sched: Normalize tg load contributions against runnable time
[deliverable/linux.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
35cf4e50 83extern struct list_head task_groups;
029632fb
PZ
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
c566e8e9 115 atomic64_t load_avg;
bb17f655 116 atomic_t runnable_avg;
029632fb
PZ
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
c82513e5 206 unsigned int nr_running, h_nr_running;
029632fb
PZ
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
029632fb
PZ
217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
2dac754e
PT
227#ifdef CONFIG_SMP
228 /*
229 * CFS Load tracking
230 * Under CFS, load is tracked on a per-entity basis and aggregated up.
231 * This allows for the description of both thread and group usage (in
232 * the FAIR_GROUP_SCHED case).
233 */
9ee474f5 234 u64 runnable_load_avg, blocked_load_avg;
aff3e498 235 atomic64_t decay_counter, removed_load;
9ee474f5 236 u64 last_decay;
c566e8e9 237#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 238 u32 tg_runnable_contrib;
c566e8e9
PT
239 u64 tg_load_contrib;
240#endif
2dac754e 241#endif
029632fb
PZ
242#ifdef CONFIG_FAIR_GROUP_SCHED
243 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
244
245 /*
246 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
247 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
248 * (like users, containers etc.)
249 *
250 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
251 * list is used during load balance.
252 */
253 int on_list;
254 struct list_head leaf_cfs_rq_list;
255 struct task_group *tg; /* group that "owns" this runqueue */
256
257#ifdef CONFIG_SMP
029632fb
PZ
258 /*
259 * h_load = weight * f(tg)
260 *
261 * Where f(tg) is the recursive weight fraction assigned to
262 * this group.
263 */
264 unsigned long h_load;
265
266 /*
267 * Maintaining per-cpu shares distribution for group scheduling
268 *
269 * load_stamp is the last time we updated the load average
270 * load_last is the last time we updated the load average and saw load
271 * load_unacc_exec_time is currently unaccounted execution time
272 */
273 u64 load_avg;
274 u64 load_period;
275 u64 load_stamp, load_last, load_unacc_exec_time;
276
277 unsigned long load_contribution;
278#endif /* CONFIG_SMP */
279#ifdef CONFIG_CFS_BANDWIDTH
280 int runtime_enabled;
281 u64 runtime_expires;
282 s64 runtime_remaining;
283
284 u64 throttled_timestamp;
285 int throttled, throttle_count;
286 struct list_head throttled_list;
287#endif /* CONFIG_CFS_BANDWIDTH */
288#endif /* CONFIG_FAIR_GROUP_SCHED */
289};
290
291static inline int rt_bandwidth_enabled(void)
292{
293 return sysctl_sched_rt_runtime >= 0;
294}
295
296/* Real-Time classes' related field in a runqueue: */
297struct rt_rq {
298 struct rt_prio_array active;
c82513e5 299 unsigned int rt_nr_running;
029632fb
PZ
300#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
301 struct {
302 int curr; /* highest queued rt task prio */
303#ifdef CONFIG_SMP
304 int next; /* next highest */
305#endif
306 } highest_prio;
307#endif
308#ifdef CONFIG_SMP
309 unsigned long rt_nr_migratory;
310 unsigned long rt_nr_total;
311 int overloaded;
312 struct plist_head pushable_tasks;
313#endif
314 int rt_throttled;
315 u64 rt_time;
316 u64 rt_runtime;
317 /* Nests inside the rq lock: */
318 raw_spinlock_t rt_runtime_lock;
319
320#ifdef CONFIG_RT_GROUP_SCHED
321 unsigned long rt_nr_boosted;
322
323 struct rq *rq;
324 struct list_head leaf_rt_rq_list;
325 struct task_group *tg;
326#endif
327};
328
329#ifdef CONFIG_SMP
330
331/*
332 * We add the notion of a root-domain which will be used to define per-domain
333 * variables. Each exclusive cpuset essentially defines an island domain by
334 * fully partitioning the member cpus from any other cpuset. Whenever a new
335 * exclusive cpuset is created, we also create and attach a new root-domain
336 * object.
337 *
338 */
339struct root_domain {
340 atomic_t refcount;
341 atomic_t rto_count;
342 struct rcu_head rcu;
343 cpumask_var_t span;
344 cpumask_var_t online;
345
346 /*
347 * The "RT overload" flag: it gets set if a CPU has more than
348 * one runnable RT task.
