init: introduce mm_init()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583
584 struct cfs_rq cfs;
6f505b16 585 struct rt_rq rt;
6f505b16 586
6aa645ea 587#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
588 /* list of leaf cfs_rq on this cpu: */
589 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
590#endif
591#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 592 struct list_head leaf_rt_rq_list;
1da177e4 593#endif
1da177e4
LT
594
595 /*
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
600 */
601 unsigned long nr_uninterruptible;
602
36c8b586 603 struct task_struct *curr, *idle;
c9819f45 604 unsigned long next_balance;
1da177e4 605 struct mm_struct *prev_mm;
6aa645ea 606
3e51f33f 607 u64 clock;
6aa645ea 608
1da177e4
LT
609 atomic_t nr_iowait;
610
611#ifdef CONFIG_SMP
0eab9146 612 struct root_domain *rd;
1da177e4
LT
613 struct sched_domain *sd;
614
a0a522ce 615 unsigned char idle_at_tick;
1da177e4
LT
616 /* For active balancing */
617 int active_balance;
618 int push_cpu;
d8016491
IM
619 /* cpu of this runqueue: */
620 int cpu;
1f11eb6a 621 int online;
1da177e4 622
a8a51d5e 623 unsigned long avg_load_per_task;
1da177e4 624
36c8b586 625 struct task_struct *migration_thread;
1da177e4
LT
626 struct list_head migration_queue;
627#endif
628
dce48a84
TG
629 /* calc_load related fields */
630 unsigned long calc_load_update;
631 long calc_load_active;
632
8f4d37ec 633#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
634#ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637#endif
8f4d37ec
PZ
638 struct hrtimer hrtick_timer;
639#endif
640
1da177e4
LT
641#ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
9c2c4802
KC
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
646
647 /* sys_sched_yield() stats */
480b9434 648 unsigned int yld_count;
1da177e4
LT
649
650 /* schedule() stats */
480b9434
KC
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
1da177e4
LT
654
655 /* try_to_wake_up() stats */
480b9434
KC
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
b8efb561
IM
658
659 /* BKL stats */
480b9434 660 unsigned int bkl_count;
1da177e4
LT
661#endif
662};
663
f34e3b61 664static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 665
15afe09b 666static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 667{
15afe09b 668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
669}
670
0a2966b4
CL
671static inline int cpu_of(struct rq *rq)
672{
673#ifdef CONFIG_SMP
674 return rq->cpu;
675#else
676 return 0;
677#endif
678}
679
674311d5
NP
680/*
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 682 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
683 *
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
686 */
48f24c4d
IM
687#define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
689
690#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691#define this_rq() (&__get_cpu_var(runqueues))
692#define task_rq(p) cpu_rq(task_cpu(p))
693#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
694
3e51f33f
PZ
695static inline void update_rq_clock(struct rq *rq)
696{
697 rq->clock = sched_clock_cpu(cpu_of(rq));
698}
699
bf5c91ba
IM
700/*
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
702 */
703#ifdef CONFIG_SCHED_DEBUG
704# define const_debug __read_mostly
705#else
706# define const_debug static const
707#endif
708
017730c1
IM
709/**
710 * runqueue_is_locked
711 *
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
715 */
716int runqueue_is_locked(void)
717{
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
721
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
725}
726
bf5c91ba
IM
727/*
728 * Debugging: various feature bits
729 */
f00b45c1
PZ
730
731#define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
733
bf5c91ba 734enum {
f00b45c1 735#include "sched_features.h"
bf5c91ba
IM
736};
737
f00b45c1
PZ
738#undef SCHED_FEAT
739
740#define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
742
bf5c91ba 743const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
744#include "sched_features.h"
745 0;
746
747#undef SCHED_FEAT
748
749#ifdef CONFIG_SCHED_DEBUG
750#define SCHED_FEAT(name, enabled) \
751 #name ,
752
983ed7a6 753static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
754#include "sched_features.h"
755 NULL
756};
757
758#undef SCHED_FEAT
759
34f3a814 760static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 761{
f00b45c1
PZ
762 int i;
763
764 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 768 }
34f3a814 769 seq_puts(m, "\n");
f00b45c1 770
34f3a814 771 return 0;
f00b45c1
PZ
772}
773
774static ssize_t
775sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
777{
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
782
783 if (cnt > 63)
784 cnt = 63;
785
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
788
789 buf[cnt] = 0;
790
c24b7c52 791 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
792 neg = 1;
793 cmp += 3;
794 }
795
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
798
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
805 }
806 }
807
808 if (!sched_feat_names[i])
809 return -EINVAL;
810
811 filp->f_pos += cnt;
812
813 return cnt;
814}
815
34f3a814
LZ
816static int sched_feat_open(struct inode *inode, struct file *filp)
817{
818 return single_open(filp, sched_feat_show, NULL);
819}
820
f00b45c1 821static struct file_operations sched_feat_fops = {
34f3a814
LZ
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
f00b45c1
PZ
827};
828
829static __init int sched_init_debug(void)
830{
f00b45c1
PZ
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
833
834 return 0;
835}
836late_initcall(sched_init_debug);
837
838#endif
839
840#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 841
b82d9fdd
PZ
842/*
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
845 */
846const_debug unsigned int sysctl_sched_nr_migrate = 32;
847
2398f2c6
PZ
848/*
849 * ratelimit for updating the group shares.
55cd5340 850 * default: 0.25ms
2398f2c6 851 */
55cd5340 852unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 853
ffda12a1
PZ
854/*
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
858 */
859unsigned int sysctl_sched_shares_thresh = 4;
860
fa85ae24 861/*
9f0c1e56 862 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
863 * default: 1s
864 */
9f0c1e56 865unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 866
6892b75e
IM
867static __read_mostly int scheduler_running;
868
9f0c1e56
PZ
869/*
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
872 */
873int sysctl_sched_rt_runtime = 950000;
fa85ae24 874
d0b27fa7
PZ
875static inline u64 global_rt_period(void)
876{
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
878}
879
880static inline u64 global_rt_runtime(void)
881{
e26873bb 882 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
883 return RUNTIME_INF;
884
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
886}
fa85ae24 887
1da177e4 888#ifndef prepare_arch_switch
4866cde0
NP
889# define prepare_arch_switch(next) do { } while (0)
890#endif
891#ifndef finish_arch_switch
892# define finish_arch_switch(prev) do { } while (0)
893#endif
894
051a1d1a
DA
895static inline int task_current(struct rq *rq, struct task_struct *p)
896{
897 return rq->curr == p;
898}
899
4866cde0 900#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 901static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 902{
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908}
909
70b97a7f 910static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 911{
da04c035
IM
912#ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915#endif
8a25d5de
IM
916 /*
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
920 */
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
922
4866cde0
NP
923 spin_unlock_irq(&rq->lock);
924}
925
926#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 927static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
928{
929#ifdef CONFIG_SMP
930 return p->oncpu;
931#else
051a1d1a 932 return task_current(rq, p);
4866cde0
NP
933#endif
934}
935
70b97a7f 936static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
937{
938#ifdef CONFIG_SMP
939 /*
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
943 */
944 next->oncpu = 1;
945#endif
946#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948#else
949 spin_unlock(&rq->lock);
950#endif
951}
952
70b97a7f 953static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
954{
955#ifdef CONFIG_SMP
956 /*
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
960 */
961 smp_wmb();
962 prev->oncpu = 0;
963#endif
964#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
1da177e4 966#endif
4866cde0
NP
967}
968#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 969
b29739f9
IM
970/*
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
973 */
70b97a7f 974static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
975 __acquires(rq->lock)
976{
3a5c359a
AK
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
b29739f9 982 spin_unlock(&rq->lock);
b29739f9 983 }
b29739f9
IM
984}
985
1da177e4
LT
986/*
987 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 988 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
989 * explicitly disabling preemption.
990 */
70b97a7f 991static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
992 __acquires(rq->lock)
993{
70b97a7f 994 struct rq *rq;
1da177e4 995
3a5c359a
AK
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1da177e4 1002 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1003 }
1da177e4
LT
1004}
1005
ad474cac
ON
1006void task_rq_unlock_wait(struct task_struct *p)
1007{
1008 struct rq *rq = task_rq(p);
1009
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1012}
1013
a9957449 1014static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1015 __releases(rq->lock)
1016{
1017 spin_unlock(&rq->lock);
1018}
1019
70b97a7f 1020static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1021 __releases(rq->lock)
1022{
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1024}
1025
1da177e4 1026/*
cc2a73b5 1027 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1028 */
a9957449 1029static struct rq *this_rq_lock(void)
1da177e4
LT
1030 __acquires(rq->lock)
1031{
70b97a7f 1032 struct rq *rq;
1da177e4
LT
1033
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1037
1038 return rq;
1039}
1040
8f4d37ec
PZ
1041#ifdef CONFIG_SCHED_HRTICK
1042/*
1043 * Use HR-timers to deliver accurate preemption points.
1044 *
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1048 *
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1051 */
8f4d37ec
PZ
1052
1053/*
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1057 */
1058static inline int hrtick_enabled(struct rq *rq)
1059{
1060 if (!sched_feat(HRTICK))
1061 return 0;
ba42059f 1062 if (!cpu_active(cpu_of(rq)))
b328ca18 1063 return 0;
8f4d37ec
PZ
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1065}
1066
8f4d37ec
PZ
1067static void hrtick_clear(struct rq *rq)
1068{
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071}
1072
8f4d37ec
PZ
1073/*
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1076 */
1077static enum hrtimer_restart hrtick(struct hrtimer *timer)
1078{
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1080
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1082
1083 spin_lock(&rq->lock);
3e51f33f 1084 update_rq_clock(rq);
8f4d37ec
PZ
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1087
1088 return HRTIMER_NORESTART;
1089}
1090
95e904c7 1091#ifdef CONFIG_SMP
31656519
PZ
1092/*
1093 * called from hardirq (IPI) context
1094 */
1095static void __hrtick_start(void *arg)
b328ca18 1096{
31656519 1097 struct rq *rq = arg;
b328ca18 1098
31656519
PZ
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
b328ca18
PZ
1103}
1104
31656519
PZ
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1111{
31656519
PZ
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1114
cc584b21 1115 hrtimer_set_expires(timer, time);
31656519
PZ
1116
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
6e275637 1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1121 rq->hrtick_csd_pending = 1;
1122 }
b328ca18
PZ
1123}
1124
1125static int
1126hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1127{
1128 int cpu = (int)(long)hcpu;
1129
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
31656519 1137 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1138 return NOTIFY_OK;
1139 }
1140
1141 return NOTIFY_DONE;
1142}
1143
fa748203 1144static __init void init_hrtick(void)
b328ca18
PZ
1145{
1146 hotcpu_notifier(hotplug_hrtick, 0);
1147}
31656519
PZ
1148#else
1149/*
1150 * Called to set the hrtick timer state.
1151 *
1152 * called with rq->lock held and irqs disabled
1153 */
1154static void hrtick_start(struct rq *rq, u64 delay)
1155{
7f1e2ca9
PZ
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
31656519 1158}
b328ca18 1159
006c75f1 1160static inline void init_hrtick(void)
8f4d37ec 1161{
8f4d37ec 1162}
31656519 1163#endif /* CONFIG_SMP */
8f4d37ec 1164
31656519 1165static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1166{
31656519
PZ
1167#ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
8f4d37ec 1169
31656519
PZ
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173#endif
8f4d37ec 1174
31656519
PZ
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
8f4d37ec 1177}
006c75f1 1178#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1179static inline void hrtick_clear(struct rq *rq)
1180{
1181}
1182
8f4d37ec
PZ
1183static inline void init_rq_hrtick(struct rq *rq)
1184{
1185}
1186
b328ca18
PZ
1187static inline void init_hrtick(void)
1188{
1189}
006c75f1 1190#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1191
c24d20db
IM
1192/*
1193 * resched_task - mark a task 'to be rescheduled now'.
1194 *
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1198 */
1199#ifdef CONFIG_SMP
1200
1201#ifndef tsk_is_polling
1202#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203#endif
1204
31656519 1205static void resched_task(struct task_struct *p)
c24d20db
IM
1206{
1207 int cpu;
1208
1209 assert_spin_locked(&task_rq(p)->lock);
1210
5ed0cec0 1211 if (test_tsk_need_resched(p))
c24d20db
IM
1212 return;
1213
5ed0cec0 1214 set_tsk_need_resched(p);
c24d20db
IM
1215
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1224}
1225
1226static void resched_cpu(int cpu)
1227{
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1230
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1235}
06d8308c
TG
1236
1237#ifdef CONFIG_NO_HZ
1238/*
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1247 */
1248void wake_up_idle_cpu(int cpu)
1249{
1250 struct rq *rq = cpu_rq(cpu);
1251
1252 if (cpu == smp_processor_id())
1253 return;
1254
1255 /*
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1261 */
1262 if (rq->curr != rq->idle)
1263 return;
1264
1265 /*
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1269 */
5ed0cec0 1270 set_tsk_need_resched(rq->idle);
06d8308c
TG
1271
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1276}
6d6bc0ad 1277#endif /* CONFIG_NO_HZ */
06d8308c 1278
6d6bc0ad 1279#else /* !CONFIG_SMP */
31656519 1280static void resched_task(struct task_struct *p)
c24d20db
IM
1281{
1282 assert_spin_locked(&task_rq(p)->lock);
31656519 1283 set_tsk_need_resched(p);
c24d20db 1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
1495static unsigned long source_load(int cpu, int type);
1496static unsigned long target_load(int cpu, int type);
1497static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1498
1499static unsigned long cpu_avg_load_per_task(int cpu)
1500{
1501 struct rq *rq = cpu_rq(cpu);
af6d596f 1502 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1503
4cd42620
SR
1504 if (nr_running)
1505 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1506 else
1507 rq->avg_load_per_task = 0;
eb755805
PZ
1508
1509 return rq->avg_load_per_task;
1510}
1511
1512#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1513
c09595f6
PZ
1514static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1515
1516/*
1517 * Calculate and set the cpu's group shares.
1518 */
1519static void
ffda12a1
PZ
1520update_group_shares_cpu(struct task_group *tg, int cpu,
1521 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1522{
c09595f6
PZ
1523 unsigned long shares;
1524 unsigned long rq_weight;
1525
c8cba857 1526 if (!tg->se[cpu])
c09595f6
PZ
1527 return;
1528
ec4e0e2f 1529 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1530
c09595f6
PZ
1531 /*
1532 * \Sum shares * rq_weight
1533 * shares = -----------------------
1534 * \Sum rq_weight
1535 *
1536 */
ec4e0e2f 1537 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1538 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1539
ffda12a1
PZ
1540 if (abs(shares - tg->se[cpu]->load.weight) >
1541 sysctl_sched_shares_thresh) {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long flags;
c09595f6 1544
ffda12a1 1545 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1546 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1547
ffda12a1
PZ
1548 __set_se_shares(tg->se[cpu], shares);
1549 spin_unlock_irqrestore(&rq->lock, flags);
1550 }
18d95a28 1551}
c09595f6
PZ
1552
1553/*
c8cba857
PZ
1554 * Re-compute the task group their per cpu shares over the given domain.
1555 * This needs to be done in a bottom-up fashion because the rq weight of a
1556 * parent group depends on the shares of its child groups.
c09595f6 1557 */
eb755805 1558static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1559{
ec4e0e2f 1560 unsigned long weight, rq_weight = 0;
c8cba857 1561 unsigned long shares = 0;
eb755805 1562 struct sched_domain *sd = data;
c8cba857 1563 int i;
c09595f6 1564
758b2cdc 1565 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1566 /*
1567 * If there are currently no tasks on the cpu pretend there
1568 * is one of average load so that when a new task gets to
1569 * run here it will not get delayed by group starvation.
1570 */
1571 weight = tg->cfs_rq[i]->load.weight;
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
1575 tg->cfs_rq[i]->rq_weight = weight;
1576 rq_weight += weight;
c8cba857 1577 shares += tg->cfs_rq[i]->shares;
c09595f6 1578 }
c09595f6 1579
c8cba857
PZ
1580 if ((!shares && rq_weight) || shares > tg->shares)
1581 shares = tg->shares;
1582
1583 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1584 shares = tg->shares;
c09595f6 1585
758b2cdc 1586 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1587 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1588
1589 return 0;
c09595f6
PZ
1590}
1591
1592/*
c8cba857
PZ
1593 * Compute the cpu's hierarchical load factor for each task group.
1594 * This needs to be done in a top-down fashion because the load of a child
1595 * group is a fraction of its parents load.
c09595f6 1596 */
eb755805 1597static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1598{
c8cba857 1599 unsigned long load;
eb755805 1600 long cpu = (long)data;
c09595f6 1601
c8cba857
PZ
1602 if (!tg->parent) {
1603 load = cpu_rq(cpu)->load.weight;
1604 } else {
1605 load = tg->parent->cfs_rq[cpu]->h_load;
1606 load *= tg->cfs_rq[cpu]->shares;
1607 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1608 }
c09595f6 1609
c8cba857 1610 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1611
eb755805 1612 return 0;
c09595f6
PZ
1613}
1614
c8cba857 1615static void update_shares(struct sched_domain *sd)
4d8d595d 1616{
2398f2c6
PZ
1617 u64 now = cpu_clock(raw_smp_processor_id());
1618 s64 elapsed = now - sd->last_update;
1619
1620 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1621 sd->last_update = now;
eb755805 1622 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1623 }
4d8d595d
PZ
1624}
1625
3e5459b4
PZ
1626static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1627{
1628 spin_unlock(&rq->lock);
1629 update_shares(sd);
1630 spin_lock(&rq->lock);
1631}
1632
eb755805 1633static void update_h_load(long cpu)
c09595f6 1634{
eb755805 1635 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1636}
1637
c09595f6
PZ
1638#else
1639
c8cba857 1640static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1641{
1642}
1643
3e5459b4
PZ
1644static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1645{
1646}
1647
18d95a28
PZ
1648#endif
1649
8f45e2b5
GH
1650#ifdef CONFIG_PREEMPT
1651
70574a99 1652/*
8f45e2b5
GH
1653 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1654 * way at the expense of forcing extra atomic operations in all
1655 * invocations. This assures that the double_lock is acquired using the
1656 * same underlying policy as the spinlock_t on this architecture, which
1657 * reduces latency compared to the unfair variant below. However, it
1658 * also adds more overhead and therefore may reduce throughput.
70574a99 1659 */
8f45e2b5
GH
1660static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1661 __releases(this_rq->lock)
1662 __acquires(busiest->lock)
1663 __acquires(this_rq->lock)
1664{
1665 spin_unlock(&this_rq->lock);
1666 double_rq_lock(this_rq, busiest);
1667
1668 return 1;
1669}
1670
1671#else
1672/*
1673 * Unfair double_lock_balance: Optimizes throughput at the expense of
1674 * latency by eliminating extra atomic operations when the locks are
1675 * already in proper order on entry. This favors lower cpu-ids and will
1676 * grant the double lock to lower cpus over higher ids under contention,
1677 * regardless of entry order into the function.
1678 */
1679static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1680 __releases(this_rq->lock)
1681 __acquires(busiest->lock)
1682 __acquires(this_rq->lock)
1683{
1684 int ret = 0;
1685
70574a99
AD
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1691 ret = 1;
1692 } else
1693 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1694 }
1695 return ret;
1696}
1697
8f45e2b5
GH
1698#endif /* CONFIG_PREEMPT */
1699
1700/*
1701 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1702 */
1703static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704{
1705 if (unlikely(!irqs_disabled())) {
1706 /* printk() doesn't work good under rq->lock */
1707 spin_unlock(&this_rq->lock);
1708 BUG_ON(1);
1709 }
1710
1711 return _double_lock_balance(this_rq, busiest);
1712}
1713
70574a99
AD
1714static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1715 __releases(busiest->lock)
1716{
1717 spin_unlock(&busiest->lock);
1718 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1719}
18d95a28
PZ
1720#endif
1721
30432094 1722#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1723static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1724{
30432094 1725#ifdef CONFIG_SMP
34e83e85
IM
1726 cfs_rq->shares = shares;
1727#endif
1728}
30432094 1729#endif
e7693a36 1730
dce48a84
TG
1731static void calc_load_account_active(struct rq *this_rq);
1732
dd41f596 1733#include "sched_stats.h"
dd41f596 1734#include "sched_idletask.c"
5522d5d5
IM
1735#include "sched_fair.c"
1736#include "sched_rt.c"
dd41f596
IM
1737#ifdef CONFIG_SCHED_DEBUG
1738# include "sched_debug.c"
1739#endif
1740
1741#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1742#define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
dd41f596 1744
c09595f6 1745static void inc_nr_running(struct rq *rq)
9c217245
IM
1746{
1747 rq->nr_running++;
9c217245
IM
1748}
1749
c09595f6 1750static void dec_nr_running(struct rq *rq)
9c217245
IM
1751{
1752 rq->nr_running--;
9c217245
IM
1753}
1754
45bf76df
IM
1755static void set_load_weight(struct task_struct *p)
1756{
1757 if (task_has_rt_policy(p)) {
dd41f596
IM
1758 p->se.load.weight = prio_to_weight[0] * 2;
1759 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1760 return;
1761 }
45bf76df 1762
dd41f596
IM
1763 /*
1764 * SCHED_IDLE tasks get minimal weight:
1765 */
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1770 }
71f8bd46 1771
dd41f596
IM
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1774}
1775
2087a1ad
GH
1776static void update_avg(u64 *avg, u64 sample)
1777{
1778 s64 diff = sample - *avg;
1779 *avg += diff >> 3;
1780}
1781
8159f87e 1782static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1783{
831451ac
PZ
1784 if (wakeup)
1785 p->se.start_runtime = p->se.sum_exec_runtime;
1786
dd41f596 1787 sched_info_queued(p);
fd390f6a 1788 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1789 p->se.on_rq = 1;
71f8bd46
IM
1790}
1791
69be72c1 1792static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1793{
831451ac
PZ
1794 if (sleep) {
1795 if (p->se.last_wakeup) {
1796 update_avg(&p->se.avg_overlap,
1797 p->se.sum_exec_runtime - p->se.last_wakeup);
1798 p->se.last_wakeup = 0;
1799 } else {
1800 update_avg(&p->se.avg_wakeup,
1801 sysctl_sched_wakeup_granularity);
1802 }
2087a1ad
GH
1803 }
1804
46ac22ba 1805 sched_info_dequeued(p);
f02231e5 1806 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1807 p->se.on_rq = 0;
71f8bd46
IM
1808}
1809
14531189 1810/*
dd41f596 1811 * __normal_prio - return the priority that is based on the static prio
14531189 1812 */
14531189
IM
1813static inline int __normal_prio(struct task_struct *p)
1814{
dd41f596 1815 return p->static_prio;
14531189
IM
1816}
1817
b29739f9
IM
1818/*
1819 * Calculate the expected normal priority: i.e. priority
1820 * without taking RT-inheritance into account. Might be
1821 * boosted by interactivity modifiers. Changes upon fork,
1822 * setprio syscalls, and whenever the interactivity
1823 * estimator recalculates.
1824 */
36c8b586 1825static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1826{
1827 int prio;
1828
e05606d3 1829 if (task_has_rt_policy(p))
b29739f9
IM
1830 prio = MAX_RT_PRIO-1 - p->rt_priority;
1831 else
1832 prio = __normal_prio(p);
1833 return prio;
1834}
1835
1836/*
1837 * Calculate the current priority, i.e. the priority
1838 * taken into account by the scheduler. This value might
1839 * be boosted by RT tasks, or might be boosted by
1840 * interactivity modifiers. Will be RT if the task got
1841 * RT-boosted. If not then it returns p->normal_prio.
1842 */
36c8b586 1843static int effective_prio(struct task_struct *p)
b29739f9
IM
1844{
1845 p->normal_prio = normal_prio(p);
1846 /*
1847 * If we are RT tasks or we were boosted to RT priority,
1848 * keep the priority unchanged. Otherwise, update priority
1849 * to the normal priority:
1850 */
1851 if (!rt_prio(p->prio))
1852 return p->normal_prio;
1853 return p->prio;
1854}
1855
1da177e4 1856/*
dd41f596 1857 * activate_task - move a task to the runqueue.
1da177e4 1858 */
dd41f596 1859static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1860{
d9514f6c 1861 if (task_contributes_to_load(p))
dd41f596 1862 rq->nr_uninterruptible--;
1da177e4 1863
8159f87e 1864 enqueue_task(rq, p, wakeup);
c09595f6 1865 inc_nr_running(rq);
1da177e4
LT
1866}
1867
1da177e4
LT
1868/*
1869 * deactivate_task - remove a task from the runqueue.
1870 */
2e1cb74a 1871static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1872{
d9514f6c 1873 if (task_contributes_to_load(p))
dd41f596
IM
1874 rq->nr_uninterruptible++;
1875
69be72c1 1876 dequeue_task(rq, p, sleep);
c09595f6 1877 dec_nr_running(rq);
1da177e4
LT
1878}
1879
1da177e4
LT
1880/**
1881 * task_curr - is this task currently executing on a CPU?
1882 * @p: the task in question.
1883 */
36c8b586 1884inline int task_curr(const struct task_struct *p)
1da177e4
LT
1885{
1886 return cpu_curr(task_cpu(p)) == p;
1887}
1888
dd41f596
IM
1889static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1890{
6f505b16 1891 set_task_rq(p, cpu);
dd41f596 1892#ifdef CONFIG_SMP
ce96b5ac
DA
1893 /*
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfuly executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1897 */
1898 smp_wmb();
dd41f596 1899 task_thread_info(p)->cpu = cpu;
dd41f596 1900#endif
2dd73a4f
PW
1901}
1902
cb469845
SR
1903static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1904 const struct sched_class *prev_class,
1905 int oldprio, int running)
1906{
1907 if (prev_class != p->sched_class) {
1908 if (prev_class->switched_from)
1909 prev_class->switched_from(rq, p, running);
1910 p->sched_class->switched_to(rq, p, running);
1911 } else
1912 p->sched_class->prio_changed(rq, p, oldprio, running);
1913}
1914
1da177e4 1915#ifdef CONFIG_SMP
c65cc870 1916
e958b360
TG
1917/* Used instead of source_load when we know the type == 0 */
1918static unsigned long weighted_cpuload(const int cpu)
1919{
1920 return cpu_rq(cpu)->load.weight;
1921}
1922
cc367732
IM
1923/*
1924 * Is this task likely cache-hot:
1925 */
e7693a36 1926static int
cc367732
IM
1927task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1928{
1929 s64 delta;
1930
f540a608
IM
1931 /*
1932 * Buddy candidates are cache hot:
1933 */
4793241b
PZ
1934 if (sched_feat(CACHE_HOT_BUDDY) &&
1935 (&p->se == cfs_rq_of(&p->se)->next ||
1936 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1937 return 1;
1938
cc367732
IM
1939 if (p->sched_class != &fair_sched_class)
1940 return 0;
1941
6bc1665b
IM
1942 if (sysctl_sched_migration_cost == -1)
1943 return 1;
1944 if (sysctl_sched_migration_cost == 0)
1945 return 0;
1946
cc367732
IM
1947 delta = now - p->se.exec_start;
1948
1949 return delta < (s64)sysctl_sched_migration_cost;
1950}
1951
1952
dd41f596 1953void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1954{
dd41f596
IM
1955 int old_cpu = task_cpu(p);
1956 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1957 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1958 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1959 u64 clock_offset;
dd41f596
IM
1960
1961 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1962
de1d7286 1963 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1964
6cfb0d5d
IM
1965#ifdef CONFIG_SCHEDSTATS
1966 if (p->se.wait_start)
1967 p->se.wait_start -= clock_offset;
dd41f596
IM
1968 if (p->se.sleep_start)
1969 p->se.sleep_start -= clock_offset;
1970 if (p->se.block_start)
1971 p->se.block_start -= clock_offset;
cc367732
IM
1972 if (old_cpu != new_cpu) {
1973 schedstat_inc(p, se.nr_migrations);
1974 if (task_hot(p, old_rq->clock, NULL))
1975 schedstat_inc(p, se.nr_forced2_migrations);
1976 }
6cfb0d5d 1977#endif
2830cf8c
SV
1978 p->se.vruntime -= old_cfsrq->min_vruntime -
1979 new_cfsrq->min_vruntime;
dd41f596
IM
1980
1981 __set_task_cpu(p, new_cpu);
c65cc870
IM
1982}
1983
70b97a7f 1984struct migration_req {
1da177e4 1985 struct list_head list;
1da177e4 1986
36c8b586 1987 struct task_struct *task;
1da177e4
LT
1988 int dest_cpu;
1989
1da177e4 1990 struct completion done;
70b97a7f 1991};
1da177e4
LT
1992
1993/*
1994 * The task's runqueue lock must be held.
1995 * Returns true if you have to wait for migration thread.
