perf symbols: Use the right variable to check for kallsyms in the cache
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
05fa785c 887 rq->lock.owner = current;
da04c035 888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 920 raw_spin_unlock_irq(&rq->lock);
4866cde0 921#else
05fa785c 922 raw_spin_unlock(&rq->lock);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
3a5c359a
AK
953 if (likely(rq == task_rq(p)))
954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
05fa785c 972 raw_spin_lock(&rq->lock);
3a5c359a
AK
973 if (likely(rq == task_rq(p)))
974 return rq;
05fa785c 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 984 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
05fa785c 1603 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1606 __set_se_shares(tg->se[cpu], shares);
05fa785c 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
05fa785c 1709 raw_spin_unlock(&rq->lock);
3e5459b4 1710 update_shares(sd);
05fa785c 1711 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
05fa785c 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1773 if (busiest < this_rq) {
05fa785c
TG
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
70574a99
AD
1778 ret = 1;
1779 } else
05fa785c
TG
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
70574a99
AD
1782 }
1783 return ret;
1784}
1785
8f45e2b5
GH
1786#endif /* CONFIG_PREEMPT */
1787
1788/*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792{
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
05fa785c 1795 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800}
1801
70574a99
AD
1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804{
05fa785c 1805 raw_spin_unlock(&busiest->lock);
70574a99
AD
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807}
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
dce48a84 1819static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
dd41f596 1837#include "sched_stats.h"
dd41f596 1838#include "sched_idletask.c"
5522d5d5
IM
1839#include "sched_fair.c"
1840#include "sched_rt.c"
dd41f596
IM
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
dd41f596
IM
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
2087a1ad
GH
1880static void update_avg(u64 *avg, u64 sample)
1881{
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884}
1885
8159f87e 1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1887{
831451ac
PZ
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
dd41f596 1891 sched_info_queued(p);
fd390f6a 1892 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
69be72c1 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1897{
831451ac
PZ
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
2087a1ad
GH
1907 }
1908
46ac22ba 1909 sched_info_dequeued(p);
f02231e5 1910 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1911 p->se.on_rq = 0;
71f8bd46
IM
1912}
1913
14531189 1914/*
dd41f596 1915 * __normal_prio - return the priority that is based on the static prio
14531189 1916 */
14531189
IM
1917static inline int __normal_prio(struct task_struct *p)
1918{
dd41f596 1919 return p->static_prio;
14531189
IM
1920}
1921
b29739f9
IM
1922/*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
36c8b586 1929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1930{
1931 int prio;
1932
e05606d3 1933 if (task_has_rt_policy(p))
b29739f9
IM
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938}
1939
1940/*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
36c8b586 1947static int effective_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958}
1959
1da177e4 1960/*
dd41f596 1961 * activate_task - move a task to the runqueue.
1da177e4 1962 */
dd41f596 1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1964{
d9514f6c 1965 if (task_contributes_to_load(p))
dd41f596 1966 rq->nr_uninterruptible--;
1da177e4 1967
8159f87e 1968 enqueue_task(rq, p, wakeup);
c09595f6 1969 inc_nr_running(rq);
1da177e4
LT
1970}
1971
1da177e4
LT
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
2e1cb74a 1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1976{
d9514f6c 1977 if (task_contributes_to_load(p))
dd41f596
IM
1978 rq->nr_uninterruptible++;
1979
69be72c1 1980 dequeue_task(rq, p, sleep);
c09595f6 1981 dec_nr_running(rq);
1da177e4
LT
1982}
1983
1da177e4
LT
1984/**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
36c8b586 1988inline int task_curr(const struct task_struct *p)
1da177e4
LT
1989{
1990 return cpu_curr(task_cpu(p)) == p;
1991}
1992
cb469845
SR
1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996{
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003}
2004
1da177e4 2005#ifdef CONFIG_SMP
cc367732
IM
2006/*
2007 * Is this task likely cache-hot:
2008 */
e7693a36 2009static int
cc367732
IM
2010task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011{
2012 s64 delta;
2013
e6c8fba7
PZ
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
f540a608
IM
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
f685ceac 2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2023 return 1;
2024
6bc1665b
IM
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
cc367732
IM
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033}
2034
dd41f596 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2036{
e2912009
PZ
2037#ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
077614ee
PZ
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009 2044#endif
6cfb0d5d 2045
de1d7286 2046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2047
0c69774e 2048 if (task_cpu(p) != new_cpu) {
6c594c21 2049 p->se.nr_migrations++;
0c69774e 2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
6c594c21 2051 }
dd41f596
IM
2052
2053 __set_task_cpu(p, new_cpu);
c65cc870
IM
2054}
2055
70b97a7f 2056struct migration_req {
1da177e4 2057 struct list_head list;
1da177e4 2058
36c8b586 2059 struct task_struct *task;
1da177e4
LT
2060 int dest_cpu;
2061
1da177e4 2062 struct completion done;
70b97a7f 2063};
1da177e4
LT
2064
2065/*
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2068 */
36c8b586 2069static int
70b97a7f 2070migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2071{
70b97a7f 2072 struct rq *rq = task_rq(p);
1da177e4
LT
2073
2074 /*
2075 * If the task is not on a runqueue (and not running), then
e2912009 2076 * the next wake-up will properly place the task.
1da177e4 2077 */
e2912009 2078 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2079 return 0;
1da177e4
LT
2080
2081 init_completion(&req->done);
1da177e4
LT
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
48f24c4d 2085
1da177e4
LT
2086 return 1;
2087}
2088
a26b89f0
MM
2089/*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095void wait_task_context_switch(struct task_struct *p)
2096{
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130}
2131
1da177e4
LT
2132/*
2133 * wait_task_inactive - wait for a thread to unschedule.
2134 *
85ba2d86
RM
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2141 *
1da177e4
LT
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2147 */
85ba2d86 2148unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2149{
2150 unsigned long flags;
dd41f596 2151 int running, on_rq;
85ba2d86 2152 unsigned long ncsw;
70b97a7f 2153 struct rq *rq;
1da177e4 2154
3a5c359a
AK
2155 for (;;) {
2156 /*
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2161 */
2162 rq = task_rq(p);
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2168 *
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2174 */
85ba2d86
RM
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
3a5c359a 2178 cpu_relax();
85ba2d86 2179 }
fa490cfd 2180
3a5c359a
AK
2181 /*
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2185 */
2186 rq = task_rq_lock(p, &flags);
0a16b607 2187 trace_sched_wait_task(rq, p);
3a5c359a
AK
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
85ba2d86 2190 ncsw = 0;
f31e11d8 2191 if (!match_state || p->state == match_state)
93dcf55f 2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2193 task_rq_unlock(rq, &flags);
fa490cfd 2194
85ba2d86
RM
2195 /*
2196 * If it changed from the expected state, bail out now.
2197 */
2198 if (unlikely(!ncsw))
2199 break;
2200
3a5c359a
AK
2201 /*
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2204 *
2205 * Oops. Go back and try again..
2206 */
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2216 *
80dd99b3 2217 * So if it was still runnable (but just not actively
3a5c359a
AK
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2220 */
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2224 }
fa490cfd 2225
3a5c359a
AK
2226 /*
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2230 */
2231 break;
2232 }
85ba2d86
RM
2233
2234 return ncsw;
1da177e4
LT
2235}
2236
2237/***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2240 *
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2243 *
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2249 */
36c8b586 2250void kick_process(struct task_struct *p)
1da177e4
LT
2251{
2252 int cpu;
2253
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2259}
b43e3521 2260EXPORT_SYMBOL_GPL(kick_process);
476d139c 2261#endif /* CONFIG_SMP */
1da177e4 2262
0793a61d
TG
2263/**
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2268 *
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2271 */
2272void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2274{
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2282}
2283
970b13ba 2284#ifdef CONFIG_SMP
5da9a0fb
PZ
2285static int select_fallback_rq(int cpu, struct task_struct *p)
2286{
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320}
2321
e2912009
PZ
2322/*
2323 * Called from:
2324 *
2325 * - fork, @p is stable because it isn't on the tasklist yet
2326 *
38022906 2327 * - exec, @p is unstable, retry loop
e2912009
PZ
2328 *
2329 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2330 * we should be good.
2331 */
970b13ba
PZ
2332static inline
2333int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2334{
e2912009
PZ
2335 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2336
2337 /*
2338 * In order not to call set_task_cpu() on a blocking task we need
2339 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2340 * cpu.
2341 *
2342 * Since this is common to all placement strategies, this lives here.
2343 *
2344 * [ this allows ->select_task() to simply return task_cpu(p) and
2345 * not worry about this generic constraint ]
2346 */
2347 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2348 !cpu_online(cpu)))
5da9a0fb 2349 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2350
2351 return cpu;
970b13ba
PZ
2352}
2353#endif
2354
1da177e4
LT
2355/***
2356 * try_to_wake_up - wake up a thread
2357 * @p: the to-be-woken-up thread
2358 * @state: the mask of task states that can be woken
2359 * @sync: do a synchronous wakeup?
2360 *
2361 * Put it on the run-queue if it's not already there. The "current"
2362 * thread is always on the run-queue (except when the actual
2363 * re-schedule is in progress), and as such you're allowed to do
2364 * the simpler "current->state = TASK_RUNNING" to mark yourself
2365 * runnable without the overhead of this.
2366 *
2367 * returns failure only if the task is already active.
2368 */
7d478721
PZ
2369static int try_to_wake_up(struct task_struct *p, unsigned int state,
2370 int wake_flags)
1da177e4 2371{
cc367732 2372 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2373 unsigned long flags;
f5dc3753 2374 struct rq *rq, *orig_rq;
1da177e4 2375
b85d0667 2376 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2377 wake_flags &= ~WF_SYNC;
2398f2c6 2378
e9c84311 2379 this_cpu = get_cpu();
2398f2c6 2380
04e2f174 2381 smp_wmb();
f5dc3753 2382 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2383 update_rq_clock(rq);
e9c84311 2384 if (!(p->state & state))
1da177e4
LT
2385 goto out;
2386
dd41f596 2387 if (p->se.on_rq)
1da177e4
LT
2388 goto out_running;
2389
2390 cpu = task_cpu(p);
cc367732 2391 orig_cpu = cpu;
1da177e4
LT
2392
2393#ifdef CONFIG_SMP
2394 if (unlikely(task_running(rq, p)))
2395 goto out_activate;
2396
e9c84311
PZ
2397 /*
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
eb24073b
IM
2400 *
2401 * First fix up the nr_uninterruptible count:
e9c84311 2402 */
eb24073b
IM
2403 if (task_contributes_to_load(p))
2404 rq->nr_uninterruptible--;
e9c84311 2405 p->state = TASK_WAKING;
efbbd05a
PZ
2406
2407 if (p->sched_class->task_waking)
2408 p->sched_class->task_waking(rq, p);
2409
ab19cb23 2410 __task_rq_unlock(rq);
e9c84311 2411
970b13ba 2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2413 if (cpu != orig_cpu)
5d2f5a61 2414 set_task_cpu(p, cpu);
ab19cb23
PZ
2415
2416 rq = __task_rq_lock(p);
2417 update_rq_clock(rq);
f5dc3753 2418
e9c84311
PZ
2419 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
1da177e4 2421
e7693a36
GH
2422#ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count);
2424 if (cpu == this_cpu)
2425 schedstat_inc(rq, ttwu_local);
2426 else {
2427 struct sched_domain *sd;
2428 for_each_domain(this_cpu, sd) {
758b2cdc 2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
6d6bc0ad 2435#endif /* CONFIG_SCHEDSTATS */
e7693a36 2436
1da177e4
LT
2437out_activate:
2438#endif /* CONFIG_SMP */
cc367732 2439 schedstat_inc(p, se.nr_wakeups);
7d478721 2440 if (wake_flags & WF_SYNC)
cc367732
IM
2441 schedstat_inc(p, se.nr_wakeups_sync);
2442 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate);
2444 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local);
2446 else
2447 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2448 activate_task(rq, p, 1);
1da177e4
LT
2449 success = 1;
2450
831451ac
PZ
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
1da177e4 2467out_running:
468a15bb 2468 trace_sched_wakeup(rq, p, success);
7d478721 2469 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2470
1da177e4 2471 p->state = TASK_RUNNING;
9a897c5a 2472#ifdef CONFIG_SMP
efbbd05a
PZ
2473 if (p->sched_class->task_woken)
2474 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
9a897c5a 2486#endif
1da177e4
LT
2487out:
2488 task_rq_unlock(rq, &flags);
e9c84311 2489 put_cpu();
1da177e4
LT
2490
2491 return success;
2492}
2493
50fa610a
DH
2494/**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2500 * running.
2501 *
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2504 */
7ad5b3a5 2505int wake_up_process(struct task_struct *p)
1da177e4 2506{
d9514f6c 2507 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2508}
1da177e4
LT
2509EXPORT_SYMBOL(wake_up_process);
2510
7ad5b3a5 2511int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2512{
2513 return try_to_wake_up(p, state, 0);
2514}
2515
1da177e4
LT
2516/*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
dd41f596
IM
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
2522static void __sched_fork(struct task_struct *p)
2523{
dd41f596
IM
2524 p->se.exec_start = 0;
2525 p->se.sum_exec_runtime = 0;
f6cf891c 2526 p->se.prev_sum_exec_runtime = 0;
6c594c21 2527 p->se.nr_migrations = 0;
4ae7d5ce
IM
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
831451ac
PZ
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2532
2533#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2534 p->se.wait_start = 0;
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
7793527b
LDM
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
6cfb0d5d 2564#endif
476d139c 2565
fa717060 2566 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2567 p->se.on_rq = 0;
4a55bd5e 2568 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2569
e107be36
AK
2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2572#endif
dd41f596
IM
2573}
2574
2575/*
2576 * fork()/clone()-time setup:
2577 */
2578void sched_fork(struct task_struct *p, int clone_flags)
2579{
2580 int cpu = get_cpu();
2581
2582 __sched_fork(p);
06b83b5f
PZ
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
dd41f596 2589
b9dc29e7
MG
2590 /*
2591 * Revert to default priority/policy on fork if requested.
2592 */
2593 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2594 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2595 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2596 p->normal_prio = p->static_prio;
2597 }
b9dc29e7 2598
6c697bdf
MG
2599 if (PRIO_TO_NICE(p->static_prio) < 0) {
2600 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2601 p->normal_prio = p->static_prio;
6c697bdf
MG
2602 set_load_weight(p);
2603 }
2604
b9dc29e7
MG
2605 /*
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2608 */
2609 p->sched_reset_on_fork = 0;
2610 }
ca94c442 2611
f83f9ac2
PW
2612 /*
2613 * Make sure we do not leak PI boosting priority to the child.
2614 */
2615 p->prio = current->normal_prio;
2616
2ddbf952
HS
2617 if (!rt_prio(p->prio))
2618 p->sched_class = &fair_sched_class;
b29739f9 2619
cd29fe6f
PZ
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
5f3edc1b 2623#ifdef CONFIG_SMP
970b13ba 2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2625#endif
2626 set_task_cpu(p, cpu);
2627
52f17b6c 2628#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2629 if (likely(sched_info_on()))
52f17b6c 2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2631#endif
d6077cb8 2632#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2633 p->oncpu = 0;
2634#endif
1da177e4 2635#ifdef CONFIG_PREEMPT
4866cde0 2636 /* Want to start with kernel preemption disabled. */
a1261f54 2637 task_thread_info(p)->preempt_count = 1;
1da177e4 2638#endif
917b627d
GH
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
476d139c 2641 put_cpu();
1da177e4
LT
2642}
2643
2644/*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
7ad5b3a5 2651void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2652{
2653 unsigned long flags;
dd41f596 2654 struct rq *rq;
1da177e4
LT
2655
2656 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
a8e504d2 2659 update_rq_clock(rq);
cd29fe6f 2660 activate_task(rq, p, 0);
c71dd42d 2661 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2662 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2663#ifdef CONFIG_SMP
efbbd05a
PZ
2664 if (p->sched_class->task_woken)
2665 p->sched_class->task_woken(rq, p);
9a897c5a 2666#endif
dd41f596 2667 task_rq_unlock(rq, &flags);
1da177e4
LT
2668}
2669
e107be36
AK
2670#ifdef CONFIG_PREEMPT_NOTIFIERS
2671
2672/**
80dd99b3 2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2674 * @notifier: notifier struct to register
e107be36
AK
2675 */
2676void preempt_notifier_register(struct preempt_notifier *notifier)
2677{
2678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2679}
2680EXPORT_SYMBOL_GPL(preempt_notifier_register);
2681
2682/**
2683 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2684 * @notifier: notifier struct to unregister
e107be36
AK
2685 *
2686 * This is safe to call from within a preemption notifier.
2687 */
2688void preempt_notifier_unregister(struct preempt_notifier *notifier)
2689{
2690 hlist_del(&notifier->link);
2691}
2692EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2693
2694static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695{
2696 struct preempt_notifier *notifier;
2697 struct hlist_node *node;
2698
2699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2701}
2702
2703static void
2704fire_sched_out_preempt_notifiers(struct task_struct *curr,
2705 struct task_struct *next)
2706{
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_out(notifier, next);
2712}
2713
6d6bc0ad 2714#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2715
2716static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717{
2718}
2719
2720static void
2721fire_sched_out_preempt_notifiers(struct task_struct *curr,
2722 struct task_struct *next)
2723{
2724}
2725
6d6bc0ad 2726#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2727
4866cde0
NP
2728/**
2729 * prepare_task_switch - prepare to switch tasks
2730 * @rq: the runqueue preparing to switch
421cee29 2731 * @prev: the current task that is being switched out
4866cde0
NP
2732 * @next: the task we are going to switch to.
2733 *
2734 * This is called with the rq lock held and interrupts off. It must
2735 * be paired with a subsequent finish_task_switch after the context
2736 * switch.
2737 *
2738 * prepare_task_switch sets up locking and calls architecture specific
2739 * hooks.
2740 */
e107be36
AK
2741static inline void
2742prepare_task_switch(struct rq *rq, struct task_struct *prev,
2743 struct task_struct *next)
4866cde0 2744{
e107be36 2745 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2746 prepare_lock_switch(rq, next);
2747 prepare_arch_switch(next);
2748}
2749
1da177e4
LT
2750/**
2751 * finish_task_switch - clean up after a task-switch
344babaa 2752 * @rq: runqueue associated with task-switch
1da177e4
LT
2753 * @prev: the thread we just switched away from.
2754 *
4866cde0
NP
2755 * finish_task_switch must be called after the context switch, paired
2756 * with a prepare_task_switch call before the context switch.
2757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2758 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2759 *
2760 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2761 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2762 * with the lock held can cause deadlocks; see schedule() for
2763 * details.)
2764 */
a9957449 2765static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2766 __releases(rq->lock)
2767{
1da177e4 2768 struct mm_struct *mm = rq->prev_mm;
55a101f8 2769 long prev_state;
1da177e4
LT
2770
2771 rq->prev_mm = NULL;
2772
2773 /*
2774 * A task struct has one reference for the use as "current".
c394cc9f 2775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2776 * schedule one last time. The schedule call will never return, and
2777 * the scheduled task must drop that reference.
c394cc9f 2778 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2779 * still held, otherwise prev could be scheduled on another cpu, die
2780 * there before we look at prev->state, and then the reference would
2781 * be dropped twice.
2782 * Manfred Spraul <manfred@colorfullife.com>
2783 */
55a101f8 2784 prev_state = prev->state;
4866cde0 2785 finish_arch_switch(prev);
8381f65d
JI
2786#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2787 local_irq_disable();
2788#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2789 perf_event_task_sched_in(current);
8381f65d
JI
2790#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2791 local_irq_enable();
2792#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2793 finish_lock_switch(rq, prev);
e8fa1362 2794
e107be36 2795 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2796 if (mm)
2797 mmdrop(mm);
c394cc9f 2798 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2799 /*
2800 * Remove function-return probe instances associated with this
2801 * task and put them back on the free list.
9761eea8 2802 */
c6fd91f0 2803 kprobe_flush_task(prev);
1da177e4 2804 put_task_struct(prev);
c6fd91f0 2805 }
1da177e4
LT
2806}
2807
3f029d3c
GH
2808#ifdef CONFIG_SMP
2809
2810/* assumes rq->lock is held */
2811static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2812{
2813 if (prev->sched_class->pre_schedule)
2814 prev->sched_class->pre_schedule(rq, prev);
2815}
2816
2817/* rq->lock is NOT held, but preemption is disabled */
2818static inline void post_schedule(struct rq *rq)
2819{
2820 if (rq->post_schedule) {
2821 unsigned long flags;
2822
05fa785c 2823 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2824 if (rq->curr->sched_class->post_schedule)
2825 rq->curr->sched_class->post_schedule(rq);
05fa785c 2826 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2827
2828 rq->post_schedule = 0;
2829 }
2830}
2831
2832#else
da19ab51 2833
3f029d3c
GH
2834static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2835{
2836}
2837
2838static inline void post_schedule(struct rq *rq)
2839{
1da177e4
LT
2840}
2841
3f029d3c
GH
2842#endif
2843
1da177e4
LT
2844/**
2845 * schedule_tail - first thing a freshly forked thread must call.
2846 * @prev: the thread we just switched away from.
2847 */
36c8b586 2848asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2849 __releases(rq->lock)
2850{
70b97a7f
IM
2851 struct rq *rq = this_rq();
2852
4866cde0 2853 finish_task_switch(rq, prev);
da19ab51 2854
3f029d3c
GH
2855 /*
2856 * FIXME: do we need to worry about rq being invalidated by the
2857 * task_switch?
2858 */
2859 post_schedule(rq);
70b97a7f 2860
4866cde0
NP
2861#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2862 /* In this case, finish_task_switch does not reenable preemption */
2863 preempt_enable();
2864#endif
1da177e4 2865 if (current->set_child_tid)
b488893a 2866 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2867}
2868
2869/*
2870 * context_switch - switch to the new MM and the new
2871 * thread's register state.
2872 */
dd41f596 2873static inline void
70b97a7f 2874context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2875 struct task_struct *next)
1da177e4 2876{
dd41f596 2877 struct mm_struct *mm, *oldmm;
1da177e4 2878
e107be36 2879 prepare_task_switch(rq, prev, next);
0a16b607 2880 trace_sched_switch(rq, prev, next);
dd41f596
IM
2881 mm = next->mm;
2882 oldmm = prev->active_mm;
9226d125
ZA
2883 /*
2884 * For paravirt, this is coupled with an exit in switch_to to
2885 * combine the page table reload and the switch backend into
2886 * one hypercall.
2887 */
224101ed 2888 arch_start_context_switch(prev);
9226d125 2889
710390d9 2890 if (likely(!mm)) {
1da177e4
LT
2891 next->active_mm = oldmm;
2892 atomic_inc(&oldmm->mm_count);
2893 enter_lazy_tlb(oldmm, next);
2894 } else
2895 switch_mm(oldmm, mm, next);
2896
710390d9 2897 if (likely(!prev->mm)) {
1da177e4 2898 prev->active_mm = NULL;
1da177e4
LT
2899 rq->prev_mm = oldmm;
2900 }
3a5f5e48
IM
2901 /*
2902 * Since the runqueue lock will be released by the next
2903 * task (which is an invalid locking op but in the case
2904 * of the scheduler it's an obvious special-case), so we
2905 * do an early lockdep release here:
2906 */
2907#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2908 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2909#endif
1da177e4
LT
2910
2911 /* Here we just switch the register state and the stack. */
2912 switch_to(prev, next, prev);
2913
dd41f596
IM
2914 barrier();
2915 /*
2916 * this_rq must be evaluated again because prev may have moved
2917 * CPUs since it called schedule(), thus the 'rq' on its stack
2918 * frame will be invalid.
2919 */
2920 finish_task_switch(this_rq(), prev);
1da177e4
LT
2921}
2922
2923/*
2924 * nr_running, nr_uninterruptible and nr_context_switches:
2925 *
2926 * externally visible scheduler statistics: current number of runnable
2927 * threads, current number of uninterruptible-sleeping threads, total
2928 * number of context switches performed since bootup.
2929 */
2930unsigned long nr_running(void)
2931{
2932 unsigned long i, sum = 0;
2933
2934 for_each_online_cpu(i)
2935 sum += cpu_rq(i)->nr_running;
2936
2937 return sum;
2938}
2939
2940unsigned long nr_uninterruptible(void)
2941{
2942 unsigned long i, sum = 0;
2943
0a945022 2944 for_each_possible_cpu(i)
1da177e4
LT
2945 sum += cpu_rq(i)->nr_uninterruptible;
2946
2947 /*
2948 * Since we read the counters lockless, it might be slightly
2949 * inaccurate. Do not allow it to go below zero though:
2950 */
2951 if (unlikely((long)sum < 0))
2952 sum = 0;
2953
2954 return sum;
2955}
2956
2957unsigned long long nr_context_switches(void)
2958{
cc94abfc
SR
2959 int i;
2960 unsigned long long sum = 0;
1da177e4 2961
0a945022 2962 for_each_possible_cpu(i)
1da177e4
LT
2963 sum += cpu_rq(i)->nr_switches;
2964
2965 return sum;
2966}
2967
2968unsigned long nr_iowait(void)
2969{
2970 unsigned long i, sum = 0;
2971
0a945022 2972 for_each_possible_cpu(i)
1da177e4
LT
2973 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2974
2975 return sum;
2976}
2977
69d25870
AV
2978unsigned long nr_iowait_cpu(void)
2979{
2980 struct rq *this = this_rq();
2981 return atomic_read(&this->nr_iowait);
2982}
2983
2984unsigned long this_cpu_load(void)
2985{
2986 struct rq *this = this_rq();
2987 return this->cpu_load[0];
2988}
2989
2990
dce48a84
TG
2991/* Variables and functions for calc_load */
2992static atomic_long_t calc_load_tasks;
2993static unsigned long calc_load_update;
2994unsigned long avenrun[3];
2995EXPORT_SYMBOL(avenrun);
2996
2d02494f
TG
2997/**
2998 * get_avenrun - get the load average array
2999 * @loads: pointer to dest load array
3000 * @offset: offset to add
3001 * @shift: shift count to shift the result left
3002 *
3003 * These values are estimates at best, so no need for locking.
3004 */
3005void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3006{
3007 loads[0] = (avenrun[0] + offset) << shift;
3008 loads[1] = (avenrun[1] + offset) << shift;
3009 loads[2] = (avenrun[2] + offset) << shift;
3010}
3011
dce48a84
TG
3012static unsigned long
3013calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3014{
dce48a84
TG
3015 load *= exp;
3016 load += active * (FIXED_1 - exp);
3017 return load >> FSHIFT;
3018}
db1b1fef 3019
dce48a84
TG
3020/*
3021 * calc_load - update the avenrun load estimates 10 ticks after the
3022 * CPUs have updated calc_load_tasks.
3023 */
3024void calc_global_load(void)
3025{
3026 unsigned long upd = calc_load_update + 10;
3027 long active;
3028
3029 if (time_before(jiffies, upd))
3030 return;
db1b1fef 3031
dce48a84
TG
3032 active = atomic_long_read(&calc_load_tasks);
3033 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3034
dce48a84
TG
3035 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3036 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3037 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3038
3039 calc_load_update += LOAD_FREQ;
3040}
3041
3042/*
3043 * Either called from update_cpu_load() or from a cpu going idle
3044 */
3045static void calc_load_account_active(struct rq *this_rq)
3046{
3047 long nr_active, delta;
3048
3049 nr_active = this_rq->nr_running;
3050 nr_active += (long) this_rq->nr_uninterruptible;
3051
3052 if (nr_active != this_rq->calc_load_active) {
3053 delta = nr_active - this_rq->calc_load_active;
3054 this_rq->calc_load_active = nr_active;
3055 atomic_long_add(delta, &calc_load_tasks);
3056 }
db1b1fef
JS
3057}
3058
48f24c4d 3059/*
dd41f596
IM
3060 * Update rq->cpu_load[] statistics. This function is usually called every
3061 * scheduler tick (TICK_NSEC).
48f24c4d 3062 */
dd41f596 3063static void update_cpu_load(struct rq *this_rq)
48f24c4d 3064{
495eca49 3065 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3066 int i, scale;
3067
3068 this_rq->nr_load_updates++;
dd41f596
IM
3069
3070 /* Update our load: */
3071 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3072 unsigned long old_load, new_load;
3073
3074 /* scale is effectively 1 << i now, and >> i divides by scale */
3075
3076 old_load = this_rq->cpu_load[i];
3077 new_load = this_load;
a25707f3
IM
3078 /*
3079 * Round up the averaging division if load is increasing. This
3080 * prevents us from getting stuck on 9 if the load is 10, for
3081 * example.
3082 */
3083 if (new_load > old_load)
3084 new_load += scale-1;
dd41f596
IM
3085 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3086 }
dce48a84
TG
3087
3088 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3089 this_rq->calc_load_update += LOAD_FREQ;
3090 calc_load_account_active(this_rq);
3091 }
48f24c4d
IM
3092}
3093
dd41f596
IM
3094#ifdef CONFIG_SMP
3095
1da177e4
LT
3096/*
3097 * double_rq_lock - safely lock two runqueues
3098 *
3099 * Note this does not disable interrupts like task_rq_lock,
3100 * you need to do so manually before calling.
3101 */
70b97a7f 3102static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3103 __acquires(rq1->lock)
3104 __acquires(rq2->lock)
3105{
054b9108 3106 BUG_ON(!irqs_disabled());
1da177e4 3107 if (rq1 == rq2) {
05fa785c 3108 raw_spin_lock(&rq1->lock);
1da177e4
LT
3109 __acquire(rq2->lock); /* Fake it out ;) */
3110 } else {
c96d145e 3111 if (rq1 < rq2) {
05fa785c
TG
3112 raw_spin_lock(&rq1->lock);
3113 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3114 } else {
05fa785c
TG
3115 raw_spin_lock(&rq2->lock);
3116 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3117 }
3118 }
6e82a3be
IM
3119 update_rq_clock(rq1);
3120 update_rq_clock(rq2);
1da177e4
LT
3121}
3122
3123/*
3124 * double_rq_unlock - safely unlock two runqueues
3125 *
3126 * Note this does not restore interrupts like task_rq_unlock,
3127 * you need to do so manually after calling.
3128 */
70b97a7f 3129static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3130 __releases(rq1->lock)
3131 __releases(rq2->lock)
3132{
05fa785c 3133 raw_spin_unlock(&rq1->lock);
1da177e4 3134 if (rq1 != rq2)
05fa785c 3135 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3136 else
3137 __release(rq2->lock);
3138}
3139
1da177e4 3140/*
38022906
PZ
3141 * sched_exec - execve() is a valuable balancing opportunity, because at
3142 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3143 */
38022906 3144void sched_exec(void)
1da177e4 3145{
38022906 3146 struct task_struct *p = current;
70b97a7f 3147 struct migration_req req;
38022906 3148 int dest_cpu, this_cpu;
1da177e4 3149 unsigned long flags;
70b97a7f 3150 struct rq *rq;
1da177e4 3151
38022906
PZ
3152again:
3153 this_cpu = get_cpu();
3154 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3155 if (dest_cpu == this_cpu) {
3156 put_cpu();
3157 return;
3158 }
3159
1da177e4 3160 rq = task_rq_lock(p, &flags);
38022906
PZ
3161 put_cpu();
3162
3163 /*
3164 * select_task_rq() can race against ->cpus_allowed
3165 */
96f874e2 3166 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3167 || unlikely(!cpu_active(dest_cpu))) {
3168 task_rq_unlock(rq, &flags);
3169 goto again;
3170 }
1da177e4
LT
3171
3172 /* force the process onto the specified CPU */
3173 if (migrate_task(p, dest_cpu, &req)) {
3174 /* Need to wait for migration thread (might exit: take ref). */
3175 struct task_struct *mt = rq->migration_thread;
36c8b586 3176
1da177e4
LT
3177 get_task_struct(mt);
3178 task_rq_unlock(rq, &flags);
3179 wake_up_process(mt);
3180 put_task_struct(mt);
3181 wait_for_completion(&req.done);
36c8b586 3182
1da177e4
LT
3183 return;
3184 }
1da177e4
LT
3185 task_rq_unlock(rq, &flags);
3186}
3187
1da177e4
LT
3188/*
3189 * pull_task - move a task from a remote runqueue to the local runqueue.
3190 * Both runqueues must be locked.
3191 */
dd41f596
IM
3192static void pull_task(struct rq *src_rq, struct task_struct *p,
3193 struct rq *this_rq, int this_cpu)
1da177e4 3194{
2e1cb74a 3195 deactivate_task(src_rq, p, 0);
1da177e4 3196 set_task_cpu(p, this_cpu);
dd41f596 3197 activate_task(this_rq, p, 0);
15afe09b 3198 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3199}
3200
3201/*
3202 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3203 */
858119e1 3204static
70b97a7f 3205int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3206 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3207 int *all_pinned)
1da177e4 3208{
708dc512 3209 int tsk_cache_hot = 0;
1da177e4
LT
3210 /*
3211 * We do not migrate tasks that are:
3212 * 1) running (obviously), or
3213 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3214 * 3) are cache-hot on their current CPU.
3215 */
96f874e2 3216 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3217 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3218 return 0;
cc367732 3219 }
81026794
NP
3220 *all_pinned = 0;
3221
cc367732
IM
3222 if (task_running(rq, p)) {
3223 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3224 return 0;
cc367732 3225 }
1da177e4 3226
da84d961
IM
3227 /*
3228 * Aggressive migration if:
3229 * 1) task is cache cold, or
3230 * 2) too many balance attempts have failed.
3231 */
3232
708dc512
LH
3233 tsk_cache_hot = task_hot(p, rq->clock, sd);
3234 if (!tsk_cache_hot ||
3235 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3236#ifdef CONFIG_SCHEDSTATS
708dc512 3237 if (tsk_cache_hot) {
da84d961 3238 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3239 schedstat_inc(p, se.nr_forced_migrations);
3240 }
da84d961
IM
3241#endif
3242 return 1;
3243 }
3244
708dc512 3245 if (tsk_cache_hot) {
cc367732 3246 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3247 return 0;
cc367732 3248 }
1da177e4
LT
3249 return 1;
3250}
3251
e1d1484f
PW
3252static unsigned long
3253balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3254 unsigned long max_load_move, struct sched_domain *sd,
3255 enum cpu_idle_type idle, int *all_pinned,
3256 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3257{
051c6764 3258 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3259 struct task_struct *p;
3260 long rem_load_move = max_load_move;
1da177e4 3261
e1d1484f 3262 if (max_load_move == 0)
1da177e4
LT
3263 goto out;
3264
81026794
NP
3265 pinned = 1;
3266
1da177e4 3267 /*
dd41f596 3268 * Start the load-balancing iterator:
1da177e4 3269 */
dd41f596
IM
3270 p = iterator->start(iterator->arg);
3271next:
b82d9fdd 3272 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3273 goto out;
051c6764
PZ
3274
3275 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3276 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3277 p = iterator->next(iterator->arg);
3278 goto next;
1da177e4
LT
3279 }
3280
dd41f596 3281 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3282 pulled++;
dd41f596 3283 rem_load_move -= p->se.load.weight;
1da177e4 3284
7e96fa58
GH
3285#ifdef CONFIG_PREEMPT
3286 /*
3287 * NEWIDLE balancing is a source of latency, so preemptible kernels
3288 * will stop after the first task is pulled to minimize the critical
3289 * section.