349 */
350 cpumask_var_t rto_mask;
351 struct cpupri cpupri;
352};
353
354extern struct root_domain def_root_domain;
355
356#endif /* CONFIG_SMP */
357
358/*
359 * This is the main, per-CPU runqueue data structure.
360 *
361 * Locking rule: those places that want to lock multiple runqueues
362 * (such as the load balancing or the thread migration code), lock
363 * acquire operations must be ordered by ascending &runqueue.
364 */
365struct rq {
366 /* runqueue lock: */
367 raw_spinlock_t lock;
368
369 /*
370 * nr_running and cpu_load should be in the same cacheline because
371 * remote CPUs use both these fields when doing load calculation.
372 */
c82513e5 373 unsigned int nr_running;
029632fb
PZ
374 #define CPU_LOAD_IDX_MAX 5
375 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
376 unsigned long last_load_update_tick;
377#ifdef CONFIG_NO_HZ
378 u64 nohz_stamp;
1c792db7 379 unsigned long nohz_flags;
029632fb
PZ
380#endif
381 int skip_clock_update;
382
383 /* capture load from *all* tasks on this cpu: */
384 struct load_weight load;
385 unsigned long nr_load_updates;
386 u64 nr_switches;
387
388 struct cfs_rq cfs;
389 struct rt_rq rt;
390
391#ifdef CONFIG_FAIR_GROUP_SCHED
392 /* list of leaf cfs_rq on this cpu: */
393 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
394#ifdef CONFIG_SMP
395 unsigned long h_load_throttle;
396#endif /* CONFIG_SMP */
397#endif /* CONFIG_FAIR_GROUP_SCHED */
398
029632fb
PZ
399#ifdef CONFIG_RT_GROUP_SCHED
400 struct list_head leaf_rt_rq_list;
401#endif
402
403 /*
404 * This is part of a global counter where only the total sum
405 * over all CPUs matters. A task can increase this counter on
406 * one CPU and if it got migrated afterwards it may decrease
407 * it on another CPU. Always updated under the runqueue lock:
408 */
409 unsigned long nr_uninterruptible;
410
411 struct task_struct *curr, *idle, *stop;
412 unsigned long next_balance;
413 struct mm_struct *prev_mm;
414
415 u64 clock;
416 u64 clock_task;
417
418 atomic_t nr_iowait;
419
420#ifdef CONFIG_SMP
421 struct root_domain *rd;
422 struct sched_domain *sd;
423
424 unsigned long cpu_power;
425
426 unsigned char idle_balance;
427 /* For active balancing */
428 int post_schedule;
429 int active_balance;
430 int push_cpu;
431 struct cpu_stop_work active_balance_work;
432 /* cpu of this runqueue: */
433 int cpu;
434 int online;
435
367456c7
PZ
436 struct list_head cfs_tasks;
437
029632fb
PZ
438 u64 rt_avg;
439 u64 age_stamp;
440 u64 idle_stamp;
441 u64 avg_idle;
442#endif
443
444#ifdef CONFIG_IRQ_TIME_ACCOUNTING
445 u64 prev_irq_time;
446#endif
447#ifdef CONFIG_PARAVIRT
448 u64 prev_steal_time;
449#endif
450#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
451 u64 prev_steal_time_rq;
452#endif
453
454 /* calc_load related fields */
455 unsigned long calc_load_update;
456 long calc_load_active;
457
458#ifdef CONFIG_SCHED_HRTICK
459#ifdef CONFIG_SMP
460 int hrtick_csd_pending;
461 struct call_single_data hrtick_csd;
462#endif
463 struct hrtimer hrtick_timer;
464#endif
465
466#ifdef CONFIG_SCHEDSTATS
467 /* latency stats */
468 struct sched_info rq_sched_info;
469 unsigned long long rq_cpu_time;
470 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
471
472 /* sys_sched_yield() stats */
473 unsigned int yld_count;
474
475 /* schedule() stats */
029632fb
PZ
476 unsigned int sched_count;
477 unsigned int sched_goidle;
478
479 /* try_to_wake_up() stats */
480 unsigned int ttwu_count;
481 unsigned int ttwu_local;
482#endif
483
484#ifdef CONFIG_SMP
485 struct llist_head wake_list;
486#endif
18bf2805
BS
487
488 struct sched_avg avg;
029632fb
PZ
489};
490
491static inline int cpu_of(struct rq *rq)
492{
493#ifdef CONFIG_SMP
494 return rq->cpu;
495#else
496 return 0;
497#endif
498}
499
500DECLARE_PER_CPU(struct rq, runqueues);
501
518cd623
PZ
502#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
503#define this_rq() (&__get_cpu_var(runqueues))
504#define task_rq(p) cpu_rq(task_cpu(p))
505#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
506#define raw_rq() (&__raw_get_cpu_var(runqueues))
507
508#ifdef CONFIG_SMP
509
029632fb
PZ
510#define rcu_dereference_check_sched_domain(p) \
511 rcu_dereference_check((p), \
512 lockdep_is_held(&sched_domains_mutex))
513
514/*
515 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
516 * See detach_destroy_domains: synchronize_sched for details.
