 * We don't care about NUMA placement if we don't have memory.
1944 */
1945 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1946 return;
1947
1948 /*
1949 * Using runtime rather than walltime has the dual advantage that
1950 * we (mostly) drive the selection from busy threads and that the
1951 * task needs to have done some actual work before we bother with
1952 * NUMA placement.
1953 */
1954 now = curr->se.sum_exec_runtime;
1955 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1956
1957 if (now - curr->node_stamp > period) {
4b96a29b 1958 if (!curr->node_stamp)
598f0ec0 1959 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1960 curr->node_stamp += period;
cbee9f88
PZ
1961
1962 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1963 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1964 task_work_add(curr, work, true);
1965 }
1966 }
1967}
1968#else
1969static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1970{
1971}
0ec8aa00
PZ
1972
1973static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1974{
1975}
1976
1977static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1978{
1979}
cbee9f88
PZ
1980#endif /* CONFIG_NUMA_BALANCING */
1981
30cfdcfc
DA
1982static void
1983account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1984{
1985 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1986 if (!parent_entity(se))
029632fb 1987 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1988#ifdef CONFIG_SMP
0ec8aa00
PZ
1989 if (entity_is_task(se)) {
1990 struct rq *rq = rq_of(cfs_rq);
1991
1992 account_numa_enqueue(rq, task_of(se));
1993 list_add(&se->group_node, &rq->cfs_tasks);
1994 }
367456c7 1995#endif
30cfdcfc 1996 cfs_rq->nr_running++;
30cfdcfc
DA
1997}
1998
1999static void
2000account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2001{
2002 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2003 if (!parent_entity(se))
029632fb 2004 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2005 if (entity_is_task(se)) {
2006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2007 list_del_init(&se->group_node);
0ec8aa00 2008 }
30cfdcfc 2009 cfs_rq->nr_running--;
30cfdcfc
DA
2010}
2011
3ff6dcac
YZ
2012#ifdef CONFIG_FAIR_GROUP_SCHED
2013# ifdef CONFIG_SMP
cf5f0acf
PZ
2014static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2015{
2016 long tg_weight;
2017
2018 /*
2019 * Use this CPU's actual weight instead of the last load_contribution
2020 * to gain a more accurate current total weight. See
2021 * update_cfs_rq_load_contribution().
2022 */
bf5b986e 2023 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2024 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2025 tg_weight += cfs_rq->load.weight;
2026
2027 return tg_weight;
2028}
2029
6d5ab293 2030static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2031{
cf5f0acf 2032 long tg_weight, load, shares;
3ff6dcac 2033
cf5f0acf 2034 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2035 load = cfs_rq->load.weight;
3ff6dcac 2036
3ff6dcac 2037 shares = (tg->shares * load);
cf5f0acf
PZ
2038 if (tg_weight)
2039 shares /= tg_weight;
3ff6dcac
YZ
2040
2041 if (shares < MIN_SHARES)
2042 shares = MIN_SHARES;
2043 if (shares > tg->shares)
2044 shares = tg->shares;
2045
2046 return shares;
2047}
3ff6dcac 2048# else /* CONFIG_SMP */
6d5ab293 2049static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2050{
2051 return tg->shares;
2052}
3ff6dcac 2053# endif /* CONFIG_SMP */
2069dd75
PZ
2054static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2055 unsigned long weight)
2056{
19e5eebb
PT
2057 if (se->on_rq) {
2058 /* commit outstanding execution time */
2059 if (cfs_rq->curr == se)
2060 update_curr(cfs_rq);
2069dd75 2061 account_entity_dequeue(cfs_rq, se);
19e5eebb 2062 }
2069dd75
PZ
2063
2064 update_load_set(&se->load, weight);
2065
2066 if (se->on_rq)
2067 account_entity_enqueue(cfs_rq, se);
2068}
2069
82958366
PT
2070static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2071
6d5ab293 2072static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2073{
2074 struct task_group *tg;
2075 struct sched_entity *se;
3ff6dcac 2076 long shares;
2069dd75 2077
2069dd75
PZ
2078 tg = cfs_rq->tg;
2079 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2080 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2081 return;
3ff6dcac
YZ
2082#ifndef CONFIG_SMP
2083 if (likely(se->load.weight == tg->shares))
2084 return;
2085#endif
6d5ab293 2086 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2087
2088 reweight_entity(cfs_rq_of(se), se, shares);
2089}
2090#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2091static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2092{
2093}
2094#endif /* CONFIG_FAIR_GROUP_SCHED */
2095
141965c7 2096#ifdef CONFIG_SMP
5b51f2f8
PT
2097/*
2098 * We choose a half-life close to 1 scheduling period.
2099 * Note: The tables below are dependent on this value.
2100 */
2101#define LOAD_AVG_PERIOD 32
2102#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2103#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2104
2105/* Precomputed fixed inverse multiplies for multiplication by y^n */
2106static const u32 runnable_avg_yN_inv[] = {
2107 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2108 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2109 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2110 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2111 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2112 0x85aac367, 0x82cd8698,
2113};
2114
2115/*
2116 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2117 * over-estimates when re-combining.
2118 */
2119static const u32 runnable_avg_yN_sum[] = {
2120 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2121 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2122 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2123};
2124
9d85f21c
PT
2125/*
2126 * Approximate:
2127 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2128 */
2129static __always_inline u64 decay_load(u64 val, u64 n)
2130{
5b51f2f8
PT
2131 unsigned int local_n;
2132
2133 if (!n)
2134 return val;
2135 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2136 return 0;
2137
2138 /* after bounds checking we can collapse to 32-bit */
2139 local_n = n;
2140
2141 /*
2142 * As y^PERIOD = 1/2, we can combine
2143 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2144 * With a look-up table which covers k^n (n<PERIOD)
2145 *
2146 * To achieve constant time decay_load.
2147 */
2148 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2149 val >>= local_n / LOAD_AVG_PERIOD;
2150 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2151 }
2152
5b51f2f8
PT
2153 val *= runnable_avg_yN_inv[local_n];
2154 /* We don't use SRR here since we always want to round down. */
2155 return val >> 32;
2156}
2157
2158/*
2159 * For updates fully spanning n periods, the contribution to runnable
2160 * average will be: \Sum 1024*y^n
2161 *
2162 * We can compute this reasonably efficiently by combining:
2163 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2164 */
2165static u32 __compute_runnable_contrib(u64 n)
2166{
2167 u32 contrib = 0;
2168
2169 if (likely(n <= LOAD_AVG_PERIOD))
2170 return runnable_avg_yN_sum[n];
2171 else if (unlikely(n >= LOAD_AVG_MAX_N))
2172 return LOAD_AVG_MAX;
2173
2174 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2175 do {
2176 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2177 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2178
2179 n -= LOAD_AVG_PERIOD;
2180 } while (n > LOAD_AVG_PERIOD);
2181
2182 contrib = decay_load(contrib, n);
2183 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2184}
2185
2186/*
2187 * We can represent the historical contribution to runnable average as the
2188 * coefficients of a geometric series. To do this we sub-divide our runnable
2189 * history into segments of approximately 1ms (1024us); label the segment that
2190 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2191 *
2192 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2193 * p0 p1 p2
2194 * (now) (~1ms ago) (~2ms ago)
2195 *
2196 * Let u_i denote the fraction of p_i that the entity was runnable.
2197 *
2198 * We then designate the fractions u_i as our co-efficients, yielding the
2199 * following representation of historical load:
2200 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2201 *
2202 * We choose y based on the with of a reasonably scheduling period, fixing:
2203 * y^32 = 0.5
2204 *
2205 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2206 * approximately half as much as the contribution to load within the last ms
2207 * (u_0).
2208 *
2209 * When a period "rolls over" and we have new u_0`, multiplying the previous
2210 * sum again by y is sufficient to update:
2211 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2212 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2213 */
2214static __always_inline int __update_entity_runnable_avg(u64 now,
2215 struct sched_avg *sa,
2216 int runnable)
2217{
5b51f2f8
PT
2218 u64 delta, periods;
2219 u32 runnable_contrib;
9d85f21c
PT
2220 int delta_w, decayed = 0;
2221
2222 delta = now - sa->last_runnable_update;
2223 /*
2224 * This should only happen when time goes backwards, which it
2225 * unfortunately does during sched clock init when we swap over to TSC.
2226 */
2227 if ((s64)delta < 0) {
2228 sa->last_runnable_update = now;
2229 return 0;
2230 }
2231
2232 /*
2233 * Use 1024ns as the unit of measurement since it's a reasonable
2234 * approximation of 1us and fast to compute.
2235 */
2236 delta >>= 10;
2237 if (!delta)
2238 return 0;
2239 sa->last_runnable_update = now;
2240
2241 /* delta_w is the amount already accumulated against our next period */
2242 delta_w = sa->runnable_avg_period % 1024;
2243 if (delta + delta_w >= 1024) {
2244 /* period roll-over */
2245 decayed = 1;
2246
2247 /*
2248 * Now that we know we're crossing a period boundary, figure
2249 * out how much from delta we need to complete the current
2250 * period and accrue it.
2251 */
2252 delta_w = 1024 - delta_w;
5b51f2f8
PT
2253 if (runnable)
2254 sa->runnable_avg_sum += delta_w;
2255 sa->runnable_avg_period += delta_w;
2256
2257 delta -= delta_w;
2258
2259 /* Figure out how many additional periods this update spans */
2260 periods = delta / 1024;
2261 delta %= 1024;
2262
2263 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2264 periods + 1);
2265 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2266 periods + 1);
2267
2268 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2269 runnable_contrib = __compute_runnable_contrib(periods);
2270 if (runnable)
2271 sa->runnable_avg_sum += runnable_contrib;
2272 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2273 }
2274
2275 /* Remainder of delta accrued against u_0` */
2276 if (runnable)
2277 sa->runnable_avg_sum += delta;
2278 sa->runnable_avg_period += delta;
2279
2280 return decayed;
2281}
2282
9ee474f5 2283/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2284static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2285{
2286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2287 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2288
2289 decays -= se->avg.decay_count;
2290 if (!decays)
aff3e498 2291 return 0;
9ee474f5
PT
2292
2293 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2294 se->avg.decay_count = 0;
aff3e498
PT
2295
2296 return decays;
9ee474f5
PT
2297}
2298
c566e8e9
PT
2299#ifdef CONFIG_FAIR_GROUP_SCHED
2300static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2301 int force_update)
2302{
2303 struct task_group *tg = cfs_rq->tg;
bf5b986e 2304 long tg_contrib;
c566e8e9
PT
2305
2306 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2307 tg_contrib -= cfs_rq->tg_load_contrib;
2308
bf5b986e
AS
2309 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2310 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2311 cfs_rq->tg_load_contrib += tg_contrib;
2312 }
2313}
8165e145 2314
bb17f655
PT
2315/*
2316 * Aggregate cfs_rq runnable averages into an equivalent task_group
2317 * representation for computing load contributions.
2318 */
2319static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2320 struct cfs_rq *cfs_rq)
2321{
2322 struct task_group *tg = cfs_rq->tg;
2323 long contrib;
2324
2325 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2326 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2327 sa->runnable_avg_period + 1);
2328 contrib -= cfs_rq->tg_runnable_contrib;
2329
2330 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2331 atomic_add(contrib, &tg->runnable_avg);
2332 cfs_rq->tg_runnable_contrib += contrib;
2333 }
2334}
2335
8165e145
PT
2336static inline void __update_group_entity_contrib(struct sched_entity *se)
2337{
2338 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2339 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2340 int runnable_avg;
2341
8165e145
PT
2342 u64 contrib;
2343
2344 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2345 se->avg.load_avg_contrib = div_u64(contrib,
2346 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2347
2348 /*
2349 * For group entities we need to compute a correction term in the case
2350 * that they are consuming <1 cpu so that we would contribute the same
2351 * load as a task of equal weight.
2352 *
2353 * Explicitly co-ordinating this measurement would be expensive, but
2354 * fortunately the sum of each cpus contribution forms a usable
2355 * lower-bound on the true value.
2356 *
2357 * Consider the aggregate of 2 contributions. Either they are disjoint
2358 * (and the sum represents true value) or they are disjoint and we are
2359 * understating by the aggregate of their overlap.
2360 *
2361 * Extending this to N cpus, for a given overlap, the maximum amount we
2362 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2363 * cpus that overlap for this interval and w_i is the interval width.
2364 *
2365 * On a small machine; the first term is well-bounded which bounds the
2366 * total error since w_i is a subset of the period. Whereas on a
2367 * larger machine, while this first term can be larger, if w_i is the
2368 * of consequential size guaranteed to see n_i*w_i quickly converge to
2369 * our upper bound of 1-cpu.
2370 */
2371 runnable_avg = atomic_read(&tg->runnable_avg);
2372 if (runnable_avg < NICE_0_LOAD) {
2373 se->avg.load_avg_contrib *= runnable_avg;
2374 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2375 }
8165e145 2376}
c566e8e9
PT
2377#else
2378static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2379 int force_update) {}
bb17f655
PT
2380static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2381 struct cfs_rq *cfs_rq) {}
8165e145 2382static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2383#endif
2384
8165e145
PT
2385static inline void __update_task_entity_contrib(struct sched_entity *se)
2386{
2387 u32 contrib;
2388
2389 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2390 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2391 contrib /= (se->avg.runnable_avg_period + 1);
2392 se->avg.load_avg_contrib = scale_load(contrib);
2393}
2394
2dac754e
PT
2395/* Compute the current contribution to load_avg by se, return any delta */
2396static long __update_entity_load_avg_contrib(struct sched_entity *se)
2397{
2398 long old_contrib = se->avg.load_avg_contrib;
2399
8165e145
PT
2400 if (entity_is_task(se)) {
2401 __update_task_entity_contrib(se);
2402 } else {
bb17f655 2403 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2404 __update_group_entity_contrib(se);
2405 }
2dac754e
PT
2406
2407 return se->avg.load_avg_contrib - old_contrib;
2408}
2409
9ee474f5
PT
2410static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2411 long load_contrib)
2412{
2413 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2414 cfs_rq->blocked_load_avg -= load_contrib;
2415 else
2416 cfs_rq->blocked_load_avg = 0;
2417}
2418
f1b17280
PT
2419static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2420
9d85f21c 2421/* Update a sched_entity's runnable average */
9ee474f5
PT
2422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq)
9d85f21c 2424{
2dac754e
PT
2425 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2426 long contrib_delta;
f1b17280 2427 u64 now;
2dac754e 2428
f1b17280
PT
2429 /*
2430 * For a group entity we need to use their owned cfs_rq_clock_task() in
2431 * case they are the parent of a throttled hierarchy.
2432 */
2433 if (entity_is_task(se))
2434 now = cfs_rq_clock_task(cfs_rq);
2435 else
2436 now = cfs_rq_clock_task(group_cfs_rq(se));
2437
2438 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2439 return;
2440
2441 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2442
2443 if (!update_cfs_rq)
2444 return;
2445
2dac754e
PT
2446 if (se->on_rq)
2447 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2448 else
2449 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2450}
2451
2452/*
2453 * Decay the load contributed by all blocked children and account this so that
2454 * their contribution may appropriately discounted when they wake up.
2455 */
aff3e498 2456static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2457{
f1b17280 2458 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2459 u64 decays;
2460
2461 decays = now - cfs_rq->last_decay;
aff3e498 2462 if (!decays && !force_update)
9ee474f5
PT
2463 return;
2464
2509940f
AS
2465 if (atomic_long_read(&cfs_rq->removed_load)) {
2466 unsigned long removed_load;
2467 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2468 subtract_blocked_load_contrib(cfs_rq, removed_load);
2469 }
9ee474f5 2470
aff3e498
PT
2471 if (decays) {
2472 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2473 decays);
2474 atomic64_add(decays, &cfs_rq->decay_counter);
2475 cfs_rq->last_decay = now;
2476 }
c566e8e9
PT
2477
2478 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2479}
18bf2805
BS
2480
2481static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2482{
78becc27 2483 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2484 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2485}
2dac754e
PT
2486
2487/* Add the load generated by se into cfs_rq's child load-average */
2488static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2489 struct sched_entity *se,
2490 int wakeup)
2dac754e 2491{
aff3e498
PT
2492 /*
2493 * We track migrations using entity decay_count <= 0, on a wake-up
2494 * migration we use a negative decay count to track the remote decays
2495 * accumulated while sleeping.
a75cdaa9
AS
2496 *
2497 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2498 * are seen by enqueue_entity_load_avg() as a migration with an already
2499 * constructed load_avg_contrib.
aff3e498
PT
2500 */
2501 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2502 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2503 if (se->avg.decay_count) {
2504 /*
2505 * In a wake-up migration we have to approximate the
2506 * time sleeping. This is because we can't synchronize
2507 * clock_task between the two cpus, and it is not
2508 * guaranteed to be read-safe. Instead, we can
2509 * approximate this using our carried decays, which are
2510 * explicitly atomically readable.
2511 */
2512 se->avg.last_runnable_update -= (-se->avg.decay_count)
2513 << 20;
2514 update_entity_load_avg(se, 0);
2515 /* Indicate that we're now synchronized and on-rq */
2516 se->avg.decay_count = 0;
2517 }
9ee474f5
PT
2518 wakeup = 0;
2519 } else {
9390675a 2520 __synchronize_entity_decay(se);
9ee474f5
PT
2521 }
2522
aff3e498
PT
2523 /* migrated tasks did not contribute to our blocked load */
2524 if (wakeup) {
9ee474f5 2525 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2526 update_entity_load_avg(se, 0);
2527 }
9ee474f5 2528
2dac754e 2529 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2530 /* we force update consideration on load-balancer moves */
2531 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2532}
2533
9ee474f5
PT
2534/*
2535 * Remove se's load from this cfs_rq child load-average, if the entity is
2536 * transitioning to a blocked state we track its projected decay using
2537 * blocked_load_avg.
2538 */
2dac754e 2539static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2540 struct sched_entity *se,
2541 int sleep)
2dac754e 2542{
9ee474f5 2543 update_entity_load_avg(se, 1);
aff3e498
PT
2544 /* we force update consideration on load-balancer moves */
2545 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2546
2dac754e 2547 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2548 if (sleep) {
2549 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2550 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2551 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2552}
642dbc39
VG
2553
2554/*
2555 * Update the rq's load with the elapsed running time before entering
2556 * idle. if the last scheduled task is not a CFS task, idle_enter will
2557 * be the only way to update the runnable statistic.
2558 */
2559void idle_enter_fair(struct rq *this_rq)
2560{
2561 update_rq_runnable_avg(this_rq, 1);
2562}
2563
2564/*
2565 * Update the rq's load with the elapsed idle time before a task is
2566 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2567 * be the only way to update the runnable statistic.
2568 */
2569void idle_exit_fair(struct rq *this_rq)
2570{
2571 update_rq_runnable_avg(this_rq, 0);
2572}
2573
38033c37
PZ
2574#else /* CONFIG_SMP */
2575
9ee474f5
PT
2576static inline void update_entity_load_avg(struct sched_entity *se,
2577 int update_cfs_rq) {}
18bf2805 2578static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2579static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2580 struct sched_entity *se,
2581 int wakeup) {}
2dac754e 2582static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2583 struct sched_entity *se,
2584 int sleep) {}
aff3e498
PT
2585static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2586 int force_update) {}
38033c37 2587#endif /* CONFIG_SMP */
9d85f21c 2588
2396af69 2589static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2590{
bf0f6f24 2591#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2592 struct task_struct *tsk = NULL;
2593
2594 if (entity_is_task(se))
2595 tsk = task_of(se);
2596
41acab88 2597 if (se->statistics.sleep_start) {
78becc27 2598 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2599
2600 if ((s64)delta < 0)
2601 delta = 0;
2602
41acab88
LDM
2603 if (unlikely(delta > se->statistics.sleep_max))
2604 se->statistics.sleep_max = delta;
bf0f6f24 2605
8c79a045 2606 se->statistics.sleep_start = 0;
41acab88 2607 se->statistics.sum_sleep_runtime += delta;
9745512c 2608
768d0c27 2609 if (tsk) {
e414314c 2610 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2611 trace_sched_stat_sleep(tsk, delta);
2612 }
bf0f6f24 2613 }
41acab88 2614 if (se->statistics.block_start) {
78becc27 2615 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2616
2617 if ((s64)delta < 0)
2618 delta = 0;
2619
41acab88
LDM
2620 if (unlikely(delta > se->statistics.block_max))
2621 se->statistics.block_max = delta;
bf0f6f24 2622
8c79a045 2623 se->statistics.block_start = 0;
41acab88 2624 se->statistics.sum_sleep_runtime += delta;
30084fbd 2625
e414314c 2626 if (tsk) {
8f0dfc34 2627 if (tsk->in_iowait) {
41acab88
LDM
2628 se->statistics.iowait_sum += delta;
2629 se->statistics.iowait_count++;
768d0c27 2630 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2631 }
2632
b781a602
AV
2633 trace_sched_stat_blocked(tsk, delta);
2634
e414314c
PZ
2635 /*
2636 * Blocking time is in units of nanosecs, so shift by
2637 * 20 to get a milliseconds-range estimation of the
2638 * amount of time that the task spent sleeping:
2639 */
2640 if (unlikely(prof_on == SLEEP_PROFILING)) {
2641 profile_hits(SLEEP_PROFILING,
2642 (void *)get_wchan(tsk),
2643 delta >> 20);
2644 }
2645 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2646 }
bf0f6f24
IM
2647 }
2648#endif
2649}
2650
ddc97297
PZ
2651static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2652{
2653#ifdef CONFIG_SCHED_DEBUG
2654 s64 d = se->vruntime - cfs_rq->min_vruntime;
2655
2656 if (d < 0)
2657 d = -d;
2658
2659 if (d > 3*sysctl_sched_latency)
2660 schedstat_inc(cfs_rq, nr_spread_over);
2661#endif
2662}
2663
aeb73b04
PZ
2664static void
2665place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2666{
1af5f730 2667 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2668
2cb8600e
PZ
2669 /*
2670 * The 'current' period is already promised to the current tasks,
2671 * however the extra weight of the new task will slow them down a
2672 * little, place the new task so that it fits in the slot that
2673 * stays open at the end.
