sched: Implement head queueing for sched_rt
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 struct sched_rt_entity *rt_se;
440#endif
6aa645ea
IM
441};
442
57d885fe
GH
443#ifdef CONFIG_SMP
444
445/*
446 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
57d885fe
GH
452 */
453struct root_domain {
454 atomic_t refcount;
c6c4927b
RR
455 cpumask_var_t span;
456 cpumask_var_t online;
637f5085 457
0eab9146 458 /*
637f5085
GH
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
c6c4927b 462 cpumask_var_t rto_mask;
0eab9146 463 atomic_t rto_count;
6e0534f2
GH
464#ifdef CONFIG_SMP
465 struct cpupri cpupri;
466#endif
57d885fe
GH
467};
468
dc938520
GH
469/*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
57d885fe
GH
473static struct root_domain def_root_domain;
474
475#endif
476
1da177e4
LT
477/*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
70b97a7f 484struct rq {
d8016491 485 /* runqueue lock: */
05fa785c 486 raw_spinlock_t lock;
1da177e4
LT
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
6aa645ea
IM
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
495#ifdef CONFIG_NO_HZ
496 unsigned char in_nohz_recently;
497#endif
d8016491
IM
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
6aa645ea
IM
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
6f505b16 504 struct rt_rq rt;
6f505b16 505
6aa645ea 506#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
509#endif
510#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 511 struct list_head leaf_rt_rq_list;
1da177e4 512#endif
1da177e4
LT
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
36c8b586 522 struct task_struct *curr, *idle;
c9819f45 523 unsigned long next_balance;
1da177e4 524 struct mm_struct *prev_mm;
6aa645ea 525
3e51f33f 526 u64 clock;
6aa645ea 527
1da177e4
LT
528 atomic_t nr_iowait;
529
530#ifdef CONFIG_SMP
0eab9146 531 struct root_domain *rd;
1da177e4
LT
532 struct sched_domain *sd;
533
a0a522ce 534 unsigned char idle_at_tick;
1da177e4 535 /* For active balancing */
3f029d3c 536 int post_schedule;
1da177e4
LT
537 int active_balance;
538 int push_cpu;
d8016491
IM
539 /* cpu of this runqueue: */
540 int cpu;
1f11eb6a 541 int online;
1da177e4 542
a8a51d5e 543 unsigned long avg_load_per_task;
1da177e4 544
36c8b586 545 struct task_struct *migration_thread;
1da177e4 546 struct list_head migration_queue;
e9e9250b
PZ
547
548 u64 rt_avg;
549 u64 age_stamp;
1b9508f6
MG
550 u64 idle_stamp;
551 u64 avg_idle;
1da177e4
LT
552#endif
553
dce48a84
TG
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
8f4d37ec 558#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
559#ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562#endif
8f4d37ec
PZ
563 struct hrtimer hrtick_timer;
564#endif
565
1da177e4
LT
566#ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
9c2c4802
KC
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
571
572 /* sys_sched_yield() stats */
480b9434 573 unsigned int yld_count;
1da177e4
LT
574
575 /* schedule() stats */
480b9434
KC
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
1da177e4
LT
579
580 /* try_to_wake_up() stats */
480b9434
KC
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
b8efb561
IM
583
584 /* BKL stats */
480b9434 585 unsigned int bkl_count;
1da177e4
LT
586#endif
587};
588
f34e3b61 589static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 590
7d478721
PZ
591static inline
592void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 593{
7d478721 594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
595}
596
0a2966b4
CL
597static inline int cpu_of(struct rq *rq)
598{
599#ifdef CONFIG_SMP
600 return rq->cpu;
601#else
602 return 0;
603#endif
604}
605
674311d5
NP
606/*
607 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 608 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
609 *
610 * The domain tree of any CPU may only be accessed from within
611 * preempt-disabled sections.
612 */
48f24c4d
IM
613#define for_each_domain(cpu, __sd) \
614 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
615
616#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
617#define this_rq() (&__get_cpu_var(runqueues))
618#define task_rq(p) cpu_rq(task_cpu(p))
619#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 620#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 621
aa9c4c0f 622inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
623{
624 rq->clock = sched_clock_cpu(cpu_of(rq));
625}
626
bf5c91ba
IM
627/*
628 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
629 */
630#ifdef CONFIG_SCHED_DEBUG
631# define const_debug __read_mostly
632#else
633# define const_debug static const
634#endif
635
017730c1
IM
636/**
637 * runqueue_is_locked
e17b38bf 638 * @cpu: the processor in question.
017730c1
IM
639 *
640 * Returns true if the current cpu runqueue is locked.
641 * This interface allows printk to be called with the runqueue lock
642 * held and know whether or not it is OK to wake up the klogd.
643 */
89f19f04 644int runqueue_is_locked(int cpu)
017730c1 645{
05fa785c 646 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
647}
648
bf5c91ba
IM
649/*
650 * Debugging: various feature bits
651 */
f00b45c1
PZ
652
653#define SCHED_FEAT(name, enabled) \
654 __SCHED_FEAT_##name ,
655
bf5c91ba 656enum {
f00b45c1 657#include "sched_features.h"
bf5c91ba
IM
658};
659
f00b45c1
PZ
660#undef SCHED_FEAT
661
662#define SCHED_FEAT(name, enabled) \
663 (1UL << __SCHED_FEAT_##name) * enabled |
664
bf5c91ba 665const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
666#include "sched_features.h"
667 0;
668
669#undef SCHED_FEAT
670
671#ifdef CONFIG_SCHED_DEBUG
672#define SCHED_FEAT(name, enabled) \
673 #name ,
674
983ed7a6 675static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
676#include "sched_features.h"
677 NULL
678};
679
680#undef SCHED_FEAT
681
34f3a814 682static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 683{
f00b45c1
PZ
684 int i;
685
686 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
687 if (!(sysctl_sched_features & (1UL << i)))
688 seq_puts(m, "NO_");
689 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 690 }
34f3a814 691 seq_puts(m, "\n");
f00b45c1 692
34f3a814 693 return 0;
f00b45c1
PZ
694}
695
696static ssize_t
697sched_feat_write(struct file *filp, const char __user *ubuf,
698 size_t cnt, loff_t *ppos)
699{
700 char buf[64];
701 char *cmp = buf;
702 int neg = 0;
703 int i;
704
705 if (cnt > 63)
706 cnt = 63;
707
708 if (copy_from_user(&buf, ubuf, cnt))
709 return -EFAULT;
710
711 buf[cnt] = 0;
712
c24b7c52 713 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
714 neg = 1;
715 cmp += 3;
716 }
717
718 for (i = 0; sched_feat_names[i]; i++) {
719 int len = strlen(sched_feat_names[i]);
720
721 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
722 if (neg)
723 sysctl_sched_features &= ~(1UL << i);
724 else
725 sysctl_sched_features |= (1UL << i);
726 break;
727 }
728 }
729
730 if (!sched_feat_names[i])
731 return -EINVAL;
732
42994724 733 *ppos += cnt;
f00b45c1
PZ
734
735 return cnt;
736}
737
34f3a814
LZ
738static int sched_feat_open(struct inode *inode, struct file *filp)
739{
740 return single_open(filp, sched_feat_show, NULL);
741}
742
828c0950 743static const struct file_operations sched_feat_fops = {
34f3a814
LZ
744 .open = sched_feat_open,
745 .write = sched_feat_write,
746 .read = seq_read,
747 .llseek = seq_lseek,
748 .release = single_release,
f00b45c1
PZ
749};
750
751static __init int sched_init_debug(void)
752{
f00b45c1
PZ
753 debugfs_create_file("sched_features", 0644, NULL, NULL,
754 &sched_feat_fops);
755
756 return 0;
757}
758late_initcall(sched_init_debug);
759
760#endif
761
762#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 763
b82d9fdd
PZ
764/*
765 * Number of tasks to iterate in a single balance run.
766 * Limited because this is done with IRQs disabled.
767 */
768const_debug unsigned int sysctl_sched_nr_migrate = 32;
769
2398f2c6
PZ
770/*
771 * ratelimit for updating the group shares.
55cd5340 772 * default: 0.25ms
2398f2c6 773 */
55cd5340 774unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 775unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 776
ffda12a1
PZ
777/*
778 * Inject some fuzzyness into changing the per-cpu group shares
779 * this avoids remote rq-locks at the expense of fairness.
780 * default: 4
781 */
782unsigned int sysctl_sched_shares_thresh = 4;
783
e9e9250b
PZ
784/*
785 * period over which we average the RT time consumption, measured
786 * in ms.
787 *
788 * default: 1s
789 */
790const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
791
fa85ae24 792/*
9f0c1e56 793 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
794 * default: 1s
795 */
9f0c1e56 796unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 797
6892b75e
IM
798static __read_mostly int scheduler_running;
799
9f0c1e56
PZ
800/*
801 * part of the period that we allow rt tasks to run in us.
802 * default: 0.95s
803 */
804int sysctl_sched_rt_runtime = 950000;
fa85ae24 805
d0b27fa7
PZ
806static inline u64 global_rt_period(void)
807{
808 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
809}
810
811static inline u64 global_rt_runtime(void)
812{
e26873bb 813 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
814 return RUNTIME_INF;
815
816 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
817}
fa85ae24 818
1da177e4 819#ifndef prepare_arch_switch
4866cde0
NP
820# define prepare_arch_switch(next) do { } while (0)
821#endif
822#ifndef finish_arch_switch
823# define finish_arch_switch(prev) do { } while (0)
824#endif
825
051a1d1a
DA
826static inline int task_current(struct rq *rq, struct task_struct *p)
827{
828 return rq->curr == p;
829}
830
4866cde0 831#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 832static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 833{
051a1d1a 834 return task_current(rq, p);
4866cde0
NP
835}
836
70b97a7f 837static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
838{
839}
840
70b97a7f 841static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 842{
da04c035
IM
843#ifdef CONFIG_DEBUG_SPINLOCK
844 /* this is a valid case when another task releases the spinlock */
845 rq->lock.owner = current;
846#endif
8a25d5de
IM
847 /*
848 * If we are tracking spinlock dependencies then we have to
849 * fix up the runqueue lock - which gets 'carried over' from
850 * prev into current:
851 */
852 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
853
05fa785c 854 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
855}
856
857#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
859{
860#ifdef CONFIG_SMP
861 return p->oncpu;
862#else
051a1d1a 863 return task_current(rq, p);
4866cde0
NP
864#endif
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869#ifdef CONFIG_SMP
870 /*
871 * We can optimise this out completely for !SMP, because the
872 * SMP rebalancing from interrupt is the only thing that cares
873 * here.
874 */
875 next->oncpu = 1;
876#endif
877#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 878 raw_spin_unlock_irq(&rq->lock);
4866cde0 879#else
05fa785c 880 raw_spin_unlock(&rq->lock);
4866cde0
NP
881#endif
882}
883
70b97a7f 884static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
885{
886#ifdef CONFIG_SMP
887 /*
888 * After ->oncpu is cleared, the task can be moved to a different CPU.
889 * We must ensure this doesn't happen until the switch is completely
890 * finished.
891 */
892 smp_wmb();
893 prev->oncpu = 0;
894#endif
895#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
896 local_irq_enable();
1da177e4 897#endif
4866cde0
NP
898}
899#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 900
b29739f9
IM
901/*
902 * __task_rq_lock - lock the runqueue a given task resides on.
903 * Must be called interrupts disabled.
904 */
70b97a7f 905static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
906 __acquires(rq->lock)
907{
3a5c359a
AK
908 for (;;) {
909 struct rq *rq = task_rq(p);
05fa785c 910 raw_spin_lock(&rq->lock);
3a5c359a
AK
911 if (likely(rq == task_rq(p)))
912 return rq;
05fa785c 913 raw_spin_unlock(&rq->lock);
b29739f9 914 }
b29739f9
IM
915}
916
1da177e4
LT
917/*
918 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 919 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
920 * explicitly disabling preemption.
921 */
70b97a7f 922static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
923 __acquires(rq->lock)
924{
70b97a7f 925 struct rq *rq;
1da177e4 926
3a5c359a
AK
927 for (;;) {
928 local_irq_save(*flags);
929 rq = task_rq(p);
05fa785c 930 raw_spin_lock(&rq->lock);
3a5c359a
AK
931 if (likely(rq == task_rq(p)))
932 return rq;
05fa785c 933 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 934 }
1da177e4
LT
935}
936
ad474cac
ON
937void task_rq_unlock_wait(struct task_struct *p)
938{
939 struct rq *rq = task_rq(p);
940
941 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 942 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
943}
944
a9957449 945static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
946 __releases(rq->lock)
947{
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9
IM
949}
950
70b97a7f 951static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
952 __releases(rq->lock)
953{
05fa785c 954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
955}
956
1da177e4 957/*
cc2a73b5 958 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 959 */
a9957449 960static struct rq *this_rq_lock(void)
1da177e4
LT
961 __acquires(rq->lock)
962{
70b97a7f 963 struct rq *rq;
1da177e4
LT
964
965 local_irq_disable();
966 rq = this_rq();
05fa785c 967 raw_spin_lock(&rq->lock);
1da177e4
LT
968
969 return rq;
970}
971
8f4d37ec
PZ
972#ifdef CONFIG_SCHED_HRTICK
973/*
974 * Use HR-timers to deliver accurate preemption points.
975 *
976 * Its all a bit involved since we cannot program an hrt while holding the
977 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
978 * reschedule event.
979 *
980 * When we get rescheduled we reprogram the hrtick_timer outside of the
981 * rq->lock.
982 */
8f4d37ec
PZ
983
984/*
985 * Use hrtick when:
986 * - enabled by features
987 * - hrtimer is actually high res
988 */
989static inline int hrtick_enabled(struct rq *rq)
990{
991 if (!sched_feat(HRTICK))
992 return 0;
ba42059f 993 if (!cpu_active(cpu_of(rq)))
b328ca18 994 return 0;
8f4d37ec
PZ
995 return hrtimer_is_hres_active(&rq->hrtick_timer);
996}
997
8f4d37ec
PZ
998static void hrtick_clear(struct rq *rq)
999{
1000 if (hrtimer_active(&rq->hrtick_timer))
1001 hrtimer_cancel(&rq->hrtick_timer);
1002}
1003
8f4d37ec
PZ
1004/*
1005 * High-resolution timer tick.
1006 * Runs from hardirq context with interrupts disabled.
1007 */
1008static enum hrtimer_restart hrtick(struct hrtimer *timer)
1009{
1010 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1011
1012 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1013
05fa785c 1014 raw_spin_lock(&rq->lock);
3e51f33f 1015 update_rq_clock(rq);
8f4d37ec 1016 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1017 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1018
1019 return HRTIMER_NORESTART;
1020}
1021
95e904c7 1022#ifdef CONFIG_SMP
31656519
PZ
1023/*
1024 * called from hardirq (IPI) context
1025 */
1026static void __hrtick_start(void *arg)
b328ca18 1027{
31656519 1028 struct rq *rq = arg;
b328ca18 1029
05fa785c 1030 raw_spin_lock(&rq->lock);
31656519
PZ
1031 hrtimer_restart(&rq->hrtick_timer);
1032 rq->hrtick_csd_pending = 0;
05fa785c 1033 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1034}
1035
31656519
PZ
1036/*
1037 * Called to set the hrtick timer state.
1038 *
1039 * called with rq->lock held and irqs disabled
1040 */
1041static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1042{
31656519
PZ
1043 struct hrtimer *timer = &rq->hrtick_timer;
1044 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1045
cc584b21 1046 hrtimer_set_expires(timer, time);
31656519
PZ
1047
1048 if (rq == this_rq()) {
1049 hrtimer_restart(timer);
1050 } else if (!rq->hrtick_csd_pending) {
6e275637 1051 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1052 rq->hrtick_csd_pending = 1;
1053 }
b328ca18
PZ
1054}
1055
1056static int
1057hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1058{
1059 int cpu = (int)(long)hcpu;
1060
1061 switch (action) {
1062 case CPU_UP_CANCELED:
1063 case CPU_UP_CANCELED_FROZEN:
1064 case CPU_DOWN_PREPARE:
1065 case CPU_DOWN_PREPARE_FROZEN:
1066 case CPU_DEAD:
1067 case CPU_DEAD_FROZEN:
31656519 1068 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1069 return NOTIFY_OK;
1070 }
1071
1072 return NOTIFY_DONE;
1073}
1074
fa748203 1075static __init void init_hrtick(void)
b328ca18
PZ
1076{
1077 hotcpu_notifier(hotplug_hrtick, 0);
1078}
31656519
PZ
1079#else
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
1086{
7f1e2ca9 1087 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1088 HRTIMER_MODE_REL_PINNED, 0);
31656519 1089}
b328ca18 1090
006c75f1 1091static inline void init_hrtick(void)
8f4d37ec 1092{
8f4d37ec 1093}
31656519 1094#endif /* CONFIG_SMP */
8f4d37ec 1095
31656519 1096static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1097{
31656519
PZ
1098#ifdef CONFIG_SMP
1099 rq->hrtick_csd_pending = 0;
8f4d37ec 1100
31656519
PZ
1101 rq->hrtick_csd.flags = 0;
1102 rq->hrtick_csd.func = __hrtick_start;
1103 rq->hrtick_csd.info = rq;
1104#endif
8f4d37ec 1105
31656519
PZ
1106 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1107 rq->hrtick_timer.function = hrtick;
8f4d37ec 1108}
006c75f1 1109#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1110static inline void hrtick_clear(struct rq *rq)
1111{
1112}
1113
8f4d37ec
PZ
1114static inline void init_rq_hrtick(struct rq *rq)
1115{
1116}
1117
b328ca18
PZ
1118static inline void init_hrtick(void)
1119{
1120}
006c75f1 1121#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1122
c24d20db
IM
1123/*
1124 * resched_task - mark a task 'to be rescheduled now'.
1125 *
1126 * On UP this means the setting of the need_resched flag, on SMP it
1127 * might also involve a cross-CPU call to trigger the scheduler on
1128 * the target CPU.
1129 */
1130#ifdef CONFIG_SMP
1131
1132#ifndef tsk_is_polling
1133#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1134#endif
1135
31656519 1136static void resched_task(struct task_struct *p)
c24d20db
IM
1137{
1138 int cpu;
1139
05fa785c 1140 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1141
5ed0cec0 1142 if (test_tsk_need_resched(p))
c24d20db
IM
1143 return;
1144
5ed0cec0 1145 set_tsk_need_resched(p);
c24d20db
IM
1146
1147 cpu = task_cpu(p);
1148 if (cpu == smp_processor_id())
1149 return;
1150
1151 /* NEED_RESCHED must be visible before we test polling */
1152 smp_mb();
1153 if (!tsk_is_polling(p))
1154 smp_send_reschedule(cpu);
1155}
1156
1157static void resched_cpu(int cpu)
1158{
1159 struct rq *rq = cpu_rq(cpu);
1160 unsigned long flags;
1161
05fa785c 1162 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1163 return;
1164 resched_task(cpu_curr(cpu));
05fa785c 1165 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1166}
06d8308c
TG
1167
1168#ifdef CONFIG_NO_HZ
1169/*
1170 * When add_timer_on() enqueues a timer into the timer wheel of an
1171 * idle CPU then this timer might expire before the next timer event
1172 * which is scheduled to wake up that CPU. In case of a completely
1173 * idle system the next event might even be infinite time into the
1174 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1175 * leaves the inner idle loop so the newly added timer is taken into
1176 * account when the CPU goes back to idle and evaluates the timer
1177 * wheel for the next timer event.
1178 */
1179void wake_up_idle_cpu(int cpu)
1180{
1181 struct rq *rq = cpu_rq(cpu);
1182
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /*
1187 * This is safe, as this function is called with the timer
1188 * wheel base lock of (cpu) held. When the CPU is on the way
1189 * to idle and has not yet set rq->curr to idle then it will
1190 * be serialized on the timer wheel base lock and take the new
1191 * timer into account automatically.
1192 */
1193 if (rq->curr != rq->idle)
1194 return;
1195
1196 /*
1197 * We can set TIF_RESCHED on the idle task of the other CPU
1198 * lockless. The worst case is that the other CPU runs the
1199 * idle task through an additional NOOP schedule()
1200 */
5ed0cec0 1201 set_tsk_need_resched(rq->idle);
06d8308c
TG
1202
1203 /* NEED_RESCHED must be visible before we test polling */
1204 smp_mb();
1205 if (!tsk_is_polling(rq->idle))
1206 smp_send_reschedule(cpu);
1207}
6d6bc0ad 1208#endif /* CONFIG_NO_HZ */
06d8308c 1209
e9e9250b
PZ
1210static u64 sched_avg_period(void)
1211{
1212 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1213}
1214
1215static void sched_avg_update(struct rq *rq)
1216{
1217 s64 period = sched_avg_period();
1218
1219 while ((s64)(rq->clock - rq->age_stamp) > period) {
1220 rq->age_stamp += period;
1221 rq->rt_avg /= 2;
1222 }
1223}
1224
1225static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1226{
1227 rq->rt_avg += rt_delta;
1228 sched_avg_update(rq);
1229}
1230
6d6bc0ad 1231#else /* !CONFIG_SMP */
31656519 1232static void resched_task(struct task_struct *p)
c24d20db 1233{
05fa785c 1234 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1235 set_tsk_need_resched(p);
c24d20db 1236}
e9e9250b
PZ
1237
1238static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1239{
1240}
6d6bc0ad 1241#endif /* CONFIG_SMP */
c24d20db 1242
45bf76df
IM
1243#if BITS_PER_LONG == 32
1244# define WMULT_CONST (~0UL)
1245#else
1246# define WMULT_CONST (1UL << 32)
1247#endif
1248
1249#define WMULT_SHIFT 32
1250
194081eb
IM
1251/*
1252 * Shift right and round:
1253 */
cf2ab469 1254#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1255
a7be37ac
PZ
1256/*
1257 * delta *= weight / lw
1258 */
cb1c4fc9 1259static unsigned long
45bf76df
IM
1260calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1261 struct load_weight *lw)
1262{
1263 u64 tmp;
1264
7a232e03
LJ
1265 if (!lw->inv_weight) {
1266 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1267 lw->inv_weight = 1;
1268 else
1269 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1270 / (lw->weight+1);
1271 }
45bf76df
IM
1272
1273 tmp = (u64)delta_exec * weight;
1274 /*
1275 * Check whether we'd overflow the 64-bit multiplication:
1276 */
194081eb 1277 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1278 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1279 WMULT_SHIFT/2);
1280 else
cf2ab469 1281 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1282
ecf691da 1283 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1284}
1285
1091985b 1286static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1287{
1288 lw->weight += inc;
e89996ae 1289 lw->inv_weight = 0;
45bf76df
IM
1290}
1291
1091985b 1292static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1293{
1294 lw->weight -= dec;
e89996ae 1295 lw->inv_weight = 0;
45bf76df
IM
1296}
1297
2dd73a4f
PW
1298/*
1299 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1300 * of tasks with abnormal "nice" values across CPUs the contribution that
1301 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1302 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1303 * scaled version of the new time slice allocation that they receive on time
1304 * slice expiry etc.
1305 */
1306
cce7ade8
PZ
1307#define WEIGHT_IDLEPRIO 3
1308#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1309
1310/*
1311 * Nice levels are multiplicative, with a gentle 10% change for every
1312 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1313 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1314 * that remained on nice 0.
1315 *
1316 * The "10% effect" is relative and cumulative: from _any_ nice level,
1317 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1318 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1319 * If a task goes up by ~10% and another task goes down by ~10% then
1320 * the relative distance between them is ~25%.)
dd41f596
IM
1321 */
1322static const int prio_to_weight[40] = {
254753dc
IM
1323 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1324 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1325 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1326 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1327 /* 0 */ 1024, 820, 655, 526, 423,
1328 /* 5 */ 335, 272, 215, 172, 137,
1329 /* 10 */ 110, 87, 70, 56, 45,
1330 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1331};
1332
5714d2de
IM
1333/*
1334 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1335 *
1336 * In cases where the weight does not change often, we can use the
1337 * precalculated inverse to speed up arithmetics by turning divisions
1338 * into multiplications:
1339 */
dd41f596 1340static const u32 prio_to_wmult[40] = {
254753dc
IM
1341 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1342 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1343 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1344 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1345 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1346 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1347 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1348 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1349};
2dd73a4f 1350
ef12fefa
BR
1351/* Time spent by the tasks of the cpu accounting group executing in ... */
1352enum cpuacct_stat_index {
1353 CPUACCT_STAT_USER, /* ... user mode */
1354 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1355
1356 CPUACCT_STAT_NSTATS,
1357};
1358
d842de87
SV
1359#ifdef CONFIG_CGROUP_CPUACCT
1360static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1361static void cpuacct_update_stats(struct task_struct *tsk,
1362 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1363#else
1364static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1365static inline void cpuacct_update_stats(struct task_struct *tsk,
1366 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1367#endif
1368
18d95a28
PZ
1369static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1370{
1371 update_load_add(&rq->load, load);
1372}
1373
1374static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1375{
1376 update_load_sub(&rq->load, load);
1377}
1378
7940ca36 1379#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1380typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1381
1382/*
1383 * Iterate the full tree, calling @down when first entering a node and @up when
1384 * leaving it for the final time.
1385 */
eb755805 1386static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1387{
1388 struct task_group *parent, *child;
eb755805 1389 int ret;
c09595f6
PZ
1390
1391 rcu_read_lock();
1392 parent = &root_task_group;
1393down:
eb755805
PZ
1394 ret = (*down)(parent, data);
1395 if (ret)
1396 goto out_unlock;
c09595f6
PZ
1397 list_for_each_entry_rcu(child, &parent->children, siblings) {
1398 parent = child;
1399 goto down;
1400
1401up:
1402 continue;
1403 }
eb755805
PZ
1404 ret = (*up)(parent, data);
1405 if (ret)
1406 goto out_unlock;
c09595f6
PZ
1407
1408 child = parent;
1409 parent = parent->parent;
1410 if (parent)
1411 goto up;
eb755805 1412out_unlock:
c09595f6 1413 rcu_read_unlock();
eb755805
PZ
1414
1415 return ret;
c09595f6
PZ
1416}
1417
eb755805
PZ
1418static int tg_nop(struct task_group *tg, void *data)
1419{
1420 return 0;
c09595f6 1421}
eb755805
PZ
1422#endif
1423
1424#ifdef CONFIG_SMP
f5f08f39
PZ
1425/* Used instead of source_load when we know the type == 0 */
1426static unsigned long weighted_cpuload(const int cpu)
1427{
1428 return cpu_rq(cpu)->load.weight;
1429}
1430
1431/*
1432 * Return a low guess at the load of a migration-source cpu weighted
1433 * according to the scheduling class and "nice" value.
1434 *
1435 * We want to under-estimate the load of migration sources, to
1436 * balance conservatively.
1437 */
1438static unsigned long source_load(int cpu, int type)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441 unsigned long total = weighted_cpuload(cpu);
1442
1443 if (type == 0 || !sched_feat(LB_BIAS))
1444 return total;
1445
1446 return min(rq->cpu_load[type-1], total);
1447}
1448
1449/*
1450 * Return a high guess at the load of a migration-target cpu weighted
1451 * according to the scheduling class and "nice" value.
1452 */
1453static unsigned long target_load(int cpu, int type)
1454{
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long total = weighted_cpuload(cpu);
1457
1458 if (type == 0 || !sched_feat(LB_BIAS))
1459 return total;
1460
1461 return max(rq->cpu_load[type-1], total);
1462}
1463
ae154be1
PZ
1464static struct sched_group *group_of(int cpu)
1465{
1466 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1467
1468 if (!sd)
1469 return NULL;
1470
1471 return sd->groups;
1472}
1473
1474static unsigned long power_of(int cpu)
1475{
1476 struct sched_group *group = group_of(cpu);
1477
1478 if (!group)
1479 return SCHED_LOAD_SCALE;
1480
1481 return group->cpu_power;
1482}
1483
eb755805
PZ
1484static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1485
1486static unsigned long cpu_avg_load_per_task(int cpu)
1487{
1488 struct rq *rq = cpu_rq(cpu);
af6d596f 1489 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1490
4cd42620
SR
1491 if (nr_running)
1492 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1493 else
1494 rq->avg_load_per_task = 0;
eb755805
PZ
1495
1496 return rq->avg_load_per_task;
1497}
1498
1499#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1500
4a6cc4bd 1501static __read_mostly unsigned long *update_shares_data;
34d76c41 1502
c09595f6
PZ
1503static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1504
1505/*
1506 * Calculate and set the cpu's group shares.
1507 */
34d76c41
PZ
1508static void update_group_shares_cpu(struct task_group *tg, int cpu,
1509 unsigned long sd_shares,
1510 unsigned long sd_rq_weight,
4a6cc4bd 1511 unsigned long *usd_rq_weight)
18d95a28 1512{
34d76c41 1513 unsigned long shares, rq_weight;
a5004278 1514 int boost = 0;
c09595f6 1515
4a6cc4bd 1516 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1517 if (!rq_weight) {
1518 boost = 1;
1519 rq_weight = NICE_0_LOAD;
1520 }
c8cba857 1521
c09595f6 1522 /*
a8af7246
PZ
1523 * \Sum_j shares_j * rq_weight_i
1524 * shares_i = -----------------------------
1525 * \Sum_j rq_weight_j
c09595f6 1526 */
ec4e0e2f 1527 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1528 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1529
ffda12a1
PZ
1530 if (abs(shares - tg->se[cpu]->load.weight) >
1531 sysctl_sched_shares_thresh) {
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long flags;
c09595f6 1534
05fa785c 1535 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1536 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1537 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1538 __set_se_shares(tg->se[cpu], shares);
05fa785c 1539 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1540 }
18d95a28 1541}
c09595f6
PZ
1542
1543/*
c8cba857
PZ
1544 * Re-compute the task group their per cpu shares over the given domain.
1545 * This needs to be done in a bottom-up fashion because the rq weight of a
1546 * parent group depends on the shares of its child groups.
c09595f6 1547 */
eb755805 1548static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1549{
cd8ad40d 1550 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1551 unsigned long *usd_rq_weight;
eb755805 1552 struct sched_domain *sd = data;
34d76c41 1553 unsigned long flags;
c8cba857 1554 int i;
c09595f6 1555
34d76c41
PZ
1556 if (!tg->se[0])
1557 return 0;
1558
1559 local_irq_save(flags);
4a6cc4bd 1560 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1561
758b2cdc 1562 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1563 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1564 usd_rq_weight[i] = weight;
34d76c41 1565
cd8ad40d 1566 rq_weight += weight;
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
ec4e0e2f
KC
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
cd8ad40d 1575 sum_weight += weight;
c8cba857 1576 shares += tg->cfs_rq[i]->shares;
c09595f6 1577 }
c09595f6 1578
cd8ad40d
PZ
1579 if (!rq_weight)
1580 rq_weight = sum_weight;
1581
c8cba857
PZ
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1584
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
c09595f6 1587
758b2cdc 1588 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1589 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1590
1591 local_irq_restore(flags);
eb755805
PZ
1592
1593 return 0;
c09595f6
PZ
1594}
1595
1596/*
c8cba857
PZ
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
c09595f6 1600 */
eb755805 1601static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1602{
c8cba857 1603 unsigned long load;
eb755805 1604 long cpu = (long)data;
c09595f6 1605
c8cba857
PZ
1606 if (!tg->parent) {
1607 load = cpu_rq(cpu)->load.weight;
1608 } else {
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 }
c09595f6 1613
c8cba857 1614 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1615
eb755805 1616 return 0;
c09595f6
PZ
1617}
1618
c8cba857 1619static void update_shares(struct sched_domain *sd)
4d8d595d 1620{
e7097159
PZ
1621 s64 elapsed;
1622 u64 now;
1623
1624 if (root_task_group_empty())
1625 return;
1626
1627 now = cpu_clock(raw_smp_processor_id());
1628 elapsed = now - sd->last_update;
2398f2c6
PZ
1629
1630 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1631 sd->last_update = now;
eb755805 1632 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1633 }
4d8d595d
PZ
1634}
1635
3e5459b4
PZ
1636static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1637{
e7097159
PZ
1638 if (root_task_group_empty())
1639 return;
1640
05fa785c 1641 raw_spin_unlock(&rq->lock);
3e5459b4 1642 update_shares(sd);
05fa785c 1643 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1644}
1645
eb755805 1646static void update_h_load(long cpu)
c09595f6 1647{
e7097159
PZ
1648 if (root_task_group_empty())
1649 return;
1650
eb755805 1651 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1652}
1653
c09595f6
PZ
1654#else
1655
c8cba857 1656static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1657{
1658}
1659
3e5459b4
PZ
1660static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1661{
1662}
1663
18d95a28
PZ
1664#endif
1665
8f45e2b5
GH
1666#ifdef CONFIG_PREEMPT
1667
b78bb868
PZ
1668static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1669
70574a99 1670/*
8f45e2b5
GH
1671 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1672 * way at the expense of forcing extra atomic operations in all
1673 * invocations. This assures that the double_lock is acquired using the
1674 * same underlying policy as the spinlock_t on this architecture, which
1675 * reduces latency compared to the unfair variant below. However, it
1676 * also adds more overhead and therefore may reduce throughput.