517 *
518 * The domain tree of any CPU may only be accessed from within
519 * preempt-disabled sections.
520 */
521#define for_each_domain(cpu, __sd) \
518cd623
PZ
522 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
523 __sd; __sd = __sd->parent)
029632fb 524
77e81365
SS
525#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
526
518cd623
PZ
527/**
528 * highest_flag_domain - Return highest sched_domain containing flag.
529 * @cpu: The cpu whose highest level of sched domain is to
530 * be returned.
531 * @flag: The flag to check for the highest sched_domain
532 * for the given cpu.
533 *
534 * Returns the highest sched_domain of a cpu which contains the given flag.
535 */
536static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
537{
538 struct sched_domain *sd, *hsd = NULL;
539
540 for_each_domain(cpu, sd) {
541 if (!(sd->flags & flag))
542 break;
543 hsd = sd;
544 }
545
546 return hsd;
547}
548
549DECLARE_PER_CPU(struct sched_domain *, sd_llc);
550DECLARE_PER_CPU(int, sd_llc_id);
551
c1174876
PZ
552extern int group_balance_cpu(struct sched_group *sg);
553
518cd623 554#endif /* CONFIG_SMP */
029632fb 555
391e43da
PZ
556#include "stats.h"
557#include "auto_group.h"
029632fb
PZ
558
559#ifdef CONFIG_CGROUP_SCHED
560
561/*
562 * Return the group to which this tasks belongs.
563 *
8323f26c
PZ
564 * We cannot use task_subsys_state() and friends because the cgroup
565 * subsystem changes that value before the cgroup_subsys::attach() method
566 * is called, therefore we cannot pin it and might observe the wrong value.
567 *
568 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
569 * core changes this before calling sched_move_task().
570 *
571 * Instead we use a 'copy' which is updated from sched_move_task() while
572 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
573 */
574static inline struct task_group *task_group(struct task_struct *p)
575{
8323f26c 576 return p->sched_task_group;
029632fb
PZ
577}
578
579/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
580static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
581{
582#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
583 struct task_group *tg = task_group(p);
584#endif
585
586#ifdef CONFIG_FAIR_GROUP_SCHED
587 p->se.cfs_rq = tg->cfs_rq[cpu];
588 p->se.parent = tg->se[cpu];
589#endif
590
591#ifdef CONFIG_RT_GROUP_SCHED
592 p->rt.rt_rq = tg->rt_rq[cpu];
593 p->rt.parent = tg->rt_se[cpu];
594#endif
595}
596
597#else /* CONFIG_CGROUP_SCHED */
598
599static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
600static inline struct task_group *task_group(struct task_struct *p)
601{
602 return NULL;
603}
604
605#endif /* CONFIG_CGROUP_SCHED */
606
607static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
608{
609 set_task_rq(p, cpu);
610#ifdef CONFIG_SMP
611 /*
612 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
613 * successfuly executed on another CPU. We must ensure that updates of
614 * per-task data have been completed by this moment.
