sched: do not do cond_resched() when CONFIG_PREEMPT
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
1da177e4 68
5517d86b 69#include <asm/tlb.h>
838225b4 70#include <asm/irq_regs.h>
1da177e4 71
b035b6de
AD
72/*
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
76 */
77unsigned long long __attribute__((weak)) sched_clock(void)
78{
d6322faf 79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
80}
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
6b2d7700
SV
172
173 /*
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
177 *
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
182 *
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
03319ec8 185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
6b2d7700
SV
186 *
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 *
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 *
194 * Note: It's not necessary that each of a task's group schedulable
03319ec8
IM
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
6b2d7700
SV
198 *
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 *
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
205 *
206 */
29f59db3 207 unsigned long shares;
6b2d7700 208
ae8393e5 209 struct rcu_head rcu;
29f59db3
SV
210};
211
212/* Default task group's sched entity on each cpu */
213static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214/* Default task group's cfs_rq on each cpu */
215static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216
9b5b7751
SV
217static struct sched_entity *init_sched_entity_p[NR_CPUS];
218static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 219
ec2c507f
SV
220/* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
222 */
223static DEFINE_MUTEX(task_group_mutex);
224
a1835615
SV
225/* doms_cur_mutex serializes access to doms_cur[] array */
226static DEFINE_MUTEX(doms_cur_mutex);
227
6b2d7700
SV
228#ifdef CONFIG_SMP
229/* kernel thread that runs rebalance_shares() periodically */
230static struct task_struct *lb_monitor_task;
231static int load_balance_monitor(void *unused);
232#endif
233
234static void set_se_shares(struct sched_entity *se, unsigned long shares);
235
29f59db3 236/* Default task group.
3a252015 237 * Every task in system belong to this group at bootup.
29f59db3 238 */
4cf86d77 239struct task_group init_task_group = {
0eab9146 240 .se = init_sched_entity_p,
3a252015
IM
241 .cfs_rq = init_cfs_rq_p,
242};
9b5b7751 243
24e377a8 244#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 245# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 246#else
93f992cc 247# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
248#endif
249
0eab9146 250#define MIN_GROUP_SHARES 2
6b2d7700 251
93f992cc 252static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
253
254/* return group to which a task belongs */
4cf86d77 255static inline struct task_group *task_group(struct task_struct *p)
29f59db3 256{
4cf86d77 257 struct task_group *tg;
9b5b7751 258
24e377a8
SV
259#ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
68318b8e
SV
261#elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
24e377a8 264#else
41a2d6cf 265 tg = &init_task_group;
24e377a8 266#endif
9b5b7751 267 return tg;
29f59db3
SV
268}
269
270/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 271static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 272{
ce96b5ac
DA
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
275}
276
ec2c507f
SV
277static inline void lock_task_group_list(void)
278{
279 mutex_lock(&task_group_mutex);
280}
281
282static inline void unlock_task_group_list(void)
283{
284 mutex_unlock(&task_group_mutex);
285}
286
a1835615
SV
287static inline void lock_doms_cur(void)
288{
289 mutex_lock(&doms_cur_mutex);
290}
291
292static inline void unlock_doms_cur(void)
293{
294 mutex_unlock(&doms_cur_mutex);
295}
296
29f59db3
SV
297#else
298
ce96b5ac 299static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
300static inline void lock_task_group_list(void) { }
301static inline void unlock_task_group_list(void) { }
a1835615
SV
302static inline void lock_doms_cur(void) { }
303static inline void unlock_doms_cur(void) { }
29f59db3
SV
304
305#endif /* CONFIG_FAIR_GROUP_SCHED */
306
6aa645ea
IM
307/* CFS-related fields in a runqueue */
308struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
311
6aa645ea 312 u64 exec_clock;
e9acbff6 313 u64 min_vruntime;
6aa645ea
IM
314
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
320 */
321 struct sched_entity *curr;
ddc97297
PZ
322
323 unsigned long nr_spread_over;
324
62160e3f 325#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
327
41a2d6cf
IM
328 /*
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
332 *
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
335 */
41a2d6cf
IM
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
338#endif
339};
1da177e4 340
6aa645ea
IM
341/* Real-Time classes' related field in a runqueue: */
342struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 346 unsigned long rt_nr_running;
73fe6aae 347 unsigned long rt_nr_migratory;
764a9d6f
SR
348 /* highest queued rt task prio */
349 int highest_prio;
a22d7fc1 350 int overloaded;
6aa645ea
IM
351};
352
57d885fe
GH
353#ifdef CONFIG_SMP
354
355/*
356 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
361 *
57d885fe
GH
362 */
363struct root_domain {
364 atomic_t refcount;
365 cpumask_t span;
366 cpumask_t online;
637f5085 367
0eab9146 368 /*
637f5085
GH
369 * The "RT overload" flag: it gets set if a CPU has more than
370 * one runnable RT task.
371 */
372 cpumask_t rto_mask;
0eab9146 373 atomic_t rto_count;
57d885fe
GH
374};
375
dc938520
GH
376/*
377 * By default the system creates a single root-domain with all cpus as
378 * members (mimicking the global state we have today).
379 */
57d885fe
GH
380static struct root_domain def_root_domain;
381
382#endif
383
1da177e4
LT
384/*
385 * This is the main, per-CPU runqueue data structure.
386 *
387 * Locking rule: those places that want to lock multiple runqueues
388 * (such as the load balancing or the thread migration code), lock
389 * acquire operations must be ordered by ascending &runqueue.
390 */
70b97a7f 391struct rq {
d8016491
IM
392 /* runqueue lock: */
393 spinlock_t lock;
1da177e4
LT
394
395 /*
396 * nr_running and cpu_load should be in the same cacheline because
397 * remote CPUs use both these fields when doing load calculation.
398 */
399 unsigned long nr_running;
6aa645ea
IM
400 #define CPU_LOAD_IDX_MAX 5
401 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 402 unsigned char idle_at_tick;
46cb4b7c
SS
403#ifdef CONFIG_NO_HZ
404 unsigned char in_nohz_recently;
405#endif
d8016491
IM
406 /* capture load from *all* tasks on this cpu: */
407 struct load_weight load;
6aa645ea
IM
408 unsigned long nr_load_updates;
409 u64 nr_switches;
410
411 struct cfs_rq cfs;
412#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
413 /* list of leaf cfs_rq on this cpu: */
414 struct list_head leaf_cfs_rq_list;
1da177e4 415#endif
41a2d6cf 416 struct rt_rq rt;
1da177e4
LT
417
418 /*
419 * This is part of a global counter where only the total sum
420 * over all CPUs matters. A task can increase this counter on
421 * one CPU and if it got migrated afterwards it may decrease
422 * it on another CPU. Always updated under the runqueue lock:
423 */
424 unsigned long nr_uninterruptible;
425
36c8b586 426 struct task_struct *curr, *idle;
c9819f45 427 unsigned long next_balance;
1da177e4 428 struct mm_struct *prev_mm;
6aa645ea 429
6aa645ea
IM
430 u64 clock, prev_clock_raw;
431 s64 clock_max_delta;
432
433 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
434 u64 idle_clock;
435 unsigned int clock_deep_idle_events;
529c7726 436 u64 tick_timestamp;
6aa645ea 437
1da177e4
LT
438 atomic_t nr_iowait;
439
440#ifdef CONFIG_SMP
0eab9146 441 struct root_domain *rd;
1da177e4
LT
442 struct sched_domain *sd;
443
444 /* For active balancing */
445 int active_balance;
446 int push_cpu;
d8016491
IM
447 /* cpu of this runqueue: */
448 int cpu;
1da177e4 449
36c8b586 450 struct task_struct *migration_thread;
1da177e4
LT
451 struct list_head migration_queue;
452#endif
453
454#ifdef CONFIG_SCHEDSTATS
455 /* latency stats */
456 struct sched_info rq_sched_info;
457
458 /* sys_sched_yield() stats */
480b9434
KC
459 unsigned int yld_exp_empty;
460 unsigned int yld_act_empty;
461 unsigned int yld_both_empty;
462 unsigned int yld_count;
1da177e4
LT
463
464 /* schedule() stats */
480b9434
KC
465 unsigned int sched_switch;
466 unsigned int sched_count;
467 unsigned int sched_goidle;
1da177e4
LT
468
469 /* try_to_wake_up() stats */
480b9434
KC
470 unsigned int ttwu_count;
471 unsigned int ttwu_local;
b8efb561
IM
472
473 /* BKL stats */
480b9434 474 unsigned int bkl_count;
1da177e4 475#endif
fcb99371 476 struct lock_class_key rq_lock_key;
1da177e4
LT
477};
478
f34e3b61 479static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 480
dd41f596
IM
481static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
482{
483 rq->curr->sched_class->check_preempt_curr(rq, p);
484}
485
0a2966b4
CL
486static inline int cpu_of(struct rq *rq)
487{
488#ifdef CONFIG_SMP
489 return rq->cpu;
490#else
491 return 0;
492#endif
493}
494
20d315d4 495/*
b04a0f4c
IM
496 * Update the per-runqueue clock, as finegrained as the platform can give
497 * us, but without assuming monotonicity, etc.:
20d315d4 498 */
b04a0f4c 499static void __update_rq_clock(struct rq *rq)
20d315d4
IM
500{
501 u64 prev_raw = rq->prev_clock_raw;
502 u64 now = sched_clock();
503 s64 delta = now - prev_raw;
504 u64 clock = rq->clock;
505
b04a0f4c
IM
506#ifdef CONFIG_SCHED_DEBUG
507 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
508#endif
20d315d4
IM
509 /*
510 * Protect against sched_clock() occasionally going backwards:
511 */
512 if (unlikely(delta < 0)) {
513 clock++;
514 rq->clock_warps++;
515 } else {
516 /*
517 * Catch too large forward jumps too:
518 */
529c7726
IM
519 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
520 if (clock < rq->tick_timestamp + TICK_NSEC)
521 clock = rq->tick_timestamp + TICK_NSEC;
522 else
523 clock++;
20d315d4
IM
524 rq->clock_overflows++;
525 } else {
526 if (unlikely(delta > rq->clock_max_delta))
527 rq->clock_max_delta = delta;
528 clock += delta;
529 }
530 }
531
532 rq->prev_clock_raw = now;
533 rq->clock = clock;
b04a0f4c 534}
20d315d4 535
b04a0f4c
IM
536static void update_rq_clock(struct rq *rq)
537{
538 if (likely(smp_processor_id() == cpu_of(rq)))
539 __update_rq_clock(rq);
20d315d4
IM
540}
541
674311d5
NP
542/*
543 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 544 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
545 *
546 * The domain tree of any CPU may only be accessed from within
547 * preempt-disabled sections.
548 */
48f24c4d
IM
549#define for_each_domain(cpu, __sd) \
550 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
551
552#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
553#define this_rq() (&__get_cpu_var(runqueues))
554#define task_rq(p) cpu_rq(task_cpu(p))
555#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
556
bf5c91ba
IM
557/*
558 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
559 */
560#ifdef CONFIG_SCHED_DEBUG
561# define const_debug __read_mostly
562#else
563# define const_debug static const
564#endif
565
566/*
567 * Debugging: various feature bits
568 */
569enum {
bbdba7c0 570 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
571 SCHED_FEAT_WAKEUP_PREEMPT = 2,
572 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
573 SCHED_FEAT_TREE_AVG = 8,
574 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
575};
576
577const_debug unsigned int sysctl_sched_features =
8401f775 578 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 579 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
580 SCHED_FEAT_START_DEBIT * 1 |
581 SCHED_FEAT_TREE_AVG * 0 |
9612633a 582 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
583
584#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
585
b82d9fdd
PZ
586/*
587 * Number of tasks to iterate in a single balance run.
588 * Limited because this is done with IRQs disabled.
589 */
590const_debug unsigned int sysctl_sched_nr_migrate = 32;
591
e436d800
IM
592/*
593 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
594 * clock constructed from sched_clock():
595 */
596unsigned long long cpu_clock(int cpu)
597{
e436d800
IM
598 unsigned long long now;
599 unsigned long flags;
b04a0f4c 600 struct rq *rq;
e436d800 601
2cd4d0ea 602 local_irq_save(flags);
b04a0f4c 603 rq = cpu_rq(cpu);
8ced5f69
IM
604 /*
605 * Only call sched_clock() if the scheduler has already been
606 * initialized (some code might call cpu_clock() very early):
607 */
608 if (rq->idle)
609 update_rq_clock(rq);
b04a0f4c 610 now = rq->clock;
2cd4d0ea 611 local_irq_restore(flags);
e436d800
IM
612
613 return now;
614}
a58f6f25 615EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 616
1da177e4 617#ifndef prepare_arch_switch
4866cde0
NP
618# define prepare_arch_switch(next) do { } while (0)
619#endif
620#ifndef finish_arch_switch
621# define finish_arch_switch(prev) do { } while (0)
622#endif
623
051a1d1a
DA
624static inline int task_current(struct rq *rq, struct task_struct *p)
625{
626 return rq->curr == p;
627}
628
4866cde0 629#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 630static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 631{
051a1d1a 632 return task_current(rq, p);
4866cde0
NP
633}
634
70b97a7f 635static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
636{
637}
638
70b97a7f 639static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 640{
da04c035
IM
641#ifdef CONFIG_DEBUG_SPINLOCK
642 /* this is a valid case when another task releases the spinlock */
643 rq->lock.owner = current;
644#endif
8a25d5de
IM
645 /*
646 * If we are tracking spinlock dependencies then we have to
647 * fix up the runqueue lock - which gets 'carried over' from
648 * prev into current:
649 */
650 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
651
4866cde0
NP
652 spin_unlock_irq(&rq->lock);
653}
654
655#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 656static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
657{
658#ifdef CONFIG_SMP
659 return p->oncpu;
660#else
051a1d1a 661 return task_current(rq, p);
4866cde0
NP
662#endif
663}
664
70b97a7f 665static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
666{
667#ifdef CONFIG_SMP
668 /*
669 * We can optimise this out completely for !SMP, because the
670 * SMP rebalancing from interrupt is the only thing that cares
671 * here.
672 */
673 next->oncpu = 1;
674#endif
675#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
676 spin_unlock_irq(&rq->lock);
677#else
678 spin_unlock(&rq->lock);
679#endif
680}
681
70b97a7f 682static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
683{
684#ifdef CONFIG_SMP
685 /*
686 * After ->oncpu is cleared, the task can be moved to a different CPU.
687 * We must ensure this doesn't happen until the switch is completely
688 * finished.
689 */
690 smp_wmb();
691 prev->oncpu = 0;
692#endif
693#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
694 local_irq_enable();
1da177e4 695#endif
4866cde0
NP
696}
697#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 698
b29739f9
IM
699/*
700 * __task_rq_lock - lock the runqueue a given task resides on.
701 * Must be called interrupts disabled.
702 */
70b97a7f 703static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
704 __acquires(rq->lock)
705{
3a5c359a
AK
706 for (;;) {
707 struct rq *rq = task_rq(p);
708 spin_lock(&rq->lock);
709 if (likely(rq == task_rq(p)))
710 return rq;
b29739f9 711 spin_unlock(&rq->lock);
b29739f9 712 }
b29739f9
IM
713}
714
1da177e4
LT
715/*
716 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 717 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
718 * explicitly disabling preemption.
719 */
70b97a7f 720static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
721 __acquires(rq->lock)
722{
70b97a7f 723 struct rq *rq;
1da177e4 724
3a5c359a
AK
725 for (;;) {
726 local_irq_save(*flags);
727 rq = task_rq(p);
728 spin_lock(&rq->lock);
729 if (likely(rq == task_rq(p)))
730 return rq;
1da177e4 731 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 732 }
1da177e4
LT
733}
734
a9957449 735static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
736 __releases(rq->lock)
737{
738 spin_unlock(&rq->lock);
739}
740
70b97a7f 741static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
742 __releases(rq->lock)
743{
744 spin_unlock_irqrestore(&rq->lock, *flags);
745}
746
1da177e4 747/*
cc2a73b5 748 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 749 */
a9957449 750static struct rq *this_rq_lock(void)
1da177e4
LT
751 __acquires(rq->lock)
752{
70b97a7f 753 struct rq *rq;
1da177e4
LT
754
755 local_irq_disable();
756 rq = this_rq();
757 spin_lock(&rq->lock);
758
759 return rq;
760}
761
1b9f19c2 762/*
2aa44d05 763 * We are going deep-idle (irqs are disabled):
1b9f19c2 764 */
2aa44d05 765void sched_clock_idle_sleep_event(void)
1b9f19c2 766{
2aa44d05
IM
767 struct rq *rq = cpu_rq(smp_processor_id());
768
769 spin_lock(&rq->lock);
770 __update_rq_clock(rq);
771 spin_unlock(&rq->lock);
772 rq->clock_deep_idle_events++;
773}
774EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
775
776/*
777 * We just idled delta nanoseconds (called with irqs disabled):
778 */
779void sched_clock_idle_wakeup_event(u64 delta_ns)
780{
781 struct rq *rq = cpu_rq(smp_processor_id());
782 u64 now = sched_clock();
1b9f19c2 783
2bacec8c 784 touch_softlockup_watchdog();
2aa44d05
IM
785 rq->idle_clock += delta_ns;
786 /*
787 * Override the previous timestamp and ignore all
788 * sched_clock() deltas that occured while we idled,
789 * and use the PM-provided delta_ns to advance the
790 * rq clock:
791 */
792 spin_lock(&rq->lock);
793 rq->prev_clock_raw = now;
794 rq->clock += delta_ns;
795 spin_unlock(&rq->lock);
1b9f19c2 796}
2aa44d05 797EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 798
c24d20db
IM
799/*
800 * resched_task - mark a task 'to be rescheduled now'.
801 *
802 * On UP this means the setting of the need_resched flag, on SMP it
803 * might also involve a cross-CPU call to trigger the scheduler on
804 * the target CPU.
805 */
806#ifdef CONFIG_SMP
807
808#ifndef tsk_is_polling
809#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
810#endif
811
812static void resched_task(struct task_struct *p)
813{
814 int cpu;
815
816 assert_spin_locked(&task_rq(p)->lock);
817
818 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
819 return;
820
821 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
822
823 cpu = task_cpu(p);
824 if (cpu == smp_processor_id())
825 return;
826
827 /* NEED_RESCHED must be visible before we test polling */
828 smp_mb();
829 if (!tsk_is_polling(p))
830 smp_send_reschedule(cpu);
831}
832
833static void resched_cpu(int cpu)
834{
835 struct rq *rq = cpu_rq(cpu);
836 unsigned long flags;
837
838 if (!spin_trylock_irqsave(&rq->lock, flags))
839 return;
840 resched_task(cpu_curr(cpu));
841 spin_unlock_irqrestore(&rq->lock, flags);
842}
843#else
844static inline void resched_task(struct task_struct *p)
845{
846 assert_spin_locked(&task_rq(p)->lock);
847 set_tsk_need_resched(p);
848}
849#endif
850
45bf76df
IM
851#if BITS_PER_LONG == 32
852# define WMULT_CONST (~0UL)
853#else
854# define WMULT_CONST (1UL << 32)
855#endif
856
857#define WMULT_SHIFT 32
858
194081eb
IM
859/*
860 * Shift right and round:
861 */
cf2ab469 862#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 863
cb1c4fc9 864static unsigned long
45bf76df
IM
865calc_delta_mine(unsigned long delta_exec, unsigned long weight,
866 struct load_weight *lw)
867{
868 u64 tmp;
869
870 if (unlikely(!lw->inv_weight))
194081eb 871 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
872
873 tmp = (u64)delta_exec * weight;
874 /*
875 * Check whether we'd overflow the 64-bit multiplication:
876 */
194081eb 877 if (unlikely(tmp > WMULT_CONST))
cf2ab469 878 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
879 WMULT_SHIFT/2);
880 else
cf2ab469 881 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 882
ecf691da 883 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
884}
885
886static inline unsigned long
887calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
888{
889 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
890}
891
1091985b 892static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
893{
894 lw->weight += inc;
45bf76df
IM
895}
896
1091985b 897static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
898{
899 lw->weight -= dec;
45bf76df
IM
900}
901
2dd73a4f
PW
902/*
903 * To aid in avoiding the subversion of "niceness" due to uneven distribution
904 * of tasks with abnormal "nice" values across CPUs the contribution that
905 * each task makes to its run queue's load is weighted according to its
41a2d6cf 906 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
907 * scaled version of the new time slice allocation that they receive on time
908 * slice expiry etc.
909 */
910
dd41f596
IM
911#define WEIGHT_IDLEPRIO 2
912#define WMULT_IDLEPRIO (1 << 31)
913
914/*
915 * Nice levels are multiplicative, with a gentle 10% change for every
916 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
917 * nice 1, it will get ~10% less CPU time than another CPU-bound task
918 * that remained on nice 0.
919 *
920 * The "10% effect" is relative and cumulative: from _any_ nice level,
921 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
922 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
923 * If a task goes up by ~10% and another task goes down by ~10% then
924 * the relative distance between them is ~25%.)
dd41f596
IM
925 */
926static const int prio_to_weight[40] = {
254753dc
IM
927 /* -20 */ 88761, 71755, 56483, 46273, 36291,
928 /* -15 */ 29154, 23254, 18705, 14949, 11916,
929 /* -10 */ 9548, 7620, 6100, 4904, 3906,
930 /* -5 */ 3121, 2501, 1991, 1586, 1277,
931 /* 0 */ 1024, 820, 655, 526, 423,
932 /* 5 */ 335, 272, 215, 172, 137,
933 /* 10 */ 110, 87, 70, 56, 45,
934 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
935};
936
5714d2de
IM
937/*
938 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
939 *
940 * In cases where the weight does not change often, we can use the
941 * precalculated inverse to speed up arithmetics by turning divisions
942 * into multiplications:
943 */
dd41f596 944static const u32 prio_to_wmult[40] = {
254753dc
IM
945 /* -20 */ 48388, 59856, 76040, 92818, 118348,
946 /* -15 */ 147320, 184698, 229616, 287308, 360437,
947 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
948 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
949 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
950 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
951 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
952 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 953};
2dd73a4f 954
dd41f596
IM
955static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
956
957/*
958 * runqueue iterator, to support SMP load-balancing between different
959 * scheduling classes, without having to expose their internal data
960 * structures to the load-balancing proper:
961 */
962struct rq_iterator {
963 void *arg;
964 struct task_struct *(*start)(void *);
965 struct task_struct *(*next)(void *);
966};
967
e1d1484f
PW
968#ifdef CONFIG_SMP
969static unsigned long
970balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
971 unsigned long max_load_move, struct sched_domain *sd,
972 enum cpu_idle_type idle, int *all_pinned,
973 int *this_best_prio, struct rq_iterator *iterator);
974
975static int
976iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
977 struct sched_domain *sd, enum cpu_idle_type idle,
978 struct rq_iterator *iterator);
e1d1484f 979#endif
dd41f596 980
d842de87
SV
981#ifdef CONFIG_CGROUP_CPUACCT
982static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
983#else
984static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
985#endif
986
58e2d4ca
SV
987static inline void inc_cpu_load(struct rq *rq, unsigned long load)
988{
989 update_load_add(&rq->load, load);
990}
991
992static inline void dec_cpu_load(struct rq *rq, unsigned long load)
993{
994 update_load_sub(&rq->load, load);
995}
996
e7693a36
GH
997#ifdef CONFIG_SMP
998static unsigned long source_load(int cpu, int type);
999static unsigned long target_load(int cpu, int type);
1000static unsigned long cpu_avg_load_per_task(int cpu);
1001static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1002#endif /* CONFIG_SMP */
1003
dd41f596 1004#include "sched_stats.h"
dd41f596 1005#include "sched_idletask.c"
5522d5d5
IM
1006#include "sched_fair.c"
1007#include "sched_rt.c"
dd41f596
IM
1008#ifdef CONFIG_SCHED_DEBUG
1009# include "sched_debug.c"
1010#endif
1011
1012#define sched_class_highest (&rt_sched_class)
1013
e5fa2237 1014static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1015{
1016 rq->nr_running++;
9c217245
IM
1017}
1018
db53181e 1019static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1020{
1021 rq->nr_running--;
9c217245
IM
1022}
1023
45bf76df
IM
1024static void set_load_weight(struct task_struct *p)
1025{
1026 if (task_has_rt_policy(p)) {
dd41f596
IM
1027 p->se.load.weight = prio_to_weight[0] * 2;
1028 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1029 return;
1030 }
45bf76df 1031
dd41f596
IM
1032 /*
1033 * SCHED_IDLE tasks get minimal weight:
1034 */
1035 if (p->policy == SCHED_IDLE) {
1036 p->se.load.weight = WEIGHT_IDLEPRIO;
1037 p->se.load.inv_weight = WMULT_IDLEPRIO;
1038 return;
1039 }
71f8bd46 1040
dd41f596
IM
1041 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1042 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1043}
1044
8159f87e 1045static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1046{
dd41f596 1047 sched_info_queued(p);
fd390f6a 1048 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1049 p->se.on_rq = 1;
71f8bd46
IM
1050}
1051
69be72c1 1052static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1053{
f02231e5 1054 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1055 p->se.on_rq = 0;
71f8bd46
IM
1056}
1057
14531189 1058/*
dd41f596 1059 * __normal_prio - return the priority that is based on the static prio
14531189 1060 */
14531189
IM
1061static inline int __normal_prio(struct task_struct *p)
1062{
dd41f596 1063 return p->static_prio;
14531189
IM
1064}
1065
b29739f9
IM
1066/*
1067 * Calculate the expected normal priority: i.e. priority
1068 * without taking RT-inheritance into account. Might be
1069 * boosted by interactivity modifiers. Changes upon fork,
1070 * setprio syscalls, and whenever the interactivity
1071 * estimator recalculates.
1072 */
36c8b586 1073static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1074{
1075 int prio;
1076
e05606d3 1077 if (task_has_rt_policy(p))
b29739f9
IM
1078 prio = MAX_RT_PRIO-1 - p->rt_priority;
1079 else
1080 prio = __normal_prio(p);
1081 return prio;
1082}
1083
1084/*
1085 * Calculate the current priority, i.e. the priority
1086 * taken into account by the scheduler. This value might
1087 * be boosted by RT tasks, or might be boosted by
1088 * interactivity modifiers. Will be RT if the task got
1089 * RT-boosted. If not then it returns p->normal_prio.
1090 */
36c8b586 1091static int effective_prio(struct task_struct *p)
b29739f9
IM
1092{
1093 p->normal_prio = normal_prio(p);
1094 /*
1095 * If we are RT tasks or we were boosted to RT priority,
1096 * keep the priority unchanged. Otherwise, update priority
1097 * to the normal priority:
1098 */
1099 if (!rt_prio(p->prio))
1100 return p->normal_prio;
1101 return p->prio;
1102}
1103
1da177e4 1104/*
dd41f596 1105 * activate_task - move a task to the runqueue.
1da177e4 1106 */
dd41f596 1107static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1108{
dd41f596
IM
1109 if (p->state == TASK_UNINTERRUPTIBLE)
1110 rq->nr_uninterruptible--;
1da177e4 1111
8159f87e 1112 enqueue_task(rq, p, wakeup);
e5fa2237 1113 inc_nr_running(p, rq);
1da177e4
LT
1114}
1115
1da177e4
LT
1116/*
1117 * deactivate_task - remove a task from the runqueue.
1118 */
2e1cb74a 1119static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1120{
dd41f596
IM
1121 if (p->state == TASK_UNINTERRUPTIBLE)
1122 rq->nr_uninterruptible++;
1123
69be72c1 1124 dequeue_task(rq, p, sleep);
db53181e 1125 dec_nr_running(p, rq);
1da177e4
LT
1126}
1127
1da177e4
LT
1128/**
1129 * task_curr - is this task currently executing on a CPU?
1130 * @p: the task in question.
1131 */
36c8b586 1132inline int task_curr(const struct task_struct *p)
1da177e4
LT
1133{
1134 return cpu_curr(task_cpu(p)) == p;
1135}
1136
2dd73a4f
PW
1137/* Used instead of source_load when we know the type == 0 */
1138unsigned long weighted_cpuload(const int cpu)
1139{
495eca49 1140 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1141}
1142
1143static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1144{
ce96b5ac 1145 set_task_cfs_rq(p, cpu);
dd41f596 1146#ifdef CONFIG_SMP
ce96b5ac
DA
1147 /*
1148 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1149 * successfuly executed on another CPU. We must ensure that updates of
1150 * per-task data have been completed by this moment.
