[PATCH] sched: implement smpnice
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
c6fd91f0 52#include <linux/kprobes.h>
1da177e4
LT
53#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
013d3868
MA
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
1da177e4
LT
150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
2dd73a4f 171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 172
2dd73a4f 173static unsigned int static_prio_timeslice(int static_prio)
1da177e4 174{
2dd73a4f
PW
175 if (static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 177 else
2dd73a4f 178 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 179}
2dd73a4f
PW
180
181static inline unsigned int task_timeslice(task_t *p)
182{
183 return static_prio_timeslice(p->static_prio);
184}
185
1da177e4
LT
186#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
187 < (long long) (sd)->cache_hot_time)
188
189/*
190 * These are the runqueue data structures:
191 */
192
1da177e4
LT
193typedef struct runqueue runqueue_t;
194
195struct prio_array {
196 unsigned int nr_active;
d444886e 197 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
198 struct list_head queue[MAX_PRIO];
199};
200
201/*
202 * This is the main, per-CPU runqueue data structure.
203 *
204 * Locking rule: those places that want to lock multiple runqueues
205 * (such as the load balancing or the thread migration code), lock
206 * acquire operations must be ordered by ascending &runqueue.
207 */
208struct runqueue {
209 spinlock_t lock;
210
211 /*
212 * nr_running and cpu_load should be in the same cacheline because
213 * remote CPUs use both these fields when doing load calculation.
214 */
215 unsigned long nr_running;
2dd73a4f 216 unsigned long raw_weighted_load;
1da177e4 217#ifdef CONFIG_SMP
7897986b 218 unsigned long cpu_load[3];
1da177e4
LT
219#endif
220 unsigned long long nr_switches;
221
222 /*
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
227 */
228 unsigned long nr_uninterruptible;
229
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
232 task_t *curr, *idle;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
236 atomic_t nr_iowait;
237
238#ifdef CONFIG_SMP
239 struct sched_domain *sd;
240
241 /* For active balancing */
242 int active_balance;
243 int push_cpu;
244
245 task_t *migration_thread;
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
268};
269
270static DEFINE_PER_CPU(struct runqueue, runqueues);
271
674311d5
NP
272/*
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 274 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
275 *
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
278 */
1da177e4 279#define for_each_domain(cpu, domain) \
674311d5 280for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
281
282#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283#define this_rq() (&__get_cpu_var(runqueues))
284#define task_rq(p) cpu_rq(task_cpu(p))
285#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
286
1da177e4 287#ifndef prepare_arch_switch
4866cde0
NP
288# define prepare_arch_switch(next) do { } while (0)
289#endif
290#ifndef finish_arch_switch
291# define finish_arch_switch(prev) do { } while (0)
292#endif
293
294#ifndef __ARCH_WANT_UNLOCKED_CTXSW
295static inline int task_running(runqueue_t *rq, task_t *p)
296{
297 return rq->curr == p;
298}
299
300static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
301{
302}
303
304static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
305{
da04c035
IM
306#ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
309#endif
4866cde0
NP
310 spin_unlock_irq(&rq->lock);
311}
312
313#else /* __ARCH_WANT_UNLOCKED_CTXSW */
314static inline int task_running(runqueue_t *rq, task_t *p)
315{
316#ifdef CONFIG_SMP
317 return p->oncpu;
318#else
319 return rq->curr == p;
320#endif
321}
322
323static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
324{
325#ifdef CONFIG_SMP
326 /*
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
329 * here.
330 */
331 next->oncpu = 1;
332#endif
333#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
335#else
336 spin_unlock(&rq->lock);
337#endif
338}
339
340static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
341{
342#ifdef CONFIG_SMP
343 /*
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
346 * finished.
347 */
348 smp_wmb();
349 prev->oncpu = 0;
350#endif
351#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
352 local_irq_enable();
1da177e4 353#endif
4866cde0
NP
354}
355#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
356
357/*
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
361 */
362static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
363 __acquires(rq->lock)
364{
365 struct runqueue *rq;
366
367repeat_lock_task:
368 local_irq_save(*flags);
369 rq = task_rq(p);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
374 }
375 return rq;
376}
377
378static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
379 __releases(rq->lock)
380{
381 spin_unlock_irqrestore(&rq->lock, *flags);
382}
383
384#ifdef CONFIG_SCHEDSTATS
385/*
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
388 */
68767a0a 389#define SCHEDSTAT_VERSION 12
1da177e4
LT
390
391static int show_schedstat(struct seq_file *seq, void *v)
392{
393 int cpu;
394
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
399#ifdef CONFIG_SMP
400 struct sched_domain *sd;
401 int dcnt = 0;
402#endif
403
404 /* runqueue-specific stats */
405 seq_printf(seq,
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
413
414 seq_printf(seq, "\n");
415
416#ifdef CONFIG_SMP
417 /* domain-specific stats */
674311d5 418 preempt_disable();
1da177e4
LT
419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
422
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
426 itype++) {
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
428 sd->lb_cnt[itype],
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
436 }
68767a0a 437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
442 }
674311d5 443 preempt_enable();
1da177e4
LT
444#endif
445 }
446 return 0;
447}
448
449static int schedstat_open(struct inode *inode, struct file *file)
450{
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
453 struct seq_file *m;
454 int res;
455
456 if (!buf)
457 return -ENOMEM;
458 res = single_open(file, show_schedstat, NULL);
459 if (!res) {
460 m = file->private_data;
461 m->buf = buf;
462 m->size = size;
463 } else
464 kfree(buf);
465 return res;
466}
467
468struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
470 .read = seq_read,
471 .llseek = seq_lseek,
472 .release = single_release,
473};
474
475# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477#else /* !CONFIG_SCHEDSTATS */
478# define schedstat_inc(rq, field) do { } while (0)
479# define schedstat_add(rq, field, amt) do { } while (0)
480#endif
481
482/*
483 * rq_lock - lock a given runqueue and disable interrupts.
484 */
485static inline runqueue_t *this_rq_lock(void)
486 __acquires(rq->lock)
487{
488 runqueue_t *rq;
489
490 local_irq_disable();
491 rq = this_rq();
492 spin_lock(&rq->lock);
493
494 return rq;
495}
496
1da177e4
LT
497#ifdef CONFIG_SCHEDSTATS
498/*
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
506 *
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
511 * finally hit a cpu.
512 */
513static inline void sched_info_dequeued(task_t *t)
514{
515 t->sched_info.last_queued = 0;
516}
517
518/*
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
522 */
858119e1 523static void sched_info_arrive(task_t *t)
1da177e4
LT
524{
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
527
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
534
535 if (!rq)
536 return;
537
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
540}
541
542/*
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
551 * to runqueue.
552 *
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
556 */
557static inline void sched_info_queued(task_t *t)
558{
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
561}
562
563/*
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
566 */
567static inline void sched_info_depart(task_t *t)
568{
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
571
572 t->sched_info.cpu_time += diff;
573
574 if (rq)
575 rq->rq_sched_info.cpu_time += diff;
576}
577
578/*
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
582 */
583static inline void sched_info_switch(task_t *prev, task_t *next)
584{
585 struct runqueue *rq = task_rq(prev);
586
587 /*
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
590 * process, however.
591 */
592 if (prev != rq->idle)
593 sched_info_depart(prev);
594
595 if (next != rq->idle)
596 sched_info_arrive(next);
597}
598#else
599#define sched_info_queued(t) do { } while (0)
600#define sched_info_switch(t, next) do { } while (0)
601#endif /* CONFIG_SCHEDSTATS */
602
603/*
604 * Adding/removing a task to/from a priority array:
605 */
606static void dequeue_task(struct task_struct *p, prio_array_t *array)
607{
608 array->nr_active--;
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
612}
613
614static void enqueue_task(struct task_struct *p, prio_array_t *array)
615{
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
619 array->nr_active++;
620 p->array = array;
621}
622
623/*
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
626 */
627static void requeue_task(struct task_struct *p, prio_array_t *array)
628{
629 list_move_tail(&p->run_list, array->queue + p->prio);
630}
631
632static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
633{
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
636 array->nr_active++;
637 p->array = array;
638}
639
640/*
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
643 *
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
646 *
647 * We use 25% of the full 0...39 priority range so that:
648 *
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
651 *
652 * Both properties are important to certain workloads.
653 */
654static int effective_prio(task_t *p)
655{
656 int bonus, prio;
657
658 if (rt_task(p))
659 return p->prio;
660
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
662
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
665 prio = MAX_RT_PRIO;
666 if (prio > MAX_PRIO-1)
667 prio = MAX_PRIO-1;
668 return prio;
669}
670
2dd73a4f
PW
671/*
672 * To aid in avoiding the subversion of "niceness" due to uneven distribution
673 * of tasks with abnormal "nice" values across CPUs the contribution that
674 * each task makes to its run queue's load is weighted according to its
675 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
676 * scaled version of the new time slice allocation that they receive on time
677 * slice expiry etc.
678 */
679
680/*
681 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
682 * If static_prio_timeslice() is ever changed to break this assumption then
683 * this code will need modification
684 */
685#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
686#define LOAD_WEIGHT(lp) \
687 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
688#define PRIO_TO_LOAD_WEIGHT(prio) \
689 LOAD_WEIGHT(static_prio_timeslice(prio))
690#define RTPRIO_TO_LOAD_WEIGHT(rp) \
691 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
692
693static void set_load_weight(task_t *p)
694{
695 if (rt_task(p)) {
696#ifdef CONFIG_SMP
697 if (p == task_rq(p)->migration_thread)
698 /*
699 * The migration thread does the actual balancing.
700 * Giving its load any weight will skew balancing
701 * adversely.
702 */
703 p->load_weight = 0;
704 else
705#endif
706 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
707 } else
708 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
709}
710
711static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
712{
713 rq->raw_weighted_load += p->load_weight;
714}
715
716static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
717{
718 rq->raw_weighted_load -= p->load_weight;
719}
720
721static inline void inc_nr_running(task_t *p, runqueue_t *rq)
722{
723 rq->nr_running++;
724 inc_raw_weighted_load(rq, p);
725}
726
727static inline void dec_nr_running(task_t *p, runqueue_t *rq)
728{
729 rq->nr_running--;
730 dec_raw_weighted_load(rq, p);
731}
732
1da177e4
LT
733/*
734 * __activate_task - move a task to the runqueue.
735 */
d425b274 736static void __activate_task(task_t *p, runqueue_t *rq)
1da177e4 737{
d425b274
CK
738 prio_array_t *target = rq->active;
739
f1adad78 740 if (batch_task(p))
d425b274
CK
741 target = rq->expired;
742 enqueue_task(p, target);
2dd73a4f 743 inc_nr_running(p, rq);
1da177e4
LT
744}
745
746/*
747 * __activate_idle_task - move idle task to the _front_ of runqueue.
748 */
749static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
750{
751 enqueue_task_head(p, rq->active);
2dd73a4f 752 inc_nr_running(p, rq);
1da177e4
LT
753}
754
a3464a10 755static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
756{
757 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 758 unsigned long sleep_time = now - p->timestamp;
1da177e4 759
d425b274 760 if (batch_task(p))
b0a9499c 761 sleep_time = 0;
1da177e4
LT
762
763 if (likely(sleep_time > 0)) {
764 /*
72d2854d
CK
765 * This ceiling is set to the lowest priority that would allow
766 * a task to be reinserted into the active array on timeslice
767 * completion.
1da177e4 768 */
72d2854d 769 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 770
72d2854d
CK
771 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
772 /*
773 * Prevents user tasks from achieving best priority
774 * with one single large enough sleep.
775 */
776 p->sleep_avg = ceiling;
777 /*
778 * Using INTERACTIVE_SLEEP() as a ceiling places a
779 * nice(0) task 1ms sleep away from promotion, and
780 * gives it 700ms to round-robin with no chance of
781 * being demoted. This is more than generous, so
782 * mark this sleep as non-interactive to prevent the
783 * on-runqueue bonus logic from intervening should
784 * this task not receive cpu immediately.
785 */
786 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 787 } else {
1da177e4
LT
788 /*
789 * Tasks waking from uninterruptible sleep are
790 * limited in their sleep_avg rise as they
791 * are likely to be waiting on I/O
792 */
3dee386e 793 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 794 if (p->sleep_avg >= ceiling)
1da177e4
LT
795 sleep_time = 0;
796 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
797 ceiling) {
798 p->sleep_avg = ceiling;
799 sleep_time = 0;
1da177e4
LT
800 }
801 }
802
803 /*
804 * This code gives a bonus to interactive tasks.
805 *
806 * The boost works by updating the 'average sleep time'
807 * value here, based on ->timestamp. The more time a
808 * task spends sleeping, the higher the average gets -
809 * and the higher the priority boost gets as well.
810 */
811 p->sleep_avg += sleep_time;
812
1da177e4 813 }
72d2854d
CK
814 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
815 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
816 }
817
a3464a10 818 return effective_prio(p);
1da177e4
LT
819}
820
821/*
822 * activate_task - move a task to the runqueue and do priority recalculation
823 *
824 * Update all the scheduling statistics stuff. (sleep average
825 * calculation, priority modifiers, etc.)
826 */
827static void activate_task(task_t *p, runqueue_t *rq, int local)
828{
829 unsigned long long now;
830
831 now = sched_clock();
832#ifdef CONFIG_SMP
833 if (!local) {
834 /* Compensate for drifting sched_clock */
835 runqueue_t *this_rq = this_rq();
836 now = (now - this_rq->timestamp_last_tick)
837 + rq->timestamp_last_tick;
838 }
839#endif
840
a47ab937
CK
841 if (!rt_task(p))
842 p->prio = recalc_task_prio(p, now);
1da177e4
LT
843
844 /*
845 * This checks to make sure it's not an uninterruptible task
846 * that is now waking up.
847 */
3dee386e 848 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
849 /*
850 * Tasks which were woken up by interrupts (ie. hw events)
851 * are most likely of interactive nature. So we give them
852 * the credit of extending their sleep time to the period
853 * of time they spend on the runqueue, waiting for execution
854 * on a CPU, first time around:
855 */
856 if (in_interrupt())
3dee386e 857 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
858 else {
859 /*
860 * Normal first-time wakeups get a credit too for
861 * on-runqueue time, but it will be weighted down:
862 */
3dee386e 863 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
864 }
865 }
866 p->timestamp = now;
867
868 __activate_task(p, rq);
869}
870
871/*
872 * deactivate_task - remove a task from the runqueue.
873 */
874static void deactivate_task(struct task_struct *p, runqueue_t *rq)
875{
2dd73a4f 876 dec_nr_running(p, rq);
1da177e4
LT
877 dequeue_task(p, p->array);
878 p->array = NULL;
879}
880
881/*
882 * resched_task - mark a task 'to be rescheduled now'.
883 *
884 * On UP this means the setting of the need_resched flag, on SMP it
885 * might also involve a cross-CPU call to trigger the scheduler on
886 * the target CPU.
887 */
888#ifdef CONFIG_SMP
495ab9c0
AK
889
890#ifndef tsk_is_polling
891#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
892#endif
893
1da177e4
LT
894static void resched_task(task_t *p)
895{
64c7c8f8 896 int cpu;
1da177e4
LT
897
898 assert_spin_locked(&task_rq(p)->lock);
899
64c7c8f8
NP
900 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
901 return;
902
903 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 904
64c7c8f8
NP
905 cpu = task_cpu(p);
906 if (cpu == smp_processor_id())
907 return;
908
495ab9c0 909 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 910 smp_mb();
495ab9c0 911 if (!tsk_is_polling(p))
64c7c8f8 912 smp_send_reschedule(cpu);
1da177e4
LT
913}
914#else
915static inline void resched_task(task_t *p)
916{
64c7c8f8 917 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
918 set_tsk_need_resched(p);
919}
920#endif
921
922/**
923 * task_curr - is this task currently executing on a CPU?
924 * @p: the task in question.
925 */
926inline int task_curr(const task_t *p)
927{
928 return cpu_curr(task_cpu(p)) == p;
929}
930
2dd73a4f
PW
931/* Used instead of source_load when we know the type == 0 */
932unsigned long weighted_cpuload(const int cpu)
933{
934 return cpu_rq(cpu)->raw_weighted_load;
935}
936
1da177e4 937#ifdef CONFIG_SMP
1da177e4
LT
938typedef struct {
939 struct list_head list;
1da177e4 940
1da177e4
LT
941 task_t *task;
942 int dest_cpu;
943
1da177e4
LT
944 struct completion done;
945} migration_req_t;
946
947/*
948 * The task's runqueue lock must be held.
949 * Returns true if you have to wait for migration thread.
950 */
951static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
952{
953 runqueue_t *rq = task_rq(p);
954
955 /*
956 * If the task is not on a runqueue (and not running), then
957 * it is sufficient to simply update the task's cpu field.
958 */
959 if (!p->array && !task_running(rq, p)) {
960 set_task_cpu(p, dest_cpu);
961 return 0;
962 }
963
964 init_completion(&req->done);
1da177e4
LT
965 req->task = p;
966 req->dest_cpu = dest_cpu;
967 list_add(&req->list, &rq->migration_queue);
968 return 1;
969}
970
971/*
972 * wait_task_inactive - wait for a thread to unschedule.
973 *
974 * The caller must ensure that the task *will* unschedule sometime soon,
975 * else this function might spin for a *long* time. This function can't
976 * be called with interrupts off, or it may introduce deadlock with
977 * smp_call_function() if an IPI is sent by the same process we are
978 * waiting to become inactive.
979 */
95cdf3b7 980void wait_task_inactive(task_t *p)
1da177e4
LT
981{
982 unsigned long flags;
983 runqueue_t *rq;
984 int preempted;
985
986repeat:
987 rq = task_rq_lock(p, &flags);
988 /* Must be off runqueue entirely, not preempted. */
989 if (unlikely(p->array || task_running(rq, p))) {
990 /* If it's preempted, we yield. It could be a while. */
991 preempted = !task_running(rq, p);
992 task_rq_unlock(rq, &flags);
993 cpu_relax();
994 if (preempted)
995 yield();
996 goto repeat;
997 }
998 task_rq_unlock(rq, &flags);
999}
1000
1001/***
1002 * kick_process - kick a running thread to enter/exit the kernel
1003 * @p: the to-be-kicked thread
1004 *
1005 * Cause a process which is running on another CPU to enter
1006 * kernel-mode, without any delay. (to get signals handled.)
1007 *
1008 * NOTE: this function doesnt have to take the runqueue lock,
1009 * because all it wants to ensure is that the remote task enters
1010 * the kernel. If the IPI races and the task has been migrated
1011 * to another CPU then no harm is done and the purpose has been
1012 * achieved as well.
1013 */
1014void kick_process(task_t *p)
1015{
1016 int cpu;
1017
1018 preempt_disable();
1019 cpu = task_cpu(p);
1020 if ((cpu != smp_processor_id()) && task_curr(p))
1021 smp_send_reschedule(cpu);
1022 preempt_enable();
1023}
1024
1025/*
2dd73a4f
PW
1026 * Return a low guess at the load of a migration-source cpu weighted
1027 * according to the scheduling class and "nice" value.
1da177e4
LT
1028 *
1029 * We want to under-estimate the load of migration sources, to
1030 * balance conservatively.
1031 */
a2000572 1032static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
1033{
1034 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1035
3b0bd9bc 1036 if (type == 0)
2dd73a4f 1037 return rq->raw_weighted_load;
b910472d 1038
2dd73a4f 1039 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1040}
1041
1042/*
2dd73a4f
PW
1043 * Return a high guess at the load of a migration-target cpu weighted
1044 * according to the scheduling class and "nice" value.
1da177e4 1045 */
a2000572 1046static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
1047{
1048 runqueue_t *rq = cpu_rq(cpu);
2dd73a4f 1049
7897986b 1050 if (type == 0)
2dd73a4f 1051 return rq->raw_weighted_load;
3b0bd9bc 1052
2dd73a4f
PW
1053 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1054}
1055
1056/*
1057 * Return the average load per task on the cpu's run queue
1058 */
1059static inline unsigned long cpu_avg_load_per_task(int cpu)
1060{
1061 runqueue_t *rq = cpu_rq(cpu);
1062 unsigned long n = rq->nr_running;
1063
1064 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1065}
1066
147cbb4b
NP
1067/*
1068 * find_idlest_group finds and returns the least busy CPU group within the
1069 * domain.
1070 */
1071static struct sched_group *
1072find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1073{
1074 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1075 unsigned long min_load = ULONG_MAX, this_load = 0;
1076 int load_idx = sd->forkexec_idx;
1077 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1078
1079 do {
1080 unsigned long load, avg_load;
1081 int local_group;
1082 int i;
1083
da5a5522
BD
1084 /* Skip over this group if it has no CPUs allowed */
1085 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1086 goto nextgroup;
1087
147cbb4b 1088 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1089
1090 /* Tally up the load of all CPUs in the group */
1091 avg_load = 0;
1092
1093 for_each_cpu_mask(i, group->cpumask) {
1094 /* Bias balancing toward cpus of our domain */
1095 if (local_group)
1096 load = source_load(i, load_idx);
1097 else
1098 load = target_load(i, load_idx);
1099
1100 avg_load += load;
1101 }
1102
1103 /* Adjust by relative CPU power of the group */
1104 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1105
1106 if (local_group) {
1107 this_load = avg_load;
1108 this = group;
1109 } else if (avg_load < min_load) {
1110 min_load = avg_load;
1111 idlest = group;
1112 }
da5a5522 1113nextgroup:
147cbb4b
NP
1114 group = group->next;
1115 } while (group != sd->groups);
1116
1117 if (!idlest || 100*this_load < imbalance*min_load)
1118 return NULL;
1119 return idlest;
1120}
1121
1122/*
1123 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1124 */
95cdf3b7
IM
1125static int
1126find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1127{
da5a5522 1128 cpumask_t tmp;
147cbb4b
NP
1129 unsigned long load, min_load = ULONG_MAX;
1130 int idlest = -1;
1131 int i;
1132
da5a5522
BD
1133 /* Traverse only the allowed CPUs */
1134 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1135
1136 for_each_cpu_mask(i, tmp) {
2dd73a4f 1137 load = weighted_cpuload(i);
147cbb4b
NP
1138
1139 if (load < min_load || (load == min_load && i == this_cpu)) {
1140 min_load = load;
1141 idlest = i;
1142 }
1143 }
1144
1145 return idlest;
1146}
1147
476d139c
NP
1148/*
1149 * sched_balance_self: balance the current task (running on cpu) in domains
1150 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1151 * SD_BALANCE_EXEC.
1152 *
1153 * Balance, ie. select the least loaded group.
1154 *
1155 * Returns the target CPU number, or the same CPU if no balancing is needed.
1156 *
1157 * preempt must be disabled.
1158 */
1159static int sched_balance_self(int cpu, int flag)
1160{
1161 struct task_struct *t = current;
1162 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1163
c96d145e 1164 for_each_domain(cpu, tmp) {
476d139c
NP
1165 if (tmp->flags & flag)
1166 sd = tmp;
c96d145e 1167 }
476d139c
NP
1168
1169 while (sd) {
1170 cpumask_t span;
1171 struct sched_group *group;
1172 int new_cpu;
1173 int weight;
1174
1175 span = sd->span;
1176 group = find_idlest_group(sd, t, cpu);
1177 if (!group)
1178 goto nextlevel;
1179
da5a5522 1180 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1181 if (new_cpu == -1 || new_cpu == cpu)
1182 goto nextlevel;
1183
1184 /* Now try balancing at a lower domain level */
1185 cpu = new_cpu;
1186nextlevel:
1187 sd = NULL;
1188 weight = cpus_weight(span);
1189 for_each_domain(cpu, tmp) {
1190 if (weight <= cpus_weight(tmp->span))
1191 break;
1192 if (tmp->flags & flag)
1193 sd = tmp;
1194 }
1195 /* while loop will break here if sd == NULL */
1196 }
1197
1198 return cpu;
1199}
1200
1201#endif /* CONFIG_SMP */
1da177e4
LT
1202
1203/*
1204 * wake_idle() will wake a task on an idle cpu if task->cpu is
1205 * not idle and an idle cpu is available. The span of cpus to
1206 * search starts with cpus closest then further out as needed,
1207 * so we always favor a closer, idle cpu.