615 */
616 smp_wmb();
617 task_thread_info(p)->cpu = cpu;
618#endif
619}
620
621/*
622 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
623 */
624#ifdef CONFIG_SCHED_DEBUG
c5905afb 625# include <linux/static_key.h>
029632fb
PZ
626# define const_debug __read_mostly
627#else
628# define const_debug const
629#endif
630
631extern const_debug unsigned int sysctl_sched_features;
632
633#define SCHED_FEAT(name, enabled) \
634 __SCHED_FEAT_##name ,
635
636enum {
391e43da 637#include "features.h"
f8b6d1cc 638 __SCHED_FEAT_NR,
029632fb
PZ
639};
640
641#undef SCHED_FEAT
642
f8b6d1cc 643#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 644static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 645{
c5905afb 646 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
647}
648
c5905afb 649static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 650{
c5905afb 651 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
652}
653
654#define SCHED_FEAT(name, enabled) \
c5905afb 655static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
656{ \
657 return static_branch__##enabled(key); \
658}
659
660#include "features.h"
661
662#undef SCHED_FEAT
663
c5905afb 664extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
665#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
666#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 667#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 668#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
669
670static inline u64 global_rt_period(void)
671{
672 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
673}
674
675static inline u64 global_rt_runtime(void)
676{
677 if (sysctl_sched_rt_runtime < 0)
678 return RUNTIME_INF;
679
680 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
681}
682
683
684
685static inline int task_current(struct rq *rq, struct task_struct *p)
686{
687 return rq->curr == p;
688}
689
690static inline int task_running(struct rq *rq, struct task_struct *p)
691{
692#ifdef CONFIG_SMP
693 return p->on_cpu;
694#else
695 return task_current(rq, p);
696#endif
697}
698
699
700#ifndef prepare_arch_switch
701# define prepare_arch_switch(next) do { } while (0)
702#endif
703#ifndef finish_arch_switch
704# define finish_arch_switch(prev) do { } while (0)
705#endif
01f23e16
CM
706#ifndef finish_arch_post_lock_switch
707# define finish_arch_post_lock_switch() do { } while (0)
708#endif
029632fb
PZ
709
710#ifndef __ARCH_WANT_UNLOCKED_CTXSW
711static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
712{
713#ifdef CONFIG_SMP
714 /*
715 * We can optimise this out completely for !SMP, because the
716 * SMP rebalancing from interrupt is the only thing that cares
717 * here.
718 */
719 next->on_cpu = 1;
720#endif
721}
722
723static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
724{
725#ifdef CONFIG_SMP
726 /*
727 * After ->on_cpu is cleared, the task can be moved to a different CPU.
728 * We must ensure this doesn't happen until the switch is completely
729 * finished.
730 */
731 smp_wmb();
732 prev->on_cpu = 0;
733#endif
734#ifdef CONFIG_DEBUG_SPINLOCK
735 /* this is a valid case when another task releases the spinlock */
736 rq->lock.owner = current;
737#endif
738 /*
739 * If we are tracking spinlock dependencies then we have to
740 * fix up the runqueue lock - which gets 'carried over' from
741 * prev into current:
742 */
743 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
744
745 raw_spin_unlock_irq(&rq->lock);
746}
747
748#else /* __ARCH_WANT_UNLOCKED_CTXSW */
749static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
750{
751#ifdef CONFIG_SMP
752 /*
753 * We can optimise this out completely for !SMP, because the
754 * SMP rebalancing from interrupt is the only thing that cares
755 * here.
756 */
757 next->on_cpu = 1;
758#endif
029632fb 759 raw_spin_unlock(&rq->lock);
029632fb
PZ
760}
761
762static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
763{
764#ifdef CONFIG_SMP
765 /*
766 * After ->on_cpu is cleared, the task can be moved to a different CPU.
767 * We must ensure this doesn't happen until the switch is completely
768 * finished.
769 */
770 smp_wmb();
771 prev->on_cpu = 0;
772#endif
029632fb 773 local_irq_enable();
029632fb
PZ
774}
775#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
776
777
778static inline void update_load_add(struct load_weight *lw, unsigned long inc)
779{
780 lw->weight += inc;
781 lw->inv_weight = 0;
782}
783
784static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
785{
786 lw->weight -= dec;
787 lw->inv_weight = 0;
788}
789
790static inline void update_load_set(struct load_weight *lw, unsigned long w)
791{
792 lw->weight = w;
793 lw->inv_weight = 0;
794}
795
796/*
797 * To aid in avoiding the subversion of "niceness" due to uneven distribution
798 * of tasks with abnormal "nice" values across CPUs the contribution that
799 * each task makes to its run queue's load is weighted according to its
800 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
801 * scaled version of the new time slice allocation that they receive on time
802 * slice expiry etc.
