sched: Account for blocked load waking back up
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
c82513e5 204 unsigned int nr_running, h_nr_running;
029632fb
PZ
205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
029632fb
PZ
215 /*
216 * 'curr' points to currently running entity on this cfs_rq.
217 * It is set to NULL otherwise (i.e when none are currently running).
218 */
219 struct sched_entity *curr, *next, *last, *skip;
220
221#ifdef CONFIG_SCHED_DEBUG
222 unsigned int nr_spread_over;
223#endif
224
2dac754e
PT
225#ifdef CONFIG_SMP
226 /*
227 * CFS Load tracking
228 * Under CFS, load is tracked on a per-entity basis and aggregated up.
229 * This allows for the description of both thread and group usage (in
230 * the FAIR_GROUP_SCHED case).
231 */
9ee474f5 232 u64 runnable_load_avg, blocked_load_avg;
aff3e498 233 atomic64_t decay_counter, removed_load;
9ee474f5 234 u64 last_decay;
2dac754e 235#endif
029632fb
PZ
236#ifdef CONFIG_FAIR_GROUP_SCHED
237 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
238
239 /*
240 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
241 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
242 * (like users, containers etc.)
243 *
244 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
245 * list is used during load balance.
246 */
247 int on_list;
248 struct list_head leaf_cfs_rq_list;
249 struct task_group *tg; /* group that "owns" this runqueue */
250
251#ifdef CONFIG_SMP
029632fb
PZ
252 /*
253 * h_load = weight * f(tg)
254 *
255 * Where f(tg) is the recursive weight fraction assigned to
256 * this group.
257 */
258 unsigned long h_load;
259
260 /*
261 * Maintaining per-cpu shares distribution for group scheduling
262 *
263 * load_stamp is the last time we updated the load average
264 * load_last is the last time we updated the load average and saw load
265 * load_unacc_exec_time is currently unaccounted execution time
266 */
267 u64 load_avg;
268 u64 load_period;
269 u64 load_stamp, load_last, load_unacc_exec_time;
270
271 unsigned long load_contribution;
272#endif /* CONFIG_SMP */
273#ifdef CONFIG_CFS_BANDWIDTH
274 int runtime_enabled;
275 u64 runtime_expires;
276 s64 runtime_remaining;
277
278 u64 throttled_timestamp;
279 int throttled, throttle_count;
280 struct list_head throttled_list;
281#endif /* CONFIG_CFS_BANDWIDTH */
282#endif /* CONFIG_FAIR_GROUP_SCHED */
283};
284
285static inline int rt_bandwidth_enabled(void)
286{
287 return sysctl_sched_rt_runtime >= 0;
288}
289
290/* Real-Time classes' related field in a runqueue: */
291struct rt_rq {
292 struct rt_prio_array active;
c82513e5 293 unsigned int rt_nr_running;
029632fb
PZ
294#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
295 struct {
296 int curr; /* highest queued rt task prio */
297#ifdef CONFIG_SMP
298 int next; /* next highest */
299#endif
300 } highest_prio;
301#endif
302#ifdef CONFIG_SMP
303 unsigned long rt_nr_migratory;
304 unsigned long rt_nr_total;
305 int overloaded;
306 struct plist_head pushable_tasks;
307#endif
308 int rt_throttled;
309 u64 rt_time;
310 u64 rt_runtime;
311 /* Nests inside the rq lock: */
312 raw_spinlock_t rt_runtime_lock;
313
314#ifdef CONFIG_RT_GROUP_SCHED
315 unsigned long rt_nr_boosted;
316
317 struct rq *rq;
318 struct list_head leaf_rt_rq_list;
319 struct task_group *tg;
320#endif
321};
322
323#ifdef CONFIG_SMP
324
325/*
326 * We add the notion of a root-domain which will be used to define per-domain
327 * variables. Each exclusive cpuset essentially defines an island domain by
328 * fully partitioning the member cpus from any other cpuset. Whenever a new
329 * exclusive cpuset is created, we also create and attach a new root-domain
330 * object.
331 *
332 */
333struct root_domain {
334 atomic_t refcount;
335 atomic_t rto_count;
336 struct rcu_head rcu;
337 cpumask_var_t span;
338 cpumask_var_t online;
339
340 /*
341 * The "RT overload" flag: it gets set if a CPU has more than
342 * one runnable RT task.