1996 */
36c8b586 1997static int
70b97a7f 1998migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1999{
70b97a7f 2000 struct rq *rq = task_rq(p);
1da177e4
LT
2001
2002 /*
2003 * If the task is not on a runqueue (and not running), then
2004 * it is sufficient to simply update the task's cpu field.
2005 */
dd41f596 2006 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2007 set_task_cpu(p, dest_cpu);
2008 return 0;
2009 }
2010
2011 init_completion(&req->done);
1da177e4
LT
2012 req->task = p;
2013 req->dest_cpu = dest_cpu;
2014 list_add(&req->list, &rq->migration_queue);
48f24c4d 2015
1da177e4
LT
2016 return 1;
2017}
2018
a26b89f0
MM
2019/*
2020 * wait_task_context_switch - wait for a thread to complete at least one
2021 * context switch.
2022 *
2023 * @p must not be current.
2024 */
2025void wait_task_context_switch(struct task_struct *p)
2026{
2027 unsigned long nvcsw, nivcsw, flags;
2028 int running;
2029 struct rq *rq;
2030
2031 nvcsw = p->nvcsw;
2032 nivcsw = p->nivcsw;
2033 for (;;) {
2034 /*
2035 * The runqueue is assigned before the actual context
2036 * switch. We need to take the runqueue lock.
2037 *
2038 * We could check initially without the lock but it is
2039 * very likely that we need to take the lock in every
2040 * iteration.
2041 */
2042 rq = task_rq_lock(p, &flags);
2043 running = task_running(rq, p);
2044 task_rq_unlock(rq, &flags);
2045
2046 if (likely(!running))
2047 break;
2048 /*
2049 * The switch count is incremented before the actual
2050 * context switch. We thus wait for two switches to be
2051 * sure at least one completed.
2052 */
2053 if ((p->nvcsw - nvcsw) > 1)
2054 break;
2055 if ((p->nivcsw - nivcsw) > 1)
2056 break;
2057
2058 cpu_relax();
2059 }
2060}
2061
1da177e4
LT
2062/*
2063 * wait_task_inactive - wait for a thread to unschedule.
2064 *
85ba2d86
RM
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2071 *
1da177e4
LT
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2077 */
85ba2d86 2078unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2079{
2080 unsigned long flags;
dd41f596 2081 int running, on_rq;
85ba2d86 2082 unsigned long ncsw;
70b97a7f 2083 struct rq *rq;
1da177e4 2084
3a5c359a
AK
2085 for (;;) {
2086 /*
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2090 * work out!
2091 */
2092 rq = task_rq(p);
fa490cfd 2093
3a5c359a
AK
2094 /*
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2097 * any locks.
2098 *
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2104 */
85ba2d86
RM
2105 while (task_running(rq, p)) {
2106 if (match_state && unlikely(p->state != match_state))
2107 return 0;
3a5c359a 2108 cpu_relax();
85ba2d86 2109 }
fa490cfd 2110
3a5c359a
AK
2111 /*
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2115 */
2116 rq = task_rq_lock(p, &flags);
0a16b607 2117 trace_sched_wait_task(rq, p);
3a5c359a
AK
2118 running = task_running(rq, p);
2119 on_rq = p->se.on_rq;
85ba2d86 2120 ncsw = 0;
f31e11d8 2121 if (!match_state || p->state == match_state)
93dcf55f 2122 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2123 task_rq_unlock(rq, &flags);
fa490cfd 2124
85ba2d86
RM
2125 /*
2126 * If it changed from the expected state, bail out now.
2127 */
2128 if (unlikely(!ncsw))
2129 break;
2130
3a5c359a
AK
2131 /*
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2134 *
2135 * Oops. Go back and try again..
2136 */
2137 if (unlikely(running)) {
2138 cpu_relax();
2139 continue;
2140 }
fa490cfd 2141
3a5c359a
AK
2142 /*
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2145 * preempted!
2146 *
80dd99b3 2147 * So if it was still runnable (but just not actively
3a5c359a
AK
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2150 */
2151 if (unlikely(on_rq)) {
2152 schedule_timeout_uninterruptible(1);
2153 continue;
2154 }
fa490cfd 2155
3a5c359a
AK
2156 /*
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2160 */
2161 break;
2162 }
85ba2d86
RM
2163
2164 return ncsw;
1da177e4
LT
2165}
2166
2167/***
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2170 *
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2173 *
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2178 * achieved as well.
2179 */
36c8b586 2180void kick_process(struct task_struct *p)
1da177e4
LT
2181{
2182 int cpu;
2183
2184 preempt_disable();
2185 cpu = task_cpu(p);
2186 if ((cpu != smp_processor_id()) && task_curr(p))
2187 smp_send_reschedule(cpu);
2188 preempt_enable();
2189}
2190
2191/*
2dd73a4f
PW
2192 * Return a low guess at the load of a migration-source cpu weighted
2193 * according to the scheduling class and "nice" value.
1da177e4
LT
2194 *
2195 * We want to under-estimate the load of migration sources, to
2196 * balance conservatively.
2197 */
a9957449 2198static unsigned long source_load(int cpu, int type)
1da177e4 2199{
70b97a7f 2200 struct rq *rq = cpu_rq(cpu);
dd41f596 2201 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2202
93b75217 2203 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2204 return total;
b910472d 2205
dd41f596 2206 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2207}
2208
2209/*
2dd73a4f
PW
2210 * Return a high guess at the load of a migration-target cpu weighted
2211 * according to the scheduling class and "nice" value.
1da177e4 2212 */
a9957449 2213static unsigned long target_load(int cpu, int type)
1da177e4 2214{
70b97a7f 2215 struct rq *rq = cpu_rq(cpu);
dd41f596 2216 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2217
93b75217 2218 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2219 return total;
3b0bd9bc 2220
dd41f596 2221 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2222}
2223
147cbb4b
NP
2224/*
2225 * find_idlest_group finds and returns the least busy CPU group within the
2226 * domain.
2227 */
2228static struct sched_group *
2229find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2230{
2231 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2232 unsigned long min_load = ULONG_MAX, this_load = 0;
2233 int load_idx = sd->forkexec_idx;
2234 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2235
2236 do {
2237 unsigned long load, avg_load;
2238 int local_group;
2239 int i;
2240
da5a5522 2241 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2242 if (!cpumask_intersects(sched_group_cpus(group),
2243 &p->cpus_allowed))
3a5c359a 2244 continue;
da5a5522 2245
758b2cdc
RR
2246 local_group = cpumask_test_cpu(this_cpu,
2247 sched_group_cpus(group));
147cbb4b
NP
2248
2249 /* Tally up the load of all CPUs in the group */
2250 avg_load = 0;
2251
758b2cdc 2252 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2253 /* Bias balancing toward cpus of our domain */
2254 if (local_group)
2255 load = source_load(i, load_idx);
2256 else
2257 load = target_load(i, load_idx);
2258
2259 avg_load += load;
2260 }
2261
2262 /* Adjust by relative CPU power of the group */
5517d86b
ED
2263 avg_load = sg_div_cpu_power(group,
2264 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2265
2266 if (local_group) {
2267 this_load = avg_load;
2268 this = group;
2269 } else if (avg_load < min_load) {
2270 min_load = avg_load;
2271 idlest = group;
2272 }
3a5c359a 2273 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2274
2275 if (!idlest || 100*this_load < imbalance*min_load)
2276 return NULL;
2277 return idlest;
2278}
2279
2280/*
0feaece9 2281 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2282 */
95cdf3b7 2283static int
758b2cdc 2284find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2285{
2286 unsigned long load, min_load = ULONG_MAX;
2287 int idlest = -1;
2288 int i;
2289
da5a5522 2290 /* Traverse only the allowed CPUs */
758b2cdc 2291 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2292 load = weighted_cpuload(i);
147cbb4b
NP
2293
2294 if (load < min_load || (load == min_load && i == this_cpu)) {
2295 min_load = load;
2296 idlest = i;
2297 }
2298 }
2299
2300 return idlest;
2301}
2302
476d139c
NP
2303/*
2304 * sched_balance_self: balance the current task (running on cpu) in domains
2305 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2306 * SD_BALANCE_EXEC.
2307 *
2308 * Balance, ie. select the least loaded group.
2309 *
2310 * Returns the target CPU number, or the same CPU if no balancing is needed.
2311 *
2312 * preempt must be disabled.
2313 */
2314static int sched_balance_self(int cpu, int flag)
2315{
2316 struct task_struct *t = current;
2317 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2318
c96d145e 2319 for_each_domain(cpu, tmp) {
9761eea8
IM
2320 /*
2321 * If power savings logic is enabled for a domain, stop there.
2322 */
5c45bf27
SS
2323 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2324 break;
476d139c
NP
2325 if (tmp->flags & flag)
2326 sd = tmp;
c96d145e 2327 }
476d139c 2328
039a1c41
PZ
2329 if (sd)
2330 update_shares(sd);
2331
476d139c 2332 while (sd) {
476d139c 2333 struct sched_group *group;
1a848870
SS
2334 int new_cpu, weight;
2335
2336 if (!(sd->flags & flag)) {
2337 sd = sd->child;
2338 continue;
2339 }
476d139c 2340
476d139c 2341 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2342 if (!group) {
2343 sd = sd->child;
2344 continue;
2345 }
476d139c 2346
758b2cdc 2347 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2348 if (new_cpu == -1 || new_cpu == cpu) {
2349 /* Now try balancing at a lower domain level of cpu */
2350 sd = sd->child;
2351 continue;
2352 }
476d139c 2353
1a848870 2354 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2355 cpu = new_cpu;
758b2cdc 2356 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2357 sd = NULL;
476d139c 2358 for_each_domain(cpu, tmp) {
758b2cdc 2359 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2360 break;
2361 if (tmp->flags & flag)
2362 sd = tmp;
2363 }
2364 /* while loop will break here if sd == NULL */
2365 }
2366
2367 return cpu;
2368}
2369
2370#endif /* CONFIG_SMP */
1da177e4 2371
1da177e4
LT
2372/***
2373 * try_to_wake_up - wake up a thread
2374 * @p: the to-be-woken-up thread
2375 * @state: the mask of task states that can be woken
2376 * @sync: do a synchronous wakeup?
2377 *
2378 * Put it on the run-queue if it's not already there. The "current"
2379 * thread is always on the run-queue (except when the actual
2380 * re-schedule is in progress), and as such you're allowed to do
2381 * the simpler "current->state = TASK_RUNNING" to mark yourself
2382 * runnable without the overhead of this.
2383 *
2384 * returns failure only if the task is already active.
2385 */
36c8b586 2386static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2387{
cc367732 2388 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2389 unsigned long flags;
2390 long old_state;
70b97a7f 2391 struct rq *rq;
1da177e4 2392
b85d0667
IM
2393 if (!sched_feat(SYNC_WAKEUPS))
2394 sync = 0;
2395
2398f2c6 2396#ifdef CONFIG_SMP
57310a98 2397 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2398 struct sched_domain *sd;
2399
2400 this_cpu = raw_smp_processor_id();
2401 cpu = task_cpu(p);
2402
2403 for_each_domain(this_cpu, sd) {
758b2cdc 2404 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2405 update_shares(sd);
2406 break;
2407 }
2408 }
2409 }
2410#endif
2411
04e2f174 2412 smp_wmb();
1da177e4 2413 rq = task_rq_lock(p, &flags);
03e89e45 2414 update_rq_clock(rq);
1da177e4
LT
2415 old_state = p->state;
2416 if (!(old_state & state))
2417 goto out;
2418
dd41f596 2419 if (p->se.on_rq)
1da177e4
LT
2420 goto out_running;
2421
2422 cpu = task_cpu(p);
cc367732 2423 orig_cpu = cpu;
1da177e4
LT
2424 this_cpu = smp_processor_id();
2425
2426#ifdef CONFIG_SMP
2427 if (unlikely(task_running(rq, p)))
2428 goto out_activate;
2429
5d2f5a61
DA
2430 cpu = p->sched_class->select_task_rq(p, sync);
2431 if (cpu != orig_cpu) {
2432 set_task_cpu(p, cpu);
1da177e4
LT
2433 task_rq_unlock(rq, &flags);
2434 /* might preempt at this point */
2435 rq = task_rq_lock(p, &flags);
2436 old_state = p->state;
2437 if (!(old_state & state))
2438 goto out;
dd41f596 2439 if (p->se.on_rq)
1da177e4
LT
2440 goto out_running;
2441
2442 this_cpu = smp_processor_id();
2443 cpu = task_cpu(p);
2444 }
2445
e7693a36
GH
2446#ifdef CONFIG_SCHEDSTATS
2447 schedstat_inc(rq, ttwu_count);
2448 if (cpu == this_cpu)
2449 schedstat_inc(rq, ttwu_local);
2450 else {
2451 struct sched_domain *sd;
2452 for_each_domain(this_cpu, sd) {
758b2cdc 2453 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2454 schedstat_inc(sd, ttwu_wake_remote);
2455 break;
2456 }
2457 }
2458 }
6d6bc0ad 2459#endif /* CONFIG_SCHEDSTATS */
e7693a36 2460
1da177e4
LT
2461out_activate:
2462#endif /* CONFIG_SMP */
cc367732
IM
2463 schedstat_inc(p, se.nr_wakeups);
2464 if (sync)
2465 schedstat_inc(p, se.nr_wakeups_sync);
2466 if (orig_cpu != cpu)
2467 schedstat_inc(p, se.nr_wakeups_migrate);
2468 if (cpu == this_cpu)
2469 schedstat_inc(p, se.nr_wakeups_local);
2470 else
2471 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2472 activate_task(rq, p, 1);
1da177e4
LT
2473 success = 1;
2474
831451ac
PZ
2475 /*
2476 * Only attribute actual wakeups done by this task.
2477 */
2478 if (!in_interrupt()) {
2479 struct sched_entity *se = &current->se;
2480 u64 sample = se->sum_exec_runtime;
2481
2482 if (se->last_wakeup)
2483 sample -= se->last_wakeup;
2484 else
2485 sample -= se->start_runtime;
2486 update_avg(&se->avg_wakeup, sample);
2487
2488 se->last_wakeup = se->sum_exec_runtime;
2489 }
2490
1da177e4 2491out_running:
468a15bb 2492 trace_sched_wakeup(rq, p, success);
15afe09b 2493 check_preempt_curr(rq, p, sync);
4ae7d5ce 2494
1da177e4 2495 p->state = TASK_RUNNING;
9a897c5a
SR
2496#ifdef CONFIG_SMP
2497 if (p->sched_class->task_wake_up)
2498 p->sched_class->task_wake_up(rq, p);
2499#endif
1da177e4
LT
2500out:
2501 task_rq_unlock(rq, &flags);
2502
2503 return success;
2504}
2505
50fa610a
DH
2506/**
2507 * wake_up_process - Wake up a specific process
2508 * @p: The process to be woken up.
2509 *
2510 * Attempt to wake up the nominated process and move it to the set of runnable
2511 * processes. Returns 1 if the process was woken up, 0 if it was already
2512 * running.
2513 *
2514 * It may be assumed that this function implies a write memory barrier before
2515 * changing the task state if and only if any tasks are woken up.
2516 */
7ad5b3a5 2517int wake_up_process(struct task_struct *p)
1da177e4 2518{
d9514f6c 2519 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2520}
1da177e4
LT
2521EXPORT_SYMBOL(wake_up_process);
2522
7ad5b3a5 2523int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2524{
2525 return try_to_wake_up(p, state, 0);
2526}
2527
1da177e4
LT
2528/*
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
dd41f596
IM
2531 *
2532 * __sched_fork() is basic setup used by init_idle() too:
2533 */
2534static void __sched_fork(struct task_struct *p)
2535{
dd41f596
IM
2536 p->se.exec_start = 0;
2537 p->se.sum_exec_runtime = 0;
f6cf891c 2538 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2539 p->se.last_wakeup = 0;
2540 p->se.avg_overlap = 0;
831451ac
PZ
2541 p->se.start_runtime = 0;
2542 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2543
2544#ifdef CONFIG_SCHEDSTATS
2545 p->se.wait_start = 0;
dd41f596
IM
2546 p->se.sum_sleep_runtime = 0;
2547 p->se.sleep_start = 0;
dd41f596
IM
2548 p->se.block_start = 0;
2549 p->se.sleep_max = 0;
2550 p->se.block_max = 0;
2551 p->se.exec_max = 0;
eba1ed4b 2552 p->se.slice_max = 0;
dd41f596 2553 p->se.wait_max = 0;
6cfb0d5d 2554#endif
476d139c 2555
fa717060 2556 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2557 p->se.on_rq = 0;
4a55bd5e 2558 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2559
e107be36
AK
2560#ifdef CONFIG_PREEMPT_NOTIFIERS
2561 INIT_HLIST_HEAD(&p->preempt_notifiers);
2562#endif
2563
1da177e4
LT
2564 /*
2565 * We mark the process as running here, but have not actually
2566 * inserted it onto the runqueue yet. This guarantees that
2567 * nobody will actually run it, and a signal or other external
2568 * event cannot wake it up and insert it on the runqueue either.
2569 */
2570 p->state = TASK_RUNNING;
dd41f596
IM
2571}
2572
2573/*
2574 * fork()/clone()-time setup:
2575 */
2576void sched_fork(struct task_struct *p, int clone_flags)
2577{
2578 int cpu = get_cpu();
2579
2580 __sched_fork(p);
2581
2582#ifdef CONFIG_SMP
2583 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2584#endif
02e4bac2 2585 set_task_cpu(p, cpu);
b29739f9
IM
2586
2587 /*
2588 * Make sure we do not leak PI boosting priority to the child:
2589 */
2590 p->prio = current->normal_prio;
2ddbf952
HS
2591 if (!rt_prio(p->prio))
2592 p->sched_class = &fair_sched_class;
b29739f9 2593
52f17b6c 2594#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2595 if (likely(sched_info_on()))
52f17b6c 2596 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2597#endif
d6077cb8 2598#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2599 p->oncpu = 0;
2600#endif
1da177e4 2601#ifdef CONFIG_PREEMPT
4866cde0 2602 /* Want to start with kernel preemption disabled. */
a1261f54 2603 task_thread_info(p)->preempt_count = 1;
1da177e4 2604#endif
917b627d
GH
2605 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2606
476d139c 2607 put_cpu();
1da177e4
LT
2608}
2609
2610/*
2611 * wake_up_new_task - wake up a newly created task for the first time.
2612 *
2613 * This function will do some initial scheduler statistics housekeeping
2614 * that must be done for every newly created context, then puts the task
2615 * on the runqueue and wakes it.
2616 */
7ad5b3a5 2617void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2618{
2619 unsigned long flags;
dd41f596 2620 struct rq *rq;
1da177e4
LT
2621
2622 rq = task_rq_lock(p, &flags);
147cbb4b 2623 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2624 update_rq_clock(rq);
1da177e4
LT
2625
2626 p->prio = effective_prio(p);
2627
b9dca1e0 2628 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2629 activate_task(rq, p, 0);
1da177e4 2630 } else {
1da177e4 2631 /*
dd41f596
IM
2632 * Let the scheduling class do new task startup
2633 * management (if any):
1da177e4 2634 */
ee0827d8 2635 p->sched_class->task_new(rq, p);
c09595f6 2636 inc_nr_running(rq);
1da177e4 2637 }
c71dd42d 2638 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2639 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2640#ifdef CONFIG_SMP
2641 if (p->sched_class->task_wake_up)
2642 p->sched_class->task_wake_up(rq, p);
2643#endif
dd41f596 2644 task_rq_unlock(rq, &flags);
1da177e4
LT
2645}
2646
e107be36
AK
2647#ifdef CONFIG_PREEMPT_NOTIFIERS
2648
2649/**
80dd99b3 2650 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2651 * @notifier: notifier struct to register
e107be36
AK
2652 */
2653void preempt_notifier_register(struct preempt_notifier *notifier)
2654{
2655 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2656}
2657EXPORT_SYMBOL_GPL(preempt_notifier_register);
2658
2659/**
2660 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2661 * @notifier: notifier struct to unregister
e107be36
AK
2662 *
2663 * This is safe to call from within a preemption notifier.
2664 */
2665void preempt_notifier_unregister(struct preempt_notifier *notifier)
2666{
2667 hlist_del(&notifier->link);
2668}
2669EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2670
2671static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2672{
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2678}
2679
2680static void
2681fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683{
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_out(notifier, next);
2689}
2690
6d6bc0ad 2691#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2692
2693static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2694{
2695}
2696
2697static void
2698fire_sched_out_preempt_notifiers(struct task_struct *curr,
2699 struct task_struct *next)
2700{
2701}
2702
6d6bc0ad 2703#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2704
4866cde0
NP
2705/**
2706 * prepare_task_switch - prepare to switch tasks
2707 * @rq: the runqueue preparing to switch
421cee29 2708 * @prev: the current task that is being switched out
4866cde0
NP
2709 * @next: the task we are going to switch to.
2710 *
2711 * This is called with the rq lock held and interrupts off. It must
2712 * be paired with a subsequent finish_task_switch after the context
2713 * switch.
2714 *
2715 * prepare_task_switch sets up locking and calls architecture specific
2716 * hooks.
2717 */
e107be36
AK
2718static inline void
2719prepare_task_switch(struct rq *rq, struct task_struct *prev,
2720 struct task_struct *next)
4866cde0 2721{
e107be36 2722 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2723 prepare_lock_switch(rq, next);
2724 prepare_arch_switch(next);
2725}
2726
1da177e4
LT
2727/**
2728 * finish_task_switch - clean up after a task-switch
344babaa 2729 * @rq: runqueue associated with task-switch
1da177e4
LT
2730 * @prev: the thread we just switched away from.
2731 *
4866cde0
NP
2732 * finish_task_switch must be called after the context switch, paired
2733 * with a prepare_task_switch call before the context switch.
2734 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2735 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2736 *
2737 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2738 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2739 * with the lock held can cause deadlocks; see schedule() for
2740 * details.)
2741 */
a9957449 2742static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2743 __releases(rq->lock)
2744{
1da177e4 2745 struct mm_struct *mm = rq->prev_mm;
55a101f8 2746 long prev_state;
967fc046
GH
2747#ifdef CONFIG_SMP
2748 int post_schedule = 0;
2749
2750 if (current->sched_class->needs_post_schedule)
2751 post_schedule = current->sched_class->needs_post_schedule(rq);
2752#endif
1da177e4
LT
2753
2754 rq->prev_mm = NULL;
2755
2756 /*
2757 * A task struct has one reference for the use as "current".
c394cc9f 2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
c394cc9f 2761 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2762 * still held, otherwise prev could be scheduled on another cpu, die
2763 * there before we look at prev->state, and then the reference would
2764 * be dropped twice.
2765 * Manfred Spraul <manfred@colorfullife.com>
2766 */
55a101f8 2767 prev_state = prev->state;
4866cde0
NP
2768 finish_arch_switch(prev);
2769 finish_lock_switch(rq, prev);
9a897c5a 2770#ifdef CONFIG_SMP
967fc046 2771 if (post_schedule)
9a897c5a
SR
2772 current->sched_class->post_schedule(rq);
2773#endif
e8fa1362 2774
e107be36 2775 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2776 if (mm)
2777 mmdrop(mm);
c394cc9f 2778 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2779 /*
2780 * Remove function-return probe instances associated with this
2781 * task and put them back on the free list.
9761eea8 2782 */
c6fd91f0 2783 kprobe_flush_task(prev);
1da177e4 2784 put_task_struct(prev);
c6fd91f0 2785 }
1da177e4
LT
2786}
2787
2788/**
2789 * schedule_tail - first thing a freshly forked thread must call.
2790 * @prev: the thread we just switched away from.
2791 */
36c8b586 2792asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2793 __releases(rq->lock)
2794{
70b97a7f
IM
2795 struct rq *rq = this_rq();
2796
4866cde0
NP
2797 finish_task_switch(rq, prev);
2798#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2799 /* In this case, finish_task_switch does not reenable preemption */
2800 preempt_enable();
2801#endif
1da177e4 2802 if (current->set_child_tid)
b488893a 2803 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2804}
2805
2806/*
2807 * context_switch - switch to the new MM and the new
2808 * thread's register state.
2809 */
dd41f596 2810static inline void
70b97a7f 2811context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2812 struct task_struct *next)
1da177e4 2813{
dd41f596 2814 struct mm_struct *mm, *oldmm;
1da177e4 2815
e107be36 2816 prepare_task_switch(rq, prev, next);
0a16b607 2817 trace_sched_switch(rq, prev, next);
dd41f596
IM
2818 mm = next->mm;
2819 oldmm = prev->active_mm;
9226d125
ZA
2820 /*
2821 * For paravirt, this is coupled with an exit in switch_to to
2822 * combine the page table reload and the switch backend into
2823 * one hypercall.
2824 */
224101ed 2825 arch_start_context_switch(prev);
9226d125 2826
dd41f596 2827 if (unlikely(!mm)) {
1da177e4
LT
2828 next->active_mm = oldmm;
2829 atomic_inc(&oldmm->mm_count);
2830 enter_lazy_tlb(oldmm, next);
2831 } else
2832 switch_mm(oldmm, mm, next);
2833
dd41f596 2834 if (unlikely(!prev->mm)) {
1da177e4 2835 prev->active_mm = NULL;
1da177e4
LT
2836 rq->prev_mm = oldmm;
2837 }
3a5f5e48
IM
2838 /*
2839 * Since the runqueue lock will be released by the next
2840 * task (which is an invalid locking op but in the case
2841 * of the scheduler it's an obvious special-case), so we
2842 * do an early lockdep release here:
2843 */
2844#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2845 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2846#endif
1da177e4
LT
2847
2848 /* Here we just switch the register state and the stack. */
2849 switch_to(prev, next, prev);
2850
dd41f596
IM
2851 barrier();
2852 /*
2853 * this_rq must be evaluated again because prev may have moved
2854 * CPUs since it called schedule(), thus the 'rq' on its stack
2855 * frame will be invalid.
2856 */
2857 finish_task_switch(this_rq(), prev);
1da177e4
LT
2858}
2859
2860/*
2861 * nr_running, nr_uninterruptible and nr_context_switches:
2862 *
2863 * externally visible scheduler statistics: current number of runnable
2864 * threads, current number of uninterruptible-sleeping threads, total
2865 * number of context switches performed since bootup.
2866 */
2867unsigned long nr_running(void)
2868{
2869 unsigned long i, sum = 0;
2870
2871 for_each_online_cpu(i)
2872 sum += cpu_rq(i)->nr_running;
2873
2874 return sum;
2875}
2876
2877unsigned long nr_uninterruptible(void)
2878{
2879 unsigned long i, sum = 0;
2880
0a945022 2881 for_each_possible_cpu(i)
1da177e4
LT
2882 sum += cpu_rq(i)->nr_uninterruptible;
2883
2884 /*
2885 * Since we read the counters lockless, it might be slightly
2886 * inaccurate. Do not allow it to go below zero though:
2887 */
2888 if (unlikely((long)sum < 0))
2889 sum = 0;
2890
2891 return sum;
2892}
2893
2894unsigned long long nr_context_switches(void)
2895{
cc94abfc
SR
2896 int i;
2897 unsigned long long sum = 0;
1da177e4 2898
0a945022 2899 for_each_possible_cpu(i)
1da177e4
LT
2900 sum += cpu_rq(i)->nr_switches;
2901
2902 return sum;
2903}
2904
2905unsigned long nr_iowait(void)
2906{
2907 unsigned long i, sum = 0;
2908
0a945022 2909 for_each_possible_cpu(i)
1da177e4
LT
2910 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2911
2912 return sum;
2913}
2914
dce48a84
TG
2915/* Variables and functions for calc_load */
2916static atomic_long_t calc_load_tasks;
2917static unsigned long calc_load_update;
2918unsigned long avenrun[3];
2919EXPORT_SYMBOL(avenrun);
2920
2d02494f
TG
2921/**
2922 * get_avenrun - get the load average array
2923 * @loads: pointer to dest load array
2924 * @offset: offset to add
2925 * @shift: shift count to shift the result left
2926 *
2927 * These values are estimates at best, so no need for locking.
2928 */
2929void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2930{
2931 loads[0] = (avenrun[0] + offset) << shift;
2932 loads[1] = (avenrun[1] + offset) << shift;
2933 loads[2] = (avenrun[2] + offset) << shift;
2934}
2935
dce48a84
TG
2936static unsigned long
2937calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2938{
dce48a84
TG
2939 load *= exp;
2940 load += active * (FIXED_1 - exp);
2941 return load >> FSHIFT;
2942}
db1b1fef 2943
dce48a84
TG
2944/*
2945 * calc_load - update the avenrun load estimates 10 ticks after the
2946 * CPUs have updated calc_load_tasks.