803 */
804
805#define WEIGHT_IDLEPRIO 3
806#define WMULT_IDLEPRIO 1431655765
807
808/*
809 * Nice levels are multiplicative, with a gentle 10% change for every
810 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
811 * nice 1, it will get ~10% less CPU time than another CPU-bound task
812 * that remained on nice 0.
813 *
814 * The "10% effect" is relative and cumulative: from _any_ nice level,
815 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
816 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
817 * If a task goes up by ~10% and another task goes down by ~10% then
818 * the relative distance between them is ~25%.)
819 */
820static const int prio_to_weight[40] = {
821 /* -20 */ 88761, 71755, 56483, 46273, 36291,
822 /* -15 */ 29154, 23254, 18705, 14949, 11916,
823 /* -10 */ 9548, 7620, 6100, 4904, 3906,
824 /* -5 */ 3121, 2501, 1991, 1586, 1277,
825 /* 0 */ 1024, 820, 655, 526, 423,
826 /* 5 */ 335, 272, 215, 172, 137,
827 /* 10 */ 110, 87, 70, 56, 45,
828 /* 15 */ 36, 29, 23, 18, 15,
829};
830
831/*
832 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
833 *
834 * In cases where the weight does not change often, we can use the
835 * precalculated inverse to speed up arithmetics by turning divisions
836 * into multiplications:
837 */
838static const u32 prio_to_wmult[40] = {
839 /* -20 */ 48388, 59856, 76040, 92818, 118348,
840 /* -15 */ 147320, 184698, 229616, 287308, 360437,
841 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
842 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
843 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
844 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
845 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
846 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
847};
848
849/* Time spent by the tasks of the cpu accounting group executing in ... */
850enum cpuacct_stat_index {
851 CPUACCT_STAT_USER, /* ... user mode */
852 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
853
854 CPUACCT_STAT_NSTATS,
855};
856
857
858#define sched_class_highest (&stop_sched_class)
859#define for_each_class(class) \
860 for (class = sched_class_highest; class; class = class->next)
861
862extern const struct sched_class stop_sched_class;
863extern const struct sched_class rt_sched_class;
864extern const struct sched_class fair_sched_class;
865extern const struct sched_class idle_sched_class;
866
867
868#ifdef CONFIG_SMP
869
870extern void trigger_load_balance(struct rq *rq, int cpu);
871extern void idle_balance(int this_cpu, struct rq *this_rq);
872
873#else /* CONFIG_SMP */
874
875static inline void idle_balance(int cpu, struct rq *rq)
876{
877}
878
879#endif
880
881extern void sysrq_sched_debug_show(void);
882extern void sched_init_granularity(void);
883extern void update_max_interval(void);
884extern void update_group_power(struct sched_domain *sd, int cpu);
885extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
886extern void init_sched_rt_class(void);
887extern void init_sched_fair_class(void);
888
889extern void resched_task(struct task_struct *p);
890extern void resched_cpu(int cpu);
891
892extern struct rt_bandwidth def_rt_bandwidth;
893extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
894
556061b0 895extern void update_idle_cpu_load(struct rq *this_rq);
029632fb
PZ
896
897#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
898#include <linux/cgroup.h>
899/* track cpu usage of a group of tasks and its child groups */
900struct cpuacct {
901 struct cgroup_subsys_state css;
902 /* cpuusage holds pointer to a u64-type object on every cpu */
903 u64 __percpu *cpuusage;
904 struct kernel_cpustat __percpu *cpustat;
905};
906
73fbec60
FW
907extern struct cgroup_subsys cpuacct_subsys;
908extern struct cpuacct root_cpuacct;
909
54c707e9
GC
910/* return cpu accounting group corresponding to this container */
911static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
912{
913 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
914 struct cpuacct, css);
915}
916
917/* return cpu accounting group to which this task belongs */
918static inline struct cpuacct *task_ca(struct task_struct *tsk)
919{
920 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
921 struct cpuacct, css);
922}
923
924static inline struct cpuacct *parent_ca(struct cpuacct *ca)
925{
926 if (!ca || !ca->css.cgroup->parent)
927 return NULL;
928 return cgroup_ca(ca->css.cgroup->parent);
929}
930
029632fb 931extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
932#else