343 */
344 cpumask_var_t rto_mask;
345 struct cpupri cpupri;
346};
347
348extern struct root_domain def_root_domain;
349
350#endif /* CONFIG_SMP */
351
352/*
353 * This is the main, per-CPU runqueue data structure.
354 *
355 * Locking rule: those places that want to lock multiple runqueues
356 * (such as the load balancing or the thread migration code), lock
357 * acquire operations must be ordered by ascending &runqueue.
358 */
359struct rq {
360 /* runqueue lock: */
361 raw_spinlock_t lock;
362
363 /*
364 * nr_running and cpu_load should be in the same cacheline because
365 * remote CPUs use both these fields when doing load calculation.
366 */
c82513e5 367 unsigned int nr_running;
029632fb
PZ
368 #define CPU_LOAD_IDX_MAX 5
369 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
370 unsigned long last_load_update_tick;
371#ifdef CONFIG_NO_HZ
372 u64 nohz_stamp;
1c792db7 373 unsigned long nohz_flags;
029632fb
PZ
374#endif
375 int skip_clock_update;
376
377 /* capture load from *all* tasks on this cpu: */
378 struct load_weight load;
379 unsigned long nr_load_updates;
380 u64 nr_switches;
381
382 struct cfs_rq cfs;
383 struct rt_rq rt;
384
385#ifdef CONFIG_FAIR_GROUP_SCHED
386 /* list of leaf cfs_rq on this cpu: */
387 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
388#ifdef CONFIG_SMP
389 unsigned long h_load_throttle;
390#endif /* CONFIG_SMP */
391#endif /* CONFIG_FAIR_GROUP_SCHED */
392
029632fb
PZ
393#ifdef CONFIG_RT_GROUP_SCHED
394 struct list_head leaf_rt_rq_list;
395#endif
396
397 /*
398 * This is part of a global counter where only the total sum
399 * over all CPUs matters. A task can increase this counter on
400 * one CPU and if it got migrated afterwards it may decrease
401 * it on another CPU. Always updated under the runqueue lock:
402 */
403 unsigned long nr_uninterruptible;
404
405 struct task_struct *curr, *idle, *stop;
406 unsigned long next_balance;
407 struct mm_struct *prev_mm;
408
409 u64 clock;
410 u64 clock_task;
411
412 atomic_t nr_iowait;
413
414#ifdef CONFIG_SMP
415 struct root_domain *rd;
416 struct sched_domain *sd;
417
418 unsigned long cpu_power;
419
420 unsigned char idle_balance;
421 /* For active balancing */
422 int post_schedule;
423 int active_balance;
424 int push_cpu;
425 struct cpu_stop_work active_balance_work;
426 /* cpu of this runqueue: */
427 int cpu;
428 int online;
429
367456c7
PZ
430 struct list_head cfs_tasks;
431
029632fb
PZ
432 u64 rt_avg;
433 u64 age_stamp;
434 u64 idle_stamp;
435 u64 avg_idle;
436#endif
437
438#ifdef CONFIG_IRQ_TIME_ACCOUNTING
439 u64 prev_irq_time;
440#endif
441#ifdef CONFIG_PARAVIRT
442 u64 prev_steal_time;
443#endif
444#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
445 u64 prev_steal_time_rq;
446#endif
447
448 /* calc_load related fields */
449 unsigned long calc_load_update;
450 long calc_load_active;
451
452#ifdef CONFIG_SCHED_HRTICK
453#ifdef CONFIG_SMP
454 int hrtick_csd_pending;
455 struct call_single_data hrtick_csd;
456#endif
457 struct hrtimer hrtick_timer;
458#endif
459
460#ifdef CONFIG_SCHEDSTATS
461 /* latency stats */
462 struct sched_info rq_sched_info;
463 unsigned long long rq_cpu_time;
464 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
465
466 /* sys_sched_yield() stats */
467 unsigned int yld_count;
468
469 /* schedule() stats */
029632fb
PZ
470 unsigned int sched_count;
471 unsigned int sched_goidle;
472
473 /* try_to_wake_up() stats */
474 unsigned int ttwu_count;
475 unsigned int ttwu_local;
476#endif
477
478#ifdef CONFIG_SMP
479 struct llist_head wake_list;
480#endif
18bf2805
BS
481
482 struct sched_avg avg;
029632fb
PZ
483};
484
485static inline int cpu_of(struct rq *rq)
486{
487#ifdef CONFIG_SMP
488 return rq->cpu;
489#else
490 return 0;
491#endif
492}
493
494DECLARE_PER_CPU(struct rq, runqueues);
495
518cd623
PZ
496#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
497#define this_rq() (&__get_cpu_var(runqueues))
498#define task_rq(p) cpu_rq(task_cpu(p))
499#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
500#define raw_rq() (&__raw_get_cpu_var(runqueues))
501
502#ifdef CONFIG_SMP
503
029632fb
PZ
504#define rcu_dereference_check_sched_domain(p) \
505 rcu_dereference_check((p), \
506 lockdep_is_held(&sched_domains_mutex))
507
508/*
509 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
510 * See detach_destroy_domains: synchronize_sched for details.