1208 *
1209 * Returns the CPU we should wake onto.
1210 */
1211#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1212static int wake_idle(int cpu, task_t *p)
1213{
1214 cpumask_t tmp;
1215 struct sched_domain *sd;
1216 int i;
1217
1218 if (idle_cpu(cpu))
1219 return cpu;
1220
1221 for_each_domain(cpu, sd) {
1222 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1223 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1224 for_each_cpu_mask(i, tmp) {
1225 if (idle_cpu(i))
1226 return i;
1227 }
1228 }
e0f364f4
NP
1229 else
1230 break;
1da177e4
LT
1231 }
1232 return cpu;
1233}
1234#else
1235static inline int wake_idle(int cpu, task_t *p)
1236{
1237 return cpu;
1238}
1239#endif
1240
1241/***
1242 * try_to_wake_up - wake up a thread
1243 * @p: the to-be-woken-up thread
1244 * @state: the mask of task states that can be woken
1245 * @sync: do a synchronous wakeup?
1246 *
1247 * Put it on the run-queue if it's not already there. The "current"
1248 * thread is always on the run-queue (except when the actual
1249 * re-schedule is in progress), and as such you're allowed to do
1250 * the simpler "current->state = TASK_RUNNING" to mark yourself
1251 * runnable without the overhead of this.
1252 *
1253 * returns failure only if the task is already active.
1254 */
95cdf3b7 1255static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1256{
1257 int cpu, this_cpu, success = 0;
1258 unsigned long flags;
1259 long old_state;
1260 runqueue_t *rq;
1261#ifdef CONFIG_SMP
1262 unsigned long load, this_load;
7897986b 1263 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1264 int new_cpu;
1265#endif
1266
1267 rq = task_rq_lock(p, &flags);
1268 old_state = p->state;
1269 if (!(old_state & state))
1270 goto out;
1271
1272 if (p->array)
1273 goto out_running;
1274
1275 cpu = task_cpu(p);
1276 this_cpu = smp_processor_id();
1277
1278#ifdef CONFIG_SMP
1279 if (unlikely(task_running(rq, p)))
1280 goto out_activate;
1281
7897986b
NP
1282 new_cpu = cpu;
1283
1da177e4
LT
1284 schedstat_inc(rq, ttwu_cnt);
1285 if (cpu == this_cpu) {
1286 schedstat_inc(rq, ttwu_local);
7897986b
NP
1287 goto out_set_cpu;
1288 }
1289
1290 for_each_domain(this_cpu, sd) {
1291 if (cpu_isset(cpu, sd->span)) {
1292 schedstat_inc(sd, ttwu_wake_remote);
1293 this_sd = sd;
1294 break;
1da177e4
LT
1295 }
1296 }
1da177e4 1297
7897986b 1298 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1299 goto out_set_cpu;
1300
1da177e4 1301 /*
7897986b 1302 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1303 */
7897986b
NP
1304 if (this_sd) {
1305 int idx = this_sd->wake_idx;
1306 unsigned int imbalance;
1da177e4 1307
a3f21bce
NP
1308 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1309
7897986b
NP
1310 load = source_load(cpu, idx);
1311 this_load = target_load(this_cpu, idx);
1da177e4 1312
7897986b
NP
1313 new_cpu = this_cpu; /* Wake to this CPU if we can */
1314
a3f21bce
NP
1315 if (this_sd->flags & SD_WAKE_AFFINE) {
1316 unsigned long tl = this_load;
2dd73a4f
PW
1317 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1318
1da177e4 1319 /*
a3f21bce
NP
1320 * If sync wakeup then subtract the (maximum possible)
1321 * effect of the currently running task from the load
1322 * of the current CPU:
1da177e4 1323 */
a3f21bce 1324 if (sync)
2dd73a4f 1325 tl -= current->load_weight;
a3f21bce
NP
1326
1327 if ((tl <= load &&
2dd73a4f
PW
1328 tl + target_load(cpu, idx) <= tl_per_task) ||
1329 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1330 /*
1331 * This domain has SD_WAKE_AFFINE and
1332 * p is cache cold in this domain, and
1333 * there is no bad imbalance.
1334 */
1335 schedstat_inc(this_sd, ttwu_move_affine);
1336 goto out_set_cpu;
1337 }
1338 }
1339
1340 /*
1341 * Start passive balancing when half the imbalance_pct
1342 * limit is reached.
1343 */
1344 if (this_sd->flags & SD_WAKE_BALANCE) {
1345 if (imbalance*this_load <= 100*load) {
1346 schedstat_inc(this_sd, ttwu_move_balance);
1347 goto out_set_cpu;
1348 }
1da177e4
LT
1349 }
1350 }
1351
1352 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1353out_set_cpu:
1354 new_cpu = wake_idle(new_cpu, p);
1355 if (new_cpu != cpu) {
1356 set_task_cpu(p, new_cpu);
1357 task_rq_unlock(rq, &flags);
1358 /* might preempt at this point */
1359 rq = task_rq_lock(p, &flags);
1360 old_state = p->state;
1361 if (!(old_state & state))
1362 goto out;
1363 if (p->array)
1364 goto out_running;
1365
1366 this_cpu = smp_processor_id();
1367 cpu = task_cpu(p);
1368 }
1369
1370out_activate:
1371#endif /* CONFIG_SMP */
1372 if (old_state == TASK_UNINTERRUPTIBLE) {
1373 rq->nr_uninterruptible--;
1374 /*
1375 * Tasks on involuntary sleep don't earn
1376 * sleep_avg beyond just interactive state.
1377 */
3dee386e 1378 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1379 } else
1da177e4 1380
d79fc0fc
IM
1381 /*
1382 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1383 * woken up with their sleep average not weighted in an
1384 * interactive way.
d79fc0fc 1385 */
e7c38cb4
CK
1386 if (old_state & TASK_NONINTERACTIVE)
1387 p->sleep_type = SLEEP_NONINTERACTIVE;
1388
1389
1390 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1391 /*
1392 * Sync wakeups (i.e. those types of wakeups where the waker
1393 * has indicated that it will leave the CPU in short order)
1394 * don't trigger a preemption, if the woken up task will run on
1395 * this cpu. (in this case the 'I will reschedule' promise of
1396 * the waker guarantees that the freshly woken up task is going
1397 * to be considered on this CPU.)
1398 */
1da177e4
LT
1399 if (!sync || cpu != this_cpu) {
1400 if (TASK_PREEMPTS_CURR(p, rq))
1401 resched_task(rq->curr);
1402 }
1403 success = 1;
1404
1405out_running:
1406 p->state = TASK_RUNNING;
1407out:
1408 task_rq_unlock(rq, &flags);
1409
1410 return success;
1411}
1412
95cdf3b7 1413int fastcall wake_up_process(task_t *p)
1da177e4
LT
1414{
1415 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1416 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1417}
1418
1419EXPORT_SYMBOL(wake_up_process);
1420
1421int fastcall wake_up_state(task_t *p, unsigned int state)
1422{
1423 return try_to_wake_up(p, state, 0);
1424}
1425
1da177e4
LT
1426/*
1427 * Perform scheduler related setup for a newly forked process p.
1428 * p is forked by current.
1429 */
476d139c 1430void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1431{
476d139c
NP
1432 int cpu = get_cpu();
1433
1434#ifdef CONFIG_SMP
1435 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1436#endif
1437 set_task_cpu(p, cpu);
1438
1da177e4
LT
1439 /*
1440 * We mark the process as running here, but have not actually
1441 * inserted it onto the runqueue yet. This guarantees that
1442 * nobody will actually run it, and a signal or other external
1443 * event cannot wake it up and insert it on the runqueue either.
1444 */
1445 p->state = TASK_RUNNING;
1446 INIT_LIST_HEAD(&p->run_list);
1447 p->array = NULL;
1da177e4
LT
1448#ifdef CONFIG_SCHEDSTATS
1449 memset(&p->sched_info, 0, sizeof(p->sched_info));
1450#endif
d6077cb8 1451#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1452 p->oncpu = 0;
1453#endif
1da177e4 1454#ifdef CONFIG_PREEMPT
4866cde0 1455 /* Want to start with kernel preemption disabled. */
a1261f54 1456 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1457#endif
1458 /*
1459 * Share the timeslice between parent and child, thus the
1460 * total amount of pending timeslices in the system doesn't change,
1461 * resulting in more scheduling fairness.
1462 */
1463 local_irq_disable();
1464 p->time_slice = (current->time_slice + 1) >> 1;
1465 /*
1466 * The remainder of the first timeslice might be recovered by
1467 * the parent if the child exits early enough.
1468 */
1469 p->first_time_slice = 1;
1470 current->time_slice >>= 1;
1471 p->timestamp = sched_clock();
1472 if (unlikely(!current->time_slice)) {
1473 /*
1474 * This case is rare, it happens when the parent has only
1475 * a single jiffy left from its timeslice. Taking the
1476 * runqueue lock is not a problem.
1477 */
1478 current->time_slice = 1;
1da177e4 1479 scheduler_tick();
476d139c
NP
1480 }
1481 local_irq_enable();
1482 put_cpu();
1da177e4
LT
1483}
1484
1485/*
1486 * wake_up_new_task - wake up a newly created task for the first time.
1487 *
1488 * This function will do some initial scheduler statistics housekeeping
1489 * that must be done for every newly created context, then puts the task
1490 * on the runqueue and wakes it.
1491 */
95cdf3b7 1492void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1493{
1494 unsigned long flags;
1495 int this_cpu, cpu;
1496 runqueue_t *rq, *this_rq;
1497
1498 rq = task_rq_lock(p, &flags);
147cbb4b 1499 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1500 this_cpu = smp_processor_id();
147cbb4b 1501 cpu = task_cpu(p);
1da177e4 1502
1da177e4
LT
1503 /*
1504 * We decrease the sleep average of forking parents
1505 * and children as well, to keep max-interactive tasks
1506 * from forking tasks that are max-interactive. The parent
1507 * (current) is done further down, under its lock.
1508 */
1509 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1510 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1511
1512 p->prio = effective_prio(p);
1513
1514 if (likely(cpu == this_cpu)) {
1515 if (!(clone_flags & CLONE_VM)) {
1516 /*
1517 * The VM isn't cloned, so we're in a good position to
1518 * do child-runs-first in anticipation of an exec. This
1519 * usually avoids a lot of COW overhead.
1520 */
1521 if (unlikely(!current->array))
1522 __activate_task(p, rq);
1523 else {
1524 p->prio = current->prio;
1525 list_add_tail(&p->run_list, &current->run_list);
1526 p->array = current->array;
1527 p->array->nr_active++;
2dd73a4f 1528 inc_nr_running(p, rq);
1da177e4
LT
1529 }
1530 set_need_resched();
1531 } else
1532 /* Run child last */
1533 __activate_task(p, rq);
1534 /*
1535 * We skip the following code due to cpu == this_cpu
1536 *
1537 * task_rq_unlock(rq, &flags);
1538 * this_rq = task_rq_lock(current, &flags);
1539 */
1540 this_rq = rq;
1541 } else {
1542 this_rq = cpu_rq(this_cpu);
1543
1544 /*
1545 * Not the local CPU - must adjust timestamp. This should
1546 * get optimised away in the !CONFIG_SMP case.
1547 */
1548 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1549 + rq->timestamp_last_tick;
1550 __activate_task(p, rq);
1551 if (TASK_PREEMPTS_CURR(p, rq))
1552 resched_task(rq->curr);
1553
1554 /*
1555 * Parent and child are on different CPUs, now get the
1556 * parent runqueue to update the parent's ->sleep_avg:
1557 */
1558 task_rq_unlock(rq, &flags);
1559 this_rq = task_rq_lock(current, &flags);
1560 }
1561 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1562 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1563 task_rq_unlock(this_rq, &flags);
1564}
1565
1566/*
1567 * Potentially available exiting-child timeslices are
1568 * retrieved here - this way the parent does not get
1569 * penalized for creating too many threads.
1570 *
1571 * (this cannot be used to 'generate' timeslices
1572 * artificially, because any timeslice recovered here
1573 * was given away by the parent in the first place.)
1574 */
95cdf3b7 1575void fastcall sched_exit(task_t *p)
1da177e4
LT
1576{
1577 unsigned long flags;
1578 runqueue_t *rq;
1579
1580 /*
1581 * If the child was a (relative-) CPU hog then decrease
1582 * the sleep_avg of the parent as well.
1583 */
1584 rq = task_rq_lock(p->parent, &flags);
889dfafe 1585 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1586 p->parent->time_slice += p->time_slice;
1587 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1588 p->parent->time_slice = task_timeslice(p);
1589 }
1590 if (p->sleep_avg < p->parent->sleep_avg)
1591 p->parent->sleep_avg = p->parent->sleep_avg /
1592 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1593 (EXIT_WEIGHT + 1);
1594 task_rq_unlock(rq, &flags);
1595}
1596
4866cde0
NP
1597/**
1598 * prepare_task_switch - prepare to switch tasks
1599 * @rq: the runqueue preparing to switch
1600 * @next: the task we are going to switch to.
1601 *
1602 * This is called with the rq lock held and interrupts off. It must
1603 * be paired with a subsequent finish_task_switch after the context
1604 * switch.
1605 *
1606 * prepare_task_switch sets up locking and calls architecture specific
1607 * hooks.
1608 */
1609static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1610{
1611 prepare_lock_switch(rq, next);
1612 prepare_arch_switch(next);
1613}
1614
1da177e4
LT
1615/**
1616 * finish_task_switch - clean up after a task-switch
344babaa 1617 * @rq: runqueue associated with task-switch
1da177e4
LT
1618 * @prev: the thread we just switched away from.
1619 *
4866cde0
NP
1620 * finish_task_switch must be called after the context switch, paired
1621 * with a prepare_task_switch call before the context switch.
1622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1623 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1624 *
1625 * Note that we may have delayed dropping an mm in context_switch(). If
1626 * so, we finish that here outside of the runqueue lock. (Doing it
1627 * with the lock held can cause deadlocks; see schedule() for
1628 * details.)
1629 */
4866cde0 1630static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1631 __releases(rq->lock)
1632{
1da177e4
LT
1633 struct mm_struct *mm = rq->prev_mm;
1634 unsigned long prev_task_flags;
1635
1636 rq->prev_mm = NULL;
1637
1638 /*
1639 * A task struct has one reference for the use as "current".
1640 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1641 * calls schedule one last time. The schedule call will never return,
1642 * and the scheduled task must drop that reference.
1643 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1644 * still held, otherwise prev could be scheduled on another cpu, die
1645 * there before we look at prev->state, and then the reference would
1646 * be dropped twice.
1647 * Manfred Spraul <manfred@colorfullife.com>
1648 */
1649 prev_task_flags = prev->flags;
4866cde0
NP
1650 finish_arch_switch(prev);
1651 finish_lock_switch(rq, prev);
1da177e4
LT
1652 if (mm)
1653 mmdrop(mm);
c6fd91f0 1654 if (unlikely(prev_task_flags & PF_DEAD)) {
1655 /*
1656 * Remove function-return probe instances associated with this
1657 * task and put them back on the free list.
1658 */
1659 kprobe_flush_task(prev);
1da177e4 1660 put_task_struct(prev);
c6fd91f0 1661 }
1da177e4
LT
1662}
1663
1664/**
1665 * schedule_tail - first thing a freshly forked thread must call.
1666 * @prev: the thread we just switched away from.
1667 */
1668asmlinkage void schedule_tail(task_t *prev)
1669 __releases(rq->lock)
1670{
4866cde0
NP
1671 runqueue_t *rq = this_rq();
1672 finish_task_switch(rq, prev);
1673#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1674 /* In this case, finish_task_switch does not reenable preemption */
1675 preempt_enable();
1676#endif
1da177e4
LT
1677 if (current->set_child_tid)
1678 put_user(current->pid, current->set_child_tid);
1679}
1680
1681/*
1682 * context_switch - switch to the new MM and the new
1683 * thread's register state.
1684 */
1685static inline
1686task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1687{
1688 struct mm_struct *mm = next->mm;
1689 struct mm_struct *oldmm = prev->active_mm;
1690
1691 if (unlikely(!mm)) {
1692 next->active_mm = oldmm;
1693 atomic_inc(&oldmm->mm_count);
1694 enter_lazy_tlb(oldmm, next);
1695 } else
1696 switch_mm(oldmm, mm, next);
1697
1698 if (unlikely(!prev->mm)) {
1699 prev->active_mm = NULL;
1700 WARN_ON(rq->prev_mm);
1701 rq->prev_mm = oldmm;
1702 }
1703
1704 /* Here we just switch the register state and the stack. */
1705 switch_to(prev, next, prev);
1706
1707 return prev;
1708}
1709
1710/*
1711 * nr_running, nr_uninterruptible and nr_context_switches:
1712 *
1713 * externally visible scheduler statistics: current number of runnable
1714 * threads, current number of uninterruptible-sleeping threads, total
1715 * number of context switches performed since bootup.
1716 */
1717unsigned long nr_running(void)
1718{
1719 unsigned long i, sum = 0;
1720
1721 for_each_online_cpu(i)
1722 sum += cpu_rq(i)->nr_running;
1723
1724 return sum;
1725}
1726
1727unsigned long nr_uninterruptible(void)
1728{
1729 unsigned long i, sum = 0;
1730
0a945022 1731 for_each_possible_cpu(i)
1da177e4
LT
1732 sum += cpu_rq(i)->nr_uninterruptible;
1733
1734 /*
1735 * Since we read the counters lockless, it might be slightly
1736 * inaccurate. Do not allow it to go below zero though:
1737 */
1738 if (unlikely((long)sum < 0))
1739 sum = 0;
1740
1741 return sum;
1742}
1743
1744unsigned long long nr_context_switches(void)
1745{
cc94abfc
SR
1746 int i;
1747 unsigned long long sum = 0;
1da177e4 1748
0a945022 1749 for_each_possible_cpu(i)
1da177e4
LT
1750 sum += cpu_rq(i)->nr_switches;
1751
1752 return sum;
1753}
1754
1755unsigned long nr_iowait(void)
1756{
1757 unsigned long i, sum = 0;
1758
0a945022 1759 for_each_possible_cpu(i)
1da177e4
LT
1760 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1761
1762 return sum;
1763}
1764
db1b1fef
JS
1765unsigned long nr_active(void)
1766{
1767 unsigned long i, running = 0, uninterruptible = 0;
1768
1769 for_each_online_cpu(i) {
1770 running += cpu_rq(i)->nr_running;
1771 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1772 }
1773
1774 if (unlikely((long)uninterruptible < 0))
1775 uninterruptible = 0;
1776
1777 return running + uninterruptible;
1778}
1779
1da177e4
LT
1780#ifdef CONFIG_SMP
1781
1782/*
1783 * double_rq_lock - safely lock two runqueues
1784 *
1785 * Note this does not disable interrupts like task_rq_lock,
1786 * you need to do so manually before calling.
1787 */
1788static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1789 __acquires(rq1->lock)
1790 __acquires(rq2->lock)
1791{
1792 if (rq1 == rq2) {
1793 spin_lock(&rq1->lock);
1794 __acquire(rq2->lock); /* Fake it out ;) */
1795 } else {
c96d145e 1796 if (rq1 < rq2) {
1da177e4
LT
1797 spin_lock(&rq1->lock);
1798 spin_lock(&rq2->lock);
1799 } else {
1800 spin_lock(&rq2->lock);
1801 spin_lock(&rq1->lock);
1802 }
1803 }
1804}
1805
1806/*
1807 * double_rq_unlock - safely unlock two runqueues
1808 *
1809 * Note this does not restore interrupts like task_rq_unlock,
1810 * you need to do so manually after calling.
1811 */
1812static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1813 __releases(rq1->lock)
1814 __releases(rq2->lock)
1815{
1816 spin_unlock(&rq1->lock);
1817 if (rq1 != rq2)
1818 spin_unlock(&rq2->lock);
1819 else
1820 __release(rq2->lock);
1821}
1822
1823/*
1824 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1825 */
1826static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1827 __releases(this_rq->lock)
1828 __acquires(busiest->lock)
1829 __acquires(this_rq->lock)
1830{
1831 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1832 if (busiest < this_rq) {
1da177e4
LT
1833 spin_unlock(&this_rq->lock);
1834 spin_lock(&busiest->lock);
1835 spin_lock(&this_rq->lock);
1836 } else
1837 spin_lock(&busiest->lock);
1838 }
1839}
1840
1da177e4
LT
1841/*
1842 * If dest_cpu is allowed for this process, migrate the task to it.
1843 * This is accomplished by forcing the cpu_allowed mask to only
1844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1845 * the cpu_allowed mask is restored.
1846 */
1847static void sched_migrate_task(task_t *p, int dest_cpu)
1848{
1849 migration_req_t req;
1850 runqueue_t *rq;
1851 unsigned long flags;
1852
1853 rq = task_rq_lock(p, &flags);
1854 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1855 || unlikely(cpu_is_offline(dest_cpu)))
1856 goto out;
1857
1858 /* force the process onto the specified CPU */
1859 if (migrate_task(p, dest_cpu, &req)) {
1860 /* Need to wait for migration thread (might exit: take ref). */
1861 struct task_struct *mt = rq->migration_thread;
1862 get_task_struct(mt);
1863 task_rq_unlock(rq, &flags);
1864 wake_up_process(mt);
1865 put_task_struct(mt);
1866 wait_for_completion(&req.done);
1867 return;
1868 }
1869out:
1870 task_rq_unlock(rq, &flags);
1871}
1872
1873/*
476d139c
NP
1874 * sched_exec - execve() is a valuable balancing opportunity, because at
1875 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1876 */
1877void sched_exec(void)
1878{
1da177e4 1879 int new_cpu, this_cpu = get_cpu();
476d139c 1880 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1881 put_cpu();
476d139c
NP
1882 if (new_cpu != this_cpu)
1883 sched_migrate_task(current, new_cpu);
1da177e4
LT
1884}
1885
1886/*
1887 * pull_task - move a task from a remote runqueue to the local runqueue.
1888 * Both runqueues must be locked.
1889 */
858119e1 1890static
1da177e4
LT
1891void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1892 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1893{
1894 dequeue_task(p, src_array);
2dd73a4f 1895 dec_nr_running(p, src_rq);
1da177e4 1896 set_task_cpu(p, this_cpu);
2dd73a4f 1897 inc_nr_running(p, this_rq);
1da177e4
LT
1898 enqueue_task(p, this_array);
1899 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1900 + this_rq->timestamp_last_tick;
1901 /*
1902 * Note that idle threads have a prio of MAX_PRIO, for this test
1903 * to be always true for them.
1904 */
1905 if (TASK_PREEMPTS_CURR(p, this_rq))
1906 resched_task(this_rq->curr);
1907}
1908
1909/*
1910 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1911 */
858119e1 1912static
1da177e4 1913int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1914 struct sched_domain *sd, enum idle_type idle,
1915 int *all_pinned)
1da177e4
LT
1916{
1917 /*
1918 * We do not migrate tasks that are:
1919 * 1) running (obviously), or
1920 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1921 * 3) are cache-hot on their current CPU.