3290 */
3291 if (idle == CPU_NEWLY_IDLE)
3292 goto out;
3293#endif
3294
2dd73a4f 3295 /*
b82d9fdd 3296 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3297 */
e1d1484f 3298 if (rem_load_move > 0) {
a4ac01c3
PW
3299 if (p->prio < *this_best_prio)
3300 *this_best_prio = p->prio;
dd41f596
IM
3301 p = iterator->next(iterator->arg);
3302 goto next;
1da177e4
LT
3303 }
3304out:
3305 /*
e1d1484f 3306 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3307 * so we can safely collect pull_task() stats here rather than
3308 * inside pull_task().
3309 */
3310 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3311
3312 if (all_pinned)
3313 *all_pinned = pinned;
e1d1484f
PW
3314
3315 return max_load_move - rem_load_move;
1da177e4
LT
3316}
3317
dd41f596 3318/*
43010659
PW
3319 * move_tasks tries to move up to max_load_move weighted load from busiest to
3320 * this_rq, as part of a balancing operation within domain "sd".
3321 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3322 *
3323 * Called with both runqueues locked.
3324 */
3325static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3326 unsigned long max_load_move,
dd41f596
IM
3327 struct sched_domain *sd, enum cpu_idle_type idle,
3328 int *all_pinned)
3329{
5522d5d5 3330 const struct sched_class *class = sched_class_highest;
43010659 3331 unsigned long total_load_moved = 0;
a4ac01c3 3332 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3333
3334 do {
43010659
PW
3335 total_load_moved +=
3336 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3337 max_load_move - total_load_moved,
a4ac01c3 3338 sd, idle, all_pinned, &this_best_prio);
dd41f596 3339 class = class->next;
c4acb2c0 3340
7e96fa58
GH
3341#ifdef CONFIG_PREEMPT
3342 /*
3343 * NEWIDLE balancing is a source of latency, so preemptible
3344 * kernels will stop after the first task is pulled to minimize
3345 * the critical section.
3346 */
c4acb2c0
GH
3347 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3348 break;
7e96fa58 3349#endif
43010659 3350 } while (class && max_load_move > total_load_moved);
dd41f596 3351
43010659
PW
3352 return total_load_moved > 0;
3353}
3354
e1d1484f
PW
3355static int
3356iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3357 struct sched_domain *sd, enum cpu_idle_type idle,
3358 struct rq_iterator *iterator)
3359{
3360 struct task_struct *p = iterator->start(iterator->arg);
3361 int pinned = 0;
3362
3363 while (p) {
3364 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3365 pull_task(busiest, p, this_rq, this_cpu);
3366 /*
3367 * Right now, this is only the second place pull_task()
3368 * is called, so we can safely collect pull_task()
3369 * stats here rather than inside pull_task().
3370 */
3371 schedstat_inc(sd, lb_gained[idle]);
3372
3373 return 1;
3374 }
3375 p = iterator->next(iterator->arg);
3376 }
3377
3378 return 0;
3379}
3380
43010659
PW
3381/*
3382 * move_one_task tries to move exactly one task from busiest to this_rq, as
3383 * part of active balancing operations within "domain".
3384 * Returns 1 if successful and 0 otherwise.
3385 *
3386 * Called with both runqueues locked.
3387 */
3388static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3389 struct sched_domain *sd, enum cpu_idle_type idle)
3390{
5522d5d5 3391 const struct sched_class *class;
43010659 3392
cde7e5ca 3393 for_each_class(class) {
e1d1484f 3394 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3395 return 1;
cde7e5ca 3396 }
43010659
PW
3397
3398 return 0;
dd41f596 3399}
67bb6c03 3400/********** Helpers for find_busiest_group ************************/
1da177e4 3401/*
222d656d
GS
3402 * sd_lb_stats - Structure to store the statistics of a sched_domain
3403 * during load balancing.
1da177e4 3404 */
222d656d
GS
3405struct sd_lb_stats {
3406 struct sched_group *busiest; /* Busiest group in this sd */
3407 struct sched_group *this; /* Local group in this sd */
3408 unsigned long total_load; /* Total load of all groups in sd */
3409 unsigned long total_pwr; /* Total power of all groups in sd */
3410 unsigned long avg_load; /* Average load across all groups in sd */
3411
3412 /** Statistics of this group */
3413 unsigned long this_load;
3414 unsigned long this_load_per_task;
3415 unsigned long this_nr_running;
3416
3417 /* Statistics of the busiest group */
3418 unsigned long max_load;
3419 unsigned long busiest_load_per_task;
3420 unsigned long busiest_nr_running;
3421
3422 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3423#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3424 int power_savings_balance; /* Is powersave balance needed for this sd */
3425 struct sched_group *group_min; /* Least loaded group in sd */
3426 struct sched_group *group_leader; /* Group which relieves group_min */
3427 unsigned long min_load_per_task; /* load_per_task in group_min */
3428 unsigned long leader_nr_running; /* Nr running of group_leader */
3429 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3430#endif
222d656d 3431};
1da177e4 3432
d5ac537e 3433/*
381be78f
GS
3434 * sg_lb_stats - stats of a sched_group required for load_balancing
3435 */
3436struct sg_lb_stats {
3437 unsigned long avg_load; /*Avg load across the CPUs of the group */
3438 unsigned long group_load; /* Total load over the CPUs of the group */
3439 unsigned long sum_nr_running; /* Nr tasks running in the group */
3440 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3441 unsigned long group_capacity;
3442 int group_imb; /* Is there an imbalance in the group ? */
3443};
408ed066 3444
67bb6c03
GS
3445/**
3446 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3447 * @group: The group whose first cpu is to be returned.
3448 */
3449static inline unsigned int group_first_cpu(struct sched_group *group)
3450{
3451 return cpumask_first(sched_group_cpus(group));
3452}
3453
3454/**
3455 * get_sd_load_idx - Obtain the load index for a given sched domain.
3456 * @sd: The sched_domain whose load_idx is to be obtained.
3457 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3458 */
3459static inline int get_sd_load_idx(struct sched_domain *sd,
3460 enum cpu_idle_type idle)
3461{
3462 int load_idx;
3463
3464 switch (idle) {
3465 case CPU_NOT_IDLE:
7897986b 3466 load_idx = sd->busy_idx;
67bb6c03
GS
3467 break;
3468
3469 case CPU_NEWLY_IDLE:
7897986b 3470 load_idx = sd->newidle_idx;
67bb6c03
GS
3471 break;
3472 default:
7897986b 3473 load_idx = sd->idle_idx;
67bb6c03
GS
3474 break;
3475 }
1da177e4 3476
67bb6c03
GS
3477 return load_idx;
3478}
1da177e4 3479
1da177e4 3480
c071df18
GS
3481#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3482/**
3483 * init_sd_power_savings_stats - Initialize power savings statistics for
3484 * the given sched_domain, during load balancing.
3485 *
3486 * @sd: Sched domain whose power-savings statistics are to be initialized.
3487 * @sds: Variable containing the statistics for sd.
3488 * @idle: Idle status of the CPU at which we're performing load-balancing.
3489 */
3490static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3491 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3492{
3493 /*
3494 * Busy processors will not participate in power savings
3495 * balance.
3496 */
3497 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3498 sds->power_savings_balance = 0;
3499 else {
3500 sds->power_savings_balance = 1;
3501 sds->min_nr_running = ULONG_MAX;
3502 sds->leader_nr_running = 0;
3503 }
3504}
783609c6 3505
c071df18
GS
3506/**
3507 * update_sd_power_savings_stats - Update the power saving stats for a
3508 * sched_domain while performing load balancing.
3509 *
3510 * @group: sched_group belonging to the sched_domain under consideration.
3511 * @sds: Variable containing the statistics of the sched_domain
3512 * @local_group: Does group contain the CPU for which we're performing
3513 * load balancing ?
3514 * @sgs: Variable containing the statistics of the group.
3515 */
3516static inline void update_sd_power_savings_stats(struct sched_group *group,
3517 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3518{
408ed066 3519
c071df18
GS
3520 if (!sds->power_savings_balance)
3521 return;
1da177e4 3522
c071df18
GS
3523 /*
3524 * If the local group is idle or completely loaded
3525 * no need to do power savings balance at this domain
3526 */
3527 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3528 !sds->this_nr_running))
3529 sds->power_savings_balance = 0;
2dd73a4f 3530
c071df18
GS
3531 /*
3532 * If a group is already running at full capacity or idle,
3533 * don't include that group in power savings calculations
3534 */
3535 if (!sds->power_savings_balance ||
3536 sgs->sum_nr_running >= sgs->group_capacity ||
3537 !sgs->sum_nr_running)
3538 return;
5969fe06 3539
c071df18
GS
3540 /*
3541 * Calculate the group which has the least non-idle load.
3542 * This is the group from where we need to pick up the load
3543 * for saving power
3544 */
3545 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3546 (sgs->sum_nr_running == sds->min_nr_running &&
3547 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3548 sds->group_min = group;
3549 sds->min_nr_running = sgs->sum_nr_running;
3550 sds->min_load_per_task = sgs->sum_weighted_load /
3551 sgs->sum_nr_running;
3552 }
783609c6 3553
c071df18
GS
3554 /*
3555 * Calculate the group which is almost near its
3556 * capacity but still has some space to pick up some load
3557 * from other group and save more power
3558 */
d899a789 3559 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3560 return;
1da177e4 3561
c071df18
GS
3562 if (sgs->sum_nr_running > sds->leader_nr_running ||
3563 (sgs->sum_nr_running == sds->leader_nr_running &&
3564 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3565 sds->group_leader = group;
3566 sds->leader_nr_running = sgs->sum_nr_running;
3567 }
3568}
408ed066 3569
c071df18 3570/**
d5ac537e 3571 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3572 * @sds: Variable containing the statistics of the sched_domain
3573 * under consideration.
3574 * @this_cpu: Cpu at which we're currently performing load-balancing.
3575 * @imbalance: Variable to store the imbalance.
3576 *
d5ac537e
RD
3577 * Description:
3578 * Check if we have potential to perform some power-savings balance.
3579 * If yes, set the busiest group to be the least loaded group in the
3580 * sched_domain, so that it's CPUs can be put to idle.
3581 *
c071df18
GS
3582 * Returns 1 if there is potential to perform power-savings balance.
3583 * Else returns 0.
3584 */
3585static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3586 int this_cpu, unsigned long *imbalance)
3587{
3588 if (!sds->power_savings_balance)
3589 return 0;
1da177e4 3590
c071df18
GS
3591 if (sds->this != sds->group_leader ||
3592 sds->group_leader == sds->group_min)
3593 return 0;
783609c6 3594
c071df18
GS
3595 *imbalance = sds->min_load_per_task;
3596 sds->busiest = sds->group_min;
1da177e4 3597
c071df18 3598 return 1;
1da177e4 3599
c071df18
GS
3600}
3601#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3602static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3603 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3604{
3605 return;
3606}
408ed066 3607
c071df18
GS
3608static inline void update_sd_power_savings_stats(struct sched_group *group,
3609 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3610{
3611 return;
3612}
3613
3614static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3615 int this_cpu, unsigned long *imbalance)
3616{
3617 return 0;
3618}
3619#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3620
d6a59aa3
PZ
3621
3622unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3623{
3624 return SCHED_LOAD_SCALE;
3625}
3626
3627unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3628{
3629 return default_scale_freq_power(sd, cpu);
3630}
3631
3632unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3633{
3634 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3635 unsigned long smt_gain = sd->smt_gain;
3636
3637 smt_gain /= weight;
3638
3639 return smt_gain;
3640}
3641
d6a59aa3
PZ
3642unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3643{
3644 return default_scale_smt_power(sd, cpu);
3645}
3646
e9e9250b
PZ
3647unsigned long scale_rt_power(int cpu)
3648{
3649 struct rq *rq = cpu_rq(cpu);
3650 u64 total, available;
3651
3652 sched_avg_update(rq);
3653
3654 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3655 available = total - rq->rt_avg;
3656
3657 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3658 total = SCHED_LOAD_SCALE;
3659
3660 total >>= SCHED_LOAD_SHIFT;
3661
3662 return div_u64(available, total);
3663}
3664
ab29230e
PZ
3665static void update_cpu_power(struct sched_domain *sd, int cpu)
3666{
3667 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3668 unsigned long power = SCHED_LOAD_SCALE;
3669 struct sched_group *sdg = sd->groups;
ab29230e 3670
8e6598af
PZ
3671 if (sched_feat(ARCH_POWER))
3672 power *= arch_scale_freq_power(sd, cpu);
3673 else
3674 power *= default_scale_freq_power(sd, cpu);
3675
d6a59aa3 3676 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3677
3678 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3679 if (sched_feat(ARCH_POWER))
3680 power *= arch_scale_smt_power(sd, cpu);
3681 else
3682 power *= default_scale_smt_power(sd, cpu);
3683
ab29230e
PZ
3684 power >>= SCHED_LOAD_SHIFT;
3685 }
3686
e9e9250b
PZ
3687 power *= scale_rt_power(cpu);
3688 power >>= SCHED_LOAD_SHIFT;
3689
3690 if (!power)
3691 power = 1;
ab29230e 3692
18a3885f 3693 sdg->cpu_power = power;
ab29230e
PZ
3694}
3695
3696static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3697{
3698 struct sched_domain *child = sd->child;
3699 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3700 unsigned long power;
cc9fba7d
PZ
3701
3702 if (!child) {
ab29230e 3703 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3704 return;
3705 }
3706
d7ea17a7 3707 power = 0;
cc9fba7d
PZ
3708
3709 group = child->groups;
3710 do {
d7ea17a7 3711 power += group->cpu_power;
cc9fba7d
PZ
3712 group = group->next;
3713 } while (group != child->groups);
d7ea17a7
IM
3714
3715 sdg->cpu_power = power;
cc9fba7d 3716}
c071df18 3717
1f8c553d
GS
3718/**
3719 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3720 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3721 * @group: sched_group whose statistics are to be updated.
3722 * @this_cpu: Cpu for which load balance is currently performed.
3723 * @idle: Idle status of this_cpu
3724 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3725 * @sd_idle: Idle status of the sched_domain containing group.
3726 * @local_group: Does group contain this_cpu.
3727 * @cpus: Set of cpus considered for load balancing.
3728 * @balance: Should we balance.
3729 * @sgs: variable to hold the statistics for this group.
3730 */
cc9fba7d
PZ
3731static inline void update_sg_lb_stats(struct sched_domain *sd,
3732 struct sched_group *group, int this_cpu,
1f8c553d
GS
3733 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3734 int local_group, const struct cpumask *cpus,
3735 int *balance, struct sg_lb_stats *sgs)
3736{
3737 unsigned long load, max_cpu_load, min_cpu_load;
3738 int i;
3739 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3740 unsigned long sum_avg_load_per_task;
3741 unsigned long avg_load_per_task;
3742
cc9fba7d 3743 if (local_group) {
1f8c553d 3744 balance_cpu = group_first_cpu(group);
cc9fba7d 3745 if (balance_cpu == this_cpu)
ab29230e 3746 update_group_power(sd, this_cpu);
cc9fba7d 3747 }
1f8c553d
GS
3748
3749 /* Tally up the load of all CPUs in the group */
3750 sum_avg_load_per_task = avg_load_per_task = 0;
3751 max_cpu_load = 0;
3752 min_cpu_load = ~0UL;
408ed066 3753
1f8c553d
GS
3754 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3755 struct rq *rq = cpu_rq(i);
908a7c1b 3756
1f8c553d
GS
3757 if (*sd_idle && rq->nr_running)
3758 *sd_idle = 0;
5c45bf27 3759
1f8c553d 3760 /* Bias balancing toward cpus of our domain */
1da177e4 3761 if (local_group) {
1f8c553d
GS
3762 if (idle_cpu(i) && !first_idle_cpu) {
3763 first_idle_cpu = 1;
3764 balance_cpu = i;
3765 }
3766
3767 load = target_load(i, load_idx);
3768 } else {
3769 load = source_load(i, load_idx);
3770 if (load > max_cpu_load)
3771 max_cpu_load = load;
3772 if (min_cpu_load > load)
3773 min_cpu_load = load;
1da177e4 3774 }
5c45bf27 3775
1f8c553d
GS
3776 sgs->group_load += load;
3777 sgs->sum_nr_running += rq->nr_running;
3778 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3779
1f8c553d
GS
3780 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3781 }
5c45bf27 3782
1f8c553d
GS
3783 /*
3784 * First idle cpu or the first cpu(busiest) in this sched group
3785 * is eligible for doing load balancing at this and above
3786 * domains. In the newly idle case, we will allow all the cpu's
3787 * to do the newly idle load balance.
3788 */
3789 if (idle != CPU_NEWLY_IDLE && local_group &&
3790 balance_cpu != this_cpu && balance) {
3791 *balance = 0;
3792 return;
3793 }
5c45bf27 3794
1f8c553d 3795 /* Adjust by relative CPU power of the group */
18a3885f 3796 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3797
1f8c553d
GS
3798
3799 /*
3800 * Consider the group unbalanced when the imbalance is larger
3801 * than the average weight of two tasks.
3802 *
3803 * APZ: with cgroup the avg task weight can vary wildly and
3804 * might not be a suitable number - should we keep a
3805 * normalized nr_running number somewhere that negates
3806 * the hierarchy?
3807 */
18a3885f
PZ
3808 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3809 group->cpu_power;
1f8c553d
GS
3810
3811 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3812 sgs->group_imb = 1;
3813
bdb94aa5 3814 sgs->group_capacity =
18a3885f 3815 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3816}
dd41f596 3817
37abe198
GS
3818/**
3819 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3820 * @sd: sched_domain whose statistics are to be updated.
3821 * @this_cpu: Cpu for which load balance is currently performed.
3822 * @idle: Idle status of this_cpu
3823 * @sd_idle: Idle status of the sched_domain containing group.
3824 * @cpus: Set of cpus considered for load balancing.
3825 * @balance: Should we balance.
3826 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3827 */
37abe198
GS
3828static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3829 enum cpu_idle_type idle, int *sd_idle,
3830 const struct cpumask *cpus, int *balance,
3831 struct sd_lb_stats *sds)
1da177e4 3832{
b5d978e0 3833 struct sched_domain *child = sd->child;
222d656d 3834 struct sched_group *group = sd->groups;
37abe198 3835 struct sg_lb_stats sgs;
b5d978e0
PZ
3836 int load_idx, prefer_sibling = 0;
3837
3838 if (child && child->flags & SD_PREFER_SIBLING)
3839 prefer_sibling = 1;
222d656d 3840
c071df18 3841 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3842 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3843
3844 do {
1da177e4 3845 int local_group;
1da177e4 3846
758b2cdc
RR
3847 local_group = cpumask_test_cpu(this_cpu,
3848 sched_group_cpus(group));
381be78f 3849 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3850 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3851 local_group, cpus, balance, &sgs);
1da177e4 3852
37abe198
GS
3853 if (local_group && balance && !(*balance))
3854 return;
783609c6 3855
37abe198 3856 sds->total_load += sgs.group_load;
18a3885f 3857 sds->total_pwr += group->cpu_power;
1da177e4 3858
b5d978e0
PZ
3859 /*
3860 * In case the child domain prefers tasks go to siblings
3861 * first, lower the group capacity to one so that we'll try
3862 * and move all the excess tasks away.
3863 */
3864 if (prefer_sibling)
bdb94aa5 3865 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3866
1da177e4 3867 if (local_group) {
37abe198
GS
3868 sds->this_load = sgs.avg_load;
3869 sds->this = group;
3870 sds->this_nr_running = sgs.sum_nr_running;
3871 sds->this_load_per_task = sgs.sum_weighted_load;
3872 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3873 (sgs.sum_nr_running > sgs.group_capacity ||
3874 sgs.group_imb)) {
37abe198
GS
3875 sds->max_load = sgs.avg_load;
3876 sds->busiest = group;
3877 sds->busiest_nr_running = sgs.sum_nr_running;
3878 sds->busiest_load_per_task = sgs.sum_weighted_load;
3879 sds->group_imb = sgs.group_imb;
48f24c4d 3880 }
5c45bf27 3881
c071df18 3882 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3883 group = group->next;
3884 } while (group != sd->groups);
37abe198 3885}
1da177e4 3886
2e6f44ae
GS
3887/**
3888 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3889 * amongst the groups of a sched_domain, during
3890 * load balancing.
2e6f44ae
GS
3891 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3892 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3893 * @imbalance: Variable to store the imbalance.
3894 */
3895static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3896 int this_cpu, unsigned long *imbalance)
3897{
3898 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3899 unsigned int imbn = 2;
3900
3901 if (sds->this_nr_running) {
3902 sds->this_load_per_task /= sds->this_nr_running;
3903 if (sds->busiest_load_per_task >
3904 sds->this_load_per_task)
3905 imbn = 1;
3906 } else
3907 sds->this_load_per_task =
3908 cpu_avg_load_per_task(this_cpu);
1da177e4 3909
2e6f44ae
GS
3910 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3911 sds->busiest_load_per_task * imbn) {
3912 *imbalance = sds->busiest_load_per_task;
3913 return;
3914 }
908a7c1b 3915
1da177e4 3916 /*
2e6f44ae
GS
3917 * OK, we don't have enough imbalance to justify moving tasks,
3918 * however we may be able to increase total CPU power used by
3919 * moving them.
1da177e4 3920 */
2dd73a4f 3921
18a3885f 3922 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3923 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3924 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3925 min(sds->this_load_per_task, sds->this_load);
3926 pwr_now /= SCHED_LOAD_SCALE;
3927
3928 /* Amount of load we'd subtract */
18a3885f
PZ
3929 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3930 sds->busiest->cpu_power;
2e6f44ae 3931 if (sds->max_load > tmp)
18a3885f 3932 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3933 min(sds->busiest_load_per_task, sds->max_load - tmp);
3934
3935 /* Amount of load we'd add */
18a3885f 3936 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3937 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3938 tmp = (sds->max_load * sds->busiest->cpu_power) /
3939 sds->this->cpu_power;
2e6f44ae 3940 else
18a3885f
PZ
3941 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3942 sds->this->cpu_power;
3943 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3944 min(sds->this_load_per_task, sds->this_load + tmp);
3945 pwr_move /= SCHED_LOAD_SCALE;
3946
3947 /* Move if we gain throughput */
3948 if (pwr_move > pwr_now)
3949 *imbalance = sds->busiest_load_per_task;
3950}
dbc523a3
GS
3951
3952/**
3953 * calculate_imbalance - Calculate the amount of imbalance present within the
3954 * groups of a given sched_domain during load balance.
3955 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3956 * @this_cpu: Cpu for which currently load balance is being performed.
3957 * @imbalance: The variable to store the imbalance.
3958 */
3959static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3960 unsigned long *imbalance)
3961{
3962 unsigned long max_pull;
2dd73a4f
PW
3963 /*
3964 * In the presence of smp nice balancing, certain scenarios can have
3965 * max load less than avg load(as we skip the groups at or below
3966 * its cpu_power, while calculating max_load..)
3967 */
dbc523a3 3968 if (sds->max_load < sds->avg_load) {
2dd73a4f 3969 *imbalance = 0;
dbc523a3 3970 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3971 }
0c117f1b
SS
3972
3973 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3974 max_pull = min(sds->max_load - sds->avg_load,
3975 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3976
1da177e4 3977 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3978 *imbalance = min(max_pull * sds->busiest->cpu_power,
3979 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3980 / SCHED_LOAD_SCALE;
3981
2dd73a4f
PW
3982 /*
3983 * if *imbalance is less than the average load per runnable task
3984 * there is no gaurantee that any tasks will be moved so we'll have
3985 * a think about bumping its value to force at least one task to be
3986 * moved
3987 */
dbc523a3
GS
3988 if (*imbalance < sds->busiest_load_per_task)
3989 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3990
dbc523a3 3991}
37abe198 3992/******* find_busiest_group() helpers end here *********************/
1da177e4 3993
b7bb4c9b
GS
3994/**
3995 * find_busiest_group - Returns the busiest group within the sched_domain
3996 * if there is an imbalance. If there isn't an imbalance, and
3997 * the user has opted for power-savings, it returns a group whose
3998 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3999 * such a group exists.
4000 *
4001 * Also calculates the amount of weighted load which should be moved
4002 * to restore balance.
4003 *
4004 * @sd: The sched_domain whose busiest group is to be returned.
4005 * @this_cpu: The cpu for which load balancing is currently being performed.
4006 * @imbalance: Variable which stores amount of weighted load which should
4007 * be moved to restore balance/put a group to idle.
4008 * @idle: The idle status of this_cpu.
4009 * @sd_idle: The idleness of sd
4010 * @cpus: The set of CPUs under consideration for load-balancing.
4011 * @balance: Pointer to a variable indicating if this_cpu
4012 * is the appropriate cpu to perform load balancing at this_level.
4013 *
4014 * Returns: - the busiest group if imbalance exists.
4015 * - If no imbalance and user has opted for power-savings balance,
4016 * return the least loaded group whose CPUs can be
4017 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4018 */
4019static struct sched_group *
4020find_busiest_group(struct sched_domain *sd, int this_cpu,
4021 unsigned long *imbalance, enum cpu_idle_type idle,
4022 int *sd_idle, const struct cpumask *cpus, int *balance)
4023{
4024 struct sd_lb_stats sds;
1da177e4 4025
37abe198 4026 memset(&sds, 0, sizeof(sds));
1da177e4 4027
37abe198
GS
4028 /*
4029 * Compute the various statistics relavent for load balancing at
4030 * this level.
4031 */
4032 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4033 balance, &sds);
4034
b7bb4c9b
GS
4035 /* Cases where imbalance does not exist from POV of this_cpu */
4036 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4037 * at this level.
4038 * 2) There is no busy sibling group to pull from.
4039 * 3) This group is the busiest group.
4040 * 4) This group is more busy than the avg busieness at this
4041 * sched_domain.
4042 * 5) The imbalance is within the specified limit.
4043 * 6) Any rebalance would lead to ping-pong
4044 */
37abe198
GS
4045 if (balance && !(*balance))
4046 goto ret;
1da177e4 4047
b7bb4c9b
GS
4048 if (!sds.busiest || sds.busiest_nr_running == 0)
4049 goto out_balanced;
1da177e4 4050
b7bb4c9b 4051 if (sds.this_load >= sds.max_load)
1da177e4 4052 goto out_balanced;
1da177e4 4053
222d656d 4054 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4055
b7bb4c9b
GS
4056 if (sds.this_load >= sds.avg_load)
4057 goto out_balanced;
4058
4059 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4060 goto out_balanced;
4061
222d656d
GS
4062 sds.busiest_load_per_task /= sds.busiest_nr_running;
4063 if (sds.group_imb)
4064 sds.busiest_load_per_task =
4065 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4066
1da177e4
LT
4067 /*
4068 * We're trying to get all the cpus to the average_load, so we don't
4069 * want to push ourselves above the average load, nor do we wish to
4070 * reduce the max loaded cpu below the average load, as either of these
4071 * actions would just result in more rebalancing later, and ping-pong
4072 * tasks around. Thus we look for the minimum possible imbalance.
4073 * Negative imbalances (*we* are more loaded than anyone else) will
4074 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4075 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4076 * appear as very large values with unsigned longs.
4077 */
222d656d 4078 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4079 goto out_balanced;
4080
dbc523a3
GS
4081 /* Looks like there is an imbalance. Compute it */
4082 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4083 return sds.busiest;
1da177e4
LT
4084
4085out_balanced:
c071df18
GS
4086 /*
4087 * There is no obvious imbalance. But check if we can do some balancing
4088 * to save power.
4089 */
4090 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4091 return sds.busiest;
783609c6 4092ret:
1da177e4
LT
4093 *imbalance = 0;
4094 return NULL;
4095}
4096
4097/*
4098 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4099 */
70b97a7f 4100static struct rq *
d15bcfdb 4101find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4102 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4103{
70b97a7f 4104 struct rq *busiest = NULL, *rq;
2dd73a4f 4105 unsigned long max_load = 0;
1da177e4
LT
4106 int i;
4107
758b2cdc 4108 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4109 unsigned long power = power_of(i);
4110 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4111 unsigned long wl;
0a2966b4 4112
96f874e2 4113 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4114 continue;
4115
48f24c4d 4116 rq = cpu_rq(i);
bdb94aa5
PZ
4117 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4118 wl /= power;
2dd73a4f 4119
bdb94aa5 4120 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4121 continue;
1da177e4 4122
dd41f596
IM
4123 if (wl > max_load) {
4124 max_load = wl;
48f24c4d 4125 busiest = rq;
1da177e4
LT
4126 }
4127 }
4128
4129 return busiest;
4130}
4131
77391d71
NP
4132/*
4133 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4134 * so long as it is large enough.
4135 */
4136#define MAX_PINNED_INTERVAL 512
4137
df7c8e84
RR
4138/* Working cpumask for load_balance and load_balance_newidle. */
4139static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4140
1da177e4
LT
4141/*
4142 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4143 * tasks if there is an imbalance.
1da177e4 4144 */
70b97a7f 4145static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4146 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4147 int *balance)
1da177e4 4148{
43010659 4149 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4150 struct sched_group *group;
1da177e4 4151 unsigned long imbalance;
70b97a7f 4152 struct rq *busiest;
fe2eea3f 4153 unsigned long flags;
df7c8e84 4154 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4155
6ad4c188 4156 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4157
89c4710e
SS
4158 /*
4159 * When power savings policy is enabled for the parent domain, idle
4160 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4161 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4162 * portraying it as CPU_NOT_IDLE.
89c4710e 4163 */
d15bcfdb 4164 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4165 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4166 sd_idle = 1;
1da177e4 4167
2d72376b 4168 schedstat_inc(sd, lb_count[idle]);
1da177e4 4169
0a2966b4 4170redo:
c8cba857 4171 update_shares(sd);
0a2966b4 4172 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4173 cpus, balance);
783609c6 4174
06066714 4175 if (*balance == 0)
783609c6 4176 goto out_balanced;
783609c6 4177
1da177e4
LT
4178 if (!group) {
4179 schedstat_inc(sd, lb_nobusyg[idle]);
4180 goto out_balanced;
4181 }
4182
7c16ec58 4183 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4184 if (!busiest) {
4185 schedstat_inc(sd, lb_nobusyq[idle]);
4186 goto out_balanced;
4187 }
4188
db935dbd 4189 BUG_ON(busiest == this_rq);
1da177e4
LT
4190
4191 schedstat_add(sd, lb_imbalance[idle], imbalance);
4192
43010659 4193 ld_moved = 0;
1da177e4
LT
4194 if (busiest->nr_running > 1) {
4195 /*
4196 * Attempt to move tasks. If find_busiest_group has found
4197 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4198 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4199 * correctly treated as an imbalance.
4200 */
fe2eea3f 4201 local_irq_save(flags);
e17224bf 4202 double_rq_lock(this_rq, busiest);
43010659 4203 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4204 imbalance, sd, idle, &all_pinned);
e17224bf 4205 double_rq_unlock(this_rq, busiest);
fe2eea3f 4206 local_irq_restore(flags);
81026794 4207
46cb4b7c
SS
4208 /*
4209 * some other cpu did the load balance for us.
4210 */
43010659 4211 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4212 resched_cpu(this_cpu);
4213
81026794 4214 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4215 if (unlikely(all_pinned)) {
96f874e2
RR
4216 cpumask_clear_cpu(cpu_of(busiest), cpus);
4217 if (!cpumask_empty(cpus))
0a2966b4 4218 goto redo;
81026794 4219 goto out_balanced;
0a2966b4 4220 }
1da177e4 4221 }
81026794 4222
43010659 4223 if (!ld_moved) {
1da177e4
LT
4224 schedstat_inc(sd, lb_failed[idle]);
4225 sd->nr_balance_failed++;
4226
4227 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4228
05fa785c 4229 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4230
4231 /* don't kick the migration_thread, if the curr
4232 * task on busiest cpu can't be moved to this_cpu
4233 */
96f874e2
RR
4234 if (!cpumask_test_cpu(this_cpu,
4235 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4236 raw_spin_unlock_irqrestore(&busiest->lock,
4237 flags);
fa3b6ddc
SS
4238 all_pinned = 1;
4239 goto out_one_pinned;
4240 }
4241
1da177e4
LT
4242 if (!busiest->active_balance) {
4243 busiest->active_balance = 1;
4244 busiest->push_cpu = this_cpu;
81026794 4245 active_balance = 1;
1da177e4 4246 }
05fa785c 4247 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4248 if (active_balance)
1da177e4
LT
4249 wake_up_process(busiest->migration_thread);
4250
4251 /*
4252 * We've kicked active balancing, reset the failure
4253 * counter.
4254 */
39507451 4255 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4256 }
81026794 4257 } else
1da177e4
LT
4258 sd->nr_balance_failed = 0;
4259
81026794 4260 if (likely(!active_balance)) {
1da177e4
LT
4261 /* We were unbalanced, so reset the balancing interval */
4262 sd->balance_interval = sd->min_interval;
81026794
NP
4263 } else {
4264 /*
4265 * If we've begun active balancing, start to back off. This
4266 * case may not be covered by the all_pinned logic if there
4267 * is only 1 task on the busy runqueue (because we don't call
4268 * move_tasks).
4269 */
4270 if (sd->balance_interval < sd->max_interval)
4271 sd->balance_interval *= 2;
1da177e4
LT
4272 }
4273
43010659 4274 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4275 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4276 ld_moved = -1;
4277
4278 goto out;
1da177e4
LT
4279
4280out_balanced:
1da177e4
LT
4281 schedstat_inc(sd, lb_balanced[idle]);
4282
16cfb1c0 4283 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4284
4285out_one_pinned:
1da177e4 4286 /* tune up the balancing interval */
77391d71
NP
4287 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4288 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4289 sd->balance_interval *= 2;
4290
48f24c4d 4291 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4292 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4293 ld_moved = -1;
4294 else
4295 ld_moved = 0;
4296out:
c8cba857
PZ
4297 if (ld_moved)
4298 update_shares(sd);
c09595f6 4299 return ld_moved;
1da177e4
LT
4300}
4301
4302/*
4303 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4304 * tasks if there is an imbalance.