511 *
512 * The domain tree of any CPU may only be accessed from within
513 * preempt-disabled sections.
514 */
515#define for_each_domain(cpu, __sd) \
518cd623
PZ
516 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
517 __sd; __sd = __sd->parent)
029632fb 518
77e81365
SS
519#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
520
518cd623
PZ
521/**
522 * highest_flag_domain - Return highest sched_domain containing flag.
523 * @cpu: The cpu whose highest level of sched domain is to
524 * be returned.
525 * @flag: The flag to check for the highest sched_domain
526 * for the given cpu.
527 *
528 * Returns the highest sched_domain of a cpu which contains the given flag.
529 */
530static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
531{
532 struct sched_domain *sd, *hsd = NULL;
533
534 for_each_domain(cpu, sd) {
535 if (!(sd->flags & flag))
536 break;
537 hsd = sd;
538 }
539
540 return hsd;
541}
542
543DECLARE_PER_CPU(struct sched_domain *, sd_llc);
544DECLARE_PER_CPU(int, sd_llc_id);
545
c1174876
PZ
546extern int group_balance_cpu(struct sched_group *sg);
547
518cd623 548#endif /* CONFIG_SMP */
029632fb 549
391e43da
PZ
550#include "stats.h"
551#include "auto_group.h"
029632fb
PZ
552
553#ifdef CONFIG_CGROUP_SCHED
554
555/*
556 * Return the group to which this tasks belongs.
557 *
8323f26c
PZ
558 * We cannot use task_subsys_state() and friends because the cgroup
559 * subsystem changes that value before the cgroup_subsys::attach() method
560 * is called, therefore we cannot pin it and might observe the wrong value.
561 *
562 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
563 * core changes this before calling sched_move_task().
564 *
565 * Instead we use a 'copy' which is updated from sched_move_task() while
566 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
567 */
568static inline struct task_group *task_group(struct task_struct *p)
569{
8323f26c 570 return p->sched_task_group;
029632fb
PZ
571}
572
573/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
574static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
575{
576#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
577 struct task_group *tg = task_group(p);
578#endif
579
580#ifdef CONFIG_FAIR_GROUP_SCHED
581 p->se.cfs_rq = tg->cfs_rq[cpu];
582 p->se.parent = tg->se[cpu];
583#endif
584
585#ifdef CONFIG_RT_GROUP_SCHED
586 p->rt.rt_rq = tg->rt_rq[cpu];
587 p->rt.parent = tg->rt_se[cpu];
588#endif
589}
590
591#else /* CONFIG_CGROUP_SCHED */
592
593static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
594static inline struct task_group *task_group(struct task_struct *p)
595{
596 return NULL;
597}
598
599#endif /* CONFIG_CGROUP_SCHED */
600
601static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
602{
603 set_task_rq(p, cpu);
604#ifdef CONFIG_SMP
605 /*
606 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
607 * successfuly executed on another CPU. We must ensure that updates of
608 * per-task data have been completed by this moment.