1151 */
1152 smp_wmb();
dd41f596 1153 task_thread_info(p)->cpu = cpu;
dd41f596 1154#endif
2dd73a4f
PW
1155}
1156
cb469845
SR
1157static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1158 const struct sched_class *prev_class,
1159 int oldprio, int running)
1160{
1161 if (prev_class != p->sched_class) {
1162 if (prev_class->switched_from)
1163 prev_class->switched_from(rq, p, running);
1164 p->sched_class->switched_to(rq, p, running);
1165 } else
1166 p->sched_class->prio_changed(rq, p, oldprio, running);
1167}
1168
1da177e4 1169#ifdef CONFIG_SMP
c65cc870 1170
cc367732
IM
1171/*
1172 * Is this task likely cache-hot:
1173 */
e7693a36 1174static int
cc367732
IM
1175task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1176{
1177 s64 delta;
1178
1179 if (p->sched_class != &fair_sched_class)
1180 return 0;
1181
6bc1665b
IM
1182 if (sysctl_sched_migration_cost == -1)
1183 return 1;
1184 if (sysctl_sched_migration_cost == 0)
1185 return 0;
1186
cc367732
IM
1187 delta = now - p->se.exec_start;
1188
1189 return delta < (s64)sysctl_sched_migration_cost;
1190}
1191
1192
dd41f596 1193void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1194{
dd41f596
IM
1195 int old_cpu = task_cpu(p);
1196 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1197 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1198 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1199 u64 clock_offset;
dd41f596
IM
1200
1201 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1202
1203#ifdef CONFIG_SCHEDSTATS
1204 if (p->se.wait_start)
1205 p->se.wait_start -= clock_offset;
dd41f596
IM
1206 if (p->se.sleep_start)
1207 p->se.sleep_start -= clock_offset;
1208 if (p->se.block_start)
1209 p->se.block_start -= clock_offset;
cc367732
IM
1210 if (old_cpu != new_cpu) {
1211 schedstat_inc(p, se.nr_migrations);
1212 if (task_hot(p, old_rq->clock, NULL))
1213 schedstat_inc(p, se.nr_forced2_migrations);
1214 }
6cfb0d5d 1215#endif
2830cf8c
SV
1216 p->se.vruntime -= old_cfsrq->min_vruntime -
1217 new_cfsrq->min_vruntime;
dd41f596
IM
1218
1219 __set_task_cpu(p, new_cpu);
c65cc870
IM
1220}
1221
70b97a7f 1222struct migration_req {
1da177e4 1223 struct list_head list;
1da177e4 1224
36c8b586 1225 struct task_struct *task;
1da177e4
LT
1226 int dest_cpu;
1227
1da177e4 1228 struct completion done;
70b97a7f 1229};
1da177e4
LT
1230
1231/*
1232 * The task's runqueue lock must be held.
1233 * Returns true if you have to wait for migration thread.
1234 */
36c8b586 1235static int
70b97a7f 1236migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1237{
70b97a7f 1238 struct rq *rq = task_rq(p);
1da177e4
LT
1239
1240 /*
1241 * If the task is not on a runqueue (and not running), then
1242 * it is sufficient to simply update the task's cpu field.
1243 */
dd41f596 1244 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1245 set_task_cpu(p, dest_cpu);
1246 return 0;
1247 }
1248
1249 init_completion(&req->done);
1da177e4
LT
1250 req->task = p;
1251 req->dest_cpu = dest_cpu;
1252 list_add(&req->list, &rq->migration_queue);
48f24c4d 1253
1da177e4
LT
1254 return 1;
1255}
1256
1257/*
1258 * wait_task_inactive - wait for a thread to unschedule.
1259 *
1260 * The caller must ensure that the task *will* unschedule sometime soon,
1261 * else this function might spin for a *long* time. This function can't
1262 * be called with interrupts off, or it may introduce deadlock with
1263 * smp_call_function() if an IPI is sent by the same process we are
1264 * waiting to become inactive.
1265 */
36c8b586 1266void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1267{
1268 unsigned long flags;
dd41f596 1269 int running, on_rq;
70b97a7f 1270 struct rq *rq;
1da177e4 1271
3a5c359a
AK
1272 for (;;) {
1273 /*
1274 * We do the initial early heuristics without holding
1275 * any task-queue locks at all. We'll only try to get
1276 * the runqueue lock when things look like they will
1277 * work out!
1278 */
1279 rq = task_rq(p);
fa490cfd 1280
3a5c359a
AK
1281 /*
1282 * If the task is actively running on another CPU
1283 * still, just relax and busy-wait without holding
1284 * any locks.
1285 *
1286 * NOTE! Since we don't hold any locks, it's not
1287 * even sure that "rq" stays as the right runqueue!
1288 * But we don't care, since "task_running()" will
1289 * return false if the runqueue has changed and p
1290 * is actually now running somewhere else!
1291 */
1292 while (task_running(rq, p))
1293 cpu_relax();
fa490cfd 1294
3a5c359a
AK
1295 /*
1296 * Ok, time to look more closely! We need the rq
1297 * lock now, to be *sure*. If we're wrong, we'll
1298 * just go back and repeat.
1299 */
1300 rq = task_rq_lock(p, &flags);
1301 running = task_running(rq, p);
1302 on_rq = p->se.on_rq;
1303 task_rq_unlock(rq, &flags);
fa490cfd 1304
3a5c359a
AK
1305 /*
1306 * Was it really running after all now that we
1307 * checked with the proper locks actually held?
1308 *
1309 * Oops. Go back and try again..
1310 */
1311 if (unlikely(running)) {
1312 cpu_relax();
1313 continue;
1314 }
fa490cfd 1315
3a5c359a
AK
1316 /*
1317 * It's not enough that it's not actively running,
1318 * it must be off the runqueue _entirely_, and not
1319 * preempted!
1320 *
1321 * So if it wa still runnable (but just not actively
1322 * running right now), it's preempted, and we should
1323 * yield - it could be a while.
1324 */
1325 if (unlikely(on_rq)) {
1326 schedule_timeout_uninterruptible(1);
1327 continue;
1328 }
fa490cfd 1329
3a5c359a
AK
1330 /*
1331 * Ahh, all good. It wasn't running, and it wasn't
1332 * runnable, which means that it will never become
1333 * running in the future either. We're all done!
1334 */
1335 break;
1336 }
1da177e4
LT
1337}
1338
1339/***
1340 * kick_process - kick a running thread to enter/exit the kernel
1341 * @p: the to-be-kicked thread
1342 *
1343 * Cause a process which is running on another CPU to enter
1344 * kernel-mode, without any delay. (to get signals handled.)
1345 *
1346 * NOTE: this function doesnt have to take the runqueue lock,
1347 * because all it wants to ensure is that the remote task enters
1348 * the kernel. If the IPI races and the task has been migrated
1349 * to another CPU then no harm is done and the purpose has been
1350 * achieved as well.
1351 */
36c8b586 1352void kick_process(struct task_struct *p)
1da177e4
LT
1353{
1354 int cpu;
1355
1356 preempt_disable();
1357 cpu = task_cpu(p);
1358 if ((cpu != smp_processor_id()) && task_curr(p))
1359 smp_send_reschedule(cpu);
1360 preempt_enable();
1361}
1362
1363/*
2dd73a4f
PW
1364 * Return a low guess at the load of a migration-source cpu weighted
1365 * according to the scheduling class and "nice" value.
1da177e4
LT
1366 *
1367 * We want to under-estimate the load of migration sources, to
1368 * balance conservatively.
1369 */
a9957449 1370static unsigned long source_load(int cpu, int type)
1da177e4 1371{
70b97a7f 1372 struct rq *rq = cpu_rq(cpu);
dd41f596 1373 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1374
3b0bd9bc 1375 if (type == 0)
dd41f596 1376 return total;
b910472d 1377
dd41f596 1378 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1379}
1380
1381/*
2dd73a4f
PW
1382 * Return a high guess at the load of a migration-target cpu weighted
1383 * according to the scheduling class and "nice" value.
1da177e4 1384 */
a9957449 1385static unsigned long target_load(int cpu, int type)
1da177e4 1386{
70b97a7f 1387 struct rq *rq = cpu_rq(cpu);
dd41f596 1388 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1389
7897986b 1390 if (type == 0)
dd41f596 1391 return total;
3b0bd9bc 1392
dd41f596 1393 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1394}
1395
1396/*
1397 * Return the average load per task on the cpu's run queue
1398 */
e7693a36 1399static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1400{
70b97a7f 1401 struct rq *rq = cpu_rq(cpu);
dd41f596 1402 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1403 unsigned long n = rq->nr_running;
1404
dd41f596 1405 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1406}
1407
147cbb4b
NP
1408/*
1409 * find_idlest_group finds and returns the least busy CPU group within the
1410 * domain.
1411 */
1412static struct sched_group *
1413find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1414{
1415 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1416 unsigned long min_load = ULONG_MAX, this_load = 0;
1417 int load_idx = sd->forkexec_idx;
1418 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1419
1420 do {
1421 unsigned long load, avg_load;
1422 int local_group;
1423 int i;
1424
da5a5522
BD
1425 /* Skip over this group if it has no CPUs allowed */
1426 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1427 continue;
da5a5522 1428
147cbb4b 1429 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1430
1431 /* Tally up the load of all CPUs in the group */
1432 avg_load = 0;
1433
1434 for_each_cpu_mask(i, group->cpumask) {
1435 /* Bias balancing toward cpus of our domain */
1436 if (local_group)
1437 load = source_load(i, load_idx);
1438 else
1439 load = target_load(i, load_idx);
1440
1441 avg_load += load;
1442 }
1443
1444 /* Adjust by relative CPU power of the group */
5517d86b
ED
1445 avg_load = sg_div_cpu_power(group,
1446 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1447
1448 if (local_group) {
1449 this_load = avg_load;
1450 this = group;
1451 } else if (avg_load < min_load) {
1452 min_load = avg_load;
1453 idlest = group;
1454 }
3a5c359a 1455 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1456
1457 if (!idlest || 100*this_load < imbalance*min_load)
1458 return NULL;
1459 return idlest;
1460}
1461
1462/*
0feaece9 1463 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1464 */
95cdf3b7
IM
1465static int
1466find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1467{
da5a5522 1468 cpumask_t tmp;
147cbb4b
NP
1469 unsigned long load, min_load = ULONG_MAX;
1470 int idlest = -1;
1471 int i;
1472
da5a5522
BD
1473 /* Traverse only the allowed CPUs */
1474 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1475
1476 for_each_cpu_mask(i, tmp) {
2dd73a4f 1477 load = weighted_cpuload(i);
147cbb4b
NP
1478
1479 if (load < min_load || (load == min_load && i == this_cpu)) {
1480 min_load = load;
1481 idlest = i;
1482 }
1483 }
1484
1485 return idlest;
1486}
1487
476d139c
NP
1488/*
1489 * sched_balance_self: balance the current task (running on cpu) in domains
1490 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1491 * SD_BALANCE_EXEC.
1492 *
1493 * Balance, ie. select the least loaded group.
1494 *
1495 * Returns the target CPU number, or the same CPU if no balancing is needed.
1496 *
1497 * preempt must be disabled.
1498 */
1499static int sched_balance_self(int cpu, int flag)
1500{
1501 struct task_struct *t = current;
1502 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1503
c96d145e 1504 for_each_domain(cpu, tmp) {
9761eea8
IM
1505 /*
1506 * If power savings logic is enabled for a domain, stop there.
1507 */
5c45bf27
SS
1508 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1509 break;
476d139c
NP
1510 if (tmp->flags & flag)
1511 sd = tmp;
c96d145e 1512 }
476d139c
NP
1513
1514 while (sd) {
1515 cpumask_t span;
1516 struct sched_group *group;
1a848870
SS
1517 int new_cpu, weight;
1518
1519 if (!(sd->flags & flag)) {
1520 sd = sd->child;
1521 continue;
1522 }
476d139c
NP
1523
1524 span = sd->span;
1525 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1526 if (!group) {
1527 sd = sd->child;
1528 continue;
1529 }
476d139c 1530
da5a5522 1531 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1532 if (new_cpu == -1 || new_cpu == cpu) {
1533 /* Now try balancing at a lower domain level of cpu */
1534 sd = sd->child;
1535 continue;
1536 }
476d139c 1537
1a848870 1538 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1539 cpu = new_cpu;
476d139c
NP
1540 sd = NULL;
1541 weight = cpus_weight(span);
1542 for_each_domain(cpu, tmp) {
1543 if (weight <= cpus_weight(tmp->span))
1544 break;
1545 if (tmp->flags & flag)
1546 sd = tmp;
1547 }
1548 /* while loop will break here if sd == NULL */
1549 }
1550
1551 return cpu;
1552}
1553
1554#endif /* CONFIG_SMP */
1da177e4 1555
1da177e4
LT
1556/***
1557 * try_to_wake_up - wake up a thread
1558 * @p: the to-be-woken-up thread
1559 * @state: the mask of task states that can be woken
1560 * @sync: do a synchronous wakeup?
1561 *
1562 * Put it on the run-queue if it's not already there. The "current"
1563 * thread is always on the run-queue (except when the actual
1564 * re-schedule is in progress), and as such you're allowed to do
1565 * the simpler "current->state = TASK_RUNNING" to mark yourself
1566 * runnable without the overhead of this.
1567 *
1568 * returns failure only if the task is already active.
1569 */
36c8b586 1570static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1571{
cc367732 1572 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1573 unsigned long flags;
1574 long old_state;
70b97a7f 1575 struct rq *rq;
1da177e4
LT
1576
1577 rq = task_rq_lock(p, &flags);
1578 old_state = p->state;
1579 if (!(old_state & state))
1580 goto out;
1581
dd41f596 1582 if (p->se.on_rq)
1da177e4
LT
1583 goto out_running;
1584
1585 cpu = task_cpu(p);
cc367732 1586 orig_cpu = cpu;
1da177e4
LT
1587 this_cpu = smp_processor_id();
1588
1589#ifdef CONFIG_SMP
1590 if (unlikely(task_running(rq, p)))
1591 goto out_activate;
1592
5d2f5a61
DA
1593 cpu = p->sched_class->select_task_rq(p, sync);
1594 if (cpu != orig_cpu) {
1595 set_task_cpu(p, cpu);
1da177e4
LT
1596 task_rq_unlock(rq, &flags);
1597 /* might preempt at this point */
1598 rq = task_rq_lock(p, &flags);
1599 old_state = p->state;
1600 if (!(old_state & state))
1601 goto out;
dd41f596 1602 if (p->se.on_rq)
1da177e4
LT
1603 goto out_running;
1604
1605 this_cpu = smp_processor_id();
1606 cpu = task_cpu(p);
1607 }
1608
e7693a36
GH
1609#ifdef CONFIG_SCHEDSTATS
1610 schedstat_inc(rq, ttwu_count);
1611 if (cpu == this_cpu)
1612 schedstat_inc(rq, ttwu_local);
1613 else {
1614 struct sched_domain *sd;
1615 for_each_domain(this_cpu, sd) {
1616 if (cpu_isset(cpu, sd->span)) {
1617 schedstat_inc(sd, ttwu_wake_remote);
1618 break;
1619 }
1620 }
1621 }
e7693a36
GH
1622#endif
1623
1da177e4
LT
1624out_activate:
1625#endif /* CONFIG_SMP */
cc367732
IM
1626 schedstat_inc(p, se.nr_wakeups);
1627 if (sync)
1628 schedstat_inc(p, se.nr_wakeups_sync);
1629 if (orig_cpu != cpu)
1630 schedstat_inc(p, se.nr_wakeups_migrate);
1631 if (cpu == this_cpu)
1632 schedstat_inc(p, se.nr_wakeups_local);
1633 else
1634 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1635 update_rq_clock(rq);
dd41f596 1636 activate_task(rq, p, 1);
9c63d9c0 1637 check_preempt_curr(rq, p);
1da177e4
LT
1638 success = 1;
1639
1640out_running:
1641 p->state = TASK_RUNNING;
9a897c5a
SR
1642#ifdef CONFIG_SMP
1643 if (p->sched_class->task_wake_up)
1644 p->sched_class->task_wake_up(rq, p);
1645#endif
1da177e4
LT
1646out:
1647 task_rq_unlock(rq, &flags);
1648
1649 return success;
1650}
1651
36c8b586 1652int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1653{
1654 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1655 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1656}
1da177e4
LT
1657EXPORT_SYMBOL(wake_up_process);
1658
36c8b586 1659int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1660{
1661 return try_to_wake_up(p, state, 0);
1662}
1663
1da177e4
LT
1664/*
1665 * Perform scheduler related setup for a newly forked process p.
1666 * p is forked by current.
dd41f596
IM
1667 *
1668 * __sched_fork() is basic setup used by init_idle() too:
1669 */
1670static void __sched_fork(struct task_struct *p)
1671{
dd41f596
IM
1672 p->se.exec_start = 0;
1673 p->se.sum_exec_runtime = 0;
f6cf891c 1674 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1675
1676#ifdef CONFIG_SCHEDSTATS
1677 p->se.wait_start = 0;
dd41f596
IM
1678 p->se.sum_sleep_runtime = 0;
1679 p->se.sleep_start = 0;
dd41f596
IM
1680 p->se.block_start = 0;
1681 p->se.sleep_max = 0;
1682 p->se.block_max = 0;
1683 p->se.exec_max = 0;
eba1ed4b 1684 p->se.slice_max = 0;
dd41f596 1685 p->se.wait_max = 0;
6cfb0d5d 1686#endif
476d139c 1687
fa717060 1688 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 1689 p->se.on_rq = 0;
476d139c 1690
e107be36
AK
1691#ifdef CONFIG_PREEMPT_NOTIFIERS
1692 INIT_HLIST_HEAD(&p->preempt_notifiers);
1693#endif
1694
1da177e4
LT
1695 /*
1696 * We mark the process as running here, but have not actually
1697 * inserted it onto the runqueue yet. This guarantees that
1698 * nobody will actually run it, and a signal or other external
1699 * event cannot wake it up and insert it on the runqueue either.
1700 */
1701 p->state = TASK_RUNNING;
dd41f596
IM
1702}
1703
1704/*
1705 * fork()/clone()-time setup:
1706 */
1707void sched_fork(struct task_struct *p, int clone_flags)
1708{
1709 int cpu = get_cpu();
1710
1711 __sched_fork(p);
1712
1713#ifdef CONFIG_SMP
1714 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1715#endif
02e4bac2 1716 set_task_cpu(p, cpu);
b29739f9
IM
1717
1718 /*
1719 * Make sure we do not leak PI boosting priority to the child:
1720 */
1721 p->prio = current->normal_prio;
2ddbf952
HS
1722 if (!rt_prio(p->prio))
1723 p->sched_class = &fair_sched_class;
b29739f9 1724
52f17b6c 1725#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1726 if (likely(sched_info_on()))
52f17b6c 1727 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1728#endif
d6077cb8 1729#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1730 p->oncpu = 0;
1731#endif
1da177e4 1732#ifdef CONFIG_PREEMPT
4866cde0 1733 /* Want to start with kernel preemption disabled. */
a1261f54 1734 task_thread_info(p)->preempt_count = 1;
1da177e4 1735#endif
476d139c 1736 put_cpu();
1da177e4
LT
1737}
1738
1739/*
1740 * wake_up_new_task - wake up a newly created task for the first time.
1741 *
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1745 */
36c8b586 1746void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1747{
1748 unsigned long flags;
dd41f596 1749 struct rq *rq;
1da177e4
LT
1750
1751 rq = task_rq_lock(p, &flags);
147cbb4b 1752 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1753 update_rq_clock(rq);
1da177e4
LT
1754
1755 p->prio = effective_prio(p);
1756
b9dca1e0 1757 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1758 activate_task(rq, p, 0);
1da177e4 1759 } else {
1da177e4 1760 /*
dd41f596
IM
1761 * Let the scheduling class do new task startup
1762 * management (if any):
1da177e4 1763 */
ee0827d8 1764 p->sched_class->task_new(rq, p);
e5fa2237 1765 inc_nr_running(p, rq);
1da177e4 1766 }
dd41f596 1767 check_preempt_curr(rq, p);
9a897c5a
SR
1768#ifdef CONFIG_SMP
1769 if (p->sched_class->task_wake_up)
1770 p->sched_class->task_wake_up(rq, p);
1771#endif
dd41f596 1772 task_rq_unlock(rq, &flags);
1da177e4
LT
1773}
1774
e107be36
AK
1775#ifdef CONFIG_PREEMPT_NOTIFIERS
1776
1777/**
421cee29
RD
1778 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1779 * @notifier: notifier struct to register
e107be36
AK
1780 */
1781void preempt_notifier_register(struct preempt_notifier *notifier)
1782{
1783 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_register);
1786
1787/**
1788 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1789 * @notifier: notifier struct to unregister
e107be36
AK
1790 *
1791 * This is safe to call from within a preemption notifier.
1792 */
1793void preempt_notifier_unregister(struct preempt_notifier *notifier)
1794{
1795 hlist_del(&notifier->link);
1796}
1797EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1798
1799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1800{
1801 struct preempt_notifier *notifier;
1802 struct hlist_node *node;
1803
1804 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1805 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806}
1807
1808static void
1809fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 struct task_struct *next)
1811{
1812 struct preempt_notifier *notifier;
1813 struct hlist_node *node;
1814
1815 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1816 notifier->ops->sched_out(notifier, next);
1817}
1818
1819#else
1820
1821static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1822{
1823}
1824
1825static void
1826fire_sched_out_preempt_notifiers(struct task_struct *curr,
1827 struct task_struct *next)
1828{
1829}
1830
1831#endif
1832
4866cde0
NP
1833/**
1834 * prepare_task_switch - prepare to switch tasks
1835 * @rq: the runqueue preparing to switch
421cee29 1836 * @prev: the current task that is being switched out
4866cde0
NP
1837 * @next: the task we are going to switch to.
1838 *
1839 * This is called with the rq lock held and interrupts off. It must
1840 * be paired with a subsequent finish_task_switch after the context
1841 * switch.
1842 *
1843 * prepare_task_switch sets up locking and calls architecture specific
1844 * hooks.
1845 */
e107be36
AK
1846static inline void
1847prepare_task_switch(struct rq *rq, struct task_struct *prev,
1848 struct task_struct *next)
4866cde0 1849{
e107be36 1850 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1851 prepare_lock_switch(rq, next);
1852 prepare_arch_switch(next);
1853}
1854
1da177e4
LT
1855/**
1856 * finish_task_switch - clean up after a task-switch
344babaa 1857 * @rq: runqueue associated with task-switch
1da177e4
LT
1858 * @prev: the thread we just switched away from.
1859 *
4866cde0
NP
1860 * finish_task_switch must be called after the context switch, paired
1861 * with a prepare_task_switch call before the context switch.
1862 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1863 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1864 *
1865 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1866 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1867 * with the lock held can cause deadlocks; see schedule() for
1868 * details.)
1869 */
a9957449 1870static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1871 __releases(rq->lock)
1872{
1da177e4 1873 struct mm_struct *mm = rq->prev_mm;
55a101f8 1874 long prev_state;
1da177e4
LT
1875
1876 rq->prev_mm = NULL;
1877
1878 /*
1879 * A task struct has one reference for the use as "current".
c394cc9f 1880 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1881 * schedule one last time. The schedule call will never return, and
1882 * the scheduled task must drop that reference.
c394cc9f 1883 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1884 * still held, otherwise prev could be scheduled on another cpu, die
1885 * there before we look at prev->state, and then the reference would
1886 * be dropped twice.
1887 * Manfred Spraul <manfred@colorfullife.com>
1888 */
55a101f8 1889 prev_state = prev->state;
4866cde0
NP
1890 finish_arch_switch(prev);
1891 finish_lock_switch(rq, prev);
9a897c5a
SR
1892#ifdef CONFIG_SMP
1893 if (current->sched_class->post_schedule)
1894 current->sched_class->post_schedule(rq);
1895#endif
e8fa1362 1896
e107be36 1897 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1898 if (mm)
1899 mmdrop(mm);
c394cc9f 1900 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1901 /*
1902 * Remove function-return probe instances associated with this
1903 * task and put them back on the free list.
9761eea8 1904 */
c6fd91f0 1905 kprobe_flush_task(prev);
1da177e4 1906 put_task_struct(prev);
c6fd91f0 1907 }
1da177e4
LT
1908}
1909
1910/**
1911 * schedule_tail - first thing a freshly forked thread must call.
1912 * @prev: the thread we just switched away from.
1913 */
36c8b586 1914asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1915 __releases(rq->lock)
1916{
70b97a7f
IM
1917 struct rq *rq = this_rq();
1918
4866cde0
NP
1919 finish_task_switch(rq, prev);
1920#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1921 /* In this case, finish_task_switch does not reenable preemption */
1922 preempt_enable();
1923#endif
1da177e4 1924 if (current->set_child_tid)
b488893a 1925 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1926}
1927
1928/*
1929 * context_switch - switch to the new MM and the new
1930 * thread's register state.
1931 */
dd41f596 1932static inline void
70b97a7f 1933context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1934 struct task_struct *next)
1da177e4 1935{
dd41f596 1936 struct mm_struct *mm, *oldmm;
1da177e4 1937
e107be36 1938 prepare_task_switch(rq, prev, next);
dd41f596
IM
1939 mm = next->mm;
1940 oldmm = prev->active_mm;
9226d125
ZA
1941 /*
1942 * For paravirt, this is coupled with an exit in switch_to to
1943 * combine the page table reload and the switch backend into
1944 * one hypercall.
1945 */
1946 arch_enter_lazy_cpu_mode();
1947
dd41f596 1948 if (unlikely(!mm)) {
1da177e4
LT
1949 next->active_mm = oldmm;
1950 atomic_inc(&oldmm->mm_count);
1951 enter_lazy_tlb(oldmm, next);
1952 } else
1953 switch_mm(oldmm, mm, next);
1954
dd41f596 1955 if (unlikely(!prev->mm)) {
1da177e4 1956 prev->active_mm = NULL;
1da177e4
LT
1957 rq->prev_mm = oldmm;
1958 }
3a5f5e48
IM
1959 /*
1960 * Since the runqueue lock will be released by the next
1961 * task (which is an invalid locking op but in the case
1962 * of the scheduler it's an obvious special-case), so we
1963 * do an early lockdep release here:
1964 */
1965#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1966 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1967#endif
1da177e4
LT
1968
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1971
dd41f596
IM
1972 barrier();
1973 /*
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1977 */
1978 finish_task_switch(this_rq(), prev);
1da177e4
LT
1979}
1980
1981/*
1982 * nr_running, nr_uninterruptible and nr_context_switches:
1983 *
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, current number of uninterruptible-sleeping threads, total
1986 * number of context switches performed since bootup.
1987 */
1988unsigned long nr_running(void)
1989{
1990 unsigned long i, sum = 0;
1991
1992 for_each_online_cpu(i)
1993 sum += cpu_rq(i)->nr_running;
1994
1995 return sum;
1996}
1997
1998unsigned long nr_uninterruptible(void)
1999{
2000 unsigned long i, sum = 0;
2001
0a945022 2002 for_each_possible_cpu(i)
1da177e4
LT
2003 sum += cpu_rq(i)->nr_uninterruptible;
2004
2005 /*
2006 * Since we read the counters lockless, it might be slightly
2007 * inaccurate. Do not allow it to go below zero though:
2008 */
2009 if (unlikely((long)sum < 0))
2010 sum = 0;
2011
2012 return sum;
2013}
2014
2015unsigned long long nr_context_switches(void)
2016{
cc94abfc
SR
2017 int i;
2018 unsigned long long sum = 0;
1da177e4 2019
0a945022 2020 for_each_possible_cpu(i)
1da177e4
LT
2021 sum += cpu_rq(i)->nr_switches;
2022
2023 return sum;
2024}
2025
2026unsigned long nr_iowait(void)
2027{
2028 unsigned long i, sum = 0;
2029
0a945022 2030 for_each_possible_cpu(i)
1da177e4
LT
2031 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2032
2033 return sum;
2034}
2035
db1b1fef
JS
2036unsigned long nr_active(void)
2037{
2038 unsigned long i, running = 0, uninterruptible = 0;
2039
2040 for_each_online_cpu(i) {
2041 running += cpu_rq(i)->nr_running;
2042 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2043 }
2044
2045 if (unlikely((long)uninterruptible < 0))
2046 uninterruptible = 0;
2047
2048 return running + uninterruptible;
2049}
2050
48f24c4d 2051/*
dd41f596
IM
2052 * Update rq->cpu_load[] statistics. This function is usually called every
2053 * scheduler tick (TICK_NSEC).
48f24c4d 2054 */
dd41f596 2055static void update_cpu_load(struct rq *this_rq)
48f24c4d 2056{
495eca49 2057 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2058 int i, scale;
2059
2060 this_rq->nr_load_updates++;
dd41f596
IM
2061
2062 /* Update our load: */
2063 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2064 unsigned long old_load, new_load;
2065
2066 /* scale is effectively 1 << i now, and >> i divides by scale */
2067
2068 old_load = this_rq->cpu_load[i];
2069 new_load = this_load;
a25707f3
IM
2070 /*
2071 * Round up the averaging division if load is increasing. This
2072 * prevents us from getting stuck on 9 if the load is 10, for
2073 * example.
2074 */
2075 if (new_load > old_load)
2076 new_load += scale-1;
dd41f596
IM
2077 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2078 }
48f24c4d
IM
2079}
2080
dd41f596
IM
2081#ifdef CONFIG_SMP
2082
1da177e4
LT
2083/*
2084 * double_rq_lock - safely lock two runqueues
2085 *
2086 * Note this does not disable interrupts like task_rq_lock,
2087 * you need to do so manually before calling.
2088 */
70b97a7f 2089static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2090 __acquires(rq1->lock)
2091 __acquires(rq2->lock)
2092{
054b9108 2093 BUG_ON(!irqs_disabled());
1da177e4
LT
2094 if (rq1 == rq2) {
2095 spin_lock(&rq1->lock);
2096 __acquire(rq2->lock); /* Fake it out ;) */
2097 } else {
c96d145e 2098 if (rq1 < rq2) {
1da177e4
LT
2099 spin_lock(&rq1->lock);
2100 spin_lock(&rq2->lock);
2101 } else {
2102 spin_lock(&rq2->lock);
2103 spin_lock(&rq1->lock);
2104 }
2105 }
6e82a3be
IM
2106 update_rq_clock(rq1);
2107 update_rq_clock(rq2);
1da177e4
LT
2108}
2109
2110/*
2111 * double_rq_unlock - safely unlock two runqueues
2112 *
2113 * Note this does not restore interrupts like task_rq_unlock,
2114 * you need to do so manually after calling.