4305 *
d15bcfdb 4306 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4307 * this_rq is locked.
4308 */
48f24c4d 4309static int
df7c8e84 4310load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4311{
4312 struct sched_group *group;
70b97a7f 4313 struct rq *busiest = NULL;
1da177e4 4314 unsigned long imbalance;
43010659 4315 int ld_moved = 0;
5969fe06 4316 int sd_idle = 0;
969bb4e4 4317 int all_pinned = 0;
df7c8e84 4318 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4319
6ad4c188 4320 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4321
89c4710e
SS
4322 /*
4323 * When power savings policy is enabled for the parent domain, idle
4324 * sibling can pick up load irrespective of busy siblings. In this case,
4325 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4326 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4327 */
4328 if (sd->flags & SD_SHARE_CPUPOWER &&
4329 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4330 sd_idle = 1;
1da177e4 4331
2d72376b 4332 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4333redo:
3e5459b4 4334 update_shares_locked(this_rq, sd);
d15bcfdb 4335 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4336 &sd_idle, cpus, NULL);
1da177e4 4337 if (!group) {
d15bcfdb 4338 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4339 goto out_balanced;
1da177e4
LT
4340 }
4341
7c16ec58 4342 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4343 if (!busiest) {
d15bcfdb 4344 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4345 goto out_balanced;
1da177e4
LT
4346 }
4347
db935dbd
NP
4348 BUG_ON(busiest == this_rq);
4349
d15bcfdb 4350 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4351
43010659 4352 ld_moved = 0;
d6d5cfaf
NP
4353 if (busiest->nr_running > 1) {
4354 /* Attempt to move tasks */
4355 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4356 /* this_rq->clock is already updated */
4357 update_rq_clock(busiest);
43010659 4358 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4359 imbalance, sd, CPU_NEWLY_IDLE,
4360 &all_pinned);
1b12bbc7 4361 double_unlock_balance(this_rq, busiest);
0a2966b4 4362
969bb4e4 4363 if (unlikely(all_pinned)) {
96f874e2
RR
4364 cpumask_clear_cpu(cpu_of(busiest), cpus);
4365 if (!cpumask_empty(cpus))
0a2966b4
CL
4366 goto redo;
4367 }
d6d5cfaf
NP
4368 }
4369
43010659 4370 if (!ld_moved) {
36dffab6 4371 int active_balance = 0;
ad273b32 4372
d15bcfdb 4373 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4376 return -1;
ad273b32
VS
4377
4378 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4379 return -1;
4380
4381 if (sd->nr_balance_failed++ < 2)
4382 return -1;
4383
4384 /*
4385 * The only task running in a non-idle cpu can be moved to this
4386 * cpu in an attempt to completely freeup the other CPU
4387 * package. The same method used to move task in load_balance()
4388 * have been extended for load_balance_newidle() to speedup
4389 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4390 *
4391 * The package power saving logic comes from
4392 * find_busiest_group(). If there are no imbalance, then
4393 * f_b_g() will return NULL. However when sched_mc={1,2} then
4394 * f_b_g() will select a group from which a running task may be
4395 * pulled to this cpu in order to make the other package idle.
4396 * If there is no opportunity to make a package idle and if
4397 * there are no imbalance, then f_b_g() will return NULL and no
4398 * action will be taken in load_balance_newidle().
4399 *
4400 * Under normal task pull operation due to imbalance, there
4401 * will be more than one task in the source run queue and
4402 * move_tasks() will succeed. ld_moved will be true and this
4403 * active balance code will not be triggered.
4404 */
4405
4406 /* Lock busiest in correct order while this_rq is held */
4407 double_lock_balance(this_rq, busiest);
4408
4409 /*
4410 * don't kick the migration_thread, if the curr
4411 * task on busiest cpu can't be moved to this_cpu
4412 */
6ca09dfc 4413 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4414 double_unlock_balance(this_rq, busiest);
4415 all_pinned = 1;
4416 return ld_moved;
4417 }
4418
4419 if (!busiest->active_balance) {
4420 busiest->active_balance = 1;
4421 busiest->push_cpu = this_cpu;
4422 active_balance = 1;
4423 }
4424
4425 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4426 /*
4427 * Should not call ttwu while holding a rq->lock
4428 */
05fa785c 4429 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4430 if (active_balance)
4431 wake_up_process(busiest->migration_thread);
05fa785c 4432 raw_spin_lock(&this_rq->lock);
ad273b32 4433
5969fe06 4434 } else
16cfb1c0 4435 sd->nr_balance_failed = 0;
1da177e4 4436
3e5459b4 4437 update_shares_locked(this_rq, sd);
43010659 4438 return ld_moved;
16cfb1c0
NP
4439
4440out_balanced:
d15bcfdb 4441 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4442 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4443 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4444 return -1;
16cfb1c0 4445 sd->nr_balance_failed = 0;
48f24c4d 4446
16cfb1c0 4447 return 0;
1da177e4
LT
4448}
4449
4450/*
4451 * idle_balance is called by schedule() if this_cpu is about to become
4452 * idle. Attempts to pull tasks from other CPUs.
4453 */
70b97a7f 4454static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4455{
4456 struct sched_domain *sd;
efbe027e 4457 int pulled_task = 0;
dd41f596 4458 unsigned long next_balance = jiffies + HZ;
1da177e4 4459
1b9508f6
MG
4460 this_rq->idle_stamp = this_rq->clock;
4461
4462 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4463 return;
4464
1da177e4 4465 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4466 unsigned long interval;
4467
4468 if (!(sd->flags & SD_LOAD_BALANCE))
4469 continue;
4470
4471 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4472 /* If we've pulled tasks over stop searching: */
7c16ec58 4473 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4474 sd);
92c4ca5c
CL
4475
4476 interval = msecs_to_jiffies(sd->balance_interval);
4477 if (time_after(next_balance, sd->last_balance + interval))
4478 next_balance = sd->last_balance + interval;
1b9508f6
MG
4479 if (pulled_task) {
4480 this_rq->idle_stamp = 0;
92c4ca5c 4481 break;
1b9508f6 4482 }
1da177e4 4483 }
dd41f596 4484 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4485 /*
4486 * We are going idle. next_balance may be set based on
4487 * a busy processor. So reset next_balance.
4488 */
4489 this_rq->next_balance = next_balance;
dd41f596 4490 }
1da177e4
LT
4491}
4492
4493/*
4494 * active_load_balance is run by migration threads. It pushes running tasks
4495 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4496 * running on each physical CPU where possible, and avoids physical /
4497 * logical imbalances.
4498 *
4499 * Called with busiest_rq locked.
4500 */
70b97a7f 4501static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4502{
39507451 4503 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4504 struct sched_domain *sd;
4505 struct rq *target_rq;
39507451 4506
48f24c4d 4507 /* Is there any task to move? */
39507451 4508 if (busiest_rq->nr_running <= 1)
39507451
NP
4509 return;
4510
4511 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4512
4513 /*
39507451 4514 * This condition is "impossible", if it occurs
41a2d6cf 4515 * we need to fix it. Originally reported by
39507451 4516 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4517 */
39507451 4518 BUG_ON(busiest_rq == target_rq);
1da177e4 4519
39507451
NP
4520 /* move a task from busiest_rq to target_rq */
4521 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4522 update_rq_clock(busiest_rq);
4523 update_rq_clock(target_rq);
39507451
NP
4524
4525 /* Search for an sd spanning us and the target CPU. */
c96d145e 4526 for_each_domain(target_cpu, sd) {
39507451 4527 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4528 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4529 break;
c96d145e 4530 }
39507451 4531
48f24c4d 4532 if (likely(sd)) {
2d72376b 4533 schedstat_inc(sd, alb_count);
39507451 4534
43010659
PW
4535 if (move_one_task(target_rq, target_cpu, busiest_rq,
4536 sd, CPU_IDLE))
48f24c4d
IM
4537 schedstat_inc(sd, alb_pushed);
4538 else
4539 schedstat_inc(sd, alb_failed);
4540 }
1b12bbc7 4541 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4542}
4543
46cb4b7c
SS
4544#ifdef CONFIG_NO_HZ
4545static struct {
4546 atomic_t load_balancer;
7d1e6a9b 4547 cpumask_var_t cpu_mask;
f711f609 4548 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4549} nohz ____cacheline_aligned = {
4550 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4551};
4552
eea08f32
AB
4553int get_nohz_load_balancer(void)
4554{
4555 return atomic_read(&nohz.load_balancer);
4556}
4557
f711f609
GS
4558#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4559/**
4560 * lowest_flag_domain - Return lowest sched_domain containing flag.
4561 * @cpu: The cpu whose lowest level of sched domain is to
4562 * be returned.
4563 * @flag: The flag to check for the lowest sched_domain
4564 * for the given cpu.
4565 *
4566 * Returns the lowest sched_domain of a cpu which contains the given flag.
4567 */
4568static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4569{
4570 struct sched_domain *sd;
4571
4572 for_each_domain(cpu, sd)
4573 if (sd && (sd->flags & flag))
4574 break;
4575
4576 return sd;
4577}
4578
4579/**
4580 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4581 * @cpu: The cpu whose domains we're iterating over.
4582 * @sd: variable holding the value of the power_savings_sd
4583 * for cpu.
4584 * @flag: The flag to filter the sched_domains to be iterated.
4585 *
4586 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4587 * set, starting from the lowest sched_domain to the highest.
4588 */
4589#define for_each_flag_domain(cpu, sd, flag) \
4590 for (sd = lowest_flag_domain(cpu, flag); \
4591 (sd && (sd->flags & flag)); sd = sd->parent)
4592
4593/**
4594 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4595 * @ilb_group: group to be checked for semi-idleness
4596 *
4597 * Returns: 1 if the group is semi-idle. 0 otherwise.
4598 *
4599 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4600 * and atleast one non-idle CPU. This helper function checks if the given
4601 * sched_group is semi-idle or not.
4602 */
4603static inline int is_semi_idle_group(struct sched_group *ilb_group)
4604{
4605 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4606 sched_group_cpus(ilb_group));
4607
4608 /*
4609 * A sched_group is semi-idle when it has atleast one busy cpu
4610 * and atleast one idle cpu.
4611 */
4612 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4613 return 0;
4614
4615 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4616 return 0;
4617
4618 return 1;
4619}
4620/**
4621 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4622 * @cpu: The cpu which is nominating a new idle_load_balancer.
4623 *
4624 * Returns: Returns the id of the idle load balancer if it exists,
4625 * Else, returns >= nr_cpu_ids.
4626 *
4627 * This algorithm picks the idle load balancer such that it belongs to a
4628 * semi-idle powersavings sched_domain. The idea is to try and avoid
4629 * completely idle packages/cores just for the purpose of idle load balancing
4630 * when there are other idle cpu's which are better suited for that job.
4631 */
4632static int find_new_ilb(int cpu)
4633{
4634 struct sched_domain *sd;
4635 struct sched_group *ilb_group;
4636
4637 /*
4638 * Have idle load balancer selection from semi-idle packages only
4639 * when power-aware load balancing is enabled
4640 */
4641 if (!(sched_smt_power_savings || sched_mc_power_savings))
4642 goto out_done;
4643
4644 /*
4645 * Optimize for the case when we have no idle CPUs or only one
4646 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4647 */
4648 if (cpumask_weight(nohz.cpu_mask) < 2)
4649 goto out_done;
4650
4651 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4652 ilb_group = sd->groups;
4653
4654 do {
4655 if (is_semi_idle_group(ilb_group))
4656 return cpumask_first(nohz.ilb_grp_nohz_mask);
4657
4658 ilb_group = ilb_group->next;
4659
4660 } while (ilb_group != sd->groups);
4661 }
4662
4663out_done:
4664 return cpumask_first(nohz.cpu_mask);
4665}
4666#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4667static inline int find_new_ilb(int call_cpu)
4668{
6e29ec57 4669 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4670}
4671#endif
4672
7835b98b 4673/*
46cb4b7c
SS
4674 * This routine will try to nominate the ilb (idle load balancing)
4675 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4676 * load balancing on behalf of all those cpus. If all the cpus in the system
4677 * go into this tickless mode, then there will be no ilb owner (as there is
4678 * no need for one) and all the cpus will sleep till the next wakeup event
4679 * arrives...
4680 *
4681 * For the ilb owner, tick is not stopped. And this tick will be used
4682 * for idle load balancing. ilb owner will still be part of
4683 * nohz.cpu_mask..
7835b98b 4684 *
46cb4b7c
SS
4685 * While stopping the tick, this cpu will become the ilb owner if there
4686 * is no other owner. And will be the owner till that cpu becomes busy
4687 * or if all cpus in the system stop their ticks at which point
4688 * there is no need for ilb owner.
4689 *
4690 * When the ilb owner becomes busy, it nominates another owner, during the
4691 * next busy scheduler_tick()
4692 */
4693int select_nohz_load_balancer(int stop_tick)
4694{
4695 int cpu = smp_processor_id();
4696
4697 if (stop_tick) {
46cb4b7c
SS
4698 cpu_rq(cpu)->in_nohz_recently = 1;
4699
483b4ee6
SS
4700 if (!cpu_active(cpu)) {
4701 if (atomic_read(&nohz.load_balancer) != cpu)
4702 return 0;
4703
4704 /*
4705 * If we are going offline and still the leader,
4706 * give up!
4707 */
46cb4b7c
SS
4708 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4709 BUG();
483b4ee6 4710
46cb4b7c
SS
4711 return 0;
4712 }
4713
483b4ee6
SS
4714 cpumask_set_cpu(cpu, nohz.cpu_mask);
4715
46cb4b7c 4716 /* time for ilb owner also to sleep */
6ad4c188 4717 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4718 if (atomic_read(&nohz.load_balancer) == cpu)
4719 atomic_set(&nohz.load_balancer, -1);
4720 return 0;
4721 }
4722
4723 if (atomic_read(&nohz.load_balancer) == -1) {
4724 /* make me the ilb owner */
4725 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4726 return 1;
e790fb0b
GS
4727 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4728 int new_ilb;
4729
4730 if (!(sched_smt_power_savings ||
4731 sched_mc_power_savings))
4732 return 1;
4733 /*
4734 * Check to see if there is a more power-efficient
4735 * ilb.
4736 */
4737 new_ilb = find_new_ilb(cpu);
4738 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4739 atomic_set(&nohz.load_balancer, -1);
4740 resched_cpu(new_ilb);
4741 return 0;
4742 }
46cb4b7c 4743 return 1;
e790fb0b 4744 }
46cb4b7c 4745 } else {
7d1e6a9b 4746 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4747 return 0;
4748
7d1e6a9b 4749 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4750
4751 if (atomic_read(&nohz.load_balancer) == cpu)
4752 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4753 BUG();
4754 }
4755 return 0;
4756}
4757#endif
4758
4759static DEFINE_SPINLOCK(balancing);
4760
4761/*
7835b98b
CL
4762 * It checks each scheduling domain to see if it is due to be balanced,
4763 * and initiates a balancing operation if so.
4764 *
4765 * Balancing parameters are set up in arch_init_sched_domains.
4766 */
a9957449 4767static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4768{
46cb4b7c
SS
4769 int balance = 1;
4770 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4771 unsigned long interval;
4772 struct sched_domain *sd;
46cb4b7c 4773 /* Earliest time when we have to do rebalance again */
c9819f45 4774 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4775 int update_next_balance = 0;
d07355f5 4776 int need_serialize;
1da177e4 4777
46cb4b7c 4778 for_each_domain(cpu, sd) {
1da177e4
LT
4779 if (!(sd->flags & SD_LOAD_BALANCE))
4780 continue;
4781
4782 interval = sd->balance_interval;
d15bcfdb 4783 if (idle != CPU_IDLE)
1da177e4
LT
4784 interval *= sd->busy_factor;
4785
4786 /* scale ms to jiffies */
4787 interval = msecs_to_jiffies(interval);
4788 if (unlikely(!interval))
4789 interval = 1;
dd41f596
IM
4790 if (interval > HZ*NR_CPUS/10)
4791 interval = HZ*NR_CPUS/10;
4792
d07355f5 4793 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4794
d07355f5 4795 if (need_serialize) {
08c183f3
CL
4796 if (!spin_trylock(&balancing))
4797 goto out;
4798 }
4799
c9819f45 4800 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4801 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4802 /*
4803 * We've pulled tasks over so either we're no
5969fe06
NP
4804 * longer idle, or one of our SMT siblings is
4805 * not idle.
4806 */
d15bcfdb 4807 idle = CPU_NOT_IDLE;
1da177e4 4808 }
1bd77f2d 4809 sd->last_balance = jiffies;
1da177e4 4810 }
d07355f5 4811 if (need_serialize)
08c183f3
CL
4812 spin_unlock(&balancing);
4813out:
f549da84 4814 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4815 next_balance = sd->last_balance + interval;
f549da84
SS
4816 update_next_balance = 1;
4817 }
783609c6
SS
4818
4819 /*
4820 * Stop the load balance at this level. There is another
4821 * CPU in our sched group which is doing load balancing more
4822 * actively.
4823 */
4824 if (!balance)
4825 break;
1da177e4 4826 }
f549da84
SS
4827
4828 /*
4829 * next_balance will be updated only when there is a need.
4830 * When the cpu is attached to null domain for ex, it will not be
4831 * updated.
4832 */
4833 if (likely(update_next_balance))
4834 rq->next_balance = next_balance;
46cb4b7c
SS
4835}
4836
4837/*
4838 * run_rebalance_domains is triggered when needed from the scheduler tick.
4839 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4840 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4841 */
4842static void run_rebalance_domains(struct softirq_action *h)
4843{
dd41f596
IM
4844 int this_cpu = smp_processor_id();
4845 struct rq *this_rq = cpu_rq(this_cpu);
4846 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4847 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4848
dd41f596 4849 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4850
4851#ifdef CONFIG_NO_HZ
4852 /*
4853 * If this cpu is the owner for idle load balancing, then do the
4854 * balancing on behalf of the other idle cpus whose ticks are
4855 * stopped.
4856 */
dd41f596
IM
4857 if (this_rq->idle_at_tick &&
4858 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4859 struct rq *rq;
4860 int balance_cpu;
4861
7d1e6a9b
RR
4862 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4863 if (balance_cpu == this_cpu)
4864 continue;
4865
46cb4b7c
SS
4866 /*
4867 * If this cpu gets work to do, stop the load balancing
4868 * work being done for other cpus. Next load
4869 * balancing owner will pick it up.
4870 */
4871 if (need_resched())
4872 break;
4873
de0cf899 4874 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4875
4876 rq = cpu_rq(balance_cpu);
dd41f596
IM
4877 if (time_after(this_rq->next_balance, rq->next_balance))
4878 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4879 }
4880 }
4881#endif
4882}
4883
8a0be9ef
FW
4884static inline int on_null_domain(int cpu)
4885{
4886 return !rcu_dereference(cpu_rq(cpu)->sd);
4887}
4888
46cb4b7c
SS
4889/*
4890 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4891 *
4892 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4893 * idle load balancing owner or decide to stop the periodic load balancing,
4894 * if the whole system is idle.
4895 */
dd41f596 4896static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4897{
46cb4b7c
SS
4898#ifdef CONFIG_NO_HZ
4899 /*
4900 * If we were in the nohz mode recently and busy at the current
4901 * scheduler tick, then check if we need to nominate new idle
4902 * load balancer.
4903 */
4904 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4905 rq->in_nohz_recently = 0;
4906
4907 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4908 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4909 atomic_set(&nohz.load_balancer, -1);
4910 }
4911
4912 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4913 int ilb = find_new_ilb(cpu);
46cb4b7c 4914
434d53b0 4915 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4916 resched_cpu(ilb);
4917 }
4918 }
4919
4920 /*
4921 * If this cpu is idle and doing idle load balancing for all the
4922 * cpus with ticks stopped, is it time for that to stop?
4923 */
4924 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4925 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4926 resched_cpu(cpu);
4927 return;
4928 }
4929
4930 /*
4931 * If this cpu is idle and the idle load balancing is done by
4932 * someone else, then no need raise the SCHED_SOFTIRQ
4933 */
4934 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4935 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4936 return;
4937#endif
8a0be9ef
FW
4938 /* Don't need to rebalance while attached to NULL domain */
4939 if (time_after_eq(jiffies, rq->next_balance) &&
4940 likely(!on_null_domain(cpu)))
46cb4b7c 4941 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4942}
dd41f596
IM
4943
4944#else /* CONFIG_SMP */
4945
1da177e4
LT
4946/*
4947 * on UP we do not need to balance between CPUs:
4948 */
70b97a7f 4949static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4950{
4951}
dd41f596 4952
1da177e4
LT
4953#endif
4954
1da177e4
LT
4955DEFINE_PER_CPU(struct kernel_stat, kstat);
4956
4957EXPORT_PER_CPU_SYMBOL(kstat);
4958
4959/*
c5f8d995 4960 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4961 * @p in case that task is currently running.
c5f8d995
HS
4962 *
4963 * Called with task_rq_lock() held on @rq.
1da177e4 4964 */
c5f8d995
HS
4965static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4966{
4967 u64 ns = 0;
4968
4969 if (task_current(rq, p)) {
4970 update_rq_clock(rq);
4971 ns = rq->clock - p->se.exec_start;
4972 if ((s64)ns < 0)
4973 ns = 0;
4974 }
4975
4976 return ns;
4977}
4978
bb34d92f 4979unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4980{
1da177e4 4981 unsigned long flags;
41b86e9c 4982 struct rq *rq;
bb34d92f 4983 u64 ns = 0;
48f24c4d 4984
41b86e9c 4985 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4986 ns = do_task_delta_exec(p, rq);
4987 task_rq_unlock(rq, &flags);
1508487e 4988
c5f8d995
HS
4989 return ns;
4990}
f06febc9 4991
c5f8d995
HS
4992/*
4993 * Return accounted runtime for the task.
4994 * In case the task is currently running, return the runtime plus current's
4995 * pending runtime that have not been accounted yet.
4996 */
4997unsigned long long task_sched_runtime(struct task_struct *p)
4998{
4999 unsigned long flags;
5000 struct rq *rq;
5001 u64 ns = 0;
5002
5003 rq = task_rq_lock(p, &flags);
5004 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5005 task_rq_unlock(rq, &flags);
5006
5007 return ns;
5008}
48f24c4d 5009
c5f8d995
HS
5010/*
5011 * Return sum_exec_runtime for the thread group.
5012 * In case the task is currently running, return the sum plus current's
5013 * pending runtime that have not been accounted yet.
5014 *
5015 * Note that the thread group might have other running tasks as well,
5016 * so the return value not includes other pending runtime that other
5017 * running tasks might have.
5018 */
5019unsigned long long thread_group_sched_runtime(struct task_struct *p)
5020{
5021 struct task_cputime totals;
5022 unsigned long flags;
5023 struct rq *rq;
5024 u64 ns;
5025
5026 rq = task_rq_lock(p, &flags);
5027 thread_group_cputime(p, &totals);
5028 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5029 task_rq_unlock(rq, &flags);
48f24c4d 5030
1da177e4
LT
5031 return ns;
5032}
5033
1da177e4
LT
5034/*
5035 * Account user cpu time to a process.
5036 * @p: the process that the cpu time gets accounted to
1da177e4 5037 * @cputime: the cpu time spent in user space since the last update
457533a7 5038 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5039 */
457533a7
MS
5040void account_user_time(struct task_struct *p, cputime_t cputime,
5041 cputime_t cputime_scaled)
1da177e4
LT
5042{
5043 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5044 cputime64_t tmp;
5045
457533a7 5046 /* Add user time to process. */
1da177e4 5047 p->utime = cputime_add(p->utime, cputime);
457533a7 5048 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5049 account_group_user_time(p, cputime);
1da177e4
LT
5050
5051 /* Add user time to cpustat. */
5052 tmp = cputime_to_cputime64(cputime);
5053 if (TASK_NICE(p) > 0)
5054 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5055 else
5056 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5057
5058 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5059 /* Account for user time used */
5060 acct_update_integrals(p);
1da177e4
LT
5061}
5062
94886b84
LV
5063/*
5064 * Account guest cpu time to a process.
5065 * @p: the process that the cpu time gets accounted to
5066 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5067 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5068 */
457533a7
MS
5069static void account_guest_time(struct task_struct *p, cputime_t cputime,
5070 cputime_t cputime_scaled)
94886b84
LV
5071{
5072 cputime64_t tmp;
5073 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5074
5075 tmp = cputime_to_cputime64(cputime);
5076
457533a7 5077 /* Add guest time to process. */
94886b84 5078 p->utime = cputime_add(p->utime, cputime);
457533a7 5079 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5080 account_group_user_time(p, cputime);
94886b84
LV
5081 p->gtime = cputime_add(p->gtime, cputime);
5082
457533a7 5083 /* Add guest time to cpustat. */
ce0e7b28
RO
5084 if (TASK_NICE(p) > 0) {
5085 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5086 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5087 } else {
5088 cpustat->user = cputime64_add(cpustat->user, tmp);
5089 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5090 }
94886b84
LV
5091}
5092
1da177e4
LT
5093/*
5094 * Account system cpu time to a process.
5095 * @p: the process that the cpu time gets accounted to
5096 * @hardirq_offset: the offset to subtract from hardirq_count()
5097 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5098 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5099 */
5100void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5101 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5102{
5103 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5104 cputime64_t tmp;
5105
983ed7a6 5106 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5107 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5108 return;
5109 }
94886b84 5110
457533a7 5111 /* Add system time to process. */
1da177e4 5112 p->stime = cputime_add(p->stime, cputime);
457533a7 5113 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5114 account_group_system_time(p, cputime);
1da177e4
LT
5115
5116 /* Add system time to cpustat. */
5117 tmp = cputime_to_cputime64(cputime);
5118 if (hardirq_count() - hardirq_offset)
5119 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5120 else if (softirq_count())
5121 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5122 else
79741dd3
MS
5123 cpustat->system = cputime64_add(cpustat->system, tmp);
5124
ef12fefa
BR
5125 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5126
1da177e4
LT
5127 /* Account for system time used */
5128 acct_update_integrals(p);
1da177e4
LT
5129}
5130
c66f08be 5131/*
1da177e4 5132 * Account for involuntary wait time.
1da177e4 5133 * @steal: the cpu time spent in involuntary wait
c66f08be 5134 */
79741dd3 5135void account_steal_time(cputime_t cputime)
c66f08be 5136{
79741dd3
MS
5137 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5138 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5139
5140 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5141}
5142
1da177e4 5143/*
79741dd3
MS
5144 * Account for idle time.
5145 * @cputime: the cpu time spent in idle wait
1da177e4 5146 */
79741dd3 5147void account_idle_time(cputime_t cputime)
1da177e4
LT
5148{
5149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5150 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5151 struct rq *rq = this_rq();
1da177e4 5152
79741dd3
MS
5153 if (atomic_read(&rq->nr_iowait) > 0)
5154 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5155 else
5156 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5157}
5158
79741dd3
MS
5159#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5160
5161/*
5162 * Account a single tick of cpu time.
5163 * @p: the process that the cpu time gets accounted to
5164 * @user_tick: indicates if the tick is a user or a system tick
5165 */
5166void account_process_tick(struct task_struct *p, int user_tick)
5167{
a42548a1 5168 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5169 struct rq *rq = this_rq();
5170
5171 if (user_tick)
a42548a1 5172 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5173 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5174 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5175 one_jiffy_scaled);
5176 else
a42548a1 5177 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5178}
5179
5180/*
5181 * Account multiple ticks of steal time.
5182 * @p: the process from which the cpu time has been stolen
5183 * @ticks: number of stolen ticks
5184 */
5185void account_steal_ticks(unsigned long ticks)
5186{
5187 account_steal_time(jiffies_to_cputime(ticks));
5188}
5189
5190/*
5191 * Account multiple ticks of idle time.
5192 * @ticks: number of stolen ticks
5193 */
5194void account_idle_ticks(unsigned long ticks)
5195{
5196 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5197}
5198
79741dd3
MS
5199#endif
5200
49048622
BS
5201/*
5202 * Use precise platform statistics if available:
5203 */
5204#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5205void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5206{
d99ca3b9
HS
5207 *ut = p->utime;
5208 *st = p->stime;
49048622
BS
5209}
5210
0cf55e1e 5211void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5212{
0cf55e1e
HS
5213 struct task_cputime cputime;
5214
5215 thread_group_cputime(p, &cputime);
5216
5217 *ut = cputime.utime;
5218 *st = cputime.stime;
49048622
BS
5219}
5220#else
761b1d26
HS
5221
5222#ifndef nsecs_to_cputime
b7b20df9 5223# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5224#endif
5225
d180c5bc 5226void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5227{
d99ca3b9 5228 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5229
5230 /*
5231 * Use CFS's precise accounting:
5232 */
d180c5bc 5233 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5234
5235 if (total) {
d180c5bc
HS
5236 u64 temp;
5237
5238 temp = (u64)(rtime * utime);
49048622 5239 do_div(temp, total);
d180c5bc
HS
5240 utime = (cputime_t)temp;
5241 } else
5242 utime = rtime;
49048622 5243
d180c5bc
HS
5244 /*
5245 * Compare with previous values, to keep monotonicity:
5246 */
761b1d26 5247 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5248 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5249
d99ca3b9
HS
5250 *ut = p->prev_utime;
5251 *st = p->prev_stime;
49048622
BS
5252}
5253
0cf55e1e
HS
5254/*
5255 * Must be called with siglock held.
5256 */
5257void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5258{
0cf55e1e
HS
5259 struct signal_struct *sig = p->signal;
5260 struct task_cputime cputime;
5261 cputime_t rtime, utime, total;
49048622 5262
0cf55e1e 5263 thread_group_cputime(p, &cputime);
49048622 5264
0cf55e1e
HS
5265 total = cputime_add(cputime.utime, cputime.stime);
5266 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5267
0cf55e1e
HS
5268 if (total) {
5269 u64 temp;
49048622 5270
0cf55e1e
HS
5271 temp = (u64)(rtime * cputime.utime);
5272 do_div(temp, total);
5273 utime = (cputime_t)temp;
5274 } else
5275 utime = rtime;
5276
5277 sig->prev_utime = max(sig->prev_utime, utime);
5278 sig->prev_stime = max(sig->prev_stime,
5279 cputime_sub(rtime, sig->prev_utime));
5280
5281 *ut = sig->prev_utime;
5282 *st = sig->prev_stime;
49048622 5283}
49048622 5284#endif
49048622 5285
7835b98b
CL
5286/*
5287 * This function gets called by the timer code, with HZ frequency.
5288 * We call it with interrupts disabled.
5289 *
5290 * It also gets called by the fork code, when changing the parent's
5291 * timeslices.
5292 */
5293void scheduler_tick(void)
5294{
7835b98b
CL
5295 int cpu = smp_processor_id();
5296 struct rq *rq = cpu_rq(cpu);
dd41f596 5297 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5298
5299 sched_clock_tick();
dd41f596 5300
05fa785c 5301 raw_spin_lock(&rq->lock);
3e51f33f 5302 update_rq_clock(rq);
f1a438d8 5303 update_cpu_load(rq);
fa85ae24 5304 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5305 raw_spin_unlock(&rq->lock);
7835b98b 5306
49f47433 5307 perf_event_task_tick(curr);
e220d2dc 5308
e418e1c2 5309#ifdef CONFIG_SMP
dd41f596
IM
5310 rq->idle_at_tick = idle_cpu(cpu);
5311 trigger_load_balance(rq, cpu);
e418e1c2 5312#endif
1da177e4
LT
5313}
5314
132380a0 5315notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5316{
5317 if (in_lock_functions(addr)) {
5318 addr = CALLER_ADDR2;
5319 if (in_lock_functions(addr))
5320 addr = CALLER_ADDR3;
5321 }
5322 return addr;
5323}
1da177e4 5324
7e49fcce
SR
5325#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5326 defined(CONFIG_PREEMPT_TRACER))
5327
43627582 5328void __kprobes add_preempt_count(int val)
1da177e4 5329{
6cd8a4bb 5330#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5331 /*
5332 * Underflow?
5333 */
9a11b49a
IM
5334 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5335 return;
6cd8a4bb 5336#endif
1da177e4 5337 preempt_count() += val;
6cd8a4bb 5338#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5339 /*
5340 * Spinlock count overflowing soon?
5341 */
33859f7f
MOS
5342 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5343 PREEMPT_MASK - 10);
6cd8a4bb
SR
5344#endif
5345 if (preempt_count() == val)
5346 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5347}
5348EXPORT_SYMBOL(add_preempt_count);
5349
43627582 5350void __kprobes sub_preempt_count(int val)
1da177e4 5351{
6cd8a4bb 5352#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5353 /*
5354 * Underflow?
5355 */
01e3eb82 5356 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5357 return;
1da177e4
LT
5358 /*
5359 * Is the spinlock portion underflowing?
5360 */
9a11b49a
IM
5361 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5362 !(preempt_count() & PREEMPT_MASK)))
5363 return;
6cd8a4bb 5364#endif
9a11b49a 5365
6cd8a4bb
SR
5366 if (preempt_count() == val)
5367 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5368 preempt_count() -= val;
5369}
5370EXPORT_SYMBOL(sub_preempt_count);
5371
5372#endif
5373
5374/*
dd41f596 5375 * Print scheduling while atomic bug:
1da177e4 5376 */
dd41f596 5377static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5378{
838225b4
SS
5379 struct pt_regs *regs = get_irq_regs();
5380
5381 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5382 prev->comm, prev->pid, preempt_count());
5383
dd41f596 5384 debug_show_held_locks(prev);
e21f5b15 5385 print_modules();
dd41f596
IM
5386 if (irqs_disabled())
5387 print_irqtrace_events(prev);
838225b4
SS
5388
5389 if (regs)
5390 show_regs(regs);
5391 else
5392 dump_stack();
dd41f596 5393}
1da177e4 5394
dd41f596
IM
5395/*
5396 * Various schedule()-time debugging checks and statistics:
5397 */
5398static inline void schedule_debug(struct task_struct *prev)
5399{
1da177e4 5400 /*
41a2d6cf 5401 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5402 * schedule() atomically, we ignore that path for now.
5403 * Otherwise, whine if we are scheduling when we should not be.
5404 */
3f33a7ce 5405 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5406 __schedule_bug(prev);
5407
1da177e4
LT
5408 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5409
2d72376b 5410 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5411#ifdef CONFIG_SCHEDSTATS
5412 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5413 schedstat_inc(this_rq(), bkl_count);
5414 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5415 }
5416#endif
dd41f596
IM
5417}
5418
6cecd084 5419static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5420{
6cecd084
PZ
5421 if (prev->state == TASK_RUNNING) {
5422 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5423
6cecd084
PZ
5424 runtime -= prev->se.prev_sum_exec_runtime;
5425 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5426
5427 /*
5428 * In order to avoid avg_overlap growing stale when we are
5429 * indeed overlapping and hence not getting put to sleep, grow
5430 * the avg_overlap on preemption.