609 */
610 smp_wmb();
611 task_thread_info(p)->cpu = cpu;
612#endif
613}
614
615/*
616 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
617 */
618#ifdef CONFIG_SCHED_DEBUG
c5905afb 619# include <linux/static_key.h>
029632fb
PZ
620# define const_debug __read_mostly
621#else
622# define const_debug const
623#endif
624
625extern const_debug unsigned int sysctl_sched_features;
626
627#define SCHED_FEAT(name, enabled) \
628 __SCHED_FEAT_##name ,
629
630enum {
391e43da 631#include "features.h"
f8b6d1cc 632 __SCHED_FEAT_NR,
029632fb
PZ
633};
634
635#undef SCHED_FEAT
636
f8b6d1cc 637#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 638static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 639{
c5905afb 640 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
641}
642
c5905afb 643static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 644{
c5905afb 645 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
646}
647
648#define SCHED_FEAT(name, enabled) \
c5905afb 649static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
650{ \
651 return static_branch__##enabled(key); \
652}
653
654#include "features.h"
655
656#undef SCHED_FEAT
657
c5905afb 658extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
659#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
660#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 661#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 662#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
663
664static inline u64 global_rt_period(void)
665{
666 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
667}
668
669static inline u64 global_rt_runtime(void)
670{
671 if (sysctl_sched_rt_runtime < 0)
672 return RUNTIME_INF;
673
674 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
675}
676
677
678
679static inline int task_current(struct rq *rq, struct task_struct *p)
680{
681 return rq->curr == p;
682}
683
684static inline int task_running(struct rq *rq, struct task_struct *p)
685{
686#ifdef CONFIG_SMP
687 return p->on_cpu;
688#else
689 return task_current(rq, p);
690#endif
691}
692
693
694#ifndef prepare_arch_switch
695# define prepare_arch_switch(next) do { } while (0)
696#endif
697#ifndef finish_arch_switch
698# define finish_arch_switch(prev) do { } while (0)
699#endif
01f23e16
CM
700#ifndef finish_arch_post_lock_switch
701# define finish_arch_post_lock_switch() do { } while (0)
702#endif
029632fb
PZ
703
704#ifndef __ARCH_WANT_UNLOCKED_CTXSW
705static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
706{
707#ifdef CONFIG_SMP
708 /*
709 * We can optimise this out completely for !SMP, because the
710 * SMP rebalancing from interrupt is the only thing that cares
711 * here.
712 */
713 next->on_cpu = 1;
714#endif
715}
716
717static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
718{
719#ifdef CONFIG_SMP
720 /*
721 * After ->on_cpu is cleared, the task can be moved to a different CPU.
722 * We must ensure this doesn't happen until the switch is completely
723 * finished.
724 */
725 smp_wmb();
726 prev->on_cpu = 0;
727#endif
728#ifdef CONFIG_DEBUG_SPINLOCK
729 /* this is a valid case when another task releases the spinlock */
730 rq->lock.owner = current;
731#endif
732 /*
733 * If we are tracking spinlock dependencies then we have to
734 * fix up the runqueue lock - which gets 'carried over' from
735 * prev into current:
736 */
737 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
738
739 raw_spin_unlock_irq(&rq->lock);
740}
741
742#else /* __ARCH_WANT_UNLOCKED_CTXSW */
743static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
744{
745#ifdef CONFIG_SMP
746 /*
747 * We can optimise this out completely for !SMP, because the
748 * SMP rebalancing from interrupt is the only thing that cares
749 * here.
750 */
751 next->on_cpu = 1;
752#endif
029632fb 753 raw_spin_unlock(&rq->lock);
029632fb
PZ
754}
755
756static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
757{
758#ifdef CONFIG_SMP
759 /*
760 * After ->on_cpu is cleared, the task can be moved to a different CPU.
761 * We must ensure this doesn't happen until the switch is completely
762 * finished.
763 */
764 smp_wmb();
765 prev->on_cpu = 0;
766#endif
029632fb 767 local_irq_enable();
029632fb
PZ
768}
769#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
770
771
772static inline void update_load_add(struct load_weight *lw, unsigned long inc)
773{
774 lw->weight += inc;
775 lw->inv_weight = 0;
776}
777
778static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
779{
780 lw->weight -= dec;
781 lw->inv_weight = 0;
782}
783
784static inline void update_load_set(struct load_weight *lw, unsigned long w)
785{
786 lw->weight = w;
787 lw->inv_weight = 0;
788}
789
790/*
791 * To aid in avoiding the subversion of "niceness" due to uneven distribution
792 * of tasks with abnormal "nice" values across CPUs the contribution that
793 * each task makes to its run queue's load is weighted according to its
794 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
795 * scaled version of the new time slice allocation that they receive on time
796 * slice expiry etc.