2947 */
2948void calc_global_load(void)
2949{
2950 unsigned long upd = calc_load_update + 10;
2951 long active;
2952
2953 if (time_before(jiffies, upd))
2954 return;
db1b1fef 2955
dce48a84
TG
2956 active = atomic_long_read(&calc_load_tasks);
2957 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2958
dce48a84
TG
2959 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2960 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2961 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2962
2963 calc_load_update += LOAD_FREQ;
2964}
2965
2966/*
2967 * Either called from update_cpu_load() or from a cpu going idle
2968 */
2969static void calc_load_account_active(struct rq *this_rq)
2970{
2971 long nr_active, delta;
2972
2973 nr_active = this_rq->nr_running;
2974 nr_active += (long) this_rq->nr_uninterruptible;
2975
2976 if (nr_active != this_rq->calc_load_active) {
2977 delta = nr_active - this_rq->calc_load_active;
2978 this_rq->calc_load_active = nr_active;
2979 atomic_long_add(delta, &calc_load_tasks);
2980 }
db1b1fef
JS
2981}
2982
48f24c4d 2983/*
dd41f596
IM
2984 * Update rq->cpu_load[] statistics. This function is usually called every
2985 * scheduler tick (TICK_NSEC).
48f24c4d 2986 */
dd41f596 2987static void update_cpu_load(struct rq *this_rq)
48f24c4d 2988{
495eca49 2989 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2990 int i, scale;
2991
2992 this_rq->nr_load_updates++;
dd41f596
IM
2993
2994 /* Update our load: */
2995 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2996 unsigned long old_load, new_load;
2997
2998 /* scale is effectively 1 << i now, and >> i divides by scale */
2999
3000 old_load = this_rq->cpu_load[i];
3001 new_load = this_load;
a25707f3
IM
3002 /*
3003 * Round up the averaging division if load is increasing. This
3004 * prevents us from getting stuck on 9 if the load is 10, for
3005 * example.
3006 */
3007 if (new_load > old_load)
3008 new_load += scale-1;
dd41f596
IM
3009 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3010 }
dce48a84
TG
3011
3012 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3013 this_rq->calc_load_update += LOAD_FREQ;
3014 calc_load_account_active(this_rq);
3015 }
48f24c4d
IM
3016}
3017
dd41f596
IM
3018#ifdef CONFIG_SMP
3019
1da177e4
LT
3020/*
3021 * double_rq_lock - safely lock two runqueues
3022 *
3023 * Note this does not disable interrupts like task_rq_lock,
3024 * you need to do so manually before calling.
3025 */
70b97a7f 3026static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3027 __acquires(rq1->lock)
3028 __acquires(rq2->lock)
3029{
054b9108 3030 BUG_ON(!irqs_disabled());
1da177e4
LT
3031 if (rq1 == rq2) {
3032 spin_lock(&rq1->lock);
3033 __acquire(rq2->lock); /* Fake it out ;) */
3034 } else {
c96d145e 3035 if (rq1 < rq2) {
1da177e4 3036 spin_lock(&rq1->lock);
5e710e37 3037 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3038 } else {
3039 spin_lock(&rq2->lock);
5e710e37 3040 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3041 }
3042 }
6e82a3be
IM
3043 update_rq_clock(rq1);
3044 update_rq_clock(rq2);
1da177e4
LT
3045}
3046
3047/*
3048 * double_rq_unlock - safely unlock two runqueues
3049 *
3050 * Note this does not restore interrupts like task_rq_unlock,
3051 * you need to do so manually after calling.
3052 */
70b97a7f 3053static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3054 __releases(rq1->lock)
3055 __releases(rq2->lock)
3056{
3057 spin_unlock(&rq1->lock);
3058 if (rq1 != rq2)
3059 spin_unlock(&rq2->lock);
3060 else
3061 __release(rq2->lock);
3062}
3063
1da177e4
LT
3064/*
3065 * If dest_cpu is allowed for this process, migrate the task to it.
3066 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3067 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3068 * the cpu_allowed mask is restored.
3069 */
36c8b586 3070static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3071{
70b97a7f 3072 struct migration_req req;
1da177e4 3073 unsigned long flags;
70b97a7f 3074 struct rq *rq;
1da177e4
LT
3075
3076 rq = task_rq_lock(p, &flags);
96f874e2 3077 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3078 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3079 goto out;
3080
3081 /* force the process onto the specified CPU */
3082 if (migrate_task(p, dest_cpu, &req)) {
3083 /* Need to wait for migration thread (might exit: take ref). */
3084 struct task_struct *mt = rq->migration_thread;
36c8b586 3085
1da177e4
LT
3086 get_task_struct(mt);
3087 task_rq_unlock(rq, &flags);
3088 wake_up_process(mt);
3089 put_task_struct(mt);
3090 wait_for_completion(&req.done);
36c8b586 3091
1da177e4
LT
3092 return;
3093 }
3094out:
3095 task_rq_unlock(rq, &flags);
3096}
3097
3098/*
476d139c
NP
3099 * sched_exec - execve() is a valuable balancing opportunity, because at
3100 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3101 */
3102void sched_exec(void)
3103{
1da177e4 3104 int new_cpu, this_cpu = get_cpu();
476d139c 3105 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3106 put_cpu();
476d139c
NP
3107 if (new_cpu != this_cpu)
3108 sched_migrate_task(current, new_cpu);
1da177e4
LT
3109}
3110
3111/*
3112 * pull_task - move a task from a remote runqueue to the local runqueue.
3113 * Both runqueues must be locked.
3114 */
dd41f596
IM
3115static void pull_task(struct rq *src_rq, struct task_struct *p,
3116 struct rq *this_rq, int this_cpu)
1da177e4 3117{
2e1cb74a 3118 deactivate_task(src_rq, p, 0);
1da177e4 3119 set_task_cpu(p, this_cpu);
dd41f596 3120 activate_task(this_rq, p, 0);
1da177e4
LT
3121 /*
3122 * Note that idle threads have a prio of MAX_PRIO, for this test
3123 * to be always true for them.
3124 */
15afe09b 3125 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3126}
3127
3128/*
3129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3130 */
858119e1 3131static
70b97a7f 3132int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3133 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3134 int *all_pinned)
1da177e4 3135{
708dc512 3136 int tsk_cache_hot = 0;
1da177e4
LT
3137 /*
3138 * We do not migrate tasks that are:
3139 * 1) running (obviously), or
3140 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3141 * 3) are cache-hot on their current CPU.
3142 */
96f874e2 3143 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3144 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3145 return 0;
cc367732 3146 }
81026794
NP
3147 *all_pinned = 0;
3148
cc367732
IM
3149 if (task_running(rq, p)) {
3150 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3151 return 0;
cc367732 3152 }
1da177e4 3153
da84d961
IM
3154 /*
3155 * Aggressive migration if:
3156 * 1) task is cache cold, or
3157 * 2) too many balance attempts have failed.
3158 */
3159
708dc512
LH
3160 tsk_cache_hot = task_hot(p, rq->clock, sd);
3161 if (!tsk_cache_hot ||
3162 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3163#ifdef CONFIG_SCHEDSTATS
708dc512 3164 if (tsk_cache_hot) {
da84d961 3165 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3166 schedstat_inc(p, se.nr_forced_migrations);
3167 }
da84d961
IM
3168#endif
3169 return 1;
3170 }
3171
708dc512 3172 if (tsk_cache_hot) {
cc367732 3173 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3174 return 0;
cc367732 3175 }
1da177e4
LT
3176 return 1;
3177}
3178
e1d1484f
PW
3179static unsigned long
3180balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3181 unsigned long max_load_move, struct sched_domain *sd,
3182 enum cpu_idle_type idle, int *all_pinned,
3183 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3184{
051c6764 3185 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3186 struct task_struct *p;
3187 long rem_load_move = max_load_move;
1da177e4 3188
e1d1484f 3189 if (max_load_move == 0)
1da177e4
LT
3190 goto out;
3191
81026794
NP
3192 pinned = 1;
3193
1da177e4 3194 /*
dd41f596 3195 * Start the load-balancing iterator:
1da177e4 3196 */
dd41f596
IM
3197 p = iterator->start(iterator->arg);
3198next:
b82d9fdd 3199 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3200 goto out;
051c6764
PZ
3201
3202 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3203 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3204 p = iterator->next(iterator->arg);
3205 goto next;
1da177e4
LT
3206 }
3207
dd41f596 3208 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3209 pulled++;
dd41f596 3210 rem_load_move -= p->se.load.weight;
1da177e4 3211
7e96fa58
GH
3212#ifdef CONFIG_PREEMPT
3213 /*
3214 * NEWIDLE balancing is a source of latency, so preemptible kernels
3215 * will stop after the first task is pulled to minimize the critical
3216 * section.
3217 */
3218 if (idle == CPU_NEWLY_IDLE)
3219 goto out;
3220#endif
3221
2dd73a4f 3222 /*
b82d9fdd 3223 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3224 */
e1d1484f 3225 if (rem_load_move > 0) {
a4ac01c3
PW
3226 if (p->prio < *this_best_prio)
3227 *this_best_prio = p->prio;
dd41f596
IM
3228 p = iterator->next(iterator->arg);
3229 goto next;
1da177e4
LT
3230 }
3231out:
3232 /*
e1d1484f 3233 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3234 * so we can safely collect pull_task() stats here rather than
3235 * inside pull_task().
3236 */
3237 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3238
3239 if (all_pinned)
3240 *all_pinned = pinned;
e1d1484f
PW
3241
3242 return max_load_move - rem_load_move;
1da177e4
LT
3243}
3244
dd41f596 3245/*
43010659
PW
3246 * move_tasks tries to move up to max_load_move weighted load from busiest to
3247 * this_rq, as part of a balancing operation within domain "sd".
3248 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3249 *
3250 * Called with both runqueues locked.
3251 */
3252static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3253 unsigned long max_load_move,
dd41f596
IM
3254 struct sched_domain *sd, enum cpu_idle_type idle,
3255 int *all_pinned)
3256{
5522d5d5 3257 const struct sched_class *class = sched_class_highest;
43010659 3258 unsigned long total_load_moved = 0;
a4ac01c3 3259 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3260
3261 do {
43010659
PW
3262 total_load_moved +=
3263 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3264 max_load_move - total_load_moved,
a4ac01c3 3265 sd, idle, all_pinned, &this_best_prio);
dd41f596 3266 class = class->next;
c4acb2c0 3267
7e96fa58
GH
3268#ifdef CONFIG_PREEMPT
3269 /*
3270 * NEWIDLE balancing is a source of latency, so preemptible
3271 * kernels will stop after the first task is pulled to minimize
3272 * the critical section.
3273 */
c4acb2c0
GH
3274 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3275 break;
7e96fa58 3276#endif
43010659 3277 } while (class && max_load_move > total_load_moved);
dd41f596 3278
43010659
PW
3279 return total_load_moved > 0;
3280}
3281
e1d1484f
PW
3282static int
3283iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3284 struct sched_domain *sd, enum cpu_idle_type idle,
3285 struct rq_iterator *iterator)
3286{
3287 struct task_struct *p = iterator->start(iterator->arg);
3288 int pinned = 0;
3289
3290 while (p) {
3291 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3292 pull_task(busiest, p, this_rq, this_cpu);
3293 /*
3294 * Right now, this is only the second place pull_task()
3295 * is called, so we can safely collect pull_task()
3296 * stats here rather than inside pull_task().
3297 */
3298 schedstat_inc(sd, lb_gained[idle]);
3299
3300 return 1;
3301 }
3302 p = iterator->next(iterator->arg);
3303 }
3304
3305 return 0;
3306}
3307
43010659
PW
3308/*
3309 * move_one_task tries to move exactly one task from busiest to this_rq, as
3310 * part of active balancing operations within "domain".
3311 * Returns 1 if successful and 0 otherwise.
3312 *
3313 * Called with both runqueues locked.
3314 */
3315static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3316 struct sched_domain *sd, enum cpu_idle_type idle)
3317{
5522d5d5 3318 const struct sched_class *class;
43010659
PW
3319
3320 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3321 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3322 return 1;
3323
3324 return 0;
dd41f596 3325}
67bb6c03 3326/********** Helpers for find_busiest_group ************************/
1da177e4 3327/*
222d656d
GS
3328 * sd_lb_stats - Structure to store the statistics of a sched_domain
3329 * during load balancing.
1da177e4 3330 */
222d656d
GS
3331struct sd_lb_stats {
3332 struct sched_group *busiest; /* Busiest group in this sd */
3333 struct sched_group *this; /* Local group in this sd */
3334 unsigned long total_load; /* Total load of all groups in sd */
3335 unsigned long total_pwr; /* Total power of all groups in sd */
3336 unsigned long avg_load; /* Average load across all groups in sd */
3337
3338 /** Statistics of this group */
3339 unsigned long this_load;
3340 unsigned long this_load_per_task;
3341 unsigned long this_nr_running;
3342
3343 /* Statistics of the busiest group */
3344 unsigned long max_load;
3345 unsigned long busiest_load_per_task;
3346 unsigned long busiest_nr_running;
3347
3348 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3349#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3350 int power_savings_balance; /* Is powersave balance needed for this sd */
3351 struct sched_group *group_min; /* Least loaded group in sd */
3352 struct sched_group *group_leader; /* Group which relieves group_min */
3353 unsigned long min_load_per_task; /* load_per_task in group_min */
3354 unsigned long leader_nr_running; /* Nr running of group_leader */
3355 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3356#endif
222d656d 3357};
1da177e4 3358
d5ac537e 3359/*
381be78f
GS
3360 * sg_lb_stats - stats of a sched_group required for load_balancing
3361 */
3362struct sg_lb_stats {
3363 unsigned long avg_load; /*Avg load across the CPUs of the group */
3364 unsigned long group_load; /* Total load over the CPUs of the group */
3365 unsigned long sum_nr_running; /* Nr tasks running in the group */
3366 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3367 unsigned long group_capacity;
3368 int group_imb; /* Is there an imbalance in the group ? */
3369};
408ed066 3370
67bb6c03
GS
3371/**
3372 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3373 * @group: The group whose first cpu is to be returned.
3374 */
3375static inline unsigned int group_first_cpu(struct sched_group *group)
3376{
3377 return cpumask_first(sched_group_cpus(group));
3378}
3379
3380/**
3381 * get_sd_load_idx - Obtain the load index for a given sched domain.
3382 * @sd: The sched_domain whose load_idx is to be obtained.
3383 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3384 */
3385static inline int get_sd_load_idx(struct sched_domain *sd,
3386 enum cpu_idle_type idle)
3387{
3388 int load_idx;
3389
3390 switch (idle) {
3391 case CPU_NOT_IDLE:
7897986b 3392 load_idx = sd->busy_idx;
67bb6c03
GS
3393 break;
3394
3395 case CPU_NEWLY_IDLE:
7897986b 3396 load_idx = sd->newidle_idx;
67bb6c03
GS
3397 break;
3398 default:
7897986b 3399 load_idx = sd->idle_idx;
67bb6c03
GS
3400 break;
3401 }
1da177e4 3402
67bb6c03
GS
3403 return load_idx;
3404}
1da177e4 3405
1da177e4 3406
c071df18
GS
3407#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3408/**
3409 * init_sd_power_savings_stats - Initialize power savings statistics for
3410 * the given sched_domain, during load balancing.
3411 *
3412 * @sd: Sched domain whose power-savings statistics are to be initialized.
3413 * @sds: Variable containing the statistics for sd.
3414 * @idle: Idle status of the CPU at which we're performing load-balancing.
3415 */
3416static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3417 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3418{
3419 /*
3420 * Busy processors will not participate in power savings
3421 * balance.
3422 */
3423 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3424 sds->power_savings_balance = 0;
3425 else {
3426 sds->power_savings_balance = 1;
3427 sds->min_nr_running = ULONG_MAX;
3428 sds->leader_nr_running = 0;
3429 }
3430}
783609c6 3431
c071df18
GS
3432/**
3433 * update_sd_power_savings_stats - Update the power saving stats for a
3434 * sched_domain while performing load balancing.
3435 *
3436 * @group: sched_group belonging to the sched_domain under consideration.
3437 * @sds: Variable containing the statistics of the sched_domain
3438 * @local_group: Does group contain the CPU for which we're performing
3439 * load balancing ?
3440 * @sgs: Variable containing the statistics of the group.
3441 */
3442static inline void update_sd_power_savings_stats(struct sched_group *group,
3443 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3444{
408ed066 3445
c071df18
GS
3446 if (!sds->power_savings_balance)
3447 return;
1da177e4 3448
c071df18
GS
3449 /*
3450 * If the local group is idle or completely loaded
3451 * no need to do power savings balance at this domain
3452 */
3453 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3454 !sds->this_nr_running))
3455 sds->power_savings_balance = 0;
2dd73a4f 3456
c071df18
GS
3457 /*
3458 * If a group is already running at full capacity or idle,
3459 * don't include that group in power savings calculations
3460 */
3461 if (!sds->power_savings_balance ||
3462 sgs->sum_nr_running >= sgs->group_capacity ||
3463 !sgs->sum_nr_running)
3464 return;
5969fe06 3465
c071df18
GS
3466 /*
3467 * Calculate the group which has the least non-idle load.
3468 * This is the group from where we need to pick up the load
3469 * for saving power
3470 */
3471 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3472 (sgs->sum_nr_running == sds->min_nr_running &&
3473 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3474 sds->group_min = group;
3475 sds->min_nr_running = sgs->sum_nr_running;
3476 sds->min_load_per_task = sgs->sum_weighted_load /
3477 sgs->sum_nr_running;
3478 }
783609c6 3479
c071df18
GS
3480 /*
3481 * Calculate the group which is almost near its
3482 * capacity but still has some space to pick up some load
3483 * from other group and save more power
3484 */
3485 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3486 return;
1da177e4 3487
c071df18
GS
3488 if (sgs->sum_nr_running > sds->leader_nr_running ||
3489 (sgs->sum_nr_running == sds->leader_nr_running &&
3490 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3491 sds->group_leader = group;
3492 sds->leader_nr_running = sgs->sum_nr_running;
3493 }
3494}
408ed066 3495
c071df18 3496/**
d5ac537e 3497 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3498 * @sds: Variable containing the statistics of the sched_domain
3499 * under consideration.
3500 * @this_cpu: Cpu at which we're currently performing load-balancing.
3501 * @imbalance: Variable to store the imbalance.
3502 *
d5ac537e
RD
3503 * Description:
3504 * Check if we have potential to perform some power-savings balance.
3505 * If yes, set the busiest group to be the least loaded group in the
3506 * sched_domain, so that it's CPUs can be put to idle.
3507 *
c071df18
GS
3508 * Returns 1 if there is potential to perform power-savings balance.
3509 * Else returns 0.
3510 */
3511static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3512 int this_cpu, unsigned long *imbalance)
3513{
3514 if (!sds->power_savings_balance)
3515 return 0;
1da177e4 3516
c071df18
GS
3517 if (sds->this != sds->group_leader ||
3518 sds->group_leader == sds->group_min)
3519 return 0;
783609c6 3520
c071df18
GS
3521 *imbalance = sds->min_load_per_task;
3522 sds->busiest = sds->group_min;
1da177e4 3523
c071df18
GS
3524 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3525 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3526 group_first_cpu(sds->group_leader);
3527 }
3528
3529 return 1;
1da177e4 3530
c071df18
GS
3531}
3532#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3533static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3534 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3535{
3536 return;
3537}
408ed066 3538
c071df18
GS
3539static inline void update_sd_power_savings_stats(struct sched_group *group,
3540 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3541{
3542 return;
3543}
3544
3545static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3546 int this_cpu, unsigned long *imbalance)
3547{
3548 return 0;
3549}
3550#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3551
3552
1f8c553d
GS
3553/**
3554 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3555 * @group: sched_group whose statistics are to be updated.
3556 * @this_cpu: Cpu for which load balance is currently performed.
3557 * @idle: Idle status of this_cpu
3558 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3559 * @sd_idle: Idle status of the sched_domain containing group.
3560 * @local_group: Does group contain this_cpu.
3561 * @cpus: Set of cpus considered for load balancing.
3562 * @balance: Should we balance.
3563 * @sgs: variable to hold the statistics for this group.
3564 */
3565static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3566 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3567 int local_group, const struct cpumask *cpus,
3568 int *balance, struct sg_lb_stats *sgs)
3569{
3570 unsigned long load, max_cpu_load, min_cpu_load;
3571 int i;
3572 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3573 unsigned long sum_avg_load_per_task;
3574 unsigned long avg_load_per_task;
3575
3576 if (local_group)
3577 balance_cpu = group_first_cpu(group);
3578
3579 /* Tally up the load of all CPUs in the group */
3580 sum_avg_load_per_task = avg_load_per_task = 0;
3581 max_cpu_load = 0;
3582 min_cpu_load = ~0UL;
408ed066 3583
1f8c553d
GS
3584 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3585 struct rq *rq = cpu_rq(i);
908a7c1b 3586
1f8c553d
GS
3587 if (*sd_idle && rq->nr_running)
3588 *sd_idle = 0;
5c45bf27 3589
1f8c553d 3590 /* Bias balancing toward cpus of our domain */
1da177e4 3591 if (local_group) {
1f8c553d
GS
3592 if (idle_cpu(i) && !first_idle_cpu) {
3593 first_idle_cpu = 1;
3594 balance_cpu = i;
3595 }
3596
3597 load = target_load(i, load_idx);
3598 } else {
3599 load = source_load(i, load_idx);
3600 if (load > max_cpu_load)
3601 max_cpu_load = load;
3602 if (min_cpu_load > load)
3603 min_cpu_load = load;
1da177e4 3604 }
5c45bf27 3605
1f8c553d
GS
3606 sgs->group_load += load;
3607 sgs->sum_nr_running += rq->nr_running;
3608 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3609
1f8c553d
GS
3610 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3611 }
5c45bf27 3612
1f8c553d
GS
3613 /*
3614 * First idle cpu or the first cpu(busiest) in this sched group
3615 * is eligible for doing load balancing at this and above
3616 * domains. In the newly idle case, we will allow all the cpu's
3617 * to do the newly idle load balance.
3618 */
3619 if (idle != CPU_NEWLY_IDLE && local_group &&
3620 balance_cpu != this_cpu && balance) {
3621 *balance = 0;
3622 return;
3623 }
5c45bf27 3624
1f8c553d
GS
3625 /* Adjust by relative CPU power of the group */
3626 sgs->avg_load = sg_div_cpu_power(group,
3627 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3628
1f8c553d
GS
3629
3630 /*
3631 * Consider the group unbalanced when the imbalance is larger
3632 * than the average weight of two tasks.
3633 *
3634 * APZ: with cgroup the avg task weight can vary wildly and
3635 * might not be a suitable number - should we keep a
3636 * normalized nr_running number somewhere that negates
3637 * the hierarchy?
3638 */
3639 avg_load_per_task = sg_div_cpu_power(group,
3640 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3641
3642 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3643 sgs->group_imb = 1;
3644
3645 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3646
3647}
dd41f596 3648
37abe198
GS
3649/**
3650 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3651 * @sd: sched_domain whose statistics are to be updated.
3652 * @this_cpu: Cpu for which load balance is currently performed.
3653 * @idle: Idle status of this_cpu
3654 * @sd_idle: Idle status of the sched_domain containing group.
3655 * @cpus: Set of cpus considered for load balancing.
3656 * @balance: Should we balance.
3657 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3658 */
37abe198
GS
3659static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3660 enum cpu_idle_type idle, int *sd_idle,
3661 const struct cpumask *cpus, int *balance,
3662 struct sd_lb_stats *sds)
1da177e4 3663{
222d656d 3664 struct sched_group *group = sd->groups;
37abe198 3665 struct sg_lb_stats sgs;
222d656d
GS
3666 int load_idx;
3667
c071df18 3668 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3669 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3670
3671 do {
1da177e4 3672 int local_group;
1da177e4 3673
758b2cdc
RR
3674 local_group = cpumask_test_cpu(this_cpu,
3675 sched_group_cpus(group));
381be78f 3676 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3677 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3678 local_group, cpus, balance, &sgs);
1da177e4 3679
37abe198
GS
3680 if (local_group && balance && !(*balance))
3681 return;
783609c6 3682
37abe198
GS
3683 sds->total_load += sgs.group_load;
3684 sds->total_pwr += group->__cpu_power;
1da177e4 3685
1da177e4 3686 if (local_group) {
37abe198
GS
3687 sds->this_load = sgs.avg_load;
3688 sds->this = group;
3689 sds->this_nr_running = sgs.sum_nr_running;
3690 sds->this_load_per_task = sgs.sum_weighted_load;
3691 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3692 (sgs.sum_nr_running > sgs.group_capacity ||
3693 sgs.group_imb)) {
37abe198
GS
3694 sds->max_load = sgs.avg_load;
3695 sds->busiest = group;
3696 sds->busiest_nr_running = sgs.sum_nr_running;
3697 sds->busiest_load_per_task = sgs.sum_weighted_load;
3698 sds->group_imb = sgs.group_imb;
48f24c4d 3699 }
5c45bf27 3700
c071df18 3701 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3702 group = group->next;
3703 } while (group != sd->groups);
3704
37abe198 3705}
1da177e4 3706
2e6f44ae
GS
3707/**
3708 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3709 * amongst the groups of a sched_domain, during
3710 * load balancing.
2e6f44ae
GS
3711 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3712 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3713 * @imbalance: Variable to store the imbalance.
3714 */
3715static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3716 int this_cpu, unsigned long *imbalance)
3717{
3718 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3719 unsigned int imbn = 2;
3720
3721 if (sds->this_nr_running) {
3722 sds->this_load_per_task /= sds->this_nr_running;
3723 if (sds->busiest_load_per_task >
3724 sds->this_load_per_task)
3725 imbn = 1;
3726 } else
3727 sds->this_load_per_task =
3728 cpu_avg_load_per_task(this_cpu);
1da177e4 3729
2e6f44ae
GS
3730 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3731 sds->busiest_load_per_task * imbn) {
3732 *imbalance = sds->busiest_load_per_task;
3733 return;
3734 }
908a7c1b 3735
1da177e4 3736 /*
2e6f44ae
GS
3737 * OK, we don't have enough imbalance to justify moving tasks,
3738 * however we may be able to increase total CPU power used by
3739 * moving them.
1da177e4 3740 */
2dd73a4f 3741
2e6f44ae
GS
3742 pwr_now += sds->busiest->__cpu_power *
3743 min(sds->busiest_load_per_task, sds->max_load);
3744 pwr_now += sds->this->__cpu_power *
3745 min(sds->this_load_per_task, sds->this_load);
3746 pwr_now /= SCHED_LOAD_SCALE;
3747
3748 /* Amount of load we'd subtract */
3749 tmp = sg_div_cpu_power(sds->busiest,
3750 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3751 if (sds->max_load > tmp)
3752 pwr_move += sds->busiest->__cpu_power *
3753 min(sds->busiest_load_per_task, sds->max_load - tmp);
3754
3755 /* Amount of load we'd add */
3756 if (sds->max_load * sds->busiest->__cpu_power <
3757 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3758 tmp = sg_div_cpu_power(sds->this,
3759 sds->max_load * sds->busiest->__cpu_power);
3760 else
3761 tmp = sg_div_cpu_power(sds->this,
3762 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3763 pwr_move += sds->this->__cpu_power *
3764 min(sds->this_load_per_task, sds->this_load + tmp);
3765 pwr_move /= SCHED_LOAD_SCALE;
3766
3767 /* Move if we gain throughput */
3768 if (pwr_move > pwr_now)
3769 *imbalance = sds->busiest_load_per_task;
3770}
dbc523a3
GS
3771
3772/**
3773 * calculate_imbalance - Calculate the amount of imbalance present within the
3774 * groups of a given sched_domain during load balance.
3775 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3776 * @this_cpu: Cpu for which currently load balance is being performed.
3777 * @imbalance: The variable to store the imbalance.
3778 */
3779static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3780 unsigned long *imbalance)
3781{
3782 unsigned long max_pull;
2dd73a4f
PW
3783 /*
3784 * In the presence of smp nice balancing, certain scenarios can have
3785 * max load less than avg load(as we skip the groups at or below
3786 * its cpu_power, while calculating max_load..)
3787 */
dbc523a3 3788 if (sds->max_load < sds->avg_load) {
2dd73a4f 3789 *imbalance = 0;
dbc523a3 3790 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3791 }
0c117f1b
SS
3792
3793 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3794 max_pull = min(sds->max_load - sds->avg_load,
3795 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3796
1da177e4 3797 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3798 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3799 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3800 / SCHED_LOAD_SCALE;
3801
2dd73a4f
PW
3802 /*
3803 * if *imbalance is less than the average load per runnable task
3804 * there is no gaurantee that any tasks will be moved so we'll have
3805 * a think about bumping its value to force at least one task to be
3806 * moved
3807 */
dbc523a3
GS
3808 if (*imbalance < sds->busiest_load_per_task)
3809 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3810
dbc523a3 3811}
37abe198 3812/******* find_busiest_group() helpers end here *********************/
1da177e4 3813
b7bb4c9b
GS
3814/**
3815 * find_busiest_group - Returns the busiest group within the sched_domain
3816 * if there is an imbalance. If there isn't an imbalance, and
3817 * the user has opted for power-savings, it returns a group whose
3818 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3819 * such a group exists.
