Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[deliverable/linux.git] / kernel / sched / rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
029632fb
PZ
6#include "sched.h"
7
8#include <linux/slab.h>
b6366f04 9#include <linux/irq_work.h>
029632fb 10
ce0dbbbb
CW
11int sched_rr_timeslice = RR_TIMESLICE;
12
029632fb
PZ
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 21 int idle = 0;
77a4d1a1 22 int overrun;
029632fb 23
77a4d1a1 24 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 25 for (;;) {
77a4d1a1 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
27 if (!overrun)
28 break;
29
77a4d1a1 30 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 31 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 32 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 33 }
4cfafd30
PZ
34 if (idle)
35 rt_b->rt_period_active = 0;
77a4d1a1 36 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
029632fb 58 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
c3a990dc
SR
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
4cfafd30
PZ
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 }
029632fb
PZ
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73}
74
89b41108 75#if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
b6366f04
SR
76static void push_irq_work_func(struct irq_work *work);
77#endif
78
07c54f7a 79void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
80{
81 struct rt_prio_array *array;
82 int i;
83
84 array = &rt_rq->active;
85 for (i = 0; i < MAX_RT_PRIO; i++) {
86 INIT_LIST_HEAD(array->queue + i);
87 __clear_bit(i, array->bitmap);
88 }
89 /* delimiter for bitsearch: */
90 __set_bit(MAX_RT_PRIO, array->bitmap);
91
92#if defined CONFIG_SMP
93 rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 rt_rq->highest_prio.next = MAX_RT_PRIO;
95 rt_rq->rt_nr_migratory = 0;
96 rt_rq->overloaded = 0;
97 plist_head_init(&rt_rq->pushable_tasks);
b6366f04
SR
98
99#ifdef HAVE_RT_PUSH_IPI
100 rt_rq->push_flags = 0;
101 rt_rq->push_cpu = nr_cpu_ids;
102 raw_spin_lock_init(&rt_rq->push_lock);
103 init_irq_work(&rt_rq->push_work, push_irq_work_func);
029632fb 104#endif
b6366f04 105#endif /* CONFIG_SMP */
f4ebcbc0
KT
106 /* We start is dequeued state, because no RT tasks are queued */
107 rt_rq->rt_queued = 0;
029632fb
PZ
108
109 rt_rq->rt_time = 0;
110 rt_rq->rt_throttled = 0;
111 rt_rq->rt_runtime = 0;
112 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113}
114
8f48894f 115#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
116static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117{
118 hrtimer_cancel(&rt_b->rt_period_timer);
119}
8f48894f
PZ
120
121#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122
398a153b
GH
123static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124{
8f48894f
PZ
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127#endif
398a153b
GH
128 return container_of(rt_se, struct task_struct, rt);
129}
130
398a153b
GH
131static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132{
133 return rt_rq->rq;
134}
135
136static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137{
138 return rt_se->rt_rq;
139}
140
653d07a6
KT
141static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142{
143 struct rt_rq *rt_rq = rt_se->rt_rq;
144
145 return rt_rq->rq;
146}
147
029632fb
PZ
148void free_rt_sched_group(struct task_group *tg)
149{
150 int i;
151
152 if (tg->rt_se)
153 destroy_rt_bandwidth(&tg->rt_bandwidth);
154
155 for_each_possible_cpu(i) {
156 if (tg->rt_rq)
157 kfree(tg->rt_rq[i]);
158 if (tg->rt_se)
159 kfree(tg->rt_se[i]);
160 }
161
162 kfree(tg->rt_rq);
163 kfree(tg->rt_se);
164}
165
166void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 struct sched_rt_entity *rt_se, int cpu,
168 struct sched_rt_entity *parent)
169{
170 struct rq *rq = cpu_rq(cpu);
171
172 rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 rt_rq->rt_nr_boosted = 0;
174 rt_rq->rq = rq;
175 rt_rq->tg = tg;
176
177 tg->rt_rq[cpu] = rt_rq;
178 tg->rt_se[cpu] = rt_se;
179
180 if (!rt_se)
181 return;
182
183 if (!parent)
184 rt_se->rt_rq = &rq->rt;
185 else
186 rt_se->rt_rq = parent->my_q;
187
188 rt_se->my_q = rt_rq;
189 rt_se->parent = parent;
190 INIT_LIST_HEAD(&rt_se->run_list);
191}
192
193int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194{
195 struct rt_rq *rt_rq;
196 struct sched_rt_entity *rt_se;
197 int i;
198
199 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 if (!tg->rt_rq)
201 goto err;
202 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 if (!tg->rt_se)
204 goto err;
205
206 init_rt_bandwidth(&tg->rt_bandwidth,
207 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208
209 for_each_possible_cpu(i) {
210 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 GFP_KERNEL, cpu_to_node(i));
212 if (!rt_rq)
213 goto err;
214
215 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 GFP_KERNEL, cpu_to_node(i));
217 if (!rt_se)
218 goto err_free_rq;
219
07c54f7a 220 init_rt_rq(rt_rq);
029632fb
PZ
221 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223 }
224
225 return 1;
226
227err_free_rq:
228 kfree(rt_rq);
229err:
230 return 0;
231}
232
398a153b
GH
233#else /* CONFIG_RT_GROUP_SCHED */
234
a1ba4d8b
PZ
235#define rt_entity_is_task(rt_se) (1)
236
8f48894f
PZ
237static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238{
239 return container_of(rt_se, struct task_struct, rt);
240}
241
398a153b
GH
242static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243{
244 return container_of(rt_rq, struct rq, rt);
245}
246
653d07a6 247static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
248{
249 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
250
251 return task_rq(p);
252}
253
254static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255{
256 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
257
258 return &rq->rt;
259}
260
029632fb
PZ
261void free_rt_sched_group(struct task_group *tg) { }
262
263int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264{
265 return 1;
266}
398a153b
GH
267#endif /* CONFIG_RT_GROUP_SCHED */
268
4fd29176 269#ifdef CONFIG_SMP
84de4274 270
8046d680 271static void pull_rt_task(struct rq *this_rq);
38033c37 272
dc877341
PZ
273static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274{
275 /* Try to pull RT tasks here if we lower this rq's prio */
276 return rq->rt.highest_prio.curr > prev->prio;
277}
278
637f5085 279static inline int rt_overloaded(struct rq *rq)
4fd29176 280{
637f5085 281 return atomic_read(&rq->rd->rto_count);
4fd29176 282}
84de4274 283
4fd29176
SR
284static inline void rt_set_overload(struct rq *rq)
285{
1f11eb6a
GH
286 if (!rq->online)
287 return;
288
c6c4927b 289 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
290 /*
291 * Make sure the mask is visible before we set
292 * the overload count. That is checked to determine
293 * if we should look at the mask. It would be a shame
294 * if we looked at the mask, but the mask was not
295 * updated yet.
7c3f2ab7
PZ
296 *
297 * Matched by the barrier in pull_rt_task().