1922 */
1da177e4
LT
1923 if (!cpu_isset(this_cpu, p->cpus_allowed))
1924 return 0;
81026794
NP
1925 *all_pinned = 0;
1926
1927 if (task_running(rq, p))
1928 return 0;
1da177e4
LT
1929
1930 /*
1931 * Aggressive migration if:
cafb20c1 1932 * 1) task is cache cold, or
1da177e4
LT
1933 * 2) too many balance attempts have failed.
1934 */
1935
cafb20c1 1936 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1937 return 1;
1938
1939 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1940 return 0;
1da177e4
LT
1941 return 1;
1942}
1943
1944/*
2dd73a4f
PW
1945 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
1946 * load from busiest to this_rq, as part of a balancing operation within
1947 * "domain". Returns the number of tasks moved.
1da177e4
LT
1948 *
1949 * Called with both runqueues locked.
1950 */
1951static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2dd73a4f
PW
1952 unsigned long max_nr_move, unsigned long max_load_move,
1953 struct sched_domain *sd, enum idle_type idle,
1954 int *all_pinned)
1da177e4
LT
1955{
1956 prio_array_t *array, *dst_array;
1957 struct list_head *head, *curr;
81026794 1958 int idx, pulled = 0, pinned = 0;
2dd73a4f 1959 long rem_load_move;
1da177e4
LT
1960 task_t *tmp;
1961
2dd73a4f 1962 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
1963 goto out;
1964
2dd73a4f 1965 rem_load_move = max_load_move;
81026794
NP
1966 pinned = 1;
1967
1da177e4
LT
1968 /*
1969 * We first consider expired tasks. Those will likely not be
1970 * executed in the near future, and they are most likely to
1971 * be cache-cold, thus switching CPUs has the least effect
1972 * on them.
1973 */
1974 if (busiest->expired->nr_active) {
1975 array = busiest->expired;
1976 dst_array = this_rq->expired;
1977 } else {
1978 array = busiest->active;
1979 dst_array = this_rq->active;
1980 }
1981
1982new_array:
1983 /* Start searching at priority 0: */
1984 idx = 0;
1985skip_bitmap:
1986 if (!idx)
1987 idx = sched_find_first_bit(array->bitmap);
1988 else
1989 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1990 if (idx >= MAX_PRIO) {
1991 if (array == busiest->expired && busiest->active->nr_active) {
1992 array = busiest->active;
1993 dst_array = this_rq->active;
1994 goto new_array;
1995 }
1996 goto out;
1997 }
1998
1999 head = array->queue + idx;
2000 curr = head->prev;
2001skip_queue:
2002 tmp = list_entry(curr, task_t, run_list);
2003
2004 curr = curr->prev;
2005
2dd73a4f
PW
2006 if (tmp->load_weight > rem_load_move ||
2007 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
2008 if (curr != head)
2009 goto skip_queue;
2010 idx++;
2011 goto skip_bitmap;
2012 }
2013
2014#ifdef CONFIG_SCHEDSTATS
2015 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2016 schedstat_inc(sd, lb_hot_gained[idle]);
2017#endif
2018
2019 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2020 pulled++;
2dd73a4f 2021 rem_load_move -= tmp->load_weight;
1da177e4 2022
2dd73a4f
PW
2023 /*
2024 * We only want to steal up to the prescribed number of tasks
2025 * and the prescribed amount of weighted load.
2026 */
2027 if (pulled < max_nr_move && rem_load_move > 0) {
1da177e4
LT
2028 if (curr != head)
2029 goto skip_queue;
2030 idx++;
2031 goto skip_bitmap;
2032 }
2033out:
2034 /*
2035 * Right now, this is the only place pull_task() is called,
2036 * so we can safely collect pull_task() stats here rather than
2037 * inside pull_task().
2038 */
2039 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2040
2041 if (all_pinned)
2042 *all_pinned = pinned;
1da177e4
LT
2043 return pulled;
2044}
2045
2046/*
2047 * find_busiest_group finds and returns the busiest CPU group within the
2dd73a4f 2048 * domain. It calculates and returns the amount of weighted load which should be
1da177e4
LT
2049 * moved to restore balance via the imbalance parameter.
2050 */
2051static struct sched_group *
2052find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 2053 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
2054{
2055 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2056 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2057 unsigned long max_pull;
2dd73a4f
PW
2058 unsigned long busiest_load_per_task, busiest_nr_running;
2059 unsigned long this_load_per_task, this_nr_running;
7897986b 2060 int load_idx;
1da177e4
LT
2061
2062 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2063 busiest_load_per_task = busiest_nr_running = 0;
2064 this_load_per_task = this_nr_running = 0;
7897986b
NP
2065 if (idle == NOT_IDLE)
2066 load_idx = sd->busy_idx;
2067 else if (idle == NEWLY_IDLE)
2068 load_idx = sd->newidle_idx;
2069 else
2070 load_idx = sd->idle_idx;
1da177e4
LT
2071
2072 do {
2073 unsigned long load;
2074 int local_group;
2075 int i;
2dd73a4f 2076 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2077
2078 local_group = cpu_isset(this_cpu, group->cpumask);
2079
2080 /* Tally up the load of all CPUs in the group */
2dd73a4f 2081 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2082
2083 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2084 runqueue_t *rq = cpu_rq(i);
2085
5969fe06
NP
2086 if (*sd_idle && !idle_cpu(i))
2087 *sd_idle = 0;
2088
1da177e4
LT
2089 /* Bias balancing toward cpus of our domain */
2090 if (local_group)
a2000572 2091 load = target_load(i, load_idx);
1da177e4 2092 else
a2000572 2093 load = source_load(i, load_idx);
1da177e4
LT
2094
2095 avg_load += load;
2dd73a4f
PW
2096 sum_nr_running += rq->nr_running;
2097 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2098 }
2099
2100 total_load += avg_load;
2101 total_pwr += group->cpu_power;
2102
2103 /* Adjust by relative CPU power of the group */
2104 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2105
2106 if (local_group) {
2107 this_load = avg_load;
2108 this = group;
2dd73a4f
PW
2109 this_nr_running = sum_nr_running;
2110 this_load_per_task = sum_weighted_load;
2111 } else if (avg_load > max_load &&
2112 sum_nr_running > group->cpu_power / SCHED_LOAD_SCALE) {
1da177e4
LT
2113 max_load = avg_load;
2114 busiest = group;
2dd73a4f
PW
2115 busiest_nr_running = sum_nr_running;
2116 busiest_load_per_task = sum_weighted_load;
1da177e4 2117 }
1da177e4
LT
2118 group = group->next;
2119 } while (group != sd->groups);
2120
2dd73a4f 2121 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2122 goto out_balanced;
2123
2124 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2125
2126 if (this_load >= avg_load ||
2127 100*max_load <= sd->imbalance_pct*this_load)
2128 goto out_balanced;
2129
2dd73a4f 2130 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2131 /*
2132 * We're trying to get all the cpus to the average_load, so we don't
2133 * want to push ourselves above the average load, nor do we wish to
2134 * reduce the max loaded cpu below the average load, as either of these
2135 * actions would just result in more rebalancing later, and ping-pong
2136 * tasks around. Thus we look for the minimum possible imbalance.
2137 * Negative imbalances (*we* are more loaded than anyone else) will
2138 * be counted as no imbalance for these purposes -- we can't fix that
2139 * by pulling tasks to us. Be careful of negative numbers as they'll
2140 * appear as very large values with unsigned longs.
2141 */
2dd73a4f
PW
2142 if (max_load <= busiest_load_per_task)
2143 goto out_balanced;
2144
2145 /*
2146 * In the presence of smp nice balancing, certain scenarios can have
2147 * max load less than avg load(as we skip the groups at or below
2148 * its cpu_power, while calculating max_load..)
2149 */
2150 if (max_load < avg_load) {
2151 *imbalance = 0;
2152 goto small_imbalance;
2153 }
0c117f1b
SS
2154
2155 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2156 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2157
1da177e4 2158 /* How much load to actually move to equalise the imbalance */
0c117f1b 2159 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2160 (avg_load - this_load) * this->cpu_power)
2161 / SCHED_LOAD_SCALE;
2162
2dd73a4f
PW
2163 /*
2164 * if *imbalance is less than the average load per runnable task
2165 * there is no gaurantee that any tasks will be moved so we'll have
2166 * a think about bumping its value to force at least one task to be
2167 * moved
2168 */
2169 if (*imbalance < busiest_load_per_task) {
2170 unsigned long pwr_now, pwr_move;
1da177e4 2171 unsigned long tmp;
2dd73a4f
PW
2172 unsigned int imbn;
2173
2174small_imbalance:
2175 pwr_move = pwr_now = 0;
2176 imbn = 2;
2177 if (this_nr_running) {
2178 this_load_per_task /= this_nr_running;
2179 if (busiest_load_per_task > this_load_per_task)
2180 imbn = 1;
2181 } else
2182 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2183
2dd73a4f
PW
2184 if (max_load - this_load >= busiest_load_per_task * imbn) {
2185 *imbalance = busiest_load_per_task;
1da177e4
LT
2186 return busiest;
2187 }
2188
2189 /*
2190 * OK, we don't have enough imbalance to justify moving tasks,
2191 * however we may be able to increase total CPU power used by
2192 * moving them.
2193 */
2194
2dd73a4f
PW
2195 pwr_now += busiest->cpu_power *
2196 min(busiest_load_per_task, max_load);
2197 pwr_now += this->cpu_power *
2198 min(this_load_per_task, this_load);
1da177e4
LT
2199 pwr_now /= SCHED_LOAD_SCALE;
2200
2201 /* Amount of load we'd subtract */
2dd73a4f 2202 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2203 if (max_load > tmp)
2dd73a4f
PW
2204 pwr_move += busiest->cpu_power *
2205 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2206
2207 /* Amount of load we'd add */
2208 if (max_load*busiest->cpu_power <
2dd73a4f 2209 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2210 tmp = max_load*busiest->cpu_power/this->cpu_power;
2211 else
2dd73a4f
PW
2212 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2213 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2214 pwr_move /= SCHED_LOAD_SCALE;
2215
2216 /* Move if we gain throughput */
2217 if (pwr_move <= pwr_now)
2218 goto out_balanced;
2219
2dd73a4f 2220 *imbalance = busiest_load_per_task;
1da177e4
LT
2221 }
2222
1da177e4
LT
2223 return busiest;
2224
2225out_balanced:
1da177e4
LT
2226
2227 *imbalance = 0;
2228 return NULL;
2229}
2230
2231/*
2232 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2233 */
b910472d 2234static runqueue_t *find_busiest_queue(struct sched_group *group,
2dd73a4f 2235 enum idle_type idle, unsigned long imbalance)
1da177e4 2236{
2dd73a4f
PW
2237 unsigned long max_load = 0;
2238 runqueue_t *busiest = NULL, *rqi;
1da177e4
LT
2239 int i;
2240
2241 for_each_cpu_mask(i, group->cpumask) {
2dd73a4f
PW
2242 rqi = cpu_rq(i);
2243
2244 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2245 continue;
1da177e4 2246
2dd73a4f
PW
2247 if (rqi->raw_weighted_load > max_load) {
2248 max_load = rqi->raw_weighted_load;
2249 busiest = rqi;
1da177e4
LT
2250 }
2251 }
2252
2253 return busiest;
2254}
2255
77391d71
NP
2256/*
2257 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2258 * so long as it is large enough.
2259 */
2260#define MAX_PINNED_INTERVAL 512
2261
2dd73a4f 2262#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
1da177e4
LT
2263/*
2264 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2265 * tasks if there is an imbalance.
2266 *
2267 * Called with this_rq unlocked.
2268 */
2269static int load_balance(int this_cpu, runqueue_t *this_rq,
2270 struct sched_domain *sd, enum idle_type idle)
2271{
2272 struct sched_group *group;
2273 runqueue_t *busiest;
2274 unsigned long imbalance;
77391d71 2275 int nr_moved, all_pinned = 0;
81026794 2276 int active_balance = 0;
5969fe06
NP
2277 int sd_idle = 0;
2278
2279 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2280 sd_idle = 1;
1da177e4 2281
1da177e4
LT
2282 schedstat_inc(sd, lb_cnt[idle]);
2283
5969fe06 2284 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2285 if (!group) {
2286 schedstat_inc(sd, lb_nobusyg[idle]);
2287 goto out_balanced;
2288 }
2289
2dd73a4f 2290 busiest = find_busiest_queue(group, idle, imbalance);
1da177e4
LT
2291 if (!busiest) {
2292 schedstat_inc(sd, lb_nobusyq[idle]);
2293 goto out_balanced;
2294 }
2295
db935dbd 2296 BUG_ON(busiest == this_rq);
1da177e4
LT
2297
2298 schedstat_add(sd, lb_imbalance[idle], imbalance);
2299
2300 nr_moved = 0;
2301 if (busiest->nr_running > 1) {
2302 /*
2303 * Attempt to move tasks. If find_busiest_group has found
2304 * an imbalance but busiest->nr_running <= 1, the group is
2305 * still unbalanced. nr_moved simply stays zero, so it is
2306 * correctly treated as an imbalance.
2307 */
e17224bf 2308 double_rq_lock(this_rq, busiest);
1da177e4 2309 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2310 minus_1_or_zero(busiest->nr_running),
d6d5cfaf 2311 imbalance, sd, idle, &all_pinned);
e17224bf 2312 double_rq_unlock(this_rq, busiest);
81026794
NP
2313
2314 /* All tasks on this runqueue were pinned by CPU affinity */
2315 if (unlikely(all_pinned))
2316 goto out_balanced;
1da177e4 2317 }
81026794 2318
1da177e4
LT
2319 if (!nr_moved) {
2320 schedstat_inc(sd, lb_failed[idle]);
2321 sd->nr_balance_failed++;
2322
2323 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2324
2325 spin_lock(&busiest->lock);
fa3b6ddc
SS
2326
2327 /* don't kick the migration_thread, if the curr
2328 * task on busiest cpu can't be moved to this_cpu
2329 */
2330 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2331 spin_unlock(&busiest->lock);
2332 all_pinned = 1;
2333 goto out_one_pinned;
2334 }
2335
1da177e4
LT
2336 if (!busiest->active_balance) {
2337 busiest->active_balance = 1;
2338 busiest->push_cpu = this_cpu;
81026794 2339 active_balance = 1;
1da177e4
LT
2340 }
2341 spin_unlock(&busiest->lock);
81026794 2342 if (active_balance)
1da177e4
LT
2343 wake_up_process(busiest->migration_thread);
2344
2345 /*
2346 * We've kicked active balancing, reset the failure
2347 * counter.
2348 */
39507451 2349 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2350 }
81026794 2351 } else
1da177e4
LT
2352 sd->nr_balance_failed = 0;
2353
81026794 2354 if (likely(!active_balance)) {
1da177e4
LT
2355 /* We were unbalanced, so reset the balancing interval */
2356 sd->balance_interval = sd->min_interval;
81026794
NP
2357 } else {
2358 /*
2359 * If we've begun active balancing, start to back off. This
2360 * case may not be covered by the all_pinned logic if there
2361 * is only 1 task on the busy runqueue (because we don't call
2362 * move_tasks).
2363 */
2364 if (sd->balance_interval < sd->max_interval)
2365 sd->balance_interval *= 2;
1da177e4
LT
2366 }
2367
5969fe06
NP
2368 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2369 return -1;
1da177e4
LT
2370 return nr_moved;
2371
2372out_balanced:
1da177e4
LT
2373 schedstat_inc(sd, lb_balanced[idle]);
2374
16cfb1c0 2375 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2376
2377out_one_pinned:
1da177e4 2378 /* tune up the balancing interval */
77391d71
NP
2379 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2380 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2381 sd->balance_interval *= 2;
2382
5969fe06
NP
2383 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2384 return -1;
1da177e4
LT
2385 return 0;
2386}
2387
2388/*
2389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2390 * tasks if there is an imbalance.
2391 *
2392 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2393 * this_rq is locked.
2394 */
2395static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2396 struct sched_domain *sd)
2397{
2398 struct sched_group *group;
2399 runqueue_t *busiest = NULL;
2400 unsigned long imbalance;
2401 int nr_moved = 0;
5969fe06
NP
2402 int sd_idle = 0;
2403
2404 if (sd->flags & SD_SHARE_CPUPOWER)
2405 sd_idle = 1;
1da177e4
LT
2406
2407 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2408 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2409 if (!group) {
1da177e4 2410 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2411 goto out_balanced;
1da177e4
LT
2412 }
2413
2dd73a4f 2414 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
db935dbd 2415 if (!busiest) {
1da177e4 2416 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2417 goto out_balanced;
1da177e4
LT
2418 }
2419
db935dbd
NP
2420 BUG_ON(busiest == this_rq);
2421
1da177e4 2422 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2423
2424 nr_moved = 0;
2425 if (busiest->nr_running > 1) {
2426 /* Attempt to move tasks */
2427 double_lock_balance(this_rq, busiest);
2428 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2429 minus_1_or_zero(busiest->nr_running),
81026794 2430 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2431 spin_unlock(&busiest->lock);
2432 }
2433
5969fe06 2434 if (!nr_moved) {
1da177e4 2435 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2436 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2437 return -1;
2438 } else
16cfb1c0 2439 sd->nr_balance_failed = 0;
1da177e4 2440
1da177e4 2441 return nr_moved;
16cfb1c0
NP
2442
2443out_balanced:
2444 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2445 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2446 return -1;
16cfb1c0
NP
2447 sd->nr_balance_failed = 0;
2448 return 0;
1da177e4
LT
2449}
2450
2451/*
2452 * idle_balance is called by schedule() if this_cpu is about to become
2453 * idle. Attempts to pull tasks from other CPUs.
2454 */
858119e1 2455static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2456{
2457 struct sched_domain *sd;
2458
2459 for_each_domain(this_cpu, sd) {
2460 if (sd->flags & SD_BALANCE_NEWIDLE) {
2461 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2462 /* We've pulled tasks over so stop searching */
2463 break;
2464 }
2465 }
2466 }
2467}
2468
2469/*
2470 * active_load_balance is run by migration threads. It pushes running tasks
2471 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2472 * running on each physical CPU where possible, and avoids physical /
2473 * logical imbalances.
2474 *
2475 * Called with busiest_rq locked.
2476 */
2477static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2478{
2479 struct sched_domain *sd;
1da177e4 2480 runqueue_t *target_rq;
39507451
NP
2481 int target_cpu = busiest_rq->push_cpu;
2482
2483 if (busiest_rq->nr_running <= 1)
2484 /* no task to move */
2485 return;
2486
2487 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2488
2489 /*
39507451
NP
2490 * This condition is "impossible", if it occurs
2491 * we need to fix it. Originally reported by
2492 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2493 */
39507451 2494 BUG_ON(busiest_rq == target_rq);
1da177e4 2495
39507451
NP
2496 /* move a task from busiest_rq to target_rq */
2497 double_lock_balance(busiest_rq, target_rq);
2498
2499 /* Search for an sd spanning us and the target CPU. */
c96d145e 2500 for_each_domain(target_cpu, sd) {
39507451
NP
2501 if ((sd->flags & SD_LOAD_BALANCE) &&
2502 cpu_isset(busiest_cpu, sd->span))
2503 break;
c96d145e 2504 }
39507451
NP
2505
2506 if (unlikely(sd == NULL))
2507 goto out;
2508
2509 schedstat_inc(sd, alb_cnt);
2510
2dd73a4f
PW
2511 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2512 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
39507451
NP
2513 schedstat_inc(sd, alb_pushed);
2514 else
2515 schedstat_inc(sd, alb_failed);
2516out:
2517 spin_unlock(&target_rq->lock);
1da177e4
LT
2518}
2519
2520/*
2521 * rebalance_tick will get called every timer tick, on every CPU.
2522 *
2523 * It checks each scheduling domain to see if it is due to be balanced,
2524 * and initiates a balancing operation if so.
2525 *
2526 * Balancing parameters are set up in arch_init_sched_domains.
2527 */
2528
2529/* Don't have all balancing operations going off at once */
2530#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2531
2532static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2533 enum idle_type idle)
2534{
2535 unsigned long old_load, this_load;
2536 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2537 struct sched_domain *sd;
7897986b 2538 int i;
1da177e4 2539
2dd73a4f 2540 this_load = this_rq->raw_weighted_load;
7897986b
NP
2541 /* Update our load */
2542 for (i = 0; i < 3; i++) {
2543 unsigned long new_load = this_load;
2544 int scale = 1 << i;
2545 old_load = this_rq->cpu_load[i];
2546 /*
2547 * Round up the averaging division if load is increasing. This
2548 * prevents us from getting stuck on 9 if the load is 10, for
2549 * example.
2550 */
2551 if (new_load > old_load)
2552 new_load += scale-1;
2553 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2554 }
1da177e4
LT
2555
2556 for_each_domain(this_cpu, sd) {
2557 unsigned long interval;
2558
2559 if (!(sd->flags & SD_LOAD_BALANCE))
2560 continue;
2561
2562 interval = sd->balance_interval;
2563 if (idle != SCHED_IDLE)
2564 interval *= sd->busy_factor;
2565
2566 /* scale ms to jiffies */
2567 interval = msecs_to_jiffies(interval);
2568 if (unlikely(!interval))
2569 interval = 1;
2570
2571 if (j - sd->last_balance >= interval) {
2572 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2573 /*
2574 * We've pulled tasks over so either we're no
5969fe06
NP
2575 * longer idle, or one of our SMT siblings is
2576 * not idle.
2577 */
1da177e4
LT
2578 idle = NOT_IDLE;
2579 }
2580 sd->last_balance += interval;
2581 }
2582 }
2583}
2584#else
2585/*
2586 * on UP we do not need to balance between CPUs:
2587 */
2588static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2589{
2590}
2591static inline void idle_balance(int cpu, runqueue_t *rq)
2592{
2593}
2594#endif
2595
2596static inline int wake_priority_sleeper(runqueue_t *rq)
2597{
2598 int ret = 0;
2599#ifdef CONFIG_SCHED_SMT
2600 spin_lock(&rq->lock);
2601 /*
2602 * If an SMT sibling task has been put to sleep for priority
2603 * reasons reschedule the idle task to see if it can now run.
2604 */
2605 if (rq->nr_running) {
2606 resched_task(rq->idle);
2607 ret = 1;
2608 }
2609 spin_unlock(&rq->lock);
2610#endif
2611 return ret;
2612}
2613
2614DEFINE_PER_CPU(struct kernel_stat, kstat);
2615
2616EXPORT_PER_CPU_SYMBOL(kstat);
2617
2618/*
2619 * This is called on clock ticks and on context switches.
2620 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2621 */
2622static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2623 unsigned long long now)
2624{
2625 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2626 p->sched_time += now - last;
2627}
2628
2629/*
2630 * Return current->sched_time plus any more ns on the sched_clock
2631 * that have not yet been banked.
2632 */
2633unsigned long long current_sched_time(const task_t *tsk)
2634{
2635 unsigned long long ns;
2636 unsigned long flags;
2637 local_irq_save(flags);
2638 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2639 ns = tsk->sched_time + (sched_clock() - ns);
2640 local_irq_restore(flags);
2641 return ns;
2642}
2643
f1adad78
LT
2644/*
2645 * We place interactive tasks back into the active array, if possible.