2674 */
94dfb5e7 2675 if (initial && sched_feat(START_DEBIT))
f9c0b095 2676 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2677
a2e7a7eb 2678 /* sleeps up to a single latency don't count. */
5ca9880c 2679 if (!initial) {
a2e7a7eb 2680 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2681
a2e7a7eb
MG
2682 /*
2683 * Halve their sleep time's effect, to allow
2684 * for a gentler effect of sleepers:
2685 */
2686 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2687 thresh >>= 1;
51e0304c 2688
a2e7a7eb 2689 vruntime -= thresh;
aeb73b04
PZ
2690 }
2691
b5d9d734 2692 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2693 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2694}
2695
d3d9dc33
PT
2696static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2697
bf0f6f24 2698static void
88ec22d3 2699enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2700{
88ec22d3
PZ
2701 /*
2702 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2703 * through calling update_curr().
88ec22d3 2704 */
371fd7e7 2705 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2706 se->vruntime += cfs_rq->min_vruntime;
2707
bf0f6f24 2708 /*
a2a2d680 2709 * Update run-time statistics of the 'current'.
bf0f6f24 2710 */
b7cc0896 2711 update_curr(cfs_rq);
f269ae04 2712 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2713 account_entity_enqueue(cfs_rq, se);
2714 update_cfs_shares(cfs_rq);
bf0f6f24 2715
88ec22d3 2716 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2717 place_entity(cfs_rq, se, 0);
2396af69 2718 enqueue_sleeper(cfs_rq, se);
e9acbff6 2719 }
bf0f6f24 2720
d2417e5a 2721 update_stats_enqueue(cfs_rq, se);
ddc97297 2722 check_spread(cfs_rq, se);
83b699ed
SV
2723 if (se != cfs_rq->curr)
2724 __enqueue_entity(cfs_rq, se);
2069dd75 2725 se->on_rq = 1;
3d4b47b4 2726
d3d9dc33 2727 if (cfs_rq->nr_running == 1) {
3d4b47b4 2728 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2729 check_enqueue_throttle(cfs_rq);
2730 }
bf0f6f24
IM
2731}
2732
2c13c919 2733static void __clear_buddies_last(struct sched_entity *se)
2002c695 2734{
2c13c919
RR
2735 for_each_sched_entity(se) {
2736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2737 if (cfs_rq->last != se)
2c13c919 2738 break;
f1044799
PZ
2739
2740 cfs_rq->last = NULL;
2c13c919
RR
2741 }
2742}
2002c695 2743
2c13c919
RR
2744static void __clear_buddies_next(struct sched_entity *se)
2745{
2746 for_each_sched_entity(se) {
2747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2748 if (cfs_rq->next != se)
2c13c919 2749 break;
f1044799
PZ
2750
2751 cfs_rq->next = NULL;
2c13c919 2752 }
2002c695
PZ
2753}
2754
ac53db59
RR
2755static void __clear_buddies_skip(struct sched_entity *se)
2756{
2757 for_each_sched_entity(se) {
2758 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2759 if (cfs_rq->skip != se)
ac53db59 2760 break;
f1044799
PZ
2761
2762 cfs_rq->skip = NULL;
ac53db59
RR
2763 }
2764}
2765
a571bbea
PZ
2766static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2767{
2c13c919
RR
2768 if (cfs_rq->last == se)
2769 __clear_buddies_last(se);
2770
2771 if (cfs_rq->next == se)
2772 __clear_buddies_next(se);
ac53db59
RR
2773
2774 if (cfs_rq->skip == se)
2775 __clear_buddies_skip(se);
a571bbea
PZ
2776}
2777
6c16a6dc 2778static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2779
bf0f6f24 2780static void
371fd7e7 2781dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2782{
a2a2d680
DA
2783 /*
2784 * Update run-time statistics of the 'current'.
2785 */
2786 update_curr(cfs_rq);
17bc14b7 2787 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2788
19b6a2e3 2789 update_stats_dequeue(cfs_rq, se);
371fd7e7 2790 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2791#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2792 if (entity_is_task(se)) {
2793 struct task_struct *tsk = task_of(se);
2794
2795 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2796 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2797 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2798 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2799 }
db36cc7d 2800#endif
67e9fb2a
PZ
2801 }
2802
2002c695 2803 clear_buddies(cfs_rq, se);
4793241b 2804
83b699ed 2805 if (se != cfs_rq->curr)
30cfdcfc 2806 __dequeue_entity(cfs_rq, se);
17bc14b7 2807 se->on_rq = 0;
30cfdcfc 2808 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2809
2810 /*
2811 * Normalize the entity after updating the min_vruntime because the
2812 * update can refer to the ->curr item and we need to reflect this
2813 * movement in our normalized position.
2814 */
371fd7e7 2815 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2816 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2817
d8b4986d
PT
2818 /* return excess runtime on last dequeue */
2819 return_cfs_rq_runtime(cfs_rq);
2820
1e876231 2821 update_min_vruntime(cfs_rq);
17bc14b7 2822 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2823}
2824
2825/*
2826 * Preempt the current task with a newly woken task if needed:
2827 */
7c92e54f 2828static void
2e09bf55 2829check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2830{
11697830 2831 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2832 struct sched_entity *se;
2833 s64 delta;
11697830 2834
6d0f0ebd 2835 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2836 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2837 if (delta_exec > ideal_runtime) {
bf0f6f24 2838 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2839 /*
2840 * The current task ran long enough, ensure it doesn't get
2841 * re-elected due to buddy favours.
2842 */
2843 clear_buddies(cfs_rq, curr);
f685ceac
MG
2844 return;
2845 }
2846
2847 /*
2848 * Ensure that a task that missed wakeup preemption by a
2849 * narrow margin doesn't have to wait for a full slice.
2850 * This also mitigates buddy induced latencies under load.
2851 */
f685ceac
MG
2852 if (delta_exec < sysctl_sched_min_granularity)
2853 return;
2854
f4cfb33e
WX
2855 se = __pick_first_entity(cfs_rq);
2856 delta = curr->vruntime - se->vruntime;
f685ceac 2857
f4cfb33e
WX
2858 if (delta < 0)
2859 return;
d7d82944 2860
f4cfb33e
WX
2861 if (delta > ideal_runtime)
2862 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2863}
2864
83b699ed 2865static void
8494f412 2866set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2867{
83b699ed
SV
2868 /* 'current' is not kept within the tree. */
2869 if (se->on_rq) {
2870 /*
2871 * Any task has to be enqueued before it get to execute on
2872 * a CPU. So account for the time it spent waiting on the
2873 * runqueue.
2874 */
2875 update_stats_wait_end(cfs_rq, se);
2876 __dequeue_entity(cfs_rq, se);
2877 }
2878
79303e9e 2879 update_stats_curr_start(cfs_rq, se);
429d43bc 2880 cfs_rq->curr = se;
eba1ed4b
IM
2881#ifdef CONFIG_SCHEDSTATS
2882 /*
2883 * Track our maximum slice length, if the CPU's load is at
2884 * least twice that of our own weight (i.e. dont track it
2885 * when there are only lesser-weight tasks around):
2886 */
495eca49 2887 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2888 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2889 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2890 }
2891#endif
4a55b450 2892 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2893}
2894
3f3a4904
PZ
2895static int
2896wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2897
ac53db59
RR
2898/*
2899 * Pick the next process, keeping these things in mind, in this order:
2900 * 1) keep things fair between processes/task groups
2901 * 2) pick the "next" process, since someone really wants that to run
2902 * 3) pick the "last" process, for cache locality
2903 * 4) do not run the "skip" process, if something else is available
2904 */
678d5718
PZ
2905static struct sched_entity *
2906pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2907{
678d5718
PZ
2908 struct sched_entity *left = __pick_first_entity(cfs_rq);
2909 struct sched_entity *se;
2910
2911 /*
2912 * If curr is set we have to see if its left of the leftmost entity
2913 * still in the tree, provided there was anything in the tree at all.
2914 */
2915 if (!left || (curr && entity_before(curr, left)))
2916 left = curr;
2917
2918 se = left; /* ideally we run the leftmost entity */
f4b6755f 2919
ac53db59
RR
2920 /*
2921 * Avoid running the skip buddy, if running something else can
2922 * be done without getting too unfair.
2923 */
2924 if (cfs_rq->skip == se) {
678d5718
PZ
2925 struct sched_entity *second;
2926
2927 if (se == curr) {
2928 second = __pick_first_entity(cfs_rq);
2929 } else {
2930 second = __pick_next_entity(se);
2931 if (!second || (curr && entity_before(curr, second)))
2932 second = curr;
2933 }
2934
ac53db59
RR
2935 if (second && wakeup_preempt_entity(second, left) < 1)
2936 se = second;
2937 }
aa2ac252 2938
f685ceac
MG
2939 /*
2940 * Prefer last buddy, try to return the CPU to a preempted task.
2941 */
2942 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2943 se = cfs_rq->last;
2944
ac53db59
RR
2945 /*
2946 * Someone really wants this to run. If it's not unfair, run it.
2947 */
2948 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2949 se = cfs_rq->next;
2950
f685ceac 2951 clear_buddies(cfs_rq, se);
4793241b
PZ
2952
2953 return se;
aa2ac252
PZ
2954}
2955
678d5718 2956static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 2957
ab6cde26 2958static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2959{
2960 /*
2961 * If still on the runqueue then deactivate_task()
2962 * was not called and update_curr() has to be done:
2963 */
2964 if (prev->on_rq)
b7cc0896 2965 update_curr(cfs_rq);
bf0f6f24 2966
d3d9dc33
PT
2967 /* throttle cfs_rqs exceeding runtime */
2968 check_cfs_rq_runtime(cfs_rq);
2969
ddc97297 2970 check_spread(cfs_rq, prev);
30cfdcfc 2971 if (prev->on_rq) {
5870db5b 2972 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2973 /* Put 'current' back into the tree. */
2974 __enqueue_entity(cfs_rq, prev);
9d85f21c 2975 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2976 update_entity_load_avg(prev, 1);
30cfdcfc 2977 }
429d43bc 2978 cfs_rq->curr = NULL;
bf0f6f24
IM
2979}
2980
8f4d37ec
PZ
2981static void
2982entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2983{
bf0f6f24 2984 /*
30cfdcfc 2985 * Update run-time statistics of the 'current'.
bf0f6f24 2986 */
30cfdcfc 2987 update_curr(cfs_rq);
bf0f6f24 2988
9d85f21c
PT
2989 /*
2990 * Ensure that runnable average is periodically updated.
2991 */
9ee474f5 2992 update_entity_load_avg(curr, 1);
aff3e498 2993 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2994 update_cfs_shares(cfs_rq);
9d85f21c 2995
8f4d37ec
PZ
2996#ifdef CONFIG_SCHED_HRTICK
2997 /*
2998 * queued ticks are scheduled to match the slice, so don't bother
2999 * validating it and just reschedule.
3000 */
983ed7a6
HH
3001 if (queued) {
3002 resched_task(rq_of(cfs_rq)->curr);
3003 return;
3004 }
8f4d37ec
PZ
3005 /*
3006 * don't let the period tick interfere with the hrtick preemption
3007 */
3008 if (!sched_feat(DOUBLE_TICK) &&
3009 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3010 return;
3011#endif
3012
2c2efaed 3013 if (cfs_rq->nr_running > 1)
2e09bf55 3014 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3015}
3016
ab84d31e
PT
3017
3018/**************************************************
3019 * CFS bandwidth control machinery
3020 */
3021
3022#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3023
3024#ifdef HAVE_JUMP_LABEL
c5905afb 3025static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3026
3027static inline bool cfs_bandwidth_used(void)
3028{
c5905afb 3029 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3030}
3031
1ee14e6c 3032void cfs_bandwidth_usage_inc(void)
029632fb 3033{
1ee14e6c
BS
3034 static_key_slow_inc(&__cfs_bandwidth_used);
3035}
3036
3037void cfs_bandwidth_usage_dec(void)
3038{
3039 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3040}
3041#else /* HAVE_JUMP_LABEL */
3042static bool cfs_bandwidth_used(void)
3043{
3044 return true;
3045}
3046
1ee14e6c
BS
3047void cfs_bandwidth_usage_inc(void) {}
3048void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3049#endif /* HAVE_JUMP_LABEL */
3050
ab84d31e
PT
3051/*
3052 * default period for cfs group bandwidth.
3053 * default: 0.1s, units: nanoseconds
3054 */
3055static inline u64 default_cfs_period(void)
3056{
3057 return 100000000ULL;
3058}
ec12cb7f
PT
3059
3060static inline u64 sched_cfs_bandwidth_slice(void)
3061{
3062 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3063}
3064
a9cf55b2
PT
3065/*
3066 * Replenish runtime according to assigned quota and update expiration time.
3067 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3068 * additional synchronization around rq->lock.
3069 *
3070 * requires cfs_b->lock
3071 */
029632fb 3072void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3073{
3074 u64 now;
3075
3076 if (cfs_b->quota == RUNTIME_INF)
3077 return;
3078
3079 now = sched_clock_cpu(smp_processor_id());
3080 cfs_b->runtime = cfs_b->quota;
3081 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3082}
3083
029632fb
PZ
3084static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3085{
3086 return &tg->cfs_bandwidth;
3087}
3088
f1b17280
PT
3089/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3090static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3091{
3092 if (unlikely(cfs_rq->throttle_count))
3093 return cfs_rq->throttled_clock_task;
3094
78becc27 3095 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3096}
3097
85dac906
PT
3098/* returns 0 on failure to allocate runtime */
3099static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3100{
3101 struct task_group *tg = cfs_rq->tg;
3102 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3103 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3104
3105 /* note: this is a positive sum as runtime_remaining <= 0 */
3106 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3107
3108 raw_spin_lock(&cfs_b->lock);
3109 if (cfs_b->quota == RUNTIME_INF)
3110 amount = min_amount;
58088ad0 3111 else {
a9cf55b2
PT
3112 /*
3113 * If the bandwidth pool has become inactive, then at least one
3114 * period must have elapsed since the last consumption.
3115 * Refresh the global state and ensure bandwidth timer becomes
3116 * active.
3117 */
3118 if (!cfs_b->timer_active) {
3119 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3120 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3121 }
58088ad0
PT
3122
3123 if (cfs_b->runtime > 0) {
3124 amount = min(cfs_b->runtime, min_amount);
3125 cfs_b->runtime -= amount;
3126 cfs_b->idle = 0;
3127 }
ec12cb7f 3128 }
a9cf55b2 3129 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3130 raw_spin_unlock(&cfs_b->lock);
3131
3132 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3133 /*
3134 * we may have advanced our local expiration to account for allowed
3135 * spread between our sched_clock and the one on which runtime was
3136 * issued.
3137 */
3138 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3139 cfs_rq->runtime_expires = expires;
85dac906
PT
3140
3141 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3142}
3143
a9cf55b2
PT
3144/*
3145 * Note: This depends on the synchronization provided by sched_clock and the
3146 * fact that rq->clock snapshots this value.
3147 */
3148static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3149{
a9cf55b2 3150 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3151
3152 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3153 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3154 return;
3155
a9cf55b2
PT
3156 if (cfs_rq->runtime_remaining < 0)
3157 return;
3158
3159 /*
3160 * If the local deadline has passed we have to consider the
3161 * possibility that our sched_clock is 'fast' and the global deadline
3162 * has not truly expired.
3163 *
3164 * Fortunately we can check determine whether this the case by checking
3165 * whether the global deadline has advanced.
3166 */
3167
3168 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3169 /* extend local deadline, drift is bounded above by 2 ticks */
3170 cfs_rq->runtime_expires += TICK_NSEC;
3171 } else {
3172 /* global deadline is ahead, expiration has passed */
3173 cfs_rq->runtime_remaining = 0;
3174 }
3175}
3176
9dbdb155 3177static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3178{
3179 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3180 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3181 expire_cfs_rq_runtime(cfs_rq);
3182
3183 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3184 return;
3185
85dac906
PT
3186 /*
3187 * if we're unable to extend our runtime we resched so that the active
3188 * hierarchy can be throttled
3189 */
3190 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3191 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3192}
3193
6c16a6dc 3194static __always_inline
9dbdb155 3195void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3196{
56f570e5 3197 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3198 return;
3199
3200 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3201}
3202
85dac906
PT
3203static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3204{
56f570e5 3205 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3206}
3207
64660c86
PT
3208/* check whether cfs_rq, or any parent, is throttled */
3209static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3210{
56f570e5 3211 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3212}
3213
3214/*
3215 * Ensure that neither of the group entities corresponding to src_cpu or
3216 * dest_cpu are members of a throttled hierarchy when performing group
3217 * load-balance operations.
3218 */
3219static inline int throttled_lb_pair(struct task_group *tg,
3220 int src_cpu, int dest_cpu)
3221{
3222 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3223
3224 src_cfs_rq = tg->cfs_rq[src_cpu];
3225 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3226
3227 return throttled_hierarchy(src_cfs_rq) ||
3228 throttled_hierarchy(dest_cfs_rq);
3229}
3230
3231/* updated child weight may affect parent so we have to do this bottom up */
3232static int tg_unthrottle_up(struct task_group *tg, void *data)
3233{
3234 struct rq *rq = data;
3235 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3236
3237 cfs_rq->throttle_count--;
3238#ifdef CONFIG_SMP
3239 if (!cfs_rq->throttle_count) {
f1b17280 3240 /* adjust cfs_rq_clock_task() */
78becc27 3241 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3242 cfs_rq->throttled_clock_task;
64660c86
PT
3243 }
3244#endif
3245
3246 return 0;
3247}
3248
3249static int tg_throttle_down(struct task_group *tg, void *data)
3250{
3251 struct rq *rq = data;
3252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3253
82958366
PT
3254 /* group is entering throttled state, stop time */
3255 if (!cfs_rq->throttle_count)
78becc27 3256 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3257 cfs_rq->throttle_count++;
3258
3259 return 0;
3260}
3261
d3d9dc33 3262static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3263{
3264 struct rq *rq = rq_of(cfs_rq);
3265 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3266 struct sched_entity *se;
3267 long task_delta, dequeue = 1;
3268
3269 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3270
f1b17280 3271 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3272 rcu_read_lock();
3273 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3274 rcu_read_unlock();
85dac906
PT
3275
3276 task_delta = cfs_rq->h_nr_running;
3277 for_each_sched_entity(se) {
3278 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3279 /* throttled entity or throttle-on-deactivate */
3280 if (!se->on_rq)
3281 break;
3282
3283 if (dequeue)
3284 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3285 qcfs_rq->h_nr_running -= task_delta;
3286
3287 if (qcfs_rq->load.weight)
3288 dequeue = 0;
3289 }
3290
3291 if (!se)
3292 rq->nr_running -= task_delta;
3293
3294 cfs_rq->throttled = 1;
78becc27 3295 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3296 raw_spin_lock(&cfs_b->lock);
3297 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3298 if (!cfs_b->timer_active)
3299 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3300 raw_spin_unlock(&cfs_b->lock);
3301}
3302
029632fb 3303void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3304{
3305 struct rq *rq = rq_of(cfs_rq);
3306 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3307 struct sched_entity *se;
3308 int enqueue = 1;
3309 long task_delta;
3310
22b958d8 3311 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3312
3313 cfs_rq->throttled = 0;
1a55af2e
FW
3314
3315 update_rq_clock(rq);
3316
671fd9da 3317 raw_spin_lock(&cfs_b->lock);
78becc27 3318 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3319 list_del_rcu(&cfs_rq->throttled_list);
3320 raw_spin_unlock(&cfs_b->lock);
3321
64660c86
PT
3322 /* update hierarchical throttle state */
3323 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3324
671fd9da
PT
3325 if (!cfs_rq->load.weight)
3326 return;
3327
3328 task_delta = cfs_rq->h_nr_running;
3329 for_each_sched_entity(se) {
3330 if (se->on_rq)
3331 enqueue = 0;
3332
3333 cfs_rq = cfs_rq_of(se);
3334 if (enqueue)
3335 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3336 cfs_rq->h_nr_running += task_delta;
3337
3338 if (cfs_rq_throttled(cfs_rq))
3339 break;
3340 }
3341
3342 if (!se)
3343 rq->nr_running += task_delta;
3344
3345 /* determine whether we need to wake up potentially idle cpu */
3346 if (rq->curr == rq->idle && rq->cfs.nr_running)
3347 resched_task(rq->curr);
3348}
3349
3350static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3351 u64 remaining, u64 expires)
3352{
3353 struct cfs_rq *cfs_rq;
3354 u64 runtime = remaining;
3355
3356 rcu_read_lock();
3357 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3358 throttled_list) {
3359 struct rq *rq = rq_of(cfs_rq);
3360
3361 raw_spin_lock(&rq->lock);
3362 if (!cfs_rq_throttled(cfs_rq))
3363 goto next;
3364
3365 runtime = -cfs_rq->runtime_remaining + 1;
3366 if (runtime > remaining)
3367 runtime = remaining;
3368 remaining -= runtime;
3369
3370 cfs_rq->runtime_remaining += runtime;
3371 cfs_rq->runtime_expires = expires;
3372
3373 /* we check whether we're throttled above */
3374 if (cfs_rq->runtime_remaining > 0)
3375 unthrottle_cfs_rq(cfs_rq);
3376
3377next:
3378 raw_spin_unlock(&rq->lock);
3379
3380 if (!remaining)
3381 break;
3382 }
3383 rcu_read_unlock();
3384
3385 return remaining;
3386}
3387
58088ad0
PT
3388/*
3389 * Responsible for refilling a task_group's bandwidth and unthrottling its
3390 * cfs_rqs as appropriate. If there has been no activity within the last
3391 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3392 * used to track this state.
3393 */
3394static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3395{
671fd9da
PT
3396 u64 runtime, runtime_expires;
3397 int idle = 1, throttled;
58088ad0
PT
3398
3399 raw_spin_lock(&cfs_b->lock);
3400 /* no need to continue the timer with no bandwidth constraint */
3401 if (cfs_b->quota == RUNTIME_INF)
3402 goto out_unlock;
3403
671fd9da
PT
3404 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3405 /* idle depends on !throttled (for the case of a large deficit) */
3406 idle = cfs_b->idle && !throttled;
e8da1b18 3407 cfs_b->nr_periods += overrun;
671fd9da 3408
a9cf55b2
PT
3409 /* if we're going inactive then everything else can be deferred */
3410 if (idle)
3411 goto out_unlock;
3412
927b54fc
BS
3413 /*
3414 * if we have relooped after returning idle once, we need to update our
3415 * status as actually running, so that other cpus doing
3416 * __start_cfs_bandwidth will stop trying to cancel us.