70574a99 1677 */
8f45e2b5
GH
1678static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1679 __releases(this_rq->lock)
1680 __acquires(busiest->lock)
1681 __acquires(this_rq->lock)
1682{
05fa785c 1683 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1684 double_rq_lock(this_rq, busiest);
1685
1686 return 1;
1687}
1688
1689#else
1690/*
1691 * Unfair double_lock_balance: Optimizes throughput at the expense of
1692 * latency by eliminating extra atomic operations when the locks are
1693 * already in proper order on entry. This favors lower cpu-ids and will
1694 * grant the double lock to lower cpus over higher ids under contention,
1695 * regardless of entry order into the function.
1696 */
1697static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1698 __releases(this_rq->lock)
1699 __acquires(busiest->lock)
1700 __acquires(this_rq->lock)
1701{
1702 int ret = 0;
1703
05fa785c 1704 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1705 if (busiest < this_rq) {
05fa785c
TG
1706 raw_spin_unlock(&this_rq->lock);
1707 raw_spin_lock(&busiest->lock);
1708 raw_spin_lock_nested(&this_rq->lock,
1709 SINGLE_DEPTH_NESTING);
70574a99
AD
1710 ret = 1;
1711 } else
05fa785c
TG
1712 raw_spin_lock_nested(&busiest->lock,
1713 SINGLE_DEPTH_NESTING);
70574a99
AD
1714 }
1715 return ret;
1716}
1717
8f45e2b5
GH
1718#endif /* CONFIG_PREEMPT */
1719
1720/*
1721 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1722 */
1723static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1724{
1725 if (unlikely(!irqs_disabled())) {
1726 /* printk() doesn't work good under rq->lock */
05fa785c 1727 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1728 BUG_ON(1);
1729 }
1730
1731 return _double_lock_balance(this_rq, busiest);
1732}
1733
70574a99
AD
1734static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1735 __releases(busiest->lock)
1736{
05fa785c 1737 raw_spin_unlock(&busiest->lock);
70574a99
AD
1738 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1739}
1e3c88bd
PZ
1740
1741/*
1742 * double_rq_lock - safely lock two runqueues
1743 *
1744 * Note this does not disable interrupts like task_rq_lock,
1745 * you need to do so manually before calling.
1746 */
1747static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1748 __acquires(rq1->lock)
1749 __acquires(rq2->lock)
1750{
1751 BUG_ON(!irqs_disabled());
1752 if (rq1 == rq2) {
1753 raw_spin_lock(&rq1->lock);
1754 __acquire(rq2->lock); /* Fake it out ;) */
1755 } else {
1756 if (rq1 < rq2) {
1757 raw_spin_lock(&rq1->lock);
1758 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1759 } else {
1760 raw_spin_lock(&rq2->lock);
1761 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1762 }
1763 }
1764 update_rq_clock(rq1);
1765 update_rq_clock(rq2);
1766}
1767
1768/*
1769 * double_rq_unlock - safely unlock two runqueues
1770 *
1771 * Note this does not restore interrupts like task_rq_unlock,
1772 * you need to do so manually after calling.
1773 */
1774static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1775 __releases(rq1->lock)
1776 __releases(rq2->lock)
1777{
1778 raw_spin_unlock(&rq1->lock);
1779 if (rq1 != rq2)
1780 raw_spin_unlock(&rq2->lock);
1781 else
1782 __release(rq2->lock);
1783}
1784
18d95a28
PZ
1785#endif
1786
30432094 1787#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1788static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1789{
30432094 1790#ifdef CONFIG_SMP
34e83e85
IM
1791 cfs_rq->shares = shares;
1792#endif
1793}
30432094 1794#endif
e7693a36 1795
dce48a84 1796static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1797static void update_sysctl(void);
acb4a848 1798static int get_update_sysctl_factor(void);
dce48a84 1799
cd29fe6f
PZ
1800static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1801{
1802 set_task_rq(p, cpu);
1803#ifdef CONFIG_SMP
1804 /*
1805 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1806 * successfuly executed on another CPU. We must ensure that updates of
1807 * per-task data have been completed by this moment.
1808 */
1809 smp_wmb();
1810 task_thread_info(p)->cpu = cpu;
1811#endif
1812}
dce48a84 1813
1e3c88bd 1814static const struct sched_class rt_sched_class;
dd41f596
IM
1815
1816#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1817#define for_each_class(class) \
1818 for (class = sched_class_highest; class; class = class->next)
dd41f596 1819
1e3c88bd
PZ
1820#include "sched_stats.h"
1821
c09595f6 1822static void inc_nr_running(struct rq *rq)
9c217245
IM
1823{
1824 rq->nr_running++;
9c217245
IM
1825}
1826
c09595f6 1827static void dec_nr_running(struct rq *rq)
9c217245
IM
1828{
1829 rq->nr_running--;
9c217245
IM
1830}
1831
45bf76df
IM
1832static void set_load_weight(struct task_struct *p)
1833{
1834 if (task_has_rt_policy(p)) {
dd41f596
IM
1835 p->se.load.weight = prio_to_weight[0] * 2;
1836 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1837 return;
1838 }
45bf76df 1839
dd41f596
IM
1840 /*
1841 * SCHED_IDLE tasks get minimal weight:
1842 */
1843 if (p->policy == SCHED_IDLE) {
1844 p->se.load.weight = WEIGHT_IDLEPRIO;
1845 p->se.load.inv_weight = WMULT_IDLEPRIO;
1846 return;
1847 }
71f8bd46 1848
dd41f596
IM
1849 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1850 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1851}
1852
2087a1ad
GH
1853static void update_avg(u64 *avg, u64 sample)
1854{
1855 s64 diff = sample - *avg;
1856 *avg += diff >> 3;
1857}
1858
ea87bb78
TG
1859static void
1860enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1861{
831451ac
PZ
1862 if (wakeup)
1863 p->se.start_runtime = p->se.sum_exec_runtime;
1864
dd41f596 1865 sched_info_queued(p);
ea87bb78 1866 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
69be72c1 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1871{
831451ac
PZ
1872 if (sleep) {
1873 if (p->se.last_wakeup) {
1874 update_avg(&p->se.avg_overlap,
1875 p->se.sum_exec_runtime - p->se.last_wakeup);
1876 p->se.last_wakeup = 0;
1877 } else {
1878 update_avg(&p->se.avg_wakeup,
1879 sysctl_sched_wakeup_granularity);
1880 }
2087a1ad
GH
1881 }
1882
46ac22ba 1883 sched_info_dequeued(p);
f02231e5 1884 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1885 p->se.on_rq = 0;
71f8bd46
IM
1886}
1887
1e3c88bd
PZ
1888/*
1889 * activate_task - move a task to the runqueue.
1890 */
1891static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1892{
1893 if (task_contributes_to_load(p))
1894 rq->nr_uninterruptible--;
1895
ea87bb78 1896 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1897 inc_nr_running(rq);
1898}
1899
1900/*
1901 * deactivate_task - remove a task from the runqueue.
1902 */
1903static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1904{
1905 if (task_contributes_to_load(p))
1906 rq->nr_uninterruptible++;
1907
1908 dequeue_task(rq, p, sleep);
1909 dec_nr_running(rq);
1910}
1911
1912#include "sched_idletask.c"
1913#include "sched_fair.c"
1914#include "sched_rt.c"
1915#ifdef CONFIG_SCHED_DEBUG
1916# include "sched_debug.c"
1917#endif
1918
14531189 1919/*
dd41f596 1920 * __normal_prio - return the priority that is based on the static prio
14531189 1921 */
14531189
IM
1922static inline int __normal_prio(struct task_struct *p)
1923{
dd41f596 1924 return p->static_prio;
14531189
IM
1925}
1926
b29739f9
IM
1927/*
1928 * Calculate the expected normal priority: i.e. priority
1929 * without taking RT-inheritance into account. Might be
1930 * boosted by interactivity modifiers. Changes upon fork,
1931 * setprio syscalls, and whenever the interactivity
1932 * estimator recalculates.
1933 */
36c8b586 1934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1935{
1936 int prio;
1937
e05606d3 1938 if (task_has_rt_policy(p))
b29739f9
IM
1939 prio = MAX_RT_PRIO-1 - p->rt_priority;
1940 else
1941 prio = __normal_prio(p);
1942 return prio;
1943}
1944
1945/*
1946 * Calculate the current priority, i.e. the priority
1947 * taken into account by the scheduler. This value might
1948 * be boosted by RT tasks, or might be boosted by
1949 * interactivity modifiers. Will be RT if the task got
1950 * RT-boosted. If not then it returns p->normal_prio.
1951 */
36c8b586 1952static int effective_prio(struct task_struct *p)
b29739f9
IM
1953{
1954 p->normal_prio = normal_prio(p);
1955 /*
1956 * If we are RT tasks or we were boosted to RT priority,
1957 * keep the priority unchanged. Otherwise, update priority
1958 * to the normal priority:
1959 */
1960 if (!rt_prio(p->prio))
1961 return p->normal_prio;
1962 return p->prio;
1963}
1964
1da177e4
LT
1965/**
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1968 */
36c8b586 1969inline int task_curr(const struct task_struct *p)
1da177e4
LT
1970{
1971 return cpu_curr(task_cpu(p)) == p;
1972}
1973
cb469845
SR
1974static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1975 const struct sched_class *prev_class,
1976 int oldprio, int running)
1977{
1978 if (prev_class != p->sched_class) {
1979 if (prev_class->switched_from)
1980 prev_class->switched_from(rq, p, running);
1981 p->sched_class->switched_to(rq, p, running);
1982 } else
1983 p->sched_class->prio_changed(rq, p, oldprio, running);
1984}
1985
1da177e4 1986#ifdef CONFIG_SMP
cc367732
IM
1987/*
1988 * Is this task likely cache-hot:
1989 */
e7693a36 1990static int
cc367732
IM
1991task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1992{
1993 s64 delta;
1994
e6c8fba7
PZ
1995 if (p->sched_class != &fair_sched_class)
1996 return 0;
1997
f540a608
IM
1998 /*
1999 * Buddy candidates are cache hot:
2000 */
f685ceac 2001 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2002 (&p->se == cfs_rq_of(&p->se)->next ||
2003 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2004 return 1;
2005
6bc1665b
IM
2006 if (sysctl_sched_migration_cost == -1)
2007 return 1;
2008 if (sysctl_sched_migration_cost == 0)
2009 return 0;
2010
cc367732
IM
2011 delta = now - p->se.exec_start;
2012
2013 return delta < (s64)sysctl_sched_migration_cost;
2014}
2015
dd41f596 2016void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2017{
e2912009
PZ
2018#ifdef CONFIG_SCHED_DEBUG
2019 /*
2020 * We should never call set_task_cpu() on a blocked task,
2021 * ttwu() will sort out the placement.
2022 */
077614ee
PZ
2023 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2024 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2025#endif
2026
de1d7286 2027 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2028
0c69774e
PZ
2029 if (task_cpu(p) != new_cpu) {
2030 p->se.nr_migrations++;
2031 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2032 }
dd41f596
IM
2033
2034 __set_task_cpu(p, new_cpu);
c65cc870
IM
2035}
2036
70b97a7f 2037struct migration_req {
1da177e4 2038 struct list_head list;
1da177e4 2039
36c8b586 2040 struct task_struct *task;
1da177e4
LT
2041 int dest_cpu;
2042
1da177e4 2043 struct completion done;
70b97a7f 2044};
1da177e4
LT
2045
2046/*
2047 * The task's runqueue lock must be held.
2048 * Returns true if you have to wait for migration thread.
2049 */
36c8b586 2050static int
70b97a7f 2051migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2052{
70b97a7f 2053 struct rq *rq = task_rq(p);
1da177e4
LT
2054
2055 /*
2056 * If the task is not on a runqueue (and not running), then
e2912009 2057 * the next wake-up will properly place the task.
1da177e4 2058 */
e2912009 2059 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2060 return 0;
1da177e4
LT
2061
2062 init_completion(&req->done);
1da177e4
LT
2063 req->task = p;
2064 req->dest_cpu = dest_cpu;
2065 list_add(&req->list, &rq->migration_queue);
48f24c4d 2066
1da177e4
LT
2067 return 1;
2068}
2069
a26b89f0
MM
2070/*
2071 * wait_task_context_switch - wait for a thread to complete at least one
2072 * context switch.
2073 *
2074 * @p must not be current.
2075 */
2076void wait_task_context_switch(struct task_struct *p)
2077{
2078 unsigned long nvcsw, nivcsw, flags;
2079 int running;
2080 struct rq *rq;
2081
2082 nvcsw = p->nvcsw;
2083 nivcsw = p->nivcsw;
2084 for (;;) {
2085 /*
2086 * The runqueue is assigned before the actual context
2087 * switch. We need to take the runqueue lock.
2088 *
2089 * We could check initially without the lock but it is
2090 * very likely that we need to take the lock in every
2091 * iteration.
2092 */
2093 rq = task_rq_lock(p, &flags);
2094 running = task_running(rq, p);
2095 task_rq_unlock(rq, &flags);
2096
2097 if (likely(!running))
2098 break;
2099 /*
2100 * The switch count is incremented before the actual
2101 * context switch. We thus wait for two switches to be
2102 * sure at least one completed.
2103 */
2104 if ((p->nvcsw - nvcsw) > 1)
2105 break;
2106 if ((p->nivcsw - nivcsw) > 1)
2107 break;
2108
2109 cpu_relax();
2110 }
2111}
2112
1da177e4
LT
2113/*
2114 * wait_task_inactive - wait for a thread to unschedule.
2115 *
85ba2d86
RM
2116 * If @match_state is nonzero, it's the @p->state value just checked and
2117 * not expected to change. If it changes, i.e. @p might have woken up,
2118 * then return zero. When we succeed in waiting for @p to be off its CPU,
2119 * we return a positive number (its total switch count). If a second call
2120 * a short while later returns the same number, the caller can be sure that
2121 * @p has remained unscheduled the whole time.
2122 *
1da177e4
LT
2123 * The caller must ensure that the task *will* unschedule sometime soon,
2124 * else this function might spin for a *long* time. This function can't
2125 * be called with interrupts off, or it may introduce deadlock with
2126 * smp_call_function() if an IPI is sent by the same process we are
2127 * waiting to become inactive.
2128 */
85ba2d86 2129unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2130{
2131 unsigned long flags;
dd41f596 2132 int running, on_rq;
85ba2d86 2133 unsigned long ncsw;
70b97a7f 2134 struct rq *rq;
1da177e4 2135
3a5c359a
AK
2136 for (;;) {
2137 /*
2138 * We do the initial early heuristics without holding
2139 * any task-queue locks at all. We'll only try to get
2140 * the runqueue lock when things look like they will
2141 * work out!
2142 */
2143 rq = task_rq(p);
fa490cfd 2144
3a5c359a
AK
2145 /*
2146 * If the task is actively running on another CPU
2147 * still, just relax and busy-wait without holding
2148 * any locks.
2149 *
2150 * NOTE! Since we don't hold any locks, it's not
2151 * even sure that "rq" stays as the right runqueue!
2152 * But we don't care, since "task_running()" will
2153 * return false if the runqueue has changed and p
2154 * is actually now running somewhere else!
2155 */
85ba2d86
RM
2156 while (task_running(rq, p)) {
2157 if (match_state && unlikely(p->state != match_state))
2158 return 0;
3a5c359a 2159 cpu_relax();
85ba2d86 2160 }
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * Ok, time to look more closely! We need the rq
2164 * lock now, to be *sure*. If we're wrong, we'll
2165 * just go back and repeat.
2166 */
2167 rq = task_rq_lock(p, &flags);
0a16b607 2168 trace_sched_wait_task(rq, p);
3a5c359a
AK
2169 running = task_running(rq, p);
2170 on_rq = p->se.on_rq;
85ba2d86 2171 ncsw = 0;
f31e11d8 2172 if (!match_state || p->state == match_state)
93dcf55f 2173 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2174 task_rq_unlock(rq, &flags);
fa490cfd 2175
85ba2d86
RM
2176 /*
2177 * If it changed from the expected state, bail out now.
2178 */
2179 if (unlikely(!ncsw))
2180 break;
2181
3a5c359a
AK
2182 /*
2183 * Was it really running after all now that we
2184 * checked with the proper locks actually held?
2185 *
2186 * Oops. Go back and try again..
2187 */
2188 if (unlikely(running)) {
2189 cpu_relax();
2190 continue;
2191 }
fa490cfd 2192
3a5c359a
AK
2193 /*
2194 * It's not enough that it's not actively running,
2195 * it must be off the runqueue _entirely_, and not
2196 * preempted!
2197 *
80dd99b3 2198 * So if it was still runnable (but just not actively
3a5c359a
AK
2199 * running right now), it's preempted, and we should
2200 * yield - it could be a while.
2201 */
2202 if (unlikely(on_rq)) {
2203 schedule_timeout_uninterruptible(1);
2204 continue;
2205 }
fa490cfd 2206
3a5c359a
AK
2207 /*
2208 * Ahh, all good. It wasn't running, and it wasn't
2209 * runnable, which means that it will never become
2210 * running in the future either. We're all done!
2211 */
2212 break;
2213 }
85ba2d86
RM
2214
2215 return ncsw;
1da177e4
LT
2216}
2217
2218/***
2219 * kick_process - kick a running thread to enter/exit the kernel
2220 * @p: the to-be-kicked thread
2221 *
2222 * Cause a process which is running on another CPU to enter
2223 * kernel-mode, without any delay. (to get signals handled.)
2224 *
2225 * NOTE: this function doesnt have to take the runqueue lock,
2226 * because all it wants to ensure is that the remote task enters
2227 * the kernel. If the IPI races and the task has been migrated
2228 * to another CPU then no harm is done and the purpose has been
2229 * achieved as well.
2230 */
36c8b586 2231void kick_process(struct task_struct *p)
1da177e4
LT
2232{
2233 int cpu;
2234
2235 preempt_disable();
2236 cpu = task_cpu(p);
2237 if ((cpu != smp_processor_id()) && task_curr(p))
2238 smp_send_reschedule(cpu);
2239 preempt_enable();
2240}
b43e3521 2241EXPORT_SYMBOL_GPL(kick_process);
476d139c 2242#endif /* CONFIG_SMP */
1da177e4 2243
0793a61d
TG
2244/**
2245 * task_oncpu_function_call - call a function on the cpu on which a task runs
2246 * @p: the task to evaluate
2247 * @func: the function to be called
2248 * @info: the function call argument
2249 *
2250 * Calls the function @func when the task is currently running. This might
2251 * be on the current CPU, which just calls the function directly
2252 */
2253void task_oncpu_function_call(struct task_struct *p,
2254 void (*func) (void *info), void *info)
2255{
2256 int cpu;
2257
2258 preempt_disable();
2259 cpu = task_cpu(p);
2260 if (task_curr(p))
2261 smp_call_function_single(cpu, func, info, 1);
2262 preempt_enable();
2263}
2264
970b13ba 2265#ifdef CONFIG_SMP
5da9a0fb
PZ
2266static int select_fallback_rq(int cpu, struct task_struct *p)
2267{
2268 int dest_cpu;
2269 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2270
2271 /* Look for allowed, online CPU in same node. */
2272 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2273 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2274 return dest_cpu;
2275
2276 /* Any allowed, online CPU? */
2277 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2278 if (dest_cpu < nr_cpu_ids)
2279 return dest_cpu;
2280
2281 /* No more Mr. Nice Guy. */
2282 if (dest_cpu >= nr_cpu_ids) {
2283 rcu_read_lock();
2284 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2285 rcu_read_unlock();
2286 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2287
2288 /*
2289 * Don't tell them about moving exiting tasks or
2290 * kernel threads (both mm NULL), since they never
2291 * leave kernel.
2292 */
2293 if (p->mm && printk_ratelimit()) {
2294 printk(KERN_INFO "process %d (%s) no "
2295 "longer affine to cpu%d\n",
2296 task_pid_nr(p), p->comm, cpu);
2297 }
2298 }
2299
2300 return dest_cpu;
2301}
2302
e2912009
PZ
2303/*
2304 * Called from:
2305 *
2306 * - fork, @p is stable because it isn't on the tasklist yet
2307 *
38022906 2308 * - exec, @p is unstable, retry loop
e2912009
PZ
2309 *
2310 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2311 * we should be good.
2312 */
970b13ba
PZ
2313static inline
2314int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2315{
e2912009
PZ
2316 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2317
2318 /*
2319 * In order not to call set_task_cpu() on a blocking task we need
2320 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2321 * cpu.
2322 *
2323 * Since this is common to all placement strategies, this lives here.
2324 *
2325 * [ this allows ->select_task() to simply return task_cpu(p) and
2326 * not worry about this generic constraint ]
2327 */
2328 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2329 !cpu_online(cpu)))
5da9a0fb 2330 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2331
2332 return cpu;
970b13ba
PZ
2333}
2334#endif
2335
1da177e4
LT
2336/***
2337 * try_to_wake_up - wake up a thread
2338 * @p: the to-be-woken-up thread
2339 * @state: the mask of task states that can be woken
2340 * @sync: do a synchronous wakeup?
2341 *
2342 * Put it on the run-queue if it's not already there. The "current"
2343 * thread is always on the run-queue (except when the actual
2344 * re-schedule is in progress), and as such you're allowed to do
2345 * the simpler "current->state = TASK_RUNNING" to mark yourself
2346 * runnable without the overhead of this.
2347 *
2348 * returns failure only if the task is already active.
2349 */
7d478721
PZ
2350static int try_to_wake_up(struct task_struct *p, unsigned int state,
2351 int wake_flags)
1da177e4 2352{
cc367732 2353 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2354 unsigned long flags;
f5dc3753 2355 struct rq *rq, *orig_rq;
1da177e4 2356
b85d0667 2357 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2358 wake_flags &= ~WF_SYNC;
2398f2c6 2359
e9c84311 2360 this_cpu = get_cpu();
2398f2c6 2361
04e2f174 2362 smp_wmb();
f5dc3753 2363 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2364 update_rq_clock(rq);
e9c84311 2365 if (!(p->state & state))
1da177e4
LT
2366 goto out;
2367
dd41f596 2368 if (p->se.on_rq)
1da177e4
LT
2369 goto out_running;
2370
2371 cpu = task_cpu(p);
cc367732 2372 orig_cpu = cpu;
1da177e4
LT
2373
2374#ifdef CONFIG_SMP
2375 if (unlikely(task_running(rq, p)))
2376 goto out_activate;
2377
e9c84311
PZ
2378 /*
2379 * In order to handle concurrent wakeups and release the rq->lock
2380 * we put the task in TASK_WAKING state.
eb24073b
IM
2381 *
2382 * First fix up the nr_uninterruptible count:
e9c84311 2383 */
eb24073b
IM
2384 if (task_contributes_to_load(p))
2385 rq->nr_uninterruptible--;
e9c84311 2386 p->state = TASK_WAKING;
efbbd05a
PZ
2387
2388 if (p->sched_class->task_waking)
2389 p->sched_class->task_waking(rq, p);
2390
ab19cb23 2391 __task_rq_unlock(rq);
e9c84311 2392
970b13ba 2393 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2394 if (cpu != orig_cpu)
5d2f5a61 2395 set_task_cpu(p, cpu);
ab19cb23
PZ
2396
2397 rq = __task_rq_lock(p);
2398 update_rq_clock(rq);
f5dc3753 2399
e9c84311
PZ
2400 WARN_ON(p->state != TASK_WAKING);
2401 cpu = task_cpu(p);
1da177e4 2402
e7693a36
GH
2403#ifdef CONFIG_SCHEDSTATS
2404 schedstat_inc(rq, ttwu_count);
2405 if (cpu == this_cpu)
2406 schedstat_inc(rq, ttwu_local);
2407 else {
2408 struct sched_domain *sd;
2409 for_each_domain(this_cpu, sd) {
758b2cdc 2410 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2411 schedstat_inc(sd, ttwu_wake_remote);
2412 break;
2413 }
2414 }
2415 }
6d6bc0ad 2416#endif /* CONFIG_SCHEDSTATS */
e7693a36 2417
1da177e4
LT
2418out_activate:
2419#endif /* CONFIG_SMP */
cc367732 2420 schedstat_inc(p, se.nr_wakeups);
7d478721 2421 if (wake_flags & WF_SYNC)
cc367732
IM
2422 schedstat_inc(p, se.nr_wakeups_sync);
2423 if (orig_cpu != cpu)
2424 schedstat_inc(p, se.nr_wakeups_migrate);
2425 if (cpu == this_cpu)
2426 schedstat_inc(p, se.nr_wakeups_local);
2427 else
2428 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2429 activate_task(rq, p, 1);
1da177e4
LT
2430 success = 1;
2431
831451ac
PZ
2432 /*
2433 * Only attribute actual wakeups done by this task.
2434 */
2435 if (!in_interrupt()) {
2436 struct sched_entity *se = &current->se;
2437 u64 sample = se->sum_exec_runtime;
2438
2439 if (se->last_wakeup)
2440 sample -= se->last_wakeup;
2441 else
2442 sample -= se->start_runtime;
2443 update_avg(&se->avg_wakeup, sample);
2444
2445 se->last_wakeup = se->sum_exec_runtime;
2446 }
2447
1da177e4 2448out_running:
468a15bb 2449 trace_sched_wakeup(rq, p, success);
7d478721 2450 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2451
1da177e4 2452 p->state = TASK_RUNNING;
9a897c5a 2453#ifdef CONFIG_SMP
efbbd05a
PZ
2454 if (p->sched_class->task_woken)
2455 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2456
2457 if (unlikely(rq->idle_stamp)) {
2458 u64 delta = rq->clock - rq->idle_stamp;
2459 u64 max = 2*sysctl_sched_migration_cost;
2460
2461 if (delta > max)
2462 rq->avg_idle = max;
2463 else
2464 update_avg(&rq->avg_idle, delta);
2465 rq->idle_stamp = 0;
2466 }
9a897c5a 2467#endif
1da177e4
LT
2468out:
2469 task_rq_unlock(rq, &flags);
e9c84311 2470 put_cpu();
1da177e4
LT
2471
2472 return success;
2473}
2474
50fa610a
DH
2475/**
2476 * wake_up_process - Wake up a specific process
2477 * @p: The process to be woken up.
2478 *
2479 * Attempt to wake up the nominated process and move it to the set of runnable
2480 * processes. Returns 1 if the process was woken up, 0 if it was already
2481 * running.
2482 *
2483 * It may be assumed that this function implies a write memory barrier before
2484 * changing the task state if and only if any tasks are woken up.
2485 */
7ad5b3a5 2486int wake_up_process(struct task_struct *p)
1da177e4 2487{
d9514f6c 2488 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2489}
1da177e4
LT
2490EXPORT_SYMBOL(wake_up_process);
2491
7ad5b3a5 2492int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2493{
2494 return try_to_wake_up(p, state, 0);
2495}
2496
1da177e4
LT
2497/*
2498 * Perform scheduler related setup for a newly forked process p.
2499 * p is forked by current.
dd41f596
IM
2500 *
2501 * __sched_fork() is basic setup used by init_idle() too:
2502 */
2503static void __sched_fork(struct task_struct *p)
2504{
dd41f596
IM
2505 p->se.exec_start = 0;
2506 p->se.sum_exec_runtime = 0;
f6cf891c 2507 p->se.prev_sum_exec_runtime = 0;
6c594c21 2508 p->se.nr_migrations = 0;
4ae7d5ce
IM
2509 p->se.last_wakeup = 0;
2510 p->se.avg_overlap = 0;
831451ac
PZ
2511 p->se.start_runtime = 0;
2512 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2513
2514#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2515 p->se.wait_start = 0;
2516 p->se.wait_max = 0;
2517 p->se.wait_count = 0;
2518 p->se.wait_sum = 0;
2519
2520 p->se.sleep_start = 0;
2521 p->se.sleep_max = 0;
2522 p->se.sum_sleep_runtime = 0;
2523
2524 p->se.block_start = 0;
2525 p->se.block_max = 0;
2526 p->se.exec_max = 0;
2527 p->se.slice_max = 0;
2528
2529 p->se.nr_migrations_cold = 0;
2530 p->se.nr_failed_migrations_affine = 0;
2531 p->se.nr_failed_migrations_running = 0;
2532 p->se.nr_failed_migrations_hot = 0;
2533 p->se.nr_forced_migrations = 0;
7793527b
LDM
2534
2535 p->se.nr_wakeups = 0;
2536 p->se.nr_wakeups_sync = 0;
2537 p->se.nr_wakeups_migrate = 0;
2538 p->se.nr_wakeups_local = 0;
2539 p->se.nr_wakeups_remote = 0;
2540 p->se.nr_wakeups_affine = 0;
2541 p->se.nr_wakeups_affine_attempts = 0;
2542 p->se.nr_wakeups_passive = 0;
2543 p->se.nr_wakeups_idle = 0;
2544
6cfb0d5d 2545#endif
476d139c 2546
fa717060 2547 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2548 p->se.on_rq = 0;
4a55bd5e 2549 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2550
e107be36
AK
2551#ifdef CONFIG_PREEMPT_NOTIFIERS
2552 INIT_HLIST_HEAD(&p->preempt_notifiers);
2553#endif
dd41f596
IM
2554}
2555
2556/*
2557 * fork()/clone()-time setup:
2558 */
2559void sched_fork(struct task_struct *p, int clone_flags)
2560{
2561 int cpu = get_cpu();
2562
2563 __sched_fork(p);
06b83b5f
PZ
2564 /*
2565 * We mark the process as waking here. This guarantees that
2566 * nobody will actually run it, and a signal or other external
2567 * event cannot wake it up and insert it on the runqueue either.
2568 */
2569 p->state = TASK_WAKING;
dd41f596 2570
b9dc29e7
MG
2571 /*
2572 * Revert to default priority/policy on fork if requested.
2573 */
2574 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2575 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2576 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2577 p->normal_prio = p->static_prio;
2578 }
b9dc29e7 2579
6c697bdf
MG
2580 if (PRIO_TO_NICE(p->static_prio) < 0) {
2581 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2582 p->normal_prio = p->static_prio;
6c697bdf
MG
2583 set_load_weight(p);
2584 }
2585
b9dc29e7
MG
2586 /*
2587 * We don't need the reset flag anymore after the fork. It has
2588 * fulfilled its duty:
2589 */
2590 p->sched_reset_on_fork = 0;
2591 }
ca94c442 2592
f83f9ac2
PW
2593 /*
2594 * Make sure we do not leak PI boosting priority to the child.
2595 */
2596 p->prio = current->normal_prio;
2597
2ddbf952
HS
2598 if (!rt_prio(p->prio))
2599 p->sched_class = &fair_sched_class;
b29739f9 2600
cd29fe6f
PZ
2601 if (p->sched_class->task_fork)
2602 p->sched_class->task_fork(p);
2603
5f3edc1b 2604#ifdef CONFIG_SMP
970b13ba 2605 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2606#endif
2607 set_task_cpu(p, cpu);
2608
52f17b6c 2609#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2610 if (likely(sched_info_on()))
52f17b6c 2611 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2612#endif
d6077cb8 2613#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2614 p->oncpu = 0;
2615#endif
1da177e4 2616#ifdef CONFIG_PREEMPT
4866cde0 2617 /* Want to start with kernel preemption disabled. */
a1261f54 2618 task_thread_info(p)->preempt_count = 1;
1da177e4 2619#endif
917b627d
GH
2620 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2621
476d139c 2622 put_cpu();
1da177e4
LT
2623}
2624
2625/*
2626 * wake_up_new_task - wake up a newly created task for the first time.
2627 *
2628 * This function will do some initial scheduler statistics housekeeping
2629 * that must be done for every newly created context, then puts the task
2630 * on the runqueue and wakes it.
2631 */
7ad5b3a5 2632void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2633{
2634 unsigned long flags;
dd41f596 2635 struct rq *rq;
1da177e4
LT
2636
2637 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2638 BUG_ON(p->state != TASK_WAKING);
2639 p->state = TASK_RUNNING;
a8e504d2 2640 update_rq_clock(rq);
cd29fe6f 2641 activate_task(rq, p, 0);
c71dd42d 2642 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2643 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2644#ifdef CONFIG_SMP
efbbd05a
PZ
2645 if (p->sched_class->task_woken)
2646 p->sched_class->task_woken(rq, p);
9a897c5a 2647#endif
dd41f596 2648 task_rq_unlock(rq, &flags);
1da177e4
LT
2649}
2650
e107be36
AK
2651#ifdef CONFIG_PREEMPT_NOTIFIERS
2652
2653/**
80dd99b3 2654 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2655 * @notifier: notifier struct to register
e107be36
AK
2656 */
2657void preempt_notifier_register(struct preempt_notifier *notifier)
2658{
2659 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2660}
2661EXPORT_SYMBOL_GPL(preempt_notifier_register);
2662
2663/**
2664 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2665 * @notifier: notifier struct to unregister
e107be36
AK
2666 *
2667 * This is safe to call from within a preemption notifier.