2646 *
2647 * To guarantee that this does not starve expired tasks we ignore the
2648 * interactivity of a task if the first expired task had to wait more
2649 * than a 'reasonable' amount of time. This deadline timeout is
2650 * load-dependent, as the frequency of array switched decreases with
2651 * increasing number of running tasks. We also ignore the interactivity
2652 * if a better static_prio task has expired:
2653 */
2654#define EXPIRED_STARVING(rq) \
2655 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2656 (jiffies - (rq)->expired_timestamp >= \
2657 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2658 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2659
1da177e4
LT
2660/*
2661 * Account user cpu time to a process.
2662 * @p: the process that the cpu time gets accounted to
2663 * @hardirq_offset: the offset to subtract from hardirq_count()
2664 * @cputime: the cpu time spent in user space since the last update
2665 */
2666void account_user_time(struct task_struct *p, cputime_t cputime)
2667{
2668 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2669 cputime64_t tmp;
2670
2671 p->utime = cputime_add(p->utime, cputime);
2672
2673 /* Add user time to cpustat. */
2674 tmp = cputime_to_cputime64(cputime);
2675 if (TASK_NICE(p) > 0)
2676 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2677 else
2678 cpustat->user = cputime64_add(cpustat->user, tmp);
2679}
2680
2681/*
2682 * Account system cpu time to a process.
2683 * @p: the process that the cpu time gets accounted to
2684 * @hardirq_offset: the offset to subtract from hardirq_count()
2685 * @cputime: the cpu time spent in kernel space since the last update
2686 */
2687void account_system_time(struct task_struct *p, int hardirq_offset,
2688 cputime_t cputime)
2689{
2690 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2691 runqueue_t *rq = this_rq();
2692 cputime64_t tmp;
2693
2694 p->stime = cputime_add(p->stime, cputime);
2695
2696 /* Add system time to cpustat. */
2697 tmp = cputime_to_cputime64(cputime);
2698 if (hardirq_count() - hardirq_offset)
2699 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2700 else if (softirq_count())
2701 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2702 else if (p != rq->idle)
2703 cpustat->system = cputime64_add(cpustat->system, tmp);
2704 else if (atomic_read(&rq->nr_iowait) > 0)
2705 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2706 else
2707 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2708 /* Account for system time used */
2709 acct_update_integrals(p);
1da177e4
LT
2710}
2711
2712/*
2713 * Account for involuntary wait time.
2714 * @p: the process from which the cpu time has been stolen
2715 * @steal: the cpu time spent in involuntary wait
2716 */
2717void account_steal_time(struct task_struct *p, cputime_t steal)
2718{
2719 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2720 cputime64_t tmp = cputime_to_cputime64(steal);
2721 runqueue_t *rq = this_rq();
2722
2723 if (p == rq->idle) {
2724 p->stime = cputime_add(p->stime, steal);
2725 if (atomic_read(&rq->nr_iowait) > 0)
2726 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2727 else
2728 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2729 } else
2730 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2731}
2732
2733/*
2734 * This function gets called by the timer code, with HZ frequency.
2735 * We call it with interrupts disabled.
2736 *
2737 * It also gets called by the fork code, when changing the parent's
2738 * timeslices.
2739 */
2740void scheduler_tick(void)
2741{
2742 int cpu = smp_processor_id();
2743 runqueue_t *rq = this_rq();
2744 task_t *p = current;
2745 unsigned long long now = sched_clock();
2746
2747 update_cpu_clock(p, rq, now);
2748
2749 rq->timestamp_last_tick = now;
2750
2751 if (p == rq->idle) {
2752 if (wake_priority_sleeper(rq))
2753 goto out;
2754 rebalance_tick(cpu, rq, SCHED_IDLE);
2755 return;
2756 }
2757
2758 /* Task might have expired already, but not scheduled off yet */
2759 if (p->array != rq->active) {
2760 set_tsk_need_resched(p);
2761 goto out;
2762 }
2763 spin_lock(&rq->lock);
2764 /*
2765 * The task was running during this tick - update the
2766 * time slice counter. Note: we do not update a thread's
2767 * priority until it either goes to sleep or uses up its
2768 * timeslice. This makes it possible for interactive tasks
2769 * to use up their timeslices at their highest priority levels.
2770 */
2771 if (rt_task(p)) {
2772 /*
2773 * RR tasks need a special form of timeslice management.
2774 * FIFO tasks have no timeslices.
2775 */
2776 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2777 p->time_slice = task_timeslice(p);
2778 p->first_time_slice = 0;
2779 set_tsk_need_resched(p);
2780
2781 /* put it at the end of the queue: */
2782 requeue_task(p, rq->active);
2783 }
2784 goto out_unlock;
2785 }
2786 if (!--p->time_slice) {
2787 dequeue_task(p, rq->active);
2788 set_tsk_need_resched(p);
2789 p->prio = effective_prio(p);
2790 p->time_slice = task_timeslice(p);
2791 p->first_time_slice = 0;
2792
2793 if (!rq->expired_timestamp)
2794 rq->expired_timestamp = jiffies;
f1adad78 2795 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
1da177e4
LT
2796 enqueue_task(p, rq->expired);
2797 if (p->static_prio < rq->best_expired_prio)
2798 rq->best_expired_prio = p->static_prio;
2799 } else
2800 enqueue_task(p, rq->active);
2801 } else {
2802 /*
2803 * Prevent a too long timeslice allowing a task to monopolize
2804 * the CPU. We do this by splitting up the timeslice into
2805 * smaller pieces.
2806 *
2807 * Note: this does not mean the task's timeslices expire or
2808 * get lost in any way, they just might be preempted by
2809 * another task of equal priority. (one with higher
2810 * priority would have preempted this task already.) We
2811 * requeue this task to the end of the list on this priority
2812 * level, which is in essence a round-robin of tasks with
2813 * equal priority.
2814 *
2815 * This only applies to tasks in the interactive
2816 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2817 */
2818 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2819 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2820 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2821 (p->array == rq->active)) {
2822
2823 requeue_task(p, rq->active);
2824 set_tsk_need_resched(p);
2825 }
2826 }
2827out_unlock:
2828 spin_unlock(&rq->lock);
2829out:
2830 rebalance_tick(cpu, rq, NOT_IDLE);
2831}
2832
2833#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2834static inline void wakeup_busy_runqueue(runqueue_t *rq)
2835{
2836 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2837 if (rq->curr == rq->idle && rq->nr_running)
2838 resched_task(rq->idle);
2839}
2840
c96d145e
CK
2841/*
2842 * Called with interrupt disabled and this_rq's runqueue locked.
2843 */
2844static void wake_sleeping_dependent(int this_cpu)
1da177e4 2845{
41c7ce9a 2846 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2847 int i;
2848
c96d145e
CK
2849 for_each_domain(this_cpu, tmp) {
2850 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 2851 sd = tmp;
c96d145e
CK
2852 break;
2853 }
2854 }
41c7ce9a
NP
2855
2856 if (!sd)
1da177e4
LT
2857 return;
2858
c96d145e 2859 for_each_cpu_mask(i, sd->span) {
1da177e4
LT
2860 runqueue_t *smt_rq = cpu_rq(i);
2861
c96d145e
CK
2862 if (i == this_cpu)
2863 continue;
2864 if (unlikely(!spin_trylock(&smt_rq->lock)))
2865 continue;
2866
fc38ed75 2867 wakeup_busy_runqueue(smt_rq);
c96d145e 2868 spin_unlock(&smt_rq->lock);
1da177e4 2869 }
1da177e4
LT
2870}
2871
67f9a619
IM
2872/*
2873 * number of 'lost' timeslices this task wont be able to fully
2874 * utilize, if another task runs on a sibling. This models the
2875 * slowdown effect of other tasks running on siblings:
2876 */
2877static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2878{
2879 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2880}
2881
c96d145e
CK
2882/*
2883 * To minimise lock contention and not have to drop this_rq's runlock we only
2884 * trylock the sibling runqueues and bypass those runqueues if we fail to
2885 * acquire their lock. As we only trylock the normal locking order does not
2886 * need to be obeyed.
2887 */
2888static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
1da177e4 2889{
41c7ce9a 2890 struct sched_domain *tmp, *sd = NULL;
1da177e4 2891 int ret = 0, i;
1da177e4 2892
c96d145e
CK
2893 /* kernel/rt threads do not participate in dependent sleeping */
2894 if (!p->mm || rt_task(p))
2895 return 0;
2896
2897 for_each_domain(this_cpu, tmp) {
2898 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 2899 sd = tmp;
c96d145e
CK
2900 break;
2901 }
2902 }
41c7ce9a
NP
2903
2904 if (!sd)
1da177e4
LT
2905 return 0;
2906
c96d145e
CK
2907 for_each_cpu_mask(i, sd->span) {
2908 runqueue_t *smt_rq;
2909 task_t *smt_curr;
1da177e4 2910
c96d145e
CK
2911 if (i == this_cpu)
2912 continue;
1da177e4 2913
c96d145e
CK
2914 smt_rq = cpu_rq(i);
2915 if (unlikely(!spin_trylock(&smt_rq->lock)))
2916 continue;
1da177e4 2917
c96d145e 2918 smt_curr = smt_rq->curr;
1da177e4 2919
c96d145e
CK
2920 if (!smt_curr->mm)
2921 goto unlock;
fc38ed75 2922
1da177e4
LT
2923 /*
2924 * If a user task with lower static priority than the
2925 * running task on the SMT sibling is trying to schedule,
2926 * delay it till there is proportionately less timeslice
2927 * left of the sibling task to prevent a lower priority
2928 * task from using an unfair proportion of the
2929 * physical cpu's resources. -ck
2930 */
fc38ed75
CK
2931 if (rt_task(smt_curr)) {
2932 /*
2933 * With real time tasks we run non-rt tasks only
2934 * per_cpu_gain% of the time.
2935 */
2936 if ((jiffies % DEF_TIMESLICE) >
2937 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2938 ret = 1;
c96d145e 2939 } else {
67f9a619
IM
2940 if (smt_curr->static_prio < p->static_prio &&
2941 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2942 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 2943 ret = 1;
fc38ed75 2944 }
c96d145e
CK
2945unlock:
2946 spin_unlock(&smt_rq->lock);
1da177e4 2947 }
1da177e4
LT
2948 return ret;
2949}
2950#else
c96d145e 2951static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
2952{
2953}
2954
c96d145e
CK
2955static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
2956 task_t *p)
1da177e4
LT
2957{
2958 return 0;
2959}
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2963
2964void fastcall add_preempt_count(int val)
2965{
2966 /*
2967 * Underflow?
2968 */
be5b4fbd 2969 BUG_ON((preempt_count() < 0));
1da177e4
LT
2970 preempt_count() += val;
2971 /*
2972 * Spinlock count overflowing soon?
2973 */
2974 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2975}
2976EXPORT_SYMBOL(add_preempt_count);
2977
2978void fastcall sub_preempt_count(int val)
2979{
2980 /*
2981 * Underflow?
2982 */
2983 BUG_ON(val > preempt_count());
2984 /*
2985 * Is the spinlock portion underflowing?
2986 */
2987 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2988 preempt_count() -= val;
2989}
2990EXPORT_SYMBOL(sub_preempt_count);
2991
2992#endif
2993
3dee386e
CK
2994static inline int interactive_sleep(enum sleep_type sleep_type)
2995{
2996 return (sleep_type == SLEEP_INTERACTIVE ||
2997 sleep_type == SLEEP_INTERRUPTED);
2998}
2999
1da177e4
LT
3000/*
3001 * schedule() is the main scheduler function.
3002 */
3003asmlinkage void __sched schedule(void)
3004{
3005 long *switch_count;
3006 task_t *prev, *next;
3007 runqueue_t *rq;
3008 prio_array_t *array;
3009 struct list_head *queue;
3010 unsigned long long now;
3011 unsigned long run_time;
a3464a10 3012 int cpu, idx, new_prio;
1da177e4
LT
3013
3014 /*
3015 * Test if we are atomic. Since do_exit() needs to call into
3016 * schedule() atomically, we ignore that path for now.
3017 * Otherwise, whine if we are scheduling when we should not be.
3018 */
77e4bfbc
AM
3019 if (unlikely(in_atomic() && !current->exit_state)) {
3020 printk(KERN_ERR "BUG: scheduling while atomic: "
3021 "%s/0x%08x/%d\n",
3022 current->comm, preempt_count(), current->pid);
3023 dump_stack();
1da177e4
LT
3024 }
3025 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3026
3027need_resched:
3028 preempt_disable();
3029 prev = current;
3030 release_kernel_lock(prev);
3031need_resched_nonpreemptible:
3032 rq = this_rq();
3033
3034 /*
3035 * The idle thread is not allowed to schedule!
3036 * Remove this check after it has been exercised a bit.
3037 */
3038 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3039 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3040 dump_stack();
3041 }
3042
3043 schedstat_inc(rq, sched_cnt);
3044 now = sched_clock();
238628ed 3045 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3046 run_time = now - prev->timestamp;
238628ed 3047 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3048 run_time = 0;
3049 } else
3050 run_time = NS_MAX_SLEEP_AVG;
3051
3052 /*
3053 * Tasks charged proportionately less run_time at high sleep_avg to
3054 * delay them losing their interactive status
3055 */
3056 run_time /= (CURRENT_BONUS(prev) ? : 1);
3057
3058 spin_lock_irq(&rq->lock);
3059
3060 if (unlikely(prev->flags & PF_DEAD))
3061 prev->state = EXIT_DEAD;
3062
3063 switch_count = &prev->nivcsw;
3064 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3065 switch_count = &prev->nvcsw;
3066 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3067 unlikely(signal_pending(prev))))
3068 prev->state = TASK_RUNNING;
3069 else {
3070 if (prev->state == TASK_UNINTERRUPTIBLE)
3071 rq->nr_uninterruptible++;
3072 deactivate_task(prev, rq);
3073 }
3074 }
3075
3076 cpu = smp_processor_id();
3077 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3078 idle_balance(cpu, rq);
3079 if (!rq->nr_running) {
3080 next = rq->idle;
3081 rq->expired_timestamp = 0;
c96d145e 3082 wake_sleeping_dependent(cpu);
1da177e4
LT
3083 goto switch_tasks;
3084 }
1da177e4
LT
3085 }
3086
3087 array = rq->active;
3088 if (unlikely(!array->nr_active)) {
3089 /*
3090 * Switch the active and expired arrays.
3091 */
3092 schedstat_inc(rq, sched_switch);
3093 rq->active = rq->expired;
3094 rq->expired = array;
3095 array = rq->active;
3096 rq->expired_timestamp = 0;
3097 rq->best_expired_prio = MAX_PRIO;
3098 }
3099
3100 idx = sched_find_first_bit(array->bitmap);
3101 queue = array->queue + idx;
3102 next = list_entry(queue->next, task_t, run_list);
3103
3dee386e 3104 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3105 unsigned long long delta = now - next->timestamp;
238628ed 3106 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3107 delta = 0;
3108
3dee386e 3109 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3110 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3111
3112 array = next->array;
a3464a10
CS
3113 new_prio = recalc_task_prio(next, next->timestamp + delta);
3114
3115 if (unlikely(next->prio != new_prio)) {
3116 dequeue_task(next, array);
3117 next->prio = new_prio;
3118 enqueue_task(next, array);
7c4bb1f9 3119 }
1da177e4 3120 }
3dee386e 3121 next->sleep_type = SLEEP_NORMAL;
c96d145e
CK
3122 if (dependent_sleeper(cpu, rq, next))
3123 next = rq->idle;
1da177e4
LT
3124switch_tasks:
3125 if (next == rq->idle)
3126 schedstat_inc(rq, sched_goidle);
3127 prefetch(next);
383f2835 3128 prefetch_stack(next);
1da177e4
LT
3129 clear_tsk_need_resched(prev);
3130 rcu_qsctr_inc(task_cpu(prev));
3131
3132 update_cpu_clock(prev, rq, now);
3133
3134 prev->sleep_avg -= run_time;
3135 if ((long)prev->sleep_avg <= 0)
3136 prev->sleep_avg = 0;
3137 prev->timestamp = prev->last_ran = now;
3138
3139 sched_info_switch(prev, next);
3140 if (likely(prev != next)) {
3141 next->timestamp = now;
3142 rq->nr_switches++;
3143 rq->curr = next;
3144 ++*switch_count;
3145
4866cde0 3146 prepare_task_switch(rq, next);
1da177e4
LT
3147 prev = context_switch(rq, prev, next);
3148 barrier();
4866cde0
NP
3149 /*
3150 * this_rq must be evaluated again because prev may have moved
3151 * CPUs since it called schedule(), thus the 'rq' on its stack
3152 * frame will be invalid.
3153 */
3154 finish_task_switch(this_rq(), prev);
1da177e4
LT
3155 } else
3156 spin_unlock_irq(&rq->lock);
3157
3158 prev = current;
3159 if (unlikely(reacquire_kernel_lock(prev) < 0))
3160 goto need_resched_nonpreemptible;
3161 preempt_enable_no_resched();
3162 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3163 goto need_resched;
3164}
3165
3166EXPORT_SYMBOL(schedule);
3167
3168#ifdef CONFIG_PREEMPT
3169/*
3170 * this is is the entry point to schedule() from in-kernel preemption
3171 * off of preempt_enable. Kernel preemptions off return from interrupt
3172 * occur there and call schedule directly.
3173 */
3174asmlinkage void __sched preempt_schedule(void)
3175{
3176 struct thread_info *ti = current_thread_info();
3177#ifdef CONFIG_PREEMPT_BKL
3178 struct task_struct *task = current;
3179 int saved_lock_depth;
3180#endif
3181 /*
3182 * If there is a non-zero preempt_count or interrupts are disabled,
3183 * we do not want to preempt the current task. Just return..
3184 */
3185 if (unlikely(ti->preempt_count || irqs_disabled()))
3186 return;
3187
3188need_resched:
3189 add_preempt_count(PREEMPT_ACTIVE);
3190 /*
3191 * We keep the big kernel semaphore locked, but we
3192 * clear ->lock_depth so that schedule() doesnt
3193 * auto-release the semaphore:
3194 */
3195#ifdef CONFIG_PREEMPT_BKL
3196 saved_lock_depth = task->lock_depth;
3197 task->lock_depth = -1;
3198#endif
3199 schedule();
3200#ifdef CONFIG_PREEMPT_BKL
3201 task->lock_depth = saved_lock_depth;
3202#endif
3203 sub_preempt_count(PREEMPT_ACTIVE);
3204
3205 /* we could miss a preemption opportunity between schedule and now */
3206 barrier();
3207 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3208 goto need_resched;
3209}
3210
3211EXPORT_SYMBOL(preempt_schedule);
3212
3213/*
3214 * this is is the entry point to schedule() from kernel preemption
3215 * off of irq context.
3216 * Note, that this is called and return with irqs disabled. This will
3217 * protect us against recursive calling from irq.
3218 */
3219asmlinkage void __sched preempt_schedule_irq(void)
3220{
3221 struct thread_info *ti = current_thread_info();
3222#ifdef CONFIG_PREEMPT_BKL
3223 struct task_struct *task = current;
3224 int saved_lock_depth;
3225#endif
3226 /* Catch callers which need to be fixed*/
3227 BUG_ON(ti->preempt_count || !irqs_disabled());
3228
3229need_resched:
3230 add_preempt_count(PREEMPT_ACTIVE);
3231 /*
3232 * We keep the big kernel semaphore locked, but we
3233 * clear ->lock_depth so that schedule() doesnt
3234 * auto-release the semaphore:
3235 */
3236#ifdef CONFIG_PREEMPT_BKL
3237 saved_lock_depth = task->lock_depth;
3238 task->lock_depth = -1;
3239#endif
3240 local_irq_enable();
3241 schedule();
3242 local_irq_disable();
3243#ifdef CONFIG_PREEMPT_BKL
3244 task->lock_depth = saved_lock_depth;
3245#endif
3246 sub_preempt_count(PREEMPT_ACTIVE);
3247
3248 /* we could miss a preemption opportunity between schedule and now */
3249 barrier();
3250 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3251 goto need_resched;
3252}
3253
3254#endif /* CONFIG_PREEMPT */
3255
95cdf3b7
IM
3256int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3257 void *key)
1da177e4 3258{
c43dc2fd 3259 task_t *p = curr->private;
1da177e4
LT
3260 return try_to_wake_up(p, mode, sync);
3261}
3262
3263EXPORT_SYMBOL(default_wake_function);
3264
3265/*
3266 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3267 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3268 * number) then we wake all the non-exclusive tasks and one exclusive task.
3269 *
3270 * There are circumstances in which we can try to wake a task which has already
3271 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3272 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3273 */
3274static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3275 int nr_exclusive, int sync, void *key)
3276{
3277 struct list_head *tmp, *next;
3278
3279 list_for_each_safe(tmp, next, &q->task_list) {
3280 wait_queue_t *curr;
3281 unsigned flags;
3282 curr = list_entry(tmp, wait_queue_t, task_list);
3283 flags = curr->flags;
3284 if (curr->func(curr, mode, sync, key) &&
3285 (flags & WQ_FLAG_EXCLUSIVE) &&
3286 !--nr_exclusive)
3287 break;
3288 }
3289}
3290
3291/**
3292 * __wake_up - wake up threads blocked on a waitqueue.
3293 * @q: the waitqueue
3294 * @mode: which threads
3295 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3296 * @key: is directly passed to the wakeup function
1da177e4
LT
3297 */
3298void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3299 int nr_exclusive, void *key)
1da177e4
LT
3300{
3301 unsigned long flags;
3302
3303 spin_lock_irqsave(&q->lock, flags);
3304 __wake_up_common(q, mode, nr_exclusive, 0, key);
3305 spin_unlock_irqrestore(&q->lock, flags);
3306}
3307
3308EXPORT_SYMBOL(__wake_up);
3309
3310/*
3311 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3312 */
3313void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3314{
3315 __wake_up_common(q, mode, 1, 0, NULL);
3316}
3317
3318/**
67be2dd1 3319 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3320 * @q: the waitqueue
3321 * @mode: which threads
3322 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3323 *
3324 * The sync wakeup differs that the waker knows that it will schedule
3325 * away soon, so while the target thread will be woken up, it will not
3326 * be migrated to another CPU - ie. the two threads are 'synchronized'
3327 * with each other. This can prevent needless bouncing between CPUs.
3328 *
3329 * On UP it can prevent extra preemption.