3417 */
3418 cfs_b->timer_active = 1;
3419
a9cf55b2
PT
3420 __refill_cfs_bandwidth_runtime(cfs_b);
3421
671fd9da
PT
3422 if (!throttled) {
3423 /* mark as potentially idle for the upcoming period */
3424 cfs_b->idle = 1;
3425 goto out_unlock;
3426 }
3427
e8da1b18
NR
3428 /* account preceding periods in which throttling occurred */
3429 cfs_b->nr_throttled += overrun;
3430
671fd9da
PT
3431 /*
3432 * There are throttled entities so we must first use the new bandwidth
3433 * to unthrottle them before making it generally available. This
3434 * ensures that all existing debts will be paid before a new cfs_rq is
3435 * allowed to run.
3436 */
3437 runtime = cfs_b->runtime;
3438 runtime_expires = cfs_b->runtime_expires;
3439 cfs_b->runtime = 0;
3440
3441 /*
3442 * This check is repeated as we are holding onto the new bandwidth
3443 * while we unthrottle. This can potentially race with an unthrottled
3444 * group trying to acquire new bandwidth from the global pool.
3445 */
3446 while (throttled && runtime > 0) {
3447 raw_spin_unlock(&cfs_b->lock);
3448 /* we can't nest cfs_b->lock while distributing bandwidth */
3449 runtime = distribute_cfs_runtime(cfs_b, runtime,
3450 runtime_expires);
3451 raw_spin_lock(&cfs_b->lock);
3452
3453 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3454 }
58088ad0 3455
671fd9da
PT
3456 /* return (any) remaining runtime */
3457 cfs_b->runtime = runtime;
3458 /*
3459 * While we are ensured activity in the period following an
3460 * unthrottle, this also covers the case in which the new bandwidth is
3461 * insufficient to cover the existing bandwidth deficit. (Forcing the
3462 * timer to remain active while there are any throttled entities.)
3463 */
3464 cfs_b->idle = 0;
58088ad0
PT
3465out_unlock:
3466 if (idle)
3467 cfs_b->timer_active = 0;
3468 raw_spin_unlock(&cfs_b->lock);
3469
3470 return idle;
3471}
d3d9dc33 3472
d8b4986d
PT
3473/* a cfs_rq won't donate quota below this amount */
3474static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3475/* minimum remaining period time to redistribute slack quota */
3476static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3477/* how long we wait to gather additional slack before distributing */
3478static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3479
db06e78c
BS
3480/*
3481 * Are we near the end of the current quota period?
3482 *
3483 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3484 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3485 * migrate_hrtimers, base is never cleared, so we are fine.
3486 */
d8b4986d
PT
3487static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3488{
3489 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3490 u64 remaining;
3491
3492 /* if the call-back is running a quota refresh is already occurring */
3493 if (hrtimer_callback_running(refresh_timer))
3494 return 1;
3495
3496 /* is a quota refresh about to occur? */
3497 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3498 if (remaining < min_expire)
3499 return 1;
3500
3501 return 0;
3502}
3503
3504static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3505{
3506 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3507
3508 /* if there's a quota refresh soon don't bother with slack */
3509 if (runtime_refresh_within(cfs_b, min_left))
3510 return;
3511
3512 start_bandwidth_timer(&cfs_b->slack_timer,
3513 ns_to_ktime(cfs_bandwidth_slack_period));
3514}
3515
3516/* we know any runtime found here is valid as update_curr() precedes return */
3517static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3518{
3519 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3520 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3521
3522 if (slack_runtime <= 0)
3523 return;
3524
3525 raw_spin_lock(&cfs_b->lock);
3526 if (cfs_b->quota != RUNTIME_INF &&
3527 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3528 cfs_b->runtime += slack_runtime;
3529
3530 /* we are under rq->lock, defer unthrottling using a timer */
3531 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3532 !list_empty(&cfs_b->throttled_cfs_rq))
3533 start_cfs_slack_bandwidth(cfs_b);
3534 }
3535 raw_spin_unlock(&cfs_b->lock);
3536
3537 /* even if it's not valid for return we don't want to try again */
3538 cfs_rq->runtime_remaining -= slack_runtime;
3539}
3540
3541static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3542{
56f570e5
PT
3543 if (!cfs_bandwidth_used())
3544 return;
3545
fccfdc6f 3546 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3547 return;
3548
3549 __return_cfs_rq_runtime(cfs_rq);
3550}
3551
3552/*
3553 * This is done with a timer (instead of inline with bandwidth return) since
3554 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3555 */
3556static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3557{
3558 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3559 u64 expires;
3560
3561 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3562 raw_spin_lock(&cfs_b->lock);
3563 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3564 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3565 return;
db06e78c 3566 }
d8b4986d 3567
d8b4986d
PT
3568 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3569 runtime = cfs_b->runtime;
3570 cfs_b->runtime = 0;
3571 }
3572 expires = cfs_b->runtime_expires;
3573 raw_spin_unlock(&cfs_b->lock);
3574
3575 if (!runtime)
3576 return;
3577
3578 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3579
3580 raw_spin_lock(&cfs_b->lock);
3581 if (expires == cfs_b->runtime_expires)
3582 cfs_b->runtime = runtime;
3583 raw_spin_unlock(&cfs_b->lock);
3584}
3585
d3d9dc33
PT
3586/*
3587 * When a group wakes up we want to make sure that its quota is not already
3588 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3589 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3590 */
3591static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3592{
56f570e5
PT
3593 if (!cfs_bandwidth_used())
3594 return;
3595
d3d9dc33
PT
3596 /* an active group must be handled by the update_curr()->put() path */
3597 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3598 return;
3599
3600 /* ensure the group is not already throttled */
3601 if (cfs_rq_throttled(cfs_rq))
3602 return;
3603
3604 /* update runtime allocation */
3605 account_cfs_rq_runtime(cfs_rq, 0);
3606 if (cfs_rq->runtime_remaining <= 0)
3607 throttle_cfs_rq(cfs_rq);
3608}
3609
3610/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3611static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3612{
56f570e5 3613 if (!cfs_bandwidth_used())
678d5718 3614 return false;
56f570e5 3615
d3d9dc33 3616 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3617 return false;
d3d9dc33
PT
3618
3619 /*
3620 * it's possible for a throttled entity to be forced into a running
3621 * state (e.g. set_curr_task), in this case we're finished.
3622 */
3623 if (cfs_rq_throttled(cfs_rq))
678d5718 3624 return true;
d3d9dc33
PT
3625
3626 throttle_cfs_rq(cfs_rq);
678d5718 3627 return true;
d3d9dc33 3628}
029632fb 3629
029632fb
PZ
3630static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3631{
3632 struct cfs_bandwidth *cfs_b =
3633 container_of(timer, struct cfs_bandwidth, slack_timer);
3634 do_sched_cfs_slack_timer(cfs_b);
3635
3636 return HRTIMER_NORESTART;
3637}
3638
3639static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3640{
3641 struct cfs_bandwidth *cfs_b =
3642 container_of(timer, struct cfs_bandwidth, period_timer);
3643 ktime_t now;
3644 int overrun;
3645 int idle = 0;
3646
3647 for (;;) {
3648 now = hrtimer_cb_get_time(timer);
3649 overrun = hrtimer_forward(timer, now, cfs_b->period);
3650
3651 if (!overrun)
3652 break;
3653
3654 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3655 }
3656
3657 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3658}
3659
3660void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3661{
3662 raw_spin_lock_init(&cfs_b->lock);
3663 cfs_b->runtime = 0;
3664 cfs_b->quota = RUNTIME_INF;
3665 cfs_b->period = ns_to_ktime(default_cfs_period());
3666
3667 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3668 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3669 cfs_b->period_timer.function = sched_cfs_period_timer;
3670 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3671 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3672}
3673
3674static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3675{
3676 cfs_rq->runtime_enabled = 0;
3677 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3678}
3679
3680/* requires cfs_b->lock, may release to reprogram timer */
3681void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3682{
3683 /*
3684 * The timer may be active because we're trying to set a new bandwidth
3685 * period or because we're racing with the tear-down path
3686 * (timer_active==0 becomes visible before the hrtimer call-back
3687 * terminates). In either case we ensure that it's re-programmed
3688 */
927b54fc
BS
3689 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3690 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3691 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3692 raw_spin_unlock(&cfs_b->lock);
927b54fc 3693 cpu_relax();
029632fb
PZ
3694 raw_spin_lock(&cfs_b->lock);
3695 /* if someone else restarted the timer then we're done */
3696 if (cfs_b->timer_active)
3697 return;
3698 }
3699
3700 cfs_b->timer_active = 1;
3701 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3702}
3703
3704static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3705{
3706 hrtimer_cancel(&cfs_b->period_timer);
3707 hrtimer_cancel(&cfs_b->slack_timer);
3708}
3709
38dc3348 3710static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3711{
3712 struct cfs_rq *cfs_rq;
3713
3714 for_each_leaf_cfs_rq(rq, cfs_rq) {
3715 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3716
3717 if (!cfs_rq->runtime_enabled)
3718 continue;
3719
3720 /*
3721 * clock_task is not advancing so we just need to make sure
3722 * there's some valid quota amount
3723 */
3724 cfs_rq->runtime_remaining = cfs_b->quota;
3725 if (cfs_rq_throttled(cfs_rq))
3726 unthrottle_cfs_rq(cfs_rq);
3727 }
3728}
3729
3730#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3731static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3732{
78becc27 3733 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3734}
3735
9dbdb155 3736static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3737static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3738static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3739static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3740
3741static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3742{
3743 return 0;
3744}
64660c86
PT
3745
3746static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3747{
3748 return 0;
3749}
3750
3751static inline int throttled_lb_pair(struct task_group *tg,
3752 int src_cpu, int dest_cpu)
3753{
3754 return 0;
3755}
029632fb
PZ
3756
3757void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3758
3759#ifdef CONFIG_FAIR_GROUP_SCHED
3760static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3761#endif
3762
029632fb
PZ
3763static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3764{
3765 return NULL;
3766}
3767static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3768static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3769
3770#endif /* CONFIG_CFS_BANDWIDTH */
3771
bf0f6f24
IM
3772/**************************************************
3773 * CFS operations on tasks:
3774 */
3775
8f4d37ec
PZ
3776#ifdef CONFIG_SCHED_HRTICK
3777static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3778{
8f4d37ec
PZ
3779 struct sched_entity *se = &p->se;
3780 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3781
3782 WARN_ON(task_rq(p) != rq);
3783
b39e66ea 3784 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3785 u64 slice = sched_slice(cfs_rq, se);
3786 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3787 s64 delta = slice - ran;
3788
3789 if (delta < 0) {
3790 if (rq->curr == p)
3791 resched_task(p);
3792 return;
3793 }
3794
3795 /*
3796 * Don't schedule slices shorter than 10000ns, that just
3797 * doesn't make sense. Rely on vruntime for fairness.
3798 */
31656519 3799 if (rq->curr != p)
157124c1 3800 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3801
31656519 3802 hrtick_start(rq, delta);
8f4d37ec
PZ
3803 }
3804}
a4c2f00f
PZ
3805
3806/*
3807 * called from enqueue/dequeue and updates the hrtick when the
3808 * current task is from our class and nr_running is low enough
3809 * to matter.
3810 */
3811static void hrtick_update(struct rq *rq)
3812{
3813 struct task_struct *curr = rq->curr;
3814
b39e66ea 3815 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3816 return;
3817
3818 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3819 hrtick_start_fair(rq, curr);
3820}
55e12e5e 3821#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3822static inline void
3823hrtick_start_fair(struct rq *rq, struct task_struct *p)
3824{
3825}
a4c2f00f
PZ
3826
3827static inline void hrtick_update(struct rq *rq)
3828{
3829}
8f4d37ec
PZ
3830#endif
3831
bf0f6f24
IM
3832/*
3833 * The enqueue_task method is called before nr_running is
3834 * increased. Here we update the fair scheduling stats and
3835 * then put the task into the rbtree:
3836 */
ea87bb78 3837static void
371fd7e7 3838enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3839{
3840 struct cfs_rq *cfs_rq;
62fb1851 3841 struct sched_entity *se = &p->se;
bf0f6f24
IM
3842
3843 for_each_sched_entity(se) {
62fb1851 3844 if (se->on_rq)
bf0f6f24
IM
3845 break;
3846 cfs_rq = cfs_rq_of(se);
88ec22d3 3847 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3848
3849 /*
3850 * end evaluation on encountering a throttled cfs_rq
3851 *
3852 * note: in the case of encountering a throttled cfs_rq we will
3853 * post the final h_nr_running increment below.
3854 */
3855 if (cfs_rq_throttled(cfs_rq))
3856 break;
953bfcd1 3857 cfs_rq->h_nr_running++;
85dac906 3858
88ec22d3 3859 flags = ENQUEUE_WAKEUP;
bf0f6f24 3860 }
8f4d37ec 3861
2069dd75 3862 for_each_sched_entity(se) {
0f317143 3863 cfs_rq = cfs_rq_of(se);
953bfcd1 3864 cfs_rq->h_nr_running++;
2069dd75 3865
85dac906
PT
3866 if (cfs_rq_throttled(cfs_rq))
3867 break;
3868
17bc14b7 3869 update_cfs_shares(cfs_rq);
9ee474f5 3870 update_entity_load_avg(se, 1);
2069dd75
PZ
3871 }
3872
18bf2805
BS
3873 if (!se) {
3874 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3875 inc_nr_running(rq);
18bf2805 3876 }
a4c2f00f 3877 hrtick_update(rq);
bf0f6f24
IM
3878}
3879
2f36825b
VP
3880static void set_next_buddy(struct sched_entity *se);
3881
bf0f6f24
IM
3882/*
3883 * The dequeue_task method is called before nr_running is
3884 * decreased. We remove the task from the rbtree and
3885 * update the fair scheduling stats:
3886 */
371fd7e7 3887static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3888{
3889 struct cfs_rq *cfs_rq;
62fb1851 3890 struct sched_entity *se = &p->se;
2f36825b 3891 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3892
3893 for_each_sched_entity(se) {
3894 cfs_rq = cfs_rq_of(se);
371fd7e7 3895 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3896
3897 /*
3898 * end evaluation on encountering a throttled cfs_rq
3899 *
3900 * note: in the case of encountering a throttled cfs_rq we will
3901 * post the final h_nr_running decrement below.
3902 */
3903 if (cfs_rq_throttled(cfs_rq))
3904 break;
953bfcd1 3905 cfs_rq->h_nr_running--;
2069dd75 3906
bf0f6f24 3907 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3908 if (cfs_rq->load.weight) {
3909 /*
3910 * Bias pick_next to pick a task from this cfs_rq, as
3911 * p is sleeping when it is within its sched_slice.
3912 */
3913 if (task_sleep && parent_entity(se))
3914 set_next_buddy(parent_entity(se));
9598c82d
PT
3915
3916 /* avoid re-evaluating load for this entity */
3917 se = parent_entity(se);
bf0f6f24 3918 break;
2f36825b 3919 }
371fd7e7 3920 flags |= DEQUEUE_SLEEP;
bf0f6f24 3921 }
8f4d37ec 3922
2069dd75 3923 for_each_sched_entity(se) {
0f317143 3924 cfs_rq = cfs_rq_of(se);
953bfcd1 3925 cfs_rq->h_nr_running--;
2069dd75 3926
85dac906
PT
3927 if (cfs_rq_throttled(cfs_rq))
3928 break;
3929
17bc14b7 3930 update_cfs_shares(cfs_rq);
9ee474f5 3931 update_entity_load_avg(se, 1);
2069dd75
PZ
3932 }
3933
18bf2805 3934 if (!se) {
85dac906 3935 dec_nr_running(rq);
18bf2805
BS
3936 update_rq_runnable_avg(rq, 1);
3937 }
a4c2f00f 3938 hrtick_update(rq);
bf0f6f24
IM
3939}
3940
e7693a36 3941#ifdef CONFIG_SMP
029632fb
PZ
3942/* Used instead of source_load when we know the type == 0 */
3943static unsigned long weighted_cpuload(const int cpu)
3944{
b92486cb 3945 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3946}
3947
3948/*
3949 * Return a low guess at the load of a migration-source cpu weighted
3950 * according to the scheduling class and "nice" value.
3951 *
3952 * We want to under-estimate the load of migration sources, to
3953 * balance conservatively.
3954 */
3955static unsigned long source_load(int cpu, int type)
3956{
3957 struct rq *rq = cpu_rq(cpu);
3958 unsigned long total = weighted_cpuload(cpu);
3959
3960 if (type == 0 || !sched_feat(LB_BIAS))
3961 return total;
3962
3963 return min(rq->cpu_load[type-1], total);
3964}
3965
3966/*
3967 * Return a high guess at the load of a migration-target cpu weighted
3968 * according to the scheduling class and "nice" value.
3969 */
3970static unsigned long target_load(int cpu, int type)
3971{
3972 struct rq *rq = cpu_rq(cpu);
3973 unsigned long total = weighted_cpuload(cpu);
3974
3975 if (type == 0 || !sched_feat(LB_BIAS))
3976 return total;
3977
3978 return max(rq->cpu_load[type-1], total);
3979}
3980
3981static unsigned long power_of(int cpu)
3982{
3983 return cpu_rq(cpu)->cpu_power;
3984}
3985
3986static unsigned long cpu_avg_load_per_task(int cpu)
3987{
3988 struct rq *rq = cpu_rq(cpu);
3989 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3990 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3991
3992 if (nr_running)
b92486cb 3993 return load_avg / nr_running;
029632fb
PZ
3994
3995 return 0;
3996}
3997
62470419
MW
3998static void record_wakee(struct task_struct *p)
3999{
4000 /*
4001 * Rough decay (wiping) for cost saving, don't worry
4002 * about the boundary, really active task won't care
4003 * about the loss.
4004 */
4005 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4006 current->wakee_flips = 0;
4007 current->wakee_flip_decay_ts = jiffies;
4008 }
4009
4010 if (current->last_wakee != p) {
4011 current->last_wakee = p;
4012 current->wakee_flips++;
4013 }
4014}
098fb9db 4015
74f8e4b2 4016static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4017{
4018 struct sched_entity *se = &p->se;
4019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4020 u64 min_vruntime;
4021
4022#ifndef CONFIG_64BIT
4023 u64 min_vruntime_copy;
88ec22d3 4024
3fe1698b
PZ
4025 do {
4026 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4027 smp_rmb();
4028 min_vruntime = cfs_rq->min_vruntime;
4029 } while (min_vruntime != min_vruntime_copy);
4030#else
4031 min_vruntime = cfs_rq->min_vruntime;
4032#endif
88ec22d3 4033
3fe1698b 4034 se->vruntime -= min_vruntime;
62470419 4035 record_wakee(p);
88ec22d3
PZ
4036}
4037
bb3469ac 4038#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4039/*
4040 * effective_load() calculates the load change as seen from the root_task_group
4041 *
4042 * Adding load to a group doesn't make a group heavier, but can cause movement
4043 * of group shares between cpus. Assuming the shares were perfectly aligned one
4044 * can calculate the shift in shares.
cf5f0acf
PZ
4045 *
4046 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4047 * on this @cpu and results in a total addition (subtraction) of @wg to the
4048 * total group weight.
4049 *
4050 * Given a runqueue weight distribution (rw_i) we can compute a shares
4051 * distribution (s_i) using:
4052 *
4053 * s_i = rw_i / \Sum rw_j (1)
4054 *
4055 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4056 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4057 * shares distribution (s_i):
4058 *
4059 * rw_i = { 2, 4, 1, 0 }
4060 * s_i = { 2/7, 4/7, 1/7, 0 }
4061 *
4062 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4063 * task used to run on and the CPU the waker is running on), we need to
4064 * compute the effect of waking a task on either CPU and, in case of a sync
4065 * wakeup, compute the effect of the current task going to sleep.
4066 *
4067 * So for a change of @wl to the local @cpu with an overall group weight change
4068 * of @wl we can compute the new shares distribution (s'_i) using:
4069 *
4070 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4071 *
4072 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4073 * differences in waking a task to CPU 0. The additional task changes the
4074 * weight and shares distributions like:
4075 *
4076 * rw'_i = { 3, 4, 1, 0 }
4077 * s'_i = { 3/8, 4/8, 1/8, 0 }
4078 *
4079 * We can then compute the difference in effective weight by using:
4080 *
4081 * dw_i = S * (s'_i - s_i) (3)
4082 *
4083 * Where 'S' is the group weight as seen by its parent.
4084 *
4085 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4086 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4087 * 4/7) times the weight of the group.
f5bfb7d9 4088 */
2069dd75 4089static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4090{
4be9daaa 4091 struct sched_entity *se = tg->se[cpu];
f1d239f7 4092
9722c2da 4093 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4094 return wl;
4095
4be9daaa 4096 for_each_sched_entity(se) {
cf5f0acf 4097 long w, W;
4be9daaa 4098
977dda7c 4099 tg = se->my_q->tg;
bb3469ac 4100
cf5f0acf
PZ
4101 /*
4102 * W = @wg + \Sum rw_j
4103 */
4104 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4105
cf5f0acf
PZ
4106 /*
4107 * w = rw_i + @wl
4108 */
4109 w = se->my_q->load.weight + wl;
940959e9 4110
cf5f0acf
PZ
4111 /*
4112 * wl = S * s'_i; see (2)
4113 */
4114 if (W > 0 && w < W)
4115 wl = (w * tg->shares) / W;
977dda7c
PT
4116 else
4117 wl = tg->shares;
940959e9 4118
cf5f0acf
PZ
4119 /*
4120 * Per the above, wl is the new se->load.weight value; since
4121 * those are clipped to [MIN_SHARES, ...) do so now. See
4122 * calc_cfs_shares().
4123 */
977dda7c
PT
4124 if (wl < MIN_SHARES)
4125 wl = MIN_SHARES;
cf5f0acf
PZ
4126
4127 /*
4128 * wl = dw_i = S * (s'_i - s_i); see (3)
4129 */
977dda7c 4130 wl -= se->load.weight;
cf5f0acf
PZ
4131
4132 /*
4133 * Recursively apply this logic to all parent groups to compute
4134 * the final effective load change on the root group. Since
4135 * only the @tg group gets extra weight, all parent groups can
4136 * only redistribute existing shares. @wl is the shift in shares
4137 * resulting from this level per the above.