2668 */
2669void preempt_notifier_unregister(struct preempt_notifier *notifier)
2670{
2671 hlist_del(&notifier->link);
2672}
2673EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2674
2675static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676{
2677 struct preempt_notifier *notifier;
2678 struct hlist_node *node;
2679
2680 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2681 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2682}
2683
2684static void
2685fire_sched_out_preempt_notifiers(struct task_struct *curr,
2686 struct task_struct *next)
2687{
2688 struct preempt_notifier *notifier;
2689 struct hlist_node *node;
2690
2691 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2692 notifier->ops->sched_out(notifier, next);
2693}
2694
6d6bc0ad 2695#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2696
2697static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698{
2699}
2700
2701static void
2702fire_sched_out_preempt_notifiers(struct task_struct *curr,
2703 struct task_struct *next)
2704{
2705}
2706
6d6bc0ad 2707#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2708
4866cde0
NP
2709/**
2710 * prepare_task_switch - prepare to switch tasks
2711 * @rq: the runqueue preparing to switch
421cee29 2712 * @prev: the current task that is being switched out
4866cde0
NP
2713 * @next: the task we are going to switch to.
2714 *
2715 * This is called with the rq lock held and interrupts off. It must
2716 * be paired with a subsequent finish_task_switch after the context
2717 * switch.
2718 *
2719 * prepare_task_switch sets up locking and calls architecture specific
2720 * hooks.
2721 */
e107be36
AK
2722static inline void
2723prepare_task_switch(struct rq *rq, struct task_struct *prev,
2724 struct task_struct *next)
4866cde0 2725{
e107be36 2726 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2727 prepare_lock_switch(rq, next);
2728 prepare_arch_switch(next);
2729}
2730
1da177e4
LT
2731/**
2732 * finish_task_switch - clean up after a task-switch
344babaa 2733 * @rq: runqueue associated with task-switch
1da177e4
LT
2734 * @prev: the thread we just switched away from.
2735 *
4866cde0
NP
2736 * finish_task_switch must be called after the context switch, paired
2737 * with a prepare_task_switch call before the context switch.
2738 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2739 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2740 *
2741 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2742 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2743 * with the lock held can cause deadlocks; see schedule() for
2744 * details.)
2745 */
a9957449 2746static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2747 __releases(rq->lock)
2748{
1da177e4 2749 struct mm_struct *mm = rq->prev_mm;
55a101f8 2750 long prev_state;
1da177e4
LT
2751
2752 rq->prev_mm = NULL;
2753
2754 /*
2755 * A task struct has one reference for the use as "current".
c394cc9f 2756 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2757 * schedule one last time. The schedule call will never return, and
2758 * the scheduled task must drop that reference.
c394cc9f 2759 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2760 * still held, otherwise prev could be scheduled on another cpu, die
2761 * there before we look at prev->state, and then the reference would
2762 * be dropped twice.
2763 * Manfred Spraul <manfred@colorfullife.com>
2764 */
55a101f8 2765 prev_state = prev->state;
4866cde0 2766 finish_arch_switch(prev);
cdd6c482 2767 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2768 finish_lock_switch(rq, prev);
e8fa1362 2769
e107be36 2770 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2771 if (mm)
2772 mmdrop(mm);
c394cc9f 2773 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2774 /*
2775 * Remove function-return probe instances associated with this
2776 * task and put them back on the free list.
9761eea8 2777 */
c6fd91f0 2778 kprobe_flush_task(prev);
1da177e4 2779 put_task_struct(prev);
c6fd91f0 2780 }
1da177e4
LT
2781}
2782
3f029d3c
GH
2783#ifdef CONFIG_SMP
2784
2785/* assumes rq->lock is held */
2786static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2787{
2788 if (prev->sched_class->pre_schedule)
2789 prev->sched_class->pre_schedule(rq, prev);
2790}
2791
2792/* rq->lock is NOT held, but preemption is disabled */
2793static inline void post_schedule(struct rq *rq)
2794{
2795 if (rq->post_schedule) {
2796 unsigned long flags;
2797
05fa785c 2798 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2799 if (rq->curr->sched_class->post_schedule)
2800 rq->curr->sched_class->post_schedule(rq);
05fa785c 2801 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2802
2803 rq->post_schedule = 0;
2804 }
2805}
2806
2807#else
da19ab51 2808
3f029d3c
GH
2809static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2810{
2811}
2812
2813static inline void post_schedule(struct rq *rq)
2814{
1da177e4
LT
2815}
2816
3f029d3c
GH
2817#endif
2818
1da177e4
LT
2819/**
2820 * schedule_tail - first thing a freshly forked thread must call.
2821 * @prev: the thread we just switched away from.
2822 */
36c8b586 2823asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2824 __releases(rq->lock)
2825{
70b97a7f
IM
2826 struct rq *rq = this_rq();
2827
4866cde0 2828 finish_task_switch(rq, prev);
da19ab51 2829
3f029d3c
GH
2830 /*
2831 * FIXME: do we need to worry about rq being invalidated by the
2832 * task_switch?
2833 */
2834 post_schedule(rq);
70b97a7f 2835
4866cde0
NP
2836#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2837 /* In this case, finish_task_switch does not reenable preemption */
2838 preempt_enable();
2839#endif
1da177e4 2840 if (current->set_child_tid)
b488893a 2841 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2842}
2843
2844/*
2845 * context_switch - switch to the new MM and the new
2846 * thread's register state.
2847 */
dd41f596 2848static inline void
70b97a7f 2849context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2850 struct task_struct *next)
1da177e4 2851{
dd41f596 2852 struct mm_struct *mm, *oldmm;
1da177e4 2853
e107be36 2854 prepare_task_switch(rq, prev, next);
0a16b607 2855 trace_sched_switch(rq, prev, next);
dd41f596
IM
2856 mm = next->mm;
2857 oldmm = prev->active_mm;
9226d125
ZA
2858 /*
2859 * For paravirt, this is coupled with an exit in switch_to to
2860 * combine the page table reload and the switch backend into
2861 * one hypercall.
2862 */
224101ed 2863 arch_start_context_switch(prev);
9226d125 2864
710390d9 2865 if (likely(!mm)) {
1da177e4
LT
2866 next->active_mm = oldmm;
2867 atomic_inc(&oldmm->mm_count);
2868 enter_lazy_tlb(oldmm, next);
2869 } else
2870 switch_mm(oldmm, mm, next);
2871
710390d9 2872 if (likely(!prev->mm)) {
1da177e4 2873 prev->active_mm = NULL;
1da177e4
LT
2874 rq->prev_mm = oldmm;
2875 }
3a5f5e48
IM
2876 /*
2877 * Since the runqueue lock will be released by the next
2878 * task (which is an invalid locking op but in the case
2879 * of the scheduler it's an obvious special-case), so we
2880 * do an early lockdep release here:
2881 */
2882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2883 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2884#endif
1da177e4
LT
2885
2886 /* Here we just switch the register state and the stack. */
2887 switch_to(prev, next, prev);
2888
dd41f596
IM
2889 barrier();
2890 /*
2891 * this_rq must be evaluated again because prev may have moved
2892 * CPUs since it called schedule(), thus the 'rq' on its stack
2893 * frame will be invalid.
2894 */
2895 finish_task_switch(this_rq(), prev);
1da177e4
LT
2896}
2897
2898/*
2899 * nr_running, nr_uninterruptible and nr_context_switches:
2900 *
2901 * externally visible scheduler statistics: current number of runnable
2902 * threads, current number of uninterruptible-sleeping threads, total
2903 * number of context switches performed since bootup.
2904 */
2905unsigned long nr_running(void)
2906{
2907 unsigned long i, sum = 0;
2908
2909 for_each_online_cpu(i)
2910 sum += cpu_rq(i)->nr_running;
2911
2912 return sum;
2913}
2914
2915unsigned long nr_uninterruptible(void)
2916{
2917 unsigned long i, sum = 0;
2918
0a945022 2919 for_each_possible_cpu(i)
1da177e4
LT
2920 sum += cpu_rq(i)->nr_uninterruptible;
2921
2922 /*
2923 * Since we read the counters lockless, it might be slightly
2924 * inaccurate. Do not allow it to go below zero though:
2925 */
2926 if (unlikely((long)sum < 0))
2927 sum = 0;
2928
2929 return sum;
2930}
2931
2932unsigned long long nr_context_switches(void)
2933{
cc94abfc
SR
2934 int i;
2935 unsigned long long sum = 0;
1da177e4 2936
0a945022 2937 for_each_possible_cpu(i)
1da177e4
LT
2938 sum += cpu_rq(i)->nr_switches;
2939
2940 return sum;
2941}
2942
2943unsigned long nr_iowait(void)
2944{
2945 unsigned long i, sum = 0;
2946
0a945022 2947 for_each_possible_cpu(i)
1da177e4
LT
2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2949
2950 return sum;
2951}
2952
69d25870
AV
2953unsigned long nr_iowait_cpu(void)
2954{
2955 struct rq *this = this_rq();
2956 return atomic_read(&this->nr_iowait);
2957}
2958
2959unsigned long this_cpu_load(void)
2960{
2961 struct rq *this = this_rq();
2962 return this->cpu_load[0];
2963}
2964
2965
dce48a84
TG
2966/* Variables and functions for calc_load */
2967static atomic_long_t calc_load_tasks;
2968static unsigned long calc_load_update;
2969unsigned long avenrun[3];
2970EXPORT_SYMBOL(avenrun);
2971
2d02494f
TG
2972/**
2973 * get_avenrun - get the load average array
2974 * @loads: pointer to dest load array
2975 * @offset: offset to add
2976 * @shift: shift count to shift the result left
2977 *
2978 * These values are estimates at best, so no need for locking.
2979 */
2980void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2981{
2982 loads[0] = (avenrun[0] + offset) << shift;
2983 loads[1] = (avenrun[1] + offset) << shift;
2984 loads[2] = (avenrun[2] + offset) << shift;
2985}
2986
dce48a84
TG
2987static unsigned long
2988calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2989{
dce48a84
TG
2990 load *= exp;
2991 load += active * (FIXED_1 - exp);
2992 return load >> FSHIFT;
2993}
db1b1fef 2994
dce48a84
TG
2995/*
2996 * calc_load - update the avenrun load estimates 10 ticks after the
2997 * CPUs have updated calc_load_tasks.
2998 */
2999void calc_global_load(void)
3000{
3001 unsigned long upd = calc_load_update + 10;
3002 long active;
3003
3004 if (time_before(jiffies, upd))
3005 return;
db1b1fef 3006
dce48a84
TG
3007 active = atomic_long_read(&calc_load_tasks);
3008 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3009
dce48a84
TG
3010 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3011 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3012 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3013
3014 calc_load_update += LOAD_FREQ;
3015}
3016
3017/*
3018 * Either called from update_cpu_load() or from a cpu going idle
3019 */
3020static void calc_load_account_active(struct rq *this_rq)
3021{
3022 long nr_active, delta;
3023
3024 nr_active = this_rq->nr_running;
3025 nr_active += (long) this_rq->nr_uninterruptible;
3026
3027 if (nr_active != this_rq->calc_load_active) {
3028 delta = nr_active - this_rq->calc_load_active;
3029 this_rq->calc_load_active = nr_active;
3030 atomic_long_add(delta, &calc_load_tasks);
3031 }
db1b1fef
JS
3032}
3033
48f24c4d 3034/*
dd41f596
IM
3035 * Update rq->cpu_load[] statistics. This function is usually called every
3036 * scheduler tick (TICK_NSEC).
48f24c4d 3037 */
dd41f596 3038static void update_cpu_load(struct rq *this_rq)
48f24c4d 3039{
495eca49 3040 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3041 int i, scale;
3042
3043 this_rq->nr_load_updates++;
dd41f596
IM
3044
3045 /* Update our load: */
3046 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3047 unsigned long old_load, new_load;
3048
3049 /* scale is effectively 1 << i now, and >> i divides by scale */
3050
3051 old_load = this_rq->cpu_load[i];
3052 new_load = this_load;
a25707f3
IM
3053 /*
3054 * Round up the averaging division if load is increasing. This
3055 * prevents us from getting stuck on 9 if the load is 10, for
3056 * example.
3057 */
3058 if (new_load > old_load)
3059 new_load += scale-1;
dd41f596
IM
3060 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3061 }
dce48a84
TG
3062
3063 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3064 this_rq->calc_load_update += LOAD_FREQ;
3065 calc_load_account_active(this_rq);
3066 }
48f24c4d
IM
3067}
3068
dd41f596
IM
3069#ifdef CONFIG_SMP
3070
1da177e4 3071/*
38022906
PZ
3072 * sched_exec - execve() is a valuable balancing opportunity, because at
3073 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3074 */
38022906 3075void sched_exec(void)
1da177e4 3076{
38022906 3077 struct task_struct *p = current;
70b97a7f 3078 struct migration_req req;
38022906 3079 int dest_cpu, this_cpu;
1da177e4 3080 unsigned long flags;
70b97a7f 3081 struct rq *rq;
1da177e4 3082
38022906
PZ
3083again:
3084 this_cpu = get_cpu();
3085 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3086 if (dest_cpu == this_cpu) {
3087 put_cpu();
3088 return;
3089 }
3090
1da177e4 3091 rq = task_rq_lock(p, &flags);
38022906
PZ
3092 put_cpu();
3093
3094 /*
3095 * select_task_rq() can race against ->cpus_allowed
3096 */
96f874e2 3097 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3098 || unlikely(!cpu_active(dest_cpu))) {
3099 task_rq_unlock(rq, &flags);
3100 goto again;
3101 }
1da177e4
LT
3102
3103 /* force the process onto the specified CPU */
3104 if (migrate_task(p, dest_cpu, &req)) {
3105 /* Need to wait for migration thread (might exit: take ref). */
3106 struct task_struct *mt = rq->migration_thread;
36c8b586 3107
1da177e4
LT
3108 get_task_struct(mt);
3109 task_rq_unlock(rq, &flags);
3110 wake_up_process(mt);
3111 put_task_struct(mt);
3112 wait_for_completion(&req.done);
36c8b586 3113
1da177e4
LT
3114 return;
3115 }
1da177e4
LT
3116 task_rq_unlock(rq, &flags);
3117}
3118
1da177e4
LT
3119#endif
3120
1da177e4
LT
3121DEFINE_PER_CPU(struct kernel_stat, kstat);
3122
3123EXPORT_PER_CPU_SYMBOL(kstat);
3124
3125/*
c5f8d995 3126 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3127 * @p in case that task is currently running.
c5f8d995
HS
3128 *
3129 * Called with task_rq_lock() held on @rq.
1da177e4 3130 */
c5f8d995
HS
3131static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3132{
3133 u64 ns = 0;
3134
3135 if (task_current(rq, p)) {
3136 update_rq_clock(rq);
3137 ns = rq->clock - p->se.exec_start;
3138 if ((s64)ns < 0)
3139 ns = 0;
3140 }
3141
3142 return ns;
3143}
3144
bb34d92f 3145unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3146{
1da177e4 3147 unsigned long flags;
41b86e9c 3148 struct rq *rq;
bb34d92f 3149 u64 ns = 0;
48f24c4d 3150
41b86e9c 3151 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3152 ns = do_task_delta_exec(p, rq);
3153 task_rq_unlock(rq, &flags);
1508487e 3154
c5f8d995
HS
3155 return ns;
3156}
f06febc9 3157
c5f8d995
HS
3158/*
3159 * Return accounted runtime for the task.
3160 * In case the task is currently running, return the runtime plus current's
3161 * pending runtime that have not been accounted yet.
3162 */
3163unsigned long long task_sched_runtime(struct task_struct *p)
3164{
3165 unsigned long flags;
3166 struct rq *rq;
3167 u64 ns = 0;
3168
3169 rq = task_rq_lock(p, &flags);
3170 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3171 task_rq_unlock(rq, &flags);
3172
3173 return ns;
3174}
48f24c4d 3175
c5f8d995
HS
3176/*
3177 * Return sum_exec_runtime for the thread group.
3178 * In case the task is currently running, return the sum plus current's
3179 * pending runtime that have not been accounted yet.
3180 *
3181 * Note that the thread group might have other running tasks as well,
3182 * so the return value not includes other pending runtime that other
3183 * running tasks might have.
3184 */
3185unsigned long long thread_group_sched_runtime(struct task_struct *p)
3186{
3187 struct task_cputime totals;
3188 unsigned long flags;
3189 struct rq *rq;
3190 u64 ns;
3191
3192 rq = task_rq_lock(p, &flags);
3193 thread_group_cputime(p, &totals);
3194 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3195 task_rq_unlock(rq, &flags);
48f24c4d 3196
1da177e4
LT
3197 return ns;
3198}
3199
1da177e4
LT
3200/*
3201 * Account user cpu time to a process.
3202 * @p: the process that the cpu time gets accounted to
1da177e4 3203 * @cputime: the cpu time spent in user space since the last update
457533a7 3204 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3205 */
457533a7
MS
3206void account_user_time(struct task_struct *p, cputime_t cputime,
3207 cputime_t cputime_scaled)
1da177e4
LT
3208{
3209 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3210 cputime64_t tmp;
3211
457533a7 3212 /* Add user time to process. */
1da177e4 3213 p->utime = cputime_add(p->utime, cputime);
457533a7 3214 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3215 account_group_user_time(p, cputime);
1da177e4
LT
3216
3217 /* Add user time to cpustat. */
3218 tmp = cputime_to_cputime64(cputime);
3219 if (TASK_NICE(p) > 0)
3220 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3221 else
3222 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3223
3224 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3225 /* Account for user time used */
3226 acct_update_integrals(p);
1da177e4
LT
3227}
3228
94886b84
LV
3229/*
3230 * Account guest cpu time to a process.
3231 * @p: the process that the cpu time gets accounted to
3232 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3233 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3234 */
457533a7
MS
3235static void account_guest_time(struct task_struct *p, cputime_t cputime,
3236 cputime_t cputime_scaled)
94886b84
LV
3237{
3238 cputime64_t tmp;
3239 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3240
3241 tmp = cputime_to_cputime64(cputime);
3242
457533a7 3243 /* Add guest time to process. */
94886b84 3244 p->utime = cputime_add(p->utime, cputime);
457533a7 3245 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3246 account_group_user_time(p, cputime);
94886b84
LV
3247 p->gtime = cputime_add(p->gtime, cputime);
3248
457533a7 3249 /* Add guest time to cpustat. */
ce0e7b28
RO
3250 if (TASK_NICE(p) > 0) {
3251 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3252 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3253 } else {
3254 cpustat->user = cputime64_add(cpustat->user, tmp);
3255 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3256 }
94886b84
LV
3257}
3258
1da177e4
LT
3259/*
3260 * Account system cpu time to a process.
3261 * @p: the process that the cpu time gets accounted to
3262 * @hardirq_offset: the offset to subtract from hardirq_count()
3263 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3264 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3265 */
3266void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3267 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3268{
3269 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3270 cputime64_t tmp;
3271
983ed7a6 3272 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3273 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3274 return;
3275 }
94886b84 3276
457533a7 3277 /* Add system time to process. */
1da177e4 3278 p->stime = cputime_add(p->stime, cputime);
457533a7 3279 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3280 account_group_system_time(p, cputime);
1da177e4
LT
3281
3282 /* Add system time to cpustat. */
3283 tmp = cputime_to_cputime64(cputime);
3284 if (hardirq_count() - hardirq_offset)
3285 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3286 else if (softirq_count())
3287 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3288 else
79741dd3
MS
3289 cpustat->system = cputime64_add(cpustat->system, tmp);
3290
ef12fefa
BR
3291 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3292
1da177e4
LT
3293 /* Account for system time used */
3294 acct_update_integrals(p);
1da177e4
LT
3295}
3296
c66f08be 3297/*
1da177e4 3298 * Account for involuntary wait time.
1da177e4 3299 * @steal: the cpu time spent in involuntary wait
c66f08be 3300 */
79741dd3 3301void account_steal_time(cputime_t cputime)
c66f08be 3302{
79741dd3
MS
3303 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3304 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3305
3306 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3307}
3308
1da177e4 3309/*
79741dd3
MS
3310 * Account for idle time.
3311 * @cputime: the cpu time spent in idle wait
1da177e4 3312 */
79741dd3 3313void account_idle_time(cputime_t cputime)
1da177e4
LT
3314{
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3316 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3317 struct rq *rq = this_rq();
1da177e4 3318
79741dd3
MS
3319 if (atomic_read(&rq->nr_iowait) > 0)
3320 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3321 else
3322 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3323}
3324
79741dd3
MS
3325#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3326
3327/*
3328 * Account a single tick of cpu time.
3329 * @p: the process that the cpu time gets accounted to
3330 * @user_tick: indicates if the tick is a user or a system tick
3331 */
3332void account_process_tick(struct task_struct *p, int user_tick)
3333{
a42548a1 3334 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3335 struct rq *rq = this_rq();
3336
3337 if (user_tick)
a42548a1 3338 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3339 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3340 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3341 one_jiffy_scaled);
3342 else
a42548a1 3343 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3344}
3345
3346/*
3347 * Account multiple ticks of steal time.
3348 * @p: the process from which the cpu time has been stolen
3349 * @ticks: number of stolen ticks
3350 */
3351void account_steal_ticks(unsigned long ticks)
3352{
3353 account_steal_time(jiffies_to_cputime(ticks));
3354}
3355
3356/*
3357 * Account multiple ticks of idle time.
3358 * @ticks: number of stolen ticks
3359 */
3360void account_idle_ticks(unsigned long ticks)
3361{
3362 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3363}
3364
79741dd3
MS
3365#endif
3366
49048622
BS
3367/*
3368 * Use precise platform statistics if available:
3369 */
3370#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3371void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3372{
d99ca3b9
HS
3373 *ut = p->utime;
3374 *st = p->stime;
49048622
BS
3375}
3376
0cf55e1e 3377void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3378{
0cf55e1e
HS
3379 struct task_cputime cputime;
3380
3381 thread_group_cputime(p, &cputime);
3382
3383 *ut = cputime.utime;
3384 *st = cputime.stime;
49048622
BS
3385}
3386#else
761b1d26
HS
3387
3388#ifndef nsecs_to_cputime
b7b20df9 3389# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3390#endif
3391
d180c5bc 3392void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3393{
d99ca3b9 3394 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3395
3396 /*
3397 * Use CFS's precise accounting:
3398 */
d180c5bc 3399 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3400
3401 if (total) {
d180c5bc
HS
3402 u64 temp;
3403
3404 temp = (u64)(rtime * utime);
49048622 3405 do_div(temp, total);
d180c5bc
HS
3406 utime = (cputime_t)temp;
3407 } else
3408 utime = rtime;
49048622 3409
d180c5bc
HS
3410 /*
3411 * Compare with previous values, to keep monotonicity:
3412 */
761b1d26 3413 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3414 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3415
d99ca3b9
HS
3416 *ut = p->prev_utime;
3417 *st = p->prev_stime;
49048622
BS
3418}
3419
0cf55e1e
HS
3420/*
3421 * Must be called with siglock held.
3422 */
3423void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3424{
0cf55e1e
HS
3425 struct signal_struct *sig = p->signal;
3426 struct task_cputime cputime;
3427 cputime_t rtime, utime, total;
49048622 3428
0cf55e1e 3429 thread_group_cputime(p, &cputime);
49048622 3430
0cf55e1e
HS
3431 total = cputime_add(cputime.utime, cputime.stime);
3432 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3433
0cf55e1e
HS
3434 if (total) {
3435 u64 temp;
49048622 3436
0cf55e1e
HS
3437 temp = (u64)(rtime * cputime.utime);
3438 do_div(temp, total);
3439 utime = (cputime_t)temp;
3440 } else
3441 utime = rtime;
3442
3443 sig->prev_utime = max(sig->prev_utime, utime);
3444 sig->prev_stime = max(sig->prev_stime,
3445 cputime_sub(rtime, sig->prev_utime));
3446
3447 *ut = sig->prev_utime;
3448 *st = sig->prev_stime;
49048622 3449}
49048622 3450#endif
49048622 3451
7835b98b
CL
3452/*
3453 * This function gets called by the timer code, with HZ frequency.
3454 * We call it with interrupts disabled.
3455 *
3456 * It also gets called by the fork code, when changing the parent's
3457 * timeslices.
3458 */
3459void scheduler_tick(void)
3460{
7835b98b
CL
3461 int cpu = smp_processor_id();
3462 struct rq *rq = cpu_rq(cpu);
dd41f596 3463 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3464
3465 sched_clock_tick();
dd41f596 3466
05fa785c 3467 raw_spin_lock(&rq->lock);
3e51f33f 3468 update_rq_clock(rq);
f1a438d8 3469 update_cpu_load(rq);
fa85ae24 3470 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3471 raw_spin_unlock(&rq->lock);
7835b98b 3472
cdd6c482 3473 perf_event_task_tick(curr, cpu);
e220d2dc 3474
e418e1c2 3475#ifdef CONFIG_SMP
dd41f596
IM
3476 rq->idle_at_tick = idle_cpu(cpu);
3477 trigger_load_balance(rq, cpu);
e418e1c2 3478#endif
1da177e4
LT
3479}
3480
132380a0 3481notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3482{
3483 if (in_lock_functions(addr)) {
3484 addr = CALLER_ADDR2;
3485 if (in_lock_functions(addr))
3486 addr = CALLER_ADDR3;
3487 }
3488 return addr;
3489}
1da177e4 3490
7e49fcce
SR
3491#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3492 defined(CONFIG_PREEMPT_TRACER))
3493
43627582 3494void __kprobes add_preempt_count(int val)
1da177e4 3495{
6cd8a4bb 3496#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3497 /*
3498 * Underflow?
3499 */
9a11b49a
IM
3500 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3501 return;
6cd8a4bb 3502#endif
1da177e4 3503 preempt_count() += val;
6cd8a4bb 3504#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3505 /*
3506 * Spinlock count overflowing soon?
3507 */
33859f7f
MOS
3508 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3509 PREEMPT_MASK - 10);
6cd8a4bb
SR
3510#endif
3511 if (preempt_count() == val)
3512 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3513}
3514EXPORT_SYMBOL(add_preempt_count);
3515
43627582 3516void __kprobes sub_preempt_count(int val)
1da177e4 3517{
6cd8a4bb 3518#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3519 /*
3520 * Underflow?
3521 */
01e3eb82 3522 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3523 return;
1da177e4
LT
3524 /*
3525 * Is the spinlock portion underflowing?
3526 */
9a11b49a
IM
3527 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3528 !(preempt_count() & PREEMPT_MASK)))
3529 return;
6cd8a4bb 3530#endif
9a11b49a 3531
6cd8a4bb
SR
3532 if (preempt_count() == val)
3533 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3534 preempt_count() -= val;
3535}
3536EXPORT_SYMBOL(sub_preempt_count);
3537
3538#endif
3539
3540/*
dd41f596 3541 * Print scheduling while atomic bug:
1da177e4 3542 */
dd41f596 3543static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3544{
838225b4
SS
3545 struct pt_regs *regs = get_irq_regs();
3546
3df0fc5b
PZ
3547 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3548 prev->comm, prev->pid, preempt_count());
838225b4 3549
dd41f596 3550 debug_show_held_locks(prev);
e21f5b15 3551 print_modules();
dd41f596
IM
3552 if (irqs_disabled())
3553 print_irqtrace_events(prev);
838225b4
SS
3554
3555 if (regs)
3556 show_regs(regs);
3557 else
3558 dump_stack();
dd41f596 3559}
1da177e4 3560
dd41f596
IM
3561/*
3562 * Various schedule()-time debugging checks and statistics:
3563 */
3564static inline void schedule_debug(struct task_struct *prev)
3565{
1da177e4 3566 /*
41a2d6cf 3567 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3568 * schedule() atomically, we ignore that path for now.
3569 * Otherwise, whine if we are scheduling when we should not be.
3570 */
3f33a7ce 3571 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3572 __schedule_bug(prev);
3573
1da177e4
LT
3574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3575
2d72376b 3576 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3577#ifdef CONFIG_SCHEDSTATS
3578 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3579 schedstat_inc(this_rq(), bkl_count);
3580 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3581 }
3582#endif
dd41f596
IM
3583}
3584
6cecd084 3585static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3586{
6cecd084
PZ
3587 if (prev->state == TASK_RUNNING) {
3588 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3589
6cecd084
PZ
3590 runtime -= prev->se.prev_sum_exec_runtime;
3591 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3592
3593 /*
3594 * In order to avoid avg_overlap growing stale when we are
3595 * indeed overlapping and hence not getting put to sleep, grow
3596 * the avg_overlap on preemption.
3597 *
3598 * We use the average preemption runtime because that
3599 * correlates to the amount of cache footprint a task can
3600 * build up.
3601 */
6cecd084 3602 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3603 }
6cecd084 3604 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3605}
3606
dd41f596
IM
3607/*
3608 * Pick up the highest-prio task:
3609 */
3610static inline struct task_struct *
b67802ea 3611pick_next_task(struct rq *rq)
dd41f596 3612{
5522d5d5 3613 const struct sched_class *class;
dd41f596 3614 struct task_struct *p;
1da177e4
LT
3615
3616 /*
dd41f596
IM
3617 * Optimization: we know that if all tasks are in
3618 * the fair class we can call that function directly:
1da177e4 3619 */
dd41f596 3620 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3621 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3622 if (likely(p))
3623 return p;
1da177e4
LT
3624 }
3625
dd41f596
IM
3626 class = sched_class_highest;
3627 for ( ; ; ) {
fb8d4724 3628 p = class->pick_next_task(rq);
dd41f596
IM
3629 if (p)
3630 return p;
3631 /*
3632 * Will never be NULL as the idle class always
3633 * returns a non-NULL p:
3634 */
3635 class = class->next;
3636 }
3637}
1da177e4 3638
dd41f596
IM
3639/*
3640 * schedule() is the main scheduler function.
3641 */
ff743345 3642asmlinkage void __sched schedule(void)
dd41f596
IM
3643{
3644 struct task_struct *prev, *next;
67ca7bde 3645 unsigned long *switch_count;
dd41f596 3646 struct rq *rq;
31656519 3647 int cpu;
dd41f596 3648
ff743345
PZ
3649need_resched:
3650 preempt_disable();
dd41f596
IM
3651 cpu = smp_processor_id();
3652 rq = cpu_rq(cpu);
d6714c22 3653 rcu_sched_qs(cpu);
dd41f596
IM
3654 prev = rq->curr;
3655 switch_count = &prev->nivcsw;
3656
3657 release_kernel_lock(prev);
3658need_resched_nonpreemptible:
3659
3660 schedule_debug(prev);
1da177e4 3661
31656519 3662 if (sched_feat(HRTICK))
f333fdc9 3663 hrtick_clear(rq);
8f4d37ec 3664
05fa785c 3665 raw_spin_lock_irq(&rq->lock);
3e51f33f 3666 update_rq_clock(rq);
1e819950 3667 clear_tsk_need_resched(prev);
1da177e4 3668
1da177e4 3669 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3670 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3671 prev->state = TASK_RUNNING;
16882c1e 3672 else
2e1cb74a 3673 deactivate_task(rq, prev, 1);
dd41f596 3674 switch_count = &prev->nvcsw;
1da177e4
LT
3675 }
3676
3f029d3c 3677 pre_schedule(rq, prev);
f65eda4f 3678
dd41f596 3679 if (unlikely(!rq->nr_running))
1da177e4 3680 idle_balance(cpu, rq);
1da177e4 3681
df1c99d4 3682 put_prev_task(rq, prev);
b67802ea 3683 next = pick_next_task(rq);
1da177e4 3684
1da177e4 3685 if (likely(prev != next)) {
673a90a1 3686 sched_info_switch(prev, next);
cdd6c482 3687 perf_event_task_sched_out(prev, next, cpu);
673a90a1 3688
1da177e4
LT
3689 rq->nr_switches++;
3690 rq->curr = next;
3691 ++*switch_count;
3692
dd41f596 3693 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3694 /*
3695 * the context switch might have flipped the stack from under
3696 * us, hence refresh the local variables.
3697 */
3698 cpu = smp_processor_id();
3699 rq = cpu_rq(cpu);
1da177e4 3700 } else
05fa785c 3701 raw_spin_unlock_irq(&rq->lock);
1da177e4 3702
3f029d3c 3703 post_schedule(rq);
1da177e4 3704
8f4d37ec 3705 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3706 goto need_resched_nonpreemptible;
8f4d37ec 3707
1da177e4 3708 preempt_enable_no_resched();
ff743345 3709 if (need_resched())
1da177e4
LT
3710 goto need_resched;
3711}
1da177e4
LT
3712EXPORT_SYMBOL(schedule);
3713
c08f7829 3714#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3715/*
3716 * Look out! "owner" is an entirely speculative pointer
3717 * access and not reliable.
3718 */
3719int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3720{
3721 unsigned int cpu;
3722 struct rq *rq;
3723
3724 if (!sched_feat(OWNER_SPIN))
3725 return 0;
3726
3727#ifdef CONFIG_DEBUG_PAGEALLOC
3728 /*
3729 * Need to access the cpu field knowing that
3730 * DEBUG_PAGEALLOC could have unmapped it if
3731 * the mutex owner just released it and exited.
3732 */
3733 if (probe_kernel_address(&owner->cpu, cpu))
3734 goto out;
3735#else
3736 cpu = owner->cpu;
3737#endif
3738
3739 /*
3740 * Even if the access succeeded (likely case),
3741 * the cpu field may no longer be valid.
3742 */
3743 if (cpu >= nr_cpumask_bits)
3744 goto out;
3745
3746 /*
3747 * We need to validate that we can do a
3748 * get_cpu() and that we have the percpu area.
