sched: clean up calc_weighted()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
1da177e4
LT
78/*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87/*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96/*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
111 */
112#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
634fa8c9
IM
136#define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138
91fcdd4e 139/*
634fa8c9 140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 141 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 142 */
634fa8c9 143static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 144{
634fa8c9
IM
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
147
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
152}
153
e05606d3
IM
154static inline int rt_policy(int policy)
155{
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
159}
160
161static inline int task_has_rt_policy(struct task_struct *p)
162{
163 return rt_policy(p->policy);
164}
165
1da177e4 166/*
6aa645ea 167 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 168 */
6aa645ea
IM
169struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
172};
173
174struct load_stat {
175 struct load_weight load;
6aa645ea
IM
176};
177
178/* CFS-related fields in a runqueue */
179struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
188
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
192 /* 'curr' points to currently running entity on this cfs_rq.
193 * It is set to NULL otherwise (i.e when none are currently running).
194 */
195 struct sched_entity *curr;
62160e3f 196#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
198
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
202 *
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
205 */
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207#endif
208};
1da177e4 209
6aa645ea
IM
210/* Real-Time classes' related field in a runqueue: */
211struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215};
216
1da177e4
LT
217/*
218 * This is the main, per-CPU runqueue data structure.
219 *
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
223 */
70b97a7f 224struct rq {
6aa645ea 225 spinlock_t lock; /* runqueue lock */
1da177e4
LT
226
227 /*
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
230 */
231 unsigned long nr_running;
6aa645ea
IM
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 234 unsigned char idle_at_tick;
46cb4b7c
SS
235#ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237#endif
6aa645ea
IM
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
241
242 struct cfs_rq cfs;
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 245#endif
6aa645ea 246 struct rt_rq rt;
1da177e4
LT
247
248 /*
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
253 */
254 unsigned long nr_uninterruptible;
255
36c8b586 256 struct task_struct *curr, *idle;
c9819f45 257 unsigned long next_balance;
1da177e4 258 struct mm_struct *prev_mm;
6aa645ea 259
6aa645ea
IM
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
262
263 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
264 u64 idle_clock;
265 unsigned int clock_deep_idle_events;
529c7726 266 u64 tick_timestamp;
6aa645ea 267
1da177e4
LT
268 atomic_t nr_iowait;
269
270#ifdef CONFIG_SMP
271 struct sched_domain *sd;
272
273 /* For active balancing */
274 int active_balance;
275 int push_cpu;
0a2966b4 276 int cpu; /* cpu of this runqueue */
1da177e4 277
36c8b586 278 struct task_struct *migration_thread;
1da177e4
LT
279 struct list_head migration_queue;
280#endif
281
282#ifdef CONFIG_SCHEDSTATS
283 /* latency stats */
284 struct sched_info rq_sched_info;
285
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty;
288 unsigned long yld_act_empty;
289 unsigned long yld_both_empty;
290 unsigned long yld_cnt;
291
292 /* schedule() stats */
293 unsigned long sched_switch;
294 unsigned long sched_cnt;
295 unsigned long sched_goidle;
296
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt;
299 unsigned long ttwu_local;
300#endif
fcb99371 301 struct lock_class_key rq_lock_key;
1da177e4
LT
302};
303
f34e3b61 304static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 305static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 306
dd41f596
IM
307static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308{
309 rq->curr->sched_class->check_preempt_curr(rq, p);
310}
311
0a2966b4
CL
312static inline int cpu_of(struct rq *rq)
313{
314#ifdef CONFIG_SMP
315 return rq->cpu;
316#else
317 return 0;
318#endif
319}
320
20d315d4 321/*
b04a0f4c
IM
322 * Update the per-runqueue clock, as finegrained as the platform can give
323 * us, but without assuming monotonicity, etc.:
20d315d4 324 */
b04a0f4c 325static void __update_rq_clock(struct rq *rq)
20d315d4
IM
326{
327 u64 prev_raw = rq->prev_clock_raw;
328 u64 now = sched_clock();
329 s64 delta = now - prev_raw;
330 u64 clock = rq->clock;
331
b04a0f4c
IM
332#ifdef CONFIG_SCHED_DEBUG
333 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
334#endif
20d315d4
IM
335 /*
336 * Protect against sched_clock() occasionally going backwards:
337 */
338 if (unlikely(delta < 0)) {
339 clock++;
340 rq->clock_warps++;
341 } else {
342 /*
343 * Catch too large forward jumps too:
344 */
529c7726
IM
345 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
346 if (clock < rq->tick_timestamp + TICK_NSEC)
347 clock = rq->tick_timestamp + TICK_NSEC;
348 else
349 clock++;
20d315d4
IM
350 rq->clock_overflows++;
351 } else {
352 if (unlikely(delta > rq->clock_max_delta))
353 rq->clock_max_delta = delta;
354 clock += delta;
355 }
356 }
357
358 rq->prev_clock_raw = now;
359 rq->clock = clock;
b04a0f4c 360}
20d315d4 361
b04a0f4c
IM
362static void update_rq_clock(struct rq *rq)
363{
364 if (likely(smp_processor_id() == cpu_of(rq)))
365 __update_rq_clock(rq);
20d315d4
IM
366}
367
674311d5
NP
368/*
369 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 370 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
371 *
372 * The domain tree of any CPU may only be accessed from within
373 * preempt-disabled sections.
374 */
48f24c4d
IM
375#define for_each_domain(cpu, __sd) \
376 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
377
378#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
379#define this_rq() (&__get_cpu_var(runqueues))
380#define task_rq(p) cpu_rq(task_cpu(p))
381#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382
e436d800
IM
383/*
384 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
385 * clock constructed from sched_clock():
386 */
387unsigned long long cpu_clock(int cpu)
388{
e436d800
IM
389 unsigned long long now;
390 unsigned long flags;
b04a0f4c 391 struct rq *rq;
e436d800 392
2cd4d0ea 393 local_irq_save(flags);
b04a0f4c
IM
394 rq = cpu_rq(cpu);
395 update_rq_clock(rq);
396 now = rq->clock;
2cd4d0ea 397 local_irq_restore(flags);
e436d800
IM
398
399 return now;
400}
401
138a8aeb
IM
402#ifdef CONFIG_FAIR_GROUP_SCHED
403/* Change a task's ->cfs_rq if it moves across CPUs */
404static inline void set_task_cfs_rq(struct task_struct *p)
405{
406 p->se.cfs_rq = &task_rq(p)->cfs;
407}
408#else
409static inline void set_task_cfs_rq(struct task_struct *p)
410{
411}
412#endif
413
1da177e4 414#ifndef prepare_arch_switch
4866cde0
NP
415# define prepare_arch_switch(next) do { } while (0)
416#endif
417#ifndef finish_arch_switch
418# define finish_arch_switch(prev) do { } while (0)
419#endif
420
421#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 422static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
423{
424 return rq->curr == p;
425}
426
70b97a7f 427static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
428{
429}
430
70b97a7f 431static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 432{
da04c035
IM
433#ifdef CONFIG_DEBUG_SPINLOCK
434 /* this is a valid case when another task releases the spinlock */
435 rq->lock.owner = current;
436#endif
8a25d5de
IM
437 /*
438 * If we are tracking spinlock dependencies then we have to
439 * fix up the runqueue lock - which gets 'carried over' from
440 * prev into current:
441 */
442 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
443
4866cde0
NP
444 spin_unlock_irq(&rq->lock);
445}
446
447#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 448static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
449{
450#ifdef CONFIG_SMP
451 return p->oncpu;
452#else
453 return rq->curr == p;
454#endif
455}
456
70b97a7f 457static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
458{
459#ifdef CONFIG_SMP
460 /*
461 * We can optimise this out completely for !SMP, because the
462 * SMP rebalancing from interrupt is the only thing that cares
463 * here.
464 */
465 next->oncpu = 1;
466#endif
467#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
468 spin_unlock_irq(&rq->lock);
469#else
470 spin_unlock(&rq->lock);
471#endif
472}
473
70b97a7f 474static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
475{
476#ifdef CONFIG_SMP
477 /*
478 * After ->oncpu is cleared, the task can be moved to a different CPU.
479 * We must ensure this doesn't happen until the switch is completely
480 * finished.
481 */
482 smp_wmb();
483 prev->oncpu = 0;
484#endif
485#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
486 local_irq_enable();
1da177e4 487#endif
4866cde0
NP
488}
489#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 490
b29739f9
IM
491/*
492 * __task_rq_lock - lock the runqueue a given task resides on.
493 * Must be called interrupts disabled.
494 */
70b97a7f 495static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
496 __acquires(rq->lock)
497{
70b97a7f 498 struct rq *rq;
b29739f9
IM
499
500repeat_lock_task:
501 rq = task_rq(p);
502 spin_lock(&rq->lock);
503 if (unlikely(rq != task_rq(p))) {
504 spin_unlock(&rq->lock);
505 goto repeat_lock_task;
506 }
507 return rq;
508}
509
1da177e4
LT
510/*
511 * task_rq_lock - lock the runqueue a given task resides on and disable
512 * interrupts. Note the ordering: we can safely lookup the task_rq without
513 * explicitly disabling preemption.
514 */
70b97a7f 515static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
516 __acquires(rq->lock)
517{
70b97a7f 518 struct rq *rq;
1da177e4
LT
519
520repeat_lock_task:
521 local_irq_save(*flags);
522 rq = task_rq(p);
523 spin_lock(&rq->lock);
524 if (unlikely(rq != task_rq(p))) {
525 spin_unlock_irqrestore(&rq->lock, *flags);
526 goto repeat_lock_task;
527 }
528 return rq;
529}
530
70b97a7f 531static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
532 __releases(rq->lock)
533{
534 spin_unlock(&rq->lock);
535}
536
70b97a7f 537static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
538 __releases(rq->lock)
539{
540 spin_unlock_irqrestore(&rq->lock, *flags);
541}
542
1da177e4 543/*
cc2a73b5 544 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 545 */
70b97a7f 546static inline struct rq *this_rq_lock(void)
1da177e4
LT
547 __acquires(rq->lock)
548{
70b97a7f 549 struct rq *rq;
1da177e4
LT
550
551 local_irq_disable();
552 rq = this_rq();
553 spin_lock(&rq->lock);
554
555 return rq;
556}
557
1b9f19c2 558/*
2aa44d05 559 * We are going deep-idle (irqs are disabled):
1b9f19c2 560 */
2aa44d05 561void sched_clock_idle_sleep_event(void)
1b9f19c2 562{
2aa44d05
IM
563 struct rq *rq = cpu_rq(smp_processor_id());
564
565 spin_lock(&rq->lock);
566 __update_rq_clock(rq);
567 spin_unlock(&rq->lock);
568 rq->clock_deep_idle_events++;
569}
570EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
571
572/*
573 * We just idled delta nanoseconds (called with irqs disabled):
574 */
575void sched_clock_idle_wakeup_event(u64 delta_ns)
576{
577 struct rq *rq = cpu_rq(smp_processor_id());
578 u64 now = sched_clock();
1b9f19c2 579
2aa44d05
IM
580 rq->idle_clock += delta_ns;
581 /*
582 * Override the previous timestamp and ignore all
583 * sched_clock() deltas that occured while we idled,
584 * and use the PM-provided delta_ns to advance the
585 * rq clock:
586 */
587 spin_lock(&rq->lock);
588 rq->prev_clock_raw = now;
589 rq->clock += delta_ns;
590 spin_unlock(&rq->lock);
1b9f19c2 591}
2aa44d05 592EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 593
c24d20db
IM
594/*
595 * resched_task - mark a task 'to be rescheduled now'.
596 *
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
600 */
601#ifdef CONFIG_SMP
602
603#ifndef tsk_is_polling
604#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
605#endif
606
607static void resched_task(struct task_struct *p)
608{
609 int cpu;
610
611 assert_spin_locked(&task_rq(p)->lock);
612
613 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
614 return;
615
616 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
617
618 cpu = task_cpu(p);
619 if (cpu == smp_processor_id())
620 return;
621
622 /* NEED_RESCHED must be visible before we test polling */
623 smp_mb();
624 if (!tsk_is_polling(p))
625 smp_send_reschedule(cpu);
626}
627
628static void resched_cpu(int cpu)
629{
630 struct rq *rq = cpu_rq(cpu);
631 unsigned long flags;
632
633 if (!spin_trylock_irqsave(&rq->lock, flags))
634 return;
635 resched_task(cpu_curr(cpu));
636 spin_unlock_irqrestore(&rq->lock, flags);
637}
638#else
639static inline void resched_task(struct task_struct *p)
640{
641 assert_spin_locked(&task_rq(p)->lock);
642 set_tsk_need_resched(p);
643}
644#endif
645
45bf76df
IM
646static u64 div64_likely32(u64 divident, unsigned long divisor)
647{
648#if BITS_PER_LONG == 32
649 if (likely(divident <= 0xffffffffULL))
650 return (u32)divident / divisor;
651 do_div(divident, divisor);
652
653 return divident;
654#else
655 return divident / divisor;
656#endif
657}
658
659#if BITS_PER_LONG == 32
660# define WMULT_CONST (~0UL)
661#else
662# define WMULT_CONST (1UL << 32)
663#endif
664
665#define WMULT_SHIFT 32
666
194081eb
IM
667/*
668 * Shift right and round:
669 */
cf2ab469 670#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 671
cb1c4fc9 672static unsigned long
45bf76df
IM
673calc_delta_mine(unsigned long delta_exec, unsigned long weight,
674 struct load_weight *lw)
675{
676 u64 tmp;
677
678 if (unlikely(!lw->inv_weight))
194081eb 679 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
680
681 tmp = (u64)delta_exec * weight;
682 /*
683 * Check whether we'd overflow the 64-bit multiplication:
684 */
194081eb 685 if (unlikely(tmp > WMULT_CONST))
cf2ab469 686 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
687 WMULT_SHIFT/2);
688 else
cf2ab469 689 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 690
ecf691da 691 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
692}
693
694static inline unsigned long
695calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
696{
697 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
698}
699
1091985b 700static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
701{
702 lw->weight += inc;
1091985b 703 lw->inv_weight = WMULT_CONST / lw->weight;
45bf76df
IM
704}
705
1091985b 706static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
707{
708 lw->weight -= dec;
1091985b
IM
709 if (likely(lw->weight))
710 lw->inv_weight = WMULT_CONST / lw->weight;
45bf76df
IM
711}
712
2dd73a4f
PW
713/*
714 * To aid in avoiding the subversion of "niceness" due to uneven distribution
715 * of tasks with abnormal "nice" values across CPUs the contribution that
716 * each task makes to its run queue's load is weighted according to its
717 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
718 * scaled version of the new time slice allocation that they receive on time
719 * slice expiry etc.
720 */
721
dd41f596
IM
722#define WEIGHT_IDLEPRIO 2
723#define WMULT_IDLEPRIO (1 << 31)
724
725/*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
733 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
734 * If a task goes up by ~10% and another task goes down by ~10% then
735 * the relative distance between them is ~25%.)
dd41f596
IM
736 */
737static const int prio_to_weight[40] = {
254753dc
IM
738 /* -20 */ 88761, 71755, 56483, 46273, 36291,
739 /* -15 */ 29154, 23254, 18705, 14949, 11916,
740 /* -10 */ 9548, 7620, 6100, 4904, 3906,
741 /* -5 */ 3121, 2501, 1991, 1586, 1277,
742 /* 0 */ 1024, 820, 655, 526, 423,
743 /* 5 */ 335, 272, 215, 172, 137,
744 /* 10 */ 110, 87, 70, 56, 45,
745 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
746};
747
5714d2de
IM
748/*
749 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
750 *
751 * In cases where the weight does not change often, we can use the
752 * precalculated inverse to speed up arithmetics by turning divisions
753 * into multiplications:
754 */
dd41f596 755static const u32 prio_to_wmult[40] = {
254753dc
IM
756 /* -20 */ 48388, 59856, 76040, 92818, 118348,
757 /* -15 */ 147320, 184698, 229616, 287308, 360437,
758 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
759 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
760 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
761 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
762 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
763 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 764};
2dd73a4f 765
dd41f596
IM
766static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
767
768/*
769 * runqueue iterator, to support SMP load-balancing between different
770 * scheduling classes, without having to expose their internal data
771 * structures to the load-balancing proper:
772 */
773struct rq_iterator {
774 void *arg;
775 struct task_struct *(*start)(void *);
776 struct task_struct *(*next)(void *);
777};
778
779static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
780 unsigned long max_nr_move, unsigned long max_load_move,
781 struct sched_domain *sd, enum cpu_idle_type idle,
782 int *all_pinned, unsigned long *load_moved,
a4ac01c3 783 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
784
785#include "sched_stats.h"
786#include "sched_rt.c"
787#include "sched_fair.c"
788#include "sched_idletask.c"
789#ifdef CONFIG_SCHED_DEBUG
790# include "sched_debug.c"
791#endif
792
793#define sched_class_highest (&rt_sched_class)
794
9c217245
IM
795/*
796 * Update delta_exec, delta_fair fields for rq.
797 *
798 * delta_fair clock advances at a rate inversely proportional to
799 * total load (rq->ls.load.weight) on the runqueue, while
800 * delta_exec advances at the same rate as wall-clock (provided
801 * cpu is not idle).
802 *
803 * delta_exec / delta_fair is a measure of the (smoothened) load on this
804 * runqueue over any given interval. This (smoothened) load is used
805 * during load balance.
806 *
807 * This function is called /before/ updating rq->ls.load
808 * and when switching tasks.
809 */
29b4b623 810static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 811{
9c217245
IM
812 update_load_add(&rq->ls.load, p->se.load.weight);
813}
814
79b5dddf 815static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 816{
9c217245
IM
817 update_load_sub(&rq->ls.load, p->se.load.weight);
818}
819
e5fa2237 820static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
821{
822 rq->nr_running++;
29b4b623 823 inc_load(rq, p);
9c217245
IM
824}
825
db53181e 826static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
827{
828 rq->nr_running--;
79b5dddf 829 dec_load(rq, p);
9c217245
IM
830}
831
45bf76df
IM
832static void set_load_weight(struct task_struct *p)
833{
dd41f596
IM
834 p->se.wait_runtime = 0;
835
45bf76df 836 if (task_has_rt_policy(p)) {
dd41f596
IM
837 p->se.load.weight = prio_to_weight[0] * 2;
838 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
839 return;
840 }
45bf76df 841
dd41f596
IM
842 /*
843 * SCHED_IDLE tasks get minimal weight:
844 */
845 if (p->policy == SCHED_IDLE) {
846 p->se.load.weight = WEIGHT_IDLEPRIO;
847 p->se.load.inv_weight = WMULT_IDLEPRIO;
848 return;
849 }
71f8bd46 850
dd41f596
IM
851 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
852 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
853}
854
8159f87e 855static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 856{
dd41f596 857 sched_info_queued(p);
fd390f6a 858 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 859 p->se.on_rq = 1;
71f8bd46
IM
860}
861
69be72c1 862static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 863{
f02231e5 864 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 865 p->se.on_rq = 0;
71f8bd46
IM
866}
867
14531189 868/*
dd41f596 869 * __normal_prio - return the priority that is based on the static prio
14531189 870 */
14531189
IM
871static inline int __normal_prio(struct task_struct *p)
872{
dd41f596 873 return p->static_prio;
14531189
IM
874}
875
b29739f9
IM
876/*
877 * Calculate the expected normal priority: i.e. priority
878 * without taking RT-inheritance into account. Might be
879 * boosted by interactivity modifiers. Changes upon fork,
880 * setprio syscalls, and whenever the interactivity
881 * estimator recalculates.
882 */
36c8b586 883static inline int normal_prio(struct task_struct *p)
b29739f9
IM
884{
885 int prio;
886
e05606d3 887 if (task_has_rt_policy(p))
b29739f9
IM
888 prio = MAX_RT_PRIO-1 - p->rt_priority;
889 else
890 prio = __normal_prio(p);
891 return prio;
892}
893
894/*
895 * Calculate the current priority, i.e. the priority
896 * taken into account by the scheduler. This value might
897 * be boosted by RT tasks, or might be boosted by
898 * interactivity modifiers. Will be RT if the task got
899 * RT-boosted. If not then it returns p->normal_prio.
900 */
36c8b586 901static int effective_prio(struct task_struct *p)
b29739f9
IM
902{
903 p->normal_prio = normal_prio(p);
904 /*
905 * If we are RT tasks or we were boosted to RT priority,
906 * keep the priority unchanged. Otherwise, update priority
907 * to the normal priority:
908 */
909 if (!rt_prio(p->prio))
910 return p->normal_prio;
911 return p->prio;
912}
913
1da177e4 914/*
dd41f596 915 * activate_task - move a task to the runqueue.
1da177e4 916 */
dd41f596 917static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 918{
dd41f596
IM
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
1da177e4 921
8159f87e 922 enqueue_task(rq, p, wakeup);
e5fa2237 923 inc_nr_running(p, rq);
1da177e4
LT
924}
925
926/*
dd41f596 927 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 928 */
dd41f596 929static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 930{
a8e504d2 931 update_rq_clock(rq);
1da177e4 932
dd41f596
IM
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
ece8a684 935
8159f87e 936 enqueue_task(rq, p, 0);
e5fa2237 937 inc_nr_running(p, rq);
1da177e4
LT
938}
939
940/*
941 * deactivate_task - remove a task from the runqueue.
942 */
2e1cb74a 943static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 944{
dd41f596
IM
945 if (p->state == TASK_UNINTERRUPTIBLE)
946 rq->nr_uninterruptible++;
947
69be72c1 948 dequeue_task(rq, p, sleep);
db53181e 949 dec_nr_running(p, rq);
1da177e4
LT
950}
951
1da177e4
LT
952/**
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
955 */
36c8b586 956inline int task_curr(const struct task_struct *p)
1da177e4
LT
957{
958 return cpu_curr(task_cpu(p)) == p;
959}
960
2dd73a4f
PW
961/* Used instead of source_load when we know the type == 0 */
962unsigned long weighted_cpuload(const int cpu)
963{
dd41f596
IM
964 return cpu_rq(cpu)->ls.load.weight;
965}
966
967static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
968{
969#ifdef CONFIG_SMP
970 task_thread_info(p)->cpu = cpu;
971 set_task_cfs_rq(p);
972#endif
2dd73a4f
PW
973}
974
1da177e4 975#ifdef CONFIG_SMP
c65cc870 976
dd41f596 977void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 978{
dd41f596
IM
979 int old_cpu = task_cpu(p);
980 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
981 u64 clock_offset, fair_clock_offset;
982
983 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
984 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
985
dd41f596
IM
986 if (p->se.wait_start_fair)
987 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
988 if (p->se.sleep_start_fair)
989 p->se.sleep_start_fair -= fair_clock_offset;
990
991#ifdef CONFIG_SCHEDSTATS
992 if (p->se.wait_start)
993 p->se.wait_start -= clock_offset;
dd41f596
IM
994 if (p->se.sleep_start)
995 p->se.sleep_start -= clock_offset;
996 if (p->se.block_start)
997 p->se.block_start -= clock_offset;
6cfb0d5d 998#endif
dd41f596
IM
999
1000 __set_task_cpu(p, new_cpu);
c65cc870
IM
1001}
1002
70b97a7f 1003struct migration_req {
1da177e4 1004 struct list_head list;
1da177e4 1005
36c8b586 1006 struct task_struct *task;
1da177e4
LT
1007 int dest_cpu;
1008
1da177e4 1009 struct completion done;
70b97a7f 1010};
1da177e4
LT
1011
1012/*
1013 * The task's runqueue lock must be held.
1014 * Returns true if you have to wait for migration thread.
1015 */
36c8b586 1016static int
70b97a7f 1017migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1018{
70b97a7f 1019 struct rq *rq = task_rq(p);
1da177e4
LT
1020
1021 /*
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1024 */
dd41f596 1025 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1026 set_task_cpu(p, dest_cpu);
1027 return 0;
1028 }
1029
1030 init_completion(&req->done);
1da177e4
LT
1031 req->task = p;
1032 req->dest_cpu = dest_cpu;
1033 list_add(&req->list, &rq->migration_queue);
48f24c4d 1034
1da177e4
LT
1035 return 1;
1036}
1037
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * The caller must ensure that the task *will* unschedule sometime soon,
1042 * else this function might spin for a *long* time. This function can't
1043 * be called with interrupts off, or it may introduce deadlock with
1044 * smp_call_function() if an IPI is sent by the same process we are
1045 * waiting to become inactive.
1046 */
36c8b586 1047void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1048{
1049 unsigned long flags;
dd41f596 1050 int running, on_rq;
70b97a7f 1051 struct rq *rq;
1da177e4
LT
1052
1053repeat:
fa490cfd
LT
1054 /*
1055 * We do the initial early heuristics without holding
1056 * any task-queue locks at all. We'll only try to get
1057 * the runqueue lock when things look like they will
1058 * work out!
1059 */
1060 rq = task_rq(p);
1061
1062 /*
1063 * If the task is actively running on another CPU
1064 * still, just relax and busy-wait without holding
1065 * any locks.
1066 *
1067 * NOTE! Since we don't hold any locks, it's not
1068 * even sure that "rq" stays as the right runqueue!
1069 * But we don't care, since "task_running()" will
1070 * return false if the runqueue has changed and p
1071 * is actually now running somewhere else!
1072 */
1073 while (task_running(rq, p))
1074 cpu_relax();
1075
1076 /*
1077 * Ok, time to look more closely! We need the rq
1078 * lock now, to be *sure*. If we're wrong, we'll
1079 * just go back and repeat.
1080 */
1da177e4 1081 rq = task_rq_lock(p, &flags);
fa490cfd 1082 running = task_running(rq, p);
dd41f596 1083 on_rq = p->se.on_rq;
fa490cfd
LT
1084 task_rq_unlock(rq, &flags);
1085
1086 /*
1087 * Was it really running after all now that we
1088 * checked with the proper locks actually held?
