stop_machine: Introduce stop_two_cpus()
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
f809ca9a 9#include <linux/slab.h>
029632fb 10
391e43da 11#include "cpupri.h"
60fed789 12#include "cpuacct.h"
029632fb 13
45ceebf7
PG
14struct rq;
15
029632fb
PZ
16extern __read_mostly int scheduler_running;
17
45ceebf7
PG
18extern unsigned long calc_load_update;
19extern atomic_long_t calc_load_tasks;
20
21extern long calc_load_fold_active(struct rq *this_rq);
22extern void update_cpu_load_active(struct rq *this_rq);
23
029632fb
PZ
24/*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33/*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42/*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
cc1f4b1f
LZ
47/*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60# define SCHED_LOAD_RESOLUTION 10
61# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63#else
64# define SCHED_LOAD_RESOLUTION 0
65# define scale_load(w) (w)
66# define scale_load_down(w) (w)
67#endif
68
69#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
029632fb
PZ
72#define NICE_0_LOAD SCHED_LOAD_SCALE
73#define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
029632fb 77 */
029632fb
PZ
78
79/*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82#define RUNTIME_INF ((u64)~0ULL)
83
84static inline int rt_policy(int policy)
85{
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89}
90
91static inline int task_has_rt_policy(struct task_struct *p)
92{
93 return rt_policy(p->policy);
94}
95
96/*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102};
103
104struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110};
111
112extern struct mutex sched_domains_mutex;
113
114#ifdef CONFIG_CGROUP_SCHED
115
116#include <linux/cgroup.h>
117
118struct cfs_rq;
119struct rt_rq;
120
35cf4e50 121extern struct list_head task_groups;
029632fb
PZ
122
123struct cfs_bandwidth {
124#ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138#endif
139};
140
141/* task group related information */
142struct task_group {
143 struct cgroup_subsys_state css;
144
145#ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
fa6bddeb 152#ifdef CONFIG_SMP
bf5b986e 153 atomic_long_t load_avg;
bb17f655 154 atomic_t runnable_avg;
029632fb 155#endif
fa6bddeb 156#endif
029632fb
PZ
157
158#ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163#endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172#ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174#endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177};
178
179#ifdef CONFIG_FAIR_GROUP_SCHED
180#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182/*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190#define MIN_SHARES (1UL << 1)
191#define MAX_SHARES (1UL << 18)
192#endif
193
029632fb
PZ
194typedef int (*tg_visitor)(struct task_group *, void *);
195
196extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199/*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206{
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208}
209
210extern int tg_nop(struct task_group *tg, void *data);
211
212extern void free_fair_sched_group(struct task_group *tg);
213extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225extern void free_rt_sched_group(struct task_group *tg);
226extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
25cc7da7
LZ
231extern struct task_group *sched_create_group(struct task_group *parent);
232extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234extern void sched_destroy_group(struct task_group *tg);
235extern void sched_offline_group(struct task_group *tg);
236
237extern void sched_move_task(struct task_struct *tsk);
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241#endif
242
029632fb
PZ
243#else /* CONFIG_CGROUP_SCHED */
244
245struct cfs_bandwidth { };
246
247#endif /* CONFIG_CGROUP_SCHED */
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
c82513e5 252 unsigned int nr_running, h_nr_running;
029632fb
PZ
253
254 u64 exec_clock;
255 u64 min_vruntime;
256#ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258#endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
029632fb
PZ
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269#ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271#endif
272
2dac754e
PT