4138 */
4be9daaa 4139 wg = 0;
4be9daaa 4140 }
bb3469ac 4141
4be9daaa 4142 return wl;
bb3469ac
PZ
4143}
4144#else
4be9daaa 4145
58d081b5 4146static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4147{
83378269 4148 return wl;
bb3469ac 4149}
4be9daaa 4150
bb3469ac
PZ
4151#endif
4152
62470419
MW
4153static int wake_wide(struct task_struct *p)
4154{
7d9ffa89 4155 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4156
4157 /*
4158 * Yeah, it's the switching-frequency, could means many wakee or
4159 * rapidly switch, use factor here will just help to automatically
4160 * adjust the loose-degree, so bigger node will lead to more pull.
4161 */
4162 if (p->wakee_flips > factor) {
4163 /*
4164 * wakee is somewhat hot, it needs certain amount of cpu
4165 * resource, so if waker is far more hot, prefer to leave
4166 * it alone.
4167 */
4168 if (current->wakee_flips > (factor * p->wakee_flips))
4169 return 1;
4170 }
4171
4172 return 0;
4173}
4174
c88d5910 4175static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4176{
e37b6a7b 4177 s64 this_load, load;
c88d5910 4178 int idx, this_cpu, prev_cpu;
098fb9db 4179 unsigned long tl_per_task;
c88d5910 4180 struct task_group *tg;
83378269 4181 unsigned long weight;
b3137bc8 4182 int balanced;
098fb9db 4183
62470419
MW
4184 /*
4185 * If we wake multiple tasks be careful to not bounce
4186 * ourselves around too much.
4187 */
4188 if (wake_wide(p))
4189 return 0;
4190
c88d5910
PZ
4191 idx = sd->wake_idx;
4192 this_cpu = smp_processor_id();
4193 prev_cpu = task_cpu(p);
4194 load = source_load(prev_cpu, idx);
4195 this_load = target_load(this_cpu, idx);
098fb9db 4196
b3137bc8
MG
4197 /*
4198 * If sync wakeup then subtract the (maximum possible)
4199 * effect of the currently running task from the load
4200 * of the current CPU:
4201 */
83378269
PZ
4202 if (sync) {
4203 tg = task_group(current);
4204 weight = current->se.load.weight;
4205
c88d5910 4206 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4207 load += effective_load(tg, prev_cpu, 0, -weight);
4208 }
b3137bc8 4209
83378269
PZ
4210 tg = task_group(p);
4211 weight = p->se.load.weight;
b3137bc8 4212
71a29aa7
PZ
4213 /*
4214 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4215 * due to the sync cause above having dropped this_load to 0, we'll
4216 * always have an imbalance, but there's really nothing you can do
4217 * about that, so that's good too.
71a29aa7
PZ
4218 *
4219 * Otherwise check if either cpus are near enough in load to allow this
4220 * task to be woken on this_cpu.
4221 */
e37b6a7b
PT
4222 if (this_load > 0) {
4223 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4224
4225 this_eff_load = 100;
4226 this_eff_load *= power_of(prev_cpu);
4227 this_eff_load *= this_load +
4228 effective_load(tg, this_cpu, weight, weight);
4229
4230 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4231 prev_eff_load *= power_of(this_cpu);
4232 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4233
4234 balanced = this_eff_load <= prev_eff_load;
4235 } else
4236 balanced = true;
b3137bc8 4237
098fb9db 4238 /*
4ae7d5ce
IM
4239 * If the currently running task will sleep within
4240 * a reasonable amount of time then attract this newly
4241 * woken task:
098fb9db 4242 */
2fb7635c
PZ
4243 if (sync && balanced)
4244 return 1;
098fb9db 4245
41acab88 4246 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4247 tl_per_task = cpu_avg_load_per_task(this_cpu);
4248
c88d5910
PZ
4249 if (balanced ||
4250 (this_load <= load &&
4251 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4252 /*
4253 * This domain has SD_WAKE_AFFINE and
4254 * p is cache cold in this domain, and
4255 * there is no bad imbalance.
4256 */
c88d5910 4257 schedstat_inc(sd, ttwu_move_affine);
41acab88 4258 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4259
4260 return 1;
4261 }
4262 return 0;
4263}
4264
aaee1203
PZ
4265/*
4266 * find_idlest_group finds and returns the least busy CPU group within the
4267 * domain.
4268 */
4269static struct sched_group *
78e7ed53 4270find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4271 int this_cpu, int sd_flag)
e7693a36 4272{
b3bd3de6 4273 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4274 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4275 int load_idx = sd->forkexec_idx;
aaee1203 4276 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4277
c44f2a02
VG
4278 if (sd_flag & SD_BALANCE_WAKE)
4279 load_idx = sd->wake_idx;
4280
aaee1203
PZ
4281 do {
4282 unsigned long load, avg_load;
4283 int local_group;
4284 int i;
e7693a36 4285
aaee1203
PZ
4286 /* Skip over this group if it has no CPUs allowed */
4287 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4288 tsk_cpus_allowed(p)))
aaee1203
PZ
4289 continue;
4290
4291 local_group = cpumask_test_cpu(this_cpu,
4292 sched_group_cpus(group));
4293
4294 /* Tally up the load of all CPUs in the group */
4295 avg_load = 0;
4296
4297 for_each_cpu(i, sched_group_cpus(group)) {
4298 /* Bias balancing toward cpus of our domain */
4299 if (local_group)
4300 load = source_load(i, load_idx);
4301 else
4302 load = target_load(i, load_idx);
4303
4304 avg_load += load;
4305 }
4306
4307 /* Adjust by relative CPU power of the group */
9c3f75cb 4308 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4309
4310 if (local_group) {
4311 this_load = avg_load;
aaee1203
PZ
4312 } else if (avg_load < min_load) {
4313 min_load = avg_load;
4314 idlest = group;
4315 }
4316 } while (group = group->next, group != sd->groups);
4317
4318 if (!idlest || 100*this_load < imbalance*min_load)
4319 return NULL;
4320 return idlest;
4321}
4322
4323/*
4324 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4325 */
4326static int
4327find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4328{
4329 unsigned long load, min_load = ULONG_MAX;
4330 int idlest = -1;
4331 int i;
4332
4333 /* Traverse only the allowed CPUs */
fa17b507 4334 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4335 load = weighted_cpuload(i);
4336
4337 if (load < min_load || (load == min_load && i == this_cpu)) {
4338 min_load = load;
4339 idlest = i;
e7693a36
GH
4340 }
4341 }
4342
aaee1203
PZ
4343 return idlest;
4344}
e7693a36 4345
a50bde51
PZ
4346/*
4347 * Try and locate an idle CPU in the sched_domain.
4348 */
99bd5e2f 4349static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4350{
99bd5e2f 4351 struct sched_domain *sd;
37407ea7 4352 struct sched_group *sg;
e0a79f52 4353 int i = task_cpu(p);
a50bde51 4354
e0a79f52
MG
4355 if (idle_cpu(target))
4356 return target;
99bd5e2f
SS
4357
4358 /*
e0a79f52 4359 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4360 */
e0a79f52
MG
4361 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4362 return i;
a50bde51
PZ
4363
4364 /*
37407ea7 4365 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4366 */
518cd623 4367 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4368 for_each_lower_domain(sd) {
37407ea7
LT
4369 sg = sd->groups;
4370 do {
4371 if (!cpumask_intersects(sched_group_cpus(sg),
4372 tsk_cpus_allowed(p)))
4373 goto next;
4374
4375 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4376 if (i == target || !idle_cpu(i))
37407ea7
LT
4377 goto next;
4378 }
970e1789 4379
37407ea7
LT
4380 target = cpumask_first_and(sched_group_cpus(sg),
4381 tsk_cpus_allowed(p));
4382 goto done;
4383next:
4384 sg = sg->next;
4385 } while (sg != sd->groups);
4386 }
4387done:
a50bde51
PZ
4388 return target;
4389}
4390
aaee1203
PZ
4391/*
4392 * sched_balance_self: balance the current task (running on cpu) in domains
4393 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4394 * SD_BALANCE_EXEC.
4395 *
4396 * Balance, ie. select the least loaded group.
4397 *
4398 * Returns the target CPU number, or the same CPU if no balancing is needed.
4399 *
4400 * preempt must be disabled.
4401 */
0017d735 4402static int
ac66f547 4403select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4404{
29cd8bae 4405 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4406 int cpu = smp_processor_id();
c88d5910 4407 int new_cpu = cpu;
99bd5e2f 4408 int want_affine = 0;
5158f4e4 4409 int sync = wake_flags & WF_SYNC;
c88d5910 4410
29baa747 4411 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4412 return prev_cpu;
4413
0763a660 4414 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4415 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4416 want_affine = 1;
4417 new_cpu = prev_cpu;
4418 }
aaee1203 4419
dce840a0 4420 rcu_read_lock();
aaee1203 4421 for_each_domain(cpu, tmp) {
e4f42888
PZ
4422 if (!(tmp->flags & SD_LOAD_BALANCE))
4423 continue;
4424
fe3bcfe1 4425 /*
99bd5e2f
SS
4426 * If both cpu and prev_cpu are part of this domain,
4427 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4428 */
99bd5e2f
SS
4429 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4430 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4431 affine_sd = tmp;
29cd8bae 4432 break;
f03542a7 4433 }
29cd8bae 4434
f03542a7 4435 if (tmp->flags & sd_flag)
29cd8bae
PZ
4436 sd = tmp;
4437 }
4438
8b911acd 4439 if (affine_sd) {
f03542a7 4440 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4441 prev_cpu = cpu;
4442
4443 new_cpu = select_idle_sibling(p, prev_cpu);
4444 goto unlock;
8b911acd 4445 }
e7693a36 4446
aaee1203
PZ
4447 while (sd) {
4448 struct sched_group *group;
c88d5910 4449 int weight;
098fb9db 4450
0763a660 4451 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4452 sd = sd->child;
4453 continue;
4454 }
098fb9db 4455
c44f2a02 4456 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4457 if (!group) {
4458 sd = sd->child;
4459 continue;
4460 }
4ae7d5ce 4461
d7c33c49 4462 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4463 if (new_cpu == -1 || new_cpu == cpu) {
4464 /* Now try balancing at a lower domain level of cpu */
4465 sd = sd->child;
4466 continue;
e7693a36 4467 }
aaee1203
PZ
4468
4469 /* Now try balancing at a lower domain level of new_cpu */
4470 cpu = new_cpu;
669c55e9 4471 weight = sd->span_weight;
aaee1203
PZ
4472 sd = NULL;
4473 for_each_domain(cpu, tmp) {
669c55e9 4474 if (weight <= tmp->span_weight)
aaee1203 4475 break;
0763a660 4476 if (tmp->flags & sd_flag)
aaee1203
PZ
4477 sd = tmp;
4478 }
4479 /* while loop will break here if sd == NULL */
e7693a36 4480 }
dce840a0
PZ
4481unlock:
4482 rcu_read_unlock();
e7693a36 4483
c88d5910 4484 return new_cpu;
e7693a36 4485}
0a74bef8
PT
4486
4487/*
4488 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4489 * cfs_rq_of(p) references at time of call are still valid and identify the
4490 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4491 * other assumptions, including the state of rq->lock, should be made.
4492 */
4493static void
4494migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4495{
aff3e498
PT
4496 struct sched_entity *se = &p->se;
4497 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4498
4499 /*
4500 * Load tracking: accumulate removed load so that it can be processed
4501 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4502 * to blocked load iff they have a positive decay-count. It can never
4503 * be negative here since on-rq tasks have decay-count == 0.
4504 */
4505 if (se->avg.decay_count) {
4506 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4507 atomic_long_add(se->avg.load_avg_contrib,
4508 &cfs_rq->removed_load);
aff3e498 4509 }
0a74bef8 4510}
e7693a36
GH
4511#endif /* CONFIG_SMP */
4512
e52fb7c0
PZ
4513static unsigned long
4514wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4515{
4516 unsigned long gran = sysctl_sched_wakeup_granularity;
4517
4518 /*
e52fb7c0
PZ
4519 * Since its curr running now, convert the gran from real-time
4520 * to virtual-time in his units.
13814d42
MG
4521 *
4522 * By using 'se' instead of 'curr' we penalize light tasks, so
4523 * they get preempted easier. That is, if 'se' < 'curr' then
4524 * the resulting gran will be larger, therefore penalizing the
4525 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4526 * be smaller, again penalizing the lighter task.
4527 *
4528 * This is especially important for buddies when the leftmost
4529 * task is higher priority than the buddy.
0bbd3336 4530 */
f4ad9bd2 4531 return calc_delta_fair(gran, se);
0bbd3336
PZ
4532}
4533
464b7527
PZ
4534/*
4535 * Should 'se' preempt 'curr'.
4536 *
4537 * |s1
4538 * |s2
4539 * |s3
4540 * g
4541 * |<--->|c
4542 *
4543 * w(c, s1) = -1
4544 * w(c, s2) = 0
4545 * w(c, s3) = 1
4546 *
4547 */
4548static int
4549wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4550{
4551 s64 gran, vdiff = curr->vruntime - se->vruntime;
4552
4553 if (vdiff <= 0)
4554 return -1;
4555
e52fb7c0 4556 gran = wakeup_gran(curr, se);
464b7527
PZ
4557 if (vdiff > gran)
4558 return 1;
4559
4560 return 0;
4561}
4562
02479099
PZ
4563static void set_last_buddy(struct sched_entity *se)
4564{
69c80f3e
VP
4565 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4566 return;
4567
4568 for_each_sched_entity(se)
4569 cfs_rq_of(se)->last = se;
02479099
PZ
4570}
4571
4572static void set_next_buddy(struct sched_entity *se)
4573{
69c80f3e
VP
4574 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4575 return;
4576
4577 for_each_sched_entity(se)
4578 cfs_rq_of(se)->next = se;
02479099
PZ
4579}
4580
ac53db59
RR
4581static void set_skip_buddy(struct sched_entity *se)
4582{
69c80f3e
VP
4583 for_each_sched_entity(se)
4584 cfs_rq_of(se)->skip = se;
ac53db59
RR
4585}
4586
bf0f6f24
IM
4587/*
4588 * Preempt the current task with a newly woken task if needed:
4589 */
5a9b86f6 4590static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4591{
4592 struct task_struct *curr = rq->curr;
8651a86c 4593 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4594 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4595 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4596 int next_buddy_marked = 0;
bf0f6f24 4597
4ae7d5ce
IM
4598 if (unlikely(se == pse))
4599 return;
4600
5238cdd3 4601 /*
ddcdf6e7 4602 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4603 * unconditionally check_prempt_curr() after an enqueue (which may have
4604 * lead to a throttle). This both saves work and prevents false
4605 * next-buddy nomination below.
4606 */
4607 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4608 return;
4609
2f36825b 4610 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4611 set_next_buddy(pse);
2f36825b
VP
4612 next_buddy_marked = 1;
4613 }
57fdc26d 4614
aec0a514
BR
4615 /*
4616 * We can come here with TIF_NEED_RESCHED already set from new task
4617 * wake up path.
5238cdd3
PT
4618 *
4619 * Note: this also catches the edge-case of curr being in a throttled
4620 * group (e.g. via set_curr_task), since update_curr() (in the
4621 * enqueue of curr) will have resulted in resched being set. This
4622 * prevents us from potentially nominating it as a false LAST_BUDDY
4623 * below.
aec0a514
BR
4624 */
4625 if (test_tsk_need_resched(curr))
4626 return;
4627
a2f5c9ab
DH
4628 /* Idle tasks are by definition preempted by non-idle tasks. */
4629 if (unlikely(curr->policy == SCHED_IDLE) &&
4630 likely(p->policy != SCHED_IDLE))
4631 goto preempt;
4632
91c234b4 4633 /*
a2f5c9ab
DH
4634 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4635 * is driven by the tick):
91c234b4 4636 */
8ed92e51 4637 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4638 return;
bf0f6f24 4639
464b7527 4640 find_matching_se(&se, &pse);
9bbd7374 4641 update_curr(cfs_rq_of(se));
002f128b 4642 BUG_ON(!pse);
2f36825b
VP
4643 if (wakeup_preempt_entity(se, pse) == 1) {
4644 /*
4645 * Bias pick_next to pick the sched entity that is
4646 * triggering this preemption.
4647 */
4648 if (!next_buddy_marked)
4649 set_next_buddy(pse);
3a7e73a2 4650 goto preempt;
2f36825b 4651 }
464b7527 4652
3a7e73a2 4653 return;
a65ac745 4654
3a7e73a2
PZ
4655preempt:
4656 resched_task(curr);
4657 /*
4658 * Only set the backward buddy when the current task is still
4659 * on the rq. This can happen when a wakeup gets interleaved
4660 * with schedule on the ->pre_schedule() or idle_balance()
4661 * point, either of which can * drop the rq lock.
4662 *
4663 * Also, during early boot the idle thread is in the fair class,
4664 * for obvious reasons its a bad idea to schedule back to it.
4665 */
4666 if (unlikely(!se->on_rq || curr == rq->idle))
4667 return;
4668
4669 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4670 set_last_buddy(se);
bf0f6f24
IM
4671}
4672
606dba2e
PZ
4673static struct task_struct *
4674pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4675{
4676 struct cfs_rq *cfs_rq = &rq->cfs;
4677 struct sched_entity *se;
678d5718
PZ
4678 struct task_struct *p;
4679
38033c37 4680again: __maybe_unused
678d5718
PZ
4681#ifdef CONFIG_FAIR_GROUP_SCHED
4682 if (!cfs_rq->nr_running)
38033c37 4683 goto idle;
678d5718
PZ
4684
4685 if (!prev || prev->sched_class != &fair_sched_class)
4686 goto simple;
4687
4688 /*
4689 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4690 * likely that a next task is from the same cgroup as the current.
4691 *
4692 * Therefore attempt to avoid putting and setting the entire cgroup
4693 * hierarchy, only change the part that actually changes.
4694 */
4695
4696 do {
4697 struct sched_entity *curr = cfs_rq->curr;
4698
4699 /*
4700 * Since we got here without doing put_prev_entity() we also
4701 * have to consider cfs_rq->curr. If it is still a runnable
4702 * entity, update_curr() will update its vruntime, otherwise
4703 * forget we've ever seen it.
4704 */
4705 if (curr && curr->on_rq)
4706 update_curr(cfs_rq);
4707 else
4708 curr = NULL;
4709
4710 /*
4711 * This call to check_cfs_rq_runtime() will do the throttle and
4712 * dequeue its entity in the parent(s). Therefore the 'simple'
4713 * nr_running test will indeed be correct.
4714 */
4715 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4716 goto simple;
4717
4718 se = pick_next_entity(cfs_rq, curr);
4719 cfs_rq = group_cfs_rq(se);
4720 } while (cfs_rq);
4721
4722 p = task_of(se);
4723
4724 /*
4725 * Since we haven't yet done put_prev_entity and if the selected task
4726 * is a different task than we started out with, try and touch the
4727 * least amount of cfs_rqs.
4728 */
4729 if (prev != p) {
4730 struct sched_entity *pse = &prev->se;
4731
4732 while (!(cfs_rq = is_same_group(se, pse))) {
4733 int se_depth = se->depth;
4734 int pse_depth = pse->depth;
4735
4736 if (se_depth <= pse_depth) {
4737 put_prev_entity(cfs_rq_of(pse), pse);
4738 pse = parent_entity(pse);
4739 }
4740 if (se_depth >= pse_depth) {
4741 set_next_entity(cfs_rq_of(se), se);
4742 se = parent_entity(se);
4743 }
4744 }
4745
4746 put_prev_entity(cfs_rq, pse);
4747 set_next_entity(cfs_rq, se);
4748 }
4749
4750 if (hrtick_enabled(rq))
4751 hrtick_start_fair(rq, p);
4752
4753 return p;
4754simple:
4755 cfs_rq = &rq->cfs;
4756#endif
bf0f6f24 4757
36ace27e 4758 if (!cfs_rq->nr_running)
38033c37 4759 goto idle;
bf0f6f24 4760
606dba2e
PZ
4761 if (prev)
4762 prev->sched_class->put_prev_task(rq, prev);
4763
bf0f6f24 4764 do {
678d5718 4765 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4766 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4767 cfs_rq = group_cfs_rq(se);
4768 } while (cfs_rq);
4769
8f4d37ec 4770 p = task_of(se);
678d5718 4771
b39e66ea
MG
4772 if (hrtick_enabled(rq))
4773 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4774
4775 return p;
38033c37
PZ
4776
4777idle:
4778#ifdef CONFIG_SMP
4779 idle_enter_fair(rq);
4780 /*
4781 * We must set idle_stamp _before_ calling idle_balance(), such that we
4782 * measure the duration of idle_balance() as idle time.
4783 */
4784 rq->idle_stamp = rq_clock(rq);
4785 if (idle_balance(rq)) { /* drops rq->lock */
4786 rq->idle_stamp = 0;
4787 goto again;
4788 }
4789#endif
4790
4791 return NULL;
bf0f6f24
IM
4792}
4793
4794/*
4795 * Account for a descheduled task:
4796 */
31ee529c 4797static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4798{
4799 struct sched_entity *se = &prev->se;
4800 struct cfs_rq *cfs_rq;
4801
4802 for_each_sched_entity(se) {
4803 cfs_rq = cfs_rq_of(se);
ab6cde26 4804 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4805 }
4806}
4807
ac53db59
RR
4808/*
4809 * sched_yield() is very simple
4810 *
4811 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4812 */
4813static void yield_task_fair(struct rq *rq)
4814{
4815 struct task_struct *curr = rq->curr;
4816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4817 struct sched_entity *se = &curr->se;
4818
4819 /*
4820 * Are we the only task in the tree?
4821 */
4822 if (unlikely(rq->nr_running == 1))
4823 return;
4824
4825 clear_buddies(cfs_rq, se);
4826
4827 if (curr->policy != SCHED_BATCH) {
4828 update_rq_clock(rq);
4829 /*
4830 * Update run-time statistics of the 'current'.
4831 */
4832 update_curr(cfs_rq);
916671c0
MG
4833 /*
4834 * Tell update_rq_clock() that we've just updated,
4835 * so we don't do microscopic update in schedule()
4836 * and double the fastpath cost.
4837 */
4838 rq->skip_clock_update = 1;
ac53db59
RR
4839 }
4840
4841 set_skip_buddy(se);
4842}
4843
d95f4122
MG
4844static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4845{
4846 struct sched_entity *se = &p->se;
4847
5238cdd3
PT
4848 /* throttled hierarchies are not runnable */
4849 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4850 return false;
4851
4852 /* Tell the scheduler that we'd really like pse to run next. */
4853 set_next_buddy(se);
4854
d95f4122
MG
4855 yield_task_fair(rq);
4856
4857 return true;
4858}
4859
681f3e68 4860#ifdef CONFIG_SMP
bf0f6f24 4861/**************************************************
e9c84cb8
PZ
4862 * Fair scheduling class load-balancing methods.