2115 */
70b97a7f 2116static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2117 __releases(rq1->lock)
2118 __releases(rq2->lock)
2119{
2120 spin_unlock(&rq1->lock);
2121 if (rq1 != rq2)
2122 spin_unlock(&rq2->lock);
2123 else
2124 __release(rq2->lock);
2125}
2126
2127/*
2128 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2129 */
e8fa1362 2130static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2131 __releases(this_rq->lock)
2132 __acquires(busiest->lock)
2133 __acquires(this_rq->lock)
2134{
e8fa1362
SR
2135 int ret = 0;
2136
054b9108
KK
2137 if (unlikely(!irqs_disabled())) {
2138 /* printk() doesn't work good under rq->lock */
2139 spin_unlock(&this_rq->lock);
2140 BUG_ON(1);
2141 }
1da177e4 2142 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2143 if (busiest < this_rq) {
1da177e4
LT
2144 spin_unlock(&this_rq->lock);
2145 spin_lock(&busiest->lock);
2146 spin_lock(&this_rq->lock);
e8fa1362 2147 ret = 1;
1da177e4
LT
2148 } else
2149 spin_lock(&busiest->lock);
2150 }
e8fa1362 2151 return ret;
1da177e4
LT
2152}
2153
1da177e4
LT
2154/*
2155 * If dest_cpu is allowed for this process, migrate the task to it.
2156 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2157 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2158 * the cpu_allowed mask is restored.
2159 */
36c8b586 2160static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2161{
70b97a7f 2162 struct migration_req req;
1da177e4 2163 unsigned long flags;
70b97a7f 2164 struct rq *rq;
1da177e4
LT
2165
2166 rq = task_rq_lock(p, &flags);
2167 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2168 || unlikely(cpu_is_offline(dest_cpu)))
2169 goto out;
2170
2171 /* force the process onto the specified CPU */
2172 if (migrate_task(p, dest_cpu, &req)) {
2173 /* Need to wait for migration thread (might exit: take ref). */
2174 struct task_struct *mt = rq->migration_thread;
36c8b586 2175
1da177e4
LT
2176 get_task_struct(mt);
2177 task_rq_unlock(rq, &flags);
2178 wake_up_process(mt);
2179 put_task_struct(mt);
2180 wait_for_completion(&req.done);
36c8b586 2181
1da177e4
LT
2182 return;
2183 }
2184out:
2185 task_rq_unlock(rq, &flags);
2186}
2187
2188/*
476d139c
NP
2189 * sched_exec - execve() is a valuable balancing opportunity, because at
2190 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2191 */
2192void sched_exec(void)
2193{
1da177e4 2194 int new_cpu, this_cpu = get_cpu();
476d139c 2195 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2196 put_cpu();
476d139c
NP
2197 if (new_cpu != this_cpu)
2198 sched_migrate_task(current, new_cpu);
1da177e4
LT
2199}
2200
2201/*
2202 * pull_task - move a task from a remote runqueue to the local runqueue.
2203 * Both runqueues must be locked.
2204 */
dd41f596
IM
2205static void pull_task(struct rq *src_rq, struct task_struct *p,
2206 struct rq *this_rq, int this_cpu)
1da177e4 2207{
2e1cb74a 2208 deactivate_task(src_rq, p, 0);
1da177e4 2209 set_task_cpu(p, this_cpu);
dd41f596 2210 activate_task(this_rq, p, 0);
1da177e4
LT
2211 /*
2212 * Note that idle threads have a prio of MAX_PRIO, for this test
2213 * to be always true for them.
2214 */
dd41f596 2215 check_preempt_curr(this_rq, p);
1da177e4
LT
2216}
2217
2218/*
2219 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2220 */
858119e1 2221static
70b97a7f 2222int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2223 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2224 int *all_pinned)
1da177e4
LT
2225{
2226 /*
2227 * We do not migrate tasks that are:
2228 * 1) running (obviously), or
2229 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2230 * 3) are cache-hot on their current CPU.
2231 */
cc367732
IM
2232 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2233 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2234 return 0;
cc367732 2235 }
81026794
NP
2236 *all_pinned = 0;
2237
cc367732
IM
2238 if (task_running(rq, p)) {
2239 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2240 return 0;
cc367732 2241 }
1da177e4 2242
da84d961
IM
2243 /*
2244 * Aggressive migration if:
2245 * 1) task is cache cold, or
2246 * 2) too many balance attempts have failed.
2247 */
2248
6bc1665b
IM
2249 if (!task_hot(p, rq->clock, sd) ||
2250 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2251#ifdef CONFIG_SCHEDSTATS
cc367732 2252 if (task_hot(p, rq->clock, sd)) {
da84d961 2253 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2254 schedstat_inc(p, se.nr_forced_migrations);
2255 }
da84d961
IM
2256#endif
2257 return 1;
2258 }
2259
cc367732
IM
2260 if (task_hot(p, rq->clock, sd)) {
2261 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2262 return 0;
cc367732 2263 }
1da177e4
LT
2264 return 1;
2265}
2266
e1d1484f
PW
2267static unsigned long
2268balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2269 unsigned long max_load_move, struct sched_domain *sd,
2270 enum cpu_idle_type idle, int *all_pinned,
2271 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2272{
b82d9fdd 2273 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2274 struct task_struct *p;
2275 long rem_load_move = max_load_move;
1da177e4 2276
e1d1484f 2277 if (max_load_move == 0)
1da177e4
LT
2278 goto out;
2279
81026794
NP
2280 pinned = 1;
2281
1da177e4 2282 /*
dd41f596 2283 * Start the load-balancing iterator:
1da177e4 2284 */
dd41f596
IM
2285 p = iterator->start(iterator->arg);
2286next:
b82d9fdd 2287 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2288 goto out;
50ddd969 2289 /*
b82d9fdd 2290 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2291 * skip a task if it will be the highest priority task (i.e. smallest
2292 * prio value) on its new queue regardless of its load weight
2293 */
dd41f596
IM
2294 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2295 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2296 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2297 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2298 p = iterator->next(iterator->arg);
2299 goto next;
1da177e4
LT
2300 }
2301
dd41f596 2302 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2303 pulled++;
dd41f596 2304 rem_load_move -= p->se.load.weight;
1da177e4 2305
2dd73a4f 2306 /*
b82d9fdd 2307 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2308 */
e1d1484f 2309 if (rem_load_move > 0) {
a4ac01c3
PW
2310 if (p->prio < *this_best_prio)
2311 *this_best_prio = p->prio;
dd41f596
IM
2312 p = iterator->next(iterator->arg);
2313 goto next;
1da177e4
LT
2314 }
2315out:
2316 /*
e1d1484f 2317 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2318 * so we can safely collect pull_task() stats here rather than
2319 * inside pull_task().
2320 */
2321 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2322
2323 if (all_pinned)
2324 *all_pinned = pinned;
e1d1484f
PW
2325
2326 return max_load_move - rem_load_move;
1da177e4
LT
2327}
2328
dd41f596 2329/*
43010659
PW
2330 * move_tasks tries to move up to max_load_move weighted load from busiest to
2331 * this_rq, as part of a balancing operation within domain "sd".
2332 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2333 *
2334 * Called with both runqueues locked.
2335 */
2336static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2337 unsigned long max_load_move,
dd41f596
IM
2338 struct sched_domain *sd, enum cpu_idle_type idle,
2339 int *all_pinned)
2340{
5522d5d5 2341 const struct sched_class *class = sched_class_highest;
43010659 2342 unsigned long total_load_moved = 0;
a4ac01c3 2343 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2344
2345 do {
43010659
PW
2346 total_load_moved +=
2347 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2348 max_load_move - total_load_moved,
a4ac01c3 2349 sd, idle, all_pinned, &this_best_prio);
dd41f596 2350 class = class->next;
43010659 2351 } while (class && max_load_move > total_load_moved);
dd41f596 2352
43010659
PW
2353 return total_load_moved > 0;
2354}
2355
e1d1484f
PW
2356static int
2357iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2358 struct sched_domain *sd, enum cpu_idle_type idle,
2359 struct rq_iterator *iterator)
2360{
2361 struct task_struct *p = iterator->start(iterator->arg);
2362 int pinned = 0;
2363
2364 while (p) {
2365 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2366 pull_task(busiest, p, this_rq, this_cpu);
2367 /*
2368 * Right now, this is only the second place pull_task()
2369 * is called, so we can safely collect pull_task()
2370 * stats here rather than inside pull_task().
2371 */
2372 schedstat_inc(sd, lb_gained[idle]);
2373
2374 return 1;
2375 }
2376 p = iterator->next(iterator->arg);
2377 }
2378
2379 return 0;
2380}
2381
43010659
PW
2382/*
2383 * move_one_task tries to move exactly one task from busiest to this_rq, as
2384 * part of active balancing operations within "domain".
2385 * Returns 1 if successful and 0 otherwise.
2386 *
2387 * Called with both runqueues locked.
2388 */
2389static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2390 struct sched_domain *sd, enum cpu_idle_type idle)
2391{
5522d5d5 2392 const struct sched_class *class;
43010659
PW
2393
2394 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2395 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2396 return 1;
2397
2398 return 0;
dd41f596
IM
2399}
2400
1da177e4
LT
2401/*
2402 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2403 * domain. It calculates and returns the amount of weighted load which
2404 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2405 */
2406static struct sched_group *
2407find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2408 unsigned long *imbalance, enum cpu_idle_type idle,
2409 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2410{
2411 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2412 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2413 unsigned long max_pull;
2dd73a4f
PW
2414 unsigned long busiest_load_per_task, busiest_nr_running;
2415 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2416 int load_idx, group_imb = 0;
5c45bf27
SS
2417#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2418 int power_savings_balance = 1;
2419 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2420 unsigned long min_nr_running = ULONG_MAX;
2421 struct sched_group *group_min = NULL, *group_leader = NULL;
2422#endif
1da177e4
LT
2423
2424 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2425 busiest_load_per_task = busiest_nr_running = 0;
2426 this_load_per_task = this_nr_running = 0;
d15bcfdb 2427 if (idle == CPU_NOT_IDLE)
7897986b 2428 load_idx = sd->busy_idx;
d15bcfdb 2429 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2430 load_idx = sd->newidle_idx;
2431 else
2432 load_idx = sd->idle_idx;
1da177e4
LT
2433
2434 do {
908a7c1b 2435 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2436 int local_group;
2437 int i;
908a7c1b 2438 int __group_imb = 0;
783609c6 2439 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2440 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2441
2442 local_group = cpu_isset(this_cpu, group->cpumask);
2443
783609c6
SS
2444 if (local_group)
2445 balance_cpu = first_cpu(group->cpumask);
2446
1da177e4 2447 /* Tally up the load of all CPUs in the group */
2dd73a4f 2448 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2449 max_cpu_load = 0;
2450 min_cpu_load = ~0UL;
1da177e4
LT
2451
2452 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2453 struct rq *rq;
2454
2455 if (!cpu_isset(i, *cpus))
2456 continue;
2457
2458 rq = cpu_rq(i);
2dd73a4f 2459
9439aab8 2460 if (*sd_idle && rq->nr_running)
5969fe06
NP
2461 *sd_idle = 0;
2462
1da177e4 2463 /* Bias balancing toward cpus of our domain */
783609c6
SS
2464 if (local_group) {
2465 if (idle_cpu(i) && !first_idle_cpu) {
2466 first_idle_cpu = 1;
2467 balance_cpu = i;
2468 }
2469
a2000572 2470 load = target_load(i, load_idx);
908a7c1b 2471 } else {
a2000572 2472 load = source_load(i, load_idx);
908a7c1b
KC
2473 if (load > max_cpu_load)
2474 max_cpu_load = load;
2475 if (min_cpu_load > load)
2476 min_cpu_load = load;
2477 }
1da177e4
LT
2478
2479 avg_load += load;
2dd73a4f 2480 sum_nr_running += rq->nr_running;
dd41f596 2481 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2482 }
2483
783609c6
SS
2484 /*
2485 * First idle cpu or the first cpu(busiest) in this sched group
2486 * is eligible for doing load balancing at this and above
9439aab8
SS
2487 * domains. In the newly idle case, we will allow all the cpu's
2488 * to do the newly idle load balance.
783609c6 2489 */
9439aab8
SS
2490 if (idle != CPU_NEWLY_IDLE && local_group &&
2491 balance_cpu != this_cpu && balance) {
783609c6
SS
2492 *balance = 0;
2493 goto ret;
2494 }
2495
1da177e4 2496 total_load += avg_load;
5517d86b 2497 total_pwr += group->__cpu_power;
1da177e4
LT
2498
2499 /* Adjust by relative CPU power of the group */
5517d86b
ED
2500 avg_load = sg_div_cpu_power(group,
2501 avg_load * SCHED_LOAD_SCALE);
1da177e4 2502
908a7c1b
KC
2503 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2504 __group_imb = 1;
2505
5517d86b 2506 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2507
1da177e4
LT
2508 if (local_group) {
2509 this_load = avg_load;
2510 this = group;
2dd73a4f
PW
2511 this_nr_running = sum_nr_running;
2512 this_load_per_task = sum_weighted_load;
2513 } else if (avg_load > max_load &&
908a7c1b 2514 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2515 max_load = avg_load;
2516 busiest = group;
2dd73a4f
PW
2517 busiest_nr_running = sum_nr_running;
2518 busiest_load_per_task = sum_weighted_load;
908a7c1b 2519 group_imb = __group_imb;
1da177e4 2520 }
5c45bf27
SS
2521
2522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2523 /*
2524 * Busy processors will not participate in power savings
2525 * balance.
2526 */
dd41f596
IM
2527 if (idle == CPU_NOT_IDLE ||
2528 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2529 goto group_next;
5c45bf27
SS
2530
2531 /*
2532 * If the local group is idle or completely loaded
2533 * no need to do power savings balance at this domain
2534 */
2535 if (local_group && (this_nr_running >= group_capacity ||
2536 !this_nr_running))
2537 power_savings_balance = 0;
2538
dd41f596 2539 /*
5c45bf27
SS
2540 * If a group is already running at full capacity or idle,
2541 * don't include that group in power savings calculations
dd41f596
IM
2542 */
2543 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2544 || !sum_nr_running)
dd41f596 2545 goto group_next;
5c45bf27 2546
dd41f596 2547 /*
5c45bf27 2548 * Calculate the group which has the least non-idle load.
dd41f596
IM
2549 * This is the group from where we need to pick up the load
2550 * for saving power
2551 */
2552 if ((sum_nr_running < min_nr_running) ||
2553 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2554 first_cpu(group->cpumask) <
2555 first_cpu(group_min->cpumask))) {
dd41f596
IM
2556 group_min = group;
2557 min_nr_running = sum_nr_running;
5c45bf27
SS
2558 min_load_per_task = sum_weighted_load /
2559 sum_nr_running;
dd41f596 2560 }
5c45bf27 2561
dd41f596 2562 /*
5c45bf27 2563 * Calculate the group which is almost near its
dd41f596
IM
2564 * capacity but still has some space to pick up some load
2565 * from other group and save more power
2566 */
2567 if (sum_nr_running <= group_capacity - 1) {
2568 if (sum_nr_running > leader_nr_running ||
2569 (sum_nr_running == leader_nr_running &&
2570 first_cpu(group->cpumask) >
2571 first_cpu(group_leader->cpumask))) {
2572 group_leader = group;
2573 leader_nr_running = sum_nr_running;
2574 }
48f24c4d 2575 }
5c45bf27
SS
2576group_next:
2577#endif
1da177e4
LT
2578 group = group->next;
2579 } while (group != sd->groups);
2580
2dd73a4f 2581 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2582 goto out_balanced;
2583
2584 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2585
2586 if (this_load >= avg_load ||
2587 100*max_load <= sd->imbalance_pct*this_load)
2588 goto out_balanced;
2589
2dd73a4f 2590 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2591 if (group_imb)
2592 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2593
1da177e4
LT
2594 /*
2595 * We're trying to get all the cpus to the average_load, so we don't
2596 * want to push ourselves above the average load, nor do we wish to
2597 * reduce the max loaded cpu below the average load, as either of these
2598 * actions would just result in more rebalancing later, and ping-pong
2599 * tasks around. Thus we look for the minimum possible imbalance.
2600 * Negative imbalances (*we* are more loaded than anyone else) will
2601 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2602 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2603 * appear as very large values with unsigned longs.
2604 */
2dd73a4f
PW
2605 if (max_load <= busiest_load_per_task)
2606 goto out_balanced;
2607
2608 /*
2609 * In the presence of smp nice balancing, certain scenarios can have
2610 * max load less than avg load(as we skip the groups at or below
2611 * its cpu_power, while calculating max_load..)
2612 */
2613 if (max_load < avg_load) {
2614 *imbalance = 0;
2615 goto small_imbalance;
2616 }
0c117f1b
SS
2617
2618 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2619 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2620
1da177e4 2621 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2622 *imbalance = min(max_pull * busiest->__cpu_power,
2623 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2624 / SCHED_LOAD_SCALE;
2625
2dd73a4f
PW
2626 /*
2627 * if *imbalance is less than the average load per runnable task
2628 * there is no gaurantee that any tasks will be moved so we'll have
2629 * a think about bumping its value to force at least one task to be
2630 * moved
2631 */
7fd0d2dd 2632 if (*imbalance < busiest_load_per_task) {
48f24c4d 2633 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2634 unsigned int imbn;
2635
2636small_imbalance:
2637 pwr_move = pwr_now = 0;
2638 imbn = 2;
2639 if (this_nr_running) {
2640 this_load_per_task /= this_nr_running;
2641 if (busiest_load_per_task > this_load_per_task)
2642 imbn = 1;
2643 } else
2644 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2645
dd41f596
IM
2646 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2647 busiest_load_per_task * imbn) {
2dd73a4f 2648 *imbalance = busiest_load_per_task;
1da177e4
LT
2649 return busiest;
2650 }
2651
2652 /*
2653 * OK, we don't have enough imbalance to justify moving tasks,
2654 * however we may be able to increase total CPU power used by
2655 * moving them.
2656 */
2657
5517d86b
ED
2658 pwr_now += busiest->__cpu_power *
2659 min(busiest_load_per_task, max_load);
2660 pwr_now += this->__cpu_power *
2661 min(this_load_per_task, this_load);
1da177e4
LT
2662 pwr_now /= SCHED_LOAD_SCALE;
2663
2664 /* Amount of load we'd subtract */
5517d86b
ED
2665 tmp = sg_div_cpu_power(busiest,
2666 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2667 if (max_load > tmp)
5517d86b 2668 pwr_move += busiest->__cpu_power *
2dd73a4f 2669 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2670
2671 /* Amount of load we'd add */
5517d86b 2672 if (max_load * busiest->__cpu_power <
33859f7f 2673 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2674 tmp = sg_div_cpu_power(this,
2675 max_load * busiest->__cpu_power);
1da177e4 2676 else
5517d86b
ED
2677 tmp = sg_div_cpu_power(this,
2678 busiest_load_per_task * SCHED_LOAD_SCALE);
2679 pwr_move += this->__cpu_power *
2680 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2681 pwr_move /= SCHED_LOAD_SCALE;
2682
2683 /* Move if we gain throughput */
7fd0d2dd
SS
2684 if (pwr_move > pwr_now)
2685 *imbalance = busiest_load_per_task;
1da177e4
LT
2686 }
2687
1da177e4
LT
2688 return busiest;
2689
2690out_balanced:
5c45bf27 2691#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2692 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2693 goto ret;
1da177e4 2694
5c45bf27
SS
2695 if (this == group_leader && group_leader != group_min) {
2696 *imbalance = min_load_per_task;
2697 return group_min;
2698 }
5c45bf27 2699#endif
783609c6 2700ret:
1da177e4
LT
2701 *imbalance = 0;
2702 return NULL;
2703}
2704
2705/*
2706 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2707 */
70b97a7f 2708static struct rq *
d15bcfdb 2709find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2710 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2711{
70b97a7f 2712 struct rq *busiest = NULL, *rq;
2dd73a4f 2713 unsigned long max_load = 0;
1da177e4
LT
2714 int i;
2715
2716 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2717 unsigned long wl;
0a2966b4
CL
2718
2719 if (!cpu_isset(i, *cpus))
2720 continue;
2721
48f24c4d 2722 rq = cpu_rq(i);
dd41f596 2723 wl = weighted_cpuload(i);
2dd73a4f 2724
dd41f596 2725 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2726 continue;
1da177e4 2727
dd41f596
IM
2728 if (wl > max_load) {
2729 max_load = wl;
48f24c4d 2730 busiest = rq;
1da177e4
LT
2731 }
2732 }
2733
2734 return busiest;
2735}
2736
77391d71
NP
2737/*
2738 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2739 * so long as it is large enough.
2740 */
2741#define MAX_PINNED_INTERVAL 512
2742
1da177e4
LT
2743/*
2744 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2745 * tasks if there is an imbalance.
1da177e4 2746 */
70b97a7f 2747static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2748 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2749 int *balance)
1da177e4 2750{
43010659 2751 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2752 struct sched_group *group;
1da177e4 2753 unsigned long imbalance;
70b97a7f 2754 struct rq *busiest;
0a2966b4 2755 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2756 unsigned long flags;
5969fe06 2757
89c4710e
SS
2758 /*
2759 * When power savings policy is enabled for the parent domain, idle
2760 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2761 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2762 * portraying it as CPU_NOT_IDLE.
89c4710e 2763 */
d15bcfdb 2764 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2766 sd_idle = 1;
1da177e4 2767
2d72376b 2768 schedstat_inc(sd, lb_count[idle]);
1da177e4 2769
0a2966b4
CL
2770redo:
2771 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2772 &cpus, balance);
2773
06066714 2774 if (*balance == 0)
783609c6 2775 goto out_balanced;
783609c6 2776
1da177e4
LT
2777 if (!group) {
2778 schedstat_inc(sd, lb_nobusyg[idle]);
2779 goto out_balanced;
2780 }
2781
0a2966b4 2782 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2783 if (!busiest) {
2784 schedstat_inc(sd, lb_nobusyq[idle]);
2785 goto out_balanced;
2786 }
2787
db935dbd 2788 BUG_ON(busiest == this_rq);
1da177e4
LT
2789
2790 schedstat_add(sd, lb_imbalance[idle], imbalance);
2791
43010659 2792 ld_moved = 0;
1da177e4
LT
2793 if (busiest->nr_running > 1) {
2794 /*
2795 * Attempt to move tasks. If find_busiest_group has found
2796 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2797 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2798 * correctly treated as an imbalance.
2799 */
fe2eea3f 2800 local_irq_save(flags);
e17224bf 2801 double_rq_lock(this_rq, busiest);
43010659 2802 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2803 imbalance, sd, idle, &all_pinned);
e17224bf 2804 double_rq_unlock(this_rq, busiest);
fe2eea3f 2805 local_irq_restore(flags);
81026794 2806
46cb4b7c
SS
2807 /*
2808 * some other cpu did the load balance for us.
2809 */
43010659 2810 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2811 resched_cpu(this_cpu);
2812
81026794 2813 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2814 if (unlikely(all_pinned)) {
2815 cpu_clear(cpu_of(busiest), cpus);
2816 if (!cpus_empty(cpus))
2817 goto redo;
81026794 2818 goto out_balanced;
0a2966b4 2819 }
1da177e4 2820 }
81026794 2821
43010659 2822 if (!ld_moved) {
1da177e4
LT
2823 schedstat_inc(sd, lb_failed[idle]);
2824 sd->nr_balance_failed++;
2825
2826 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2827
fe2eea3f 2828 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2829
2830 /* don't kick the migration_thread, if the curr
2831 * task on busiest cpu can't be moved to this_cpu
2832 */
2833 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2834 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2835 all_pinned = 1;
2836 goto out_one_pinned;
2837 }
2838
1da177e4
LT
2839 if (!busiest->active_balance) {
2840 busiest->active_balance = 1;
2841 busiest->push_cpu = this_cpu;
81026794 2842 active_balance = 1;
1da177e4 2843 }
fe2eea3f 2844 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2845 if (active_balance)
1da177e4
LT
2846 wake_up_process(busiest->migration_thread);
2847
2848 /*
2849 * We've kicked active balancing, reset the failure
2850 * counter.
2851 */
39507451 2852 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2853 }
81026794 2854 } else
1da177e4
LT
2855 sd->nr_balance_failed = 0;
2856
81026794 2857 if (likely(!active_balance)) {
1da177e4
LT
2858 /* We were unbalanced, so reset the balancing interval */
2859 sd->balance_interval = sd->min_interval;
81026794
NP
2860 } else {
2861 /*
2862 * If we've begun active balancing, start to back off. This
2863 * case may not be covered by the all_pinned logic if there
2864 * is only 1 task on the busy runqueue (because we don't call
2865 * move_tasks).
2866 */
2867 if (sd->balance_interval < sd->max_interval)
2868 sd->balance_interval *= 2;
1da177e4
LT
2869 }
2870
43010659 2871 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2872 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2873 return -1;
43010659 2874 return ld_moved;
1da177e4
LT
2875
2876out_balanced:
1da177e4
LT
2877 schedstat_inc(sd, lb_balanced[idle]);
2878
16cfb1c0 2879 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2880
2881out_one_pinned:
1da177e4 2882 /* tune up the balancing interval */
77391d71
NP
2883 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2884 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2885 sd->balance_interval *= 2;
2886
48f24c4d 2887 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2888 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2889 return -1;
1da177e4
LT
2890 return 0;
2891}
2892
2893/*
2894 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2895 * tasks if there is an imbalance.
2896 *
d15bcfdb 2897 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2898 * this_rq is locked.
2899 */
48f24c4d 2900static int
70b97a7f 2901load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2902{
2903 struct sched_group *group;
70b97a7f 2904 struct rq *busiest = NULL;
1da177e4 2905 unsigned long imbalance;
43010659 2906 int ld_moved = 0;
5969fe06 2907 int sd_idle = 0;
969bb4e4 2908 int all_pinned = 0;
0a2966b4 2909 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2910
89c4710e
SS
2911 /*
2912 * When power savings policy is enabled for the parent domain, idle
2913 * sibling can pick up load irrespective of busy siblings. In this case,
2914 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2915 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2916 */
2917 if (sd->flags & SD_SHARE_CPUPOWER &&
2918 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2919 sd_idle = 1;
1da177e4 2920
2d72376b 2921 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2922redo:
d15bcfdb 2923 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2924 &sd_idle, &cpus, NULL);
1da177e4 2925 if (!group) {
d15bcfdb 2926 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2927 goto out_balanced;
1da177e4
LT
2928 }
2929
d15bcfdb 2930 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2931 &cpus);
db935dbd 2932 if (!busiest) {
d15bcfdb 2933 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2934 goto out_balanced;
1da177e4
LT
2935 }
2936
db935dbd
NP
2937 BUG_ON(busiest == this_rq);
2938
d15bcfdb 2939 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2940
43010659 2941 ld_moved = 0;
d6d5cfaf
NP
2942 if (busiest->nr_running > 1) {
2943 /* Attempt to move tasks */
2944 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2945 /* this_rq->clock is already updated */
2946 update_rq_clock(busiest);
43010659 2947 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2948 imbalance, sd, CPU_NEWLY_IDLE,
2949 &all_pinned);
d6d5cfaf 2950 spin_unlock(&busiest->lock);
0a2966b4 2951
969bb4e4 2952 if (unlikely(all_pinned)) {
0a2966b4
CL
2953 cpu_clear(cpu_of(busiest), cpus);
2954 if (!cpus_empty(cpus))
2955 goto redo;
2956 }
d6d5cfaf
NP
2957 }
2958
43010659 2959 if (!ld_moved) {
d15bcfdb 2960 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2961 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2962 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2963 return -1;
2964 } else
16cfb1c0 2965 sd->nr_balance_failed = 0;
1da177e4 2966
43010659 2967 return ld_moved;
16cfb1c0
NP
2968
2969out_balanced:
d15bcfdb 2970 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2971 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2972 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2973 return -1;
16cfb1c0 2974 sd->nr_balance_failed = 0;
48f24c4d 2975
16cfb1c0 2976 return 0;
1da177e4
LT
2977}
2978
2979/*
2980 * idle_balance is called by schedule() if this_cpu is about to become
2981 * idle. Attempts to pull tasks from other CPUs.
2982 */
70b97a7f 2983static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2984{
2985 struct sched_domain *sd;
dd41f596
IM
2986 int pulled_task = -1;
2987 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2988
2989 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2990 unsigned long interval;
2991
2992 if (!(sd->flags & SD_LOAD_BALANCE))
2993 continue;
2994
2995 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2996 /* If we've pulled tasks over stop searching: */
1bd77f2d 2997 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2998 this_rq, sd);
2999
3000 interval = msecs_to_jiffies(sd->balance_interval);
3001 if (time_after(next_balance, sd->last_balance + interval))
3002 next_balance = sd->last_balance + interval;
3003 if (pulled_task)
3004 break;
1da177e4 3005 }
dd41f596 3006 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3007 /*
3008 * We are going idle. next_balance may be set based on
3009 * a busy processor. So reset next_balance.
3010 */
3011 this_rq->next_balance = next_balance;
dd41f596 3012 }
1da177e4
LT
3013}
3014
3015/*
3016 * active_load_balance is run by migration threads. It pushes running tasks
3017 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3018 * running on each physical CPU where possible, and avoids physical /
3019 * logical imbalances.
3020 *
3021 * Called with busiest_rq locked.