1089 *
1090 * Oops. Go back and try again..
1091 */
1092 if (unlikely(running)) {
1da177e4 1093 cpu_relax();
1da177e4
LT
1094 goto repeat;
1095 }
fa490cfd
LT
1096
1097 /*
1098 * It's not enough that it's not actively running,
1099 * it must be off the runqueue _entirely_, and not
1100 * preempted!
1101 *
1102 * So if it wa still runnable (but just not actively
1103 * running right now), it's preempted, and we should
1104 * yield - it could be a while.
1105 */
dd41f596 1106 if (unlikely(on_rq)) {
fa490cfd
LT
1107 yield();
1108 goto repeat;
1109 }
1110
1111 /*
1112 * Ahh, all good. It wasn't running, and it wasn't
1113 * runnable, which means that it will never become
1114 * running in the future either. We're all done!
1115 */
1da177e4
LT
1116}
1117
1118/***
1119 * kick_process - kick a running thread to enter/exit the kernel
1120 * @p: the to-be-kicked thread
1121 *
1122 * Cause a process which is running on another CPU to enter
1123 * kernel-mode, without any delay. (to get signals handled.)
1124 *
1125 * NOTE: this function doesnt have to take the runqueue lock,
1126 * because all it wants to ensure is that the remote task enters
1127 * the kernel. If the IPI races and the task has been migrated
1128 * to another CPU then no harm is done and the purpose has been
1129 * achieved as well.
1130 */
36c8b586 1131void kick_process(struct task_struct *p)
1da177e4
LT
1132{
1133 int cpu;
1134
1135 preempt_disable();
1136 cpu = task_cpu(p);
1137 if ((cpu != smp_processor_id()) && task_curr(p))
1138 smp_send_reschedule(cpu);
1139 preempt_enable();
1140}
1141
1142/*
2dd73a4f
PW
1143 * Return a low guess at the load of a migration-source cpu weighted
1144 * according to the scheduling class and "nice" value.
1da177e4
LT
1145 *
1146 * We want to under-estimate the load of migration sources, to
1147 * balance conservatively.
1148 */
a2000572 1149static inline unsigned long source_load(int cpu, int type)
1da177e4 1150{
70b97a7f 1151 struct rq *rq = cpu_rq(cpu);
dd41f596 1152 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1153
3b0bd9bc 1154 if (type == 0)
dd41f596 1155 return total;
b910472d 1156
dd41f596 1157 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1158}
1159
1160/*
2dd73a4f
PW
1161 * Return a high guess at the load of a migration-target cpu weighted
1162 * according to the scheduling class and "nice" value.
1da177e4 1163 */
a2000572 1164static inline unsigned long target_load(int cpu, int type)
1da177e4 1165{
70b97a7f 1166 struct rq *rq = cpu_rq(cpu);
dd41f596 1167 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1168
7897986b 1169 if (type == 0)
dd41f596 1170 return total;
3b0bd9bc 1171
dd41f596 1172 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1173}
1174
1175/*
1176 * Return the average load per task on the cpu's run queue
1177 */
1178static inline unsigned long cpu_avg_load_per_task(int cpu)
1179{
70b97a7f 1180 struct rq *rq = cpu_rq(cpu);
dd41f596 1181 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1182 unsigned long n = rq->nr_running;
1183
dd41f596 1184 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1185}
1186
147cbb4b
NP
1187/*
1188 * find_idlest_group finds and returns the least busy CPU group within the
1189 * domain.
1190 */
1191static struct sched_group *
1192find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1193{
1194 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1195 unsigned long min_load = ULONG_MAX, this_load = 0;
1196 int load_idx = sd->forkexec_idx;
1197 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1198
1199 do {
1200 unsigned long load, avg_load;
1201 int local_group;
1202 int i;
1203
da5a5522
BD
1204 /* Skip over this group if it has no CPUs allowed */
1205 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1206 goto nextgroup;
1207
147cbb4b 1208 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1209
1210 /* Tally up the load of all CPUs in the group */
1211 avg_load = 0;
1212
1213 for_each_cpu_mask(i, group->cpumask) {
1214 /* Bias balancing toward cpus of our domain */
1215 if (local_group)
1216 load = source_load(i, load_idx);
1217 else
1218 load = target_load(i, load_idx);
1219
1220 avg_load += load;
1221 }
1222
1223 /* Adjust by relative CPU power of the group */
5517d86b
ED
1224 avg_load = sg_div_cpu_power(group,
1225 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1226
1227 if (local_group) {
1228 this_load = avg_load;
1229 this = group;
1230 } else if (avg_load < min_load) {
1231 min_load = avg_load;
1232 idlest = group;
1233 }
da5a5522 1234nextgroup:
147cbb4b
NP
1235 group = group->next;
1236 } while (group != sd->groups);
1237
1238 if (!idlest || 100*this_load < imbalance*min_load)
1239 return NULL;
1240 return idlest;
1241}
1242
1243/*
0feaece9 1244 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1245 */
95cdf3b7
IM
1246static int
1247find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1248{
da5a5522 1249 cpumask_t tmp;
147cbb4b
NP
1250 unsigned long load, min_load = ULONG_MAX;
1251 int idlest = -1;
1252 int i;
1253
da5a5522
BD
1254 /* Traverse only the allowed CPUs */
1255 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1256
1257 for_each_cpu_mask(i, tmp) {
2dd73a4f 1258 load = weighted_cpuload(i);
147cbb4b
NP
1259
1260 if (load < min_load || (load == min_load && i == this_cpu)) {
1261 min_load = load;
1262 idlest = i;
1263 }
1264 }
1265
1266 return idlest;
1267}
1268
476d139c
NP
1269/*
1270 * sched_balance_self: balance the current task (running on cpu) in domains
1271 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1272 * SD_BALANCE_EXEC.
1273 *
1274 * Balance, ie. select the least loaded group.
1275 *
1276 * Returns the target CPU number, or the same CPU if no balancing is needed.
1277 *
1278 * preempt must be disabled.
1279 */
1280static int sched_balance_self(int cpu, int flag)
1281{
1282 struct task_struct *t = current;
1283 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1284
c96d145e 1285 for_each_domain(cpu, tmp) {
9761eea8
IM
1286 /*
1287 * If power savings logic is enabled for a domain, stop there.
1288 */
5c45bf27
SS
1289 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1290 break;
476d139c
NP
1291 if (tmp->flags & flag)
1292 sd = tmp;
c96d145e 1293 }
476d139c
NP
1294
1295 while (sd) {
1296 cpumask_t span;
1297 struct sched_group *group;
1a848870
SS
1298 int new_cpu, weight;
1299
1300 if (!(sd->flags & flag)) {
1301 sd = sd->child;
1302 continue;
1303 }
476d139c
NP
1304
1305 span = sd->span;
1306 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1307 if (!group) {
1308 sd = sd->child;
1309 continue;
1310 }
476d139c 1311
da5a5522 1312 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1313 if (new_cpu == -1 || new_cpu == cpu) {
1314 /* Now try balancing at a lower domain level of cpu */
1315 sd = sd->child;
1316 continue;
1317 }
476d139c 1318
1a848870 1319 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1320 cpu = new_cpu;
476d139c
NP
1321 sd = NULL;
1322 weight = cpus_weight(span);
1323 for_each_domain(cpu, tmp) {
1324 if (weight <= cpus_weight(tmp->span))
1325 break;
1326 if (tmp->flags & flag)
1327 sd = tmp;
1328 }
1329 /* while loop will break here if sd == NULL */
1330 }
1331
1332 return cpu;
1333}
1334
1335#endif /* CONFIG_SMP */
1da177e4
LT
1336
1337/*
1338 * wake_idle() will wake a task on an idle cpu if task->cpu is
1339 * not idle and an idle cpu is available. The span of cpus to
1340 * search starts with cpus closest then further out as needed,
1341 * so we always favor a closer, idle cpu.
1342 *
1343 * Returns the CPU we should wake onto.
1344 */
1345#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1346static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1347{
1348 cpumask_t tmp;
1349 struct sched_domain *sd;
1350 int i;
1351
4953198b
SS
1352 /*
1353 * If it is idle, then it is the best cpu to run this task.
1354 *
1355 * This cpu is also the best, if it has more than one task already.
1356 * Siblings must be also busy(in most cases) as they didn't already
1357 * pickup the extra load from this cpu and hence we need not check
1358 * sibling runqueue info. This will avoid the checks and cache miss
1359 * penalities associated with that.
1360 */
1361 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1362 return cpu;
1363
1364 for_each_domain(cpu, sd) {
1365 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1366 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1367 for_each_cpu_mask(i, tmp) {
1368 if (idle_cpu(i))
1369 return i;
1370 }
9761eea8 1371 } else {
e0f364f4 1372 break;
9761eea8 1373 }
1da177e4
LT
1374 }
1375 return cpu;
1376}
1377#else
36c8b586 1378static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1379{
1380 return cpu;
1381}
1382#endif
1383
1384/***
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1389 *
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1395 *
1396 * returns failure only if the task is already active.
1397 */
36c8b586 1398static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1399{
1400 int cpu, this_cpu, success = 0;
1401 unsigned long flags;
1402 long old_state;
70b97a7f 1403 struct rq *rq;
1da177e4 1404#ifdef CONFIG_SMP
7897986b 1405 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1406 unsigned long load, this_load;
1da177e4
LT
1407 int new_cpu;
1408#endif
1409
1410 rq = task_rq_lock(p, &flags);
1411 old_state = p->state;
1412 if (!(old_state & state))
1413 goto out;
1414
dd41f596 1415 if (p->se.on_rq)
1da177e4
LT
1416 goto out_running;
1417
1418 cpu = task_cpu(p);
1419 this_cpu = smp_processor_id();
1420
1421#ifdef CONFIG_SMP
1422 if (unlikely(task_running(rq, p)))
1423 goto out_activate;
1424
7897986b
NP
1425 new_cpu = cpu;
1426
1da177e4
LT
1427 schedstat_inc(rq, ttwu_cnt);
1428 if (cpu == this_cpu) {
1429 schedstat_inc(rq, ttwu_local);
7897986b
NP
1430 goto out_set_cpu;
1431 }
1432
1433 for_each_domain(this_cpu, sd) {
1434 if (cpu_isset(cpu, sd->span)) {
1435 schedstat_inc(sd, ttwu_wake_remote);
1436 this_sd = sd;
1437 break;
1da177e4
LT
1438 }
1439 }
1da177e4 1440
7897986b 1441 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1442 goto out_set_cpu;
1443
1da177e4 1444 /*
7897986b 1445 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1446 */
7897986b
NP
1447 if (this_sd) {
1448 int idx = this_sd->wake_idx;
1449 unsigned int imbalance;
1da177e4 1450
a3f21bce
NP
1451 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1452
7897986b
NP
1453 load = source_load(cpu, idx);
1454 this_load = target_load(this_cpu, idx);
1da177e4 1455
7897986b
NP
1456 new_cpu = this_cpu; /* Wake to this CPU if we can */
1457
a3f21bce
NP
1458 if (this_sd->flags & SD_WAKE_AFFINE) {
1459 unsigned long tl = this_load;
33859f7f
MOS
1460 unsigned long tl_per_task;
1461
1462 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1463
1da177e4 1464 /*
a3f21bce
NP
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1da177e4 1468 */
a3f21bce 1469 if (sync)
dd41f596 1470 tl -= current->se.load.weight;
a3f21bce
NP
1471
1472 if ((tl <= load &&
2dd73a4f 1473 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1474 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1475 /*
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1479 */
1480 schedstat_inc(this_sd, ttwu_move_affine);
1481 goto out_set_cpu;
1482 }
1483 }
1484
1485 /*
1486 * Start passive balancing when half the imbalance_pct
1487 * limit is reached.
1488 */
1489 if (this_sd->flags & SD_WAKE_BALANCE) {
1490 if (imbalance*this_load <= 100*load) {
1491 schedstat_inc(this_sd, ttwu_move_balance);
1492 goto out_set_cpu;
1493 }
1da177e4
LT
1494 }
1495 }
1496
1497 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1498out_set_cpu:
1499 new_cpu = wake_idle(new_cpu, p);
1500 if (new_cpu != cpu) {
1501 set_task_cpu(p, new_cpu);
1502 task_rq_unlock(rq, &flags);
1503 /* might preempt at this point */
1504 rq = task_rq_lock(p, &flags);
1505 old_state = p->state;
1506 if (!(old_state & state))
1507 goto out;
dd41f596 1508 if (p->se.on_rq)
1da177e4
LT
1509 goto out_running;
1510
1511 this_cpu = smp_processor_id();
1512 cpu = task_cpu(p);
1513 }
1514
1515out_activate:
1516#endif /* CONFIG_SMP */
2daa3577 1517 update_rq_clock(rq);
dd41f596 1518 activate_task(rq, p, 1);
1da177e4
LT
1519 /*
1520 * Sync wakeups (i.e. those types of wakeups where the waker
1521 * has indicated that it will leave the CPU in short order)
1522 * don't trigger a preemption, if the woken up task will run on
1523 * this cpu. (in this case the 'I will reschedule' promise of
1524 * the waker guarantees that the freshly woken up task is going
1525 * to be considered on this CPU.)
1526 */
dd41f596
IM
1527 if (!sync || cpu != this_cpu)
1528 check_preempt_curr(rq, p);
1da177e4
LT
1529 success = 1;
1530
1531out_running:
1532 p->state = TASK_RUNNING;
1533out:
1534 task_rq_unlock(rq, &flags);
1535
1536 return success;
1537}
1538
36c8b586 1539int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1540{
1541 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1542 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1543}
1da177e4
LT
1544EXPORT_SYMBOL(wake_up_process);
1545
36c8b586 1546int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1547{
1548 return try_to_wake_up(p, state, 0);
1549}
1550
1da177e4
LT
1551/*
1552 * Perform scheduler related setup for a newly forked process p.
1553 * p is forked by current.
dd41f596
IM
1554 *
1555 * __sched_fork() is basic setup used by init_idle() too:
1556 */
1557static void __sched_fork(struct task_struct *p)
1558{
1559 p->se.wait_start_fair = 0;
dd41f596
IM
1560 p->se.exec_start = 0;
1561 p->se.sum_exec_runtime = 0;
f6cf891c 1562 p->se.prev_sum_exec_runtime = 0;
dd41f596 1563 p->se.wait_runtime = 0;
6cfb0d5d
IM
1564 p->se.sleep_start_fair = 0;
1565
1566#ifdef CONFIG_SCHEDSTATS
1567 p->se.wait_start = 0;
dd41f596
IM
1568 p->se.sum_wait_runtime = 0;
1569 p->se.sum_sleep_runtime = 0;
1570 p->se.sleep_start = 0;
dd41f596
IM
1571 p->se.block_start = 0;
1572 p->se.sleep_max = 0;
1573 p->se.block_max = 0;
1574 p->se.exec_max = 0;
eba1ed4b 1575 p->se.slice_max = 0;
dd41f596
IM
1576 p->se.wait_max = 0;
1577 p->se.wait_runtime_overruns = 0;
1578 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1579#endif
476d139c 1580
dd41f596
IM
1581 INIT_LIST_HEAD(&p->run_list);
1582 p->se.on_rq = 0;
476d139c 1583
e107be36
AK
1584#ifdef CONFIG_PREEMPT_NOTIFIERS
1585 INIT_HLIST_HEAD(&p->preempt_notifiers);
1586#endif
1587
1da177e4
LT
1588 /*
1589 * We mark the process as running here, but have not actually
1590 * inserted it onto the runqueue yet. This guarantees that
1591 * nobody will actually run it, and a signal or other external
1592 * event cannot wake it up and insert it on the runqueue either.
1593 */
1594 p->state = TASK_RUNNING;
dd41f596
IM
1595}
1596
1597/*
1598 * fork()/clone()-time setup:
1599 */
1600void sched_fork(struct task_struct *p, int clone_flags)
1601{
1602 int cpu = get_cpu();
1603
1604 __sched_fork(p);
1605
1606#ifdef CONFIG_SMP
1607 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1608#endif
1609 __set_task_cpu(p, cpu);
b29739f9
IM
1610
1611 /*
1612 * Make sure we do not leak PI boosting priority to the child:
1613 */
1614 p->prio = current->normal_prio;
1615
52f17b6c 1616#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1617 if (likely(sched_info_on()))
52f17b6c 1618 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1619#endif
d6077cb8 1620#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1621 p->oncpu = 0;
1622#endif
1da177e4 1623#ifdef CONFIG_PREEMPT
4866cde0 1624 /* Want to start with kernel preemption disabled. */
a1261f54 1625 task_thread_info(p)->preempt_count = 1;
1da177e4 1626#endif
476d139c 1627 put_cpu();
1da177e4
LT
1628}
1629
1630/*
1631 * wake_up_new_task - wake up a newly created task for the first time.
1632 *
1633 * This function will do some initial scheduler statistics housekeeping
1634 * that must be done for every newly created context, then puts the task
1635 * on the runqueue and wakes it.
1636 */
36c8b586 1637void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1638{
1639 unsigned long flags;
dd41f596
IM
1640 struct rq *rq;
1641 int this_cpu;
1da177e4
LT
1642
1643 rq = task_rq_lock(p, &flags);
147cbb4b 1644 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1645 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1646 update_rq_clock(rq);
1da177e4
LT
1647
1648 p->prio = effective_prio(p);
1649
9c95e731
HS
1650 if (rt_prio(p->prio))
1651 p->sched_class = &rt_sched_class;
1652 else
1653 p->sched_class = &fair_sched_class;
1654
44142fac
IM
1655 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1656 !current->se.on_rq) {
dd41f596 1657 activate_task(rq, p, 0);
1da177e4 1658 } else {
1da177e4 1659 /*
dd41f596
IM
1660 * Let the scheduling class do new task startup
1661 * management (if any):
1da177e4 1662 */
ee0827d8 1663 p->sched_class->task_new(rq, p);
e5fa2237 1664 inc_nr_running(p, rq);
1da177e4 1665 }
dd41f596
IM
1666 check_preempt_curr(rq, p);
1667 task_rq_unlock(rq, &flags);
1da177e4
LT
1668}
1669
e107be36
AK
1670#ifdef CONFIG_PREEMPT_NOTIFIERS
1671
1672/**
421cee29
RD
1673 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1674 * @notifier: notifier struct to register
e107be36
AK
1675 */
1676void preempt_notifier_register(struct preempt_notifier *notifier)
1677{
1678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1679}
1680EXPORT_SYMBOL_GPL(preempt_notifier_register);
1681
1682/**
1683 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1684 * @notifier: notifier struct to unregister
e107be36
AK
1685 *
1686 * This is safe to call from within a preemption notifier.
1687 */
1688void preempt_notifier_unregister(struct preempt_notifier *notifier)
1689{
1690 hlist_del(&notifier->link);
1691}
1692EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1693
1694static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1695{
1696 struct preempt_notifier *notifier;
1697 struct hlist_node *node;
1698
1699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1701}
1702
1703static void
1704fire_sched_out_preempt_notifiers(struct task_struct *curr,
1705 struct task_struct *next)
1706{
1707 struct preempt_notifier *notifier;
1708 struct hlist_node *node;
1709
1710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711 notifier->ops->sched_out(notifier, next);
1712}
1713
1714#else
1715
1716static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1717{
1718}
1719
1720static void
1721fire_sched_out_preempt_notifiers(struct task_struct *curr,
1722 struct task_struct *next)
1723{
1724}
1725
1726#endif
1727
4866cde0
NP
1728/**
1729 * prepare_task_switch - prepare to switch tasks
1730 * @rq: the runqueue preparing to switch
421cee29 1731 * @prev: the current task that is being switched out
4866cde0
NP
1732 * @next: the task we are going to switch to.
1733 *
1734 * This is called with the rq lock held and interrupts off. It must
1735 * be paired with a subsequent finish_task_switch after the context
1736 * switch.
1737 *
1738 * prepare_task_switch sets up locking and calls architecture specific
1739 * hooks.
1740 */
e107be36
AK
1741static inline void
1742prepare_task_switch(struct rq *rq, struct task_struct *prev,
1743 struct task_struct *next)
4866cde0 1744{
e107be36 1745 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1746 prepare_lock_switch(rq, next);
1747 prepare_arch_switch(next);
1748}
1749
1da177e4
LT
1750/**
1751 * finish_task_switch - clean up after a task-switch
344babaa 1752 * @rq: runqueue associated with task-switch
1da177e4
LT
1753 * @prev: the thread we just switched away from.
1754 *
4866cde0
NP
1755 * finish_task_switch must be called after the context switch, paired
1756 * with a prepare_task_switch call before the context switch.
1757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1758 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1759 *
1760 * Note that we may have delayed dropping an mm in context_switch(). If
1761 * so, we finish that here outside of the runqueue lock. (Doing it
1762 * with the lock held can cause deadlocks; see schedule() for
1763 * details.)
1764 */
70b97a7f 1765static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1766 __releases(rq->lock)
1767{
1da177e4 1768 struct mm_struct *mm = rq->prev_mm;
55a101f8 1769 long prev_state;
1da177e4
LT
1770
1771 rq->prev_mm = NULL;
1772
1773 /*
1774 * A task struct has one reference for the use as "current".
c394cc9f 1775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1776 * schedule one last time. The schedule call will never return, and
1777 * the scheduled task must drop that reference.
c394cc9f 1778 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1779 * still held, otherwise prev could be scheduled on another cpu, die
1780 * there before we look at prev->state, and then the reference would
1781 * be dropped twice.
1782 * Manfred Spraul <manfred@colorfullife.com>
1783 */
55a101f8 1784 prev_state = prev->state;
4866cde0
NP
1785 finish_arch_switch(prev);
1786 finish_lock_switch(rq, prev);
e107be36 1787 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1788 if (mm)
1789 mmdrop(mm);
c394cc9f 1790 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1791 /*
1792 * Remove function-return probe instances associated with this
1793 * task and put them back on the free list.
9761eea8 1794 */
c6fd91f0 1795 kprobe_flush_task(prev);
1da177e4 1796 put_task_struct(prev);
c6fd91f0 1797 }
1da177e4
LT
1798}
1799
1800/**
1801 * schedule_tail - first thing a freshly forked thread must call.
1802 * @prev: the thread we just switched away from.
1803 */
36c8b586 1804asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1805 __releases(rq->lock)
1806{
70b97a7f
IM
1807 struct rq *rq = this_rq();
1808
4866cde0
NP
1809 finish_task_switch(rq, prev);
1810#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1811 /* In this case, finish_task_switch does not reenable preemption */
1812 preempt_enable();
1813#endif
1da177e4
LT
1814 if (current->set_child_tid)
1815 put_user(current->pid, current->set_child_tid);
1816}
1817
1818/*
1819 * context_switch - switch to the new MM and the new
1820 * thread's register state.
1821 */
dd41f596 1822static inline void
70b97a7f 1823context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1824 struct task_struct *next)
1da177e4 1825{
dd41f596 1826 struct mm_struct *mm, *oldmm;
1da177e4 1827
e107be36 1828 prepare_task_switch(rq, prev, next);
dd41f596
IM
1829 mm = next->mm;
1830 oldmm = prev->active_mm;
9226d125
ZA
1831 /*
1832 * For paravirt, this is coupled with an exit in switch_to to
1833 * combine the page table reload and the switch backend into
1834 * one hypercall.
1835 */
1836 arch_enter_lazy_cpu_mode();
1837
dd41f596 1838 if (unlikely(!mm)) {
1da177e4
LT
1839 next->active_mm = oldmm;
1840 atomic_inc(&oldmm->mm_count);
1841 enter_lazy_tlb(oldmm, next);
1842 } else
1843 switch_mm(oldmm, mm, next);
1844
dd41f596 1845 if (unlikely(!prev->mm)) {
1da177e4 1846 prev->active_mm = NULL;
1da177e4
LT
1847 rq->prev_mm = oldmm;
1848 }
3a5f5e48
IM
1849 /*
1850 * Since the runqueue lock will be released by the next
1851 * task (which is an invalid locking op but in the case
1852 * of the scheduler it's an obvious special-case), so we
1853 * do an early lockdep release here:
1854 */
1855#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1856 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1857#endif
1da177e4
LT
1858
1859 /* Here we just switch the register state and the stack. */
1860 switch_to(prev, next, prev);
1861
dd41f596
IM
1862 barrier();
1863 /*
1864 * this_rq must be evaluated again because prev may have moved
1865 * CPUs since it called schedule(), thus the 'rq' on its stack
1866 * frame will be invalid.
1867 */
1868 finish_task_switch(this_rq(), prev);
1da177e4
LT
1869}
1870
1871/*
1872 * nr_running, nr_uninterruptible and nr_context_switches:
1873 *
1874 * externally visible scheduler statistics: current number of runnable
1875 * threads, current number of uninterruptible-sleeping threads, total
1876 * number of context switches performed since bootup.