797 */
798
799#define WEIGHT_IDLEPRIO 3
800#define WMULT_IDLEPRIO 1431655765
801
802/*
803 * Nice levels are multiplicative, with a gentle 10% change for every
804 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
805 * nice 1, it will get ~10% less CPU time than another CPU-bound task
806 * that remained on nice 0.
807 *
808 * The "10% effect" is relative and cumulative: from _any_ nice level,
809 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
810 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
811 * If a task goes up by ~10% and another task goes down by ~10% then
812 * the relative distance between them is ~25%.)
813 */
814static const int prio_to_weight[40] = {
815 /* -20 */ 88761, 71755, 56483, 46273, 36291,
816 /* -15 */ 29154, 23254, 18705, 14949, 11916,
817 /* -10 */ 9548, 7620, 6100, 4904, 3906,
818 /* -5 */ 3121, 2501, 1991, 1586, 1277,
819 /* 0 */ 1024, 820, 655, 526, 423,
820 /* 5 */ 335, 272, 215, 172, 137,
821 /* 10 */ 110, 87, 70, 56, 45,
822 /* 15 */ 36, 29, 23, 18, 15,
823};
824
825/*
826 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
827 *
828 * In cases where the weight does not change often, we can use the
829 * precalculated inverse to speed up arithmetics by turning divisions
830 * into multiplications:
831 */
832static const u32 prio_to_wmult[40] = {
833 /* -20 */ 48388, 59856, 76040, 92818, 118348,
834 /* -15 */ 147320, 184698, 229616, 287308, 360437,
835 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
836 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
837 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
838 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
839 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
840 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
841};
842
843/* Time spent by the tasks of the cpu accounting group executing in ... */
844enum cpuacct_stat_index {
845 CPUACCT_STAT_USER, /* ... user mode */
846 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
847
848 CPUACCT_STAT_NSTATS,
849};
850
851
852#define sched_class_highest (&stop_sched_class)
853#define for_each_class(class) \
854 for (class = sched_class_highest; class; class = class->next)
855
856extern const struct sched_class stop_sched_class;
857extern const struct sched_class rt_sched_class;
858extern const struct sched_class fair_sched_class;
859extern const struct sched_class idle_sched_class;
860
861
862#ifdef CONFIG_SMP
863
864extern void trigger_load_balance(struct rq *rq, int cpu);
865extern void idle_balance(int this_cpu, struct rq *this_rq);
866
867#else /* CONFIG_SMP */
868
869static inline void idle_balance(int cpu, struct rq *rq)
870{
871}
872
873#endif
874
875extern void sysrq_sched_debug_show(void);
876extern void sched_init_granularity(void);
877extern void update_max_interval(void);
878extern void update_group_power(struct sched_domain *sd, int cpu);
879extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
880extern void init_sched_rt_class(void);
881extern void init_sched_fair_class(void);
882
883extern void resched_task(struct task_struct *p);
884extern void resched_cpu(int cpu);
885
886extern struct rt_bandwidth def_rt_bandwidth;
887extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
888
556061b0 889extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
890
891#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
892#include <linux/cgroup.h>
893/* track cpu usage of a group of tasks and its child groups */
894struct cpuacct {
895 struct cgroup_subsys_state css;
896 /* cpuusage holds pointer to a u64-type object on every cpu */
897 u64 __percpu *cpuusage;
898 struct kernel_cpustat __percpu *cpustat;
899};
900
73fbec60
FW
901extern struct cgroup_subsys cpuacct_subsys;
902extern struct cpuacct root_cpuacct;
903
54c707e9
GC
904/* return cpu accounting group corresponding to this container */
905static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
906{
907 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
908 struct cpuacct, css);
909}
910
911/* return cpu accounting group to which this task belongs */
912static inline struct cpuacct *task_ca(struct task_struct *tsk)
913{
914 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
915 struct cpuacct, css);
916}
917
918static inline struct cpuacct *parent_ca(struct cpuacct *ca)
919{
920 if (!ca || !ca->css.cgroup->parent)
921 return NULL;
922 return cgroup_ca(ca->css.cgroup->parent);
923}
924
029632fb 925extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
926#else
927static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