3330 */
95cdf3b7
IM
3331void fastcall
3332__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3333{
3334 unsigned long flags;
3335 int sync = 1;
3336
3337 if (unlikely(!q))
3338 return;
3339
3340 if (unlikely(!nr_exclusive))
3341 sync = 0;
3342
3343 spin_lock_irqsave(&q->lock, flags);
3344 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3345 spin_unlock_irqrestore(&q->lock, flags);
3346}
3347EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3348
3349void fastcall complete(struct completion *x)
3350{
3351 unsigned long flags;
3352
3353 spin_lock_irqsave(&x->wait.lock, flags);
3354 x->done++;
3355 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3356 1, 0, NULL);
3357 spin_unlock_irqrestore(&x->wait.lock, flags);
3358}
3359EXPORT_SYMBOL(complete);
3360
3361void fastcall complete_all(struct completion *x)
3362{
3363 unsigned long flags;
3364
3365 spin_lock_irqsave(&x->wait.lock, flags);
3366 x->done += UINT_MAX/2;
3367 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3368 0, 0, NULL);
3369 spin_unlock_irqrestore(&x->wait.lock, flags);
3370}
3371EXPORT_SYMBOL(complete_all);
3372
3373void fastcall __sched wait_for_completion(struct completion *x)
3374{
3375 might_sleep();
3376 spin_lock_irq(&x->wait.lock);
3377 if (!x->done) {
3378 DECLARE_WAITQUEUE(wait, current);
3379
3380 wait.flags |= WQ_FLAG_EXCLUSIVE;
3381 __add_wait_queue_tail(&x->wait, &wait);
3382 do {
3383 __set_current_state(TASK_UNINTERRUPTIBLE);
3384 spin_unlock_irq(&x->wait.lock);
3385 schedule();
3386 spin_lock_irq(&x->wait.lock);
3387 } while (!x->done);
3388 __remove_wait_queue(&x->wait, &wait);
3389 }
3390 x->done--;
3391 spin_unlock_irq(&x->wait.lock);
3392}
3393EXPORT_SYMBOL(wait_for_completion);
3394
3395unsigned long fastcall __sched
3396wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3397{
3398 might_sleep();
3399
3400 spin_lock_irq(&x->wait.lock);
3401 if (!x->done) {
3402 DECLARE_WAITQUEUE(wait, current);
3403
3404 wait.flags |= WQ_FLAG_EXCLUSIVE;
3405 __add_wait_queue_tail(&x->wait, &wait);
3406 do {
3407 __set_current_state(TASK_UNINTERRUPTIBLE);
3408 spin_unlock_irq(&x->wait.lock);
3409 timeout = schedule_timeout(timeout);
3410 spin_lock_irq(&x->wait.lock);
3411 if (!timeout) {
3412 __remove_wait_queue(&x->wait, &wait);
3413 goto out;
3414 }
3415 } while (!x->done);
3416 __remove_wait_queue(&x->wait, &wait);
3417 }
3418 x->done--;
3419out:
3420 spin_unlock_irq(&x->wait.lock);
3421 return timeout;
3422}
3423EXPORT_SYMBOL(wait_for_completion_timeout);
3424
3425int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3426{
3427 int ret = 0;
3428
3429 might_sleep();
3430
3431 spin_lock_irq(&x->wait.lock);
3432 if (!x->done) {
3433 DECLARE_WAITQUEUE(wait, current);
3434
3435 wait.flags |= WQ_FLAG_EXCLUSIVE;
3436 __add_wait_queue_tail(&x->wait, &wait);
3437 do {
3438 if (signal_pending(current)) {
3439 ret = -ERESTARTSYS;
3440 __remove_wait_queue(&x->wait, &wait);
3441 goto out;
3442 }
3443 __set_current_state(TASK_INTERRUPTIBLE);
3444 spin_unlock_irq(&x->wait.lock);
3445 schedule();
3446 spin_lock_irq(&x->wait.lock);
3447 } while (!x->done);
3448 __remove_wait_queue(&x->wait, &wait);
3449 }
3450 x->done--;
3451out:
3452 spin_unlock_irq(&x->wait.lock);
3453
3454 return ret;
3455}
3456EXPORT_SYMBOL(wait_for_completion_interruptible);
3457
3458unsigned long fastcall __sched
3459wait_for_completion_interruptible_timeout(struct completion *x,
3460 unsigned long timeout)
3461{
3462 might_sleep();
3463
3464 spin_lock_irq(&x->wait.lock);
3465 if (!x->done) {
3466 DECLARE_WAITQUEUE(wait, current);
3467
3468 wait.flags |= WQ_FLAG_EXCLUSIVE;
3469 __add_wait_queue_tail(&x->wait, &wait);
3470 do {
3471 if (signal_pending(current)) {
3472 timeout = -ERESTARTSYS;
3473 __remove_wait_queue(&x->wait, &wait);
3474 goto out;
3475 }
3476 __set_current_state(TASK_INTERRUPTIBLE);
3477 spin_unlock_irq(&x->wait.lock);
3478 timeout = schedule_timeout(timeout);
3479 spin_lock_irq(&x->wait.lock);
3480 if (!timeout) {
3481 __remove_wait_queue(&x->wait, &wait);
3482 goto out;
3483 }
3484 } while (!x->done);
3485 __remove_wait_queue(&x->wait, &wait);
3486 }
3487 x->done--;
3488out:
3489 spin_unlock_irq(&x->wait.lock);
3490 return timeout;
3491}
3492EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3493
3494
3495#define SLEEP_ON_VAR \
3496 unsigned long flags; \
3497 wait_queue_t wait; \
3498 init_waitqueue_entry(&wait, current);
3499
3500#define SLEEP_ON_HEAD \
3501 spin_lock_irqsave(&q->lock,flags); \
3502 __add_wait_queue(q, &wait); \
3503 spin_unlock(&q->lock);
3504
3505#define SLEEP_ON_TAIL \
3506 spin_lock_irq(&q->lock); \
3507 __remove_wait_queue(q, &wait); \
3508 spin_unlock_irqrestore(&q->lock, flags);
3509
3510void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3511{
3512 SLEEP_ON_VAR
3513
3514 current->state = TASK_INTERRUPTIBLE;
3515
3516 SLEEP_ON_HEAD
3517 schedule();
3518 SLEEP_ON_TAIL
3519}
3520
3521EXPORT_SYMBOL(interruptible_sleep_on);
3522
95cdf3b7
IM
3523long fastcall __sched
3524interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3525{
3526 SLEEP_ON_VAR
3527
3528 current->state = TASK_INTERRUPTIBLE;
3529
3530 SLEEP_ON_HEAD
3531 timeout = schedule_timeout(timeout);
3532 SLEEP_ON_TAIL
3533
3534 return timeout;
3535}
3536
3537EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3538
3539void fastcall __sched sleep_on(wait_queue_head_t *q)
3540{
3541 SLEEP_ON_VAR
3542
3543 current->state = TASK_UNINTERRUPTIBLE;
3544
3545 SLEEP_ON_HEAD
3546 schedule();
3547 SLEEP_ON_TAIL
3548}
3549
3550EXPORT_SYMBOL(sleep_on);
3551
3552long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3553{
3554 SLEEP_ON_VAR
3555
3556 current->state = TASK_UNINTERRUPTIBLE;
3557
3558 SLEEP_ON_HEAD
3559 timeout = schedule_timeout(timeout);
3560 SLEEP_ON_TAIL
3561
3562 return timeout;
3563}
3564
3565EXPORT_SYMBOL(sleep_on_timeout);
3566
3567void set_user_nice(task_t *p, long nice)
3568{
3569 unsigned long flags;
3570 prio_array_t *array;
3571 runqueue_t *rq;
3572 int old_prio, new_prio, delta;
3573
3574 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3575 return;
3576 /*
3577 * We have to be careful, if called from sys_setpriority(),
3578 * the task might be in the middle of scheduling on another CPU.
3579 */
3580 rq = task_rq_lock(p, &flags);
3581 /*
3582 * The RT priorities are set via sched_setscheduler(), but we still
3583 * allow the 'normal' nice value to be set - but as expected
3584 * it wont have any effect on scheduling until the task is
b0a9499c 3585 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3586 */
3587 if (rt_task(p)) {
3588 p->static_prio = NICE_TO_PRIO(nice);
3589 goto out_unlock;
3590 }
3591 array = p->array;
2dd73a4f 3592 if (array) {
1da177e4 3593 dequeue_task(p, array);
2dd73a4f
PW
3594 dec_raw_weighted_load(rq, p);
3595 }
1da177e4
LT
3596
3597 old_prio = p->prio;
3598 new_prio = NICE_TO_PRIO(nice);
3599 delta = new_prio - old_prio;
3600 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3601 set_load_weight(p);
1da177e4
LT
3602 p->prio += delta;
3603
3604 if (array) {
3605 enqueue_task(p, array);
2dd73a4f 3606 inc_raw_weighted_load(rq, p);
1da177e4
LT
3607 /*
3608 * If the task increased its priority or is running and
3609 * lowered its priority, then reschedule its CPU:
3610 */
3611 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3612 resched_task(rq->curr);
3613 }
3614out_unlock:
3615 task_rq_unlock(rq, &flags);
3616}
3617
3618EXPORT_SYMBOL(set_user_nice);
3619
e43379f1
MM
3620/*
3621 * can_nice - check if a task can reduce its nice value
3622 * @p: task
3623 * @nice: nice value
3624 */
3625int can_nice(const task_t *p, const int nice)
3626{
024f4747
MM
3627 /* convert nice value [19,-20] to rlimit style value [1,40] */
3628 int nice_rlim = 20 - nice;
e43379f1
MM
3629 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3630 capable(CAP_SYS_NICE));
3631}
3632
1da177e4
LT
3633#ifdef __ARCH_WANT_SYS_NICE
3634
3635/*
3636 * sys_nice - change the priority of the current process.
3637 * @increment: priority increment
3638 *
3639 * sys_setpriority is a more generic, but much slower function that
3640 * does similar things.
3641 */
3642asmlinkage long sys_nice(int increment)
3643{
3644 int retval;
3645 long nice;
3646
3647 /*
3648 * Setpriority might change our priority at the same moment.
3649 * We don't have to worry. Conceptually one call occurs first
3650 * and we have a single winner.
3651 */
e43379f1
MM
3652 if (increment < -40)
3653 increment = -40;
1da177e4
LT
3654 if (increment > 40)
3655 increment = 40;
3656
3657 nice = PRIO_TO_NICE(current->static_prio) + increment;
3658 if (nice < -20)
3659 nice = -20;
3660 if (nice > 19)
3661 nice = 19;
3662
e43379f1
MM
3663 if (increment < 0 && !can_nice(current, nice))
3664 return -EPERM;
3665
1da177e4
LT
3666 retval = security_task_setnice(current, nice);
3667 if (retval)
3668 return retval;
3669
3670 set_user_nice(current, nice);
3671 return 0;
3672}
3673
3674#endif
3675
3676/**
3677 * task_prio - return the priority value of a given task.
3678 * @p: the task in question.
3679 *
3680 * This is the priority value as seen by users in /proc.
3681 * RT tasks are offset by -200. Normal tasks are centered
3682 * around 0, value goes from -16 to +15.
3683 */
3684int task_prio(const task_t *p)
3685{
3686 return p->prio - MAX_RT_PRIO;
3687}
3688
3689/**
3690 * task_nice - return the nice value of a given task.
3691 * @p: the task in question.
3692 */
3693int task_nice(const task_t *p)
3694{
3695 return TASK_NICE(p);
3696}
1da177e4 3697EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3698
3699/**
3700 * idle_cpu - is a given cpu idle currently?
3701 * @cpu: the processor in question.
3702 */
3703int idle_cpu(int cpu)
3704{
3705 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3706}
3707
1da177e4
LT
3708/**
3709 * idle_task - return the idle task for a given cpu.
3710 * @cpu: the processor in question.
3711 */
3712task_t *idle_task(int cpu)
3713{
3714 return cpu_rq(cpu)->idle;
3715}
3716
3717/**
3718 * find_process_by_pid - find a process with a matching PID value.
3719 * @pid: the pid in question.
3720 */
3721static inline task_t *find_process_by_pid(pid_t pid)
3722{
3723 return pid ? find_task_by_pid(pid) : current;
3724}
3725
3726/* Actually do priority change: must hold rq lock. */
3727static void __setscheduler(struct task_struct *p, int policy, int prio)
3728{
3729 BUG_ON(p->array);
3730 p->policy = policy;
3731 p->rt_priority = prio;
b0a9499c 3732 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3733 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3734 } else {
1da177e4 3735 p->prio = p->static_prio;
b0a9499c
IM
3736 /*
3737 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3738 */
3739 if (policy == SCHED_BATCH)
3740 p->sleep_avg = 0;
3741 }
2dd73a4f 3742 set_load_weight(p);
1da177e4
LT
3743}
3744
3745/**
3746 * sched_setscheduler - change the scheduling policy and/or RT priority of
3747 * a thread.
3748 * @p: the task in question.
3749 * @policy: new policy.
3750 * @param: structure containing the new RT priority.
3751 */
95cdf3b7
IM
3752int sched_setscheduler(struct task_struct *p, int policy,
3753 struct sched_param *param)
1da177e4
LT
3754{
3755 int retval;
3756 int oldprio, oldpolicy = -1;
3757 prio_array_t *array;
3758 unsigned long flags;
3759 runqueue_t *rq;
3760
3761recheck:
3762 /* double check policy once rq lock held */
3763 if (policy < 0)
3764 policy = oldpolicy = p->policy;
3765 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3766 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3767 return -EINVAL;
1da177e4
LT
3768 /*
3769 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3770 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3771 * SCHED_BATCH is 0.
1da177e4
LT
3772 */
3773 if (param->sched_priority < 0 ||
95cdf3b7 3774 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3775 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3776 return -EINVAL;
b0a9499c
IM
3777 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3778 != (param->sched_priority == 0))
1da177e4
LT
3779 return -EINVAL;
3780
37e4ab3f
OC
3781 /*
3782 * Allow unprivileged RT tasks to decrease priority:
3783 */
3784 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3785 /*
3786 * can't change policy, except between SCHED_NORMAL
3787 * and SCHED_BATCH:
3788 */
3789 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3790 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3791 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3792 return -EPERM;
3793 /* can't increase priority */
b0a9499c 3794 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3795 param->sched_priority > p->rt_priority &&
3796 param->sched_priority >
3797 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3798 return -EPERM;
3799 /* can't change other user's priorities */
3800 if ((current->euid != p->euid) &&
3801 (current->euid != p->uid))
3802 return -EPERM;
3803 }
1da177e4
LT
3804
3805 retval = security_task_setscheduler(p, policy, param);
3806 if (retval)
3807 return retval;
3808 /*
3809 * To be able to change p->policy safely, the apropriate
3810 * runqueue lock must be held.
3811 */
3812 rq = task_rq_lock(p, &flags);
3813 /* recheck policy now with rq lock held */
3814 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3815 policy = oldpolicy = -1;
3816 task_rq_unlock(rq, &flags);
3817 goto recheck;
3818 }
3819 array = p->array;
3820 if (array)
3821 deactivate_task(p, rq);
3822 oldprio = p->prio;
3823 __setscheduler(p, policy, param->sched_priority);
3824 if (array) {
3825 __activate_task(p, rq);
3826 /*
3827 * Reschedule if we are currently running on this runqueue and
3828 * our priority decreased, or if we are not currently running on
3829 * this runqueue and our priority is higher than the current's
3830 */
3831 if (task_running(rq, p)) {
3832 if (p->prio > oldprio)
3833 resched_task(rq->curr);
3834 } else if (TASK_PREEMPTS_CURR(p, rq))
3835 resched_task(rq->curr);
3836 }
3837 task_rq_unlock(rq, &flags);
3838 return 0;
3839}
3840EXPORT_SYMBOL_GPL(sched_setscheduler);
3841
95cdf3b7
IM
3842static int
3843do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3844{
3845 int retval;
3846 struct sched_param lparam;
3847 struct task_struct *p;
3848
3849 if (!param || pid < 0)
3850 return -EINVAL;
3851 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3852 return -EFAULT;
3853 read_lock_irq(&tasklist_lock);
3854 p = find_process_by_pid(pid);
3855 if (!p) {
3856 read_unlock_irq(&tasklist_lock);
3857 return -ESRCH;
3858 }
3859 retval = sched_setscheduler(p, policy, &lparam);
3860 read_unlock_irq(&tasklist_lock);
3861 return retval;
3862}
3863
3864/**
3865 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3866 * @pid: the pid in question.
3867 * @policy: new policy.
3868 * @param: structure containing the new RT priority.
3869 */
3870asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3871 struct sched_param __user *param)
3872{
c21761f1
JB
3873 /* negative values for policy are not valid */
3874 if (policy < 0)
3875 return -EINVAL;
3876
1da177e4
LT
3877 return do_sched_setscheduler(pid, policy, param);
3878}
3879
3880/**
3881 * sys_sched_setparam - set/change the RT priority of a thread
3882 * @pid: the pid in question.
3883 * @param: structure containing the new RT priority.
3884 */
3885asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3886{
3887 return do_sched_setscheduler(pid, -1, param);
3888}
3889
3890/**
3891 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3892 * @pid: the pid in question.
3893 */
3894asmlinkage long sys_sched_getscheduler(pid_t pid)
3895{
3896 int retval = -EINVAL;
3897 task_t *p;
3898
3899 if (pid < 0)
3900 goto out_nounlock;
3901
3902 retval = -ESRCH;
3903 read_lock(&tasklist_lock);
3904 p = find_process_by_pid(pid);
3905 if (p) {
3906 retval = security_task_getscheduler(p);
3907 if (!retval)
3908 retval = p->policy;
3909 }
3910 read_unlock(&tasklist_lock);
3911
3912out_nounlock:
3913 return retval;
3914}
3915
3916/**
3917 * sys_sched_getscheduler - get the RT priority of a thread
3918 * @pid: the pid in question.
3919 * @param: structure containing the RT priority.
3920 */
3921asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3922{
3923 struct sched_param lp;
3924 int retval = -EINVAL;
3925 task_t *p;
3926
3927 if (!param || pid < 0)
3928 goto out_nounlock;
3929
3930 read_lock(&tasklist_lock);
3931 p = find_process_by_pid(pid);
3932 retval = -ESRCH;
3933 if (!p)
3934 goto out_unlock;
3935
3936 retval = security_task_getscheduler(p);
3937 if (retval)
3938 goto out_unlock;
3939
3940 lp.sched_priority = p->rt_priority;
3941 read_unlock(&tasklist_lock);
3942
3943 /*
3944 * This one might sleep, we cannot do it with a spinlock held ...
3945 */
3946 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3947
3948out_nounlock:
3949 return retval;
3950
3951out_unlock:
3952 read_unlock(&tasklist_lock);
3953 return retval;
3954}
3955
3956long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3957{
3958 task_t *p;
3959 int retval;
3960 cpumask_t cpus_allowed;
3961
3962 lock_cpu_hotplug();
3963 read_lock(&tasklist_lock);
3964
3965 p = find_process_by_pid(pid);
3966 if (!p) {
3967 read_unlock(&tasklist_lock);
3968 unlock_cpu_hotplug();
3969 return -ESRCH;
3970 }
3971
3972 /*
3973 * It is not safe to call set_cpus_allowed with the
3974 * tasklist_lock held. We will bump the task_struct's
3975 * usage count and then drop tasklist_lock.
3976 */
3977 get_task_struct(p);
3978 read_unlock(&tasklist_lock);
3979
3980 retval = -EPERM;
3981 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3982 !capable(CAP_SYS_NICE))
3983 goto out_unlock;
3984
e7834f8f
DQ
3985 retval = security_task_setscheduler(p, 0, NULL);
3986 if (retval)
3987 goto out_unlock;
3988
1da177e4
LT
3989 cpus_allowed = cpuset_cpus_allowed(p);
3990 cpus_and(new_mask, new_mask, cpus_allowed);
3991 retval = set_cpus_allowed(p, new_mask);
3992
3993out_unlock:
3994 put_task_struct(p);
3995 unlock_cpu_hotplug();
3996 return retval;
3997}
3998
3999static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4000 cpumask_t *new_mask)
4001{
4002 if (len < sizeof(cpumask_t)) {
4003 memset(new_mask, 0, sizeof(cpumask_t));
4004 } else if (len > sizeof(cpumask_t)) {
4005 len = sizeof(cpumask_t);
4006 }
4007 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4008}
4009
4010/**
4011 * sys_sched_setaffinity - set the cpu affinity of a process
4012 * @pid: pid of the process
4013 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4014 * @user_mask_ptr: user-space pointer to the new cpu mask
4015 */
4016asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4017 unsigned long __user *user_mask_ptr)
4018{
4019 cpumask_t new_mask;
4020 int retval;
4021
4022 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4023 if (retval)
4024 return retval;
4025
4026 return sched_setaffinity(pid, new_mask);
4027}
4028
4029/*
4030 * Represents all cpu's present in the system
4031 * In systems capable of hotplug, this map could dynamically grow
4032 * as new cpu's are detected in the system via any platform specific
4033 * method, such as ACPI for e.g.
4034 */
4035
4cef0c61 4036cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4037EXPORT_SYMBOL(cpu_present_map);
4038
4039#ifndef CONFIG_SMP
4cef0c61
AK
4040cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4041cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
4042#endif
4043
4044long sched_getaffinity(pid_t pid, cpumask_t *mask)
4045{
4046 int retval;
4047 task_t *p;
4048
4049 lock_cpu_hotplug();
4050 read_lock(&tasklist_lock);
4051
4052 retval = -ESRCH;
4053 p = find_process_by_pid(pid);
4054 if (!p)
4055 goto out_unlock;
4056
e7834f8f
DQ
4057 retval = security_task_getscheduler(p);
4058 if (retval)
4059 goto out_unlock;
4060
2f7016d9 4061 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4062
4063out_unlock:
4064 read_unlock(&tasklist_lock);
4065 unlock_cpu_hotplug();
4066 if (retval)
4067 return retval;
4068
4069 return 0;
4070}
4071
4072/**
4073 * sys_sched_getaffinity - get the cpu affinity of a process
4074 * @pid: pid of the process
4075 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4076 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4077 */
4078asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4079 unsigned long __user *user_mask_ptr)
4080{
4081 int ret;
4082 cpumask_t mask;
4083
4084 if (len < sizeof(cpumask_t))
4085 return -EINVAL;
4086
4087 ret = sched_getaffinity(pid, &mask);
4088 if (ret < 0)
4089 return ret;
4090
4091 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4092 return -EFAULT;
4093
4094 return sizeof(cpumask_t);
4095}
4096
4097/**
4098 * sys_sched_yield - yield the current processor to other threads.
4099 *
4100 * this function yields the current CPU by moving the calling thread
4101 * to the expired array. If there are no other threads running on this
4102 * CPU then this function will return.
4103 */
4104asmlinkage long sys_sched_yield(void)
4105{
4106 runqueue_t *rq = this_rq_lock();
4107 prio_array_t *array = current->array;
4108 prio_array_t *target = rq->expired;
4109
4110 schedstat_inc(rq, yld_cnt);
4111 /*
4112 * We implement yielding by moving the task into the expired
4113 * queue.
4114 *
4115 * (special rule: RT tasks will just roundrobin in the active
4116 * array.)
4117 */
4118 if (rt_task(current))
4119 target = rq->active;
4120
5927ad78 4121 if (array->nr_active == 1) {
1da177e4
LT
4122 schedstat_inc(rq, yld_act_empty);
4123 if (!rq->expired->nr_active)
4124 schedstat_inc(rq, yld_both_empty);
4125 } else if (!rq->expired->nr_active)
4126 schedstat_inc(rq, yld_exp_empty);
4127
4128 if (array != target) {
4129 dequeue_task(current, array);
4130 enqueue_task(current, target);
4131 } else
4132 /*
4133 * requeue_task is cheaper so perform that if possible.
4134 */
4135 requeue_task(current, array);
4136
4137 /*
4138 * Since we are going to call schedule() anyway, there's
4139 * no need to preempt or enable interrupts:
4140 */
4141 __release(rq->lock);
4142 _raw_spin_unlock(&rq->lock);
4143 preempt_enable_no_resched();
4144
4145 schedule();
4146
4147 return 0;
4148}
4149
4150static inline void __cond_resched(void)
4151{
8e0a43d8
IM
4152#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4153 __might_sleep(__FILE__, __LINE__);
4154#endif
5bbcfd90
IM
4155 /*
4156 * The BKS might be reacquired before we have dropped
4157 * PREEMPT_ACTIVE, which could trigger a second
4158 * cond_resched() call.
4159 */
4160 if (unlikely(preempt_count()))
4161 return;
8ba7b0a1
LT
4162 if (unlikely(system_state != SYSTEM_RUNNING))
4163 return;
1da177e4
LT
4164 do {
4165 add_preempt_count(PREEMPT_ACTIVE);
4166 schedule();
4167 sub_preempt_count(PREEMPT_ACTIVE);
4168 } while (need_resched());
4169}
4170
4171int __sched cond_resched(void)
4172{
4173 if (need_resched()) {
4174 __cond_resched();
4175 return 1;
4176 }
4177 return 0;
4178}
4179
4180EXPORT_SYMBOL(cond_resched);
4181
4182/*
4183 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4184 * call schedule, and on return reacquire the lock.