273#ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
72a4cf20 280 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 281 atomic64_t decay_counter;
9ee474f5 282 u64 last_decay;
2509940f 283 atomic_long_t removed_load;
141965c7 284
c566e8e9 285#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 286 /* Required to track per-cpu representation of a task_group */
bb17f655 287 u32 tg_runnable_contrib;
bf5b986e 288 unsigned long tg_load_contrib;
82958366
PT
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
68520796
VD
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
300#endif /* CONFIG_SMP */
301
029632fb
PZ
302#ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
029632fb
PZ
317#ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
f1b17280
PT
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
029632fb
PZ
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326#endif /* CONFIG_CFS_BANDWIDTH */
327#endif /* CONFIG_FAIR_GROUP_SCHED */
328};
329
330static inline int rt_bandwidth_enabled(void)
331{
332 return sysctl_sched_rt_runtime >= 0;
333}
334
335/* Real-Time classes' related field in a runqueue: */
336struct rt_rq {
337 struct rt_prio_array active;
c82513e5 338 unsigned int rt_nr_running;
029632fb
PZ
339#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342#ifdef CONFIG_SMP
343 int next; /* next highest */
344#endif
345 } highest_prio;
346#endif
347#ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352#endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359#ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
029632fb
PZ
363 struct task_group *tg;
364#endif
365};
366
367#ifdef CONFIG_SMP
368
369/*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390};
391
392extern struct root_domain def_root_domain;
393
394#endif /* CONFIG_SMP */
395
396/*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
c82513e5 411 unsigned int nr_running;
029632fb
PZ
412 #define CPU_LOAD_IDX_MAX 5
413 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
414 unsigned long last_load_update_tick;
3451d024 415#ifdef CONFIG_NO_HZ_COMMON
029632fb 416 u64 nohz_stamp;
1c792db7 417 unsigned long nohz_flags;
265f22a9
FW
418#endif
419#ifdef CONFIG_NO_HZ_FULL
420 unsigned long last_sched_tick;
029632fb
PZ
421#endif
422 int skip_clock_update;
423
424 /* capture load from *all* tasks on this cpu: */
425 struct load_weight load;
426 unsigned long nr_load_updates;
427 u64 nr_switches;
428
429 struct cfs_rq cfs;
430 struct rt_rq rt;
431
432#ifdef CONFIG_FAIR_GROUP_SCHED
433 /* list of leaf cfs_rq on this cpu: */
434 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
435#endif /* CONFIG_FAIR_GROUP_SCHED */
436
029632fb
PZ
437#ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439#endif
440
441 /*
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
446 */
447 unsigned long nr_uninterruptible;
448
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
452
453 u64 clock;
454 u64 clock_task;
455
456 atomic_t nr_iowait;
457
458#ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
461
462 unsigned long cpu_power;
463
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
367456c7
PZ
474 struct list_head cfs_tasks;
475
029632fb
PZ
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
9bd721c5
JL
480
481 /* This is used to determine avg_idle's max value */
482 u64 max_idle_balance_cost;
029632fb
PZ
483#endif
484
485#ifdef CONFIG_IRQ_TIME_ACCOUNTING
486 u64 prev_irq_time;
487#endif
488#ifdef CONFIG_PARAVIRT
489 u64 prev_steal_time;
490#endif
491#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
492 u64 prev_steal_time_rq;
493#endif
494
495 /* calc_load related fields */
496 unsigned long calc_load_update;
497 long calc_load_active;
498
499#ifdef CONFIG_SCHED_HRTICK
500#ifdef CONFIG_SMP
501 int hrtick_csd_pending;
502 struct call_single_data hrtick_csd;
503#endif
504 struct hrtimer hrtick_timer;
505#endif
506
507#ifdef CONFIG_SCHEDSTATS
508 /* latency stats */
509 struct sched_info rq_sched_info;
510 unsigned long long rq_cpu_time;
511 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
512
513 /* sys_sched_yield() stats */
514 unsigned int yld_count;
515
516 /* schedule() stats */
029632fb
PZ
517 unsigned int sched_count;
518 unsigned int sched_goidle;
519