5431 *
5432 * We use the average preemption runtime because that
5433 * correlates to the amount of cache footprint a task can
5434 * build up.
5435 */
6cecd084 5436 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5437 }
6cecd084 5438 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5439}
5440
dd41f596
IM
5441/*
5442 * Pick up the highest-prio task:
5443 */
5444static inline struct task_struct *
b67802ea 5445pick_next_task(struct rq *rq)
dd41f596 5446{
5522d5d5 5447 const struct sched_class *class;
dd41f596 5448 struct task_struct *p;
1da177e4
LT
5449
5450 /*
dd41f596
IM
5451 * Optimization: we know that if all tasks are in
5452 * the fair class we can call that function directly:
1da177e4 5453 */
dd41f596 5454 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5455 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5456 if (likely(p))
5457 return p;
1da177e4
LT
5458 }
5459
dd41f596
IM
5460 class = sched_class_highest;
5461 for ( ; ; ) {
fb8d4724 5462 p = class->pick_next_task(rq);
dd41f596
IM
5463 if (p)
5464 return p;
5465 /*
5466 * Will never be NULL as the idle class always
5467 * returns a non-NULL p:
5468 */
5469 class = class->next;
5470 }
5471}
1da177e4 5472
dd41f596
IM
5473/*
5474 * schedule() is the main scheduler function.
5475 */
ff743345 5476asmlinkage void __sched schedule(void)
dd41f596
IM
5477{
5478 struct task_struct *prev, *next;
67ca7bde 5479 unsigned long *switch_count;
dd41f596 5480 struct rq *rq;
31656519 5481 int cpu;
dd41f596 5482
ff743345
PZ
5483need_resched:
5484 preempt_disable();
dd41f596
IM
5485 cpu = smp_processor_id();
5486 rq = cpu_rq(cpu);
d6714c22 5487 rcu_sched_qs(cpu);
dd41f596
IM
5488 prev = rq->curr;
5489 switch_count = &prev->nivcsw;
5490
5491 release_kernel_lock(prev);
5492need_resched_nonpreemptible:
5493
5494 schedule_debug(prev);
1da177e4 5495
31656519 5496 if (sched_feat(HRTICK))
f333fdc9 5497 hrtick_clear(rq);
8f4d37ec 5498
05fa785c 5499 raw_spin_lock_irq(&rq->lock);
3e51f33f 5500 update_rq_clock(rq);
1e819950 5501 clear_tsk_need_resched(prev);
1da177e4 5502
1da177e4 5503 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5504 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5505 prev->state = TASK_RUNNING;
16882c1e 5506 else
2e1cb74a 5507 deactivate_task(rq, prev, 1);
dd41f596 5508 switch_count = &prev->nvcsw;
1da177e4
LT
5509 }
5510
3f029d3c 5511 pre_schedule(rq, prev);
f65eda4f 5512
dd41f596 5513 if (unlikely(!rq->nr_running))
1da177e4 5514 idle_balance(cpu, rq);
1da177e4 5515
df1c99d4 5516 put_prev_task(rq, prev);
b67802ea 5517 next = pick_next_task(rq);
1da177e4 5518
1da177e4 5519 if (likely(prev != next)) {
673a90a1 5520 sched_info_switch(prev, next);
49f47433 5521 perf_event_task_sched_out(prev, next);
673a90a1 5522
1da177e4
LT
5523 rq->nr_switches++;
5524 rq->curr = next;
5525 ++*switch_count;
5526
dd41f596 5527 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5528 /*
5529 * the context switch might have flipped the stack from under
5530 * us, hence refresh the local variables.
5531 */
5532 cpu = smp_processor_id();
5533 rq = cpu_rq(cpu);
1da177e4 5534 } else
05fa785c 5535 raw_spin_unlock_irq(&rq->lock);
1da177e4 5536
3f029d3c 5537 post_schedule(rq);
1da177e4 5538
8f4d37ec 5539 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5540 goto need_resched_nonpreemptible;
8f4d37ec 5541
1da177e4 5542 preempt_enable_no_resched();
ff743345 5543 if (need_resched())
1da177e4
LT
5544 goto need_resched;
5545}
1da177e4
LT
5546EXPORT_SYMBOL(schedule);
5547
c08f7829 5548#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5549/*
5550 * Look out! "owner" is an entirely speculative pointer
5551 * access and not reliable.
5552 */
5553int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5554{
5555 unsigned int cpu;
5556 struct rq *rq;
5557
5558 if (!sched_feat(OWNER_SPIN))
5559 return 0;
5560
5561#ifdef CONFIG_DEBUG_PAGEALLOC
5562 /*
5563 * Need to access the cpu field knowing that
5564 * DEBUG_PAGEALLOC could have unmapped it if
5565 * the mutex owner just released it and exited.
5566 */
5567 if (probe_kernel_address(&owner->cpu, cpu))
5568 goto out;
5569#else
5570 cpu = owner->cpu;
5571#endif
5572
5573 /*
5574 * Even if the access succeeded (likely case),
5575 * the cpu field may no longer be valid.
5576 */
5577 if (cpu >= nr_cpumask_bits)
5578 goto out;
5579
5580 /*
5581 * We need to validate that we can do a
5582 * get_cpu() and that we have the percpu area.
5583 */
5584 if (!cpu_online(cpu))
5585 goto out;
5586
5587 rq = cpu_rq(cpu);
5588
5589 for (;;) {
5590 /*
5591 * Owner changed, break to re-assess state.
5592 */
5593 if (lock->owner != owner)
5594 break;
5595
5596 /*
5597 * Is that owner really running on that cpu?
5598 */
5599 if (task_thread_info(rq->curr) != owner || need_resched())
5600 return 0;
5601
5602 cpu_relax();
5603 }
5604out:
5605 return 1;
5606}
5607#endif
5608
1da177e4
LT
5609#ifdef CONFIG_PREEMPT
5610/*
2ed6e34f 5611 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5612 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5613 * occur there and call schedule directly.
5614 */
5615asmlinkage void __sched preempt_schedule(void)
5616{
5617 struct thread_info *ti = current_thread_info();
6478d880 5618
1da177e4
LT
5619 /*
5620 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5621 * we do not want to preempt the current task. Just return..
1da177e4 5622 */
beed33a8 5623 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5624 return;
5625
3a5c359a
AK
5626 do {
5627 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5628 schedule();
3a5c359a 5629 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5630
3a5c359a
AK
5631 /*
5632 * Check again in case we missed a preemption opportunity
5633 * between schedule and now.
5634 */
5635 barrier();
5ed0cec0 5636 } while (need_resched());
1da177e4 5637}
1da177e4
LT
5638EXPORT_SYMBOL(preempt_schedule);
5639
5640/*
2ed6e34f 5641 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5642 * off of irq context.
5643 * Note, that this is called and return with irqs disabled. This will
5644 * protect us against recursive calling from irq.
5645 */
5646asmlinkage void __sched preempt_schedule_irq(void)
5647{
5648 struct thread_info *ti = current_thread_info();
6478d880 5649
2ed6e34f 5650 /* Catch callers which need to be fixed */
1da177e4
LT
5651 BUG_ON(ti->preempt_count || !irqs_disabled());
5652
3a5c359a
AK
5653 do {
5654 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5655 local_irq_enable();
5656 schedule();
5657 local_irq_disable();
3a5c359a 5658 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5659
3a5c359a
AK
5660 /*
5661 * Check again in case we missed a preemption opportunity
5662 * between schedule and now.
5663 */
5664 barrier();
5ed0cec0 5665 } while (need_resched());
1da177e4
LT
5666}
5667
5668#endif /* CONFIG_PREEMPT */
5669
63859d4f 5670int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5671 void *key)
1da177e4 5672{
63859d4f 5673 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5674}
1da177e4
LT
5675EXPORT_SYMBOL(default_wake_function);
5676
5677/*
41a2d6cf
IM
5678 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5679 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5680 * number) then we wake all the non-exclusive tasks and one exclusive task.
5681 *
5682 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5683 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5684 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5685 */
78ddb08f 5686static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5687 int nr_exclusive, int wake_flags, void *key)
1da177e4 5688{
2e45874c 5689 wait_queue_t *curr, *next;
1da177e4 5690
2e45874c 5691 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5692 unsigned flags = curr->flags;
5693
63859d4f 5694 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5695 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5696 break;
5697 }
5698}
5699
5700/**
5701 * __wake_up - wake up threads blocked on a waitqueue.
5702 * @q: the waitqueue
5703 * @mode: which threads
5704 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5705 * @key: is directly passed to the wakeup function
50fa610a
DH
5706 *
5707 * It may be assumed that this function implies a write memory barrier before
5708 * changing the task state if and only if any tasks are woken up.
1da177e4 5709 */
7ad5b3a5 5710void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5711 int nr_exclusive, void *key)
1da177e4
LT
5712{
5713 unsigned long flags;
5714
5715 spin_lock_irqsave(&q->lock, flags);
5716 __wake_up_common(q, mode, nr_exclusive, 0, key);
5717 spin_unlock_irqrestore(&q->lock, flags);
5718}
1da177e4
LT
5719EXPORT_SYMBOL(__wake_up);
5720
5721/*
5722 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5723 */
7ad5b3a5 5724void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5725{
5726 __wake_up_common(q, mode, 1, 0, NULL);
5727}
5728
4ede816a
DL
5729void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5730{
5731 __wake_up_common(q, mode, 1, 0, key);
5732}
5733
1da177e4 5734/**
4ede816a 5735 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5736 * @q: the waitqueue
5737 * @mode: which threads
5738 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5739 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5740 *
5741 * The sync wakeup differs that the waker knows that it will schedule
5742 * away soon, so while the target thread will be woken up, it will not
5743 * be migrated to another CPU - ie. the two threads are 'synchronized'
5744 * with each other. This can prevent needless bouncing between CPUs.
5745 *
5746 * On UP it can prevent extra preemption.
50fa610a
DH
5747 *
5748 * It may be assumed that this function implies a write memory barrier before
5749 * changing the task state if and only if any tasks are woken up.
1da177e4 5750 */
4ede816a
DL
5751void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5752 int nr_exclusive, void *key)
1da177e4
LT
5753{
5754 unsigned long flags;
7d478721 5755 int wake_flags = WF_SYNC;
1da177e4
LT
5756
5757 if (unlikely(!q))
5758 return;
5759
5760 if (unlikely(!nr_exclusive))
7d478721 5761 wake_flags = 0;
1da177e4
LT
5762
5763 spin_lock_irqsave(&q->lock, flags);
7d478721 5764 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5765 spin_unlock_irqrestore(&q->lock, flags);
5766}
4ede816a
DL
5767EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5768
5769/*
5770 * __wake_up_sync - see __wake_up_sync_key()
5771 */
5772void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5773{
5774 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5775}
1da177e4
LT
5776EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5777
65eb3dc6
KD
5778/**
5779 * complete: - signals a single thread waiting on this completion
5780 * @x: holds the state of this particular completion
5781 *
5782 * This will wake up a single thread waiting on this completion. Threads will be
5783 * awakened in the same order in which they were queued.
5784 *
5785 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5786 *
5787 * It may be assumed that this function implies a write memory barrier before
5788 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5789 */
b15136e9 5790void complete(struct completion *x)
1da177e4
LT
5791{
5792 unsigned long flags;
5793
5794 spin_lock_irqsave(&x->wait.lock, flags);
5795 x->done++;
d9514f6c 5796 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5797 spin_unlock_irqrestore(&x->wait.lock, flags);
5798}
5799EXPORT_SYMBOL(complete);
5800
65eb3dc6
KD
5801/**
5802 * complete_all: - signals all threads waiting on this completion
5803 * @x: holds the state of this particular completion
5804 *
5805 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5806 *
5807 * It may be assumed that this function implies a write memory barrier before
5808 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5809 */
b15136e9 5810void complete_all(struct completion *x)
1da177e4
LT
5811{
5812 unsigned long flags;
5813
5814 spin_lock_irqsave(&x->wait.lock, flags);
5815 x->done += UINT_MAX/2;
d9514f6c 5816 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5817 spin_unlock_irqrestore(&x->wait.lock, flags);
5818}
5819EXPORT_SYMBOL(complete_all);
5820
8cbbe86d
AK
5821static inline long __sched
5822do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5823{
1da177e4
LT
5824 if (!x->done) {
5825 DECLARE_WAITQUEUE(wait, current);
5826
5827 wait.flags |= WQ_FLAG_EXCLUSIVE;
5828 __add_wait_queue_tail(&x->wait, &wait);
5829 do {
94d3d824 5830 if (signal_pending_state(state, current)) {
ea71a546
ON
5831 timeout = -ERESTARTSYS;
5832 break;
8cbbe86d
AK
5833 }
5834 __set_current_state(state);
1da177e4
LT
5835 spin_unlock_irq(&x->wait.lock);
5836 timeout = schedule_timeout(timeout);
5837 spin_lock_irq(&x->wait.lock);
ea71a546 5838 } while (!x->done && timeout);
1da177e4 5839 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5840 if (!x->done)
5841 return timeout;
1da177e4
LT
5842 }
5843 x->done--;
ea71a546 5844 return timeout ?: 1;
1da177e4 5845}
1da177e4 5846
8cbbe86d
AK
5847static long __sched
5848wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5849{
1da177e4
LT
5850 might_sleep();
5851
5852 spin_lock_irq(&x->wait.lock);
8cbbe86d 5853 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5854 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5855 return timeout;
5856}
1da177e4 5857
65eb3dc6
KD
5858/**
5859 * wait_for_completion: - waits for completion of a task
5860 * @x: holds the state of this particular completion
5861 *
5862 * This waits to be signaled for completion of a specific task. It is NOT
5863 * interruptible and there is no timeout.
5864 *
5865 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5866 * and interrupt capability. Also see complete().
5867 */
b15136e9 5868void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5869{
5870 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5871}
8cbbe86d 5872EXPORT_SYMBOL(wait_for_completion);
1da177e4 5873
65eb3dc6
KD
5874/**
5875 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5876 * @x: holds the state of this particular completion
5877 * @timeout: timeout value in jiffies
5878 *
5879 * This waits for either a completion of a specific task to be signaled or for a
5880 * specified timeout to expire. The timeout is in jiffies. It is not
5881 * interruptible.
5882 */
b15136e9 5883unsigned long __sched
8cbbe86d 5884wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5885{
8cbbe86d 5886 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5887}
8cbbe86d 5888EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5889
65eb3dc6
KD
5890/**
5891 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5892 * @x: holds the state of this particular completion
5893 *
5894 * This waits for completion of a specific task to be signaled. It is
5895 * interruptible.
5896 */
8cbbe86d 5897int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5898{
51e97990
AK
5899 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5900 if (t == -ERESTARTSYS)
5901 return t;
5902 return 0;
0fec171c 5903}
8cbbe86d 5904EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5905
65eb3dc6
KD
5906/**
5907 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5908 * @x: holds the state of this particular completion
5909 * @timeout: timeout value in jiffies
5910 *
5911 * This waits for either a completion of a specific task to be signaled or for a
5912 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5913 */
b15136e9 5914unsigned long __sched
8cbbe86d
AK
5915wait_for_completion_interruptible_timeout(struct completion *x,
5916 unsigned long timeout)
0fec171c 5917{
8cbbe86d 5918 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5919}
8cbbe86d 5920EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5921
65eb3dc6
KD
5922/**
5923 * wait_for_completion_killable: - waits for completion of a task (killable)
5924 * @x: holds the state of this particular completion
5925 *
5926 * This waits to be signaled for completion of a specific task. It can be
5927 * interrupted by a kill signal.
5928 */
009e577e
MW
5929int __sched wait_for_completion_killable(struct completion *x)
5930{
5931 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5932 if (t == -ERESTARTSYS)
5933 return t;
5934 return 0;
5935}
5936EXPORT_SYMBOL(wait_for_completion_killable);
5937
be4de352
DC
5938/**
5939 * try_wait_for_completion - try to decrement a completion without blocking
5940 * @x: completion structure
5941 *
5942 * Returns: 0 if a decrement cannot be done without blocking
5943 * 1 if a decrement succeeded.
5944 *
5945 * If a completion is being used as a counting completion,
5946 * attempt to decrement the counter without blocking. This
5947 * enables us to avoid waiting if the resource the completion
5948 * is protecting is not available.
5949 */
5950bool try_wait_for_completion(struct completion *x)
5951{
7539a3b3 5952 unsigned long flags;
be4de352
DC
5953 int ret = 1;
5954
7539a3b3 5955 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5956 if (!x->done)
5957 ret = 0;
5958 else
5959 x->done--;
7539a3b3 5960 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5961 return ret;
5962}
5963EXPORT_SYMBOL(try_wait_for_completion);
5964
5965/**
5966 * completion_done - Test to see if a completion has any waiters
5967 * @x: completion structure
5968 *
5969 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5970 * 1 if there are no waiters.
5971 *
5972 */
5973bool completion_done(struct completion *x)
5974{
7539a3b3 5975 unsigned long flags;
be4de352
DC
5976 int ret = 1;
5977
7539a3b3 5978 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5979 if (!x->done)
5980 ret = 0;
7539a3b3 5981 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5982 return ret;
5983}
5984EXPORT_SYMBOL(completion_done);
5985
8cbbe86d
AK
5986static long __sched
5987sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5988{
0fec171c
IM
5989 unsigned long flags;
5990 wait_queue_t wait;
5991
5992 init_waitqueue_entry(&wait, current);
1da177e4 5993
8cbbe86d 5994 __set_current_state(state);
1da177e4 5995
8cbbe86d
AK
5996 spin_lock_irqsave(&q->lock, flags);
5997 __add_wait_queue(q, &wait);
5998 spin_unlock(&q->lock);
5999 timeout = schedule_timeout(timeout);
6000 spin_lock_irq(&q->lock);
6001 __remove_wait_queue(q, &wait);
6002 spin_unlock_irqrestore(&q->lock, flags);
6003
6004 return timeout;
6005}
6006
6007void __sched interruptible_sleep_on(wait_queue_head_t *q)
6008{
6009 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6010}
1da177e4
LT
6011EXPORT_SYMBOL(interruptible_sleep_on);
6012
0fec171c 6013long __sched
95cdf3b7 6014interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6015{
8cbbe86d 6016 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6017}
1da177e4
LT
6018EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6019
0fec171c 6020void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6021{
8cbbe86d 6022 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6023}
1da177e4
LT
6024EXPORT_SYMBOL(sleep_on);
6025
0fec171c 6026long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6027{
8cbbe86d 6028 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6029}
1da177e4
LT
6030EXPORT_SYMBOL(sleep_on_timeout);
6031
b29739f9
IM
6032#ifdef CONFIG_RT_MUTEXES
6033
6034/*
6035 * rt_mutex_setprio - set the current priority of a task
6036 * @p: task
6037 * @prio: prio value (kernel-internal form)
6038 *
6039 * This function changes the 'effective' priority of a task. It does
6040 * not touch ->normal_prio like __setscheduler().
6041 *
6042 * Used by the rt_mutex code to implement priority inheritance logic.
6043 */
36c8b586 6044void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6045{
6046 unsigned long flags;
83b699ed 6047 int oldprio, on_rq, running;
70b97a7f 6048 struct rq *rq;
cb469845 6049 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6050
6051 BUG_ON(prio < 0 || prio > MAX_PRIO);
6052
6053 rq = task_rq_lock(p, &flags);
a8e504d2 6054 update_rq_clock(rq);
b29739f9 6055
d5f9f942 6056 oldprio = p->prio;
dd41f596 6057 on_rq = p->se.on_rq;
051a1d1a 6058 running = task_current(rq, p);
0e1f3483 6059 if (on_rq)
69be72c1 6060 dequeue_task(rq, p, 0);
0e1f3483
HS
6061 if (running)
6062 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6063
6064 if (rt_prio(prio))
6065 p->sched_class = &rt_sched_class;
6066 else
6067 p->sched_class = &fair_sched_class;
6068
b29739f9
IM
6069 p->prio = prio;
6070
0e1f3483
HS
6071 if (running)
6072 p->sched_class->set_curr_task(rq);
dd41f596 6073 if (on_rq) {
8159f87e 6074 enqueue_task(rq, p, 0);
cb469845
SR
6075
6076 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6077 }
6078 task_rq_unlock(rq, &flags);
6079}
6080
6081#endif
6082
36c8b586 6083void set_user_nice(struct task_struct *p, long nice)
1da177e4 6084{
dd41f596 6085 int old_prio, delta, on_rq;
1da177e4 6086 unsigned long flags;
70b97a7f 6087 struct rq *rq;
1da177e4
LT
6088
6089 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6090 return;
6091 /*
6092 * We have to be careful, if called from sys_setpriority(),
6093 * the task might be in the middle of scheduling on another CPU.
6094 */
6095 rq = task_rq_lock(p, &flags);
a8e504d2 6096 update_rq_clock(rq);
1da177e4
LT
6097 /*
6098 * The RT priorities are set via sched_setscheduler(), but we still
6099 * allow the 'normal' nice value to be set - but as expected
6100 * it wont have any effect on scheduling until the task is
dd41f596 6101 * SCHED_FIFO/SCHED_RR:
1da177e4 6102 */
e05606d3 6103 if (task_has_rt_policy(p)) {
1da177e4
LT
6104 p->static_prio = NICE_TO_PRIO(nice);
6105 goto out_unlock;
6106 }
dd41f596 6107 on_rq = p->se.on_rq;
c09595f6 6108 if (on_rq)
69be72c1 6109 dequeue_task(rq, p, 0);
1da177e4 6110
1da177e4 6111 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6112 set_load_weight(p);
b29739f9
IM
6113 old_prio = p->prio;
6114 p->prio = effective_prio(p);
6115 delta = p->prio - old_prio;
1da177e4 6116
dd41f596 6117 if (on_rq) {
8159f87e 6118 enqueue_task(rq, p, 0);
1da177e4 6119 /*
d5f9f942
AM
6120 * If the task increased its priority or is running and
6121 * lowered its priority, then reschedule its CPU:
1da177e4 6122 */
d5f9f942 6123 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6124 resched_task(rq->curr);
6125 }
6126out_unlock:
6127 task_rq_unlock(rq, &flags);
6128}
1da177e4
LT
6129EXPORT_SYMBOL(set_user_nice);
6130
e43379f1
MM
6131/*
6132 * can_nice - check if a task can reduce its nice value
6133 * @p: task
6134 * @nice: nice value
6135 */
36c8b586 6136int can_nice(const struct task_struct *p, const int nice)
e43379f1 6137{
024f4747
MM
6138 /* convert nice value [19,-20] to rlimit style value [1,40] */
6139 int nice_rlim = 20 - nice;
48f24c4d 6140
e43379f1
MM
6141 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6142 capable(CAP_SYS_NICE));
6143}
6144
1da177e4
LT
6145#ifdef __ARCH_WANT_SYS_NICE
6146
6147/*
6148 * sys_nice - change the priority of the current process.
6149 * @increment: priority increment
6150 *
6151 * sys_setpriority is a more generic, but much slower function that
6152 * does similar things.
6153 */
5add95d4 6154SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6155{
48f24c4d 6156 long nice, retval;
1da177e4
LT
6157
6158 /*
6159 * Setpriority might change our priority at the same moment.
6160 * We don't have to worry. Conceptually one call occurs first
6161 * and we have a single winner.
6162 */
e43379f1
MM
6163 if (increment < -40)
6164 increment = -40;
1da177e4
LT
6165 if (increment > 40)
6166 increment = 40;
6167
2b8f836f 6168 nice = TASK_NICE(current) + increment;
1da177e4
LT
6169 if (nice < -20)
6170 nice = -20;
6171 if (nice > 19)
6172 nice = 19;
6173
e43379f1
MM
6174 if (increment < 0 && !can_nice(current, nice))
6175 return -EPERM;
6176
1da177e4
LT
6177 retval = security_task_setnice(current, nice);
6178 if (retval)
6179 return retval;
6180
6181 set_user_nice(current, nice);
6182 return 0;
6183}
6184
6185#endif
6186
6187/**
6188 * task_prio - return the priority value of a given task.
6189 * @p: the task in question.
6190 *
6191 * This is the priority value as seen by users in /proc.
6192 * RT tasks are offset by -200. Normal tasks are centered
6193 * around 0, value goes from -16 to +15.
6194 */
36c8b586 6195int task_prio(const struct task_struct *p)
1da177e4
LT
6196{
6197 return p->prio - MAX_RT_PRIO;
6198}
6199
6200/**
6201 * task_nice - return the nice value of a given task.
6202 * @p: the task in question.
6203 */
36c8b586 6204int task_nice(const struct task_struct *p)
1da177e4
LT
6205{
6206 return TASK_NICE(p);
6207}
150d8bed 6208EXPORT_SYMBOL(task_nice);
1da177e4
LT
6209
6210/**
6211 * idle_cpu - is a given cpu idle currently?
6212 * @cpu: the processor in question.
6213 */
6214int idle_cpu(int cpu)
6215{
6216 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6217}
6218
1da177e4
LT
6219/**
6220 * idle_task - return the idle task for a given cpu.
6221 * @cpu: the processor in question.
6222 */
36c8b586 6223struct task_struct *idle_task(int cpu)
1da177e4
LT
6224{
6225 return cpu_rq(cpu)->idle;
6226}
6227
6228/**
6229 * find_process_by_pid - find a process with a matching PID value.
6230 * @pid: the pid in question.
6231 */
a9957449 6232static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6233{
228ebcbe 6234 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6235}
6236
6237/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6238static void
6239__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6240{
dd41f596 6241 BUG_ON(p->se.on_rq);
48f24c4d 6242
1da177e4
LT
6243 p->policy = policy;
6244 p->rt_priority = prio;
b29739f9
IM
6245 p->normal_prio = normal_prio(p);
6246 /* we are holding p->pi_lock already */
6247 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6248 if (rt_prio(p->prio))
6249 p->sched_class = &rt_sched_class;
6250 else
6251 p->sched_class = &fair_sched_class;
2dd73a4f 6252 set_load_weight(p);
1da177e4
LT
6253}
6254
c69e8d9c
DH
6255/*
6256 * check the target process has a UID that matches the current process's
6257 */
6258static bool check_same_owner(struct task_struct *p)
6259{
6260 const struct cred *cred = current_cred(), *pcred;
6261 bool match;
6262
6263 rcu_read_lock();
6264 pcred = __task_cred(p);
6265 match = (cred->euid == pcred->euid ||
6266 cred->euid == pcred->uid);
6267 rcu_read_unlock();
6268 return match;
6269}
6270
961ccddd
RR
6271static int __sched_setscheduler(struct task_struct *p, int policy,
6272 struct sched_param *param, bool user)
1da177e4 6273{
83b699ed 6274 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6275 unsigned long flags;
cb469845 6276 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6277 struct rq *rq;
ca94c442 6278 int reset_on_fork;
1da177e4 6279
66e5393a
SR
6280 /* may grab non-irq protected spin_locks */
6281 BUG_ON(in_interrupt());
1da177e4
LT
6282recheck:
6283 /* double check policy once rq lock held */
ca94c442
LP
6284 if (policy < 0) {
6285 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6286 policy = oldpolicy = p->policy;
ca94c442
LP
6287 } else {
6288 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6289 policy &= ~SCHED_RESET_ON_FORK;
6290
6291 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6292 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6293 policy != SCHED_IDLE)
6294 return -EINVAL;
6295 }
6296
1da177e4
LT
6297 /*
6298 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6299 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6300 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6301 */
6302 if (param->sched_priority < 0 ||
95cdf3b7 6303 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6304 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6305 return -EINVAL;
e05606d3 6306 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6307 return -EINVAL;
6308
37e4ab3f
OC
6309 /*
6310 * Allow unprivileged RT tasks to decrease priority:
6311 */
961ccddd 6312 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6313 if (rt_policy(policy)) {
8dc3e909 6314 unsigned long rlim_rtprio;
8dc3e909
ON
6315
6316 if (!lock_task_sighand(p, &flags))
6317 return -ESRCH;
6318 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6319 unlock_task_sighand(p, &flags);
6320
6321 /* can't set/change the rt policy */
6322 if (policy != p->policy && !rlim_rtprio)
6323 return -EPERM;
6324
6325 /* can't increase priority */
6326 if (param->sched_priority > p->rt_priority &&
6327 param->sched_priority > rlim_rtprio)
6328 return -EPERM;
6329 }
dd41f596
IM
6330 /*
6331 * Like positive nice levels, dont allow tasks to
6332 * move out of SCHED_IDLE either:
6333 */
6334 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6335 return -EPERM;
5fe1d75f 6336
37e4ab3f 6337 /* can't change other user's priorities */
c69e8d9c 6338 if (!check_same_owner(p))
37e4ab3f 6339 return -EPERM;
ca94c442
LP
6340
6341 /* Normal users shall not reset the sched_reset_on_fork flag */
6342 if (p->sched_reset_on_fork && !reset_on_fork)
6343 return -EPERM;
37e4ab3f 6344 }
1da177e4 6345
725aad24 6346 if (user) {
b68aa230 6347#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6348 /*
6349 * Do not allow realtime tasks into groups that have no runtime
6350 * assigned.
6351 */
9a7e0b18
PZ
6352 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6353 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6354 return -EPERM;
b68aa230
PZ
6355#endif
6356
725aad24
JF
6357 retval = security_task_setscheduler(p, policy, param);
6358 if (retval)
6359 return retval;
6360 }
6361
b29739f9
IM
6362 /*
6363 * make sure no PI-waiters arrive (or leave) while we are
6364 * changing the priority of the task:
6365 */
1d615482 6366 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6367 /*
6368 * To be able to change p->policy safely, the apropriate
6369 * runqueue lock must be held.
6370 */
b29739f9 6371 rq = __task_rq_lock(p);
1da177e4
LT
6372 /* recheck policy now with rq lock held */
6373 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6374 policy = oldpolicy = -1;
b29739f9 6375 __task_rq_unlock(rq);
1d615482 6376 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6377 goto recheck;
6378 }
2daa3577 6379 update_rq_clock(rq);
dd41f596 6380 on_rq = p->se.on_rq;
051a1d1a 6381 running = task_current(rq, p);
0e1f3483 6382 if (on_rq)
2e1cb74a 6383 deactivate_task(rq, p, 0);
0e1f3483
HS
6384 if (running)
6385 p->sched_class->put_prev_task(rq, p);
f6b53205 6386
ca94c442
LP
6387 p->sched_reset_on_fork = reset_on_fork;
6388
1da177e4 6389 oldprio = p->prio;
dd41f596 6390 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6391
0e1f3483
HS
6392 if (running)
6393 p->sched_class->set_curr_task(rq);
dd41f596
IM
6394 if (on_rq) {
6395 activate_task(rq, p, 0);
cb469845
SR
6396
6397 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6398 }
b29739f9 6399 __task_rq_unlock(rq);
1d615482 6400 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6401
95e02ca9
TG
6402 rt_mutex_adjust_pi(p);
6403
1da177e4
LT
6404 return 0;
6405}
961ccddd
RR
6406
6407/**
6408 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6409 * @p: the task in question.
6410 * @policy: new policy.
6411 * @param: structure containing the new RT priority.
6412 *
6413 * NOTE that the task may be already dead.
6414 */
6415int sched_setscheduler(struct task_struct *p, int policy,
6416 struct sched_param *param)
6417{
6418 return __sched_setscheduler(p, policy, param, true);
6419}
1da177e4
LT
6420EXPORT_SYMBOL_GPL(sched_setscheduler);
6421
961ccddd
RR
6422/**
6423 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6424 * @p: the task in question.
6425 * @policy: new policy.
6426 * @param: structure containing the new RT priority.
6427 *
6428 * Just like sched_setscheduler, only don't bother checking if the
6429 * current context has permission. For example, this is needed in
6430 * stop_machine(): we create temporary high priority worker threads,
6431 * but our caller might not have that capability.
6432 */
6433int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6434 struct sched_param *param)
6435{
6436 return __sched_setscheduler(p, policy, param, false);
6437}
6438
95cdf3b7
IM
6439static int
6440do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6441{
1da177e4
LT
6442 struct sched_param lparam;
6443 struct task_struct *p;
36c8b586 6444 int retval;
1da177e4
LT
6445
6446 if (!param || pid < 0)
6447 return -EINVAL;
6448 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6449 return -EFAULT;
5fe1d75f
ON
6450
6451 rcu_read_lock();
6452 retval = -ESRCH;
1da177e4 6453 p = find_process_by_pid(pid);
5fe1d75f
ON
6454 if (p != NULL)
6455 retval = sched_setscheduler(p, policy, &lparam);
6456 rcu_read_unlock();
36c8b586 6457
1da177e4
LT
6458 return retval;
6459}
6460
6461/**
6462 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6463 * @pid: the pid in question.
6464 * @policy: new policy.
6465 * @param: structure containing the new RT priority.
6466 */
5add95d4
HC
6467SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6468 struct sched_param __user *, param)
1da177e4 6469{
c21761f1
JB
6470 /* negative values for policy are not valid */
6471 if (policy < 0)
6472 return -EINVAL;
6473
1da177e4
LT
6474 return do_sched_setscheduler(pid, policy, param);
6475}
6476
6477/**
6478 * sys_sched_setparam - set/change the RT priority of a thread
6479 * @pid: the pid in question.
6480 * @param: structure containing the new RT priority.
6481 */
5add95d4 6482SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6483{
6484 return do_sched_setscheduler(pid, -1, param);
6485}
6486
6487/**
6488 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6489 * @pid: the pid in question.
6490 */
5add95d4 6491SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6492{
36c8b586 6493 struct task_struct *p;
3a5c359a 6494 int retval;
1da177e4
LT
6495
6496 if (pid < 0)
3a5c359a 6497 return -EINVAL;
1da177e4
LT
6498
6499 retval = -ESRCH;
5fe85be0 6500 rcu_read_lock();
1da177e4
LT
6501 p = find_process_by_pid(pid);
6502 if (p) {
6503 retval = security_task_getscheduler(p);
6504 if (!retval)
ca94c442
LP
6505 retval = p->policy
6506 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6507 }
5fe85be0 6508 rcu_read_unlock();
1da177e4
LT
6509 return retval;
6510}
6511
6512/**
ca94c442 6513 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6514 * @pid: the pid in question.
6515 * @param: structure containing the RT priority.