3820 *
3821 * Also calculates the amount of weighted load which should be moved
3822 * to restore balance.
3823 *
3824 * @sd: The sched_domain whose busiest group is to be returned.
3825 * @this_cpu: The cpu for which load balancing is currently being performed.
3826 * @imbalance: Variable which stores amount of weighted load which should
3827 * be moved to restore balance/put a group to idle.
3828 * @idle: The idle status of this_cpu.
3829 * @sd_idle: The idleness of sd
3830 * @cpus: The set of CPUs under consideration for load-balancing.
3831 * @balance: Pointer to a variable indicating if this_cpu
3832 * is the appropriate cpu to perform load balancing at this_level.
3833 *
3834 * Returns: - the busiest group if imbalance exists.
3835 * - If no imbalance and user has opted for power-savings balance,
3836 * return the least loaded group whose CPUs can be
3837 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3838 */
3839static struct sched_group *
3840find_busiest_group(struct sched_domain *sd, int this_cpu,
3841 unsigned long *imbalance, enum cpu_idle_type idle,
3842 int *sd_idle, const struct cpumask *cpus, int *balance)
3843{
3844 struct sd_lb_stats sds;
1da177e4 3845
37abe198 3846 memset(&sds, 0, sizeof(sds));
1da177e4 3847
37abe198
GS
3848 /*
3849 * Compute the various statistics relavent for load balancing at
3850 * this level.
3851 */
3852 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3853 balance, &sds);
3854
b7bb4c9b
GS
3855 /* Cases where imbalance does not exist from POV of this_cpu */
3856 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3857 * at this level.
3858 * 2) There is no busy sibling group to pull from.
3859 * 3) This group is the busiest group.
3860 * 4) This group is more busy than the avg busieness at this
3861 * sched_domain.
3862 * 5) The imbalance is within the specified limit.
3863 * 6) Any rebalance would lead to ping-pong
3864 */
37abe198
GS
3865 if (balance && !(*balance))
3866 goto ret;
1da177e4 3867
b7bb4c9b
GS
3868 if (!sds.busiest || sds.busiest_nr_running == 0)
3869 goto out_balanced;
1da177e4 3870
b7bb4c9b 3871 if (sds.this_load >= sds.max_load)
1da177e4 3872 goto out_balanced;
1da177e4 3873
222d656d 3874 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3875
b7bb4c9b
GS
3876 if (sds.this_load >= sds.avg_load)
3877 goto out_balanced;
3878
3879 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3880 goto out_balanced;
3881
222d656d
GS
3882 sds.busiest_load_per_task /= sds.busiest_nr_running;
3883 if (sds.group_imb)
3884 sds.busiest_load_per_task =
3885 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3886
1da177e4
LT
3887 /*
3888 * We're trying to get all the cpus to the average_load, so we don't
3889 * want to push ourselves above the average load, nor do we wish to
3890 * reduce the max loaded cpu below the average load, as either of these
3891 * actions would just result in more rebalancing later, and ping-pong
3892 * tasks around. Thus we look for the minimum possible imbalance.
3893 * Negative imbalances (*we* are more loaded than anyone else) will
3894 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3895 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3896 * appear as very large values with unsigned longs.
3897 */
222d656d 3898 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3899 goto out_balanced;
3900
dbc523a3
GS
3901 /* Looks like there is an imbalance. Compute it */
3902 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3903 return sds.busiest;
1da177e4
LT
3904
3905out_balanced:
c071df18
GS
3906 /*
3907 * There is no obvious imbalance. But check if we can do some balancing
3908 * to save power.
3909 */
3910 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3911 return sds.busiest;
783609c6 3912ret:
1da177e4
LT
3913 *imbalance = 0;
3914 return NULL;
3915}
3916
3917/*
3918 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3919 */
70b97a7f 3920static struct rq *
d15bcfdb 3921find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3922 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3923{
70b97a7f 3924 struct rq *busiest = NULL, *rq;
2dd73a4f 3925 unsigned long max_load = 0;
1da177e4
LT
3926 int i;
3927
758b2cdc 3928 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3929 unsigned long wl;
0a2966b4 3930
96f874e2 3931 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3932 continue;
3933
48f24c4d 3934 rq = cpu_rq(i);
dd41f596 3935 wl = weighted_cpuload(i);
2dd73a4f 3936
dd41f596 3937 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3938 continue;
1da177e4 3939
dd41f596
IM
3940 if (wl > max_load) {
3941 max_load = wl;
48f24c4d 3942 busiest = rq;
1da177e4
LT
3943 }
3944 }
3945
3946 return busiest;
3947}
3948
77391d71
NP
3949/*
3950 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3951 * so long as it is large enough.
3952 */
3953#define MAX_PINNED_INTERVAL 512
3954
df7c8e84
RR
3955/* Working cpumask for load_balance and load_balance_newidle. */
3956static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3957
1da177e4
LT
3958/*
3959 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3960 * tasks if there is an imbalance.
1da177e4 3961 */
70b97a7f 3962static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3963 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3964 int *balance)
1da177e4 3965{
43010659 3966 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3967 struct sched_group *group;
1da177e4 3968 unsigned long imbalance;
70b97a7f 3969 struct rq *busiest;
fe2eea3f 3970 unsigned long flags;
df7c8e84 3971 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3972
96f874e2 3973 cpumask_setall(cpus);
7c16ec58 3974
89c4710e
SS
3975 /*
3976 * When power savings policy is enabled for the parent domain, idle
3977 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3978 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3979 * portraying it as CPU_NOT_IDLE.
89c4710e 3980 */
d15bcfdb 3981 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3982 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3983 sd_idle = 1;
1da177e4 3984
2d72376b 3985 schedstat_inc(sd, lb_count[idle]);
1da177e4 3986
0a2966b4 3987redo:
c8cba857 3988 update_shares(sd);
0a2966b4 3989 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3990 cpus, balance);
783609c6 3991
06066714 3992 if (*balance == 0)
783609c6 3993 goto out_balanced;
783609c6 3994
1da177e4
LT
3995 if (!group) {
3996 schedstat_inc(sd, lb_nobusyg[idle]);
3997 goto out_balanced;
3998 }
3999
7c16ec58 4000 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4001 if (!busiest) {
4002 schedstat_inc(sd, lb_nobusyq[idle]);
4003 goto out_balanced;
4004 }
4005
db935dbd 4006 BUG_ON(busiest == this_rq);
1da177e4
LT
4007
4008 schedstat_add(sd, lb_imbalance[idle], imbalance);
4009
43010659 4010 ld_moved = 0;
1da177e4
LT
4011 if (busiest->nr_running > 1) {
4012 /*
4013 * Attempt to move tasks. If find_busiest_group has found
4014 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4015 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4016 * correctly treated as an imbalance.
4017 */
fe2eea3f 4018 local_irq_save(flags);
e17224bf 4019 double_rq_lock(this_rq, busiest);
43010659 4020 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4021 imbalance, sd, idle, &all_pinned);
e17224bf 4022 double_rq_unlock(this_rq, busiest);
fe2eea3f 4023 local_irq_restore(flags);
81026794 4024
46cb4b7c
SS
4025 /*
4026 * some other cpu did the load balance for us.
4027 */
43010659 4028 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4029 resched_cpu(this_cpu);
4030
81026794 4031 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4032 if (unlikely(all_pinned)) {
96f874e2
RR
4033 cpumask_clear_cpu(cpu_of(busiest), cpus);
4034 if (!cpumask_empty(cpus))
0a2966b4 4035 goto redo;
81026794 4036 goto out_balanced;
0a2966b4 4037 }
1da177e4 4038 }
81026794 4039
43010659 4040 if (!ld_moved) {
1da177e4
LT
4041 schedstat_inc(sd, lb_failed[idle]);
4042 sd->nr_balance_failed++;
4043
4044 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4045
fe2eea3f 4046 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4047
4048 /* don't kick the migration_thread, if the curr
4049 * task on busiest cpu can't be moved to this_cpu
4050 */
96f874e2
RR
4051 if (!cpumask_test_cpu(this_cpu,
4052 &busiest->curr->cpus_allowed)) {
fe2eea3f 4053 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4054 all_pinned = 1;
4055 goto out_one_pinned;
4056 }
4057
1da177e4
LT
4058 if (!busiest->active_balance) {
4059 busiest->active_balance = 1;
4060 busiest->push_cpu = this_cpu;
81026794 4061 active_balance = 1;
1da177e4 4062 }
fe2eea3f 4063 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4064 if (active_balance)
1da177e4
LT
4065 wake_up_process(busiest->migration_thread);
4066
4067 /*
4068 * We've kicked active balancing, reset the failure
4069 * counter.
4070 */
39507451 4071 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4072 }
81026794 4073 } else
1da177e4
LT
4074 sd->nr_balance_failed = 0;
4075
81026794 4076 if (likely(!active_balance)) {
1da177e4
LT
4077 /* We were unbalanced, so reset the balancing interval */
4078 sd->balance_interval = sd->min_interval;
81026794
NP
4079 } else {
4080 /*
4081 * If we've begun active balancing, start to back off. This
4082 * case may not be covered by the all_pinned logic if there
4083 * is only 1 task on the busy runqueue (because we don't call
4084 * move_tasks).
4085 */
4086 if (sd->balance_interval < sd->max_interval)
4087 sd->balance_interval *= 2;
1da177e4
LT
4088 }
4089
43010659 4090 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4091 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4092 ld_moved = -1;
4093
4094 goto out;
1da177e4
LT
4095
4096out_balanced:
1da177e4
LT
4097 schedstat_inc(sd, lb_balanced[idle]);
4098
16cfb1c0 4099 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4100
4101out_one_pinned:
1da177e4 4102 /* tune up the balancing interval */
77391d71
NP
4103 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4104 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4105 sd->balance_interval *= 2;
4106
48f24c4d 4107 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4108 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4109 ld_moved = -1;
4110 else
4111 ld_moved = 0;
4112out:
c8cba857
PZ
4113 if (ld_moved)
4114 update_shares(sd);
c09595f6 4115 return ld_moved;
1da177e4
LT
4116}
4117
4118/*
4119 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4120 * tasks if there is an imbalance.
4121 *
d15bcfdb 4122 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4123 * this_rq is locked.
4124 */
48f24c4d 4125static int
df7c8e84 4126load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4127{
4128 struct sched_group *group;
70b97a7f 4129 struct rq *busiest = NULL;
1da177e4 4130 unsigned long imbalance;
43010659 4131 int ld_moved = 0;
5969fe06 4132 int sd_idle = 0;
969bb4e4 4133 int all_pinned = 0;
df7c8e84 4134 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4135
96f874e2 4136 cpumask_setall(cpus);
5969fe06 4137
89c4710e
SS
4138 /*
4139 * When power savings policy is enabled for the parent domain, idle
4140 * sibling can pick up load irrespective of busy siblings. In this case,
4141 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4142 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4143 */
4144 if (sd->flags & SD_SHARE_CPUPOWER &&
4145 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4146 sd_idle = 1;
1da177e4 4147
2d72376b 4148 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4149redo:
3e5459b4 4150 update_shares_locked(this_rq, sd);
d15bcfdb 4151 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4152 &sd_idle, cpus, NULL);
1da177e4 4153 if (!group) {
d15bcfdb 4154 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4155 goto out_balanced;
1da177e4
LT
4156 }
4157
7c16ec58 4158 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4159 if (!busiest) {
d15bcfdb 4160 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4161 goto out_balanced;
1da177e4
LT
4162 }
4163
db935dbd
NP
4164 BUG_ON(busiest == this_rq);
4165
d15bcfdb 4166 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4167
43010659 4168 ld_moved = 0;
d6d5cfaf
NP
4169 if (busiest->nr_running > 1) {
4170 /* Attempt to move tasks */
4171 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4172 /* this_rq->clock is already updated */
4173 update_rq_clock(busiest);
43010659 4174 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4175 imbalance, sd, CPU_NEWLY_IDLE,
4176 &all_pinned);
1b12bbc7 4177 double_unlock_balance(this_rq, busiest);
0a2966b4 4178
969bb4e4 4179 if (unlikely(all_pinned)) {
96f874e2
RR
4180 cpumask_clear_cpu(cpu_of(busiest), cpus);
4181 if (!cpumask_empty(cpus))
0a2966b4
CL
4182 goto redo;
4183 }
d6d5cfaf
NP
4184 }
4185
43010659 4186 if (!ld_moved) {
36dffab6 4187 int active_balance = 0;
ad273b32 4188
d15bcfdb 4189 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4190 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4191 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4192 return -1;
ad273b32
VS
4193
4194 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4195 return -1;
4196
4197 if (sd->nr_balance_failed++ < 2)
4198 return -1;
4199
4200 /*
4201 * The only task running in a non-idle cpu can be moved to this
4202 * cpu in an attempt to completely freeup the other CPU
4203 * package. The same method used to move task in load_balance()
4204 * have been extended for load_balance_newidle() to speedup
4205 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4206 *
4207 * The package power saving logic comes from
4208 * find_busiest_group(). If there are no imbalance, then
4209 * f_b_g() will return NULL. However when sched_mc={1,2} then
4210 * f_b_g() will select a group from which a running task may be
4211 * pulled to this cpu in order to make the other package idle.
4212 * If there is no opportunity to make a package idle and if
4213 * there are no imbalance, then f_b_g() will return NULL and no
4214 * action will be taken in load_balance_newidle().
4215 *
4216 * Under normal task pull operation due to imbalance, there
4217 * will be more than one task in the source run queue and
4218 * move_tasks() will succeed. ld_moved will be true and this
4219 * active balance code will not be triggered.
4220 */
4221
4222 /* Lock busiest in correct order while this_rq is held */
4223 double_lock_balance(this_rq, busiest);
4224
4225 /*
4226 * don't kick the migration_thread, if the curr
4227 * task on busiest cpu can't be moved to this_cpu
4228 */
6ca09dfc 4229 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4230 double_unlock_balance(this_rq, busiest);
4231 all_pinned = 1;
4232 return ld_moved;
4233 }
4234
4235 if (!busiest->active_balance) {
4236 busiest->active_balance = 1;
4237 busiest->push_cpu = this_cpu;
4238 active_balance = 1;
4239 }
4240
4241 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4242 /*
4243 * Should not call ttwu while holding a rq->lock
4244 */
4245 spin_unlock(&this_rq->lock);
ad273b32
VS
4246 if (active_balance)
4247 wake_up_process(busiest->migration_thread);
da8d5089 4248 spin_lock(&this_rq->lock);
ad273b32 4249
5969fe06 4250 } else
16cfb1c0 4251 sd->nr_balance_failed = 0;
1da177e4 4252
3e5459b4 4253 update_shares_locked(this_rq, sd);
43010659 4254 return ld_moved;
16cfb1c0
NP
4255
4256out_balanced:
d15bcfdb 4257 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4258 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4259 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4260 return -1;
16cfb1c0 4261 sd->nr_balance_failed = 0;
48f24c4d 4262
16cfb1c0 4263 return 0;
1da177e4
LT
4264}
4265
4266/*
4267 * idle_balance is called by schedule() if this_cpu is about to become
4268 * idle. Attempts to pull tasks from other CPUs.
4269 */
70b97a7f 4270static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4271{
4272 struct sched_domain *sd;
efbe027e 4273 int pulled_task = 0;
dd41f596 4274 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4275
4276 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4277 unsigned long interval;
4278
4279 if (!(sd->flags & SD_LOAD_BALANCE))
4280 continue;
4281
4282 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4283 /* If we've pulled tasks over stop searching: */
7c16ec58 4284 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4285 sd);
92c4ca5c
CL
4286
4287 interval = msecs_to_jiffies(sd->balance_interval);
4288 if (time_after(next_balance, sd->last_balance + interval))
4289 next_balance = sd->last_balance + interval;
4290 if (pulled_task)
4291 break;
1da177e4 4292 }
dd41f596 4293 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4294 /*
4295 * We are going idle. next_balance may be set based on
4296 * a busy processor. So reset next_balance.
4297 */
4298 this_rq->next_balance = next_balance;
dd41f596 4299 }
1da177e4
LT
4300}
4301
4302/*
4303 * active_load_balance is run by migration threads. It pushes running tasks
4304 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4305 * running on each physical CPU where possible, and avoids physical /
4306 * logical imbalances.
4307 *
4308 * Called with busiest_rq locked.
4309 */
70b97a7f 4310static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4311{
39507451 4312 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4313 struct sched_domain *sd;
4314 struct rq *target_rq;
39507451 4315
48f24c4d 4316 /* Is there any task to move? */
39507451 4317 if (busiest_rq->nr_running <= 1)
39507451
NP
4318 return;
4319
4320 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4321
4322 /*
39507451 4323 * This condition is "impossible", if it occurs
41a2d6cf 4324 * we need to fix it. Originally reported by
39507451 4325 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4326 */
39507451 4327 BUG_ON(busiest_rq == target_rq);
1da177e4 4328
39507451
NP
4329 /* move a task from busiest_rq to target_rq */
4330 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4331 update_rq_clock(busiest_rq);
4332 update_rq_clock(target_rq);
39507451
NP
4333
4334 /* Search for an sd spanning us and the target CPU. */
c96d145e 4335 for_each_domain(target_cpu, sd) {
39507451 4336 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4337 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4338 break;
c96d145e 4339 }
39507451 4340
48f24c4d 4341 if (likely(sd)) {
2d72376b 4342 schedstat_inc(sd, alb_count);
39507451 4343
43010659
PW
4344 if (move_one_task(target_rq, target_cpu, busiest_rq,
4345 sd, CPU_IDLE))
48f24c4d
IM
4346 schedstat_inc(sd, alb_pushed);
4347 else
4348 schedstat_inc(sd, alb_failed);
4349 }
1b12bbc7 4350 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4351}
4352
46cb4b7c
SS
4353#ifdef CONFIG_NO_HZ
4354static struct {
4355 atomic_t load_balancer;
7d1e6a9b 4356 cpumask_var_t cpu_mask;
f711f609 4357 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4358} nohz ____cacheline_aligned = {
4359 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4360};
4361
f711f609
GS
4362#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4363/**
4364 * lowest_flag_domain - Return lowest sched_domain containing flag.
4365 * @cpu: The cpu whose lowest level of sched domain is to
4366 * be returned.
4367 * @flag: The flag to check for the lowest sched_domain
4368 * for the given cpu.
4369 *
4370 * Returns the lowest sched_domain of a cpu which contains the given flag.
4371 */
4372static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4373{
4374 struct sched_domain *sd;
4375
4376 for_each_domain(cpu, sd)
4377 if (sd && (sd->flags & flag))
4378 break;
4379
4380 return sd;
4381}
4382
4383/**
4384 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4385 * @cpu: The cpu whose domains we're iterating over.
4386 * @sd: variable holding the value of the power_savings_sd
4387 * for cpu.
4388 * @flag: The flag to filter the sched_domains to be iterated.
4389 *
4390 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4391 * set, starting from the lowest sched_domain to the highest.
4392 */
4393#define for_each_flag_domain(cpu, sd, flag) \
4394 for (sd = lowest_flag_domain(cpu, flag); \
4395 (sd && (sd->flags & flag)); sd = sd->parent)
4396
4397/**
4398 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4399 * @ilb_group: group to be checked for semi-idleness
4400 *
4401 * Returns: 1 if the group is semi-idle. 0 otherwise.
4402 *
4403 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4404 * and atleast one non-idle CPU. This helper function checks if the given
4405 * sched_group is semi-idle or not.
4406 */
4407static inline int is_semi_idle_group(struct sched_group *ilb_group)
4408{
4409 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4410 sched_group_cpus(ilb_group));
4411
4412 /*
4413 * A sched_group is semi-idle when it has atleast one busy cpu
4414 * and atleast one idle cpu.
4415 */
4416 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4417 return 0;
4418
4419 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4420 return 0;
4421
4422 return 1;
4423}
4424/**
4425 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4426 * @cpu: The cpu which is nominating a new idle_load_balancer.
4427 *
4428 * Returns: Returns the id of the idle load balancer if it exists,
4429 * Else, returns >= nr_cpu_ids.
4430 *
4431 * This algorithm picks the idle load balancer such that it belongs to a
4432 * semi-idle powersavings sched_domain. The idea is to try and avoid
4433 * completely idle packages/cores just for the purpose of idle load balancing
4434 * when there are other idle cpu's which are better suited for that job.
4435 */
4436static int find_new_ilb(int cpu)
4437{
4438 struct sched_domain *sd;
4439 struct sched_group *ilb_group;
4440
4441 /*
4442 * Have idle load balancer selection from semi-idle packages only
4443 * when power-aware load balancing is enabled
4444 */
4445 if (!(sched_smt_power_savings || sched_mc_power_savings))
4446 goto out_done;
4447
4448 /*
4449 * Optimize for the case when we have no idle CPUs or only one
4450 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4451 */
4452 if (cpumask_weight(nohz.cpu_mask) < 2)
4453 goto out_done;
4454
4455 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4456 ilb_group = sd->groups;
4457
4458 do {
4459 if (is_semi_idle_group(ilb_group))
4460 return cpumask_first(nohz.ilb_grp_nohz_mask);
4461
4462 ilb_group = ilb_group->next;
4463
4464 } while (ilb_group != sd->groups);
4465 }
4466
4467out_done:
4468 return cpumask_first(nohz.cpu_mask);
4469}
4470#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4471static inline int find_new_ilb(int call_cpu)
4472{
6e29ec57 4473 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4474}
4475#endif
4476
7835b98b 4477/*
46cb4b7c
SS
4478 * This routine will try to nominate the ilb (idle load balancing)
4479 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4480 * load balancing on behalf of all those cpus. If all the cpus in the system
4481 * go into this tickless mode, then there will be no ilb owner (as there is
4482 * no need for one) and all the cpus will sleep till the next wakeup event
4483 * arrives...
4484 *
4485 * For the ilb owner, tick is not stopped. And this tick will be used
4486 * for idle load balancing. ilb owner will still be part of
4487 * nohz.cpu_mask..
7835b98b 4488 *
46cb4b7c
SS
4489 * While stopping the tick, this cpu will become the ilb owner if there
4490 * is no other owner. And will be the owner till that cpu becomes busy
4491 * or if all cpus in the system stop their ticks at which point
4492 * there is no need for ilb owner.
4493 *
4494 * When the ilb owner becomes busy, it nominates another owner, during the
4495 * next busy scheduler_tick()
4496 */
4497int select_nohz_load_balancer(int stop_tick)
4498{
4499 int cpu = smp_processor_id();
4500
4501 if (stop_tick) {
46cb4b7c
SS
4502 cpu_rq(cpu)->in_nohz_recently = 1;
4503
483b4ee6
SS
4504 if (!cpu_active(cpu)) {
4505 if (atomic_read(&nohz.load_balancer) != cpu)
4506 return 0;
4507
4508 /*
4509 * If we are going offline and still the leader,
4510 * give up!
4511 */
46cb4b7c
SS
4512 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4513 BUG();
483b4ee6 4514
46cb4b7c
SS
4515 return 0;
4516 }
4517
483b4ee6
SS
4518 cpumask_set_cpu(cpu, nohz.cpu_mask);
4519
46cb4b7c 4520 /* time for ilb owner also to sleep */
7d1e6a9b 4521 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4522 if (atomic_read(&nohz.load_balancer) == cpu)
4523 atomic_set(&nohz.load_balancer, -1);
4524 return 0;
4525 }
4526
4527 if (atomic_read(&nohz.load_balancer) == -1) {
4528 /* make me the ilb owner */
4529 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4530 return 1;
e790fb0b
GS
4531 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4532 int new_ilb;
4533
4534 if (!(sched_smt_power_savings ||
4535 sched_mc_power_savings))
4536 return 1;
4537 /*
4538 * Check to see if there is a more power-efficient
4539 * ilb.
4540 */
4541 new_ilb = find_new_ilb(cpu);
4542 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4543 atomic_set(&nohz.load_balancer, -1);
4544 resched_cpu(new_ilb);
4545 return 0;
4546 }
46cb4b7c 4547 return 1;
e790fb0b 4548 }
46cb4b7c 4549 } else {
7d1e6a9b 4550 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4551 return 0;
4552
7d1e6a9b 4553 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4554
4555 if (atomic_read(&nohz.load_balancer) == cpu)
4556 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4557 BUG();
4558 }
4559 return 0;
4560}
4561#endif
4562
4563static DEFINE_SPINLOCK(balancing);
4564
4565/*
7835b98b
CL
4566 * It checks each scheduling domain to see if it is due to be balanced,
4567 * and initiates a balancing operation if so.
4568 *
4569 * Balancing parameters are set up in arch_init_sched_domains.
4570 */
a9957449 4571static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4572{
46cb4b7c
SS
4573 int balance = 1;
4574 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4575 unsigned long interval;
4576 struct sched_domain *sd;
46cb4b7c 4577 /* Earliest time when we have to do rebalance again */
c9819f45 4578 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4579 int update_next_balance = 0;
d07355f5 4580 int need_serialize;
1da177e4 4581
46cb4b7c 4582 for_each_domain(cpu, sd) {
1da177e4
LT
4583 if (!(sd->flags & SD_LOAD_BALANCE))
4584 continue;
4585
4586 interval = sd->balance_interval;
d15bcfdb 4587 if (idle != CPU_IDLE)
1da177e4
LT
4588 interval *= sd->busy_factor;
4589
4590 /* scale ms to jiffies */
4591 interval = msecs_to_jiffies(interval);
4592 if (unlikely(!interval))
4593 interval = 1;
dd41f596
IM
4594 if (interval > HZ*NR_CPUS/10)
4595 interval = HZ*NR_CPUS/10;
4596
d07355f5 4597 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4598
d07355f5 4599 if (need_serialize) {
08c183f3
CL
4600 if (!spin_trylock(&balancing))
4601 goto out;
4602 }
4603
c9819f45 4604 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4605 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4606 /*
4607 * We've pulled tasks over so either we're no
5969fe06
NP
4608 * longer idle, or one of our SMT siblings is
4609 * not idle.
4610 */
d15bcfdb 4611 idle = CPU_NOT_IDLE;
1da177e4 4612 }
1bd77f2d 4613 sd->last_balance = jiffies;
1da177e4 4614 }
d07355f5 4615 if (need_serialize)
08c183f3
CL
4616 spin_unlock(&balancing);
4617out:
f549da84 4618 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4619 next_balance = sd->last_balance + interval;
f549da84
SS
4620 update_next_balance = 1;
4621 }
783609c6
SS
4622
4623 /*
4624 * Stop the load balance at this level. There is another
4625 * CPU in our sched group which is doing load balancing more
4626 * actively.
4627 */
4628 if (!balance)
4629 break;
1da177e4 4630 }
f549da84
SS
4631
4632 /*
4633 * next_balance will be updated only when there is a need.
4634 * When the cpu is attached to null domain for ex, it will not be
4635 * updated.
4636 */
4637 if (likely(update_next_balance))
4638 rq->next_balance = next_balance;
46cb4b7c
SS
4639}
4640
4641/*
4642 * run_rebalance_domains is triggered when needed from the scheduler tick.
4643 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4644 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4645 */
4646static void run_rebalance_domains(struct softirq_action *h)
4647{
dd41f596
IM
4648 int this_cpu = smp_processor_id();
4649 struct rq *this_rq = cpu_rq(this_cpu);
4650 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4651 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4652
dd41f596 4653 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4654
4655#ifdef CONFIG_NO_HZ
4656 /*
4657 * If this cpu is the owner for idle load balancing, then do the
4658 * balancing on behalf of the other idle cpus whose ticks are
4659 * stopped.
4660 */
dd41f596
IM
4661 if (this_rq->idle_at_tick &&
4662 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4663 struct rq *rq;
4664 int balance_cpu;
4665
7d1e6a9b
RR
4666 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4667 if (balance_cpu == this_cpu)
4668 continue;
4669
46cb4b7c
SS
4670 /*
4671 * If this cpu gets work to do, stop the load balancing
4672 * work being done for other cpus. Next load
4673 * balancing owner will pick it up.
4674 */
4675 if (need_resched())
4676 break;
4677
de0cf899 4678 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4679
4680 rq = cpu_rq(balance_cpu);
dd41f596
IM
4681 if (time_after(this_rq->next_balance, rq->next_balance))
4682 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4683 }
4684 }
4685#endif
4686}
4687
8a0be9ef
FW
4688static inline int on_null_domain(int cpu)
4689{
4690 return !rcu_dereference(cpu_rq(cpu)->sd);
4691}
4692
46cb4b7c
SS
4693/*
4694 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4695 *
4696 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4697 * idle load balancing owner or decide to stop the periodic load balancing,
4698 * if the whole system is idle.
4699 */
dd41f596 4700static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4701{
46cb4b7c
SS
4702#ifdef CONFIG_NO_HZ
4703 /*
4704 * If we were in the nohz mode recently and busy at the current
4705 * scheduler tick, then check if we need to nominate new idle
4706 * load balancer.