1877 */
1878unsigned long nr_running(void)
1879{
1880 unsigned long i, sum = 0;
1881
1882 for_each_online_cpu(i)
1883 sum += cpu_rq(i)->nr_running;
1884
1885 return sum;
1886}
1887
1888unsigned long nr_uninterruptible(void)
1889{
1890 unsigned long i, sum = 0;
1891
0a945022 1892 for_each_possible_cpu(i)
1da177e4
LT
1893 sum += cpu_rq(i)->nr_uninterruptible;
1894
1895 /*
1896 * Since we read the counters lockless, it might be slightly
1897 * inaccurate. Do not allow it to go below zero though:
1898 */
1899 if (unlikely((long)sum < 0))
1900 sum = 0;
1901
1902 return sum;
1903}
1904
1905unsigned long long nr_context_switches(void)
1906{
cc94abfc
SR
1907 int i;
1908 unsigned long long sum = 0;
1da177e4 1909
0a945022 1910 for_each_possible_cpu(i)
1da177e4
LT
1911 sum += cpu_rq(i)->nr_switches;
1912
1913 return sum;
1914}
1915
1916unsigned long nr_iowait(void)
1917{
1918 unsigned long i, sum = 0;
1919
0a945022 1920 for_each_possible_cpu(i)
1da177e4
LT
1921 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1922
1923 return sum;
1924}
1925
db1b1fef
JS
1926unsigned long nr_active(void)
1927{
1928 unsigned long i, running = 0, uninterruptible = 0;
1929
1930 for_each_online_cpu(i) {
1931 running += cpu_rq(i)->nr_running;
1932 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1933 }
1934
1935 if (unlikely((long)uninterruptible < 0))
1936 uninterruptible = 0;
1937
1938 return running + uninterruptible;
1939}
1940
48f24c4d 1941/*
dd41f596
IM
1942 * Update rq->cpu_load[] statistics. This function is usually called every
1943 * scheduler tick (TICK_NSEC).
48f24c4d 1944 */
dd41f596 1945static void update_cpu_load(struct rq *this_rq)
48f24c4d 1946{
53df556e 1947 unsigned long this_load = this_rq->ls.load.weight;
dd41f596
IM
1948 int i, scale;
1949
1950 this_rq->nr_load_updates++;
dd41f596
IM
1951
1952 /* Update our load: */
1953 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1954 unsigned long old_load, new_load;
1955
1956 /* scale is effectively 1 << i now, and >> i divides by scale */
1957
1958 old_load = this_rq->cpu_load[i];
1959 new_load = this_load;
a25707f3
IM
1960 /*
1961 * Round up the averaging division if load is increasing. This
1962 * prevents us from getting stuck on 9 if the load is 10, for
1963 * example.
1964 */
1965 if (new_load > old_load)
1966 new_load += scale-1;
dd41f596
IM
1967 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1968 }
48f24c4d
IM
1969}
1970
dd41f596
IM
1971#ifdef CONFIG_SMP
1972
1da177e4
LT
1973/*
1974 * double_rq_lock - safely lock two runqueues
1975 *
1976 * Note this does not disable interrupts like task_rq_lock,
1977 * you need to do so manually before calling.
1978 */
70b97a7f 1979static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1980 __acquires(rq1->lock)
1981 __acquires(rq2->lock)
1982{
054b9108 1983 BUG_ON(!irqs_disabled());
1da177e4
LT
1984 if (rq1 == rq2) {
1985 spin_lock(&rq1->lock);
1986 __acquire(rq2->lock); /* Fake it out ;) */
1987 } else {
c96d145e 1988 if (rq1 < rq2) {
1da177e4
LT
1989 spin_lock(&rq1->lock);
1990 spin_lock(&rq2->lock);
1991 } else {
1992 spin_lock(&rq2->lock);
1993 spin_lock(&rq1->lock);
1994 }
1995 }
6e82a3be
IM
1996 update_rq_clock(rq1);
1997 update_rq_clock(rq2);
1da177e4
LT
1998}
1999
2000/*
2001 * double_rq_unlock - safely unlock two runqueues
2002 *
2003 * Note this does not restore interrupts like task_rq_unlock,
2004 * you need to do so manually after calling.
2005 */
70b97a7f 2006static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2007 __releases(rq1->lock)
2008 __releases(rq2->lock)
2009{
2010 spin_unlock(&rq1->lock);
2011 if (rq1 != rq2)
2012 spin_unlock(&rq2->lock);
2013 else
2014 __release(rq2->lock);
2015}
2016
2017/*
2018 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2019 */
70b97a7f 2020static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2021 __releases(this_rq->lock)
2022 __acquires(busiest->lock)
2023 __acquires(this_rq->lock)
2024{
054b9108
KK
2025 if (unlikely(!irqs_disabled())) {
2026 /* printk() doesn't work good under rq->lock */
2027 spin_unlock(&this_rq->lock);
2028 BUG_ON(1);
2029 }
1da177e4 2030 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2031 if (busiest < this_rq) {
1da177e4
LT
2032 spin_unlock(&this_rq->lock);
2033 spin_lock(&busiest->lock);
2034 spin_lock(&this_rq->lock);
2035 } else
2036 spin_lock(&busiest->lock);
2037 }
2038}
2039
1da177e4
LT
2040/*
2041 * If dest_cpu is allowed for this process, migrate the task to it.
2042 * This is accomplished by forcing the cpu_allowed mask to only
2043 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2044 * the cpu_allowed mask is restored.
2045 */
36c8b586 2046static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2047{
70b97a7f 2048 struct migration_req req;
1da177e4 2049 unsigned long flags;
70b97a7f 2050 struct rq *rq;
1da177e4
LT
2051
2052 rq = task_rq_lock(p, &flags);
2053 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2054 || unlikely(cpu_is_offline(dest_cpu)))
2055 goto out;
2056
2057 /* force the process onto the specified CPU */
2058 if (migrate_task(p, dest_cpu, &req)) {
2059 /* Need to wait for migration thread (might exit: take ref). */
2060 struct task_struct *mt = rq->migration_thread;
36c8b586 2061
1da177e4
LT
2062 get_task_struct(mt);
2063 task_rq_unlock(rq, &flags);
2064 wake_up_process(mt);
2065 put_task_struct(mt);
2066 wait_for_completion(&req.done);
36c8b586 2067
1da177e4
LT
2068 return;
2069 }
2070out:
2071 task_rq_unlock(rq, &flags);
2072}
2073
2074/*
476d139c
NP
2075 * sched_exec - execve() is a valuable balancing opportunity, because at
2076 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2077 */
2078void sched_exec(void)
2079{
1da177e4 2080 int new_cpu, this_cpu = get_cpu();
476d139c 2081 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2082 put_cpu();
476d139c
NP
2083 if (new_cpu != this_cpu)
2084 sched_migrate_task(current, new_cpu);
1da177e4
LT
2085}
2086
2087/*
2088 * pull_task - move a task from a remote runqueue to the local runqueue.
2089 * Both runqueues must be locked.
2090 */
dd41f596
IM
2091static void pull_task(struct rq *src_rq, struct task_struct *p,
2092 struct rq *this_rq, int this_cpu)
1da177e4 2093{
2e1cb74a 2094 deactivate_task(src_rq, p, 0);
1da177e4 2095 set_task_cpu(p, this_cpu);
dd41f596 2096 activate_task(this_rq, p, 0);
1da177e4
LT
2097 /*
2098 * Note that idle threads have a prio of MAX_PRIO, for this test
2099 * to be always true for them.
2100 */
dd41f596 2101 check_preempt_curr(this_rq, p);
1da177e4
LT
2102}
2103
2104/*
2105 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2106 */
858119e1 2107static
70b97a7f 2108int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2109 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2110 int *all_pinned)
1da177e4
LT
2111{
2112 /*
2113 * We do not migrate tasks that are:
2114 * 1) running (obviously), or
2115 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2116 * 3) are cache-hot on their current CPU.
2117 */
1da177e4
LT
2118 if (!cpu_isset(this_cpu, p->cpus_allowed))
2119 return 0;
81026794
NP
2120 *all_pinned = 0;
2121
2122 if (task_running(rq, p))
2123 return 0;
1da177e4 2124
1da177e4
LT
2125 return 1;
2126}
2127
dd41f596 2128static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2129 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2130 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2131 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2132 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2133{
dd41f596
IM
2134 int pulled = 0, pinned = 0, skip_for_load;
2135 struct task_struct *p;
2136 long rem_load_move = max_load_move;
1da177e4 2137
2dd73a4f 2138 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2139 goto out;
2140
81026794
NP
2141 pinned = 1;
2142
1da177e4 2143 /*
dd41f596 2144 * Start the load-balancing iterator:
1da177e4 2145 */
dd41f596
IM
2146 p = iterator->start(iterator->arg);
2147next:
2148 if (!p)
1da177e4 2149 goto out;
50ddd969
PW
2150 /*
2151 * To help distribute high priority tasks accross CPUs we don't
2152 * skip a task if it will be the highest priority task (i.e. smallest
2153 * prio value) on its new queue regardless of its load weight
2154 */
dd41f596
IM
2155 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2156 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2157 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2158 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2159 p = iterator->next(iterator->arg);
2160 goto next;
1da177e4
LT
2161 }
2162
dd41f596 2163 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2164 pulled++;
dd41f596 2165 rem_load_move -= p->se.load.weight;
1da177e4 2166
2dd73a4f
PW
2167 /*
2168 * We only want to steal up to the prescribed number of tasks
2169 * and the prescribed amount of weighted load.
2170 */
2171 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2172 if (p->prio < *this_best_prio)
2173 *this_best_prio = p->prio;
dd41f596
IM
2174 p = iterator->next(iterator->arg);
2175 goto next;
1da177e4
LT
2176 }
2177out:
2178 /*
2179 * Right now, this is the only place pull_task() is called,
2180 * so we can safely collect pull_task() stats here rather than
2181 * inside pull_task().
2182 */
2183 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2184
2185 if (all_pinned)
2186 *all_pinned = pinned;
dd41f596 2187 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2188 return pulled;
2189}
2190
dd41f596 2191/*
43010659
PW
2192 * move_tasks tries to move up to max_load_move weighted load from busiest to
2193 * this_rq, as part of a balancing operation within domain "sd".
2194 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2195 *
2196 * Called with both runqueues locked.
2197 */
2198static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2199 unsigned long max_load_move,
dd41f596
IM
2200 struct sched_domain *sd, enum cpu_idle_type idle,
2201 int *all_pinned)
2202{
2203 struct sched_class *class = sched_class_highest;
43010659 2204 unsigned long total_load_moved = 0;
a4ac01c3 2205 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2206
2207 do {
43010659
PW
2208 total_load_moved +=
2209 class->load_balance(this_rq, this_cpu, busiest,
2210 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2211 sd, idle, all_pinned, &this_best_prio);
dd41f596 2212 class = class->next;
43010659 2213 } while (class && max_load_move > total_load_moved);
dd41f596 2214
43010659
PW
2215 return total_load_moved > 0;
2216}
2217
2218/*
2219 * move_one_task tries to move exactly one task from busiest to this_rq, as
2220 * part of active balancing operations within "domain".
2221 * Returns 1 if successful and 0 otherwise.
2222 *
2223 * Called with both runqueues locked.
2224 */
2225static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2226 struct sched_domain *sd, enum cpu_idle_type idle)
2227{
2228 struct sched_class *class;
a4ac01c3 2229 int this_best_prio = MAX_PRIO;
43010659
PW
2230
2231 for (class = sched_class_highest; class; class = class->next)
2232 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2233 1, ULONG_MAX, sd, idle, NULL,
2234 &this_best_prio))
43010659
PW
2235 return 1;
2236
2237 return 0;
dd41f596
IM
2238}
2239
1da177e4
LT
2240/*
2241 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2242 * domain. It calculates and returns the amount of weighted load which
2243 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2244 */
2245static struct sched_group *
2246find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2247 unsigned long *imbalance, enum cpu_idle_type idle,
2248 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2249{
2250 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2251 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2252 unsigned long max_pull;
2dd73a4f
PW
2253 unsigned long busiest_load_per_task, busiest_nr_running;
2254 unsigned long this_load_per_task, this_nr_running;
7897986b 2255 int load_idx;
5c45bf27
SS
2256#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2257 int power_savings_balance = 1;
2258 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2259 unsigned long min_nr_running = ULONG_MAX;
2260 struct sched_group *group_min = NULL, *group_leader = NULL;
2261#endif
1da177e4
LT
2262
2263 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2264 busiest_load_per_task = busiest_nr_running = 0;
2265 this_load_per_task = this_nr_running = 0;
d15bcfdb 2266 if (idle == CPU_NOT_IDLE)
7897986b 2267 load_idx = sd->busy_idx;
d15bcfdb 2268 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2269 load_idx = sd->newidle_idx;
2270 else
2271 load_idx = sd->idle_idx;
1da177e4
LT
2272
2273 do {
5c45bf27 2274 unsigned long load, group_capacity;
1da177e4
LT
2275 int local_group;
2276 int i;
783609c6 2277 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2278 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2279
2280 local_group = cpu_isset(this_cpu, group->cpumask);
2281
783609c6
SS
2282 if (local_group)
2283 balance_cpu = first_cpu(group->cpumask);
2284
1da177e4 2285 /* Tally up the load of all CPUs in the group */
2dd73a4f 2286 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2287
2288 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2289 struct rq *rq;
2290
2291 if (!cpu_isset(i, *cpus))
2292 continue;
2293
2294 rq = cpu_rq(i);
2dd73a4f 2295
9439aab8 2296 if (*sd_idle && rq->nr_running)
5969fe06
NP
2297 *sd_idle = 0;
2298
1da177e4 2299 /* Bias balancing toward cpus of our domain */
783609c6
SS
2300 if (local_group) {
2301 if (idle_cpu(i) && !first_idle_cpu) {
2302 first_idle_cpu = 1;
2303 balance_cpu = i;
2304 }
2305
a2000572 2306 load = target_load(i, load_idx);
783609c6 2307 } else
a2000572 2308 load = source_load(i, load_idx);
1da177e4
LT
2309
2310 avg_load += load;
2dd73a4f 2311 sum_nr_running += rq->nr_running;
dd41f596 2312 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2313 }
2314
783609c6
SS
2315 /*
2316 * First idle cpu or the first cpu(busiest) in this sched group
2317 * is eligible for doing load balancing at this and above
9439aab8
SS
2318 * domains. In the newly idle case, we will allow all the cpu's
2319 * to do the newly idle load balance.
783609c6 2320 */
9439aab8
SS
2321 if (idle != CPU_NEWLY_IDLE && local_group &&
2322 balance_cpu != this_cpu && balance) {
783609c6
SS
2323 *balance = 0;
2324 goto ret;
2325 }
2326
1da177e4 2327 total_load += avg_load;
5517d86b 2328 total_pwr += group->__cpu_power;
1da177e4
LT
2329
2330 /* Adjust by relative CPU power of the group */
5517d86b
ED
2331 avg_load = sg_div_cpu_power(group,
2332 avg_load * SCHED_LOAD_SCALE);
1da177e4 2333
5517d86b 2334 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2335
1da177e4
LT
2336 if (local_group) {
2337 this_load = avg_load;
2338 this = group;
2dd73a4f
PW
2339 this_nr_running = sum_nr_running;
2340 this_load_per_task = sum_weighted_load;
2341 } else if (avg_load > max_load &&
5c45bf27 2342 sum_nr_running > group_capacity) {
1da177e4
LT
2343 max_load = avg_load;
2344 busiest = group;
2dd73a4f
PW
2345 busiest_nr_running = sum_nr_running;
2346 busiest_load_per_task = sum_weighted_load;
1da177e4 2347 }
5c45bf27
SS
2348
2349#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2350 /*
2351 * Busy processors will not participate in power savings
2352 * balance.
2353 */
dd41f596
IM
2354 if (idle == CPU_NOT_IDLE ||
2355 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2356 goto group_next;
5c45bf27
SS
2357
2358 /*
2359 * If the local group is idle or completely loaded
2360 * no need to do power savings balance at this domain
2361 */
2362 if (local_group && (this_nr_running >= group_capacity ||
2363 !this_nr_running))
2364 power_savings_balance = 0;
2365
dd41f596 2366 /*
5c45bf27
SS
2367 * If a group is already running at full capacity or idle,
2368 * don't include that group in power savings calculations
dd41f596
IM
2369 */
2370 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2371 || !sum_nr_running)
dd41f596 2372 goto group_next;
5c45bf27 2373
dd41f596 2374 /*
5c45bf27 2375 * Calculate the group which has the least non-idle load.
dd41f596
IM
2376 * This is the group from where we need to pick up the load
2377 * for saving power
2378 */
2379 if ((sum_nr_running < min_nr_running) ||
2380 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2381 first_cpu(group->cpumask) <
2382 first_cpu(group_min->cpumask))) {
dd41f596
IM
2383 group_min = group;
2384 min_nr_running = sum_nr_running;
5c45bf27
SS
2385 min_load_per_task = sum_weighted_load /
2386 sum_nr_running;
dd41f596 2387 }
5c45bf27 2388
dd41f596 2389 /*
5c45bf27 2390 * Calculate the group which is almost near its
dd41f596
IM
2391 * capacity but still has some space to pick up some load
2392 * from other group and save more power
2393 */
2394 if (sum_nr_running <= group_capacity - 1) {
2395 if (sum_nr_running > leader_nr_running ||
2396 (sum_nr_running == leader_nr_running &&
2397 first_cpu(group->cpumask) >
2398 first_cpu(group_leader->cpumask))) {
2399 group_leader = group;
2400 leader_nr_running = sum_nr_running;
2401 }
48f24c4d 2402 }
5c45bf27
SS
2403group_next:
2404#endif
1da177e4
LT
2405 group = group->next;
2406 } while (group != sd->groups);
2407
2dd73a4f 2408 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2409 goto out_balanced;
2410
2411 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2412
2413 if (this_load >= avg_load ||
2414 100*max_load <= sd->imbalance_pct*this_load)
2415 goto out_balanced;
2416
2dd73a4f 2417 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2418 /*
2419 * We're trying to get all the cpus to the average_load, so we don't
2420 * want to push ourselves above the average load, nor do we wish to
2421 * reduce the max loaded cpu below the average load, as either of these
2422 * actions would just result in more rebalancing later, and ping-pong
2423 * tasks around. Thus we look for the minimum possible imbalance.
2424 * Negative imbalances (*we* are more loaded than anyone else) will
2425 * be counted as no imbalance for these purposes -- we can't fix that
2426 * by pulling tasks to us. Be careful of negative numbers as they'll
2427 * appear as very large values with unsigned longs.
2428 */
2dd73a4f
PW
2429 if (max_load <= busiest_load_per_task)
2430 goto out_balanced;
2431
2432 /*
2433 * In the presence of smp nice balancing, certain scenarios can have
2434 * max load less than avg load(as we skip the groups at or below
2435 * its cpu_power, while calculating max_load..)
2436 */
2437 if (max_load < avg_load) {
2438 *imbalance = 0;
2439 goto small_imbalance;
2440 }
0c117f1b
SS
2441
2442 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2443 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2444
1da177e4 2445 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2446 *imbalance = min(max_pull * busiest->__cpu_power,
2447 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2448 / SCHED_LOAD_SCALE;
2449
2dd73a4f
PW
2450 /*
2451 * if *imbalance is less than the average load per runnable task
2452 * there is no gaurantee that any tasks will be moved so we'll have
2453 * a think about bumping its value to force at least one task to be
2454 * moved
2455 */
7fd0d2dd 2456 if (*imbalance < busiest_load_per_task) {
48f24c4d 2457 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2458 unsigned int imbn;
2459
2460small_imbalance:
2461 pwr_move = pwr_now = 0;
2462 imbn = 2;
2463 if (this_nr_running) {
2464 this_load_per_task /= this_nr_running;
2465 if (busiest_load_per_task > this_load_per_task)
2466 imbn = 1;
2467 } else
2468 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2469
dd41f596
IM
2470 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2471 busiest_load_per_task * imbn) {
2dd73a4f 2472 *imbalance = busiest_load_per_task;
1da177e4
LT
2473 return busiest;
2474 }
2475
2476 /*
2477 * OK, we don't have enough imbalance to justify moving tasks,
2478 * however we may be able to increase total CPU power used by
2479 * moving them.
2480 */
2481
5517d86b
ED
2482 pwr_now += busiest->__cpu_power *
2483 min(busiest_load_per_task, max_load);
2484 pwr_now += this->__cpu_power *
2485 min(this_load_per_task, this_load);
1da177e4
LT
2486 pwr_now /= SCHED_LOAD_SCALE;
2487
2488 /* Amount of load we'd subtract */
5517d86b
ED
2489 tmp = sg_div_cpu_power(busiest,
2490 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2491 if (max_load > tmp)
5517d86b 2492 pwr_move += busiest->__cpu_power *
2dd73a4f 2493 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2494
2495 /* Amount of load we'd add */
5517d86b 2496 if (max_load * busiest->__cpu_power <
33859f7f 2497 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2498 tmp = sg_div_cpu_power(this,
2499 max_load * busiest->__cpu_power);
1da177e4 2500 else
5517d86b
ED
2501 tmp = sg_div_cpu_power(this,
2502 busiest_load_per_task * SCHED_LOAD_SCALE);
2503 pwr_move += this->__cpu_power *
2504 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2505 pwr_move /= SCHED_LOAD_SCALE;
2506
2507 /* Move if we gain throughput */
7fd0d2dd
SS
2508 if (pwr_move > pwr_now)
2509 *imbalance = busiest_load_per_task;
1da177e4
LT
2510 }
2511
1da177e4
LT
2512 return busiest;
2513
2514out_balanced:
5c45bf27 2515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2516 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2517 goto ret;
1da177e4 2518
5c45bf27
SS
2519 if (this == group_leader && group_leader != group_min) {
2520 *imbalance = min_load_per_task;
2521 return group_min;
2522 }
5c45bf27 2523#endif
783609c6 2524ret:
1da177e4
LT
2525 *imbalance = 0;
2526 return NULL;
2527}
2528
2529/*
2530 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2531 */
70b97a7f 2532static struct rq *
d15bcfdb 2533find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2534 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2535{
70b97a7f 2536 struct rq *busiest = NULL, *rq;
2dd73a4f 2537 unsigned long max_load = 0;
1da177e4
LT
2538 int i;
2539
2540 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2541 unsigned long wl;
0a2966b4
CL
2542
2543 if (!cpu_isset(i, *cpus))
2544 continue;
2545
48f24c4d 2546 rq = cpu_rq(i);
dd41f596 2547 wl = weighted_cpuload(i);
2dd73a4f 2548
dd41f596 2549 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2550 continue;
1da177e4 2551
dd41f596
IM
2552 if (wl > max_load) {
2553 max_load = wl;
48f24c4d 2554 busiest = rq;
1da177e4
LT
2555 }
2556 }
2557
2558 return busiest;
2559}
2560
77391d71
NP
2561/*
2562 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2563 * so long as it is large enough.
2564 */
2565#define MAX_PINNED_INTERVAL 512
2566
1da177e4
LT
2567/*
2568 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2569 * tasks if there is an imbalance.
1da177e4 2570 */
70b97a7f 2571static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2572 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2573 int *balance)
1da177e4 2574{
43010659 2575 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2576 struct sched_group *group;
1da177e4 2577 unsigned long imbalance;
70b97a7f 2578 struct rq *busiest;
0a2966b4 2579 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2580 unsigned long flags;
5969fe06 2581
89c4710e
SS
2582 /*
2583 * When power savings policy is enabled for the parent domain, idle
2584 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2585 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2586 * portraying it as CPU_NOT_IDLE.
89c4710e 2587 */
d15bcfdb 2588 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2589 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2590 sd_idle = 1;
1da177e4 2591
1da177e4
LT
2592 schedstat_inc(sd, lb_cnt[idle]);
2593
0a2966b4
CL
2594redo:
2595 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2596 &cpus, balance);
2597
06066714 2598 if (*balance == 0)
783609c6 2599 goto out_balanced;
783609c6 2600
1da177e4
LT
2601 if (!group) {
2602 schedstat_inc(sd, lb_nobusyg[idle]);
2603 goto out_balanced;
2604 }
2605
0a2966b4 2606 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2607 if (!busiest) {
2608 schedstat_inc(sd, lb_nobusyq[idle]);
2609 goto out_balanced;
2610 }
2611
db935dbd 2612 BUG_ON(busiest == this_rq);
1da177e4
LT
2613
2614 schedstat_add(sd, lb_imbalance[idle], imbalance);
2615
43010659 2616 ld_moved = 0;
1da177e4
LT
2617 if (busiest->nr_running > 1) {
2618 /*
2619 * Attempt to move tasks. If find_busiest_group has found
2620 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2621 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2622 * correctly treated as an imbalance.
2623 */
fe2eea3f 2624 local_irq_save(flags);
e17224bf 2625 double_rq_lock(this_rq, busiest);
43010659 2626 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2627 imbalance, sd, idle, &all_pinned);
e17224bf 2628 double_rq_unlock(this_rq, busiest);
fe2eea3f 2629 local_irq_restore(flags);
81026794 2630
46cb4b7c
SS
2631 /*
2632 * some other cpu did the load balance for us.
2633 */
43010659 2634 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2635 resched_cpu(this_cpu);
2636
81026794 2637 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2638 if (unlikely(all_pinned)) {
2639 cpu_clear(cpu_of(busiest), cpus);
2640 if (!cpus_empty(cpus))
2641 goto redo;
81026794 2642 goto out_balanced;
0a2966b4 2643 }
1da177e4 2644 }
81026794 2645
43010659 2646 if (!ld_moved) {
1da177e4
LT
2647 schedstat_inc(sd, lb_failed[idle]);
2648 sd->nr_balance_failed++;
2649
2650 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2651
fe2eea3f 2652 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2653
2654 /* don't kick the migration_thread, if the curr
2655 * task on busiest cpu can't be moved to this_cpu
2656 */
2657 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2658 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2659 all_pinned = 1;
2660 goto out_one_pinned;
2661 }
2662
1da177e4
LT
2663 if (!busiest->active_balance) {
2664 busiest->active_balance = 1;
2665 busiest->push_cpu = this_cpu;
81026794 2666 active_balance = 1;
1da177e4 2667 }
fe2eea3f 2668 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2669 if (active_balance)
1da177e4
LT
2670 wake_up_process(busiest->migration_thread);
2671
2672 /*
2673 * We've kicked active balancing, reset the failure
2674 * counter.