4185 *
4186 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4187 * operations here to prevent schedule() from being called twice (once via
4188 * spin_unlock(), once by hand).
4189 */
95cdf3b7 4190int cond_resched_lock(spinlock_t *lock)
1da177e4 4191{
6df3cecb
JK
4192 int ret = 0;
4193
1da177e4
LT
4194 if (need_lockbreak(lock)) {
4195 spin_unlock(lock);
4196 cpu_relax();
6df3cecb 4197 ret = 1;
1da177e4
LT
4198 spin_lock(lock);
4199 }
4200 if (need_resched()) {
4201 _raw_spin_unlock(lock);
4202 preempt_enable_no_resched();
4203 __cond_resched();
6df3cecb 4204 ret = 1;
1da177e4 4205 spin_lock(lock);
1da177e4 4206 }
6df3cecb 4207 return ret;
1da177e4
LT
4208}
4209
4210EXPORT_SYMBOL(cond_resched_lock);
4211
4212int __sched cond_resched_softirq(void)
4213{
4214 BUG_ON(!in_softirq());
4215
4216 if (need_resched()) {
4217 __local_bh_enable();
4218 __cond_resched();
4219 local_bh_disable();
4220 return 1;
4221 }
4222 return 0;
4223}
4224
4225EXPORT_SYMBOL(cond_resched_softirq);
4226
4227
4228/**
4229 * yield - yield the current processor to other threads.
4230 *
4231 * this is a shortcut for kernel-space yielding - it marks the
4232 * thread runnable and calls sys_sched_yield().
4233 */
4234void __sched yield(void)
4235{
4236 set_current_state(TASK_RUNNING);
4237 sys_sched_yield();
4238}
4239
4240EXPORT_SYMBOL(yield);
4241
4242/*
4243 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4244 * that process accounting knows that this is a task in IO wait state.
4245 *
4246 * But don't do that if it is a deliberate, throttling IO wait (this task
4247 * has set its backing_dev_info: the queue against which it should throttle)
4248 */
4249void __sched io_schedule(void)
4250{
bfe5d834 4251 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4252
4253 atomic_inc(&rq->nr_iowait);
4254 schedule();
4255 atomic_dec(&rq->nr_iowait);
4256}
4257
4258EXPORT_SYMBOL(io_schedule);
4259
4260long __sched io_schedule_timeout(long timeout)
4261{
bfe5d834 4262 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4263 long ret;
4264
4265 atomic_inc(&rq->nr_iowait);
4266 ret = schedule_timeout(timeout);
4267 atomic_dec(&rq->nr_iowait);
4268 return ret;
4269}
4270
4271/**
4272 * sys_sched_get_priority_max - return maximum RT priority.
4273 * @policy: scheduling class.
4274 *
4275 * this syscall returns the maximum rt_priority that can be used
4276 * by a given scheduling class.
4277 */
4278asmlinkage long sys_sched_get_priority_max(int policy)
4279{
4280 int ret = -EINVAL;
4281
4282 switch (policy) {
4283 case SCHED_FIFO:
4284 case SCHED_RR:
4285 ret = MAX_USER_RT_PRIO-1;
4286 break;
4287 case SCHED_NORMAL:
b0a9499c 4288 case SCHED_BATCH:
1da177e4
LT
4289 ret = 0;
4290 break;
4291 }
4292 return ret;
4293}
4294
4295/**
4296 * sys_sched_get_priority_min - return minimum RT priority.
4297 * @policy: scheduling class.
4298 *
4299 * this syscall returns the minimum rt_priority that can be used
4300 * by a given scheduling class.
4301 */
4302asmlinkage long sys_sched_get_priority_min(int policy)
4303{
4304 int ret = -EINVAL;
4305
4306 switch (policy) {
4307 case SCHED_FIFO:
4308 case SCHED_RR:
4309 ret = 1;
4310 break;
4311 case SCHED_NORMAL:
b0a9499c 4312 case SCHED_BATCH:
1da177e4
LT
4313 ret = 0;
4314 }
4315 return ret;
4316}
4317
4318/**
4319 * sys_sched_rr_get_interval - return the default timeslice of a process.
4320 * @pid: pid of the process.
4321 * @interval: userspace pointer to the timeslice value.
4322 *
4323 * this syscall writes the default timeslice value of a given process
4324 * into the user-space timespec buffer. A value of '0' means infinity.
4325 */
4326asmlinkage
4327long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4328{
4329 int retval = -EINVAL;
4330 struct timespec t;
4331 task_t *p;
4332
4333 if (pid < 0)
4334 goto out_nounlock;
4335
4336 retval = -ESRCH;
4337 read_lock(&tasklist_lock);
4338 p = find_process_by_pid(pid);
4339 if (!p)
4340 goto out_unlock;
4341
4342 retval = security_task_getscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
b78709cf 4346 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4347 0 : task_timeslice(p), &t);
4348 read_unlock(&tasklist_lock);
4349 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4350out_nounlock:
4351 return retval;
4352out_unlock:
4353 read_unlock(&tasklist_lock);
4354 return retval;
4355}
4356
4357static inline struct task_struct *eldest_child(struct task_struct *p)
4358{
4359 if (list_empty(&p->children)) return NULL;
4360 return list_entry(p->children.next,struct task_struct,sibling);
4361}
4362
4363static inline struct task_struct *older_sibling(struct task_struct *p)
4364{
4365 if (p->sibling.prev==&p->parent->children) return NULL;
4366 return list_entry(p->sibling.prev,struct task_struct,sibling);
4367}
4368
4369static inline struct task_struct *younger_sibling(struct task_struct *p)
4370{
4371 if (p->sibling.next==&p->parent->children) return NULL;
4372 return list_entry(p->sibling.next,struct task_struct,sibling);
4373}
4374
95cdf3b7 4375static void show_task(task_t *p)
1da177e4
LT
4376{
4377 task_t *relative;
4378 unsigned state;
4379 unsigned long free = 0;
4380 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4381
4382 printk("%-13.13s ", p->comm);
4383 state = p->state ? __ffs(p->state) + 1 : 0;
4384 if (state < ARRAY_SIZE(stat_nam))
4385 printk(stat_nam[state]);
4386 else
4387 printk("?");
4388#if (BITS_PER_LONG == 32)
4389 if (state == TASK_RUNNING)
4390 printk(" running ");
4391 else
4392 printk(" %08lX ", thread_saved_pc(p));
4393#else
4394 if (state == TASK_RUNNING)
4395 printk(" running task ");
4396 else
4397 printk(" %016lx ", thread_saved_pc(p));
4398#endif
4399#ifdef CONFIG_DEBUG_STACK_USAGE
4400 {
10ebffde 4401 unsigned long *n = end_of_stack(p);
1da177e4
LT
4402 while (!*n)
4403 n++;
10ebffde 4404 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4405 }
4406#endif
4407 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4408 if ((relative = eldest_child(p)))
4409 printk("%5d ", relative->pid);
4410 else
4411 printk(" ");
4412 if ((relative = younger_sibling(p)))
4413 printk("%7d", relative->pid);
4414 else
4415 printk(" ");
4416 if ((relative = older_sibling(p)))
4417 printk(" %5d", relative->pid);
4418 else
4419 printk(" ");
4420 if (!p->mm)
4421 printk(" (L-TLB)\n");
4422 else
4423 printk(" (NOTLB)\n");
4424
4425 if (state != TASK_RUNNING)
4426 show_stack(p, NULL);
4427}
4428
4429void show_state(void)
4430{
4431 task_t *g, *p;
4432
4433#if (BITS_PER_LONG == 32)
4434 printk("\n"
4435 " sibling\n");
4436 printk(" task PC pid father child younger older\n");
4437#else
4438 printk("\n"
4439 " sibling\n");
4440 printk(" task PC pid father child younger older\n");
4441#endif
4442 read_lock(&tasklist_lock);
4443 do_each_thread(g, p) {
4444 /*
4445 * reset the NMI-timeout, listing all files on a slow
4446 * console might take alot of time:
4447 */
4448 touch_nmi_watchdog();
4449 show_task(p);
4450 } while_each_thread(g, p);
4451
4452 read_unlock(&tasklist_lock);
de5097c2 4453 mutex_debug_show_all_locks();
1da177e4
LT
4454}
4455
f340c0d1
IM
4456/**
4457 * init_idle - set up an idle thread for a given CPU
4458 * @idle: task in question
4459 * @cpu: cpu the idle task belongs to
4460 *
4461 * NOTE: this function does not set the idle thread's NEED_RESCHED
4462 * flag, to make booting more robust.
4463 */
1da177e4
LT
4464void __devinit init_idle(task_t *idle, int cpu)
4465{
4466 runqueue_t *rq = cpu_rq(cpu);
4467 unsigned long flags;
4468
81c29a85 4469 idle->timestamp = sched_clock();
1da177e4
LT
4470 idle->sleep_avg = 0;
4471 idle->array = NULL;
4472 idle->prio = MAX_PRIO;
4473 idle->state = TASK_RUNNING;
4474 idle->cpus_allowed = cpumask_of_cpu(cpu);
4475 set_task_cpu(idle, cpu);
4476
4477 spin_lock_irqsave(&rq->lock, flags);
4478 rq->curr = rq->idle = idle;
4866cde0
NP
4479#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4480 idle->oncpu = 1;
4481#endif
1da177e4
LT
4482 spin_unlock_irqrestore(&rq->lock, flags);
4483
4484 /* Set the preempt count _outside_ the spinlocks! */
4485#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4486 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4487#else
a1261f54 4488 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4489#endif
4490}
4491
4492/*
4493 * In a system that switches off the HZ timer nohz_cpu_mask
4494 * indicates which cpus entered this state. This is used
4495 * in the rcu update to wait only for active cpus. For system
4496 * which do not switch off the HZ timer nohz_cpu_mask should
4497 * always be CPU_MASK_NONE.
4498 */
4499cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4500
4501#ifdef CONFIG_SMP
4502/*
4503 * This is how migration works:
4504 *
4505 * 1) we queue a migration_req_t structure in the source CPU's
4506 * runqueue and wake up that CPU's migration thread.
4507 * 2) we down() the locked semaphore => thread blocks.
4508 * 3) migration thread wakes up (implicitly it forces the migrated
4509 * thread off the CPU)
4510 * 4) it gets the migration request and checks whether the migrated
4511 * task is still in the wrong runqueue.
4512 * 5) if it's in the wrong runqueue then the migration thread removes
4513 * it and puts it into the right queue.
4514 * 6) migration thread up()s the semaphore.
4515 * 7) we wake up and the migration is done.
4516 */
4517
4518/*
4519 * Change a given task's CPU affinity. Migrate the thread to a
4520 * proper CPU and schedule it away if the CPU it's executing on
4521 * is removed from the allowed bitmask.
4522 *
4523 * NOTE: the caller must have a valid reference to the task, the
4524 * task must not exit() & deallocate itself prematurely. The
4525 * call is not atomic; no spinlocks may be held.
4526 */
4527int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4528{
4529 unsigned long flags;
4530 int ret = 0;
4531 migration_req_t req;
4532 runqueue_t *rq;
4533
4534 rq = task_rq_lock(p, &flags);
4535 if (!cpus_intersects(new_mask, cpu_online_map)) {
4536 ret = -EINVAL;
4537 goto out;
4538 }
4539
4540 p->cpus_allowed = new_mask;
4541 /* Can the task run on the task's current CPU? If so, we're done */
4542 if (cpu_isset(task_cpu(p), new_mask))
4543 goto out;
4544
4545 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4546 /* Need help from migration thread: drop lock and wait. */
4547 task_rq_unlock(rq, &flags);
4548 wake_up_process(rq->migration_thread);
4549 wait_for_completion(&req.done);
4550 tlb_migrate_finish(p->mm);
4551 return 0;
4552 }
4553out:
4554 task_rq_unlock(rq, &flags);
4555 return ret;
4556}
4557
4558EXPORT_SYMBOL_GPL(set_cpus_allowed);
4559
4560/*
4561 * Move (not current) task off this cpu, onto dest cpu. We're doing
4562 * this because either it can't run here any more (set_cpus_allowed()
4563 * away from this CPU, or CPU going down), or because we're
4564 * attempting to rebalance this task on exec (sched_exec).
4565 *
4566 * So we race with normal scheduler movements, but that's OK, as long
4567 * as the task is no longer on this CPU.
efc30814
KK
4568 *
4569 * Returns non-zero if task was successfully migrated.
1da177e4 4570 */
efc30814 4571static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4
LT
4572{
4573 runqueue_t *rq_dest, *rq_src;
efc30814 4574 int ret = 0;
1da177e4
LT
4575
4576 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4577 return ret;
1da177e4
LT
4578
4579 rq_src = cpu_rq(src_cpu);
4580 rq_dest = cpu_rq(dest_cpu);
4581
4582 double_rq_lock(rq_src, rq_dest);
4583 /* Already moved. */
4584 if (task_cpu(p) != src_cpu)
4585 goto out;
4586 /* Affinity changed (again). */
4587 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4588 goto out;
4589
4590 set_task_cpu(p, dest_cpu);
4591 if (p->array) {
4592 /*
4593 * Sync timestamp with rq_dest's before activating.
4594 * The same thing could be achieved by doing this step
4595 * afterwards, and pretending it was a local activate.
4596 * This way is cleaner and logically correct.
4597 */
4598 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4599 + rq_dest->timestamp_last_tick;
4600 deactivate_task(p, rq_src);
4601 activate_task(p, rq_dest, 0);
4602 if (TASK_PREEMPTS_CURR(p, rq_dest))
4603 resched_task(rq_dest->curr);
4604 }
efc30814 4605 ret = 1;
1da177e4
LT
4606out:
4607 double_rq_unlock(rq_src, rq_dest);
efc30814 4608 return ret;
1da177e4
LT
4609}
4610
4611/*
4612 * migration_thread - this is a highprio system thread that performs
4613 * thread migration by bumping thread off CPU then 'pushing' onto
4614 * another runqueue.
4615 */
95cdf3b7 4616static int migration_thread(void *data)
1da177e4
LT
4617{
4618 runqueue_t *rq;
4619 int cpu = (long)data;
4620
4621 rq = cpu_rq(cpu);
4622 BUG_ON(rq->migration_thread != current);
4623
4624 set_current_state(TASK_INTERRUPTIBLE);
4625 while (!kthread_should_stop()) {
4626 struct list_head *head;
4627 migration_req_t *req;
4628
3e1d1d28 4629 try_to_freeze();
1da177e4
LT
4630
4631 spin_lock_irq(&rq->lock);
4632
4633 if (cpu_is_offline(cpu)) {
4634 spin_unlock_irq(&rq->lock);
4635 goto wait_to_die;
4636 }
4637
4638 if (rq->active_balance) {
4639 active_load_balance(rq, cpu);
4640 rq->active_balance = 0;
4641 }
4642
4643 head = &rq->migration_queue;
4644
4645 if (list_empty(head)) {
4646 spin_unlock_irq(&rq->lock);
4647 schedule();
4648 set_current_state(TASK_INTERRUPTIBLE);
4649 continue;
4650 }
4651 req = list_entry(head->next, migration_req_t, list);
4652 list_del_init(head->next);
4653
674311d5
NP
4654 spin_unlock(&rq->lock);
4655 __migrate_task(req->task, cpu, req->dest_cpu);
4656 local_irq_enable();
1da177e4
LT
4657
4658 complete(&req->done);
4659 }
4660 __set_current_state(TASK_RUNNING);
4661 return 0;
4662
4663wait_to_die:
4664 /* Wait for kthread_stop */
4665 set_current_state(TASK_INTERRUPTIBLE);
4666 while (!kthread_should_stop()) {
4667 schedule();
4668 set_current_state(TASK_INTERRUPTIBLE);
4669 }
4670 __set_current_state(TASK_RUNNING);
4671 return 0;
4672}
4673
4674#ifdef CONFIG_HOTPLUG_CPU
4675/* Figure out where task on dead CPU should go, use force if neccessary. */
4676static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4677{
efc30814
KK
4678 runqueue_t *rq;
4679 unsigned long flags;
1da177e4
LT
4680 int dest_cpu;
4681 cpumask_t mask;
4682
efc30814 4683restart:
1da177e4
LT
4684 /* On same node? */
4685 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4686 cpus_and(mask, mask, tsk->cpus_allowed);
4687 dest_cpu = any_online_cpu(mask);
4688
4689 /* On any allowed CPU? */
4690 if (dest_cpu == NR_CPUS)
4691 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4692
4693 /* No more Mr. Nice Guy. */
4694 if (dest_cpu == NR_CPUS) {
efc30814 4695 rq = task_rq_lock(tsk, &flags);
b39c4fab 4696 cpus_setall(tsk->cpus_allowed);
1da177e4 4697 dest_cpu = any_online_cpu(tsk->cpus_allowed);
efc30814 4698 task_rq_unlock(rq, &flags);
1da177e4
LT
4699
4700 /*
4701 * Don't tell them about moving exiting tasks or
4702 * kernel threads (both mm NULL), since they never
4703 * leave kernel.
4704 */
4705 if (tsk->mm && printk_ratelimit())
4706 printk(KERN_INFO "process %d (%s) no "
4707 "longer affine to cpu%d\n",
4708 tsk->pid, tsk->comm, dead_cpu);
4709 }
efc30814
KK
4710 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4711 goto restart;
1da177e4
LT
4712}
4713
4714/*
4715 * While a dead CPU has no uninterruptible tasks queued at this point,
4716 * it might still have a nonzero ->nr_uninterruptible counter, because
4717 * for performance reasons the counter is not stricly tracking tasks to
4718 * their home CPUs. So we just add the counter to another CPU's counter,
4719 * to keep the global sum constant after CPU-down:
4720 */
4721static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4722{
4723 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4724 unsigned long flags;
4725
4726 local_irq_save(flags);
4727 double_rq_lock(rq_src, rq_dest);
4728 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4729 rq_src->nr_uninterruptible = 0;
4730 double_rq_unlock(rq_src, rq_dest);
4731 local_irq_restore(flags);
4732}
4733
4734/* Run through task list and migrate tasks from the dead cpu. */
4735static void migrate_live_tasks(int src_cpu)
4736{
4737 struct task_struct *tsk, *t;
4738
4739 write_lock_irq(&tasklist_lock);
4740
4741 do_each_thread(t, tsk) {
4742 if (tsk == current)
4743 continue;
4744
4745 if (task_cpu(tsk) == src_cpu)
4746 move_task_off_dead_cpu(src_cpu, tsk);
4747 } while_each_thread(t, tsk);
4748
4749 write_unlock_irq(&tasklist_lock);
4750}
4751
4752/* Schedules idle task to be the next runnable task on current CPU.
4753 * It does so by boosting its priority to highest possible and adding it to
4754 * the _front_ of runqueue. Used by CPU offline code.
4755 */
4756void sched_idle_next(void)
4757{
4758 int cpu = smp_processor_id();
4759 runqueue_t *rq = this_rq();
4760 struct task_struct *p = rq->idle;
4761 unsigned long flags;
4762
4763 /* cpu has to be offline */
4764 BUG_ON(cpu_online(cpu));
4765
4766 /* Strictly not necessary since rest of the CPUs are stopped by now
4767 * and interrupts disabled on current cpu.
4768 */
4769 spin_lock_irqsave(&rq->lock, flags);
4770
4771 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4772 /* Add idle task to _front_ of it's priority queue */
4773 __activate_idle_task(p, rq);
4774
4775 spin_unlock_irqrestore(&rq->lock, flags);
4776}
4777
4778/* Ensures that the idle task is using init_mm right before its cpu goes
4779 * offline.
4780 */
4781void idle_task_exit(void)
4782{
4783 struct mm_struct *mm = current->active_mm;
4784
4785 BUG_ON(cpu_online(smp_processor_id()));
4786
4787 if (mm != &init_mm)
4788 switch_mm(mm, &init_mm, current);
4789 mmdrop(mm);
4790}
4791
4792static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4793{
4794 struct runqueue *rq = cpu_rq(dead_cpu);
4795
4796 /* Must be exiting, otherwise would be on tasklist. */
4797 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4798
4799 /* Cannot have done final schedule yet: would have vanished. */
4800 BUG_ON(tsk->flags & PF_DEAD);
4801
4802 get_task_struct(tsk);
4803
4804 /*
4805 * Drop lock around migration; if someone else moves it,
4806 * that's OK. No task can be added to this CPU, so iteration is
4807 * fine.
4808 */
4809 spin_unlock_irq(&rq->lock);
4810 move_task_off_dead_cpu(dead_cpu, tsk);
4811 spin_lock_irq(&rq->lock);
4812
4813 put_task_struct(tsk);
4814}
4815
4816/* release_task() removes task from tasklist, so we won't find dead tasks. */
4817static void migrate_dead_tasks(unsigned int dead_cpu)
4818{
4819 unsigned arr, i;
4820 struct runqueue *rq = cpu_rq(dead_cpu);
4821
4822 for (arr = 0; arr < 2; arr++) {
4823 for (i = 0; i < MAX_PRIO; i++) {
4824 struct list_head *list = &rq->arrays[arr].queue[i];
4825 while (!list_empty(list))
4826 migrate_dead(dead_cpu,
4827 list_entry(list->next, task_t,
4828 run_list));
4829 }
4830 }
4831}
4832#endif /* CONFIG_HOTPLUG_CPU */
4833
4834/*
4835 * migration_call - callback that gets triggered when a CPU is added.
4836 * Here we can start up the necessary migration thread for the new CPU.
4837 */
26c2143b
CS
4838static int __cpuinit migration_call(struct notifier_block *nfb,
4839 unsigned long action,
4840 void *hcpu)
1da177e4
LT
4841{
4842 int cpu = (long)hcpu;
4843 struct task_struct *p;
4844 struct runqueue *rq;
4845 unsigned long flags;
4846
4847 switch (action) {
4848 case CPU_UP_PREPARE:
4849 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4850 if (IS_ERR(p))
4851 return NOTIFY_BAD;
4852 p->flags |= PF_NOFREEZE;
4853 kthread_bind(p, cpu);
4854 /* Must be high prio: stop_machine expects to yield to it. */
4855 rq = task_rq_lock(p, &flags);
4856 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4857 task_rq_unlock(rq, &flags);
4858 cpu_rq(cpu)->migration_thread = p;
4859 break;
4860 case CPU_ONLINE:
4861 /* Strictly unneccessary, as first user will wake it. */
4862 wake_up_process(cpu_rq(cpu)->migration_thread);
4863 break;
4864#ifdef CONFIG_HOTPLUG_CPU
4865 case CPU_UP_CANCELED:
fc75cdfa
HC
4866 if (!cpu_rq(cpu)->migration_thread)
4867 break;
1da177e4 4868 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4869 kthread_bind(cpu_rq(cpu)->migration_thread,
4870 any_online_cpu(cpu_online_map));
1da177e4
LT
4871 kthread_stop(cpu_rq(cpu)->migration_thread);
4872 cpu_rq(cpu)->migration_thread = NULL;
4873 break;
4874 case CPU_DEAD:
4875 migrate_live_tasks(cpu);
4876 rq = cpu_rq(cpu);
4877 kthread_stop(rq->migration_thread);
4878 rq->migration_thread = NULL;
4879 /* Idle task back to normal (off runqueue, low prio) */
4880 rq = task_rq_lock(rq->idle, &flags);
4881 deactivate_task(rq->idle, rq);
4882 rq->idle->static_prio = MAX_PRIO;
4883 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4884 migrate_dead_tasks(cpu);
4885 task_rq_unlock(rq, &flags);
4886 migrate_nr_uninterruptible(rq);
4887 BUG_ON(rq->nr_running != 0);
4888
4889 /* No need to migrate the tasks: it was best-effort if
4890 * they didn't do lock_cpu_hotplug(). Just wake up
4891 * the requestors. */
4892 spin_lock_irq(&rq->lock);
4893 while (!list_empty(&rq->migration_queue)) {
4894 migration_req_t *req;
4895 req = list_entry(rq->migration_queue.next,
4896 migration_req_t, list);
1da177e4
LT
4897 list_del_init(&req->list);
4898 complete(&req->done);
4899 }
4900 spin_unlock_irq(&rq->lock);
4901 break;
4902#endif
4903 }
4904 return NOTIFY_OK;
4905}
4906
4907/* Register at highest priority so that task migration (migrate_all_tasks)
4908 * happens before everything else.