4fd29176 298 */
7c3f2ab7 299 smp_wmb();
637f5085 300 atomic_inc(&rq->rd->rto_count);
4fd29176 301}
84de4274 302
4fd29176
SR
303static inline void rt_clear_overload(struct rq *rq)
304{
1f11eb6a
GH
305 if (!rq->online)
306 return;
307
4fd29176 308 /* the order here really doesn't matter */
637f5085 309 atomic_dec(&rq->rd->rto_count);
c6c4927b 310 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 311}
73fe6aae 312
398a153b 313static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 314{
a1ba4d8b 315 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
316 if (!rt_rq->overloaded) {
317 rt_set_overload(rq_of_rt_rq(rt_rq));
318 rt_rq->overloaded = 1;
cdc8eb98 319 }
398a153b
GH
320 } else if (rt_rq->overloaded) {
321 rt_clear_overload(rq_of_rt_rq(rt_rq));
322 rt_rq->overloaded = 0;
637f5085 323 }
73fe6aae 324}
4fd29176 325
398a153b
GH
326static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327{
29baa747
PZ
328 struct task_struct *p;
329
a1ba4d8b
PZ
330 if (!rt_entity_is_task(rt_se))
331 return;
332
29baa747 333 p = rt_task_of(rt_se);
a1ba4d8b
PZ
334 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335
336 rt_rq->rt_nr_total++;
50605ffb 337 if (tsk_nr_cpus_allowed(p) > 1)
398a153b
GH
338 rt_rq->rt_nr_migratory++;
339
340 update_rt_migration(rt_rq);
341}
342
343static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344{
29baa747
PZ
345 struct task_struct *p;
346
a1ba4d8b
PZ
347 if (!rt_entity_is_task(rt_se))
348 return;
349
29baa747 350 p = rt_task_of(rt_se);
a1ba4d8b
PZ
351 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352
353 rt_rq->rt_nr_total--;
50605ffb 354 if (tsk_nr_cpus_allowed(p) > 1)
398a153b
GH
355 rt_rq->rt_nr_migratory--;
356
357 update_rt_migration(rt_rq);
358}
359
5181f4a4
SR
360static inline int has_pushable_tasks(struct rq *rq)
361{
362 return !plist_head_empty(&rq->rt.pushable_tasks);
363}
364
fd7a4bed
PZ
365static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
367
368static void push_rt_tasks(struct rq *);
fd7a4bed 369static void pull_rt_task(struct rq *);
e3fca9e7
PZ
370
371static inline void queue_push_tasks(struct rq *rq)
dc877341 372{
e3fca9e7
PZ
373 if (!has_pushable_tasks(rq))
374 return;
375
fd7a4bed
PZ
376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377}
378
379static inline void queue_pull_task(struct rq *rq)
380{
381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
382}
383
917b627d
GH
384static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385{
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 plist_node_init(&p->pushable_tasks, p->prio);
388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
389
390 /* Update the highest prio pushable task */
391 if (p->prio < rq->rt.highest_prio.next)
392 rq->rt.highest_prio.next = p->prio;
917b627d
GH
393}
394
395static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396{
397 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 398
5181f4a4
SR
399 /* Update the new highest prio pushable task */
400 if (has_pushable_tasks(rq)) {
401 p = plist_first_entry(&rq->rt.pushable_tasks,
402 struct task_struct, pushable_tasks);
403 rq->rt.highest_prio.next = p->prio;
404 } else
405 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
406}
407
917b627d
GH
408#else
409
ceacc2c1 410static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 411{
6f505b16
PZ
412}
413
ceacc2c1
PZ
414static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415{
416}
417
b07430ac 418static inline
ceacc2c1
PZ
419void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420{
421}
422
398a153b 423static inline
ceacc2c1
PZ
424void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425{
426}
917b627d 427
dc877341
PZ
428static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429{
430 return false;
431}
432
8046d680 433static inline void pull_rt_task(struct rq *this_rq)
dc877341 434{
dc877341
PZ
435}
436
e3fca9e7 437static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
438{
439}
4fd29176
SR
440#endif /* CONFIG_SMP */
441
f4ebcbc0
KT
442static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444
6f505b16
PZ
445static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446{
ff77e468 447 return rt_se->on_rq;
6f505b16
PZ
448}
449
052f1dc7 450#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 451
9f0c1e56 452static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
453{
454 if (!rt_rq->tg)
9f0c1e56 455 return RUNTIME_INF;
6f505b16 456
ac086bc2
PZ
457 return rt_rq->rt_runtime;
458}
459
460static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461{
462 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
463}
464
ec514c48
CX
465typedef struct task_group *rt_rq_iter_t;
466
1c09ab0d
YZ
467static inline struct task_group *next_task_group(struct task_group *tg)
468{
469 do {
470 tg = list_entry_rcu(tg->list.next,
471 typeof(struct task_group), list);
472 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473
474 if (&tg->list == &task_groups)
475 tg = NULL;
476
477 return tg;
478}
479
480#define for_each_rt_rq(rt_rq, iter, rq) \
481 for (iter = container_of(&task_groups, typeof(*iter), list); \
482 (iter = next_task_group(iter)) && \
483 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 484
6f505b16
PZ
485#define for_each_sched_rt_entity(rt_se) \
486 for (; rt_se; rt_se = rt_se->parent)
487
488static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489{
490 return rt_se->my_q;
491}
492
ff77e468
PZ
493static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 495
9f0c1e56 496static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 497{
f6121f4f 498 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 499 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
500 struct sched_rt_entity *rt_se;
501
8875125e 502 int cpu = cpu_of(rq);
0c3b9168
BS
503
504 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 505
f6121f4f 506 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
507 if (!rt_se)
508 enqueue_top_rt_rq(rt_rq);
509 else if (!on_rt_rq(rt_se))
ff77e468 510 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 511
e864c499 512 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 513 resched_curr(rq);
6f505b16
PZ
514 }
515}
516
9f0c1e56 517static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 518{
74b7eb58 519 struct sched_rt_entity *rt_se;
0c3b9168 520 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 521
0c3b9168 522 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 523
f4ebcbc0
KT
524 if (!rt_se)
525 dequeue_top_rt_rq(rt_rq);
526 else if (on_rt_rq(rt_se))
ff77e468 527 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
528}
529
46383648
KT
530static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531{
532 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533}
534
23b0fdfc
PZ
535static int rt_se_boosted(struct sched_rt_entity *rt_se)
536{
537 struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 struct task_struct *p;
539
540 if (rt_rq)
541 return !!rt_rq->rt_nr_boosted;
542
543 p = rt_task_of(rt_se);
544 return p->prio != p->normal_prio;
545}
546
d0b27fa7 547#ifdef CONFIG_SMP
c6c4927b 548static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 549{
424c93fe 550 return this_rq()->rd->span;
d0b27fa7 551}
6f505b16 552#else
c6c4927b 553static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 554{
c6c4927b 555 return cpu_online_mask;
d0b27fa7
PZ
556}
557#endif
6f505b16 558
d0b27fa7
PZ
559static inline
560struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 561{
d0b27fa7
PZ
562 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563}
9f0c1e56 564
ac086bc2
PZ
565static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566{
567 return &rt_rq->tg->rt_bandwidth;
568}
569
55e12e5e 570#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
571
572static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573{
ac086bc2
PZ
574 return rt_rq->rt_runtime;
575}
576
577static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578{
579 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
580}
581
ec514c48
CX
582typedef struct rt_rq *rt_rq_iter_t;
583
584#define for_each_rt_rq(rt_rq, iter, rq) \
585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
6f505b16
PZ
587#define for_each_sched_rt_entity(rt_se) \
588 for (; rt_se; rt_se = NULL)
589
590static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591{
592 return NULL;
593}
594
9f0c1e56 595static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 596{
f4ebcbc0
KT
597 struct rq *rq = rq_of_rt_rq(rt_rq);
598
599 if (!rt_rq->rt_nr_running)
600 return;
601
602 enqueue_top_rt_rq(rt_rq);
8875125e 603 resched_curr(rq);
6f505b16
PZ
604}
605
9f0c1e56 606static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 607{
f4ebcbc0 608 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
609}
610
46383648
KT
611static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612{
613 return rt_rq->rt_throttled;
614}
615
c6c4927b 616static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 617{
c6c4927b 618 return cpu_online_mask;
d0b27fa7
PZ
619}
620
621static inline
622struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623{
624 return &cpu_rq(cpu)->rt;
625}
626
ac086bc2
PZ
627static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628{
629 return &def_rt_bandwidth;
630}
631
55e12e5e 632#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 633
faa59937
JL
634bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635{
636 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638 return (hrtimer_active(&rt_b->rt_period_timer) ||
639 rt_rq->rt_time < rt_b->rt_runtime);
640}
641
ac086bc2 642#ifdef CONFIG_SMP
78333cdd
PZ
643/*
644 * We ran out of runtime, see if we can borrow some from our neighbours.
645 */
269b26a5 646static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
647{
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 649 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 650 int i, weight;
ac086bc2
PZ
651 u64 rt_period;
652
c6c4927b 653 weight = cpumask_weight(rd->span);
ac086bc2 654
0986b11b 655 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 656 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 657 for_each_cpu(i, rd->span) {
ac086bc2
PZ
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
660
661 if (iter == rt_rq)
662 continue;
663
0986b11b 664 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
665 /*
666 * Either all rqs have inf runtime and there's nothing to steal
667 * or __disable_runtime() below sets a specific rq to inf to
668 * indicate its been disabled and disalow stealing.
669 */
7def2be1
PZ
670 if (iter->rt_runtime == RUNTIME_INF)
671 goto next;
672
78333cdd
PZ
673 /*
674 * From runqueues with spare time, take 1/n part of their
675 * spare time, but no more than our period.
676 */
ac086bc2
PZ
677 diff = iter->rt_runtime - iter->rt_time;
678 if (diff > 0) {
58838cf3 679 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
680 if (rt_rq->rt_runtime + diff > rt_period)
681 diff = rt_period - rt_rq->rt_runtime;
682 iter->rt_runtime -= diff;
683 rt_rq->rt_runtime += diff;
ac086bc2 684 if (rt_rq->rt_runtime == rt_period) {
0986b11b 685 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
686 break;
687 }
688 }
7def2be1 689next:
0986b11b 690 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 691 }
0986b11b 692 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 693}
7def2be1 694
78333cdd
PZ
695/*
696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
697 */
7def2be1
PZ
698static void __disable_runtime(struct rq *rq)
699{
700 struct root_domain *rd = rq->rd;
ec514c48 701 rt_rq_iter_t iter;
7def2be1
PZ
702 struct rt_rq *rt_rq;
703
704 if (unlikely(!scheduler_running))
705 return;
706
ec514c48 707 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
708 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 s64 want;
710 int i;
711
0986b11b
TG
712 raw_spin_lock(&rt_b->rt_runtime_lock);
713 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
714 /*
715 * Either we're all inf and nobody needs to borrow, or we're
716 * already disabled and thus have nothing to do, or we have
717 * exactly the right amount of runtime to take out.