933static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
934#endif
935
73fbec60
FW
936#ifdef CONFIG_PARAVIRT
937static inline u64 steal_ticks(u64 steal)
938{
939 if (unlikely(steal > NSEC_PER_SEC))
940 return div_u64(steal, TICK_NSEC);
941
942 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
943}
944#endif
945
029632fb
PZ
946static inline void inc_nr_running(struct rq *rq)
947{
948 rq->nr_running++;
949}
950
951static inline void dec_nr_running(struct rq *rq)
952{
953 rq->nr_running--;
954}
955
956extern void update_rq_clock(struct rq *rq);
957
958extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
959extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
960
961extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
962
963extern const_debug unsigned int sysctl_sched_time_avg;
964extern const_debug unsigned int sysctl_sched_nr_migrate;
965extern const_debug unsigned int sysctl_sched_migration_cost;
966
967static inline u64 sched_avg_period(void)
968{
969 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
970}
971
029632fb
PZ
972#ifdef CONFIG_SCHED_HRTICK
973
974/*
975 * Use hrtick when:
976 * - enabled by features
977 * - hrtimer is actually high res
978 */
979static inline int hrtick_enabled(struct rq *rq)
980{
981 if (!sched_feat(HRTICK))
982 return 0;
983 if (!cpu_active(cpu_of(rq)))
984 return 0;
985 return hrtimer_is_hres_active(&rq->hrtick_timer);
986}
987
988void hrtick_start(struct rq *rq, u64 delay);
989
b39e66ea
MG
990#else
991
992static inline int hrtick_enabled(struct rq *rq)
993{
994 return 0;
995}
996
029632fb
PZ
997#endif /* CONFIG_SCHED_HRTICK */
998
999#ifdef CONFIG_SMP
1000extern void sched_avg_update(struct rq *rq);
1001static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1002{
1003 rq->rt_avg += rt_delta;
1004 sched_avg_update(rq);
1005}
1006#else
1007static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1008static inline void sched_avg_update(struct rq *rq) { }
1009#endif
1010
1011extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1012
1013#ifdef CONFIG_SMP
1014#ifdef CONFIG_PREEMPT
1015
1016static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1017
1018/*
1019 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1020 * way at the expense of forcing extra atomic operations in all
1021 * invocations. This assures that the double_lock is acquired using the
1022 * same underlying policy as the spinlock_t on this architecture, which
1023 * reduces latency compared to the unfair variant below. However, it
1024 * also adds more overhead and therefore may reduce throughput.
1025 */
1026static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1027 __releases(this_rq->lock)
1028 __acquires(busiest->lock)
1029 __acquires(this_rq->lock)
1030{
1031 raw_spin_unlock(&this_rq->lock);
1032 double_rq_lock(this_rq, busiest);
1033
1034 return 1;
1035}
1036
1037#else
1038/*
1039 * Unfair double_lock_balance: Optimizes throughput at the expense of
1040 * latency by eliminating extra atomic operations when the locks are
1041 * already in proper order on entry. This favors lower cpu-ids and will
1042 * grant the double lock to lower cpus over higher ids under contention,
1043 * regardless of entry order into the function.
1044 */
1045static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1046 __releases(this_rq->lock)
1047 __acquires(busiest->lock)
1048 __acquires(this_rq->lock)
1049{
1050 int ret = 0;
1051
1052 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1053 if (busiest < this_rq) {
1054 raw_spin_unlock(&this_rq->lock);
1055 raw_spin_lock(&busiest->lock);
1056 raw_spin_lock_nested(&this_rq->lock,
1057 SINGLE_DEPTH_NESTING);
1058 ret = 1;
1059 } else
1060 raw_spin_lock_nested(&busiest->lock,
1061 SINGLE_DEPTH_NESTING);
1062 }
1063 return ret;
1064}
1065
1066#endif /* CONFIG_PREEMPT */
1067
1068/*
1069 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1070 */
1071static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1072{
1073 if (unlikely(!irqs_disabled())) {
1074 /* printk() doesn't work good under rq->lock */
1075 raw_spin_unlock(&this_rq->lock);
1076 BUG_ON(1);
1077 }
1078
1079 return _double_lock_balance(this_rq, busiest);
1080}
1081
1082static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1083 __releases(busiest->lock)
1084{
1085 raw_spin_unlock(&busiest->lock);
1086 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1087}
1088
1089/*
1090 * double_rq_lock - safely lock two runqueues
1091 *
1092 * Note this does not disable interrupts like task_rq_lock,
1093 * you need to do so manually before calling.