3749 */
3750 if (!cpu_online(cpu))
3751 goto out;
3752
3753 rq = cpu_rq(cpu);
3754
3755 for (;;) {
3756 /*
3757 * Owner changed, break to re-assess state.
3758 */
3759 if (lock->owner != owner)
3760 break;
3761
3762 /*
3763 * Is that owner really running on that cpu?
3764 */
3765 if (task_thread_info(rq->curr) != owner || need_resched())
3766 return 0;
3767
3768 cpu_relax();
3769 }
3770out:
3771 return 1;
3772}
3773#endif
3774
1da177e4
LT
3775#ifdef CONFIG_PREEMPT
3776/*
2ed6e34f 3777 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3778 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3779 * occur there and call schedule directly.
3780 */
3781asmlinkage void __sched preempt_schedule(void)
3782{
3783 struct thread_info *ti = current_thread_info();
6478d880 3784
1da177e4
LT
3785 /*
3786 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3787 * we do not want to preempt the current task. Just return..
1da177e4 3788 */
beed33a8 3789 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3790 return;
3791
3a5c359a
AK
3792 do {
3793 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3794 schedule();
3a5c359a 3795 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3796
3a5c359a
AK
3797 /*
3798 * Check again in case we missed a preemption opportunity
3799 * between schedule and now.
3800 */
3801 barrier();
5ed0cec0 3802 } while (need_resched());
1da177e4 3803}
1da177e4
LT
3804EXPORT_SYMBOL(preempt_schedule);
3805
3806/*
2ed6e34f 3807 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3808 * off of irq context.
3809 * Note, that this is called and return with irqs disabled. This will
3810 * protect us against recursive calling from irq.
3811 */
3812asmlinkage void __sched preempt_schedule_irq(void)
3813{
3814 struct thread_info *ti = current_thread_info();
6478d880 3815
2ed6e34f 3816 /* Catch callers which need to be fixed */
1da177e4
LT
3817 BUG_ON(ti->preempt_count || !irqs_disabled());
3818
3a5c359a
AK
3819 do {
3820 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3821 local_irq_enable();
3822 schedule();
3823 local_irq_disable();
3a5c359a 3824 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3825
3a5c359a
AK
3826 /*
3827 * Check again in case we missed a preemption opportunity
3828 * between schedule and now.
3829 */
3830 barrier();
5ed0cec0 3831 } while (need_resched());
1da177e4
LT
3832}
3833
3834#endif /* CONFIG_PREEMPT */
3835
63859d4f 3836int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3837 void *key)
1da177e4 3838{
63859d4f 3839 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3840}
1da177e4
LT
3841EXPORT_SYMBOL(default_wake_function);
3842
3843/*
41a2d6cf
IM
3844 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3845 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3846 * number) then we wake all the non-exclusive tasks and one exclusive task.
3847 *
3848 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3849 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3850 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3851 */
78ddb08f 3852static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3853 int nr_exclusive, int wake_flags, void *key)
1da177e4 3854{
2e45874c 3855 wait_queue_t *curr, *next;
1da177e4 3856
2e45874c 3857 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3858 unsigned flags = curr->flags;
3859
63859d4f 3860 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3861 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3862 break;
3863 }
3864}
3865
3866/**
3867 * __wake_up - wake up threads blocked on a waitqueue.
3868 * @q: the waitqueue
3869 * @mode: which threads
3870 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3871 * @key: is directly passed to the wakeup function
50fa610a
DH
3872 *
3873 * It may be assumed that this function implies a write memory barrier before
3874 * changing the task state if and only if any tasks are woken up.
1da177e4 3875 */
7ad5b3a5 3876void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3877 int nr_exclusive, void *key)
1da177e4
LT
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&q->lock, flags);
3882 __wake_up_common(q, mode, nr_exclusive, 0, key);
3883 spin_unlock_irqrestore(&q->lock, flags);
3884}
1da177e4
LT
3885EXPORT_SYMBOL(__wake_up);
3886
3887/*
3888 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3889 */
7ad5b3a5 3890void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3891{
3892 __wake_up_common(q, mode, 1, 0, NULL);
3893}
3894
4ede816a
DL
3895void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3896{
3897 __wake_up_common(q, mode, 1, 0, key);
3898}
3899
1da177e4 3900/**
4ede816a 3901 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3902 * @q: the waitqueue
3903 * @mode: which threads
3904 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3905 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3906 *
3907 * The sync wakeup differs that the waker knows that it will schedule
3908 * away soon, so while the target thread will be woken up, it will not
3909 * be migrated to another CPU - ie. the two threads are 'synchronized'
3910 * with each other. This can prevent needless bouncing between CPUs.
3911 *
3912 * On UP it can prevent extra preemption.
50fa610a
DH
3913 *
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
1da177e4 3916 */
4ede816a
DL
3917void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3918 int nr_exclusive, void *key)
1da177e4
LT
3919{
3920 unsigned long flags;
7d478721 3921 int wake_flags = WF_SYNC;
1da177e4
LT
3922
3923 if (unlikely(!q))
3924 return;
3925
3926 if (unlikely(!nr_exclusive))
7d478721 3927 wake_flags = 0;
1da177e4
LT
3928
3929 spin_lock_irqsave(&q->lock, flags);
7d478721 3930 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3931 spin_unlock_irqrestore(&q->lock, flags);
3932}
4ede816a
DL
3933EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3934
3935/*
3936 * __wake_up_sync - see __wake_up_sync_key()
3937 */
3938void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3939{
3940 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3941}
1da177e4
LT
3942EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3943
65eb3dc6
KD
3944/**
3945 * complete: - signals a single thread waiting on this completion
3946 * @x: holds the state of this particular completion
3947 *
3948 * This will wake up a single thread waiting on this completion. Threads will be
3949 * awakened in the same order in which they were queued.
3950 *
3951 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3952 *
3953 * It may be assumed that this function implies a write memory barrier before
3954 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3955 */
b15136e9 3956void complete(struct completion *x)
1da177e4
LT
3957{
3958 unsigned long flags;
3959
3960 spin_lock_irqsave(&x->wait.lock, flags);
3961 x->done++;
d9514f6c 3962 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3963 spin_unlock_irqrestore(&x->wait.lock, flags);
3964}
3965EXPORT_SYMBOL(complete);
3966
65eb3dc6
KD
3967/**
3968 * complete_all: - signals all threads waiting on this completion
3969 * @x: holds the state of this particular completion
3970 *
3971 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3972 *
3973 * It may be assumed that this function implies a write memory barrier before
3974 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3975 */
b15136e9 3976void complete_all(struct completion *x)
1da177e4
LT
3977{
3978 unsigned long flags;
3979
3980 spin_lock_irqsave(&x->wait.lock, flags);
3981 x->done += UINT_MAX/2;
d9514f6c 3982 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3983 spin_unlock_irqrestore(&x->wait.lock, flags);
3984}
3985EXPORT_SYMBOL(complete_all);
3986
8cbbe86d
AK
3987static inline long __sched
3988do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3989{
1da177e4
LT
3990 if (!x->done) {
3991 DECLARE_WAITQUEUE(wait, current);
3992
3993 wait.flags |= WQ_FLAG_EXCLUSIVE;
3994 __add_wait_queue_tail(&x->wait, &wait);
3995 do {
94d3d824 3996 if (signal_pending_state(state, current)) {
ea71a546
ON
3997 timeout = -ERESTARTSYS;
3998 break;
8cbbe86d
AK
3999 }
4000 __set_current_state(state);
1da177e4
LT
4001 spin_unlock_irq(&x->wait.lock);
4002 timeout = schedule_timeout(timeout);
4003 spin_lock_irq(&x->wait.lock);
ea71a546 4004 } while (!x->done && timeout);
1da177e4 4005 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4006 if (!x->done)
4007 return timeout;
1da177e4
LT
4008 }
4009 x->done--;
ea71a546 4010 return timeout ?: 1;
1da177e4 4011}
1da177e4 4012
8cbbe86d
AK
4013static long __sched
4014wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4015{
1da177e4
LT
4016 might_sleep();
4017
4018 spin_lock_irq(&x->wait.lock);
8cbbe86d 4019 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4020 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4021 return timeout;
4022}
1da177e4 4023
65eb3dc6
KD
4024/**
4025 * wait_for_completion: - waits for completion of a task
4026 * @x: holds the state of this particular completion
4027 *
4028 * This waits to be signaled for completion of a specific task. It is NOT
4029 * interruptible and there is no timeout.
4030 *
4031 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4032 * and interrupt capability. Also see complete().
4033 */
b15136e9 4034void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4035{
4036 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4037}
8cbbe86d 4038EXPORT_SYMBOL(wait_for_completion);
1da177e4 4039
65eb3dc6
KD
4040/**
4041 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4042 * @x: holds the state of this particular completion
4043 * @timeout: timeout value in jiffies
4044 *
4045 * This waits for either a completion of a specific task to be signaled or for a
4046 * specified timeout to expire. The timeout is in jiffies. It is not
4047 * interruptible.
4048 */
b15136e9 4049unsigned long __sched
8cbbe86d 4050wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4051{
8cbbe86d 4052 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4053}
8cbbe86d 4054EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4055
65eb3dc6
KD
4056/**
4057 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4058 * @x: holds the state of this particular completion
4059 *
4060 * This waits for completion of a specific task to be signaled. It is
4061 * interruptible.
4062 */
8cbbe86d 4063int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4064{
51e97990
AK
4065 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4066 if (t == -ERESTARTSYS)
4067 return t;
4068 return 0;
0fec171c 4069}
8cbbe86d 4070EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4071
65eb3dc6
KD
4072/**
4073 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4074 * @x: holds the state of this particular completion
4075 * @timeout: timeout value in jiffies
4076 *
4077 * This waits for either a completion of a specific task to be signaled or for a
4078 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4079 */
b15136e9 4080unsigned long __sched
8cbbe86d
AK
4081wait_for_completion_interruptible_timeout(struct completion *x,
4082 unsigned long timeout)
0fec171c 4083{
8cbbe86d 4084 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4085}
8cbbe86d 4086EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4087
65eb3dc6
KD
4088/**
4089 * wait_for_completion_killable: - waits for completion of a task (killable)
4090 * @x: holds the state of this particular completion
4091 *
4092 * This waits to be signaled for completion of a specific task. It can be
4093 * interrupted by a kill signal.
4094 */
009e577e
MW
4095int __sched wait_for_completion_killable(struct completion *x)
4096{
4097 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4098 if (t == -ERESTARTSYS)
4099 return t;
4100 return 0;
4101}
4102EXPORT_SYMBOL(wait_for_completion_killable);
4103
be4de352
DC
4104/**
4105 * try_wait_for_completion - try to decrement a completion without blocking
4106 * @x: completion structure
4107 *
4108 * Returns: 0 if a decrement cannot be done without blocking
4109 * 1 if a decrement succeeded.
4110 *
4111 * If a completion is being used as a counting completion,
4112 * attempt to decrement the counter without blocking. This
4113 * enables us to avoid waiting if the resource the completion
4114 * is protecting is not available.
4115 */
4116bool try_wait_for_completion(struct completion *x)
4117{
7539a3b3 4118 unsigned long flags;
be4de352
DC
4119 int ret = 1;
4120
7539a3b3 4121 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4122 if (!x->done)
4123 ret = 0;
4124 else
4125 x->done--;
7539a3b3 4126 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4127 return ret;
4128}
4129EXPORT_SYMBOL(try_wait_for_completion);
4130
4131/**
4132 * completion_done - Test to see if a completion has any waiters
4133 * @x: completion structure
4134 *
4135 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4136 * 1 if there are no waiters.
4137 *
4138 */
4139bool completion_done(struct completion *x)
4140{
7539a3b3 4141 unsigned long flags;
be4de352
DC
4142 int ret = 1;
4143
7539a3b3 4144 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4145 if (!x->done)
4146 ret = 0;
7539a3b3 4147 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4148 return ret;
4149}
4150EXPORT_SYMBOL(completion_done);
4151
8cbbe86d
AK
4152static long __sched
4153sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4154{
0fec171c
IM
4155 unsigned long flags;
4156 wait_queue_t wait;
4157
4158 init_waitqueue_entry(&wait, current);
1da177e4 4159
8cbbe86d 4160 __set_current_state(state);
1da177e4 4161
8cbbe86d
AK
4162 spin_lock_irqsave(&q->lock, flags);
4163 __add_wait_queue(q, &wait);
4164 spin_unlock(&q->lock);
4165 timeout = schedule_timeout(timeout);
4166 spin_lock_irq(&q->lock);
4167 __remove_wait_queue(q, &wait);
4168 spin_unlock_irqrestore(&q->lock, flags);
4169
4170 return timeout;
4171}
4172
4173void __sched interruptible_sleep_on(wait_queue_head_t *q)
4174{
4175 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4176}
1da177e4
LT
4177EXPORT_SYMBOL(interruptible_sleep_on);
4178
0fec171c 4179long __sched
95cdf3b7 4180interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4181{
8cbbe86d 4182 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4183}
1da177e4
LT
4184EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4185
0fec171c 4186void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4187{
8cbbe86d 4188 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4189}
1da177e4
LT
4190EXPORT_SYMBOL(sleep_on);
4191
0fec171c 4192long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4193{
8cbbe86d 4194 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4195}
1da177e4
LT
4196EXPORT_SYMBOL(sleep_on_timeout);
4197
b29739f9
IM
4198#ifdef CONFIG_RT_MUTEXES
4199
4200/*
4201 * rt_mutex_setprio - set the current priority of a task
4202 * @p: task
4203 * @prio: prio value (kernel-internal form)
4204 *
4205 * This function changes the 'effective' priority of a task. It does
4206 * not touch ->normal_prio like __setscheduler().
4207 *
4208 * Used by the rt_mutex code to implement priority inheritance logic.
4209 */
36c8b586 4210void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4211{
4212 unsigned long flags;
83b699ed 4213 int oldprio, on_rq, running;
70b97a7f 4214 struct rq *rq;
cb469845 4215 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4216
4217 BUG_ON(prio < 0 || prio > MAX_PRIO);
4218
4219 rq = task_rq_lock(p, &flags);
a8e504d2 4220 update_rq_clock(rq);
b29739f9 4221
d5f9f942 4222 oldprio = p->prio;
dd41f596 4223 on_rq = p->se.on_rq;
051a1d1a 4224 running = task_current(rq, p);
0e1f3483 4225 if (on_rq)
69be72c1 4226 dequeue_task(rq, p, 0);
0e1f3483
HS
4227 if (running)
4228 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4229
4230 if (rt_prio(prio))
4231 p->sched_class = &rt_sched_class;
4232 else
4233 p->sched_class = &fair_sched_class;
4234
b29739f9
IM
4235 p->prio = prio;
4236
0e1f3483
HS
4237 if (running)
4238 p->sched_class->set_curr_task(rq);
dd41f596 4239 if (on_rq) {
ea87bb78 4240 enqueue_task(rq, p, 0, false);
cb469845
SR
4241
4242 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4243 }
4244 task_rq_unlock(rq, &flags);
4245}
4246
4247#endif
4248
36c8b586 4249void set_user_nice(struct task_struct *p, long nice)
1da177e4 4250{
dd41f596 4251 int old_prio, delta, on_rq;
1da177e4 4252 unsigned long flags;
70b97a7f 4253 struct rq *rq;
1da177e4
LT
4254
4255 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4256 return;
4257 /*
4258 * We have to be careful, if called from sys_setpriority(),
4259 * the task might be in the middle of scheduling on another CPU.
4260 */
4261 rq = task_rq_lock(p, &flags);
a8e504d2 4262 update_rq_clock(rq);
1da177e4
LT
4263 /*
4264 * The RT priorities are set via sched_setscheduler(), but we still
4265 * allow the 'normal' nice value to be set - but as expected
4266 * it wont have any effect on scheduling until the task is
dd41f596 4267 * SCHED_FIFO/SCHED_RR:
1da177e4 4268 */
e05606d3 4269 if (task_has_rt_policy(p)) {
1da177e4
LT
4270 p->static_prio = NICE_TO_PRIO(nice);
4271 goto out_unlock;
4272 }
dd41f596 4273 on_rq = p->se.on_rq;
c09595f6 4274 if (on_rq)
69be72c1 4275 dequeue_task(rq, p, 0);
1da177e4 4276
1da177e4 4277 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4278 set_load_weight(p);
b29739f9
IM
4279 old_prio = p->prio;
4280 p->prio = effective_prio(p);
4281 delta = p->prio - old_prio;
1da177e4 4282
dd41f596 4283 if (on_rq) {
ea87bb78 4284 enqueue_task(rq, p, 0, false);
1da177e4 4285 /*
d5f9f942
AM
4286 * If the task increased its priority or is running and
4287 * lowered its priority, then reschedule its CPU:
1da177e4 4288 */
d5f9f942 4289 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4290 resched_task(rq->curr);
4291 }
4292out_unlock:
4293 task_rq_unlock(rq, &flags);
4294}
1da177e4
LT
4295EXPORT_SYMBOL(set_user_nice);
4296
e43379f1
MM
4297/*
4298 * can_nice - check if a task can reduce its nice value
4299 * @p: task
4300 * @nice: nice value
4301 */
36c8b586 4302int can_nice(const struct task_struct *p, const int nice)
e43379f1 4303{
024f4747
MM
4304 /* convert nice value [19,-20] to rlimit style value [1,40] */
4305 int nice_rlim = 20 - nice;
48f24c4d 4306
e43379f1
MM
4307 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4308 capable(CAP_SYS_NICE));
4309}
4310
1da177e4
LT
4311#ifdef __ARCH_WANT_SYS_NICE
4312
4313/*
4314 * sys_nice - change the priority of the current process.
4315 * @increment: priority increment
4316 *
4317 * sys_setpriority is a more generic, but much slower function that
4318 * does similar things.
4319 */
5add95d4 4320SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4321{
48f24c4d 4322 long nice, retval;
1da177e4
LT
4323
4324 /*
4325 * Setpriority might change our priority at the same moment.
4326 * We don't have to worry. Conceptually one call occurs first
4327 * and we have a single winner.
4328 */
e43379f1
MM
4329 if (increment < -40)
4330 increment = -40;
1da177e4
LT
4331 if (increment > 40)
4332 increment = 40;
4333
2b8f836f 4334 nice = TASK_NICE(current) + increment;
1da177e4
LT
4335 if (nice < -20)
4336 nice = -20;
4337 if (nice > 19)
4338 nice = 19;
4339
e43379f1
MM
4340 if (increment < 0 && !can_nice(current, nice))
4341 return -EPERM;
4342
1da177e4
LT
4343 retval = security_task_setnice(current, nice);
4344 if (retval)
4345 return retval;
4346
4347 set_user_nice(current, nice);
4348 return 0;
4349}
4350
4351#endif
4352
4353/**
4354 * task_prio - return the priority value of a given task.
4355 * @p: the task in question.
4356 *
4357 * This is the priority value as seen by users in /proc.
4358 * RT tasks are offset by -200. Normal tasks are centered
4359 * around 0, value goes from -16 to +15.
4360 */
36c8b586 4361int task_prio(const struct task_struct *p)
1da177e4
LT
4362{
4363 return p->prio - MAX_RT_PRIO;
4364}
4365
4366/**
4367 * task_nice - return the nice value of a given task.
4368 * @p: the task in question.
4369 */
36c8b586 4370int task_nice(const struct task_struct *p)
1da177e4
LT
4371{
4372 return TASK_NICE(p);
4373}
150d8bed 4374EXPORT_SYMBOL(task_nice);
1da177e4
LT
4375
4376/**
4377 * idle_cpu - is a given cpu idle currently?
4378 * @cpu: the processor in question.
4379 */
4380int idle_cpu(int cpu)
4381{
4382 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4383}
4384
1da177e4
LT
4385/**
4386 * idle_task - return the idle task for a given cpu.
4387 * @cpu: the processor in question.
4388 */
36c8b586 4389struct task_struct *idle_task(int cpu)
1da177e4
LT
4390{
4391 return cpu_rq(cpu)->idle;
4392}
4393
4394/**
4395 * find_process_by_pid - find a process with a matching PID value.
4396 * @pid: the pid in question.
4397 */
a9957449 4398static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4399{
228ebcbe 4400 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4401}
4402
4403/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4404static void
4405__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4406{
dd41f596 4407 BUG_ON(p->se.on_rq);
48f24c4d 4408
1da177e4
LT
4409 p->policy = policy;
4410 p->rt_priority = prio;
b29739f9
IM
4411 p->normal_prio = normal_prio(p);
4412 /* we are holding p->pi_lock already */
4413 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4414 if (rt_prio(p->prio))
4415 p->sched_class = &rt_sched_class;
4416 else
4417 p->sched_class = &fair_sched_class;
2dd73a4f 4418 set_load_weight(p);
1da177e4
LT
4419}
4420
c69e8d9c
DH
4421/*
4422 * check the target process has a UID that matches the current process's
4423 */
4424static bool check_same_owner(struct task_struct *p)
4425{
4426 const struct cred *cred = current_cred(), *pcred;
4427 bool match;
4428
4429 rcu_read_lock();
4430 pcred = __task_cred(p);
4431 match = (cred->euid == pcred->euid ||
4432 cred->euid == pcred->uid);
4433 rcu_read_unlock();
4434 return match;
4435}
4436
961ccddd
RR
4437static int __sched_setscheduler(struct task_struct *p, int policy,
4438 struct sched_param *param, bool user)
1da177e4 4439{
83b699ed 4440 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4441 unsigned long flags;
cb469845 4442 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4443 struct rq *rq;
ca94c442 4444 int reset_on_fork;
1da177e4 4445
66e5393a
SR
4446 /* may grab non-irq protected spin_locks */
4447 BUG_ON(in_interrupt());
1da177e4
LT
4448recheck:
4449 /* double check policy once rq lock held */
ca94c442
LP
4450 if (policy < 0) {
4451 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4452 policy = oldpolicy = p->policy;
ca94c442
LP
4453 } else {
4454 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4455 policy &= ~SCHED_RESET_ON_FORK;
4456
4457 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4458 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4459 policy != SCHED_IDLE)
4460 return -EINVAL;
4461 }
4462
1da177e4
LT
4463 /*
4464 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4465 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4466 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4467 */
4468 if (param->sched_priority < 0 ||
95cdf3b7 4469 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4470 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4471 return -EINVAL;
e05606d3 4472 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4473 return -EINVAL;
4474
37e4ab3f
OC
4475 /*
4476 * Allow unprivileged RT tasks to decrease priority:
4477 */
961ccddd 4478 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4479 if (rt_policy(policy)) {
8dc3e909 4480 unsigned long rlim_rtprio;
8dc3e909
ON
4481
4482 if (!lock_task_sighand(p, &flags))
4483 return -ESRCH;
4484 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4485 unlock_task_sighand(p, &flags);
4486
4487 /* can't set/change the rt policy */
4488 if (policy != p->policy && !rlim_rtprio)
4489 return -EPERM;
4490
4491 /* can't increase priority */
4492 if (param->sched_priority > p->rt_priority &&
4493 param->sched_priority > rlim_rtprio)
4494 return -EPERM;
4495 }
dd41f596
IM
4496 /*
4497 * Like positive nice levels, dont allow tasks to
4498 * move out of SCHED_IDLE either:
4499 */
4500 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4501 return -EPERM;
5fe1d75f 4502
37e4ab3f 4503 /* can't change other user's priorities */
c69e8d9c 4504 if (!check_same_owner(p))
37e4ab3f 4505 return -EPERM;
ca94c442
LP
4506
4507 /* Normal users shall not reset the sched_reset_on_fork flag */
4508 if (p->sched_reset_on_fork && !reset_on_fork)
4509 return -EPERM;
37e4ab3f 4510 }
1da177e4 4511
725aad24 4512 if (user) {
b68aa230 4513#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4514 /*
4515 * Do not allow realtime tasks into groups that have no runtime
4516 * assigned.
4517 */
9a7e0b18
PZ
4518 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4519 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4520 return -EPERM;
b68aa230
PZ
4521#endif
4522
725aad24
JF
4523 retval = security_task_setscheduler(p, policy, param);
4524 if (retval)
4525 return retval;
4526 }
4527
b29739f9
IM
4528 /*
4529 * make sure no PI-waiters arrive (or leave) while we are
4530 * changing the priority of the task:
4531 */
1d615482 4532 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4533 /*
4534 * To be able to change p->policy safely, the apropriate
4535 * runqueue lock must be held.
4536 */
b29739f9 4537 rq = __task_rq_lock(p);
1da177e4
LT
4538 /* recheck policy now with rq lock held */
4539 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4540 policy = oldpolicy = -1;
b29739f9 4541 __task_rq_unlock(rq);
1d615482 4542 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4543 goto recheck;
4544 }
2daa3577 4545 update_rq_clock(rq);
dd41f596 4546 on_rq = p->se.on_rq;
051a1d1a 4547 running = task_current(rq, p);
0e1f3483 4548 if (on_rq)
2e1cb74a 4549 deactivate_task(rq, p, 0);
0e1f3483
HS
4550 if (running)
4551 p->sched_class->put_prev_task(rq, p);
f6b53205 4552
ca94c442
LP
4553 p->sched_reset_on_fork = reset_on_fork;
4554
1da177e4 4555 oldprio = p->prio;
dd41f596 4556 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4557
0e1f3483
HS
4558 if (running)
4559 p->sched_class->set_curr_task(rq);
dd41f596
IM
4560 if (on_rq) {
4561 activate_task(rq, p, 0);
cb469845
SR
4562
4563 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4564 }
b29739f9 4565 __task_rq_unlock(rq);
1d615482 4566 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4567
95e02ca9
TG
4568 rt_mutex_adjust_pi(p);
4569
1da177e4
LT
4570 return 0;
4571}
961ccddd
RR
4572
4573/**
4574 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4575 * @p: the task in question.
4576 * @policy: new policy.
4577 * @param: structure containing the new RT priority.
4578 *
4579 * NOTE that the task may be already dead.
4580 */
4581int sched_setscheduler(struct task_struct *p, int policy,
4582 struct sched_param *param)
4583{
4584 return __sched_setscheduler(p, policy, param, true);
4585}
1da177e4
LT
4586EXPORT_SYMBOL_GPL(sched_setscheduler);
4587
961ccddd
RR
4588/**
4589 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4590 * @p: the task in question.
4591 * @policy: new policy.
4592 * @param: structure containing the new RT priority.
4593 *
4594 * Just like sched_setscheduler, only don't bother checking if the
4595 * current context has permission. For example, this is needed in
4596 * stop_machine(): we create temporary high priority worker threads,
4597 * but our caller might not have that capability.
4598 */
4599int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4600 struct sched_param *param)
4601{
4602 return __sched_setscheduler(p, policy, param, false);
4603}
4604
95cdf3b7
IM
4605static int
4606do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4607{
1da177e4
LT
4608 struct sched_param lparam;
4609 struct task_struct *p;
36c8b586 4610 int retval;
1da177e4
LT
4611
4612 if (!param || pid < 0)
4613 return -EINVAL;
4614 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4615 return -EFAULT;
5fe1d75f
ON
4616
4617 rcu_read_lock();
4618 retval = -ESRCH;
1da177e4 4619 p = find_process_by_pid(pid);
5fe1d75f
ON
4620 if (p != NULL)
4621 retval = sched_setscheduler(p, policy, &lparam);
4622 rcu_read_unlock();
36c8b586 4623
1da177e4
LT
4624 return retval;
4625}
4626
4627/**
4628 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4629 * @pid: the pid in question.
4630 * @policy: new policy.
4631 * @param: structure containing the new RT priority.
4632 */
5add95d4
HC
4633SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4634 struct sched_param __user *, param)
1da177e4 4635{
c21761f1
JB
4636 /* negative values for policy are not valid */
4637 if (policy < 0)
4638 return -EINVAL;
4639
1da177e4
LT
4640 return do_sched_setscheduler(pid, policy, param);
4641}
4642
4643/**
4644 * sys_sched_setparam - set/change the RT priority of a thread
4645 * @pid: the pid in question.
4646 * @param: structure containing the new RT priority.
4647 */
5add95d4 4648SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4649{
4650 return do_sched_setscheduler(pid, -1, param);
4651}
4652
4653/**
4654 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4655 * @pid: the pid in question.
4656 */
5add95d4 4657SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4658{
36c8b586 4659 struct task_struct *p;
3a5c359a 4660 int retval;
1da177e4
LT
4661
4662 if (pid < 0)
3a5c359a 4663 return -EINVAL;
1da177e4
LT
4664
4665 retval = -ESRCH;
5fe85be0 4666 rcu_read_lock();
1da177e4
LT
4667 p = find_process_by_pid(pid);
4668 if (p) {
4669 retval = security_task_getscheduler(p);
4670 if (!retval)
ca94c442
LP
4671 retval = p->policy
4672 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4673 }
5fe85be0 4674 rcu_read_unlock();
1da177e4
LT
4675 return retval;
4676}
4677
4678/**
ca94c442 4679 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4680 * @pid: the pid in question.
4681 * @param: structure containing the RT priority.
4682 */
5add95d4 4683SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4684{
4685 struct sched_param lp;
36c8b586 4686 struct task_struct *p;
3a5c359a 4687 int retval;
1da177e4
LT
4688
4689 if (!param || pid < 0)
3a5c359a 4690 return -EINVAL;
1da177e4 4691
5fe85be0 4692 rcu_read_lock();
1da177e4
LT
4693 p = find_process_by_pid(pid);
4694 retval = -ESRCH;
4695 if (!p)
4696 goto out_unlock;
4697
4698 retval = security_task_getscheduler(p);
4699 if (retval)
4700 goto out_unlock;
4701
4702 lp.sched_priority = p->rt_priority;
5fe85be0 4703 rcu_read_unlock();
1da177e4
LT
4704
4705 /*
4706 * This one might sleep, we cannot do it with a spinlock held ...
4707 */
4708 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4709
1da177e4
LT
4710 return retval;
4711
4712out_unlock:
5fe85be0 4713 rcu_read_unlock();
1da177e4
LT
4714 return retval;
4715}
4716
96f874e2 4717long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4718{
5a16f3d3 4719 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4720 struct task_struct *p;
4721 int retval;
1da177e4 4722
95402b38 4723 get_online_cpus();
23f5d142 4724 rcu_read_lock();
1da177e4
LT
4725
4726 p = find_process_by_pid(pid);
4727 if (!p) {
23f5d142 4728 rcu_read_unlock();
95402b38 4729 put_online_cpus();
1da177e4
LT
4730 return -ESRCH;
4731 }
4732
23f5d142 4733 /* Prevent p going away */
1da177e4 4734 get_task_struct(p);
23f5d142 4735 rcu_read_unlock();
1da177e4 4736
5a16f3d3
RR
4737 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4738 retval = -ENOMEM;
4739 goto out_put_task;
4740 }
4741 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4742 retval = -ENOMEM;
4743 goto out_free_cpus_allowed;
4744 }
1da177e4 4745 retval = -EPERM;
c69e8d9c 4746 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4747 goto out_unlock;
4748
e7834f8f
DQ
4749 retval = security_task_setscheduler(p, 0, NULL);
4750 if (retval)
4751 goto out_unlock;
4752
5a16f3d3
RR
4753 cpuset_cpus_allowed(p, cpus_allowed);
4754 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4755 again:
5a16f3d3 4756 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4757
8707d8b8 4758 if (!retval) {
5a16f3d3
RR
4759 cpuset_cpus_allowed(p, cpus_allowed);
4760 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4761 /*
4762 * We must have raced with a concurrent cpuset
4763 * update. Just reset the cpus_allowed to the
4764 * cpuset's cpus_allowed
4765 */
5a16f3d3 4766 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4767 goto again;
4768 }
4769 }
1da177e4 4770out_unlock:
5a16f3d3
RR
4771 free_cpumask_var(new_mask);
4772out_free_cpus_allowed:
4773 free_cpumask_var(cpus_allowed);
4774out_put_task:
1da177e4 4775 put_task_struct(p);
95402b38 4776 put_online_cpus();
1da177e4
LT
4777 return retval;
4778}
4779
4780static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4781 struct cpumask *new_mask)
1da177e4 4782{
96f874e2
RR
4783 if (len < cpumask_size())
4784 cpumask_clear(new_mask);
4785 else if (len > cpumask_size())
4786 len = cpumask_size();
4787
1da177e4
LT
4788 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4789}
4790
4791/**
4792 * sys_sched_setaffinity - set the cpu affinity of a process
4793 * @pid: pid of the process
4794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4795 * @user_mask_ptr: user-space pointer to the new cpu mask
4796 */
5add95d4
HC
4797SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4798 unsigned long __user *, user_mask_ptr)
1da177e4 4799{
5a16f3d3 4800 cpumask_var_t new_mask;
1da177e4
LT
4801 int retval;
4802
5a16f3d3
RR
4803 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4804 return -ENOMEM;
1da177e4 4805
5a16f3d3
RR
4806 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4807 if (retval == 0)
4808 retval = sched_setaffinity(pid, new_mask);
4809 free_cpumask_var(new_mask);
4810 return retval;
1da177e4
LT
4811}
4812
96f874e2 4813long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4814{
36c8b586 4815 struct task_struct *p;
31605683
TG
4816 unsigned long flags;
4817 struct rq *rq;
1da177e4 4818 int retval;
1da177e4 4819
95402b38 4820 get_online_cpus();
23f5d142 4821 rcu_read_lock();
1da177e4
LT
4822
4823 retval = -ESRCH;
4824 p = find_process_by_pid(pid);
4825 if (!p)
4826 goto out_unlock;
4827
e7834f8f
DQ
4828 retval = security_task_getscheduler(p);
4829 if (retval)
4830 goto out_unlock;
4831
31605683 4832 rq = task_rq_lock(p, &flags);
96f874e2 4833 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4834 task_rq_unlock(rq, &flags);
1da177e4
LT
4835
4836out_unlock:
23f5d142 4837 rcu_read_unlock();
95402b38 4838 put_online_cpus();
1da177e4 4839
9531b62f 4840 return retval;
1da177e4
LT
4841}
4842
4843/**
4844 * sys_sched_getaffinity - get the cpu affinity of a process
4845 * @pid: pid of the process
4846 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4847 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4848 */
5add95d4
HC
4849SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4850 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4851{
4852 int ret;
f17c8607 4853 cpumask_var_t mask;
1da177e4 4854
f17c8607 4855 if (len < cpumask_size())
1da177e4
LT
4856 return -EINVAL;
4857
f17c8607
RR
4858 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4859 return -ENOMEM;
1da177e4 4860
f17c8607
RR
4861 ret = sched_getaffinity(pid, mask);
4862 if (ret == 0) {
4863 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4864 ret = -EFAULT;
4865 else
4866 ret = cpumask_size();
4867 }
4868 free_cpumask_var(mask);
1da177e4 4869
f17c8607 4870 return ret;
1da177e4
LT
4871}
4872
4873/**
4874 * sys_sched_yield - yield the current processor to other threads.