718 */
7def2be1
PZ
719 if (rt_rq->rt_runtime == RUNTIME_INF ||
720 rt_rq->rt_runtime == rt_b->rt_runtime)
721 goto balanced;
0986b11b 722 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 723
78333cdd
PZ
724 /*
725 * Calculate the difference between what we started out with
726 * and what we current have, that's the amount of runtime
727 * we lend and now have to reclaim.
728 */
7def2be1
PZ
729 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
78333cdd
PZ
731 /*
732 * Greedy reclaim, take back as much as we can.
733 */
c6c4927b 734 for_each_cpu(i, rd->span) {
7def2be1
PZ
735 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 s64 diff;
737
78333cdd
PZ
738 /*
739 * Can't reclaim from ourselves or disabled runqueues.
740 */
f1679d08 741 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
742 continue;
743
0986b11b 744 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
745 if (want > 0) {
746 diff = min_t(s64, iter->rt_runtime, want);
747 iter->rt_runtime -= diff;
748 want -= diff;
749 } else {
750 iter->rt_runtime -= want;
751 want -= want;
752 }
0986b11b 753 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
754
755 if (!want)
756 break;
757 }
758
0986b11b 759 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
760 /*
761 * We cannot be left wanting - that would mean some runtime
762 * leaked out of the system.
763 */
7def2be1
PZ
764 BUG_ON(want);
765balanced:
78333cdd
PZ
766 /*
767 * Disable all the borrow logic by pretending we have inf
768 * runtime - in which case borrowing doesn't make sense.
769 */
7def2be1 770 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 771 rt_rq->rt_throttled = 0;
0986b11b
TG
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
774
775 /* Make rt_rq available for pick_next_task() */
776 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
777 }
778}
779
7def2be1
PZ
780static void __enable_runtime(struct rq *rq)
781{
ec514c48 782 rt_rq_iter_t iter;
7def2be1
PZ
783 struct rt_rq *rt_rq;
784
785 if (unlikely(!scheduler_running))
786 return;
787
78333cdd
PZ
788 /*
789 * Reset each runqueue's bandwidth settings
790 */
ec514c48 791 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
792 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
0986b11b
TG
794 raw_spin_lock(&rt_b->rt_runtime_lock);
795 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
796 rt_rq->rt_runtime = rt_b->rt_runtime;
797 rt_rq->rt_time = 0;
baf25731 798 rt_rq->rt_throttled = 0;
0986b11b
TG
799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
801 }
802}
803
269b26a5 804static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 805{
4a6184ce 806 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 807 return;
4a6184ce 808
eff6549b 809 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 811 do_balance_runtime(rt_rq);
0986b11b 812 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 813 }
eff6549b 814}
55e12e5e 815#else /* !CONFIG_SMP */
269b26a5 816static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 817#endif /* CONFIG_SMP */
ac086bc2 818
eff6549b
PZ
819static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820{
42c62a58 821 int i, idle = 1, throttled = 0;
c6c4927b 822 const struct cpumask *span;
eff6549b 823
eff6549b 824 span = sched_rt_period_mask();
e221d028
MG
825#ifdef CONFIG_RT_GROUP_SCHED
826 /*
827 * FIXME: isolated CPUs should really leave the root task group,
828 * whether they are isolcpus or were isolated via cpusets, lest
829 * the timer run on a CPU which does not service all runqueues,
830 * potentially leaving other CPUs indefinitely throttled. If
831 * isolation is really required, the user will turn the throttle
832 * off to kill the perturbations it causes anyway. Meanwhile,
833 * this maintains functionality for boot and/or troubleshooting.
834 */
835 if (rt_b == &root_task_group.rt_bandwidth)
836 span = cpu_online_mask;
837#endif
c6c4927b 838 for_each_cpu(i, span) {
eff6549b
PZ
839 int enqueue = 0;
840 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 struct rq *rq = rq_of_rt_rq(rt_rq);
842
05fa785c 843 raw_spin_lock(&rq->lock);
eff6549b
PZ
844 if (rt_rq->rt_time) {
845 u64 runtime;
846
0986b11b 847 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
848 if (rt_rq->rt_throttled)
849 balance_runtime(rt_rq);
850 runtime = rt_rq->rt_runtime;
851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 rt_rq->rt_throttled = 0;
854 enqueue = 1;
61eadef6
MG
855
856 /*
9edfbfed
PZ
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
861 * 'runtime'.
61eadef6
MG
862 */
863 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 864 rq_clock_skip_update(rq, false);
eff6549b
PZ
865 }
866 if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 idle = 0;
0986b11b 868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 869 } else if (rt_rq->rt_nr_running) {
6c3df255 870 idle = 0;
0c3b9168
BS
871 if (!rt_rq_throttled(rt_rq))
872 enqueue = 1;
873 }
42c62a58
PZ
874 if (rt_rq->rt_throttled)
875 throttled = 1;
eff6549b
PZ
876
877 if (enqueue)
878 sched_rt_rq_enqueue(rt_rq);
05fa785c 879 raw_spin_unlock(&rq->lock);
eff6549b
PZ
880 }
881
42c62a58
PZ
882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 return 1;
884
eff6549b
PZ
885 return idle;
886}
ac086bc2 887
6f505b16
PZ
888static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889{
052f1dc7 890#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
891 struct rt_rq *rt_rq = group_rt_rq(rt_se);
892
893 if (rt_rq)
e864c499 894 return rt_rq->highest_prio.curr;
6f505b16
PZ
895#endif
896
897 return rt_task_of(rt_se)->prio;
898}
899
9f0c1e56 900static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 901{
9f0c1e56 902 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 903
fa85ae24 904 if (rt_rq->rt_throttled)
23b0fdfc 905 return rt_rq_throttled(rt_rq);
fa85ae24 906
5b680fd6 907 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
908 return 0;
909
b79f3833
PZ
910 balance_runtime(rt_rq);
911 runtime = sched_rt_runtime(rt_rq);
912 if (runtime == RUNTIME_INF)
913 return 0;
ac086bc2 914
9f0c1e56 915 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917
918 /*
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
921 */
922 if (likely(rt_b->rt_runtime)) {
923 rt_rq->rt_throttled = 1;
c224815d 924 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
925 } else {
926 /*
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
929 * with exactly 0 ns.
930 */
931 rt_rq->rt_time = 0;
932 }
933
23b0fdfc 934 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 935 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
936 return 1;
937 }
fa85ae24
PZ
938 }
939
940 return 0;
941}
942
bb44e5d1
IM
943/*
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
946 */
a9957449 947static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
948{
949 struct task_struct *curr = rq->curr;
6f505b16 950 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
951 u64 delta_exec;
952
06c3bc65 953 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
954 return;
955
78becc27 956 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
957 if (unlikely((s64)delta_exec <= 0))
958 return;
6cfb0d5d 959
594dd290
WL
960 /* Kick cpufreq (see the comment in linux/cpufreq.h). */
961 if (cpu_of(rq) == smp_processor_id())
962 cpufreq_trigger_update(rq_clock(rq));
963
42c62a58
PZ
964 schedstat_set(curr->se.statistics.exec_max,
965 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
966
967 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
968 account_group_exec_runtime(curr, delta_exec);
969
78becc27 970 curr->se.exec_start = rq_clock_task(rq);
d842de87 971 cpuacct_charge(curr, delta_exec);
fa85ae24 972
e9e9250b
PZ
973 sched_rt_avg_update(rq, delta_exec);
974
0b148fa0
PZ
975 if (!rt_bandwidth_enabled())
976 return;
977
354d60c2 978 for_each_sched_rt_entity(rt_se) {
0b07939c 979 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 980
cc2991cf 981 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 982 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
983 rt_rq->rt_time += delta_exec;
984 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 985 resched_curr(rq);
0986b11b 986 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 987 }
354d60c2 988 }
bb44e5d1
IM
989}
990
f4ebcbc0
KT
991static void
992dequeue_top_rt_rq(struct rt_rq *rt_rq)
993{
994 struct rq *rq = rq_of_rt_rq(rt_rq);
995
996 BUG_ON(&rq->rt != rt_rq);
997
998 if (!rt_rq->rt_queued)
999 return;
1000
1001 BUG_ON(!rq->nr_running);
1002
72465447 1003 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1004 rt_rq->rt_queued = 0;
1005}
1006
1007static void
1008enqueue_top_rt_rq(struct rt_rq *rt_rq)
1009{
1010 struct rq *rq = rq_of_rt_rq(rt_rq);
1011
1012 BUG_ON(&rq->rt != rt_rq);
1013
1014 if (rt_rq->rt_queued)
1015 return;
1016 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1017 return;
1018
72465447 1019 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1020 rt_rq->rt_queued = 1;
1021}
1022
398a153b 1023#if defined CONFIG_SMP
e864c499 1024
398a153b
GH
1025static void
1026inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1027{
4d984277 1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1029
757dfcaa
KT
1030#ifdef CONFIG_RT_GROUP_SCHED
1031 /*
1032 * Change rq's cpupri only if rt_rq is the top queue.