4707 */
4708 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4709 rq->in_nohz_recently = 0;
4710
4711 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4712 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4713 atomic_set(&nohz.load_balancer, -1);
4714 }
4715
4716 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4717 int ilb = find_new_ilb(cpu);
46cb4b7c 4718
434d53b0 4719 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4720 resched_cpu(ilb);
4721 }
4722 }
4723
4724 /*
4725 * If this cpu is idle and doing idle load balancing for all the
4726 * cpus with ticks stopped, is it time for that to stop?
4727 */
4728 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4729 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4730 resched_cpu(cpu);
4731 return;
4732 }
4733
4734 /*
4735 * If this cpu is idle and the idle load balancing is done by
4736 * someone else, then no need raise the SCHED_SOFTIRQ
4737 */
4738 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4739 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4740 return;
4741#endif
8a0be9ef
FW
4742 /* Don't need to rebalance while attached to NULL domain */
4743 if (time_after_eq(jiffies, rq->next_balance) &&
4744 likely(!on_null_domain(cpu)))
46cb4b7c 4745 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4746}
dd41f596
IM
4747
4748#else /* CONFIG_SMP */
4749
1da177e4
LT
4750/*
4751 * on UP we do not need to balance between CPUs:
4752 */
70b97a7f 4753static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4754{
4755}
dd41f596 4756
1da177e4
LT
4757#endif
4758
1da177e4
LT
4759DEFINE_PER_CPU(struct kernel_stat, kstat);
4760
4761EXPORT_PER_CPU_SYMBOL(kstat);
4762
4763/*
c5f8d995 4764 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4765 * @p in case that task is currently running.
c5f8d995
HS
4766 *
4767 * Called with task_rq_lock() held on @rq.
1da177e4 4768 */
c5f8d995
HS
4769static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4770{
4771 u64 ns = 0;
4772
4773 if (task_current(rq, p)) {
4774 update_rq_clock(rq);
4775 ns = rq->clock - p->se.exec_start;
4776 if ((s64)ns < 0)
4777 ns = 0;
4778 }
4779
4780 return ns;
4781}
4782
bb34d92f 4783unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4784{
1da177e4 4785 unsigned long flags;
41b86e9c 4786 struct rq *rq;
bb34d92f 4787 u64 ns = 0;
48f24c4d 4788
41b86e9c 4789 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4790 ns = do_task_delta_exec(p, rq);
4791 task_rq_unlock(rq, &flags);
1508487e 4792
c5f8d995
HS
4793 return ns;
4794}
f06febc9 4795
c5f8d995
HS
4796/*
4797 * Return accounted runtime for the task.
4798 * In case the task is currently running, return the runtime plus current's
4799 * pending runtime that have not been accounted yet.
4800 */
4801unsigned long long task_sched_runtime(struct task_struct *p)
4802{
4803 unsigned long flags;
4804 struct rq *rq;
4805 u64 ns = 0;
4806
4807 rq = task_rq_lock(p, &flags);
4808 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4809 task_rq_unlock(rq, &flags);
4810
4811 return ns;
4812}
48f24c4d 4813
c5f8d995
HS
4814/*
4815 * Return sum_exec_runtime for the thread group.
4816 * In case the task is currently running, return the sum plus current's
4817 * pending runtime that have not been accounted yet.
4818 *
4819 * Note that the thread group might have other running tasks as well,
4820 * so the return value not includes other pending runtime that other
4821 * running tasks might have.
4822 */
4823unsigned long long thread_group_sched_runtime(struct task_struct *p)
4824{
4825 struct task_cputime totals;
4826 unsigned long flags;
4827 struct rq *rq;
4828 u64 ns;
4829
4830 rq = task_rq_lock(p, &flags);
4831 thread_group_cputime(p, &totals);
4832 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4833 task_rq_unlock(rq, &flags);
48f24c4d 4834
1da177e4
LT
4835 return ns;
4836}
4837
1da177e4
LT
4838/*
4839 * Account user cpu time to a process.
4840 * @p: the process that the cpu time gets accounted to
1da177e4 4841 * @cputime: the cpu time spent in user space since the last update
457533a7 4842 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4843 */
457533a7
MS
4844void account_user_time(struct task_struct *p, cputime_t cputime,
4845 cputime_t cputime_scaled)
1da177e4
LT
4846{
4847 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4848 cputime64_t tmp;
4849
457533a7 4850 /* Add user time to process. */
1da177e4 4851 p->utime = cputime_add(p->utime, cputime);
457533a7 4852 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4853 account_group_user_time(p, cputime);
1da177e4
LT
4854
4855 /* Add user time to cpustat. */
4856 tmp = cputime_to_cputime64(cputime);
4857 if (TASK_NICE(p) > 0)
4858 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4859 else
4860 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4861
4862 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4863 /* Account for user time used */
4864 acct_update_integrals(p);
1da177e4
LT
4865}
4866
94886b84
LV
4867/*
4868 * Account guest cpu time to a process.
4869 * @p: the process that the cpu time gets accounted to
4870 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4871 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4872 */
457533a7
MS
4873static void account_guest_time(struct task_struct *p, cputime_t cputime,
4874 cputime_t cputime_scaled)
94886b84
LV
4875{
4876 cputime64_t tmp;
4877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4878
4879 tmp = cputime_to_cputime64(cputime);
4880
457533a7 4881 /* Add guest time to process. */
94886b84 4882 p->utime = cputime_add(p->utime, cputime);
457533a7 4883 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4884 account_group_user_time(p, cputime);
94886b84
LV
4885 p->gtime = cputime_add(p->gtime, cputime);
4886
457533a7 4887 /* Add guest time to cpustat. */
94886b84
LV
4888 cpustat->user = cputime64_add(cpustat->user, tmp);
4889 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4890}
4891
1da177e4
LT
4892/*
4893 * Account system cpu time to a process.
4894 * @p: the process that the cpu time gets accounted to
4895 * @hardirq_offset: the offset to subtract from hardirq_count()
4896 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4897 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4898 */
4899void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4900 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4901{
4902 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4903 cputime64_t tmp;
4904
983ed7a6 4905 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4906 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4907 return;
4908 }
94886b84 4909
457533a7 4910 /* Add system time to process. */
1da177e4 4911 p->stime = cputime_add(p->stime, cputime);
457533a7 4912 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4913 account_group_system_time(p, cputime);
1da177e4
LT
4914
4915 /* Add system time to cpustat. */
4916 tmp = cputime_to_cputime64(cputime);
4917 if (hardirq_count() - hardirq_offset)
4918 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4919 else if (softirq_count())
4920 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4921 else
79741dd3
MS
4922 cpustat->system = cputime64_add(cpustat->system, tmp);
4923
ef12fefa
BR
4924 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4925
1da177e4
LT
4926 /* Account for system time used */
4927 acct_update_integrals(p);
1da177e4
LT
4928}
4929
c66f08be 4930/*
1da177e4 4931 * Account for involuntary wait time.
1da177e4 4932 * @steal: the cpu time spent in involuntary wait
c66f08be 4933 */
79741dd3 4934void account_steal_time(cputime_t cputime)
c66f08be 4935{
79741dd3
MS
4936 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4937 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4938
4939 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4940}
4941
1da177e4 4942/*
79741dd3
MS
4943 * Account for idle time.
4944 * @cputime: the cpu time spent in idle wait
1da177e4 4945 */
79741dd3 4946void account_idle_time(cputime_t cputime)
1da177e4
LT
4947{
4948 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4949 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4950 struct rq *rq = this_rq();
1da177e4 4951
79741dd3
MS
4952 if (atomic_read(&rq->nr_iowait) > 0)
4953 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4954 else
4955 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4956}
4957
79741dd3
MS
4958#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4959
4960/*
4961 * Account a single tick of cpu time.
4962 * @p: the process that the cpu time gets accounted to
4963 * @user_tick: indicates if the tick is a user or a system tick
4964 */
4965void account_process_tick(struct task_struct *p, int user_tick)
4966{
4967 cputime_t one_jiffy = jiffies_to_cputime(1);
4968 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4969 struct rq *rq = this_rq();
4970
4971 if (user_tick)
4972 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4973 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4974 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4975 one_jiffy_scaled);
4976 else
4977 account_idle_time(one_jiffy);
4978}
4979
4980/*
4981 * Account multiple ticks of steal time.
4982 * @p: the process from which the cpu time has been stolen
4983 * @ticks: number of stolen ticks
4984 */
4985void account_steal_ticks(unsigned long ticks)
4986{
4987 account_steal_time(jiffies_to_cputime(ticks));
4988}
4989
4990/*
4991 * Account multiple ticks of idle time.
4992 * @ticks: number of stolen ticks
4993 */
4994void account_idle_ticks(unsigned long ticks)
4995{
4996 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4997}
4998
79741dd3
MS
4999#endif
5000
49048622
BS
5001/*
5002 * Use precise platform statistics if available:
5003 */
5004#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5005cputime_t task_utime(struct task_struct *p)
5006{
5007 return p->utime;
5008}
5009
5010cputime_t task_stime(struct task_struct *p)
5011{
5012 return p->stime;
5013}
5014#else
5015cputime_t task_utime(struct task_struct *p)
5016{
5017 clock_t utime = cputime_to_clock_t(p->utime),
5018 total = utime + cputime_to_clock_t(p->stime);
5019 u64 temp;
5020
5021 /*
5022 * Use CFS's precise accounting:
5023 */
5024 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5025
5026 if (total) {
5027 temp *= utime;
5028 do_div(temp, total);
5029 }
5030 utime = (clock_t)temp;
5031
5032 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5033 return p->prev_utime;
5034}
5035
5036cputime_t task_stime(struct task_struct *p)
5037{
5038 clock_t stime;
5039
5040 /*
5041 * Use CFS's precise accounting. (we subtract utime from
5042 * the total, to make sure the total observed by userspace
5043 * grows monotonically - apps rely on that):
5044 */
5045 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5046 cputime_to_clock_t(task_utime(p));
5047
5048 if (stime >= 0)
5049 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5050
5051 return p->prev_stime;
5052}
5053#endif
5054
5055inline cputime_t task_gtime(struct task_struct *p)
5056{
5057 return p->gtime;
5058}
5059
7835b98b
CL
5060/*
5061 * This function gets called by the timer code, with HZ frequency.
5062 * We call it with interrupts disabled.
5063 *
5064 * It also gets called by the fork code, when changing the parent's
5065 * timeslices.
5066 */
5067void scheduler_tick(void)
5068{
7835b98b
CL
5069 int cpu = smp_processor_id();
5070 struct rq *rq = cpu_rq(cpu);
dd41f596 5071 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5072
5073 sched_clock_tick();
dd41f596
IM
5074
5075 spin_lock(&rq->lock);
3e51f33f 5076 update_rq_clock(rq);
f1a438d8 5077 update_cpu_load(rq);
fa85ae24 5078 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5079 spin_unlock(&rq->lock);
7835b98b 5080
e418e1c2 5081#ifdef CONFIG_SMP
dd41f596
IM
5082 rq->idle_at_tick = idle_cpu(cpu);
5083 trigger_load_balance(rq, cpu);
e418e1c2 5084#endif
1da177e4
LT
5085}
5086
132380a0 5087notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5088{
5089 if (in_lock_functions(addr)) {
5090 addr = CALLER_ADDR2;
5091 if (in_lock_functions(addr))
5092 addr = CALLER_ADDR3;
5093 }
5094 return addr;
5095}
1da177e4 5096
7e49fcce
SR
5097#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5098 defined(CONFIG_PREEMPT_TRACER))
5099
43627582 5100void __kprobes add_preempt_count(int val)
1da177e4 5101{
6cd8a4bb 5102#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5103 /*
5104 * Underflow?
5105 */
9a11b49a
IM
5106 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5107 return;
6cd8a4bb 5108#endif
1da177e4 5109 preempt_count() += val;
6cd8a4bb 5110#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5111 /*
5112 * Spinlock count overflowing soon?
5113 */
33859f7f
MOS
5114 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5115 PREEMPT_MASK - 10);
6cd8a4bb
SR
5116#endif
5117 if (preempt_count() == val)
5118 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5119}
5120EXPORT_SYMBOL(add_preempt_count);
5121
43627582 5122void __kprobes sub_preempt_count(int val)
1da177e4 5123{
6cd8a4bb 5124#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5125 /*
5126 * Underflow?
5127 */
01e3eb82 5128 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5129 return;
1da177e4
LT
5130 /*
5131 * Is the spinlock portion underflowing?
5132 */
9a11b49a
IM
5133 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5134 !(preempt_count() & PREEMPT_MASK)))
5135 return;
6cd8a4bb 5136#endif
9a11b49a 5137
6cd8a4bb
SR
5138 if (preempt_count() == val)
5139 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5140 preempt_count() -= val;
5141}
5142EXPORT_SYMBOL(sub_preempt_count);
5143
5144#endif
5145
5146/*
dd41f596 5147 * Print scheduling while atomic bug:
1da177e4 5148 */
dd41f596 5149static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5150{
838225b4
SS
5151 struct pt_regs *regs = get_irq_regs();
5152
5153 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5154 prev->comm, prev->pid, preempt_count());
5155
dd41f596 5156 debug_show_held_locks(prev);
e21f5b15 5157 print_modules();
dd41f596
IM
5158 if (irqs_disabled())
5159 print_irqtrace_events(prev);
838225b4
SS
5160
5161 if (regs)
5162 show_regs(regs);
5163 else
5164 dump_stack();
dd41f596 5165}
1da177e4 5166
dd41f596
IM
5167/*
5168 * Various schedule()-time debugging checks and statistics:
5169 */
5170static inline void schedule_debug(struct task_struct *prev)
5171{
1da177e4 5172 /*
41a2d6cf 5173 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5174 * schedule() atomically, we ignore that path for now.
5175 * Otherwise, whine if we are scheduling when we should not be.
5176 */
3f33a7ce 5177 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5178 __schedule_bug(prev);
5179
1da177e4
LT
5180 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5181
2d72376b 5182 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5183#ifdef CONFIG_SCHEDSTATS
5184 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5185 schedstat_inc(this_rq(), bkl_count);
5186 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5187 }
5188#endif
dd41f596
IM
5189}
5190
df1c99d4
MG
5191static void put_prev_task(struct rq *rq, struct task_struct *prev)
5192{
5193 if (prev->state == TASK_RUNNING) {
5194 u64 runtime = prev->se.sum_exec_runtime;
5195
5196 runtime -= prev->se.prev_sum_exec_runtime;
5197 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5198
5199 /*
5200 * In order to avoid avg_overlap growing stale when we are
5201 * indeed overlapping and hence not getting put to sleep, grow
5202 * the avg_overlap on preemption.
5203 *
5204 * We use the average preemption runtime because that
5205 * correlates to the amount of cache footprint a task can
5206 * build up.
5207 */
5208 update_avg(&prev->se.avg_overlap, runtime);
5209 }
5210 prev->sched_class->put_prev_task(rq, prev);
5211}
5212
dd41f596
IM
5213/*
5214 * Pick up the highest-prio task:
5215 */
5216static inline struct task_struct *
b67802ea 5217pick_next_task(struct rq *rq)
dd41f596 5218{
5522d5d5 5219 const struct sched_class *class;
dd41f596 5220 struct task_struct *p;
1da177e4
LT
5221
5222 /*
dd41f596
IM
5223 * Optimization: we know that if all tasks are in
5224 * the fair class we can call that function directly:
1da177e4 5225 */
dd41f596 5226 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5227 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5228 if (likely(p))
5229 return p;
1da177e4
LT
5230 }
5231
dd41f596
IM
5232 class = sched_class_highest;
5233 for ( ; ; ) {
fb8d4724 5234 p = class->pick_next_task(rq);
dd41f596
IM
5235 if (p)
5236 return p;
5237 /*
5238 * Will never be NULL as the idle class always
5239 * returns a non-NULL p:
5240 */
5241 class = class->next;
5242 }
5243}
1da177e4 5244
dd41f596
IM
5245/*
5246 * schedule() is the main scheduler function.
5247 */
ff743345 5248asmlinkage void __sched schedule(void)
dd41f596
IM
5249{
5250 struct task_struct *prev, *next;
67ca7bde 5251 unsigned long *switch_count;
dd41f596 5252 struct rq *rq;
31656519 5253 int cpu;
dd41f596 5254
ff743345
PZ
5255need_resched:
5256 preempt_disable();
dd41f596
IM
5257 cpu = smp_processor_id();
5258 rq = cpu_rq(cpu);
5259 rcu_qsctr_inc(cpu);
5260 prev = rq->curr;
5261 switch_count = &prev->nivcsw;
5262
5263 release_kernel_lock(prev);
5264need_resched_nonpreemptible:
5265
5266 schedule_debug(prev);
1da177e4 5267
31656519 5268 if (sched_feat(HRTICK))
f333fdc9 5269 hrtick_clear(rq);
8f4d37ec 5270
8cd162ce 5271 spin_lock_irq(&rq->lock);
3e51f33f 5272 update_rq_clock(rq);
1e819950 5273 clear_tsk_need_resched(prev);
1da177e4 5274
1da177e4 5275 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5276 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5277 prev->state = TASK_RUNNING;
16882c1e 5278 else
2e1cb74a 5279 deactivate_task(rq, prev, 1);
dd41f596 5280 switch_count = &prev->nvcsw;
1da177e4
LT
5281 }
5282
9a897c5a
SR
5283#ifdef CONFIG_SMP
5284 if (prev->sched_class->pre_schedule)
5285 prev->sched_class->pre_schedule(rq, prev);
5286#endif
f65eda4f 5287
dd41f596 5288 if (unlikely(!rq->nr_running))
1da177e4 5289 idle_balance(cpu, rq);
1da177e4 5290
df1c99d4 5291 put_prev_task(rq, prev);
b67802ea 5292 next = pick_next_task(rq);
1da177e4 5293
1da177e4 5294 if (likely(prev != next)) {
673a90a1
DS
5295 sched_info_switch(prev, next);
5296
1da177e4
LT
5297 rq->nr_switches++;
5298 rq->curr = next;
5299 ++*switch_count;
5300
dd41f596 5301 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5302 /*
5303 * the context switch might have flipped the stack from under
5304 * us, hence refresh the local variables.
5305 */
5306 cpu = smp_processor_id();
5307 rq = cpu_rq(cpu);
1da177e4
LT
5308 } else
5309 spin_unlock_irq(&rq->lock);
5310
8f4d37ec 5311 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5312 goto need_resched_nonpreemptible;
8f4d37ec 5313
1da177e4 5314 preempt_enable_no_resched();
ff743345 5315 if (need_resched())
1da177e4
LT
5316 goto need_resched;
5317}
1da177e4
LT
5318EXPORT_SYMBOL(schedule);
5319
0d66bf6d
PZ
5320#ifdef CONFIG_SMP
5321/*
5322 * Look out! "owner" is an entirely speculative pointer
5323 * access and not reliable.
5324 */
5325int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5326{
5327 unsigned int cpu;
5328 struct rq *rq;
5329
5330 if (!sched_feat(OWNER_SPIN))
5331 return 0;
5332
5333#ifdef CONFIG_DEBUG_PAGEALLOC
5334 /*
5335 * Need to access the cpu field knowing that
5336 * DEBUG_PAGEALLOC could have unmapped it if
5337 * the mutex owner just released it and exited.
5338 */
5339 if (probe_kernel_address(&owner->cpu, cpu))
5340 goto out;
5341#else
5342 cpu = owner->cpu;
5343#endif
5344
5345 /*
5346 * Even if the access succeeded (likely case),
5347 * the cpu field may no longer be valid.
5348 */
5349 if (cpu >= nr_cpumask_bits)
5350 goto out;
5351
5352 /*
5353 * We need to validate that we can do a
5354 * get_cpu() and that we have the percpu area.
5355 */
5356 if (!cpu_online(cpu))
5357 goto out;
5358
5359 rq = cpu_rq(cpu);
5360
5361 for (;;) {
5362 /*
5363 * Owner changed, break to re-assess state.
5364 */
5365 if (lock->owner != owner)
5366 break;
5367
5368 /*
5369 * Is that owner really running on that cpu?
5370 */
5371 if (task_thread_info(rq->curr) != owner || need_resched())
5372 return 0;
5373
5374 cpu_relax();
5375 }
5376out:
5377 return 1;
5378}
5379#endif
5380
1da177e4
LT
5381#ifdef CONFIG_PREEMPT
5382/*
2ed6e34f 5383 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5384 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5385 * occur there and call schedule directly.
5386 */
5387asmlinkage void __sched preempt_schedule(void)
5388{
5389 struct thread_info *ti = current_thread_info();
6478d880 5390
1da177e4
LT
5391 /*
5392 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5393 * we do not want to preempt the current task. Just return..
1da177e4 5394 */
beed33a8 5395 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5396 return;
5397
3a5c359a
AK
5398 do {
5399 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5400 schedule();
3a5c359a 5401 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5402
3a5c359a
AK
5403 /*
5404 * Check again in case we missed a preemption opportunity
5405 * between schedule and now.
5406 */
5407 barrier();
5ed0cec0 5408 } while (need_resched());
1da177e4 5409}
1da177e4
LT
5410EXPORT_SYMBOL(preempt_schedule);
5411
5412/*
2ed6e34f 5413 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5414 * off of irq context.
5415 * Note, that this is called and return with irqs disabled. This will
5416 * protect us against recursive calling from irq.
5417 */
5418asmlinkage void __sched preempt_schedule_irq(void)
5419{
5420 struct thread_info *ti = current_thread_info();
6478d880 5421
2ed6e34f 5422 /* Catch callers which need to be fixed */
1da177e4
LT
5423 BUG_ON(ti->preempt_count || !irqs_disabled());
5424
3a5c359a
AK
5425 do {
5426 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5427 local_irq_enable();
5428 schedule();
5429 local_irq_disable();
3a5c359a 5430 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5431
3a5c359a
AK
5432 /*
5433 * Check again in case we missed a preemption opportunity
5434 * between schedule and now.
5435 */
5436 barrier();
5ed0cec0 5437 } while (need_resched());
1da177e4
LT
5438}
5439
5440#endif /* CONFIG_PREEMPT */
5441
95cdf3b7
IM
5442int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5443 void *key)
1da177e4 5444{
48f24c4d 5445 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5446}
1da177e4
LT
5447EXPORT_SYMBOL(default_wake_function);
5448
5449/*
41a2d6cf
IM
5450 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5451 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5452 * number) then we wake all the non-exclusive tasks and one exclusive task.
5453 *
5454 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5455 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5456 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5457 */
78ddb08f 5458static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5459 int nr_exclusive, int sync, void *key)
1da177e4 5460{
2e45874c 5461 wait_queue_t *curr, *next;
1da177e4 5462
2e45874c 5463 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5464 unsigned flags = curr->flags;
5465
1da177e4 5466 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5467 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5468 break;
5469 }
5470}
5471
5472/**
5473 * __wake_up - wake up threads blocked on a waitqueue.
5474 * @q: the waitqueue
5475 * @mode: which threads
5476 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5477 * @key: is directly passed to the wakeup function
50fa610a
DH
5478 *
5479 * It may be assumed that this function implies a write memory barrier before
5480 * changing the task state if and only if any tasks are woken up.
1da177e4 5481 */
7ad5b3a5 5482void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5483 int nr_exclusive, void *key)
1da177e4
LT
5484{
5485 unsigned long flags;
5486
5487 spin_lock_irqsave(&q->lock, flags);
5488 __wake_up_common(q, mode, nr_exclusive, 0, key);
5489 spin_unlock_irqrestore(&q->lock, flags);
5490}
1da177e4
LT
5491EXPORT_SYMBOL(__wake_up);
5492
5493/*
5494 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5495 */
7ad5b3a5 5496void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5497{
5498 __wake_up_common(q, mode, 1, 0, NULL);
5499}
5500
4ede816a
DL
5501void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5502{
5503 __wake_up_common(q, mode, 1, 0, key);
5504}
5505
1da177e4 5506/**
4ede816a 5507 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5508 * @q: the waitqueue
5509 * @mode: which threads
5510 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5511 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5512 *
5513 * The sync wakeup differs that the waker knows that it will schedule
5514 * away soon, so while the target thread will be woken up, it will not
5515 * be migrated to another CPU - ie. the two threads are 'synchronized'
5516 * with each other. This can prevent needless bouncing between CPUs.
5517 *
5518 * On UP it can prevent extra preemption.
50fa610a
DH
5519 *
5520 * It may be assumed that this function implies a write memory barrier before
5521 * changing the task state if and only if any tasks are woken up.
1da177e4 5522 */
4ede816a
DL
5523void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5524 int nr_exclusive, void *key)
1da177e4
LT
5525{
5526 unsigned long flags;
5527 int sync = 1;
5528
5529 if (unlikely(!q))
5530 return;
5531
5532 if (unlikely(!nr_exclusive))
5533 sync = 0;
5534
5535 spin_lock_irqsave(&q->lock, flags);
4ede816a 5536 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5537 spin_unlock_irqrestore(&q->lock, flags);
5538}
4ede816a
DL
5539EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5540
5541/*
5542 * __wake_up_sync - see __wake_up_sync_key()
5543 */
5544void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5545{
5546 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5547}
1da177e4
LT
5548EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5549
65eb3dc6
KD
5550/**
5551 * complete: - signals a single thread waiting on this completion
5552 * @x: holds the state of this particular completion
5553 *
5554 * This will wake up a single thread waiting on this completion. Threads will be
5555 * awakened in the same order in which they were queued.
5556 *
5557 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5558 *
5559 * It may be assumed that this function implies a write memory barrier before
5560 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5561 */
b15136e9 5562void complete(struct completion *x)
1da177e4
LT
5563{
5564 unsigned long flags;
5565
5566 spin_lock_irqsave(&x->wait.lock, flags);
5567 x->done++;
d9514f6c 5568 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5569 spin_unlock_irqrestore(&x->wait.lock, flags);
5570}
5571EXPORT_SYMBOL(complete);
5572
65eb3dc6
KD
5573/**
5574 * complete_all: - signals all threads waiting on this completion
5575 * @x: holds the state of this particular completion
5576 *
5577 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5578 *
5579 * It may be assumed that this function implies a write memory barrier before
5580 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5581 */
b15136e9 5582void complete_all(struct completion *x)
1da177e4
LT
5583{
5584 unsigned long flags;
5585
5586 spin_lock_irqsave(&x->wait.lock, flags);
5587 x->done += UINT_MAX/2;
d9514f6c 5588 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5589 spin_unlock_irqrestore(&x->wait.lock, flags);
5590}
5591EXPORT_SYMBOL(complete_all);
5592
8cbbe86d
AK
5593static inline long __sched
5594do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5595{
1da177e4
LT
5596 if (!x->done) {
5597 DECLARE_WAITQUEUE(wait, current);
5598
5599 wait.flags |= WQ_FLAG_EXCLUSIVE;
5600 __add_wait_queue_tail(&x->wait, &wait);
5601 do {
94d3d824 5602 if (signal_pending_state(state, current)) {
ea71a546
ON
5603 timeout = -ERESTARTSYS;
5604 break;
8cbbe86d
AK
5605 }
5606 __set_current_state(state);
1da177e4
LT
5607 spin_unlock_irq(&x->wait.lock);
5608 timeout = schedule_timeout(timeout);
5609 spin_lock_irq(&x->wait.lock);
ea71a546 5610 } while (!x->done && timeout);
1da177e4 5611 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5612 if (!x->done)
5613 return timeout;
1da177e4
LT
5614 }
5615 x->done--;
ea71a546 5616 return timeout ?: 1;
1da177e4 5617}
1da177e4 5618
8cbbe86d
AK
5619static long __sched
5620wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5621{
1da177e4
LT
5622 might_sleep();
5623
5624 spin_lock_irq(&x->wait.lock);
8cbbe86d 5625 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5626 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5627 return timeout;
5628}
1da177e4 5629
65eb3dc6
KD
5630/**
5631 * wait_for_completion: - waits for completion of a task
5632 * @x: holds the state of this particular completion
5633 *
5634 * This waits to be signaled for completion of a specific task. It is NOT
5635 * interruptible and there is no timeout.
5636 *
5637 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5638 * and interrupt capability. Also see complete().
5639 */
b15136e9 5640void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5641{
5642 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5643}
8cbbe86d 5644EXPORT_SYMBOL(wait_for_completion);
1da177e4 5645
65eb3dc6
KD
5646/**
5647 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5648 * @x: holds the state of this particular completion
5649 * @timeout: timeout value in jiffies
5650 *
5651 * This waits for either a completion of a specific task to be signaled or for a
5652 * specified timeout to expire. The timeout is in jiffies. It is not
5653 * interruptible.
5654 */
b15136e9 5655unsigned long __sched
8cbbe86d 5656wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5657{
8cbbe86d 5658 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5659}
8cbbe86d 5660EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5661
65eb3dc6
KD
5662/**
5663 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5664 * @x: holds the state of this particular completion
5665 *
5666 * This waits for completion of a specific task to be signaled. It is
5667 * interruptible.