4875 *
dd41f596
IM
4876 * This function yields the current CPU to other tasks. If there are no
4877 * other threads running on this CPU then this function will return.
1da177e4 4878 */
5add95d4 4879SYSCALL_DEFINE0(sched_yield)
1da177e4 4880{
70b97a7f 4881 struct rq *rq = this_rq_lock();
1da177e4 4882
2d72376b 4883 schedstat_inc(rq, yld_count);
4530d7ab 4884 current->sched_class->yield_task(rq);
1da177e4
LT
4885
4886 /*
4887 * Since we are going to call schedule() anyway, there's
4888 * no need to preempt or enable interrupts:
4889 */
4890 __release(rq->lock);
8a25d5de 4891 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4892 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4893 preempt_enable_no_resched();
4894
4895 schedule();
4896
4897 return 0;
4898}
4899
d86ee480
PZ
4900static inline int should_resched(void)
4901{
4902 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4903}
4904
e7b38404 4905static void __cond_resched(void)
1da177e4 4906{
e7aaaa69
FW
4907 add_preempt_count(PREEMPT_ACTIVE);
4908 schedule();
4909 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4910}
4911
02b67cc3 4912int __sched _cond_resched(void)
1da177e4 4913{
d86ee480 4914 if (should_resched()) {
1da177e4
LT
4915 __cond_resched();
4916 return 1;
4917 }
4918 return 0;
4919}
02b67cc3 4920EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4921
4922/*
613afbf8 4923 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4924 * call schedule, and on return reacquire the lock.
4925 *
41a2d6cf 4926 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4927 * operations here to prevent schedule() from being called twice (once via
4928 * spin_unlock(), once by hand).
4929 */
613afbf8 4930int __cond_resched_lock(spinlock_t *lock)
1da177e4 4931{
d86ee480 4932 int resched = should_resched();
6df3cecb
JK
4933 int ret = 0;
4934
f607c668
PZ
4935 lockdep_assert_held(lock);
4936
95c354fe 4937 if (spin_needbreak(lock) || resched) {
1da177e4 4938 spin_unlock(lock);
d86ee480 4939 if (resched)
95c354fe
NP
4940 __cond_resched();
4941 else
4942 cpu_relax();
6df3cecb 4943 ret = 1;
1da177e4 4944 spin_lock(lock);
1da177e4 4945 }
6df3cecb 4946 return ret;
1da177e4 4947}
613afbf8 4948EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4949
613afbf8 4950int __sched __cond_resched_softirq(void)
1da177e4
LT
4951{
4952 BUG_ON(!in_softirq());
4953
d86ee480 4954 if (should_resched()) {
98d82567 4955 local_bh_enable();
1da177e4
LT
4956 __cond_resched();
4957 local_bh_disable();
4958 return 1;
4959 }
4960 return 0;
4961}
613afbf8 4962EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4963
1da177e4
LT
4964/**
4965 * yield - yield the current processor to other threads.
4966 *
72fd4a35 4967 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4968 * thread runnable and calls sys_sched_yield().
4969 */
4970void __sched yield(void)
4971{
4972 set_current_state(TASK_RUNNING);
4973 sys_sched_yield();
4974}
1da177e4
LT
4975EXPORT_SYMBOL(yield);
4976
4977/*
41a2d6cf 4978 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4979 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4980 */
4981void __sched io_schedule(void)
4982{
54d35f29 4983 struct rq *rq = raw_rq();
1da177e4 4984
0ff92245 4985 delayacct_blkio_start();
1da177e4 4986 atomic_inc(&rq->nr_iowait);
8f0dfc34 4987 current->in_iowait = 1;
1da177e4 4988 schedule();
8f0dfc34 4989 current->in_iowait = 0;
1da177e4 4990 atomic_dec(&rq->nr_iowait);
0ff92245 4991 delayacct_blkio_end();
1da177e4 4992}
1da177e4
LT
4993EXPORT_SYMBOL(io_schedule);
4994
4995long __sched io_schedule_timeout(long timeout)
4996{
54d35f29 4997 struct rq *rq = raw_rq();
1da177e4
LT
4998 long ret;
4999
0ff92245 5000 delayacct_blkio_start();
1da177e4 5001 atomic_inc(&rq->nr_iowait);
8f0dfc34 5002 current->in_iowait = 1;
1da177e4 5003 ret = schedule_timeout(timeout);
8f0dfc34 5004 current->in_iowait = 0;
1da177e4 5005 atomic_dec(&rq->nr_iowait);
0ff92245 5006 delayacct_blkio_end();
1da177e4
LT
5007 return ret;
5008}
5009
5010/**
5011 * sys_sched_get_priority_max - return maximum RT priority.
5012 * @policy: scheduling class.
5013 *
5014 * this syscall returns the maximum rt_priority that can be used
5015 * by a given scheduling class.
5016 */
5add95d4 5017SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5018{
5019 int ret = -EINVAL;
5020
5021 switch (policy) {
5022 case SCHED_FIFO:
5023 case SCHED_RR:
5024 ret = MAX_USER_RT_PRIO-1;
5025 break;
5026 case SCHED_NORMAL:
b0a9499c 5027 case SCHED_BATCH:
dd41f596 5028 case SCHED_IDLE:
1da177e4
LT
5029 ret = 0;
5030 break;
5031 }
5032 return ret;
5033}
5034
5035/**
5036 * sys_sched_get_priority_min - return minimum RT priority.
5037 * @policy: scheduling class.
5038 *
5039 * this syscall returns the minimum rt_priority that can be used
5040 * by a given scheduling class.
5041 */
5add95d4 5042SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5043{
5044 int ret = -EINVAL;
5045
5046 switch (policy) {
5047 case SCHED_FIFO:
5048 case SCHED_RR:
5049 ret = 1;
5050 break;
5051 case SCHED_NORMAL:
b0a9499c 5052 case SCHED_BATCH:
dd41f596 5053 case SCHED_IDLE:
1da177e4
LT
5054 ret = 0;
5055 }
5056 return ret;
5057}
5058
5059/**
5060 * sys_sched_rr_get_interval - return the default timeslice of a process.
5061 * @pid: pid of the process.
5062 * @interval: userspace pointer to the timeslice value.
5063 *
5064 * this syscall writes the default timeslice value of a given process
5065 * into the user-space timespec buffer. A value of '0' means infinity.
5066 */
17da2bd9 5067SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5068 struct timespec __user *, interval)
1da177e4 5069{
36c8b586 5070 struct task_struct *p;
a4ec24b4 5071 unsigned int time_slice;
dba091b9
TG
5072 unsigned long flags;
5073 struct rq *rq;
3a5c359a 5074 int retval;
1da177e4 5075 struct timespec t;
1da177e4
LT
5076
5077 if (pid < 0)
3a5c359a 5078 return -EINVAL;
1da177e4
LT
5079
5080 retval = -ESRCH;
1a551ae7 5081 rcu_read_lock();
1da177e4
LT
5082 p = find_process_by_pid(pid);
5083 if (!p)
5084 goto out_unlock;
5085
5086 retval = security_task_getscheduler(p);
5087 if (retval)
5088 goto out_unlock;
5089
dba091b9
TG
5090 rq = task_rq_lock(p, &flags);
5091 time_slice = p->sched_class->get_rr_interval(rq, p);
5092 task_rq_unlock(rq, &flags);
a4ec24b4 5093
1a551ae7 5094 rcu_read_unlock();
a4ec24b4 5095 jiffies_to_timespec(time_slice, &t);
1da177e4 5096 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5097 return retval;
3a5c359a 5098
1da177e4 5099out_unlock:
1a551ae7 5100 rcu_read_unlock();
1da177e4
LT
5101 return retval;
5102}
5103
7c731e0a 5104static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5105
82a1fcb9 5106void sched_show_task(struct task_struct *p)
1da177e4 5107{
1da177e4 5108 unsigned long free = 0;
36c8b586 5109 unsigned state;
1da177e4 5110
1da177e4 5111 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5112 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5113 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5114#if BITS_PER_LONG == 32
1da177e4 5115 if (state == TASK_RUNNING)
3df0fc5b 5116 printk(KERN_CONT " running ");
1da177e4 5117 else
3df0fc5b 5118 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5119#else
5120 if (state == TASK_RUNNING)
3df0fc5b 5121 printk(KERN_CONT " running task ");
1da177e4 5122 else
3df0fc5b 5123 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5124#endif
5125#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5126 free = stack_not_used(p);
1da177e4 5127#endif
3df0fc5b 5128 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5129 task_pid_nr(p), task_pid_nr(p->real_parent),
5130 (unsigned long)task_thread_info(p)->flags);
1da177e4 5131
5fb5e6de 5132 show_stack(p, NULL);
1da177e4
LT
5133}
5134
e59e2ae2 5135void show_state_filter(unsigned long state_filter)
1da177e4 5136{
36c8b586 5137 struct task_struct *g, *p;
1da177e4 5138
4bd77321 5139#if BITS_PER_LONG == 32
3df0fc5b
PZ
5140 printk(KERN_INFO
5141 " task PC stack pid father\n");
1da177e4 5142#else
3df0fc5b
PZ
5143 printk(KERN_INFO
5144 " task PC stack pid father\n");
1da177e4
LT
5145#endif
5146 read_lock(&tasklist_lock);
5147 do_each_thread(g, p) {
5148 /*
5149 * reset the NMI-timeout, listing all files on a slow
5150 * console might take alot of time:
5151 */
5152 touch_nmi_watchdog();
39bc89fd 5153 if (!state_filter || (p->state & state_filter))
82a1fcb9 5154 sched_show_task(p);
1da177e4
LT
5155 } while_each_thread(g, p);
5156
04c9167f
JF
5157 touch_all_softlockup_watchdogs();
5158
dd41f596
IM
5159#ifdef CONFIG_SCHED_DEBUG
5160 sysrq_sched_debug_show();
5161#endif
1da177e4 5162 read_unlock(&tasklist_lock);
e59e2ae2
IM
5163 /*
5164 * Only show locks if all tasks are dumped:
5165 */
93335a21 5166 if (!state_filter)
e59e2ae2 5167 debug_show_all_locks();
1da177e4
LT
5168}
5169
1df21055
IM
5170void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5171{
dd41f596 5172 idle->sched_class = &idle_sched_class;
1df21055
IM
5173}
5174
f340c0d1
IM
5175/**
5176 * init_idle - set up an idle thread for a given CPU
5177 * @idle: task in question
5178 * @cpu: cpu the idle task belongs to
5179 *
5180 * NOTE: this function does not set the idle thread's NEED_RESCHED
5181 * flag, to make booting more robust.
5182 */
5c1e1767 5183void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5184{
70b97a7f 5185 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5186 unsigned long flags;
5187
05fa785c 5188 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5189
dd41f596 5190 __sched_fork(idle);
06b83b5f 5191 idle->state = TASK_RUNNING;
dd41f596
IM
5192 idle->se.exec_start = sched_clock();
5193
96f874e2 5194 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5195 __set_task_cpu(idle, cpu);
1da177e4 5196
1da177e4 5197 rq->curr = rq->idle = idle;
4866cde0
NP
5198#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5199 idle->oncpu = 1;
5200#endif
05fa785c 5201 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5202
5203 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5204#if defined(CONFIG_PREEMPT)
5205 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5206#else
a1261f54 5207 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5208#endif
dd41f596
IM
5209 /*
5210 * The idle tasks have their own, simple scheduling class:
5211 */
5212 idle->sched_class = &idle_sched_class;
fb52607a 5213 ftrace_graph_init_task(idle);
1da177e4
LT
5214}
5215
5216/*
5217 * In a system that switches off the HZ timer nohz_cpu_mask
5218 * indicates which cpus entered this state. This is used
5219 * in the rcu update to wait only for active cpus. For system
5220 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5221 * always be CPU_BITS_NONE.
1da177e4 5222 */
6a7b3dc3 5223cpumask_var_t nohz_cpu_mask;
1da177e4 5224
19978ca6
IM
5225/*
5226 * Increase the granularity value when there are more CPUs,
5227 * because with more CPUs the 'effective latency' as visible
5228 * to users decreases. But the relationship is not linear,
5229 * so pick a second-best guess by going with the log2 of the
5230 * number of CPUs.
5231 *
5232 * This idea comes from the SD scheduler of Con Kolivas:
5233 */
acb4a848 5234static int get_update_sysctl_factor(void)
19978ca6 5235{
4ca3ef71 5236 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5237 unsigned int factor;
5238
5239 switch (sysctl_sched_tunable_scaling) {
5240 case SCHED_TUNABLESCALING_NONE:
5241 factor = 1;
5242 break;
5243 case SCHED_TUNABLESCALING_LINEAR:
5244 factor = cpus;
5245 break;
5246 case SCHED_TUNABLESCALING_LOG:
5247 default:
5248 factor = 1 + ilog2(cpus);
5249 break;
5250 }
19978ca6 5251
acb4a848
CE
5252 return factor;
5253}
19978ca6 5254
acb4a848
CE
5255static void update_sysctl(void)
5256{
5257 unsigned int factor = get_update_sysctl_factor();
19978ca6 5258
0bcdcf28
CE
5259#define SET_SYSCTL(name) \
5260 (sysctl_##name = (factor) * normalized_sysctl_##name)
5261 SET_SYSCTL(sched_min_granularity);
5262 SET_SYSCTL(sched_latency);
5263 SET_SYSCTL(sched_wakeup_granularity);
5264 SET_SYSCTL(sched_shares_ratelimit);
5265#undef SET_SYSCTL
5266}
55cd5340 5267
0bcdcf28
CE
5268static inline void sched_init_granularity(void)
5269{
5270 update_sysctl();
19978ca6
IM
5271}
5272
1da177e4
LT
5273#ifdef CONFIG_SMP
5274/*
5275 * This is how migration works:
5276 *
70b97a7f 5277 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5278 * runqueue and wake up that CPU's migration thread.
5279 * 2) we down() the locked semaphore => thread blocks.
5280 * 3) migration thread wakes up (implicitly it forces the migrated
5281 * thread off the CPU)
5282 * 4) it gets the migration request and checks whether the migrated
5283 * task is still in the wrong runqueue.
5284 * 5) if it's in the wrong runqueue then the migration thread removes
5285 * it and puts it into the right queue.
5286 * 6) migration thread up()s the semaphore.
5287 * 7) we wake up and the migration is done.
5288 */
5289
5290/*
5291 * Change a given task's CPU affinity. Migrate the thread to a
5292 * proper CPU and schedule it away if the CPU it's executing on
5293 * is removed from the allowed bitmask.
5294 *
5295 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5296 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5297 * call is not atomic; no spinlocks may be held.
5298 */
96f874e2 5299int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5300{
70b97a7f 5301 struct migration_req req;
1da177e4 5302 unsigned long flags;
70b97a7f 5303 struct rq *rq;
48f24c4d 5304 int ret = 0;
1da177e4 5305
e2912009
PZ
5306 /*
5307 * Since we rely on wake-ups to migrate sleeping tasks, don't change
5308 * the ->cpus_allowed mask from under waking tasks, which would be
5309 * possible when we change rq->lock in ttwu(), so synchronize against
5310 * TASK_WAKING to avoid that.
5311 */
5312again:
5313 while (p->state == TASK_WAKING)
5314 cpu_relax();
5315
1da177e4 5316 rq = task_rq_lock(p, &flags);
e2912009
PZ
5317
5318 if (p->state == TASK_WAKING) {
5319 task_rq_unlock(rq, &flags);
5320 goto again;
5321 }
5322
6ad4c188 5323 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5324 ret = -EINVAL;
5325 goto out;
5326 }
5327
9985b0ba 5328 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5329 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5330 ret = -EINVAL;
5331 goto out;
5332 }
5333
73fe6aae 5334 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5335 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5336 else {
96f874e2
RR
5337 cpumask_copy(&p->cpus_allowed, new_mask);
5338 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5339 }
5340
1da177e4 5341 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5342 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5343 goto out;
5344
6ad4c188 5345 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5346 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5347 struct task_struct *mt = rq->migration_thread;
5348
5349 get_task_struct(mt);
1da177e4
LT
5350 task_rq_unlock(rq, &flags);
5351 wake_up_process(rq->migration_thread);
693525e3 5352 put_task_struct(mt);
1da177e4
LT
5353 wait_for_completion(&req.done);
5354 tlb_migrate_finish(p->mm);
5355 return 0;
5356 }
5357out:
5358 task_rq_unlock(rq, &flags);
48f24c4d 5359
1da177e4
LT
5360 return ret;
5361}
cd8ba7cd 5362EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5363
5364/*
41a2d6cf 5365 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5366 * this because either it can't run here any more (set_cpus_allowed()
5367 * away from this CPU, or CPU going down), or because we're
5368 * attempting to rebalance this task on exec (sched_exec).
5369 *
5370 * So we race with normal scheduler movements, but that's OK, as long
5371 * as the task is no longer on this CPU.
efc30814
KK
5372 *
5373 * Returns non-zero if task was successfully migrated.
1da177e4 5374 */
efc30814 5375static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5376{
70b97a7f 5377 struct rq *rq_dest, *rq_src;
e2912009 5378 int ret = 0;
1da177e4 5379
e761b772 5380 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5381 return ret;
1da177e4
LT
5382
5383 rq_src = cpu_rq(src_cpu);
5384 rq_dest = cpu_rq(dest_cpu);
5385
5386 double_rq_lock(rq_src, rq_dest);
5387 /* Already moved. */
5388 if (task_cpu(p) != src_cpu)
b1e38734 5389 goto done;
1da177e4 5390 /* Affinity changed (again). */
96f874e2 5391 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5392 goto fail;
1da177e4 5393
e2912009
PZ
5394 /*
5395 * If we're not on a rq, the next wake-up will ensure we're
5396 * placed properly.
5397 */
5398 if (p->se.on_rq) {
2e1cb74a 5399 deactivate_task(rq_src, p, 0);
e2912009 5400 set_task_cpu(p, dest_cpu);
dd41f596 5401 activate_task(rq_dest, p, 0);
15afe09b 5402 check_preempt_curr(rq_dest, p, 0);
1da177e4 5403 }
b1e38734 5404done:
efc30814 5405 ret = 1;
b1e38734 5406fail:
1da177e4 5407 double_rq_unlock(rq_src, rq_dest);
efc30814 5408 return ret;
1da177e4
LT
5409}
5410
03b042bf
PM
5411#define RCU_MIGRATION_IDLE 0
5412#define RCU_MIGRATION_NEED_QS 1
5413#define RCU_MIGRATION_GOT_QS 2
5414#define RCU_MIGRATION_MUST_SYNC 3
5415
1da177e4
LT
5416/*
5417 * migration_thread - this is a highprio system thread that performs
5418 * thread migration by bumping thread off CPU then 'pushing' onto
5419 * another runqueue.
5420 */
95cdf3b7 5421static int migration_thread(void *data)
1da177e4 5422{
03b042bf 5423 int badcpu;
1da177e4 5424 int cpu = (long)data;
70b97a7f 5425 struct rq *rq;
1da177e4
LT
5426
5427 rq = cpu_rq(cpu);
5428 BUG_ON(rq->migration_thread != current);
5429
5430 set_current_state(TASK_INTERRUPTIBLE);
5431 while (!kthread_should_stop()) {
70b97a7f 5432 struct migration_req *req;
1da177e4 5433 struct list_head *head;
1da177e4 5434
05fa785c 5435 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5436
5437 if (cpu_is_offline(cpu)) {
05fa785c 5438 raw_spin_unlock_irq(&rq->lock);
371cbb38 5439 break;
1da177e4
LT
5440 }
5441
5442 if (rq->active_balance) {
5443 active_load_balance(rq, cpu);
5444 rq->active_balance = 0;
5445 }
5446
5447 head = &rq->migration_queue;
5448
5449 if (list_empty(head)) {
05fa785c 5450 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5451 schedule();
5452 set_current_state(TASK_INTERRUPTIBLE);
5453 continue;
5454 }
70b97a7f 5455 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5456 list_del_init(head->next);
5457
03b042bf 5458 if (req->task != NULL) {
05fa785c 5459 raw_spin_unlock(&rq->lock);
03b042bf
PM
5460 __migrate_task(req->task, cpu, req->dest_cpu);
5461 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5462 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5463 raw_spin_unlock(&rq->lock);
03b042bf
PM
5464 } else {
5465 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5466 raw_spin_unlock(&rq->lock);
03b042bf
PM
5467 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5468 }
674311d5 5469 local_irq_enable();
1da177e4
LT
5470
5471 complete(&req->done);
5472 }
5473 __set_current_state(TASK_RUNNING);
1da177e4 5474
1da177e4
LT
5475 return 0;
5476}
5477
5478#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5479
5480static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5481{
5482 int ret;
5483
5484 local_irq_disable();
5485 ret = __migrate_task(p, src_cpu, dest_cpu);
5486 local_irq_enable();
5487 return ret;
5488}
5489
054b9108 5490/*
3a4fa0a2 5491 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5492 */
48f24c4d 5493static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5494{
70b97a7f 5495 int dest_cpu;
e76bd8d9
RR
5496
5497again:
5da9a0fb 5498 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5499
e76bd8d9
RR
5500 /* It can have affinity changed while we were choosing. */
5501 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5502 goto again;
1da177e4
LT
5503}
5504
5505/*
5506 * While a dead CPU has no uninterruptible tasks queued at this point,
5507 * it might still have a nonzero ->nr_uninterruptible counter, because
5508 * for performance reasons the counter is not stricly tracking tasks to
5509 * their home CPUs. So we just add the counter to another CPU's counter,
5510 * to keep the global sum constant after CPU-down:
5511 */
70b97a7f 5512static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5513{
6ad4c188 5514 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5515 unsigned long flags;
5516
5517 local_irq_save(flags);
5518 double_rq_lock(rq_src, rq_dest);
5519 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5520 rq_src->nr_uninterruptible = 0;
5521 double_rq_unlock(rq_src, rq_dest);
5522 local_irq_restore(flags);
5523}
5524
5525/* Run through task list and migrate tasks from the dead cpu. */
5526static void migrate_live_tasks(int src_cpu)
5527{
48f24c4d 5528 struct task_struct *p, *t;
1da177e4 5529
f7b4cddc 5530 read_lock(&tasklist_lock);
1da177e4 5531
48f24c4d
IM
5532 do_each_thread(t, p) {
5533 if (p == current)
1da177e4
LT
5534 continue;
5535
48f24c4d
IM
5536 if (task_cpu(p) == src_cpu)
5537 move_task_off_dead_cpu(src_cpu, p);
5538 } while_each_thread(t, p);
1da177e4 5539
f7b4cddc 5540 read_unlock(&tasklist_lock);
1da177e4
LT
5541}
5542
dd41f596
IM
5543/*
5544 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5545 * It does so by boosting its priority to highest possible.
5546 * Used by CPU offline code.
1da177e4
LT
5547 */
5548void sched_idle_next(void)
5549{
48f24c4d 5550 int this_cpu = smp_processor_id();
70b97a7f 5551 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5552 struct task_struct *p = rq->idle;
5553 unsigned long flags;
5554
5555 /* cpu has to be offline */
48f24c4d 5556 BUG_ON(cpu_online(this_cpu));
1da177e4 5557
48f24c4d
IM
5558 /*
5559 * Strictly not necessary since rest of the CPUs are stopped by now
5560 * and interrupts disabled on the current cpu.
1da177e4 5561 */
05fa785c 5562 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5563
dd41f596 5564 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5565
94bc9a7b
DA
5566 update_rq_clock(rq);
5567 activate_task(rq, p, 0);
1da177e4 5568
05fa785c 5569 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5570}
5571
48f24c4d
IM
5572/*
5573 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5574 * offline.
5575 */
5576void idle_task_exit(void)
5577{
5578 struct mm_struct *mm = current->active_mm;
5579
5580 BUG_ON(cpu_online(smp_processor_id()));
5581
5582 if (mm != &init_mm)
5583 switch_mm(mm, &init_mm, current);
5584 mmdrop(mm);
5585}
5586
054b9108 5587/* called under rq->lock with disabled interrupts */
36c8b586 5588static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5589{
70b97a7f 5590 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5591
5592 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5593 BUG_ON(!p->exit_state);
1da177e4
LT
5594
5595 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5596 BUG_ON(p->state == TASK_DEAD);
1da177e4 5597
48f24c4d 5598 get_task_struct(p);
1da177e4
LT
5599
5600 /*
5601 * Drop lock around migration; if someone else moves it,
41a2d6cf 5602 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5603 * fine.
5604 */
05fa785c 5605 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5606 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5607 raw_spin_lock_irq(&rq->lock);
1da177e4 5608
48f24c4d 5609 put_task_struct(p);
1da177e4
LT
5610}
5611
5612/* release_task() removes task from tasklist, so we won't find dead tasks. */
5613static void migrate_dead_tasks(unsigned int dead_cpu)
5614{
70b97a7f 5615 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5616 struct task_struct *next;
48f24c4d 5617
dd41f596
IM
5618 for ( ; ; ) {
5619 if (!rq->nr_running)
5620 break;
a8e504d2 5621 update_rq_clock(rq);
b67802ea 5622 next = pick_next_task(rq);
dd41f596
IM
5623 if (!next)
5624 break;
79c53799 5625 next->sched_class->put_prev_task(rq, next);
dd41f596 5626 migrate_dead(dead_cpu, next);
e692ab53 5627
1da177e4
LT
5628 }
5629}
dce48a84
TG
5630
5631/*
5632 * remove the tasks which were accounted by rq from calc_load_tasks.
5633 */
5634static void calc_global_load_remove(struct rq *rq)
5635{
5636 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5637 rq->calc_load_active = 0;
dce48a84 5638}
1da177e4
LT
5639#endif /* CONFIG_HOTPLUG_CPU */
5640
e692ab53
NP
5641#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5642
5643static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5644 {
5645 .procname = "sched_domain",
c57baf1e 5646 .mode = 0555,
e0361851 5647 },
56992309 5648 {}
e692ab53
NP
5649};
5650
5651static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5652 {
5653 .procname = "kernel",
c57baf1e 5654 .mode = 0555,
e0361851
AD
5655 .child = sd_ctl_dir,
5656 },
56992309 5657 {}
e692ab53
NP
5658};
5659
5660static struct ctl_table *sd_alloc_ctl_entry(int n)
5661{
5662 struct ctl_table *entry =
5cf9f062 5663 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5664
e692ab53
NP
5665 return entry;
5666}
5667
6382bc90
MM
5668static void sd_free_ctl_entry(struct ctl_table **tablep)
5669{
cd790076 5670 struct ctl_table *entry;
6382bc90 5671
cd790076
MM
5672 /*
5673 * In the intermediate directories, both the child directory and
5674 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5675 * will always be set. In the lowest directory the names are
cd790076
MM
5676 * static strings and all have proc handlers.
5677 */
5678 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5679 if (entry->child)
5680 sd_free_ctl_entry(&entry->child);
cd790076
MM
5681 if (entry->proc_handler == NULL)
5682 kfree(entry->procname);
5683 }
6382bc90
MM
5684
5685 kfree(*tablep);
5686 *tablep = NULL;
5687}
5688
e692ab53 5689static void
e0361851 5690set_table_entry(struct ctl_table *entry,
e692ab53
NP
5691 const char *procname, void *data, int maxlen,
5692 mode_t mode, proc_handler *proc_handler)
5693{
e692ab53
NP
5694 entry->procname = procname;
5695 entry->data = data;
5696 entry->maxlen = maxlen;
5697 entry->mode = mode;
5698 entry->proc_handler = proc_handler;
5699}
5700
5701static struct ctl_table *
5702sd_alloc_ctl_domain_table(struct sched_domain *sd)
5703{
a5d8c348 5704 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5705
ad1cdc1d
MM
5706 if (table == NULL)
5707 return NULL;
5708
e0361851 5709 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5710 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5711 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5712 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5713 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5714 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5715 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5716 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5717 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5718 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5719 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5720 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5721 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5722 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5723 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5724 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5725 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5726 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5727 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5728 &sd->cache_nice_tries,
5729 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5730 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5731 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5732 set_table_entry(&table[11], "name", sd->name,
5733 CORENAME_MAX_SIZE, 0444, proc_dostring);
5734 /* &table[12] is terminator */
e692ab53
NP
5735
5736 return table;
5737}
5738
9a4e7159 5739static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5740{
5741 struct ctl_table *entry, *table;
5742 struct sched_domain *sd;
5743 int domain_num = 0, i;
5744 char buf[32];
5745
5746 for_each_domain(cpu, sd)
5747 domain_num++;
5748 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5749 if (table == NULL)
5750 return NULL;
e692ab53
NP
5751
5752 i = 0;
5753 for_each_domain(cpu, sd) {
5754 snprintf(buf, 32, "domain%d", i);
e692ab53 5755 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5756 entry->mode = 0555;
e692ab53
NP
5757 entry->child = sd_alloc_ctl_domain_table(sd);
5758 entry++;
5759 i++;
5760 }
5761 return table;
5762}
5763
5764static struct ctl_table_header *sd_sysctl_header;
6382bc90 5765static void register_sched_domain_sysctl(void)
e692ab53 5766{
6ad4c188 5767 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5768 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5769 char buf[32];
5770
7378547f
MM
5771 WARN_ON(sd_ctl_dir[0].child);
5772 sd_ctl_dir[0].child = entry;
5773
ad1cdc1d
MM
5774 if (entry == NULL)
5775 return;
5776
6ad4c188 5777 for_each_possible_cpu(i) {
e692ab53 5778 snprintf(buf, 32, "cpu%d", i);
e692ab53 5779 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5780 entry->mode = 0555;
e692ab53 5781 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5782 entry++;
e692ab53 5783 }
7378547f
MM
5784
5785 WARN_ON(sd_sysctl_header);
e692ab53
NP
5786 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5787}
6382bc90 5788
7378547f 5789/* may be called multiple times per register */
6382bc90
MM
5790static void unregister_sched_domain_sysctl(void)
5791{
7378547f
MM
5792 if (sd_sysctl_header)
5793 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5794 sd_sysctl_header = NULL;
7378547f
MM
5795 if (sd_ctl_dir[0].child)
5796 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5797}
e692ab53 5798#else
6382bc90
MM
5799static void register_sched_domain_sysctl(void)
5800{
5801}
5802static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5803{
5804}
5805#endif
5806
1f11eb6a
GH
5807static void set_rq_online(struct rq *rq)
5808{
5809 if (!rq->online) {
5810 const struct sched_class *class;
5811
c6c4927b 5812 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5813 rq->online = 1;
5814
5815 for_each_class(class) {
5816 if (class->rq_online)
5817 class->rq_online(rq);
5818 }
5819 }
5820}
5821
5822static void set_rq_offline(struct rq *rq)
5823{
5824 if (rq->online) {
5825 const struct sched_class *class;
5826
5827 for_each_class(class) {
5828 if (class->rq_offline)
5829 class->rq_offline(rq);
5830 }
5831
c6c4927b 5832 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5833 rq->online = 0;
5834 }
5835}
5836
1da177e4
LT
5837/*
5838 * migration_call - callback that gets triggered when a CPU is added.
5839 * Here we can start up the necessary migration thread for the new CPU.