3022 */
70b97a7f 3023static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3024{
39507451 3025 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3026 struct sched_domain *sd;
3027 struct rq *target_rq;
39507451 3028
48f24c4d 3029 /* Is there any task to move? */
39507451 3030 if (busiest_rq->nr_running <= 1)
39507451
NP
3031 return;
3032
3033 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3034
3035 /*
39507451 3036 * This condition is "impossible", if it occurs
41a2d6cf 3037 * we need to fix it. Originally reported by
39507451 3038 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3039 */
39507451 3040 BUG_ON(busiest_rq == target_rq);
1da177e4 3041
39507451
NP
3042 /* move a task from busiest_rq to target_rq */
3043 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3044 update_rq_clock(busiest_rq);
3045 update_rq_clock(target_rq);
39507451
NP
3046
3047 /* Search for an sd spanning us and the target CPU. */
c96d145e 3048 for_each_domain(target_cpu, sd) {
39507451 3049 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3050 cpu_isset(busiest_cpu, sd->span))
39507451 3051 break;
c96d145e 3052 }
39507451 3053
48f24c4d 3054 if (likely(sd)) {
2d72376b 3055 schedstat_inc(sd, alb_count);
39507451 3056
43010659
PW
3057 if (move_one_task(target_rq, target_cpu, busiest_rq,
3058 sd, CPU_IDLE))
48f24c4d
IM
3059 schedstat_inc(sd, alb_pushed);
3060 else
3061 schedstat_inc(sd, alb_failed);
3062 }
39507451 3063 spin_unlock(&target_rq->lock);
1da177e4
LT
3064}
3065
46cb4b7c
SS
3066#ifdef CONFIG_NO_HZ
3067static struct {
3068 atomic_t load_balancer;
41a2d6cf 3069 cpumask_t cpu_mask;
46cb4b7c
SS
3070} nohz ____cacheline_aligned = {
3071 .load_balancer = ATOMIC_INIT(-1),
3072 .cpu_mask = CPU_MASK_NONE,
3073};
3074
7835b98b 3075/*
46cb4b7c
SS
3076 * This routine will try to nominate the ilb (idle load balancing)
3077 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3078 * load balancing on behalf of all those cpus. If all the cpus in the system
3079 * go into this tickless mode, then there will be no ilb owner (as there is
3080 * no need for one) and all the cpus will sleep till the next wakeup event
3081 * arrives...
3082 *
3083 * For the ilb owner, tick is not stopped. And this tick will be used
3084 * for idle load balancing. ilb owner will still be part of
3085 * nohz.cpu_mask..
7835b98b 3086 *
46cb4b7c
SS
3087 * While stopping the tick, this cpu will become the ilb owner if there
3088 * is no other owner. And will be the owner till that cpu becomes busy
3089 * or if all cpus in the system stop their ticks at which point
3090 * there is no need for ilb owner.
3091 *
3092 * When the ilb owner becomes busy, it nominates another owner, during the
3093 * next busy scheduler_tick()
3094 */
3095int select_nohz_load_balancer(int stop_tick)
3096{
3097 int cpu = smp_processor_id();
3098
3099 if (stop_tick) {
3100 cpu_set(cpu, nohz.cpu_mask);
3101 cpu_rq(cpu)->in_nohz_recently = 1;
3102
3103 /*
3104 * If we are going offline and still the leader, give up!
3105 */
3106 if (cpu_is_offline(cpu) &&
3107 atomic_read(&nohz.load_balancer) == cpu) {
3108 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3109 BUG();
3110 return 0;
3111 }
3112
3113 /* time for ilb owner also to sleep */
3114 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3115 if (atomic_read(&nohz.load_balancer) == cpu)
3116 atomic_set(&nohz.load_balancer, -1);
3117 return 0;
3118 }
3119
3120 if (atomic_read(&nohz.load_balancer) == -1) {
3121 /* make me the ilb owner */
3122 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3123 return 1;
3124 } else if (atomic_read(&nohz.load_balancer) == cpu)
3125 return 1;
3126 } else {
3127 if (!cpu_isset(cpu, nohz.cpu_mask))
3128 return 0;
3129
3130 cpu_clear(cpu, nohz.cpu_mask);
3131
3132 if (atomic_read(&nohz.load_balancer) == cpu)
3133 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3134 BUG();
3135 }
3136 return 0;
3137}
3138#endif
3139
3140static DEFINE_SPINLOCK(balancing);
3141
3142/*
7835b98b
CL
3143 * It checks each scheduling domain to see if it is due to be balanced,
3144 * and initiates a balancing operation if so.
3145 *
3146 * Balancing parameters are set up in arch_init_sched_domains.
3147 */
a9957449 3148static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3149{
46cb4b7c
SS
3150 int balance = 1;
3151 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3152 unsigned long interval;
3153 struct sched_domain *sd;
46cb4b7c 3154 /* Earliest time when we have to do rebalance again */
c9819f45 3155 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3156 int update_next_balance = 0;
1da177e4 3157
46cb4b7c 3158 for_each_domain(cpu, sd) {
1da177e4
LT
3159 if (!(sd->flags & SD_LOAD_BALANCE))
3160 continue;
3161
3162 interval = sd->balance_interval;
d15bcfdb 3163 if (idle != CPU_IDLE)
1da177e4
LT
3164 interval *= sd->busy_factor;
3165
3166 /* scale ms to jiffies */
3167 interval = msecs_to_jiffies(interval);
3168 if (unlikely(!interval))
3169 interval = 1;
dd41f596
IM
3170 if (interval > HZ*NR_CPUS/10)
3171 interval = HZ*NR_CPUS/10;
3172
1da177e4 3173
08c183f3
CL
3174 if (sd->flags & SD_SERIALIZE) {
3175 if (!spin_trylock(&balancing))
3176 goto out;
3177 }
3178
c9819f45 3179 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3180 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3181 /*
3182 * We've pulled tasks over so either we're no
5969fe06
NP
3183 * longer idle, or one of our SMT siblings is
3184 * not idle.
3185 */
d15bcfdb 3186 idle = CPU_NOT_IDLE;
1da177e4 3187 }
1bd77f2d 3188 sd->last_balance = jiffies;
1da177e4 3189 }
08c183f3
CL
3190 if (sd->flags & SD_SERIALIZE)
3191 spin_unlock(&balancing);
3192out:
f549da84 3193 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3194 next_balance = sd->last_balance + interval;
f549da84
SS
3195 update_next_balance = 1;
3196 }
783609c6
SS
3197
3198 /*
3199 * Stop the load balance at this level. There is another
3200 * CPU in our sched group which is doing load balancing more
3201 * actively.
3202 */
3203 if (!balance)
3204 break;
1da177e4 3205 }
f549da84
SS
3206
3207 /*
3208 * next_balance will be updated only when there is a need.
3209 * When the cpu is attached to null domain for ex, it will not be
3210 * updated.
3211 */
3212 if (likely(update_next_balance))
3213 rq->next_balance = next_balance;
46cb4b7c
SS
3214}
3215
3216/*
3217 * run_rebalance_domains is triggered when needed from the scheduler tick.
3218 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3219 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3220 */
3221static void run_rebalance_domains(struct softirq_action *h)
3222{
dd41f596
IM
3223 int this_cpu = smp_processor_id();
3224 struct rq *this_rq = cpu_rq(this_cpu);
3225 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3226 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3227
dd41f596 3228 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3229
3230#ifdef CONFIG_NO_HZ
3231 /*
3232 * If this cpu is the owner for idle load balancing, then do the
3233 * balancing on behalf of the other idle cpus whose ticks are
3234 * stopped.
3235 */
dd41f596
IM
3236 if (this_rq->idle_at_tick &&
3237 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3238 cpumask_t cpus = nohz.cpu_mask;
3239 struct rq *rq;
3240 int balance_cpu;
3241
dd41f596 3242 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3243 for_each_cpu_mask(balance_cpu, cpus) {
3244 /*
3245 * If this cpu gets work to do, stop the load balancing
3246 * work being done for other cpus. Next load
3247 * balancing owner will pick it up.
3248 */
3249 if (need_resched())
3250 break;
3251
de0cf899 3252 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3253
3254 rq = cpu_rq(balance_cpu);
dd41f596
IM
3255 if (time_after(this_rq->next_balance, rq->next_balance))
3256 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3257 }
3258 }
3259#endif
3260}
3261
3262/*
3263 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3264 *
3265 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3266 * idle load balancing owner or decide to stop the periodic load balancing,
3267 * if the whole system is idle.
3268 */
dd41f596 3269static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3270{
46cb4b7c
SS
3271#ifdef CONFIG_NO_HZ
3272 /*
3273 * If we were in the nohz mode recently and busy at the current
3274 * scheduler tick, then check if we need to nominate new idle
3275 * load balancer.
3276 */
3277 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3278 rq->in_nohz_recently = 0;
3279
3280 if (atomic_read(&nohz.load_balancer) == cpu) {
3281 cpu_clear(cpu, nohz.cpu_mask);
3282 atomic_set(&nohz.load_balancer, -1);
3283 }
3284
3285 if (atomic_read(&nohz.load_balancer) == -1) {
3286 /*
3287 * simple selection for now: Nominate the
3288 * first cpu in the nohz list to be the next
3289 * ilb owner.
3290 *
3291 * TBD: Traverse the sched domains and nominate
3292 * the nearest cpu in the nohz.cpu_mask.
3293 */
3294 int ilb = first_cpu(nohz.cpu_mask);
3295
3296 if (ilb != NR_CPUS)
3297 resched_cpu(ilb);
3298 }
3299 }
3300
3301 /*
3302 * If this cpu is idle and doing idle load balancing for all the
3303 * cpus with ticks stopped, is it time for that to stop?
3304 */
3305 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3306 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3307 resched_cpu(cpu);
3308 return;
3309 }
3310
3311 /*
3312 * If this cpu is idle and the idle load balancing is done by
3313 * someone else, then no need raise the SCHED_SOFTIRQ
3314 */
3315 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3316 cpu_isset(cpu, nohz.cpu_mask))
3317 return;
3318#endif
3319 if (time_after_eq(jiffies, rq->next_balance))
3320 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3321}
dd41f596
IM
3322
3323#else /* CONFIG_SMP */
3324
1da177e4
LT
3325/*
3326 * on UP we do not need to balance between CPUs:
3327 */
70b97a7f 3328static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3329{
3330}
dd41f596 3331
1da177e4
LT
3332#endif
3333
1da177e4
LT
3334DEFINE_PER_CPU(struct kernel_stat, kstat);
3335
3336EXPORT_PER_CPU_SYMBOL(kstat);
3337
3338/*
41b86e9c
IM
3339 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3340 * that have not yet been banked in case the task is currently running.
1da177e4 3341 */
41b86e9c 3342unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3343{
1da177e4 3344 unsigned long flags;
41b86e9c
IM
3345 u64 ns, delta_exec;
3346 struct rq *rq;
48f24c4d 3347
41b86e9c
IM
3348 rq = task_rq_lock(p, &flags);
3349 ns = p->se.sum_exec_runtime;
051a1d1a 3350 if (task_current(rq, p)) {
a8e504d2
IM
3351 update_rq_clock(rq);
3352 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3353 if ((s64)delta_exec > 0)
3354 ns += delta_exec;
3355 }
3356 task_rq_unlock(rq, &flags);
48f24c4d 3357
1da177e4
LT
3358 return ns;
3359}
3360
1da177e4
LT
3361/*
3362 * Account user cpu time to a process.
3363 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3364 * @cputime: the cpu time spent in user space since the last update
3365 */
3366void account_user_time(struct task_struct *p, cputime_t cputime)
3367{
3368 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3369 cputime64_t tmp;
3370
3371 p->utime = cputime_add(p->utime, cputime);
3372
3373 /* Add user time to cpustat. */
3374 tmp = cputime_to_cputime64(cputime);
3375 if (TASK_NICE(p) > 0)
3376 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3377 else
3378 cpustat->user = cputime64_add(cpustat->user, tmp);
3379}
3380
94886b84
LV
3381/*
3382 * Account guest cpu time to a process.
3383 * @p: the process that the cpu time gets accounted to
3384 * @cputime: the cpu time spent in virtual machine since the last update
3385 */
f7402e03 3386static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3387{
3388 cputime64_t tmp;
3389 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3390
3391 tmp = cputime_to_cputime64(cputime);
3392
3393 p->utime = cputime_add(p->utime, cputime);
3394 p->gtime = cputime_add(p->gtime, cputime);
3395
3396 cpustat->user = cputime64_add(cpustat->user, tmp);
3397 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3398}
3399
c66f08be
MN
3400/*
3401 * Account scaled user cpu time to a process.
3402 * @p: the process that the cpu time gets accounted to
3403 * @cputime: the cpu time spent in user space since the last update
3404 */
3405void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3406{
3407 p->utimescaled = cputime_add(p->utimescaled, cputime);
3408}
3409
1da177e4
LT
3410/*
3411 * Account system cpu time to a process.
3412 * @p: the process that the cpu time gets accounted to
3413 * @hardirq_offset: the offset to subtract from hardirq_count()
3414 * @cputime: the cpu time spent in kernel space since the last update
3415 */
3416void account_system_time(struct task_struct *p, int hardirq_offset,
3417 cputime_t cputime)
3418{
3419 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3420 struct rq *rq = this_rq();
1da177e4
LT
3421 cputime64_t tmp;
3422
9778385d
CB
3423 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3424 return account_guest_time(p, cputime);
94886b84 3425
1da177e4
LT
3426 p->stime = cputime_add(p->stime, cputime);
3427
3428 /* Add system time to cpustat. */
3429 tmp = cputime_to_cputime64(cputime);
3430 if (hardirq_count() - hardirq_offset)
3431 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3432 else if (softirq_count())
3433 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3434 else if (p != rq->idle)
1da177e4 3435 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3436 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3437 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3438 else
3439 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3440 /* Account for system time used */
3441 acct_update_integrals(p);
1da177e4
LT
3442}
3443
c66f08be
MN
3444/*
3445 * Account scaled system cpu time to a process.
3446 * @p: the process that the cpu time gets accounted to
3447 * @hardirq_offset: the offset to subtract from hardirq_count()
3448 * @cputime: the cpu time spent in kernel space since the last update
3449 */
3450void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3451{
3452 p->stimescaled = cputime_add(p->stimescaled, cputime);
3453}
3454
1da177e4
LT
3455/*
3456 * Account for involuntary wait time.
3457 * @p: the process from which the cpu time has been stolen
3458 * @steal: the cpu time spent in involuntary wait
3459 */
3460void account_steal_time(struct task_struct *p, cputime_t steal)
3461{
3462 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3463 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3464 struct rq *rq = this_rq();
1da177e4
LT
3465
3466 if (p == rq->idle) {
3467 p->stime = cputime_add(p->stime, steal);
3468 if (atomic_read(&rq->nr_iowait) > 0)
3469 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3470 else
3471 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3472 } else
1da177e4
LT
3473 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3474}
3475
7835b98b
CL
3476/*
3477 * This function gets called by the timer code, with HZ frequency.
3478 * We call it with interrupts disabled.
3479 *
3480 * It also gets called by the fork code, when changing the parent's
3481 * timeslices.
3482 */
3483void scheduler_tick(void)
3484{
7835b98b
CL
3485 int cpu = smp_processor_id();
3486 struct rq *rq = cpu_rq(cpu);
dd41f596 3487 struct task_struct *curr = rq->curr;
529c7726 3488 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3489
3490 spin_lock(&rq->lock);
546fe3c9 3491 __update_rq_clock(rq);
529c7726
IM
3492 /*
3493 * Let rq->clock advance by at least TICK_NSEC:
3494 */
3495 if (unlikely(rq->clock < next_tick))
3496 rq->clock = next_tick;
3497 rq->tick_timestamp = rq->clock;
f1a438d8 3498 update_cpu_load(rq);
dd41f596
IM
3499 if (curr != rq->idle) /* FIXME: needed? */
3500 curr->sched_class->task_tick(rq, curr);
dd41f596 3501 spin_unlock(&rq->lock);
7835b98b 3502
e418e1c2 3503#ifdef CONFIG_SMP
dd41f596
IM
3504 rq->idle_at_tick = idle_cpu(cpu);
3505 trigger_load_balance(rq, cpu);
e418e1c2 3506#endif
1da177e4
LT
3507}
3508
1da177e4
LT
3509#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3510
3511void fastcall add_preempt_count(int val)
3512{
3513 /*
3514 * Underflow?
3515 */
9a11b49a
IM
3516 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3517 return;
1da177e4
LT
3518 preempt_count() += val;
3519 /*
3520 * Spinlock count overflowing soon?
3521 */
33859f7f
MOS
3522 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3523 PREEMPT_MASK - 10);
1da177e4
LT
3524}
3525EXPORT_SYMBOL(add_preempt_count);
3526
3527void fastcall sub_preempt_count(int val)
3528{
3529 /*
3530 * Underflow?
3531 */
9a11b49a
IM
3532 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3533 return;
1da177e4
LT
3534 /*
3535 * Is the spinlock portion underflowing?
3536 */
9a11b49a
IM
3537 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3538 !(preempt_count() & PREEMPT_MASK)))
3539 return;
3540
1da177e4
LT
3541 preempt_count() -= val;
3542}
3543EXPORT_SYMBOL(sub_preempt_count);
3544
3545#endif
3546
3547/*
dd41f596 3548 * Print scheduling while atomic bug:
1da177e4 3549 */
dd41f596 3550static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3551{
838225b4
SS
3552 struct pt_regs *regs = get_irq_regs();
3553
3554 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3555 prev->comm, prev->pid, preempt_count());
3556
dd41f596
IM
3557 debug_show_held_locks(prev);
3558 if (irqs_disabled())
3559 print_irqtrace_events(prev);
838225b4
SS
3560
3561 if (regs)
3562 show_regs(regs);
3563 else
3564 dump_stack();
dd41f596 3565}
1da177e4 3566
dd41f596
IM
3567/*
3568 * Various schedule()-time debugging checks and statistics:
3569 */
3570static inline void schedule_debug(struct task_struct *prev)
3571{
1da177e4 3572 /*
41a2d6cf 3573 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3574 * schedule() atomically, we ignore that path for now.
3575 * Otherwise, whine if we are scheduling when we should not be.
3576 */
dd41f596
IM
3577 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3578 __schedule_bug(prev);
3579
1da177e4
LT
3580 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3581
2d72376b 3582 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3583#ifdef CONFIG_SCHEDSTATS
3584 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3585 schedstat_inc(this_rq(), bkl_count);
3586 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3587 }
3588#endif
dd41f596
IM
3589}
3590
3591/*
3592 * Pick up the highest-prio task:
3593 */
3594static inline struct task_struct *
ff95f3df 3595pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3596{
5522d5d5 3597 const struct sched_class *class;
dd41f596 3598 struct task_struct *p;
1da177e4
LT
3599
3600 /*
dd41f596
IM
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
1da177e4 3603 */
dd41f596 3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3605 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3606 if (likely(p))
3607 return p;
1da177e4
LT
3608 }
3609
dd41f596
IM
3610 class = sched_class_highest;
3611 for ( ; ; ) {
fb8d4724 3612 p = class->pick_next_task(rq);
dd41f596
IM
3613 if (p)
3614 return p;
3615 /*
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3618 */
3619 class = class->next;
3620 }
3621}
1da177e4 3622
dd41f596
IM
3623/*
3624 * schedule() is the main scheduler function.
3625 */
3626asmlinkage void __sched schedule(void)
3627{
3628 struct task_struct *prev, *next;
3629 long *switch_count;
3630 struct rq *rq;
dd41f596
IM
3631 int cpu;
3632
3633need_resched:
3634 preempt_disable();
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
3637 rcu_qsctr_inc(cpu);
3638 prev = rq->curr;
3639 switch_count = &prev->nivcsw;
3640
3641 release_kernel_lock(prev);
3642need_resched_nonpreemptible:
3643
3644 schedule_debug(prev);
1da177e4 3645
1e819950
IM
3646 /*
3647 * Do the rq-clock update outside the rq lock:
3648 */
3649 local_irq_disable();
c1b3da3e 3650 __update_rq_clock(rq);
1e819950
IM
3651 spin_lock(&rq->lock);
3652 clear_tsk_need_resched(prev);
1da177e4 3653
1da177e4 3654 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3655 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3656 unlikely(signal_pending(prev)))) {
1da177e4 3657 prev->state = TASK_RUNNING;
dd41f596 3658 } else {
2e1cb74a 3659 deactivate_task(rq, prev, 1);
1da177e4 3660 }
dd41f596 3661 switch_count = &prev->nvcsw;
1da177e4
LT
3662 }
3663
9a897c5a
SR
3664#ifdef CONFIG_SMP
3665 if (prev->sched_class->pre_schedule)
3666 prev->sched_class->pre_schedule(rq, prev);
3667#endif
f65eda4f 3668
dd41f596 3669 if (unlikely(!rq->nr_running))
1da177e4 3670 idle_balance(cpu, rq);
1da177e4 3671
31ee529c 3672 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3673 next = pick_next_task(rq, prev);
1da177e4
LT
3674
3675 sched_info_switch(prev, next);
dd41f596 3676
1da177e4 3677 if (likely(prev != next)) {
1da177e4
LT
3678 rq->nr_switches++;
3679 rq->curr = next;
3680 ++*switch_count;
3681
dd41f596 3682 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3683 } else
3684 spin_unlock_irq(&rq->lock);
3685
dd41f596
IM
3686 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3687 cpu = smp_processor_id();
3688 rq = cpu_rq(cpu);
1da177e4 3689 goto need_resched_nonpreemptible;
dd41f596 3690 }
1da177e4
LT
3691 preempt_enable_no_resched();
3692 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3693 goto need_resched;
3694}
1da177e4
LT
3695EXPORT_SYMBOL(schedule);
3696
3697#ifdef CONFIG_PREEMPT
3698/*
2ed6e34f 3699 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3700 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3701 * occur there and call schedule directly.
3702 */
3703asmlinkage void __sched preempt_schedule(void)
3704{
3705 struct thread_info *ti = current_thread_info();
3706#ifdef CONFIG_PREEMPT_BKL
3707 struct task_struct *task = current;
3708 int saved_lock_depth;
3709#endif
3710 /*
3711 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3712 * we do not want to preempt the current task. Just return..
1da177e4 3713 */
beed33a8 3714 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3715 return;
3716
3a5c359a
AK
3717 do {
3718 add_preempt_count(PREEMPT_ACTIVE);
3719
3720 /*
3721 * We keep the big kernel semaphore locked, but we
3722 * clear ->lock_depth so that schedule() doesnt
3723 * auto-release the semaphore:
3724 */
1da177e4 3725#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3726 saved_lock_depth = task->lock_depth;
3727 task->lock_depth = -1;
1da177e4 3728#endif
3a5c359a 3729 schedule();
1da177e4 3730#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3731 task->lock_depth = saved_lock_depth;
1da177e4 3732#endif
3a5c359a 3733 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3734
3a5c359a
AK
3735 /*
3736 * Check again in case we missed a preemption opportunity
3737 * between schedule and now.
3738 */
3739 barrier();
3740 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3741}
1da177e4
LT
3742EXPORT_SYMBOL(preempt_schedule);
3743
3744/*
2ed6e34f 3745 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3746 * off of irq context.
3747 * Note, that this is called and return with irqs disabled. This will
3748 * protect us against recursive calling from irq.
3749 */
3750asmlinkage void __sched preempt_schedule_irq(void)
3751{
3752 struct thread_info *ti = current_thread_info();
3753#ifdef CONFIG_PREEMPT_BKL
3754 struct task_struct *task = current;
3755 int saved_lock_depth;
3756#endif
2ed6e34f 3757 /* Catch callers which need to be fixed */
1da177e4
LT
3758 BUG_ON(ti->preempt_count || !irqs_disabled());
3759
3a5c359a
AK
3760 do {
3761 add_preempt_count(PREEMPT_ACTIVE);
3762
3763 /*
3764 * We keep the big kernel semaphore locked, but we
3765 * clear ->lock_depth so that schedule() doesnt
3766 * auto-release the semaphore:
3767 */
1da177e4 3768#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3769 saved_lock_depth = task->lock_depth;
3770 task->lock_depth = -1;
1da177e4 3771#endif
3a5c359a
AK
3772 local_irq_enable();
3773 schedule();
3774 local_irq_disable();
1da177e4 3775#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3776 task->lock_depth = saved_lock_depth;
1da177e4 3777#endif
3a5c359a 3778 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3779
3a5c359a
AK
3780 /*
3781 * Check again in case we missed a preemption opportunity
3782 * between schedule and now.
3783 */
3784 barrier();
3785 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3786}
3787
3788#endif /* CONFIG_PREEMPT */
3789
95cdf3b7
IM
3790int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3791 void *key)
1da177e4 3792{
48f24c4d 3793 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3794}
1da177e4
LT
3795EXPORT_SYMBOL(default_wake_function);
3796
3797/*
41a2d6cf
IM
3798 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3799 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3800 * number) then we wake all the non-exclusive tasks and one exclusive task.
3801 *
3802 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3803 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3804 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3805 */
3806static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3807 int nr_exclusive, int sync, void *key)
3808{
2e45874c 3809 wait_queue_t *curr, *next;
1da177e4 3810
2e45874c 3811 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3812 unsigned flags = curr->flags;
3813
1da177e4 3814 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3815 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3816 break;
3817 }
3818}
3819
3820/**
3821 * __wake_up - wake up threads blocked on a waitqueue.
3822 * @q: the waitqueue
3823 * @mode: which threads
3824 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3825 * @key: is directly passed to the wakeup function
1da177e4
LT
3826 */
3827void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3828 int nr_exclusive, void *key)
1da177e4
LT
3829{
3830 unsigned long flags;
3831
3832 spin_lock_irqsave(&q->lock, flags);
3833 __wake_up_common(q, mode, nr_exclusive, 0, key);
3834 spin_unlock_irqrestore(&q->lock, flags);
3835}
1da177e4
LT
3836EXPORT_SYMBOL(__wake_up);
3837
3838/*
3839 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3840 */
3841void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3842{
3843 __wake_up_common(q, mode, 1, 0, NULL);
3844}
3845
3846/**
67be2dd1 3847 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3848 * @q: the waitqueue
3849 * @mode: which threads
3850 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3851 *
3852 * The sync wakeup differs that the waker knows that it will schedule
3853 * away soon, so while the target thread will be woken up, it will not
3854 * be migrated to another CPU - ie. the two threads are 'synchronized'
3855 * with each other. This can prevent needless bouncing between CPUs.
3856 *
3857 * On UP it can prevent extra preemption.
3858 */
95cdf3b7
IM
3859void fastcall
3860__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3861{
3862 unsigned long flags;
3863 int sync = 1;
3864
3865 if (unlikely(!q))
3866 return;
3867
3868 if (unlikely(!nr_exclusive))
3869 sync = 0;
3870
3871 spin_lock_irqsave(&q->lock, flags);
3872 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3873 spin_unlock_irqrestore(&q->lock, flags);
3874}
3875EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3876
b15136e9 3877void complete(struct completion *x)
1da177e4
LT
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&x->wait.lock, flags);
3882 x->done++;
3883 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884 1, 0, NULL);
3885 spin_unlock_irqrestore(&x->wait.lock, flags);
3886}
3887EXPORT_SYMBOL(complete);
3888
b15136e9 3889void complete_all(struct completion *x)
1da177e4
LT
3890{
3891 unsigned long flags;
3892
3893 spin_lock_irqsave(&x->wait.lock, flags);
3894 x->done += UINT_MAX/2;
3895 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3896 0, 0, NULL);
3897 spin_unlock_irqrestore(&x->wait.lock, flags);
3898}
3899EXPORT_SYMBOL(complete_all);
3900
8cbbe86d
AK
3901static inline long __sched
3902do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3903{
1da177e4
LT
3904 if (!x->done) {
3905 DECLARE_WAITQUEUE(wait, current);
3906
3907 wait.flags |= WQ_FLAG_EXCLUSIVE;
3908 __add_wait_queue_tail(&x->wait, &wait);
3909 do {
8cbbe86d
AK
3910 if (state == TASK_INTERRUPTIBLE &&
3911 signal_pending(current)) {
3912 __remove_wait_queue(&x->wait, &wait);
3913 return -ERESTARTSYS;
3914 }
3915 __set_current_state(state);
1da177e4
LT
3916 spin_unlock_irq(&x->wait.lock);
3917 timeout = schedule_timeout(timeout);
3918 spin_lock_irq(&x->wait.lock);
3919 if (!timeout) {
3920 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3921 return timeout;
1da177e4
LT
3922 }
3923 } while (!x->done);
3924 __remove_wait_queue(&x->wait, &wait);
3925 }
3926 x->done--;
1da177e4
LT
3927 return timeout;
3928}
1da177e4 3929
8cbbe86d
AK
3930static long __sched
3931wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3932{
1da177e4
LT
3933 might_sleep();
3934
3935 spin_lock_irq(&x->wait.lock);
8cbbe86d 3936 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3937 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3938 return timeout;
3939}
1da177e4 3940
b15136e9 3941void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3942{
3943 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3944}
8cbbe86d 3945EXPORT_SYMBOL(wait_for_completion);
1da177e4 3946
b15136e9 3947unsigned long __sched
8cbbe86d 3948wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3949{
8cbbe86d 3950 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3951}
8cbbe86d 3952EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3953
8cbbe86d 3954int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3955{
51e97990
AK
3956 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3957 if (t == -ERESTARTSYS)
3958 return t;
3959 return 0;
0fec171c 3960}
8cbbe86d 3961EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3962
b15136e9 3963unsigned long __sched
8cbbe86d
AK
3964wait_for_completion_interruptible_timeout(struct completion *x,
3965 unsigned long timeout)
0fec171c 3966{
8cbbe86d 3967 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3968}
8cbbe86d 3969EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3970
8cbbe86d
AK
3971static long __sched
3972sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3973{
0fec171c
IM
3974 unsigned long flags;
3975 wait_queue_t wait;
3976
3977 init_waitqueue_entry(&wait, current);
1da177e4 3978
8cbbe86d 3979 __set_current_state(state);
1da177e4 3980
8cbbe86d
AK
3981 spin_lock_irqsave(&q->lock, flags);
3982 __add_wait_queue(q, &wait);
3983 spin_unlock(&q->lock);
3984 timeout = schedule_timeout(timeout);
3985 spin_lock_irq(&q->lock);
3986 __remove_wait_queue(q, &wait);
3987 spin_unlock_irqrestore(&q->lock, flags);
3988
3989 return timeout;
3990}
3991
3992void __sched interruptible_sleep_on(wait_queue_head_t *q)
3993{
3994 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3995}
1da177e4
LT
3996EXPORT_SYMBOL(interruptible_sleep_on);
3997
0fec171c 3998long __sched
95cdf3b7 3999interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4000{
8cbbe86d 4001 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4002}
1da177e4
LT
4003EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4004
0fec171c 4005void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4006{
8cbbe86d 4007 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4008}
1da177e4
LT
4009EXPORT_SYMBOL(sleep_on);
4010
0fec171c 4011long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4012{
8cbbe86d 4013 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4014}
1da177e4
LT
4015EXPORT_SYMBOL(sleep_on_timeout);
4016
b29739f9
IM
4017#ifdef CONFIG_RT_MUTEXES
4018
4019/*
4020 * rt_mutex_setprio - set the current priority of a task
4021 * @p: task
4022 * @prio: prio value (kernel-internal form)
4023 *
4024 * This function changes the 'effective' priority of a task. It does
4025 * not touch ->normal_prio like __setscheduler().