2675 */
39507451 2676 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2677 }
81026794 2678 } else
1da177e4
LT
2679 sd->nr_balance_failed = 0;
2680
81026794 2681 if (likely(!active_balance)) {
1da177e4
LT
2682 /* We were unbalanced, so reset the balancing interval */
2683 sd->balance_interval = sd->min_interval;
81026794
NP
2684 } else {
2685 /*
2686 * If we've begun active balancing, start to back off. This
2687 * case may not be covered by the all_pinned logic if there
2688 * is only 1 task on the busy runqueue (because we don't call
2689 * move_tasks).
2690 */
2691 if (sd->balance_interval < sd->max_interval)
2692 sd->balance_interval *= 2;
1da177e4
LT
2693 }
2694
43010659 2695 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2696 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2697 return -1;
43010659 2698 return ld_moved;
1da177e4
LT
2699
2700out_balanced:
1da177e4
LT
2701 schedstat_inc(sd, lb_balanced[idle]);
2702
16cfb1c0 2703 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2704
2705out_one_pinned:
1da177e4 2706 /* tune up the balancing interval */
77391d71
NP
2707 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2708 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2709 sd->balance_interval *= 2;
2710
48f24c4d 2711 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2712 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2713 return -1;
1da177e4
LT
2714 return 0;
2715}
2716
2717/*
2718 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2719 * tasks if there is an imbalance.
2720 *
d15bcfdb 2721 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2722 * this_rq is locked.
2723 */
48f24c4d 2724static int
70b97a7f 2725load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2726{
2727 struct sched_group *group;
70b97a7f 2728 struct rq *busiest = NULL;
1da177e4 2729 unsigned long imbalance;
43010659 2730 int ld_moved = 0;
5969fe06 2731 int sd_idle = 0;
969bb4e4 2732 int all_pinned = 0;
0a2966b4 2733 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2734
89c4710e
SS
2735 /*
2736 * When power savings policy is enabled for the parent domain, idle
2737 * sibling can pick up load irrespective of busy siblings. In this case,
2738 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2739 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2740 */
2741 if (sd->flags & SD_SHARE_CPUPOWER &&
2742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2743 sd_idle = 1;
1da177e4 2744
d15bcfdb 2745 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2746redo:
d15bcfdb 2747 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2748 &sd_idle, &cpus, NULL);
1da177e4 2749 if (!group) {
d15bcfdb 2750 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2751 goto out_balanced;
1da177e4
LT
2752 }
2753
d15bcfdb 2754 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2755 &cpus);
db935dbd 2756 if (!busiest) {
d15bcfdb 2757 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2758 goto out_balanced;
1da177e4
LT
2759 }
2760
db935dbd
NP
2761 BUG_ON(busiest == this_rq);
2762
d15bcfdb 2763 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2764
43010659 2765 ld_moved = 0;
d6d5cfaf
NP
2766 if (busiest->nr_running > 1) {
2767 /* Attempt to move tasks */
2768 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2769 /* this_rq->clock is already updated */
2770 update_rq_clock(busiest);
43010659 2771 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2772 imbalance, sd, CPU_NEWLY_IDLE,
2773 &all_pinned);
d6d5cfaf 2774 spin_unlock(&busiest->lock);
0a2966b4 2775
969bb4e4 2776 if (unlikely(all_pinned)) {
0a2966b4
CL
2777 cpu_clear(cpu_of(busiest), cpus);
2778 if (!cpus_empty(cpus))
2779 goto redo;
2780 }
d6d5cfaf
NP
2781 }
2782
43010659 2783 if (!ld_moved) {
d15bcfdb 2784 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2785 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2786 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2787 return -1;
2788 } else
16cfb1c0 2789 sd->nr_balance_failed = 0;
1da177e4 2790
43010659 2791 return ld_moved;
16cfb1c0
NP
2792
2793out_balanced:
d15bcfdb 2794 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2797 return -1;
16cfb1c0 2798 sd->nr_balance_failed = 0;
48f24c4d 2799
16cfb1c0 2800 return 0;
1da177e4
LT
2801}
2802
2803/*
2804 * idle_balance is called by schedule() if this_cpu is about to become
2805 * idle. Attempts to pull tasks from other CPUs.
2806 */
70b97a7f 2807static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2808{
2809 struct sched_domain *sd;
dd41f596
IM
2810 int pulled_task = -1;
2811 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2812
2813 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2814 unsigned long interval;
2815
2816 if (!(sd->flags & SD_LOAD_BALANCE))
2817 continue;
2818
2819 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2820 /* If we've pulled tasks over stop searching: */
1bd77f2d 2821 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2822 this_rq, sd);
2823
2824 interval = msecs_to_jiffies(sd->balance_interval);
2825 if (time_after(next_balance, sd->last_balance + interval))
2826 next_balance = sd->last_balance + interval;
2827 if (pulled_task)
2828 break;
1da177e4 2829 }
dd41f596 2830 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2831 /*
2832 * We are going idle. next_balance may be set based on
2833 * a busy processor. So reset next_balance.
2834 */
2835 this_rq->next_balance = next_balance;
dd41f596 2836 }
1da177e4
LT
2837}
2838
2839/*
2840 * active_load_balance is run by migration threads. It pushes running tasks
2841 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2842 * running on each physical CPU where possible, and avoids physical /
2843 * logical imbalances.
2844 *
2845 * Called with busiest_rq locked.
2846 */
70b97a7f 2847static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2848{
39507451 2849 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2850 struct sched_domain *sd;
2851 struct rq *target_rq;
39507451 2852
48f24c4d 2853 /* Is there any task to move? */
39507451 2854 if (busiest_rq->nr_running <= 1)
39507451
NP
2855 return;
2856
2857 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2858
2859 /*
39507451
NP
2860 * This condition is "impossible", if it occurs
2861 * we need to fix it. Originally reported by
2862 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2863 */
39507451 2864 BUG_ON(busiest_rq == target_rq);
1da177e4 2865
39507451
NP
2866 /* move a task from busiest_rq to target_rq */
2867 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2868 update_rq_clock(busiest_rq);
2869 update_rq_clock(target_rq);
39507451
NP
2870
2871 /* Search for an sd spanning us and the target CPU. */
c96d145e 2872 for_each_domain(target_cpu, sd) {
39507451 2873 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2874 cpu_isset(busiest_cpu, sd->span))
39507451 2875 break;
c96d145e 2876 }
39507451 2877
48f24c4d
IM
2878 if (likely(sd)) {
2879 schedstat_inc(sd, alb_cnt);
39507451 2880
43010659
PW
2881 if (move_one_task(target_rq, target_cpu, busiest_rq,
2882 sd, CPU_IDLE))
48f24c4d
IM
2883 schedstat_inc(sd, alb_pushed);
2884 else
2885 schedstat_inc(sd, alb_failed);
2886 }
39507451 2887 spin_unlock(&target_rq->lock);
1da177e4
LT
2888}
2889
46cb4b7c
SS
2890#ifdef CONFIG_NO_HZ
2891static struct {
2892 atomic_t load_balancer;
2893 cpumask_t cpu_mask;
2894} nohz ____cacheline_aligned = {
2895 .load_balancer = ATOMIC_INIT(-1),
2896 .cpu_mask = CPU_MASK_NONE,
2897};
2898
7835b98b 2899/*
46cb4b7c
SS
2900 * This routine will try to nominate the ilb (idle load balancing)
2901 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2902 * load balancing on behalf of all those cpus. If all the cpus in the system
2903 * go into this tickless mode, then there will be no ilb owner (as there is
2904 * no need for one) and all the cpus will sleep till the next wakeup event
2905 * arrives...
2906 *
2907 * For the ilb owner, tick is not stopped. And this tick will be used
2908 * for idle load balancing. ilb owner will still be part of
2909 * nohz.cpu_mask..
7835b98b 2910 *
46cb4b7c
SS
2911 * While stopping the tick, this cpu will become the ilb owner if there
2912 * is no other owner. And will be the owner till that cpu becomes busy
2913 * or if all cpus in the system stop their ticks at which point
2914 * there is no need for ilb owner.
2915 *
2916 * When the ilb owner becomes busy, it nominates another owner, during the
2917 * next busy scheduler_tick()
2918 */
2919int select_nohz_load_balancer(int stop_tick)
2920{
2921 int cpu = smp_processor_id();
2922
2923 if (stop_tick) {
2924 cpu_set(cpu, nohz.cpu_mask);
2925 cpu_rq(cpu)->in_nohz_recently = 1;
2926
2927 /*
2928 * If we are going offline and still the leader, give up!
2929 */
2930 if (cpu_is_offline(cpu) &&
2931 atomic_read(&nohz.load_balancer) == cpu) {
2932 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2933 BUG();
2934 return 0;
2935 }
2936
2937 /* time for ilb owner also to sleep */
2938 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2939 if (atomic_read(&nohz.load_balancer) == cpu)
2940 atomic_set(&nohz.load_balancer, -1);
2941 return 0;
2942 }
2943
2944 if (atomic_read(&nohz.load_balancer) == -1) {
2945 /* make me the ilb owner */
2946 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2947 return 1;
2948 } else if (atomic_read(&nohz.load_balancer) == cpu)
2949 return 1;
2950 } else {
2951 if (!cpu_isset(cpu, nohz.cpu_mask))
2952 return 0;
2953
2954 cpu_clear(cpu, nohz.cpu_mask);
2955
2956 if (atomic_read(&nohz.load_balancer) == cpu)
2957 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2958 BUG();
2959 }
2960 return 0;
2961}
2962#endif
2963
2964static DEFINE_SPINLOCK(balancing);
2965
2966/*
7835b98b
CL
2967 * It checks each scheduling domain to see if it is due to be balanced,
2968 * and initiates a balancing operation if so.
2969 *
2970 * Balancing parameters are set up in arch_init_sched_domains.
2971 */
d15bcfdb 2972static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2973{
46cb4b7c
SS
2974 int balance = 1;
2975 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2976 unsigned long interval;
2977 struct sched_domain *sd;
46cb4b7c 2978 /* Earliest time when we have to do rebalance again */
c9819f45 2979 unsigned long next_balance = jiffies + 60*HZ;
f549da84 2980 int update_next_balance = 0;
1da177e4 2981
46cb4b7c 2982 for_each_domain(cpu, sd) {
1da177e4
LT
2983 if (!(sd->flags & SD_LOAD_BALANCE))
2984 continue;
2985
2986 interval = sd->balance_interval;
d15bcfdb 2987 if (idle != CPU_IDLE)
1da177e4
LT
2988 interval *= sd->busy_factor;
2989
2990 /* scale ms to jiffies */
2991 interval = msecs_to_jiffies(interval);
2992 if (unlikely(!interval))
2993 interval = 1;
dd41f596
IM
2994 if (interval > HZ*NR_CPUS/10)
2995 interval = HZ*NR_CPUS/10;
2996
1da177e4 2997
08c183f3
CL
2998 if (sd->flags & SD_SERIALIZE) {
2999 if (!spin_trylock(&balancing))
3000 goto out;
3001 }
3002
c9819f45 3003 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3004 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3005 /*
3006 * We've pulled tasks over so either we're no
5969fe06
NP
3007 * longer idle, or one of our SMT siblings is
3008 * not idle.
3009 */
d15bcfdb 3010 idle = CPU_NOT_IDLE;
1da177e4 3011 }
1bd77f2d 3012 sd->last_balance = jiffies;
1da177e4 3013 }
08c183f3
CL
3014 if (sd->flags & SD_SERIALIZE)
3015 spin_unlock(&balancing);
3016out:
f549da84 3017 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3018 next_balance = sd->last_balance + interval;
f549da84
SS
3019 update_next_balance = 1;
3020 }
783609c6
SS
3021
3022 /*
3023 * Stop the load balance at this level. There is another
3024 * CPU in our sched group which is doing load balancing more
3025 * actively.
3026 */
3027 if (!balance)
3028 break;
1da177e4 3029 }
f549da84
SS
3030
3031 /*
3032 * next_balance will be updated only when there is a need.
3033 * When the cpu is attached to null domain for ex, it will not be
3034 * updated.
3035 */
3036 if (likely(update_next_balance))
3037 rq->next_balance = next_balance;
46cb4b7c
SS
3038}
3039
3040/*
3041 * run_rebalance_domains is triggered when needed from the scheduler tick.
3042 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3043 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3044 */
3045static void run_rebalance_domains(struct softirq_action *h)
3046{
dd41f596
IM
3047 int this_cpu = smp_processor_id();
3048 struct rq *this_rq = cpu_rq(this_cpu);
3049 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3050 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3051
dd41f596 3052 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3053
3054#ifdef CONFIG_NO_HZ
3055 /*
3056 * If this cpu is the owner for idle load balancing, then do the
3057 * balancing on behalf of the other idle cpus whose ticks are
3058 * stopped.
3059 */
dd41f596
IM
3060 if (this_rq->idle_at_tick &&
3061 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3062 cpumask_t cpus = nohz.cpu_mask;
3063 struct rq *rq;
3064 int balance_cpu;
3065
dd41f596 3066 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3067 for_each_cpu_mask(balance_cpu, cpus) {
3068 /*
3069 * If this cpu gets work to do, stop the load balancing
3070 * work being done for other cpus. Next load
3071 * balancing owner will pick it up.
3072 */
3073 if (need_resched())
3074 break;
3075
de0cf899 3076 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3077
3078 rq = cpu_rq(balance_cpu);
dd41f596
IM
3079 if (time_after(this_rq->next_balance, rq->next_balance))
3080 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3081 }
3082 }
3083#endif
3084}
3085
3086/*
3087 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3088 *
3089 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3090 * idle load balancing owner or decide to stop the periodic load balancing,
3091 * if the whole system is idle.
3092 */
dd41f596 3093static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3094{
46cb4b7c
SS
3095#ifdef CONFIG_NO_HZ
3096 /*
3097 * If we were in the nohz mode recently and busy at the current
3098 * scheduler tick, then check if we need to nominate new idle
3099 * load balancer.
3100 */
3101 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3102 rq->in_nohz_recently = 0;
3103
3104 if (atomic_read(&nohz.load_balancer) == cpu) {
3105 cpu_clear(cpu, nohz.cpu_mask);
3106 atomic_set(&nohz.load_balancer, -1);
3107 }
3108
3109 if (atomic_read(&nohz.load_balancer) == -1) {
3110 /*
3111 * simple selection for now: Nominate the
3112 * first cpu in the nohz list to be the next
3113 * ilb owner.
3114 *
3115 * TBD: Traverse the sched domains and nominate
3116 * the nearest cpu in the nohz.cpu_mask.
3117 */
3118 int ilb = first_cpu(nohz.cpu_mask);
3119
3120 if (ilb != NR_CPUS)
3121 resched_cpu(ilb);
3122 }
3123 }
3124
3125 /*
3126 * If this cpu is idle and doing idle load balancing for all the
3127 * cpus with ticks stopped, is it time for that to stop?
3128 */
3129 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3130 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3131 resched_cpu(cpu);
3132 return;
3133 }
3134
3135 /*
3136 * If this cpu is idle and the idle load balancing is done by
3137 * someone else, then no need raise the SCHED_SOFTIRQ
3138 */
3139 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3140 cpu_isset(cpu, nohz.cpu_mask))
3141 return;
3142#endif
3143 if (time_after_eq(jiffies, rq->next_balance))
3144 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3145}
dd41f596
IM
3146
3147#else /* CONFIG_SMP */
3148
1da177e4
LT
3149/*
3150 * on UP we do not need to balance between CPUs:
3151 */
70b97a7f 3152static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3153{
3154}
dd41f596
IM
3155
3156/* Avoid "used but not defined" warning on UP */
3157static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3158 unsigned long max_nr_move, unsigned long max_load_move,
3159 struct sched_domain *sd, enum cpu_idle_type idle,
3160 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3161 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3162{
3163 *load_moved = 0;
3164
3165 return 0;
3166}
3167
1da177e4
LT
3168#endif
3169
1da177e4
LT
3170DEFINE_PER_CPU(struct kernel_stat, kstat);
3171
3172EXPORT_PER_CPU_SYMBOL(kstat);
3173
3174/*
41b86e9c
IM
3175 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3176 * that have not yet been banked in case the task is currently running.
1da177e4 3177 */
41b86e9c 3178unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3179{
1da177e4 3180 unsigned long flags;
41b86e9c
IM
3181 u64 ns, delta_exec;
3182 struct rq *rq;
48f24c4d 3183
41b86e9c
IM
3184 rq = task_rq_lock(p, &flags);
3185 ns = p->se.sum_exec_runtime;
3186 if (rq->curr == p) {
a8e504d2
IM
3187 update_rq_clock(rq);
3188 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3189 if ((s64)delta_exec > 0)
3190 ns += delta_exec;
3191 }
3192 task_rq_unlock(rq, &flags);
48f24c4d 3193
1da177e4
LT
3194 return ns;
3195}
3196
1da177e4
LT
3197/*
3198 * Account user cpu time to a process.
3199 * @p: the process that the cpu time gets accounted to
3200 * @hardirq_offset: the offset to subtract from hardirq_count()
3201 * @cputime: the cpu time spent in user space since the last update
3202 */
3203void account_user_time(struct task_struct *p, cputime_t cputime)
3204{
3205 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3206 cputime64_t tmp;
3207
3208 p->utime = cputime_add(p->utime, cputime);
3209
3210 /* Add user time to cpustat. */
3211 tmp = cputime_to_cputime64(cputime);
3212 if (TASK_NICE(p) > 0)
3213 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3214 else
3215 cpustat->user = cputime64_add(cpustat->user, tmp);
3216}
3217
3218/*
3219 * Account system cpu time to a process.
3220 * @p: the process that the cpu time gets accounted to
3221 * @hardirq_offset: the offset to subtract from hardirq_count()
3222 * @cputime: the cpu time spent in kernel space since the last update
3223 */
3224void account_system_time(struct task_struct *p, int hardirq_offset,
3225 cputime_t cputime)
3226{
3227 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3228 struct rq *rq = this_rq();
1da177e4
LT
3229 cputime64_t tmp;
3230
3231 p->stime = cputime_add(p->stime, cputime);
3232
3233 /* Add system time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (hardirq_count() - hardirq_offset)
3236 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3237 else if (softirq_count())
3238 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3239 else if (p != rq->idle)
3240 cpustat->system = cputime64_add(cpustat->system, tmp);
3241 else if (atomic_read(&rq->nr_iowait) > 0)
3242 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3243 else
3244 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3245 /* Account for system time used */
3246 acct_update_integrals(p);
1da177e4
LT
3247}
3248
3249/*
3250 * Account for involuntary wait time.
3251 * @p: the process from which the cpu time has been stolen
3252 * @steal: the cpu time spent in involuntary wait
3253 */
3254void account_steal_time(struct task_struct *p, cputime_t steal)
3255{
3256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3258 struct rq *rq = this_rq();
1da177e4
LT
3259
3260 if (p == rq->idle) {
3261 p->stime = cputime_add(p->stime, steal);
3262 if (atomic_read(&rq->nr_iowait) > 0)
3263 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3264 else
3265 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3266 } else
3267 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3268}
3269
7835b98b
CL
3270/*
3271 * This function gets called by the timer code, with HZ frequency.
3272 * We call it with interrupts disabled.
3273 *
3274 * It also gets called by the fork code, when changing the parent's
3275 * timeslices.
3276 */
3277void scheduler_tick(void)
3278{
7835b98b
CL
3279 int cpu = smp_processor_id();
3280 struct rq *rq = cpu_rq(cpu);
dd41f596 3281 struct task_struct *curr = rq->curr;
529c7726 3282 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3283
3284 spin_lock(&rq->lock);
546fe3c9 3285 __update_rq_clock(rq);
529c7726
IM
3286 /*
3287 * Let rq->clock advance by at least TICK_NSEC:
3288 */
3289 if (unlikely(rq->clock < next_tick))
3290 rq->clock = next_tick;
3291 rq->tick_timestamp = rq->clock;
f1a438d8 3292 update_cpu_load(rq);
dd41f596
IM
3293 if (curr != rq->idle) /* FIXME: needed? */
3294 curr->sched_class->task_tick(rq, curr);
dd41f596 3295 spin_unlock(&rq->lock);
7835b98b 3296
e418e1c2 3297#ifdef CONFIG_SMP
dd41f596
IM
3298 rq->idle_at_tick = idle_cpu(cpu);
3299 trigger_load_balance(rq, cpu);
e418e1c2 3300#endif
1da177e4
LT
3301}
3302
1da177e4
LT
3303#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3304
3305void fastcall add_preempt_count(int val)
3306{
3307 /*
3308 * Underflow?
3309 */
9a11b49a
IM
3310 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3311 return;
1da177e4
LT
3312 preempt_count() += val;
3313 /*
3314 * Spinlock count overflowing soon?
3315 */
33859f7f
MOS
3316 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3317 PREEMPT_MASK - 10);
1da177e4
LT
3318}
3319EXPORT_SYMBOL(add_preempt_count);
3320
3321void fastcall sub_preempt_count(int val)
3322{
3323 /*
3324 * Underflow?
3325 */
9a11b49a
IM
3326 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3327 return;
1da177e4
LT
3328 /*
3329 * Is the spinlock portion underflowing?
3330 */
9a11b49a
IM
3331 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3332 !(preempt_count() & PREEMPT_MASK)))
3333 return;
3334
1da177e4
LT
3335 preempt_count() -= val;
3336}
3337EXPORT_SYMBOL(sub_preempt_count);
3338
3339#endif
3340
3341/*
dd41f596 3342 * Print scheduling while atomic bug:
1da177e4 3343 */
dd41f596 3344static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3345{
dd41f596
IM
3346 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3347 prev->comm, preempt_count(), prev->pid);
3348 debug_show_held_locks(prev);
3349 if (irqs_disabled())
3350 print_irqtrace_events(prev);
3351 dump_stack();
3352}
1da177e4 3353
dd41f596
IM
3354/*
3355 * Various schedule()-time debugging checks and statistics:
3356 */
3357static inline void schedule_debug(struct task_struct *prev)
3358{
1da177e4
LT
3359 /*
3360 * Test if we are atomic. Since do_exit() needs to call into
3361 * schedule() atomically, we ignore that path for now.
3362 * Otherwise, whine if we are scheduling when we should not be.
3363 */
dd41f596
IM
3364 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3365 __schedule_bug(prev);
3366
1da177e4
LT
3367 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3368
dd41f596
IM
3369 schedstat_inc(this_rq(), sched_cnt);
3370}
3371
3372/*
3373 * Pick up the highest-prio task:
3374 */
3375static inline struct task_struct *
ff95f3df 3376pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3377{
3378 struct sched_class *class;
3379 struct task_struct *p;
1da177e4
LT
3380
3381 /*
dd41f596
IM
3382 * Optimization: we know that if all tasks are in
3383 * the fair class we can call that function directly:
1da177e4 3384 */
dd41f596 3385 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3386 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3387 if (likely(p))
3388 return p;
1da177e4
LT
3389 }
3390
dd41f596
IM
3391 class = sched_class_highest;
3392 for ( ; ; ) {
fb8d4724 3393 p = class->pick_next_task(rq);
dd41f596
IM
3394 if (p)
3395 return p;
3396 /*
3397 * Will never be NULL as the idle class always
3398 * returns a non-NULL p:
3399 */
3400 class = class->next;
3401 }
3402}
1da177e4 3403
dd41f596
IM
3404/*
3405 * schedule() is the main scheduler function.
3406 */
3407asmlinkage void __sched schedule(void)
3408{
3409 struct task_struct *prev, *next;
3410 long *switch_count;
3411 struct rq *rq;
dd41f596
IM
3412 int cpu;
3413
3414need_resched:
3415 preempt_disable();
3416 cpu = smp_processor_id();
3417 rq = cpu_rq(cpu);
3418 rcu_qsctr_inc(cpu);
3419 prev = rq->curr;
3420 switch_count = &prev->nivcsw;
3421
3422 release_kernel_lock(prev);
3423need_resched_nonpreemptible:
3424
3425 schedule_debug(prev);
1da177e4
LT
3426
3427 spin_lock_irq(&rq->lock);
dd41f596 3428 clear_tsk_need_resched(prev);
c1b3da3e 3429 __update_rq_clock(rq);
1da177e4 3430
1da177e4 3431 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3432 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3433 unlikely(signal_pending(prev)))) {
1da177e4 3434 prev->state = TASK_RUNNING;
dd41f596 3435 } else {
2e1cb74a 3436 deactivate_task(rq, prev, 1);
1da177e4 3437 }
dd41f596 3438 switch_count = &prev->nvcsw;
1da177e4
LT
3439 }
3440
dd41f596 3441 if (unlikely(!rq->nr_running))
1da177e4 3442 idle_balance(cpu, rq);
1da177e4 3443
31ee529c 3444 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3445 next = pick_next_task(rq, prev);
1da177e4
LT
3446
3447 sched_info_switch(prev, next);
dd41f596 3448
1da177e4 3449 if (likely(prev != next)) {
1da177e4
LT
3450 rq->nr_switches++;
3451 rq->curr = next;
3452 ++*switch_count;
3453
dd41f596 3454 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3455 } else
3456 spin_unlock_irq(&rq->lock);
3457
dd41f596
IM
3458 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3459 cpu = smp_processor_id();
3460 rq = cpu_rq(cpu);
1da177e4 3461 goto need_resched_nonpreemptible;
dd41f596 3462 }
1da177e4
LT
3463 preempt_enable_no_resched();
3464 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3465 goto need_resched;
3466}
1da177e4
LT
3467EXPORT_SYMBOL(schedule);
3468
3469#ifdef CONFIG_PREEMPT
3470/*
2ed6e34f 3471 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3472 * off of preempt_enable. Kernel preemptions off return from interrupt
3473 * occur there and call schedule directly.