6516 */
5add95d4 6517SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6518{
6519 struct sched_param lp;
36c8b586 6520 struct task_struct *p;
3a5c359a 6521 int retval;
1da177e4
LT
6522
6523 if (!param || pid < 0)
3a5c359a 6524 return -EINVAL;
1da177e4 6525
5fe85be0 6526 rcu_read_lock();
1da177e4
LT
6527 p = find_process_by_pid(pid);
6528 retval = -ESRCH;
6529 if (!p)
6530 goto out_unlock;
6531
6532 retval = security_task_getscheduler(p);
6533 if (retval)
6534 goto out_unlock;
6535
6536 lp.sched_priority = p->rt_priority;
5fe85be0 6537 rcu_read_unlock();
1da177e4
LT
6538
6539 /*
6540 * This one might sleep, we cannot do it with a spinlock held ...
6541 */
6542 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6543
1da177e4
LT
6544 return retval;
6545
6546out_unlock:
5fe85be0 6547 rcu_read_unlock();
1da177e4
LT
6548 return retval;
6549}
6550
96f874e2 6551long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6552{
5a16f3d3 6553 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6554 struct task_struct *p;
6555 int retval;
1da177e4 6556
95402b38 6557 get_online_cpus();
23f5d142 6558 rcu_read_lock();
1da177e4
LT
6559
6560 p = find_process_by_pid(pid);
6561 if (!p) {
23f5d142 6562 rcu_read_unlock();
95402b38 6563 put_online_cpus();
1da177e4
LT
6564 return -ESRCH;
6565 }
6566
23f5d142 6567 /* Prevent p going away */
1da177e4 6568 get_task_struct(p);
23f5d142 6569 rcu_read_unlock();
1da177e4 6570
5a16f3d3
RR
6571 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6572 retval = -ENOMEM;
6573 goto out_put_task;
6574 }
6575 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6576 retval = -ENOMEM;
6577 goto out_free_cpus_allowed;
6578 }
1da177e4 6579 retval = -EPERM;
c69e8d9c 6580 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6581 goto out_unlock;
6582
e7834f8f
DQ
6583 retval = security_task_setscheduler(p, 0, NULL);
6584 if (retval)
6585 goto out_unlock;
6586
5a16f3d3
RR
6587 cpuset_cpus_allowed(p, cpus_allowed);
6588 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6589 again:
5a16f3d3 6590 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6591
8707d8b8 6592 if (!retval) {
5a16f3d3
RR
6593 cpuset_cpus_allowed(p, cpus_allowed);
6594 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6595 /*
6596 * We must have raced with a concurrent cpuset
6597 * update. Just reset the cpus_allowed to the
6598 * cpuset's cpus_allowed
6599 */
5a16f3d3 6600 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6601 goto again;
6602 }
6603 }
1da177e4 6604out_unlock:
5a16f3d3
RR
6605 free_cpumask_var(new_mask);
6606out_free_cpus_allowed:
6607 free_cpumask_var(cpus_allowed);
6608out_put_task:
1da177e4 6609 put_task_struct(p);
95402b38 6610 put_online_cpus();
1da177e4
LT
6611 return retval;
6612}
6613
6614static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6615 struct cpumask *new_mask)
1da177e4 6616{
96f874e2
RR
6617 if (len < cpumask_size())
6618 cpumask_clear(new_mask);
6619 else if (len > cpumask_size())
6620 len = cpumask_size();
6621
1da177e4
LT
6622 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6623}
6624
6625/**
6626 * sys_sched_setaffinity - set the cpu affinity of a process
6627 * @pid: pid of the process
6628 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6629 * @user_mask_ptr: user-space pointer to the new cpu mask
6630 */
5add95d4
HC
6631SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6632 unsigned long __user *, user_mask_ptr)
1da177e4 6633{
5a16f3d3 6634 cpumask_var_t new_mask;
1da177e4
LT
6635 int retval;
6636
5a16f3d3
RR
6637 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6638 return -ENOMEM;
1da177e4 6639
5a16f3d3
RR
6640 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6641 if (retval == 0)
6642 retval = sched_setaffinity(pid, new_mask);
6643 free_cpumask_var(new_mask);
6644 return retval;
1da177e4
LT
6645}
6646
96f874e2 6647long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6648{
36c8b586 6649 struct task_struct *p;
31605683
TG
6650 unsigned long flags;
6651 struct rq *rq;
1da177e4 6652 int retval;
1da177e4 6653
95402b38 6654 get_online_cpus();
23f5d142 6655 rcu_read_lock();
1da177e4
LT
6656
6657 retval = -ESRCH;
6658 p = find_process_by_pid(pid);
6659 if (!p)
6660 goto out_unlock;
6661
e7834f8f
DQ
6662 retval = security_task_getscheduler(p);
6663 if (retval)
6664 goto out_unlock;
6665
31605683 6666 rq = task_rq_lock(p, &flags);
96f874e2 6667 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6668 task_rq_unlock(rq, &flags);
1da177e4
LT
6669
6670out_unlock:
23f5d142 6671 rcu_read_unlock();
95402b38 6672 put_online_cpus();
1da177e4 6673
9531b62f 6674 return retval;
1da177e4
LT
6675}
6676
6677/**
6678 * sys_sched_getaffinity - get the cpu affinity of a process
6679 * @pid: pid of the process
6680 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6681 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6682 */
5add95d4
HC
6683SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6684 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6685{
6686 int ret;
f17c8607 6687 cpumask_var_t mask;
1da177e4 6688
f17c8607 6689 if (len < cpumask_size())
1da177e4
LT
6690 return -EINVAL;
6691
f17c8607
RR
6692 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6693 return -ENOMEM;
1da177e4 6694
f17c8607
RR
6695 ret = sched_getaffinity(pid, mask);
6696 if (ret == 0) {
6697 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6698 ret = -EFAULT;
6699 else
6700 ret = cpumask_size();
6701 }
6702 free_cpumask_var(mask);
1da177e4 6703
f17c8607 6704 return ret;
1da177e4
LT
6705}
6706
6707/**
6708 * sys_sched_yield - yield the current processor to other threads.
6709 *
dd41f596
IM
6710 * This function yields the current CPU to other tasks. If there are no
6711 * other threads running on this CPU then this function will return.
1da177e4 6712 */
5add95d4 6713SYSCALL_DEFINE0(sched_yield)
1da177e4 6714{
70b97a7f 6715 struct rq *rq = this_rq_lock();
1da177e4 6716
2d72376b 6717 schedstat_inc(rq, yld_count);
4530d7ab 6718 current->sched_class->yield_task(rq);
1da177e4
LT
6719
6720 /*
6721 * Since we are going to call schedule() anyway, there's
6722 * no need to preempt or enable interrupts:
6723 */
6724 __release(rq->lock);
8a25d5de 6725 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6726 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6727 preempt_enable_no_resched();
6728
6729 schedule();
6730
6731 return 0;
6732}
6733
d86ee480
PZ
6734static inline int should_resched(void)
6735{
6736 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6737}
6738
e7b38404 6739static void __cond_resched(void)
1da177e4 6740{
e7aaaa69
FW
6741 add_preempt_count(PREEMPT_ACTIVE);
6742 schedule();
6743 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6744}
6745
02b67cc3 6746int __sched _cond_resched(void)
1da177e4 6747{
d86ee480 6748 if (should_resched()) {
1da177e4
LT
6749 __cond_resched();
6750 return 1;
6751 }
6752 return 0;
6753}
02b67cc3 6754EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6755
6756/*
613afbf8 6757 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6758 * call schedule, and on return reacquire the lock.
6759 *
41a2d6cf 6760 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6761 * operations here to prevent schedule() from being called twice (once via
6762 * spin_unlock(), once by hand).
6763 */
613afbf8 6764int __cond_resched_lock(spinlock_t *lock)
1da177e4 6765{
d86ee480 6766 int resched = should_resched();
6df3cecb
JK
6767 int ret = 0;
6768
f607c668
PZ
6769 lockdep_assert_held(lock);
6770
95c354fe 6771 if (spin_needbreak(lock) || resched) {
1da177e4 6772 spin_unlock(lock);
d86ee480 6773 if (resched)
95c354fe
NP
6774 __cond_resched();
6775 else
6776 cpu_relax();
6df3cecb 6777 ret = 1;
1da177e4 6778 spin_lock(lock);
1da177e4 6779 }
6df3cecb 6780 return ret;
1da177e4 6781}
613afbf8 6782EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6783
613afbf8 6784int __sched __cond_resched_softirq(void)
1da177e4
LT
6785{
6786 BUG_ON(!in_softirq());
6787
d86ee480 6788 if (should_resched()) {
98d82567 6789 local_bh_enable();
1da177e4
LT
6790 __cond_resched();
6791 local_bh_disable();
6792 return 1;
6793 }
6794 return 0;
6795}
613afbf8 6796EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6797
1da177e4
LT
6798/**
6799 * yield - yield the current processor to other threads.
6800 *
72fd4a35 6801 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6802 * thread runnable and calls sys_sched_yield().
6803 */
6804void __sched yield(void)
6805{
6806 set_current_state(TASK_RUNNING);
6807 sys_sched_yield();
6808}
1da177e4
LT
6809EXPORT_SYMBOL(yield);
6810
6811/*
41a2d6cf 6812 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6813 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6814 */
6815void __sched io_schedule(void)
6816{
54d35f29 6817 struct rq *rq = raw_rq();
1da177e4 6818
0ff92245 6819 delayacct_blkio_start();
1da177e4 6820 atomic_inc(&rq->nr_iowait);
8f0dfc34 6821 current->in_iowait = 1;
1da177e4 6822 schedule();
8f0dfc34 6823 current->in_iowait = 0;
1da177e4 6824 atomic_dec(&rq->nr_iowait);
0ff92245 6825 delayacct_blkio_end();
1da177e4 6826}
1da177e4
LT
6827EXPORT_SYMBOL(io_schedule);
6828
6829long __sched io_schedule_timeout(long timeout)
6830{
54d35f29 6831 struct rq *rq = raw_rq();
1da177e4
LT
6832 long ret;
6833
0ff92245 6834 delayacct_blkio_start();
1da177e4 6835 atomic_inc(&rq->nr_iowait);
8f0dfc34 6836 current->in_iowait = 1;
1da177e4 6837 ret = schedule_timeout(timeout);
8f0dfc34 6838 current->in_iowait = 0;
1da177e4 6839 atomic_dec(&rq->nr_iowait);
0ff92245 6840 delayacct_blkio_end();
1da177e4
LT
6841 return ret;
6842}
6843
6844/**
6845 * sys_sched_get_priority_max - return maximum RT priority.
6846 * @policy: scheduling class.
6847 *
6848 * this syscall returns the maximum rt_priority that can be used
6849 * by a given scheduling class.
6850 */
5add95d4 6851SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6852{
6853 int ret = -EINVAL;
6854
6855 switch (policy) {
6856 case SCHED_FIFO:
6857 case SCHED_RR:
6858 ret = MAX_USER_RT_PRIO-1;
6859 break;
6860 case SCHED_NORMAL:
b0a9499c 6861 case SCHED_BATCH:
dd41f596 6862 case SCHED_IDLE:
1da177e4
LT
6863 ret = 0;
6864 break;
6865 }
6866 return ret;
6867}
6868
6869/**
6870 * sys_sched_get_priority_min - return minimum RT priority.
6871 * @policy: scheduling class.
6872 *
6873 * this syscall returns the minimum rt_priority that can be used
6874 * by a given scheduling class.
6875 */
5add95d4 6876SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6877{
6878 int ret = -EINVAL;
6879
6880 switch (policy) {
6881 case SCHED_FIFO:
6882 case SCHED_RR:
6883 ret = 1;
6884 break;
6885 case SCHED_NORMAL:
b0a9499c 6886 case SCHED_BATCH:
dd41f596 6887 case SCHED_IDLE:
1da177e4
LT
6888 ret = 0;
6889 }
6890 return ret;
6891}
6892
6893/**
6894 * sys_sched_rr_get_interval - return the default timeslice of a process.
6895 * @pid: pid of the process.
6896 * @interval: userspace pointer to the timeslice value.
6897 *
6898 * this syscall writes the default timeslice value of a given process
6899 * into the user-space timespec buffer. A value of '0' means infinity.
6900 */
17da2bd9 6901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6902 struct timespec __user *, interval)
1da177e4 6903{
36c8b586 6904 struct task_struct *p;
a4ec24b4 6905 unsigned int time_slice;
dba091b9
TG
6906 unsigned long flags;
6907 struct rq *rq;
3a5c359a 6908 int retval;
1da177e4 6909 struct timespec t;
1da177e4
LT
6910
6911 if (pid < 0)
3a5c359a 6912 return -EINVAL;
1da177e4
LT
6913
6914 retval = -ESRCH;
1a551ae7 6915 rcu_read_lock();
1da177e4
LT
6916 p = find_process_by_pid(pid);
6917 if (!p)
6918 goto out_unlock;
6919
6920 retval = security_task_getscheduler(p);
6921 if (retval)
6922 goto out_unlock;
6923
dba091b9
TG
6924 rq = task_rq_lock(p, &flags);
6925 time_slice = p->sched_class->get_rr_interval(rq, p);
6926 task_rq_unlock(rq, &flags);
a4ec24b4 6927
1a551ae7 6928 rcu_read_unlock();
a4ec24b4 6929 jiffies_to_timespec(time_slice, &t);
1da177e4 6930 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6931 return retval;
3a5c359a 6932
1da177e4 6933out_unlock:
1a551ae7 6934 rcu_read_unlock();
1da177e4
LT
6935 return retval;
6936}
6937
7c731e0a 6938static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6939
82a1fcb9 6940void sched_show_task(struct task_struct *p)
1da177e4 6941{
1da177e4 6942 unsigned long free = 0;
36c8b586 6943 unsigned state;
1da177e4 6944
1da177e4 6945 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6946 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6947 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6948#if BITS_PER_LONG == 32
1da177e4 6949 if (state == TASK_RUNNING)
cc4ea795 6950 printk(KERN_CONT " running ");
1da177e4 6951 else
cc4ea795 6952 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6953#else
6954 if (state == TASK_RUNNING)
cc4ea795 6955 printk(KERN_CONT " running task ");
1da177e4 6956 else
cc4ea795 6957 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6958#endif
6959#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6960 free = stack_not_used(p);
1da177e4 6961#endif
aa47b7e0
DR
6962 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6963 task_pid_nr(p), task_pid_nr(p->real_parent),
6964 (unsigned long)task_thread_info(p)->flags);
1da177e4 6965
5fb5e6de 6966 show_stack(p, NULL);
1da177e4
LT
6967}
6968
e59e2ae2 6969void show_state_filter(unsigned long state_filter)
1da177e4 6970{
36c8b586 6971 struct task_struct *g, *p;
1da177e4 6972
4bd77321
IM
6973#if BITS_PER_LONG == 32
6974 printk(KERN_INFO
6975 " task PC stack pid father\n");
1da177e4 6976#else
4bd77321
IM
6977 printk(KERN_INFO
6978 " task PC stack pid father\n");
1da177e4
LT
6979#endif
6980 read_lock(&tasklist_lock);
6981 do_each_thread(g, p) {
6982 /*
6983 * reset the NMI-timeout, listing all files on a slow
6984 * console might take alot of time:
6985 */
6986 touch_nmi_watchdog();
39bc89fd 6987 if (!state_filter || (p->state & state_filter))
82a1fcb9 6988 sched_show_task(p);
1da177e4
LT
6989 } while_each_thread(g, p);
6990
04c9167f
JF
6991 touch_all_softlockup_watchdogs();
6992
dd41f596
IM
6993#ifdef CONFIG_SCHED_DEBUG
6994 sysrq_sched_debug_show();
6995#endif
1da177e4 6996 read_unlock(&tasklist_lock);
e59e2ae2
IM
6997 /*
6998 * Only show locks if all tasks are dumped:
6999 */
93335a21 7000 if (!state_filter)
e59e2ae2 7001 debug_show_all_locks();
1da177e4
LT
7002}
7003
1df21055
IM
7004void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7005{
dd41f596 7006 idle->sched_class = &idle_sched_class;
1df21055
IM
7007}
7008
f340c0d1
IM
7009/**
7010 * init_idle - set up an idle thread for a given CPU
7011 * @idle: task in question
7012 * @cpu: cpu the idle task belongs to
7013 *
7014 * NOTE: this function does not set the idle thread's NEED_RESCHED
7015 * flag, to make booting more robust.
7016 */
5c1e1767 7017void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7018{
70b97a7f 7019 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7020 unsigned long flags;
7021
05fa785c 7022 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7023
dd41f596 7024 __sched_fork(idle);
06b83b5f 7025 idle->state = TASK_RUNNING;
dd41f596
IM
7026 idle->se.exec_start = sched_clock();
7027
96f874e2 7028 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7029 __set_task_cpu(idle, cpu);
1da177e4 7030
1da177e4 7031 rq->curr = rq->idle = idle;
4866cde0
NP
7032#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7033 idle->oncpu = 1;
7034#endif
05fa785c 7035 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7036
7037 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7038#if defined(CONFIG_PREEMPT)
7039 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7040#else
a1261f54 7041 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7042#endif
dd41f596
IM
7043 /*
7044 * The idle tasks have their own, simple scheduling class:
7045 */
7046 idle->sched_class = &idle_sched_class;
fb52607a 7047 ftrace_graph_init_task(idle);
1da177e4
LT
7048}
7049
7050/*
7051 * In a system that switches off the HZ timer nohz_cpu_mask
7052 * indicates which cpus entered this state. This is used
7053 * in the rcu update to wait only for active cpus. For system
7054 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7055 * always be CPU_BITS_NONE.
1da177e4 7056 */
6a7b3dc3 7057cpumask_var_t nohz_cpu_mask;
1da177e4 7058
19978ca6
IM
7059/*
7060 * Increase the granularity value when there are more CPUs,
7061 * because with more CPUs the 'effective latency' as visible
7062 * to users decreases. But the relationship is not linear,
7063 * so pick a second-best guess by going with the log2 of the
7064 * number of CPUs.
7065 *
7066 * This idea comes from the SD scheduler of Con Kolivas:
7067 */
acb4a848 7068static int get_update_sysctl_factor(void)
19978ca6 7069{
4ca3ef71 7070 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7071 unsigned int factor;
7072
7073 switch (sysctl_sched_tunable_scaling) {
7074 case SCHED_TUNABLESCALING_NONE:
7075 factor = 1;
7076 break;
7077 case SCHED_TUNABLESCALING_LINEAR:
7078 factor = cpus;
7079 break;
7080 case SCHED_TUNABLESCALING_LOG:
7081 default:
7082 factor = 1 + ilog2(cpus);
7083 break;
7084 }
19978ca6 7085
acb4a848
CE
7086 return factor;
7087}
19978ca6 7088
acb4a848
CE
7089static void update_sysctl(void)
7090{
7091 unsigned int factor = get_update_sysctl_factor();
19978ca6 7092
0bcdcf28
CE
7093#define SET_SYSCTL(name) \
7094 (sysctl_##name = (factor) * normalized_sysctl_##name)
7095 SET_SYSCTL(sched_min_granularity);
7096 SET_SYSCTL(sched_latency);
7097 SET_SYSCTL(sched_wakeup_granularity);
7098 SET_SYSCTL(sched_shares_ratelimit);
7099#undef SET_SYSCTL
7100}
55cd5340 7101
0bcdcf28
CE
7102static inline void sched_init_granularity(void)
7103{
7104 update_sysctl();
19978ca6
IM
7105}
7106
1da177e4
LT
7107#ifdef CONFIG_SMP
7108/*
7109 * This is how migration works:
7110 *
70b97a7f 7111 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7112 * runqueue and wake up that CPU's migration thread.
7113 * 2) we down() the locked semaphore => thread blocks.
7114 * 3) migration thread wakes up (implicitly it forces the migrated
7115 * thread off the CPU)
7116 * 4) it gets the migration request and checks whether the migrated
7117 * task is still in the wrong runqueue.
7118 * 5) if it's in the wrong runqueue then the migration thread removes
7119 * it and puts it into the right queue.
7120 * 6) migration thread up()s the semaphore.
7121 * 7) we wake up and the migration is done.
7122 */
7123
7124/*
7125 * Change a given task's CPU affinity. Migrate the thread to a
7126 * proper CPU and schedule it away if the CPU it's executing on
7127 * is removed from the allowed bitmask.
7128 *
7129 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7130 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7131 * call is not atomic; no spinlocks may be held.
7132 */
96f874e2 7133int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7134{
70b97a7f 7135 struct migration_req req;
1da177e4 7136 unsigned long flags;
70b97a7f 7137 struct rq *rq;
48f24c4d 7138 int ret = 0;
1da177e4 7139
e2912009
PZ
7140 /*
7141 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7142 * the ->cpus_allowed mask from under waking tasks, which would be
7143 * possible when we change rq->lock in ttwu(), so synchronize against
7144 * TASK_WAKING to avoid that.
7145 */
7146again:
7147 while (p->state == TASK_WAKING)
7148 cpu_relax();
7149
1da177e4 7150 rq = task_rq_lock(p, &flags);
e2912009
PZ
7151
7152 if (p->state == TASK_WAKING) {
7153 task_rq_unlock(rq, &flags);
7154 goto again;
7155 }
7156
6ad4c188 7157 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7158 ret = -EINVAL;
7159 goto out;
7160 }
7161
9985b0ba 7162 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7163 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7164 ret = -EINVAL;
7165 goto out;
7166 }
7167
73fe6aae 7168 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7169 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7170 else {
96f874e2
RR
7171 cpumask_copy(&p->cpus_allowed, new_mask);
7172 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7173 }
7174
1da177e4 7175 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7176 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7177 goto out;
7178
6ad4c188 7179 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7180 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7181 struct task_struct *mt = rq->migration_thread;
7182
7183 get_task_struct(mt);
1da177e4
LT
7184 task_rq_unlock(rq, &flags);
7185 wake_up_process(rq->migration_thread);
693525e3 7186 put_task_struct(mt);
1da177e4
LT
7187 wait_for_completion(&req.done);
7188 tlb_migrate_finish(p->mm);
7189 return 0;
7190 }
7191out:
7192 task_rq_unlock(rq, &flags);
48f24c4d 7193
1da177e4
LT
7194 return ret;
7195}
cd8ba7cd 7196EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7197
7198/*
41a2d6cf 7199 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7200 * this because either it can't run here any more (set_cpus_allowed()
7201 * away from this CPU, or CPU going down), or because we're
7202 * attempting to rebalance this task on exec (sched_exec).
7203 *
7204 * So we race with normal scheduler movements, but that's OK, as long
7205 * as the task is no longer on this CPU.
efc30814
KK
7206 *
7207 * Returns non-zero if task was successfully migrated.
1da177e4 7208 */
efc30814 7209static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7210{
70b97a7f 7211 struct rq *rq_dest, *rq_src;
e2912009 7212 int ret = 0;
1da177e4 7213
e761b772 7214 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7215 return ret;
1da177e4
LT
7216
7217 rq_src = cpu_rq(src_cpu);
7218 rq_dest = cpu_rq(dest_cpu);
7219
7220 double_rq_lock(rq_src, rq_dest);
7221 /* Already moved. */
7222 if (task_cpu(p) != src_cpu)
b1e38734 7223 goto done;
1da177e4 7224 /* Affinity changed (again). */
96f874e2 7225 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7226 goto fail;
1da177e4 7227
e2912009
PZ
7228 /*
7229 * If we're not on a rq, the next wake-up will ensure we're
7230 * placed properly.
7231 */
7232 if (p->se.on_rq) {
2e1cb74a 7233 deactivate_task(rq_src, p, 0);
e2912009 7234 set_task_cpu(p, dest_cpu);
dd41f596 7235 activate_task(rq_dest, p, 0);
15afe09b 7236 check_preempt_curr(rq_dest, p, 0);
1da177e4 7237 }
b1e38734 7238done:
efc30814 7239 ret = 1;
b1e38734 7240fail:
1da177e4 7241 double_rq_unlock(rq_src, rq_dest);
efc30814 7242 return ret;
1da177e4
LT
7243}
7244
03b042bf
PM
7245#define RCU_MIGRATION_IDLE 0
7246#define RCU_MIGRATION_NEED_QS 1
7247#define RCU_MIGRATION_GOT_QS 2
7248#define RCU_MIGRATION_MUST_SYNC 3
7249
1da177e4
LT
7250/*
7251 * migration_thread - this is a highprio system thread that performs
7252 * thread migration by bumping thread off CPU then 'pushing' onto
7253 * another runqueue.
7254 */
95cdf3b7 7255static int migration_thread(void *data)
1da177e4 7256{
03b042bf 7257 int badcpu;
1da177e4 7258 int cpu = (long)data;
70b97a7f 7259 struct rq *rq;
1da177e4
LT
7260
7261 rq = cpu_rq(cpu);
7262 BUG_ON(rq->migration_thread != current);
7263
7264 set_current_state(TASK_INTERRUPTIBLE);
7265 while (!kthread_should_stop()) {
70b97a7f 7266 struct migration_req *req;
1da177e4 7267 struct list_head *head;
1da177e4 7268
05fa785c 7269 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7270
7271 if (cpu_is_offline(cpu)) {
05fa785c 7272 raw_spin_unlock_irq(&rq->lock);
371cbb38 7273 break;
1da177e4
LT
7274 }
7275
7276 if (rq->active_balance) {
7277 active_load_balance(rq, cpu);
7278 rq->active_balance = 0;
7279 }
7280
7281 head = &rq->migration_queue;
7282
7283 if (list_empty(head)) {
05fa785c 7284 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7285 schedule();
7286 set_current_state(TASK_INTERRUPTIBLE);
7287 continue;
7288 }
70b97a7f 7289 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7290 list_del_init(head->next);
7291
03b042bf 7292 if (req->task != NULL) {
05fa785c 7293 raw_spin_unlock(&rq->lock);
03b042bf
PM
7294 __migrate_task(req->task, cpu, req->dest_cpu);
7295 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7296 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7297 raw_spin_unlock(&rq->lock);
03b042bf
PM
7298 } else {
7299 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7300 raw_spin_unlock(&rq->lock);
03b042bf
PM
7301 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7302 }
674311d5 7303 local_irq_enable();
1da177e4
LT
7304
7305 complete(&req->done);
7306 }
7307 __set_current_state(TASK_RUNNING);
1da177e4 7308
1da177e4
LT
7309 return 0;
7310}
7311
7312#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7313
7314static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7315{
7316 int ret;
7317
7318 local_irq_disable();
7319 ret = __migrate_task(p, src_cpu, dest_cpu);
7320 local_irq_enable();
7321 return ret;
7322}
7323
054b9108 7324/*
3a4fa0a2 7325 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7326 */
48f24c4d 7327static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7328{
70b97a7f 7329 int dest_cpu;
e76bd8d9
RR
7330
7331again:
5da9a0fb 7332 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7333
e76bd8d9
RR
7334 /* It can have affinity changed while we were choosing. */
7335 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7336 goto again;
1da177e4
LT
7337}
7338
7339/*
7340 * While a dead CPU has no uninterruptible tasks queued at this point,
7341 * it might still have a nonzero ->nr_uninterruptible counter, because
7342 * for performance reasons the counter is not stricly tracking tasks to
7343 * their home CPUs. So we just add the counter to another CPU's counter,
7344 * to keep the global sum constant after CPU-down:
7345 */
70b97a7f 7346static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7347{
6ad4c188 7348 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7349 unsigned long flags;
7350
7351 local_irq_save(flags);
7352 double_rq_lock(rq_src, rq_dest);
7353 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7354 rq_src->nr_uninterruptible = 0;
7355 double_rq_unlock(rq_src, rq_dest);
7356 local_irq_restore(flags);
7357}
7358
7359/* Run through task list and migrate tasks from the dead cpu. */
7360static void migrate_live_tasks(int src_cpu)
7361{
48f24c4d 7362 struct task_struct *p, *t;
1da177e4 7363
f7b4cddc 7364 read_lock(&tasklist_lock);
1da177e4 7365
48f24c4d
IM
7366 do_each_thread(t, p) {
7367 if (p == current)
1da177e4
LT
7368 continue;
7369
48f24c4d
IM
7370 if (task_cpu(p) == src_cpu)
7371 move_task_off_dead_cpu(src_cpu, p);
7372 } while_each_thread(t, p);
1da177e4 7373
f7b4cddc 7374 read_unlock(&tasklist_lock);
1da177e4
LT
7375}
7376
dd41f596
IM
7377/*
7378 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7379 * It does so by boosting its priority to highest possible.
7380 * Used by CPU offline code.
1da177e4
LT
7381 */
7382void sched_idle_next(void)
7383{
48f24c4d 7384 int this_cpu = smp_processor_id();
70b97a7f 7385 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7386 struct task_struct *p = rq->idle;
7387 unsigned long flags;
7388
7389 /* cpu has to be offline */
48f24c4d 7390 BUG_ON(cpu_online(this_cpu));
1da177e4 7391
48f24c4d
IM
7392 /*
7393 * Strictly not necessary since rest of the CPUs are stopped by now
7394 * and interrupts disabled on the current cpu.
1da177e4 7395 */
05fa785c 7396 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7397
dd41f596 7398 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7399
94bc9a7b
DA
7400 update_rq_clock(rq);
7401 activate_task(rq, p, 0);
1da177e4 7402
05fa785c 7403 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7404}
7405
48f24c4d
IM
7406/*
7407 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7408 * offline.
7409 */
7410void idle_task_exit(void)
7411{
7412 struct mm_struct *mm = current->active_mm;
7413
7414 BUG_ON(cpu_online(smp_processor_id()));
7415
7416 if (mm != &init_mm)
7417 switch_mm(mm, &init_mm, current);
7418 mmdrop(mm);
7419}
7420
054b9108 7421/* called under rq->lock with disabled interrupts */
36c8b586 7422static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7423{
70b97a7f 7424 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7425
7426 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7427 BUG_ON(!p->exit_state);
1da177e4
LT
7428
7429 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7430 BUG_ON(p->state == TASK_DEAD);
1da177e4 7431
48f24c4d 7432 get_task_struct(p);
1da177e4
LT
7433
7434 /*
7435 * Drop lock around migration; if someone else moves it,
41a2d6cf 7436 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7437 * fine.
7438 */
05fa785c 7439 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7440 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7441 raw_spin_lock_irq(&rq->lock);
1da177e4 7442
48f24c4d 7443 put_task_struct(p);
1da177e4
LT
7444}
7445
7446/* release_task() removes task from tasklist, so we won't find dead tasks. */
7447static void migrate_dead_tasks(unsigned int dead_cpu)
7448{
70b97a7f 7449 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7450 struct task_struct *next;
48f24c4d 7451
dd41f596
IM
7452 for ( ; ; ) {
7453 if (!rq->nr_running)
7454 break;
a8e504d2 7455 update_rq_clock(rq);
b67802ea 7456 next = pick_next_task(rq);
dd41f596
IM
7457 if (!next)
7458 break;
79c53799 7459 next->sched_class->put_prev_task(rq, next);
dd41f596 7460 migrate_dead(dead_cpu, next);
e692ab53 7461
1da177e4
LT
7462 }
7463}
dce48a84
TG
7464
7465/*
7466 * remove the tasks which were accounted by rq from calc_load_tasks.
7467 */
7468static void calc_global_load_remove(struct rq *rq)
7469{
7470 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7471 rq->calc_load_active = 0;
dce48a84 7472}
1da177e4
LT
7473#endif /* CONFIG_HOTPLUG_CPU */
7474
e692ab53
NP
7475#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7476
7477static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7478 {
7479 .procname = "sched_domain",
c57baf1e 7480 .mode = 0555,
e0361851 7481 },
56992309 7482 {}
e692ab53
NP
7483};
7484
7485static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7486 {
7487 .procname = "kernel",
c57baf1e 7488 .mode = 0555,
e0361851
AD
7489 .child = sd_ctl_dir,
7490 },
56992309 7491 {}
e692ab53
NP
7492};
7493
7494static struct ctl_table *sd_alloc_ctl_entry(int n)
7495{
7496 struct ctl_table *entry =
5cf9f062 7497 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7498
e692ab53
NP
7499 return entry;
7500}
7501
6382bc90
MM
7502static void sd_free_ctl_entry(struct ctl_table **tablep)
7503{
cd790076 7504 struct ctl_table *entry;
6382bc90 7505
cd790076
MM
7506 /*
7507 * In the intermediate directories, both the child directory and
7508 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7509 * will always be set. In the lowest directory the names are
cd790076
MM
7510 * static strings and all have proc handlers.
7511 */
7512 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7513 if (entry->child)
7514 sd_free_ctl_entry(&entry->child);
cd790076
MM
7515 if (entry->proc_handler == NULL)
7516 kfree(entry->procname);
7517 }
6382bc90
MM
7518
7519 kfree(*tablep);
7520 *tablep = NULL;
7521}
7522
e692ab53 7523static void
e0361851 7524set_table_entry(struct ctl_table *entry,
e692ab53
NP
7525 const char *procname, void *data, int maxlen,
7526 mode_t mode, proc_handler *proc_handler)
7527{
e692ab53
NP
7528 entry->procname = procname;
7529 entry->data = data;
7530 entry->maxlen = maxlen;
7531 entry->mode = mode;
7532 entry->proc_handler = proc_handler;
7533}
7534
7535static struct ctl_table *
7536sd_alloc_ctl_domain_table(struct sched_domain *sd)
7537{
a5d8c348 7538 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7539
ad1cdc1d
MM
7540 if (table == NULL)
7541 return NULL;
7542
e0361851 7543 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7544 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7545 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7546 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7547 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7548 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7549 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7550 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7551 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7552 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7553 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7554 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7555 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7556 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7557 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7558 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7559 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7560 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7561 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7562 &sd->cache_nice_tries,
7563 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7564 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7565 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7566 set_table_entry(&table[11], "name", sd->name,
7567 CORENAME_MAX_SIZE, 0444, proc_dostring);
7568 /* &table[12] is terminator */
e692ab53
NP
7569
7570 return table;
7571}
7572
9a4e7159 7573static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7574{
7575 struct ctl_table *entry, *table;
7576 struct sched_domain *sd;
7577 int domain_num = 0, i;
7578 char buf[32];
7579
7580 for_each_domain(cpu, sd)
7581 domain_num++;
7582 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7583 if (table == NULL)
7584 return NULL;
e692ab53
NP
7585
7586 i = 0;
7587 for_each_domain(cpu, sd) {
7588 snprintf(buf, 32, "domain%d", i);
e692ab53 7589 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7590 entry->mode = 0555;
e692ab53
NP
7591 entry->child = sd_alloc_ctl_domain_table(sd);
7592 entry++;
7593 i++;
7594 }
7595 return table;
7596}
7597
7598static struct ctl_table_header *sd_sysctl_header;
6382bc90 7599static void register_sched_domain_sysctl(void)
e692ab53 7600{
6ad4c188 7601 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7602 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7603 char buf[32];
7604
7378547f
MM
7605 WARN_ON(sd_ctl_dir[0].child);
7606 sd_ctl_dir[0].child = entry;
7607
ad1cdc1d
MM
7608 if (entry == NULL)
7609 return;
7610
6ad4c188 7611 for_each_possible_cpu(i) {
e692ab53 7612 snprintf(buf, 32, "cpu%d", i);
e692ab53 7613 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7614 entry->mode = 0555;
e692ab53 7615 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7616 entry++;
e692ab53 7617 }
7378547f
MM
7618
7619 WARN_ON(sd_sysctl_header);
e692ab53
NP
7620 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7621}
6382bc90 7622
7378547f 7623/* may be called multiple times per register */
6382bc90
MM
7624static void unregister_sched_domain_sysctl(void)
7625{
7378547f
MM
7626 if (sd_sysctl_header)
7627 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7628 sd_sysctl_header = NULL;
7378547f
MM
7629 if (sd_ctl_dir[0].child)
7630 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7631}
e692ab53 7632#else
6382bc90
MM
7633static void register_sched_domain_sysctl(void)
7634{
7635}
7636static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7637{
7638}
7639#endif
7640
1f11eb6a
GH
7641static void set_rq_online(struct rq *rq)
7642{
7643 if (!rq->online) {
7644 const struct sched_class *class;
7645
c6c4927b 7646 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7647 rq->online = 1;
7648
7649 for_each_class(class) {
7650 if (class->rq_online)
7651 class->rq_online(rq);
7652 }
7653 }
7654}
7655
7656static void set_rq_offline(struct rq *rq)
7657{
7658 if (rq->online) {
7659 const struct sched_class *class;
7660
7661 for_each_class(class) {
7662 if (class->rq_offline)
7663 class->rq_offline(rq);
7664 }
7665
c6c4927b 7666 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7667 rq->online = 0;
7668 }
7669}
7670
1da177e4
LT
7671/*
7672 * migration_call - callback that gets triggered when a CPU is added.