1094 */
1095static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1096 __acquires(rq1->lock)
1097 __acquires(rq2->lock)
1098{
1099 BUG_ON(!irqs_disabled());
1100 if (rq1 == rq2) {
1101 raw_spin_lock(&rq1->lock);
1102 __acquire(rq2->lock); /* Fake it out ;) */
1103 } else {
1104 if (rq1 < rq2) {
1105 raw_spin_lock(&rq1->lock);
1106 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1107 } else {
1108 raw_spin_lock(&rq2->lock);
1109 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1110 }
1111 }
1112}
1113
1114/*
1115 * double_rq_unlock - safely unlock two runqueues
1116 *
1117 * Note this does not restore interrupts like task_rq_unlock,
1118 * you need to do so manually after calling.
1119 */
1120static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1121 __releases(rq1->lock)
1122 __releases(rq2->lock)
1123{
1124 raw_spin_unlock(&rq1->lock);
1125 if (rq1 != rq2)
1126 raw_spin_unlock(&rq2->lock);
1127 else
1128 __release(rq2->lock);
1129}
1130
1131#else /* CONFIG_SMP */
1132
1133/*
1134 * double_rq_lock - safely lock two runqueues
1135 *
1136 * Note this does not disable interrupts like task_rq_lock,
1137 * you need to do so manually before calling.
1138 */
1139static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1140 __acquires(rq1->lock)
1141 __acquires(rq2->lock)
1142{
1143 BUG_ON(!irqs_disabled());
1144 BUG_ON(rq1 != rq2);
1145 raw_spin_lock(&rq1->lock);
1146 __acquire(rq2->lock); /* Fake it out ;) */
1147}
1148
1149/*
1150 * double_rq_unlock - safely unlock two runqueues
1151 *
1152 * Note this does not restore interrupts like task_rq_unlock,
1153 * you need to do so manually after calling.
1154 */
1155static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1156 __releases(rq1->lock)
1157 __releases(rq2->lock)
1158{
1159 BUG_ON(rq1 != rq2);
1160 raw_spin_unlock(&rq1->lock);
1161 __release(rq2->lock);
1162}
1163
1164#endif
1165
1166extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1167extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1168extern void print_cfs_stats(struct seq_file *m, int cpu);
1169extern void print_rt_stats(struct seq_file *m, int cpu);
1170
1171extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1172extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1173
1174extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1175
1176#ifdef CONFIG_NO_HZ
1177enum rq_nohz_flag_bits {
1178 NOHZ_TICK_STOPPED,
1179 NOHZ_BALANCE_KICK,
69e1e811 1180 NOHZ_IDLE,
1c792db7
SS
1181};
1182
1183#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1184#endif
73fbec60
FW
1185
1186#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1187
1188DECLARE_PER_CPU(u64, cpu_hardirq_time);
1189DECLARE_PER_CPU(u64, cpu_softirq_time);
1190
1191#ifndef CONFIG_64BIT
1192DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1193
1194static inline void irq_time_write_begin(void)
1195{
1196 __this_cpu_inc(irq_time_seq.sequence);
1197 smp_wmb();
1198}
1199
1200static inline void irq_time_write_end(void)
1201{
1202 smp_wmb();
1203 __this_cpu_inc(irq_time_seq.sequence);
1204}
1205
1206static inline u64 irq_time_read(int cpu)
1207{
1208 u64 irq_time;
1209 unsigned seq;
1210
1211 do {
1212 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1213 irq_time = per_cpu(cpu_softirq_time, cpu) +
1214 per_cpu(cpu_hardirq_time, cpu);
1215 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1216
1217 return irq_time;
1218}
1219#else /* CONFIG_64BIT */
1220static inline void irq_time_write_begin(void)
1221{
1222}
1223
1224static inline void irq_time_write_end(void)
1225{
1226}
1227
1228static inline u64 irq_time_read(int cpu)
1229{
1230 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1231}
1232#endif /* CONFIG_64BIT */
1233#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
This page took 0.104783 seconds and 5 git commands to generate.