520 /* try_to_wake_up() stats */
521 unsigned int ttwu_count;
522 unsigned int ttwu_local;
523#endif
524
525#ifdef CONFIG_SMP
526 struct llist_head wake_list;
527#endif
18bf2805
BS
528
529 struct sched_avg avg;
029632fb
PZ
530};
531
532static inline int cpu_of(struct rq *rq)
533{
534#ifdef CONFIG_SMP
535 return rq->cpu;
536#else
537 return 0;
538#endif
539}
540
541DECLARE_PER_CPU(struct rq, runqueues);
542
518cd623
PZ
543#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
544#define this_rq() (&__get_cpu_var(runqueues))
545#define task_rq(p) cpu_rq(task_cpu(p))
546#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
547#define raw_rq() (&__raw_get_cpu_var(runqueues))
548
78becc27
FW
549static inline u64 rq_clock(struct rq *rq)
550{
551 return rq->clock;
552}
553
554static inline u64 rq_clock_task(struct rq *rq)
555{
556 return rq->clock_task;
557}
558
f809ca9a 559#ifdef CONFIG_NUMA_BALANCING
e6628d5b 560extern int migrate_task_to(struct task_struct *p, int cpu);
f809ca9a
MG
561static inline void task_numa_free(struct task_struct *p)
562{
563 kfree(p->numa_faults);
564}
565#else /* CONFIG_NUMA_BALANCING */
566static inline void task_numa_free(struct task_struct *p)
567{
568}
569#endif /* CONFIG_NUMA_BALANCING */
570
518cd623
PZ
571#ifdef CONFIG_SMP
572
029632fb
PZ
573#define rcu_dereference_check_sched_domain(p) \
574 rcu_dereference_check((p), \
575 lockdep_is_held(&sched_domains_mutex))
576
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584#define for_each_domain(cpu, __sd) \
518cd623
PZ
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
586 __sd; __sd = __sd->parent)
029632fb 587
77e81365
SS
588#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
589
518cd623
PZ
590/**
591 * highest_flag_domain - Return highest sched_domain containing flag.
592 * @cpu: The cpu whose highest level of sched domain is to
593 * be returned.
594 * @flag: The flag to check for the highest sched_domain
595 * for the given cpu.
596 *
597 * Returns the highest sched_domain of a cpu which contains the given flag.
598 */
599static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
600{
601 struct sched_domain *sd, *hsd = NULL;
602
603 for_each_domain(cpu, sd) {
604 if (!(sd->flags & flag))
605 break;
606 hsd = sd;
607 }
608
609 return hsd;
610}
611
612DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 613DECLARE_PER_CPU(int, sd_llc_size);
518cd623
PZ
614DECLARE_PER_CPU(int, sd_llc_id);
615
5e6521ea
LZ
616struct sched_group_power {
617 atomic_t ref;
618 /*
619 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
620 * single CPU.
621 */
622 unsigned int power, power_orig;
623 unsigned long next_update;
6263322c 624 int imbalance; /* XXX unrelated to power but shared group state */
5e6521ea
LZ
625 /*
626 * Number of busy cpus in this group.
627 */
628 atomic_t nr_busy_cpus;
629
630 unsigned long cpumask[0]; /* iteration mask */
631};
632
633struct sched_group {
634 struct sched_group *next; /* Must be a circular list */
635 atomic_t ref;
636
637 unsigned int group_weight;
638 struct sched_group_power *sgp;
639
640 /*
641 * The CPUs this group covers.
642 *
643 * NOTE: this field is variable length. (Allocated dynamically
644 * by attaching extra space to the end of the structure,
645 * depending on how many CPUs the kernel has booted up with)
646 */
647 unsigned long cpumask[0];
648};
649
650static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
651{
652 return to_cpumask(sg->cpumask);
653}
654
655/*
656 * cpumask masking which cpus in the group are allowed to iterate up the domain
657 * tree.
658 */
659static inline struct cpumask *sched_group_mask(struct sched_group *sg)
660{
661 return to_cpumask(sg->sgp->cpumask);
662}
663
664/**
665 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
666 * @group: The group whose first cpu is to be returned.
667 */
668static inline unsigned int group_first_cpu(struct sched_group *group)
669{
670 return cpumask_first(sched_group_cpus(group));
671}
672
c1174876
PZ
673extern int group_balance_cpu(struct sched_group *sg);
674
518cd623 675#endif /* CONFIG_SMP */
029632fb 676
391e43da
PZ
677#include "stats.h"
678#include "auto_group.h"
029632fb
PZ
679
680#ifdef CONFIG_CGROUP_SCHED
681
682/*
683 * Return the group to which this tasks belongs.