1033 */
1034 if (&rq->rt != rt_rq)
1035 return;
1036#endif
5181f4a4
SR
1037 if (rq->online && prio < prev_prio)
1038 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1039}
73fe6aae 1040
398a153b
GH
1041static void
1042dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1043{
1044 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1045
757dfcaa
KT
1046#ifdef CONFIG_RT_GROUP_SCHED
1047 /*
1048 * Change rq's cpupri only if rt_rq is the top queue.
1049 */
1050 if (&rq->rt != rt_rq)
1051 return;
1052#endif
398a153b
GH
1053 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1054 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1055}
1056
398a153b
GH
1057#else /* CONFIG_SMP */
1058
6f505b16 1059static inline
398a153b
GH
1060void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061static inline
1062void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1063
1064#endif /* CONFIG_SMP */
6e0534f2 1065
052f1dc7 1066#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1067static void
1068inc_rt_prio(struct rt_rq *rt_rq, int prio)
1069{
1070 int prev_prio = rt_rq->highest_prio.curr;
1071
1072 if (prio < prev_prio)
1073 rt_rq->highest_prio.curr = prio;
1074
1075 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1076}
1077
1078static void
1079dec_rt_prio(struct rt_rq *rt_rq, int prio)
1080{
1081 int prev_prio = rt_rq->highest_prio.curr;
1082
6f505b16 1083 if (rt_rq->rt_nr_running) {
764a9d6f 1084
398a153b 1085 WARN_ON(prio < prev_prio);
764a9d6f 1086
e864c499 1087 /*
398a153b
GH
1088 * This may have been our highest task, and therefore
1089 * we may have some recomputation to do
e864c499 1090 */
398a153b 1091 if (prio == prev_prio) {
e864c499
GH
1092 struct rt_prio_array *array = &rt_rq->active;
1093
1094 rt_rq->highest_prio.curr =
764a9d6f 1095 sched_find_first_bit(array->bitmap);
e864c499
GH
1096 }
1097
764a9d6f 1098 } else
e864c499 1099 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1100
398a153b
GH
1101 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1102}
1f11eb6a 1103
398a153b
GH
1104#else
1105
1106static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108
1109#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1110
052f1dc7 1111#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1112
1113static void
1114inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1115{
1116 if (rt_se_boosted(rt_se))
1117 rt_rq->rt_nr_boosted++;
1118
1119 if (rt_rq->tg)
1120 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1121}
1122
1123static void
1124dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125{
23b0fdfc
PZ
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted--;
1128
1129 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1130}
1131
1132#else /* CONFIG_RT_GROUP_SCHED */
1133
1134static void
1135inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1136{
1137 start_rt_bandwidth(&def_rt_bandwidth);
1138}
1139
1140static inline
1141void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1142
1143#endif /* CONFIG_RT_GROUP_SCHED */
1144
22abdef3
KT
1145static inline
1146unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1147{
1148 struct rt_rq *group_rq = group_rt_rq(rt_se);
1149
1150 if (group_rq)
1151 return group_rq->rt_nr_running;
1152 else
1153 return 1;
1154}
1155
01d36d0a
FW
1156static inline
1157unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1158{
1159 struct rt_rq *group_rq = group_rt_rq(rt_se);
1160 struct task_struct *tsk;
1161
1162 if (group_rq)
1163 return group_rq->rr_nr_running;
1164
1165 tsk = rt_task_of(rt_se);
1166
1167 return (tsk->policy == SCHED_RR) ? 1 : 0;
1168}
1169
398a153b
GH
1170static inline
1171void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172{
1173 int prio = rt_se_prio(rt_se);
1174
1175 WARN_ON(!rt_prio(prio));
22abdef3 1176 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1177 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1178
1179 inc_rt_prio(rt_rq, prio);
1180 inc_rt_migration(rt_se, rt_rq);
1181 inc_rt_group(rt_se, rt_rq);
1182}
1183
1184static inline
1185void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186{
1187 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1188 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1189 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1190 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1191
1192 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1193 dec_rt_migration(rt_se, rt_rq);
1194 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1195}
1196
ff77e468
PZ
1197/*
1198 * Change rt_se->run_list location unless SAVE && !MOVE
1199 *
1200 * assumes ENQUEUE/DEQUEUE flags match
1201 */
1202static inline bool move_entity(unsigned int flags)
1203{
1204 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1205 return false;
1206
1207 return true;
1208}
1209
1210static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1211{
1212 list_del_init(&rt_se->run_list);
1213
1214 if (list_empty(array->queue + rt_se_prio(rt_se)))
1215 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1216
1217 rt_se->on_list = 0;
1218}
1219
1220static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1221{
6f505b16
PZ
1222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1223 struct rt_prio_array *array = &rt_rq->active;
1224 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1225 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1226
ad2a3f13
PZ
1227 /*
1228 * Don't enqueue the group if its throttled, or when empty.
1229 * The latter is a consequence of the former when a child group
1230 * get throttled and the current group doesn't have any other
1231 * active members.
1232 */
ff77e468
PZ
1233 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1234 if (rt_se->on_list)
1235 __delist_rt_entity(rt_se, array);
6f505b16 1236 return;
ff77e468 1237 }
63489e45 1238
ff77e468
PZ
1239 if (move_entity(flags)) {
1240 WARN_ON_ONCE(rt_se->on_list);
1241 if (flags & ENQUEUE_HEAD)
1242 list_add(&rt_se->run_list, queue);
1243 else
1244 list_add_tail(&rt_se->run_list, queue);
1245
1246 __set_bit(rt_se_prio(rt_se), array->bitmap);
1247 rt_se->on_list = 1;
1248 }
1249 rt_se->on_rq = 1;
78f2c7db 1250
6f505b16
PZ
1251 inc_rt_tasks(rt_se, rt_rq);
1252}
1253
ff77e468 1254static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1255{
1256 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1257 struct rt_prio_array *array = &rt_rq->active;
1258
ff77e468
PZ
1259 if (move_entity(flags)) {
1260 WARN_ON_ONCE(!rt_se->on_list);
1261 __delist_rt_entity(rt_se, array);
1262 }
1263 rt_se->on_rq = 0;
6f505b16
PZ
1264
1265 dec_rt_tasks(rt_se, rt_rq);
1266}
1267
1268/*
1269 * Because the prio of an upper entry depends on the lower
1270 * entries, we must remove entries top - down.
6f505b16 1271 */
ff77e468 1272static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1273{
ad2a3f13 1274 struct sched_rt_entity *back = NULL;
6f505b16 1275
58d6c2d7
PZ
1276 for_each_sched_rt_entity(rt_se) {
1277 rt_se->back = back;
1278 back = rt_se;
1279 }
1280
f4ebcbc0
KT
1281 dequeue_top_rt_rq(rt_rq_of_se(back));
1282
58d6c2d7
PZ
1283 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1284 if (on_rt_rq(rt_se))
ff77e468 1285 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1286 }
1287}
1288
ff77e468 1289static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1290{
f4ebcbc0
KT
1291 struct rq *rq = rq_of_rt_se(rt_se);
1292
ff77e468 1293 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1294 for_each_sched_rt_entity(rt_se)
ff77e468 1295 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1296 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1297}
1298
ff77e468 1299static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1300{
f4ebcbc0
KT
1301 struct rq *rq = rq_of_rt_se(rt_se);
1302
ff77e468 1303 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1304
1305 for_each_sched_rt_entity(rt_se) {
1306 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1307
1308 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1309 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1310 }
f4ebcbc0 1311 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1312}
1313
1314/*
1315 * Adding/removing a task to/from a priority array:
1316 */
ea87bb78 1317static void
371fd7e7 1318enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1319{
1320 struct sched_rt_entity *rt_se = &p->rt;
1321
371fd7e7 1322 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1323 rt_se->timeout = 0;
1324
ff77e468 1325 enqueue_rt_entity(rt_se, flags);
c09595f6 1326
50605ffb 1327 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
917b627d 1328 enqueue_pushable_task(rq, p);
6f505b16
PZ
1329}
1330
371fd7e7 1331static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1332{
6f505b16 1333 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1334
f1e14ef6 1335 update_curr_rt(rq);
ff77e468 1336 dequeue_rt_entity(rt_se, flags);
c09595f6 1337
917b627d 1338 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1339}
1340
1341/*
60686317
RW
1342 * Put task to the head or the end of the run list without the overhead of
1343 * dequeue followed by enqueue.