4909 */
26c2143b 4910static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
4911 .notifier_call = migration_call,
4912 .priority = 10
4913};
4914
4915int __init migration_init(void)
4916{
4917 void *cpu = (void *)(long)smp_processor_id();
4918 /* Start one for boot CPU. */
4919 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4920 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4921 register_cpu_notifier(&migration_notifier);
4922 return 0;
4923}
4924#endif
4925
4926#ifdef CONFIG_SMP
1a20ff27 4927#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4928#ifdef SCHED_DOMAIN_DEBUG
4929static void sched_domain_debug(struct sched_domain *sd, int cpu)
4930{
4931 int level = 0;
4932
41c7ce9a
NP
4933 if (!sd) {
4934 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4935 return;
4936 }
4937
1da177e4
LT
4938 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4939
4940 do {
4941 int i;
4942 char str[NR_CPUS];
4943 struct sched_group *group = sd->groups;
4944 cpumask_t groupmask;
4945
4946 cpumask_scnprintf(str, NR_CPUS, sd->span);
4947 cpus_clear(groupmask);
4948
4949 printk(KERN_DEBUG);
4950 for (i = 0; i < level + 1; i++)
4951 printk(" ");
4952 printk("domain %d: ", level);
4953
4954 if (!(sd->flags & SD_LOAD_BALANCE)) {
4955 printk("does not load-balance\n");
4956 if (sd->parent)
4957 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4958 break;
4959 }
4960
4961 printk("span %s\n", str);
4962
4963 if (!cpu_isset(cpu, sd->span))
4964 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4965 if (!cpu_isset(cpu, group->cpumask))
4966 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4967
4968 printk(KERN_DEBUG);
4969 for (i = 0; i < level + 2; i++)
4970 printk(" ");
4971 printk("groups:");
4972 do {
4973 if (!group) {
4974 printk("\n");
4975 printk(KERN_ERR "ERROR: group is NULL\n");
4976 break;
4977 }
4978
4979 if (!group->cpu_power) {
4980 printk("\n");
4981 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4982 }
4983
4984 if (!cpus_weight(group->cpumask)) {
4985 printk("\n");
4986 printk(KERN_ERR "ERROR: empty group\n");
4987 }
4988
4989 if (cpus_intersects(groupmask, group->cpumask)) {
4990 printk("\n");
4991 printk(KERN_ERR "ERROR: repeated CPUs\n");
4992 }
4993
4994 cpus_or(groupmask, groupmask, group->cpumask);
4995
4996 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4997 printk(" %s", str);
4998
4999 group = group->next;
5000 } while (group != sd->groups);
5001 printk("\n");
5002
5003 if (!cpus_equal(sd->span, groupmask))
5004 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5005
5006 level++;
5007 sd = sd->parent;
5008
5009 if (sd) {
5010 if (!cpus_subset(groupmask, sd->span))
5011 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5012 }
5013
5014 } while (sd);
5015}
5016#else
5017#define sched_domain_debug(sd, cpu) {}
5018#endif
5019
1a20ff27 5020static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5021{
5022 if (cpus_weight(sd->span) == 1)
5023 return 1;
5024
5025 /* Following flags need at least 2 groups */
5026 if (sd->flags & (SD_LOAD_BALANCE |
5027 SD_BALANCE_NEWIDLE |
5028 SD_BALANCE_FORK |
5029 SD_BALANCE_EXEC)) {
5030 if (sd->groups != sd->groups->next)
5031 return 0;
5032 }
5033
5034 /* Following flags don't use groups */
5035 if (sd->flags & (SD_WAKE_IDLE |
5036 SD_WAKE_AFFINE |
5037 SD_WAKE_BALANCE))
5038 return 0;
5039
5040 return 1;
5041}
5042
1a20ff27 5043static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
5044 struct sched_domain *parent)
5045{
5046 unsigned long cflags = sd->flags, pflags = parent->flags;
5047
5048 if (sd_degenerate(parent))
5049 return 1;
5050
5051 if (!cpus_equal(sd->span, parent->span))
5052 return 0;
5053
5054 /* Does parent contain flags not in child? */
5055 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5056 if (cflags & SD_WAKE_AFFINE)
5057 pflags &= ~SD_WAKE_BALANCE;
5058 /* Flags needing groups don't count if only 1 group in parent */
5059 if (parent->groups == parent->groups->next) {
5060 pflags &= ~(SD_LOAD_BALANCE |
5061 SD_BALANCE_NEWIDLE |
5062 SD_BALANCE_FORK |
5063 SD_BALANCE_EXEC);
5064 }
5065 if (~cflags & pflags)
5066 return 0;
5067
5068 return 1;
5069}
5070
1da177e4
LT
5071/*
5072 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5073 * hold the hotplug lock.
5074 */
9c1cfda2 5075static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5076{
1da177e4 5077 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
5078 struct sched_domain *tmp;
5079
5080 /* Remove the sched domains which do not contribute to scheduling. */
5081 for (tmp = sd; tmp; tmp = tmp->parent) {
5082 struct sched_domain *parent = tmp->parent;
5083 if (!parent)
5084 break;
5085 if (sd_parent_degenerate(tmp, parent))
5086 tmp->parent = parent->parent;
5087 }
5088
5089 if (sd && sd_degenerate(sd))
5090 sd = sd->parent;
1da177e4
LT
5091
5092 sched_domain_debug(sd, cpu);
5093
674311d5 5094 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5095}
5096
5097/* cpus with isolated domains */
9c1cfda2 5098static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5099
5100/* Setup the mask of cpus configured for isolated domains */
5101static int __init isolated_cpu_setup(char *str)
5102{
5103 int ints[NR_CPUS], i;
5104
5105 str = get_options(str, ARRAY_SIZE(ints), ints);
5106 cpus_clear(cpu_isolated_map);
5107 for (i = 1; i <= ints[0]; i++)
5108 if (ints[i] < NR_CPUS)
5109 cpu_set(ints[i], cpu_isolated_map);
5110 return 1;
5111}
5112
5113__setup ("isolcpus=", isolated_cpu_setup);
5114
5115/*
5116 * init_sched_build_groups takes an array of groups, the cpumask we wish
5117 * to span, and a pointer to a function which identifies what group a CPU
5118 * belongs to. The return value of group_fn must be a valid index into the
5119 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5120 * keep track of groups covered with a cpumask_t).
5121 *
5122 * init_sched_build_groups will build a circular linked list of the groups
5123 * covered by the given span, and will set each group's ->cpumask correctly,
5124 * and ->cpu_power to 0.
5125 */
9c1cfda2
JH
5126static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5127 int (*group_fn)(int cpu))
1da177e4
LT
5128{
5129 struct sched_group *first = NULL, *last = NULL;
5130 cpumask_t covered = CPU_MASK_NONE;
5131 int i;
5132
5133 for_each_cpu_mask(i, span) {
5134 int group = group_fn(i);
5135 struct sched_group *sg = &groups[group];
5136 int j;
5137
5138 if (cpu_isset(i, covered))
5139 continue;
5140
5141 sg->cpumask = CPU_MASK_NONE;
5142 sg->cpu_power = 0;
5143
5144 for_each_cpu_mask(j, span) {
5145 if (group_fn(j) != group)
5146 continue;
5147
5148 cpu_set(j, covered);
5149 cpu_set(j, sg->cpumask);
5150 }
5151 if (!first)
5152 first = sg;
5153 if (last)
5154 last->next = sg;
5155 last = sg;
5156 }
5157 last->next = first;
5158}
5159
9c1cfda2 5160#define SD_NODES_PER_DOMAIN 16
1da177e4 5161
198e2f18 5162/*
5163 * Self-tuning task migration cost measurement between source and target CPUs.
5164 *
5165 * This is done by measuring the cost of manipulating buffers of varying
5166 * sizes. For a given buffer-size here are the steps that are taken:
5167 *
5168 * 1) the source CPU reads+dirties a shared buffer
5169 * 2) the target CPU reads+dirties the same shared buffer
5170 *
5171 * We measure how long they take, in the following 4 scenarios:
5172 *
5173 * - source: CPU1, target: CPU2 | cost1
5174 * - source: CPU2, target: CPU1 | cost2
5175 * - source: CPU1, target: CPU1 | cost3
5176 * - source: CPU2, target: CPU2 | cost4
5177 *
5178 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5179 * the cost of migration.
5180 *
5181 * We then start off from a small buffer-size and iterate up to larger
5182 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5183 * doing a maximum search for the cost. (The maximum cost for a migration
5184 * normally occurs when the working set size is around the effective cache
5185 * size.)
5186 */
5187#define SEARCH_SCOPE 2
5188#define MIN_CACHE_SIZE (64*1024U)
5189#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5190#define ITERATIONS 1
198e2f18 5191#define SIZE_THRESH 130
5192#define COST_THRESH 130
5193
5194/*
5195 * The migration cost is a function of 'domain distance'. Domain
5196 * distance is the number of steps a CPU has to iterate down its
5197 * domain tree to share a domain with the other CPU. The farther
5198 * two CPUs are from each other, the larger the distance gets.
5199 *
5200 * Note that we use the distance only to cache measurement results,
5201 * the distance value is not used numerically otherwise. When two
5202 * CPUs have the same distance it is assumed that the migration
5203 * cost is the same. (this is a simplification but quite practical)
5204 */
5205#define MAX_DOMAIN_DISTANCE 32
5206
5207static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5208 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5209/*
5210 * Architectures may override the migration cost and thus avoid
5211 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5212 * virtualized hardware:
5213 */
5214#ifdef CONFIG_DEFAULT_MIGRATION_COST
5215 CONFIG_DEFAULT_MIGRATION_COST
5216#else
5217 -1LL
5218#endif
5219};
198e2f18 5220
5221/*
5222 * Allow override of migration cost - in units of microseconds.
5223 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5224 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5225 */
5226static int __init migration_cost_setup(char *str)
5227{
5228 int ints[MAX_DOMAIN_DISTANCE+1], i;
5229
5230 str = get_options(str, ARRAY_SIZE(ints), ints);
5231
5232 printk("#ints: %d\n", ints[0]);
5233 for (i = 1; i <= ints[0]; i++) {
5234 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5235 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5236 }
5237 return 1;
5238}
5239
5240__setup ("migration_cost=", migration_cost_setup);
5241
5242/*
5243 * Global multiplier (divisor) for migration-cutoff values,
5244 * in percentiles. E.g. use a value of 150 to get 1.5 times
5245 * longer cache-hot cutoff times.
5246 *
5247 * (We scale it from 100 to 128 to long long handling easier.)
5248 */
5249
5250#define MIGRATION_FACTOR_SCALE 128
5251
5252static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5253
5254static int __init setup_migration_factor(char *str)
5255{
5256 get_option(&str, &migration_factor);
5257 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5258 return 1;
5259}
5260
5261__setup("migration_factor=", setup_migration_factor);
5262
5263/*
5264 * Estimated distance of two CPUs, measured via the number of domains
5265 * we have to pass for the two CPUs to be in the same span:
5266 */
5267static unsigned long domain_distance(int cpu1, int cpu2)
5268{
5269 unsigned long distance = 0;
5270 struct sched_domain *sd;
5271
5272 for_each_domain(cpu1, sd) {
5273 WARN_ON(!cpu_isset(cpu1, sd->span));
5274 if (cpu_isset(cpu2, sd->span))
5275 return distance;
5276 distance++;
5277 }
5278 if (distance >= MAX_DOMAIN_DISTANCE) {
5279 WARN_ON(1);
5280 distance = MAX_DOMAIN_DISTANCE-1;
5281 }
5282
5283 return distance;
5284}
5285
5286static unsigned int migration_debug;
5287
5288static int __init setup_migration_debug(char *str)
5289{
5290 get_option(&str, &migration_debug);
5291 return 1;
5292}
5293
5294__setup("migration_debug=", setup_migration_debug);
5295
5296/*
5297 * Maximum cache-size that the scheduler should try to measure.
5298 * Architectures with larger caches should tune this up during
5299 * bootup. Gets used in the domain-setup code (i.e. during SMP
5300 * bootup).
5301 */
5302unsigned int max_cache_size;
5303
5304static int __init setup_max_cache_size(char *str)
5305{
5306 get_option(&str, &max_cache_size);
5307 return 1;
5308}
5309
5310__setup("max_cache_size=", setup_max_cache_size);
5311
5312/*
5313 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5314 * is the operation that is timed, so we try to generate unpredictable
5315 * cachemisses that still end up filling the L2 cache:
5316 */
5317static void touch_cache(void *__cache, unsigned long __size)
5318{
5319 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5320 chunk2 = 2*size/3;
5321 unsigned long *cache = __cache;
5322 int i;
5323
5324 for (i = 0; i < size/6; i += 8) {
5325 switch (i % 6) {
5326 case 0: cache[i]++;
5327 case 1: cache[size-1-i]++;
5328 case 2: cache[chunk1-i]++;
5329 case 3: cache[chunk1+i]++;
5330 case 4: cache[chunk2-i]++;
5331 case 5: cache[chunk2+i]++;
5332 }
5333 }
5334}
5335
5336/*
5337 * Measure the cache-cost of one task migration. Returns in units of nsec.
5338 */
5339static unsigned long long measure_one(void *cache, unsigned long size,
5340 int source, int target)
5341{
5342 cpumask_t mask, saved_mask;
5343 unsigned long long t0, t1, t2, t3, cost;
5344
5345 saved_mask = current->cpus_allowed;
5346
5347 /*
5348 * Flush source caches to RAM and invalidate them:
5349 */
5350 sched_cacheflush();
5351
5352 /*
5353 * Migrate to the source CPU:
5354 */
5355 mask = cpumask_of_cpu(source);
5356 set_cpus_allowed(current, mask);
5357 WARN_ON(smp_processor_id() != source);
5358
5359 /*
5360 * Dirty the working set:
5361 */
5362 t0 = sched_clock();
5363 touch_cache(cache, size);
5364 t1 = sched_clock();
5365
5366 /*
5367 * Migrate to the target CPU, dirty the L2 cache and access
5368 * the shared buffer. (which represents the working set
5369 * of a migrated task.)
5370 */
5371 mask = cpumask_of_cpu(target);
5372 set_cpus_allowed(current, mask);
5373 WARN_ON(smp_processor_id() != target);
5374
5375 t2 = sched_clock();
5376 touch_cache(cache, size);
5377 t3 = sched_clock();
5378
5379 cost = t1-t0 + t3-t2;
5380
5381 if (migration_debug >= 2)
5382 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5383 source, target, t1-t0, t1-t0, t3-t2, cost);
5384 /*
5385 * Flush target caches to RAM and invalidate them:
5386 */
5387 sched_cacheflush();
5388
5389 set_cpus_allowed(current, saved_mask);
5390
5391 return cost;
5392}
5393
5394/*
5395 * Measure a series of task migrations and return the average
5396 * result. Since this code runs early during bootup the system
5397 * is 'undisturbed' and the average latency makes sense.
5398 *
5399 * The algorithm in essence auto-detects the relevant cache-size,
5400 * so it will properly detect different cachesizes for different
5401 * cache-hierarchies, depending on how the CPUs are connected.
5402 *
5403 * Architectures can prime the upper limit of the search range via
5404 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5405 */
5406static unsigned long long
5407measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5408{
5409 unsigned long long cost1, cost2;
5410 int i;
5411
5412 /*
5413 * Measure the migration cost of 'size' bytes, over an
5414 * average of 10 runs:
5415 *
5416 * (We perturb the cache size by a small (0..4k)
5417 * value to compensate size/alignment related artifacts.
5418 * We also subtract the cost of the operation done on
5419 * the same CPU.)
5420 */
5421 cost1 = 0;
5422
5423 /*
5424 * dry run, to make sure we start off cache-cold on cpu1,
5425 * and to get any vmalloc pagefaults in advance:
5426 */
5427 measure_one(cache, size, cpu1, cpu2);
5428 for (i = 0; i < ITERATIONS; i++)
5429 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5430
5431 measure_one(cache, size, cpu2, cpu1);
5432 for (i = 0; i < ITERATIONS; i++)
5433 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5434
5435 /*
5436 * (We measure the non-migrating [cached] cost on both
5437 * cpu1 and cpu2, to handle CPUs with different speeds)
5438 */
5439 cost2 = 0;
5440
5441 measure_one(cache, size, cpu1, cpu1);
5442 for (i = 0; i < ITERATIONS; i++)
5443 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5444
5445 measure_one(cache, size, cpu2, cpu2);
5446 for (i = 0; i < ITERATIONS; i++)
5447 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5448
5449 /*
5450 * Get the per-iteration migration cost:
5451 */
5452 do_div(cost1, 2*ITERATIONS);
5453 do_div(cost2, 2*ITERATIONS);
5454
5455 return cost1 - cost2;
5456}
5457
5458static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5459{
5460 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5461 unsigned int max_size, size, size_found = 0;
5462 long long cost = 0, prev_cost;
5463 void *cache;
5464
5465 /*
5466 * Search from max_cache_size*5 down to 64K - the real relevant
5467 * cachesize has to lie somewhere inbetween.
5468 */
5469 if (max_cache_size) {
5470 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5471 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5472 } else {
5473 /*
5474 * Since we have no estimation about the relevant
5475 * search range
5476 */
5477 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5478 size = MIN_CACHE_SIZE;
5479 }
5480
5481 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5482 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5483 return 0;
5484 }
5485
5486 /*
5487 * Allocate the working set:
5488 */
5489 cache = vmalloc(max_size);
5490 if (!cache) {
5491 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5492 return 1000000; // return 1 msec on very small boxen
5493 }
5494
5495 while (size <= max_size) {
5496 prev_cost = cost;
5497 cost = measure_cost(cpu1, cpu2, cache, size);
5498
5499 /*
5500 * Update the max:
5501 */
5502 if (cost > 0) {
5503 if (max_cost < cost) {
5504 max_cost = cost;
5505 size_found = size;
5506 }
5507 }
5508 /*
5509 * Calculate average fluctuation, we use this to prevent
5510 * noise from triggering an early break out of the loop:
5511 */
5512 fluct = abs(cost - prev_cost);
5513 avg_fluct = (avg_fluct + fluct)/2;
5514
5515 if (migration_debug)
5516 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5517 cpu1, cpu2, size,
5518 (long)cost / 1000000,
5519 ((long)cost / 100000) % 10,
5520 (long)max_cost / 1000000,
5521 ((long)max_cost / 100000) % 10,
5522 domain_distance(cpu1, cpu2),
5523 cost, avg_fluct);
5524
5525 /*
5526 * If we iterated at least 20% past the previous maximum,
5527 * and the cost has dropped by more than 20% already,
5528 * (taking fluctuations into account) then we assume to
5529 * have found the maximum and break out of the loop early:
5530 */
5531 if (size_found && (size*100 > size_found*SIZE_THRESH))
5532 if (cost+avg_fluct <= 0 ||
5533 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5534
5535 if (migration_debug)
5536 printk("-> found max.\n");
5537 break;
5538 }
5539 /*
70b4d63e 5540 * Increase the cachesize in 10% steps:
198e2f18 5541 */
70b4d63e 5542 size = size * 10 / 9;
198e2f18 5543 }
5544
5545 if (migration_debug)
5546 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5547 cpu1, cpu2, size_found, max_cost);
5548
5549 vfree(cache);
5550
5551 /*
5552 * A task is considered 'cache cold' if at least 2 times
5553 * the worst-case cost of migration has passed.
5554 *
5555 * (this limit is only listened to if the load-balancing
5556 * situation is 'nice' - if there is a large imbalance we
5557 * ignore it for the sake of CPU utilization and
5558 * processing fairness.)
5559 */
5560 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5561}
5562
5563static void calibrate_migration_costs(const cpumask_t *cpu_map)
5564{
5565 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5566 unsigned long j0, j1, distance, max_distance = 0;
5567 struct sched_domain *sd;
5568
5569 j0 = jiffies;
5570
5571 /*
5572 * First pass - calculate the cacheflush times:
5573 */
5574 for_each_cpu_mask(cpu1, *cpu_map) {
5575 for_each_cpu_mask(cpu2, *cpu_map) {
5576 if (cpu1 == cpu2)
5577 continue;
5578 distance = domain_distance(cpu1, cpu2);
5579 max_distance = max(max_distance, distance);
5580 /*
5581 * No result cached yet?
5582 */
5583 if (migration_cost[distance] == -1LL)
5584 migration_cost[distance] =
5585 measure_migration_cost(cpu1, cpu2);
5586 }
5587 }
5588 /*
5589 * Second pass - update the sched domain hierarchy with
5590 * the new cache-hot-time estimations:
5591 */
5592 for_each_cpu_mask(cpu, *cpu_map) {
5593 distance = 0;
5594 for_each_domain(cpu, sd) {
5595 sd->cache_hot_time = migration_cost[distance];
5596 distance++;
5597 }
5598 }
5599 /*
5600 * Print the matrix:
5601 */
5602 if (migration_debug)
5603 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5604 max_cache_size,
5605#ifdef CONFIG_X86
5606 cpu_khz/1000
5607#else
5608 -1
5609#endif
5610 );
bd576c95
CE
5611 if (system_state == SYSTEM_BOOTING) {
5612 printk("migration_cost=");
5613 for (distance = 0; distance <= max_distance; distance++) {
5614 if (distance)
5615 printk(",");
5616 printk("%ld", (long)migration_cost[distance] / 1000);
5617 }
5618 printk("\n");
198e2f18 5619 }
198e2f18 5620 j1 = jiffies;
5621 if (migration_debug)
5622 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5623
5624 /*
5625 * Move back to the original CPU. NUMA-Q gets confused
5626 * if we migrate to another quad during bootup.
5627 */
5628 if (raw_smp_processor_id() != orig_cpu) {
5629 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5630 saved_mask = current->cpus_allowed;
5631
5632 set_cpus_allowed(current, mask);
5633 set_cpus_allowed(current, saved_mask);
5634 }
5635}
5636
9c1cfda2 5637#ifdef CONFIG_NUMA
198e2f18 5638
9c1cfda2
JH
5639/**
5640 * find_next_best_node - find the next node to include in a sched_domain
5641 * @node: node whose sched_domain we're building
5642 * @used_nodes: nodes already in the sched_domain
5643 *
5644 * Find the next node to include in a given scheduling domain. Simply
5645 * finds the closest node not already in the @used_nodes map.
5646 *
5647 * Should use nodemask_t.