3474 */
3475asmlinkage void __sched preempt_schedule(void)
3476{
3477 struct thread_info *ti = current_thread_info();
3478#ifdef CONFIG_PREEMPT_BKL
3479 struct task_struct *task = current;
3480 int saved_lock_depth;
3481#endif
3482 /*
3483 * If there is a non-zero preempt_count or interrupts are disabled,
3484 * we do not want to preempt the current task. Just return..
3485 */
beed33a8 3486 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3487 return;
3488
3489need_resched:
3490 add_preempt_count(PREEMPT_ACTIVE);
3491 /*
3492 * We keep the big kernel semaphore locked, but we
3493 * clear ->lock_depth so that schedule() doesnt
3494 * auto-release the semaphore:
3495 */
3496#ifdef CONFIG_PREEMPT_BKL
3497 saved_lock_depth = task->lock_depth;
3498 task->lock_depth = -1;
3499#endif
3500 schedule();
3501#ifdef CONFIG_PREEMPT_BKL
3502 task->lock_depth = saved_lock_depth;
3503#endif
3504 sub_preempt_count(PREEMPT_ACTIVE);
3505
3506 /* we could miss a preemption opportunity between schedule and now */
3507 barrier();
3508 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3509 goto need_resched;
3510}
1da177e4
LT
3511EXPORT_SYMBOL(preempt_schedule);
3512
3513/*
2ed6e34f 3514 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3515 * off of irq context.
3516 * Note, that this is called and return with irqs disabled. This will
3517 * protect us against recursive calling from irq.
3518 */
3519asmlinkage void __sched preempt_schedule_irq(void)
3520{
3521 struct thread_info *ti = current_thread_info();
3522#ifdef CONFIG_PREEMPT_BKL
3523 struct task_struct *task = current;
3524 int saved_lock_depth;
3525#endif
2ed6e34f 3526 /* Catch callers which need to be fixed */
1da177e4
LT
3527 BUG_ON(ti->preempt_count || !irqs_disabled());
3528
3529need_resched:
3530 add_preempt_count(PREEMPT_ACTIVE);
3531 /*
3532 * We keep the big kernel semaphore locked, but we
3533 * clear ->lock_depth so that schedule() doesnt
3534 * auto-release the semaphore:
3535 */
3536#ifdef CONFIG_PREEMPT_BKL
3537 saved_lock_depth = task->lock_depth;
3538 task->lock_depth = -1;
3539#endif
3540 local_irq_enable();
3541 schedule();
3542 local_irq_disable();
3543#ifdef CONFIG_PREEMPT_BKL
3544 task->lock_depth = saved_lock_depth;
3545#endif
3546 sub_preempt_count(PREEMPT_ACTIVE);
3547
3548 /* we could miss a preemption opportunity between schedule and now */
3549 barrier();
3550 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3551 goto need_resched;
3552}
3553
3554#endif /* CONFIG_PREEMPT */
3555
95cdf3b7
IM
3556int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3557 void *key)
1da177e4 3558{
48f24c4d 3559 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3560}
1da177e4
LT
3561EXPORT_SYMBOL(default_wake_function);
3562
3563/*
3564 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3565 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3566 * number) then we wake all the non-exclusive tasks and one exclusive task.
3567 *
3568 * There are circumstances in which we can try to wake a task which has already
3569 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3570 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3571 */
3572static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3573 int nr_exclusive, int sync, void *key)
3574{
2e45874c 3575 wait_queue_t *curr, *next;
1da177e4 3576
2e45874c 3577 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3578 unsigned flags = curr->flags;
3579
1da177e4 3580 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3581 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3582 break;
3583 }
3584}
3585
3586/**
3587 * __wake_up - wake up threads blocked on a waitqueue.
3588 * @q: the waitqueue
3589 * @mode: which threads
3590 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3591 * @key: is directly passed to the wakeup function
1da177e4
LT
3592 */
3593void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3594 int nr_exclusive, void *key)
1da177e4
LT
3595{
3596 unsigned long flags;
3597
3598 spin_lock_irqsave(&q->lock, flags);
3599 __wake_up_common(q, mode, nr_exclusive, 0, key);
3600 spin_unlock_irqrestore(&q->lock, flags);
3601}
1da177e4
LT
3602EXPORT_SYMBOL(__wake_up);
3603
3604/*
3605 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3606 */
3607void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3608{
3609 __wake_up_common(q, mode, 1, 0, NULL);
3610}
3611
3612/**
67be2dd1 3613 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3614 * @q: the waitqueue
3615 * @mode: which threads
3616 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3617 *
3618 * The sync wakeup differs that the waker knows that it will schedule
3619 * away soon, so while the target thread will be woken up, it will not
3620 * be migrated to another CPU - ie. the two threads are 'synchronized'
3621 * with each other. This can prevent needless bouncing between CPUs.
3622 *
3623 * On UP it can prevent extra preemption.
3624 */
95cdf3b7
IM
3625void fastcall
3626__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3627{
3628 unsigned long flags;
3629 int sync = 1;
3630
3631 if (unlikely(!q))
3632 return;
3633
3634 if (unlikely(!nr_exclusive))
3635 sync = 0;
3636
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3639 spin_unlock_irqrestore(&q->lock, flags);
3640}
3641EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3642
3643void fastcall complete(struct completion *x)
3644{
3645 unsigned long flags;
3646
3647 spin_lock_irqsave(&x->wait.lock, flags);
3648 x->done++;
3649 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3650 1, 0, NULL);
3651 spin_unlock_irqrestore(&x->wait.lock, flags);
3652}
3653EXPORT_SYMBOL(complete);
3654
3655void fastcall complete_all(struct completion *x)
3656{
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&x->wait.lock, flags);
3660 x->done += UINT_MAX/2;
3661 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3662 0, 0, NULL);
3663 spin_unlock_irqrestore(&x->wait.lock, flags);
3664}
3665EXPORT_SYMBOL(complete_all);
3666
3667void fastcall __sched wait_for_completion(struct completion *x)
3668{
3669 might_sleep();
48f24c4d 3670
1da177e4
LT
3671 spin_lock_irq(&x->wait.lock);
3672 if (!x->done) {
3673 DECLARE_WAITQUEUE(wait, current);
3674
3675 wait.flags |= WQ_FLAG_EXCLUSIVE;
3676 __add_wait_queue_tail(&x->wait, &wait);
3677 do {
3678 __set_current_state(TASK_UNINTERRUPTIBLE);
3679 spin_unlock_irq(&x->wait.lock);
3680 schedule();
3681 spin_lock_irq(&x->wait.lock);
3682 } while (!x->done);
3683 __remove_wait_queue(&x->wait, &wait);
3684 }
3685 x->done--;
3686 spin_unlock_irq(&x->wait.lock);
3687}
3688EXPORT_SYMBOL(wait_for_completion);
3689
3690unsigned long fastcall __sched
3691wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3692{
3693 might_sleep();
3694
3695 spin_lock_irq(&x->wait.lock);
3696 if (!x->done) {
3697 DECLARE_WAITQUEUE(wait, current);
3698
3699 wait.flags |= WQ_FLAG_EXCLUSIVE;
3700 __add_wait_queue_tail(&x->wait, &wait);
3701 do {
3702 __set_current_state(TASK_UNINTERRUPTIBLE);
3703 spin_unlock_irq(&x->wait.lock);
3704 timeout = schedule_timeout(timeout);
3705 spin_lock_irq(&x->wait.lock);
3706 if (!timeout) {
3707 __remove_wait_queue(&x->wait, &wait);
3708 goto out;
3709 }
3710 } while (!x->done);
3711 __remove_wait_queue(&x->wait, &wait);
3712 }
3713 x->done--;
3714out:
3715 spin_unlock_irq(&x->wait.lock);
3716 return timeout;
3717}
3718EXPORT_SYMBOL(wait_for_completion_timeout);
3719
3720int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3721{
3722 int ret = 0;
3723
3724 might_sleep();
3725
3726 spin_lock_irq(&x->wait.lock);
3727 if (!x->done) {
3728 DECLARE_WAITQUEUE(wait, current);
3729
3730 wait.flags |= WQ_FLAG_EXCLUSIVE;
3731 __add_wait_queue_tail(&x->wait, &wait);
3732 do {
3733 if (signal_pending(current)) {
3734 ret = -ERESTARTSYS;
3735 __remove_wait_queue(&x->wait, &wait);
3736 goto out;
3737 }
3738 __set_current_state(TASK_INTERRUPTIBLE);
3739 spin_unlock_irq(&x->wait.lock);
3740 schedule();
3741 spin_lock_irq(&x->wait.lock);
3742 } while (!x->done);
3743 __remove_wait_queue(&x->wait, &wait);
3744 }
3745 x->done--;
3746out:
3747 spin_unlock_irq(&x->wait.lock);
3748
3749 return ret;
3750}
3751EXPORT_SYMBOL(wait_for_completion_interruptible);
3752
3753unsigned long fastcall __sched
3754wait_for_completion_interruptible_timeout(struct completion *x,
3755 unsigned long timeout)
3756{
3757 might_sleep();
3758
3759 spin_lock_irq(&x->wait.lock);
3760 if (!x->done) {
3761 DECLARE_WAITQUEUE(wait, current);
3762
3763 wait.flags |= WQ_FLAG_EXCLUSIVE;
3764 __add_wait_queue_tail(&x->wait, &wait);
3765 do {
3766 if (signal_pending(current)) {
3767 timeout = -ERESTARTSYS;
3768 __remove_wait_queue(&x->wait, &wait);
3769 goto out;
3770 }
3771 __set_current_state(TASK_INTERRUPTIBLE);
3772 spin_unlock_irq(&x->wait.lock);
3773 timeout = schedule_timeout(timeout);
3774 spin_lock_irq(&x->wait.lock);
3775 if (!timeout) {
3776 __remove_wait_queue(&x->wait, &wait);
3777 goto out;
3778 }
3779 } while (!x->done);
3780 __remove_wait_queue(&x->wait, &wait);
3781 }
3782 x->done--;
3783out:
3784 spin_unlock_irq(&x->wait.lock);
3785 return timeout;
3786}
3787EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3788
0fec171c
IM
3789static inline void
3790sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3791{
3792 spin_lock_irqsave(&q->lock, *flags);
3793 __add_wait_queue(q, wait);
1da177e4 3794 spin_unlock(&q->lock);
0fec171c 3795}
1da177e4 3796
0fec171c
IM
3797static inline void
3798sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3799{
3800 spin_lock_irq(&q->lock);
3801 __remove_wait_queue(q, wait);
3802 spin_unlock_irqrestore(&q->lock, *flags);
3803}
1da177e4 3804
0fec171c 3805void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3806{
0fec171c
IM
3807 unsigned long flags;
3808 wait_queue_t wait;
3809
3810 init_waitqueue_entry(&wait, current);
1da177e4
LT
3811
3812 current->state = TASK_INTERRUPTIBLE;
3813
0fec171c 3814 sleep_on_head(q, &wait, &flags);
1da177e4 3815 schedule();
0fec171c 3816 sleep_on_tail(q, &wait, &flags);
1da177e4 3817}
1da177e4
LT
3818EXPORT_SYMBOL(interruptible_sleep_on);
3819
0fec171c 3820long __sched
95cdf3b7 3821interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3822{
0fec171c
IM
3823 unsigned long flags;
3824 wait_queue_t wait;
3825
3826 init_waitqueue_entry(&wait, current);
1da177e4
LT
3827
3828 current->state = TASK_INTERRUPTIBLE;
3829
0fec171c 3830 sleep_on_head(q, &wait, &flags);
1da177e4 3831 timeout = schedule_timeout(timeout);
0fec171c 3832 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3833
3834 return timeout;
3835}
1da177e4
LT
3836EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3837
0fec171c 3838void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3839{
0fec171c
IM
3840 unsigned long flags;
3841 wait_queue_t wait;
3842
3843 init_waitqueue_entry(&wait, current);
1da177e4
LT
3844
3845 current->state = TASK_UNINTERRUPTIBLE;
3846
0fec171c 3847 sleep_on_head(q, &wait, &flags);
1da177e4 3848 schedule();
0fec171c 3849 sleep_on_tail(q, &wait, &flags);
1da177e4 3850}
1da177e4
LT
3851EXPORT_SYMBOL(sleep_on);
3852
0fec171c 3853long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3854{
0fec171c
IM
3855 unsigned long flags;
3856 wait_queue_t wait;
3857
3858 init_waitqueue_entry(&wait, current);
1da177e4
LT
3859
3860 current->state = TASK_UNINTERRUPTIBLE;
3861
0fec171c 3862 sleep_on_head(q, &wait, &flags);
1da177e4 3863 timeout = schedule_timeout(timeout);
0fec171c 3864 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3865
3866 return timeout;
3867}
1da177e4
LT
3868EXPORT_SYMBOL(sleep_on_timeout);
3869
b29739f9
IM
3870#ifdef CONFIG_RT_MUTEXES
3871
3872/*
3873 * rt_mutex_setprio - set the current priority of a task
3874 * @p: task
3875 * @prio: prio value (kernel-internal form)
3876 *
3877 * This function changes the 'effective' priority of a task. It does
3878 * not touch ->normal_prio like __setscheduler().
3879 *
3880 * Used by the rt_mutex code to implement priority inheritance logic.
3881 */
36c8b586 3882void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3883{
3884 unsigned long flags;
dd41f596 3885 int oldprio, on_rq;
70b97a7f 3886 struct rq *rq;
b29739f9
IM
3887
3888 BUG_ON(prio < 0 || prio > MAX_PRIO);
3889
3890 rq = task_rq_lock(p, &flags);
a8e504d2 3891 update_rq_clock(rq);
b29739f9 3892
d5f9f942 3893 oldprio = p->prio;
dd41f596
IM
3894 on_rq = p->se.on_rq;
3895 if (on_rq)
69be72c1 3896 dequeue_task(rq, p, 0);
dd41f596
IM
3897
3898 if (rt_prio(prio))
3899 p->sched_class = &rt_sched_class;
3900 else
3901 p->sched_class = &fair_sched_class;
3902
b29739f9
IM
3903 p->prio = prio;
3904
dd41f596 3905 if (on_rq) {
8159f87e 3906 enqueue_task(rq, p, 0);
b29739f9
IM
3907 /*
3908 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3909 * our priority decreased, or if we are not currently running on
3910 * this runqueue and our priority is higher than the current's
b29739f9 3911 */
d5f9f942
AM
3912 if (task_running(rq, p)) {
3913 if (p->prio > oldprio)
3914 resched_task(rq->curr);
dd41f596
IM
3915 } else {
3916 check_preempt_curr(rq, p);
3917 }
b29739f9
IM
3918 }
3919 task_rq_unlock(rq, &flags);
3920}
3921
3922#endif
3923
36c8b586 3924void set_user_nice(struct task_struct *p, long nice)
1da177e4 3925{
dd41f596 3926 int old_prio, delta, on_rq;
1da177e4 3927 unsigned long flags;
70b97a7f 3928 struct rq *rq;
1da177e4
LT
3929
3930 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3931 return;
3932 /*
3933 * We have to be careful, if called from sys_setpriority(),
3934 * the task might be in the middle of scheduling on another CPU.
3935 */
3936 rq = task_rq_lock(p, &flags);
a8e504d2 3937 update_rq_clock(rq);
1da177e4
LT
3938 /*
3939 * The RT priorities are set via sched_setscheduler(), but we still
3940 * allow the 'normal' nice value to be set - but as expected
3941 * it wont have any effect on scheduling until the task is
dd41f596 3942 * SCHED_FIFO/SCHED_RR:
1da177e4 3943 */
e05606d3 3944 if (task_has_rt_policy(p)) {
1da177e4
LT
3945 p->static_prio = NICE_TO_PRIO(nice);
3946 goto out_unlock;
3947 }
dd41f596
IM
3948 on_rq = p->se.on_rq;
3949 if (on_rq) {
69be72c1 3950 dequeue_task(rq, p, 0);
79b5dddf 3951 dec_load(rq, p);
2dd73a4f 3952 }
1da177e4 3953
1da177e4 3954 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3955 set_load_weight(p);
b29739f9
IM
3956 old_prio = p->prio;
3957 p->prio = effective_prio(p);
3958 delta = p->prio - old_prio;
1da177e4 3959
dd41f596 3960 if (on_rq) {
8159f87e 3961 enqueue_task(rq, p, 0);
29b4b623 3962 inc_load(rq, p);
1da177e4 3963 /*
d5f9f942
AM
3964 * If the task increased its priority or is running and
3965 * lowered its priority, then reschedule its CPU:
1da177e4 3966 */
d5f9f942 3967 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3968 resched_task(rq->curr);
3969 }
3970out_unlock:
3971 task_rq_unlock(rq, &flags);
3972}
1da177e4
LT
3973EXPORT_SYMBOL(set_user_nice);
3974
e43379f1
MM
3975/*
3976 * can_nice - check if a task can reduce its nice value
3977 * @p: task
3978 * @nice: nice value
3979 */
36c8b586 3980int can_nice(const struct task_struct *p, const int nice)
e43379f1 3981{
024f4747
MM
3982 /* convert nice value [19,-20] to rlimit style value [1,40] */
3983 int nice_rlim = 20 - nice;
48f24c4d 3984
e43379f1
MM
3985 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3986 capable(CAP_SYS_NICE));
3987}
3988
1da177e4
LT
3989#ifdef __ARCH_WANT_SYS_NICE
3990
3991/*
3992 * sys_nice - change the priority of the current process.
3993 * @increment: priority increment
3994 *
3995 * sys_setpriority is a more generic, but much slower function that
3996 * does similar things.
3997 */
3998asmlinkage long sys_nice(int increment)
3999{
48f24c4d 4000 long nice, retval;
1da177e4
LT
4001
4002 /*
4003 * Setpriority might change our priority at the same moment.
4004 * We don't have to worry. Conceptually one call occurs first
4005 * and we have a single winner.
4006 */
e43379f1
MM
4007 if (increment < -40)
4008 increment = -40;
1da177e4
LT
4009 if (increment > 40)
4010 increment = 40;
4011
4012 nice = PRIO_TO_NICE(current->static_prio) + increment;
4013 if (nice < -20)
4014 nice = -20;
4015 if (nice > 19)
4016 nice = 19;
4017
e43379f1
MM
4018 if (increment < 0 && !can_nice(current, nice))
4019 return -EPERM;
4020
1da177e4
LT
4021 retval = security_task_setnice(current, nice);
4022 if (retval)
4023 return retval;
4024
4025 set_user_nice(current, nice);
4026 return 0;
4027}
4028
4029#endif
4030
4031/**
4032 * task_prio - return the priority value of a given task.
4033 * @p: the task in question.
4034 *
4035 * This is the priority value as seen by users in /proc.
4036 * RT tasks are offset by -200. Normal tasks are centered
4037 * around 0, value goes from -16 to +15.
4038 */
36c8b586 4039int task_prio(const struct task_struct *p)
1da177e4
LT
4040{
4041 return p->prio - MAX_RT_PRIO;
4042}
4043
4044/**
4045 * task_nice - return the nice value of a given task.
4046 * @p: the task in question.
4047 */
36c8b586 4048int task_nice(const struct task_struct *p)
1da177e4
LT
4049{
4050 return TASK_NICE(p);
4051}
1da177e4 4052EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4053
4054/**
4055 * idle_cpu - is a given cpu idle currently?
4056 * @cpu: the processor in question.
4057 */
4058int idle_cpu(int cpu)
4059{
4060 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4061}
4062
1da177e4
LT
4063/**
4064 * idle_task - return the idle task for a given cpu.
4065 * @cpu: the processor in question.
4066 */
36c8b586 4067struct task_struct *idle_task(int cpu)
1da177e4
LT
4068{
4069 return cpu_rq(cpu)->idle;
4070}
4071
4072/**
4073 * find_process_by_pid - find a process with a matching PID value.
4074 * @pid: the pid in question.
4075 */
36c8b586 4076static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4077{
4078 return pid ? find_task_by_pid(pid) : current;
4079}
4080
4081/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4082static void
4083__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4084{
dd41f596 4085 BUG_ON(p->se.on_rq);
48f24c4d 4086
1da177e4 4087 p->policy = policy;
dd41f596
IM
4088 switch (p->policy) {
4089 case SCHED_NORMAL:
4090 case SCHED_BATCH:
4091 case SCHED_IDLE:
4092 p->sched_class = &fair_sched_class;
4093 break;
4094 case SCHED_FIFO:
4095 case SCHED_RR:
4096 p->sched_class = &rt_sched_class;
4097 break;
4098 }
4099
1da177e4 4100 p->rt_priority = prio;
b29739f9
IM
4101 p->normal_prio = normal_prio(p);
4102 /* we are holding p->pi_lock already */
4103 p->prio = rt_mutex_getprio(p);
2dd73a4f 4104 set_load_weight(p);
1da177e4
LT
4105}
4106
4107/**
72fd4a35 4108 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4109 * @p: the task in question.
4110 * @policy: new policy.
4111 * @param: structure containing the new RT priority.
5fe1d75f 4112 *
72fd4a35 4113 * NOTE that the task may be already dead.
1da177e4 4114 */
95cdf3b7
IM
4115int sched_setscheduler(struct task_struct *p, int policy,
4116 struct sched_param *param)
1da177e4 4117{
dd41f596 4118 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4119 unsigned long flags;
70b97a7f 4120 struct rq *rq;
1da177e4 4121
66e5393a
SR
4122 /* may grab non-irq protected spin_locks */
4123 BUG_ON(in_interrupt());
1da177e4
LT
4124recheck:
4125 /* double check policy once rq lock held */
4126 if (policy < 0)
4127 policy = oldpolicy = p->policy;
4128 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4129 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4130 policy != SCHED_IDLE)
b0a9499c 4131 return -EINVAL;
1da177e4
LT
4132 /*
4133 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4134 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4135 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4136 */
4137 if (param->sched_priority < 0 ||
95cdf3b7 4138 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4139 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4140 return -EINVAL;
e05606d3 4141 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4142 return -EINVAL;
4143
37e4ab3f
OC
4144 /*
4145 * Allow unprivileged RT tasks to decrease priority:
4146 */
4147 if (!capable(CAP_SYS_NICE)) {
e05606d3 4148 if (rt_policy(policy)) {
8dc3e909 4149 unsigned long rlim_rtprio;
8dc3e909
ON
4150
4151 if (!lock_task_sighand(p, &flags))
4152 return -ESRCH;
4153 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4154 unlock_task_sighand(p, &flags);
4155
4156 /* can't set/change the rt policy */
4157 if (policy != p->policy && !rlim_rtprio)
4158 return -EPERM;
4159
4160 /* can't increase priority */
4161 if (param->sched_priority > p->rt_priority &&
4162 param->sched_priority > rlim_rtprio)
4163 return -EPERM;
4164 }
dd41f596
IM
4165 /*
4166 * Like positive nice levels, dont allow tasks to
4167 * move out of SCHED_IDLE either:
4168 */
4169 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4170 return -EPERM;
5fe1d75f 4171
37e4ab3f
OC
4172 /* can't change other user's priorities */
4173 if ((current->euid != p->euid) &&
4174 (current->euid != p->uid))
4175 return -EPERM;
4176 }
1da177e4
LT
4177
4178 retval = security_task_setscheduler(p, policy, param);
4179 if (retval)
4180 return retval;
b29739f9
IM
4181 /*
4182 * make sure no PI-waiters arrive (or leave) while we are
4183 * changing the priority of the task:
4184 */
4185 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4186 /*
4187 * To be able to change p->policy safely, the apropriate
4188 * runqueue lock must be held.
4189 */
b29739f9 4190 rq = __task_rq_lock(p);
1da177e4
LT
4191 /* recheck policy now with rq lock held */
4192 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4193 policy = oldpolicy = -1;
b29739f9
IM
4194 __task_rq_unlock(rq);
4195 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4196 goto recheck;
4197 }
2daa3577 4198 update_rq_clock(rq);
dd41f596 4199 on_rq = p->se.on_rq;
2daa3577 4200 if (on_rq)
2e1cb74a 4201 deactivate_task(rq, p, 0);
1da177e4 4202 oldprio = p->prio;
dd41f596
IM
4203 __setscheduler(rq, p, policy, param->sched_priority);
4204 if (on_rq) {
4205 activate_task(rq, p, 0);
1da177e4
LT
4206 /*
4207 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4208 * our priority decreased, or if we are not currently running on
4209 * this runqueue and our priority is higher than the current's
1da177e4 4210 */
d5f9f942
AM
4211 if (task_running(rq, p)) {
4212 if (p->prio > oldprio)
4213 resched_task(rq->curr);
dd41f596
IM
4214 } else {
4215 check_preempt_curr(rq, p);
4216 }
1da177e4 4217 }
b29739f9
IM
4218 __task_rq_unlock(rq);
4219 spin_unlock_irqrestore(&p->pi_lock, flags);
4220
95e02ca9
TG
4221 rt_mutex_adjust_pi(p);
4222
1da177e4
LT
4223 return 0;
4224}
4225EXPORT_SYMBOL_GPL(sched_setscheduler);
4226
95cdf3b7
IM
4227static int
4228do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4229{
1da177e4
LT
4230 struct sched_param lparam;
4231 struct task_struct *p;
36c8b586 4232 int retval;
1da177e4
LT
4233
4234 if (!param || pid < 0)
4235 return -EINVAL;
4236 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4237 return -EFAULT;
5fe1d75f
ON
4238
4239 rcu_read_lock();
4240 retval = -ESRCH;
1da177e4 4241 p = find_process_by_pid(pid);
5fe1d75f
ON
4242 if (p != NULL)
4243 retval = sched_setscheduler(p, policy, &lparam);
4244 rcu_read_unlock();
36c8b586 4245
1da177e4
LT
4246 return retval;
4247}
4248
4249/**
4250 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4251 * @pid: the pid in question.
4252 * @policy: new policy.
4253 * @param: structure containing the new RT priority.