bb44e5d1 1344 */
7ebefa8c
DA
1345static void
1346requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1347{
1cdad715 1348 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1349 struct rt_prio_array *array = &rt_rq->active;
1350 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1351
1352 if (head)
1353 list_move(&rt_se->run_list, queue);
1354 else
1355 list_move_tail(&rt_se->run_list, queue);
1cdad715 1356 }
6f505b16
PZ
1357}
1358
7ebefa8c 1359static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1360{
6f505b16
PZ
1361 struct sched_rt_entity *rt_se = &p->rt;
1362 struct rt_rq *rt_rq;
bb44e5d1 1363
6f505b16
PZ
1364 for_each_sched_rt_entity(rt_se) {
1365 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1366 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1367 }
bb44e5d1
IM
1368}
1369
6f505b16 1370static void yield_task_rt(struct rq *rq)
bb44e5d1 1371{
7ebefa8c 1372 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1373}
1374
e7693a36 1375#ifdef CONFIG_SMP
318e0893
GH
1376static int find_lowest_rq(struct task_struct *task);
1377
0017d735 1378static int
ac66f547 1379select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1380{
7608dec2
PZ
1381 struct task_struct *curr;
1382 struct rq *rq;
c37495fd
SR
1383
1384 /* For anything but wake ups, just return the task_cpu */
1385 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1386 goto out;
1387
7608dec2
PZ
1388 rq = cpu_rq(cpu);
1389
1390 rcu_read_lock();
316c1608 1391 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1392
318e0893 1393 /*
7608dec2 1394 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1395 * try to see if we can wake this RT task up on another
1396 * runqueue. Otherwise simply start this RT task
1397 * on its current runqueue.
1398 *
43fa5460
SR
1399 * We want to avoid overloading runqueues. If the woken
1400 * task is a higher priority, then it will stay on this CPU
1401 * and the lower prio task should be moved to another CPU.
1402 * Even though this will probably make the lower prio task
1403 * lose its cache, we do not want to bounce a higher task
1404 * around just because it gave up its CPU, perhaps for a
1405 * lock?
1406 *
1407 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1408 *
1409 * Otherwise, just let it ride on the affined RQ and the
1410 * post-schedule router will push the preempted task away
1411 *
1412 * This test is optimistic, if we get it wrong the load-balancer
1413 * will have to sort it out.
318e0893 1414 */
7608dec2 1415 if (curr && unlikely(rt_task(curr)) &&
50605ffb 1416 (tsk_nr_cpus_allowed(curr) < 2 ||
6bfa687c 1417 curr->prio <= p->prio)) {
7608dec2 1418 int target = find_lowest_rq(p);
318e0893 1419
80e3d87b
TC
1420 /*
1421 * Don't bother moving it if the destination CPU is
1422 * not running a lower priority task.
1423 */
1424 if (target != -1 &&
1425 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1426 cpu = target;
318e0893 1427 }
7608dec2 1428 rcu_read_unlock();
318e0893 1429
c37495fd 1430out:
7608dec2 1431 return cpu;
e7693a36 1432}
7ebefa8c
DA
1433
1434static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1435{
308a623a
WL
1436 /*
1437 * Current can't be migrated, useless to reschedule,
1438 * let's hope p can move out.
1439 */
50605ffb 1440 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
308a623a 1441 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1442 return;
1443
308a623a
WL
1444 /*
1445 * p is migratable, so let's not schedule it and
1446 * see if it is pushed or pulled somewhere else.
1447 */
50605ffb 1448 if (tsk_nr_cpus_allowed(p) != 1
13b8bd0a
RR
1449 && cpupri_find(&rq->rd->cpupri, p, NULL))
1450 return;
24600ce8 1451
7ebefa8c
DA
1452 /*
1453 * There appears to be other cpus that can accept
1454 * current and none to run 'p', so lets reschedule
1455 * to try and push current away:
1456 */
1457 requeue_task_rt(rq, p, 1);
8875125e 1458 resched_curr(rq);
7ebefa8c
DA
1459}
1460
e7693a36
GH
1461#endif /* CONFIG_SMP */
1462
bb44e5d1
IM
1463/*
1464 * Preempt the current task with a newly woken task if needed:
1465 */
7d478721 1466static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1467{
45c01e82 1468 if (p->prio < rq->curr->prio) {
8875125e 1469 resched_curr(rq);
45c01e82
GH
1470 return;
1471 }
1472
1473#ifdef CONFIG_SMP
1474 /*
1475 * If:
1476 *
1477 * - the newly woken task is of equal priority to the current task
1478 * - the newly woken task is non-migratable while current is migratable
1479 * - current will be preempted on the next reschedule
1480 *
1481 * we should check to see if current can readily move to a different
1482 * cpu. If so, we will reschedule to allow the push logic to try
1483 * to move current somewhere else, making room for our non-migratable
1484 * task.
1485 */
8dd0de8b 1486 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1487 check_preempt_equal_prio(rq, p);
45c01e82 1488#endif
bb44e5d1
IM
1489}
1490
6f505b16
PZ
1491static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1492 struct rt_rq *rt_rq)
bb44e5d1 1493{
6f505b16
PZ
1494 struct rt_prio_array *array = &rt_rq->active;
1495 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1496 struct list_head *queue;
1497 int idx;
1498
1499 idx = sched_find_first_bit(array->bitmap);
6f505b16 1500 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1501
1502 queue = array->queue + idx;
6f505b16 1503 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1504
6f505b16
PZ
1505 return next;
1506}
bb44e5d1 1507
917b627d 1508static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1509{
1510 struct sched_rt_entity *rt_se;
1511 struct task_struct *p;
606dba2e 1512 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1513
1514 do {
1515 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1516 BUG_ON(!rt_se);
6f505b16
PZ
1517 rt_rq = group_rt_rq(rt_se);
1518 } while (rt_rq);
1519
1520 p = rt_task_of(rt_se);
78becc27 1521 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1522
1523 return p;
1524}
1525
606dba2e 1526static struct task_struct *
e7904a28 1527pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
917b627d 1528{
606dba2e
PZ
1529 struct task_struct *p;
1530 struct rt_rq *rt_rq = &rq->rt;
1531
37e117c0 1532 if (need_pull_rt_task(rq, prev)) {
cbce1a68
PZ
1533 /*
1534 * This is OK, because current is on_cpu, which avoids it being
1535 * picked for load-balance and preemption/IRQs are still
1536 * disabled avoiding further scheduler activity on it and we're
1537 * being very careful to re-start the picking loop.
1538 */
e7904a28 1539 lockdep_unpin_lock(&rq->lock, cookie);
38033c37 1540 pull_rt_task(rq);
e7904a28 1541 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
1542 /*
1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1544 * means a dl or stop task can slip in, in which case we need
1545 * to re-start task selection.
37e117c0 1546 */
da0c1e65 1547 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1548 rq->dl.dl_nr_running))
37e117c0
PZ
1549 return RETRY_TASK;
1550 }
38033c37 1551
734ff2a7
KT
1552 /*
1553 * We may dequeue prev's rt_rq in put_prev_task().
1554 * So, we update time before rt_nr_running check.