5840 */
48f24c4d
IM
5841static int __cpuinit
5842migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5843{
1da177e4 5844 struct task_struct *p;
48f24c4d 5845 int cpu = (long)hcpu;
1da177e4 5846 unsigned long flags;
70b97a7f 5847 struct rq *rq;
1da177e4
LT
5848
5849 switch (action) {
5be9361c 5850
1da177e4 5851 case CPU_UP_PREPARE:
8bb78442 5852 case CPU_UP_PREPARE_FROZEN:
dd41f596 5853 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5854 if (IS_ERR(p))
5855 return NOTIFY_BAD;
1da177e4
LT
5856 kthread_bind(p, cpu);
5857 /* Must be high prio: stop_machine expects to yield to it. */
5858 rq = task_rq_lock(p, &flags);
dd41f596 5859 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5860 task_rq_unlock(rq, &flags);
371cbb38 5861 get_task_struct(p);
1da177e4 5862 cpu_rq(cpu)->migration_thread = p;
a468d389 5863 rq->calc_load_update = calc_load_update;
1da177e4 5864 break;
48f24c4d 5865
1da177e4 5866 case CPU_ONLINE:
8bb78442 5867 case CPU_ONLINE_FROZEN:
3a4fa0a2 5868 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5869 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5870
5871 /* Update our root-domain */
5872 rq = cpu_rq(cpu);
05fa785c 5873 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5874 if (rq->rd) {
c6c4927b 5875 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5876
5877 set_rq_online(rq);
1f94ef59 5878 }
05fa785c 5879 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5880 break;
48f24c4d 5881
1da177e4
LT
5882#ifdef CONFIG_HOTPLUG_CPU
5883 case CPU_UP_CANCELED:
8bb78442 5884 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5885 if (!cpu_rq(cpu)->migration_thread)
5886 break;
41a2d6cf 5887 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5888 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5889 cpumask_any(cpu_online_mask));
1da177e4 5890 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5891 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5892 cpu_rq(cpu)->migration_thread = NULL;
5893 break;
48f24c4d 5894
1da177e4 5895 case CPU_DEAD:
8bb78442 5896 case CPU_DEAD_FROZEN:
470fd646 5897 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5898 migrate_live_tasks(cpu);
5899 rq = cpu_rq(cpu);
5900 kthread_stop(rq->migration_thread);
371cbb38 5901 put_task_struct(rq->migration_thread);
1da177e4
LT
5902 rq->migration_thread = NULL;
5903 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5904 raw_spin_lock_irq(&rq->lock);
a8e504d2 5905 update_rq_clock(rq);
2e1cb74a 5906 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5907 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5908 rq->idle->sched_class = &idle_sched_class;
1da177e4 5909 migrate_dead_tasks(cpu);
05fa785c 5910 raw_spin_unlock_irq(&rq->lock);
470fd646 5911 cpuset_unlock();
1da177e4
LT
5912 migrate_nr_uninterruptible(rq);
5913 BUG_ON(rq->nr_running != 0);
dce48a84 5914 calc_global_load_remove(rq);
41a2d6cf
IM
5915 /*
5916 * No need to migrate the tasks: it was best-effort if
5917 * they didn't take sched_hotcpu_mutex. Just wake up
5918 * the requestors.
5919 */
05fa785c 5920 raw_spin_lock_irq(&rq->lock);
1da177e4 5921 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5922 struct migration_req *req;
5923
1da177e4 5924 req = list_entry(rq->migration_queue.next,
70b97a7f 5925 struct migration_req, list);
1da177e4 5926 list_del_init(&req->list);
05fa785c 5927 raw_spin_unlock_irq(&rq->lock);
1da177e4 5928 complete(&req->done);
05fa785c 5929 raw_spin_lock_irq(&rq->lock);
1da177e4 5930 }
05fa785c 5931 raw_spin_unlock_irq(&rq->lock);
1da177e4 5932 break;
57d885fe 5933
08f503b0
GH
5934 case CPU_DYING:
5935 case CPU_DYING_FROZEN:
57d885fe
GH
5936 /* Update our root-domain */
5937 rq = cpu_rq(cpu);
05fa785c 5938 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5939 if (rq->rd) {
c6c4927b 5940 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5941 set_rq_offline(rq);
57d885fe 5942 }
05fa785c 5943 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5944 break;
1da177e4
LT
5945#endif
5946 }
5947 return NOTIFY_OK;
5948}
5949
f38b0820
PM
5950/*
5951 * Register at high priority so that task migration (migrate_all_tasks)
5952 * happens before everything else. This has to be lower priority than
cdd6c482 5953 * the notifier in the perf_event subsystem, though.
1da177e4 5954 */
26c2143b 5955static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5956 .notifier_call = migration_call,
5957 .priority = 10
5958};
5959
7babe8db 5960static int __init migration_init(void)
1da177e4
LT
5961{
5962 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5963 int err;
48f24c4d
IM
5964
5965 /* Start one for the boot CPU: */
07dccf33
AM
5966 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5967 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5968 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5969 register_cpu_notifier(&migration_notifier);
7babe8db 5970
a004cd42 5971 return 0;
1da177e4 5972}
7babe8db 5973early_initcall(migration_init);
1da177e4
LT
5974#endif
5975
5976#ifdef CONFIG_SMP
476f3534 5977
3e9830dc 5978#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5979
f6630114
MT
5980static __read_mostly int sched_domain_debug_enabled;
5981
5982static int __init sched_domain_debug_setup(char *str)
5983{
5984 sched_domain_debug_enabled = 1;
5985
5986 return 0;
5987}
5988early_param("sched_debug", sched_domain_debug_setup);
5989
7c16ec58 5990static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5991 struct cpumask *groupmask)
1da177e4 5992{
4dcf6aff 5993 struct sched_group *group = sd->groups;
434d53b0 5994 char str[256];
1da177e4 5995
968ea6d8 5996 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5997 cpumask_clear(groupmask);
4dcf6aff
IM
5998
5999 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6000
6001 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6002 printk("does not load-balance\n");
4dcf6aff 6003 if (sd->parent)
3df0fc5b
PZ
6004 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6005 " has parent");
4dcf6aff 6006 return -1;
41c7ce9a
NP
6007 }
6008
3df0fc5b 6009 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6010
758b2cdc 6011 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6012 printk(KERN_ERR "ERROR: domain->span does not contain "
6013 "CPU%d\n", cpu);
4dcf6aff 6014 }
758b2cdc 6015 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6016 printk(KERN_ERR "ERROR: domain->groups does not contain"
6017 " CPU%d\n", cpu);
4dcf6aff 6018 }
1da177e4 6019
4dcf6aff 6020 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6021 do {
4dcf6aff 6022 if (!group) {
3df0fc5b
PZ
6023 printk("\n");
6024 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6025 break;
6026 }
6027
18a3885f 6028 if (!group->cpu_power) {
3df0fc5b
PZ
6029 printk(KERN_CONT "\n");
6030 printk(KERN_ERR "ERROR: domain->cpu_power not "
6031 "set\n");
4dcf6aff
IM
6032 break;
6033 }
1da177e4 6034
758b2cdc 6035 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6036 printk(KERN_CONT "\n");
6037 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6038 break;
6039 }
1da177e4 6040
758b2cdc 6041 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6042 printk(KERN_CONT "\n");
6043 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6044 break;
6045 }
1da177e4 6046
758b2cdc 6047 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6048
968ea6d8 6049 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6050
3df0fc5b 6051 printk(KERN_CONT " %s", str);
18a3885f 6052 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6053 printk(KERN_CONT " (cpu_power = %d)",
6054 group->cpu_power);
381512cf 6055 }
1da177e4 6056
4dcf6aff
IM
6057 group = group->next;
6058 } while (group != sd->groups);
3df0fc5b 6059 printk(KERN_CONT "\n");
1da177e4 6060
758b2cdc 6061 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6062 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6063
758b2cdc
RR
6064 if (sd->parent &&
6065 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6066 printk(KERN_ERR "ERROR: parent span is not a superset "
6067 "of domain->span\n");
4dcf6aff
IM
6068 return 0;
6069}
1da177e4 6070
4dcf6aff
IM
6071static void sched_domain_debug(struct sched_domain *sd, int cpu)
6072{
d5dd3db1 6073 cpumask_var_t groupmask;
4dcf6aff 6074 int level = 0;
1da177e4 6075
f6630114
MT
6076 if (!sched_domain_debug_enabled)
6077 return;
6078
4dcf6aff
IM
6079 if (!sd) {
6080 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6081 return;
6082 }
1da177e4 6083
4dcf6aff
IM
6084 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6085
d5dd3db1 6086 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6087 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6088 return;
6089 }
6090
4dcf6aff 6091 for (;;) {
7c16ec58 6092 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6093 break;
1da177e4
LT
6094 level++;
6095 sd = sd->parent;
33859f7f 6096 if (!sd)
4dcf6aff
IM
6097 break;
6098 }
d5dd3db1 6099 free_cpumask_var(groupmask);
1da177e4 6100}
6d6bc0ad 6101#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6102# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6103#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6104
1a20ff27 6105static int sd_degenerate(struct sched_domain *sd)
245af2c7 6106{
758b2cdc 6107 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6108 return 1;
6109
6110 /* Following flags need at least 2 groups */
6111 if (sd->flags & (SD_LOAD_BALANCE |
6112 SD_BALANCE_NEWIDLE |
6113 SD_BALANCE_FORK |
89c4710e
SS
6114 SD_BALANCE_EXEC |
6115 SD_SHARE_CPUPOWER |
6116 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6117 if (sd->groups != sd->groups->next)
6118 return 0;
6119 }
6120
6121 /* Following flags don't use groups */
c88d5910 6122 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6123 return 0;
6124
6125 return 1;
6126}
6127
48f24c4d
IM
6128static int
6129sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6130{
6131 unsigned long cflags = sd->flags, pflags = parent->flags;
6132
6133 if (sd_degenerate(parent))
6134 return 1;
6135
758b2cdc 6136 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6137 return 0;
6138
245af2c7
SS
6139 /* Flags needing groups don't count if only 1 group in parent */
6140 if (parent->groups == parent->groups->next) {
6141 pflags &= ~(SD_LOAD_BALANCE |
6142 SD_BALANCE_NEWIDLE |
6143 SD_BALANCE_FORK |
89c4710e
SS
6144 SD_BALANCE_EXEC |
6145 SD_SHARE_CPUPOWER |
6146 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6147 if (nr_node_ids == 1)
6148 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6149 }
6150 if (~cflags & pflags)
6151 return 0;
6152
6153 return 1;
6154}
6155
c6c4927b
RR
6156static void free_rootdomain(struct root_domain *rd)
6157{
047106ad
PZ
6158 synchronize_sched();
6159
68e74568
RR
6160 cpupri_cleanup(&rd->cpupri);
6161
c6c4927b
RR
6162 free_cpumask_var(rd->rto_mask);
6163 free_cpumask_var(rd->online);
6164 free_cpumask_var(rd->span);
6165 kfree(rd);
6166}
6167
57d885fe
GH
6168static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6169{
a0490fa3 6170 struct root_domain *old_rd = NULL;
57d885fe 6171 unsigned long flags;
57d885fe 6172
05fa785c 6173 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6174
6175 if (rq->rd) {
a0490fa3 6176 old_rd = rq->rd;
57d885fe 6177
c6c4927b 6178 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6179 set_rq_offline(rq);
57d885fe 6180
c6c4927b 6181 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6182
a0490fa3
IM
6183 /*
6184 * If we dont want to free the old_rt yet then
6185 * set old_rd to NULL to skip the freeing later
6186 * in this function:
6187 */
6188 if (!atomic_dec_and_test(&old_rd->refcount))
6189 old_rd = NULL;
57d885fe
GH
6190 }
6191
6192 atomic_inc(&rd->refcount);
6193 rq->rd = rd;
6194
c6c4927b 6195 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6196 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6197 set_rq_online(rq);
57d885fe 6198
05fa785c 6199 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6200
6201 if (old_rd)
6202 free_rootdomain(old_rd);
57d885fe
GH
6203}
6204
fd5e1b5d 6205static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6206{
36b7b6d4
PE
6207 gfp_t gfp = GFP_KERNEL;
6208
57d885fe
GH
6209 memset(rd, 0, sizeof(*rd));
6210
36b7b6d4
PE
6211 if (bootmem)
6212 gfp = GFP_NOWAIT;
c6c4927b 6213
36b7b6d4 6214 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6215 goto out;
36b7b6d4 6216 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6217 goto free_span;
36b7b6d4 6218 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6219 goto free_online;
6e0534f2 6220
0fb53029 6221 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6222 goto free_rto_mask;
c6c4927b 6223 return 0;
6e0534f2 6224
68e74568
RR
6225free_rto_mask:
6226 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6227free_online:
6228 free_cpumask_var(rd->online);
6229free_span:
6230 free_cpumask_var(rd->span);
0c910d28 6231out:
c6c4927b 6232 return -ENOMEM;
57d885fe
GH
6233}
6234
6235static void init_defrootdomain(void)
6236{
c6c4927b
RR
6237 init_rootdomain(&def_root_domain, true);
6238
57d885fe
GH
6239 atomic_set(&def_root_domain.refcount, 1);
6240}
6241
dc938520 6242static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6243{
6244 struct root_domain *rd;
6245
6246 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6247 if (!rd)
6248 return NULL;
6249
c6c4927b
RR
6250 if (init_rootdomain(rd, false) != 0) {
6251 kfree(rd);
6252 return NULL;
6253 }
57d885fe
GH
6254
6255 return rd;
6256}
6257
1da177e4 6258/*
0eab9146 6259 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6260 * hold the hotplug lock.
6261 */
0eab9146
IM
6262static void
6263cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6264{
70b97a7f 6265 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6266 struct sched_domain *tmp;
6267
6268 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6269 for (tmp = sd; tmp; ) {
245af2c7
SS
6270 struct sched_domain *parent = tmp->parent;
6271 if (!parent)
6272 break;
f29c9b1c 6273
1a848870 6274 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6275 tmp->parent = parent->parent;
1a848870
SS
6276 if (parent->parent)
6277 parent->parent->child = tmp;
f29c9b1c
LZ
6278 } else
6279 tmp = tmp->parent;
245af2c7
SS
6280 }
6281
1a848870 6282 if (sd && sd_degenerate(sd)) {
245af2c7 6283 sd = sd->parent;
1a848870
SS
6284 if (sd)
6285 sd->child = NULL;
6286 }
1da177e4
LT
6287
6288 sched_domain_debug(sd, cpu);
6289
57d885fe 6290 rq_attach_root(rq, rd);
674311d5 6291 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6292}
6293
6294/* cpus with isolated domains */
dcc30a35 6295static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6296
6297/* Setup the mask of cpus configured for isolated domains */
6298static int __init isolated_cpu_setup(char *str)
6299{
bdddd296 6300 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6301 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6302 return 1;
6303}
6304
8927f494 6305__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6306
6307/*
6711cab4
SS
6308 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6309 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6310 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6311 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6312 *
6313 * init_sched_build_groups will build a circular linked list of the groups
6314 * covered by the given span, and will set each group's ->cpumask correctly,
6315 * and ->cpu_power to 0.
6316 */
a616058b 6317static void
96f874e2
RR
6318init_sched_build_groups(const struct cpumask *span,
6319 const struct cpumask *cpu_map,
6320 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6321 struct sched_group **sg,
96f874e2
RR
6322 struct cpumask *tmpmask),
6323 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6324{
6325 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6326 int i;
6327
96f874e2 6328 cpumask_clear(covered);
7c16ec58 6329
abcd083a 6330 for_each_cpu(i, span) {
6711cab4 6331 struct sched_group *sg;
7c16ec58 6332 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6333 int j;
6334
758b2cdc 6335 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6336 continue;
6337
758b2cdc 6338 cpumask_clear(sched_group_cpus(sg));
18a3885f 6339 sg->cpu_power = 0;
1da177e4 6340
abcd083a 6341 for_each_cpu(j, span) {
7c16ec58 6342 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6343 continue;
6344
96f874e2 6345 cpumask_set_cpu(j, covered);
758b2cdc 6346 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6347 }
6348 if (!first)
6349 first = sg;
6350 if (last)
6351 last->next = sg;
6352 last = sg;
6353 }
6354 last->next = first;
6355}
6356
9c1cfda2 6357#define SD_NODES_PER_DOMAIN 16
1da177e4 6358
9c1cfda2 6359#ifdef CONFIG_NUMA
198e2f18 6360
9c1cfda2
JH
6361/**
6362 * find_next_best_node - find the next node to include in a sched_domain
6363 * @node: node whose sched_domain we're building
6364 * @used_nodes: nodes already in the sched_domain
6365 *
41a2d6cf 6366 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6367 * finds the closest node not already in the @used_nodes map.
6368 *
6369 * Should use nodemask_t.
6370 */
c5f59f08 6371static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6372{
6373 int i, n, val, min_val, best_node = 0;
6374
6375 min_val = INT_MAX;
6376
076ac2af 6377 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6378 /* Start at @node */
076ac2af 6379 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6380
6381 if (!nr_cpus_node(n))
6382 continue;
6383
6384 /* Skip already used nodes */
c5f59f08 6385 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6386 continue;
6387
6388 /* Simple min distance search */
6389 val = node_distance(node, n);
6390
6391 if (val < min_val) {
6392 min_val = val;
6393 best_node = n;
6394 }
6395 }
6396
c5f59f08 6397 node_set(best_node, *used_nodes);
9c1cfda2
JH
6398 return best_node;
6399}
6400
6401/**
6402 * sched_domain_node_span - get a cpumask for a node's sched_domain
6403 * @node: node whose cpumask we're constructing
73486722 6404 * @span: resulting cpumask
9c1cfda2 6405 *
41a2d6cf 6406 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6407 * should be one that prevents unnecessary balancing, but also spreads tasks
6408 * out optimally.
6409 */
96f874e2 6410static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6411{
c5f59f08 6412 nodemask_t used_nodes;
48f24c4d 6413 int i;
9c1cfda2 6414
6ca09dfc 6415 cpumask_clear(span);
c5f59f08 6416 nodes_clear(used_nodes);
9c1cfda2 6417
6ca09dfc 6418 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6419 node_set(node, used_nodes);
9c1cfda2
JH
6420
6421 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6422 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6423
6ca09dfc 6424 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6425 }
9c1cfda2 6426}
6d6bc0ad 6427#endif /* CONFIG_NUMA */
9c1cfda2 6428
5c45bf27 6429int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6430
6c99e9ad
RR
6431/*
6432 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6433 *
6434 * ( See the the comments in include/linux/sched.h:struct sched_group
6435 * and struct sched_domain. )
6c99e9ad
RR
6436 */
6437struct static_sched_group {
6438 struct sched_group sg;
6439 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6440};
6441
6442struct static_sched_domain {
6443 struct sched_domain sd;
6444 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6445};
6446
49a02c51
AH
6447struct s_data {
6448#ifdef CONFIG_NUMA
6449 int sd_allnodes;
6450 cpumask_var_t domainspan;
6451 cpumask_var_t covered;
6452 cpumask_var_t notcovered;
6453#endif
6454 cpumask_var_t nodemask;
6455 cpumask_var_t this_sibling_map;
6456 cpumask_var_t this_core_map;
6457 cpumask_var_t send_covered;
6458 cpumask_var_t tmpmask;
6459 struct sched_group **sched_group_nodes;
6460 struct root_domain *rd;
6461};
6462
2109b99e
AH
6463enum s_alloc {
6464 sa_sched_groups = 0,
6465 sa_rootdomain,
6466 sa_tmpmask,
6467 sa_send_covered,
6468 sa_this_core_map,
6469 sa_this_sibling_map,
6470 sa_nodemask,
6471 sa_sched_group_nodes,
6472#ifdef CONFIG_NUMA
6473 sa_notcovered,
6474 sa_covered,
6475 sa_domainspan,
6476#endif
6477 sa_none,
6478};
6479
9c1cfda2 6480/*
48f24c4d 6481 * SMT sched-domains:
9c1cfda2 6482 */
1da177e4 6483#ifdef CONFIG_SCHED_SMT
6c99e9ad 6484static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6485static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6486
41a2d6cf 6487static int
96f874e2
RR
6488cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6489 struct sched_group **sg, struct cpumask *unused)
1da177e4 6490{
6711cab4 6491 if (sg)
1871e52c 6492 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6493 return cpu;
6494}
6d6bc0ad 6495#endif /* CONFIG_SCHED_SMT */
1da177e4 6496
48f24c4d
IM
6497/*
6498 * multi-core sched-domains:
6499 */
1e9f28fa 6500#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6501static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6502static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6503#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6504
6505#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6506static int
96f874e2
RR
6507cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6508 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6509{
6711cab4 6510 int group;
7c16ec58 6511
c69fc56d 6512 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6513 group = cpumask_first(mask);
6711cab4 6514 if (sg)
6c99e9ad 6515 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6516 return group;
1e9f28fa
SS
6517}
6518#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6519static int
96f874e2
RR
6520cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6521 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6522{
6711cab4 6523 if (sg)
6c99e9ad 6524 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6525 return cpu;
6526}
6527#endif
6528
6c99e9ad
RR
6529static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6530static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6531
41a2d6cf 6532static int
96f874e2
RR
6533cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6534 struct sched_group **sg, struct cpumask *mask)
1da177e4 6535{
6711cab4 6536 int group;
48f24c4d 6537#ifdef CONFIG_SCHED_MC
6ca09dfc 6538 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6539 group = cpumask_first(mask);
1e9f28fa 6540#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6541 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6542 group = cpumask_first(mask);
1da177e4 6543#else
6711cab4 6544 group = cpu;
1da177e4 6545#endif
6711cab4 6546 if (sg)
6c99e9ad 6547 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6548 return group;
1da177e4
LT
6549}
6550
6551#ifdef CONFIG_NUMA
1da177e4 6552/*
9c1cfda2
JH
6553 * The init_sched_build_groups can't handle what we want to do with node
6554 * groups, so roll our own. Now each node has its own list of groups which
6555 * gets dynamically allocated.
1da177e4 6556 */
62ea9ceb 6557static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6558static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6559
62ea9ceb 6560static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6561static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6562
96f874e2
RR
6563static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6564 struct sched_group **sg,
6565 struct cpumask *nodemask)
9c1cfda2 6566{
6711cab4
SS
6567 int group;
6568
6ca09dfc 6569 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6570 group = cpumask_first(nodemask);
6711cab4
SS
6571
6572 if (sg)
6c99e9ad 6573 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6574 return group;
1da177e4 6575}
6711cab4 6576
08069033
SS
6577static void init_numa_sched_groups_power(struct sched_group *group_head)
6578{
6579 struct sched_group *sg = group_head;
6580 int j;
6581
6582 if (!sg)
6583 return;
3a5c359a 6584 do {
758b2cdc 6585 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6586 struct sched_domain *sd;
08069033 6587
6c99e9ad 6588 sd = &per_cpu(phys_domains, j).sd;
13318a71 6589 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6590 /*
6591 * Only add "power" once for each
6592 * physical package.
6593 */
6594 continue;
6595 }
08069033 6596
18a3885f 6597 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6598 }
6599 sg = sg->next;
6600 } while (sg != group_head);
08069033 6601}
0601a88d
AH
6602
6603static int build_numa_sched_groups(struct s_data *d,
6604 const struct cpumask *cpu_map, int num)
6605{
6606 struct sched_domain *sd;
6607 struct sched_group *sg, *prev;
6608 int n, j;
6609
6610 cpumask_clear(d->covered);
6611 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6612 if (cpumask_empty(d->nodemask)) {
6613 d->sched_group_nodes[num] = NULL;
6614 goto out;
6615 }
6616
6617 sched_domain_node_span(num, d->domainspan);
6618 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6619
6620 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6621 GFP_KERNEL, num);
6622 if (!sg) {
3df0fc5b
PZ
6623 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6624 num);
0601a88d
AH
6625 return -ENOMEM;
6626 }
6627 d->sched_group_nodes[num] = sg;
6628
6629 for_each_cpu(j, d->nodemask) {
6630 sd = &per_cpu(node_domains, j).sd;
6631 sd->groups = sg;
6632 }
6633
18a3885f 6634 sg->cpu_power = 0;
0601a88d
AH
6635 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6636 sg->next = sg;
6637 cpumask_or(d->covered, d->covered, d->nodemask);
6638
6639 prev = sg;
6640 for (j = 0; j < nr_node_ids; j++) {
6641 n = (num + j) % nr_node_ids;
6642 cpumask_complement(d->notcovered, d->covered);
6643 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6644 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6645 if (cpumask_empty(d->tmpmask))
6646 break;
6647 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6648 if (cpumask_empty(d->tmpmask))
6649 continue;
6650 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6651 GFP_KERNEL, num);
6652 if (!sg) {
3df0fc5b
PZ
6653 printk(KERN_WARNING
6654 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6655 return -ENOMEM;
6656 }
18a3885f 6657 sg->cpu_power = 0;
0601a88d
AH
6658 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6659 sg->next = prev->next;
6660 cpumask_or(d->covered, d->covered, d->tmpmask);
6661 prev->next = sg;
6662 prev = sg;
6663 }
6664out:
6665 return 0;
6666}
6d6bc0ad 6667#endif /* CONFIG_NUMA */
1da177e4 6668
a616058b 6669#ifdef CONFIG_NUMA
51888ca2 6670/* Free memory allocated for various sched_group structures */
96f874e2
RR
6671static void free_sched_groups(const struct cpumask *cpu_map,
6672 struct cpumask *nodemask)
51888ca2 6673{
a616058b 6674 int cpu, i;
51888ca2 6675
abcd083a 6676 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6677 struct sched_group **sched_group_nodes
6678 = sched_group_nodes_bycpu[cpu];
6679
51888ca2
SV
6680 if (!sched_group_nodes)
6681 continue;
6682
076ac2af 6683 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6684 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6685
6ca09dfc 6686 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6687 if (cpumask_empty(nodemask))
51888ca2
SV
6688 continue;
6689
6690 if (sg == NULL)
6691 continue;
6692 sg = sg->next;
6693next_sg:
6694 oldsg = sg;
6695 sg = sg->next;
6696 kfree(oldsg);
6697 if (oldsg != sched_group_nodes[i])
6698 goto next_sg;
6699 }
6700 kfree(sched_group_nodes);
6701 sched_group_nodes_bycpu[cpu] = NULL;
6702 }
51888ca2 6703}
6d6bc0ad 6704#else /* !CONFIG_NUMA */
96f874e2
RR
6705static void free_sched_groups(const struct cpumask *cpu_map,
6706 struct cpumask *nodemask)
a616058b
SS
6707{
6708}
6d6bc0ad 6709#endif /* CONFIG_NUMA */
51888ca2 6710
89c4710e
SS
6711/*
6712 * Initialize sched groups cpu_power.
6713 *
6714 * cpu_power indicates the capacity of sched group, which is used while
6715 * distributing the load between different sched groups in a sched domain.
6716 * Typically cpu_power for all the groups in a sched domain will be same unless
6717 * there are asymmetries in the topology. If there are asymmetries, group
6718 * having more cpu_power will pickup more load compared to the group having
6719 * less cpu_power.
89c4710e
SS
6720 */
6721static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6722{
6723 struct sched_domain *child;
6724 struct sched_group *group;
f93e65c1
PZ
6725 long power;
6726 int weight;
89c4710e
SS
6727
6728 WARN_ON(!sd || !sd->groups);
6729
13318a71 6730 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6731 return;
6732
6733 child = sd->child;
6734
18a3885f 6735 sd->groups->cpu_power = 0;
5517d86b 6736
f93e65c1
PZ
6737 if (!child) {
6738 power = SCHED_LOAD_SCALE;
6739 weight = cpumask_weight(sched_domain_span(sd));
6740 /*
6741 * SMT siblings share the power of a single core.
a52bfd73
PZ
6742 * Usually multiple threads get a better yield out of
6743 * that one core than a single thread would have,
6744 * reflect that in sd->smt_gain.
f93e65c1 6745 */
a52bfd73
PZ
6746 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6747 power *= sd->smt_gain;
f93e65c1 6748 power /= weight;
a52bfd73
PZ
6749 power >>= SCHED_LOAD_SHIFT;
6750 }
18a3885f 6751 sd->groups->cpu_power += power;
89c4710e
SS
6752 return;
6753 }
6754
89c4710e 6755 /*
f93e65c1 6756 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6757 */
6758 group = child->groups;
6759 do {
18a3885f 6760 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6761 group = group->next;
6762 } while (group != child->groups);
6763}
6764
7c16ec58
MT
6765/*
6766 * Initializers for schedule domains
6767 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6768 */
6769
a5d8c348
IM
6770#ifdef CONFIG_SCHED_DEBUG
6771# define SD_INIT_NAME(sd, type) sd->name = #type
6772#else
6773# define SD_INIT_NAME(sd, type) do { } while (0)
6774#endif
6775
7c16ec58 6776#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6777
7c16ec58
MT
6778#define SD_INIT_FUNC(type) \
6779static noinline void sd_init_##type(struct sched_domain *sd) \
6780{ \
6781 memset(sd, 0, sizeof(*sd)); \
6782 *sd = SD_##type##_INIT; \
1d3504fc 6783 sd->level = SD_LV_##type; \
a5d8c348 6784 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6785}
6786
6787SD_INIT_FUNC(CPU)
6788#ifdef CONFIG_NUMA
6789 SD_INIT_FUNC(ALLNODES)
6790 SD_INIT_FUNC(NODE)
6791#endif
6792#ifdef CONFIG_SCHED_SMT
6793 SD_INIT_FUNC(SIBLING)
6794#endif
6795#ifdef CONFIG_SCHED_MC
6796 SD_INIT_FUNC(MC)
6797#endif
6798
1d3504fc
HS
6799static int default_relax_domain_level = -1;
6800
6801static int __init setup_relax_domain_level(char *str)
6802{
30e0e178
LZ
6803 unsigned long val;
6804
6805 val = simple_strtoul(str, NULL, 0);
6806 if (val < SD_LV_MAX)
6807 default_relax_domain_level = val;
6808
1d3504fc
HS
6809 return 1;
6810}
6811__setup("relax_domain_level=", setup_relax_domain_level);
6812
6813static void set_domain_attribute(struct sched_domain *sd,
6814 struct sched_domain_attr *attr)
6815{
6816 int request;
6817
6818 if (!attr || attr->relax_domain_level < 0) {
6819 if (default_relax_domain_level < 0)
6820 return;
6821 else
6822 request = default_relax_domain_level;
6823 } else
6824 request = attr->relax_domain_level;
6825 if (request < sd->level) {
6826 /* turn off idle balance on this domain */
c88d5910 6827 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6828 } else {
6829 /* turn on idle balance on this domain */
c88d5910 6830 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6831 }
6832}
6833
2109b99e
AH
6834static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6835 const struct cpumask *cpu_map)
6836{
6837 switch (what) {
6838 case sa_sched_groups:
6839 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6840 d->sched_group_nodes = NULL;
6841 case sa_rootdomain:
6842 free_rootdomain(d->rd); /* fall through */
6843 case sa_tmpmask:
6844 free_cpumask_var(d->tmpmask); /* fall through */
6845 case sa_send_covered:
6846 free_cpumask_var(d->send_covered); /* fall through */
6847 case sa_this_core_map:
6848 free_cpumask_var(d->this_core_map); /* fall through */
6849 case sa_this_sibling_map:
6850 free_cpumask_var(d->this_sibling_map); /* fall through */
6851 case sa_nodemask:
6852 free_cpumask_var(d->nodemask); /* fall through */
6853 case sa_sched_group_nodes:
d1b55138 6854#ifdef CONFIG_NUMA
2109b99e
AH
6855 kfree(d->sched_group_nodes); /* fall through */
6856 case sa_notcovered:
6857 free_cpumask_var(d->notcovered); /* fall through */
6858 case sa_covered:
6859 free_cpumask_var(d->covered); /* fall through */
6860 case sa_domainspan:
6861 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6862#endif
2109b99e
AH
6863 case sa_none:
6864 break;
6865 }
6866}
3404c8d9 6867
2109b99e
AH
6868static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6869 const struct cpumask *cpu_map)
6870{
3404c8d9 6871#ifdef CONFIG_NUMA
2109b99e
AH
6872 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6873 return sa_none;
6874 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6875 return sa_domainspan;
6876 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6877 return sa_covered;
6878 /* Allocate the per-node list of sched groups */
6879 d->sched_group_nodes = kcalloc(nr_node_ids,
6880 sizeof(struct sched_group *), GFP_KERNEL);
6881 if (!d->sched_group_nodes) {
3df0fc5b 6882 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6883 return sa_notcovered;
d1b55138 6884 }
2109b99e 6885 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6886#endif
2109b99e
AH
6887 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6888 return sa_sched_group_nodes;
6889 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6890 return sa_nodemask;
6891 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6892 return sa_this_sibling_map;
6893 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6894 return sa_this_core_map;
6895 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6896 return sa_send_covered;
6897 d->rd = alloc_rootdomain();
6898 if (!d->rd) {
3df0fc5b 6899 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6900 return sa_tmpmask;
57d885fe 6901 }
2109b99e
AH
6902 return sa_rootdomain;
6903}
57d885fe 6904
7f4588f3
AH
6905static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6906 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6907{
6908 struct sched_domain *sd = NULL;
7c16ec58 6909#ifdef CONFIG_NUMA
7f4588f3 6910 struct sched_domain *parent;
1da177e4 6911
7f4588f3
AH
6912 d->sd_allnodes = 0;
6913 if (cpumask_weight(cpu_map) >
6914 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6915 sd = &per_cpu(allnodes_domains, i).sd;
6916 SD_INIT(sd, ALLNODES);
1d3504fc 6917 set_domain_attribute(sd, attr);
7f4588f3
AH
6918 cpumask_copy(sched_domain_span(sd), cpu_map);
6919 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6920 d->sd_allnodes = 1;
6921 }
6922 parent = sd;
6923
6924 sd = &per_cpu(node_domains, i).sd;
6925 SD_INIT(sd, NODE);
6926 set_domain_attribute(sd, attr);
6927 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6928 sd->parent = parent;
6929 if (parent)
6930 parent->child = sd;
6931 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6932#endif
7f4588f3
AH
6933 return sd;
6934}
1da177e4 6935
87cce662
AH
6936static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6937 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6938 struct sched_domain *parent, int i)
6939{
6940 struct sched_domain *sd;
6941 sd = &per_cpu(phys_domains, i).sd;
6942 SD_INIT(sd, CPU);
6943 set_domain_attribute(sd, attr);
6944 cpumask_copy(sched_domain_span(sd), d->nodemask);
6945 sd->parent = parent;
6946 if (parent)
6947 parent->child = sd;
6948 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6949 return sd;
6950}
1da177e4 6951
410c4081
AH
6952static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6953 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6954 struct sched_domain *parent, int i)
6955{
6956 struct sched_domain *sd = parent;
1e9f28fa 6957#ifdef CONFIG_SCHED_MC
410c4081
AH
6958 sd = &per_cpu(core_domains, i).sd;
6959 SD_INIT(sd, MC);
6960 set_domain_attribute(sd, attr);
6961 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6962 sd->parent = parent;
6963 parent->child = sd;
6964 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6965#endif
410c4081
AH
6966 return sd;
6967}
1e9f28fa 6968
d8173535
AH
6969static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6970 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6971 struct sched_domain *parent, int i)
6972{
6973 struct sched_domain *sd = parent;
1da177e4 6974#ifdef CONFIG_SCHED_SMT
d8173535
AH
6975 sd = &per_cpu(cpu_domains, i).sd;
6976 SD_INIT(sd, SIBLING);
6977 set_domain_attribute(sd, attr);
6978 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6979 sd->parent = parent;
6980 parent->child = sd;
6981 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6982#endif
d8173535
AH
6983 return sd;
6984}
1da177e4 6985
0e8e85c9
AH
6986static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6987 const struct cpumask *cpu_map, int cpu)
6988{
6989 switch (l) {
1da177e4 6990#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6991 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6992 cpumask_and(d->this_sibling_map, cpu_map,
6993 topology_thread_cpumask(cpu));
6994 if (cpu == cpumask_first(d->this_sibling_map))
6995 init_sched_build_groups(d->this_sibling_map, cpu_map,
6996 &cpu_to_cpu_group,
6997 d->send_covered, d->tmpmask);
6998 break;
1da177e4 6999#endif
1e9f28fa 7000#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7001 case SD_LV_MC: /* set up multi-core groups */
7002 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7003 if (cpu == cpumask_first(d->this_core_map))
7004 init_sched_build_groups(d->this_core_map, cpu_map,
7005 &cpu_to_core_group,
7006 d->send_covered, d->tmpmask);
7007 break;
1e9f28fa 7008#endif
86548096
AH
7009 case SD_LV_CPU: /* set up physical groups */
7010 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7011 if (!cpumask_empty(d->nodemask))
7012 init_sched_build_groups(d->nodemask, cpu_map,
7013 &cpu_to_phys_group,
7014 d->send_covered, d->tmpmask);
7015 break;
1da177e4 7016#ifdef CONFIG_NUMA
de616e36
AH
7017 case SD_LV_ALLNODES:
7018 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7019 d->send_covered, d->tmpmask);
7020 break;
7021#endif
0e8e85c9
AH
7022 default:
7023 break;
7c16ec58 7024 }
0e8e85c9 7025}
9c1cfda2 7026
2109b99e
AH
7027/*
7028 * Build sched domains for a given set of cpus and attach the sched domains
7029 * to the individual cpus
7030 */
7031static int __build_sched_domains(const struct cpumask *cpu_map,
7032 struct sched_domain_attr *attr)
7033{
7034 enum s_alloc alloc_state = sa_none;
7035 struct s_data d;
294b0c96 7036 struct sched_domain *sd;
2109b99e 7037 int i;
7c16ec58 7038#ifdef CONFIG_NUMA
2109b99e 7039 d.sd_allnodes = 0;
7c16ec58 7040#endif
9c1cfda2 7041
2109b99e
AH
7042 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7043 if (alloc_state != sa_rootdomain)
7044 goto error;
7045 alloc_state = sa_sched_groups;
9c1cfda2 7046
1da177e4 7047 /*
1a20ff27 7048 * Set up domains for cpus specified by the cpu_map.