4254 */
4255asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4256 struct sched_param __user *param)
4257{
c21761f1
JB
4258 /* negative values for policy are not valid */
4259 if (policy < 0)
4260 return -EINVAL;
4261
1da177e4
LT
4262 return do_sched_setscheduler(pid, policy, param);
4263}
4264
4265/**
4266 * sys_sched_setparam - set/change the RT priority of a thread
4267 * @pid: the pid in question.
4268 * @param: structure containing the new RT priority.
4269 */
4270asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4271{
4272 return do_sched_setscheduler(pid, -1, param);
4273}
4274
4275/**
4276 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4277 * @pid: the pid in question.
4278 */
4279asmlinkage long sys_sched_getscheduler(pid_t pid)
4280{
36c8b586 4281 struct task_struct *p;
1da177e4 4282 int retval = -EINVAL;
1da177e4
LT
4283
4284 if (pid < 0)
4285 goto out_nounlock;
4286
4287 retval = -ESRCH;
4288 read_lock(&tasklist_lock);
4289 p = find_process_by_pid(pid);
4290 if (p) {
4291 retval = security_task_getscheduler(p);
4292 if (!retval)
4293 retval = p->policy;
4294 }
4295 read_unlock(&tasklist_lock);
4296
4297out_nounlock:
4298 return retval;
4299}
4300
4301/**
4302 * sys_sched_getscheduler - get the RT priority of a thread
4303 * @pid: the pid in question.
4304 * @param: structure containing the RT priority.
4305 */
4306asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4307{
4308 struct sched_param lp;
36c8b586 4309 struct task_struct *p;
1da177e4 4310 int retval = -EINVAL;
1da177e4
LT
4311
4312 if (!param || pid < 0)
4313 goto out_nounlock;
4314
4315 read_lock(&tasklist_lock);
4316 p = find_process_by_pid(pid);
4317 retval = -ESRCH;
4318 if (!p)
4319 goto out_unlock;
4320
4321 retval = security_task_getscheduler(p);
4322 if (retval)
4323 goto out_unlock;
4324
4325 lp.sched_priority = p->rt_priority;
4326 read_unlock(&tasklist_lock);
4327
4328 /*
4329 * This one might sleep, we cannot do it with a spinlock held ...
4330 */
4331 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4332
4333out_nounlock:
4334 return retval;
4335
4336out_unlock:
4337 read_unlock(&tasklist_lock);
4338 return retval;
4339}
4340
4341long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4342{
1da177e4 4343 cpumask_t cpus_allowed;
36c8b586
IM
4344 struct task_struct *p;
4345 int retval;
1da177e4 4346
5be9361c 4347 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4348 read_lock(&tasklist_lock);
4349
4350 p = find_process_by_pid(pid);
4351 if (!p) {
4352 read_unlock(&tasklist_lock);
5be9361c 4353 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4354 return -ESRCH;
4355 }
4356
4357 /*
4358 * It is not safe to call set_cpus_allowed with the
4359 * tasklist_lock held. We will bump the task_struct's
4360 * usage count and then drop tasklist_lock.
4361 */
4362 get_task_struct(p);
4363 read_unlock(&tasklist_lock);
4364
4365 retval = -EPERM;
4366 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4367 !capable(CAP_SYS_NICE))
4368 goto out_unlock;
4369
e7834f8f
DQ
4370 retval = security_task_setscheduler(p, 0, NULL);
4371 if (retval)
4372 goto out_unlock;
4373
1da177e4
LT
4374 cpus_allowed = cpuset_cpus_allowed(p);
4375 cpus_and(new_mask, new_mask, cpus_allowed);
4376 retval = set_cpus_allowed(p, new_mask);
4377
4378out_unlock:
4379 put_task_struct(p);
5be9361c 4380 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4381 return retval;
4382}
4383
4384static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4385 cpumask_t *new_mask)
4386{
4387 if (len < sizeof(cpumask_t)) {
4388 memset(new_mask, 0, sizeof(cpumask_t));
4389 } else if (len > sizeof(cpumask_t)) {
4390 len = sizeof(cpumask_t);
4391 }
4392 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4393}
4394
4395/**
4396 * sys_sched_setaffinity - set the cpu affinity of a process
4397 * @pid: pid of the process
4398 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4399 * @user_mask_ptr: user-space pointer to the new cpu mask
4400 */
4401asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4402 unsigned long __user *user_mask_ptr)
4403{
4404 cpumask_t new_mask;
4405 int retval;
4406
4407 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4408 if (retval)
4409 return retval;
4410
4411 return sched_setaffinity(pid, new_mask);
4412}
4413
4414/*
4415 * Represents all cpu's present in the system
4416 * In systems capable of hotplug, this map could dynamically grow
4417 * as new cpu's are detected in the system via any platform specific
4418 * method, such as ACPI for e.g.
4419 */
4420
4cef0c61 4421cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4422EXPORT_SYMBOL(cpu_present_map);
4423
4424#ifndef CONFIG_SMP
4cef0c61 4425cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4426EXPORT_SYMBOL(cpu_online_map);
4427
4cef0c61 4428cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4429EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4430#endif
4431
4432long sched_getaffinity(pid_t pid, cpumask_t *mask)
4433{
36c8b586 4434 struct task_struct *p;
1da177e4 4435 int retval;
1da177e4 4436
5be9361c 4437 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4438 read_lock(&tasklist_lock);
4439
4440 retval = -ESRCH;
4441 p = find_process_by_pid(pid);
4442 if (!p)
4443 goto out_unlock;
4444
e7834f8f
DQ
4445 retval = security_task_getscheduler(p);
4446 if (retval)
4447 goto out_unlock;
4448
2f7016d9 4449 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4450
4451out_unlock:
4452 read_unlock(&tasklist_lock);
5be9361c 4453 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4454
9531b62f 4455 return retval;
1da177e4
LT
4456}
4457
4458/**
4459 * sys_sched_getaffinity - get the cpu affinity of a process
4460 * @pid: pid of the process
4461 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4462 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4463 */
4464asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4465 unsigned long __user *user_mask_ptr)
4466{
4467 int ret;
4468 cpumask_t mask;
4469
4470 if (len < sizeof(cpumask_t))
4471 return -EINVAL;
4472
4473 ret = sched_getaffinity(pid, &mask);
4474 if (ret < 0)
4475 return ret;
4476
4477 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4478 return -EFAULT;
4479
4480 return sizeof(cpumask_t);
4481}
4482
4483/**
4484 * sys_sched_yield - yield the current processor to other threads.
4485 *
dd41f596
IM
4486 * This function yields the current CPU to other tasks. If there are no
4487 * other threads running on this CPU then this function will return.
1da177e4
LT
4488 */
4489asmlinkage long sys_sched_yield(void)
4490{
70b97a7f 4491 struct rq *rq = this_rq_lock();
1da177e4
LT
4492
4493 schedstat_inc(rq, yld_cnt);
1799e35d 4494 current->sched_class->yield_task(rq, current);
1da177e4
LT
4495
4496 /*
4497 * Since we are going to call schedule() anyway, there's
4498 * no need to preempt or enable interrupts:
4499 */
4500 __release(rq->lock);
8a25d5de 4501 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4502 _raw_spin_unlock(&rq->lock);
4503 preempt_enable_no_resched();
4504
4505 schedule();
4506
4507 return 0;
4508}
4509
e7b38404 4510static void __cond_resched(void)
1da177e4 4511{
8e0a43d8
IM
4512#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4513 __might_sleep(__FILE__, __LINE__);
4514#endif
5bbcfd90
IM
4515 /*
4516 * The BKS might be reacquired before we have dropped
4517 * PREEMPT_ACTIVE, which could trigger a second
4518 * cond_resched() call.
4519 */
1da177e4
LT
4520 do {
4521 add_preempt_count(PREEMPT_ACTIVE);
4522 schedule();
4523 sub_preempt_count(PREEMPT_ACTIVE);
4524 } while (need_resched());
4525}
4526
4527int __sched cond_resched(void)
4528{
9414232f
IM
4529 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4530 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4531 __cond_resched();
4532 return 1;
4533 }
4534 return 0;
4535}
1da177e4
LT
4536EXPORT_SYMBOL(cond_resched);
4537
4538/*
4539 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4540 * call schedule, and on return reacquire the lock.
4541 *
4542 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4543 * operations here to prevent schedule() from being called twice (once via
4544 * spin_unlock(), once by hand).
4545 */
95cdf3b7 4546int cond_resched_lock(spinlock_t *lock)
1da177e4 4547{
6df3cecb
JK
4548 int ret = 0;
4549
1da177e4
LT
4550 if (need_lockbreak(lock)) {
4551 spin_unlock(lock);
4552 cpu_relax();
6df3cecb 4553 ret = 1;
1da177e4
LT
4554 spin_lock(lock);
4555 }
9414232f 4556 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4557 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4558 _raw_spin_unlock(lock);
4559 preempt_enable_no_resched();
4560 __cond_resched();
6df3cecb 4561 ret = 1;
1da177e4 4562 spin_lock(lock);
1da177e4 4563 }
6df3cecb 4564 return ret;
1da177e4 4565}
1da177e4
LT
4566EXPORT_SYMBOL(cond_resched_lock);
4567
4568int __sched cond_resched_softirq(void)
4569{
4570 BUG_ON(!in_softirq());
4571
9414232f 4572 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4573 local_bh_enable();
1da177e4
LT
4574 __cond_resched();
4575 local_bh_disable();
4576 return 1;
4577 }
4578 return 0;
4579}
1da177e4
LT
4580EXPORT_SYMBOL(cond_resched_softirq);
4581
1da177e4
LT
4582/**
4583 * yield - yield the current processor to other threads.
4584 *
72fd4a35 4585 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4586 * thread runnable and calls sys_sched_yield().
4587 */
4588void __sched yield(void)
4589{
4590 set_current_state(TASK_RUNNING);
4591 sys_sched_yield();
4592}
1da177e4
LT
4593EXPORT_SYMBOL(yield);
4594
4595/*
4596 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4597 * that process accounting knows that this is a task in IO wait state.
4598 *
4599 * But don't do that if it is a deliberate, throttling IO wait (this task
4600 * has set its backing_dev_info: the queue against which it should throttle)
4601 */
4602void __sched io_schedule(void)
4603{
70b97a7f 4604 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4605
0ff92245 4606 delayacct_blkio_start();
1da177e4
LT
4607 atomic_inc(&rq->nr_iowait);
4608 schedule();
4609 atomic_dec(&rq->nr_iowait);
0ff92245 4610 delayacct_blkio_end();
1da177e4 4611}
1da177e4
LT
4612EXPORT_SYMBOL(io_schedule);
4613
4614long __sched io_schedule_timeout(long timeout)
4615{
70b97a7f 4616 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4617 long ret;
4618
0ff92245 4619 delayacct_blkio_start();
1da177e4
LT
4620 atomic_inc(&rq->nr_iowait);
4621 ret = schedule_timeout(timeout);
4622 atomic_dec(&rq->nr_iowait);
0ff92245 4623 delayacct_blkio_end();
1da177e4
LT
4624 return ret;
4625}
4626
4627/**
4628 * sys_sched_get_priority_max - return maximum RT priority.
4629 * @policy: scheduling class.
4630 *
4631 * this syscall returns the maximum rt_priority that can be used
4632 * by a given scheduling class.
4633 */
4634asmlinkage long sys_sched_get_priority_max(int policy)
4635{
4636 int ret = -EINVAL;
4637
4638 switch (policy) {
4639 case SCHED_FIFO:
4640 case SCHED_RR:
4641 ret = MAX_USER_RT_PRIO-1;
4642 break;
4643 case SCHED_NORMAL:
b0a9499c 4644 case SCHED_BATCH:
dd41f596 4645 case SCHED_IDLE:
1da177e4
LT
4646 ret = 0;
4647 break;
4648 }
4649 return ret;
4650}
4651
4652/**
4653 * sys_sched_get_priority_min - return minimum RT priority.
4654 * @policy: scheduling class.
4655 *
4656 * this syscall returns the minimum rt_priority that can be used
4657 * by a given scheduling class.
4658 */
4659asmlinkage long sys_sched_get_priority_min(int policy)
4660{
4661 int ret = -EINVAL;
4662
4663 switch (policy) {
4664 case SCHED_FIFO:
4665 case SCHED_RR:
4666 ret = 1;
4667 break;
4668 case SCHED_NORMAL:
b0a9499c 4669 case SCHED_BATCH:
dd41f596 4670 case SCHED_IDLE:
1da177e4
LT
4671 ret = 0;
4672 }
4673 return ret;
4674}
4675
4676/**
4677 * sys_sched_rr_get_interval - return the default timeslice of a process.
4678 * @pid: pid of the process.
4679 * @interval: userspace pointer to the timeslice value.
4680 *
4681 * this syscall writes the default timeslice value of a given process
4682 * into the user-space timespec buffer. A value of '0' means infinity.
4683 */
4684asmlinkage
4685long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4686{
36c8b586 4687 struct task_struct *p;
1da177e4
LT
4688 int retval = -EINVAL;
4689 struct timespec t;
1da177e4
LT
4690
4691 if (pid < 0)
4692 goto out_nounlock;
4693
4694 retval = -ESRCH;
4695 read_lock(&tasklist_lock);
4696 p = find_process_by_pid(pid);
4697 if (!p)
4698 goto out_unlock;
4699
4700 retval = security_task_getscheduler(p);
4701 if (retval)
4702 goto out_unlock;
4703
b78709cf 4704 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4705 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4706 read_unlock(&tasklist_lock);
4707 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4708out_nounlock:
4709 return retval;
4710out_unlock:
4711 read_unlock(&tasklist_lock);
4712 return retval;
4713}
4714
2ed6e34f 4715static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4716
4717static void show_task(struct task_struct *p)
1da177e4 4718{
1da177e4 4719 unsigned long free = 0;
36c8b586 4720 unsigned state;
1da177e4 4721
1da177e4 4722 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4723 printk("%-13.13s %c", p->comm,
4724 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4725#if BITS_PER_LONG == 32
1da177e4 4726 if (state == TASK_RUNNING)
4bd77321 4727 printk(" running ");
1da177e4 4728 else
4bd77321 4729 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4730#else
4731 if (state == TASK_RUNNING)
4bd77321 4732 printk(" running task ");
1da177e4
LT
4733 else
4734 printk(" %016lx ", thread_saved_pc(p));
4735#endif
4736#ifdef CONFIG_DEBUG_STACK_USAGE
4737 {
10ebffde 4738 unsigned long *n = end_of_stack(p);
1da177e4
LT
4739 while (!*n)
4740 n++;
10ebffde 4741 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4742 }
4743#endif
4bd77321 4744 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4745
4746 if (state != TASK_RUNNING)
4747 show_stack(p, NULL);
4748}
4749
e59e2ae2 4750void show_state_filter(unsigned long state_filter)
1da177e4 4751{
36c8b586 4752 struct task_struct *g, *p;
1da177e4 4753
4bd77321
IM
4754#if BITS_PER_LONG == 32
4755 printk(KERN_INFO
4756 " task PC stack pid father\n");
1da177e4 4757#else
4bd77321
IM
4758 printk(KERN_INFO
4759 " task PC stack pid father\n");
1da177e4
LT
4760#endif
4761 read_lock(&tasklist_lock);
4762 do_each_thread(g, p) {
4763 /*
4764 * reset the NMI-timeout, listing all files on a slow
4765 * console might take alot of time:
4766 */
4767 touch_nmi_watchdog();
39bc89fd 4768 if (!state_filter || (p->state & state_filter))
e59e2ae2 4769 show_task(p);
1da177e4
LT
4770 } while_each_thread(g, p);
4771
04c9167f
JF
4772 touch_all_softlockup_watchdogs();
4773
dd41f596
IM
4774#ifdef CONFIG_SCHED_DEBUG
4775 sysrq_sched_debug_show();
4776#endif
1da177e4 4777 read_unlock(&tasklist_lock);
e59e2ae2
IM
4778 /*
4779 * Only show locks if all tasks are dumped:
4780 */
4781 if (state_filter == -1)
4782 debug_show_all_locks();
1da177e4
LT
4783}
4784
1df21055
IM
4785void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4786{
dd41f596 4787 idle->sched_class = &idle_sched_class;
1df21055
IM
4788}
4789
f340c0d1
IM
4790/**
4791 * init_idle - set up an idle thread for a given CPU
4792 * @idle: task in question
4793 * @cpu: cpu the idle task belongs to
4794 *
4795 * NOTE: this function does not set the idle thread's NEED_RESCHED
4796 * flag, to make booting more robust.
4797 */
5c1e1767 4798void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4799{
70b97a7f 4800 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4801 unsigned long flags;
4802
dd41f596
IM
4803 __sched_fork(idle);
4804 idle->se.exec_start = sched_clock();
4805
b29739f9 4806 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4807 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4808 __set_task_cpu(idle, cpu);
1da177e4
LT
4809
4810 spin_lock_irqsave(&rq->lock, flags);
4811 rq->curr = rq->idle = idle;
4866cde0
NP
4812#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4813 idle->oncpu = 1;
4814#endif
1da177e4
LT
4815 spin_unlock_irqrestore(&rq->lock, flags);
4816
4817 /* Set the preempt count _outside_ the spinlocks! */
4818#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4819 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4820#else
a1261f54 4821 task_thread_info(idle)->preempt_count = 0;
1da177e4 4822#endif
dd41f596
IM
4823 /*
4824 * The idle tasks have their own, simple scheduling class:
4825 */
4826 idle->sched_class = &idle_sched_class;
1da177e4
LT
4827}
4828
4829/*
4830 * In a system that switches off the HZ timer nohz_cpu_mask
4831 * indicates which cpus entered this state. This is used
4832 * in the rcu update to wait only for active cpus. For system
4833 * which do not switch off the HZ timer nohz_cpu_mask should
4834 * always be CPU_MASK_NONE.
4835 */
4836cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4837
4838#ifdef CONFIG_SMP
4839/*
4840 * This is how migration works:
4841 *
70b97a7f 4842 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4843 * runqueue and wake up that CPU's migration thread.
4844 * 2) we down() the locked semaphore => thread blocks.
4845 * 3) migration thread wakes up (implicitly it forces the migrated
4846 * thread off the CPU)
4847 * 4) it gets the migration request and checks whether the migrated
4848 * task is still in the wrong runqueue.
4849 * 5) if it's in the wrong runqueue then the migration thread removes
4850 * it and puts it into the right queue.
4851 * 6) migration thread up()s the semaphore.
4852 * 7) we wake up and the migration is done.
4853 */
4854
4855/*
4856 * Change a given task's CPU affinity. Migrate the thread to a
4857 * proper CPU and schedule it away if the CPU it's executing on
4858 * is removed from the allowed bitmask.
4859 *
4860 * NOTE: the caller must have a valid reference to the task, the
4861 * task must not exit() & deallocate itself prematurely. The
4862 * call is not atomic; no spinlocks may be held.
4863 */
36c8b586 4864int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4865{
70b97a7f 4866 struct migration_req req;
1da177e4 4867 unsigned long flags;
70b97a7f 4868 struct rq *rq;
48f24c4d 4869 int ret = 0;
1da177e4
LT
4870
4871 rq = task_rq_lock(p, &flags);
4872 if (!cpus_intersects(new_mask, cpu_online_map)) {
4873 ret = -EINVAL;
4874 goto out;
4875 }
4876
4877 p->cpus_allowed = new_mask;
4878 /* Can the task run on the task's current CPU? If so, we're done */
4879 if (cpu_isset(task_cpu(p), new_mask))
4880 goto out;
4881
4882 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4883 /* Need help from migration thread: drop lock and wait. */
4884 task_rq_unlock(rq, &flags);
4885 wake_up_process(rq->migration_thread);
4886 wait_for_completion(&req.done);
4887 tlb_migrate_finish(p->mm);
4888 return 0;
4889 }
4890out:
4891 task_rq_unlock(rq, &flags);
48f24c4d 4892
1da177e4
LT
4893 return ret;
4894}
1da177e4
LT
4895EXPORT_SYMBOL_GPL(set_cpus_allowed);
4896
4897/*
4898 * Move (not current) task off this cpu, onto dest cpu. We're doing
4899 * this because either it can't run here any more (set_cpus_allowed()
4900 * away from this CPU, or CPU going down), or because we're
4901 * attempting to rebalance this task on exec (sched_exec).
4902 *
4903 * So we race with normal scheduler movements, but that's OK, as long
4904 * as the task is no longer on this CPU.
efc30814
KK
4905 *
4906 * Returns non-zero if task was successfully migrated.
1da177e4 4907 */
efc30814 4908static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4909{
70b97a7f 4910 struct rq *rq_dest, *rq_src;
dd41f596 4911 int ret = 0, on_rq;
1da177e4
LT
4912
4913 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4914 return ret;
1da177e4
LT
4915
4916 rq_src = cpu_rq(src_cpu);
4917 rq_dest = cpu_rq(dest_cpu);
4918
4919 double_rq_lock(rq_src, rq_dest);
4920 /* Already moved. */
4921 if (task_cpu(p) != src_cpu)
4922 goto out;
4923 /* Affinity changed (again). */
4924 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4925 goto out;
4926
dd41f596 4927 on_rq = p->se.on_rq;
6e82a3be 4928 if (on_rq)
2e1cb74a 4929 deactivate_task(rq_src, p, 0);
6e82a3be 4930
1da177e4 4931 set_task_cpu(p, dest_cpu);
dd41f596
IM
4932 if (on_rq) {
4933 activate_task(rq_dest, p, 0);
4934 check_preempt_curr(rq_dest, p);
1da177e4 4935 }
efc30814 4936 ret = 1;
1da177e4
LT
4937out:
4938 double_rq_unlock(rq_src, rq_dest);
efc30814 4939 return ret;
1da177e4
LT
4940}
4941
4942/*
4943 * migration_thread - this is a highprio system thread that performs
4944 * thread migration by bumping thread off CPU then 'pushing' onto
4945 * another runqueue.
4946 */
95cdf3b7 4947static int migration_thread(void *data)
1da177e4 4948{
1da177e4 4949 int cpu = (long)data;
70b97a7f 4950 struct rq *rq;
1da177e4
LT
4951
4952 rq = cpu_rq(cpu);
4953 BUG_ON(rq->migration_thread != current);
4954
4955 set_current_state(TASK_INTERRUPTIBLE);
4956 while (!kthread_should_stop()) {
70b97a7f 4957 struct migration_req *req;
1da177e4 4958 struct list_head *head;
1da177e4 4959
1da177e4
LT
4960 spin_lock_irq(&rq->lock);
4961
4962 if (cpu_is_offline(cpu)) {
4963 spin_unlock_irq(&rq->lock);
4964 goto wait_to_die;
4965 }
4966
4967 if (rq->active_balance) {
4968 active_load_balance(rq, cpu);
4969 rq->active_balance = 0;
4970 }
4971
4972 head = &rq->migration_queue;
4973
4974 if (list_empty(head)) {
4975 spin_unlock_irq(&rq->lock);
4976 schedule();
4977 set_current_state(TASK_INTERRUPTIBLE);
4978 continue;
4979 }
70b97a7f 4980 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4981 list_del_init(head->next);
4982
674311d5
NP
4983 spin_unlock(&rq->lock);
4984 __migrate_task(req->task, cpu, req->dest_cpu);
4985 local_irq_enable();
1da177e4
LT
4986
4987 complete(&req->done);
4988 }
4989 __set_current_state(TASK_RUNNING);
4990 return 0;
4991
4992wait_to_die:
4993 /* Wait for kthread_stop */
4994 set_current_state(TASK_INTERRUPTIBLE);
4995 while (!kthread_should_stop()) {
4996 schedule();
4997 set_current_state(TASK_INTERRUPTIBLE);
4998 }
4999 __set_current_state(TASK_RUNNING);
5000 return 0;
5001}
5002
5003#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5004/*
5005 * Figure out where task on dead CPU should go, use force if neccessary.
5006 * NOTE: interrupts should be disabled by the caller
5007 */
48f24c4d 5008static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5009{
efc30814 5010 unsigned long flags;
1da177e4 5011 cpumask_t mask;
70b97a7f
IM
5012 struct rq *rq;
5013 int dest_cpu;
1da177e4 5014
efc30814 5015restart:
1da177e4
LT
5016 /* On same node? */
5017 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5018 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5019 dest_cpu = any_online_cpu(mask);
5020
5021 /* On any allowed CPU? */
5022 if (dest_cpu == NR_CPUS)
48f24c4d 5023 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5024
5025 /* No more Mr. Nice Guy. */
5026 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5027 rq = task_rq_lock(p, &flags);
5028 cpus_setall(p->cpus_allowed);
5029 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5030 task_rq_unlock(rq, &flags);
1da177e4
LT
5031
5032 /*
5033 * Don't tell them about moving exiting tasks or
5034 * kernel threads (both mm NULL), since they never
5035 * leave kernel.