684 *
8af01f56
TH
685 * We cannot use task_css() and friends because the cgroup subsystem
686 * changes that value before the cgroup_subsys::attach() method is called,
687 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
688 *
689 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
690 * core changes this before calling sched_move_task().
691 *
692 * Instead we use a 'copy' which is updated from sched_move_task() while
693 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
694 */
695static inline struct task_group *task_group(struct task_struct *p)
696{
8323f26c 697 return p->sched_task_group;
029632fb
PZ
698}
699
700/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
701static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
702{
703#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
704 struct task_group *tg = task_group(p);
705#endif
706
707#ifdef CONFIG_FAIR_GROUP_SCHED
708 p->se.cfs_rq = tg->cfs_rq[cpu];
709 p->se.parent = tg->se[cpu];
710#endif
711
712#ifdef CONFIG_RT_GROUP_SCHED
713 p->rt.rt_rq = tg->rt_rq[cpu];
714 p->rt.parent = tg->rt_se[cpu];
715#endif
716}
717
718#else /* CONFIG_CGROUP_SCHED */
719
720static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
721static inline struct task_group *task_group(struct task_struct *p)
722{
723 return NULL;
724}
725
726#endif /* CONFIG_CGROUP_SCHED */
727
728static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
729{
730 set_task_rq(p, cpu);
731#ifdef CONFIG_SMP
732 /*
733 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
734 * successfuly executed on another CPU. We must ensure that updates of
735 * per-task data have been completed by this moment.
736 */
737 smp_wmb();
738 task_thread_info(p)->cpu = cpu;
739#endif
740}
741
742/*
743 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
744 */
745#ifdef CONFIG_SCHED_DEBUG
c5905afb 746# include <linux/static_key.h>
029632fb
PZ
747# define const_debug __read_mostly
748#else
749# define const_debug const
750#endif
751
752extern const_debug unsigned int sysctl_sched_features;
753
754#define SCHED_FEAT(name, enabled) \
755 __SCHED_FEAT_##name ,
756
757enum {
391e43da 758#include "features.h"
f8b6d1cc 759 __SCHED_FEAT_NR,
029632fb
PZ
760};
761
762#undef SCHED_FEAT
763
f8b6d1cc 764#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 765static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 766{
c5905afb 767 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
768}
769
c5905afb 770static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 771{
c5905afb 772 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
773}
774
775#define SCHED_FEAT(name, enabled) \
c5905afb 776static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
777{ \
778 return static_branch__##enabled(key); \
779}
780
781#include "features.h"
782
783#undef SCHED_FEAT
784
c5905afb 785extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
786#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
787#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 788#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 789#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 790
cbee9f88
PZ
791#ifdef CONFIG_NUMA_BALANCING
792#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
793#ifdef CONFIG_SCHED_DEBUG
794#define numabalancing_enabled sched_feat_numa(NUMA)
795#else
796extern bool numabalancing_enabled;
797#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
798#else
799#define sched_feat_numa(x) (0)
3105b86a
MG
800#define numabalancing_enabled (0)
801#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 802
029632fb
PZ
803static inline u64 global_rt_period(void)
804{
805 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
806}
807
808static inline u64 global_rt_runtime(void)
809{
810 if (sysctl_sched_rt_runtime < 0)
811 return RUNTIME_INF;
812
813 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
814}
815
816
817
818static inline int task_current(struct rq *rq, struct task_struct *p)
819{
820 return rq->curr == p;
821}
822
823static inline int task_running(struct rq *rq, struct task_struct *p)
824{
825#ifdef CONFIG_SMP
826 return p->on_cpu;
827#else
828 return task_current(rq, p);
829#endif
830}
831
832
833#ifndef prepare_arch_switch
834# define prepare_arch_switch(next) do { } while (0)
835#endif
836#ifndef finish_arch_switch
837# define finish_arch_switch(prev) do { } while (0)
838#endif
01f23e16
CM
839#ifndef finish_arch_post_lock_switch
840# define finish_arch_post_lock_switch() do { } while (0)
841#endif
029632fb
PZ
842
843#ifndef __ARCH_WANT_UNLOCKED_CTXSW
844static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
845{
846#ifdef CONFIG_SMP
847 /*
848 * We can optimise this out completely for !SMP, because the
849 * SMP rebalancing from interrupt is the only thing that cares
850 * here.