7673 * Here we can start up the necessary migration thread for the new CPU.
7674 */
48f24c4d
IM
7675static int __cpuinit
7676migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7677{
1da177e4 7678 struct task_struct *p;
48f24c4d 7679 int cpu = (long)hcpu;
1da177e4 7680 unsigned long flags;
70b97a7f 7681 struct rq *rq;
1da177e4
LT
7682
7683 switch (action) {
5be9361c 7684
1da177e4 7685 case CPU_UP_PREPARE:
8bb78442 7686 case CPU_UP_PREPARE_FROZEN:
dd41f596 7687 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7688 if (IS_ERR(p))
7689 return NOTIFY_BAD;
1da177e4
LT
7690 kthread_bind(p, cpu);
7691 /* Must be high prio: stop_machine expects to yield to it. */
7692 rq = task_rq_lock(p, &flags);
dd41f596 7693 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7694 task_rq_unlock(rq, &flags);
371cbb38 7695 get_task_struct(p);
1da177e4 7696 cpu_rq(cpu)->migration_thread = p;
a468d389 7697 rq->calc_load_update = calc_load_update;
1da177e4 7698 break;
48f24c4d 7699
1da177e4 7700 case CPU_ONLINE:
8bb78442 7701 case CPU_ONLINE_FROZEN:
3a4fa0a2 7702 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7703 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7704
7705 /* Update our root-domain */
7706 rq = cpu_rq(cpu);
05fa785c 7707 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7708 if (rq->rd) {
c6c4927b 7709 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7710
7711 set_rq_online(rq);
1f94ef59 7712 }
05fa785c 7713 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7714 break;
48f24c4d 7715
1da177e4
LT
7716#ifdef CONFIG_HOTPLUG_CPU
7717 case CPU_UP_CANCELED:
8bb78442 7718 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7719 if (!cpu_rq(cpu)->migration_thread)
7720 break;
41a2d6cf 7721 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7722 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7723 cpumask_any(cpu_online_mask));
1da177e4 7724 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7725 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7726 cpu_rq(cpu)->migration_thread = NULL;
7727 break;
48f24c4d 7728
1da177e4 7729 case CPU_DEAD:
8bb78442 7730 case CPU_DEAD_FROZEN:
470fd646 7731 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7732 migrate_live_tasks(cpu);
7733 rq = cpu_rq(cpu);
7734 kthread_stop(rq->migration_thread);
371cbb38 7735 put_task_struct(rq->migration_thread);
1da177e4
LT
7736 rq->migration_thread = NULL;
7737 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7738 raw_spin_lock_irq(&rq->lock);
a8e504d2 7739 update_rq_clock(rq);
2e1cb74a 7740 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7741 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7742 rq->idle->sched_class = &idle_sched_class;
1da177e4 7743 migrate_dead_tasks(cpu);
05fa785c 7744 raw_spin_unlock_irq(&rq->lock);
470fd646 7745 cpuset_unlock();
1da177e4
LT
7746 migrate_nr_uninterruptible(rq);
7747 BUG_ON(rq->nr_running != 0);
dce48a84 7748 calc_global_load_remove(rq);
41a2d6cf
IM
7749 /*
7750 * No need to migrate the tasks: it was best-effort if
7751 * they didn't take sched_hotcpu_mutex. Just wake up
7752 * the requestors.
7753 */
05fa785c 7754 raw_spin_lock_irq(&rq->lock);
1da177e4 7755 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7756 struct migration_req *req;
7757
1da177e4 7758 req = list_entry(rq->migration_queue.next,
70b97a7f 7759 struct migration_req, list);
1da177e4 7760 list_del_init(&req->list);
05fa785c 7761 raw_spin_unlock_irq(&rq->lock);
1da177e4 7762 complete(&req->done);
05fa785c 7763 raw_spin_lock_irq(&rq->lock);
1da177e4 7764 }
05fa785c 7765 raw_spin_unlock_irq(&rq->lock);
1da177e4 7766 break;
57d885fe 7767
08f503b0
GH
7768 case CPU_DYING:
7769 case CPU_DYING_FROZEN:
57d885fe
GH
7770 /* Update our root-domain */
7771 rq = cpu_rq(cpu);
05fa785c 7772 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7773 if (rq->rd) {
c6c4927b 7774 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7775 set_rq_offline(rq);
57d885fe 7776 }
05fa785c 7777 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7778 break;
1da177e4
LT
7779#endif
7780 }
7781 return NOTIFY_OK;
7782}
7783
f38b0820
PM
7784/*
7785 * Register at high priority so that task migration (migrate_all_tasks)
7786 * happens before everything else. This has to be lower priority than
cdd6c482 7787 * the notifier in the perf_event subsystem, though.
1da177e4 7788 */
26c2143b 7789static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7790 .notifier_call = migration_call,
7791 .priority = 10
7792};
7793
7babe8db 7794static int __init migration_init(void)
1da177e4
LT
7795{
7796 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7797 int err;
48f24c4d
IM
7798
7799 /* Start one for the boot CPU: */
07dccf33
AM
7800 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7801 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7802 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7803 register_cpu_notifier(&migration_notifier);
7babe8db 7804
a004cd42 7805 return 0;
1da177e4 7806}
7babe8db 7807early_initcall(migration_init);
1da177e4
LT
7808#endif
7809
7810#ifdef CONFIG_SMP
476f3534 7811
3e9830dc 7812#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7813
f6630114
MT
7814static __read_mostly int sched_domain_debug_enabled;
7815
7816static int __init sched_domain_debug_setup(char *str)
7817{
7818 sched_domain_debug_enabled = 1;
7819
7820 return 0;
7821}
7822early_param("sched_debug", sched_domain_debug_setup);
7823
7c16ec58 7824static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7825 struct cpumask *groupmask)
1da177e4 7826{
4dcf6aff 7827 struct sched_group *group = sd->groups;
434d53b0 7828 char str[256];
1da177e4 7829
968ea6d8 7830 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7831 cpumask_clear(groupmask);
4dcf6aff
IM
7832
7833 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7834
7835 if (!(sd->flags & SD_LOAD_BALANCE)) {
7836 printk("does not load-balance\n");
7837 if (sd->parent)
7838 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7839 " has parent");
7840 return -1;
41c7ce9a
NP
7841 }
7842
eefd796a 7843 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7844
758b2cdc 7845 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7846 printk(KERN_ERR "ERROR: domain->span does not contain "
7847 "CPU%d\n", cpu);
7848 }
758b2cdc 7849 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7850 printk(KERN_ERR "ERROR: domain->groups does not contain"
7851 " CPU%d\n", cpu);
7852 }
1da177e4 7853
4dcf6aff 7854 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7855 do {
4dcf6aff
IM
7856 if (!group) {
7857 printk("\n");
7858 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7859 break;
7860 }
7861
18a3885f 7862 if (!group->cpu_power) {
4dcf6aff
IM
7863 printk(KERN_CONT "\n");
7864 printk(KERN_ERR "ERROR: domain->cpu_power not "
7865 "set\n");
7866 break;
7867 }
1da177e4 7868
758b2cdc 7869 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7870 printk(KERN_CONT "\n");
7871 printk(KERN_ERR "ERROR: empty group\n");
7872 break;
7873 }
1da177e4 7874
758b2cdc 7875 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7876 printk(KERN_CONT "\n");
7877 printk(KERN_ERR "ERROR: repeated CPUs\n");
7878 break;
7879 }
1da177e4 7880
758b2cdc 7881 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7882
968ea6d8 7883 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7884
7885 printk(KERN_CONT " %s", str);
18a3885f
PZ
7886 if (group->cpu_power != SCHED_LOAD_SCALE) {
7887 printk(KERN_CONT " (cpu_power = %d)",
7888 group->cpu_power);
381512cf 7889 }
1da177e4 7890
4dcf6aff
IM
7891 group = group->next;
7892 } while (group != sd->groups);
7893 printk(KERN_CONT "\n");
1da177e4 7894
758b2cdc 7895 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7896 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7897
758b2cdc
RR
7898 if (sd->parent &&
7899 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7900 printk(KERN_ERR "ERROR: parent span is not a superset "
7901 "of domain->span\n");
7902 return 0;
7903}
1da177e4 7904
4dcf6aff
IM
7905static void sched_domain_debug(struct sched_domain *sd, int cpu)
7906{
d5dd3db1 7907 cpumask_var_t groupmask;
4dcf6aff 7908 int level = 0;
1da177e4 7909
f6630114
MT
7910 if (!sched_domain_debug_enabled)
7911 return;
7912
4dcf6aff
IM
7913 if (!sd) {
7914 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7915 return;
7916 }
1da177e4 7917
4dcf6aff
IM
7918 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7919
d5dd3db1 7920 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7921 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7922 return;
7923 }
7924
4dcf6aff 7925 for (;;) {
7c16ec58 7926 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7927 break;
1da177e4
LT
7928 level++;
7929 sd = sd->parent;
33859f7f 7930 if (!sd)
4dcf6aff
IM
7931 break;
7932 }
d5dd3db1 7933 free_cpumask_var(groupmask);
1da177e4 7934}
6d6bc0ad 7935#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7936# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7937#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7938
1a20ff27 7939static int sd_degenerate(struct sched_domain *sd)
245af2c7 7940{
758b2cdc 7941 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7942 return 1;
7943
7944 /* Following flags need at least 2 groups */
7945 if (sd->flags & (SD_LOAD_BALANCE |
7946 SD_BALANCE_NEWIDLE |
7947 SD_BALANCE_FORK |
89c4710e
SS
7948 SD_BALANCE_EXEC |
7949 SD_SHARE_CPUPOWER |
7950 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7951 if (sd->groups != sd->groups->next)
7952 return 0;
7953 }
7954
7955 /* Following flags don't use groups */
c88d5910 7956 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7957 return 0;
7958
7959 return 1;
7960}
7961
48f24c4d
IM
7962static int
7963sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7964{
7965 unsigned long cflags = sd->flags, pflags = parent->flags;
7966
7967 if (sd_degenerate(parent))
7968 return 1;
7969
758b2cdc 7970 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7971 return 0;
7972
245af2c7
SS
7973 /* Flags needing groups don't count if only 1 group in parent */
7974 if (parent->groups == parent->groups->next) {
7975 pflags &= ~(SD_LOAD_BALANCE |
7976 SD_BALANCE_NEWIDLE |
7977 SD_BALANCE_FORK |
89c4710e
SS
7978 SD_BALANCE_EXEC |
7979 SD_SHARE_CPUPOWER |
7980 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7981 if (nr_node_ids == 1)
7982 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7983 }
7984 if (~cflags & pflags)
7985 return 0;
7986
7987 return 1;
7988}
7989
c6c4927b
RR
7990static void free_rootdomain(struct root_domain *rd)
7991{
047106ad
PZ
7992 synchronize_sched();
7993
68e74568
RR
7994 cpupri_cleanup(&rd->cpupri);
7995
c6c4927b
RR
7996 free_cpumask_var(rd->rto_mask);
7997 free_cpumask_var(rd->online);
7998 free_cpumask_var(rd->span);
7999 kfree(rd);
8000}
8001
57d885fe
GH
8002static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8003{
a0490fa3 8004 struct root_domain *old_rd = NULL;
57d885fe 8005 unsigned long flags;
57d885fe 8006
05fa785c 8007 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8008
8009 if (rq->rd) {
a0490fa3 8010 old_rd = rq->rd;
57d885fe 8011
c6c4927b 8012 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8013 set_rq_offline(rq);
57d885fe 8014
c6c4927b 8015 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8016
a0490fa3
IM
8017 /*
8018 * If we dont want to free the old_rt yet then
8019 * set old_rd to NULL to skip the freeing later
8020 * in this function:
8021 */
8022 if (!atomic_dec_and_test(&old_rd->refcount))
8023 old_rd = NULL;
57d885fe
GH
8024 }
8025
8026 atomic_inc(&rd->refcount);
8027 rq->rd = rd;
8028
c6c4927b 8029 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8030 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8031 set_rq_online(rq);
57d885fe 8032
05fa785c 8033 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8034
8035 if (old_rd)
8036 free_rootdomain(old_rd);
57d885fe
GH
8037}
8038
fd5e1b5d 8039static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8040{
36b7b6d4
PE
8041 gfp_t gfp = GFP_KERNEL;
8042
57d885fe
GH
8043 memset(rd, 0, sizeof(*rd));
8044
36b7b6d4
PE
8045 if (bootmem)
8046 gfp = GFP_NOWAIT;
c6c4927b 8047
36b7b6d4 8048 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8049 goto out;
36b7b6d4 8050 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8051 goto free_span;
36b7b6d4 8052 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8053 goto free_online;
6e0534f2 8054
0fb53029 8055 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8056 goto free_rto_mask;
c6c4927b 8057 return 0;
6e0534f2 8058
68e74568
RR
8059free_rto_mask:
8060 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8061free_online:
8062 free_cpumask_var(rd->online);
8063free_span:
8064 free_cpumask_var(rd->span);
0c910d28 8065out:
c6c4927b 8066 return -ENOMEM;
57d885fe
GH
8067}
8068
8069static void init_defrootdomain(void)
8070{
c6c4927b
RR
8071 init_rootdomain(&def_root_domain, true);
8072
57d885fe
GH
8073 atomic_set(&def_root_domain.refcount, 1);
8074}
8075
dc938520 8076static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8077{
8078 struct root_domain *rd;
8079
8080 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8081 if (!rd)
8082 return NULL;
8083
c6c4927b
RR
8084 if (init_rootdomain(rd, false) != 0) {
8085 kfree(rd);
8086 return NULL;
8087 }
57d885fe
GH
8088
8089 return rd;
8090}
8091
1da177e4 8092/*
0eab9146 8093 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8094 * hold the hotplug lock.
8095 */
0eab9146
IM
8096static void
8097cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8098{
70b97a7f 8099 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8100 struct sched_domain *tmp;
8101
8102 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8103 for (tmp = sd; tmp; ) {
245af2c7
SS
8104 struct sched_domain *parent = tmp->parent;
8105 if (!parent)
8106 break;
f29c9b1c 8107
1a848870 8108 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8109 tmp->parent = parent->parent;
1a848870
SS
8110 if (parent->parent)
8111 parent->parent->child = tmp;
f29c9b1c
LZ
8112 } else
8113 tmp = tmp->parent;
245af2c7
SS
8114 }
8115
1a848870 8116 if (sd && sd_degenerate(sd)) {
245af2c7 8117 sd = sd->parent;
1a848870
SS
8118 if (sd)
8119 sd->child = NULL;
8120 }
1da177e4
LT
8121
8122 sched_domain_debug(sd, cpu);
8123
57d885fe 8124 rq_attach_root(rq, rd);
674311d5 8125 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8126}
8127
8128/* cpus with isolated domains */
dcc30a35 8129static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8130
8131/* Setup the mask of cpus configured for isolated domains */
8132static int __init isolated_cpu_setup(char *str)
8133{
bdddd296 8134 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8135 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8136 return 1;
8137}
8138
8927f494 8139__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8140
8141/*
6711cab4
SS
8142 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8143 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8144 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8145 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8146 *
8147 * init_sched_build_groups will build a circular linked list of the groups
8148 * covered by the given span, and will set each group's ->cpumask correctly,
8149 * and ->cpu_power to 0.
8150 */
a616058b 8151static void
96f874e2
RR
8152init_sched_build_groups(const struct cpumask *span,
8153 const struct cpumask *cpu_map,
8154 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8155 struct sched_group **sg,
96f874e2
RR
8156 struct cpumask *tmpmask),
8157 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8158{
8159 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8160 int i;
8161
96f874e2 8162 cpumask_clear(covered);
7c16ec58 8163
abcd083a 8164 for_each_cpu(i, span) {
6711cab4 8165 struct sched_group *sg;
7c16ec58 8166 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8167 int j;
8168
758b2cdc 8169 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8170 continue;
8171
758b2cdc 8172 cpumask_clear(sched_group_cpus(sg));
18a3885f 8173 sg->cpu_power = 0;
1da177e4 8174
abcd083a 8175 for_each_cpu(j, span) {
7c16ec58 8176 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8177 continue;
8178
96f874e2 8179 cpumask_set_cpu(j, covered);
758b2cdc 8180 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8181 }
8182 if (!first)
8183 first = sg;
8184 if (last)
8185 last->next = sg;
8186 last = sg;
8187 }
8188 last->next = first;
8189}
8190
9c1cfda2 8191#define SD_NODES_PER_DOMAIN 16
1da177e4 8192
9c1cfda2 8193#ifdef CONFIG_NUMA
198e2f18 8194
9c1cfda2
JH
8195/**
8196 * find_next_best_node - find the next node to include in a sched_domain
8197 * @node: node whose sched_domain we're building
8198 * @used_nodes: nodes already in the sched_domain
8199 *
41a2d6cf 8200 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8201 * finds the closest node not already in the @used_nodes map.
8202 *
8203 * Should use nodemask_t.
8204 */
c5f59f08 8205static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8206{
8207 int i, n, val, min_val, best_node = 0;
8208
8209 min_val = INT_MAX;
8210
076ac2af 8211 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8212 /* Start at @node */
076ac2af 8213 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8214
8215 if (!nr_cpus_node(n))
8216 continue;
8217
8218 /* Skip already used nodes */
c5f59f08 8219 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8220 continue;
8221
8222 /* Simple min distance search */
8223 val = node_distance(node, n);
8224
8225 if (val < min_val) {
8226 min_val = val;
8227 best_node = n;
8228 }
8229 }
8230
c5f59f08 8231 node_set(best_node, *used_nodes);
9c1cfda2
JH
8232 return best_node;
8233}
8234
8235/**
8236 * sched_domain_node_span - get a cpumask for a node's sched_domain
8237 * @node: node whose cpumask we're constructing
73486722 8238 * @span: resulting cpumask
9c1cfda2 8239 *
41a2d6cf 8240 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8241 * should be one that prevents unnecessary balancing, but also spreads tasks
8242 * out optimally.
8243 */
96f874e2 8244static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8245{
c5f59f08 8246 nodemask_t used_nodes;
48f24c4d 8247 int i;
9c1cfda2 8248
6ca09dfc 8249 cpumask_clear(span);
c5f59f08 8250 nodes_clear(used_nodes);
9c1cfda2 8251
6ca09dfc 8252 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8253 node_set(node, used_nodes);
9c1cfda2
JH
8254
8255 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8256 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8257
6ca09dfc 8258 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8259 }
9c1cfda2 8260}
6d6bc0ad 8261#endif /* CONFIG_NUMA */
9c1cfda2 8262
5c45bf27 8263int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8264
6c99e9ad
RR
8265/*
8266 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8267 *
8268 * ( See the the comments in include/linux/sched.h:struct sched_group
8269 * and struct sched_domain. )
6c99e9ad
RR
8270 */
8271struct static_sched_group {
8272 struct sched_group sg;
8273 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8274};
8275
8276struct static_sched_domain {
8277 struct sched_domain sd;
8278 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8279};
8280
49a02c51
AH
8281struct s_data {
8282#ifdef CONFIG_NUMA
8283 int sd_allnodes;
8284 cpumask_var_t domainspan;
8285 cpumask_var_t covered;
8286 cpumask_var_t notcovered;
8287#endif
8288 cpumask_var_t nodemask;
8289 cpumask_var_t this_sibling_map;
8290 cpumask_var_t this_core_map;
8291 cpumask_var_t send_covered;
8292 cpumask_var_t tmpmask;
8293 struct sched_group **sched_group_nodes;
8294 struct root_domain *rd;
8295};
8296
2109b99e
AH
8297enum s_alloc {
8298 sa_sched_groups = 0,
8299 sa_rootdomain,
8300 sa_tmpmask,
8301 sa_send_covered,
8302 sa_this_core_map,
8303 sa_this_sibling_map,
8304 sa_nodemask,
8305 sa_sched_group_nodes,
8306#ifdef CONFIG_NUMA
8307 sa_notcovered,
8308 sa_covered,
8309 sa_domainspan,
8310#endif
8311 sa_none,
8312};
8313
9c1cfda2 8314/*
48f24c4d 8315 * SMT sched-domains:
9c1cfda2 8316 */
1da177e4 8317#ifdef CONFIG_SCHED_SMT
6c99e9ad 8318static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8319static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8320
41a2d6cf 8321static int
96f874e2
RR
8322cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8323 struct sched_group **sg, struct cpumask *unused)
1da177e4 8324{
6711cab4 8325 if (sg)
1871e52c 8326 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8327 return cpu;
8328}
6d6bc0ad 8329#endif /* CONFIG_SCHED_SMT */
1da177e4 8330
48f24c4d
IM
8331/*
8332 * multi-core sched-domains:
8333 */
1e9f28fa 8334#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8335static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8336static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8337#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8338
8339#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8340static int
96f874e2
RR
8341cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8342 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8343{
6711cab4 8344 int group;
7c16ec58 8345
c69fc56d 8346 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8347 group = cpumask_first(mask);
6711cab4 8348 if (sg)
6c99e9ad 8349 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8350 return group;
1e9f28fa
SS
8351}
8352#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8353static int
96f874e2
RR
8354cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8355 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8356{
6711cab4 8357 if (sg)
6c99e9ad 8358 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8359 return cpu;
8360}
8361#endif
8362
6c99e9ad
RR
8363static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8364static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8365
41a2d6cf 8366static int
96f874e2
RR
8367cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8368 struct sched_group **sg, struct cpumask *mask)
1da177e4 8369{
6711cab4 8370 int group;
48f24c4d 8371#ifdef CONFIG_SCHED_MC
6ca09dfc 8372 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8373 group = cpumask_first(mask);
1e9f28fa 8374#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8375 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8376 group = cpumask_first(mask);
1da177e4 8377#else
6711cab4 8378 group = cpu;
1da177e4 8379#endif
6711cab4 8380 if (sg)
6c99e9ad 8381 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8382 return group;
1da177e4
LT
8383}
8384
8385#ifdef CONFIG_NUMA
1da177e4 8386/*
9c1cfda2
JH
8387 * The init_sched_build_groups can't handle what we want to do with node
8388 * groups, so roll our own. Now each node has its own list of groups which
8389 * gets dynamically allocated.
1da177e4 8390 */
62ea9ceb 8391static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8392static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8393
62ea9ceb 8394static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8395static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8396
96f874e2
RR
8397static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8398 struct sched_group **sg,
8399 struct cpumask *nodemask)
9c1cfda2 8400{
6711cab4
SS
8401 int group;
8402
6ca09dfc 8403 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8404 group = cpumask_first(nodemask);
6711cab4
SS
8405
8406 if (sg)
6c99e9ad 8407 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8408 return group;
1da177e4 8409}
6711cab4 8410
08069033
SS
8411static void init_numa_sched_groups_power(struct sched_group *group_head)
8412{
8413 struct sched_group *sg = group_head;
8414 int j;
8415
8416 if (!sg)
8417 return;
3a5c359a 8418 do {
758b2cdc 8419 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8420 struct sched_domain *sd;
08069033 8421
6c99e9ad 8422 sd = &per_cpu(phys_domains, j).sd;
13318a71 8423 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8424 /*
8425 * Only add "power" once for each
8426 * physical package.
8427 */
8428 continue;
8429 }
08069033 8430
18a3885f 8431 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8432 }
8433 sg = sg->next;
8434 } while (sg != group_head);
08069033 8435}
0601a88d
AH
8436
8437static int build_numa_sched_groups(struct s_data *d,
8438 const struct cpumask *cpu_map, int num)
8439{
8440 struct sched_domain *sd;
8441 struct sched_group *sg, *prev;
8442 int n, j;
8443
8444 cpumask_clear(d->covered);
8445 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8446 if (cpumask_empty(d->nodemask)) {
8447 d->sched_group_nodes[num] = NULL;
8448 goto out;
8449 }
8450
8451 sched_domain_node_span(num, d->domainspan);
8452 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8453
8454 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8455 GFP_KERNEL, num);
8456 if (!sg) {
8457 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8458 num);
8459 return -ENOMEM;
8460 }
8461 d->sched_group_nodes[num] = sg;
8462
8463 for_each_cpu(j, d->nodemask) {
8464 sd = &per_cpu(node_domains, j).sd;
8465 sd->groups = sg;
8466 }
8467
18a3885f 8468 sg->cpu_power = 0;
0601a88d
AH
8469 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8470 sg->next = sg;
8471 cpumask_or(d->covered, d->covered, d->nodemask);
8472
8473 prev = sg;
8474 for (j = 0; j < nr_node_ids; j++) {
8475 n = (num + j) % nr_node_ids;
8476 cpumask_complement(d->notcovered, d->covered);
8477 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8478 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8479 if (cpumask_empty(d->tmpmask))
8480 break;
8481 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8482 if (cpumask_empty(d->tmpmask))
8483 continue;
8484 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8485 GFP_KERNEL, num);
8486 if (!sg) {
8487 printk(KERN_WARNING
8488 "Can not alloc domain group for node %d\n", j);
8489 return -ENOMEM;
8490 }
18a3885f 8491 sg->cpu_power = 0;
0601a88d
AH
8492 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8493 sg->next = prev->next;
8494 cpumask_or(d->covered, d->covered, d->tmpmask);
8495 prev->next = sg;
8496 prev = sg;
8497 }
8498out:
8499 return 0;
8500}
6d6bc0ad 8501#endif /* CONFIG_NUMA */
1da177e4 8502
a616058b 8503#ifdef CONFIG_NUMA
51888ca2 8504/* Free memory allocated for various sched_group structures */
96f874e2
RR
8505static void free_sched_groups(const struct cpumask *cpu_map,
8506 struct cpumask *nodemask)
51888ca2 8507{
a616058b 8508 int cpu, i;
51888ca2 8509
abcd083a 8510 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8511 struct sched_group **sched_group_nodes
8512 = sched_group_nodes_bycpu[cpu];
8513
51888ca2
SV
8514 if (!sched_group_nodes)
8515 continue;
8516
076ac2af 8517 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8518 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8519
6ca09dfc 8520 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8521 if (cpumask_empty(nodemask))
51888ca2
SV
8522 continue;
8523
8524 if (sg == NULL)
8525 continue;
8526 sg = sg->next;
8527next_sg:
8528 oldsg = sg;
8529 sg = sg->next;
8530 kfree(oldsg);
8531 if (oldsg != sched_group_nodes[i])
8532 goto next_sg;
8533 }
8534 kfree(sched_group_nodes);
8535 sched_group_nodes_bycpu[cpu] = NULL;
8536 }
51888ca2 8537}
6d6bc0ad 8538#else /* !CONFIG_NUMA */
96f874e2
RR
8539static void free_sched_groups(const struct cpumask *cpu_map,
8540 struct cpumask *nodemask)
a616058b
SS
8541{
8542}
6d6bc0ad 8543#endif /* CONFIG_NUMA */
51888ca2 8544
89c4710e
SS
8545/*
8546 * Initialize sched groups cpu_power.
8547 *
8548 * cpu_power indicates the capacity of sched group, which is used while
8549 * distributing the load between different sched groups in a sched domain.
8550 * Typically cpu_power for all the groups in a sched domain will be same unless
8551 * there are asymmetries in the topology. If there are asymmetries, group
8552 * having more cpu_power will pickup more load compared to the group having
8553 * less cpu_power.
89c4710e
SS
8554 */
8555static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8556{
8557 struct sched_domain *child;
8558 struct sched_group *group;
f93e65c1
PZ
8559 long power;
8560 int weight;
89c4710e
SS
8561
8562 WARN_ON(!sd || !sd->groups);
8563
13318a71 8564 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8565 return;
8566
8567 child = sd->child;
8568
18a3885f 8569 sd->groups->cpu_power = 0;
5517d86b 8570
f93e65c1
PZ
8571 if (!child) {
8572 power = SCHED_LOAD_SCALE;
8573 weight = cpumask_weight(sched_domain_span(sd));
8574 /*
8575 * SMT siblings share the power of a single core.
a52bfd73
PZ
8576 * Usually multiple threads get a better yield out of
8577 * that one core than a single thread would have,
8578 * reflect that in sd->smt_gain.