928#endif
929
73fbec60
FW
930#ifdef CONFIG_PARAVIRT
931static inline u64 steal_ticks(u64 steal)
932{
933 if (unlikely(steal > NSEC_PER_SEC))
934 return div_u64(steal, TICK_NSEC);
935
936 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
937}
938#endif
939
029632fb
PZ
940static inline void inc_nr_running(struct rq *rq)
941{
942 rq->nr_running++;
943}
944
945static inline void dec_nr_running(struct rq *rq)
946{
947 rq->nr_running--;
948}
949
950extern void update_rq_clock(struct rq *rq);
951
952extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
953extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
954
955extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
956
957extern const_debug unsigned int sysctl_sched_time_avg;
958extern const_debug unsigned int sysctl_sched_nr_migrate;
959extern const_debug unsigned int sysctl_sched_migration_cost;
960
961static inline u64 sched_avg_period(void)
962{
963 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
964}
965
029632fb
PZ
966#ifdef CONFIG_SCHED_HRTICK
967
968/*
969 * Use hrtick when:
970 * - enabled by features
971 * - hrtimer is actually high res
972 */
973static inline int hrtick_enabled(struct rq *rq)
974{
975 if (!sched_feat(HRTICK))
976 return 0;
977 if (!cpu_active(cpu_of(rq)))
978 return 0;
979 return hrtimer_is_hres_active(&rq->hrtick_timer);
980}
981
982void hrtick_start(struct rq *rq, u64 delay);
983
b39e66ea
MG
984#else
985
986static inline int hrtick_enabled(struct rq *rq)
987{
988 return 0;
989}
990
029632fb
PZ
991#endif /* CONFIG_SCHED_HRTICK */
992
993#ifdef CONFIG_SMP
994extern void sched_avg_update(struct rq *rq);
995static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
996{
997 rq->rt_avg += rt_delta;
998 sched_avg_update(rq);
999}
1000#else
1001static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1002static inline void sched_avg_update(struct rq *rq) { }
1003#endif
1004
1005extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1006
1007#ifdef CONFIG_SMP
1008#ifdef CONFIG_PREEMPT
1009
1010static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1011
1012/*
1013 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1014 * way at the expense of forcing extra atomic operations in all
1015 * invocations. This assures that the double_lock is acquired using the
1016 * same underlying policy as the spinlock_t on this architecture, which
1017 * reduces latency compared to the unfair variant below. However, it
1018 * also adds more overhead and therefore may reduce throughput.
1019 */
1020static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1021 __releases(this_rq->lock)
1022 __acquires(busiest->lock)
1023 __acquires(this_rq->lock)
1024{
1025 raw_spin_unlock(&this_rq->lock);
1026 double_rq_lock(this_rq, busiest);
1027
1028 return 1;
1029}
1030
1031#else
1032/*
1033 * Unfair double_lock_balance: Optimizes throughput at the expense of
1034 * latency by eliminating extra atomic operations when the locks are
1035 * already in proper order on entry. This favors lower cpu-ids and will
1036 * grant the double lock to lower cpus over higher ids under contention,
1037 * regardless of entry order into the function.
1038 */
1039static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1040 __releases(this_rq->lock)
1041 __acquires(busiest->lock)
1042 __acquires(this_rq->lock)
1043{
1044 int ret = 0;
1045
1046 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1047 if (busiest < this_rq) {
1048 raw_spin_unlock(&this_rq->lock);
1049 raw_spin_lock(&busiest->lock);
1050 raw_spin_lock_nested(&this_rq->lock,
1051 SINGLE_DEPTH_NESTING);
1052 ret = 1;
1053 } else
1054 raw_spin_lock_nested(&busiest->lock,
1055 SINGLE_DEPTH_NESTING);
1056 }
1057 return ret;
1058}
1059
1060#endif /* CONFIG_PREEMPT */
1061
1062/*
1063 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1064 */
1065static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1066{
1067 if (unlikely(!irqs_disabled())) {
1068 /* printk() doesn't work good under rq->lock */
1069 raw_spin_unlock(&this_rq->lock);
1070 BUG_ON(1);
1071 }
1072
1073 return _double_lock_balance(this_rq, busiest);
1074}
1075
1076static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1077 __releases(busiest->lock)
1078{
1079 raw_spin_unlock(&busiest->lock);
1080 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1081}
1082
1083/*
1084 * double_rq_lock - safely lock two runqueues
1085 *
1086 * Note this does not disable interrupts like task_rq_lock,
1087 * you need to do so manually before calling.