5036 */
48f24c4d 5037 if (p->mm && printk_ratelimit())
1da177e4
LT
5038 printk(KERN_INFO "process %d (%s) no "
5039 "longer affine to cpu%d\n",
48f24c4d 5040 p->pid, p->comm, dead_cpu);
1da177e4 5041 }
48f24c4d 5042 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5043 goto restart;
1da177e4
LT
5044}
5045
5046/*
5047 * While a dead CPU has no uninterruptible tasks queued at this point,
5048 * it might still have a nonzero ->nr_uninterruptible counter, because
5049 * for performance reasons the counter is not stricly tracking tasks to
5050 * their home CPUs. So we just add the counter to another CPU's counter,
5051 * to keep the global sum constant after CPU-down:
5052 */
70b97a7f 5053static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5054{
70b97a7f 5055 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5056 unsigned long flags;
5057
5058 local_irq_save(flags);
5059 double_rq_lock(rq_src, rq_dest);
5060 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5061 rq_src->nr_uninterruptible = 0;
5062 double_rq_unlock(rq_src, rq_dest);
5063 local_irq_restore(flags);
5064}
5065
5066/* Run through task list and migrate tasks from the dead cpu. */
5067static void migrate_live_tasks(int src_cpu)
5068{
48f24c4d 5069 struct task_struct *p, *t;
1da177e4
LT
5070
5071 write_lock_irq(&tasklist_lock);
5072
48f24c4d
IM
5073 do_each_thread(t, p) {
5074 if (p == current)
1da177e4
LT
5075 continue;
5076
48f24c4d
IM
5077 if (task_cpu(p) == src_cpu)
5078 move_task_off_dead_cpu(src_cpu, p);
5079 } while_each_thread(t, p);
1da177e4
LT
5080
5081 write_unlock_irq(&tasklist_lock);
5082}
5083
dd41f596
IM
5084/*
5085 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5086 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5087 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5088 */
5089void sched_idle_next(void)
5090{
48f24c4d 5091 int this_cpu = smp_processor_id();
70b97a7f 5092 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5093 struct task_struct *p = rq->idle;
5094 unsigned long flags;
5095
5096 /* cpu has to be offline */
48f24c4d 5097 BUG_ON(cpu_online(this_cpu));
1da177e4 5098
48f24c4d
IM
5099 /*
5100 * Strictly not necessary since rest of the CPUs are stopped by now
5101 * and interrupts disabled on the current cpu.
1da177e4
LT
5102 */
5103 spin_lock_irqsave(&rq->lock, flags);
5104
dd41f596 5105 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5106
5107 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5108 activate_idle_task(p, rq);
1da177e4
LT
5109
5110 spin_unlock_irqrestore(&rq->lock, flags);
5111}
5112
48f24c4d
IM
5113/*
5114 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5115 * offline.
5116 */
5117void idle_task_exit(void)
5118{
5119 struct mm_struct *mm = current->active_mm;
5120
5121 BUG_ON(cpu_online(smp_processor_id()));
5122
5123 if (mm != &init_mm)
5124 switch_mm(mm, &init_mm, current);
5125 mmdrop(mm);
5126}
5127
054b9108 5128/* called under rq->lock with disabled interrupts */
36c8b586 5129static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5130{
70b97a7f 5131 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5132
5133 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5134 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5135
5136 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5137 BUG_ON(p->state == TASK_DEAD);
1da177e4 5138
48f24c4d 5139 get_task_struct(p);
1da177e4
LT
5140
5141 /*
5142 * Drop lock around migration; if someone else moves it,
5143 * that's OK. No task can be added to this CPU, so iteration is
5144 * fine.
054b9108 5145 * NOTE: interrupts should be left disabled --dev@
1da177e4 5146 */
054b9108 5147 spin_unlock(&rq->lock);
48f24c4d 5148 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5149 spin_lock(&rq->lock);
1da177e4 5150
48f24c4d 5151 put_task_struct(p);
1da177e4
LT
5152}
5153
5154/* release_task() removes task from tasklist, so we won't find dead tasks. */
5155static void migrate_dead_tasks(unsigned int dead_cpu)
5156{
70b97a7f 5157 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5158 struct task_struct *next;
48f24c4d 5159
dd41f596
IM
5160 for ( ; ; ) {
5161 if (!rq->nr_running)
5162 break;
a8e504d2 5163 update_rq_clock(rq);
ff95f3df 5164 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5165 if (!next)
5166 break;
5167 migrate_dead(dead_cpu, next);
e692ab53 5168
1da177e4
LT
5169 }
5170}
5171#endif /* CONFIG_HOTPLUG_CPU */
5172
e692ab53
NP
5173#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5174
5175static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5176 {
5177 .procname = "sched_domain",
c57baf1e 5178 .mode = 0555,
e0361851 5179 },
e692ab53
NP
5180 {0,},
5181};
5182
5183static struct ctl_table sd_ctl_root[] = {
e0361851 5184 {
c57baf1e 5185 .ctl_name = CTL_KERN,
e0361851 5186 .procname = "kernel",
c57baf1e 5187 .mode = 0555,
e0361851
AD
5188 .child = sd_ctl_dir,
5189 },
e692ab53
NP
5190 {0,},
5191};
5192
5193static struct ctl_table *sd_alloc_ctl_entry(int n)
5194{
5195 struct ctl_table *entry =
5196 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5197
5198 BUG_ON(!entry);
5199 memset(entry, 0, n * sizeof(struct ctl_table));
5200
5201 return entry;
5202}
5203
5204static void
e0361851 5205set_table_entry(struct ctl_table *entry,
e692ab53
NP
5206 const char *procname, void *data, int maxlen,
5207 mode_t mode, proc_handler *proc_handler)
5208{
e692ab53
NP
5209 entry->procname = procname;
5210 entry->data = data;
5211 entry->maxlen = maxlen;
5212 entry->mode = mode;
5213 entry->proc_handler = proc_handler;
5214}
5215
5216static struct ctl_table *
5217sd_alloc_ctl_domain_table(struct sched_domain *sd)
5218{
5219 struct ctl_table *table = sd_alloc_ctl_entry(14);
5220
e0361851 5221 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5222 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5223 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5224 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5225 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5226 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5227 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5228 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5229 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5230 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5231 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5232 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5233 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5234 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5235 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5236 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5237 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5238 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5239 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5240 &sd->cache_nice_tries,
5241 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5242 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5243 sizeof(int), 0644, proc_dointvec_minmax);
5244
5245 return table;
5246}
5247
5248static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5249{
5250 struct ctl_table *entry, *table;
5251 struct sched_domain *sd;
5252 int domain_num = 0, i;
5253 char buf[32];
5254
5255 for_each_domain(cpu, sd)
5256 domain_num++;
5257 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5258
5259 i = 0;
5260 for_each_domain(cpu, sd) {
5261 snprintf(buf, 32, "domain%d", i);
e692ab53 5262 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5263 entry->mode = 0555;
e692ab53
NP
5264 entry->child = sd_alloc_ctl_domain_table(sd);
5265 entry++;
5266 i++;
5267 }
5268 return table;
5269}
5270
5271static struct ctl_table_header *sd_sysctl_header;
5272static void init_sched_domain_sysctl(void)
5273{
5274 int i, cpu_num = num_online_cpus();
5275 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5276 char buf[32];
5277
5278 sd_ctl_dir[0].child = entry;
5279
5280 for (i = 0; i < cpu_num; i++, entry++) {
5281 snprintf(buf, 32, "cpu%d", i);
e692ab53 5282 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5283 entry->mode = 0555;
e692ab53
NP
5284 entry->child = sd_alloc_ctl_cpu_table(i);
5285 }
5286 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5287}
5288#else
5289static void init_sched_domain_sysctl(void)
5290{
5291}
5292#endif
5293
1da177e4
LT
5294/*
5295 * migration_call - callback that gets triggered when a CPU is added.
5296 * Here we can start up the necessary migration thread for the new CPU.
5297 */
48f24c4d
IM
5298static int __cpuinit
5299migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5300{
1da177e4 5301 struct task_struct *p;
48f24c4d 5302 int cpu = (long)hcpu;
1da177e4 5303 unsigned long flags;
70b97a7f 5304 struct rq *rq;
1da177e4
LT
5305
5306 switch (action) {
5be9361c
GS
5307 case CPU_LOCK_ACQUIRE:
5308 mutex_lock(&sched_hotcpu_mutex);
5309 break;
5310
1da177e4 5311 case CPU_UP_PREPARE:
8bb78442 5312 case CPU_UP_PREPARE_FROZEN:
dd41f596 5313 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5314 if (IS_ERR(p))
5315 return NOTIFY_BAD;
1da177e4
LT
5316 kthread_bind(p, cpu);
5317 /* Must be high prio: stop_machine expects to yield to it. */
5318 rq = task_rq_lock(p, &flags);
dd41f596 5319 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5320 task_rq_unlock(rq, &flags);
5321 cpu_rq(cpu)->migration_thread = p;
5322 break;
48f24c4d 5323
1da177e4 5324 case CPU_ONLINE:
8bb78442 5325 case CPU_ONLINE_FROZEN:
1da177e4
LT
5326 /* Strictly unneccessary, as first user will wake it. */
5327 wake_up_process(cpu_rq(cpu)->migration_thread);
5328 break;
48f24c4d 5329
1da177e4
LT
5330#ifdef CONFIG_HOTPLUG_CPU
5331 case CPU_UP_CANCELED:
8bb78442 5332 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5333 if (!cpu_rq(cpu)->migration_thread)
5334 break;
1da177e4 5335 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5336 kthread_bind(cpu_rq(cpu)->migration_thread,
5337 any_online_cpu(cpu_online_map));
1da177e4
LT
5338 kthread_stop(cpu_rq(cpu)->migration_thread);
5339 cpu_rq(cpu)->migration_thread = NULL;
5340 break;
48f24c4d 5341
1da177e4 5342 case CPU_DEAD:
8bb78442 5343 case CPU_DEAD_FROZEN:
1da177e4
LT
5344 migrate_live_tasks(cpu);
5345 rq = cpu_rq(cpu);
5346 kthread_stop(rq->migration_thread);
5347 rq->migration_thread = NULL;
5348 /* Idle task back to normal (off runqueue, low prio) */
5349 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5350 update_rq_clock(rq);
2e1cb74a 5351 deactivate_task(rq, rq->idle, 0);
1da177e4 5352 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5353 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5354 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5355 migrate_dead_tasks(cpu);
5356 task_rq_unlock(rq, &flags);
5357 migrate_nr_uninterruptible(rq);
5358 BUG_ON(rq->nr_running != 0);
5359
5360 /* No need to migrate the tasks: it was best-effort if
5be9361c 5361 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5362 * the requestors. */
5363 spin_lock_irq(&rq->lock);
5364 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5365 struct migration_req *req;
5366
1da177e4 5367 req = list_entry(rq->migration_queue.next,
70b97a7f 5368 struct migration_req, list);
1da177e4
LT
5369 list_del_init(&req->list);
5370 complete(&req->done);
5371 }
5372 spin_unlock_irq(&rq->lock);
5373 break;
5374#endif
5be9361c
GS
5375 case CPU_LOCK_RELEASE:
5376 mutex_unlock(&sched_hotcpu_mutex);
5377 break;
1da177e4
LT
5378 }
5379 return NOTIFY_OK;
5380}
5381
5382/* Register at highest priority so that task migration (migrate_all_tasks)
5383 * happens before everything else.
5384 */
26c2143b 5385static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5386 .notifier_call = migration_call,
5387 .priority = 10
5388};
5389
5390int __init migration_init(void)
5391{
5392 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5393 int err;
48f24c4d
IM
5394
5395 /* Start one for the boot CPU: */
07dccf33
AM
5396 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5397 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5398 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5399 register_cpu_notifier(&migration_notifier);
48f24c4d 5400
1da177e4
LT
5401 return 0;
5402}
5403#endif
5404
5405#ifdef CONFIG_SMP
476f3534
CL
5406
5407/* Number of possible processor ids */
5408int nr_cpu_ids __read_mostly = NR_CPUS;
5409EXPORT_SYMBOL(nr_cpu_ids);
5410
1a20ff27 5411#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5412#ifdef SCHED_DOMAIN_DEBUG
5413static void sched_domain_debug(struct sched_domain *sd, int cpu)
5414{
5415 int level = 0;
5416
41c7ce9a
NP
5417 if (!sd) {
5418 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5419 return;
5420 }
5421
1da177e4
LT
5422 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5423
5424 do {
5425 int i;
5426 char str[NR_CPUS];
5427 struct sched_group *group = sd->groups;
5428 cpumask_t groupmask;
5429
5430 cpumask_scnprintf(str, NR_CPUS, sd->span);
5431 cpus_clear(groupmask);
5432
5433 printk(KERN_DEBUG);
5434 for (i = 0; i < level + 1; i++)
5435 printk(" ");
5436 printk("domain %d: ", level);
5437
5438 if (!(sd->flags & SD_LOAD_BALANCE)) {
5439 printk("does not load-balance\n");
5440 if (sd->parent)
33859f7f
MOS
5441 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5442 " has parent");
1da177e4
LT
5443 break;
5444 }
5445
5446 printk("span %s\n", str);
5447
5448 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5449 printk(KERN_ERR "ERROR: domain->span does not contain "
5450 "CPU%d\n", cpu);
1da177e4 5451 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5452 printk(KERN_ERR "ERROR: domain->groups does not contain"
5453 " CPU%d\n", cpu);
1da177e4
LT
5454
5455 printk(KERN_DEBUG);
5456 for (i = 0; i < level + 2; i++)
5457 printk(" ");
5458 printk("groups:");
5459 do {
5460 if (!group) {
5461 printk("\n");
5462 printk(KERN_ERR "ERROR: group is NULL\n");
5463 break;
5464 }
5465
5517d86b 5466 if (!group->__cpu_power) {
1da177e4 5467 printk("\n");
33859f7f
MOS
5468 printk(KERN_ERR "ERROR: domain->cpu_power not "
5469 "set\n");
1da177e4
LT
5470 }
5471
5472 if (!cpus_weight(group->cpumask)) {
5473 printk("\n");
5474 printk(KERN_ERR "ERROR: empty group\n");
5475 }
5476
5477 if (cpus_intersects(groupmask, group->cpumask)) {
5478 printk("\n");
5479 printk(KERN_ERR "ERROR: repeated CPUs\n");
5480 }
5481
5482 cpus_or(groupmask, groupmask, group->cpumask);
5483
5484 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5485 printk(" %s", str);
5486
5487 group = group->next;
5488 } while (group != sd->groups);
5489 printk("\n");
5490
5491 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5492 printk(KERN_ERR "ERROR: groups don't span "
5493 "domain->span\n");
1da177e4
LT
5494
5495 level++;
5496 sd = sd->parent;
33859f7f
MOS
5497 if (!sd)
5498 continue;
1da177e4 5499
33859f7f
MOS
5500 if (!cpus_subset(groupmask, sd->span))
5501 printk(KERN_ERR "ERROR: parent span is not a superset "
5502 "of domain->span\n");
1da177e4
LT
5503
5504 } while (sd);
5505}
5506#else
48f24c4d 5507# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5508#endif
5509
1a20ff27 5510static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5511{
5512 if (cpus_weight(sd->span) == 1)
5513 return 1;
5514
5515 /* Following flags need at least 2 groups */
5516 if (sd->flags & (SD_LOAD_BALANCE |
5517 SD_BALANCE_NEWIDLE |
5518 SD_BALANCE_FORK |
89c4710e
SS
5519 SD_BALANCE_EXEC |
5520 SD_SHARE_CPUPOWER |
5521 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5522 if (sd->groups != sd->groups->next)
5523 return 0;
5524 }
5525
5526 /* Following flags don't use groups */
5527 if (sd->flags & (SD_WAKE_IDLE |
5528 SD_WAKE_AFFINE |
5529 SD_WAKE_BALANCE))
5530 return 0;
5531
5532 return 1;
5533}
5534
48f24c4d
IM
5535static int
5536sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5537{
5538 unsigned long cflags = sd->flags, pflags = parent->flags;
5539
5540 if (sd_degenerate(parent))
5541 return 1;
5542
5543 if (!cpus_equal(sd->span, parent->span))
5544 return 0;
5545
5546 /* Does parent contain flags not in child? */
5547 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5548 if (cflags & SD_WAKE_AFFINE)
5549 pflags &= ~SD_WAKE_BALANCE;
5550 /* Flags needing groups don't count if only 1 group in parent */
5551 if (parent->groups == parent->groups->next) {
5552 pflags &= ~(SD_LOAD_BALANCE |
5553 SD_BALANCE_NEWIDLE |
5554 SD_BALANCE_FORK |
89c4710e
SS
5555 SD_BALANCE_EXEC |
5556 SD_SHARE_CPUPOWER |
5557 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5558 }
5559 if (~cflags & pflags)
5560 return 0;
5561
5562 return 1;
5563}
5564
1da177e4
LT
5565/*
5566 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5567 * hold the hotplug lock.
5568 */
9c1cfda2 5569static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5570{
70b97a7f 5571 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5572 struct sched_domain *tmp;
5573
5574 /* Remove the sched domains which do not contribute to scheduling. */
5575 for (tmp = sd; tmp; tmp = tmp->parent) {
5576 struct sched_domain *parent = tmp->parent;
5577 if (!parent)
5578 break;
1a848870 5579 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5580 tmp->parent = parent->parent;
1a848870
SS
5581 if (parent->parent)
5582 parent->parent->child = tmp;
5583 }
245af2c7
SS
5584 }
5585
1a848870 5586 if (sd && sd_degenerate(sd)) {
245af2c7 5587 sd = sd->parent;
1a848870
SS
5588 if (sd)
5589 sd->child = NULL;
5590 }
1da177e4
LT
5591
5592 sched_domain_debug(sd, cpu);
5593
674311d5 5594 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5595}
5596
5597/* cpus with isolated domains */
67af63a6 5598static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5599
5600/* Setup the mask of cpus configured for isolated domains */
5601static int __init isolated_cpu_setup(char *str)
5602{
5603 int ints[NR_CPUS], i;
5604
5605 str = get_options(str, ARRAY_SIZE(ints), ints);
5606 cpus_clear(cpu_isolated_map);
5607 for (i = 1; i <= ints[0]; i++)
5608 if (ints[i] < NR_CPUS)
5609 cpu_set(ints[i], cpu_isolated_map);
5610 return 1;
5611}
5612
5613__setup ("isolcpus=", isolated_cpu_setup);
5614
5615/*
6711cab4
SS
5616 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5617 * to a function which identifies what group(along with sched group) a CPU
5618 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5619 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5620 *
5621 * init_sched_build_groups will build a circular linked list of the groups
5622 * covered by the given span, and will set each group's ->cpumask correctly,
5623 * and ->cpu_power to 0.
5624 */
a616058b 5625static void
6711cab4
SS
5626init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5627 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5628 struct sched_group **sg))
1da177e4
LT
5629{
5630 struct sched_group *first = NULL, *last = NULL;
5631 cpumask_t covered = CPU_MASK_NONE;
5632 int i;
5633
5634 for_each_cpu_mask(i, span) {
6711cab4
SS
5635 struct sched_group *sg;
5636 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5637 int j;
5638
5639 if (cpu_isset(i, covered))
5640 continue;
5641
5642 sg->cpumask = CPU_MASK_NONE;
5517d86b 5643 sg->__cpu_power = 0;
1da177e4
LT
5644
5645 for_each_cpu_mask(j, span) {
6711cab4 5646 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5647 continue;
5648
5649 cpu_set(j, covered);
5650 cpu_set(j, sg->cpumask);
5651 }
5652 if (!first)
5653 first = sg;
5654 if (last)
5655 last->next = sg;
5656 last = sg;
5657 }
5658 last->next = first;
5659}
5660
9c1cfda2 5661#define SD_NODES_PER_DOMAIN 16
1da177e4 5662
9c1cfda2 5663#ifdef CONFIG_NUMA
198e2f18 5664
9c1cfda2
JH
5665/**
5666 * find_next_best_node - find the next node to include in a sched_domain
5667 * @node: node whose sched_domain we're building
5668 * @used_nodes: nodes already in the sched_domain
5669 *
5670 * Find the next node to include in a given scheduling domain. Simply
5671 * finds the closest node not already in the @used_nodes map.
5672 *
5673 * Should use nodemask_t.
5674 */
5675static int find_next_best_node(int node, unsigned long *used_nodes)
5676{
5677 int i, n, val, min_val, best_node = 0;
5678
5679 min_val = INT_MAX;
5680
5681 for (i = 0; i < MAX_NUMNODES; i++) {
5682 /* Start at @node */
5683 n = (node + i) % MAX_NUMNODES;
5684
5685 if (!nr_cpus_node(n))
5686 continue;
5687
5688 /* Skip already used nodes */
5689 if (test_bit(n, used_nodes))
5690 continue;
5691
5692 /* Simple min distance search */
5693 val = node_distance(node, n);
5694
5695 if (val < min_val) {
5696 min_val = val;
5697 best_node = n;
5698 }
5699 }
5700
5701 set_bit(best_node, used_nodes);
5702 return best_node;
5703}
5704
5705/**
5706 * sched_domain_node_span - get a cpumask for a node's sched_domain
5707 * @node: node whose cpumask we're constructing
5708 * @size: number of nodes to include in this span
5709 *
5710 * Given a node, construct a good cpumask for its sched_domain to span. It
5711 * should be one that prevents unnecessary balancing, but also spreads tasks
5712 * out optimally.
5713 */
5714static cpumask_t sched_domain_node_span(int node)
5715{
9c1cfda2 5716 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5717 cpumask_t span, nodemask;
5718 int i;
9c1cfda2
JH
5719
5720 cpus_clear(span);
5721 bitmap_zero(used_nodes, MAX_NUMNODES);
5722
5723 nodemask = node_to_cpumask(node);
5724 cpus_or(span, span, nodemask);
5725 set_bit(node, used_nodes);
5726
5727 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5728 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5729
9c1cfda2
JH
5730 nodemask = node_to_cpumask(next_node);
5731 cpus_or(span, span, nodemask);
5732 }
5733
5734 return span;
5735}
5736#endif
5737
5c45bf27 5738int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5739
9c1cfda2 5740/*
48f24c4d 5741 * SMT sched-domains:
9c1cfda2 5742 */
1da177e4
LT
5743#ifdef CONFIG_SCHED_SMT
5744static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5745static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5746
6711cab4
SS
5747static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5748 struct sched_group **sg)
1da177e4 5749{
6711cab4
SS
5750 if (sg)
5751 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5752 return cpu;
5753}
5754#endif
5755
48f24c4d
IM
5756/*
5757 * multi-core sched-domains:
5758 */
1e9f28fa
SS
5759#ifdef CONFIG_SCHED_MC
5760static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5761static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5762#endif
5763
5764#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5765static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5766 struct sched_group **sg)
1e9f28fa 5767{
6711cab4 5768 int group;
a616058b
SS
5769 cpumask_t mask = cpu_sibling_map[cpu];
5770 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5771 group = first_cpu(mask);
5772 if (sg)
5773 *sg = &per_cpu(sched_group_core, group);
5774 return group;
1e9f28fa
SS
5775}
5776#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5777static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5778 struct sched_group **sg)
1e9f28fa 5779{
6711cab4
SS
5780 if (sg)
5781 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5782 return cpu;
5783}
5784#endif
5785
1da177e4 5786static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5787static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5788
6711cab4
SS
5789static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5790 struct sched_group **sg)
1da177e4 5791{
6711cab4 5792 int group;
48f24c4d 5793#ifdef CONFIG_SCHED_MC
1e9f28fa 5794 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5795 cpus_and(mask, mask, *cpu_map);
6711cab4 5796 group = first_cpu(mask);
1e9f28fa 5797#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5798 cpumask_t mask = cpu_sibling_map[cpu];
5799 cpus_and(mask, mask, *cpu_map);
6711cab4 5800 group = first_cpu(mask);
1da177e4 5801#else
6711cab4 5802 group = cpu;
1da177e4 5803#endif
6711cab4
SS
5804 if (sg)
5805 *sg = &per_cpu(sched_group_phys, group);
5806 return group;
1da177e4
LT
5807}
5808
5809#ifdef CONFIG_NUMA
1da177e4 5810/*
9c1cfda2
JH
5811 * The init_sched_build_groups can't handle what we want to do with node
5812 * groups, so roll our own. Now each node has its own list of groups which
5813 * gets dynamically allocated.
1da177e4 5814 */
9c1cfda2 5815static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5816static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5817
9c1cfda2 5818static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5819static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5820
6711cab4
SS
5821static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5822 struct sched_group **sg)
9c1cfda2 5823{
6711cab4
SS
5824 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5825 int group;
5826
5827 cpus_and(nodemask, nodemask, *cpu_map);
5828 group = first_cpu(nodemask);
5829
5830 if (sg)
5831 *sg = &per_cpu(sched_group_allnodes, group);
5832 return group;
1da177e4 5833}
6711cab4 5834
08069033
SS
5835static void init_numa_sched_groups_power(struct sched_group *group_head)
5836{
5837 struct sched_group *sg = group_head;
5838 int j;
5839
5840 if (!sg)
5841 return;
5842next_sg:
5843 for_each_cpu_mask(j, sg->cpumask) {
5844 struct sched_domain *sd;
5845
5846 sd = &per_cpu(phys_domains, j);
5847 if (j != first_cpu(sd->groups->cpumask)) {
5848 /*
5849 * Only add "power" once for each
5850 * physical package.
5851 */
5852 continue;
5853 }
5854
5517d86b 5855 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5856 }
5857 sg = sg->next;
5858 if (sg != group_head)
5859 goto next_sg;
5860}
1da177e4
LT
5861#endif
5862
a616058b 5863#ifdef CONFIG_NUMA
51888ca2
SV
5864/* Free memory allocated for various sched_group structures */
5865static void free_sched_groups(const cpumask_t *cpu_map)
5866{
a616058b 5867 int cpu, i;
51888ca2
SV
5868
5869 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5870 struct sched_group **sched_group_nodes
5871 = sched_group_nodes_bycpu[cpu];
5872
51888ca2
SV
5873 if (!sched_group_nodes)
5874 continue;
5875
5876 for (i = 0; i < MAX_NUMNODES; i++) {
5877 cpumask_t nodemask = node_to_cpumask(i);
5878 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5879
5880 cpus_and(nodemask, nodemask, *cpu_map);
5881 if (cpus_empty(nodemask))
5882 continue;
5883
5884 if (sg == NULL)
5885 continue;
5886 sg = sg->next;
5887next_sg:
5888 oldsg = sg;
5889 sg = sg->next;
5890 kfree(oldsg);
5891 if (oldsg != sched_group_nodes[i])
5892 goto next_sg;
5893 }
5894 kfree(sched_group_nodes);
5895 sched_group_nodes_bycpu[cpu] = NULL;
5896 }
51888ca2 5897}
a616058b
SS
5898#else
5899static void free_sched_groups(const cpumask_t *cpu_map)
5900{
5901}
5902#endif
51888ca2 5903
89c4710e
SS
5904/*
5905 * Initialize sched groups cpu_power.