4863 *
4864 * BASICS
4865 *
4866 * The purpose of load-balancing is to achieve the same basic fairness the
4867 * per-cpu scheduler provides, namely provide a proportional amount of compute
4868 * time to each task. This is expressed in the following equation:
4869 *
4870 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4871 *
4872 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4873 * W_i,0 is defined as:
4874 *
4875 * W_i,0 = \Sum_j w_i,j (2)
4876 *
4877 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4878 * is derived from the nice value as per prio_to_weight[].
4879 *
4880 * The weight average is an exponential decay average of the instantaneous
4881 * weight:
4882 *
4883 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4884 *
4885 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4886 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4887 * can also include other factors [XXX].
4888 *
4889 * To achieve this balance we define a measure of imbalance which follows
4890 * directly from (1):
4891 *
4892 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4893 *
4894 * We them move tasks around to minimize the imbalance. In the continuous
4895 * function space it is obvious this converges, in the discrete case we get
4896 * a few fun cases generally called infeasible weight scenarios.
4897 *
4898 * [XXX expand on:
4899 * - infeasible weights;
4900 * - local vs global optima in the discrete case. ]
4901 *
4902 *
4903 * SCHED DOMAINS
4904 *
4905 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4906 * for all i,j solution, we create a tree of cpus that follows the hardware
4907 * topology where each level pairs two lower groups (or better). This results
4908 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4909 * tree to only the first of the previous level and we decrease the frequency
4910 * of load-balance at each level inv. proportional to the number of cpus in
4911 * the groups.
4912 *
4913 * This yields:
4914 *
4915 * log_2 n 1 n
4916 * \Sum { --- * --- * 2^i } = O(n) (5)
4917 * i = 0 2^i 2^i
4918 * `- size of each group
4919 * | | `- number of cpus doing load-balance
4920 * | `- freq
4921 * `- sum over all levels
4922 *
4923 * Coupled with a limit on how many tasks we can migrate every balance pass,
4924 * this makes (5) the runtime complexity of the balancer.
4925 *
4926 * An important property here is that each CPU is still (indirectly) connected
4927 * to every other cpu in at most O(log n) steps:
4928 *
4929 * The adjacency matrix of the resulting graph is given by:
4930 *
4931 * log_2 n
4932 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4933 * k = 0
4934 *
4935 * And you'll find that:
4936 *
4937 * A^(log_2 n)_i,j != 0 for all i,j (7)
4938 *
4939 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4940 * The task movement gives a factor of O(m), giving a convergence complexity
4941 * of:
4942 *
4943 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4944 *
4945 *
4946 * WORK CONSERVING
4947 *
4948 * In order to avoid CPUs going idle while there's still work to do, new idle
4949 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4950 * tree itself instead of relying on other CPUs to bring it work.
4951 *
4952 * This adds some complexity to both (5) and (8) but it reduces the total idle
4953 * time.
4954 *
4955 * [XXX more?]
4956 *
4957 *
4958 * CGROUPS
4959 *
4960 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4961 *
4962 * s_k,i
4963 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4964 * S_k
4965 *
4966 * Where
4967 *
4968 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4969 *
4970 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4971 *
4972 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4973 * property.
4974 *
4975 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4976 * rewrite all of this once again.]
4977 */
bf0f6f24 4978
ed387b78
HS
4979static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4980
0ec8aa00
PZ
4981enum fbq_type { regular, remote, all };
4982
ddcdf6e7 4983#define LBF_ALL_PINNED 0x01
367456c7 4984#define LBF_NEED_BREAK 0x02
6263322c
PZ
4985#define LBF_DST_PINNED 0x04
4986#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4987
4988struct lb_env {
4989 struct sched_domain *sd;
4990
ddcdf6e7 4991 struct rq *src_rq;
85c1e7da 4992 int src_cpu;
ddcdf6e7
PZ
4993
4994 int dst_cpu;
4995 struct rq *dst_rq;
4996
88b8dac0
SV
4997 struct cpumask *dst_grpmask;
4998 int new_dst_cpu;
ddcdf6e7 4999 enum cpu_idle_type idle;
bd939f45 5000 long imbalance;
b9403130
MW
5001 /* The set of CPUs under consideration for load-balancing */
5002 struct cpumask *cpus;
5003
ddcdf6e7 5004 unsigned int flags;
367456c7
PZ
5005
5006 unsigned int loop;
5007 unsigned int loop_break;
5008 unsigned int loop_max;
0ec8aa00
PZ
5009
5010 enum fbq_type fbq_type;
ddcdf6e7
PZ
5011};
5012
1e3c88bd 5013/*
ddcdf6e7 5014 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5015 * Both runqueues must be locked.
5016 */
ddcdf6e7 5017static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5018{
ddcdf6e7
PZ
5019 deactivate_task(env->src_rq, p, 0);
5020 set_task_cpu(p, env->dst_cpu);
5021 activate_task(env->dst_rq, p, 0);
5022 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5023}
5024
029632fb
PZ
5025/*
5026 * Is this task likely cache-hot:
5027 */
5028static int
5029task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
5030{
5031 s64 delta;
5032
5033 if (p->sched_class != &fair_sched_class)
5034 return 0;
5035
5036 if (unlikely(p->policy == SCHED_IDLE))
5037 return 0;
5038
5039 /*
5040 * Buddy candidates are cache hot:
5041 */
5042 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5043 (&p->se == cfs_rq_of(&p->se)->next ||
5044 &p->se == cfs_rq_of(&p->se)->last))
5045 return 1;
5046
5047 if (sysctl_sched_migration_cost == -1)
5048 return 1;
5049 if (sysctl_sched_migration_cost == 0)
5050 return 0;
5051
5052 delta = now - p->se.exec_start;
5053
5054 return delta < (s64)sysctl_sched_migration_cost;
5055}
5056
3a7053b3
MG
5057#ifdef CONFIG_NUMA_BALANCING
5058/* Returns true if the destination node has incurred more faults */
5059static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5060{
5061 int src_nid, dst_nid;
5062
ff1df896 5063 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5064 !(env->sd->flags & SD_NUMA)) {
5065 return false;
5066 }
5067
5068 src_nid = cpu_to_node(env->src_cpu);
5069 dst_nid = cpu_to_node(env->dst_cpu);
5070
83e1d2cd 5071 if (src_nid == dst_nid)
3a7053b3
MG
5072 return false;
5073
83e1d2cd
MG
5074 /* Always encourage migration to the preferred node. */
5075 if (dst_nid == p->numa_preferred_nid)
5076 return true;
5077
887c290e
RR
5078 /* If both task and group weight improve, this move is a winner. */
5079 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5080 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5081 return true;
5082
5083 return false;
5084}
7a0f3083
MG
5085
5086
5087static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5088{
5089 int src_nid, dst_nid;
5090
5091 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5092 return false;
5093
ff1df896 5094 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5095 return false;
5096
5097 src_nid = cpu_to_node(env->src_cpu);
5098 dst_nid = cpu_to_node(env->dst_cpu);
5099
83e1d2cd 5100 if (src_nid == dst_nid)
7a0f3083
MG
5101 return false;
5102
83e1d2cd
MG
5103 /* Migrating away from the preferred node is always bad. */
5104 if (src_nid == p->numa_preferred_nid)
5105 return true;
5106
887c290e
RR
5107 /* If either task or group weight get worse, don't do it. */
5108 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5109 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5110 return true;
5111
5112 return false;
5113}
5114
3a7053b3
MG
5115#else
5116static inline bool migrate_improves_locality(struct task_struct *p,
5117 struct lb_env *env)
5118{
5119 return false;
5120}
7a0f3083
MG
5121
5122static inline bool migrate_degrades_locality(struct task_struct *p,
5123 struct lb_env *env)
5124{
5125 return false;
5126}
3a7053b3
MG
5127#endif
5128
1e3c88bd
PZ
5129/*
5130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5131 */
5132static
8e45cb54 5133int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5134{
5135 int tsk_cache_hot = 0;
5136 /*
5137 * We do not migrate tasks that are:
d3198084 5138 * 1) throttled_lb_pair, or
1e3c88bd 5139 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5140 * 3) running (obviously), or
5141 * 4) are cache-hot on their current CPU.
1e3c88bd 5142 */
d3198084
JK
5143 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5144 return 0;
5145
ddcdf6e7 5146 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5147 int cpu;
88b8dac0 5148
41acab88 5149 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5150
6263322c
PZ
5151 env->flags |= LBF_SOME_PINNED;
5152
88b8dac0
SV
5153 /*
5154 * Remember if this task can be migrated to any other cpu in
5155 * our sched_group. We may want to revisit it if we couldn't
5156 * meet load balance goals by pulling other tasks on src_cpu.
5157 *
5158 * Also avoid computing new_dst_cpu if we have already computed
5159 * one in current iteration.
5160 */
6263322c 5161 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5162 return 0;
5163
e02e60c1
JK
5164 /* Prevent to re-select dst_cpu via env's cpus */
5165 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5166 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5167 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5168 env->new_dst_cpu = cpu;
5169 break;
5170 }
88b8dac0 5171 }
e02e60c1 5172
1e3c88bd
PZ
5173 return 0;
5174 }
88b8dac0
SV
5175
5176 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5177 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5178
ddcdf6e7 5179 if (task_running(env->src_rq, p)) {
41acab88 5180 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5181 return 0;
5182 }
5183
5184 /*
5185 * Aggressive migration if:
3a7053b3
MG
5186 * 1) destination numa is preferred
5187 * 2) task is cache cold, or
5188 * 3) too many balance attempts have failed.
1e3c88bd 5189 */
78becc27 5190 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
5191 if (!tsk_cache_hot)
5192 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5193
5194 if (migrate_improves_locality(p, env)) {
5195#ifdef CONFIG_SCHEDSTATS
5196 if (tsk_cache_hot) {
5197 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5198 schedstat_inc(p, se.statistics.nr_forced_migrations);
5199 }
5200#endif
5201 return 1;
5202 }
5203
1e3c88bd 5204 if (!tsk_cache_hot ||
8e45cb54 5205 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5206
1e3c88bd 5207 if (tsk_cache_hot) {
8e45cb54 5208 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5209 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5210 }
4e2dcb73 5211
1e3c88bd
PZ
5212 return 1;
5213 }
5214
4e2dcb73
ZH
5215 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5216 return 0;
1e3c88bd
PZ
5217}
5218
897c395f
PZ
5219/*
5220 * move_one_task tries to move exactly one task from busiest to this_rq, as
5221 * part of active balancing operations within "domain".
5222 * Returns 1 if successful and 0 otherwise.
5223 *
5224 * Called with both runqueues locked.
5225 */
8e45cb54 5226static int move_one_task(struct lb_env *env)
897c395f
PZ
5227{
5228 struct task_struct *p, *n;
897c395f 5229
367456c7 5230 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5231 if (!can_migrate_task(p, env))
5232 continue;
897c395f 5233
367456c7
PZ
5234 move_task(p, env);
5235 /*
5236 * Right now, this is only the second place move_task()
5237 * is called, so we can safely collect move_task()
5238 * stats here rather than inside move_task().
5239 */
5240 schedstat_inc(env->sd, lb_gained[env->idle]);
5241 return 1;
897c395f 5242 }
897c395f
PZ
5243 return 0;
5244}
5245
eb95308e
PZ
5246static const unsigned int sched_nr_migrate_break = 32;
5247
5d6523eb 5248/*
bd939f45 5249 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5250 * this_rq, as part of a balancing operation within domain "sd".
5251 * Returns 1 if successful and 0 otherwise.
5252 *
5253 * Called with both runqueues locked.
5254 */
5255static int move_tasks(struct lb_env *env)
1e3c88bd 5256{
5d6523eb
PZ
5257 struct list_head *tasks = &env->src_rq->cfs_tasks;
5258 struct task_struct *p;
367456c7
PZ
5259 unsigned long load;
5260 int pulled = 0;
1e3c88bd 5261
bd939f45 5262 if (env->imbalance <= 0)
5d6523eb 5263 return 0;
1e3c88bd 5264
5d6523eb
PZ
5265 while (!list_empty(tasks)) {
5266 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5267
367456c7
PZ
5268 env->loop++;
5269 /* We've more or less seen every task there is, call it quits */
5d6523eb 5270 if (env->loop > env->loop_max)
367456c7 5271 break;
5d6523eb
PZ
5272
5273 /* take a breather every nr_migrate tasks */
367456c7 5274 if (env->loop > env->loop_break) {
eb95308e 5275 env->loop_break += sched_nr_migrate_break;
8e45cb54 5276 env->flags |= LBF_NEED_BREAK;
ee00e66f 5277 break;
a195f004 5278 }
1e3c88bd 5279
d3198084 5280 if (!can_migrate_task(p, env))
367456c7
PZ
5281 goto next;
5282
5283 load = task_h_load(p);
5d6523eb 5284
eb95308e 5285 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5286 goto next;
5287
bd939f45 5288 if ((load / 2) > env->imbalance)
367456c7 5289 goto next;
1e3c88bd 5290
ddcdf6e7 5291 move_task(p, env);
ee00e66f 5292 pulled++;
bd939f45 5293 env->imbalance -= load;
1e3c88bd
PZ
5294
5295#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5296 /*
5297 * NEWIDLE balancing is a source of latency, so preemptible
5298 * kernels will stop after the first task is pulled to minimize
5299 * the critical section.
5300 */
5d6523eb 5301 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5302 break;
1e3c88bd
PZ
5303#endif
5304
ee00e66f
PZ
5305 /*
5306 * We only want to steal up to the prescribed amount of
5307 * weighted load.
5308 */
bd939f45 5309 if (env->imbalance <= 0)
ee00e66f 5310 break;
367456c7
PZ
5311
5312 continue;
5313next:
5d6523eb 5314 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5315 }
5d6523eb 5316
1e3c88bd 5317 /*
ddcdf6e7
PZ
5318 * Right now, this is one of only two places move_task() is called,
5319 * so we can safely collect move_task() stats here rather than
5320 * inside move_task().
1e3c88bd 5321 */
8e45cb54 5322 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5323
5d6523eb 5324 return pulled;
1e3c88bd
PZ
5325}
5326
230059de 5327#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5328/*
5329 * update tg->load_weight by folding this cpu's load_avg
5330 */
48a16753 5331static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5332{
48a16753
PT
5333 struct sched_entity *se = tg->se[cpu];
5334 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5335
48a16753
PT
5336 /* throttled entities do not contribute to load */
5337 if (throttled_hierarchy(cfs_rq))
5338 return;
9e3081ca 5339
aff3e498 5340 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5341
82958366
PT
5342 if (se) {
5343 update_entity_load_avg(se, 1);
5344 /*
5345 * We pivot on our runnable average having decayed to zero for
5346 * list removal. This generally implies that all our children
5347 * have also been removed (modulo rounding error or bandwidth
5348 * control); however, such cases are rare and we can fix these
5349 * at enqueue.
5350 *
5351 * TODO: fix up out-of-order children on enqueue.
5352 */
5353 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5354 list_del_leaf_cfs_rq(cfs_rq);
5355 } else {
48a16753 5356 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5357 update_rq_runnable_avg(rq, rq->nr_running);
5358 }
9e3081ca
PZ
5359}
5360
48a16753 5361static void update_blocked_averages(int cpu)
9e3081ca 5362{
9e3081ca 5363 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5364 struct cfs_rq *cfs_rq;
5365 unsigned long flags;
9e3081ca 5366
48a16753
PT
5367 raw_spin_lock_irqsave(&rq->lock, flags);
5368 update_rq_clock(rq);
9763b67f
PZ
5369 /*
5370 * Iterates the task_group tree in a bottom up fashion, see
5371 * list_add_leaf_cfs_rq() for details.
5372 */
64660c86 5373 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5374 /*
5375 * Note: We may want to consider periodically releasing
5376 * rq->lock about these updates so that creating many task
5377 * groups does not result in continually extending hold time.
5378 */
5379 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5380 }
48a16753
PT
5381
5382 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5383}
5384
9763b67f 5385/*
68520796 5386 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5387 * This needs to be done in a top-down fashion because the load of a child
5388 * group is a fraction of its parents load.
5389 */
68520796 5390static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5391{
68520796
VD
5392 struct rq *rq = rq_of(cfs_rq);
5393 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5394 unsigned long now = jiffies;
68520796 5395 unsigned long load;
a35b6466 5396
68520796 5397 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5398 return;
5399
68520796
VD
5400 cfs_rq->h_load_next = NULL;
5401 for_each_sched_entity(se) {
5402 cfs_rq = cfs_rq_of(se);
5403 cfs_rq->h_load_next = se;
5404 if (cfs_rq->last_h_load_update == now)
5405 break;
5406 }
a35b6466 5407
68520796 5408 if (!se) {
7e3115ef 5409 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5410 cfs_rq->last_h_load_update = now;
5411 }
5412
5413 while ((se = cfs_rq->h_load_next) != NULL) {
5414 load = cfs_rq->h_load;
5415 load = div64_ul(load * se->avg.load_avg_contrib,
5416 cfs_rq->runnable_load_avg + 1);
5417 cfs_rq = group_cfs_rq(se);
5418 cfs_rq->h_load = load;
5419 cfs_rq->last_h_load_update = now;
5420 }
9763b67f
PZ
5421}
5422
367456c7 5423static unsigned long task_h_load(struct task_struct *p)
230059de 5424{
367456c7 5425 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5426
68520796 5427 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5428 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5429 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5430}
5431#else
48a16753 5432static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5433{
5434}
5435
367456c7 5436static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5437{
a003a25b 5438 return p->se.avg.load_avg_contrib;
1e3c88bd 5439}
230059de 5440#endif
1e3c88bd 5441
1e3c88bd 5442/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5443/*
5444 * sg_lb_stats - stats of a sched_group required for load_balancing
5445 */
5446struct sg_lb_stats {
5447 unsigned long avg_load; /*Avg load across the CPUs of the group */
5448 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5449 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5450 unsigned long load_per_task;
3ae11c90 5451 unsigned long group_power;
147c5fc2
PZ
5452 unsigned int sum_nr_running; /* Nr tasks running in the group */
5453 unsigned int group_capacity;
5454 unsigned int idle_cpus;
5455 unsigned int group_weight;
1e3c88bd 5456 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5457 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5458#ifdef CONFIG_NUMA_BALANCING
5459 unsigned int nr_numa_running;
5460 unsigned int nr_preferred_running;
5461#endif
1e3c88bd
PZ
5462};
5463
56cf515b
JK
5464/*
5465 * sd_lb_stats - Structure to store the statistics of a sched_domain
5466 * during load balancing.
5467 */
5468struct sd_lb_stats {
5469 struct sched_group *busiest; /* Busiest group in this sd */
5470 struct sched_group *local; /* Local group in this sd */
5471 unsigned long total_load; /* Total load of all groups in sd */
5472 unsigned long total_pwr; /* Total power of all groups in sd */
5473 unsigned long avg_load; /* Average load across all groups in sd */
5474
56cf515b 5475 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5476 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5477};
5478
147c5fc2
PZ
5479static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5480{
5481 /*
5482 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5483 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5484 * We must however clear busiest_stat::avg_load because
5485 * update_sd_pick_busiest() reads this before assignment.
5486 */
5487 *sds = (struct sd_lb_stats){
5488 .busiest = NULL,
5489 .local = NULL,
5490 .total_load = 0UL,
5491 .total_pwr = 0UL,
5492 .busiest_stat = {
5493 .avg_load = 0UL,
5494 },
5495 };
5496}
5497
1e3c88bd
PZ
5498/**
5499 * get_sd_load_idx - Obtain the load index for a given sched domain.
5500 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5501 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5502 *
5503 * Return: The load index.
1e3c88bd
PZ
5504 */
5505static inline int get_sd_load_idx(struct sched_domain *sd,
5506 enum cpu_idle_type idle)
5507{
5508 int load_idx;
5509
5510 switch (idle) {
5511 case CPU_NOT_IDLE:
5512 load_idx = sd->busy_idx;
5513 break;
5514
5515 case CPU_NEWLY_IDLE:
5516 load_idx = sd->newidle_idx;
5517 break;
5518 default:
5519 load_idx = sd->idle_idx;
5520 break;
5521 }
5522
5523 return load_idx;
5524}
5525
15f803c9 5526static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5527{
1399fa78 5528 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5529}
5530
5531unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5532{
5533 return default_scale_freq_power(sd, cpu);
5534}
5535
15f803c9 5536static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5537{
669c55e9 5538 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5539 unsigned long smt_gain = sd->smt_gain;
5540
5541 smt_gain /= weight;
5542
5543 return smt_gain;
5544}
5545
5546unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5547{
5548 return default_scale_smt_power(sd, cpu);
5549}
5550
15f803c9 5551static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5552{
5553 struct rq *rq = cpu_rq(cpu);
b654f7de 5554 u64 total, available, age_stamp, avg;
1e3c88bd 5555
b654f7de
PZ
5556 /*
5557 * Since we're reading these variables without serialization make sure
5558 * we read them once before doing sanity checks on them.
5559 */
5560 age_stamp = ACCESS_ONCE(rq->age_stamp);
5561 avg = ACCESS_ONCE(rq->rt_avg);
5562
78becc27 5563 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5564
b654f7de 5565 if (unlikely(total < avg)) {
aa483808
VP
5566 /* Ensures that power won't end up being negative */
5567 available = 0;
5568 } else {
b654f7de 5569 available = total - avg;
aa483808 5570 }
1e3c88bd 5571
1399fa78
NR
5572 if (unlikely((s64)total < SCHED_POWER_SCALE))
5573 total = SCHED_POWER_SCALE;
1e3c88bd 5574
1399fa78 5575 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5576
5577 return div_u64(available, total);
5578}
5579
5580static void update_cpu_power(struct sched_domain *sd, int cpu)
5581{
669c55e9 5582 unsigned long weight = sd->span_weight;
1399fa78 5583 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5584 struct sched_group *sdg = sd->groups;
5585
1e3c88bd
PZ
5586 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5587 if (sched_feat(ARCH_POWER))
5588 power *= arch_scale_smt_power(sd, cpu);
5589 else
5590 power *= default_scale_smt_power(sd, cpu);
5591
1399fa78 5592 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5593 }
5594
9c3f75cb 5595 sdg->sgp->power_orig = power;
9d5efe05
SV
5596
5597 if (sched_feat(ARCH_POWER))
5598 power *= arch_scale_freq_power(sd, cpu);
5599 else
5600 power *= default_scale_freq_power(sd, cpu);
5601
1399fa78 5602 power >>= SCHED_POWER_SHIFT;
9d5efe05 5603
1e3c88bd 5604 power *= scale_rt_power(cpu);
1399fa78 5605 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5606
5607 if (!power)
5608 power = 1;
5609
e51fd5e2 5610 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5611 sdg->sgp->power = power;
1e3c88bd
PZ
5612}
5613
029632fb 5614void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5615{
5616 struct sched_domain *child = sd->child;
5617 struct sched_group *group, *sdg = sd->groups;
863bffc8 5618 unsigned long power, power_orig;
4ec4412e
VG
5619 unsigned long interval;
5620
5621 interval = msecs_to_jiffies(sd->balance_interval);
5622 interval = clamp(interval, 1UL, max_load_balance_interval);
5623 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5624
5625 if (!child) {
5626 update_cpu_power(sd, cpu);
5627 return;
5628 }
5629
863bffc8 5630 power_orig = power = 0;
1e3c88bd 5631
74a5ce20
PZ
5632 if (child->flags & SD_OVERLAP) {
5633 /*
5634 * SD_OVERLAP domains cannot assume that child groups
5635 * span the current group.