5668 */
8cbbe86d 5669int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5670{
51e97990
AK
5671 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5672 if (t == -ERESTARTSYS)
5673 return t;
5674 return 0;
0fec171c 5675}
8cbbe86d 5676EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5677
65eb3dc6
KD
5678/**
5679 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5680 * @x: holds the state of this particular completion
5681 * @timeout: timeout value in jiffies
5682 *
5683 * This waits for either a completion of a specific task to be signaled or for a
5684 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5685 */
b15136e9 5686unsigned long __sched
8cbbe86d
AK
5687wait_for_completion_interruptible_timeout(struct completion *x,
5688 unsigned long timeout)
0fec171c 5689{
8cbbe86d 5690 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5691}
8cbbe86d 5692EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5693
65eb3dc6
KD
5694/**
5695 * wait_for_completion_killable: - waits for completion of a task (killable)
5696 * @x: holds the state of this particular completion
5697 *
5698 * This waits to be signaled for completion of a specific task. It can be
5699 * interrupted by a kill signal.
5700 */
009e577e
MW
5701int __sched wait_for_completion_killable(struct completion *x)
5702{
5703 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5704 if (t == -ERESTARTSYS)
5705 return t;
5706 return 0;
5707}
5708EXPORT_SYMBOL(wait_for_completion_killable);
5709
be4de352
DC
5710/**
5711 * try_wait_for_completion - try to decrement a completion without blocking
5712 * @x: completion structure
5713 *
5714 * Returns: 0 if a decrement cannot be done without blocking
5715 * 1 if a decrement succeeded.
5716 *
5717 * If a completion is being used as a counting completion,
5718 * attempt to decrement the counter without blocking. This
5719 * enables us to avoid waiting if the resource the completion
5720 * is protecting is not available.
5721 */
5722bool try_wait_for_completion(struct completion *x)
5723{
5724 int ret = 1;
5725
5726 spin_lock_irq(&x->wait.lock);
5727 if (!x->done)
5728 ret = 0;
5729 else
5730 x->done--;
5731 spin_unlock_irq(&x->wait.lock);
5732 return ret;
5733}
5734EXPORT_SYMBOL(try_wait_for_completion);
5735
5736/**
5737 * completion_done - Test to see if a completion has any waiters
5738 * @x: completion structure
5739 *
5740 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5741 * 1 if there are no waiters.
5742 *
5743 */
5744bool completion_done(struct completion *x)
5745{
5746 int ret = 1;
5747
5748 spin_lock_irq(&x->wait.lock);
5749 if (!x->done)
5750 ret = 0;
5751 spin_unlock_irq(&x->wait.lock);
5752 return ret;
5753}
5754EXPORT_SYMBOL(completion_done);
5755
8cbbe86d
AK
5756static long __sched
5757sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5758{
0fec171c
IM
5759 unsigned long flags;
5760 wait_queue_t wait;
5761
5762 init_waitqueue_entry(&wait, current);
1da177e4 5763
8cbbe86d 5764 __set_current_state(state);
1da177e4 5765
8cbbe86d
AK
5766 spin_lock_irqsave(&q->lock, flags);
5767 __add_wait_queue(q, &wait);
5768 spin_unlock(&q->lock);
5769 timeout = schedule_timeout(timeout);
5770 spin_lock_irq(&q->lock);
5771 __remove_wait_queue(q, &wait);
5772 spin_unlock_irqrestore(&q->lock, flags);
5773
5774 return timeout;
5775}
5776
5777void __sched interruptible_sleep_on(wait_queue_head_t *q)
5778{
5779 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5780}
1da177e4
LT
5781EXPORT_SYMBOL(interruptible_sleep_on);
5782
0fec171c 5783long __sched
95cdf3b7 5784interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5785{
8cbbe86d 5786 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5787}
1da177e4
LT
5788EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5789
0fec171c 5790void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5791{
8cbbe86d 5792 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5793}
1da177e4
LT
5794EXPORT_SYMBOL(sleep_on);
5795
0fec171c 5796long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5797{
8cbbe86d 5798 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5799}
1da177e4
LT
5800EXPORT_SYMBOL(sleep_on_timeout);
5801
b29739f9
IM
5802#ifdef CONFIG_RT_MUTEXES
5803
5804/*
5805 * rt_mutex_setprio - set the current priority of a task
5806 * @p: task
5807 * @prio: prio value (kernel-internal form)
5808 *
5809 * This function changes the 'effective' priority of a task. It does
5810 * not touch ->normal_prio like __setscheduler().
5811 *
5812 * Used by the rt_mutex code to implement priority inheritance logic.
5813 */
36c8b586 5814void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5815{
5816 unsigned long flags;
83b699ed 5817 int oldprio, on_rq, running;
70b97a7f 5818 struct rq *rq;
cb469845 5819 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5820
5821 BUG_ON(prio < 0 || prio > MAX_PRIO);
5822
5823 rq = task_rq_lock(p, &flags);
a8e504d2 5824 update_rq_clock(rq);
b29739f9 5825
d5f9f942 5826 oldprio = p->prio;
dd41f596 5827 on_rq = p->se.on_rq;
051a1d1a 5828 running = task_current(rq, p);
0e1f3483 5829 if (on_rq)
69be72c1 5830 dequeue_task(rq, p, 0);
0e1f3483
HS
5831 if (running)
5832 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5833
5834 if (rt_prio(prio))
5835 p->sched_class = &rt_sched_class;
5836 else
5837 p->sched_class = &fair_sched_class;
5838
b29739f9
IM
5839 p->prio = prio;
5840
0e1f3483
HS
5841 if (running)
5842 p->sched_class->set_curr_task(rq);
dd41f596 5843 if (on_rq) {
8159f87e 5844 enqueue_task(rq, p, 0);
cb469845
SR
5845
5846 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5847 }
5848 task_rq_unlock(rq, &flags);
5849}
5850
5851#endif
5852
36c8b586 5853void set_user_nice(struct task_struct *p, long nice)
1da177e4 5854{
dd41f596 5855 int old_prio, delta, on_rq;
1da177e4 5856 unsigned long flags;
70b97a7f 5857 struct rq *rq;
1da177e4
LT
5858
5859 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5860 return;
5861 /*
5862 * We have to be careful, if called from sys_setpriority(),
5863 * the task might be in the middle of scheduling on another CPU.
5864 */
5865 rq = task_rq_lock(p, &flags);
a8e504d2 5866 update_rq_clock(rq);
1da177e4
LT
5867 /*
5868 * The RT priorities are set via sched_setscheduler(), but we still
5869 * allow the 'normal' nice value to be set - but as expected
5870 * it wont have any effect on scheduling until the task is
dd41f596 5871 * SCHED_FIFO/SCHED_RR:
1da177e4 5872 */
e05606d3 5873 if (task_has_rt_policy(p)) {
1da177e4
LT
5874 p->static_prio = NICE_TO_PRIO(nice);
5875 goto out_unlock;
5876 }
dd41f596 5877 on_rq = p->se.on_rq;
c09595f6 5878 if (on_rq)
69be72c1 5879 dequeue_task(rq, p, 0);
1da177e4 5880
1da177e4 5881 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5882 set_load_weight(p);
b29739f9
IM
5883 old_prio = p->prio;
5884 p->prio = effective_prio(p);
5885 delta = p->prio - old_prio;
1da177e4 5886
dd41f596 5887 if (on_rq) {
8159f87e 5888 enqueue_task(rq, p, 0);
1da177e4 5889 /*
d5f9f942
AM
5890 * If the task increased its priority or is running and
5891 * lowered its priority, then reschedule its CPU:
1da177e4 5892 */
d5f9f942 5893 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5894 resched_task(rq->curr);
5895 }
5896out_unlock:
5897 task_rq_unlock(rq, &flags);
5898}
1da177e4
LT
5899EXPORT_SYMBOL(set_user_nice);
5900
e43379f1
MM
5901/*
5902 * can_nice - check if a task can reduce its nice value
5903 * @p: task
5904 * @nice: nice value
5905 */
36c8b586 5906int can_nice(const struct task_struct *p, const int nice)
e43379f1 5907{
024f4747
MM
5908 /* convert nice value [19,-20] to rlimit style value [1,40] */
5909 int nice_rlim = 20 - nice;
48f24c4d 5910
e43379f1
MM
5911 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5912 capable(CAP_SYS_NICE));
5913}
5914
1da177e4
LT
5915#ifdef __ARCH_WANT_SYS_NICE
5916
5917/*
5918 * sys_nice - change the priority of the current process.
5919 * @increment: priority increment
5920 *
5921 * sys_setpriority is a more generic, but much slower function that
5922 * does similar things.
5923 */
5add95d4 5924SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5925{
48f24c4d 5926 long nice, retval;
1da177e4
LT
5927
5928 /*
5929 * Setpriority might change our priority at the same moment.
5930 * We don't have to worry. Conceptually one call occurs first
5931 * and we have a single winner.
5932 */
e43379f1
MM
5933 if (increment < -40)
5934 increment = -40;
1da177e4
LT
5935 if (increment > 40)
5936 increment = 40;
5937
2b8f836f 5938 nice = TASK_NICE(current) + increment;
1da177e4
LT
5939 if (nice < -20)
5940 nice = -20;
5941 if (nice > 19)
5942 nice = 19;
5943
e43379f1
MM
5944 if (increment < 0 && !can_nice(current, nice))
5945 return -EPERM;
5946
1da177e4
LT
5947 retval = security_task_setnice(current, nice);
5948 if (retval)
5949 return retval;
5950
5951 set_user_nice(current, nice);
5952 return 0;
5953}
5954
5955#endif
5956
5957/**
5958 * task_prio - return the priority value of a given task.
5959 * @p: the task in question.
5960 *
5961 * This is the priority value as seen by users in /proc.
5962 * RT tasks are offset by -200. Normal tasks are centered
5963 * around 0, value goes from -16 to +15.
5964 */
36c8b586 5965int task_prio(const struct task_struct *p)
1da177e4
LT
5966{
5967 return p->prio - MAX_RT_PRIO;
5968}
5969
5970/**
5971 * task_nice - return the nice value of a given task.
5972 * @p: the task in question.
5973 */
36c8b586 5974int task_nice(const struct task_struct *p)
1da177e4
LT
5975{
5976 return TASK_NICE(p);
5977}
150d8bed 5978EXPORT_SYMBOL(task_nice);
1da177e4
LT
5979
5980/**
5981 * idle_cpu - is a given cpu idle currently?
5982 * @cpu: the processor in question.
5983 */
5984int idle_cpu(int cpu)
5985{
5986 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5987}
5988
1da177e4
LT
5989/**
5990 * idle_task - return the idle task for a given cpu.
5991 * @cpu: the processor in question.
5992 */
36c8b586 5993struct task_struct *idle_task(int cpu)
1da177e4
LT
5994{
5995 return cpu_rq(cpu)->idle;
5996}
5997
5998/**
5999 * find_process_by_pid - find a process with a matching PID value.
6000 * @pid: the pid in question.
6001 */
a9957449 6002static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6003{
228ebcbe 6004 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6005}
6006
6007/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6008static void
6009__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6010{
dd41f596 6011 BUG_ON(p->se.on_rq);
48f24c4d 6012
1da177e4 6013 p->policy = policy;
dd41f596
IM
6014 switch (p->policy) {
6015 case SCHED_NORMAL:
6016 case SCHED_BATCH:
6017 case SCHED_IDLE:
6018 p->sched_class = &fair_sched_class;
6019 break;
6020 case SCHED_FIFO:
6021 case SCHED_RR:
6022 p->sched_class = &rt_sched_class;
6023 break;
6024 }
6025
1da177e4 6026 p->rt_priority = prio;
b29739f9
IM
6027 p->normal_prio = normal_prio(p);
6028 /* we are holding p->pi_lock already */
6029 p->prio = rt_mutex_getprio(p);
2dd73a4f 6030 set_load_weight(p);
1da177e4
LT
6031}
6032
c69e8d9c
DH
6033/*
6034 * check the target process has a UID that matches the current process's
6035 */
6036static bool check_same_owner(struct task_struct *p)
6037{
6038 const struct cred *cred = current_cred(), *pcred;
6039 bool match;
6040
6041 rcu_read_lock();
6042 pcred = __task_cred(p);
6043 match = (cred->euid == pcred->euid ||
6044 cred->euid == pcred->uid);
6045 rcu_read_unlock();
6046 return match;
6047}
6048
961ccddd
RR
6049static int __sched_setscheduler(struct task_struct *p, int policy,
6050 struct sched_param *param, bool user)
1da177e4 6051{
83b699ed 6052 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6053 unsigned long flags;
cb469845 6054 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6055 struct rq *rq;
1da177e4 6056
66e5393a
SR
6057 /* may grab non-irq protected spin_locks */
6058 BUG_ON(in_interrupt());
1da177e4
LT
6059recheck:
6060 /* double check policy once rq lock held */
6061 if (policy < 0)
6062 policy = oldpolicy = p->policy;
6063 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
6064 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6065 policy != SCHED_IDLE)
b0a9499c 6066 return -EINVAL;
1da177e4
LT
6067 /*
6068 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6069 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6070 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6071 */
6072 if (param->sched_priority < 0 ||
95cdf3b7 6073 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6074 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6075 return -EINVAL;
e05606d3 6076 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6077 return -EINVAL;
6078
37e4ab3f
OC
6079 /*
6080 * Allow unprivileged RT tasks to decrease priority:
6081 */
961ccddd 6082 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6083 if (rt_policy(policy)) {
8dc3e909 6084 unsigned long rlim_rtprio;
8dc3e909
ON
6085
6086 if (!lock_task_sighand(p, &flags))
6087 return -ESRCH;
6088 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6089 unlock_task_sighand(p, &flags);
6090
6091 /* can't set/change the rt policy */
6092 if (policy != p->policy && !rlim_rtprio)
6093 return -EPERM;
6094
6095 /* can't increase priority */
6096 if (param->sched_priority > p->rt_priority &&
6097 param->sched_priority > rlim_rtprio)
6098 return -EPERM;
6099 }
dd41f596
IM
6100 /*
6101 * Like positive nice levels, dont allow tasks to
6102 * move out of SCHED_IDLE either:
6103 */
6104 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6105 return -EPERM;
5fe1d75f 6106
37e4ab3f 6107 /* can't change other user's priorities */
c69e8d9c 6108 if (!check_same_owner(p))
37e4ab3f
OC
6109 return -EPERM;
6110 }
1da177e4 6111
725aad24 6112 if (user) {
b68aa230 6113#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6114 /*
6115 * Do not allow realtime tasks into groups that have no runtime
6116 * assigned.
6117 */
9a7e0b18
PZ
6118 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6119 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6120 return -EPERM;
b68aa230
PZ
6121#endif
6122
725aad24
JF
6123 retval = security_task_setscheduler(p, policy, param);
6124 if (retval)
6125 return retval;
6126 }
6127
b29739f9
IM
6128 /*
6129 * make sure no PI-waiters arrive (or leave) while we are
6130 * changing the priority of the task:
6131 */
6132 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6133 /*
6134 * To be able to change p->policy safely, the apropriate
6135 * runqueue lock must be held.
6136 */
b29739f9 6137 rq = __task_rq_lock(p);
1da177e4
LT
6138 /* recheck policy now with rq lock held */
6139 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6140 policy = oldpolicy = -1;
b29739f9
IM
6141 __task_rq_unlock(rq);
6142 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6143 goto recheck;
6144 }
2daa3577 6145 update_rq_clock(rq);
dd41f596 6146 on_rq = p->se.on_rq;
051a1d1a 6147 running = task_current(rq, p);
0e1f3483 6148 if (on_rq)
2e1cb74a 6149 deactivate_task(rq, p, 0);
0e1f3483
HS
6150 if (running)
6151 p->sched_class->put_prev_task(rq, p);
f6b53205 6152
1da177e4 6153 oldprio = p->prio;
dd41f596 6154 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6155
0e1f3483
HS
6156 if (running)
6157 p->sched_class->set_curr_task(rq);
dd41f596
IM
6158 if (on_rq) {
6159 activate_task(rq, p, 0);
cb469845
SR
6160
6161 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6162 }
b29739f9
IM
6163 __task_rq_unlock(rq);
6164 spin_unlock_irqrestore(&p->pi_lock, flags);
6165
95e02ca9
TG
6166 rt_mutex_adjust_pi(p);
6167
1da177e4
LT
6168 return 0;
6169}
961ccddd
RR
6170
6171/**
6172 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6173 * @p: the task in question.
6174 * @policy: new policy.
6175 * @param: structure containing the new RT priority.
6176 *
6177 * NOTE that the task may be already dead.
6178 */
6179int sched_setscheduler(struct task_struct *p, int policy,
6180 struct sched_param *param)
6181{
6182 return __sched_setscheduler(p, policy, param, true);
6183}
1da177e4
LT
6184EXPORT_SYMBOL_GPL(sched_setscheduler);
6185
961ccddd
RR
6186/**
6187 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6188 * @p: the task in question.
6189 * @policy: new policy.
6190 * @param: structure containing the new RT priority.
6191 *
6192 * Just like sched_setscheduler, only don't bother checking if the
6193 * current context has permission. For example, this is needed in
6194 * stop_machine(): we create temporary high priority worker threads,
6195 * but our caller might not have that capability.
6196 */
6197int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6198 struct sched_param *param)
6199{
6200 return __sched_setscheduler(p, policy, param, false);
6201}
6202
95cdf3b7
IM
6203static int
6204do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6205{
1da177e4
LT
6206 struct sched_param lparam;
6207 struct task_struct *p;
36c8b586 6208 int retval;
1da177e4
LT
6209
6210 if (!param || pid < 0)
6211 return -EINVAL;
6212 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6213 return -EFAULT;
5fe1d75f
ON
6214
6215 rcu_read_lock();
6216 retval = -ESRCH;
1da177e4 6217 p = find_process_by_pid(pid);
5fe1d75f
ON
6218 if (p != NULL)
6219 retval = sched_setscheduler(p, policy, &lparam);
6220 rcu_read_unlock();
36c8b586 6221
1da177e4
LT
6222 return retval;
6223}
6224
6225/**
6226 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6227 * @pid: the pid in question.
6228 * @policy: new policy.
6229 * @param: structure containing the new RT priority.
6230 */
5add95d4
HC
6231SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6232 struct sched_param __user *, param)
1da177e4 6233{
c21761f1
JB
6234 /* negative values for policy are not valid */
6235 if (policy < 0)
6236 return -EINVAL;
6237
1da177e4
LT
6238 return do_sched_setscheduler(pid, policy, param);
6239}
6240
6241/**
6242 * sys_sched_setparam - set/change the RT priority of a thread
6243 * @pid: the pid in question.
6244 * @param: structure containing the new RT priority.
6245 */
5add95d4 6246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6247{
6248 return do_sched_setscheduler(pid, -1, param);
6249}
6250
6251/**
6252 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6253 * @pid: the pid in question.
6254 */
5add95d4 6255SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6256{
36c8b586 6257 struct task_struct *p;
3a5c359a 6258 int retval;
1da177e4
LT
6259
6260 if (pid < 0)
3a5c359a 6261 return -EINVAL;
1da177e4
LT
6262
6263 retval = -ESRCH;
6264 read_lock(&tasklist_lock);
6265 p = find_process_by_pid(pid);
6266 if (p) {
6267 retval = security_task_getscheduler(p);
6268 if (!retval)
6269 retval = p->policy;
6270 }
6271 read_unlock(&tasklist_lock);
1da177e4
LT
6272 return retval;
6273}
6274
6275/**
6276 * sys_sched_getscheduler - get the RT priority of a thread
6277 * @pid: the pid in question.
6278 * @param: structure containing the RT priority.
6279 */
5add95d4 6280SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6281{
6282 struct sched_param lp;
36c8b586 6283 struct task_struct *p;
3a5c359a 6284 int retval;
1da177e4
LT
6285
6286 if (!param || pid < 0)
3a5c359a 6287 return -EINVAL;
1da177e4
LT
6288
6289 read_lock(&tasklist_lock);
6290 p = find_process_by_pid(pid);
6291 retval = -ESRCH;
6292 if (!p)
6293 goto out_unlock;
6294
6295 retval = security_task_getscheduler(p);
6296 if (retval)
6297 goto out_unlock;
6298
6299 lp.sched_priority = p->rt_priority;
6300 read_unlock(&tasklist_lock);
6301
6302 /*
6303 * This one might sleep, we cannot do it with a spinlock held ...
6304 */
6305 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6306
1da177e4
LT
6307 return retval;
6308
6309out_unlock:
6310 read_unlock(&tasklist_lock);
6311 return retval;
6312}
6313
96f874e2 6314long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6315{
5a16f3d3 6316 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6317 struct task_struct *p;
6318 int retval;
1da177e4 6319
95402b38 6320 get_online_cpus();
1da177e4
LT
6321 read_lock(&tasklist_lock);
6322
6323 p = find_process_by_pid(pid);
6324 if (!p) {
6325 read_unlock(&tasklist_lock);
95402b38 6326 put_online_cpus();
1da177e4
LT
6327 return -ESRCH;
6328 }
6329
6330 /*
6331 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6332 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6333 * usage count and then drop tasklist_lock.
6334 */
6335 get_task_struct(p);
6336 read_unlock(&tasklist_lock);
6337
5a16f3d3
RR
6338 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6339 retval = -ENOMEM;
6340 goto out_put_task;
6341 }
6342 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6343 retval = -ENOMEM;
6344 goto out_free_cpus_allowed;
6345 }
1da177e4 6346 retval = -EPERM;
c69e8d9c 6347 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6348 goto out_unlock;
6349
e7834f8f
DQ
6350 retval = security_task_setscheduler(p, 0, NULL);
6351 if (retval)
6352 goto out_unlock;
6353
5a16f3d3
RR
6354 cpuset_cpus_allowed(p, cpus_allowed);
6355 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6356 again:
5a16f3d3 6357 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6358
8707d8b8 6359 if (!retval) {
5a16f3d3
RR
6360 cpuset_cpus_allowed(p, cpus_allowed);
6361 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6362 /*
6363 * We must have raced with a concurrent cpuset
6364 * update. Just reset the cpus_allowed to the
6365 * cpuset's cpus_allowed
6366 */
5a16f3d3 6367 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6368 goto again;
6369 }
6370 }
1da177e4 6371out_unlock:
5a16f3d3
RR
6372 free_cpumask_var(new_mask);
6373out_free_cpus_allowed:
6374 free_cpumask_var(cpus_allowed);
6375out_put_task:
1da177e4 6376 put_task_struct(p);
95402b38 6377 put_online_cpus();
1da177e4
LT
6378 return retval;
6379}
6380
6381static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6382 struct cpumask *new_mask)
1da177e4 6383{
96f874e2
RR
6384 if (len < cpumask_size())
6385 cpumask_clear(new_mask);
6386 else if (len > cpumask_size())
6387 len = cpumask_size();
6388
1da177e4
LT
6389 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6390}
6391
6392/**
6393 * sys_sched_setaffinity - set the cpu affinity of a process
6394 * @pid: pid of the process
6395 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6396 * @user_mask_ptr: user-space pointer to the new cpu mask
6397 */
5add95d4
HC
6398SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6399 unsigned long __user *, user_mask_ptr)
1da177e4 6400{
5a16f3d3 6401 cpumask_var_t new_mask;
1da177e4
LT
6402 int retval;
6403
5a16f3d3
RR
6404 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6405 return -ENOMEM;
1da177e4 6406
5a16f3d3
RR
6407 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6408 if (retval == 0)
6409 retval = sched_setaffinity(pid, new_mask);
6410 free_cpumask_var(new_mask);
6411 return retval;
1da177e4
LT
6412}
6413
96f874e2 6414long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6415{
36c8b586 6416 struct task_struct *p;
1da177e4 6417 int retval;
1da177e4 6418
95402b38 6419 get_online_cpus();
1da177e4
LT
6420 read_lock(&tasklist_lock);
6421
6422 retval = -ESRCH;
6423 p = find_process_by_pid(pid);
6424 if (!p)
6425 goto out_unlock;
6426
e7834f8f
DQ
6427 retval = security_task_getscheduler(p);
6428 if (retval)
6429 goto out_unlock;
6430
96f874e2 6431 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6432
6433out_unlock:
6434 read_unlock(&tasklist_lock);
95402b38 6435 put_online_cpus();
1da177e4 6436
9531b62f 6437 return retval;
1da177e4
LT
6438}
6439
6440/**
6441 * sys_sched_getaffinity - get the cpu affinity of a process
6442 * @pid: pid of the process
6443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6444 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6445 */
5add95d4
HC
6446SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6447 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6448{
6449 int ret;
f17c8607 6450 cpumask_var_t mask;
1da177e4 6451
f17c8607 6452 if (len < cpumask_size())
1da177e4
LT
6453 return -EINVAL;
6454
f17c8607
RR
6455 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6456 return -ENOMEM;
1da177e4 6457
f17c8607
RR
6458 ret = sched_getaffinity(pid, mask);
6459 if (ret == 0) {
6460 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6461 ret = -EFAULT;
6462 else
6463 ret = cpumask_size();
6464 }
6465 free_cpumask_var(mask);
1da177e4 6466
f17c8607 6467 return ret;
1da177e4
LT
6468}
6469
6470/**
6471 * sys_sched_yield - yield the current processor to other threads.
6472 *
dd41f596
IM
6473 * This function yields the current CPU to other tasks. If there are no
6474 * other threads running on this CPU then this function will return.
1da177e4 6475 */
5add95d4 6476SYSCALL_DEFINE0(sched_yield)
1da177e4 6477{
70b97a7f 6478 struct rq *rq = this_rq_lock();
1da177e4 6479
2d72376b 6480 schedstat_inc(rq, yld_count);
4530d7ab 6481 current->sched_class->yield_task(rq);
1da177e4
LT
6482
6483 /*
6484 * Since we are going to call schedule() anyway, there's
6485 * no need to preempt or enable interrupts:
6486 */
6487 __release(rq->lock);
8a25d5de 6488 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6489 _raw_spin_unlock(&rq->lock);
6490 preempt_enable_no_resched();
6491
6492 schedule();
6493
6494 return 0;
6495}
6496
e7b38404 6497static void __cond_resched(void)
1da177e4 6498{
8e0a43d8
IM
6499#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6500 __might_sleep(__FILE__, __LINE__);
6501#endif
5bbcfd90
IM
6502 /*
6503 * The BKS might be reacquired before we have dropped
6504 * PREEMPT_ACTIVE, which could trigger a second
6505 * cond_resched() call.
6506 */
1da177e4
LT
6507 do {
6508 add_preempt_count(PREEMPT_ACTIVE);
6509 schedule();
6510 sub_preempt_count(PREEMPT_ACTIVE);
6511 } while (need_resched());
6512}
6513
02b67cc3 6514int __sched _cond_resched(void)
1da177e4 6515{
9414232f
IM
6516 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6517 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6518 __cond_resched();
6519 return 1;
6520 }
6521 return 0;
6522}
02b67cc3 6523EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6524
6525/*
6526 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6527 * call schedule, and on return reacquire the lock.
6528 *
41a2d6cf 6529 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6530 * operations here to prevent schedule() from being called twice (once via
6531 * spin_unlock(), once by hand).
6532 */
95cdf3b7 6533int cond_resched_lock(spinlock_t *lock)
1da177e4 6534{
95c354fe 6535 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6536 int ret = 0;
6537
95c354fe 6538 if (spin_needbreak(lock) || resched) {
1da177e4 6539 spin_unlock(lock);
95c354fe
NP
6540 if (resched && need_resched())
6541 __cond_resched();
6542 else
6543 cpu_relax();
6df3cecb 6544 ret = 1;
1da177e4 6545 spin_lock(lock);
1da177e4 6546 }
6df3cecb 6547 return ret;
1da177e4 6548}
1da177e4
LT
6549EXPORT_SYMBOL(cond_resched_lock);
6550
6551int __sched cond_resched_softirq(void)
6552{
6553 BUG_ON(!in_softirq());
6554
9414232f 6555 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6556 local_bh_enable();
1da177e4
LT
6557 __cond_resched();
6558 local_bh_disable();
6559 return 1;
6560 }
6561 return 0;
6562}
1da177e4
LT
6563EXPORT_SYMBOL(cond_resched_softirq);
6564
1da177e4
LT
6565/**
6566 * yield - yield the current processor to other threads.
6567 *
72fd4a35 6568 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6569 * thread runnable and calls sys_sched_yield().
6570 */
6571void __sched yield(void)
6572{
6573 set_current_state(TASK_RUNNING);
6574 sys_sched_yield();
6575}
1da177e4
LT
6576EXPORT_SYMBOL(yield);
6577
6578/*
41a2d6cf 6579 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6580 * that process accounting knows that this is a task in IO wait state.