1da177e4 7049 */
abcd083a 7050 for_each_cpu(i, cpu_map) {
49a02c51
AH
7051 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7052 cpu_map);
9761eea8 7053
7f4588f3 7054 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7055 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7056 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7057 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7058 }
9c1cfda2 7059
abcd083a 7060 for_each_cpu(i, cpu_map) {
0e8e85c9 7061 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7062 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7063 }
9c1cfda2 7064
1da177e4 7065 /* Set up physical groups */
86548096
AH
7066 for (i = 0; i < nr_node_ids; i++)
7067 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7068
1da177e4
LT
7069#ifdef CONFIG_NUMA
7070 /* Set up node groups */
de616e36
AH
7071 if (d.sd_allnodes)
7072 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7073
0601a88d
AH
7074 for (i = 0; i < nr_node_ids; i++)
7075 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7076 goto error;
1da177e4
LT
7077#endif
7078
7079 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7080#ifdef CONFIG_SCHED_SMT
abcd083a 7081 for_each_cpu(i, cpu_map) {
294b0c96 7082 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7083 init_sched_groups_power(i, sd);
5c45bf27 7084 }
1da177e4 7085#endif
1e9f28fa 7086#ifdef CONFIG_SCHED_MC
abcd083a 7087 for_each_cpu(i, cpu_map) {
294b0c96 7088 sd = &per_cpu(core_domains, i).sd;
89c4710e 7089 init_sched_groups_power(i, sd);
5c45bf27
SS
7090 }
7091#endif
1e9f28fa 7092
abcd083a 7093 for_each_cpu(i, cpu_map) {
294b0c96 7094 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7095 init_sched_groups_power(i, sd);
1da177e4
LT
7096 }
7097
9c1cfda2 7098#ifdef CONFIG_NUMA
076ac2af 7099 for (i = 0; i < nr_node_ids; i++)
49a02c51 7100 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7101
49a02c51 7102 if (d.sd_allnodes) {
6711cab4 7103 struct sched_group *sg;
f712c0c7 7104
96f874e2 7105 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7106 d.tmpmask);
f712c0c7
SS
7107 init_numa_sched_groups_power(sg);
7108 }
9c1cfda2
JH
7109#endif
7110
1da177e4 7111 /* Attach the domains */
abcd083a 7112 for_each_cpu(i, cpu_map) {
1da177e4 7113#ifdef CONFIG_SCHED_SMT
6c99e9ad 7114 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7115#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7116 sd = &per_cpu(core_domains, i).sd;
1da177e4 7117#else
6c99e9ad 7118 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7119#endif
49a02c51 7120 cpu_attach_domain(sd, d.rd, i);
1da177e4 7121 }
51888ca2 7122
2109b99e
AH
7123 d.sched_group_nodes = NULL; /* don't free this we still need it */
7124 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7125 return 0;
51888ca2 7126
51888ca2 7127error:
2109b99e
AH
7128 __free_domain_allocs(&d, alloc_state, cpu_map);
7129 return -ENOMEM;
1da177e4 7130}
029190c5 7131
96f874e2 7132static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7133{
7134 return __build_sched_domains(cpu_map, NULL);
7135}
7136
acc3f5d7 7137static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7138static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7139static struct sched_domain_attr *dattr_cur;
7140 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7141
7142/*
7143 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7144 * cpumask) fails, then fallback to a single sched domain,
7145 * as determined by the single cpumask fallback_doms.
029190c5 7146 */
4212823f 7147static cpumask_var_t fallback_doms;
029190c5 7148
ee79d1bd
HC
7149/*
7150 * arch_update_cpu_topology lets virtualized architectures update the
7151 * cpu core maps. It is supposed to return 1 if the topology changed
7152 * or 0 if it stayed the same.
7153 */
7154int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7155{
ee79d1bd 7156 return 0;
22e52b07
HC
7157}
7158
acc3f5d7
RR
7159cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7160{
7161 int i;
7162 cpumask_var_t *doms;
7163
7164 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7165 if (!doms)
7166 return NULL;
7167 for (i = 0; i < ndoms; i++) {
7168 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7169 free_sched_domains(doms, i);
7170 return NULL;
7171 }
7172 }
7173 return doms;
7174}
7175
7176void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7177{
7178 unsigned int i;
7179 for (i = 0; i < ndoms; i++)
7180 free_cpumask_var(doms[i]);
7181 kfree(doms);
7182}
7183
1a20ff27 7184/*
41a2d6cf 7185 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7186 * For now this just excludes isolated cpus, but could be used to
7187 * exclude other special cases in the future.
1a20ff27 7188 */
96f874e2 7189static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7190{
7378547f
MM
7191 int err;
7192
22e52b07 7193 arch_update_cpu_topology();
029190c5 7194 ndoms_cur = 1;
acc3f5d7 7195 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7196 if (!doms_cur)
acc3f5d7
RR
7197 doms_cur = &fallback_doms;
7198 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7199 dattr_cur = NULL;
acc3f5d7 7200 err = build_sched_domains(doms_cur[0]);
6382bc90 7201 register_sched_domain_sysctl();
7378547f
MM
7202
7203 return err;
1a20ff27
DG
7204}
7205
96f874e2
RR
7206static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7207 struct cpumask *tmpmask)
1da177e4 7208{
7c16ec58 7209 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7210}
1da177e4 7211
1a20ff27
DG
7212/*
7213 * Detach sched domains from a group of cpus specified in cpu_map
7214 * These cpus will now be attached to the NULL domain
7215 */
96f874e2 7216static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7217{
96f874e2
RR
7218 /* Save because hotplug lock held. */
7219 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7220 int i;
7221
abcd083a 7222 for_each_cpu(i, cpu_map)
57d885fe 7223 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7224 synchronize_sched();
96f874e2 7225 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7226}
7227
1d3504fc
HS
7228/* handle null as "default" */
7229static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7230 struct sched_domain_attr *new, int idx_new)
7231{
7232 struct sched_domain_attr tmp;
7233
7234 /* fast path */
7235 if (!new && !cur)
7236 return 1;
7237
7238 tmp = SD_ATTR_INIT;
7239 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7240 new ? (new + idx_new) : &tmp,
7241 sizeof(struct sched_domain_attr));
7242}
7243
029190c5
PJ
7244/*
7245 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7246 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7247 * doms_new[] to the current sched domain partitioning, doms_cur[].
7248 * It destroys each deleted domain and builds each new domain.
7249 *
acc3f5d7 7250 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7251 * The masks don't intersect (don't overlap.) We should setup one
7252 * sched domain for each mask. CPUs not in any of the cpumasks will
7253 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7254 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7255 * it as it is.
7256 *
acc3f5d7
RR
7257 * The passed in 'doms_new' should be allocated using
7258 * alloc_sched_domains. This routine takes ownership of it and will
7259 * free_sched_domains it when done with it. If the caller failed the
7260 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7261 * and partition_sched_domains() will fallback to the single partition
7262 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7263 *
96f874e2 7264 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7265 * ndoms_new == 0 is a special case for destroying existing domains,
7266 * and it will not create the default domain.
dfb512ec 7267 *
029190c5
PJ
7268 * Call with hotplug lock held
7269 */
acc3f5d7 7270void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7271 struct sched_domain_attr *dattr_new)
029190c5 7272{
dfb512ec 7273 int i, j, n;
d65bd5ec 7274 int new_topology;
029190c5 7275
712555ee 7276 mutex_lock(&sched_domains_mutex);
a1835615 7277
7378547f
MM
7278 /* always unregister in case we don't destroy any domains */
7279 unregister_sched_domain_sysctl();
7280
d65bd5ec
HC
7281 /* Let architecture update cpu core mappings. */
7282 new_topology = arch_update_cpu_topology();
7283
dfb512ec 7284 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7285
7286 /* Destroy deleted domains */
7287 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7288 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7289 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7290 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7291 goto match1;
7292 }
7293 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7294 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7295match1:
7296 ;
7297 }
7298
e761b772
MK
7299 if (doms_new == NULL) {
7300 ndoms_cur = 0;
acc3f5d7 7301 doms_new = &fallback_doms;
6ad4c188 7302 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7303 WARN_ON_ONCE(dattr_new);
e761b772
MK
7304 }
7305
029190c5
PJ
7306 /* Build new domains */
7307 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7308 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7309 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7310 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7311 goto match2;
7312 }
7313 /* no match - add a new doms_new */
acc3f5d7 7314 __build_sched_domains(doms_new[i],
1d3504fc 7315 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7316match2:
7317 ;
7318 }
7319
7320 /* Remember the new sched domains */
acc3f5d7
RR
7321 if (doms_cur != &fallback_doms)
7322 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7323 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7324 doms_cur = doms_new;
1d3504fc 7325 dattr_cur = dattr_new;
029190c5 7326 ndoms_cur = ndoms_new;
7378547f
MM
7327
7328 register_sched_domain_sysctl();
a1835615 7329
712555ee 7330 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7331}
7332
5c45bf27 7333#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7334static void arch_reinit_sched_domains(void)
5c45bf27 7335{
95402b38 7336 get_online_cpus();
dfb512ec
MK
7337
7338 /* Destroy domains first to force the rebuild */
7339 partition_sched_domains(0, NULL, NULL);
7340
e761b772 7341 rebuild_sched_domains();
95402b38 7342 put_online_cpus();
5c45bf27
SS
7343}
7344
7345static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7346{
afb8a9b7 7347 unsigned int level = 0;
5c45bf27 7348
afb8a9b7
GS
7349 if (sscanf(buf, "%u", &level) != 1)
7350 return -EINVAL;
7351
7352 /*
7353 * level is always be positive so don't check for
7354 * level < POWERSAVINGS_BALANCE_NONE which is 0
7355 * What happens on 0 or 1 byte write,
7356 * need to check for count as well?
7357 */
7358
7359 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7360 return -EINVAL;
7361
7362 if (smt)
afb8a9b7 7363 sched_smt_power_savings = level;
5c45bf27 7364 else
afb8a9b7 7365 sched_mc_power_savings = level;
5c45bf27 7366
c70f22d2 7367 arch_reinit_sched_domains();
5c45bf27 7368
c70f22d2 7369 return count;
5c45bf27
SS
7370}
7371
5c45bf27 7372#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7373static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7374 char *page)
5c45bf27
SS
7375{
7376 return sprintf(page, "%u\n", sched_mc_power_savings);
7377}
f718cd4a 7378static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7379 const char *buf, size_t count)
5c45bf27
SS
7380{
7381 return sched_power_savings_store(buf, count, 0);
7382}
f718cd4a
AK
7383static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7384 sched_mc_power_savings_show,
7385 sched_mc_power_savings_store);
5c45bf27
SS
7386#endif
7387
7388#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7389static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7390 char *page)
5c45bf27
SS
7391{
7392 return sprintf(page, "%u\n", sched_smt_power_savings);
7393}
f718cd4a 7394static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7395 const char *buf, size_t count)
5c45bf27
SS
7396{
7397 return sched_power_savings_store(buf, count, 1);
7398}
f718cd4a
AK
7399static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7400 sched_smt_power_savings_show,
6707de00
AB
7401 sched_smt_power_savings_store);
7402#endif
7403
39aac648 7404int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7405{
7406 int err = 0;
7407
7408#ifdef CONFIG_SCHED_SMT
7409 if (smt_capable())
7410 err = sysfs_create_file(&cls->kset.kobj,
7411 &attr_sched_smt_power_savings.attr);
7412#endif
7413#ifdef CONFIG_SCHED_MC
7414 if (!err && mc_capable())
7415 err = sysfs_create_file(&cls->kset.kobj,
7416 &attr_sched_mc_power_savings.attr);
7417#endif
7418 return err;
7419}
6d6bc0ad 7420#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7421
e761b772 7422#ifndef CONFIG_CPUSETS
1da177e4 7423/*
e761b772
MK
7424 * Add online and remove offline CPUs from the scheduler domains.
7425 * When cpusets are enabled they take over this function.
1da177e4
LT
7426 */
7427static int update_sched_domains(struct notifier_block *nfb,
7428 unsigned long action, void *hcpu)
e761b772
MK
7429{
7430 switch (action) {
7431 case CPU_ONLINE:
7432 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7433 case CPU_DOWN_PREPARE:
7434 case CPU_DOWN_PREPARE_FROZEN:
7435 case CPU_DOWN_FAILED:
7436 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7437 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7438 return NOTIFY_OK;
7439
7440 default:
7441 return NOTIFY_DONE;
7442 }
7443}
7444#endif
7445
7446static int update_runtime(struct notifier_block *nfb,
7447 unsigned long action, void *hcpu)
1da177e4 7448{
7def2be1
PZ
7449 int cpu = (int)(long)hcpu;
7450
1da177e4 7451 switch (action) {
1da177e4 7452 case CPU_DOWN_PREPARE:
8bb78442 7453 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7454 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7455 return NOTIFY_OK;
7456
1da177e4 7457 case CPU_DOWN_FAILED:
8bb78442 7458 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7459 case CPU_ONLINE:
8bb78442 7460 case CPU_ONLINE_FROZEN:
7def2be1 7461 enable_runtime(cpu_rq(cpu));
e761b772
MK
7462 return NOTIFY_OK;
7463
1da177e4
LT
7464 default:
7465 return NOTIFY_DONE;
7466 }
1da177e4 7467}
1da177e4
LT
7468
7469void __init sched_init_smp(void)
7470{
dcc30a35
RR
7471 cpumask_var_t non_isolated_cpus;
7472
7473 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7474 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7475
434d53b0
MT
7476#if defined(CONFIG_NUMA)
7477 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7478 GFP_KERNEL);
7479 BUG_ON(sched_group_nodes_bycpu == NULL);
7480#endif
95402b38 7481 get_online_cpus();
712555ee 7482 mutex_lock(&sched_domains_mutex);
6ad4c188 7483 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7484 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7485 if (cpumask_empty(non_isolated_cpus))
7486 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7487 mutex_unlock(&sched_domains_mutex);
95402b38 7488 put_online_cpus();
e761b772
MK
7489
7490#ifndef CONFIG_CPUSETS
1da177e4
LT
7491 /* XXX: Theoretical race here - CPU may be hotplugged now */
7492 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7493#endif
7494
7495 /* RT runtime code needs to handle some hotplug events */
7496 hotcpu_notifier(update_runtime, 0);
7497
b328ca18 7498 init_hrtick();
5c1e1767
NP
7499
7500 /* Move init over to a non-isolated CPU */
dcc30a35 7501 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7502 BUG();
19978ca6 7503 sched_init_granularity();
dcc30a35 7504 free_cpumask_var(non_isolated_cpus);
4212823f 7505
0e3900e6 7506 init_sched_rt_class();
1da177e4
LT
7507}
7508#else
7509void __init sched_init_smp(void)
7510{
19978ca6 7511 sched_init_granularity();
1da177e4
LT
7512}
7513#endif /* CONFIG_SMP */
7514
cd1bb94b
AB
7515const_debug unsigned int sysctl_timer_migration = 1;
7516
1da177e4
LT
7517int in_sched_functions(unsigned long addr)
7518{
1da177e4
LT
7519 return in_lock_functions(addr) ||
7520 (addr >= (unsigned long)__sched_text_start
7521 && addr < (unsigned long)__sched_text_end);
7522}
7523
a9957449 7524static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7525{
7526 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7527 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529 cfs_rq->rq = rq;
7530#endif
67e9fb2a 7531 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7532}
7533
fa85ae24
PZ
7534static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7535{
7536 struct rt_prio_array *array;
7537 int i;
7538
7539 array = &rt_rq->active;
7540 for (i = 0; i < MAX_RT_PRIO; i++) {
7541 INIT_LIST_HEAD(array->queue + i);
7542 __clear_bit(i, array->bitmap);
7543 }
7544 /* delimiter for bitsearch: */
7545 __set_bit(MAX_RT_PRIO, array->bitmap);
7546
052f1dc7 7547#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7548 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7549#ifdef CONFIG_SMP
e864c499 7550 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7551#endif
48d5e258 7552#endif
fa85ae24
PZ
7553#ifdef CONFIG_SMP
7554 rt_rq->rt_nr_migratory = 0;
fa85ae24 7555 rt_rq->overloaded = 0;
05fa785c 7556 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7557#endif
7558
7559 rt_rq->rt_time = 0;
7560 rt_rq->rt_throttled = 0;
ac086bc2 7561 rt_rq->rt_runtime = 0;
0986b11b 7562 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7563
052f1dc7 7564#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7565 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7566 rt_rq->rq = rq;
7567#endif
fa85ae24
PZ
7568}
7569
6f505b16 7570#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7571static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7572 struct sched_entity *se, int cpu, int add,
7573 struct sched_entity *parent)
6f505b16 7574{
ec7dc8ac 7575 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7576 tg->cfs_rq[cpu] = cfs_rq;
7577 init_cfs_rq(cfs_rq, rq);
7578 cfs_rq->tg = tg;
7579 if (add)
7580 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7581
7582 tg->se[cpu] = se;
354d60c2
DG
7583 /* se could be NULL for init_task_group */
7584 if (!se)
7585 return;
7586
ec7dc8ac
DG
7587 if (!parent)
7588 se->cfs_rq = &rq->cfs;
7589 else
7590 se->cfs_rq = parent->my_q;
7591
6f505b16
PZ
7592 se->my_q = cfs_rq;
7593 se->load.weight = tg->shares;
e05510d0 7594 se->load.inv_weight = 0;
ec7dc8ac 7595 se->parent = parent;
6f505b16 7596}
052f1dc7 7597#endif
6f505b16 7598
052f1dc7 7599#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7600static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7601 struct sched_rt_entity *rt_se, int cpu, int add,
7602 struct sched_rt_entity *parent)
6f505b16 7603{
ec7dc8ac
DG
7604 struct rq *rq = cpu_rq(cpu);
7605
6f505b16
PZ
7606 tg->rt_rq[cpu] = rt_rq;
7607 init_rt_rq(rt_rq, rq);
7608 rt_rq->tg = tg;
7609 rt_rq->rt_se = rt_se;
ac086bc2 7610 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7611 if (add)
7612 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7613
7614 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7615 if (!rt_se)
7616 return;
7617
ec7dc8ac
DG
7618 if (!parent)
7619 rt_se->rt_rq = &rq->rt;
7620 else
7621 rt_se->rt_rq = parent->my_q;
7622
6f505b16 7623 rt_se->my_q = rt_rq;
ec7dc8ac 7624 rt_se->parent = parent;
6f505b16
PZ
7625 INIT_LIST_HEAD(&rt_se->run_list);
7626}
7627#endif
7628
1da177e4
LT
7629void __init sched_init(void)
7630{
dd41f596 7631 int i, j;
434d53b0
MT
7632 unsigned long alloc_size = 0, ptr;
7633
7634#ifdef CONFIG_FAIR_GROUP_SCHED
7635 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7636#endif
7637#ifdef CONFIG_RT_GROUP_SCHED
7638 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7639#endif
df7c8e84 7640#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7641 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7642#endif
434d53b0 7643 if (alloc_size) {
36b7b6d4 7644 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7645
7646#ifdef CONFIG_FAIR_GROUP_SCHED
7647 init_task_group.se = (struct sched_entity **)ptr;
7648 ptr += nr_cpu_ids * sizeof(void **);
7649
7650 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7651 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7652
6d6bc0ad 7653#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7654#ifdef CONFIG_RT_GROUP_SCHED
7655 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
7657
7658 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7659 ptr += nr_cpu_ids * sizeof(void **);
7660
6d6bc0ad 7661#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7662#ifdef CONFIG_CPUMASK_OFFSTACK
7663 for_each_possible_cpu(i) {
7664 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7665 ptr += cpumask_size();
7666 }
7667#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7668 }
dd41f596 7669
57d885fe
GH
7670#ifdef CONFIG_SMP
7671 init_defrootdomain();
7672#endif
7673
d0b27fa7
PZ
7674 init_rt_bandwidth(&def_rt_bandwidth,
7675 global_rt_period(), global_rt_runtime());
7676
7677#ifdef CONFIG_RT_GROUP_SCHED
7678 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7679 global_rt_period(), global_rt_runtime());
6d6bc0ad 7680#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7681
7c941438 7682#ifdef CONFIG_CGROUP_SCHED
6f505b16 7683 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7684 INIT_LIST_HEAD(&init_task_group.children);
7685
7c941438 7686#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7687
4a6cc4bd
JK
7688#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7689 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7690 __alignof__(unsigned long));
7691#endif
0a945022 7692 for_each_possible_cpu(i) {
70b97a7f 7693 struct rq *rq;
1da177e4
LT
7694
7695 rq = cpu_rq(i);
05fa785c 7696 raw_spin_lock_init(&rq->lock);
7897986b 7697 rq->nr_running = 0;
dce48a84
TG
7698 rq->calc_load_active = 0;
7699 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7700 init_cfs_rq(&rq->cfs, rq);
6f505b16 7701 init_rt_rq(&rq->rt, rq);
dd41f596 7702#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7703 init_task_group.shares = init_task_group_load;
6f505b16 7704 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7705#ifdef CONFIG_CGROUP_SCHED
7706 /*
7707 * How much cpu bandwidth does init_task_group get?
7708 *
7709 * In case of task-groups formed thr' the cgroup filesystem, it
7710 * gets 100% of the cpu resources in the system. This overall
7711 * system cpu resource is divided among the tasks of
7712 * init_task_group and its child task-groups in a fair manner,
7713 * based on each entity's (task or task-group's) weight
7714 * (se->load.weight).
7715 *
7716 * In other words, if init_task_group has 10 tasks of weight
7717 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7718 * then A0's share of the cpu resource is:
7719 *
0d905bca 7720 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7721 *
7722 * We achieve this by letting init_task_group's tasks sit
7723 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7724 */
ec7dc8ac 7725 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7726#endif
354d60c2
DG
7727#endif /* CONFIG_FAIR_GROUP_SCHED */
7728
7729 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7730#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7731 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7732#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7733 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7734#endif
dd41f596 7735#endif
1da177e4 7736
dd41f596
IM
7737 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7738 rq->cpu_load[j] = 0;
1da177e4 7739#ifdef CONFIG_SMP
41c7ce9a 7740 rq->sd = NULL;
57d885fe 7741 rq->rd = NULL;
3f029d3c 7742 rq->post_schedule = 0;
1da177e4 7743 rq->active_balance = 0;
dd41f596 7744 rq->next_balance = jiffies;
1da177e4 7745 rq->push_cpu = 0;
0a2966b4 7746 rq->cpu = i;
1f11eb6a 7747 rq->online = 0;
1da177e4 7748 rq->migration_thread = NULL;
eae0c9df
MG
7749 rq->idle_stamp = 0;
7750 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7751 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7752 rq_attach_root(rq, &def_root_domain);
1da177e4 7753#endif
8f4d37ec 7754 init_rq_hrtick(rq);
1da177e4 7755 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7756 }
7757
2dd73a4f 7758 set_load_weight(&init_task);
b50f60ce 7759
e107be36
AK
7760#ifdef CONFIG_PREEMPT_NOTIFIERS
7761 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7762#endif
7763
c9819f45 7764#ifdef CONFIG_SMP
962cf36c 7765 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7766#endif
7767
b50f60ce 7768#ifdef CONFIG_RT_MUTEXES
1d615482 7769 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7770#endif
7771
1da177e4
LT
7772 /*
7773 * The boot idle thread does lazy MMU switching as well:
7774 */
7775 atomic_inc(&init_mm.mm_count);
7776 enter_lazy_tlb(&init_mm, current);
7777
7778 /*
7779 * Make us the idle thread. Technically, schedule() should not be
7780 * called from this thread, however somewhere below it might be,
7781 * but because we are the idle thread, we just pick up running again
7782 * when this runqueue becomes "idle".
7783 */
7784 init_idle(current, smp_processor_id());
dce48a84
TG
7785
7786 calc_load_update = jiffies + LOAD_FREQ;
7787
dd41f596
IM
7788 /*
7789 * During early bootup we pretend to be a normal task:
7790 */
7791 current->sched_class = &fair_sched_class;
6892b75e 7792
6a7b3dc3 7793 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7794 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7795#ifdef CONFIG_SMP
7d1e6a9b 7796#ifdef CONFIG_NO_HZ
49557e62 7797 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7798 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7799#endif
bdddd296
RR
7800 /* May be allocated at isolcpus cmdline parse time */
7801 if (cpu_isolated_map == NULL)
7802 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7803#endif /* SMP */
6a7b3dc3 7804
cdd6c482 7805 perf_event_init();
0d905bca 7806
6892b75e 7807 scheduler_running = 1;
1da177e4
LT
7808}
7809
7810#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7811static inline int preempt_count_equals(int preempt_offset)
7812{
234da7bc 7813 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7814
7815 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7816}
7817
d894837f 7818void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7819{
48f24c4d 7820#ifdef in_atomic
1da177e4
LT
7821 static unsigned long prev_jiffy; /* ratelimiting */
7822
e4aafea2
FW
7823 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7824 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7825 return;
7826 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7827 return;
7828 prev_jiffy = jiffies;
7829
3df0fc5b
PZ
7830 printk(KERN_ERR
7831 "BUG: sleeping function called from invalid context at %s:%d\n",
7832 file, line);
7833 printk(KERN_ERR
7834 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7835 in_atomic(), irqs_disabled(),
7836 current->pid, current->comm);
aef745fc
IM
7837
7838 debug_show_held_locks(current);
7839 if (irqs_disabled())
7840 print_irqtrace_events(current);
7841 dump_stack();
1da177e4
LT
7842#endif
7843}
7844EXPORT_SYMBOL(__might_sleep);
7845#endif
7846
7847#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7848static void normalize_task(struct rq *rq, struct task_struct *p)
7849{
7850 int on_rq;
3e51f33f 7851
3a5e4dc1
AK
7852 update_rq_clock(rq);
7853 on_rq = p->se.on_rq;
7854 if (on_rq)
7855 deactivate_task(rq, p, 0);
7856 __setscheduler(rq, p, SCHED_NORMAL, 0);
7857 if (on_rq) {
7858 activate_task(rq, p, 0);
7859 resched_task(rq->curr);
7860 }
7861}
7862
1da177e4
LT
7863void normalize_rt_tasks(void)
7864{
a0f98a1c 7865 struct task_struct *g, *p;
1da177e4 7866 unsigned long flags;
70b97a7f 7867 struct rq *rq;
1da177e4 7868
4cf5d77a 7869 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7870 do_each_thread(g, p) {
178be793
IM
7871 /*
7872 * Only normalize user tasks:
7873 */
7874 if (!p->mm)
7875 continue;
7876
6cfb0d5d 7877 p->se.exec_start = 0;
6cfb0d5d 7878#ifdef CONFIG_SCHEDSTATS
dd41f596 7879 p->se.wait_start = 0;
dd41f596 7880 p->se.sleep_start = 0;
dd41f596 7881 p->se.block_start = 0;
6cfb0d5d 7882#endif
dd41f596
IM
7883
7884 if (!rt_task(p)) {
7885 /*
7886 * Renice negative nice level userspace
7887 * tasks back to 0:
7888 */
7889 if (TASK_NICE(p) < 0 && p->mm)
7890 set_user_nice(p, 0);
1da177e4 7891 continue;
dd41f596 7892 }
1da177e4 7893
1d615482 7894 raw_spin_lock(&p->pi_lock);
b29739f9 7895 rq = __task_rq_lock(p);
1da177e4 7896
178be793 7897 normalize_task(rq, p);
3a5e4dc1 7898
b29739f9 7899 __task_rq_unlock(rq);
1d615482 7900 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7901 } while_each_thread(g, p);
7902
4cf5d77a 7903 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7904}
7905
7906#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7907
7908#ifdef CONFIG_IA64
7909/*
7910 * These functions are only useful for the IA64 MCA handling.
7911 *
7912 * They can only be called when the whole system has been
7913 * stopped - every CPU needs to be quiescent, and no scheduling
7914 * activity can take place. Using them for anything else would
7915 * be a serious bug, and as a result, they aren't even visible
7916 * under any other configuration.
7917 */
7918
7919/**
7920 * curr_task - return the current task for a given cpu.
7921 * @cpu: the processor in question.
7922 *
7923 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7924 */
36c8b586 7925struct task_struct *curr_task(int cpu)
1df5c10a
LT
7926{
7927 return cpu_curr(cpu);
7928}
7929
7930/**
7931 * set_curr_task - set the current task for a given cpu.
7932 * @cpu: the processor in question.
7933 * @p: the task pointer to set.
7934 *
7935 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7936 * are serviced on a separate stack. It allows the architecture to switch the
7937 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7938 * must be called with all CPU's synchronized, and interrupts disabled, the
7939 * and caller must save the original value of the current task (see
7940 * curr_task() above) and restore that value before reenabling interrupts and
7941 * re-starting the system.