5636 */
5637
863bffc8 5638 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5639 struct sched_group_power *sgp;
5640 struct rq *rq = cpu_rq(cpu);
863bffc8 5641
9abf24d4
SD
5642 /*
5643 * build_sched_domains() -> init_sched_groups_power()
5644 * gets here before we've attached the domains to the
5645 * runqueues.
5646 *
5647 * Use power_of(), which is set irrespective of domains
5648 * in update_cpu_power().
5649 *
5650 * This avoids power/power_orig from being 0 and
5651 * causing divide-by-zero issues on boot.
5652 *
5653 * Runtime updates will correct power_orig.
5654 */
5655 if (unlikely(!rq->sd)) {
5656 power_orig += power_of(cpu);
5657 power += power_of(cpu);
5658 continue;
5659 }
863bffc8 5660
9abf24d4
SD
5661 sgp = rq->sd->groups->sgp;
5662 power_orig += sgp->power_orig;
5663 power += sgp->power;
863bffc8 5664 }
74a5ce20
PZ
5665 } else {
5666 /*
5667 * !SD_OVERLAP domains can assume that child groups
5668 * span the current group.
5669 */
5670
5671 group = child->groups;
5672 do {
863bffc8 5673 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5674 power += group->sgp->power;
5675 group = group->next;
5676 } while (group != child->groups);
5677 }
1e3c88bd 5678
863bffc8
PZ
5679 sdg->sgp->power_orig = power_orig;
5680 sdg->sgp->power = power;
1e3c88bd
PZ
5681}
5682
9d5efe05
SV
5683/*
5684 * Try and fix up capacity for tiny siblings, this is needed when
5685 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5686 * which on its own isn't powerful enough.
5687 *
5688 * See update_sd_pick_busiest() and check_asym_packing().
5689 */
5690static inline int
5691fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5692{
5693 /*
1399fa78 5694 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5695 */
a6c75f2f 5696 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5697 return 0;
5698
5699 /*
5700 * If ~90% of the cpu_power is still there, we're good.
5701 */
9c3f75cb 5702 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5703 return 1;
5704
5705 return 0;
5706}
5707
30ce5dab
PZ
5708/*
5709 * Group imbalance indicates (and tries to solve) the problem where balancing
5710 * groups is inadequate due to tsk_cpus_allowed() constraints.
5711 *
5712 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5713 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5714 * Something like:
5715 *
5716 * { 0 1 2 3 } { 4 5 6 7 }
5717 * * * * *
5718 *
5719 * If we were to balance group-wise we'd place two tasks in the first group and
5720 * two tasks in the second group. Clearly this is undesired as it will overload
5721 * cpu 3 and leave one of the cpus in the second group unused.
5722 *
5723 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5724 * by noticing the lower domain failed to reach balance and had difficulty
5725 * moving tasks due to affinity constraints.
30ce5dab
PZ
5726 *
5727 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5728 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5729 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5730 * to create an effective group imbalance.
5731 *
5732 * This is a somewhat tricky proposition since the next run might not find the
5733 * group imbalance and decide the groups need to be balanced again. A most
5734 * subtle and fragile situation.
5735 */
5736
6263322c 5737static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5738{
6263322c 5739 return group->sgp->imbalance;
30ce5dab
PZ
5740}
5741
b37d9316
PZ
5742/*
5743 * Compute the group capacity.
5744 *
c61037e9
PZ
5745 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5746 * first dividing out the smt factor and computing the actual number of cores
5747 * and limit power unit capacity with that.
b37d9316
PZ
5748 */
5749static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5750{
c61037e9
PZ
5751 unsigned int capacity, smt, cpus;
5752 unsigned int power, power_orig;
5753
5754 power = group->sgp->power;
5755 power_orig = group->sgp->power_orig;
5756 cpus = group->group_weight;
b37d9316 5757
c61037e9
PZ
5758 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5759 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5760 capacity = cpus / smt; /* cores */
b37d9316 5761
c61037e9 5762 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5763 if (!capacity)
5764 capacity = fix_small_capacity(env->sd, group);
5765
5766 return capacity;
5767}
5768
1e3c88bd
PZ
5769/**
5770 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5771 * @env: The load balancing environment.
1e3c88bd 5772 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5773 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5774 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5775 * @sgs: variable to hold the statistics for this group.
5776 */
bd939f45
PZ
5777static inline void update_sg_lb_stats(struct lb_env *env,
5778 struct sched_group *group, int load_idx,
23f0d209 5779 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5780{
30ce5dab 5781 unsigned long load;
bd939f45 5782 int i;
1e3c88bd 5783
b72ff13c
PZ
5784 memset(sgs, 0, sizeof(*sgs));
5785
b9403130 5786 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5787 struct rq *rq = cpu_rq(i);
5788
1e3c88bd 5789 /* Bias balancing toward cpus of our domain */
6263322c 5790 if (local_group)
04f733b4 5791 load = target_load(i, load_idx);
6263322c 5792 else
1e3c88bd 5793 load = source_load(i, load_idx);
1e3c88bd
PZ
5794
5795 sgs->group_load += load;
380c9077 5796 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5797#ifdef CONFIG_NUMA_BALANCING
5798 sgs->nr_numa_running += rq->nr_numa_running;
5799 sgs->nr_preferred_running += rq->nr_preferred_running;
5800#endif
1e3c88bd 5801 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5802 if (idle_cpu(i))
5803 sgs->idle_cpus++;
1e3c88bd
PZ
5804 }
5805
1e3c88bd 5806 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5807 sgs->group_power = group->sgp->power;
5808 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5809
dd5feea1 5810 if (sgs->sum_nr_running)
38d0f770 5811 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5812
aae6d3dd 5813 sgs->group_weight = group->group_weight;
fab47622 5814
b37d9316
PZ
5815 sgs->group_imb = sg_imbalanced(group);
5816 sgs->group_capacity = sg_capacity(env, group);
5817
fab47622
NR
5818 if (sgs->group_capacity > sgs->sum_nr_running)
5819 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5820}
5821
532cb4c4
MN
5822/**
5823 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5824 * @env: The load balancing environment.
532cb4c4
MN
5825 * @sds: sched_domain statistics
5826 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5827 * @sgs: sched_group statistics
532cb4c4
MN
5828 *
5829 * Determine if @sg is a busier group than the previously selected
5830 * busiest group.
e69f6186
YB
5831 *
5832 * Return: %true if @sg is a busier group than the previously selected
5833 * busiest group. %false otherwise.
532cb4c4 5834 */
bd939f45 5835static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5836 struct sd_lb_stats *sds,
5837 struct sched_group *sg,
bd939f45 5838 struct sg_lb_stats *sgs)
532cb4c4 5839{
56cf515b 5840 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5841 return false;
5842
5843 if (sgs->sum_nr_running > sgs->group_capacity)
5844 return true;
5845
5846 if (sgs->group_imb)
5847 return true;
5848
5849 /*
5850 * ASYM_PACKING needs to move all the work to the lowest
5851 * numbered CPUs in the group, therefore mark all groups
5852 * higher than ourself as busy.
5853 */
bd939f45
PZ
5854 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5855 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5856 if (!sds->busiest)
5857 return true;
5858
5859 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5860 return true;
5861 }
5862
5863 return false;
5864}
5865
0ec8aa00
PZ
5866#ifdef CONFIG_NUMA_BALANCING
5867static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5868{
5869 if (sgs->sum_nr_running > sgs->nr_numa_running)
5870 return regular;
5871 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5872 return remote;
5873 return all;
5874}
5875
5876static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5877{
5878 if (rq->nr_running > rq->nr_numa_running)
5879 return regular;
5880 if (rq->nr_running > rq->nr_preferred_running)
5881 return remote;
5882 return all;
5883}
5884#else
5885static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5886{
5887 return all;
5888}
5889
5890static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5891{
5892 return regular;
5893}
5894#endif /* CONFIG_NUMA_BALANCING */
5895
1e3c88bd 5896/**
461819ac 5897 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5898 * @env: The load balancing environment.
1e3c88bd
PZ
5899 * @sds: variable to hold the statistics for this sched_domain.
5900 */
0ec8aa00 5901static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5902{
bd939f45
PZ
5903 struct sched_domain *child = env->sd->child;
5904 struct sched_group *sg = env->sd->groups;
56cf515b 5905 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5906 int load_idx, prefer_sibling = 0;
5907
5908 if (child && child->flags & SD_PREFER_SIBLING)
5909 prefer_sibling = 1;
5910
bd939f45 5911 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5912
5913 do {
56cf515b 5914 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5915 int local_group;
5916
bd939f45 5917 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5918 if (local_group) {
5919 sds->local = sg;
5920 sgs = &sds->local_stat;
b72ff13c
PZ
5921
5922 if (env->idle != CPU_NEWLY_IDLE ||
5923 time_after_eq(jiffies, sg->sgp->next_update))
5924 update_group_power(env->sd, env->dst_cpu);
56cf515b 5925 }
1e3c88bd 5926
56cf515b 5927 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5928
b72ff13c
PZ
5929 if (local_group)
5930 goto next_group;
5931
1e3c88bd
PZ
5932 /*
5933 * In case the child domain prefers tasks go to siblings
532cb4c4 5934 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5935 * and move all the excess tasks away. We lower the capacity
5936 * of a group only if the local group has the capacity to fit
5937 * these excess tasks, i.e. nr_running < group_capacity. The
5938 * extra check prevents the case where you always pull from the
5939 * heaviest group when it is already under-utilized (possible
5940 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5941 */
b72ff13c
PZ
5942 if (prefer_sibling && sds->local &&
5943 sds->local_stat.group_has_capacity)
147c5fc2 5944 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5945
b72ff13c 5946 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5947 sds->busiest = sg;
56cf515b 5948 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5949 }
5950
b72ff13c
PZ
5951next_group:
5952 /* Now, start updating sd_lb_stats */
5953 sds->total_load += sgs->group_load;
5954 sds->total_pwr += sgs->group_power;
5955
532cb4c4 5956 sg = sg->next;
bd939f45 5957 } while (sg != env->sd->groups);
0ec8aa00
PZ
5958
5959 if (env->sd->flags & SD_NUMA)
5960 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5961}
5962
532cb4c4
MN
5963/**
5964 * check_asym_packing - Check to see if the group is packed into the
5965 * sched doman.
5966 *
5967 * This is primarily intended to used at the sibling level. Some
5968 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5969 * case of POWER7, it can move to lower SMT modes only when higher
5970 * threads are idle. When in lower SMT modes, the threads will
5971 * perform better since they share less core resources. Hence when we
5972 * have idle threads, we want them to be the higher ones.
5973 *
5974 * This packing function is run on idle threads. It checks to see if
5975 * the busiest CPU in this domain (core in the P7 case) has a higher
5976 * CPU number than the packing function is being run on. Here we are
5977 * assuming lower CPU number will be equivalent to lower a SMT thread
5978 * number.
5979 *
e69f6186 5980 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5981 * this CPU. The amount of the imbalance is returned in *imbalance.
5982 *
cd96891d 5983 * @env: The load balancing environment.
532cb4c4 5984 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5985 */
bd939f45 5986static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5987{
5988 int busiest_cpu;
5989
bd939f45 5990 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5991 return 0;
5992
5993 if (!sds->busiest)
5994 return 0;
5995
5996 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5997 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5998 return 0;
5999
bd939f45 6000 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6001 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6002 SCHED_POWER_SCALE);
bd939f45 6003
532cb4c4 6004 return 1;
1e3c88bd
PZ
6005}
6006
6007/**
6008 * fix_small_imbalance - Calculate the minor imbalance that exists
6009 * amongst the groups of a sched_domain, during
6010 * load balancing.
cd96891d 6011 * @env: The load balancing environment.
1e3c88bd 6012 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6013 */
bd939f45
PZ
6014static inline
6015void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6016{
6017 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6018 unsigned int imbn = 2;
dd5feea1 6019 unsigned long scaled_busy_load_per_task;
56cf515b 6020 struct sg_lb_stats *local, *busiest;
1e3c88bd 6021
56cf515b
JK
6022 local = &sds->local_stat;
6023 busiest = &sds->busiest_stat;
1e3c88bd 6024
56cf515b
JK
6025 if (!local->sum_nr_running)
6026 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6027 else if (busiest->load_per_task > local->load_per_task)
6028 imbn = 1;
dd5feea1 6029
56cf515b
JK
6030 scaled_busy_load_per_task =
6031 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6032 busiest->group_power;
56cf515b 6033
3029ede3
VD
6034 if (busiest->avg_load + scaled_busy_load_per_task >=
6035 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6036 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6037 return;
6038 }
6039
6040 /*
6041 * OK, we don't have enough imbalance to justify moving tasks,
6042 * however we may be able to increase total CPU power used by
6043 * moving them.
6044 */
6045
3ae11c90 6046 pwr_now += busiest->group_power *
56cf515b 6047 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6048 pwr_now += local->group_power *
56cf515b 6049 min(local->load_per_task, local->avg_load);
1399fa78 6050 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6051
6052 /* Amount of load we'd subtract */
56cf515b 6053 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6054 busiest->group_power;
56cf515b 6055 if (busiest->avg_load > tmp) {
3ae11c90 6056 pwr_move += busiest->group_power *
56cf515b
JK
6057 min(busiest->load_per_task,
6058 busiest->avg_load - tmp);
6059 }
1e3c88bd
PZ
6060
6061 /* Amount of load we'd add */
3ae11c90 6062 if (busiest->avg_load * busiest->group_power <
56cf515b 6063 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6064 tmp = (busiest->avg_load * busiest->group_power) /
6065 local->group_power;
56cf515b
JK
6066 } else {
6067 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6068 local->group_power;
56cf515b 6069 }
3ae11c90
PZ
6070 pwr_move += local->group_power *
6071 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6072 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6073
6074 /* Move if we gain throughput */
6075 if (pwr_move > pwr_now)
56cf515b 6076 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6077}
6078
6079/**
6080 * calculate_imbalance - Calculate the amount of imbalance present within the
6081 * groups of a given sched_domain during load balance.
bd939f45 6082 * @env: load balance environment
1e3c88bd 6083 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6084 */
bd939f45 6085static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6086{
dd5feea1 6087 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6088 struct sg_lb_stats *local, *busiest;
6089
6090 local = &sds->local_stat;
56cf515b 6091 busiest = &sds->busiest_stat;
dd5feea1 6092
56cf515b 6093 if (busiest->group_imb) {
30ce5dab
PZ
6094 /*
6095 * In the group_imb case we cannot rely on group-wide averages
6096 * to ensure cpu-load equilibrium, look at wider averages. XXX
6097 */
56cf515b
JK
6098 busiest->load_per_task =
6099 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6100 }
6101
1e3c88bd
PZ
6102 /*
6103 * In the presence of smp nice balancing, certain scenarios can have
6104 * max load less than avg load(as we skip the groups at or below
6105 * its cpu_power, while calculating max_load..)
6106 */
b1885550
VD
6107 if (busiest->avg_load <= sds->avg_load ||
6108 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6109 env->imbalance = 0;
6110 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6111 }
6112
56cf515b 6113 if (!busiest->group_imb) {
dd5feea1
SS
6114 /*
6115 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6116 * Except of course for the group_imb case, since then we might
6117 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6118 */
56cf515b
JK
6119 load_above_capacity =
6120 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6121
1399fa78 6122 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6123 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6124 }
6125
6126 /*
6127 * We're trying to get all the cpus to the average_load, so we don't
6128 * want to push ourselves above the average load, nor do we wish to
6129 * reduce the max loaded cpu below the average load. At the same time,
6130 * we also don't want to reduce the group load below the group capacity
6131 * (so that we can implement power-savings policies etc). Thus we look
6132 * for the minimum possible imbalance.
dd5feea1 6133 */
30ce5dab 6134 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6135
6136 /* How much load to actually move to equalise the imbalance */
56cf515b 6137 env->imbalance = min(
3ae11c90
PZ
6138 max_pull * busiest->group_power,
6139 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6140 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6141
6142 /*
6143 * if *imbalance is less than the average load per runnable task
25985edc 6144 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6145 * a think about bumping its value to force at least one task to be
6146 * moved
6147 */
56cf515b 6148 if (env->imbalance < busiest->load_per_task)
bd939f45 6149 return fix_small_imbalance(env, sds);
1e3c88bd 6150}
fab47622 6151
1e3c88bd
PZ
6152/******* find_busiest_group() helpers end here *********************/
6153
6154/**
6155 * find_busiest_group - Returns the busiest group within the sched_domain
6156 * if there is an imbalance. If there isn't an imbalance, and
6157 * the user has opted for power-savings, it returns a group whose
6158 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6159 * such a group exists.
6160 *
6161 * Also calculates the amount of weighted load which should be moved
6162 * to restore balance.
6163 *
cd96891d 6164 * @env: The load balancing environment.
1e3c88bd 6165 *
e69f6186 6166 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6167 * - If no imbalance and user has opted for power-savings balance,
6168 * return the least loaded group whose CPUs can be
6169 * put to idle by rebalancing its tasks onto our group.
6170 */
56cf515b 6171static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6172{
56cf515b 6173 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6174 struct sd_lb_stats sds;
6175
147c5fc2 6176 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6177
6178 /*
6179 * Compute the various statistics relavent for load balancing at
6180 * this level.
6181 */
23f0d209 6182 update_sd_lb_stats(env, &sds);
56cf515b
JK
6183 local = &sds.local_stat;
6184 busiest = &sds.busiest_stat;
1e3c88bd 6185
bd939f45
PZ
6186 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6187 check_asym_packing(env, &sds))
532cb4c4
MN
6188 return sds.busiest;
6189
cc57aa8f 6190 /* There is no busy sibling group to pull tasks from */
56cf515b 6191 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6192 goto out_balanced;
6193
1399fa78 6194 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6195
866ab43e
PZ
6196 /*
6197 * If the busiest group is imbalanced the below checks don't
30ce5dab 6198 * work because they assume all things are equal, which typically
866ab43e
PZ
6199 * isn't true due to cpus_allowed constraints and the like.
6200 */
56cf515b 6201 if (busiest->group_imb)
866ab43e
PZ
6202 goto force_balance;
6203
cc57aa8f 6204 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6205 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6206 !busiest->group_has_capacity)
fab47622
NR
6207 goto force_balance;
6208
cc57aa8f
PZ
6209 /*
6210 * If the local group is more busy than the selected busiest group
6211 * don't try and pull any tasks.
6212 */
56cf515b 6213 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6214 goto out_balanced;
6215
cc57aa8f
PZ
6216 /*
6217 * Don't pull any tasks if this group is already above the domain
6218 * average load.
6219 */
56cf515b 6220 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6221 goto out_balanced;
6222
bd939f45 6223 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6224 /*
6225 * This cpu is idle. If the busiest group load doesn't
6226 * have more tasks than the number of available cpu's and
6227 * there is no imbalance between this and busiest group
6228 * wrt to idle cpu's, it is balanced.
6229 */
56cf515b
JK
6230 if ((local->idle_cpus < busiest->idle_cpus) &&
6231 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6232 goto out_balanced;
c186fafe
PZ
6233 } else {
6234 /*
6235 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6236 * imbalance_pct to be conservative.
6237 */
56cf515b
JK
6238 if (100 * busiest->avg_load <=
6239 env->sd->imbalance_pct * local->avg_load)
c186fafe 6240 goto out_balanced;
aae6d3dd 6241 }
1e3c88bd 6242
fab47622 6243force_balance:
1e3c88bd 6244 /* Looks like there is an imbalance. Compute it */
bd939f45 6245 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6246 return sds.busiest;
6247
6248out_balanced:
bd939f45 6249 env->imbalance = 0;
1e3c88bd
PZ
6250 return NULL;
6251}
6252
6253/*
6254 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6255 */
bd939f45 6256static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6257 struct sched_group *group)
1e3c88bd
PZ
6258{
6259 struct rq *busiest = NULL, *rq;
95a79b80 6260 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6261 int i;
6262
6906a408 6263 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6264 unsigned long power, capacity, wl;
6265 enum fbq_type rt;
6266
6267 rq = cpu_rq(i);
6268 rt = fbq_classify_rq(rq);
1e3c88bd 6269
0ec8aa00
PZ
6270 /*
6271 * We classify groups/runqueues into three groups:
6272 * - regular: there are !numa tasks
6273 * - remote: there are numa tasks that run on the 'wrong' node
6274 * - all: there is no distinction
6275 *
6276 * In order to avoid migrating ideally placed numa tasks,
6277 * ignore those when there's better options.
6278 *
6279 * If we ignore the actual busiest queue to migrate another
6280 * task, the next balance pass can still reduce the busiest
6281 * queue by moving tasks around inside the node.
6282 *
6283 * If we cannot move enough load due to this classification
6284 * the next pass will adjust the group classification and
6285 * allow migration of more tasks.
6286 *
6287 * Both cases only affect the total convergence complexity.
6288 */
6289 if (rt > env->fbq_type)
6290 continue;
6291
6292 power = power_of(i);
6293 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6294 if (!capacity)
bd939f45 6295 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6296
6e40f5bb 6297 wl = weighted_cpuload(i);
1e3c88bd 6298
6e40f5bb
TG
6299 /*
6300 * When comparing with imbalance, use weighted_cpuload()
6301 * which is not scaled with the cpu power.