f93e65c1 8579 */
a52bfd73
PZ
8580 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8581 power *= sd->smt_gain;
f93e65c1 8582 power /= weight;
a52bfd73
PZ
8583 power >>= SCHED_LOAD_SHIFT;
8584 }
18a3885f 8585 sd->groups->cpu_power += power;
89c4710e
SS
8586 return;
8587 }
8588
89c4710e 8589 /*
f93e65c1 8590 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8591 */
8592 group = child->groups;
8593 do {
18a3885f 8594 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8595 group = group->next;
8596 } while (group != child->groups);
8597}
8598
7c16ec58
MT
8599/*
8600 * Initializers for schedule domains
8601 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8602 */
8603
a5d8c348
IM
8604#ifdef CONFIG_SCHED_DEBUG
8605# define SD_INIT_NAME(sd, type) sd->name = #type
8606#else
8607# define SD_INIT_NAME(sd, type) do { } while (0)
8608#endif
8609
7c16ec58 8610#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8611
7c16ec58
MT
8612#define SD_INIT_FUNC(type) \
8613static noinline void sd_init_##type(struct sched_domain *sd) \
8614{ \
8615 memset(sd, 0, sizeof(*sd)); \
8616 *sd = SD_##type##_INIT; \
1d3504fc 8617 sd->level = SD_LV_##type; \
a5d8c348 8618 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8619}
8620
8621SD_INIT_FUNC(CPU)
8622#ifdef CONFIG_NUMA
8623 SD_INIT_FUNC(ALLNODES)
8624 SD_INIT_FUNC(NODE)
8625#endif
8626#ifdef CONFIG_SCHED_SMT
8627 SD_INIT_FUNC(SIBLING)
8628#endif
8629#ifdef CONFIG_SCHED_MC
8630 SD_INIT_FUNC(MC)
8631#endif
8632
1d3504fc
HS
8633static int default_relax_domain_level = -1;
8634
8635static int __init setup_relax_domain_level(char *str)
8636{
30e0e178
LZ
8637 unsigned long val;
8638
8639 val = simple_strtoul(str, NULL, 0);
8640 if (val < SD_LV_MAX)
8641 default_relax_domain_level = val;
8642
1d3504fc
HS
8643 return 1;
8644}
8645__setup("relax_domain_level=", setup_relax_domain_level);
8646
8647static void set_domain_attribute(struct sched_domain *sd,
8648 struct sched_domain_attr *attr)
8649{
8650 int request;
8651
8652 if (!attr || attr->relax_domain_level < 0) {
8653 if (default_relax_domain_level < 0)
8654 return;
8655 else
8656 request = default_relax_domain_level;
8657 } else
8658 request = attr->relax_domain_level;
8659 if (request < sd->level) {
8660 /* turn off idle balance on this domain */
c88d5910 8661 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8662 } else {
8663 /* turn on idle balance on this domain */
c88d5910 8664 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8665 }
8666}
8667
2109b99e
AH
8668static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8669 const struct cpumask *cpu_map)
8670{
8671 switch (what) {
8672 case sa_sched_groups:
8673 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8674 d->sched_group_nodes = NULL;
8675 case sa_rootdomain:
8676 free_rootdomain(d->rd); /* fall through */
8677 case sa_tmpmask:
8678 free_cpumask_var(d->tmpmask); /* fall through */
8679 case sa_send_covered:
8680 free_cpumask_var(d->send_covered); /* fall through */
8681 case sa_this_core_map:
8682 free_cpumask_var(d->this_core_map); /* fall through */
8683 case sa_this_sibling_map:
8684 free_cpumask_var(d->this_sibling_map); /* fall through */
8685 case sa_nodemask:
8686 free_cpumask_var(d->nodemask); /* fall through */
8687 case sa_sched_group_nodes:
d1b55138 8688#ifdef CONFIG_NUMA
2109b99e
AH
8689 kfree(d->sched_group_nodes); /* fall through */
8690 case sa_notcovered:
8691 free_cpumask_var(d->notcovered); /* fall through */
8692 case sa_covered:
8693 free_cpumask_var(d->covered); /* fall through */
8694 case sa_domainspan:
8695 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8696#endif
2109b99e
AH
8697 case sa_none:
8698 break;
8699 }
8700}
3404c8d9 8701
2109b99e
AH
8702static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8703 const struct cpumask *cpu_map)
8704{
3404c8d9 8705#ifdef CONFIG_NUMA
2109b99e
AH
8706 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8707 return sa_none;
8708 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8709 return sa_domainspan;
8710 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8711 return sa_covered;
8712 /* Allocate the per-node list of sched groups */
8713 d->sched_group_nodes = kcalloc(nr_node_ids,
8714 sizeof(struct sched_group *), GFP_KERNEL);
8715 if (!d->sched_group_nodes) {
d1b55138 8716 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8717 return sa_notcovered;
d1b55138 8718 }
2109b99e 8719 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8720#endif
2109b99e
AH
8721 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8722 return sa_sched_group_nodes;
8723 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8724 return sa_nodemask;
8725 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8726 return sa_this_sibling_map;
8727 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8728 return sa_this_core_map;
8729 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8730 return sa_send_covered;
8731 d->rd = alloc_rootdomain();
8732 if (!d->rd) {
57d885fe 8733 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8734 return sa_tmpmask;
57d885fe 8735 }
2109b99e
AH
8736 return sa_rootdomain;
8737}
57d885fe 8738
7f4588f3
AH
8739static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8740 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8741{
8742 struct sched_domain *sd = NULL;
7c16ec58 8743#ifdef CONFIG_NUMA
7f4588f3 8744 struct sched_domain *parent;
1da177e4 8745
7f4588f3
AH
8746 d->sd_allnodes = 0;
8747 if (cpumask_weight(cpu_map) >
8748 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8749 sd = &per_cpu(allnodes_domains, i).sd;
8750 SD_INIT(sd, ALLNODES);
1d3504fc 8751 set_domain_attribute(sd, attr);
7f4588f3
AH
8752 cpumask_copy(sched_domain_span(sd), cpu_map);
8753 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8754 d->sd_allnodes = 1;
8755 }
8756 parent = sd;
8757
8758 sd = &per_cpu(node_domains, i).sd;
8759 SD_INIT(sd, NODE);
8760 set_domain_attribute(sd, attr);
8761 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8762 sd->parent = parent;
8763 if (parent)
8764 parent->child = sd;
8765 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8766#endif
7f4588f3
AH
8767 return sd;
8768}
1da177e4 8769
87cce662
AH
8770static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8771 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8772 struct sched_domain *parent, int i)
8773{
8774 struct sched_domain *sd;
8775 sd = &per_cpu(phys_domains, i).sd;
8776 SD_INIT(sd, CPU);
8777 set_domain_attribute(sd, attr);
8778 cpumask_copy(sched_domain_span(sd), d->nodemask);
8779 sd->parent = parent;
8780 if (parent)
8781 parent->child = sd;
8782 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8783 return sd;
8784}
1da177e4 8785
410c4081
AH
8786static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8787 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8788 struct sched_domain *parent, int i)
8789{
8790 struct sched_domain *sd = parent;
1e9f28fa 8791#ifdef CONFIG_SCHED_MC
410c4081
AH
8792 sd = &per_cpu(core_domains, i).sd;
8793 SD_INIT(sd, MC);
8794 set_domain_attribute(sd, attr);
8795 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8796 sd->parent = parent;
8797 parent->child = sd;
8798 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8799#endif
410c4081
AH
8800 return sd;
8801}
1e9f28fa 8802
d8173535
AH
8803static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8804 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8805 struct sched_domain *parent, int i)
8806{
8807 struct sched_domain *sd = parent;
1da177e4 8808#ifdef CONFIG_SCHED_SMT
d8173535
AH
8809 sd = &per_cpu(cpu_domains, i).sd;
8810 SD_INIT(sd, SIBLING);
8811 set_domain_attribute(sd, attr);
8812 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8813 sd->parent = parent;
8814 parent->child = sd;
8815 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8816#endif
d8173535
AH
8817 return sd;
8818}
1da177e4 8819
0e8e85c9
AH
8820static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8821 const struct cpumask *cpu_map, int cpu)
8822{
8823 switch (l) {
1da177e4 8824#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8825 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8826 cpumask_and(d->this_sibling_map, cpu_map,
8827 topology_thread_cpumask(cpu));
8828 if (cpu == cpumask_first(d->this_sibling_map))
8829 init_sched_build_groups(d->this_sibling_map, cpu_map,
8830 &cpu_to_cpu_group,
8831 d->send_covered, d->tmpmask);
8832 break;
1da177e4 8833#endif
1e9f28fa 8834#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8835 case SD_LV_MC: /* set up multi-core groups */
8836 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8837 if (cpu == cpumask_first(d->this_core_map))
8838 init_sched_build_groups(d->this_core_map, cpu_map,
8839 &cpu_to_core_group,
8840 d->send_covered, d->tmpmask);
8841 break;
1e9f28fa 8842#endif
86548096
AH
8843 case SD_LV_CPU: /* set up physical groups */
8844 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8845 if (!cpumask_empty(d->nodemask))
8846 init_sched_build_groups(d->nodemask, cpu_map,
8847 &cpu_to_phys_group,
8848 d->send_covered, d->tmpmask);
8849 break;
1da177e4 8850#ifdef CONFIG_NUMA
de616e36
AH
8851 case SD_LV_ALLNODES:
8852 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8853 d->send_covered, d->tmpmask);
8854 break;
8855#endif
0e8e85c9
AH
8856 default:
8857 break;
7c16ec58 8858 }
0e8e85c9 8859}
9c1cfda2 8860
2109b99e
AH
8861/*
8862 * Build sched domains for a given set of cpus and attach the sched domains
8863 * to the individual cpus
8864 */
8865static int __build_sched_domains(const struct cpumask *cpu_map,
8866 struct sched_domain_attr *attr)
8867{
8868 enum s_alloc alloc_state = sa_none;
8869 struct s_data d;
294b0c96 8870 struct sched_domain *sd;
2109b99e 8871 int i;
7c16ec58 8872#ifdef CONFIG_NUMA
2109b99e 8873 d.sd_allnodes = 0;
7c16ec58 8874#endif
9c1cfda2 8875
2109b99e
AH
8876 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8877 if (alloc_state != sa_rootdomain)
8878 goto error;
8879 alloc_state = sa_sched_groups;
9c1cfda2 8880
1da177e4 8881 /*
1a20ff27 8882 * Set up domains for cpus specified by the cpu_map.
1da177e4 8883 */
abcd083a 8884 for_each_cpu(i, cpu_map) {
49a02c51
AH
8885 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8886 cpu_map);
9761eea8 8887
7f4588f3 8888 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8889 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8890 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8891 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8892 }
9c1cfda2 8893
abcd083a 8894 for_each_cpu(i, cpu_map) {
0e8e85c9 8895 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8896 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8897 }
9c1cfda2 8898
1da177e4 8899 /* Set up physical groups */
86548096
AH
8900 for (i = 0; i < nr_node_ids; i++)
8901 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8902
1da177e4
LT
8903#ifdef CONFIG_NUMA
8904 /* Set up node groups */
de616e36
AH
8905 if (d.sd_allnodes)
8906 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8907
0601a88d
AH
8908 for (i = 0; i < nr_node_ids; i++)
8909 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8910 goto error;
1da177e4
LT
8911#endif
8912
8913 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8914#ifdef CONFIG_SCHED_SMT
abcd083a 8915 for_each_cpu(i, cpu_map) {
294b0c96 8916 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8917 init_sched_groups_power(i, sd);
5c45bf27 8918 }
1da177e4 8919#endif
1e9f28fa 8920#ifdef CONFIG_SCHED_MC
abcd083a 8921 for_each_cpu(i, cpu_map) {
294b0c96 8922 sd = &per_cpu(core_domains, i).sd;
89c4710e 8923 init_sched_groups_power(i, sd);
5c45bf27
SS
8924 }
8925#endif
1e9f28fa 8926
abcd083a 8927 for_each_cpu(i, cpu_map) {
294b0c96 8928 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8929 init_sched_groups_power(i, sd);
1da177e4
LT
8930 }
8931
9c1cfda2 8932#ifdef CONFIG_NUMA
076ac2af 8933 for (i = 0; i < nr_node_ids; i++)
49a02c51 8934 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8935
49a02c51 8936 if (d.sd_allnodes) {
6711cab4 8937 struct sched_group *sg;
f712c0c7 8938
96f874e2 8939 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8940 d.tmpmask);
f712c0c7
SS
8941 init_numa_sched_groups_power(sg);
8942 }
9c1cfda2
JH
8943#endif
8944
1da177e4 8945 /* Attach the domains */
abcd083a 8946 for_each_cpu(i, cpu_map) {
1da177e4 8947#ifdef CONFIG_SCHED_SMT
6c99e9ad 8948 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8949#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8950 sd = &per_cpu(core_domains, i).sd;
1da177e4 8951#else
6c99e9ad 8952 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8953#endif
49a02c51 8954 cpu_attach_domain(sd, d.rd, i);
1da177e4 8955 }
51888ca2 8956
2109b99e
AH
8957 d.sched_group_nodes = NULL; /* don't free this we still need it */
8958 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8959 return 0;
51888ca2 8960
51888ca2 8961error:
2109b99e
AH
8962 __free_domain_allocs(&d, alloc_state, cpu_map);
8963 return -ENOMEM;
1da177e4 8964}
029190c5 8965
96f874e2 8966static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8967{
8968 return __build_sched_domains(cpu_map, NULL);
8969}
8970
acc3f5d7 8971static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8972static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8973static struct sched_domain_attr *dattr_cur;
8974 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8975
8976/*
8977 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8978 * cpumask) fails, then fallback to a single sched domain,
8979 * as determined by the single cpumask fallback_doms.
029190c5 8980 */
4212823f 8981static cpumask_var_t fallback_doms;
029190c5 8982
ee79d1bd
HC
8983/*
8984 * arch_update_cpu_topology lets virtualized architectures update the
8985 * cpu core maps. It is supposed to return 1 if the topology changed
8986 * or 0 if it stayed the same.
8987 */
8988int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8989{
ee79d1bd 8990 return 0;
22e52b07
HC
8991}
8992
acc3f5d7
RR
8993cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8994{
8995 int i;
8996 cpumask_var_t *doms;
8997
8998 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8999 if (!doms)
9000 return NULL;
9001 for (i = 0; i < ndoms; i++) {
9002 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9003 free_sched_domains(doms, i);
9004 return NULL;
9005 }
9006 }
9007 return doms;
9008}
9009
9010void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9011{
9012 unsigned int i;
9013 for (i = 0; i < ndoms; i++)
9014 free_cpumask_var(doms[i]);
9015 kfree(doms);
9016}
9017
1a20ff27 9018/*
41a2d6cf 9019 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9020 * For now this just excludes isolated cpus, but could be used to
9021 * exclude other special cases in the future.
1a20ff27 9022 */
96f874e2 9023static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9024{
7378547f
MM
9025 int err;
9026
22e52b07 9027 arch_update_cpu_topology();
029190c5 9028 ndoms_cur = 1;
acc3f5d7 9029 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9030 if (!doms_cur)
acc3f5d7
RR
9031 doms_cur = &fallback_doms;
9032 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9033 dattr_cur = NULL;
acc3f5d7 9034 err = build_sched_domains(doms_cur[0]);
6382bc90 9035 register_sched_domain_sysctl();
7378547f
MM
9036
9037 return err;
1a20ff27
DG
9038}
9039
96f874e2
RR
9040static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9041 struct cpumask *tmpmask)
1da177e4 9042{
7c16ec58 9043 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9044}
1da177e4 9045
1a20ff27
DG
9046/*
9047 * Detach sched domains from a group of cpus specified in cpu_map
9048 * These cpus will now be attached to the NULL domain
9049 */
96f874e2 9050static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9051{
96f874e2
RR
9052 /* Save because hotplug lock held. */
9053 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9054 int i;
9055
abcd083a 9056 for_each_cpu(i, cpu_map)
57d885fe 9057 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9058 synchronize_sched();
96f874e2 9059 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9060}
9061
1d3504fc
HS
9062/* handle null as "default" */
9063static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9064 struct sched_domain_attr *new, int idx_new)
9065{
9066 struct sched_domain_attr tmp;
9067
9068 /* fast path */
9069 if (!new && !cur)
9070 return 1;
9071
9072 tmp = SD_ATTR_INIT;
9073 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9074 new ? (new + idx_new) : &tmp,
9075 sizeof(struct sched_domain_attr));
9076}
9077
029190c5
PJ
9078/*
9079 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9080 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9081 * doms_new[] to the current sched domain partitioning, doms_cur[].
9082 * It destroys each deleted domain and builds each new domain.
9083 *
acc3f5d7 9084 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9085 * The masks don't intersect (don't overlap.) We should setup one
9086 * sched domain for each mask. CPUs not in any of the cpumasks will
9087 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9088 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9089 * it as it is.
9090 *
acc3f5d7
RR
9091 * The passed in 'doms_new' should be allocated using
9092 * alloc_sched_domains. This routine takes ownership of it and will
9093 * free_sched_domains it when done with it. If the caller failed the
9094 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9095 * and partition_sched_domains() will fallback to the single partition
9096 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9097 *
96f874e2 9098 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9099 * ndoms_new == 0 is a special case for destroying existing domains,
9100 * and it will not create the default domain.
dfb512ec 9101 *
029190c5
PJ
9102 * Call with hotplug lock held
9103 */
acc3f5d7 9104void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9105 struct sched_domain_attr *dattr_new)
029190c5 9106{
dfb512ec 9107 int i, j, n;
d65bd5ec 9108 int new_topology;
029190c5 9109
712555ee 9110 mutex_lock(&sched_domains_mutex);
a1835615 9111
7378547f
MM
9112 /* always unregister in case we don't destroy any domains */
9113 unregister_sched_domain_sysctl();
9114
d65bd5ec
HC
9115 /* Let architecture update cpu core mappings. */
9116 new_topology = arch_update_cpu_topology();
9117
dfb512ec 9118 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9119
9120 /* Destroy deleted domains */
9121 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9122 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9123 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9124 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9125 goto match1;
9126 }
9127 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9128 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9129match1:
9130 ;
9131 }
9132
e761b772
MK
9133 if (doms_new == NULL) {
9134 ndoms_cur = 0;
acc3f5d7 9135 doms_new = &fallback_doms;
6ad4c188 9136 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9137 WARN_ON_ONCE(dattr_new);
e761b772
MK
9138 }
9139
029190c5
PJ
9140 /* Build new domains */
9141 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9142 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9143 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9144 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9145 goto match2;
9146 }
9147 /* no match - add a new doms_new */
acc3f5d7 9148 __build_sched_domains(doms_new[i],
1d3504fc 9149 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9150match2:
9151 ;
9152 }
9153
9154 /* Remember the new sched domains */
acc3f5d7
RR
9155 if (doms_cur != &fallback_doms)
9156 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9157 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9158 doms_cur = doms_new;
1d3504fc 9159 dattr_cur = dattr_new;
029190c5 9160 ndoms_cur = ndoms_new;
7378547f
MM
9161
9162 register_sched_domain_sysctl();
a1835615 9163
712555ee 9164 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9165}
9166
5c45bf27 9167#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9168static void arch_reinit_sched_domains(void)
5c45bf27 9169{
95402b38 9170 get_online_cpus();
dfb512ec
MK
9171
9172 /* Destroy domains first to force the rebuild */
9173 partition_sched_domains(0, NULL, NULL);
9174
e761b772 9175 rebuild_sched_domains();
95402b38 9176 put_online_cpus();
5c45bf27
SS
9177}
9178
9179static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9180{
afb8a9b7 9181 unsigned int level = 0;
5c45bf27 9182
afb8a9b7
GS
9183 if (sscanf(buf, "%u", &level) != 1)
9184 return -EINVAL;
9185
9186 /*
9187 * level is always be positive so don't check for
9188 * level < POWERSAVINGS_BALANCE_NONE which is 0
9189 * What happens on 0 or 1 byte write,
9190 * need to check for count as well?
9191 */
9192
9193 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9194 return -EINVAL;
9195
9196 if (smt)
afb8a9b7 9197 sched_smt_power_savings = level;
5c45bf27 9198 else
afb8a9b7 9199 sched_mc_power_savings = level;
5c45bf27 9200
c70f22d2 9201 arch_reinit_sched_domains();
5c45bf27 9202
c70f22d2 9203 return count;
5c45bf27
SS
9204}
9205
5c45bf27 9206#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9207static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9208 char *page)
5c45bf27
SS
9209{
9210 return sprintf(page, "%u\n", sched_mc_power_savings);
9211}
f718cd4a 9212static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9213 const char *buf, size_t count)
5c45bf27
SS
9214{
9215 return sched_power_savings_store(buf, count, 0);
9216}
f718cd4a
AK
9217static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9218 sched_mc_power_savings_show,
9219 sched_mc_power_savings_store);
5c45bf27
SS
9220#endif
9221
9222#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9223static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9224 char *page)
5c45bf27
SS
9225{
9226 return sprintf(page, "%u\n", sched_smt_power_savings);
9227}
f718cd4a 9228static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9229 const char *buf, size_t count)
5c45bf27
SS
9230{
9231 return sched_power_savings_store(buf, count, 1);
9232}
f718cd4a
AK
9233static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9234 sched_smt_power_savings_show,
6707de00
AB
9235 sched_smt_power_savings_store);
9236#endif
9237
39aac648 9238int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9239{
9240 int err = 0;
9241
9242#ifdef CONFIG_SCHED_SMT
9243 if (smt_capable())
9244 err = sysfs_create_file(&cls->kset.kobj,
9245 &attr_sched_smt_power_savings.attr);
9246#endif
9247#ifdef CONFIG_SCHED_MC
9248 if (!err && mc_capable())
9249 err = sysfs_create_file(&cls->kset.kobj,
9250 &attr_sched_mc_power_savings.attr);
9251#endif
9252 return err;
9253}
6d6bc0ad 9254#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9255
e761b772 9256#ifndef CONFIG_CPUSETS
1da177e4 9257/*
e761b772
MK
9258 * Add online and remove offline CPUs from the scheduler domains.
9259 * When cpusets are enabled they take over this function.
1da177e4
LT
9260 */
9261static int update_sched_domains(struct notifier_block *nfb,
9262 unsigned long action, void *hcpu)
e761b772
MK
9263{
9264 switch (action) {
9265 case CPU_ONLINE:
9266 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9267 case CPU_DOWN_PREPARE:
9268 case CPU_DOWN_PREPARE_FROZEN:
9269 case CPU_DOWN_FAILED:
9270 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9271 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9272 return NOTIFY_OK;
9273
9274 default:
9275 return NOTIFY_DONE;
9276 }
9277}
9278#endif
9279
9280static int update_runtime(struct notifier_block *nfb,
9281 unsigned long action, void *hcpu)
1da177e4 9282{
7def2be1
PZ
9283 int cpu = (int)(long)hcpu;
9284
1da177e4 9285 switch (action) {
1da177e4 9286 case CPU_DOWN_PREPARE:
8bb78442 9287 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9288 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9289 return NOTIFY_OK;
9290
1da177e4 9291 case CPU_DOWN_FAILED:
8bb78442 9292 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9293 case CPU_ONLINE:
8bb78442 9294 case CPU_ONLINE_FROZEN:
7def2be1 9295 enable_runtime(cpu_rq(cpu));
e761b772
MK
9296 return NOTIFY_OK;
9297
1da177e4
LT
9298 default:
9299 return NOTIFY_DONE;
9300 }
1da177e4 9301}
1da177e4
LT
9302
9303void __init sched_init_smp(void)
9304{
dcc30a35
RR
9305 cpumask_var_t non_isolated_cpus;
9306
9307 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9308 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9309
434d53b0
MT
9310#if defined(CONFIG_NUMA)
9311 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9312 GFP_KERNEL);
9313 BUG_ON(sched_group_nodes_bycpu == NULL);
9314#endif
95402b38 9315 get_online_cpus();
712555ee 9316 mutex_lock(&sched_domains_mutex);
6ad4c188 9317 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9318 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9319 if (cpumask_empty(non_isolated_cpus))
9320 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9321 mutex_unlock(&sched_domains_mutex);
95402b38 9322 put_online_cpus();
e761b772
MK
9323
9324#ifndef CONFIG_CPUSETS
1da177e4
LT
9325 /* XXX: Theoretical race here - CPU may be hotplugged now */
9326 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9327#endif
9328
9329 /* RT runtime code needs to handle some hotplug events */
9330 hotcpu_notifier(update_runtime, 0);
9331
b328ca18 9332 init_hrtick();
5c1e1767
NP
9333
9334 /* Move init over to a non-isolated CPU */
dcc30a35 9335 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9336 BUG();
19978ca6 9337 sched_init_granularity();
dcc30a35 9338 free_cpumask_var(non_isolated_cpus);
4212823f 9339
0e3900e6 9340 init_sched_rt_class();
1da177e4
LT
9341}
9342#else
9343void __init sched_init_smp(void)
9344{
19978ca6 9345 sched_init_granularity();
1da177e4
LT
9346}
9347#endif /* CONFIG_SMP */
9348
cd1bb94b
AB
9349const_debug unsigned int sysctl_timer_migration = 1;
9350
1da177e4
LT
9351int in_sched_functions(unsigned long addr)
9352{
1da177e4
LT
9353 return in_lock_functions(addr) ||
9354 (addr >= (unsigned long)__sched_text_start
9355 && addr < (unsigned long)__sched_text_end);
9356}
9357
a9957449 9358static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9359{
9360 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9361 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9362#ifdef CONFIG_FAIR_GROUP_SCHED
9363 cfs_rq->rq = rq;
9364#endif
67e9fb2a 9365 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9366}
9367
fa85ae24
PZ
9368static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9369{
9370 struct rt_prio_array *array;
9371 int i;
9372
9373 array = &rt_rq->active;
9374 for (i = 0; i < MAX_RT_PRIO; i++) {
9375 INIT_LIST_HEAD(array->queue + i);
9376 __clear_bit(i, array->bitmap);
9377 }
9378 /* delimiter for bitsearch: */
9379 __set_bit(MAX_RT_PRIO, array->bitmap);
9380
052f1dc7 9381#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9382 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9383#ifdef CONFIG_SMP
e864c499 9384 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9385#endif
48d5e258 9386#endif
fa85ae24
PZ
9387#ifdef CONFIG_SMP
9388 rt_rq->rt_nr_migratory = 0;
fa85ae24 9389 rt_rq->overloaded = 0;
05fa785c 9390 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9391#endif
9392
9393 rt_rq->rt_time = 0;
9394 rt_rq->rt_throttled = 0;
ac086bc2 9395 rt_rq->rt_runtime = 0;
0986b11b 9396 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9397
052f1dc7 9398#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9399 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9400 rt_rq->rq = rq;
9401#endif
fa85ae24
PZ
9402}
9403
6f505b16 9404#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9405static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9406 struct sched_entity *se, int cpu, int add,
9407 struct sched_entity *parent)
6f505b16 9408{
ec7dc8ac 9409 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9410 tg->cfs_rq[cpu] = cfs_rq;
9411 init_cfs_rq(cfs_rq, rq);
9412 cfs_rq->tg = tg;
9413 if (add)
9414 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9415
9416 tg->se[cpu] = se;
354d60c2
DG
9417 /* se could be NULL for init_task_group */
9418 if (!se)
9419 return;
9420
ec7dc8ac
DG
9421 if (!parent)
9422 se->cfs_rq = &rq->cfs;
9423 else
9424 se->cfs_rq = parent->my_q;
9425
6f505b16
PZ
9426 se->my_q = cfs_rq;
9427 se->load.weight = tg->shares;
e05510d0 9428 se->load.inv_weight = 0;
ec7dc8ac 9429 se->parent = parent;
6f505b16 9430}
052f1dc7 9431#endif
6f505b16 9432
052f1dc7 9433#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9434static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9435 struct sched_rt_entity *rt_se, int cpu, int add,
9436 struct sched_rt_entity *parent)
6f505b16 9437{
ec7dc8ac
DG
9438 struct rq *rq = cpu_rq(cpu);
9439
6f505b16
PZ
9440 tg->rt_rq[cpu] = rt_rq;
9441 init_rt_rq(rt_rq, rq);
9442 rt_rq->tg = tg;
9443 rt_rq->rt_se = rt_se;
ac086bc2 9444 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9445 if (add)
9446 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9447
9448 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9449 if (!rt_se)
9450 return;
9451
ec7dc8ac
DG
9452 if (!parent)
9453 rt_se->rt_rq = &rq->rt;
9454 else
9455 rt_se->rt_rq = parent->my_q;
9456
6f505b16 9457 rt_se->my_q = rt_rq;
ec7dc8ac 9458 rt_se->parent = parent;
6f505b16
PZ
9459 INIT_LIST_HEAD(&rt_se->run_list);
9460}
9461#endif
9462
1da177e4
LT
9463void __init sched_init(void)
9464{
dd41f596 9465 int i, j;
434d53b0
MT
9466 unsigned long alloc_size = 0, ptr;
9467
9468#ifdef CONFIG_FAIR_GROUP_SCHED
9469 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9470#endif
9471#ifdef CONFIG_RT_GROUP_SCHED
9472 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9473#endif
9474#ifdef CONFIG_USER_SCHED
9475 alloc_size *= 2;
df7c8e84
RR
9476#endif
9477#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9478 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9479#endif
434d53b0 9480 if (alloc_size) {
36b7b6d4 9481 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9482
9483#ifdef CONFIG_FAIR_GROUP_SCHED
9484 init_task_group.se = (struct sched_entity **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **);
9486
9487 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9488 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9489
9490#ifdef CONFIG_USER_SCHED
9491 root_task_group.se = (struct sched_entity **)ptr;
9492 ptr += nr_cpu_ids * sizeof(void **);
9493
9494 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9496#endif /* CONFIG_USER_SCHED */
9497#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9498#ifdef CONFIG_RT_GROUP_SCHED
9499 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
9501
9502 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9503 ptr += nr_cpu_ids * sizeof(void **);
9504
9505#ifdef CONFIG_USER_SCHED
9506 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9507 ptr += nr_cpu_ids * sizeof(void **);
9508
9509 root_task_group.rt_rq = (struct rt_rq **)ptr;
9510 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9511#endif /* CONFIG_USER_SCHED */
9512#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9513#ifdef CONFIG_CPUMASK_OFFSTACK
9514 for_each_possible_cpu(i) {
9515 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9516 ptr += cpumask_size();
9517 }
9518#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9519 }
dd41f596 9520
57d885fe
GH
9521#ifdef CONFIG_SMP
9522 init_defrootdomain();
9523#endif
9524
d0b27fa7
PZ
9525 init_rt_bandwidth(&def_rt_bandwidth,
9526 global_rt_period(), global_rt_runtime());
9527
9528#ifdef CONFIG_RT_GROUP_SCHED
9529 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9530 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9531#ifdef CONFIG_USER_SCHED
9532 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9533 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9534#endif /* CONFIG_USER_SCHED */
9535#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9536
052f1dc7 9537#ifdef CONFIG_GROUP_SCHED
6f505b16 9538 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9539 INIT_LIST_HEAD(&init_task_group.children);
9540
9541#ifdef CONFIG_USER_SCHED
9542 INIT_LIST_HEAD(&root_task_group.children);
9543 init_task_group.parent = &root_task_group;
9544 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9545#endif /* CONFIG_USER_SCHED */
9546#endif /* CONFIG_GROUP_SCHED */
6f505b16 9547
4a6cc4bd
JK
9548#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9549 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9550 __alignof__(unsigned long));
9551#endif
0a945022 9552 for_each_possible_cpu(i) {
70b97a7f 9553 struct rq *rq;
1da177e4
LT
9554
9555 rq = cpu_rq(i);
05fa785c 9556 raw_spin_lock_init(&rq->lock);
7897986b 9557 rq->nr_running = 0;
dce48a84
TG
9558 rq->calc_load_active = 0;
9559 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9560 init_cfs_rq(&rq->cfs, rq);
6f505b16 9561 init_rt_rq(&rq->rt, rq);
dd41f596 9562#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9563 init_task_group.shares = init_task_group_load;
6f505b16 9564 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9565#ifdef CONFIG_CGROUP_SCHED
9566 /*
9567 * How much cpu bandwidth does init_task_group get?
9568 *
9569 * In case of task-groups formed thr' the cgroup filesystem, it
9570 * gets 100% of the cpu resources in the system. This overall
9571 * system cpu resource is divided among the tasks of
9572 * init_task_group and its child task-groups in a fair manner,
9573 * based on each entity's (task or task-group's) weight
9574 * (se->load.weight).
9575 *
9576 * In other words, if init_task_group has 10 tasks of weight
9577 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9578 * then A0's share of the cpu resource is:
9579 *
0d905bca 9580 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9581 *
9582 * We achieve this by letting init_task_group's tasks sit
9583 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9584 */
ec7dc8ac 9585 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9586#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9587 root_task_group.shares = NICE_0_LOAD;
9588 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9589 /*
9590 * In case of task-groups formed thr' the user id of tasks,
9591 * init_task_group represents tasks belonging to root user.
9592 * Hence it forms a sibling of all subsequent groups formed.
9593 * In this case, init_task_group gets only a fraction of overall
9594 * system cpu resource, based on the weight assigned to root
9595 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9596 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9597 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9598 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9599 */
ec7dc8ac 9600 init_tg_cfs_entry(&init_task_group,
84e9dabf 9601 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9602 &per_cpu(init_sched_entity, i), i, 1,
9603 root_task_group.se[i]);
6f505b16 9604
052f1dc7 9605#endif
354d60c2
DG
9606#endif /* CONFIG_FAIR_GROUP_SCHED */
9607
9608 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9609#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9610 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9611#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9612 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9613#elif defined CONFIG_USER_SCHED
eff766a6 9614 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9615 init_tg_rt_entry(&init_task_group,
1871e52c 9616 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9617 &per_cpu(init_sched_rt_entity, i), i, 1,
9618 root_task_group.rt_se[i]);
354d60c2 9619#endif
dd41f596 9620#endif
1da177e4 9621
dd41f596
IM
9622 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9623 rq->cpu_load[j] = 0;
1da177e4 9624#ifdef CONFIG_SMP
41c7ce9a 9625 rq->sd = NULL;
57d885fe 9626 rq->rd = NULL;
3f029d3c 9627 rq->post_schedule = 0;
1da177e4 9628 rq->active_balance = 0;
dd41f596 9629 rq->next_balance = jiffies;
1da177e4 9630 rq->push_cpu = 0;
0a2966b4 9631 rq->cpu = i;
1f11eb6a 9632 rq->online = 0;
1da177e4 9633 rq->migration_thread = NULL;
eae0c9df
MG
9634 rq->idle_stamp = 0;
9635 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9636 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9637 rq_attach_root(rq, &def_root_domain);
1da177e4 9638#endif
8f4d37ec 9639 init_rq_hrtick(rq);
1da177e4 9640 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9641 }
9642
2dd73a4f 9643 set_load_weight(&init_task);
b50f60ce 9644
e107be36
AK
9645#ifdef CONFIG_PREEMPT_NOTIFIERS
9646 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9647#endif
9648
c9819f45 9649#ifdef CONFIG_SMP
962cf36c 9650 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9651#endif
9652
b50f60ce 9653#ifdef CONFIG_RT_MUTEXES
1d615482 9654 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9655#endif
9656
1da177e4
LT
9657 /*
9658 * The boot idle thread does lazy MMU switching as well:
9659 */
9660 atomic_inc(&init_mm.mm_count);
9661 enter_lazy_tlb(&init_mm, current);
9662
9663 /*
9664 * Make us the idle thread. Technically, schedule() should not be
9665 * called from this thread, however somewhere below it might be,
9666 * but because we are the idle thread, we just pick up running again
9667 * when this runqueue becomes "idle".
9668 */
9669 init_idle(current, smp_processor_id());
dce48a84
TG
9670
9671 calc_load_update = jiffies + LOAD_FREQ;
9672
dd41f596
IM
9673 /*
9674 * During early bootup we pretend to be a normal task:
9675 */
9676 current->sched_class = &fair_sched_class;
6892b75e 9677
6a7b3dc3 9678 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9679 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9680#ifdef CONFIG_SMP
7d1e6a9b 9681#ifdef CONFIG_NO_HZ
49557e62 9682 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9683 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9684#endif
bdddd296
RR
9685 /* May be allocated at isolcpus cmdline parse time */
9686 if (cpu_isolated_map == NULL)
9687 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9688#endif /* SMP */
6a7b3dc3 9689
cdd6c482 9690 perf_event_init();
0d905bca 9691
6892b75e 9692 scheduler_running = 1;
1da177e4
LT
9693}
9694
9695#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9696static inline int preempt_count_equals(int preempt_offset)
9697{
234da7bc 9698 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9699
9700 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9701}
9702
9703void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9704{
48f24c4d 9705#ifdef in_atomic
1da177e4
LT
9706 static unsigned long prev_jiffy; /* ratelimiting */
9707
e4aafea2
FW
9708 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9709 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9710 return;
9711 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9712 return;
9713 prev_jiffy = jiffies;
9714
9715 printk(KERN_ERR
9716 "BUG: sleeping function called from invalid context at %s:%d\n",
9717 file, line);
9718 printk(KERN_ERR
9719 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9720 in_atomic(), irqs_disabled(),
9721 current->pid, current->comm);
9722
9723 debug_show_held_locks(current);
9724 if (irqs_disabled())
9725 print_irqtrace_events(current);
9726 dump_stack();
1da177e4
LT
9727#endif
9728}
9729EXPORT_SYMBOL(__might_sleep);
9730#endif
9731
9732#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9733static void normalize_task(struct rq *rq, struct task_struct *p)
9734{
9735 int on_rq;
3e51f33f 9736
3a5e4dc1
AK
9737 update_rq_clock(rq);
9738 on_rq = p->se.on_rq;
9739 if (on_rq)
9740 deactivate_task(rq, p, 0);
9741 __setscheduler(rq, p, SCHED_NORMAL, 0);
9742 if (on_rq) {
9743 activate_task(rq, p, 0);
9744 resched_task(rq->curr);
9745 }
9746}
9747
1da177e4
LT
9748void normalize_rt_tasks(void)
9749{
a0f98a1c 9750 struct task_struct *g, *p;
1da177e4 9751 unsigned long flags;
70b97a7f 9752 struct rq *rq;
1da177e4 9753
4cf5d77a 9754 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9755 do_each_thread(g, p) {
178be793
IM
9756 /*
9757 * Only normalize user tasks:
9758 */
9759 if (!p->mm)
9760 continue;
9761
6cfb0d5d 9762 p->se.exec_start = 0;
6cfb0d5d 9763#ifdef CONFIG_SCHEDSTATS
dd41f596 9764 p->se.wait_start = 0;
dd41f596 9765 p->se.sleep_start = 0;
dd41f596 9766 p->se.block_start = 0;
6cfb0d5d 9767#endif
dd41f596
IM
9768
9769 if (!rt_task(p)) {
9770 /*
9771 * Renice negative nice level userspace
9772 * tasks back to 0:
9773 */
9774 if (TASK_NICE(p) < 0 && p->mm)
9775 set_user_nice(p, 0);
1da177e4 9776 continue;
dd41f596 9777 }
1da177e4 9778
1d615482 9779 raw_spin_lock(&p->pi_lock);
b29739f9 9780 rq = __task_rq_lock(p);
1da177e4 9781
178be793 9782 normalize_task(rq, p);
3a5e4dc1 9783
b29739f9 9784 __task_rq_unlock(rq);
1d615482 9785 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9786 } while_each_thread(g, p);
9787
4cf5d77a 9788 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9789}
9790
9791#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9792
9793#ifdef CONFIG_IA64
9794/*
9795 * These functions are only useful for the IA64 MCA handling.