4026 *
4027 * Used by the rt_mutex code to implement priority inheritance logic.
4028 */
36c8b586 4029void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4030{
4031 unsigned long flags;
83b699ed 4032 int oldprio, on_rq, running;
70b97a7f 4033 struct rq *rq;
cb469845 4034 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4035
4036 BUG_ON(prio < 0 || prio > MAX_PRIO);
4037
4038 rq = task_rq_lock(p, &flags);
a8e504d2 4039 update_rq_clock(rq);
b29739f9 4040
d5f9f942 4041 oldprio = p->prio;
dd41f596 4042 on_rq = p->se.on_rq;
051a1d1a 4043 running = task_current(rq, p);
83b699ed 4044 if (on_rq) {
69be72c1 4045 dequeue_task(rq, p, 0);
83b699ed
SV
4046 if (running)
4047 p->sched_class->put_prev_task(rq, p);
4048 }
dd41f596
IM
4049
4050 if (rt_prio(prio))
4051 p->sched_class = &rt_sched_class;
4052 else
4053 p->sched_class = &fair_sched_class;
4054
b29739f9
IM
4055 p->prio = prio;
4056
dd41f596 4057 if (on_rq) {
83b699ed
SV
4058 if (running)
4059 p->sched_class->set_curr_task(rq);
cb469845 4060
8159f87e 4061 enqueue_task(rq, p, 0);
cb469845
SR
4062
4063 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4064 }
4065 task_rq_unlock(rq, &flags);
4066}
4067
4068#endif
4069
36c8b586 4070void set_user_nice(struct task_struct *p, long nice)
1da177e4 4071{
dd41f596 4072 int old_prio, delta, on_rq;
1da177e4 4073 unsigned long flags;
70b97a7f 4074 struct rq *rq;
1da177e4
LT
4075
4076 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4077 return;
4078 /*
4079 * We have to be careful, if called from sys_setpriority(),
4080 * the task might be in the middle of scheduling on another CPU.
4081 */
4082 rq = task_rq_lock(p, &flags);
a8e504d2 4083 update_rq_clock(rq);
1da177e4
LT
4084 /*
4085 * The RT priorities are set via sched_setscheduler(), but we still
4086 * allow the 'normal' nice value to be set - but as expected
4087 * it wont have any effect on scheduling until the task is
dd41f596 4088 * SCHED_FIFO/SCHED_RR:
1da177e4 4089 */
e05606d3 4090 if (task_has_rt_policy(p)) {
1da177e4
LT
4091 p->static_prio = NICE_TO_PRIO(nice);
4092 goto out_unlock;
4093 }
dd41f596 4094 on_rq = p->se.on_rq;
58e2d4ca 4095 if (on_rq)
69be72c1 4096 dequeue_task(rq, p, 0);
1da177e4 4097
1da177e4 4098 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4099 set_load_weight(p);
b29739f9
IM
4100 old_prio = p->prio;
4101 p->prio = effective_prio(p);
4102 delta = p->prio - old_prio;
1da177e4 4103
dd41f596 4104 if (on_rq) {
8159f87e 4105 enqueue_task(rq, p, 0);
1da177e4 4106 /*
d5f9f942
AM
4107 * If the task increased its priority or is running and
4108 * lowered its priority, then reschedule its CPU:
1da177e4 4109 */
d5f9f942 4110 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4111 resched_task(rq->curr);
4112 }
4113out_unlock:
4114 task_rq_unlock(rq, &flags);
4115}
1da177e4
LT
4116EXPORT_SYMBOL(set_user_nice);
4117
e43379f1
MM
4118/*
4119 * can_nice - check if a task can reduce its nice value
4120 * @p: task
4121 * @nice: nice value
4122 */
36c8b586 4123int can_nice(const struct task_struct *p, const int nice)
e43379f1 4124{
024f4747
MM
4125 /* convert nice value [19,-20] to rlimit style value [1,40] */
4126 int nice_rlim = 20 - nice;
48f24c4d 4127
e43379f1
MM
4128 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4129 capable(CAP_SYS_NICE));
4130}
4131
1da177e4
LT
4132#ifdef __ARCH_WANT_SYS_NICE
4133
4134/*
4135 * sys_nice - change the priority of the current process.
4136 * @increment: priority increment
4137 *
4138 * sys_setpriority is a more generic, but much slower function that
4139 * does similar things.
4140 */
4141asmlinkage long sys_nice(int increment)
4142{
48f24c4d 4143 long nice, retval;
1da177e4
LT
4144
4145 /*
4146 * Setpriority might change our priority at the same moment.
4147 * We don't have to worry. Conceptually one call occurs first
4148 * and we have a single winner.
4149 */
e43379f1
MM
4150 if (increment < -40)
4151 increment = -40;
1da177e4
LT
4152 if (increment > 40)
4153 increment = 40;
4154
4155 nice = PRIO_TO_NICE(current->static_prio) + increment;
4156 if (nice < -20)
4157 nice = -20;
4158 if (nice > 19)
4159 nice = 19;
4160
e43379f1
MM
4161 if (increment < 0 && !can_nice(current, nice))
4162 return -EPERM;
4163
1da177e4
LT
4164 retval = security_task_setnice(current, nice);
4165 if (retval)
4166 return retval;
4167
4168 set_user_nice(current, nice);
4169 return 0;
4170}
4171
4172#endif
4173
4174/**
4175 * task_prio - return the priority value of a given task.
4176 * @p: the task in question.
4177 *
4178 * This is the priority value as seen by users in /proc.
4179 * RT tasks are offset by -200. Normal tasks are centered
4180 * around 0, value goes from -16 to +15.
4181 */
36c8b586 4182int task_prio(const struct task_struct *p)
1da177e4
LT
4183{
4184 return p->prio - MAX_RT_PRIO;
4185}
4186
4187/**
4188 * task_nice - return the nice value of a given task.
4189 * @p: the task in question.
4190 */
36c8b586 4191int task_nice(const struct task_struct *p)
1da177e4
LT
4192{
4193 return TASK_NICE(p);
4194}
1da177e4 4195EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4196
4197/**
4198 * idle_cpu - is a given cpu idle currently?
4199 * @cpu: the processor in question.
4200 */
4201int idle_cpu(int cpu)
4202{
4203 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4204}
4205
1da177e4
LT
4206/**
4207 * idle_task - return the idle task for a given cpu.
4208 * @cpu: the processor in question.
4209 */
36c8b586 4210struct task_struct *idle_task(int cpu)
1da177e4
LT
4211{
4212 return cpu_rq(cpu)->idle;
4213}
4214
4215/**
4216 * find_process_by_pid - find a process with a matching PID value.
4217 * @pid: the pid in question.
4218 */
a9957449 4219static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4220{
228ebcbe 4221 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4222}
4223
4224/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4225static void
4226__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4227{
dd41f596 4228 BUG_ON(p->se.on_rq);
48f24c4d 4229
1da177e4 4230 p->policy = policy;
dd41f596
IM
4231 switch (p->policy) {
4232 case SCHED_NORMAL:
4233 case SCHED_BATCH:
4234 case SCHED_IDLE:
4235 p->sched_class = &fair_sched_class;
4236 break;
4237 case SCHED_FIFO:
4238 case SCHED_RR:
4239 p->sched_class = &rt_sched_class;
4240 break;
4241 }
4242
1da177e4 4243 p->rt_priority = prio;
b29739f9
IM
4244 p->normal_prio = normal_prio(p);
4245 /* we are holding p->pi_lock already */
4246 p->prio = rt_mutex_getprio(p);
2dd73a4f 4247 set_load_weight(p);
1da177e4
LT
4248}
4249
4250/**
72fd4a35 4251 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4252 * @p: the task in question.
4253 * @policy: new policy.
4254 * @param: structure containing the new RT priority.
5fe1d75f 4255 *
72fd4a35 4256 * NOTE that the task may be already dead.
1da177e4 4257 */
95cdf3b7
IM
4258int sched_setscheduler(struct task_struct *p, int policy,
4259 struct sched_param *param)
1da177e4 4260{
83b699ed 4261 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4262 unsigned long flags;
cb469845 4263 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4264 struct rq *rq;
1da177e4 4265
66e5393a
SR
4266 /* may grab non-irq protected spin_locks */
4267 BUG_ON(in_interrupt());
1da177e4
LT
4268recheck:
4269 /* double check policy once rq lock held */
4270 if (policy < 0)
4271 policy = oldpolicy = p->policy;
4272 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4273 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4274 policy != SCHED_IDLE)
b0a9499c 4275 return -EINVAL;
1da177e4
LT
4276 /*
4277 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4278 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4279 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4280 */
4281 if (param->sched_priority < 0 ||
95cdf3b7 4282 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4283 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4284 return -EINVAL;
e05606d3 4285 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4286 return -EINVAL;
4287
37e4ab3f
OC
4288 /*
4289 * Allow unprivileged RT tasks to decrease priority:
4290 */
4291 if (!capable(CAP_SYS_NICE)) {
e05606d3 4292 if (rt_policy(policy)) {
8dc3e909 4293 unsigned long rlim_rtprio;
8dc3e909
ON
4294
4295 if (!lock_task_sighand(p, &flags))
4296 return -ESRCH;
4297 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4298 unlock_task_sighand(p, &flags);
4299
4300 /* can't set/change the rt policy */
4301 if (policy != p->policy && !rlim_rtprio)
4302 return -EPERM;
4303
4304 /* can't increase priority */
4305 if (param->sched_priority > p->rt_priority &&
4306 param->sched_priority > rlim_rtprio)
4307 return -EPERM;
4308 }
dd41f596
IM
4309 /*
4310 * Like positive nice levels, dont allow tasks to
4311 * move out of SCHED_IDLE either:
4312 */
4313 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4314 return -EPERM;
5fe1d75f 4315
37e4ab3f
OC
4316 /* can't change other user's priorities */
4317 if ((current->euid != p->euid) &&
4318 (current->euid != p->uid))
4319 return -EPERM;
4320 }
1da177e4
LT
4321
4322 retval = security_task_setscheduler(p, policy, param);
4323 if (retval)
4324 return retval;
b29739f9
IM
4325 /*
4326 * make sure no PI-waiters arrive (or leave) while we are
4327 * changing the priority of the task:
4328 */
4329 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4330 /*
4331 * To be able to change p->policy safely, the apropriate
4332 * runqueue lock must be held.
4333 */
b29739f9 4334 rq = __task_rq_lock(p);
1da177e4
LT
4335 /* recheck policy now with rq lock held */
4336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4337 policy = oldpolicy = -1;
b29739f9
IM
4338 __task_rq_unlock(rq);
4339 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4340 goto recheck;
4341 }
2daa3577 4342 update_rq_clock(rq);
dd41f596 4343 on_rq = p->se.on_rq;
051a1d1a 4344 running = task_current(rq, p);
83b699ed 4345 if (on_rq) {
2e1cb74a 4346 deactivate_task(rq, p, 0);
83b699ed
SV
4347 if (running)
4348 p->sched_class->put_prev_task(rq, p);
4349 }
f6b53205 4350
1da177e4 4351 oldprio = p->prio;
dd41f596 4352 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4353
dd41f596 4354 if (on_rq) {
83b699ed
SV
4355 if (running)
4356 p->sched_class->set_curr_task(rq);
cb469845 4357
dd41f596 4358 activate_task(rq, p, 0);
cb469845
SR
4359
4360 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4361 }
b29739f9
IM
4362 __task_rq_unlock(rq);
4363 spin_unlock_irqrestore(&p->pi_lock, flags);
4364
95e02ca9
TG
4365 rt_mutex_adjust_pi(p);
4366
1da177e4
LT
4367 return 0;
4368}
4369EXPORT_SYMBOL_GPL(sched_setscheduler);
4370
95cdf3b7
IM
4371static int
4372do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4373{
1da177e4
LT
4374 struct sched_param lparam;
4375 struct task_struct *p;
36c8b586 4376 int retval;
1da177e4
LT
4377
4378 if (!param || pid < 0)
4379 return -EINVAL;
4380 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4381 return -EFAULT;
5fe1d75f
ON
4382
4383 rcu_read_lock();
4384 retval = -ESRCH;
1da177e4 4385 p = find_process_by_pid(pid);
5fe1d75f
ON
4386 if (p != NULL)
4387 retval = sched_setscheduler(p, policy, &lparam);
4388 rcu_read_unlock();
36c8b586 4389
1da177e4
LT
4390 return retval;
4391}
4392
4393/**
4394 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4395 * @pid: the pid in question.
4396 * @policy: new policy.
4397 * @param: structure containing the new RT priority.
4398 */
41a2d6cf
IM
4399asmlinkage long
4400sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4401{
c21761f1
JB
4402 /* negative values for policy are not valid */
4403 if (policy < 0)
4404 return -EINVAL;
4405
1da177e4
LT
4406 return do_sched_setscheduler(pid, policy, param);
4407}
4408
4409/**
4410 * sys_sched_setparam - set/change the RT priority of a thread
4411 * @pid: the pid in question.
4412 * @param: structure containing the new RT priority.
4413 */
4414asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4415{
4416 return do_sched_setscheduler(pid, -1, param);
4417}
4418
4419/**
4420 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4421 * @pid: the pid in question.
4422 */
4423asmlinkage long sys_sched_getscheduler(pid_t pid)
4424{
36c8b586 4425 struct task_struct *p;
3a5c359a 4426 int retval;
1da177e4
LT
4427
4428 if (pid < 0)
3a5c359a 4429 return -EINVAL;
1da177e4
LT
4430
4431 retval = -ESRCH;
4432 read_lock(&tasklist_lock);
4433 p = find_process_by_pid(pid);
4434 if (p) {
4435 retval = security_task_getscheduler(p);
4436 if (!retval)
4437 retval = p->policy;
4438 }
4439 read_unlock(&tasklist_lock);
1da177e4
LT
4440 return retval;
4441}
4442
4443/**
4444 * sys_sched_getscheduler - get the RT priority of a thread
4445 * @pid: the pid in question.
4446 * @param: structure containing the RT priority.
4447 */
4448asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4449{
4450 struct sched_param lp;
36c8b586 4451 struct task_struct *p;
3a5c359a 4452 int retval;
1da177e4
LT
4453
4454 if (!param || pid < 0)
3a5c359a 4455 return -EINVAL;
1da177e4
LT
4456
4457 read_lock(&tasklist_lock);
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 lp.sched_priority = p->rt_priority;
4468 read_unlock(&tasklist_lock);
4469
4470 /*
4471 * This one might sleep, we cannot do it with a spinlock held ...
4472 */
4473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4474
1da177e4
LT
4475 return retval;
4476
4477out_unlock:
4478 read_unlock(&tasklist_lock);
4479 return retval;
4480}
4481
4482long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4483{
1da177e4 4484 cpumask_t cpus_allowed;
36c8b586
IM
4485 struct task_struct *p;
4486 int retval;
1da177e4 4487
95402b38 4488 get_online_cpus();
1da177e4
LT
4489 read_lock(&tasklist_lock);
4490
4491 p = find_process_by_pid(pid);
4492 if (!p) {
4493 read_unlock(&tasklist_lock);
95402b38 4494 put_online_cpus();
1da177e4
LT
4495 return -ESRCH;
4496 }
4497
4498 /*
4499 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4500 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4501 * usage count and then drop tasklist_lock.
4502 */
4503 get_task_struct(p);
4504 read_unlock(&tasklist_lock);
4505
4506 retval = -EPERM;
4507 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4508 !capable(CAP_SYS_NICE))
4509 goto out_unlock;
4510
e7834f8f
DQ
4511 retval = security_task_setscheduler(p, 0, NULL);
4512 if (retval)
4513 goto out_unlock;
4514
1da177e4
LT
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4517 again:
1da177e4
LT
4518 retval = set_cpus_allowed(p, new_mask);
4519
8707d8b8
PM
4520 if (!retval) {
4521 cpus_allowed = cpuset_cpus_allowed(p);
4522 if (!cpus_subset(new_mask, cpus_allowed)) {
4523 /*
4524 * We must have raced with a concurrent cpuset
4525 * update. Just reset the cpus_allowed to the
4526 * cpuset's cpus_allowed
4527 */
4528 new_mask = cpus_allowed;
4529 goto again;
4530 }
4531 }
1da177e4
LT
4532out_unlock:
4533 put_task_struct(p);
95402b38 4534 put_online_cpus();
1da177e4
LT
4535 return retval;
4536}
4537
4538static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4539 cpumask_t *new_mask)
4540{
4541 if (len < sizeof(cpumask_t)) {
4542 memset(new_mask, 0, sizeof(cpumask_t));
4543 } else if (len > sizeof(cpumask_t)) {
4544 len = sizeof(cpumask_t);
4545 }
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4547}
4548
4549/**
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
4554 */
4555asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4556 unsigned long __user *user_mask_ptr)
4557{
4558 cpumask_t new_mask;
4559 int retval;
4560
4561 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4562 if (retval)
4563 return retval;
4564
4565 return sched_setaffinity(pid, new_mask);
4566}
4567
4568/*
4569 * Represents all cpu's present in the system
4570 * In systems capable of hotplug, this map could dynamically grow
4571 * as new cpu's are detected in the system via any platform specific
4572 * method, such as ACPI for e.g.
4573 */
4574
4cef0c61 4575cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4576EXPORT_SYMBOL(cpu_present_map);
4577
4578#ifndef CONFIG_SMP
4cef0c61 4579cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4580EXPORT_SYMBOL(cpu_online_map);
4581
4cef0c61 4582cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4583EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4584#endif
4585
4586long sched_getaffinity(pid_t pid, cpumask_t *mask)
4587{
36c8b586 4588 struct task_struct *p;
1da177e4 4589 int retval;
1da177e4 4590
95402b38 4591 get_online_cpus();
1da177e4
LT
4592 read_lock(&tasklist_lock);
4593
4594 retval = -ESRCH;
4595 p = find_process_by_pid(pid);
4596 if (!p)
4597 goto out_unlock;
4598
e7834f8f
DQ
4599 retval = security_task_getscheduler(p);
4600 if (retval)
4601 goto out_unlock;
4602
2f7016d9 4603 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4604
4605out_unlock:
4606 read_unlock(&tasklist_lock);
95402b38 4607 put_online_cpus();
1da177e4 4608
9531b62f 4609 return retval;
1da177e4
LT
4610}
4611
4612/**
4613 * sys_sched_getaffinity - get the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4617 */
4618asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4619 unsigned long __user *user_mask_ptr)
4620{
4621 int ret;
4622 cpumask_t mask;
4623
4624 if (len < sizeof(cpumask_t))
4625 return -EINVAL;
4626
4627 ret = sched_getaffinity(pid, &mask);
4628 if (ret < 0)
4629 return ret;
4630
4631 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4632 return -EFAULT;
4633
4634 return sizeof(cpumask_t);
4635}
4636
4637/**
4638 * sys_sched_yield - yield the current processor to other threads.
4639 *
dd41f596
IM
4640 * This function yields the current CPU to other tasks. If there are no
4641 * other threads running on this CPU then this function will return.
1da177e4
LT
4642 */
4643asmlinkage long sys_sched_yield(void)
4644{
70b97a7f 4645 struct rq *rq = this_rq_lock();
1da177e4 4646
2d72376b 4647 schedstat_inc(rq, yld_count);
4530d7ab 4648 current->sched_class->yield_task(rq);
1da177e4
LT
4649
4650 /*
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4653 */
4654 __release(rq->lock);
8a25d5de 4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4656 _raw_spin_unlock(&rq->lock);
4657 preempt_enable_no_resched();
4658
4659 schedule();
4660
4661 return 0;
4662}
4663
e7b38404 4664static void __cond_resched(void)
1da177e4 4665{
8e0a43d8
IM
4666#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4667 __might_sleep(__FILE__, __LINE__);
4668#endif
5bbcfd90
IM
4669 /*
4670 * The BKS might be reacquired before we have dropped
4671 * PREEMPT_ACTIVE, which could trigger a second
4672 * cond_resched() call.
4673 */
1da177e4
LT
4674 do {
4675 add_preempt_count(PREEMPT_ACTIVE);
4676 schedule();
4677 sub_preempt_count(PREEMPT_ACTIVE);
4678 } while (need_resched());
4679}
4680
02b67cc3
HX
4681#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4682int __sched _cond_resched(void)
1da177e4 4683{
9414232f
IM
4684 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4685 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4686 __cond_resched();
4687 return 1;
4688 }
4689 return 0;
4690}
02b67cc3
HX
4691EXPORT_SYMBOL(_cond_resched);
4692#endif
1da177e4
LT
4693
4694/*
4695 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4696 * call schedule, and on return reacquire the lock.
4697 *
41a2d6cf 4698 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4699 * operations here to prevent schedule() from being called twice (once via
4700 * spin_unlock(), once by hand).
4701 */
95cdf3b7 4702int cond_resched_lock(spinlock_t *lock)
1da177e4 4703{
6df3cecb
JK
4704 int ret = 0;
4705
1da177e4
LT
4706 if (need_lockbreak(lock)) {
4707 spin_unlock(lock);
4708 cpu_relax();
6df3cecb 4709 ret = 1;
1da177e4
LT
4710 spin_lock(lock);
4711 }
9414232f 4712 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4713 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4714 _raw_spin_unlock(lock);
4715 preempt_enable_no_resched();
4716 __cond_resched();
6df3cecb 4717 ret = 1;
1da177e4 4718 spin_lock(lock);
1da177e4 4719 }
6df3cecb 4720 return ret;
1da177e4 4721}
1da177e4
LT
4722EXPORT_SYMBOL(cond_resched_lock);
4723
4724int __sched cond_resched_softirq(void)
4725{
4726 BUG_ON(!in_softirq());
4727
9414232f 4728 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4729 local_bh_enable();
1da177e4
LT
4730 __cond_resched();
4731 local_bh_disable();
4732 return 1;
4733 }
4734 return 0;
4735}
1da177e4
LT
4736EXPORT_SYMBOL(cond_resched_softirq);
4737
1da177e4
LT
4738/**
4739 * yield - yield the current processor to other threads.
4740 *
72fd4a35 4741 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4742 * thread runnable and calls sys_sched_yield().
4743 */
4744void __sched yield(void)
4745{
4746 set_current_state(TASK_RUNNING);
4747 sys_sched_yield();
4748}
1da177e4
LT
4749EXPORT_SYMBOL(yield);
4750
4751/*
41a2d6cf 4752 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4753 * that process accounting knows that this is a task in IO wait state.
4754 *
4755 * But don't do that if it is a deliberate, throttling IO wait (this task
4756 * has set its backing_dev_info: the queue against which it should throttle)
4757 */
4758void __sched io_schedule(void)
4759{
70b97a7f 4760 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4761
0ff92245 4762 delayacct_blkio_start();
1da177e4
LT
4763 atomic_inc(&rq->nr_iowait);
4764 schedule();
4765 atomic_dec(&rq->nr_iowait);
0ff92245 4766 delayacct_blkio_end();
1da177e4 4767}
1da177e4
LT
4768EXPORT_SYMBOL(io_schedule);
4769
4770long __sched io_schedule_timeout(long timeout)
4771{
70b97a7f 4772 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4773 long ret;
4774
0ff92245 4775 delayacct_blkio_start();
1da177e4
LT
4776 atomic_inc(&rq->nr_iowait);
4777 ret = schedule_timeout(timeout);
4778 atomic_dec(&rq->nr_iowait);
0ff92245 4779 delayacct_blkio_end();
1da177e4
LT
4780 return ret;
4781}
4782
4783/**
4784 * sys_sched_get_priority_max - return maximum RT priority.
4785 * @policy: scheduling class.
4786 *
4787 * this syscall returns the maximum rt_priority that can be used
4788 * by a given scheduling class.
4789 */
4790asmlinkage long sys_sched_get_priority_max(int policy)
4791{
4792 int ret = -EINVAL;
4793
4794 switch (policy) {
4795 case SCHED_FIFO:
4796 case SCHED_RR:
4797 ret = MAX_USER_RT_PRIO-1;
4798 break;
4799 case SCHED_NORMAL:
b0a9499c 4800 case SCHED_BATCH:
dd41f596 4801 case SCHED_IDLE:
1da177e4
LT
4802 ret = 0;
4803 break;
4804 }
4805 return ret;
4806}
4807
4808/**
4809 * sys_sched_get_priority_min - return minimum RT priority.
4810 * @policy: scheduling class.
4811 *
4812 * this syscall returns the minimum rt_priority that can be used
4813 * by a given scheduling class.
4814 */
4815asmlinkage long sys_sched_get_priority_min(int policy)
4816{
4817 int ret = -EINVAL;
4818
4819 switch (policy) {
4820 case SCHED_FIFO:
4821 case SCHED_RR:
4822 ret = 1;
4823 break;
4824 case SCHED_NORMAL:
b0a9499c 4825 case SCHED_BATCH:
dd41f596 4826 case SCHED_IDLE:
1da177e4
LT
4827 ret = 0;
4828 }
4829 return ret;
4830}
4831
4832/**
4833 * sys_sched_rr_get_interval - return the default timeslice of a process.
4834 * @pid: pid of the process.
4835 * @interval: userspace pointer to the timeslice value.
4836 *
4837 * this syscall writes the default timeslice value of a given process
4838 * into the user-space timespec buffer. A value of '0' means infinity.
4839 */
4840asmlinkage
4841long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4842{
36c8b586 4843 struct task_struct *p;
a4ec24b4 4844 unsigned int time_slice;
3a5c359a 4845 int retval;
1da177e4 4846 struct timespec t;
1da177e4
LT
4847
4848 if (pid < 0)
3a5c359a 4849 return -EINVAL;
1da177e4
LT
4850
4851 retval = -ESRCH;
4852 read_lock(&tasklist_lock);
4853 p = find_process_by_pid(pid);
4854 if (!p)
4855 goto out_unlock;
4856
4857 retval = security_task_getscheduler(p);
4858 if (retval)
4859 goto out_unlock;
4860
77034937
IM
4861 /*
4862 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4863 * tasks that are on an otherwise idle runqueue:
4864 */
4865 time_slice = 0;
4866 if (p->policy == SCHED_RR) {
a4ec24b4 4867 time_slice = DEF_TIMESLICE;
77034937 4868 } else {
a4ec24b4
DA
4869 struct sched_entity *se = &p->se;
4870 unsigned long flags;
4871 struct rq *rq;
4872
4873 rq = task_rq_lock(p, &flags);
77034937
IM
4874 if (rq->cfs.load.weight)
4875 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4876 task_rq_unlock(rq, &flags);
4877 }
1da177e4 4878 read_unlock(&tasklist_lock);
a4ec24b4 4879 jiffies_to_timespec(time_slice, &t);
1da177e4 4880 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4881 return retval;
3a5c359a 4882
1da177e4
LT
4883out_unlock:
4884 read_unlock(&tasklist_lock);
4885 return retval;
4886}
4887
2ed6e34f 4888static const char stat_nam[] = "RSDTtZX";
36c8b586 4889
82a1fcb9 4890void sched_show_task(struct task_struct *p)
1da177e4 4891{
1da177e4 4892 unsigned long free = 0;
36c8b586 4893 unsigned state;
1da177e4 4894
1da177e4 4895 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4896 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4897 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4898#if BITS_PER_LONG == 32
1da177e4 4899 if (state == TASK_RUNNING)
cc4ea795 4900 printk(KERN_CONT " running ");
1da177e4 4901 else
cc4ea795 4902 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4903#else
4904 if (state == TASK_RUNNING)
cc4ea795 4905 printk(KERN_CONT " running task ");
1da177e4 4906 else
cc4ea795 4907 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4908#endif
4909#ifdef CONFIG_DEBUG_STACK_USAGE
4910 {
10ebffde 4911 unsigned long *n = end_of_stack(p);
1da177e4
LT
4912 while (!*n)
4913 n++;
10ebffde 4914 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4915 }
4916#endif
ba25f9dc 4917 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4918 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4919
4920 if (state != TASK_RUNNING)
4921 show_stack(p, NULL);
4922}
4923
e59e2ae2 4924void show_state_filter(unsigned long state_filter)
1da177e4 4925{
36c8b586 4926 struct task_struct *g, *p;
1da177e4 4927
4bd77321
IM
4928#if BITS_PER_LONG == 32
4929 printk(KERN_INFO
4930 " task PC stack pid father\n");
1da177e4 4931#else
4bd77321
IM
4932 printk(KERN_INFO
4933 " task PC stack pid father\n");
1da177e4
LT
4934#endif
4935 read_lock(&tasklist_lock);
4936 do_each_thread(g, p) {
4937 /*
4938 * reset the NMI-timeout, listing all files on a slow
4939 * console might take alot of time:
4940 */
4941 touch_nmi_watchdog();
39bc89fd 4942 if (!state_filter || (p->state & state_filter))
82a1fcb9 4943 sched_show_task(p);
1da177e4
LT
4944 } while_each_thread(g, p);
4945
04c9167f
JF
4946 touch_all_softlockup_watchdogs();
4947
dd41f596
IM
4948#ifdef CONFIG_SCHED_DEBUG
4949 sysrq_sched_debug_show();
4950#endif
1da177e4 4951 read_unlock(&tasklist_lock);
e59e2ae2
IM
4952 /*
4953 * Only show locks if all tasks are dumped:
4954 */
4955 if (state_filter == -1)
4956 debug_show_all_locks();
1da177e4
LT
4957}
4958
1df21055
IM
4959void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4960{
dd41f596 4961 idle->sched_class = &idle_sched_class;
1df21055
IM
4962}
4963
f340c0d1
IM
4964/**
4965 * init_idle - set up an idle thread for a given CPU
4966 * @idle: task in question
4967 * @cpu: cpu the idle task belongs to
4968 *
4969 * NOTE: this function does not set the idle thread's NEED_RESCHED
4970 * flag, to make booting more robust.