6302 */
bd939f45 6303 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6304 continue;
6305
6e40f5bb
TG
6306 /*
6307 * For the load comparisons with the other cpu's, consider
6308 * the weighted_cpuload() scaled with the cpu power, so that
6309 * the load can be moved away from the cpu that is potentially
6310 * running at a lower capacity.
95a79b80
JK
6311 *
6312 * Thus we're looking for max(wl_i / power_i), crosswise
6313 * multiplication to rid ourselves of the division works out
6314 * to: wl_i * power_j > wl_j * power_i; where j is our
6315 * previous maximum.
6e40f5bb 6316 */
95a79b80
JK
6317 if (wl * busiest_power > busiest_load * power) {
6318 busiest_load = wl;
6319 busiest_power = power;
1e3c88bd
PZ
6320 busiest = rq;
6321 }
6322 }
6323
6324 return busiest;
6325}
6326
6327/*
6328 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6329 * so long as it is large enough.
6330 */
6331#define MAX_PINNED_INTERVAL 512
6332
6333/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6334DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6335
bd939f45 6336static int need_active_balance(struct lb_env *env)
1af3ed3d 6337{
bd939f45
PZ
6338 struct sched_domain *sd = env->sd;
6339
6340 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6341
6342 /*
6343 * ASYM_PACKING needs to force migrate tasks from busy but
6344 * higher numbered CPUs in order to pack all tasks in the
6345 * lowest numbered CPUs.
6346 */
bd939f45 6347 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6348 return 1;
1af3ed3d
PZ
6349 }
6350
6351 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6352}
6353
969c7921
TH
6354static int active_load_balance_cpu_stop(void *data);
6355
23f0d209
JK
6356static int should_we_balance(struct lb_env *env)
6357{
6358 struct sched_group *sg = env->sd->groups;
6359 struct cpumask *sg_cpus, *sg_mask;
6360 int cpu, balance_cpu = -1;
6361
6362 /*
6363 * In the newly idle case, we will allow all the cpu's
6364 * to do the newly idle load balance.
6365 */
6366 if (env->idle == CPU_NEWLY_IDLE)
6367 return 1;
6368
6369 sg_cpus = sched_group_cpus(sg);
6370 sg_mask = sched_group_mask(sg);
6371 /* Try to find first idle cpu */
6372 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6373 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6374 continue;
6375
6376 balance_cpu = cpu;
6377 break;
6378 }
6379
6380 if (balance_cpu == -1)
6381 balance_cpu = group_balance_cpu(sg);
6382
6383 /*
6384 * First idle cpu or the first cpu(busiest) in this sched group
6385 * is eligible for doing load balancing at this and above domains.
6386 */
b0cff9d8 6387 return balance_cpu == env->dst_cpu;
23f0d209
JK
6388}
6389
1e3c88bd
PZ
6390/*
6391 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6392 * tasks if there is an imbalance.
6393 */
6394static int load_balance(int this_cpu, struct rq *this_rq,
6395 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6396 int *continue_balancing)
1e3c88bd 6397{
88b8dac0 6398 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6399 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6400 struct sched_group *group;
1e3c88bd
PZ
6401 struct rq *busiest;
6402 unsigned long flags;
e6252c3e 6403 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6404
8e45cb54
PZ
6405 struct lb_env env = {
6406 .sd = sd,
ddcdf6e7
PZ
6407 .dst_cpu = this_cpu,
6408 .dst_rq = this_rq,
88b8dac0 6409 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6410 .idle = idle,
eb95308e 6411 .loop_break = sched_nr_migrate_break,
b9403130 6412 .cpus = cpus,
0ec8aa00 6413 .fbq_type = all,
8e45cb54
PZ
6414 };
6415
cfc03118
JK
6416 /*
6417 * For NEWLY_IDLE load_balancing, we don't need to consider
6418 * other cpus in our group
6419 */
e02e60c1 6420 if (idle == CPU_NEWLY_IDLE)
cfc03118 6421 env.dst_grpmask = NULL;
cfc03118 6422
1e3c88bd
PZ
6423 cpumask_copy(cpus, cpu_active_mask);
6424
1e3c88bd
PZ
6425 schedstat_inc(sd, lb_count[idle]);
6426
6427redo:
23f0d209
JK
6428 if (!should_we_balance(&env)) {
6429 *continue_balancing = 0;
1e3c88bd 6430 goto out_balanced;
23f0d209 6431 }
1e3c88bd 6432
23f0d209 6433 group = find_busiest_group(&env);
1e3c88bd
PZ
6434 if (!group) {
6435 schedstat_inc(sd, lb_nobusyg[idle]);
6436 goto out_balanced;
6437 }
6438
b9403130 6439 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6440 if (!busiest) {
6441 schedstat_inc(sd, lb_nobusyq[idle]);
6442 goto out_balanced;
6443 }
6444
78feefc5 6445 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6446
bd939f45 6447 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6448
6449 ld_moved = 0;
6450 if (busiest->nr_running > 1) {
6451 /*
6452 * Attempt to move tasks. If find_busiest_group has found
6453 * an imbalance but busiest->nr_running <= 1, the group is
6454 * still unbalanced. ld_moved simply stays zero, so it is
6455 * correctly treated as an imbalance.
6456 */
8e45cb54 6457 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6458 env.src_cpu = busiest->cpu;
6459 env.src_rq = busiest;
6460 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6461
5d6523eb 6462more_balance:
1e3c88bd 6463 local_irq_save(flags);
78feefc5 6464 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6465
6466 /*
6467 * cur_ld_moved - load moved in current iteration
6468 * ld_moved - cumulative load moved across iterations
6469 */
6470 cur_ld_moved = move_tasks(&env);
6471 ld_moved += cur_ld_moved;
78feefc5 6472 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6473 local_irq_restore(flags);
6474
6475 /*
6476 * some other cpu did the load balance for us.
6477 */
88b8dac0
SV
6478 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6479 resched_cpu(env.dst_cpu);
6480
f1cd0858
JK
6481 if (env.flags & LBF_NEED_BREAK) {
6482 env.flags &= ~LBF_NEED_BREAK;
6483 goto more_balance;
6484 }
6485
88b8dac0
SV
6486 /*
6487 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6488 * us and move them to an alternate dst_cpu in our sched_group
6489 * where they can run. The upper limit on how many times we
6490 * iterate on same src_cpu is dependent on number of cpus in our
6491 * sched_group.
6492 *
6493 * This changes load balance semantics a bit on who can move
6494 * load to a given_cpu. In addition to the given_cpu itself
6495 * (or a ilb_cpu acting on its behalf where given_cpu is
6496 * nohz-idle), we now have balance_cpu in a position to move
6497 * load to given_cpu. In rare situations, this may cause
6498 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6499 * _independently_ and at _same_ time to move some load to
6500 * given_cpu) causing exceess load to be moved to given_cpu.
6501 * This however should not happen so much in practice and
6502 * moreover subsequent load balance cycles should correct the
6503 * excess load moved.
6504 */
6263322c 6505 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6506
7aff2e3a
VD
6507 /* Prevent to re-select dst_cpu via env's cpus */
6508 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6509
78feefc5 6510 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6511 env.dst_cpu = env.new_dst_cpu;
6263322c 6512 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6513 env.loop = 0;
6514 env.loop_break = sched_nr_migrate_break;
e02e60c1 6515
88b8dac0
SV
6516 /*
6517 * Go back to "more_balance" rather than "redo" since we
6518 * need to continue with same src_cpu.
6519 */
6520 goto more_balance;
6521 }
1e3c88bd 6522
6263322c
PZ
6523 /*
6524 * We failed to reach balance because of affinity.
6525 */
6526 if (sd_parent) {
6527 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6528
6529 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6530 *group_imbalance = 1;
6531 } else if (*group_imbalance)
6532 *group_imbalance = 0;
6533 }
6534
1e3c88bd 6535 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6536 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6537 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6538 if (!cpumask_empty(cpus)) {
6539 env.loop = 0;
6540 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6541 goto redo;
bbf18b19 6542 }
1e3c88bd
PZ
6543 goto out_balanced;
6544 }
6545 }
6546
6547 if (!ld_moved) {
6548 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6549 /*
6550 * Increment the failure counter only on periodic balance.
6551 * We do not want newidle balance, which can be very
6552 * frequent, pollute the failure counter causing
6553 * excessive cache_hot migrations and active balances.
6554 */
6555 if (idle != CPU_NEWLY_IDLE)
6556 sd->nr_balance_failed++;
1e3c88bd 6557
bd939f45 6558 if (need_active_balance(&env)) {
1e3c88bd
PZ
6559 raw_spin_lock_irqsave(&busiest->lock, flags);
6560
969c7921
TH
6561 /* don't kick the active_load_balance_cpu_stop,
6562 * if the curr task on busiest cpu can't be
6563 * moved to this_cpu
1e3c88bd
PZ
6564 */
6565 if (!cpumask_test_cpu(this_cpu,
fa17b507 6566 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6567 raw_spin_unlock_irqrestore(&busiest->lock,
6568 flags);
8e45cb54 6569 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6570 goto out_one_pinned;
6571 }
6572
969c7921
TH
6573 /*
6574 * ->active_balance synchronizes accesses to
6575 * ->active_balance_work. Once set, it's cleared
6576 * only after active load balance is finished.
6577 */
1e3c88bd
PZ
6578 if (!busiest->active_balance) {
6579 busiest->active_balance = 1;
6580 busiest->push_cpu = this_cpu;
6581 active_balance = 1;
6582 }
6583 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6584
bd939f45 6585 if (active_balance) {
969c7921
TH
6586 stop_one_cpu_nowait(cpu_of(busiest),
6587 active_load_balance_cpu_stop, busiest,
6588 &busiest->active_balance_work);
bd939f45 6589 }
1e3c88bd
PZ
6590
6591 /*
6592 * We've kicked active balancing, reset the failure
6593 * counter.
6594 */
6595 sd->nr_balance_failed = sd->cache_nice_tries+1;
6596 }
6597 } else
6598 sd->nr_balance_failed = 0;
6599
6600 if (likely(!active_balance)) {
6601 /* We were unbalanced, so reset the balancing interval */
6602 sd->balance_interval = sd->min_interval;
6603 } else {
6604 /*
6605 * If we've begun active balancing, start to back off. This
6606 * case may not be covered by the all_pinned logic if there
6607 * is only 1 task on the busy runqueue (because we don't call
6608 * move_tasks).
6609 */
6610 if (sd->balance_interval < sd->max_interval)
6611 sd->balance_interval *= 2;
6612 }
6613
1e3c88bd
PZ
6614 goto out;
6615
6616out_balanced:
6617 schedstat_inc(sd, lb_balanced[idle]);
6618
6619 sd->nr_balance_failed = 0;
6620
6621out_one_pinned:
6622 /* tune up the balancing interval */
8e45cb54 6623 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6624 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6625 (sd->balance_interval < sd->max_interval))
6626 sd->balance_interval *= 2;
6627
46e49b38 6628 ld_moved = 0;
1e3c88bd 6629out:
1e3c88bd
PZ
6630 return ld_moved;
6631}
6632
1e3c88bd
PZ
6633/*
6634 * idle_balance is called by schedule() if this_cpu is about to become
6635 * idle. Attempts to pull tasks from other CPUs.
6636 */
3c4017c1 6637int idle_balance(struct rq *this_rq)
1e3c88bd
PZ
6638{
6639 struct sched_domain *sd;
6640 int pulled_task = 0;
6641 unsigned long next_balance = jiffies + HZ;
9bd721c5 6642 u64 curr_cost = 0;
b4f2ab43 6643 int this_cpu = this_rq->cpu;
1e3c88bd 6644
1e3c88bd 6645 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3c4017c1 6646 return 0;
1e3c88bd 6647
f492e12e
PZ
6648 /*
6649 * Drop the rq->lock, but keep IRQ/preempt disabled.
6650 */
6651 raw_spin_unlock(&this_rq->lock);
6652
48a16753 6653 update_blocked_averages(this_cpu);
dce840a0 6654 rcu_read_lock();
1e3c88bd
PZ
6655 for_each_domain(this_cpu, sd) {
6656 unsigned long interval;
23f0d209 6657 int continue_balancing = 1;
9bd721c5 6658 u64 t0, domain_cost;
1e3c88bd
PZ
6659
6660 if (!(sd->flags & SD_LOAD_BALANCE))
6661 continue;
6662
9bd721c5
JL
6663 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6664 break;
6665
f492e12e 6666 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6667 t0 = sched_clock_cpu(this_cpu);
6668
1e3c88bd 6669 /* If we've pulled tasks over stop searching: */
f492e12e 6670 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6671 sd, CPU_NEWLY_IDLE,
6672 &continue_balancing);
9bd721c5
JL
6673
6674 domain_cost = sched_clock_cpu(this_cpu) - t0;
6675 if (domain_cost > sd->max_newidle_lb_cost)
6676 sd->max_newidle_lb_cost = domain_cost;
6677
6678 curr_cost += domain_cost;
f492e12e 6679 }
1e3c88bd
PZ
6680
6681 interval = msecs_to_jiffies(sd->balance_interval);
6682 if (time_after(next_balance, sd->last_balance + interval))
6683 next_balance = sd->last_balance + interval;
3c4017c1 6684 if (pulled_task)
1e3c88bd 6685 break;
1e3c88bd 6686 }
dce840a0 6687 rcu_read_unlock();
f492e12e
PZ
6688
6689 raw_spin_lock(&this_rq->lock);
6690
e5fc6611
DL
6691 /*
6692 * While browsing the domains, we released the rq lock.
6693 * A task could have be enqueued in the meantime
6694 */
6695 if (this_rq->nr_running && !pulled_task)
3c4017c1 6696 return 1;
e5fc6611 6697
1e3c88bd
PZ
6698 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6699 /*
6700 * We are going idle. next_balance may be set based on
6701 * a busy processor. So reset next_balance.
6702 */
6703 this_rq->next_balance = next_balance;
6704 }
9bd721c5
JL
6705
6706 if (curr_cost > this_rq->max_idle_balance_cost)
6707 this_rq->max_idle_balance_cost = curr_cost;
3c4017c1
DL
6708
6709 return pulled_task;
1e3c88bd
PZ
6710}
6711
6712/*
969c7921
TH
6713 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6714 * running tasks off the busiest CPU onto idle CPUs. It requires at
6715 * least 1 task to be running on each physical CPU where possible, and
6716 * avoids physical / logical imbalances.
1e3c88bd 6717 */
969c7921 6718static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6719{
969c7921
TH
6720 struct rq *busiest_rq = data;
6721 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6722 int target_cpu = busiest_rq->push_cpu;
969c7921 6723 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6724 struct sched_domain *sd;
969c7921
TH
6725
6726 raw_spin_lock_irq(&busiest_rq->lock);
6727
6728 /* make sure the requested cpu hasn't gone down in the meantime */
6729 if (unlikely(busiest_cpu != smp_processor_id() ||
6730 !busiest_rq->active_balance))
6731 goto out_unlock;
1e3c88bd
PZ
6732
6733 /* Is there any task to move? */
6734 if (busiest_rq->nr_running <= 1)
969c7921 6735 goto out_unlock;
1e3c88bd
PZ
6736
6737 /*
6738 * This condition is "impossible", if it occurs
6739 * we need to fix it. Originally reported by
6740 * Bjorn Helgaas on a 128-cpu setup.
6741 */
6742 BUG_ON(busiest_rq == target_rq);
6743
6744 /* move a task from busiest_rq to target_rq */
6745 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6746
6747 /* Search for an sd spanning us and the target CPU. */
dce840a0 6748 rcu_read_lock();
1e3c88bd
PZ
6749 for_each_domain(target_cpu, sd) {
6750 if ((sd->flags & SD_LOAD_BALANCE) &&
6751 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6752 break;
6753 }
6754
6755 if (likely(sd)) {
8e45cb54
PZ
6756 struct lb_env env = {
6757 .sd = sd,
ddcdf6e7
PZ
6758 .dst_cpu = target_cpu,
6759 .dst_rq = target_rq,
6760 .src_cpu = busiest_rq->cpu,
6761 .src_rq = busiest_rq,
8e45cb54
PZ
6762 .idle = CPU_IDLE,
6763 };
6764
1e3c88bd
PZ
6765 schedstat_inc(sd, alb_count);
6766
8e45cb54 6767 if (move_one_task(&env))
1e3c88bd
PZ
6768 schedstat_inc(sd, alb_pushed);
6769 else
6770 schedstat_inc(sd, alb_failed);
6771 }
dce840a0 6772 rcu_read_unlock();
1e3c88bd 6773 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6774out_unlock:
6775 busiest_rq->active_balance = 0;
6776 raw_spin_unlock_irq(&busiest_rq->lock);
6777 return 0;
1e3c88bd
PZ
6778}
6779
3451d024 6780#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6781/*
6782 * idle load balancing details
83cd4fe2
VP
6783 * - When one of the busy CPUs notice that there may be an idle rebalancing
6784 * needed, they will kick the idle load balancer, which then does idle
6785 * load balancing for all the idle CPUs.
6786 */
1e3c88bd 6787static struct {
83cd4fe2 6788 cpumask_var_t idle_cpus_mask;
0b005cf5 6789 atomic_t nr_cpus;
83cd4fe2
VP
6790 unsigned long next_balance; /* in jiffy units */
6791} nohz ____cacheline_aligned;
1e3c88bd 6792
3dd0337d 6793static inline int find_new_ilb(void)
1e3c88bd 6794{
0b005cf5 6795 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6796
786d6dc7
SS
6797 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6798 return ilb;
6799
6800 return nr_cpu_ids;
1e3c88bd 6801}
1e3c88bd 6802
83cd4fe2
VP
6803/*
6804 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6805 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6806 * CPU (if there is one).
6807 */
0aeeeeba 6808static void nohz_balancer_kick(void)
83cd4fe2
VP
6809{
6810 int ilb_cpu;
6811
6812 nohz.next_balance++;
6813
3dd0337d 6814 ilb_cpu = find_new_ilb();
83cd4fe2 6815
0b005cf5
SS
6816 if (ilb_cpu >= nr_cpu_ids)
6817 return;
83cd4fe2 6818
cd490c5b 6819 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6820 return;
6821 /*
6822 * Use smp_send_reschedule() instead of resched_cpu().
6823 * This way we generate a sched IPI on the target cpu which
6824 * is idle. And the softirq performing nohz idle load balance
6825 * will be run before returning from the IPI.
6826 */
6827 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6828 return;
6829}
6830
c1cc017c 6831static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6832{
6833 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6834 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6835 atomic_dec(&nohz.nr_cpus);
6836 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6837 }
6838}
6839
69e1e811
SS
6840static inline void set_cpu_sd_state_busy(void)
6841{
6842 struct sched_domain *sd;
37dc6b50 6843 int cpu = smp_processor_id();
69e1e811 6844
69e1e811 6845 rcu_read_lock();
37dc6b50 6846 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6847
6848 if (!sd || !sd->nohz_idle)
6849 goto unlock;
6850 sd->nohz_idle = 0;
6851
37dc6b50 6852 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6853unlock:
69e1e811
SS
6854 rcu_read_unlock();
6855}
6856
6857void set_cpu_sd_state_idle(void)
6858{
6859 struct sched_domain *sd;
37dc6b50 6860 int cpu = smp_processor_id();
69e1e811 6861
69e1e811 6862 rcu_read_lock();
37dc6b50 6863 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6864
6865 if (!sd || sd->nohz_idle)
6866 goto unlock;
6867 sd->nohz_idle = 1;
6868
37dc6b50 6869 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6870unlock:
69e1e811
SS
6871 rcu_read_unlock();
6872}
6873
1e3c88bd 6874/*
c1cc017c 6875 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6876 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6877 */
c1cc017c 6878void nohz_balance_enter_idle(int cpu)
1e3c88bd 6879{
71325960
SS
6880 /*
6881 * If this cpu is going down, then nothing needs to be done.
6882 */
6883 if (!cpu_active(cpu))
6884 return;
6885
c1cc017c
AS
6886 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6887 return;
1e3c88bd 6888
c1cc017c
AS
6889 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6890 atomic_inc(&nohz.nr_cpus);
6891 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6892}
71325960 6893
0db0628d 6894static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6895 unsigned long action, void *hcpu)
6896{
6897 switch (action & ~CPU_TASKS_FROZEN) {
6898 case CPU_DYING:
c1cc017c 6899 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6900 return NOTIFY_OK;
6901 default:
6902 return NOTIFY_DONE;
6903 }
6904}
1e3c88bd
PZ
6905#endif
6906
6907static DEFINE_SPINLOCK(balancing);
6908
49c022e6
PZ
6909/*
6910 * Scale the max load_balance interval with the number of CPUs in the system.
6911 * This trades load-balance latency on larger machines for less cross talk.
6912 */
029632fb 6913void update_max_interval(void)
49c022e6
PZ
6914{
6915 max_load_balance_interval = HZ*num_online_cpus()/10;
6916}
6917
1e3c88bd
PZ
6918/*
6919 * It checks each scheduling domain to see if it is due to be balanced,
6920 * and initiates a balancing operation if so.
6921 *
b9b0853a 6922 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 6923 */
f7ed0a89 6924static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 6925{
23f0d209 6926 int continue_balancing = 1;
f7ed0a89 6927 int cpu = rq->cpu;
1e3c88bd 6928 unsigned long interval;
04f733b4 6929 struct sched_domain *sd;
1e3c88bd
PZ
6930 /* Earliest time when we have to do rebalance again */
6931 unsigned long next_balance = jiffies + 60*HZ;
6932 int update_next_balance = 0;
f48627e6
JL
6933 int need_serialize, need_decay = 0;
6934 u64 max_cost = 0;
1e3c88bd 6935
48a16753 6936 update_blocked_averages(cpu);
2069dd75 6937
dce840a0 6938 rcu_read_lock();
1e3c88bd 6939 for_each_domain(cpu, sd) {
f48627e6
JL
6940 /*
6941 * Decay the newidle max times here because this is a regular
6942 * visit to all the domains. Decay ~1% per second.
6943 */
6944 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6945 sd->max_newidle_lb_cost =
6946 (sd->max_newidle_lb_cost * 253) / 256;
6947 sd->next_decay_max_lb_cost = jiffies + HZ;
6948 need_decay = 1;
6949 }
6950 max_cost += sd->max_newidle_lb_cost;
6951
1e3c88bd
PZ
6952 if (!(sd->flags & SD_LOAD_BALANCE))
6953 continue;
6954
f48627e6
JL
6955 /*
6956 * Stop the load balance at this level. There is another
6957 * CPU in our sched group which is doing load balancing more
6958 * actively.