851 */
852 next->on_cpu = 1;
853#endif
854}
855
856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857{
858#ifdef CONFIG_SMP
859 /*
860 * After ->on_cpu is cleared, the task can be moved to a different CPU.
861 * We must ensure this doesn't happen until the switch is completely
862 * finished.
863 */
864 smp_wmb();
865 prev->on_cpu = 0;
866#endif
867#ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870#endif
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
878 raw_spin_unlock_irq(&rq->lock);
879}
880
881#else /* __ARCH_WANT_UNLOCKED_CTXSW */
882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->on_cpu = 1;
891#endif
029632fb 892 raw_spin_unlock(&rq->lock);
029632fb
PZ
893}
894
895static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
896{
897#ifdef CONFIG_SMP
898 /*
899 * After ->on_cpu is cleared, the task can be moved to a different CPU.
900 * We must ensure this doesn't happen until the switch is completely
901 * finished.
902 */
903 smp_wmb();
904 prev->on_cpu = 0;
905#endif
029632fb 906 local_irq_enable();
029632fb
PZ
907}
908#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
909
b13095f0
LZ
910/*
911 * wake flags
912 */
913#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
914#define WF_FORK 0x02 /* child wakeup after fork */
915#define WF_MIGRATED 0x4 /* internal use, task got migrated */
916
029632fb
PZ
917/*
918 * To aid in avoiding the subversion of "niceness" due to uneven distribution
919 * of tasks with abnormal "nice" values across CPUs the contribution that
920 * each task makes to its run queue's load is weighted according to its
921 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
922 * scaled version of the new time slice allocation that they receive on time
923 * slice expiry etc.
924 */
925
926#define WEIGHT_IDLEPRIO 3
927#define WMULT_IDLEPRIO 1431655765
928
929/*
930 * Nice levels are multiplicative, with a gentle 10% change for every
931 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
932 * nice 1, it will get ~10% less CPU time than another CPU-bound task
933 * that remained on nice 0.
934 *
935 * The "10% effect" is relative and cumulative: from _any_ nice level,
936 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
937 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
938 * If a task goes up by ~10% and another task goes down by ~10% then
939 * the relative distance between them is ~25%.)
940 */
941static const int prio_to_weight[40] = {
942 /* -20 */ 88761, 71755, 56483, 46273, 36291,
943 /* -15 */ 29154, 23254, 18705, 14949, 11916,
944 /* -10 */ 9548, 7620, 6100, 4904, 3906,
945 /* -5 */ 3121, 2501, 1991, 1586, 1277,
946 /* 0 */ 1024, 820, 655, 526, 423,
947 /* 5 */ 335, 272, 215, 172, 137,
948 /* 10 */ 110, 87, 70, 56, 45,
949 /* 15 */ 36, 29, 23, 18, 15,
950};
951
952/*
953 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
954 *
955 * In cases where the weight does not change often, we can use the
956 * precalculated inverse to speed up arithmetics by turning divisions
957 * into multiplications:
958 */
959static const u32 prio_to_wmult[40] = {
960 /* -20 */ 48388, 59856, 76040, 92818, 118348,
961 /* -15 */ 147320, 184698, 229616, 287308, 360437,
962 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
963 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
964 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
965 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
966 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
967 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
968};
969
c82ba9fa
LZ
970#define ENQUEUE_WAKEUP 1
971#define ENQUEUE_HEAD 2
972#ifdef CONFIG_SMP
973#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
974#else
975#define ENQUEUE_WAKING 0
976#endif
977
978#define DEQUEUE_SLEEP 1
979
980struct sched_class {
981 const struct sched_class *next;
982
983 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
984 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