4971 */
5c1e1767 4972void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4973{
70b97a7f 4974 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4975 unsigned long flags;
4976
dd41f596
IM
4977 __sched_fork(idle);
4978 idle->se.exec_start = sched_clock();
4979
b29739f9 4980 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4981 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4982 __set_task_cpu(idle, cpu);
1da177e4
LT
4983
4984 spin_lock_irqsave(&rq->lock, flags);
4985 rq->curr = rq->idle = idle;
4866cde0
NP
4986#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4987 idle->oncpu = 1;
4988#endif
1da177e4
LT
4989 spin_unlock_irqrestore(&rq->lock, flags);
4990
4991 /* Set the preempt count _outside_ the spinlocks! */
4992#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4993 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4994#else
a1261f54 4995 task_thread_info(idle)->preempt_count = 0;
1da177e4 4996#endif
dd41f596
IM
4997 /*
4998 * The idle tasks have their own, simple scheduling class:
4999 */
5000 idle->sched_class = &idle_sched_class;
1da177e4
LT
5001}
5002
5003/*
5004 * In a system that switches off the HZ timer nohz_cpu_mask
5005 * indicates which cpus entered this state. This is used
5006 * in the rcu update to wait only for active cpus. For system
5007 * which do not switch off the HZ timer nohz_cpu_mask should
5008 * always be CPU_MASK_NONE.
5009 */
5010cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5011
19978ca6
IM
5012/*
5013 * Increase the granularity value when there are more CPUs,
5014 * because with more CPUs the 'effective latency' as visible
5015 * to users decreases. But the relationship is not linear,
5016 * so pick a second-best guess by going with the log2 of the
5017 * number of CPUs.
5018 *
5019 * This idea comes from the SD scheduler of Con Kolivas:
5020 */
5021static inline void sched_init_granularity(void)
5022{
5023 unsigned int factor = 1 + ilog2(num_online_cpus());
5024 const unsigned long limit = 200000000;
5025
5026 sysctl_sched_min_granularity *= factor;
5027 if (sysctl_sched_min_granularity > limit)
5028 sysctl_sched_min_granularity = limit;
5029
5030 sysctl_sched_latency *= factor;
5031 if (sysctl_sched_latency > limit)
5032 sysctl_sched_latency = limit;
5033
5034 sysctl_sched_wakeup_granularity *= factor;
5035 sysctl_sched_batch_wakeup_granularity *= factor;
5036}
5037
1da177e4
LT
5038#ifdef CONFIG_SMP
5039/*
5040 * This is how migration works:
5041 *
70b97a7f 5042 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5043 * runqueue and wake up that CPU's migration thread.
5044 * 2) we down() the locked semaphore => thread blocks.
5045 * 3) migration thread wakes up (implicitly it forces the migrated
5046 * thread off the CPU)
5047 * 4) it gets the migration request and checks whether the migrated
5048 * task is still in the wrong runqueue.
5049 * 5) if it's in the wrong runqueue then the migration thread removes
5050 * it and puts it into the right queue.
5051 * 6) migration thread up()s the semaphore.
5052 * 7) we wake up and the migration is done.
5053 */
5054
5055/*
5056 * Change a given task's CPU affinity. Migrate the thread to a
5057 * proper CPU and schedule it away if the CPU it's executing on
5058 * is removed from the allowed bitmask.
5059 *
5060 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5061 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5062 * call is not atomic; no spinlocks may be held.
5063 */
36c8b586 5064int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5065{
70b97a7f 5066 struct migration_req req;
1da177e4 5067 unsigned long flags;
70b97a7f 5068 struct rq *rq;
48f24c4d 5069 int ret = 0;
1da177e4
LT
5070
5071 rq = task_rq_lock(p, &flags);
5072 if (!cpus_intersects(new_mask, cpu_online_map)) {
5073 ret = -EINVAL;
5074 goto out;
5075 }
5076
73fe6aae
GH
5077 if (p->sched_class->set_cpus_allowed)
5078 p->sched_class->set_cpus_allowed(p, &new_mask);
5079 else {
0eab9146 5080 p->cpus_allowed = new_mask;
73fe6aae
GH
5081 p->nr_cpus_allowed = cpus_weight(new_mask);
5082 }
5083
1da177e4
LT
5084 /* Can the task run on the task's current CPU? If so, we're done */
5085 if (cpu_isset(task_cpu(p), new_mask))
5086 goto out;
5087
5088 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5089 /* Need help from migration thread: drop lock and wait. */
5090 task_rq_unlock(rq, &flags);
5091 wake_up_process(rq->migration_thread);
5092 wait_for_completion(&req.done);
5093 tlb_migrate_finish(p->mm);
5094 return 0;
5095 }
5096out:
5097 task_rq_unlock(rq, &flags);
48f24c4d 5098
1da177e4
LT
5099 return ret;
5100}
1da177e4
LT
5101EXPORT_SYMBOL_GPL(set_cpus_allowed);
5102
5103/*
41a2d6cf 5104 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5105 * this because either it can't run here any more (set_cpus_allowed()
5106 * away from this CPU, or CPU going down), or because we're
5107 * attempting to rebalance this task on exec (sched_exec).
5108 *
5109 * So we race with normal scheduler movements, but that's OK, as long
5110 * as the task is no longer on this CPU.
efc30814
KK
5111 *
5112 * Returns non-zero if task was successfully migrated.
1da177e4 5113 */
efc30814 5114static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5115{
70b97a7f 5116 struct rq *rq_dest, *rq_src;
dd41f596 5117 int ret = 0, on_rq;
1da177e4
LT
5118
5119 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5120 return ret;
1da177e4
LT
5121
5122 rq_src = cpu_rq(src_cpu);
5123 rq_dest = cpu_rq(dest_cpu);
5124
5125 double_rq_lock(rq_src, rq_dest);
5126 /* Already moved. */
5127 if (task_cpu(p) != src_cpu)
5128 goto out;
5129 /* Affinity changed (again). */
5130 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5131 goto out;
5132
dd41f596 5133 on_rq = p->se.on_rq;
6e82a3be 5134 if (on_rq)
2e1cb74a 5135 deactivate_task(rq_src, p, 0);
6e82a3be 5136
1da177e4 5137 set_task_cpu(p, dest_cpu);
dd41f596
IM
5138 if (on_rq) {
5139 activate_task(rq_dest, p, 0);
5140 check_preempt_curr(rq_dest, p);
1da177e4 5141 }
efc30814 5142 ret = 1;
1da177e4
LT
5143out:
5144 double_rq_unlock(rq_src, rq_dest);
efc30814 5145 return ret;
1da177e4
LT
5146}
5147
5148/*
5149 * migration_thread - this is a highprio system thread that performs
5150 * thread migration by bumping thread off CPU then 'pushing' onto
5151 * another runqueue.
5152 */
95cdf3b7 5153static int migration_thread(void *data)
1da177e4 5154{
1da177e4 5155 int cpu = (long)data;
70b97a7f 5156 struct rq *rq;
1da177e4
LT
5157
5158 rq = cpu_rq(cpu);
5159 BUG_ON(rq->migration_thread != current);
5160
5161 set_current_state(TASK_INTERRUPTIBLE);
5162 while (!kthread_should_stop()) {
70b97a7f 5163 struct migration_req *req;
1da177e4 5164 struct list_head *head;
1da177e4 5165
1da177e4
LT
5166 spin_lock_irq(&rq->lock);
5167
5168 if (cpu_is_offline(cpu)) {
5169 spin_unlock_irq(&rq->lock);
5170 goto wait_to_die;
5171 }
5172
5173 if (rq->active_balance) {
5174 active_load_balance(rq, cpu);
5175 rq->active_balance = 0;
5176 }
5177
5178 head = &rq->migration_queue;
5179
5180 if (list_empty(head)) {
5181 spin_unlock_irq(&rq->lock);
5182 schedule();
5183 set_current_state(TASK_INTERRUPTIBLE);
5184 continue;
5185 }
70b97a7f 5186 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5187 list_del_init(head->next);
5188
674311d5
NP
5189 spin_unlock(&rq->lock);
5190 __migrate_task(req->task, cpu, req->dest_cpu);
5191 local_irq_enable();
1da177e4
LT
5192
5193 complete(&req->done);
5194 }
5195 __set_current_state(TASK_RUNNING);
5196 return 0;
5197
5198wait_to_die:
5199 /* Wait for kthread_stop */
5200 set_current_state(TASK_INTERRUPTIBLE);
5201 while (!kthread_should_stop()) {
5202 schedule();
5203 set_current_state(TASK_INTERRUPTIBLE);
5204 }
5205 __set_current_state(TASK_RUNNING);
5206 return 0;
5207}
5208
5209#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5210
5211static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5212{
5213 int ret;
5214
5215 local_irq_disable();
5216 ret = __migrate_task(p, src_cpu, dest_cpu);
5217 local_irq_enable();
5218 return ret;
5219}
5220
054b9108 5221/*
3a4fa0a2 5222 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5223 * NOTE: interrupts should be disabled by the caller
5224 */
48f24c4d 5225static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5226{
efc30814 5227 unsigned long flags;
1da177e4 5228 cpumask_t mask;
70b97a7f
IM
5229 struct rq *rq;
5230 int dest_cpu;
1da177e4 5231
3a5c359a
AK
5232 do {
5233 /* On same node? */
5234 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5235 cpus_and(mask, mask, p->cpus_allowed);
5236 dest_cpu = any_online_cpu(mask);
5237
5238 /* On any allowed CPU? */
5239 if (dest_cpu == NR_CPUS)
5240 dest_cpu = any_online_cpu(p->cpus_allowed);
5241
5242 /* No more Mr. Nice Guy. */
5243 if (dest_cpu == NR_CPUS) {
470fd646
CW
5244 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5245 /*
5246 * Try to stay on the same cpuset, where the
5247 * current cpuset may be a subset of all cpus.
5248 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5249 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5250 * called within calls to cpuset_lock/cpuset_unlock.
5251 */
3a5c359a 5252 rq = task_rq_lock(p, &flags);
470fd646 5253 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5254 dest_cpu = any_online_cpu(p->cpus_allowed);
5255 task_rq_unlock(rq, &flags);
1da177e4 5256
3a5c359a
AK
5257 /*
5258 * Don't tell them about moving exiting tasks or
5259 * kernel threads (both mm NULL), since they never
5260 * leave kernel.
5261 */
41a2d6cf 5262 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5263 printk(KERN_INFO "process %d (%s) no "
5264 "longer affine to cpu%d\n",
41a2d6cf
IM
5265 task_pid_nr(p), p->comm, dead_cpu);
5266 }
3a5c359a 5267 }
f7b4cddc 5268 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5269}
5270
5271/*
5272 * While a dead CPU has no uninterruptible tasks queued at this point,
5273 * it might still have a nonzero ->nr_uninterruptible counter, because
5274 * for performance reasons the counter is not stricly tracking tasks to
5275 * their home CPUs. So we just add the counter to another CPU's counter,
5276 * to keep the global sum constant after CPU-down:
5277 */
70b97a7f 5278static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5279{
70b97a7f 5280 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5281 unsigned long flags;
5282
5283 local_irq_save(flags);
5284 double_rq_lock(rq_src, rq_dest);
5285 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5286 rq_src->nr_uninterruptible = 0;
5287 double_rq_unlock(rq_src, rq_dest);
5288 local_irq_restore(flags);
5289}
5290
5291/* Run through task list and migrate tasks from the dead cpu. */
5292static void migrate_live_tasks(int src_cpu)
5293{
48f24c4d 5294 struct task_struct *p, *t;
1da177e4 5295
f7b4cddc 5296 read_lock(&tasklist_lock);
1da177e4 5297
48f24c4d
IM
5298 do_each_thread(t, p) {
5299 if (p == current)
1da177e4
LT
5300 continue;
5301
48f24c4d
IM
5302 if (task_cpu(p) == src_cpu)
5303 move_task_off_dead_cpu(src_cpu, p);
5304 } while_each_thread(t, p);
1da177e4 5305
f7b4cddc 5306 read_unlock(&tasklist_lock);
1da177e4
LT
5307}
5308
dd41f596
IM
5309/*
5310 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5311 * It does so by boosting its priority to highest possible.
5312 * Used by CPU offline code.
1da177e4
LT
5313 */
5314void sched_idle_next(void)
5315{
48f24c4d 5316 int this_cpu = smp_processor_id();
70b97a7f 5317 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5318 struct task_struct *p = rq->idle;
5319 unsigned long flags;
5320
5321 /* cpu has to be offline */
48f24c4d 5322 BUG_ON(cpu_online(this_cpu));
1da177e4 5323
48f24c4d
IM
5324 /*
5325 * Strictly not necessary since rest of the CPUs are stopped by now
5326 * and interrupts disabled on the current cpu.
1da177e4
LT
5327 */
5328 spin_lock_irqsave(&rq->lock, flags);
5329
dd41f596 5330 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5331
94bc9a7b
DA
5332 update_rq_clock(rq);
5333 activate_task(rq, p, 0);
1da177e4
LT
5334
5335 spin_unlock_irqrestore(&rq->lock, flags);
5336}
5337
48f24c4d
IM
5338/*
5339 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5340 * offline.
5341 */
5342void idle_task_exit(void)
5343{
5344 struct mm_struct *mm = current->active_mm;
5345
5346 BUG_ON(cpu_online(smp_processor_id()));
5347
5348 if (mm != &init_mm)
5349 switch_mm(mm, &init_mm, current);
5350 mmdrop(mm);
5351}
5352
054b9108 5353/* called under rq->lock with disabled interrupts */
36c8b586 5354static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5355{
70b97a7f 5356 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5357
5358 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5359 BUG_ON(!p->exit_state);
1da177e4
LT
5360
5361 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5362 BUG_ON(p->state == TASK_DEAD);
1da177e4 5363
48f24c4d 5364 get_task_struct(p);
1da177e4
LT
5365
5366 /*
5367 * Drop lock around migration; if someone else moves it,
41a2d6cf 5368 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5369 * fine.
5370 */
f7b4cddc 5371 spin_unlock_irq(&rq->lock);
48f24c4d 5372 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5373 spin_lock_irq(&rq->lock);
1da177e4 5374
48f24c4d 5375 put_task_struct(p);
1da177e4
LT
5376}
5377
5378/* release_task() removes task from tasklist, so we won't find dead tasks. */
5379static void migrate_dead_tasks(unsigned int dead_cpu)
5380{
70b97a7f 5381 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5382 struct task_struct *next;
48f24c4d 5383
dd41f596
IM
5384 for ( ; ; ) {
5385 if (!rq->nr_running)
5386 break;
a8e504d2 5387 update_rq_clock(rq);
ff95f3df 5388 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5389 if (!next)
5390 break;
5391 migrate_dead(dead_cpu, next);
e692ab53 5392
1da177e4
LT
5393 }
5394}
5395#endif /* CONFIG_HOTPLUG_CPU */
5396
e692ab53
NP
5397#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5398
5399static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5400 {
5401 .procname = "sched_domain",
c57baf1e 5402 .mode = 0555,
e0361851 5403 },
38605cae 5404 {0, },
e692ab53
NP
5405};
5406
5407static struct ctl_table sd_ctl_root[] = {
e0361851 5408 {
c57baf1e 5409 .ctl_name = CTL_KERN,
e0361851 5410 .procname = "kernel",
c57baf1e 5411 .mode = 0555,
e0361851
AD
5412 .child = sd_ctl_dir,
5413 },
38605cae 5414 {0, },
e692ab53
NP
5415};
5416
5417static struct ctl_table *sd_alloc_ctl_entry(int n)
5418{
5419 struct ctl_table *entry =
5cf9f062 5420 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5421
e692ab53
NP
5422 return entry;
5423}
5424
6382bc90
MM
5425static void sd_free_ctl_entry(struct ctl_table **tablep)
5426{
cd790076 5427 struct ctl_table *entry;
6382bc90 5428
cd790076
MM
5429 /*
5430 * In the intermediate directories, both the child directory and
5431 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5432 * will always be set. In the lowest directory the names are
cd790076
MM
5433 * static strings and all have proc handlers.
5434 */
5435 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5436 if (entry->child)
5437 sd_free_ctl_entry(&entry->child);
cd790076
MM
5438 if (entry->proc_handler == NULL)
5439 kfree(entry->procname);
5440 }
6382bc90
MM
5441
5442 kfree(*tablep);
5443 *tablep = NULL;
5444}
5445
e692ab53 5446static void
e0361851 5447set_table_entry(struct ctl_table *entry,
e692ab53
NP
5448 const char *procname, void *data, int maxlen,
5449 mode_t mode, proc_handler *proc_handler)
5450{
e692ab53
NP
5451 entry->procname = procname;
5452 entry->data = data;
5453 entry->maxlen = maxlen;
5454 entry->mode = mode;
5455 entry->proc_handler = proc_handler;
5456}
5457
5458static struct ctl_table *
5459sd_alloc_ctl_domain_table(struct sched_domain *sd)
5460{
ace8b3d6 5461 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5462
ad1cdc1d
MM
5463 if (table == NULL)
5464 return NULL;
5465
e0361851 5466 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5467 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5468 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5469 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5470 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5472 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5473 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5474 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5475 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5476 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5477 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5478 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5479 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5480 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5481 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5482 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5483 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5484 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5485 &sd->cache_nice_tries,
5486 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5487 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5488 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5489 /* &table[11] is terminator */
e692ab53
NP
5490
5491 return table;
5492}
5493
9a4e7159 5494static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5495{
5496 struct ctl_table *entry, *table;
5497 struct sched_domain *sd;
5498 int domain_num = 0, i;
5499 char buf[32];
5500
5501 for_each_domain(cpu, sd)
5502 domain_num++;
5503 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5504 if (table == NULL)
5505 return NULL;
e692ab53
NP
5506
5507 i = 0;
5508 for_each_domain(cpu, sd) {
5509 snprintf(buf, 32, "domain%d", i);
e692ab53 5510 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5511 entry->mode = 0555;
e692ab53
NP
5512 entry->child = sd_alloc_ctl_domain_table(sd);
5513 entry++;
5514 i++;
5515 }
5516 return table;
5517}
5518
5519static struct ctl_table_header *sd_sysctl_header;
6382bc90 5520static void register_sched_domain_sysctl(void)
e692ab53
NP
5521{
5522 int i, cpu_num = num_online_cpus();
5523 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5524 char buf[32];
5525
7378547f
MM
5526 WARN_ON(sd_ctl_dir[0].child);
5527 sd_ctl_dir[0].child = entry;
5528
ad1cdc1d
MM
5529 if (entry == NULL)
5530 return;
5531
97b6ea7b 5532 for_each_online_cpu(i) {
e692ab53 5533 snprintf(buf, 32, "cpu%d", i);
e692ab53 5534 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5535 entry->mode = 0555;
e692ab53 5536 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5537 entry++;
e692ab53 5538 }
7378547f
MM
5539
5540 WARN_ON(sd_sysctl_header);
e692ab53
NP
5541 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5542}
6382bc90 5543
7378547f 5544/* may be called multiple times per register */
6382bc90
MM
5545static void unregister_sched_domain_sysctl(void)
5546{
7378547f
MM
5547 if (sd_sysctl_header)
5548 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5549 sd_sysctl_header = NULL;
7378547f
MM
5550 if (sd_ctl_dir[0].child)
5551 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5552}
e692ab53 5553#else
6382bc90
MM
5554static void register_sched_domain_sysctl(void)
5555{
5556}
5557static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5558{
5559}
5560#endif
5561
1da177e4
LT
5562/*
5563 * migration_call - callback that gets triggered when a CPU is added.
5564 * Here we can start up the necessary migration thread for the new CPU.
5565 */
48f24c4d
IM
5566static int __cpuinit
5567migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5568{
1da177e4 5569 struct task_struct *p;
48f24c4d 5570 int cpu = (long)hcpu;
1da177e4 5571 unsigned long flags;
70b97a7f 5572 struct rq *rq;
1da177e4
LT
5573
5574 switch (action) {
5be9361c 5575
1da177e4 5576 case CPU_UP_PREPARE:
8bb78442 5577 case CPU_UP_PREPARE_FROZEN:
dd41f596 5578 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5579 if (IS_ERR(p))
5580 return NOTIFY_BAD;
1da177e4
LT
5581 kthread_bind(p, cpu);
5582 /* Must be high prio: stop_machine expects to yield to it. */
5583 rq = task_rq_lock(p, &flags);
dd41f596 5584 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5585 task_rq_unlock(rq, &flags);
5586 cpu_rq(cpu)->migration_thread = p;
5587 break;
48f24c4d 5588
1da177e4 5589 case CPU_ONLINE:
8bb78442 5590 case CPU_ONLINE_FROZEN:
3a4fa0a2 5591 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5592 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5593
5594 /* Update our root-domain */
5595 rq = cpu_rq(cpu);
5596 spin_lock_irqsave(&rq->lock, flags);
5597 if (rq->rd) {
5598 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5599 cpu_set(cpu, rq->rd->online);
5600 }
5601 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5602 break;
48f24c4d 5603
1da177e4
LT
5604#ifdef CONFIG_HOTPLUG_CPU
5605 case CPU_UP_CANCELED:
8bb78442 5606 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5607 if (!cpu_rq(cpu)->migration_thread)
5608 break;
41a2d6cf 5609 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5610 kthread_bind(cpu_rq(cpu)->migration_thread,
5611 any_online_cpu(cpu_online_map));
1da177e4
LT
5612 kthread_stop(cpu_rq(cpu)->migration_thread);
5613 cpu_rq(cpu)->migration_thread = NULL;
5614 break;
48f24c4d 5615
1da177e4 5616 case CPU_DEAD:
8bb78442 5617 case CPU_DEAD_FROZEN:
470fd646 5618 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5619 migrate_live_tasks(cpu);
5620 rq = cpu_rq(cpu);
5621 kthread_stop(rq->migration_thread);
5622 rq->migration_thread = NULL;
5623 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5624 spin_lock_irq(&rq->lock);
a8e504d2 5625 update_rq_clock(rq);
2e1cb74a 5626 deactivate_task(rq, rq->idle, 0);
1da177e4 5627 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5628 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5629 rq->idle->sched_class = &idle_sched_class;
1da177e4 5630 migrate_dead_tasks(cpu);
d2da272a 5631 spin_unlock_irq(&rq->lock);
470fd646 5632 cpuset_unlock();
1da177e4
LT
5633 migrate_nr_uninterruptible(rq);
5634 BUG_ON(rq->nr_running != 0);
5635
41a2d6cf
IM
5636 /*
5637 * No need to migrate the tasks: it was best-effort if
5638 * they didn't take sched_hotcpu_mutex. Just wake up
5639 * the requestors.
5640 */
1da177e4
LT
5641 spin_lock_irq(&rq->lock);
5642 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5643 struct migration_req *req;
5644
1da177e4 5645 req = list_entry(rq->migration_queue.next,
70b97a7f 5646 struct migration_req, list);
1da177e4
LT
5647 list_del_init(&req->list);
5648 complete(&req->done);
5649 }
5650 spin_unlock_irq(&rq->lock);
5651 break;
57d885fe
GH
5652
5653 case CPU_DOWN_PREPARE:
5654 /* Update our root-domain */
5655 rq = cpu_rq(cpu);
5656 spin_lock_irqsave(&rq->lock, flags);
5657 if (rq->rd) {
5658 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5659 cpu_clear(cpu, rq->rd->online);
5660 }
5661 spin_unlock_irqrestore(&rq->lock, flags);
5662 break;
1da177e4
LT
5663#endif
5664 }
5665 return NOTIFY_OK;
5666}
5667
5668/* Register at highest priority so that task migration (migrate_all_tasks)
5669 * happens before everything else.
5670 */
26c2143b 5671static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5672 .notifier_call = migration_call,
5673 .priority = 10
5674};
5675
e6fe6649 5676void __init migration_init(void)
1da177e4
LT
5677{
5678 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5679 int err;
48f24c4d
IM
5680
5681 /* Start one for the boot CPU: */
07dccf33
AM
5682 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5683 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5684 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5685 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5686}
5687#endif
5688
5689#ifdef CONFIG_SMP
476f3534
CL
5690
5691/* Number of possible processor ids */
5692int nr_cpu_ids __read_mostly = NR_CPUS;
5693EXPORT_SYMBOL(nr_cpu_ids);
5694
3e9830dc 5695#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5696
5697static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5698{
4dcf6aff
IM
5699 struct sched_group *group = sd->groups;
5700 cpumask_t groupmask;
5701 char str[NR_CPUS];
1da177e4 5702
4dcf6aff
IM
5703 cpumask_scnprintf(str, NR_CPUS, sd->span);
5704 cpus_clear(groupmask);
5705
5706 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5707
5708 if (!(sd->flags & SD_LOAD_BALANCE)) {
5709 printk("does not load-balance\n");
5710 if (sd->parent)
5711 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5712 " has parent");
5713 return -1;
41c7ce9a
NP
5714 }
5715
4dcf6aff
IM
5716 printk(KERN_CONT "span %s\n", str);
5717
5718 if (!cpu_isset(cpu, sd->span)) {
5719 printk(KERN_ERR "ERROR: domain->span does not contain "
5720 "CPU%d\n", cpu);
5721 }
5722 if (!cpu_isset(cpu, group->cpumask)) {
5723 printk(KERN_ERR "ERROR: domain->groups does not contain"
5724 " CPU%d\n", cpu);
5725 }
1da177e4 5726
4dcf6aff 5727 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5728 do {
4dcf6aff
IM
5729 if (!group) {
5730 printk("\n");
5731 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5732 break;
5733 }
5734
4dcf6aff
IM
5735 if (!group->__cpu_power) {
5736 printk(KERN_CONT "\n");
5737 printk(KERN_ERR "ERROR: domain->cpu_power not "
5738 "set\n");
5739 break;
5740 }
1da177e4 5741
4dcf6aff
IM
5742 if (!cpus_weight(group->cpumask)) {
5743 printk(KERN_CONT "\n");
5744 printk(KERN_ERR "ERROR: empty group\n");
5745 break;
5746 }
1da177e4 5747
4dcf6aff
IM
5748 if (cpus_intersects(groupmask, group->cpumask)) {
5749 printk(KERN_CONT "\n");
5750 printk(KERN_ERR "ERROR: repeated CPUs\n");
5751 break;
5752 }
1da177e4 5753
4dcf6aff 5754 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5755
4dcf6aff
IM
5756 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5757 printk(KERN_CONT " %s", str);
1da177e4 5758
4dcf6aff
IM
5759 group = group->next;
5760 } while (group != sd->groups);
5761 printk(KERN_CONT "\n");
1da177e4 5762
4dcf6aff
IM
5763 if (!cpus_equal(sd->span, groupmask))
5764 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5765
4dcf6aff
IM
5766 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5767 printk(KERN_ERR "ERROR: parent span is not a superset "
5768 "of domain->span\n");
5769 return 0;
5770}
1da177e4 5771
4dcf6aff
IM
5772static void sched_domain_debug(struct sched_domain *sd, int cpu)
5773{
5774 int level = 0;
1da177e4 5775
4dcf6aff
IM
5776 if (!sd) {
5777 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5778 return;
5779 }
1da177e4 5780
4dcf6aff
IM
5781 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5782
5783 for (;;) {
5784 if (sched_domain_debug_one(sd, cpu, level))
5785 break;
1da177e4
LT
5786 level++;
5787 sd = sd->parent;
33859f7f 5788 if (!sd)
4dcf6aff
IM
5789 break;
5790 }
1da177e4
LT
5791}
5792#else
48f24c4d 5793# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5794#endif
5795
1a20ff27 5796static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5797{
5798 if (cpus_weight(sd->span) == 1)
5799 return 1;
5800
5801 /* Following flags need at least 2 groups */
5802 if (sd->flags & (SD_LOAD_BALANCE |
5803 SD_BALANCE_NEWIDLE |
5804 SD_BALANCE_FORK |
89c4710e
SS
5805 SD_BALANCE_EXEC |
5806 SD_SHARE_CPUPOWER |
5807 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5808 if (sd->groups != sd->groups->next)
5809 return 0;
5810 }
5811
5812 /* Following flags don't use groups */
5813 if (sd->flags & (SD_WAKE_IDLE |
5814 SD_WAKE_AFFINE |
5815 SD_WAKE_BALANCE))
5816 return 0;
5817
5818 return 1;
5819}
5820
48f24c4d
IM
5821static int
5822sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5823{
5824 unsigned long cflags = sd->flags, pflags = parent->flags;
5825
5826 if (sd_degenerate(parent))
5827 return 1;
5828
5829 if (!cpus_equal(sd->span, parent->span))
5830 return 0;
5831
5832 /* Does parent contain flags not in child? */
5833 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5834 if (cflags & SD_WAKE_AFFINE)
5835 pflags &= ~SD_WAKE_BALANCE;
5836 /* Flags needing groups don't count if only 1 group in parent */
5837 if (parent->groups == parent->groups->next) {
5838 pflags &= ~(SD_LOAD_BALANCE |
5839 SD_BALANCE_NEWIDLE |
5840 SD_BALANCE_FORK |
89c4710e
SS
5841 SD_BALANCE_EXEC |
5842 SD_SHARE_CPUPOWER |
5843 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5844 }
5845 if (~cflags & pflags)
5846 return 0;
5847
5848 return 1;
5849}
5850
57d885fe
GH
5851static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5852{
5853 unsigned long flags;
5854 const struct sched_class *class;
5855
5856 spin_lock_irqsave(&rq->lock, flags);
5857
5858 if (rq->rd) {
5859 struct root_domain *old_rd = rq->rd;
5860
0eab9146 5861 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5862 if (class->leave_domain)
5863 class->leave_domain(rq);
0eab9146 5864 }
57d885fe 5865
dc938520
GH
5866 cpu_clear(rq->cpu, old_rd->span);
5867 cpu_clear(rq->cpu, old_rd->online);
5868
57d885fe
GH
5869 if (atomic_dec_and_test(&old_rd->refcount))
5870 kfree(old_rd);
5871 }
5872
5873 atomic_inc(&rd->refcount);
5874 rq->rd = rd;
5875
dc938520
GH
5876 cpu_set(rq->cpu, rd->span);
5877 if (cpu_isset(rq->cpu, cpu_online_map))
5878 cpu_set(rq->cpu, rd->online);
5879
0eab9146 5880 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5881 if (class->join_domain)
5882 class->join_domain(rq);
0eab9146 5883 }
57d885fe
GH
5884
5885 spin_unlock_irqrestore(&rq->lock, flags);
5886}
5887
dc938520 5888static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
5889{
5890 memset(rd, 0, sizeof(*rd));
5891
dc938520
GH
5892 cpus_clear(rd->span);
5893 cpus_clear(rd->online);
57d885fe
GH
5894}
5895
5896static void init_defrootdomain(void)
5897{
dc938520 5898 init_rootdomain(&def_root_domain);
57d885fe
GH
5899 atomic_set(&def_root_domain.refcount, 1);
5900}
5901
dc938520 5902static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5903{
5904 struct root_domain *rd;
5905
5906 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5907 if (!rd)
5908 return NULL;
5909
dc938520 5910 init_rootdomain(rd);
57d885fe
GH
5911
5912 return rd;
5913}
5914
1da177e4 5915/*
0eab9146 5916 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5917 * hold the hotplug lock.