7942 *
7943 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7944 */
36c8b586 7945void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7946{
7947 cpu_curr(cpu) = p;
7948}
7949
7950#endif
29f59db3 7951
bccbe08a
PZ
7952#ifdef CONFIG_FAIR_GROUP_SCHED
7953static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7954{
7955 int i;
7956
7957 for_each_possible_cpu(i) {
7958 if (tg->cfs_rq)
7959 kfree(tg->cfs_rq[i]);
7960 if (tg->se)
7961 kfree(tg->se[i]);
6f505b16
PZ
7962 }
7963
7964 kfree(tg->cfs_rq);
7965 kfree(tg->se);
6f505b16
PZ
7966}
7967
ec7dc8ac
DG
7968static
7969int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7970{
29f59db3 7971 struct cfs_rq *cfs_rq;
eab17229 7972 struct sched_entity *se;
9b5b7751 7973 struct rq *rq;
29f59db3
SV
7974 int i;
7975
434d53b0 7976 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7977 if (!tg->cfs_rq)
7978 goto err;
434d53b0 7979 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7980 if (!tg->se)
7981 goto err;
052f1dc7
PZ
7982
7983 tg->shares = NICE_0_LOAD;
29f59db3
SV
7984
7985 for_each_possible_cpu(i) {
9b5b7751 7986 rq = cpu_rq(i);
29f59db3 7987
eab17229
LZ
7988 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7989 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7990 if (!cfs_rq)
7991 goto err;
7992
eab17229
LZ
7993 se = kzalloc_node(sizeof(struct sched_entity),
7994 GFP_KERNEL, cpu_to_node(i));
29f59db3 7995 if (!se)
dfc12eb2 7996 goto err_free_rq;
29f59db3 7997
eab17229 7998 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7999 }
8000
8001 return 1;
8002
dfc12eb2
PC
8003 err_free_rq:
8004 kfree(cfs_rq);
bccbe08a
PZ
8005 err:
8006 return 0;
8007}
8008
8009static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8010{
8011 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8012 &cpu_rq(cpu)->leaf_cfs_rq_list);
8013}
8014
8015static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8016{
8017 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8018}
6d6bc0ad 8019#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8020static inline void free_fair_sched_group(struct task_group *tg)
8021{
8022}
8023
ec7dc8ac
DG
8024static inline
8025int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8026{
8027 return 1;
8028}
8029
8030static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8031{
8032}
8033
8034static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8035{
8036}
6d6bc0ad 8037#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8038
8039#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8040static void free_rt_sched_group(struct task_group *tg)
8041{
8042 int i;
8043
d0b27fa7
PZ
8044 destroy_rt_bandwidth(&tg->rt_bandwidth);
8045
bccbe08a
PZ
8046 for_each_possible_cpu(i) {
8047 if (tg->rt_rq)
8048 kfree(tg->rt_rq[i]);
8049 if (tg->rt_se)
8050 kfree(tg->rt_se[i]);
8051 }
8052
8053 kfree(tg->rt_rq);
8054 kfree(tg->rt_se);
8055}
8056
ec7dc8ac
DG
8057static
8058int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8059{
8060 struct rt_rq *rt_rq;
eab17229 8061 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8062 struct rq *rq;
8063 int i;
8064
434d53b0 8065 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8066 if (!tg->rt_rq)
8067 goto err;
434d53b0 8068 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8069 if (!tg->rt_se)
8070 goto err;
8071
d0b27fa7
PZ
8072 init_rt_bandwidth(&tg->rt_bandwidth,
8073 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8074
8075 for_each_possible_cpu(i) {
8076 rq = cpu_rq(i);
8077
eab17229
LZ
8078 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8079 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8080 if (!rt_rq)
8081 goto err;
29f59db3 8082
eab17229
LZ
8083 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8084 GFP_KERNEL, cpu_to_node(i));
6f505b16 8085 if (!rt_se)
dfc12eb2 8086 goto err_free_rq;
29f59db3 8087
eab17229 8088 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8089 }
8090
bccbe08a
PZ
8091 return 1;
8092
dfc12eb2
PC
8093 err_free_rq:
8094 kfree(rt_rq);
bccbe08a
PZ
8095 err:
8096 return 0;
8097}
8098
8099static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8100{
8101 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8102 &cpu_rq(cpu)->leaf_rt_rq_list);
8103}
8104
8105static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8106{
8107 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8108}
6d6bc0ad 8109#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8110static inline void free_rt_sched_group(struct task_group *tg)
8111{
8112}
8113
ec7dc8ac
DG
8114static inline
8115int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8116{
8117 return 1;
8118}
8119
8120static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8121{
8122}
8123
8124static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8125{
8126}
6d6bc0ad 8127#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8128
7c941438 8129#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8130static void free_sched_group(struct task_group *tg)
8131{
8132 free_fair_sched_group(tg);
8133 free_rt_sched_group(tg);
8134 kfree(tg);
8135}
8136
8137/* allocate runqueue etc for a new task group */
ec7dc8ac 8138struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8139{
8140 struct task_group *tg;
8141 unsigned long flags;
8142 int i;
8143
8144 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8145 if (!tg)
8146 return ERR_PTR(-ENOMEM);
8147
ec7dc8ac 8148 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8149 goto err;
8150
ec7dc8ac 8151 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8152 goto err;
8153
8ed36996 8154 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8155 for_each_possible_cpu(i) {
bccbe08a
PZ
8156 register_fair_sched_group(tg, i);
8157 register_rt_sched_group(tg, i);
9b5b7751 8158 }
6f505b16 8159 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8160
8161 WARN_ON(!parent); /* root should already exist */
8162
8163 tg->parent = parent;
f473aa5e 8164 INIT_LIST_HEAD(&tg->children);
09f2724a 8165 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8166 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8167
9b5b7751 8168 return tg;
29f59db3
SV
8169
8170err:
6f505b16 8171 free_sched_group(tg);
29f59db3
SV
8172 return ERR_PTR(-ENOMEM);
8173}
8174
9b5b7751 8175/* rcu callback to free various structures associated with a task group */
6f505b16 8176static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8177{
29f59db3 8178 /* now it should be safe to free those cfs_rqs */
6f505b16 8179 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8180}
8181
9b5b7751 8182/* Destroy runqueue etc associated with a task group */
4cf86d77 8183void sched_destroy_group(struct task_group *tg)
29f59db3 8184{
8ed36996 8185 unsigned long flags;
9b5b7751 8186 int i;
29f59db3 8187
8ed36996 8188 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8189 for_each_possible_cpu(i) {
bccbe08a
PZ
8190 unregister_fair_sched_group(tg, i);
8191 unregister_rt_sched_group(tg, i);
9b5b7751 8192 }
6f505b16 8193 list_del_rcu(&tg->list);
f473aa5e 8194 list_del_rcu(&tg->siblings);
8ed36996 8195 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8196
9b5b7751 8197 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8198 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8199}
8200
9b5b7751 8201/* change task's runqueue when it moves between groups.
3a252015
IM
8202 * The caller of this function should have put the task in its new group
8203 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8204 * reflect its new group.
9b5b7751
SV
8205 */
8206void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8207{
8208 int on_rq, running;
8209 unsigned long flags;
8210 struct rq *rq;
8211
8212 rq = task_rq_lock(tsk, &flags);
8213
29f59db3
SV
8214 update_rq_clock(rq);
8215
051a1d1a 8216 running = task_current(rq, tsk);
29f59db3
SV
8217 on_rq = tsk->se.on_rq;
8218
0e1f3483 8219 if (on_rq)
29f59db3 8220 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8221 if (unlikely(running))
8222 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8223
6f505b16 8224 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8225
810b3817
PZ
8226#ifdef CONFIG_FAIR_GROUP_SCHED
8227 if (tsk->sched_class->moved_group)
88ec22d3 8228 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8229#endif
8230
0e1f3483
HS
8231 if (unlikely(running))
8232 tsk->sched_class->set_curr_task(rq);
8233 if (on_rq)
ea87bb78 8234 enqueue_task(rq, tsk, 0, false);
29f59db3 8235
29f59db3
SV
8236 task_rq_unlock(rq, &flags);
8237}
7c941438 8238#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8239
052f1dc7 8240#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8241static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8242{
8243 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8244 int on_rq;
8245
29f59db3 8246 on_rq = se->on_rq;
62fb1851 8247 if (on_rq)
29f59db3
SV
8248 dequeue_entity(cfs_rq, se, 0);
8249
8250 se->load.weight = shares;
e05510d0 8251 se->load.inv_weight = 0;
29f59db3 8252
62fb1851 8253 if (on_rq)
29f59db3 8254 enqueue_entity(cfs_rq, se, 0);
c09595f6 8255}
62fb1851 8256
c09595f6
PZ
8257static void set_se_shares(struct sched_entity *se, unsigned long shares)
8258{
8259 struct cfs_rq *cfs_rq = se->cfs_rq;
8260 struct rq *rq = cfs_rq->rq;
8261 unsigned long flags;
8262
05fa785c 8263 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8264 __set_se_shares(se, shares);
05fa785c 8265 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8266}
8267
8ed36996
PZ
8268static DEFINE_MUTEX(shares_mutex);
8269
4cf86d77 8270int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8271{
8272 int i;
8ed36996 8273 unsigned long flags;
c61935fd 8274
ec7dc8ac
DG
8275 /*
8276 * We can't change the weight of the root cgroup.
8277 */
8278 if (!tg->se[0])
8279 return -EINVAL;
8280
18d95a28
PZ
8281 if (shares < MIN_SHARES)
8282 shares = MIN_SHARES;
cb4ad1ff
MX
8283 else if (shares > MAX_SHARES)
8284 shares = MAX_SHARES;
62fb1851 8285
8ed36996 8286 mutex_lock(&shares_mutex);
9b5b7751 8287 if (tg->shares == shares)
5cb350ba 8288 goto done;
29f59db3 8289
8ed36996 8290 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8291 for_each_possible_cpu(i)
8292 unregister_fair_sched_group(tg, i);
f473aa5e 8293 list_del_rcu(&tg->siblings);
8ed36996 8294 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8295
8296 /* wait for any ongoing reference to this group to finish */
8297 synchronize_sched();
8298
8299 /*
8300 * Now we are free to modify the group's share on each cpu
8301 * w/o tripping rebalance_share or load_balance_fair.
8302 */
9b5b7751 8303 tg->shares = shares;
c09595f6
PZ
8304 for_each_possible_cpu(i) {
8305 /*
8306 * force a rebalance
8307 */
8308 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8309 set_se_shares(tg->se[i], shares);
c09595f6 8310 }
29f59db3 8311
6b2d7700
SV
8312 /*
8313 * Enable load balance activity on this group, by inserting it back on
8314 * each cpu's rq->leaf_cfs_rq_list.
8315 */
8ed36996 8316 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8317 for_each_possible_cpu(i)
8318 register_fair_sched_group(tg, i);
f473aa5e 8319 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8320 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8321done:
8ed36996 8322 mutex_unlock(&shares_mutex);
9b5b7751 8323 return 0;
29f59db3
SV
8324}
8325
5cb350ba
DG
8326unsigned long sched_group_shares(struct task_group *tg)
8327{
8328 return tg->shares;
8329}
052f1dc7 8330#endif
5cb350ba 8331
052f1dc7 8332#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8333/*
9f0c1e56 8334 * Ensure that the real time constraints are schedulable.
6f505b16 8335 */
9f0c1e56
PZ
8336static DEFINE_MUTEX(rt_constraints_mutex);
8337
8338static unsigned long to_ratio(u64 period, u64 runtime)
8339{
8340 if (runtime == RUNTIME_INF)
9a7e0b18 8341 return 1ULL << 20;
9f0c1e56 8342
9a7e0b18 8343 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8344}
8345
9a7e0b18
PZ
8346/* Must be called with tasklist_lock held */
8347static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8348{
9a7e0b18 8349 struct task_struct *g, *p;
b40b2e8e 8350
9a7e0b18
PZ
8351 do_each_thread(g, p) {
8352 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8353 return 1;
8354 } while_each_thread(g, p);
b40b2e8e 8355
9a7e0b18
PZ
8356 return 0;
8357}
b40b2e8e 8358
9a7e0b18
PZ
8359struct rt_schedulable_data {
8360 struct task_group *tg;
8361 u64 rt_period;
8362 u64 rt_runtime;
8363};
b40b2e8e 8364
9a7e0b18
PZ
8365static int tg_schedulable(struct task_group *tg, void *data)
8366{
8367 struct rt_schedulable_data *d = data;
8368 struct task_group *child;
8369 unsigned long total, sum = 0;
8370 u64 period, runtime;
b40b2e8e 8371
9a7e0b18
PZ
8372 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8373 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8374
9a7e0b18
PZ
8375 if (tg == d->tg) {
8376 period = d->rt_period;
8377 runtime = d->rt_runtime;
b40b2e8e 8378 }
b40b2e8e 8379
4653f803
PZ
8380 /*
8381 * Cannot have more runtime than the period.
8382 */
8383 if (runtime > period && runtime != RUNTIME_INF)
8384 return -EINVAL;
6f505b16 8385
4653f803
PZ
8386 /*
8387 * Ensure we don't starve existing RT tasks.
8388 */
9a7e0b18
PZ
8389 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8390 return -EBUSY;
6f505b16 8391
9a7e0b18 8392 total = to_ratio(period, runtime);
6f505b16 8393
4653f803
PZ
8394 /*
8395 * Nobody can have more than the global setting allows.
8396 */
8397 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8398 return -EINVAL;
6f505b16 8399
4653f803
PZ
8400 /*
8401 * The sum of our children's runtime should not exceed our own.
8402 */
9a7e0b18
PZ
8403 list_for_each_entry_rcu(child, &tg->children, siblings) {
8404 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8405 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8406
9a7e0b18
PZ
8407 if (child == d->tg) {
8408 period = d->rt_period;
8409 runtime = d->rt_runtime;
8410 }
6f505b16 8411
9a7e0b18 8412 sum += to_ratio(period, runtime);
9f0c1e56 8413 }
6f505b16 8414
9a7e0b18
PZ
8415 if (sum > total)
8416 return -EINVAL;
8417
8418 return 0;
6f505b16
PZ
8419}
8420
9a7e0b18 8421static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8422{
9a7e0b18
PZ
8423 struct rt_schedulable_data data = {
8424 .tg = tg,
8425 .rt_period = period,
8426 .rt_runtime = runtime,
8427 };
8428
8429 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8430}
8431
d0b27fa7
PZ
8432static int tg_set_bandwidth(struct task_group *tg,
8433 u64 rt_period, u64 rt_runtime)
6f505b16 8434{
ac086bc2 8435 int i, err = 0;
9f0c1e56 8436
9f0c1e56 8437 mutex_lock(&rt_constraints_mutex);
521f1a24 8438 read_lock(&tasklist_lock);
9a7e0b18
PZ
8439 err = __rt_schedulable(tg, rt_period, rt_runtime);
8440 if (err)
9f0c1e56 8441 goto unlock;
ac086bc2 8442
0986b11b 8443 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8444 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8445 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8446
8447 for_each_possible_cpu(i) {
8448 struct rt_rq *rt_rq = tg->rt_rq[i];
8449
0986b11b 8450 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8451 rt_rq->rt_runtime = rt_runtime;
0986b11b 8452 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8453 }
0986b11b 8454 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8455 unlock:
521f1a24 8456 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8457 mutex_unlock(&rt_constraints_mutex);
8458
8459 return err;
6f505b16
PZ
8460}
8461
d0b27fa7
PZ
8462int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8463{
8464 u64 rt_runtime, rt_period;
8465
8466 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8467 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8468 if (rt_runtime_us < 0)
8469 rt_runtime = RUNTIME_INF;
8470
8471 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8472}
8473
9f0c1e56
PZ
8474long sched_group_rt_runtime(struct task_group *tg)
8475{
8476 u64 rt_runtime_us;
8477
d0b27fa7 8478 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8479 return -1;
8480
d0b27fa7 8481 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8482 do_div(rt_runtime_us, NSEC_PER_USEC);
8483 return rt_runtime_us;
8484}
d0b27fa7
PZ
8485
8486int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8487{
8488 u64 rt_runtime, rt_period;
8489
8490 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8491 rt_runtime = tg->rt_bandwidth.rt_runtime;
8492
619b0488
R
8493 if (rt_period == 0)
8494 return -EINVAL;
8495
d0b27fa7
PZ
8496 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8497}
8498
8499long sched_group_rt_period(struct task_group *tg)
8500{
8501 u64 rt_period_us;
8502
8503 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8504 do_div(rt_period_us, NSEC_PER_USEC);
8505 return rt_period_us;
8506}
8507
8508static int sched_rt_global_constraints(void)
8509{
4653f803 8510 u64 runtime, period;
d0b27fa7
PZ
8511 int ret = 0;
8512
ec5d4989
HS
8513 if (sysctl_sched_rt_period <= 0)
8514 return -EINVAL;
8515
4653f803
PZ
8516 runtime = global_rt_runtime();
8517 period = global_rt_period();
8518
8519 /*
8520 * Sanity check on the sysctl variables.
8521 */
8522 if (runtime > period && runtime != RUNTIME_INF)
8523 return -EINVAL;
10b612f4 8524
d0b27fa7 8525 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8526 read_lock(&tasklist_lock);
4653f803 8527 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8528 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8529 mutex_unlock(&rt_constraints_mutex);
8530
8531 return ret;
8532}
54e99124
DG
8533
8534int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8535{
8536 /* Don't accept realtime tasks when there is no way for them to run */
8537 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8538 return 0;
8539
8540 return 1;
8541}
8542
6d6bc0ad 8543#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8544static int sched_rt_global_constraints(void)
8545{
ac086bc2
PZ
8546 unsigned long flags;
8547 int i;
8548
ec5d4989
HS
8549 if (sysctl_sched_rt_period <= 0)
8550 return -EINVAL;
8551
60aa605d
PZ
8552 /*
8553 * There's always some RT tasks in the root group
8554 * -- migration, kstopmachine etc..
8555 */
8556 if (sysctl_sched_rt_runtime == 0)
8557 return -EBUSY;
8558
0986b11b 8559 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8560 for_each_possible_cpu(i) {
8561 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8562
0986b11b 8563 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8564 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8565 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8566 }
0986b11b 8567 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8568
d0b27fa7
PZ
8569 return 0;
8570}
6d6bc0ad 8571#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8572
8573int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8574 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8575 loff_t *ppos)
8576{
8577 int ret;
8578 int old_period, old_runtime;
8579 static DEFINE_MUTEX(mutex);
8580
8581 mutex_lock(&mutex);
8582 old_period = sysctl_sched_rt_period;
8583 old_runtime = sysctl_sched_rt_runtime;
8584
8d65af78 8585 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8586
8587 if (!ret && write) {
8588 ret = sched_rt_global_constraints();
8589 if (ret) {
8590 sysctl_sched_rt_period = old_period;
8591 sysctl_sched_rt_runtime = old_runtime;
8592 } else {
8593 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8594 def_rt_bandwidth.rt_period =
8595 ns_to_ktime(global_rt_period());
8596 }
8597 }
8598 mutex_unlock(&mutex);
8599
8600 return ret;
8601}
68318b8e 8602
052f1dc7 8603#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8604
8605/* return corresponding task_group object of a cgroup */
2b01dfe3 8606static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8607{
2b01dfe3
PM
8608 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8609 struct task_group, css);
68318b8e
SV
8610}
8611
8612static struct cgroup_subsys_state *
2b01dfe3 8613cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8614{
ec7dc8ac 8615 struct task_group *tg, *parent;
68318b8e 8616
2b01dfe3 8617 if (!cgrp->parent) {
68318b8e 8618 /* This is early initialization for the top cgroup */
68318b8e
SV
8619 return &init_task_group.css;
8620 }
8621
ec7dc8ac
DG
8622 parent = cgroup_tg(cgrp->parent);
8623 tg = sched_create_group(parent);
68318b8e
SV
8624 if (IS_ERR(tg))
8625 return ERR_PTR(-ENOMEM);
8626
68318b8e
SV
8627 return &tg->css;
8628}
8629
41a2d6cf
IM
8630static void
8631cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8632{
2b01dfe3 8633 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8634
8635 sched_destroy_group(tg);
8636}
8637
41a2d6cf 8638static int
be367d09 8639cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8640{
b68aa230 8641#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8642 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8643 return -EINVAL;
8644#else
68318b8e
SV
8645 /* We don't support RT-tasks being in separate groups */
8646 if (tsk->sched_class != &fair_sched_class)
8647 return -EINVAL;
b68aa230 8648#endif
be367d09
BB
8649 return 0;
8650}
68318b8e 8651
be367d09
BB
8652static int
8653cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8654 struct task_struct *tsk, bool threadgroup)
8655{
8656 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8657 if (retval)
8658 return retval;
8659 if (threadgroup) {
8660 struct task_struct *c;
8661 rcu_read_lock();
8662 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8663 retval = cpu_cgroup_can_attach_task(cgrp, c);
8664 if (retval) {
8665 rcu_read_unlock();
8666 return retval;
8667 }
8668 }
8669 rcu_read_unlock();
8670 }
68318b8e
SV
8671 return 0;
8672}
8673
8674static void
2b01dfe3 8675cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8676 struct cgroup *old_cont, struct task_struct *tsk,
8677 bool threadgroup)
68318b8e
SV
8678{
8679 sched_move_task(tsk);
be367d09
BB
8680 if (threadgroup) {
8681 struct task_struct *c;
8682 rcu_read_lock();
8683 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8684 sched_move_task(c);
8685 }
8686 rcu_read_unlock();
8687 }
68318b8e
SV
8688}
8689
052f1dc7 8690#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8691static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8692 u64 shareval)
68318b8e 8693{
2b01dfe3 8694 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8695}
8696
f4c753b7 8697static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8698{
2b01dfe3 8699 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8700
8701 return (u64) tg->shares;
8702}
6d6bc0ad 8703#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8704
052f1dc7 8705#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8706static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8707 s64 val)
6f505b16 8708{
06ecb27c 8709 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8710}
8711
06ecb27c 8712static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8713{
06ecb27c 8714 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8715}
d0b27fa7
PZ
8716
8717static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8718 u64 rt_period_us)
8719{
8720 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8721}
8722
8723static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8724{
8725 return sched_group_rt_period(cgroup_tg(cgrp));
8726}
6d6bc0ad 8727#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8728
fe5c7cc2 8729static struct cftype cpu_files[] = {
052f1dc7 8730#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8731 {
8732 .name = "shares",
f4c753b7
PM
8733 .read_u64 = cpu_shares_read_u64,
8734 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8735 },
052f1dc7
PZ
8736#endif
8737#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8738 {
9f0c1e56 8739 .name = "rt_runtime_us",
06ecb27c
PM
8740 .read_s64 = cpu_rt_runtime_read,
8741 .write_s64 = cpu_rt_runtime_write,
6f505b16 8742 },
d0b27fa7
PZ
8743 {
8744 .name = "rt_period_us",
f4c753b7
PM
8745 .read_u64 = cpu_rt_period_read_uint,
8746 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8747 },
052f1dc7 8748#endif
68318b8e
SV
8749};
8750
8751static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8752{
fe5c7cc2 8753 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8754}
8755
8756struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8757 .name = "cpu",
8758 .create = cpu_cgroup_create,
8759 .destroy = cpu_cgroup_destroy,
8760 .can_attach = cpu_cgroup_can_attach,
8761 .attach = cpu_cgroup_attach,
8762 .populate = cpu_cgroup_populate,
8763 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8764 .early_init = 1,
8765};
8766
052f1dc7 8767#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8768
8769#ifdef CONFIG_CGROUP_CPUACCT
8770
8771/*
8772 * CPU accounting code for task groups.
8773 *
8774 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8775 * (balbir@in.ibm.com).
8776 */
8777
934352f2 8778/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8779struct cpuacct {
8780 struct cgroup_subsys_state css;
8781 /* cpuusage holds pointer to a u64-type object on every cpu */
8782 u64 *cpuusage;
ef12fefa 8783 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8784 struct cpuacct *parent;
d842de87
SV
8785};
8786
8787struct cgroup_subsys cpuacct_subsys;
8788
8789/* return cpu accounting group corresponding to this container */
32cd756a 8790static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8791{
32cd756a 8792 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8793 struct cpuacct, css);
8794}
8795
8796/* return cpu accounting group to which this task belongs */
8797static inline struct cpuacct *task_ca(struct task_struct *tsk)
8798{
8799 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8800 struct cpuacct, css);
8801}
8802
8803/* create a new cpu accounting group */
8804static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8805 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8806{
8807 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8808 int i;
d842de87
SV
8809
8810 if (!ca)
ef12fefa 8811 goto out;
d842de87
SV
8812
8813 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8814 if (!ca->cpuusage)
8815 goto out_free_ca;
8816
8817 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8818 if (percpu_counter_init(&ca->cpustat[i], 0))
8819 goto out_free_counters;
d842de87 8820
934352f2
BR
8821 if (cgrp->parent)
8822 ca->parent = cgroup_ca(cgrp->parent);
8823
d842de87 8824 return &ca->css;
ef12fefa
BR
8825
8826out_free_counters:
8827 while (--i >= 0)
8828 percpu_counter_destroy(&ca->cpustat[i]);
8829 free_percpu(ca->cpuusage);
8830out_free_ca:
8831 kfree(ca);
8832out:
8833 return ERR_PTR(-ENOMEM);
d842de87
SV
8834}
8835
8836/* destroy an existing cpu accounting group */
41a2d6cf 8837static void
32cd756a 8838cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8839{
32cd756a 8840 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8841 int i;
d842de87 8842
ef12fefa
BR
8843 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8844 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8845 free_percpu(ca->cpuusage);
8846 kfree(ca);
8847}
8848
720f5498
KC
8849static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8850{
b36128c8 8851 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8852 u64 data;
8853
8854#ifndef CONFIG_64BIT
8855 /*
8856 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8857 */
05fa785c 8858 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8859 data = *cpuusage;
05fa785c 8860 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8861#else
8862 data = *cpuusage;
8863#endif
8864
8865 return data;
8866}
8867
8868static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8869{
b36128c8 8870 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8871
8872#ifndef CONFIG_64BIT
8873 /*
8874 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8875 */
05fa785c 8876 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8877 *cpuusage = val;
05fa785c 8878 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8879#else
8880 *cpuusage = val;
8881#endif
8882}
8883
d842de87 8884/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8885static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8886{
32cd756a 8887 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8888 u64 totalcpuusage = 0;
8889 int i;
8890
720f5498
KC
8891 for_each_present_cpu(i)
8892 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8893
8894 return totalcpuusage;
8895}
8896
0297b803
DG
8897static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8898 u64 reset)
8899{
8900 struct cpuacct *ca = cgroup_ca(cgrp);
8901 int err = 0;
8902 int i;
8903
8904 if (reset) {
8905 err = -EINVAL;
8906 goto out;
8907 }
8908
720f5498
KC
8909 for_each_present_cpu(i)
8910 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8911
0297b803
DG
8912out:
8913 return err;
8914}
8915
e9515c3c
KC
8916static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8917 struct seq_file *m)
8918{
8919 struct cpuacct *ca = cgroup_ca(cgroup);
8920 u64 percpu;
8921 int i;
8922
8923 for_each_present_cpu(i) {
8924 percpu = cpuacct_cpuusage_read(ca, i);
8925 seq_printf(m, "%llu ", (unsigned long long) percpu);
8926 }
8927 seq_printf(m, "\n");
8928 return 0;
8929}
8930
ef12fefa
BR
8931static const char *cpuacct_stat_desc[] = {
8932 [CPUACCT_STAT_USER] = "user",
8933 [CPUACCT_STAT_SYSTEM] = "system",
8934};
8935
8936static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8937 struct cgroup_map_cb *cb)
8938{
8939 struct cpuacct *ca = cgroup_ca(cgrp);
8940 int i;
8941
8942 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8943 s64 val = percpu_counter_read(&ca->cpustat[i]);
8944 val = cputime64_to_clock_t(val);
8945 cb->fill(cb, cpuacct_stat_desc[i], val);
8946 }
8947 return 0;
8948}
8949
d842de87
SV
8950static struct cftype files[] = {
8951 {
8952 .name = "usage",
f4c753b7
PM
8953 .read_u64 = cpuusage_read,
8954 .write_u64 = cpuusage_write,
d842de87 8955 },
e9515c3c
KC
8956 {
8957 .name = "usage_percpu",
8958 .read_seq_string = cpuacct_percpu_seq_read,
8959 },
ef12fefa
BR
8960 {
8961 .name = "stat",
8962 .read_map = cpuacct_stats_show,
8963 },
d842de87
SV
8964};
8965
32cd756a 8966static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8967{
32cd756a 8968 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8969}
8970
8971/*
8972 * charge this task's execution time to its accounting group.
8973 *
8974 * called with rq->lock held.
8975 */
8976static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8977{
8978 struct cpuacct *ca;
934352f2 8979 int cpu;
d842de87 8980
c40c6f85 8981 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8982 return;
8983
934352f2 8984 cpu = task_cpu(tsk);
a18b83b7
BR
8985
8986 rcu_read_lock();
8987
d842de87 8988 ca = task_ca(tsk);
d842de87 8989
934352f2 8990 for (; ca; ca = ca->parent) {
b36128c8 8991 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8992 *cpuusage += cputime;
8993 }
a18b83b7
BR
8994
8995 rcu_read_unlock();
d842de87
SV
8996}
8997
ef12fefa
BR
8998/*
8999 * Charge the system/user time to the task's accounting group.
9000 */
9001static void cpuacct_update_stats(struct task_struct *tsk,
9002 enum cpuacct_stat_index idx, cputime_t val)
9003{
9004 struct cpuacct *ca;
9005
9006 if (unlikely(!cpuacct_subsys.active))
9007 return;
9008
9009 rcu_read_lock();
9010 ca = task_ca(tsk);
9011
9012 do {
9013 percpu_counter_add(&ca->cpustat[idx], val);
9014 ca = ca->parent;
9015 } while (ca);
9016 rcu_read_unlock();
9017}
9018
d842de87
SV
9019struct cgroup_subsys cpuacct_subsys = {
9020 .name = "cpuacct",
9021 .create = cpuacct_create,
9022 .destroy = cpuacct_destroy,
9023 .populate = cpuacct_populate,
9024 .subsys_id = cpuacct_subsys_id,
9025};
9026#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9027
9028#ifndef CONFIG_SMP
9029
9030int rcu_expedited_torture_stats(char *page)
9031{
9032 return 0;
9033}
9034EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9035
9036void synchronize_sched_expedited(void)
9037{
9038}
9039EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9040
9041#else /* #ifndef CONFIG_SMP */
9042
9043static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9044static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9045
9046#define RCU_EXPEDITED_STATE_POST -2
9047#define RCU_EXPEDITED_STATE_IDLE -1
9048
9049static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9050
9051int rcu_expedited_torture_stats(char *page)
9052{
9053 int cnt = 0;
9054 int cpu;
9055
9056 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9057 for_each_online_cpu(cpu) {
9058 cnt += sprintf(&page[cnt], " %d:%d",
9059 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9060 }
9061 cnt += sprintf(&page[cnt], "\n");
9062 return cnt;
9063}
9064EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9065
9066static long synchronize_sched_expedited_count;
9067
9068/*
9069 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9070 * approach to force grace period to end quickly. This consumes
9071 * significant time on all CPUs, and is thus not recommended for
9072 * any sort of common-case code.
9073 *
9074 * Note that it is illegal to call this function while holding any
9075 * lock that is acquired by a CPU-hotplug notifier. Failing to
9076 * observe this restriction will result in deadlock.
9077 */
9078void synchronize_sched_expedited(void)
9079{
9080 int cpu;
9081 unsigned long flags;
9082 bool need_full_sync = 0;
9083 struct rq *rq;
9084 struct migration_req *req;
9085 long snap;
9086 int trycount = 0;
9087
9088 smp_mb(); /* ensure prior mod happens before capturing snap. */
9089 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9090 get_online_cpus();
9091 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9092 put_online_cpus();
9093 if (trycount++ < 10)
9094 udelay(trycount * num_online_cpus());
9095 else {
9096 synchronize_sched();
9097 return;
9098 }
9099 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9100 smp_mb(); /* ensure test happens before caller kfree */
9101 return;
9102 }
9103 get_online_cpus();
9104 }
9105 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9106 for_each_online_cpu(cpu) {
9107 rq = cpu_rq(cpu);
9108 req = &per_cpu(rcu_migration_req, cpu);
9109 init_completion(&req->done);
9110 req->task = NULL;
9111 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9112 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9113 list_add(&req->list, &rq->migration_queue);
05fa785c 9114 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9115 wake_up_process(rq->migration_thread);
9116 }
9117 for_each_online_cpu(cpu) {
9118 rcu_expedited_state = cpu;
9119 req = &per_cpu(rcu_migration_req, cpu);
9120 rq = cpu_rq(cpu);
9121 wait_for_completion(&req->done);
05fa785c 9122 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9123 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9124 need_full_sync = 1;
9125 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9126 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9127 }
9128 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9129 synchronize_sched_expedited_count++;
03b042bf
PM
9130 mutex_unlock(&rcu_sched_expedited_mutex);
9131 put_online_cpus();
9132 if (need_full_sync)
9133 synchronize_sched();
9134}
9135EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9136
9137#endif /* #else #ifndef CONFIG_SMP */
This page took 1.939056 seconds and 5 git commands to generate.