1555 */
1556 if (prev->sched_class == &rt_sched_class)
1557 update_curr_rt(rq);
1558
f4ebcbc0 1559 if (!rt_rq->rt_queued)
606dba2e
PZ
1560 return NULL;
1561
3f1d2a31 1562 put_prev_task(rq, prev);
606dba2e
PZ
1563
1564 p = _pick_next_task_rt(rq);
917b627d
GH
1565
1566 /* The running task is never eligible for pushing */
f3f1768f 1567 dequeue_pushable_task(rq, p);
917b627d 1568
e3fca9e7 1569 queue_push_tasks(rq);
3f029d3c 1570
6f505b16 1571 return p;
bb44e5d1
IM
1572}
1573
31ee529c 1574static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1575{
f1e14ef6 1576 update_curr_rt(rq);
917b627d
GH
1577
1578 /*
1579 * The previous task needs to be made eligible for pushing
1580 * if it is still active
1581 */
50605ffb 1582 if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
917b627d 1583 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1584}
1585
681f3e68 1586#ifdef CONFIG_SMP
6f505b16 1587
e8fa1362
SR
1588/* Only try algorithms three times */
1589#define RT_MAX_TRIES 3
1590
f65eda4f
SR
1591static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1592{
1593 if (!task_running(rq, p) &&
60334caf 1594 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
f65eda4f
SR
1595 return 1;
1596 return 0;
1597}
1598
e23ee747
KT
1599/*
1600 * Return the highest pushable rq's task, which is suitable to be executed
1601 * on the cpu, NULL otherwise
1602 */
1603static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1604{
e23ee747
KT
1605 struct plist_head *head = &rq->rt.pushable_tasks;
1606 struct task_struct *p;
3d07467b 1607
e23ee747
KT
1608 if (!has_pushable_tasks(rq))
1609 return NULL;
3d07467b 1610
e23ee747
KT
1611 plist_for_each_entry(p, head, pushable_tasks) {
1612 if (pick_rt_task(rq, p, cpu))
1613 return p;
f65eda4f
SR
1614 }
1615
e23ee747 1616 return NULL;
e8fa1362
SR
1617}
1618
0e3900e6 1619static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1620
6e1254d2
GH
1621static int find_lowest_rq(struct task_struct *task)
1622{
1623 struct sched_domain *sd;
4ba29684 1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1625 int this_cpu = smp_processor_id();
1626 int cpu = task_cpu(task);
06f90dbd 1627
0da938c4
SR
1628 /* Make sure the mask is initialized first */
1629 if (unlikely(!lowest_mask))
1630 return -1;
1631
50605ffb 1632 if (tsk_nr_cpus_allowed(task) == 1)
6e0534f2 1633 return -1; /* No other targets possible */
6e1254d2 1634
6e0534f2
GH
1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1636 return -1; /* No targets found */
6e1254d2
GH
1637
1638 /*
1639 * At this point we have built a mask of cpus representing the
1640 * lowest priority tasks in the system. Now we want to elect
1641 * the best one based on our affinity and topology.
1642 *
1643 * We prioritize the last cpu that the task executed on since
1644 * it is most likely cache-hot in that location.
1645 */
96f874e2 1646 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1647 return cpu;
1648
1649 /*
1650 * Otherwise, we consult the sched_domains span maps to figure
1651 * out which cpu is logically closest to our hot cache data.
1652 */
e2c88063
RR
1653 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1655
cd4ae6ad 1656 rcu_read_lock();
e2c88063
RR
1657 for_each_domain(cpu, sd) {
1658 if (sd->flags & SD_WAKE_AFFINE) {
1659 int best_cpu;
6e1254d2 1660
e2c88063
RR
1661 /*
1662 * "this_cpu" is cheaper to preempt than a
1663 * remote processor.
1664 */
1665 if (this_cpu != -1 &&
cd4ae6ad
XF
1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1667 rcu_read_unlock();
e2c88063 1668 return this_cpu;
cd4ae6ad 1669 }
e2c88063
RR
1670
1671 best_cpu = cpumask_first_and(lowest_mask,
1672 sched_domain_span(sd));
cd4ae6ad
XF
1673 if (best_cpu < nr_cpu_ids) {
1674 rcu_read_unlock();
e2c88063 1675 return best_cpu;
cd4ae6ad 1676 }
6e1254d2
GH
1677 }
1678 }
cd4ae6ad 1679 rcu_read_unlock();
6e1254d2
GH
1680
1681 /*
1682 * And finally, if there were no matches within the domains
1683 * just give the caller *something* to work with from the compatible
1684 * locations.
1685 */
e2c88063
RR
1686 if (this_cpu != -1)
1687 return this_cpu;
1688
1689 cpu = cpumask_any(lowest_mask);
1690 if (cpu < nr_cpu_ids)
1691 return cpu;
1692 return -1;
07b4032c
GH
1693}
1694
1695/* Will lock the rq it finds */
4df64c0b 1696static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1697{
1698 struct rq *lowest_rq = NULL;
07b4032c 1699 int tries;
4df64c0b 1700 int cpu;
e8fa1362 1701
07b4032c
GH
1702 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1703 cpu = find_lowest_rq(task);
1704
2de0b463 1705 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1706 break;
1707
07b4032c
GH
1708 lowest_rq = cpu_rq(cpu);
1709
80e3d87b
TC
1710 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1711 /*
1712 * Target rq has tasks of equal or higher priority,
1713 * retrying does not release any lock and is unlikely
1714 * to yield a different result.
1715 */
1716 lowest_rq = NULL;
1717 break;
1718 }
1719
e8fa1362 1720 /* if the prio of this runqueue changed, try again */
07b4032c 1721 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1722 /*
1723 * We had to unlock the run queue. In
1724 * the mean time, task could have
1725 * migrated already or had its affinity changed.
1726 * Also make sure that it wasn't scheduled on its rq.
1727 */
07b4032c 1728 if (unlikely(task_rq(task) != rq ||
96f874e2 1729 !cpumask_test_cpu(lowest_rq->cpu,
fa17b507 1730 tsk_cpus_allowed(task)) ||
07b4032c 1731 task_running(rq, task) ||
13b5ab02 1732 !rt_task(task) ||
da0c1e65 1733 !task_on_rq_queued(task))) {
4df64c0b 1734
7f1b4393 1735 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1736 lowest_rq = NULL;
1737 break;
1738 }
1739 }
1740
1741 /* If this rq is still suitable use it. */
e864c499 1742 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1743 break;
1744
1745 /* try again */
1b12bbc7 1746 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1747 lowest_rq = NULL;
1748 }
1749
1750 return lowest_rq;
1751}
1752
917b627d
GH
1753static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754{
1755 struct task_struct *p;
1756
1757 if (!has_pushable_tasks(rq))
1758 return NULL;
1759
1760 p = plist_first_entry(&rq->rt.pushable_tasks,
1761 struct task_struct, pushable_tasks);
1762
1763 BUG_ON(rq->cpu != task_cpu(p));
1764 BUG_ON(task_current(rq, p));
50605ffb 1765 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
917b627d 1766
da0c1e65 1767 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1768 BUG_ON(!rt_task(p));
1769
1770 return p;
1771}
1772
e8fa1362
SR
1773/*
1774 * If the current CPU has more than one RT task, see if the non
1775 * running task can migrate over to a CPU that is running a task
1776 * of lesser priority.
1777 */
697f0a48 1778static int push_rt_task(struct rq *rq)
e8fa1362
SR
1779{
1780 struct task_struct *next_task;
1781 struct rq *lowest_rq;
311e800e 1782 int ret = 0;
e8fa1362 1783
a22d7fc1
GH
1784 if (!rq->rt.overloaded)
1785 return 0;
1786
917b627d 1787 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1788 if (!next_task)
1789 return 0;
1790
49246274 1791retry:
697f0a48 1792 if (unlikely(next_task == rq->curr)) {
f65eda4f 1793 WARN_ON(1);
e8fa1362 1794 return 0;
f65eda4f 1795 }
e8fa1362
SR
1796
1797 /*
1798 * It's possible that the next_task slipped in of
1799 * higher priority than current. If that's the case
1800 * just reschedule current.
1801 */
697f0a48 1802 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1803 resched_curr(rq);
e8fa1362
SR
1804 return 0;
1805 }
1806
697f0a48 1807 /* We might release rq lock */
e8fa1362
SR
1808 get_task_struct(next_task);
1809
1810 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1811 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1812 if (!lowest_rq) {
1813 struct task_struct *task;
1814 /*
311e800e 1815 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1816 * so it is possible that next_task has migrated.
1817 *
1818 * We need to make sure that the task is still on the same
1819 * run-queue and is also still the next task eligible for
1820 * pushing.
e8fa1362 1821 */
917b627d 1822 task = pick_next_pushable_task(rq);
1563513d
GH
1823 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1824 /*
311e800e
HD
1825 * The task hasn't migrated, and is still the next
1826 * eligible task, but we failed to find a run-queue
1827 * to push it to. Do not retry in this case, since
1828 * other cpus will pull from us when ready.
1563513d 1829 */
1563513d 1830 goto out;
e8fa1362 1831 }
917b627d 1832
1563513d
GH
1833 if (!task)
1834 /* No more tasks, just exit */
1835 goto out;
1836
917b627d 1837 /*
1563513d 1838 * Something has shifted, try again.
917b627d 1839 */
1563513d
GH
1840 put_task_struct(next_task);
1841 next_task = task;
1842 goto retry;
e8fa1362
SR
1843 }
1844
697f0a48 1845 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1846 set_task_cpu(next_task, lowest_rq->cpu);
1847 activate_task(lowest_rq, next_task, 0);
311e800e 1848 ret = 1;
e8fa1362 1849
8875125e 1850 resched_curr(lowest_rq);
e8fa1362 1851
1b12bbc7 1852 double_unlock_balance(rq, lowest_rq);
e8fa1362 1853
e8fa1362
SR
1854out:
1855 put_task_struct(next_task);
1856
311e800e 1857 return ret;
e8fa1362
SR
1858}
1859
e8fa1362
SR
1860static void push_rt_tasks(struct rq *rq)
1861{
1862 /* push_rt_task will return true if it moved an RT */
1863 while (push_rt_task(rq))
1864 ;
1865}
1866
b6366f04
SR
1867#ifdef HAVE_RT_PUSH_IPI
1868/*
1869 * The search for the next cpu always starts at rq->cpu and ends
1870 * when we reach rq->cpu again. It will never return rq->cpu.