5648 */
5649static int find_next_best_node(int node, unsigned long *used_nodes)
5650{
5651 int i, n, val, min_val, best_node = 0;
5652
5653 min_val = INT_MAX;
5654
5655 for (i = 0; i < MAX_NUMNODES; i++) {
5656 /* Start at @node */
5657 n = (node + i) % MAX_NUMNODES;
5658
5659 if (!nr_cpus_node(n))
5660 continue;
5661
5662 /* Skip already used nodes */
5663 if (test_bit(n, used_nodes))
5664 continue;
5665
5666 /* Simple min distance search */
5667 val = node_distance(node, n);
5668
5669 if (val < min_val) {
5670 min_val = val;
5671 best_node = n;
5672 }
5673 }
5674
5675 set_bit(best_node, used_nodes);
5676 return best_node;
5677}
5678
5679/**
5680 * sched_domain_node_span - get a cpumask for a node's sched_domain
5681 * @node: node whose cpumask we're constructing
5682 * @size: number of nodes to include in this span
5683 *
5684 * Given a node, construct a good cpumask for its sched_domain to span. It
5685 * should be one that prevents unnecessary balancing, but also spreads tasks
5686 * out optimally.
5687 */
5688static cpumask_t sched_domain_node_span(int node)
5689{
5690 int i;
5691 cpumask_t span, nodemask;
5692 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5693
5694 cpus_clear(span);
5695 bitmap_zero(used_nodes, MAX_NUMNODES);
5696
5697 nodemask = node_to_cpumask(node);
5698 cpus_or(span, span, nodemask);
5699 set_bit(node, used_nodes);
5700
5701 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5702 int next_node = find_next_best_node(node, used_nodes);
5703 nodemask = node_to_cpumask(next_node);
5704 cpus_or(span, span, nodemask);
5705 }
5706
5707 return span;
5708}
5709#endif
5710
5711/*
5712 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5713 * can switch it on easily if needed.
5714 */
1da177e4
LT
5715#ifdef CONFIG_SCHED_SMT
5716static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5717static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5718static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5719{
5720 return cpu;
5721}
5722#endif
5723
1e9f28fa
SS
5724#ifdef CONFIG_SCHED_MC
5725static DEFINE_PER_CPU(struct sched_domain, core_domains);
5726static struct sched_group sched_group_core[NR_CPUS];
5727#endif
5728
5729#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5730static int cpu_to_core_group(int cpu)
5731{
5732 return first_cpu(cpu_sibling_map[cpu]);
5733}
5734#elif defined(CONFIG_SCHED_MC)
5735static int cpu_to_core_group(int cpu)
5736{
5737 return cpu;
5738}
5739#endif
5740
1da177e4
LT
5741static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5742static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5743static int cpu_to_phys_group(int cpu)
1da177e4 5744{
1e9f28fa
SS
5745#if defined(CONFIG_SCHED_MC)
5746 cpumask_t mask = cpu_coregroup_map(cpu);
5747 return first_cpu(mask);
5748#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5749 return first_cpu(cpu_sibling_map[cpu]);
5750#else
5751 return cpu;
5752#endif
5753}
5754
5755#ifdef CONFIG_NUMA
1da177e4 5756/*
9c1cfda2
JH
5757 * The init_sched_build_groups can't handle what we want to do with node
5758 * groups, so roll our own. Now each node has its own list of groups which
5759 * gets dynamically allocated.
1da177e4 5760 */
9c1cfda2 5761static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5762static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5763
9c1cfda2 5764static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5765static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5766
5767static int cpu_to_allnodes_group(int cpu)
5768{
5769 return cpu_to_node(cpu);
1da177e4 5770}
08069033
SS
5771static void init_numa_sched_groups_power(struct sched_group *group_head)
5772{
5773 struct sched_group *sg = group_head;
5774 int j;
5775
5776 if (!sg)
5777 return;
5778next_sg:
5779 for_each_cpu_mask(j, sg->cpumask) {
5780 struct sched_domain *sd;
5781
5782 sd = &per_cpu(phys_domains, j);
5783 if (j != first_cpu(sd->groups->cpumask)) {
5784 /*
5785 * Only add "power" once for each
5786 * physical package.
5787 */
5788 continue;
5789 }
5790
5791 sg->cpu_power += sd->groups->cpu_power;
5792 }
5793 sg = sg->next;
5794 if (sg != group_head)
5795 goto next_sg;
5796}
1da177e4
LT
5797#endif
5798
5799/*
1a20ff27
DG
5800 * Build sched domains for a given set of cpus and attach the sched domains
5801 * to the individual cpus
1da177e4 5802 */
9c1cfda2 5803void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5804{
5805 int i;
d1b55138
JH
5806#ifdef CONFIG_NUMA
5807 struct sched_group **sched_group_nodes = NULL;
5808 struct sched_group *sched_group_allnodes = NULL;
5809
5810 /*
5811 * Allocate the per-node list of sched groups
5812 */
5813 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5814 GFP_ATOMIC);
5815 if (!sched_group_nodes) {
5816 printk(KERN_WARNING "Can not alloc sched group node list\n");
5817 return;
5818 }
5819 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5820#endif
1da177e4
LT
5821
5822 /*
1a20ff27 5823 * Set up domains for cpus specified by the cpu_map.
1da177e4 5824 */
1a20ff27 5825 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5826 int group;
5827 struct sched_domain *sd = NULL, *p;
5828 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5829
1a20ff27 5830 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5831
5832#ifdef CONFIG_NUMA
d1b55138 5833 if (cpus_weight(*cpu_map)
9c1cfda2 5834 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5835 if (!sched_group_allnodes) {
5836 sched_group_allnodes
5837 = kmalloc(sizeof(struct sched_group)
5838 * MAX_NUMNODES,
5839 GFP_KERNEL);
5840 if (!sched_group_allnodes) {
5841 printk(KERN_WARNING
5842 "Can not alloc allnodes sched group\n");
5843 break;
5844 }
5845 sched_group_allnodes_bycpu[i]
5846 = sched_group_allnodes;
5847 }
9c1cfda2
JH
5848 sd = &per_cpu(allnodes_domains, i);
5849 *sd = SD_ALLNODES_INIT;
5850 sd->span = *cpu_map;
5851 group = cpu_to_allnodes_group(i);
5852 sd->groups = &sched_group_allnodes[group];
5853 p = sd;
5854 } else
5855 p = NULL;
5856
1da177e4 5857 sd = &per_cpu(node_domains, i);
1da177e4 5858 *sd = SD_NODE_INIT;
9c1cfda2
JH
5859 sd->span = sched_domain_node_span(cpu_to_node(i));
5860 sd->parent = p;
5861 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5862#endif
5863
5864 p = sd;
5865 sd = &per_cpu(phys_domains, i);
5866 group = cpu_to_phys_group(i);
5867 *sd = SD_CPU_INIT;
5868 sd->span = nodemask;
5869 sd->parent = p;
5870 sd->groups = &sched_group_phys[group];
5871
1e9f28fa
SS
5872#ifdef CONFIG_SCHED_MC
5873 p = sd;
5874 sd = &per_cpu(core_domains, i);
5875 group = cpu_to_core_group(i);
5876 *sd = SD_MC_INIT;
5877 sd->span = cpu_coregroup_map(i);
5878 cpus_and(sd->span, sd->span, *cpu_map);
5879 sd->parent = p;
5880 sd->groups = &sched_group_core[group];
5881#endif
5882
1da177e4
LT
5883#ifdef CONFIG_SCHED_SMT
5884 p = sd;
5885 sd = &per_cpu(cpu_domains, i);
5886 group = cpu_to_cpu_group(i);
5887 *sd = SD_SIBLING_INIT;
5888 sd->span = cpu_sibling_map[i];
1a20ff27 5889 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5890 sd->parent = p;
5891 sd->groups = &sched_group_cpus[group];
5892#endif
5893 }
5894
5895#ifdef CONFIG_SCHED_SMT
5896 /* Set up CPU (sibling) groups */
9c1cfda2 5897 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5898 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5899 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5900 if (i != first_cpu(this_sibling_map))
5901 continue;
5902
5903 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5904 &cpu_to_cpu_group);
5905 }
5906#endif
5907
1e9f28fa
SS
5908#ifdef CONFIG_SCHED_MC
5909 /* Set up multi-core groups */
5910 for_each_cpu_mask(i, *cpu_map) {
5911 cpumask_t this_core_map = cpu_coregroup_map(i);
5912 cpus_and(this_core_map, this_core_map, *cpu_map);
5913 if (i != first_cpu(this_core_map))
5914 continue;
5915 init_sched_build_groups(sched_group_core, this_core_map,
5916 &cpu_to_core_group);
5917 }
5918#endif
5919
5920
1da177e4
LT
5921 /* Set up physical groups */
5922 for (i = 0; i < MAX_NUMNODES; i++) {
5923 cpumask_t nodemask = node_to_cpumask(i);
5924
1a20ff27 5925 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5926 if (cpus_empty(nodemask))
5927 continue;
5928
5929 init_sched_build_groups(sched_group_phys, nodemask,
5930 &cpu_to_phys_group);
5931 }
5932
5933#ifdef CONFIG_NUMA
5934 /* Set up node groups */
d1b55138
JH
5935 if (sched_group_allnodes)
5936 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5937 &cpu_to_allnodes_group);
9c1cfda2
JH
5938
5939 for (i = 0; i < MAX_NUMNODES; i++) {
5940 /* Set up node groups */
5941 struct sched_group *sg, *prev;
5942 cpumask_t nodemask = node_to_cpumask(i);
5943 cpumask_t domainspan;
5944 cpumask_t covered = CPU_MASK_NONE;
5945 int j;
5946
5947 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5948 if (cpus_empty(nodemask)) {
5949 sched_group_nodes[i] = NULL;
9c1cfda2 5950 continue;
d1b55138 5951 }
9c1cfda2
JH
5952
5953 domainspan = sched_domain_node_span(i);
5954 cpus_and(domainspan, domainspan, *cpu_map);
5955
5956 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5957 sched_group_nodes[i] = sg;
5958 for_each_cpu_mask(j, nodemask) {
5959 struct sched_domain *sd;
5960 sd = &per_cpu(node_domains, j);
5961 sd->groups = sg;
5962 if (sd->groups == NULL) {
5963 /* Turn off balancing if we have no groups */
5964 sd->flags = 0;
5965 }
5966 }
5967 if (!sg) {
5968 printk(KERN_WARNING
5969 "Can not alloc domain group for node %d\n", i);
5970 continue;
5971 }
5972 sg->cpu_power = 0;
5973 sg->cpumask = nodemask;
5974 cpus_or(covered, covered, nodemask);
5975 prev = sg;
5976
5977 for (j = 0; j < MAX_NUMNODES; j++) {
5978 cpumask_t tmp, notcovered;
5979 int n = (i + j) % MAX_NUMNODES;
5980
5981 cpus_complement(notcovered, covered);
5982 cpus_and(tmp, notcovered, *cpu_map);
5983 cpus_and(tmp, tmp, domainspan);
5984 if (cpus_empty(tmp))
5985 break;
5986
5987 nodemask = node_to_cpumask(n);
5988 cpus_and(tmp, tmp, nodemask);
5989 if (cpus_empty(tmp))
5990 continue;
5991
5992 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5993 if (!sg) {
5994 printk(KERN_WARNING
5995 "Can not alloc domain group for node %d\n", j);
5996 break;
5997 }
5998 sg->cpu_power = 0;
5999 sg->cpumask = tmp;
6000 cpus_or(covered, covered, tmp);
6001 prev->next = sg;
6002 prev = sg;
6003 }
6004 prev->next = sched_group_nodes[i];
6005 }
1da177e4
LT
6006#endif
6007
6008 /* Calculate CPU power for physical packages and nodes */
1a20ff27 6009 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6010 int power;
6011 struct sched_domain *sd;
6012#ifdef CONFIG_SCHED_SMT
6013 sd = &per_cpu(cpu_domains, i);
6014 power = SCHED_LOAD_SCALE;
6015 sd->groups->cpu_power = power;
6016#endif
1e9f28fa
SS
6017#ifdef CONFIG_SCHED_MC
6018 sd = &per_cpu(core_domains, i);
6019 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6020 * SCHED_LOAD_SCALE / 10;
6021 sd->groups->cpu_power = power;
6022
6023 sd = &per_cpu(phys_domains, i);
1da177e4 6024
1e9f28fa
SS
6025 /*
6026 * This has to be < 2 * SCHED_LOAD_SCALE
6027 * Lets keep it SCHED_LOAD_SCALE, so that
6028 * while calculating NUMA group's cpu_power
6029 * we can simply do
6030 * numa_group->cpu_power += phys_group->cpu_power;
6031 *
6032 * See "only add power once for each physical pkg"
6033 * comment below
6034 */
6035 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6036#else
1da177e4
LT
6037 sd = &per_cpu(phys_domains, i);
6038 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
6039 (cpus_weight(sd->groups->cpumask)-1) / 10;
6040 sd->groups->cpu_power = power;
1e9f28fa 6041#endif
1da177e4
LT
6042 }
6043
9c1cfda2 6044#ifdef CONFIG_NUMA
08069033
SS
6045 for (i = 0; i < MAX_NUMNODES; i++)
6046 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6047
08069033 6048 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
6049#endif
6050
1da177e4 6051 /* Attach the domains */
1a20ff27 6052 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6053 struct sched_domain *sd;
6054#ifdef CONFIG_SCHED_SMT
6055 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6056#elif defined(CONFIG_SCHED_MC)
6057 sd = &per_cpu(core_domains, i);
1da177e4
LT
6058#else
6059 sd = &per_cpu(phys_domains, i);
6060#endif
6061 cpu_attach_domain(sd, i);
6062 }
198e2f18 6063 /*
6064 * Tune cache-hot values:
6065 */
6066 calibrate_migration_costs(cpu_map);
1da177e4 6067}
1a20ff27
DG
6068/*
6069 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6070 */
9c1cfda2 6071static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6072{
6073 cpumask_t cpu_default_map;
1da177e4 6074
1a20ff27
DG
6075 /*
6076 * Setup mask for cpus without special case scheduling requirements.
6077 * For now this just excludes isolated cpus, but could be used to
6078 * exclude other special cases in the future.
6079 */
6080 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6081
6082 build_sched_domains(&cpu_default_map);
6083}
6084
6085static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6086{
9c1cfda2
JH
6087#ifdef CONFIG_NUMA
6088 int i;
d1b55138 6089 int cpu;
1da177e4 6090
d1b55138
JH
6091 for_each_cpu_mask(cpu, *cpu_map) {
6092 struct sched_group *sched_group_allnodes
6093 = sched_group_allnodes_bycpu[cpu];
6094 struct sched_group **sched_group_nodes
6095 = sched_group_nodes_bycpu[cpu];
9c1cfda2 6096
d1b55138
JH
6097 if (sched_group_allnodes) {
6098 kfree(sched_group_allnodes);
6099 sched_group_allnodes_bycpu[cpu] = NULL;
6100 }
6101
6102 if (!sched_group_nodes)
9c1cfda2 6103 continue;
d1b55138
JH
6104
6105 for (i = 0; i < MAX_NUMNODES; i++) {
6106 cpumask_t nodemask = node_to_cpumask(i);
6107 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6108
6109 cpus_and(nodemask, nodemask, *cpu_map);
6110 if (cpus_empty(nodemask))
6111 continue;
6112
6113 if (sg == NULL)
6114 continue;
6115 sg = sg->next;
9c1cfda2 6116next_sg:
d1b55138
JH
6117 oldsg = sg;
6118 sg = sg->next;
6119 kfree(oldsg);
6120 if (oldsg != sched_group_nodes[i])
6121 goto next_sg;
6122 }
6123 kfree(sched_group_nodes);
6124 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
6125 }
6126#endif
6127}
1da177e4 6128
1a20ff27
DG
6129/*
6130 * Detach sched domains from a group of cpus specified in cpu_map
6131 * These cpus will now be attached to the NULL domain
6132 */
858119e1 6133static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6134{
6135 int i;
6136
6137 for_each_cpu_mask(i, *cpu_map)
6138 cpu_attach_domain(NULL, i);
6139 synchronize_sched();
6140 arch_destroy_sched_domains(cpu_map);
6141}
6142
6143/*
6144 * Partition sched domains as specified by the cpumasks below.
6145 * This attaches all cpus from the cpumasks to the NULL domain,
6146 * waits for a RCU quiescent period, recalculates sched
6147 * domain information and then attaches them back to the
6148 * correct sched domains
6149 * Call with hotplug lock held
6150 */
6151void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6152{
6153 cpumask_t change_map;
6154
6155 cpus_and(*partition1, *partition1, cpu_online_map);
6156 cpus_and(*partition2, *partition2, cpu_online_map);
6157 cpus_or(change_map, *partition1, *partition2);
6158
6159 /* Detach sched domains from all of the affected cpus */
6160 detach_destroy_domains(&change_map);
6161 if (!cpus_empty(*partition1))
6162 build_sched_domains(partition1);
6163 if (!cpus_empty(*partition2))
6164 build_sched_domains(partition2);
6165}
6166
1da177e4
LT
6167#ifdef CONFIG_HOTPLUG_CPU
6168/*
6169 * Force a reinitialization of the sched domains hierarchy. The domains
6170 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6171 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6172 * which will prevent rebalancing while the sched domains are recalculated.
6173 */
6174static int update_sched_domains(struct notifier_block *nfb,
6175 unsigned long action, void *hcpu)
6176{
1da177e4
LT
6177 switch (action) {
6178 case CPU_UP_PREPARE:
6179 case CPU_DOWN_PREPARE:
1a20ff27 6180 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6181 return NOTIFY_OK;
6182
6183 case CPU_UP_CANCELED:
6184 case CPU_DOWN_FAILED:
6185 case CPU_ONLINE:
6186 case CPU_DEAD:
6187 /*
6188 * Fall through and re-initialise the domains.
6189 */
6190 break;
6191 default:
6192 return NOTIFY_DONE;
6193 }
6194
6195 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6196 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6197
6198 return NOTIFY_OK;
6199}
6200#endif
6201
6202void __init sched_init_smp(void)
6203{
6204 lock_cpu_hotplug();
1a20ff27 6205 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6206 unlock_cpu_hotplug();
6207 /* XXX: Theoretical race here - CPU may be hotplugged now */
6208 hotcpu_notifier(update_sched_domains, 0);
6209}
6210#else
6211void __init sched_init_smp(void)
6212{
6213}
6214#endif /* CONFIG_SMP */
6215
6216int in_sched_functions(unsigned long addr)
6217{
6218 /* Linker adds these: start and end of __sched functions */
6219 extern char __sched_text_start[], __sched_text_end[];
6220 return in_lock_functions(addr) ||
6221 (addr >= (unsigned long)__sched_text_start
6222 && addr < (unsigned long)__sched_text_end);
6223}
6224
6225void __init sched_init(void)
6226{
6227 runqueue_t *rq;
6228 int i, j, k;
6229
0a945022 6230 for_each_possible_cpu(i) {
1da177e4
LT
6231 prio_array_t *array;
6232
6233 rq = cpu_rq(i);
6234 spin_lock_init(&rq->lock);
7897986b 6235 rq->nr_running = 0;
1da177e4
LT
6236 rq->active = rq->arrays;
6237 rq->expired = rq->arrays + 1;
6238 rq->best_expired_prio = MAX_PRIO;
6239
6240#ifdef CONFIG_SMP
41c7ce9a 6241 rq->sd = NULL;
7897986b
NP
6242 for (j = 1; j < 3; j++)
6243 rq->cpu_load[j] = 0;
1da177e4
LT
6244 rq->active_balance = 0;
6245 rq->push_cpu = 0;
6246 rq->migration_thread = NULL;
6247 INIT_LIST_HEAD(&rq->migration_queue);
6248#endif
6249 atomic_set(&rq->nr_iowait, 0);
6250
6251 for (j = 0; j < 2; j++) {
6252 array = rq->arrays + j;
6253 for (k = 0; k < MAX_PRIO; k++) {
6254 INIT_LIST_HEAD(array->queue + k);
6255 __clear_bit(k, array->bitmap);
6256 }
6257 // delimiter for bitsearch
6258 __set_bit(MAX_PRIO, array->bitmap);
6259 }
6260 }
6261
2dd73a4f 6262 set_load_weight(&init_task);
1da177e4
LT
6263 /*
6264 * The boot idle thread does lazy MMU switching as well:
6265 */
6266 atomic_inc(&init_mm.mm_count);
6267 enter_lazy_tlb(&init_mm, current);
6268
6269 /*
6270 * Make us the idle thread. Technically, schedule() should not be
6271 * called from this thread, however somewhere below it might be,
6272 * but because we are the idle thread, we just pick up running again
6273 * when this runqueue becomes "idle".
6274 */
6275 init_idle(current, smp_processor_id());
6276}
6277
6278#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6279void __might_sleep(char *file, int line)
6280{
6281#if defined(in_atomic)
6282 static unsigned long prev_jiffy; /* ratelimiting */
6283
6284 if ((in_atomic() || irqs_disabled()) &&
6285 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6286 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6287 return;
6288 prev_jiffy = jiffies;
91368d73 6289 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6290 " context at %s:%d\n", file, line);
6291 printk("in_atomic():%d, irqs_disabled():%d\n",
6292 in_atomic(), irqs_disabled());
6293 dump_stack();
6294 }
6295#endif
6296}
6297EXPORT_SYMBOL(__might_sleep);
6298#endif
6299
6300#ifdef CONFIG_MAGIC_SYSRQ
6301void normalize_rt_tasks(void)
6302{
6303 struct task_struct *p;
6304 prio_array_t *array;
6305 unsigned long flags;
6306 runqueue_t *rq;
6307
6308 read_lock_irq(&tasklist_lock);
c96d145e 6309 for_each_process(p) {
1da177e4
LT
6310 if (!rt_task(p))
6311 continue;
6312
6313 rq = task_rq_lock(p, &flags);
6314
6315 array = p->array;
6316 if (array)
6317 deactivate_task(p, task_rq(p));
6318 __setscheduler(p, SCHED_NORMAL, 0);
6319 if (array) {
6320 __activate_task(p, task_rq(p));
6321 resched_task(rq->curr);
6322 }
6323
6324 task_rq_unlock(rq, &flags);
6325 }
6326 read_unlock_irq(&tasklist_lock);
6327}
6328
6329#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6330
6331#ifdef CONFIG_IA64
6332/*
6333 * These functions are only useful for the IA64 MCA handling.
6334 *
6335 * They can only be called when the whole system has been
6336 * stopped - every CPU needs to be quiescent, and no scheduling
6337 * activity can take place. Using them for anything else would
6338 * be a serious bug, and as a result, they aren't even visible
6339 * under any other configuration.
6340 */
6341
6342/**
6343 * curr_task - return the current task for a given cpu.
6344 * @cpu: the processor in question.
6345 *
6346 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6347 */
6348task_t *curr_task(int cpu)
6349{
6350 return cpu_curr(cpu);
6351}
6352
6353/**
6354 * set_curr_task - set the current task for a given cpu.
6355 * @cpu: the processor in question.
6356 * @p: the task pointer to set.
6357 *
6358 * Description: This function must only be used when non-maskable interrupts
6359 * are serviced on a separate stack. It allows the architecture to switch the
6360 * notion of the current task on a cpu in a non-blocking manner. This function
6361 * must be called with all CPU's synchronized, and interrupts disabled, the
6362 * and caller must save the original value of the current task (see
6363 * curr_task() above) and restore that value before reenabling interrupts and
6364 * re-starting the system.
6365 *
6366 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6367 */
6368void set_curr_task(int cpu, task_t *p)
6369{
6370 cpu_curr(cpu) = p;
6371}
6372
6373#endif
This page took 0.482356 seconds and 5 git commands to generate.