5906 *
5907 * cpu_power indicates the capacity of sched group, which is used while
5908 * distributing the load between different sched groups in a sched domain.
5909 * Typically cpu_power for all the groups in a sched domain will be same unless
5910 * there are asymmetries in the topology. If there are asymmetries, group
5911 * having more cpu_power will pickup more load compared to the group having
5912 * less cpu_power.
5913 *
5914 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5915 * the maximum number of tasks a group can handle in the presence of other idle
5916 * or lightly loaded groups in the same sched domain.
5917 */
5918static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5919{
5920 struct sched_domain *child;
5921 struct sched_group *group;
5922
5923 WARN_ON(!sd || !sd->groups);
5924
5925 if (cpu != first_cpu(sd->groups->cpumask))
5926 return;
5927
5928 child = sd->child;
5929
5517d86b
ED
5930 sd->groups->__cpu_power = 0;
5931
89c4710e
SS
5932 /*
5933 * For perf policy, if the groups in child domain share resources
5934 * (for example cores sharing some portions of the cache hierarchy
5935 * or SMT), then set this domain groups cpu_power such that each group
5936 * can handle only one task, when there are other idle groups in the
5937 * same sched domain.
5938 */
5939 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5940 (child->flags &
5941 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5942 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5943 return;
5944 }
5945
89c4710e
SS
5946 /*
5947 * add cpu_power of each child group to this groups cpu_power
5948 */
5949 group = child->groups;
5950 do {
5517d86b 5951 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5952 group = group->next;
5953 } while (group != child->groups);
5954}
5955
1da177e4 5956/*
1a20ff27
DG
5957 * Build sched domains for a given set of cpus and attach the sched domains
5958 * to the individual cpus
1da177e4 5959 */
51888ca2 5960static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5961{
5962 int i;
d1b55138
JH
5963#ifdef CONFIG_NUMA
5964 struct sched_group **sched_group_nodes = NULL;
6711cab4 5965 int sd_allnodes = 0;
d1b55138
JH
5966
5967 /*
5968 * Allocate the per-node list of sched groups
5969 */
dd41f596 5970 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5971 GFP_KERNEL);
d1b55138
JH
5972 if (!sched_group_nodes) {
5973 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5974 return -ENOMEM;
d1b55138
JH
5975 }
5976 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5977#endif
1da177e4
LT
5978
5979 /*
1a20ff27 5980 * Set up domains for cpus specified by the cpu_map.
1da177e4 5981 */
1a20ff27 5982 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5983 struct sched_domain *sd = NULL, *p;
5984 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5985
1a20ff27 5986 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5987
5988#ifdef CONFIG_NUMA
dd41f596
IM
5989 if (cpus_weight(*cpu_map) >
5990 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5991 sd = &per_cpu(allnodes_domains, i);
5992 *sd = SD_ALLNODES_INIT;
5993 sd->span = *cpu_map;
6711cab4 5994 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5995 p = sd;
6711cab4 5996 sd_allnodes = 1;
9c1cfda2
JH
5997 } else
5998 p = NULL;
5999
1da177e4 6000 sd = &per_cpu(node_domains, i);
1da177e4 6001 *sd = SD_NODE_INIT;
9c1cfda2
JH
6002 sd->span = sched_domain_node_span(cpu_to_node(i));
6003 sd->parent = p;
1a848870
SS
6004 if (p)
6005 p->child = sd;
9c1cfda2 6006 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6007#endif
6008
6009 p = sd;
6010 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6011 *sd = SD_CPU_INIT;
6012 sd->span = nodemask;
6013 sd->parent = p;
1a848870
SS
6014 if (p)
6015 p->child = sd;
6711cab4 6016 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6017
1e9f28fa
SS
6018#ifdef CONFIG_SCHED_MC
6019 p = sd;
6020 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6021 *sd = SD_MC_INIT;
6022 sd->span = cpu_coregroup_map(i);
6023 cpus_and(sd->span, sd->span, *cpu_map);
6024 sd->parent = p;
1a848870 6025 p->child = sd;
6711cab4 6026 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6027#endif
6028
1da177e4
LT
6029#ifdef CONFIG_SCHED_SMT
6030 p = sd;
6031 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6032 *sd = SD_SIBLING_INIT;
6033 sd->span = cpu_sibling_map[i];
1a20ff27 6034 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6035 sd->parent = p;
1a848870 6036 p->child = sd;
6711cab4 6037 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6038#endif
6039 }
6040
6041#ifdef CONFIG_SCHED_SMT
6042 /* Set up CPU (sibling) groups */
9c1cfda2 6043 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6044 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6045 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6046 if (i != first_cpu(this_sibling_map))
6047 continue;
6048
dd41f596
IM
6049 init_sched_build_groups(this_sibling_map, cpu_map,
6050 &cpu_to_cpu_group);
1da177e4
LT
6051 }
6052#endif
6053
1e9f28fa
SS
6054#ifdef CONFIG_SCHED_MC
6055 /* Set up multi-core groups */
6056 for_each_cpu_mask(i, *cpu_map) {
6057 cpumask_t this_core_map = cpu_coregroup_map(i);
6058 cpus_and(this_core_map, this_core_map, *cpu_map);
6059 if (i != first_cpu(this_core_map))
6060 continue;
dd41f596
IM
6061 init_sched_build_groups(this_core_map, cpu_map,
6062 &cpu_to_core_group);
1e9f28fa
SS
6063 }
6064#endif
6065
1da177e4
LT
6066 /* Set up physical groups */
6067 for (i = 0; i < MAX_NUMNODES; i++) {
6068 cpumask_t nodemask = node_to_cpumask(i);
6069
1a20ff27 6070 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6071 if (cpus_empty(nodemask))
6072 continue;
6073
6711cab4 6074 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6075 }
6076
6077#ifdef CONFIG_NUMA
6078 /* Set up node groups */
6711cab4 6079 if (sd_allnodes)
dd41f596
IM
6080 init_sched_build_groups(*cpu_map, cpu_map,
6081 &cpu_to_allnodes_group);
9c1cfda2
JH
6082
6083 for (i = 0; i < MAX_NUMNODES; i++) {
6084 /* Set up node groups */
6085 struct sched_group *sg, *prev;
6086 cpumask_t nodemask = node_to_cpumask(i);
6087 cpumask_t domainspan;
6088 cpumask_t covered = CPU_MASK_NONE;
6089 int j;
6090
6091 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6092 if (cpus_empty(nodemask)) {
6093 sched_group_nodes[i] = NULL;
9c1cfda2 6094 continue;
d1b55138 6095 }
9c1cfda2
JH
6096
6097 domainspan = sched_domain_node_span(i);
6098 cpus_and(domainspan, domainspan, *cpu_map);
6099
15f0b676 6100 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6101 if (!sg) {
6102 printk(KERN_WARNING "Can not alloc domain group for "
6103 "node %d\n", i);
6104 goto error;
6105 }
9c1cfda2
JH
6106 sched_group_nodes[i] = sg;
6107 for_each_cpu_mask(j, nodemask) {
6108 struct sched_domain *sd;
9761eea8 6109
9c1cfda2
JH
6110 sd = &per_cpu(node_domains, j);
6111 sd->groups = sg;
9c1cfda2 6112 }
5517d86b 6113 sg->__cpu_power = 0;
9c1cfda2 6114 sg->cpumask = nodemask;
51888ca2 6115 sg->next = sg;
9c1cfda2
JH
6116 cpus_or(covered, covered, nodemask);
6117 prev = sg;
6118
6119 for (j = 0; j < MAX_NUMNODES; j++) {
6120 cpumask_t tmp, notcovered;
6121 int n = (i + j) % MAX_NUMNODES;
6122
6123 cpus_complement(notcovered, covered);
6124 cpus_and(tmp, notcovered, *cpu_map);
6125 cpus_and(tmp, tmp, domainspan);
6126 if (cpus_empty(tmp))
6127 break;
6128
6129 nodemask = node_to_cpumask(n);
6130 cpus_and(tmp, tmp, nodemask);
6131 if (cpus_empty(tmp))
6132 continue;
6133
15f0b676
SV
6134 sg = kmalloc_node(sizeof(struct sched_group),
6135 GFP_KERNEL, i);
9c1cfda2
JH
6136 if (!sg) {
6137 printk(KERN_WARNING
6138 "Can not alloc domain group for node %d\n", j);
51888ca2 6139 goto error;
9c1cfda2 6140 }
5517d86b 6141 sg->__cpu_power = 0;
9c1cfda2 6142 sg->cpumask = tmp;
51888ca2 6143 sg->next = prev->next;
9c1cfda2
JH
6144 cpus_or(covered, covered, tmp);
6145 prev->next = sg;
6146 prev = sg;
6147 }
9c1cfda2 6148 }
1da177e4
LT
6149#endif
6150
6151 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6152#ifdef CONFIG_SCHED_SMT
1a20ff27 6153 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6154 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6155
89c4710e 6156 init_sched_groups_power(i, sd);
5c45bf27 6157 }
1da177e4 6158#endif
1e9f28fa 6159#ifdef CONFIG_SCHED_MC
5c45bf27 6160 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6161 struct sched_domain *sd = &per_cpu(core_domains, i);
6162
89c4710e 6163 init_sched_groups_power(i, sd);
5c45bf27
SS
6164 }
6165#endif
1e9f28fa 6166
5c45bf27 6167 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6168 struct sched_domain *sd = &per_cpu(phys_domains, i);
6169
89c4710e 6170 init_sched_groups_power(i, sd);
1da177e4
LT
6171 }
6172
9c1cfda2 6173#ifdef CONFIG_NUMA
08069033
SS
6174 for (i = 0; i < MAX_NUMNODES; i++)
6175 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6176
6711cab4
SS
6177 if (sd_allnodes) {
6178 struct sched_group *sg;
f712c0c7 6179
6711cab4 6180 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6181 init_numa_sched_groups_power(sg);
6182 }
9c1cfda2
JH
6183#endif
6184
1da177e4 6185 /* Attach the domains */
1a20ff27 6186 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6187 struct sched_domain *sd;
6188#ifdef CONFIG_SCHED_SMT
6189 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6190#elif defined(CONFIG_SCHED_MC)
6191 sd = &per_cpu(core_domains, i);
1da177e4
LT
6192#else
6193 sd = &per_cpu(phys_domains, i);
6194#endif
6195 cpu_attach_domain(sd, i);
6196 }
51888ca2
SV
6197
6198 return 0;
6199
a616058b 6200#ifdef CONFIG_NUMA
51888ca2
SV
6201error:
6202 free_sched_groups(cpu_map);
6203 return -ENOMEM;
a616058b 6204#endif
1da177e4 6205}
1a20ff27
DG
6206/*
6207 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6208 */
51888ca2 6209static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6210{
6211 cpumask_t cpu_default_map;
51888ca2 6212 int err;
1da177e4 6213
1a20ff27
DG
6214 /*
6215 * Setup mask for cpus without special case scheduling requirements.
6216 * For now this just excludes isolated cpus, but could be used to
6217 * exclude other special cases in the future.
6218 */
6219 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6220
51888ca2
SV
6221 err = build_sched_domains(&cpu_default_map);
6222
6223 return err;
1a20ff27
DG
6224}
6225
6226static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6227{
51888ca2 6228 free_sched_groups(cpu_map);
9c1cfda2 6229}
1da177e4 6230
1a20ff27
DG
6231/*
6232 * Detach sched domains from a group of cpus specified in cpu_map
6233 * These cpus will now be attached to the NULL domain
6234 */
858119e1 6235static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6236{
6237 int i;
6238
6239 for_each_cpu_mask(i, *cpu_map)
6240 cpu_attach_domain(NULL, i);
6241 synchronize_sched();
6242 arch_destroy_sched_domains(cpu_map);
6243}
6244
6245/*
6246 * Partition sched domains as specified by the cpumasks below.
6247 * This attaches all cpus from the cpumasks to the NULL domain,
6248 * waits for a RCU quiescent period, recalculates sched
6249 * domain information and then attaches them back to the
6250 * correct sched domains
6251 * Call with hotplug lock held
6252 */
51888ca2 6253int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6254{
6255 cpumask_t change_map;
51888ca2 6256 int err = 0;
1a20ff27
DG
6257
6258 cpus_and(*partition1, *partition1, cpu_online_map);
6259 cpus_and(*partition2, *partition2, cpu_online_map);
6260 cpus_or(change_map, *partition1, *partition2);
6261
6262 /* Detach sched domains from all of the affected cpus */
6263 detach_destroy_domains(&change_map);
6264 if (!cpus_empty(*partition1))
51888ca2
SV
6265 err = build_sched_domains(partition1);
6266 if (!err && !cpus_empty(*partition2))
6267 err = build_sched_domains(partition2);
6268
6269 return err;
1a20ff27
DG
6270}
6271
5c45bf27 6272#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6273static int arch_reinit_sched_domains(void)
5c45bf27
SS
6274{
6275 int err;
6276
5be9361c 6277 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6278 detach_destroy_domains(&cpu_online_map);
6279 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6280 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6281
6282 return err;
6283}
6284
6285static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6286{
6287 int ret;
6288
6289 if (buf[0] != '0' && buf[0] != '1')
6290 return -EINVAL;
6291
6292 if (smt)
6293 sched_smt_power_savings = (buf[0] == '1');
6294 else
6295 sched_mc_power_savings = (buf[0] == '1');
6296
6297 ret = arch_reinit_sched_domains();
6298
6299 return ret ? ret : count;
6300}
6301
5c45bf27
SS
6302#ifdef CONFIG_SCHED_MC
6303static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6304{
6305 return sprintf(page, "%u\n", sched_mc_power_savings);
6306}
48f24c4d
IM
6307static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6308 const char *buf, size_t count)
5c45bf27
SS
6309{
6310 return sched_power_savings_store(buf, count, 0);
6311}
6707de00
AB
6312static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6313 sched_mc_power_savings_store);
5c45bf27
SS
6314#endif
6315
6316#ifdef CONFIG_SCHED_SMT
6317static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6318{
6319 return sprintf(page, "%u\n", sched_smt_power_savings);
6320}
48f24c4d
IM
6321static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6322 const char *buf, size_t count)
5c45bf27
SS
6323{
6324 return sched_power_savings_store(buf, count, 1);
6325}
6707de00
AB
6326static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6327 sched_smt_power_savings_store);
6328#endif
6329
6330int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6331{
6332 int err = 0;
6333
6334#ifdef CONFIG_SCHED_SMT
6335 if (smt_capable())
6336 err = sysfs_create_file(&cls->kset.kobj,
6337 &attr_sched_smt_power_savings.attr);
6338#endif
6339#ifdef CONFIG_SCHED_MC
6340 if (!err && mc_capable())
6341 err = sysfs_create_file(&cls->kset.kobj,
6342 &attr_sched_mc_power_savings.attr);
6343#endif
6344 return err;
6345}
5c45bf27
SS
6346#endif
6347
1da177e4
LT
6348/*
6349 * Force a reinitialization of the sched domains hierarchy. The domains
6350 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6351 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6352 * which will prevent rebalancing while the sched domains are recalculated.
6353 */
6354static int update_sched_domains(struct notifier_block *nfb,
6355 unsigned long action, void *hcpu)
6356{
1da177e4
LT
6357 switch (action) {
6358 case CPU_UP_PREPARE:
8bb78442 6359 case CPU_UP_PREPARE_FROZEN:
1da177e4 6360 case CPU_DOWN_PREPARE:
8bb78442 6361 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6362 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6363 return NOTIFY_OK;
6364
6365 case CPU_UP_CANCELED:
8bb78442 6366 case CPU_UP_CANCELED_FROZEN:
1da177e4 6367 case CPU_DOWN_FAILED:
8bb78442 6368 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6369 case CPU_ONLINE:
8bb78442 6370 case CPU_ONLINE_FROZEN:
1da177e4 6371 case CPU_DEAD:
8bb78442 6372 case CPU_DEAD_FROZEN:
1da177e4
LT
6373 /*
6374 * Fall through and re-initialise the domains.
6375 */
6376 break;
6377 default:
6378 return NOTIFY_DONE;
6379 }
6380
6381 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6382 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6383
6384 return NOTIFY_OK;
6385}
1da177e4
LT
6386
6387void __init sched_init_smp(void)
6388{
5c1e1767
NP
6389 cpumask_t non_isolated_cpus;
6390
5be9361c 6391 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6392 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6393 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6394 if (cpus_empty(non_isolated_cpus))
6395 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6396 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6397 /* XXX: Theoretical race here - CPU may be hotplugged now */
6398 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6399
e692ab53
NP
6400 init_sched_domain_sysctl();
6401
5c1e1767
NP
6402 /* Move init over to a non-isolated CPU */
6403 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6404 BUG();
1da177e4
LT
6405}
6406#else
6407void __init sched_init_smp(void)
6408{
6409}
6410#endif /* CONFIG_SMP */
6411
6412int in_sched_functions(unsigned long addr)
6413{
6414 /* Linker adds these: start and end of __sched functions */
6415 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6416
1da177e4
LT
6417 return in_lock_functions(addr) ||
6418 (addr >= (unsigned long)__sched_text_start
6419 && addr < (unsigned long)__sched_text_end);
6420}
6421
dd41f596
IM
6422static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6423{
6424 cfs_rq->tasks_timeline = RB_ROOT;
6425 cfs_rq->fair_clock = 1;
6426#ifdef CONFIG_FAIR_GROUP_SCHED
6427 cfs_rq->rq = rq;
6428#endif
6429}
6430
1da177e4
LT
6431void __init sched_init(void)
6432{
476f3534 6433 int highest_cpu = 0;
dd41f596
IM
6434 int i, j;
6435
6436 /*
6437 * Link up the scheduling class hierarchy:
6438 */
6439 rt_sched_class.next = &fair_sched_class;
6440 fair_sched_class.next = &idle_sched_class;
6441 idle_sched_class.next = NULL;
1da177e4 6442
0a945022 6443 for_each_possible_cpu(i) {
dd41f596 6444 struct rt_prio_array *array;
70b97a7f 6445 struct rq *rq;
1da177e4
LT
6446
6447 rq = cpu_rq(i);
6448 spin_lock_init(&rq->lock);
fcb99371 6449 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6450 rq->nr_running = 0;
dd41f596
IM
6451 rq->clock = 1;
6452 init_cfs_rq(&rq->cfs, rq);
6453#ifdef CONFIG_FAIR_GROUP_SCHED
6454 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6455 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6456#endif
1da177e4 6457
dd41f596
IM
6458 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6459 rq->cpu_load[j] = 0;
1da177e4 6460#ifdef CONFIG_SMP
41c7ce9a 6461 rq->sd = NULL;
1da177e4 6462 rq->active_balance = 0;
dd41f596 6463 rq->next_balance = jiffies;
1da177e4 6464 rq->push_cpu = 0;
0a2966b4 6465 rq->cpu = i;
1da177e4
LT
6466 rq->migration_thread = NULL;
6467 INIT_LIST_HEAD(&rq->migration_queue);
6468#endif
6469 atomic_set(&rq->nr_iowait, 0);
6470
dd41f596
IM
6471 array = &rq->rt.active;
6472 for (j = 0; j < MAX_RT_PRIO; j++) {
6473 INIT_LIST_HEAD(array->queue + j);
6474 __clear_bit(j, array->bitmap);
1da177e4 6475 }
476f3534 6476 highest_cpu = i;
dd41f596
IM
6477 /* delimiter for bitsearch: */
6478 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6479 }
6480
2dd73a4f 6481 set_load_weight(&init_task);
b50f60ce 6482
e107be36
AK
6483#ifdef CONFIG_PREEMPT_NOTIFIERS
6484 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6485#endif
6486
c9819f45 6487#ifdef CONFIG_SMP
476f3534 6488 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6489 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6490#endif
6491
b50f60ce
HC
6492#ifdef CONFIG_RT_MUTEXES
6493 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6494#endif
6495
1da177e4
LT
6496 /*
6497 * The boot idle thread does lazy MMU switching as well:
6498 */
6499 atomic_inc(&init_mm.mm_count);
6500 enter_lazy_tlb(&init_mm, current);
6501
6502 /*
6503 * Make us the idle thread. Technically, schedule() should not be
6504 * called from this thread, however somewhere below it might be,
6505 * but because we are the idle thread, we just pick up running again
6506 * when this runqueue becomes "idle".
6507 */
6508 init_idle(current, smp_processor_id());
dd41f596
IM
6509 /*
6510 * During early bootup we pretend to be a normal task:
6511 */
6512 current->sched_class = &fair_sched_class;
1da177e4
LT
6513}
6514
6515#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6516void __might_sleep(char *file, int line)
6517{
48f24c4d 6518#ifdef in_atomic
1da177e4
LT
6519 static unsigned long prev_jiffy; /* ratelimiting */
6520
6521 if ((in_atomic() || irqs_disabled()) &&
6522 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6523 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6524 return;
6525 prev_jiffy = jiffies;
91368d73 6526 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6527 " context at %s:%d\n", file, line);
6528 printk("in_atomic():%d, irqs_disabled():%d\n",
6529 in_atomic(), irqs_disabled());
a4c410f0 6530 debug_show_held_locks(current);
3117df04
IM
6531 if (irqs_disabled())
6532 print_irqtrace_events(current);
1da177e4
LT
6533 dump_stack();
6534 }
6535#endif
6536}
6537EXPORT_SYMBOL(__might_sleep);
6538#endif
6539
6540#ifdef CONFIG_MAGIC_SYSRQ
6541void normalize_rt_tasks(void)
6542{
a0f98a1c 6543 struct task_struct *g, *p;
1da177e4 6544 unsigned long flags;
70b97a7f 6545 struct rq *rq;
dd41f596 6546 int on_rq;
1da177e4
LT
6547
6548 read_lock_irq(&tasklist_lock);
a0f98a1c 6549 do_each_thread(g, p) {
dd41f596
IM
6550 p->se.fair_key = 0;
6551 p->se.wait_runtime = 0;
6cfb0d5d 6552 p->se.exec_start = 0;
dd41f596 6553 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6554 p->se.sleep_start_fair = 0;
6555#ifdef CONFIG_SCHEDSTATS
dd41f596 6556 p->se.wait_start = 0;
dd41f596 6557 p->se.sleep_start = 0;
dd41f596 6558 p->se.block_start = 0;
6cfb0d5d 6559#endif
dd41f596
IM
6560 task_rq(p)->cfs.fair_clock = 0;
6561 task_rq(p)->clock = 0;
6562
6563 if (!rt_task(p)) {
6564 /*
6565 * Renice negative nice level userspace
6566 * tasks back to 0:
6567 */
6568 if (TASK_NICE(p) < 0 && p->mm)
6569 set_user_nice(p, 0);
1da177e4 6570 continue;
dd41f596 6571 }
1da177e4 6572
b29739f9
IM
6573 spin_lock_irqsave(&p->pi_lock, flags);
6574 rq = __task_rq_lock(p);
dd41f596
IM
6575#ifdef CONFIG_SMP
6576 /*
6577 * Do not touch the migration thread:
6578 */
6579 if (p == rq->migration_thread)
6580 goto out_unlock;
6581#endif
1da177e4 6582
2daa3577 6583 update_rq_clock(rq);
dd41f596 6584 on_rq = p->se.on_rq;
2daa3577
IM
6585 if (on_rq)
6586 deactivate_task(rq, p, 0);
dd41f596
IM
6587 __setscheduler(rq, p, SCHED_NORMAL, 0);
6588 if (on_rq) {
2daa3577 6589 activate_task(rq, p, 0);
1da177e4
LT
6590 resched_task(rq->curr);
6591 }
dd41f596
IM
6592#ifdef CONFIG_SMP
6593 out_unlock:
6594#endif
b29739f9
IM
6595 __task_rq_unlock(rq);
6596 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6597 } while_each_thread(g, p);
6598
1da177e4
LT
6599 read_unlock_irq(&tasklist_lock);
6600}
6601
6602#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6603
6604#ifdef CONFIG_IA64
6605/*
6606 * These functions are only useful for the IA64 MCA handling.
6607 *
6608 * They can only be called when the whole system has been
6609 * stopped - every CPU needs to be quiescent, and no scheduling
6610 * activity can take place. Using them for anything else would
6611 * be a serious bug, and as a result, they aren't even visible
6612 * under any other configuration.
6613 */
6614
6615/**
6616 * curr_task - return the current task for a given cpu.
6617 * @cpu: the processor in question.
6618 *
6619 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6620 */
36c8b586 6621struct task_struct *curr_task(int cpu)
1df5c10a
LT
6622{
6623 return cpu_curr(cpu);
6624}
6625
6626/**
6627 * set_curr_task - set the current task for a given cpu.
6628 * @cpu: the processor in question.
6629 * @p: the task pointer to set.
6630 *
6631 * Description: This function must only be used when non-maskable interrupts
6632 * are serviced on a separate stack. It allows the architecture to switch the
6633 * notion of the current task on a cpu in a non-blocking manner. This function
6634 * must be called with all CPU's synchronized, and interrupts disabled, the
6635 * and caller must save the original value of the current task (see
6636 * curr_task() above) and restore that value before reenabling interrupts and
6637 * re-starting the system.
6638 *
6639 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6640 */
36c8b586 6641void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6642{
6643 cpu_curr(cpu) = p;
6644}
6645
6646#endif
This page took 1.381484 seconds and 5 git commands to generate.