6959 */
6960 if (!continue_balancing) {
6961 if (need_decay)
6962 continue;
6963 break;
6964 }
6965
1e3c88bd
PZ
6966 interval = sd->balance_interval;
6967 if (idle != CPU_IDLE)
6968 interval *= sd->busy_factor;
6969
6970 /* scale ms to jiffies */
6971 interval = msecs_to_jiffies(interval);
49c022e6 6972 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6973
6974 need_serialize = sd->flags & SD_SERIALIZE;
6975
6976 if (need_serialize) {
6977 if (!spin_trylock(&balancing))
6978 goto out;
6979 }
6980
6981 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6982 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6983 /*
6263322c 6984 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6985 * env->dst_cpu, so we can't know our idle
6986 * state even if we migrated tasks. Update it.
1e3c88bd 6987 */
de5eb2dd 6988 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6989 }
6990 sd->last_balance = jiffies;
6991 }
6992 if (need_serialize)
6993 spin_unlock(&balancing);
6994out:
6995 if (time_after(next_balance, sd->last_balance + interval)) {
6996 next_balance = sd->last_balance + interval;
6997 update_next_balance = 1;
6998 }
f48627e6
JL
6999 }
7000 if (need_decay) {
1e3c88bd 7001 /*
f48627e6
JL
7002 * Ensure the rq-wide value also decays but keep it at a
7003 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7004 */
f48627e6
JL
7005 rq->max_idle_balance_cost =
7006 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7007 }
dce840a0 7008 rcu_read_unlock();
1e3c88bd
PZ
7009
7010 /*
7011 * next_balance will be updated only when there is a need.
7012 * When the cpu is attached to null domain for ex, it will not be
7013 * updated.
7014 */
7015 if (likely(update_next_balance))
7016 rq->next_balance = next_balance;
7017}
7018
3451d024 7019#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7020/*
3451d024 7021 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7022 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7023 */
208cb16b 7024static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7025{
208cb16b 7026 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7027 struct rq *rq;
7028 int balance_cpu;
7029
1c792db7
SS
7030 if (idle != CPU_IDLE ||
7031 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7032 goto end;
83cd4fe2
VP
7033
7034 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7035 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7036 continue;
7037
7038 /*
7039 * If this cpu gets work to do, stop the load balancing
7040 * work being done for other cpus. Next load
7041 * balancing owner will pick it up.
7042 */
1c792db7 7043 if (need_resched())
83cd4fe2 7044 break;
83cd4fe2 7045
5ed4f1d9
VG
7046 rq = cpu_rq(balance_cpu);
7047
7048 raw_spin_lock_irq(&rq->lock);
7049 update_rq_clock(rq);
7050 update_idle_cpu_load(rq);
7051 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7052
f7ed0a89 7053 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7054
83cd4fe2
VP
7055 if (time_after(this_rq->next_balance, rq->next_balance))
7056 this_rq->next_balance = rq->next_balance;
7057 }
7058 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7059end:
7060 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7061}
7062
7063/*
0b005cf5
SS
7064 * Current heuristic for kicking the idle load balancer in the presence
7065 * of an idle cpu is the system.
7066 * - This rq has more than one task.
7067 * - At any scheduler domain level, this cpu's scheduler group has multiple
7068 * busy cpu's exceeding the group's power.
7069 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7070 * domain span are idle.
83cd4fe2 7071 */
4a725627 7072static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7073{
7074 unsigned long now = jiffies;
0b005cf5 7075 struct sched_domain *sd;
37dc6b50 7076 struct sched_group_power *sgp;
4a725627 7077 int nr_busy, cpu = rq->cpu;
83cd4fe2 7078
4a725627 7079 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7080 return 0;
7081
1c792db7
SS
7082 /*
7083 * We may be recently in ticked or tickless idle mode. At the first
7084 * busy tick after returning from idle, we will update the busy stats.
7085 */
69e1e811 7086 set_cpu_sd_state_busy();
c1cc017c 7087 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7088
7089 /*
7090 * None are in tickless mode and hence no need for NOHZ idle load
7091 * balancing.
7092 */
7093 if (likely(!atomic_read(&nohz.nr_cpus)))
7094 return 0;
1c792db7
SS
7095
7096 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7097 return 0;
7098
0b005cf5
SS
7099 if (rq->nr_running >= 2)
7100 goto need_kick;
83cd4fe2 7101
067491b7 7102 rcu_read_lock();
37dc6b50 7103 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7104
37dc6b50
PM
7105 if (sd) {
7106 sgp = sd->groups->sgp;
7107 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7108
37dc6b50 7109 if (nr_busy > 1)
067491b7 7110 goto need_kick_unlock;
83cd4fe2 7111 }
37dc6b50
PM
7112
7113 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7114
7115 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7116 sched_domain_span(sd)) < cpu))
7117 goto need_kick_unlock;
7118
067491b7 7119 rcu_read_unlock();
83cd4fe2 7120 return 0;
067491b7
PZ
7121
7122need_kick_unlock:
7123 rcu_read_unlock();
0b005cf5
SS
7124need_kick:
7125 return 1;
83cd4fe2
VP
7126}
7127#else
208cb16b 7128static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7129#endif
7130
7131/*
7132 * run_rebalance_domains is triggered when needed from the scheduler tick.
7133 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7134 */
1e3c88bd
PZ
7135static void run_rebalance_domains(struct softirq_action *h)
7136{
208cb16b 7137 struct rq *this_rq = this_rq();
6eb57e0d 7138 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7139 CPU_IDLE : CPU_NOT_IDLE;
7140
f7ed0a89 7141 rebalance_domains(this_rq, idle);
1e3c88bd 7142
1e3c88bd 7143 /*
83cd4fe2 7144 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7145 * balancing on behalf of the other idle cpus whose ticks are
7146 * stopped.
7147 */
208cb16b 7148 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7149}
7150
63f609b1 7151static inline int on_null_domain(struct rq *rq)
1e3c88bd 7152{
63f609b1 7153 return !rcu_dereference_sched(rq->sd);
1e3c88bd
PZ
7154}
7155
7156/*
7157 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7158 */
7caff66f 7159void trigger_load_balance(struct rq *rq)
1e3c88bd 7160{
1e3c88bd 7161 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7162 if (unlikely(on_null_domain(rq)))
7163 return;
7164
7165 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7166 raise_softirq(SCHED_SOFTIRQ);
3451d024 7167#ifdef CONFIG_NO_HZ_COMMON
c726099e 7168 if (nohz_kick_needed(rq))
0aeeeeba 7169 nohz_balancer_kick();
83cd4fe2 7170#endif
1e3c88bd
PZ
7171}
7172
0bcdcf28
CE
7173static void rq_online_fair(struct rq *rq)
7174{
7175 update_sysctl();
7176}
7177
7178static void rq_offline_fair(struct rq *rq)
7179{
7180 update_sysctl();
a4c96ae3
PB
7181
7182 /* Ensure any throttled groups are reachable by pick_next_task */
7183 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7184}
7185
55e12e5e 7186#endif /* CONFIG_SMP */
e1d1484f 7187
bf0f6f24
IM
7188/*
7189 * scheduler tick hitting a task of our scheduling class:
7190 */
8f4d37ec 7191static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7192{
7193 struct cfs_rq *cfs_rq;
7194 struct sched_entity *se = &curr->se;
7195
7196 for_each_sched_entity(se) {
7197 cfs_rq = cfs_rq_of(se);
8f4d37ec 7198 entity_tick(cfs_rq, se, queued);
bf0f6f24 7199 }
18bf2805 7200
10e84b97 7201 if (numabalancing_enabled)
cbee9f88 7202 task_tick_numa(rq, curr);
3d59eebc 7203
18bf2805 7204 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7205}
7206
7207/*
cd29fe6f
PZ
7208 * called on fork with the child task as argument from the parent's context
7209 * - child not yet on the tasklist
7210 * - preemption disabled
bf0f6f24 7211 */
cd29fe6f 7212static void task_fork_fair(struct task_struct *p)
bf0f6f24 7213{
4fc420c9
DN
7214 struct cfs_rq *cfs_rq;
7215 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7216 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7217 struct rq *rq = this_rq();
7218 unsigned long flags;
7219
05fa785c 7220 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7221
861d034e
PZ
7222 update_rq_clock(rq);
7223
4fc420c9
DN
7224 cfs_rq = task_cfs_rq(current);
7225 curr = cfs_rq->curr;
7226
6c9a27f5
DN
7227 /*
7228 * Not only the cpu but also the task_group of the parent might have
7229 * been changed after parent->se.parent,cfs_rq were copied to
7230 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7231 * of child point to valid ones.
7232 */
7233 rcu_read_lock();
7234 __set_task_cpu(p, this_cpu);
7235 rcu_read_unlock();
bf0f6f24 7236
7109c442 7237 update_curr(cfs_rq);
cd29fe6f 7238
b5d9d734
MG
7239 if (curr)
7240 se->vruntime = curr->vruntime;
aeb73b04 7241 place_entity(cfs_rq, se, 1);
4d78e7b6 7242
cd29fe6f 7243 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7244 /*
edcb60a3
IM
7245 * Upon rescheduling, sched_class::put_prev_task() will place
7246 * 'current' within the tree based on its new key value.
7247 */
4d78e7b6 7248 swap(curr->vruntime, se->vruntime);
aec0a514 7249 resched_task(rq->curr);
4d78e7b6 7250 }
bf0f6f24 7251
88ec22d3
PZ
7252 se->vruntime -= cfs_rq->min_vruntime;
7253
05fa785c 7254 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7255}
7256
cb469845
SR
7257/*
7258 * Priority of the task has changed. Check to see if we preempt
7259 * the current task.
7260 */
da7a735e
PZ
7261static void
7262prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7263{
da7a735e
PZ
7264 if (!p->se.on_rq)
7265 return;
7266
cb469845
SR
7267 /*
7268 * Reschedule if we are currently running on this runqueue and
7269 * our priority decreased, or if we are not currently running on
7270 * this runqueue and our priority is higher than the current's
7271 */
da7a735e 7272 if (rq->curr == p) {
cb469845
SR
7273 if (p->prio > oldprio)
7274 resched_task(rq->curr);
7275 } else
15afe09b 7276 check_preempt_curr(rq, p, 0);
cb469845
SR
7277}
7278
da7a735e
PZ
7279static void switched_from_fair(struct rq *rq, struct task_struct *p)
7280{
7281 struct sched_entity *se = &p->se;
7282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7283
7284 /*
7285 * Ensure the task's vruntime is normalized, so that when its
7286 * switched back to the fair class the enqueue_entity(.flags=0) will
7287 * do the right thing.
7288 *
7289 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7290 * have normalized the vruntime, if it was !on_rq, then only when
7291 * the task is sleeping will it still have non-normalized vruntime.
7292 */
7293 if (!se->on_rq && p->state != TASK_RUNNING) {
7294 /*
7295 * Fix up our vruntime so that the current sleep doesn't
7296 * cause 'unlimited' sleep bonus.
7297 */
7298 place_entity(cfs_rq, se, 0);
7299 se->vruntime -= cfs_rq->min_vruntime;
7300 }
9ee474f5 7301
141965c7 7302#ifdef CONFIG_SMP
9ee474f5
PT
7303 /*
7304 * Remove our load from contribution when we leave sched_fair
7305 * and ensure we don't carry in an old decay_count if we
7306 * switch back.
7307 */
87e3c8ae
KT
7308 if (se->avg.decay_count) {
7309 __synchronize_entity_decay(se);
7310 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7311 }
7312#endif
da7a735e
PZ
7313}
7314
cb469845
SR
7315/*
7316 * We switched to the sched_fair class.
7317 */
da7a735e 7318static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7319{
eb7a59b2
M
7320 struct sched_entity *se = &p->se;
7321#ifdef CONFIG_FAIR_GROUP_SCHED
7322 /*
7323 * Since the real-depth could have been changed (only FAIR
7324 * class maintain depth value), reset depth properly.
7325 */
7326 se->depth = se->parent ? se->parent->depth + 1 : 0;
7327#endif
7328 if (!se->on_rq)
da7a735e
PZ
7329 return;
7330
cb469845
SR
7331 /*
7332 * We were most likely switched from sched_rt, so
7333 * kick off the schedule if running, otherwise just see
7334 * if we can still preempt the current task.
7335 */
da7a735e 7336 if (rq->curr == p)
cb469845
SR
7337 resched_task(rq->curr);
7338 else
15afe09b 7339 check_preempt_curr(rq, p, 0);
cb469845
SR
7340}
7341
83b699ed
SV
7342/* Account for a task changing its policy or group.
7343 *
7344 * This routine is mostly called to set cfs_rq->curr field when a task
7345 * migrates between groups/classes.
7346 */
7347static void set_curr_task_fair(struct rq *rq)
7348{
7349 struct sched_entity *se = &rq->curr->se;
7350
ec12cb7f
PT
7351 for_each_sched_entity(se) {
7352 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7353
7354 set_next_entity(cfs_rq, se);
7355 /* ensure bandwidth has been allocated on our new cfs_rq */
7356 account_cfs_rq_runtime(cfs_rq, 0);
7357 }
83b699ed
SV
7358}
7359
029632fb
PZ
7360void init_cfs_rq(struct cfs_rq *cfs_rq)
7361{
7362 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7363 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7364#ifndef CONFIG_64BIT
7365 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7366#endif
141965c7 7367#ifdef CONFIG_SMP
9ee474f5 7368 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7369 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7370#endif
029632fb
PZ
7371}
7372
810b3817 7373#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7374static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7375{
fed14d45 7376 struct sched_entity *se = &p->se;
aff3e498 7377 struct cfs_rq *cfs_rq;
fed14d45 7378
b2b5ce02
PZ
7379 /*
7380 * If the task was not on the rq at the time of this cgroup movement
7381 * it must have been asleep, sleeping tasks keep their ->vruntime
7382 * absolute on their old rq until wakeup (needed for the fair sleeper
7383 * bonus in place_entity()).
7384 *
7385 * If it was on the rq, we've just 'preempted' it, which does convert
7386 * ->vruntime to a relative base.
7387 *
7388 * Make sure both cases convert their relative position when migrating
7389 * to another cgroup's rq. This does somewhat interfere with the
7390 * fair sleeper stuff for the first placement, but who cares.
7391 */
7ceff013
DN
7392 /*
7393 * When !on_rq, vruntime of the task has usually NOT been normalized.
7394 * But there are some cases where it has already been normalized:
7395 *
7396 * - Moving a forked child which is waiting for being woken up by
7397 * wake_up_new_task().
62af3783
DN
7398 * - Moving a task which has been woken up by try_to_wake_up() and
7399 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7400 *
7401 * To prevent boost or penalty in the new cfs_rq caused by delta
7402 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7403 */
fed14d45 7404 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7405 on_rq = 1;
7406
b2b5ce02 7407 if (!on_rq)
fed14d45 7408 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7409 set_task_rq(p, task_cpu(p));
fed14d45 7410 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7411 if (!on_rq) {
fed14d45
PZ
7412 cfs_rq = cfs_rq_of(se);
7413 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7414#ifdef CONFIG_SMP
7415 /*
7416 * migrate_task_rq_fair() will have removed our previous
7417 * contribution, but we must synchronize for ongoing future
7418 * decay.
7419 */
fed14d45
PZ
7420 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7421 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7422#endif
7423 }
810b3817 7424}
029632fb
PZ
7425
7426void free_fair_sched_group(struct task_group *tg)
7427{
7428 int i;
7429
7430 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7431
7432 for_each_possible_cpu(i) {
7433 if (tg->cfs_rq)
7434 kfree(tg->cfs_rq[i]);
7435 if (tg->se)
7436 kfree(tg->se[i]);
7437 }
7438
7439 kfree(tg->cfs_rq);
7440 kfree(tg->se);
7441}
7442
7443int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7444{
7445 struct cfs_rq *cfs_rq;
7446 struct sched_entity *se;
7447 int i;
7448
7449 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7450 if (!tg->cfs_rq)
7451 goto err;
7452 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7453 if (!tg->se)
7454 goto err;
7455
7456 tg->shares = NICE_0_LOAD;
7457
7458 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7459
7460 for_each_possible_cpu(i) {
7461 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7462 GFP_KERNEL, cpu_to_node(i));
7463 if (!cfs_rq)
7464 goto err;
7465
7466 se = kzalloc_node(sizeof(struct sched_entity),
7467 GFP_KERNEL, cpu_to_node(i));
7468 if (!se)
7469 goto err_free_rq;
7470
7471 init_cfs_rq(cfs_rq);
7472 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7473 }
7474
7475 return 1;
7476
7477err_free_rq:
7478 kfree(cfs_rq);
7479err:
7480 return 0;
7481}
7482
7483void unregister_fair_sched_group(struct task_group *tg, int cpu)
7484{
7485 struct rq *rq = cpu_rq(cpu);
7486 unsigned long flags;
7487
7488 /*
7489 * Only empty task groups can be destroyed; so we can speculatively
7490 * check on_list without danger of it being re-added.
7491 */
7492 if (!tg->cfs_rq[cpu]->on_list)
7493 return;
7494
7495 raw_spin_lock_irqsave(&rq->lock, flags);
7496 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7497 raw_spin_unlock_irqrestore(&rq->lock, flags);
7498}
7499
7500void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7501 struct sched_entity *se, int cpu,
7502 struct sched_entity *parent)
7503{
7504 struct rq *rq = cpu_rq(cpu);
7505
7506 cfs_rq->tg = tg;
7507 cfs_rq->rq = rq;
029632fb
PZ
7508 init_cfs_rq_runtime(cfs_rq);
7509
7510 tg->cfs_rq[cpu] = cfs_rq;
7511 tg->se[cpu] = se;
7512
7513 /* se could be NULL for root_task_group */
7514 if (!se)
7515 return;
7516
fed14d45 7517 if (!parent) {
029632fb 7518 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7519 se->depth = 0;
7520 } else {
029632fb 7521 se->cfs_rq = parent->my_q;
fed14d45
PZ
7522 se->depth = parent->depth + 1;
7523 }
029632fb
PZ
7524
7525 se->my_q = cfs_rq;
0ac9b1c2
PT
7526 /* guarantee group entities always have weight */
7527 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7528 se->parent = parent;
7529}
7530
7531static DEFINE_MUTEX(shares_mutex);
7532
7533int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7534{
7535 int i;
7536 unsigned long flags;
7537
7538 /*
7539 * We can't change the weight of the root cgroup.
7540 */
7541 if (!tg->se[0])
7542 return -EINVAL;
7543
7544 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7545
7546 mutex_lock(&shares_mutex);
7547 if (tg->shares == shares)
7548 goto done;
7549
7550 tg->shares = shares;
7551 for_each_possible_cpu(i) {
7552 struct rq *rq = cpu_rq(i);
7553 struct sched_entity *se;
7554
7555 se = tg->se[i];
7556 /* Propagate contribution to hierarchy */
7557 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7558
7559 /* Possible calls to update_curr() need rq clock */
7560 update_rq_clock(rq);
17bc14b7 7561 for_each_sched_entity(se)
029632fb
PZ
7562 update_cfs_shares(group_cfs_rq(se));
7563 raw_spin_unlock_irqrestore(&rq->lock, flags);
7564 }
7565
7566done:
7567 mutex_unlock(&shares_mutex);
7568 return 0;
7569}
7570#else /* CONFIG_FAIR_GROUP_SCHED */
7571
7572void free_fair_sched_group(struct task_group *tg) { }
7573
7574int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7575{
7576 return 1;
7577}
7578
7579void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7580
7581#endif /* CONFIG_FAIR_GROUP_SCHED */
7582
810b3817 7583
6d686f45 7584static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7585{
7586 struct sched_entity *se = &task->se;
0d721cea
PW
7587 unsigned int rr_interval = 0;
7588
7589 /*
7590 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7591 * idle runqueue:
7592 */
0d721cea 7593 if (rq->cfs.load.weight)
a59f4e07 7594 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7595
7596 return rr_interval;
7597}
7598
bf0f6f24
IM
7599/*
7600 * All the scheduling class methods:
7601 */
029632fb 7602const struct sched_class fair_sched_class = {
5522d5d5 7603 .next = &idle_sched_class,
bf0f6f24
IM
7604 .enqueue_task = enqueue_task_fair,
7605 .dequeue_task = dequeue_task_fair,
7606 .yield_task = yield_task_fair,
d95f4122 7607 .yield_to_task = yield_to_task_fair,
bf0f6f24 7608
2e09bf55 7609 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7610
7611 .pick_next_task = pick_next_task_fair,
7612 .put_prev_task = put_prev_task_fair,
7613
681f3e68 7614#ifdef CONFIG_SMP
4ce72a2c 7615 .select_task_rq = select_task_rq_fair,
0a74bef8 7616 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7617
0bcdcf28
CE
7618 .rq_online = rq_online_fair,
7619 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7620
7621 .task_waking = task_waking_fair,
681f3e68 7622#endif
bf0f6f24 7623
83b699ed 7624 .set_curr_task = set_curr_task_fair,
bf0f6f24 7625 .task_tick = task_tick_fair,
cd29fe6f 7626 .task_fork = task_fork_fair,
cb469845
SR
7627
7628 .prio_changed = prio_changed_fair,
da7a735e 7629 .switched_from = switched_from_fair,
cb469845 7630 .switched_to = switched_to_fair,
810b3817 7631
0d721cea
PW
7632 .get_rr_interval = get_rr_interval_fair,
7633
810b3817 7634#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7635 .task_move_group = task_move_group_fair,
810b3817 7636#endif
bf0f6f24
IM
7637};
7638
7639#ifdef CONFIG_SCHED_DEBUG
029632fb 7640void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7641{
bf0f6f24
IM
7642 struct cfs_rq *cfs_rq;
7643
5973e5b9 7644 rcu_read_lock();
c3b64f1e 7645 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7646 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7647 rcu_read_unlock();
bf0f6f24
IM
7648}
7649#endif
029632fb
PZ
7650
7651__init void init_sched_fair_class(void)
7652{
7653#ifdef CONFIG_SMP
7654 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7655
3451d024 7656#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7657 nohz.next_balance = jiffies;
029632fb 7658 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7659 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7660#endif
7661#endif /* SMP */
7662
7663}
This page took 1.023097 seconds and 5 git commands to generate.