5918 */
0eab9146
IM
5919static void
5920cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5921{
70b97a7f 5922 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5923 struct sched_domain *tmp;
5924
5925 /* Remove the sched domains which do not contribute to scheduling. */
5926 for (tmp = sd; tmp; tmp = tmp->parent) {
5927 struct sched_domain *parent = tmp->parent;
5928 if (!parent)
5929 break;
1a848870 5930 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5931 tmp->parent = parent->parent;
1a848870
SS
5932 if (parent->parent)
5933 parent->parent->child = tmp;
5934 }
245af2c7
SS
5935 }
5936
1a848870 5937 if (sd && sd_degenerate(sd)) {
245af2c7 5938 sd = sd->parent;
1a848870
SS
5939 if (sd)
5940 sd->child = NULL;
5941 }
1da177e4
LT
5942
5943 sched_domain_debug(sd, cpu);
5944
57d885fe 5945 rq_attach_root(rq, rd);
674311d5 5946 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5947}
5948
5949/* cpus with isolated domains */
67af63a6 5950static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5951
5952/* Setup the mask of cpus configured for isolated domains */
5953static int __init isolated_cpu_setup(char *str)
5954{
5955 int ints[NR_CPUS], i;
5956
5957 str = get_options(str, ARRAY_SIZE(ints), ints);
5958 cpus_clear(cpu_isolated_map);
5959 for (i = 1; i <= ints[0]; i++)
5960 if (ints[i] < NR_CPUS)
5961 cpu_set(ints[i], cpu_isolated_map);
5962 return 1;
5963}
5964
8927f494 5965__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5966
5967/*
6711cab4
SS
5968 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5969 * to a function which identifies what group(along with sched group) a CPU
5970 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5971 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5972 *
5973 * init_sched_build_groups will build a circular linked list of the groups
5974 * covered by the given span, and will set each group's ->cpumask correctly,
5975 * and ->cpu_power to 0.
5976 */
a616058b 5977static void
6711cab4
SS
5978init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5979 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5980 struct sched_group **sg))
1da177e4
LT
5981{
5982 struct sched_group *first = NULL, *last = NULL;
5983 cpumask_t covered = CPU_MASK_NONE;
5984 int i;
5985
5986 for_each_cpu_mask(i, span) {
6711cab4
SS
5987 struct sched_group *sg;
5988 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5989 int j;
5990
5991 if (cpu_isset(i, covered))
5992 continue;
5993
5994 sg->cpumask = CPU_MASK_NONE;
5517d86b 5995 sg->__cpu_power = 0;
1da177e4
LT
5996
5997 for_each_cpu_mask(j, span) {
6711cab4 5998 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5999 continue;
6000
6001 cpu_set(j, covered);
6002 cpu_set(j, sg->cpumask);
6003 }
6004 if (!first)
6005 first = sg;
6006 if (last)
6007 last->next = sg;
6008 last = sg;
6009 }
6010 last->next = first;
6011}
6012
9c1cfda2 6013#define SD_NODES_PER_DOMAIN 16
1da177e4 6014
9c1cfda2 6015#ifdef CONFIG_NUMA
198e2f18 6016
9c1cfda2
JH
6017/**
6018 * find_next_best_node - find the next node to include in a sched_domain
6019 * @node: node whose sched_domain we're building
6020 * @used_nodes: nodes already in the sched_domain
6021 *
41a2d6cf 6022 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6023 * finds the closest node not already in the @used_nodes map.
6024 *
6025 * Should use nodemask_t.
6026 */
6027static int find_next_best_node(int node, unsigned long *used_nodes)
6028{
6029 int i, n, val, min_val, best_node = 0;
6030
6031 min_val = INT_MAX;
6032
6033 for (i = 0; i < MAX_NUMNODES; i++) {
6034 /* Start at @node */
6035 n = (node + i) % MAX_NUMNODES;
6036
6037 if (!nr_cpus_node(n))
6038 continue;
6039
6040 /* Skip already used nodes */
6041 if (test_bit(n, used_nodes))
6042 continue;
6043
6044 /* Simple min distance search */
6045 val = node_distance(node, n);
6046
6047 if (val < min_val) {
6048 min_val = val;
6049 best_node = n;
6050 }
6051 }
6052
6053 set_bit(best_node, used_nodes);
6054 return best_node;
6055}
6056
6057/**
6058 * sched_domain_node_span - get a cpumask for a node's sched_domain
6059 * @node: node whose cpumask we're constructing
6060 * @size: number of nodes to include in this span
6061 *
41a2d6cf 6062 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6063 * should be one that prevents unnecessary balancing, but also spreads tasks
6064 * out optimally.
6065 */
6066static cpumask_t sched_domain_node_span(int node)
6067{
9c1cfda2 6068 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6069 cpumask_t span, nodemask;
6070 int i;
9c1cfda2
JH
6071
6072 cpus_clear(span);
6073 bitmap_zero(used_nodes, MAX_NUMNODES);
6074
6075 nodemask = node_to_cpumask(node);
6076 cpus_or(span, span, nodemask);
6077 set_bit(node, used_nodes);
6078
6079 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6080 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6081
9c1cfda2
JH
6082 nodemask = node_to_cpumask(next_node);
6083 cpus_or(span, span, nodemask);
6084 }
6085
6086 return span;
6087}
6088#endif
6089
5c45bf27 6090int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6091
9c1cfda2 6092/*
48f24c4d 6093 * SMT sched-domains:
9c1cfda2 6094 */
1da177e4
LT
6095#ifdef CONFIG_SCHED_SMT
6096static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6097static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6098
41a2d6cf
IM
6099static int
6100cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6101{
6711cab4
SS
6102 if (sg)
6103 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6104 return cpu;
6105}
6106#endif
6107
48f24c4d
IM
6108/*
6109 * multi-core sched-domains:
6110 */
1e9f28fa
SS
6111#ifdef CONFIG_SCHED_MC
6112static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6113static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6114#endif
6115
6116#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6117static int
6118cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6119{
6711cab4 6120 int group;
d5a7430d 6121 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6122 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6123 group = first_cpu(mask);
6124 if (sg)
6125 *sg = &per_cpu(sched_group_core, group);
6126 return group;
1e9f28fa
SS
6127}
6128#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6129static int
6130cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6131{
6711cab4
SS
6132 if (sg)
6133 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6134 return cpu;
6135}
6136#endif
6137
1da177e4 6138static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6139static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6140
41a2d6cf
IM
6141static int
6142cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6143{
6711cab4 6144 int group;
48f24c4d 6145#ifdef CONFIG_SCHED_MC
1e9f28fa 6146 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6147 cpus_and(mask, mask, *cpu_map);
6711cab4 6148 group = first_cpu(mask);
1e9f28fa 6149#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6150 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6151 cpus_and(mask, mask, *cpu_map);
6711cab4 6152 group = first_cpu(mask);
1da177e4 6153#else
6711cab4 6154 group = cpu;
1da177e4 6155#endif
6711cab4
SS
6156 if (sg)
6157 *sg = &per_cpu(sched_group_phys, group);
6158 return group;
1da177e4
LT
6159}
6160
6161#ifdef CONFIG_NUMA
1da177e4 6162/*
9c1cfda2
JH
6163 * The init_sched_build_groups can't handle what we want to do with node
6164 * groups, so roll our own. Now each node has its own list of groups which
6165 * gets dynamically allocated.
1da177e4 6166 */
9c1cfda2 6167static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6168static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6169
9c1cfda2 6170static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6171static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6172
6711cab4
SS
6173static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6174 struct sched_group **sg)
9c1cfda2 6175{
6711cab4
SS
6176 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6177 int group;
6178
6179 cpus_and(nodemask, nodemask, *cpu_map);
6180 group = first_cpu(nodemask);
6181
6182 if (sg)
6183 *sg = &per_cpu(sched_group_allnodes, group);
6184 return group;
1da177e4 6185}
6711cab4 6186
08069033
SS
6187static void init_numa_sched_groups_power(struct sched_group *group_head)
6188{
6189 struct sched_group *sg = group_head;
6190 int j;
6191
6192 if (!sg)
6193 return;
3a5c359a
AK
6194 do {
6195 for_each_cpu_mask(j, sg->cpumask) {
6196 struct sched_domain *sd;
08069033 6197
3a5c359a
AK
6198 sd = &per_cpu(phys_domains, j);
6199 if (j != first_cpu(sd->groups->cpumask)) {
6200 /*
6201 * Only add "power" once for each
6202 * physical package.
6203 */
6204 continue;
6205 }
08069033 6206
3a5c359a
AK
6207 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6208 }
6209 sg = sg->next;
6210 } while (sg != group_head);
08069033 6211}
1da177e4
LT
6212#endif
6213
a616058b 6214#ifdef CONFIG_NUMA
51888ca2
SV
6215/* Free memory allocated for various sched_group structures */
6216static void free_sched_groups(const cpumask_t *cpu_map)
6217{
a616058b 6218 int cpu, i;
51888ca2
SV
6219
6220 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6221 struct sched_group **sched_group_nodes
6222 = sched_group_nodes_bycpu[cpu];
6223
51888ca2
SV
6224 if (!sched_group_nodes)
6225 continue;
6226
6227 for (i = 0; i < MAX_NUMNODES; i++) {
6228 cpumask_t nodemask = node_to_cpumask(i);
6229 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6230
6231 cpus_and(nodemask, nodemask, *cpu_map);
6232 if (cpus_empty(nodemask))
6233 continue;
6234
6235 if (sg == NULL)
6236 continue;
6237 sg = sg->next;
6238next_sg:
6239 oldsg = sg;
6240 sg = sg->next;
6241 kfree(oldsg);
6242 if (oldsg != sched_group_nodes[i])
6243 goto next_sg;
6244 }
6245 kfree(sched_group_nodes);
6246 sched_group_nodes_bycpu[cpu] = NULL;
6247 }
51888ca2 6248}
a616058b
SS
6249#else
6250static void free_sched_groups(const cpumask_t *cpu_map)
6251{
6252}
6253#endif
51888ca2 6254
89c4710e
SS
6255/*
6256 * Initialize sched groups cpu_power.
6257 *
6258 * cpu_power indicates the capacity of sched group, which is used while
6259 * distributing the load between different sched groups in a sched domain.
6260 * Typically cpu_power for all the groups in a sched domain will be same unless
6261 * there are asymmetries in the topology. If there are asymmetries, group
6262 * having more cpu_power will pickup more load compared to the group having
6263 * less cpu_power.
6264 *
6265 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6266 * the maximum number of tasks a group can handle in the presence of other idle
6267 * or lightly loaded groups in the same sched domain.
6268 */
6269static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6270{
6271 struct sched_domain *child;
6272 struct sched_group *group;
6273
6274 WARN_ON(!sd || !sd->groups);
6275
6276 if (cpu != first_cpu(sd->groups->cpumask))
6277 return;
6278
6279 child = sd->child;
6280
5517d86b
ED
6281 sd->groups->__cpu_power = 0;
6282
89c4710e
SS
6283 /*
6284 * For perf policy, if the groups in child domain share resources
6285 * (for example cores sharing some portions of the cache hierarchy
6286 * or SMT), then set this domain groups cpu_power such that each group
6287 * can handle only one task, when there are other idle groups in the
6288 * same sched domain.
6289 */
6290 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6291 (child->flags &
6292 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6293 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6294 return;
6295 }
6296
89c4710e
SS
6297 /*
6298 * add cpu_power of each child group to this groups cpu_power
6299 */
6300 group = child->groups;
6301 do {
5517d86b 6302 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6303 group = group->next;
6304 } while (group != child->groups);
6305}
6306
1da177e4 6307/*
1a20ff27
DG
6308 * Build sched domains for a given set of cpus and attach the sched domains
6309 * to the individual cpus
1da177e4 6310 */
51888ca2 6311static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6312{
6313 int i;
57d885fe 6314 struct root_domain *rd;
d1b55138
JH
6315#ifdef CONFIG_NUMA
6316 struct sched_group **sched_group_nodes = NULL;
6711cab4 6317 int sd_allnodes = 0;
d1b55138
JH
6318
6319 /*
6320 * Allocate the per-node list of sched groups
6321 */
5cf9f062 6322 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6323 GFP_KERNEL);
d1b55138
JH
6324 if (!sched_group_nodes) {
6325 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6326 return -ENOMEM;
d1b55138
JH
6327 }
6328 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6329#endif
1da177e4 6330
dc938520 6331 rd = alloc_rootdomain();
57d885fe
GH
6332 if (!rd) {
6333 printk(KERN_WARNING "Cannot alloc root domain\n");
6334 return -ENOMEM;
6335 }
6336
1da177e4 6337 /*
1a20ff27 6338 * Set up domains for cpus specified by the cpu_map.
1da177e4 6339 */
1a20ff27 6340 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6341 struct sched_domain *sd = NULL, *p;
6342 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6343
1a20ff27 6344 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6345
6346#ifdef CONFIG_NUMA
dd41f596
IM
6347 if (cpus_weight(*cpu_map) >
6348 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6349 sd = &per_cpu(allnodes_domains, i);
6350 *sd = SD_ALLNODES_INIT;
6351 sd->span = *cpu_map;
6711cab4 6352 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6353 p = sd;
6711cab4 6354 sd_allnodes = 1;
9c1cfda2
JH
6355 } else
6356 p = NULL;
6357
1da177e4 6358 sd = &per_cpu(node_domains, i);
1da177e4 6359 *sd = SD_NODE_INIT;
9c1cfda2
JH
6360 sd->span = sched_domain_node_span(cpu_to_node(i));
6361 sd->parent = p;
1a848870
SS
6362 if (p)
6363 p->child = sd;
9c1cfda2 6364 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6365#endif
6366
6367 p = sd;
6368 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6369 *sd = SD_CPU_INIT;
6370 sd->span = nodemask;
6371 sd->parent = p;
1a848870
SS
6372 if (p)
6373 p->child = sd;
6711cab4 6374 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6375
1e9f28fa
SS
6376#ifdef CONFIG_SCHED_MC
6377 p = sd;
6378 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6379 *sd = SD_MC_INIT;
6380 sd->span = cpu_coregroup_map(i);
6381 cpus_and(sd->span, sd->span, *cpu_map);
6382 sd->parent = p;
1a848870 6383 p->child = sd;
6711cab4 6384 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6385#endif
6386
1da177e4
LT
6387#ifdef CONFIG_SCHED_SMT
6388 p = sd;
6389 sd = &per_cpu(cpu_domains, i);
1da177e4 6390 *sd = SD_SIBLING_INIT;
d5a7430d 6391 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6392 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6393 sd->parent = p;
1a848870 6394 p->child = sd;
6711cab4 6395 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6396#endif
6397 }
6398
6399#ifdef CONFIG_SCHED_SMT
6400 /* Set up CPU (sibling) groups */
9c1cfda2 6401 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6402 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6403 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6404 if (i != first_cpu(this_sibling_map))
6405 continue;
6406
dd41f596
IM
6407 init_sched_build_groups(this_sibling_map, cpu_map,
6408 &cpu_to_cpu_group);
1da177e4
LT
6409 }
6410#endif
6411
1e9f28fa
SS
6412#ifdef CONFIG_SCHED_MC
6413 /* Set up multi-core groups */
6414 for_each_cpu_mask(i, *cpu_map) {
6415 cpumask_t this_core_map = cpu_coregroup_map(i);
6416 cpus_and(this_core_map, this_core_map, *cpu_map);
6417 if (i != first_cpu(this_core_map))
6418 continue;
dd41f596
IM
6419 init_sched_build_groups(this_core_map, cpu_map,
6420 &cpu_to_core_group);
1e9f28fa
SS
6421 }
6422#endif
6423
1da177e4
LT
6424 /* Set up physical groups */
6425 for (i = 0; i < MAX_NUMNODES; i++) {
6426 cpumask_t nodemask = node_to_cpumask(i);
6427
1a20ff27 6428 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6429 if (cpus_empty(nodemask))
6430 continue;
6431
6711cab4 6432 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6433 }
6434
6435#ifdef CONFIG_NUMA
6436 /* Set up node groups */
6711cab4 6437 if (sd_allnodes)
dd41f596
IM
6438 init_sched_build_groups(*cpu_map, cpu_map,
6439 &cpu_to_allnodes_group);
9c1cfda2
JH
6440
6441 for (i = 0; i < MAX_NUMNODES; i++) {
6442 /* Set up node groups */
6443 struct sched_group *sg, *prev;
6444 cpumask_t nodemask = node_to_cpumask(i);
6445 cpumask_t domainspan;
6446 cpumask_t covered = CPU_MASK_NONE;
6447 int j;
6448
6449 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6450 if (cpus_empty(nodemask)) {
6451 sched_group_nodes[i] = NULL;
9c1cfda2 6452 continue;
d1b55138 6453 }
9c1cfda2
JH
6454
6455 domainspan = sched_domain_node_span(i);
6456 cpus_and(domainspan, domainspan, *cpu_map);
6457
15f0b676 6458 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6459 if (!sg) {
6460 printk(KERN_WARNING "Can not alloc domain group for "
6461 "node %d\n", i);
6462 goto error;
6463 }
9c1cfda2
JH
6464 sched_group_nodes[i] = sg;
6465 for_each_cpu_mask(j, nodemask) {
6466 struct sched_domain *sd;
9761eea8 6467
9c1cfda2
JH
6468 sd = &per_cpu(node_domains, j);
6469 sd->groups = sg;
9c1cfda2 6470 }
5517d86b 6471 sg->__cpu_power = 0;
9c1cfda2 6472 sg->cpumask = nodemask;
51888ca2 6473 sg->next = sg;
9c1cfda2
JH
6474 cpus_or(covered, covered, nodemask);
6475 prev = sg;
6476
6477 for (j = 0; j < MAX_NUMNODES; j++) {
6478 cpumask_t tmp, notcovered;
6479 int n = (i + j) % MAX_NUMNODES;
6480
6481 cpus_complement(notcovered, covered);
6482 cpus_and(tmp, notcovered, *cpu_map);
6483 cpus_and(tmp, tmp, domainspan);
6484 if (cpus_empty(tmp))
6485 break;
6486
6487 nodemask = node_to_cpumask(n);
6488 cpus_and(tmp, tmp, nodemask);
6489 if (cpus_empty(tmp))
6490 continue;
6491
15f0b676
SV
6492 sg = kmalloc_node(sizeof(struct sched_group),
6493 GFP_KERNEL, i);
9c1cfda2
JH
6494 if (!sg) {
6495 printk(KERN_WARNING
6496 "Can not alloc domain group for node %d\n", j);
51888ca2 6497 goto error;
9c1cfda2 6498 }
5517d86b 6499 sg->__cpu_power = 0;
9c1cfda2 6500 sg->cpumask = tmp;
51888ca2 6501 sg->next = prev->next;
9c1cfda2
JH
6502 cpus_or(covered, covered, tmp);
6503 prev->next = sg;
6504 prev = sg;
6505 }
9c1cfda2 6506 }
1da177e4
LT
6507#endif
6508
6509 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6510#ifdef CONFIG_SCHED_SMT
1a20ff27 6511 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6512 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6513
89c4710e 6514 init_sched_groups_power(i, sd);
5c45bf27 6515 }
1da177e4 6516#endif
1e9f28fa 6517#ifdef CONFIG_SCHED_MC
5c45bf27 6518 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6519 struct sched_domain *sd = &per_cpu(core_domains, i);
6520
89c4710e 6521 init_sched_groups_power(i, sd);
5c45bf27
SS
6522 }
6523#endif
1e9f28fa 6524
5c45bf27 6525 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6526 struct sched_domain *sd = &per_cpu(phys_domains, i);
6527
89c4710e 6528 init_sched_groups_power(i, sd);
1da177e4
LT
6529 }
6530
9c1cfda2 6531#ifdef CONFIG_NUMA
08069033
SS
6532 for (i = 0; i < MAX_NUMNODES; i++)
6533 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6534
6711cab4
SS
6535 if (sd_allnodes) {
6536 struct sched_group *sg;
f712c0c7 6537
6711cab4 6538 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6539 init_numa_sched_groups_power(sg);
6540 }
9c1cfda2
JH
6541#endif
6542
1da177e4 6543 /* Attach the domains */
1a20ff27 6544 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6545 struct sched_domain *sd;
6546#ifdef CONFIG_SCHED_SMT
6547 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6548#elif defined(CONFIG_SCHED_MC)
6549 sd = &per_cpu(core_domains, i);
1da177e4
LT
6550#else
6551 sd = &per_cpu(phys_domains, i);
6552#endif
57d885fe 6553 cpu_attach_domain(sd, rd, i);
1da177e4 6554 }
51888ca2
SV
6555
6556 return 0;
6557
a616058b 6558#ifdef CONFIG_NUMA
51888ca2
SV
6559error:
6560 free_sched_groups(cpu_map);
6561 return -ENOMEM;
a616058b 6562#endif
1da177e4 6563}
029190c5
PJ
6564
6565static cpumask_t *doms_cur; /* current sched domains */
6566static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6567
6568/*
6569 * Special case: If a kmalloc of a doms_cur partition (array of
6570 * cpumask_t) fails, then fallback to a single sched domain,
6571 * as determined by the single cpumask_t fallback_doms.
6572 */
6573static cpumask_t fallback_doms;
6574
1a20ff27 6575/*
41a2d6cf 6576 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6577 * For now this just excludes isolated cpus, but could be used to
6578 * exclude other special cases in the future.
1a20ff27 6579 */
51888ca2 6580static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6581{
7378547f
MM
6582 int err;
6583
029190c5
PJ
6584 ndoms_cur = 1;
6585 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6586 if (!doms_cur)
6587 doms_cur = &fallback_doms;
6588 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6589 err = build_sched_domains(doms_cur);
6382bc90 6590 register_sched_domain_sysctl();
7378547f
MM
6591
6592 return err;
1a20ff27
DG
6593}
6594
6595static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6596{
51888ca2 6597 free_sched_groups(cpu_map);
9c1cfda2 6598}
1da177e4 6599
1a20ff27
DG
6600/*
6601 * Detach sched domains from a group of cpus specified in cpu_map
6602 * These cpus will now be attached to the NULL domain
6603 */
858119e1 6604static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6605{
6606 int i;
6607
6382bc90
MM
6608 unregister_sched_domain_sysctl();
6609
1a20ff27 6610 for_each_cpu_mask(i, *cpu_map)
57d885fe 6611 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6612 synchronize_sched();
6613 arch_destroy_sched_domains(cpu_map);
6614}
6615
029190c5
PJ
6616/*
6617 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6618 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6619 * doms_new[] to the current sched domain partitioning, doms_cur[].
6620 * It destroys each deleted domain and builds each new domain.
6621 *
6622 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6623 * The masks don't intersect (don't overlap.) We should setup one
6624 * sched domain for each mask. CPUs not in any of the cpumasks will
6625 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6626 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6627 * it as it is.
6628 *
41a2d6cf
IM
6629 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6630 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6631 * failed the kmalloc call, then it can pass in doms_new == NULL,
6632 * and partition_sched_domains() will fallback to the single partition
6633 * 'fallback_doms'.
6634 *
6635 * Call with hotplug lock held
6636 */
6637void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6638{
6639 int i, j;
6640
a1835615
SV
6641 lock_doms_cur();
6642
7378547f
MM
6643 /* always unregister in case we don't destroy any domains */
6644 unregister_sched_domain_sysctl();
6645
029190c5
PJ
6646 if (doms_new == NULL) {
6647 ndoms_new = 1;
6648 doms_new = &fallback_doms;
6649 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6650 }
6651
6652 /* Destroy deleted domains */
6653 for (i = 0; i < ndoms_cur; i++) {
6654 for (j = 0; j < ndoms_new; j++) {
6655 if (cpus_equal(doms_cur[i], doms_new[j]))
6656 goto match1;
6657 }
6658 /* no match - a current sched domain not in new doms_new[] */
6659 detach_destroy_domains(doms_cur + i);
6660match1:
6661 ;
6662 }
6663
6664 /* Build new domains */
6665 for (i = 0; i < ndoms_new; i++) {
6666 for (j = 0; j < ndoms_cur; j++) {
6667 if (cpus_equal(doms_new[i], doms_cur[j]))
6668 goto match2;
6669 }
6670 /* no match - add a new doms_new */
6671 build_sched_domains(doms_new + i);
6672match2:
6673 ;
6674 }
6675
6676 /* Remember the new sched domains */
6677 if (doms_cur != &fallback_doms)
6678 kfree(doms_cur);
6679 doms_cur = doms_new;
6680 ndoms_cur = ndoms_new;
7378547f
MM
6681
6682 register_sched_domain_sysctl();
a1835615
SV
6683
6684 unlock_doms_cur();
029190c5
PJ
6685}
6686
5c45bf27 6687#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6688static int arch_reinit_sched_domains(void)
5c45bf27
SS
6689{
6690 int err;
6691
95402b38 6692 get_online_cpus();
5c45bf27
SS
6693 detach_destroy_domains(&cpu_online_map);
6694 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6695 put_online_cpus();
5c45bf27
SS
6696
6697 return err;
6698}
6699
6700static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6701{
6702 int ret;
6703
6704 if (buf[0] != '0' && buf[0] != '1')
6705 return -EINVAL;
6706
6707 if (smt)
6708 sched_smt_power_savings = (buf[0] == '1');
6709 else
6710 sched_mc_power_savings = (buf[0] == '1');
6711
6712 ret = arch_reinit_sched_domains();
6713
6714 return ret ? ret : count;
6715}
6716
5c45bf27
SS
6717#ifdef CONFIG_SCHED_MC
6718static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6719{
6720 return sprintf(page, "%u\n", sched_mc_power_savings);
6721}
48f24c4d
IM
6722static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6723 const char *buf, size_t count)
5c45bf27
SS
6724{
6725 return sched_power_savings_store(buf, count, 0);
6726}
6707de00
AB
6727static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6728 sched_mc_power_savings_store);
5c45bf27
SS
6729#endif
6730
6731#ifdef CONFIG_SCHED_SMT
6732static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6733{
6734 return sprintf(page, "%u\n", sched_smt_power_savings);
6735}
48f24c4d
IM
6736static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6737 const char *buf, size_t count)
5c45bf27
SS
6738{
6739 return sched_power_savings_store(buf, count, 1);
6740}
6707de00
AB
6741static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6742 sched_smt_power_savings_store);
6743#endif
6744
6745int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6746{
6747 int err = 0;
6748
6749#ifdef CONFIG_SCHED_SMT
6750 if (smt_capable())
6751 err = sysfs_create_file(&cls->kset.kobj,
6752 &attr_sched_smt_power_savings.attr);
6753#endif
6754#ifdef CONFIG_SCHED_MC
6755 if (!err && mc_capable())
6756 err = sysfs_create_file(&cls->kset.kobj,
6757 &attr_sched_mc_power_savings.attr);
6758#endif
6759 return err;
6760}
5c45bf27
SS
6761#endif
6762
1da177e4 6763/*
41a2d6cf 6764 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6765 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6766 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6767 * which will prevent rebalancing while the sched domains are recalculated.