6581 *
6582 * But don't do that if it is a deliberate, throttling IO wait (this task
6583 * has set its backing_dev_info: the queue against which it should throttle)
6584 */
6585void __sched io_schedule(void)
6586{
70b97a7f 6587 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6588
0ff92245 6589 delayacct_blkio_start();
1da177e4
LT
6590 atomic_inc(&rq->nr_iowait);
6591 schedule();
6592 atomic_dec(&rq->nr_iowait);
0ff92245 6593 delayacct_blkio_end();
1da177e4 6594}
1da177e4
LT
6595EXPORT_SYMBOL(io_schedule);
6596
6597long __sched io_schedule_timeout(long timeout)
6598{
70b97a7f 6599 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6600 long ret;
6601
0ff92245 6602 delayacct_blkio_start();
1da177e4
LT
6603 atomic_inc(&rq->nr_iowait);
6604 ret = schedule_timeout(timeout);
6605 atomic_dec(&rq->nr_iowait);
0ff92245 6606 delayacct_blkio_end();
1da177e4
LT
6607 return ret;
6608}
6609
6610/**
6611 * sys_sched_get_priority_max - return maximum RT priority.
6612 * @policy: scheduling class.
6613 *
6614 * this syscall returns the maximum rt_priority that can be used
6615 * by a given scheduling class.
6616 */
5add95d4 6617SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6618{
6619 int ret = -EINVAL;
6620
6621 switch (policy) {
6622 case SCHED_FIFO:
6623 case SCHED_RR:
6624 ret = MAX_USER_RT_PRIO-1;
6625 break;
6626 case SCHED_NORMAL:
b0a9499c 6627 case SCHED_BATCH:
dd41f596 6628 case SCHED_IDLE:
1da177e4
LT
6629 ret = 0;
6630 break;
6631 }
6632 return ret;
6633}
6634
6635/**
6636 * sys_sched_get_priority_min - return minimum RT priority.
6637 * @policy: scheduling class.
6638 *
6639 * this syscall returns the minimum rt_priority that can be used
6640 * by a given scheduling class.
6641 */
5add95d4 6642SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6643{
6644 int ret = -EINVAL;
6645
6646 switch (policy) {
6647 case SCHED_FIFO:
6648 case SCHED_RR:
6649 ret = 1;
6650 break;
6651 case SCHED_NORMAL:
b0a9499c 6652 case SCHED_BATCH:
dd41f596 6653 case SCHED_IDLE:
1da177e4
LT
6654 ret = 0;
6655 }
6656 return ret;
6657}
6658
6659/**
6660 * sys_sched_rr_get_interval - return the default timeslice of a process.
6661 * @pid: pid of the process.
6662 * @interval: userspace pointer to the timeslice value.
6663 *
6664 * this syscall writes the default timeslice value of a given process
6665 * into the user-space timespec buffer. A value of '0' means infinity.
6666 */
17da2bd9 6667SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6668 struct timespec __user *, interval)
1da177e4 6669{
36c8b586 6670 struct task_struct *p;
a4ec24b4 6671 unsigned int time_slice;
3a5c359a 6672 int retval;
1da177e4 6673 struct timespec t;
1da177e4
LT
6674
6675 if (pid < 0)
3a5c359a 6676 return -EINVAL;
1da177e4
LT
6677
6678 retval = -ESRCH;
6679 read_lock(&tasklist_lock);
6680 p = find_process_by_pid(pid);
6681 if (!p)
6682 goto out_unlock;
6683
6684 retval = security_task_getscheduler(p);
6685 if (retval)
6686 goto out_unlock;
6687
77034937
IM
6688 /*
6689 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6690 * tasks that are on an otherwise idle runqueue:
6691 */
6692 time_slice = 0;
6693 if (p->policy == SCHED_RR) {
a4ec24b4 6694 time_slice = DEF_TIMESLICE;
1868f958 6695 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6696 struct sched_entity *se = &p->se;
6697 unsigned long flags;
6698 struct rq *rq;
6699
6700 rq = task_rq_lock(p, &flags);
77034937
IM
6701 if (rq->cfs.load.weight)
6702 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6703 task_rq_unlock(rq, &flags);
6704 }
1da177e4 6705 read_unlock(&tasklist_lock);
a4ec24b4 6706 jiffies_to_timespec(time_slice, &t);
1da177e4 6707 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6708 return retval;
3a5c359a 6709
1da177e4
LT
6710out_unlock:
6711 read_unlock(&tasklist_lock);
6712 return retval;
6713}
6714
7c731e0a 6715static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6716
82a1fcb9 6717void sched_show_task(struct task_struct *p)
1da177e4 6718{
1da177e4 6719 unsigned long free = 0;
36c8b586 6720 unsigned state;
1da177e4 6721
1da177e4 6722 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6723 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6724 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6725#if BITS_PER_LONG == 32
1da177e4 6726 if (state == TASK_RUNNING)
cc4ea795 6727 printk(KERN_CONT " running ");
1da177e4 6728 else
cc4ea795 6729 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6730#else
6731 if (state == TASK_RUNNING)
cc4ea795 6732 printk(KERN_CONT " running task ");
1da177e4 6733 else
cc4ea795 6734 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6735#endif
6736#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6737 free = stack_not_used(p);
1da177e4 6738#endif
aa47b7e0
DR
6739 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6740 task_pid_nr(p), task_pid_nr(p->real_parent),
6741 (unsigned long)task_thread_info(p)->flags);
1da177e4 6742
5fb5e6de 6743 show_stack(p, NULL);
1da177e4
LT
6744}
6745
e59e2ae2 6746void show_state_filter(unsigned long state_filter)
1da177e4 6747{
36c8b586 6748 struct task_struct *g, *p;
1da177e4 6749
4bd77321
IM
6750#if BITS_PER_LONG == 32
6751 printk(KERN_INFO
6752 " task PC stack pid father\n");
1da177e4 6753#else
4bd77321
IM
6754 printk(KERN_INFO
6755 " task PC stack pid father\n");
1da177e4
LT
6756#endif
6757 read_lock(&tasklist_lock);
6758 do_each_thread(g, p) {
6759 /*
6760 * reset the NMI-timeout, listing all files on a slow
6761 * console might take alot of time:
6762 */
6763 touch_nmi_watchdog();
39bc89fd 6764 if (!state_filter || (p->state & state_filter))
82a1fcb9 6765 sched_show_task(p);
1da177e4
LT
6766 } while_each_thread(g, p);
6767
04c9167f
JF
6768 touch_all_softlockup_watchdogs();
6769
dd41f596
IM
6770#ifdef CONFIG_SCHED_DEBUG
6771 sysrq_sched_debug_show();
6772#endif
1da177e4 6773 read_unlock(&tasklist_lock);
e59e2ae2
IM
6774 /*
6775 * Only show locks if all tasks are dumped:
6776 */
6777 if (state_filter == -1)
6778 debug_show_all_locks();
1da177e4
LT
6779}
6780
1df21055
IM
6781void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6782{
dd41f596 6783 idle->sched_class = &idle_sched_class;
1df21055
IM
6784}
6785
f340c0d1
IM
6786/**
6787 * init_idle - set up an idle thread for a given CPU
6788 * @idle: task in question
6789 * @cpu: cpu the idle task belongs to
6790 *
6791 * NOTE: this function does not set the idle thread's NEED_RESCHED
6792 * flag, to make booting more robust.
6793 */
5c1e1767 6794void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6795{
70b97a7f 6796 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6797 unsigned long flags;
6798
5cbd54ef
IM
6799 spin_lock_irqsave(&rq->lock, flags);
6800
dd41f596
IM
6801 __sched_fork(idle);
6802 idle->se.exec_start = sched_clock();
6803
b29739f9 6804 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6805 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6806 __set_task_cpu(idle, cpu);
1da177e4 6807
1da177e4 6808 rq->curr = rq->idle = idle;
4866cde0
NP
6809#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6810 idle->oncpu = 1;
6811#endif
1da177e4
LT
6812 spin_unlock_irqrestore(&rq->lock, flags);
6813
6814 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6815#if defined(CONFIG_PREEMPT)
6816 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6817#else
a1261f54 6818 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6819#endif
dd41f596
IM
6820 /*
6821 * The idle tasks have their own, simple scheduling class:
6822 */
6823 idle->sched_class = &idle_sched_class;
fb52607a 6824 ftrace_graph_init_task(idle);
1da177e4
LT
6825}
6826
6827/*
6828 * In a system that switches off the HZ timer nohz_cpu_mask
6829 * indicates which cpus entered this state. This is used
6830 * in the rcu update to wait only for active cpus. For system
6831 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6832 * always be CPU_BITS_NONE.
1da177e4 6833 */
6a7b3dc3 6834cpumask_var_t nohz_cpu_mask;
1da177e4 6835
19978ca6
IM
6836/*
6837 * Increase the granularity value when there are more CPUs,
6838 * because with more CPUs the 'effective latency' as visible
6839 * to users decreases. But the relationship is not linear,
6840 * so pick a second-best guess by going with the log2 of the
6841 * number of CPUs.
6842 *
6843 * This idea comes from the SD scheduler of Con Kolivas:
6844 */
6845static inline void sched_init_granularity(void)
6846{
6847 unsigned int factor = 1 + ilog2(num_online_cpus());
6848 const unsigned long limit = 200000000;
6849
6850 sysctl_sched_min_granularity *= factor;
6851 if (sysctl_sched_min_granularity > limit)
6852 sysctl_sched_min_granularity = limit;
6853
6854 sysctl_sched_latency *= factor;
6855 if (sysctl_sched_latency > limit)
6856 sysctl_sched_latency = limit;
6857
6858 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6859
6860 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6861}
6862
1da177e4
LT
6863#ifdef CONFIG_SMP
6864/*
6865 * This is how migration works:
6866 *
70b97a7f 6867 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6868 * runqueue and wake up that CPU's migration thread.
6869 * 2) we down() the locked semaphore => thread blocks.
6870 * 3) migration thread wakes up (implicitly it forces the migrated
6871 * thread off the CPU)
6872 * 4) it gets the migration request and checks whether the migrated
6873 * task is still in the wrong runqueue.
6874 * 5) if it's in the wrong runqueue then the migration thread removes
6875 * it and puts it into the right queue.
6876 * 6) migration thread up()s the semaphore.
6877 * 7) we wake up and the migration is done.
6878 */
6879
6880/*
6881 * Change a given task's CPU affinity. Migrate the thread to a
6882 * proper CPU and schedule it away if the CPU it's executing on
6883 * is removed from the allowed bitmask.
6884 *
6885 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6886 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6887 * call is not atomic; no spinlocks may be held.
6888 */
96f874e2 6889int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6890{
70b97a7f 6891 struct migration_req req;
1da177e4 6892 unsigned long flags;
70b97a7f 6893 struct rq *rq;
48f24c4d 6894 int ret = 0;
1da177e4
LT
6895
6896 rq = task_rq_lock(p, &flags);
96f874e2 6897 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6898 ret = -EINVAL;
6899 goto out;
6900 }
6901
9985b0ba 6902 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6903 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6904 ret = -EINVAL;
6905 goto out;
6906 }
6907
73fe6aae 6908 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6909 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6910 else {
96f874e2
RR
6911 cpumask_copy(&p->cpus_allowed, new_mask);
6912 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6913 }
6914
1da177e4 6915 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6916 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6917 goto out;
6918
1e5ce4f4 6919 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6920 /* Need help from migration thread: drop lock and wait. */
6921 task_rq_unlock(rq, &flags);
6922 wake_up_process(rq->migration_thread);
6923 wait_for_completion(&req.done);
6924 tlb_migrate_finish(p->mm);
6925 return 0;
6926 }
6927out:
6928 task_rq_unlock(rq, &flags);
48f24c4d 6929
1da177e4
LT
6930 return ret;
6931}
cd8ba7cd 6932EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6933
6934/*
41a2d6cf 6935 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6936 * this because either it can't run here any more (set_cpus_allowed()
6937 * away from this CPU, or CPU going down), or because we're
6938 * attempting to rebalance this task on exec (sched_exec).
6939 *
6940 * So we race with normal scheduler movements, but that's OK, as long
6941 * as the task is no longer on this CPU.
efc30814
KK
6942 *
6943 * Returns non-zero if task was successfully migrated.
1da177e4 6944 */
efc30814 6945static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6946{
70b97a7f 6947 struct rq *rq_dest, *rq_src;
dd41f596 6948 int ret = 0, on_rq;
1da177e4 6949
e761b772 6950 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6951 return ret;
1da177e4
LT
6952
6953 rq_src = cpu_rq(src_cpu);
6954 rq_dest = cpu_rq(dest_cpu);
6955
6956 double_rq_lock(rq_src, rq_dest);
6957 /* Already moved. */
6958 if (task_cpu(p) != src_cpu)
b1e38734 6959 goto done;
1da177e4 6960 /* Affinity changed (again). */
96f874e2 6961 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6962 goto fail;
1da177e4 6963
dd41f596 6964 on_rq = p->se.on_rq;
6e82a3be 6965 if (on_rq)
2e1cb74a 6966 deactivate_task(rq_src, p, 0);
6e82a3be 6967
1da177e4 6968 set_task_cpu(p, dest_cpu);
dd41f596
IM
6969 if (on_rq) {
6970 activate_task(rq_dest, p, 0);
15afe09b 6971 check_preempt_curr(rq_dest, p, 0);
1da177e4 6972 }
b1e38734 6973done:
efc30814 6974 ret = 1;
b1e38734 6975fail:
1da177e4 6976 double_rq_unlock(rq_src, rq_dest);
efc30814 6977 return ret;
1da177e4
LT
6978}
6979
6980/*
6981 * migration_thread - this is a highprio system thread that performs
6982 * thread migration by bumping thread off CPU then 'pushing' onto
6983 * another runqueue.
6984 */
95cdf3b7 6985static int migration_thread(void *data)
1da177e4 6986{
1da177e4 6987 int cpu = (long)data;
70b97a7f 6988 struct rq *rq;
1da177e4
LT
6989
6990 rq = cpu_rq(cpu);
6991 BUG_ON(rq->migration_thread != current);
6992
6993 set_current_state(TASK_INTERRUPTIBLE);
6994 while (!kthread_should_stop()) {
70b97a7f 6995 struct migration_req *req;
1da177e4 6996 struct list_head *head;
1da177e4 6997
1da177e4
LT
6998 spin_lock_irq(&rq->lock);
6999
7000 if (cpu_is_offline(cpu)) {
7001 spin_unlock_irq(&rq->lock);
7002 goto wait_to_die;
7003 }
7004
7005 if (rq->active_balance) {
7006 active_load_balance(rq, cpu);
7007 rq->active_balance = 0;
7008 }
7009
7010 head = &rq->migration_queue;
7011
7012 if (list_empty(head)) {
7013 spin_unlock_irq(&rq->lock);
7014 schedule();
7015 set_current_state(TASK_INTERRUPTIBLE);
7016 continue;
7017 }
70b97a7f 7018 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7019 list_del_init(head->next);
7020
674311d5
NP
7021 spin_unlock(&rq->lock);
7022 __migrate_task(req->task, cpu, req->dest_cpu);
7023 local_irq_enable();
1da177e4
LT
7024
7025 complete(&req->done);
7026 }
7027 __set_current_state(TASK_RUNNING);
7028 return 0;
7029
7030wait_to_die:
7031 /* Wait for kthread_stop */
7032 set_current_state(TASK_INTERRUPTIBLE);
7033 while (!kthread_should_stop()) {
7034 schedule();
7035 set_current_state(TASK_INTERRUPTIBLE);
7036 }
7037 __set_current_state(TASK_RUNNING);
7038 return 0;
7039}
7040
7041#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7042
7043static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7044{
7045 int ret;
7046
7047 local_irq_disable();
7048 ret = __migrate_task(p, src_cpu, dest_cpu);
7049 local_irq_enable();
7050 return ret;
7051}
7052
054b9108 7053/*
3a4fa0a2 7054 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7055 */
48f24c4d 7056static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7057{
70b97a7f 7058 int dest_cpu;
6ca09dfc 7059 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7060
7061again:
7062 /* Look for allowed, online CPU in same node. */
7063 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7064 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7065 goto move;
7066
7067 /* Any allowed, online CPU? */
7068 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7069 if (dest_cpu < nr_cpu_ids)
7070 goto move;
7071
7072 /* No more Mr. Nice Guy. */
7073 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7074 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7075 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7076
e76bd8d9
RR
7077 /*
7078 * Don't tell them about moving exiting tasks or
7079 * kernel threads (both mm NULL), since they never
7080 * leave kernel.
7081 */
7082 if (p->mm && printk_ratelimit()) {
7083 printk(KERN_INFO "process %d (%s) no "
7084 "longer affine to cpu%d\n",
7085 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7086 }
e76bd8d9
RR
7087 }
7088
7089move:
7090 /* It can have affinity changed while we were choosing. */
7091 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7092 goto again;
1da177e4
LT
7093}
7094
7095/*
7096 * While a dead CPU has no uninterruptible tasks queued at this point,
7097 * it might still have a nonzero ->nr_uninterruptible counter, because
7098 * for performance reasons the counter is not stricly tracking tasks to
7099 * their home CPUs. So we just add the counter to another CPU's counter,
7100 * to keep the global sum constant after CPU-down:
7101 */
70b97a7f 7102static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7103{
1e5ce4f4 7104 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7105 unsigned long flags;
7106
7107 local_irq_save(flags);
7108 double_rq_lock(rq_src, rq_dest);
7109 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7110 rq_src->nr_uninterruptible = 0;
7111 double_rq_unlock(rq_src, rq_dest);
7112 local_irq_restore(flags);
7113}
7114
7115/* Run through task list and migrate tasks from the dead cpu. */
7116static void migrate_live_tasks(int src_cpu)
7117{
48f24c4d 7118 struct task_struct *p, *t;
1da177e4 7119
f7b4cddc 7120 read_lock(&tasklist_lock);
1da177e4 7121
48f24c4d
IM
7122 do_each_thread(t, p) {
7123 if (p == current)
1da177e4
LT
7124 continue;
7125
48f24c4d
IM
7126 if (task_cpu(p) == src_cpu)
7127 move_task_off_dead_cpu(src_cpu, p);
7128 } while_each_thread(t, p);
1da177e4 7129
f7b4cddc 7130 read_unlock(&tasklist_lock);
1da177e4
LT
7131}
7132
dd41f596
IM
7133/*
7134 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7135 * It does so by boosting its priority to highest possible.
7136 * Used by CPU offline code.
1da177e4
LT
7137 */
7138void sched_idle_next(void)
7139{
48f24c4d 7140 int this_cpu = smp_processor_id();
70b97a7f 7141 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7142 struct task_struct *p = rq->idle;
7143 unsigned long flags;
7144
7145 /* cpu has to be offline */
48f24c4d 7146 BUG_ON(cpu_online(this_cpu));
1da177e4 7147
48f24c4d
IM
7148 /*
7149 * Strictly not necessary since rest of the CPUs are stopped by now
7150 * and interrupts disabled on the current cpu.
1da177e4
LT
7151 */
7152 spin_lock_irqsave(&rq->lock, flags);
7153
dd41f596 7154 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7155
94bc9a7b
DA
7156 update_rq_clock(rq);
7157 activate_task(rq, p, 0);
1da177e4
LT
7158
7159 spin_unlock_irqrestore(&rq->lock, flags);
7160}
7161
48f24c4d
IM
7162/*
7163 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7164 * offline.
7165 */
7166void idle_task_exit(void)
7167{
7168 struct mm_struct *mm = current->active_mm;
7169
7170 BUG_ON(cpu_online(smp_processor_id()));
7171
7172 if (mm != &init_mm)
7173 switch_mm(mm, &init_mm, current);
7174 mmdrop(mm);
7175}
7176
054b9108 7177/* called under rq->lock with disabled interrupts */
36c8b586 7178static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7179{
70b97a7f 7180 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7181
7182 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7183 BUG_ON(!p->exit_state);
1da177e4
LT
7184
7185 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7186 BUG_ON(p->state == TASK_DEAD);
1da177e4 7187
48f24c4d 7188 get_task_struct(p);
1da177e4
LT
7189
7190 /*
7191 * Drop lock around migration; if someone else moves it,
41a2d6cf 7192 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7193 * fine.
7194 */
f7b4cddc 7195 spin_unlock_irq(&rq->lock);
48f24c4d 7196 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7197 spin_lock_irq(&rq->lock);
1da177e4 7198
48f24c4d 7199 put_task_struct(p);
1da177e4
LT
7200}
7201
7202/* release_task() removes task from tasklist, so we won't find dead tasks. */
7203static void migrate_dead_tasks(unsigned int dead_cpu)
7204{
70b97a7f 7205 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7206 struct task_struct *next;
48f24c4d 7207
dd41f596
IM
7208 for ( ; ; ) {
7209 if (!rq->nr_running)
7210 break;
a8e504d2 7211 update_rq_clock(rq);
b67802ea 7212 next = pick_next_task(rq);
dd41f596
IM
7213 if (!next)
7214 break;
79c53799 7215 next->sched_class->put_prev_task(rq, next);
dd41f596 7216 migrate_dead(dead_cpu, next);
e692ab53 7217
1da177e4
LT
7218 }
7219}
dce48a84
TG
7220
7221/*
7222 * remove the tasks which were accounted by rq from calc_load_tasks.
7223 */
7224static void calc_global_load_remove(struct rq *rq)
7225{
7226 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7227}
1da177e4
LT
7228#endif /* CONFIG_HOTPLUG_CPU */
7229
e692ab53
NP
7230#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7231
7232static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7233 {
7234 .procname = "sched_domain",
c57baf1e 7235 .mode = 0555,
e0361851 7236 },
38605cae 7237 {0, },
e692ab53
NP
7238};
7239
7240static struct ctl_table sd_ctl_root[] = {
e0361851 7241 {
c57baf1e 7242 .ctl_name = CTL_KERN,
e0361851 7243 .procname = "kernel",
c57baf1e 7244 .mode = 0555,
e0361851
AD
7245 .child = sd_ctl_dir,
7246 },
38605cae 7247 {0, },
e692ab53
NP
7248};
7249
7250static struct ctl_table *sd_alloc_ctl_entry(int n)
7251{
7252 struct ctl_table *entry =
5cf9f062 7253 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7254
e692ab53
NP
7255 return entry;
7256}
7257
6382bc90
MM
7258static void sd_free_ctl_entry(struct ctl_table **tablep)
7259{
cd790076 7260 struct ctl_table *entry;
6382bc90 7261
cd790076
MM
7262 /*
7263 * In the intermediate directories, both the child directory and
7264 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7265 * will always be set. In the lowest directory the names are
cd790076
MM
7266 * static strings and all have proc handlers.
7267 */
7268 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7269 if (entry->child)
7270 sd_free_ctl_entry(&entry->child);
cd790076
MM
7271 if (entry->proc_handler == NULL)
7272 kfree(entry->procname);
7273 }
6382bc90
MM
7274
7275 kfree(*tablep);
7276 *tablep = NULL;
7277}
7278
e692ab53 7279static void
e0361851 7280set_table_entry(struct ctl_table *entry,
e692ab53
NP
7281 const char *procname, void *data, int maxlen,
7282 mode_t mode, proc_handler *proc_handler)
7283{
e692ab53
NP
7284 entry->procname = procname;
7285 entry->data = data;
7286 entry->maxlen = maxlen;
7287 entry->mode = mode;
7288 entry->proc_handler = proc_handler;
7289}
7290
7291static struct ctl_table *
7292sd_alloc_ctl_domain_table(struct sched_domain *sd)
7293{
a5d8c348 7294 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7295
ad1cdc1d
MM
7296 if (table == NULL)
7297 return NULL;
7298
e0361851 7299 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7300 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7301 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7302 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7303 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7304 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7305 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7306 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7307 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7308 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7309 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7310 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7311 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7312 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7313 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7314 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7315 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7316 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7317 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7318 &sd->cache_nice_tries,
7319 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7320 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7321 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7322 set_table_entry(&table[11], "name", sd->name,
7323 CORENAME_MAX_SIZE, 0444, proc_dostring);
7324 /* &table[12] is terminator */
e692ab53
NP
7325
7326 return table;
7327}
7328
9a4e7159 7329static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7330{
7331 struct ctl_table *entry, *table;
7332 struct sched_domain *sd;
7333 int domain_num = 0, i;
7334 char buf[32];
7335
7336 for_each_domain(cpu, sd)
7337 domain_num++;
7338 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7339 if (table == NULL)
7340 return NULL;
e692ab53
NP
7341
7342 i = 0;
7343 for_each_domain(cpu, sd) {
7344 snprintf(buf, 32, "domain%d", i);
e692ab53 7345 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7346 entry->mode = 0555;
e692ab53
NP
7347 entry->child = sd_alloc_ctl_domain_table(sd);
7348 entry++;
7349 i++;
7350 }
7351 return table;
7352}
7353
7354static struct ctl_table_header *sd_sysctl_header;
6382bc90 7355static void register_sched_domain_sysctl(void)
e692ab53
NP
7356{
7357 int i, cpu_num = num_online_cpus();
7358 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7359 char buf[32];
7360
7378547f
MM
7361 WARN_ON(sd_ctl_dir[0].child);
7362 sd_ctl_dir[0].child = entry;
7363
ad1cdc1d
MM
7364 if (entry == NULL)
7365 return;
7366
97b6ea7b 7367 for_each_online_cpu(i) {
e692ab53 7368 snprintf(buf, 32, "cpu%d", i);
e692ab53 7369 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7370 entry->mode = 0555;
e692ab53 7371 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7372 entry++;
e692ab53 7373 }
7378547f
MM
7374
7375 WARN_ON(sd_sysctl_header);
e692ab53
NP
7376 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7377}
6382bc90 7378
7378547f 7379/* may be called multiple times per register */
6382bc90
MM
7380static void unregister_sched_domain_sysctl(void)
7381{
7378547f
MM
7382 if (sd_sysctl_header)
7383 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7384 sd_sysctl_header = NULL;
7378547f
MM
7385 if (sd_ctl_dir[0].child)
7386 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7387}
e692ab53 7388#else
6382bc90
MM
7389static void register_sched_domain_sysctl(void)
7390{
7391}
7392static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7393{
7394}
7395#endif
7396
1f11eb6a
GH
7397static void set_rq_online(struct rq *rq)
7398{
7399 if (!rq->online) {
7400 const struct sched_class *class;
7401
c6c4927b 7402 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7403 rq->online = 1;
7404
7405 for_each_class(class) {
7406 if (class->rq_online)
7407 class->rq_online(rq);
7408 }
7409 }
7410}
7411
7412static void set_rq_offline(struct rq *rq)
7413{
7414 if (rq->online) {
7415 const struct sched_class *class;
7416
7417 for_each_class(class) {
7418 if (class->rq_offline)
7419 class->rq_offline(rq);
7420 }
7421
c6c4927b 7422 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7423 rq->online = 0;
7424 }
7425}
7426
1da177e4
LT
7427/*
7428 * migration_call - callback that gets triggered when a CPU is added.
7429 * Here we can start up the necessary migration thread for the new CPU.
7430 */
48f24c4d
IM
7431static int __cpuinit
7432migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7433{
1da177e4 7434 struct task_struct *p;
48f24c4d 7435 int cpu = (long)hcpu;
1da177e4 7436 unsigned long flags;
70b97a7f 7437 struct rq *rq;
1da177e4
LT
7438
7439 switch (action) {
5be9361c 7440
1da177e4 7441 case CPU_UP_PREPARE:
8bb78442 7442 case CPU_UP_PREPARE_FROZEN:
dd41f596 7443 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7444 if (IS_ERR(p))
7445 return NOTIFY_BAD;
1da177e4
LT
7446 kthread_bind(p, cpu);
7447 /* Must be high prio: stop_machine expects to yield to it. */
7448 rq = task_rq_lock(p, &flags);
dd41f596 7449 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7450 task_rq_unlock(rq, &flags);
7451 cpu_rq(cpu)->migration_thread = p;
7452 break;
48f24c4d 7453
1da177e4 7454 case CPU_ONLINE:
8bb78442 7455 case CPU_ONLINE_FROZEN:
3a4fa0a2 7456 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7457 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7458
7459 /* Update our root-domain */
7460 rq = cpu_rq(cpu);
7461 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7462 rq->calc_load_update = calc_load_update;
7463 rq->calc_load_active = 0;
1f94ef59 7464 if (rq->rd) {
c6c4927b 7465 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7466
7467 set_rq_online(rq);
1f94ef59
GH
7468 }
7469 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7470 break;
48f24c4d 7471
1da177e4
LT
7472#ifdef CONFIG_HOTPLUG_CPU
7473 case CPU_UP_CANCELED:
8bb78442 7474 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7475 if (!cpu_rq(cpu)->migration_thread)
7476 break;
41a2d6cf 7477 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7478 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7479 cpumask_any(cpu_online_mask));
1da177e4
LT
7480 kthread_stop(cpu_rq(cpu)->migration_thread);
7481 cpu_rq(cpu)->migration_thread = NULL;
7482 break;
48f24c4d 7483
1da177e4 7484 case CPU_DEAD:
8bb78442 7485 case CPU_DEAD_FROZEN:
470fd646 7486 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7487 migrate_live_tasks(cpu);
7488 rq = cpu_rq(cpu);
7489 kthread_stop(rq->migration_thread);
7490 rq->migration_thread = NULL;
7491 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7492 spin_lock_irq(&rq->lock);
a8e504d2 7493 update_rq_clock(rq);
2e1cb74a 7494 deactivate_task(rq, rq->idle, 0);
1da177e4 7495 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7496 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7497 rq->idle->sched_class = &idle_sched_class;
1da177e4 7498 migrate_dead_tasks(cpu);
d2da272a 7499 spin_unlock_irq(&rq->lock);
470fd646 7500 cpuset_unlock();
1da177e4
LT
7501 migrate_nr_uninterruptible(rq);
7502 BUG_ON(rq->nr_running != 0);
dce48a84 7503 calc_global_load_remove(rq);
41a2d6cf
IM
7504 /*
7505 * No need to migrate the tasks: it was best-effort if
7506 * they didn't take sched_hotcpu_mutex. Just wake up
7507 * the requestors.