1871 * This returns the next cpu to check, or nr_cpu_ids if the loop
1872 * is complete.
1873 *
1874 * rq->rt.push_cpu holds the last cpu returned by this function,
1875 * or if this is the first instance, it must hold rq->cpu.
1876 */
1877static int rto_next_cpu(struct rq *rq)
1878{
1879 int prev_cpu = rq->rt.push_cpu;
1880 int cpu;
1881
1882 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1883
1884 /*
1885 * If the previous cpu is less than the rq's CPU, then it already
1886 * passed the end of the mask, and has started from the beginning.
1887 * We end if the next CPU is greater or equal to rq's CPU.
1888 */
1889 if (prev_cpu < rq->cpu) {
1890 if (cpu >= rq->cpu)
1891 return nr_cpu_ids;
1892
1893 } else if (cpu >= nr_cpu_ids) {
1894 /*
1895 * We passed the end of the mask, start at the beginning.
1896 * If the result is greater or equal to the rq's CPU, then
1897 * the loop is finished.
1898 */
1899 cpu = cpumask_first(rq->rd->rto_mask);
1900 if (cpu >= rq->cpu)
1901 return nr_cpu_ids;
1902 }
1903 rq->rt.push_cpu = cpu;
1904
1905 /* Return cpu to let the caller know if the loop is finished or not */
1906 return cpu;
1907}
1908
1909static int find_next_push_cpu(struct rq *rq)
1910{
1911 struct rq *next_rq;
1912 int cpu;
1913
1914 while (1) {
1915 cpu = rto_next_cpu(rq);
1916 if (cpu >= nr_cpu_ids)
1917 break;
1918 next_rq = cpu_rq(cpu);
1919
1920 /* Make sure the next rq can push to this rq */
1921 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1922 break;
1923 }
1924
1925 return cpu;
1926}
1927
1928#define RT_PUSH_IPI_EXECUTING 1
1929#define RT_PUSH_IPI_RESTART 2
1930
1931static void tell_cpu_to_push(struct rq *rq)
1932{
1933 int cpu;
1934
1935 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1936 raw_spin_lock(&rq->rt.push_lock);
1937 /* Make sure it's still executing */
1938 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1939 /*
1940 * Tell the IPI to restart the loop as things have
1941 * changed since it started.
1942 */
1943 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1944 raw_spin_unlock(&rq->rt.push_lock);
1945 return;
1946 }
1947 raw_spin_unlock(&rq->rt.push_lock);
1948 }
1949
1950 /* When here, there's no IPI going around */
1951
1952 rq->rt.push_cpu = rq->cpu;
1953 cpu = find_next_push_cpu(rq);
1954 if (cpu >= nr_cpu_ids)
1955 return;
1956
1957 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1958
1959 irq_work_queue_on(&rq->rt.push_work, cpu);
1960}
1961
1962/* Called from hardirq context */
1963static void try_to_push_tasks(void *arg)
1964{
1965 struct rt_rq *rt_rq = arg;
1966 struct rq *rq, *src_rq;
1967 int this_cpu;
1968 int cpu;
1969
1970 this_cpu = rt_rq->push_cpu;
1971
1972 /* Paranoid check */
1973 BUG_ON(this_cpu != smp_processor_id());
1974
1975 rq = cpu_rq(this_cpu);
1976 src_rq = rq_of_rt_rq(rt_rq);
1977
1978again:
1979 if (has_pushable_tasks(rq)) {
1980 raw_spin_lock(&rq->lock);
1981 push_rt_task(rq);
1982 raw_spin_unlock(&rq->lock);
1983 }
1984
1985 /* Pass the IPI to the next rt overloaded queue */
1986 raw_spin_lock(&rt_rq->push_lock);
1987 /*
1988 * If the source queue changed since the IPI went out,
1989 * we need to restart the search from that CPU again.
1990 */
1991 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1992 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1993 rt_rq->push_cpu = src_rq->cpu;
1994 }
1995
1996 cpu = find_next_push_cpu(src_rq);
1997
1998 if (cpu >= nr_cpu_ids)
1999 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2000 raw_spin_unlock(&rt_rq->push_lock);
2001
2002 if (cpu >= nr_cpu_ids)
2003 return;
2004
2005 /*
2006 * It is possible that a restart caused this CPU to be
2007 * chosen again. Don't bother with an IPI, just see if we
2008 * have more to push.
2009 */
2010 if (unlikely(cpu == rq->cpu))
2011 goto again;
2012
2013 /* Try the next RT overloaded CPU */
2014 irq_work_queue_on(&rt_rq->push_work, cpu);
2015}
2016
2017static void push_irq_work_func(struct irq_work *work)
2018{
2019 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2020
2021 try_to_push_tasks(rt_rq);
2022}
2023#endif /* HAVE_RT_PUSH_IPI */
2024
8046d680 2025static void pull_rt_task(struct rq *this_rq)
f65eda4f 2026{
8046d680
PZ
2027 int this_cpu = this_rq->cpu, cpu;
2028 bool resched = false;
a8728944 2029 struct task_struct *p;
f65eda4f 2030 struct rq *src_rq;
f65eda4f 2031
637f5085 2032 if (likely(!rt_overloaded(this_rq)))
8046d680 2033 return;
f65eda4f 2034
7c3f2ab7
PZ
2035 /*
2036 * Match the barrier from rt_set_overloaded; this guarantees that if we
2037 * see overloaded we must also see the rto_mask bit.
2038 */
2039 smp_rmb();
2040
b6366f04
SR
2041#ifdef HAVE_RT_PUSH_IPI
2042 if (sched_feat(RT_PUSH_IPI)) {
2043 tell_cpu_to_push(this_rq);
8046d680 2044 return;
b6366f04
SR
2045 }
2046#endif
2047
c6c4927b 2048 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2049 if (this_cpu == cpu)
2050 continue;
2051
2052 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2053
2054 /*
2055 * Don't bother taking the src_rq->lock if the next highest
2056 * task is known to be lower-priority than our current task.
2057 * This may look racy, but if this value is about to go
2058 * logically higher, the src_rq will push this task away.
2059 * And if its going logically lower, we do not care
2060 */
2061 if (src_rq->rt.highest_prio.next >=
2062 this_rq->rt.highest_prio.curr)
2063 continue;
2064
f65eda4f
SR
2065 /*
2066 * We can potentially drop this_rq's lock in
2067 * double_lock_balance, and another CPU could
a8728944 2068 * alter this_rq
f65eda4f 2069 */
a8728944 2070 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2071
2072 /*
e23ee747
KT
2073 * We can pull only a task, which is pushable
2074 * on its rq, and no others.
f65eda4f 2075 */
e23ee747 2076 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2077
2078 /*
2079 * Do we have an RT task that preempts
2080 * the to-be-scheduled task?
2081 */
a8728944 2082 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2083 WARN_ON(p == src_rq->curr);
da0c1e65 2084 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2085
2086 /*
2087 * There's a chance that p is higher in priority
2088 * than what's currently running on its cpu.
2089 * This is just that p is wakeing up and hasn't
2090 * had a chance to schedule. We only pull
2091 * p if it is lower in priority than the
a8728944 2092 * current task on the run queue
f65eda4f 2093 */
a8728944 2094 if (p->prio < src_rq->curr->prio)
614ee1f6 2095 goto skip;
f65eda4f 2096
8046d680 2097 resched = true;
f65eda4f
SR
2098
2099 deactivate_task(src_rq, p, 0);
2100 set_task_cpu(p, this_cpu);
2101 activate_task(this_rq, p, 0);
2102 /*
2103 * We continue with the search, just in
2104 * case there's an even higher prio task
25985edc 2105 * in another runqueue. (low likelihood
f65eda4f 2106 * but possible)
f65eda4f 2107 */
f65eda4f 2108 }
49246274 2109skip:
1b12bbc7 2110 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2111 }
2112
8046d680
PZ
2113 if (resched)
2114 resched_curr(this_rq);
f65eda4f
SR
2115}
2116
8ae121ac
GH
2117/*
2118 * If we are not running and we are not going to reschedule soon, we should
2119 * try to push tasks away now
2120 */
efbbd05a 2121static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2122{
9a897c5a 2123 if (!task_running(rq, p) &&
8ae121ac 2124 !test_tsk_need_resched(rq->curr) &&
50605ffb 2125 tsk_nr_cpus_allowed(p) > 1 &&
1baca4ce 2126 (dl_task(rq->curr) || rt_task(rq->curr)) &&
50605ffb 2127 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
3be209a8 2128 rq->curr->prio <= p->prio))
4642dafd
SR
2129 push_rt_tasks(rq);
2130}
2131
bdd7c81b 2132/* Assumes rq->lock is held */
1f11eb6a 2133static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2134{
2135 if (rq->rt.overloaded)
2136 rt_set_overload(rq);
6e0534f2 2137
7def2be1
PZ
2138 __enable_runtime(rq);
2139
e864c499 2140 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2141}
2142
2143/* Assumes rq->lock is held */
1f11eb6a 2144static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2145{
2146 if (rq->rt.overloaded)
2147 rt_clear_overload(rq);
6e0534f2 2148
7def2be1
PZ
2149 __disable_runtime(rq);
2150
6e0534f2 2151 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2152}
cb469845
SR
2153
2154/*
2155 * When switch from the rt queue, we bring ourselves to a position
2156 * that we might want to pull RT tasks from other runqueues.