9796 *
9797 * They can only be called when the whole system has been
9798 * stopped - every CPU needs to be quiescent, and no scheduling
9799 * activity can take place. Using them for anything else would
9800 * be a serious bug, and as a result, they aren't even visible
9801 * under any other configuration.
9802 */
9803
9804/**
9805 * curr_task - return the current task for a given cpu.
9806 * @cpu: the processor in question.
9807 *
9808 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9809 */
36c8b586 9810struct task_struct *curr_task(int cpu)
1df5c10a
LT
9811{
9812 return cpu_curr(cpu);
9813}
9814
9815/**
9816 * set_curr_task - set the current task for a given cpu.
9817 * @cpu: the processor in question.
9818 * @p: the task pointer to set.
9819 *
9820 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9821 * are serviced on a separate stack. It allows the architecture to switch the
9822 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9823 * must be called with all CPU's synchronized, and interrupts disabled, the
9824 * and caller must save the original value of the current task (see
9825 * curr_task() above) and restore that value before reenabling interrupts and
9826 * re-starting the system.
9827 *
9828 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9829 */
36c8b586 9830void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9831{
9832 cpu_curr(cpu) = p;
9833}
9834
9835#endif
29f59db3 9836
bccbe08a
PZ
9837#ifdef CONFIG_FAIR_GROUP_SCHED
9838static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9839{
9840 int i;
9841
9842 for_each_possible_cpu(i) {
9843 if (tg->cfs_rq)
9844 kfree(tg->cfs_rq[i]);
9845 if (tg->se)
9846 kfree(tg->se[i]);
6f505b16
PZ
9847 }
9848
9849 kfree(tg->cfs_rq);
9850 kfree(tg->se);
6f505b16
PZ
9851}
9852
ec7dc8ac
DG
9853static
9854int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9855{
29f59db3 9856 struct cfs_rq *cfs_rq;
eab17229 9857 struct sched_entity *se;
9b5b7751 9858 struct rq *rq;
29f59db3
SV
9859 int i;
9860
434d53b0 9861 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9862 if (!tg->cfs_rq)
9863 goto err;
434d53b0 9864 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9865 if (!tg->se)
9866 goto err;
052f1dc7
PZ
9867
9868 tg->shares = NICE_0_LOAD;
29f59db3
SV
9869
9870 for_each_possible_cpu(i) {
9b5b7751 9871 rq = cpu_rq(i);
29f59db3 9872
eab17229
LZ
9873 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9874 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9875 if (!cfs_rq)
9876 goto err;
9877
eab17229
LZ
9878 se = kzalloc_node(sizeof(struct sched_entity),
9879 GFP_KERNEL, cpu_to_node(i));
29f59db3 9880 if (!se)
dfc12eb2 9881 goto err_free_rq;
29f59db3 9882
eab17229 9883 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9884 }
9885
9886 return 1;
9887
dfc12eb2
PC
9888 err_free_rq:
9889 kfree(cfs_rq);
bccbe08a
PZ
9890 err:
9891 return 0;
9892}
9893
9894static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9895{
9896 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9897 &cpu_rq(cpu)->leaf_cfs_rq_list);
9898}
9899
9900static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9901{
9902 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9903}
6d6bc0ad 9904#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9905static inline void free_fair_sched_group(struct task_group *tg)
9906{
9907}
9908
ec7dc8ac
DG
9909static inline
9910int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9911{
9912 return 1;
9913}
9914
9915static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9916{
9917}
9918
9919static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9920{
9921}
6d6bc0ad 9922#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9923
9924#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9925static void free_rt_sched_group(struct task_group *tg)
9926{
9927 int i;
9928
d0b27fa7
PZ
9929 destroy_rt_bandwidth(&tg->rt_bandwidth);
9930
bccbe08a
PZ
9931 for_each_possible_cpu(i) {
9932 if (tg->rt_rq)
9933 kfree(tg->rt_rq[i]);
9934 if (tg->rt_se)
9935 kfree(tg->rt_se[i]);
9936 }
9937
9938 kfree(tg->rt_rq);
9939 kfree(tg->rt_se);
9940}
9941
ec7dc8ac
DG
9942static
9943int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9944{
9945 struct rt_rq *rt_rq;
eab17229 9946 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9947 struct rq *rq;
9948 int i;
9949
434d53b0 9950 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9951 if (!tg->rt_rq)
9952 goto err;
434d53b0 9953 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9954 if (!tg->rt_se)
9955 goto err;
9956
d0b27fa7
PZ
9957 init_rt_bandwidth(&tg->rt_bandwidth,
9958 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9959
9960 for_each_possible_cpu(i) {
9961 rq = cpu_rq(i);
9962
eab17229
LZ
9963 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9964 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9965 if (!rt_rq)
9966 goto err;
29f59db3 9967
eab17229
LZ
9968 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9969 GFP_KERNEL, cpu_to_node(i));
6f505b16 9970 if (!rt_se)
dfc12eb2 9971 goto err_free_rq;
29f59db3 9972
eab17229 9973 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9974 }
9975
bccbe08a
PZ
9976 return 1;
9977
dfc12eb2
PC
9978 err_free_rq:
9979 kfree(rt_rq);
bccbe08a
PZ
9980 err:
9981 return 0;
9982}
9983
9984static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9985{
9986 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9987 &cpu_rq(cpu)->leaf_rt_rq_list);
9988}
9989
9990static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9991{
9992 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9993}
6d6bc0ad 9994#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9995static inline void free_rt_sched_group(struct task_group *tg)
9996{
9997}
9998
ec7dc8ac
DG
9999static inline
10000int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10001{
10002 return 1;
10003}
10004
10005static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10006{
10007}
10008
10009static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10010{
10011}
6d6bc0ad 10012#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10013
d0b27fa7 10014#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10015static void free_sched_group(struct task_group *tg)
10016{
10017 free_fair_sched_group(tg);
10018 free_rt_sched_group(tg);
10019 kfree(tg);
10020}
10021
10022/* allocate runqueue etc for a new task group */
ec7dc8ac 10023struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10024{
10025 struct task_group *tg;
10026 unsigned long flags;
10027 int i;
10028
10029 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10030 if (!tg)
10031 return ERR_PTR(-ENOMEM);
10032
ec7dc8ac 10033 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10034 goto err;
10035
ec7dc8ac 10036 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10037 goto err;
10038
8ed36996 10039 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10040 for_each_possible_cpu(i) {
bccbe08a
PZ
10041 register_fair_sched_group(tg, i);
10042 register_rt_sched_group(tg, i);
9b5b7751 10043 }
6f505b16 10044 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10045
10046 WARN_ON(!parent); /* root should already exist */
10047
10048 tg->parent = parent;
f473aa5e 10049 INIT_LIST_HEAD(&tg->children);
09f2724a 10050 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10051 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10052
9b5b7751 10053 return tg;
29f59db3
SV
10054
10055err:
6f505b16 10056 free_sched_group(tg);
29f59db3
SV
10057 return ERR_PTR(-ENOMEM);
10058}
10059
9b5b7751 10060/* rcu callback to free various structures associated with a task group */
6f505b16 10061static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10062{
29f59db3 10063 /* now it should be safe to free those cfs_rqs */
6f505b16 10064 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10065}
10066
9b5b7751 10067/* Destroy runqueue etc associated with a task group */
4cf86d77 10068void sched_destroy_group(struct task_group *tg)
29f59db3 10069{
8ed36996 10070 unsigned long flags;
9b5b7751 10071 int i;
29f59db3 10072
8ed36996 10073 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10074 for_each_possible_cpu(i) {
bccbe08a
PZ
10075 unregister_fair_sched_group(tg, i);
10076 unregister_rt_sched_group(tg, i);
9b5b7751 10077 }
6f505b16 10078 list_del_rcu(&tg->list);
f473aa5e 10079 list_del_rcu(&tg->siblings);
8ed36996 10080 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10081
9b5b7751 10082 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10083 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10084}
10085
9b5b7751 10086/* change task's runqueue when it moves between groups.
3a252015
IM
10087 * The caller of this function should have put the task in its new group
10088 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10089 * reflect its new group.
9b5b7751
SV
10090 */
10091void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10092{
10093 int on_rq, running;
10094 unsigned long flags;
10095 struct rq *rq;
10096
10097 rq = task_rq_lock(tsk, &flags);
10098
29f59db3
SV
10099 update_rq_clock(rq);
10100
051a1d1a 10101 running = task_current(rq, tsk);
29f59db3
SV
10102 on_rq = tsk->se.on_rq;
10103
0e1f3483 10104 if (on_rq)
29f59db3 10105 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10106 if (unlikely(running))
10107 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10108
6f505b16 10109 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10110
810b3817
PZ
10111#ifdef CONFIG_FAIR_GROUP_SCHED
10112 if (tsk->sched_class->moved_group)
88ec22d3 10113 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10114#endif
10115
0e1f3483
HS
10116 if (unlikely(running))
10117 tsk->sched_class->set_curr_task(rq);
10118 if (on_rq)
7074badb 10119 enqueue_task(rq, tsk, 0);
29f59db3 10120
29f59db3
SV
10121 task_rq_unlock(rq, &flags);
10122}
6d6bc0ad 10123#endif /* CONFIG_GROUP_SCHED */
29f59db3 10124
052f1dc7 10125#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10126static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10127{
10128 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10129 int on_rq;
10130
29f59db3 10131 on_rq = se->on_rq;
62fb1851 10132 if (on_rq)
29f59db3
SV
10133 dequeue_entity(cfs_rq, se, 0);
10134
10135 se->load.weight = shares;
e05510d0 10136 se->load.inv_weight = 0;
29f59db3 10137
62fb1851 10138 if (on_rq)
29f59db3 10139 enqueue_entity(cfs_rq, se, 0);
c09595f6 10140}
62fb1851 10141
c09595f6
PZ
10142static void set_se_shares(struct sched_entity *se, unsigned long shares)
10143{
10144 struct cfs_rq *cfs_rq = se->cfs_rq;
10145 struct rq *rq = cfs_rq->rq;
10146 unsigned long flags;
10147
05fa785c 10148 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10149 __set_se_shares(se, shares);
05fa785c 10150 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10151}
10152
8ed36996
PZ
10153static DEFINE_MUTEX(shares_mutex);
10154
4cf86d77 10155int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10156{
10157 int i;
8ed36996 10158 unsigned long flags;
c61935fd 10159
ec7dc8ac
DG
10160 /*
10161 * We can't change the weight of the root cgroup.
10162 */
10163 if (!tg->se[0])
10164 return -EINVAL;
10165
18d95a28
PZ
10166 if (shares < MIN_SHARES)
10167 shares = MIN_SHARES;
cb4ad1ff
MX
10168 else if (shares > MAX_SHARES)
10169 shares = MAX_SHARES;
62fb1851 10170
8ed36996 10171 mutex_lock(&shares_mutex);
9b5b7751 10172 if (tg->shares == shares)
5cb350ba 10173 goto done;
29f59db3 10174
8ed36996 10175 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10176 for_each_possible_cpu(i)
10177 unregister_fair_sched_group(tg, i);
f473aa5e 10178 list_del_rcu(&tg->siblings);
8ed36996 10179 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10180
10181 /* wait for any ongoing reference to this group to finish */
10182 synchronize_sched();
10183
10184 /*
10185 * Now we are free to modify the group's share on each cpu
10186 * w/o tripping rebalance_share or load_balance_fair.
10187 */
9b5b7751 10188 tg->shares = shares;
c09595f6
PZ
10189 for_each_possible_cpu(i) {
10190 /*
10191 * force a rebalance
10192 */
10193 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10194 set_se_shares(tg->se[i], shares);
c09595f6 10195 }
29f59db3 10196
6b2d7700
SV
10197 /*
10198 * Enable load balance activity on this group, by inserting it back on
10199 * each cpu's rq->leaf_cfs_rq_list.
10200 */
8ed36996 10201 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10202 for_each_possible_cpu(i)
10203 register_fair_sched_group(tg, i);
f473aa5e 10204 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10205 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10206done:
8ed36996 10207 mutex_unlock(&shares_mutex);
9b5b7751 10208 return 0;
29f59db3
SV
10209}
10210
5cb350ba
DG
10211unsigned long sched_group_shares(struct task_group *tg)
10212{
10213 return tg->shares;
10214}
052f1dc7 10215#endif
5cb350ba 10216
052f1dc7 10217#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10218/*
9f0c1e56 10219 * Ensure that the real time constraints are schedulable.
6f505b16 10220 */
9f0c1e56
PZ
10221static DEFINE_MUTEX(rt_constraints_mutex);
10222
10223static unsigned long to_ratio(u64 period, u64 runtime)
10224{
10225 if (runtime == RUNTIME_INF)
9a7e0b18 10226 return 1ULL << 20;
9f0c1e56 10227
9a7e0b18 10228 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10229}
10230
9a7e0b18
PZ
10231/* Must be called with tasklist_lock held */
10232static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10233{
9a7e0b18 10234 struct task_struct *g, *p;
b40b2e8e 10235
9a7e0b18
PZ
10236 do_each_thread(g, p) {
10237 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10238 return 1;
10239 } while_each_thread(g, p);
b40b2e8e 10240
9a7e0b18
PZ
10241 return 0;
10242}
b40b2e8e 10243
9a7e0b18
PZ
10244struct rt_schedulable_data {
10245 struct task_group *tg;
10246 u64 rt_period;
10247 u64 rt_runtime;
10248};
b40b2e8e 10249
9a7e0b18
PZ
10250static int tg_schedulable(struct task_group *tg, void *data)
10251{
10252 struct rt_schedulable_data *d = data;
10253 struct task_group *child;
10254 unsigned long total, sum = 0;
10255 u64 period, runtime;
b40b2e8e 10256
9a7e0b18
PZ
10257 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10258 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10259
9a7e0b18
PZ
10260 if (tg == d->tg) {
10261 period = d->rt_period;
10262 runtime = d->rt_runtime;
b40b2e8e 10263 }
b40b2e8e 10264
98a4826b
PZ
10265#ifdef CONFIG_USER_SCHED
10266 if (tg == &root_task_group) {
10267 period = global_rt_period();
10268 runtime = global_rt_runtime();
10269 }
10270#endif
10271
4653f803
PZ
10272 /*
10273 * Cannot have more runtime than the period.
10274 */
10275 if (runtime > period && runtime != RUNTIME_INF)
10276 return -EINVAL;
6f505b16 10277
4653f803
PZ
10278 /*
10279 * Ensure we don't starve existing RT tasks.
10280 */
9a7e0b18
PZ
10281 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10282 return -EBUSY;
6f505b16 10283
9a7e0b18 10284 total = to_ratio(period, runtime);
6f505b16 10285
4653f803
PZ
10286 /*
10287 * Nobody can have more than the global setting allows.
10288 */
10289 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10290 return -EINVAL;
6f505b16 10291
4653f803
PZ
10292 /*
10293 * The sum of our children's runtime should not exceed our own.
10294 */
9a7e0b18
PZ
10295 list_for_each_entry_rcu(child, &tg->children, siblings) {
10296 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10297 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10298
9a7e0b18
PZ
10299 if (child == d->tg) {
10300 period = d->rt_period;
10301 runtime = d->rt_runtime;
10302 }
6f505b16 10303
9a7e0b18 10304 sum += to_ratio(period, runtime);
9f0c1e56 10305 }
6f505b16 10306
9a7e0b18
PZ
10307 if (sum > total)
10308 return -EINVAL;
10309
10310 return 0;
6f505b16
PZ
10311}
10312
9a7e0b18 10313static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10314{
9a7e0b18
PZ
10315 struct rt_schedulable_data data = {
10316 .tg = tg,
10317 .rt_period = period,
10318 .rt_runtime = runtime,
10319 };
10320
10321 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10322}
10323
d0b27fa7
PZ
10324static int tg_set_bandwidth(struct task_group *tg,
10325 u64 rt_period, u64 rt_runtime)
6f505b16 10326{
ac086bc2 10327 int i, err = 0;
9f0c1e56 10328
9f0c1e56 10329 mutex_lock(&rt_constraints_mutex);
521f1a24 10330 read_lock(&tasklist_lock);
9a7e0b18
PZ
10331 err = __rt_schedulable(tg, rt_period, rt_runtime);
10332 if (err)
9f0c1e56 10333 goto unlock;
ac086bc2 10334
0986b11b 10335 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10336 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10337 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10338
10339 for_each_possible_cpu(i) {
10340 struct rt_rq *rt_rq = tg->rt_rq[i];
10341
0986b11b 10342 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10343 rt_rq->rt_runtime = rt_runtime;
0986b11b 10344 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10345 }
0986b11b 10346 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10347 unlock:
521f1a24 10348 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10349 mutex_unlock(&rt_constraints_mutex);
10350
10351 return err;
6f505b16
PZ
10352}
10353
d0b27fa7
PZ
10354int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10355{
10356 u64 rt_runtime, rt_period;
10357
10358 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10359 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10360 if (rt_runtime_us < 0)
10361 rt_runtime = RUNTIME_INF;
10362
10363 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10364}
10365
9f0c1e56
PZ
10366long sched_group_rt_runtime(struct task_group *tg)
10367{
10368 u64 rt_runtime_us;
10369
d0b27fa7 10370 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10371 return -1;
10372
d0b27fa7 10373 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10374 do_div(rt_runtime_us, NSEC_PER_USEC);
10375 return rt_runtime_us;
10376}
d0b27fa7
PZ
10377
10378int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10379{
10380 u64 rt_runtime, rt_period;
10381
10382 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10383 rt_runtime = tg->rt_bandwidth.rt_runtime;
10384
619b0488
R
10385 if (rt_period == 0)
10386 return -EINVAL;
10387
d0b27fa7
PZ
10388 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10389}
10390
10391long sched_group_rt_period(struct task_group *tg)
10392{
10393 u64 rt_period_us;
10394
10395 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10396 do_div(rt_period_us, NSEC_PER_USEC);
10397 return rt_period_us;
10398}
10399
10400static int sched_rt_global_constraints(void)
10401{
4653f803 10402 u64 runtime, period;
d0b27fa7
PZ
10403 int ret = 0;
10404
ec5d4989
HS
10405 if (sysctl_sched_rt_period <= 0)
10406 return -EINVAL;
10407
4653f803
PZ
10408 runtime = global_rt_runtime();
10409 period = global_rt_period();
10410
10411 /*
10412 * Sanity check on the sysctl variables.
10413 */
10414 if (runtime > period && runtime != RUNTIME_INF)
10415 return -EINVAL;
10b612f4 10416
d0b27fa7 10417 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10418 read_lock(&tasklist_lock);
4653f803 10419 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10420 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10421 mutex_unlock(&rt_constraints_mutex);
10422
10423 return ret;
10424}
54e99124
DG
10425
10426int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10427{
10428 /* Don't accept realtime tasks when there is no way for them to run */
10429 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10430 return 0;
10431
10432 return 1;
10433}
10434
6d6bc0ad 10435#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10436static int sched_rt_global_constraints(void)
10437{
ac086bc2
PZ
10438 unsigned long flags;
10439 int i;
10440
ec5d4989
HS
10441 if (sysctl_sched_rt_period <= 0)
10442 return -EINVAL;
10443
60aa605d
PZ
10444 /*
10445 * There's always some RT tasks in the root group
10446 * -- migration, kstopmachine etc..
10447 */
10448 if (sysctl_sched_rt_runtime == 0)
10449 return -EBUSY;
10450
0986b11b 10451 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10452 for_each_possible_cpu(i) {
10453 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10454
0986b11b 10455 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10456 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10457 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10458 }
0986b11b 10459 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10460
d0b27fa7
PZ
10461 return 0;
10462}
6d6bc0ad 10463#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10464
10465int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10466 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10467 loff_t *ppos)
10468{
10469 int ret;
10470 int old_period, old_runtime;
10471 static DEFINE_MUTEX(mutex);
10472
10473 mutex_lock(&mutex);
10474 old_period = sysctl_sched_rt_period;
10475 old_runtime = sysctl_sched_rt_runtime;
10476
8d65af78 10477 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10478
10479 if (!ret && write) {
10480 ret = sched_rt_global_constraints();
10481 if (ret) {
10482 sysctl_sched_rt_period = old_period;
10483 sysctl_sched_rt_runtime = old_runtime;
10484 } else {
10485 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10486 def_rt_bandwidth.rt_period =
10487 ns_to_ktime(global_rt_period());
10488 }
10489 }
10490 mutex_unlock(&mutex);
10491
10492 return ret;
10493}
68318b8e 10494
052f1dc7 10495#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10496
10497/* return corresponding task_group object of a cgroup */
2b01dfe3 10498static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10499{
2b01dfe3
PM
10500 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10501 struct task_group, css);
68318b8e
SV
10502}
10503
10504static struct cgroup_subsys_state *
2b01dfe3 10505cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10506{
ec7dc8ac 10507 struct task_group *tg, *parent;
68318b8e 10508
2b01dfe3 10509 if (!cgrp->parent) {
68318b8e 10510 /* This is early initialization for the top cgroup */
68318b8e
SV
10511 return &init_task_group.css;
10512 }
10513
ec7dc8ac
DG
10514 parent = cgroup_tg(cgrp->parent);
10515 tg = sched_create_group(parent);
68318b8e
SV
10516 if (IS_ERR(tg))
10517 return ERR_PTR(-ENOMEM);
10518
68318b8e
SV
10519 return &tg->css;
10520}
10521
41a2d6cf
IM
10522static void
10523cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10524{
2b01dfe3 10525 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10526
10527 sched_destroy_group(tg);
10528}
10529
41a2d6cf 10530static int
be367d09 10531cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10532{
b68aa230 10533#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10534 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10535 return -EINVAL;
10536#else
68318b8e
SV
10537 /* We don't support RT-tasks being in separate groups */
10538 if (tsk->sched_class != &fair_sched_class)
10539 return -EINVAL;
b68aa230 10540#endif
be367d09
BB
10541 return 0;
10542}
68318b8e 10543
be367d09
BB
10544static int
10545cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10546 struct task_struct *tsk, bool threadgroup)
10547{
10548 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10549 if (retval)
10550 return retval;
10551 if (threadgroup) {
10552 struct task_struct *c;
10553 rcu_read_lock();
10554 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10555 retval = cpu_cgroup_can_attach_task(cgrp, c);
10556 if (retval) {
10557 rcu_read_unlock();
10558 return retval;
10559 }
10560 }
10561 rcu_read_unlock();
10562 }
68318b8e
SV
10563 return 0;
10564}
10565
10566static void
2b01dfe3 10567cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10568 struct cgroup *old_cont, struct task_struct *tsk,
10569 bool threadgroup)
68318b8e
SV
10570{
10571 sched_move_task(tsk);
be367d09
BB
10572 if (threadgroup) {
10573 struct task_struct *c;
10574 rcu_read_lock();
10575 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10576 sched_move_task(c);
10577 }
10578 rcu_read_unlock();
10579 }
68318b8e
SV
10580}
10581
052f1dc7 10582#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10583static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10584 u64 shareval)
68318b8e 10585{
2b01dfe3 10586 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10587}
10588
f4c753b7 10589static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10590{
2b01dfe3 10591 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10592
10593 return (u64) tg->shares;
10594}
6d6bc0ad 10595#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10596
052f1dc7 10597#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10598static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10599 s64 val)
6f505b16 10600{
06ecb27c 10601 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10602}
10603
06ecb27c 10604static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10605{
06ecb27c 10606 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10607}
d0b27fa7
PZ
10608
10609static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10610 u64 rt_period_us)
10611{
10612 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10613}
10614
10615static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10616{
10617 return sched_group_rt_period(cgroup_tg(cgrp));
10618}
6d6bc0ad 10619#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10620
fe5c7cc2 10621static struct cftype cpu_files[] = {
052f1dc7 10622#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10623 {
10624 .name = "shares",
f4c753b7
PM
10625 .read_u64 = cpu_shares_read_u64,
10626 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10627 },
052f1dc7
PZ
10628#endif
10629#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10630 {
9f0c1e56 10631 .name = "rt_runtime_us",
06ecb27c
PM
10632 .read_s64 = cpu_rt_runtime_read,
10633 .write_s64 = cpu_rt_runtime_write,
6f505b16 10634 },
d0b27fa7
PZ
10635 {
10636 .name = "rt_period_us",
f4c753b7
PM
10637 .read_u64 = cpu_rt_period_read_uint,
10638 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10639 },
052f1dc7 10640#endif
68318b8e
SV
10641};
10642
10643static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10644{
fe5c7cc2 10645 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10646}
10647
10648struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10649 .name = "cpu",
10650 .create = cpu_cgroup_create,
10651 .destroy = cpu_cgroup_destroy,
10652 .can_attach = cpu_cgroup_can_attach,
10653 .attach = cpu_cgroup_attach,
10654 .populate = cpu_cgroup_populate,
10655 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10656 .early_init = 1,
10657};
10658
052f1dc7 10659#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10660
10661#ifdef CONFIG_CGROUP_CPUACCT
10662
10663/*
10664 * CPU accounting code for task groups.
10665 *
10666 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10667 * (balbir@in.ibm.com).
10668 */
10669
934352f2 10670/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10671struct cpuacct {
10672 struct cgroup_subsys_state css;
10673 /* cpuusage holds pointer to a u64-type object on every cpu */
10674 u64 *cpuusage;
ef12fefa 10675 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10676 struct cpuacct *parent;
d842de87
SV
10677};
10678
10679struct cgroup_subsys cpuacct_subsys;
10680
10681/* return cpu accounting group corresponding to this container */
32cd756a 10682static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10683{
32cd756a 10684 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10685 struct cpuacct, css);
10686}
10687
10688/* return cpu accounting group to which this task belongs */
10689static inline struct cpuacct *task_ca(struct task_struct *tsk)
10690{
10691 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10692 struct cpuacct, css);
10693}
10694
10695/* create a new cpu accounting group */
10696static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10697 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10698{
10699 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10700 int i;
d842de87
SV
10701
10702 if (!ca)
ef12fefa 10703 goto out;
d842de87
SV
10704
10705 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10706 if (!ca->cpuusage)
10707 goto out_free_ca;
10708
10709 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10710 if (percpu_counter_init(&ca->cpustat[i], 0))
10711 goto out_free_counters;
d842de87 10712
934352f2
BR
10713 if (cgrp->parent)
10714 ca->parent = cgroup_ca(cgrp->parent);
10715
d842de87 10716 return &ca->css;
ef12fefa
BR
10717
10718out_free_counters:
10719 while (--i >= 0)
10720 percpu_counter_destroy(&ca->cpustat[i]);
10721 free_percpu(ca->cpuusage);
10722out_free_ca:
10723 kfree(ca);
10724out:
10725 return ERR_PTR(-ENOMEM);
d842de87
SV
10726}
10727
10728/* destroy an existing cpu accounting group */
41a2d6cf 10729static void
32cd756a 10730cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10731{
32cd756a 10732 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10733 int i;
d842de87 10734
ef12fefa
BR
10735 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10736 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10737 free_percpu(ca->cpuusage);
10738 kfree(ca);
10739}
10740
720f5498
KC
10741static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10742{
b36128c8 10743 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10744 u64 data;
10745
10746#ifndef CONFIG_64BIT
10747 /*
10748 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10749 */
05fa785c 10750 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10751 data = *cpuusage;
05fa785c 10752 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10753#else
10754 data = *cpuusage;
10755#endif
10756
10757 return data;
10758}
10759
10760static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10761{
b36128c8 10762 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10763
10764#ifndef CONFIG_64BIT
10765 /*
10766 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10767 */
05fa785c 10768 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10769 *cpuusage = val;
05fa785c 10770 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10771#else
10772 *cpuusage = val;
10773#endif
10774}
10775
d842de87 10776/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10777static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10778{
32cd756a 10779 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10780 u64 totalcpuusage = 0;
10781 int i;
10782
720f5498
KC
10783 for_each_present_cpu(i)
10784 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10785
10786 return totalcpuusage;
10787}
10788
0297b803
DG
10789static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10790 u64 reset)
10791{
10792 struct cpuacct *ca = cgroup_ca(cgrp);
10793 int err = 0;
10794 int i;
10795
10796 if (reset) {
10797 err = -EINVAL;
10798 goto out;
10799 }
10800
720f5498
KC
10801 for_each_present_cpu(i)
10802 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10803
0297b803
DG
10804out:
10805 return err;
10806}
10807
e9515c3c
KC
10808static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10809 struct seq_file *m)
10810{
10811 struct cpuacct *ca = cgroup_ca(cgroup);
10812 u64 percpu;
10813 int i;
10814
10815 for_each_present_cpu(i) {
10816 percpu = cpuacct_cpuusage_read(ca, i);
10817 seq_printf(m, "%llu ", (unsigned long long) percpu);
10818 }
10819 seq_printf(m, "\n");
10820 return 0;
10821}
10822
ef12fefa
BR
10823static const char *cpuacct_stat_desc[] = {
10824 [CPUACCT_STAT_USER] = "user",
10825 [CPUACCT_STAT_SYSTEM] = "system",
10826};
10827
10828static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10829 struct cgroup_map_cb *cb)
10830{
10831 struct cpuacct *ca = cgroup_ca(cgrp);
10832 int i;
10833
10834 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10835 s64 val = percpu_counter_read(&ca->cpustat[i]);
10836 val = cputime64_to_clock_t(val);
10837 cb->fill(cb, cpuacct_stat_desc[i], val);
10838 }
10839 return 0;
10840}
10841
d842de87
SV
10842static struct cftype files[] = {
10843 {
10844 .name = "usage",
f4c753b7
PM
10845 .read_u64 = cpuusage_read,
10846 .write_u64 = cpuusage_write,
d842de87 10847 },
e9515c3c
KC
10848 {
10849 .name = "usage_percpu",
10850 .read_seq_string = cpuacct_percpu_seq_read,
10851 },
ef12fefa
BR
10852 {
10853 .name = "stat",
10854 .read_map = cpuacct_stats_show,
10855 },
d842de87
SV
10856};
10857
32cd756a 10858static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10859{
32cd756a 10860 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10861}
10862
10863/*
10864 * charge this task's execution time to its accounting group.
10865 *
10866 * called with rq->lock held.
10867 */
10868static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10869{
10870 struct cpuacct *ca;
934352f2 10871 int cpu;
d842de87 10872
c40c6f85 10873 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10874 return;
10875
934352f2 10876 cpu = task_cpu(tsk);
a18b83b7
BR
10877
10878 rcu_read_lock();
10879
d842de87 10880 ca = task_ca(tsk);
d842de87 10881
934352f2 10882 for (; ca; ca = ca->parent) {
b36128c8 10883 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10884 *cpuusage += cputime;
10885 }
a18b83b7
BR
10886
10887 rcu_read_unlock();
d842de87
SV
10888}
10889
ef12fefa
BR
10890/*
10891 * Charge the system/user time to the task's accounting group.
10892 */
10893static void cpuacct_update_stats(struct task_struct *tsk,
10894 enum cpuacct_stat_index idx, cputime_t val)
10895{
10896 struct cpuacct *ca;
10897
10898 if (unlikely(!cpuacct_subsys.active))
10899 return;
10900
10901 rcu_read_lock();
10902 ca = task_ca(tsk);
10903
10904 do {
10905 percpu_counter_add(&ca->cpustat[idx], val);
10906 ca = ca->parent;
10907 } while (ca);
10908 rcu_read_unlock();
10909}
10910
d842de87
SV
10911struct cgroup_subsys cpuacct_subsys = {
10912 .name = "cpuacct",
10913 .create = cpuacct_create,
10914 .destroy = cpuacct_destroy,
10915 .populate = cpuacct_populate,
10916 .subsys_id = cpuacct_subsys_id,
10917};
10918#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10919
10920#ifndef CONFIG_SMP
10921
10922int rcu_expedited_torture_stats(char *page)
10923{
10924 return 0;
10925}
10926EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10927
10928void synchronize_sched_expedited(void)
10929{
10930}
10931EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10932
10933#else /* #ifndef CONFIG_SMP */
10934
10935static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10936static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10937
10938#define RCU_EXPEDITED_STATE_POST -2
10939#define RCU_EXPEDITED_STATE_IDLE -1
10940
10941static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10942
10943int rcu_expedited_torture_stats(char *page)
10944{
10945 int cnt = 0;
10946 int cpu;
10947
10948 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10949 for_each_online_cpu(cpu) {
10950 cnt += sprintf(&page[cnt], " %d:%d",
10951 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10952 }
10953 cnt += sprintf(&page[cnt], "\n");
10954 return cnt;
10955}
10956EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10957
10958static long synchronize_sched_expedited_count;
10959
10960/*
10961 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10962 * approach to force grace period to end quickly. This consumes
10963 * significant time on all CPUs, and is thus not recommended for
10964 * any sort of common-case code.
10965 *
10966 * Note that it is illegal to call this function while holding any
10967 * lock that is acquired by a CPU-hotplug notifier. Failing to
10968 * observe this restriction will result in deadlock.
10969 */
10970void synchronize_sched_expedited(void)
10971{
10972 int cpu;
10973 unsigned long flags;
10974 bool need_full_sync = 0;
10975 struct rq *rq;
10976 struct migration_req *req;
10977 long snap;
10978 int trycount = 0;
10979
10980 smp_mb(); /* ensure prior mod happens before capturing snap. */
10981 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10982 get_online_cpus();
10983 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10984 put_online_cpus();
10985 if (trycount++ < 10)
10986 udelay(trycount * num_online_cpus());
10987 else {
10988 synchronize_sched();
10989 return;
10990 }
10991 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10992 smp_mb(); /* ensure test happens before caller kfree */
10993 return;
10994 }
10995 get_online_cpus();
10996 }
10997 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10998 for_each_online_cpu(cpu) {
10999 rq = cpu_rq(cpu);
11000 req = &per_cpu(rcu_migration_req, cpu);
11001 init_completion(&req->done);
11002 req->task = NULL;
11003 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11004 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11005 list_add(&req->list, &rq->migration_queue);
05fa785c 11006 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11007 wake_up_process(rq->migration_thread);
11008 }
11009 for_each_online_cpu(cpu) {
11010 rcu_expedited_state = cpu;
11011 req = &per_cpu(rcu_migration_req, cpu);
11012 rq = cpu_rq(cpu);
11013 wait_for_completion(&req->done);
05fa785c 11014 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11015 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11016 need_full_sync = 1;
11017 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11018 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11019 }
11020 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11021 synchronize_sched_expedited_count++;
03b042bf
PM
11022 mutex_unlock(&rcu_sched_expedited_mutex);
11023 put_online_cpus();
11024 if (need_full_sync)
11025 synchronize_sched();
11026}
11027EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11028
11029#endif /* #else #ifndef CONFIG_SMP */
This page took 2.026728 seconds and 5 git commands to generate.