985 void (*yield_task) (struct rq *rq);
986 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
987
988 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
989
990 struct task_struct * (*pick_next_task) (struct rq *rq);
991 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
992
993#ifdef CONFIG_SMP
994 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
995 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
996
997 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
998 void (*post_schedule) (struct rq *this_rq);
999 void (*task_waking) (struct task_struct *task);
1000 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1001
1002 void (*set_cpus_allowed)(struct task_struct *p,
1003 const struct cpumask *newmask);
1004
1005 void (*rq_online)(struct rq *rq);
1006 void (*rq_offline)(struct rq *rq);
1007#endif
1008
1009 void (*set_curr_task) (struct rq *rq);
1010 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1011 void (*task_fork) (struct task_struct *p);
1012
1013 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1014 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1015 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1016 int oldprio);
1017
1018 unsigned int (*get_rr_interval) (struct rq *rq,
1019 struct task_struct *task);
1020
1021#ifdef CONFIG_FAIR_GROUP_SCHED
1022 void (*task_move_group) (struct task_struct *p, int on_rq);
1023#endif
1024};
029632fb
PZ
1025
1026#define sched_class_highest (&stop_sched_class)
1027#define for_each_class(class) \
1028 for (class = sched_class_highest; class; class = class->next)
1029
1030extern const struct sched_class stop_sched_class;
1031extern const struct sched_class rt_sched_class;
1032extern const struct sched_class fair_sched_class;
1033extern const struct sched_class idle_sched_class;
1034
1035
1036#ifdef CONFIG_SMP
1037
b719203b
LZ
1038extern void update_group_power(struct sched_domain *sd, int cpu);
1039
029632fb
PZ
1040extern void trigger_load_balance(struct rq *rq, int cpu);
1041extern void idle_balance(int this_cpu, struct rq *this_rq);
1042
642dbc39
VG
1043extern void idle_enter_fair(struct rq *this_rq);
1044extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1045
029632fb
PZ
1046#else /* CONFIG_SMP */
1047
1048static inline void idle_balance(int cpu, struct rq *rq)
1049{
1050}
1051
1052#endif
1053
1054extern void sysrq_sched_debug_show(void);
1055extern void sched_init_granularity(void);
1056extern void update_max_interval(void);
029632fb
PZ
1057extern void init_sched_rt_class(void);
1058extern void init_sched_fair_class(void);
1059
1060extern void resched_task(struct task_struct *p);
1061extern void resched_cpu(int cpu);
1062
1063extern struct rt_bandwidth def_rt_bandwidth;
1064extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1065
556061b0 1066extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1067
a75cdaa9
AS
1068extern void init_task_runnable_average(struct task_struct *p);
1069
73fbec60
FW
1070#ifdef CONFIG_PARAVIRT
1071static inline u64 steal_ticks(u64 steal)
1072{
1073 if (unlikely(steal > NSEC_PER_SEC))
1074 return div_u64(steal, TICK_NSEC);
1075
1076 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1077}
1078#endif
1079
029632fb
PZ
1080static inline void inc_nr_running(struct rq *rq)
1081{
1082 rq->nr_running++;
9f3660c2
FW
1083
1084#ifdef CONFIG_NO_HZ_FULL
1085 if (rq->nr_running == 2) {
1086 if (tick_nohz_full_cpu(rq->cpu)) {
1087 /* Order rq->nr_running write against the IPI */
1088 smp_wmb();
1089 smp_send_reschedule(rq->cpu);
1090 }
1091 }
1092#endif
029632fb
PZ
1093}
1094
1095static inline void dec_nr_running(struct rq *rq)
1096{
1097 rq->nr_running--;
1098}
1099
265f22a9
FW
1100static inline void rq_last_tick_reset(struct rq *rq)
1101{
1102#ifdef CONFIG_NO_HZ_FULL
1103 rq->last_sched_tick = jiffies;
1104#endif
1105}
1106
029632fb
PZ
1107extern void update_rq_clock(struct rq *rq);
1108
1109extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1110extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1111