2157 */
da7a735e 2158static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2159{
2160 /*
2161 * If there are other RT tasks then we will reschedule
2162 * and the scheduling of the other RT tasks will handle
2163 * the balancing. But if we are the last RT task
2164 * we may need to handle the pulling of RT tasks
2165 * now.
2166 */
da0c1e65 2167 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2168 return;
2169
fd7a4bed 2170 queue_pull_task(rq);
cb469845 2171}
3d8cbdf8 2172
11c785b7 2173void __init init_sched_rt_class(void)
3d8cbdf8
RR
2174{
2175 unsigned int i;
2176
029632fb 2177 for_each_possible_cpu(i) {
eaa95840 2178 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2179 GFP_KERNEL, cpu_to_node(i));
029632fb 2180 }
3d8cbdf8 2181}
cb469845
SR
2182#endif /* CONFIG_SMP */
2183
2184/*
2185 * When switching a task to RT, we may overload the runqueue
2186 * with RT tasks. In this case we try to push them off to
2187 * other runqueues.
2188 */
da7a735e 2189static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2190{
cb469845
SR
2191 /*
2192 * If we are already running, then there's nothing
2193 * that needs to be done. But if we are not running
2194 * we may need to preempt the current running task.
2195 * If that current running task is also an RT task
2196 * then see if we can move to another run queue.
2197 */
da0c1e65 2198 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2199#ifdef CONFIG_SMP
50605ffb 2200 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
fd7a4bed
PZ
2201 queue_push_tasks(rq);
2202#else
2203 if (p->prio < rq->curr->prio)
8875125e 2204 resched_curr(rq);
fd7a4bed 2205#endif /* CONFIG_SMP */
cb469845
SR
2206 }
2207}
2208
2209/*
2210 * Priority of the task has changed. This may cause
2211 * us to initiate a push or pull.
2212 */
da7a735e
PZ
2213static void
2214prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2215{
da0c1e65 2216 if (!task_on_rq_queued(p))
da7a735e
PZ
2217 return;
2218
2219 if (rq->curr == p) {
cb469845
SR
2220#ifdef CONFIG_SMP
2221 /*
2222 * If our priority decreases while running, we
2223 * may need to pull tasks to this runqueue.
2224 */
2225 if (oldprio < p->prio)
fd7a4bed
PZ
2226 queue_pull_task(rq);
2227
cb469845
SR
2228 /*
2229 * If there's a higher priority task waiting to run
fd7a4bed 2230 * then reschedule.
cb469845 2231 */
fd7a4bed 2232 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2233 resched_curr(rq);
cb469845
SR
2234#else
2235 /* For UP simply resched on drop of prio */
2236 if (oldprio < p->prio)
8875125e 2237 resched_curr(rq);
e8fa1362 2238#endif /* CONFIG_SMP */
cb469845
SR
2239 } else {
2240 /*
2241 * This task is not running, but if it is
2242 * greater than the current running task
2243 * then reschedule.
2244 */
2245 if (p->prio < rq->curr->prio)
8875125e 2246 resched_curr(rq);
cb469845
SR
2247 }
2248}
2249
78f2c7db
PZ
2250static void watchdog(struct rq *rq, struct task_struct *p)
2251{
2252 unsigned long soft, hard;
2253
78d7d407
JS
2254 /* max may change after cur was read, this will be fixed next tick */
2255 soft = task_rlimit(p, RLIMIT_RTTIME);
2256 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2257
2258 if (soft != RLIM_INFINITY) {
2259 unsigned long next;
2260
57d2aa00
YX
2261 if (p->rt.watchdog_stamp != jiffies) {
2262 p->rt.timeout++;
2263 p->rt.watchdog_stamp = jiffies;
2264 }
2265
78f2c7db 2266 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2267 if (p->rt.timeout > next)
f06febc9 2268 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2269 }
2270}
bb44e5d1 2271
8f4d37ec 2272static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2273{
454c7999
CC
2274 struct sched_rt_entity *rt_se = &p->rt;
2275
67e2be02
PZ
2276 update_curr_rt(rq);
2277
78f2c7db
PZ
2278 watchdog(rq, p);
2279
bb44e5d1
IM
2280 /*
2281 * RR tasks need a special form of timeslice management.
2282 * FIFO tasks have no timeslices.
2283 */
2284 if (p->policy != SCHED_RR)
2285 return;
2286
fa717060 2287 if (--p->rt.time_slice)
bb44e5d1
IM
2288 return;
2289
ce0dbbbb 2290 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2291
98fbc798 2292 /*
e9aa39bb
LB
2293 * Requeue to the end of queue if we (and all of our ancestors) are not
2294 * the only element on the queue
98fbc798 2295 */
454c7999
CC
2296 for_each_sched_rt_entity(rt_se) {
2297 if (rt_se->run_list.prev != rt_se->run_list.next) {
2298 requeue_task_rt(rq, p, 0);
8aa6f0eb 2299 resched_curr(rq);
454c7999
CC
2300 return;
2301 }
98fbc798 2302 }
bb44e5d1
IM
2303}
2304
83b699ed
SV
2305static void set_curr_task_rt(struct rq *rq)
2306{
2307 struct task_struct *p = rq->curr;
2308
78becc27 2309 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2310
2311 /* The running task is never eligible for pushing */
2312 dequeue_pushable_task(rq, p);
83b699ed
SV
2313}
2314
6d686f45 2315static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2316{
2317 /*
2318 * Time slice is 0 for SCHED_FIFO tasks
2319 */
2320 if (task->policy == SCHED_RR)
ce0dbbbb 2321 return sched_rr_timeslice;
0d721cea
PW
2322 else
2323 return 0;
2324}
2325
029632fb 2326const struct sched_class rt_sched_class = {
5522d5d5 2327 .next = &fair_sched_class,
bb44e5d1
IM
2328 .enqueue_task = enqueue_task_rt,
2329 .dequeue_task = dequeue_task_rt,
2330 .yield_task = yield_task_rt,
2331
2332 .check_preempt_curr = check_preempt_curr_rt,
2333
2334 .pick_next_task = pick_next_task_rt,
2335 .put_prev_task = put_prev_task_rt,
2336
681f3e68 2337#ifdef CONFIG_SMP
4ce72a2c
LZ
2338 .select_task_rq = select_task_rq_rt,
2339
6c37067e 2340 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2341 .rq_online = rq_online_rt,
2342 .rq_offline = rq_offline_rt,
efbbd05a 2343 .task_woken = task_woken_rt,
cb469845 2344 .switched_from = switched_from_rt,
681f3e68 2345#endif
bb44e5d1 2346
83b699ed 2347 .set_curr_task = set_curr_task_rt,
bb44e5d1 2348 .task_tick = task_tick_rt,
cb469845 2349
0d721cea
PW
2350 .get_rr_interval = get_rr_interval_rt,
2351
cb469845
SR
2352 .prio_changed = prio_changed_rt,
2353 .switched_to = switched_to_rt,
6e998916
SG
2354
2355 .update_curr = update_curr_rt,
bb44e5d1 2356};
ada18de2
PZ
2357
2358#ifdef CONFIG_SCHED_DEBUG
2359extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2360
029632fb 2361void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2362{
ec514c48 2363 rt_rq_iter_t iter;
ada18de2
PZ
2364 struct rt_rq *rt_rq;
2365
2366 rcu_read_lock();
ec514c48 2367 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2368 print_rt_rq(m, cpu, rt_rq);
2369 rcu_read_unlock();
2370}
55e12e5e 2371#endif /* CONFIG_SCHED_DEBUG */
This page took 0.609934 seconds and 5 git commands to generate.