1088 */
1089static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1090 __acquires(rq1->lock)
1091 __acquires(rq2->lock)
1092{
1093 BUG_ON(!irqs_disabled());
1094 if (rq1 == rq2) {
1095 raw_spin_lock(&rq1->lock);
1096 __acquire(rq2->lock); /* Fake it out ;) */
1097 } else {
1098 if (rq1 < rq2) {
1099 raw_spin_lock(&rq1->lock);
1100 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1101 } else {
1102 raw_spin_lock(&rq2->lock);
1103 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1104 }
1105 }
1106}
1107
1108/*
1109 * double_rq_unlock - safely unlock two runqueues
1110 *
1111 * Note this does not restore interrupts like task_rq_unlock,
1112 * you need to do so manually after calling.
1113 */
1114static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1115 __releases(rq1->lock)
1116 __releases(rq2->lock)
1117{
1118 raw_spin_unlock(&rq1->lock);
1119 if (rq1 != rq2)
1120 raw_spin_unlock(&rq2->lock);
1121 else
1122 __release(rq2->lock);
1123}
1124
1125#else /* CONFIG_SMP */
1126
1127/*
1128 * double_rq_lock - safely lock two runqueues
1129 *
1130 * Note this does not disable interrupts like task_rq_lock,
1131 * you need to do so manually before calling.
1132 */
1133static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1134 __acquires(rq1->lock)
1135 __acquires(rq2->lock)
1136{
1137 BUG_ON(!irqs_disabled());
1138 BUG_ON(rq1 != rq2);
1139 raw_spin_lock(&rq1->lock);
1140 __acquire(rq2->lock); /* Fake it out ;) */
1141}
1142
1143/*
1144 * double_rq_unlock - safely unlock two runqueues
1145 *
1146 * Note this does not restore interrupts like task_rq_unlock,
1147 * you need to do so manually after calling.
1148 */
1149static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1150 __releases(rq1->lock)
1151 __releases(rq2->lock)
1152{
1153 BUG_ON(rq1 != rq2);
1154 raw_spin_unlock(&rq1->lock);
1155 __release(rq2->lock);
1156}
1157
1158#endif
1159
1160extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1161extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1162extern void print_cfs_stats(struct seq_file *m, int cpu);
1163extern void print_rt_stats(struct seq_file *m, int cpu);
1164
1165extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1166extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1167
1168extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1169
1170#ifdef CONFIG_NO_HZ
1171enum rq_nohz_flag_bits {
1172 NOHZ_TICK_STOPPED,
1173 NOHZ_BALANCE_KICK,
69e1e811 1174 NOHZ_IDLE,
1c792db7
SS
1175};
1176
1177#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1178#endif
73fbec60
FW
1179
1180#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1181
1182DECLARE_PER_CPU(u64, cpu_hardirq_time);
1183DECLARE_PER_CPU(u64, cpu_softirq_time);
1184
1185#ifndef CONFIG_64BIT
1186DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1187
1188static inline void irq_time_write_begin(void)
1189{
1190 __this_cpu_inc(irq_time_seq.sequence);
1191 smp_wmb();
1192}
1193
1194static inline void irq_time_write_end(void)
1195{
1196 smp_wmb();
1197 __this_cpu_inc(irq_time_seq.sequence);
1198}
1199
1200static inline u64 irq_time_read(int cpu)
1201{
1202 u64 irq_time;
1203 unsigned seq;
1204
1205 do {
1206 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1207 irq_time = per_cpu(cpu_softirq_time, cpu) +
1208 per_cpu(cpu_hardirq_time, cpu);
1209 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1210
1211 return irq_time;
1212}
1213#else /* CONFIG_64BIT */
1214static inline void irq_time_write_begin(void)
1215{
1216}
1217
1218static inline void irq_time_write_end(void)
1219{
1220}
1221
1222static inline u64 irq_time_read(int cpu)
1223{
1224 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1225}
1226#endif /* CONFIG_64BIT */
1227#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.106001 seconds and 5 git commands to generate.