1112extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1113
1114extern const_debug unsigned int sysctl_sched_time_avg;
1115extern const_debug unsigned int sysctl_sched_nr_migrate;
1116extern const_debug unsigned int sysctl_sched_migration_cost;
1117
1118static inline u64 sched_avg_period(void)
1119{
1120 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1121}
1122
029632fb
PZ
1123#ifdef CONFIG_SCHED_HRTICK
1124
1125/*
1126 * Use hrtick when:
1127 * - enabled by features
1128 * - hrtimer is actually high res
1129 */
1130static inline int hrtick_enabled(struct rq *rq)
1131{
1132 if (!sched_feat(HRTICK))
1133 return 0;
1134 if (!cpu_active(cpu_of(rq)))
1135 return 0;
1136 return hrtimer_is_hres_active(&rq->hrtick_timer);
1137}
1138
1139void hrtick_start(struct rq *rq, u64 delay);
1140
b39e66ea
MG
1141#else
1142
1143static inline int hrtick_enabled(struct rq *rq)
1144{
1145 return 0;
1146}
1147
029632fb
PZ
1148#endif /* CONFIG_SCHED_HRTICK */
1149
1150#ifdef CONFIG_SMP
1151extern void sched_avg_update(struct rq *rq);
1152static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1153{
1154 rq->rt_avg += rt_delta;
1155 sched_avg_update(rq);
1156}
1157#else
1158static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1159static inline void sched_avg_update(struct rq *rq) { }
1160#endif
1161
1162extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1163
1164#ifdef CONFIG_SMP
1165#ifdef CONFIG_PREEMPT
1166
1167static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1168
1169/*
1170 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1171 * way at the expense of forcing extra atomic operations in all
1172 * invocations. This assures that the double_lock is acquired using the
1173 * same underlying policy as the spinlock_t on this architecture, which
1174 * reduces latency compared to the unfair variant below. However, it
1175 * also adds more overhead and therefore may reduce throughput.
1176 */
1177static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1178 __releases(this_rq->lock)
1179 __acquires(busiest->lock)
1180 __acquires(this_rq->lock)
1181{
1182 raw_spin_unlock(&this_rq->lock);
1183 double_rq_lock(this_rq, busiest);
1184
1185 return 1;
1186}
1187
1188#else
1189/*
1190 * Unfair double_lock_balance: Optimizes throughput at the expense of
1191 * latency by eliminating extra atomic operations when the locks are
1192 * already in proper order on entry. This favors lower cpu-ids and will
1193 * grant the double lock to lower cpus over higher ids under contention,
1194 * regardless of entry order into the function.
1195 */
1196static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1197 __releases(this_rq->lock)
1198 __acquires(busiest->lock)
1199 __acquires(this_rq->lock)
1200{
1201 int ret = 0;
1202
1203 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1204 if (busiest < this_rq) {
1205 raw_spin_unlock(&this_rq->lock);
1206 raw_spin_lock(&busiest->lock);
1207 raw_spin_lock_nested(&this_rq->lock,
1208 SINGLE_DEPTH_NESTING);
1209 ret = 1;
1210 } else
1211 raw_spin_lock_nested(&busiest->lock,
1212 SINGLE_DEPTH_NESTING);
1213 }
1214 return ret;
1215}
1216
1217#endif /* CONFIG_PREEMPT */
1218
1219/*
1220 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1221 */
1222static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1223{
1224 if (unlikely(!irqs_disabled())) {
1225 /* printk() doesn't work good under rq->lock */
1226 raw_spin_unlock(&this_rq->lock);
1227 BUG_ON(1);
1228 }
1229
1230 return _double_lock_balance(this_rq, busiest);
1231}
1232
1233static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1234 __releases(busiest->lock)
1235{
1236 raw_spin_unlock(&busiest->lock);
1237 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1238}
1239
1240/*
1241 * double_rq_lock - safely lock two runqueues
1242 *
1243 * Note this does not disable interrupts like task_rq_lock,
1244 * you need to do so manually before calling.