6768 */
6769static int update_sched_domains(struct notifier_block *nfb,
6770 unsigned long action, void *hcpu)
6771{
1da177e4
LT
6772 switch (action) {
6773 case CPU_UP_PREPARE:
8bb78442 6774 case CPU_UP_PREPARE_FROZEN:
1da177e4 6775 case CPU_DOWN_PREPARE:
8bb78442 6776 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6777 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6778 return NOTIFY_OK;
6779
6780 case CPU_UP_CANCELED:
8bb78442 6781 case CPU_UP_CANCELED_FROZEN:
1da177e4 6782 case CPU_DOWN_FAILED:
8bb78442 6783 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6784 case CPU_ONLINE:
8bb78442 6785 case CPU_ONLINE_FROZEN:
1da177e4 6786 case CPU_DEAD:
8bb78442 6787 case CPU_DEAD_FROZEN:
1da177e4
LT
6788 /*
6789 * Fall through and re-initialise the domains.
6790 */
6791 break;
6792 default:
6793 return NOTIFY_DONE;
6794 }
6795
6796 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6797 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6798
6799 return NOTIFY_OK;
6800}
1da177e4
LT
6801
6802void __init sched_init_smp(void)
6803{
5c1e1767
NP
6804 cpumask_t non_isolated_cpus;
6805
95402b38 6806 get_online_cpus();
1a20ff27 6807 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6808 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6809 if (cpus_empty(non_isolated_cpus))
6810 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6811 put_online_cpus();
1da177e4
LT
6812 /* XXX: Theoretical race here - CPU may be hotplugged now */
6813 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6814
6815 /* Move init over to a non-isolated CPU */
6816 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6817 BUG();
19978ca6 6818 sched_init_granularity();
6b2d7700
SV
6819
6820#ifdef CONFIG_FAIR_GROUP_SCHED
6821 if (nr_cpu_ids == 1)
6822 return;
6823
6824 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6825 "group_balance");
6826 if (!IS_ERR(lb_monitor_task)) {
6827 lb_monitor_task->flags |= PF_NOFREEZE;
6828 wake_up_process(lb_monitor_task);
6829 } else {
6830 printk(KERN_ERR "Could not create load balance monitor thread"
6831 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6832 }
6833#endif
1da177e4
LT
6834}
6835#else
6836void __init sched_init_smp(void)
6837{
19978ca6 6838 sched_init_granularity();
1da177e4
LT
6839}
6840#endif /* CONFIG_SMP */
6841
6842int in_sched_functions(unsigned long addr)
6843{
1da177e4
LT
6844 return in_lock_functions(addr) ||
6845 (addr >= (unsigned long)__sched_text_start
6846 && addr < (unsigned long)__sched_text_end);
6847}
6848
a9957449 6849static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6850{
6851 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6852#ifdef CONFIG_FAIR_GROUP_SCHED
6853 cfs_rq->rq = rq;
6854#endif
67e9fb2a 6855 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6856}
6857
1da177e4
LT
6858void __init sched_init(void)
6859{
476f3534 6860 int highest_cpu = 0;
dd41f596
IM
6861 int i, j;
6862
57d885fe
GH
6863#ifdef CONFIG_SMP
6864 init_defrootdomain();
6865#endif
6866
0a945022 6867 for_each_possible_cpu(i) {
dd41f596 6868 struct rt_prio_array *array;
70b97a7f 6869 struct rq *rq;
1da177e4
LT
6870
6871 rq = cpu_rq(i);
6872 spin_lock_init(&rq->lock);
fcb99371 6873 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6874 rq->nr_running = 0;
dd41f596
IM
6875 rq->clock = 1;
6876 init_cfs_rq(&rq->cfs, rq);
6877#ifdef CONFIG_FAIR_GROUP_SCHED
6878 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6879 {
6880 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6881 struct sched_entity *se =
6882 &per_cpu(init_sched_entity, i);
6883
6884 init_cfs_rq_p[i] = cfs_rq;
6885 init_cfs_rq(cfs_rq, rq);
4cf86d77 6886 cfs_rq->tg = &init_task_group;
3a252015 6887 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6888 &rq->leaf_cfs_rq_list);
6889
3a252015
IM
6890 init_sched_entity_p[i] = se;
6891 se->cfs_rq = &rq->cfs;
6892 se->my_q = cfs_rq;
4cf86d77 6893 se->load.weight = init_task_group_load;
9b5b7751 6894 se->load.inv_weight =
4cf86d77 6895 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6896 se->parent = NULL;
6897 }
4cf86d77 6898 init_task_group.shares = init_task_group_load;
dd41f596 6899#endif
1da177e4 6900
dd41f596
IM
6901 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6902 rq->cpu_load[j] = 0;
1da177e4 6903#ifdef CONFIG_SMP
41c7ce9a 6904 rq->sd = NULL;
57d885fe 6905 rq->rd = NULL;
1da177e4 6906 rq->active_balance = 0;
dd41f596 6907 rq->next_balance = jiffies;
1da177e4 6908 rq->push_cpu = 0;
0a2966b4 6909 rq->cpu = i;
1da177e4
LT
6910 rq->migration_thread = NULL;
6911 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6912 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6913 rq->rt.overloaded = 0;
dc938520 6914 rq_attach_root(rq, &def_root_domain);
1da177e4
LT
6915#endif
6916 atomic_set(&rq->nr_iowait, 0);
6917
dd41f596
IM
6918 array = &rq->rt.active;
6919 for (j = 0; j < MAX_RT_PRIO; j++) {
6920 INIT_LIST_HEAD(array->queue + j);
6921 __clear_bit(j, array->bitmap);
1da177e4 6922 }
476f3534 6923 highest_cpu = i;
dd41f596
IM
6924 /* delimiter for bitsearch: */
6925 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6926 }
6927
2dd73a4f 6928 set_load_weight(&init_task);
b50f60ce 6929
e107be36
AK
6930#ifdef CONFIG_PREEMPT_NOTIFIERS
6931 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6932#endif
6933
c9819f45 6934#ifdef CONFIG_SMP
476f3534 6935 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6936 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6937#endif
6938
b50f60ce
HC
6939#ifdef CONFIG_RT_MUTEXES
6940 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6941#endif
6942
1da177e4
LT
6943 /*
6944 * The boot idle thread does lazy MMU switching as well:
6945 */
6946 atomic_inc(&init_mm.mm_count);
6947 enter_lazy_tlb(&init_mm, current);
6948
6949 /*
6950 * Make us the idle thread. Technically, schedule() should not be
6951 * called from this thread, however somewhere below it might be,
6952 * but because we are the idle thread, we just pick up running again
6953 * when this runqueue becomes "idle".
6954 */
6955 init_idle(current, smp_processor_id());
dd41f596
IM
6956 /*
6957 * During early bootup we pretend to be a normal task:
6958 */
6959 current->sched_class = &fair_sched_class;
1da177e4
LT
6960}
6961
6962#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6963void __might_sleep(char *file, int line)
6964{
48f24c4d 6965#ifdef in_atomic
1da177e4
LT
6966 static unsigned long prev_jiffy; /* ratelimiting */
6967
6968 if ((in_atomic() || irqs_disabled()) &&
6969 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6970 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6971 return;
6972 prev_jiffy = jiffies;
91368d73 6973 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6974 " context at %s:%d\n", file, line);
6975 printk("in_atomic():%d, irqs_disabled():%d\n",
6976 in_atomic(), irqs_disabled());
a4c410f0 6977 debug_show_held_locks(current);
3117df04
IM
6978 if (irqs_disabled())
6979 print_irqtrace_events(current);
1da177e4
LT
6980 dump_stack();
6981 }
6982#endif
6983}
6984EXPORT_SYMBOL(__might_sleep);
6985#endif
6986
6987#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6988static void normalize_task(struct rq *rq, struct task_struct *p)
6989{
6990 int on_rq;
6991 update_rq_clock(rq);
6992 on_rq = p->se.on_rq;
6993 if (on_rq)
6994 deactivate_task(rq, p, 0);
6995 __setscheduler(rq, p, SCHED_NORMAL, 0);
6996 if (on_rq) {
6997 activate_task(rq, p, 0);
6998 resched_task(rq->curr);
6999 }
7000}
7001
1da177e4
LT
7002void normalize_rt_tasks(void)
7003{
a0f98a1c 7004 struct task_struct *g, *p;
1da177e4 7005 unsigned long flags;
70b97a7f 7006 struct rq *rq;
1da177e4
LT
7007
7008 read_lock_irq(&tasklist_lock);
a0f98a1c 7009 do_each_thread(g, p) {
178be793
IM
7010 /*
7011 * Only normalize user tasks:
7012 */
7013 if (!p->mm)
7014 continue;
7015
6cfb0d5d 7016 p->se.exec_start = 0;
6cfb0d5d 7017#ifdef CONFIG_SCHEDSTATS
dd41f596 7018 p->se.wait_start = 0;
dd41f596 7019 p->se.sleep_start = 0;
dd41f596 7020 p->se.block_start = 0;
6cfb0d5d 7021#endif
dd41f596
IM
7022 task_rq(p)->clock = 0;
7023
7024 if (!rt_task(p)) {
7025 /*
7026 * Renice negative nice level userspace
7027 * tasks back to 0:
7028 */
7029 if (TASK_NICE(p) < 0 && p->mm)
7030 set_user_nice(p, 0);
1da177e4 7031 continue;
dd41f596 7032 }
1da177e4 7033
b29739f9
IM
7034 spin_lock_irqsave(&p->pi_lock, flags);
7035 rq = __task_rq_lock(p);
1da177e4 7036
178be793 7037 normalize_task(rq, p);
3a5e4dc1 7038
b29739f9
IM
7039 __task_rq_unlock(rq);
7040 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7041 } while_each_thread(g, p);
7042
1da177e4
LT
7043 read_unlock_irq(&tasklist_lock);
7044}
7045
7046#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7047
7048#ifdef CONFIG_IA64
7049/*
7050 * These functions are only useful for the IA64 MCA handling.
7051 *
7052 * They can only be called when the whole system has been
7053 * stopped - every CPU needs to be quiescent, and no scheduling
7054 * activity can take place. Using them for anything else would
7055 * be a serious bug, and as a result, they aren't even visible
7056 * under any other configuration.
7057 */
7058
7059/**
7060 * curr_task - return the current task for a given cpu.
7061 * @cpu: the processor in question.
7062 *
7063 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7064 */
36c8b586 7065struct task_struct *curr_task(int cpu)
1df5c10a
LT
7066{
7067 return cpu_curr(cpu);
7068}
7069
7070/**
7071 * set_curr_task - set the current task for a given cpu.
7072 * @cpu: the processor in question.
7073 * @p: the task pointer to set.
7074 *
7075 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7076 * are serviced on a separate stack. It allows the architecture to switch the
7077 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7078 * must be called with all CPU's synchronized, and interrupts disabled, the
7079 * and caller must save the original value of the current task (see
7080 * curr_task() above) and restore that value before reenabling interrupts and
7081 * re-starting the system.
7082 *
7083 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7084 */
36c8b586 7085void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7086{
7087 cpu_curr(cpu) = p;
7088}
7089
7090#endif
29f59db3
SV
7091
7092#ifdef CONFIG_FAIR_GROUP_SCHED
7093
6b2d7700
SV
7094#ifdef CONFIG_SMP
7095/*
7096 * distribute shares of all task groups among their schedulable entities,
7097 * to reflect load distrbution across cpus.
7098 */
7099static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7100{
7101 struct cfs_rq *cfs_rq;
7102 struct rq *rq = cpu_rq(this_cpu);
7103 cpumask_t sdspan = sd->span;
7104 int balanced = 1;
7105
7106 /* Walk thr' all the task groups that we have */
7107 for_each_leaf_cfs_rq(rq, cfs_rq) {
7108 int i;
7109 unsigned long total_load = 0, total_shares;
7110 struct task_group *tg = cfs_rq->tg;
7111
7112 /* Gather total task load of this group across cpus */
7113 for_each_cpu_mask(i, sdspan)
7114 total_load += tg->cfs_rq[i]->load.weight;
7115
0eab9146 7116 /* Nothing to do if this group has no load */
6b2d7700
SV
7117 if (!total_load)
7118 continue;
7119
7120 /*
7121 * tg->shares represents the number of cpu shares the task group
7122 * is eligible to hold on a single cpu. On N cpus, it is
7123 * eligible to hold (N * tg->shares) number of cpu shares.
7124 */
7125 total_shares = tg->shares * cpus_weight(sdspan);
7126
7127 /*
7128 * redistribute total_shares across cpus as per the task load
7129 * distribution.
7130 */
7131 for_each_cpu_mask(i, sdspan) {
7132 unsigned long local_load, local_shares;
7133
7134 local_load = tg->cfs_rq[i]->load.weight;
7135 local_shares = (local_load * total_shares) / total_load;
7136 if (!local_shares)
7137 local_shares = MIN_GROUP_SHARES;
7138 if (local_shares == tg->se[i]->load.weight)
7139 continue;
7140
7141 spin_lock_irq(&cpu_rq(i)->lock);
7142 set_se_shares(tg->se[i], local_shares);
7143 spin_unlock_irq(&cpu_rq(i)->lock);
7144 balanced = 0;
7145 }
7146 }
7147
7148 return balanced;
7149}
7150
7151/*
7152 * How frequently should we rebalance_shares() across cpus?
7153 *
7154 * The more frequently we rebalance shares, the more accurate is the fairness
7155 * of cpu bandwidth distribution between task groups. However higher frequency
7156 * also implies increased scheduling overhead.
7157 *
7158 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7159 * consecutive calls to rebalance_shares() in the same sched domain.
7160 *
7161 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7162 * consecutive calls to rebalance_shares() in the same sched domain.
7163 *
7164 * These settings allows for the appropriate tradeoff between accuracy of
7165 * fairness and the associated overhead.
7166 *
7167 */
7168
7169/* default: 8ms, units: milliseconds */
7170const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7171
7172/* default: 128ms, units: milliseconds */
7173const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7174
7175/* kernel thread that runs rebalance_shares() periodically */
7176static int load_balance_monitor(void *unused)
7177{
7178 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7179 struct sched_param schedparm;
7180 int ret;
7181
7182 /*
7183 * We don't want this thread's execution to be limited by the shares
7184 * assigned to default group (init_task_group). Hence make it run
7185 * as a SCHED_RR RT task at the lowest priority.
7186 */
7187 schedparm.sched_priority = 1;
7188 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7189 if (ret)
7190 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7191 " monitor thread (error = %d) \n", ret);
7192
7193 while (!kthread_should_stop()) {
7194 int i, cpu, balanced = 1;
7195
7196 /* Prevent cpus going down or coming up */
86ef5c9a 7197 get_online_cpus();
6b2d7700
SV
7198 /* lockout changes to doms_cur[] array */
7199 lock_doms_cur();
7200 /*
7201 * Enter a rcu read-side critical section to safely walk rq->sd
7202 * chain on various cpus and to walk task group list
7203 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7204 */
7205 rcu_read_lock();
7206
7207 for (i = 0; i < ndoms_cur; i++) {
7208 cpumask_t cpumap = doms_cur[i];
7209 struct sched_domain *sd = NULL, *sd_prev = NULL;
7210
7211 cpu = first_cpu(cpumap);
7212
7213 /* Find the highest domain at which to balance shares */
7214 for_each_domain(cpu, sd) {
7215 if (!(sd->flags & SD_LOAD_BALANCE))
7216 continue;
7217 sd_prev = sd;
7218 }
7219
7220 sd = sd_prev;
7221 /* sd == NULL? No load balance reqd in this domain */
7222 if (!sd)
7223 continue;
7224
7225 balanced &= rebalance_shares(sd, cpu);
7226 }
7227
7228 rcu_read_unlock();
7229
7230 unlock_doms_cur();
86ef5c9a 7231 put_online_cpus();
6b2d7700
SV
7232
7233 if (!balanced)
7234 timeout = sysctl_sched_min_bal_int_shares;
7235 else if (timeout < sysctl_sched_max_bal_int_shares)
7236 timeout *= 2;
7237
7238 msleep_interruptible(timeout);
7239 }
7240
7241 return 0;
7242}
7243#endif /* CONFIG_SMP */
7244
29f59db3 7245/* allocate runqueue etc for a new task group */
4cf86d77 7246struct task_group *sched_create_group(void)
29f59db3 7247{
4cf86d77 7248 struct task_group *tg;
29f59db3
SV
7249 struct cfs_rq *cfs_rq;
7250 struct sched_entity *se;
9b5b7751 7251 struct rq *rq;
29f59db3
SV
7252 int i;
7253
29f59db3
SV
7254 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7255 if (!tg)
7256 return ERR_PTR(-ENOMEM);
7257
9b5b7751 7258 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7259 if (!tg->cfs_rq)
7260 goto err;
9b5b7751 7261 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7262 if (!tg->se)
7263 goto err;
7264
7265 for_each_possible_cpu(i) {
9b5b7751 7266 rq = cpu_rq(i);
29f59db3
SV
7267
7268 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7269 cpu_to_node(i));
7270 if (!cfs_rq)
7271 goto err;
7272
7273 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7274 cpu_to_node(i));
7275 if (!se)
7276 goto err;
7277
7278 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7279 memset(se, 0, sizeof(struct sched_entity));
7280
7281 tg->cfs_rq[i] = cfs_rq;
7282 init_cfs_rq(cfs_rq, rq);
7283 cfs_rq->tg = tg;
29f59db3
SV
7284
7285 tg->se[i] = se;
7286 se->cfs_rq = &rq->cfs;
7287 se->my_q = cfs_rq;
7288 se->load.weight = NICE_0_LOAD;
7289 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7290 se->parent = NULL;
7291 }
7292
ec2c507f
SV
7293 tg->shares = NICE_0_LOAD;
7294
7295 lock_task_group_list();
9b5b7751
SV
7296 for_each_possible_cpu(i) {
7297 rq = cpu_rq(i);
7298 cfs_rq = tg->cfs_rq[i];
7299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7300 }
ec2c507f 7301 unlock_task_group_list();
29f59db3 7302
9b5b7751 7303 return tg;
29f59db3
SV
7304
7305err:
7306 for_each_possible_cpu(i) {
a65914b3 7307 if (tg->cfs_rq)
29f59db3 7308 kfree(tg->cfs_rq[i]);
a65914b3 7309 if (tg->se)
29f59db3
SV
7310 kfree(tg->se[i]);
7311 }
a65914b3
IM
7312 kfree(tg->cfs_rq);
7313 kfree(tg->se);
7314 kfree(tg);
29f59db3
SV
7315
7316 return ERR_PTR(-ENOMEM);
7317}
7318
9b5b7751
SV
7319/* rcu callback to free various structures associated with a task group */
7320static void free_sched_group(struct rcu_head *rhp)
29f59db3 7321{
ae8393e5
SV
7322 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7323 struct cfs_rq *cfs_rq;
29f59db3
SV
7324 struct sched_entity *se;
7325 int i;
7326
29f59db3
SV
7327 /* now it should be safe to free those cfs_rqs */
7328 for_each_possible_cpu(i) {
7329 cfs_rq = tg->cfs_rq[i];
7330 kfree(cfs_rq);
7331
7332 se = tg->se[i];
7333 kfree(se);
7334 }
7335
7336 kfree(tg->cfs_rq);
7337 kfree(tg->se);
7338 kfree(tg);
7339}
7340
9b5b7751 7341/* Destroy runqueue etc associated with a task group */
4cf86d77 7342void sched_destroy_group(struct task_group *tg)
29f59db3 7343{
7bae49d4 7344 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7345 int i;
29f59db3 7346
ec2c507f 7347 lock_task_group_list();
9b5b7751
SV
7348 for_each_possible_cpu(i) {
7349 cfs_rq = tg->cfs_rq[i];
7350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7351 }
ec2c507f 7352 unlock_task_group_list();
9b5b7751 7353
7bae49d4 7354 BUG_ON(!cfs_rq);
9b5b7751
SV
7355
7356 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7357 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7358}
7359
9b5b7751 7360/* change task's runqueue when it moves between groups.
3a252015
IM
7361 * The caller of this function should have put the task in its new group
7362 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7363 * reflect its new group.
9b5b7751
SV
7364 */
7365void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7366{
7367 int on_rq, running;
7368 unsigned long flags;
7369 struct rq *rq;
7370
7371 rq = task_rq_lock(tsk, &flags);
7372
dae51f56 7373 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7374 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7375 goto done;
dae51f56 7376 }
29f59db3
SV
7377
7378 update_rq_clock(rq);
7379
051a1d1a 7380 running = task_current(rq, tsk);
29f59db3
SV
7381 on_rq = tsk->se.on_rq;
7382
83b699ed 7383 if (on_rq) {
29f59db3 7384 dequeue_task(rq, tsk, 0);
83b699ed
SV
7385 if (unlikely(running))
7386 tsk->sched_class->put_prev_task(rq, tsk);
7387 }
29f59db3 7388
ce96b5ac 7389 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7390
83b699ed
SV
7391 if (on_rq) {
7392 if (unlikely(running))
7393 tsk->sched_class->set_curr_task(rq);
7074badb 7394 enqueue_task(rq, tsk, 0);
83b699ed 7395 }
29f59db3
SV
7396
7397done:
7398 task_rq_unlock(rq, &flags);
7399}
7400
6b2d7700 7401/* rq->lock to be locked by caller */
29f59db3
SV
7402static void set_se_shares(struct sched_entity *se, unsigned long shares)
7403{
7404 struct cfs_rq *cfs_rq = se->cfs_rq;
7405 struct rq *rq = cfs_rq->rq;
7406 int on_rq;
7407
6b2d7700
SV
7408 if (!shares)
7409 shares = MIN_GROUP_SHARES;
29f59db3
SV
7410
7411 on_rq = se->on_rq;
6b2d7700 7412 if (on_rq) {
29f59db3 7413 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7414 dec_cpu_load(rq, se->load.weight);
7415 }
29f59db3
SV
7416
7417 se->load.weight = shares;
7418 se->load.inv_weight = div64_64((1ULL<<32), shares);
7419
6b2d7700 7420 if (on_rq) {
29f59db3 7421 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7422 inc_cpu_load(rq, se->load.weight);
7423 }
29f59db3
SV
7424}
7425
4cf86d77 7426int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7427{
7428 int i;
6b2d7700
SV
7429 struct cfs_rq *cfs_rq;
7430 struct rq *rq;
c61935fd 7431
ec2c507f 7432 lock_task_group_list();
9b5b7751 7433 if (tg->shares == shares)
5cb350ba 7434 goto done;
29f59db3 7435
6b2d7700
SV
7436 if (shares < MIN_GROUP_SHARES)
7437 shares = MIN_GROUP_SHARES;
7438
7439 /*
7440 * Prevent any load balance activity (rebalance_shares,
7441 * load_balance_fair) from referring to this group first,
7442 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7443 */
7444 for_each_possible_cpu(i) {
7445 cfs_rq = tg->cfs_rq[i];
7446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7447 }
7448
7449 /* wait for any ongoing reference to this group to finish */
7450 synchronize_sched();
7451
7452 /*
7453 * Now we are free to modify the group's share on each cpu
7454 * w/o tripping rebalance_share or load_balance_fair.
7455 */
9b5b7751 7456 tg->shares = shares;
6b2d7700
SV
7457 for_each_possible_cpu(i) {
7458 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7459 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7460 spin_unlock_irq(&cpu_rq(i)->lock);
7461 }
29f59db3 7462
6b2d7700
SV
7463 /*
7464 * Enable load balance activity on this group, by inserting it back on
7465 * each cpu's rq->leaf_cfs_rq_list.
7466 */
7467 for_each_possible_cpu(i) {
7468 rq = cpu_rq(i);
7469 cfs_rq = tg->cfs_rq[i];
7470 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7471 }
5cb350ba 7472done:
ec2c507f 7473 unlock_task_group_list();
9b5b7751 7474 return 0;
29f59db3
SV
7475}
7476
5cb350ba
DG
7477unsigned long sched_group_shares(struct task_group *tg)
7478{
7479 return tg->shares;
7480}
7481
3a252015 7482#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7483
7484#ifdef CONFIG_FAIR_CGROUP_SCHED
7485
7486/* return corresponding task_group object of a cgroup */
2b01dfe3 7487static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7488{
2b01dfe3
PM
7489 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7490 struct task_group, css);
68318b8e
SV
7491}
7492
7493static struct cgroup_subsys_state *
2b01dfe3 7494cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7495{
7496 struct task_group *tg;
7497
2b01dfe3 7498 if (!cgrp->parent) {
68318b8e 7499 /* This is early initialization for the top cgroup */
2b01dfe3 7500 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7501 return &init_task_group.css;
7502 }
7503
7504 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7505 if (cgrp->parent->parent)
68318b8e
SV
7506 return ERR_PTR(-EINVAL);
7507
7508 tg = sched_create_group();
7509 if (IS_ERR(tg))
7510 return ERR_PTR(-ENOMEM);
7511
7512 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7513 tg->css.cgroup = cgrp;
68318b8e
SV
7514
7515 return &tg->css;
7516}
7517
41a2d6cf
IM
7518static void
7519cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7520{
2b01dfe3 7521 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7522
7523 sched_destroy_group(tg);
7524}
7525
41a2d6cf
IM
7526static int
7527cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7528 struct task_struct *tsk)
68318b8e
SV
7529{
7530 /* We don't support RT-tasks being in separate groups */
7531 if (tsk->sched_class != &fair_sched_class)
7532 return -EINVAL;
7533
7534 return 0;
7535}
7536
7537static void
2b01dfe3 7538cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7539 struct cgroup *old_cont, struct task_struct *tsk)
7540{
7541 sched_move_task(tsk);
7542}
7543
2b01dfe3
PM
7544static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7545 u64 shareval)
68318b8e 7546{
2b01dfe3 7547 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7548}
7549
2b01dfe3 7550static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7551{
2b01dfe3 7552 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7553
7554 return (u64) tg->shares;
7555}
7556
fe5c7cc2
PM
7557static struct cftype cpu_files[] = {
7558 {
7559 .name = "shares",
7560 .read_uint = cpu_shares_read_uint,
7561 .write_uint = cpu_shares_write_uint,
7562 },
68318b8e
SV
7563};
7564
7565static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7566{
fe5c7cc2 7567 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7568}
7569
7570struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7571 .name = "cpu",
7572 .create = cpu_cgroup_create,
7573 .destroy = cpu_cgroup_destroy,
7574 .can_attach = cpu_cgroup_can_attach,
7575 .attach = cpu_cgroup_attach,
7576 .populate = cpu_cgroup_populate,
7577 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7578 .early_init = 1,
7579};
7580
7581#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7582
7583#ifdef CONFIG_CGROUP_CPUACCT
7584
7585/*
7586 * CPU accounting code for task groups.
7587 *
7588 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7589 * (balbir@in.ibm.com).
7590 */
7591
7592/* track cpu usage of a group of tasks */
7593struct cpuacct {
7594 struct cgroup_subsys_state css;
7595 /* cpuusage holds pointer to a u64-type object on every cpu */
7596 u64 *cpuusage;
7597};
7598
7599struct cgroup_subsys cpuacct_subsys;
7600
7601/* return cpu accounting group corresponding to this container */
7602static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7603{
7604 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7605 struct cpuacct, css);
7606}
7607
7608/* return cpu accounting group to which this task belongs */
7609static inline struct cpuacct *task_ca(struct task_struct *tsk)
7610{
7611 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7612 struct cpuacct, css);
7613}
7614
7615/* create a new cpu accounting group */
7616static struct cgroup_subsys_state *cpuacct_create(
7617 struct cgroup_subsys *ss, struct cgroup *cont)
7618{
7619 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7620
7621 if (!ca)
7622 return ERR_PTR(-ENOMEM);
7623
7624 ca->cpuusage = alloc_percpu(u64);
7625 if (!ca->cpuusage) {
7626 kfree(ca);
7627 return ERR_PTR(-ENOMEM);
7628 }
7629
7630 return &ca->css;
7631}
7632
7633/* destroy an existing cpu accounting group */
41a2d6cf
IM
7634static void
7635cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7636{
7637 struct cpuacct *ca = cgroup_ca(cont);
7638
7639 free_percpu(ca->cpuusage);
7640 kfree(ca);
7641}
7642
7643/* return total cpu usage (in nanoseconds) of a group */
7644static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7645{
7646 struct cpuacct *ca = cgroup_ca(cont);
7647 u64 totalcpuusage = 0;
7648 int i;
7649
7650 for_each_possible_cpu(i) {
7651 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7652
7653 /*
7654 * Take rq->lock to make 64-bit addition safe on 32-bit
7655 * platforms.
7656 */
7657 spin_lock_irq(&cpu_rq(i)->lock);
7658 totalcpuusage += *cpuusage;
7659 spin_unlock_irq(&cpu_rq(i)->lock);
7660 }
7661
7662 return totalcpuusage;
7663}
7664
7665static struct cftype files[] = {
7666 {
7667 .name = "usage",
7668 .read_uint = cpuusage_read,
7669 },
7670};
7671
7672static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7673{
7674 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7675}
7676
7677/*
7678 * charge this task's execution time to its accounting group.
7679 *
7680 * called with rq->lock held.
7681 */
7682static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7683{
7684 struct cpuacct *ca;
7685
7686 if (!cpuacct_subsys.active)
7687 return;
7688
7689 ca = task_ca(tsk);
7690 if (ca) {
7691 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7692
7693 *cpuusage += cputime;
7694 }
7695}
7696
7697struct cgroup_subsys cpuacct_subsys = {
7698 .name = "cpuacct",
7699 .create = cpuacct_create,
7700 .destroy = cpuacct_destroy,
7701 .populate = cpuacct_populate,
7702 .subsys_id = cpuacct_subsys_id,
7703};
7704#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.956904 seconds and 5 git commands to generate.