1245 */
1246static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1247 __acquires(rq1->lock)
1248 __acquires(rq2->lock)
1249{
1250 BUG_ON(!irqs_disabled());
1251 if (rq1 == rq2) {
1252 raw_spin_lock(&rq1->lock);
1253 __acquire(rq2->lock); /* Fake it out ;) */
1254 } else {
1255 if (rq1 < rq2) {
1256 raw_spin_lock(&rq1->lock);
1257 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1258 } else {
1259 raw_spin_lock(&rq2->lock);
1260 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1261 }
1262 }
1263}
1264
1265/*
1266 * double_rq_unlock - safely unlock two runqueues
1267 *
1268 * Note this does not restore interrupts like task_rq_unlock,
1269 * you need to do so manually after calling.
1270 */
1271static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1272 __releases(rq1->lock)
1273 __releases(rq2->lock)
1274{
1275 raw_spin_unlock(&rq1->lock);
1276 if (rq1 != rq2)
1277 raw_spin_unlock(&rq2->lock);
1278 else
1279 __release(rq2->lock);
1280}
1281
1282#else /* CONFIG_SMP */
1283
1284/*
1285 * double_rq_lock - safely lock two runqueues
1286 *
1287 * Note this does not disable interrupts like task_rq_lock,
1288 * you need to do so manually before calling.
1289 */
1290static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1291 __acquires(rq1->lock)
1292 __acquires(rq2->lock)
1293{
1294 BUG_ON(!irqs_disabled());
1295 BUG_ON(rq1 != rq2);
1296 raw_spin_lock(&rq1->lock);
1297 __acquire(rq2->lock); /* Fake it out ;) */
1298}
1299
1300/*
1301 * double_rq_unlock - safely unlock two runqueues
1302 *
1303 * Note this does not restore interrupts like task_rq_unlock,
1304 * you need to do so manually after calling.
1305 */
1306static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1307 __releases(rq1->lock)
1308 __releases(rq2->lock)
1309{
1310 BUG_ON(rq1 != rq2);
1311 raw_spin_unlock(&rq1->lock);
1312 __release(rq2->lock);
1313}
1314
1315#endif
1316
1317extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1318extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1319extern void print_cfs_stats(struct seq_file *m, int cpu);
1320extern void print_rt_stats(struct seq_file *m, int cpu);
1321
1322extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1323extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1324
1325extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1326
3451d024 1327#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1328enum rq_nohz_flag_bits {
1329 NOHZ_TICK_STOPPED,
1330 NOHZ_BALANCE_KICK,
1331};
1332
1333#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1334#endif
73fbec60
FW
1335
1336#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1337
1338DECLARE_PER_CPU(u64, cpu_hardirq_time);
1339DECLARE_PER_CPU(u64, cpu_softirq_time);
1340
1341#ifndef CONFIG_64BIT
1342DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1343
1344static inline void irq_time_write_begin(void)
1345{
1346 __this_cpu_inc(irq_time_seq.sequence);
1347 smp_wmb();
1348}
1349
1350static inline void irq_time_write_end(void)
1351{
1352 smp_wmb();
1353 __this_cpu_inc(irq_time_seq.sequence);
1354}
1355
1356static inline u64 irq_time_read(int cpu)
1357{
1358 u64 irq_time;
1359 unsigned seq;
1360
1361 do {
1362 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1363 irq_time = per_cpu(cpu_softirq_time, cpu) +
1364 per_cpu(cpu_hardirq_time, cpu);
1365 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1366
1367 return irq_time;
1368}
1369#else /* CONFIG_64BIT */
1370static inline void irq_time_write_begin(void)
1371{
1372}
1373
1374static inline void irq_time_write_end(void)
1375{
1376}
1377
1378static inline u64 irq_time_read(int cpu)
1379{
1380 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1381}
1382#endif /* CONFIG_64BIT */
1383#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.142183 seconds and 5 git commands to generate.