7508 */
1da177e4
LT
7509 spin_lock_irq(&rq->lock);
7510 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7511 struct migration_req *req;
7512
1da177e4 7513 req = list_entry(rq->migration_queue.next,
70b97a7f 7514 struct migration_req, list);
1da177e4 7515 list_del_init(&req->list);
9a2bd244 7516 spin_unlock_irq(&rq->lock);
1da177e4 7517 complete(&req->done);
9a2bd244 7518 spin_lock_irq(&rq->lock);
1da177e4
LT
7519 }
7520 spin_unlock_irq(&rq->lock);
7521 break;
57d885fe 7522
08f503b0
GH
7523 case CPU_DYING:
7524 case CPU_DYING_FROZEN:
57d885fe
GH
7525 /* Update our root-domain */
7526 rq = cpu_rq(cpu);
7527 spin_lock_irqsave(&rq->lock, flags);
7528 if (rq->rd) {
c6c4927b 7529 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7530 set_rq_offline(rq);
57d885fe
GH
7531 }
7532 spin_unlock_irqrestore(&rq->lock, flags);
7533 break;
1da177e4
LT
7534#endif
7535 }
7536 return NOTIFY_OK;
7537}
7538
7539/* Register at highest priority so that task migration (migrate_all_tasks)
7540 * happens before everything else.
7541 */
26c2143b 7542static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7543 .notifier_call = migration_call,
7544 .priority = 10
7545};
7546
7babe8db 7547static int __init migration_init(void)
1da177e4
LT
7548{
7549 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7550 int err;
48f24c4d
IM
7551
7552 /* Start one for the boot CPU: */
07dccf33
AM
7553 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7554 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7555 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7556 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7557
7558 return err;
1da177e4 7559}
7babe8db 7560early_initcall(migration_init);
1da177e4
LT
7561#endif
7562
7563#ifdef CONFIG_SMP
476f3534 7564
3e9830dc 7565#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7566
7c16ec58 7567static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7568 struct cpumask *groupmask)
1da177e4 7569{
4dcf6aff 7570 struct sched_group *group = sd->groups;
434d53b0 7571 char str[256];
1da177e4 7572
968ea6d8 7573 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7574 cpumask_clear(groupmask);
4dcf6aff
IM
7575
7576 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7577
7578 if (!(sd->flags & SD_LOAD_BALANCE)) {
7579 printk("does not load-balance\n");
7580 if (sd->parent)
7581 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7582 " has parent");
7583 return -1;
41c7ce9a
NP
7584 }
7585
eefd796a 7586 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7587
758b2cdc 7588 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7589 printk(KERN_ERR "ERROR: domain->span does not contain "
7590 "CPU%d\n", cpu);
7591 }
758b2cdc 7592 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7593 printk(KERN_ERR "ERROR: domain->groups does not contain"
7594 " CPU%d\n", cpu);
7595 }
1da177e4 7596
4dcf6aff 7597 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7598 do {
4dcf6aff
IM
7599 if (!group) {
7600 printk("\n");
7601 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7602 break;
7603 }
7604
4dcf6aff
IM
7605 if (!group->__cpu_power) {
7606 printk(KERN_CONT "\n");
7607 printk(KERN_ERR "ERROR: domain->cpu_power not "
7608 "set\n");
7609 break;
7610 }
1da177e4 7611
758b2cdc 7612 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7613 printk(KERN_CONT "\n");
7614 printk(KERN_ERR "ERROR: empty group\n");
7615 break;
7616 }
1da177e4 7617
758b2cdc 7618 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7619 printk(KERN_CONT "\n");
7620 printk(KERN_ERR "ERROR: repeated CPUs\n");
7621 break;
7622 }
1da177e4 7623
758b2cdc 7624 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7625
968ea6d8 7626 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7627
7628 printk(KERN_CONT " %s", str);
7629 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7630 printk(KERN_CONT " (__cpu_power = %d)",
7631 group->__cpu_power);
7632 }
1da177e4 7633
4dcf6aff
IM
7634 group = group->next;
7635 } while (group != sd->groups);
7636 printk(KERN_CONT "\n");
1da177e4 7637
758b2cdc 7638 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7639 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7640
758b2cdc
RR
7641 if (sd->parent &&
7642 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7643 printk(KERN_ERR "ERROR: parent span is not a superset "
7644 "of domain->span\n");
7645 return 0;
7646}
1da177e4 7647
4dcf6aff
IM
7648static void sched_domain_debug(struct sched_domain *sd, int cpu)
7649{
d5dd3db1 7650 cpumask_var_t groupmask;
4dcf6aff 7651 int level = 0;
1da177e4 7652
4dcf6aff
IM
7653 if (!sd) {
7654 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7655 return;
7656 }
1da177e4 7657
4dcf6aff
IM
7658 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7659
d5dd3db1 7660 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7661 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7662 return;
7663 }
7664
4dcf6aff 7665 for (;;) {
7c16ec58 7666 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7667 break;
1da177e4
LT
7668 level++;
7669 sd = sd->parent;
33859f7f 7670 if (!sd)
4dcf6aff
IM
7671 break;
7672 }
d5dd3db1 7673 free_cpumask_var(groupmask);
1da177e4 7674}
6d6bc0ad 7675#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7676# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7677#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7678
1a20ff27 7679static int sd_degenerate(struct sched_domain *sd)
245af2c7 7680{
758b2cdc 7681 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7682 return 1;
7683
7684 /* Following flags need at least 2 groups */
7685 if (sd->flags & (SD_LOAD_BALANCE |
7686 SD_BALANCE_NEWIDLE |
7687 SD_BALANCE_FORK |
89c4710e
SS
7688 SD_BALANCE_EXEC |
7689 SD_SHARE_CPUPOWER |
7690 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7691 if (sd->groups != sd->groups->next)
7692 return 0;
7693 }
7694
7695 /* Following flags don't use groups */
7696 if (sd->flags & (SD_WAKE_IDLE |
7697 SD_WAKE_AFFINE |
7698 SD_WAKE_BALANCE))
7699 return 0;
7700
7701 return 1;
7702}
7703
48f24c4d
IM
7704static int
7705sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7706{
7707 unsigned long cflags = sd->flags, pflags = parent->flags;
7708
7709 if (sd_degenerate(parent))
7710 return 1;
7711
758b2cdc 7712 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7713 return 0;
7714
7715 /* Does parent contain flags not in child? */
7716 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7717 if (cflags & SD_WAKE_AFFINE)
7718 pflags &= ~SD_WAKE_BALANCE;
7719 /* Flags needing groups don't count if only 1 group in parent */
7720 if (parent->groups == parent->groups->next) {
7721 pflags &= ~(SD_LOAD_BALANCE |
7722 SD_BALANCE_NEWIDLE |
7723 SD_BALANCE_FORK |
89c4710e
SS
7724 SD_BALANCE_EXEC |
7725 SD_SHARE_CPUPOWER |
7726 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7727 if (nr_node_ids == 1)
7728 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7729 }
7730 if (~cflags & pflags)
7731 return 0;
7732
7733 return 1;
7734}
7735
c6c4927b
RR
7736static void free_rootdomain(struct root_domain *rd)
7737{
68e74568
RR
7738 cpupri_cleanup(&rd->cpupri);
7739
c6c4927b
RR
7740 free_cpumask_var(rd->rto_mask);
7741 free_cpumask_var(rd->online);
7742 free_cpumask_var(rd->span);
7743 kfree(rd);
7744}
7745
57d885fe
GH
7746static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7747{
a0490fa3 7748 struct root_domain *old_rd = NULL;
57d885fe 7749 unsigned long flags;
57d885fe
GH
7750
7751 spin_lock_irqsave(&rq->lock, flags);
7752
7753 if (rq->rd) {
a0490fa3 7754 old_rd = rq->rd;
57d885fe 7755
c6c4927b 7756 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7757 set_rq_offline(rq);
57d885fe 7758
c6c4927b 7759 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7760
a0490fa3
IM
7761 /*
7762 * If we dont want to free the old_rt yet then
7763 * set old_rd to NULL to skip the freeing later
7764 * in this function:
7765 */
7766 if (!atomic_dec_and_test(&old_rd->refcount))
7767 old_rd = NULL;
57d885fe
GH
7768 }
7769
7770 atomic_inc(&rd->refcount);
7771 rq->rd = rd;
7772
c6c4927b
RR
7773 cpumask_set_cpu(rq->cpu, rd->span);
7774 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7775 set_rq_online(rq);
57d885fe
GH
7776
7777 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7778
7779 if (old_rd)
7780 free_rootdomain(old_rd);
57d885fe
GH
7781}
7782
db2f59c8 7783static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7784{
7785 memset(rd, 0, sizeof(*rd));
7786
c6c4927b
RR
7787 if (bootmem) {
7788 alloc_bootmem_cpumask_var(&def_root_domain.span);
7789 alloc_bootmem_cpumask_var(&def_root_domain.online);
7790 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7791 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7792 return 0;
7793 }
7794
7795 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7796 goto out;
c6c4927b
RR
7797 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7798 goto free_span;
7799 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7800 goto free_online;
6e0534f2 7801
68e74568
RR
7802 if (cpupri_init(&rd->cpupri, false) != 0)
7803 goto free_rto_mask;
c6c4927b 7804 return 0;
6e0534f2 7805
68e74568
RR
7806free_rto_mask:
7807 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7808free_online:
7809 free_cpumask_var(rd->online);
7810free_span:
7811 free_cpumask_var(rd->span);
0c910d28 7812out:
c6c4927b 7813 return -ENOMEM;
57d885fe
GH
7814}
7815
7816static void init_defrootdomain(void)
7817{
c6c4927b
RR
7818 init_rootdomain(&def_root_domain, true);
7819
57d885fe
GH
7820 atomic_set(&def_root_domain.refcount, 1);
7821}
7822
dc938520 7823static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7824{
7825 struct root_domain *rd;
7826
7827 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7828 if (!rd)
7829 return NULL;
7830
c6c4927b
RR
7831 if (init_rootdomain(rd, false) != 0) {
7832 kfree(rd);
7833 return NULL;
7834 }
57d885fe
GH
7835
7836 return rd;
7837}
7838
1da177e4 7839/*
0eab9146 7840 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7841 * hold the hotplug lock.
7842 */
0eab9146
IM
7843static void
7844cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7845{
70b97a7f 7846 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7847 struct sched_domain *tmp;
7848
7849 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7850 for (tmp = sd; tmp; ) {
245af2c7
SS
7851 struct sched_domain *parent = tmp->parent;
7852 if (!parent)
7853 break;
f29c9b1c 7854
1a848870 7855 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7856 tmp->parent = parent->parent;
1a848870
SS
7857 if (parent->parent)
7858 parent->parent->child = tmp;
f29c9b1c
LZ
7859 } else
7860 tmp = tmp->parent;
245af2c7
SS
7861 }
7862
1a848870 7863 if (sd && sd_degenerate(sd)) {
245af2c7 7864 sd = sd->parent;
1a848870
SS
7865 if (sd)
7866 sd->child = NULL;
7867 }
1da177e4
LT
7868
7869 sched_domain_debug(sd, cpu);
7870
57d885fe 7871 rq_attach_root(rq, rd);
674311d5 7872 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7873}
7874
7875/* cpus with isolated domains */
dcc30a35 7876static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7877
7878/* Setup the mask of cpus configured for isolated domains */
7879static int __init isolated_cpu_setup(char *str)
7880{
968ea6d8 7881 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7882 return 1;
7883}
7884
8927f494 7885__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7886
7887/*
6711cab4
SS
7888 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7889 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7890 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7891 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7892 *
7893 * init_sched_build_groups will build a circular linked list of the groups
7894 * covered by the given span, and will set each group's ->cpumask correctly,
7895 * and ->cpu_power to 0.
7896 */
a616058b 7897static void
96f874e2
RR
7898init_sched_build_groups(const struct cpumask *span,
7899 const struct cpumask *cpu_map,
7900 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7901 struct sched_group **sg,
96f874e2
RR
7902 struct cpumask *tmpmask),
7903 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7904{
7905 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7906 int i;
7907
96f874e2 7908 cpumask_clear(covered);
7c16ec58 7909
abcd083a 7910 for_each_cpu(i, span) {
6711cab4 7911 struct sched_group *sg;
7c16ec58 7912 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7913 int j;
7914
758b2cdc 7915 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7916 continue;
7917
758b2cdc 7918 cpumask_clear(sched_group_cpus(sg));
5517d86b 7919 sg->__cpu_power = 0;
1da177e4 7920
abcd083a 7921 for_each_cpu(j, span) {
7c16ec58 7922 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7923 continue;
7924
96f874e2 7925 cpumask_set_cpu(j, covered);
758b2cdc 7926 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7927 }
7928 if (!first)
7929 first = sg;
7930 if (last)
7931 last->next = sg;
7932 last = sg;
7933 }
7934 last->next = first;
7935}
7936
9c1cfda2 7937#define SD_NODES_PER_DOMAIN 16
1da177e4 7938
9c1cfda2 7939#ifdef CONFIG_NUMA
198e2f18 7940
9c1cfda2
JH
7941/**
7942 * find_next_best_node - find the next node to include in a sched_domain
7943 * @node: node whose sched_domain we're building
7944 * @used_nodes: nodes already in the sched_domain
7945 *
41a2d6cf 7946 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7947 * finds the closest node not already in the @used_nodes map.
7948 *
7949 * Should use nodemask_t.
7950 */
c5f59f08 7951static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7952{
7953 int i, n, val, min_val, best_node = 0;
7954
7955 min_val = INT_MAX;
7956
076ac2af 7957 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7958 /* Start at @node */
076ac2af 7959 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7960
7961 if (!nr_cpus_node(n))
7962 continue;
7963
7964 /* Skip already used nodes */
c5f59f08 7965 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7966 continue;
7967
7968 /* Simple min distance search */
7969 val = node_distance(node, n);
7970
7971 if (val < min_val) {
7972 min_val = val;
7973 best_node = n;
7974 }
7975 }
7976
c5f59f08 7977 node_set(best_node, *used_nodes);
9c1cfda2
JH
7978 return best_node;
7979}
7980
7981/**
7982 * sched_domain_node_span - get a cpumask for a node's sched_domain
7983 * @node: node whose cpumask we're constructing
73486722 7984 * @span: resulting cpumask
9c1cfda2 7985 *
41a2d6cf 7986 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7987 * should be one that prevents unnecessary balancing, but also spreads tasks
7988 * out optimally.
7989 */
96f874e2 7990static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7991{
c5f59f08 7992 nodemask_t used_nodes;
48f24c4d 7993 int i;
9c1cfda2 7994
6ca09dfc 7995 cpumask_clear(span);
c5f59f08 7996 nodes_clear(used_nodes);
9c1cfda2 7997
6ca09dfc 7998 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7999 node_set(node, used_nodes);
9c1cfda2
JH
8000
8001 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8002 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8003
6ca09dfc 8004 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8005 }
9c1cfda2 8006}
6d6bc0ad 8007#endif /* CONFIG_NUMA */
9c1cfda2 8008
5c45bf27 8009int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8010
6c99e9ad
RR
8011/*
8012 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8013 *
8014 * ( See the the comments in include/linux/sched.h:struct sched_group
8015 * and struct sched_domain. )
6c99e9ad
RR
8016 */
8017struct static_sched_group {
8018 struct sched_group sg;
8019 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8020};
8021
8022struct static_sched_domain {
8023 struct sched_domain sd;
8024 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8025};
8026
9c1cfda2 8027/*
48f24c4d 8028 * SMT sched-domains:
9c1cfda2 8029 */
1da177e4 8030#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8031static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8032static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8033
41a2d6cf 8034static int
96f874e2
RR
8035cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8036 struct sched_group **sg, struct cpumask *unused)
1da177e4 8037{
6711cab4 8038 if (sg)
6c99e9ad 8039 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8040 return cpu;
8041}
6d6bc0ad 8042#endif /* CONFIG_SCHED_SMT */
1da177e4 8043
48f24c4d
IM
8044/*
8045 * multi-core sched-domains:
8046 */
1e9f28fa 8047#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8048static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8049static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8050#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8051
8052#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8053static int
96f874e2
RR
8054cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8055 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8056{
6711cab4 8057 int group;
7c16ec58 8058
c69fc56d 8059 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8060 group = cpumask_first(mask);
6711cab4 8061 if (sg)
6c99e9ad 8062 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8063 return group;
1e9f28fa
SS
8064}
8065#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8066static int
96f874e2
RR
8067cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8068 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8069{
6711cab4 8070 if (sg)
6c99e9ad 8071 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8072 return cpu;
8073}
8074#endif
8075
6c99e9ad
RR
8076static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8077static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8078
41a2d6cf 8079static int
96f874e2
RR
8080cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8081 struct sched_group **sg, struct cpumask *mask)
1da177e4 8082{
6711cab4 8083 int group;
48f24c4d 8084#ifdef CONFIG_SCHED_MC
6ca09dfc 8085 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8086 group = cpumask_first(mask);
1e9f28fa 8087#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8088 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8089 group = cpumask_first(mask);
1da177e4 8090#else
6711cab4 8091 group = cpu;
1da177e4 8092#endif
6711cab4 8093 if (sg)
6c99e9ad 8094 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8095 return group;
1da177e4
LT
8096}
8097
8098#ifdef CONFIG_NUMA
1da177e4 8099/*
9c1cfda2
JH
8100 * The init_sched_build_groups can't handle what we want to do with node
8101 * groups, so roll our own. Now each node has its own list of groups which
8102 * gets dynamically allocated.
1da177e4 8103 */
62ea9ceb 8104static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8105static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8106
62ea9ceb 8107static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8108static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8109
96f874e2
RR
8110static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8111 struct sched_group **sg,
8112 struct cpumask *nodemask)
9c1cfda2 8113{
6711cab4
SS
8114 int group;
8115
6ca09dfc 8116 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8117 group = cpumask_first(nodemask);
6711cab4
SS
8118
8119 if (sg)
6c99e9ad 8120 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8121 return group;
1da177e4 8122}
6711cab4 8123
08069033
SS
8124static void init_numa_sched_groups_power(struct sched_group *group_head)
8125{
8126 struct sched_group *sg = group_head;
8127 int j;
8128
8129 if (!sg)
8130 return;
3a5c359a 8131 do {
758b2cdc 8132 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8133 struct sched_domain *sd;
08069033 8134
6c99e9ad 8135 sd = &per_cpu(phys_domains, j).sd;
13318a71 8136 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8137 /*
8138 * Only add "power" once for each
8139 * physical package.
8140 */
8141 continue;
8142 }
08069033 8143
3a5c359a
AK
8144 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8145 }
8146 sg = sg->next;
8147 } while (sg != group_head);
08069033 8148}
6d6bc0ad 8149#endif /* CONFIG_NUMA */
1da177e4 8150
a616058b 8151#ifdef CONFIG_NUMA
51888ca2 8152/* Free memory allocated for various sched_group structures */
96f874e2
RR
8153static void free_sched_groups(const struct cpumask *cpu_map,
8154 struct cpumask *nodemask)
51888ca2 8155{
a616058b 8156 int cpu, i;
51888ca2 8157
abcd083a 8158 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8159 struct sched_group **sched_group_nodes
8160 = sched_group_nodes_bycpu[cpu];
8161
51888ca2
SV
8162 if (!sched_group_nodes)
8163 continue;
8164
076ac2af 8165 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8166 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8167
6ca09dfc 8168 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8169 if (cpumask_empty(nodemask))
51888ca2
SV
8170 continue;
8171
8172 if (sg == NULL)
8173 continue;
8174 sg = sg->next;
8175next_sg:
8176 oldsg = sg;
8177 sg = sg->next;
8178 kfree(oldsg);
8179 if (oldsg != sched_group_nodes[i])
8180 goto next_sg;
8181 }
8182 kfree(sched_group_nodes);
8183 sched_group_nodes_bycpu[cpu] = NULL;
8184 }
51888ca2 8185}
6d6bc0ad 8186#else /* !CONFIG_NUMA */
96f874e2
RR
8187static void free_sched_groups(const struct cpumask *cpu_map,
8188 struct cpumask *nodemask)
a616058b
SS
8189{
8190}
6d6bc0ad 8191#endif /* CONFIG_NUMA */
51888ca2 8192
89c4710e
SS
8193/*
8194 * Initialize sched groups cpu_power.
8195 *
8196 * cpu_power indicates the capacity of sched group, which is used while
8197 * distributing the load between different sched groups in a sched domain.
8198 * Typically cpu_power for all the groups in a sched domain will be same unless
8199 * there are asymmetries in the topology. If there are asymmetries, group
8200 * having more cpu_power will pickup more load compared to the group having
8201 * less cpu_power.
8202 *
8203 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8204 * the maximum number of tasks a group can handle in the presence of other idle
8205 * or lightly loaded groups in the same sched domain.
8206 */
8207static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8208{
8209 struct sched_domain *child;
8210 struct sched_group *group;
8211
8212 WARN_ON(!sd || !sd->groups);
8213
13318a71 8214 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8215 return;
8216
8217 child = sd->child;
8218
5517d86b
ED
8219 sd->groups->__cpu_power = 0;
8220
89c4710e
SS
8221 /*
8222 * For perf policy, if the groups in child domain share resources
8223 * (for example cores sharing some portions of the cache hierarchy
8224 * or SMT), then set this domain groups cpu_power such that each group
8225 * can handle only one task, when there are other idle groups in the
8226 * same sched domain.
8227 */
8228 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8229 (child->flags &
8230 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8231 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8232 return;
8233 }
8234
89c4710e
SS
8235 /*
8236 * add cpu_power of each child group to this groups cpu_power
8237 */
8238 group = child->groups;
8239 do {
5517d86b 8240 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8241 group = group->next;
8242 } while (group != child->groups);
8243}
8244
7c16ec58
MT
8245/*
8246 * Initializers for schedule domains
8247 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8248 */
8249
a5d8c348
IM
8250#ifdef CONFIG_SCHED_DEBUG
8251# define SD_INIT_NAME(sd, type) sd->name = #type
8252#else
8253# define SD_INIT_NAME(sd, type) do { } while (0)
8254#endif
8255
7c16ec58 8256#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8257
7c16ec58
MT
8258#define SD_INIT_FUNC(type) \
8259static noinline void sd_init_##type(struct sched_domain *sd) \
8260{ \
8261 memset(sd, 0, sizeof(*sd)); \
8262 *sd = SD_##type##_INIT; \
1d3504fc 8263 sd->level = SD_LV_##type; \
a5d8c348 8264 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8265}
8266
8267SD_INIT_FUNC(CPU)
8268#ifdef CONFIG_NUMA
8269 SD_INIT_FUNC(ALLNODES)
8270 SD_INIT_FUNC(NODE)
8271#endif
8272#ifdef CONFIG_SCHED_SMT
8273 SD_INIT_FUNC(SIBLING)
8274#endif
8275#ifdef CONFIG_SCHED_MC
8276 SD_INIT_FUNC(MC)
8277#endif
8278
1d3504fc
HS
8279static int default_relax_domain_level = -1;
8280
8281static int __init setup_relax_domain_level(char *str)
8282{
30e0e178
LZ
8283 unsigned long val;
8284
8285 val = simple_strtoul(str, NULL, 0);
8286 if (val < SD_LV_MAX)
8287 default_relax_domain_level = val;
8288
1d3504fc
HS
8289 return 1;
8290}
8291__setup("relax_domain_level=", setup_relax_domain_level);
8292
8293static void set_domain_attribute(struct sched_domain *sd,
8294 struct sched_domain_attr *attr)
8295{
8296 int request;
8297
8298 if (!attr || attr->relax_domain_level < 0) {
8299 if (default_relax_domain_level < 0)
8300 return;
8301 else
8302 request = default_relax_domain_level;
8303 } else
8304 request = attr->relax_domain_level;
8305 if (request < sd->level) {
8306 /* turn off idle balance on this domain */
8307 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8308 } else {
8309 /* turn on idle balance on this domain */
8310 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8311 }
8312}
8313
1da177e4 8314/*
1a20ff27
DG
8315 * Build sched domains for a given set of cpus and attach the sched domains
8316 * to the individual cpus
1da177e4 8317 */
96f874e2 8318static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8319 struct sched_domain_attr *attr)
1da177e4 8320{
3404c8d9 8321 int i, err = -ENOMEM;
57d885fe 8322 struct root_domain *rd;
3404c8d9
RR
8323 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8324 tmpmask;
d1b55138 8325#ifdef CONFIG_NUMA
3404c8d9 8326 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8327 struct sched_group **sched_group_nodes = NULL;
6711cab4 8328 int sd_allnodes = 0;
d1b55138 8329
3404c8d9
RR
8330 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8331 goto out;
8332 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8333 goto free_domainspan;
8334 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8335 goto free_covered;
8336#endif
8337
8338 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8339 goto free_notcovered;
8340 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8341 goto free_nodemask;
8342 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8343 goto free_this_sibling_map;
8344 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8345 goto free_this_core_map;
8346 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8347 goto free_send_covered;
8348
8349#ifdef CONFIG_NUMA
d1b55138
JH
8350 /*
8351 * Allocate the per-node list of sched groups
8352 */
076ac2af 8353 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8354 GFP_KERNEL);
d1b55138
JH
8355 if (!sched_group_nodes) {
8356 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8357 goto free_tmpmask;
d1b55138 8358 }
d1b55138 8359#endif
1da177e4 8360
dc938520 8361 rd = alloc_rootdomain();
57d885fe
GH
8362 if (!rd) {
8363 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8364 goto free_sched_groups;
57d885fe
GH
8365 }
8366
7c16ec58 8367#ifdef CONFIG_NUMA
96f874e2 8368 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8369#endif
8370
1da177e4 8371 /*
1a20ff27 8372 * Set up domains for cpus specified by the cpu_map.
1da177e4 8373 */
abcd083a 8374 for_each_cpu(i, cpu_map) {
1da177e4 8375 struct sched_domain *sd = NULL, *p;
1da177e4 8376
6ca09dfc 8377 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8378
8379#ifdef CONFIG_NUMA
96f874e2
RR
8380 if (cpumask_weight(cpu_map) >
8381 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8382 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8383 SD_INIT(sd, ALLNODES);
1d3504fc 8384 set_domain_attribute(sd, attr);
758b2cdc 8385 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8386 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8387 p = sd;
6711cab4 8388 sd_allnodes = 1;
9c1cfda2
JH
8389 } else
8390 p = NULL;
8391
62ea9ceb 8392 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8393 SD_INIT(sd, NODE);
1d3504fc 8394 set_domain_attribute(sd, attr);
758b2cdc 8395 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8396 sd->parent = p;
1a848870
SS
8397 if (p)
8398 p->child = sd;
758b2cdc
RR
8399 cpumask_and(sched_domain_span(sd),
8400 sched_domain_span(sd), cpu_map);
1da177e4
LT
8401#endif
8402
8403 p = sd;
6c99e9ad 8404 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8405 SD_INIT(sd, CPU);
1d3504fc 8406 set_domain_attribute(sd, attr);
758b2cdc 8407 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8408 sd->parent = p;
1a848870
SS
8409 if (p)
8410 p->child = sd;
7c16ec58 8411 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8412
1e9f28fa
SS
8413#ifdef CONFIG_SCHED_MC
8414 p = sd;
6c99e9ad 8415 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8416 SD_INIT(sd, MC);
1d3504fc 8417 set_domain_attribute(sd, attr);
6ca09dfc
MT
8418 cpumask_and(sched_domain_span(sd), cpu_map,
8419 cpu_coregroup_mask(i));
1e9f28fa 8420 sd->parent = p;
1a848870 8421 p->child = sd;
7c16ec58 8422 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8423#endif
8424
1da177e4
LT
8425#ifdef CONFIG_SCHED_SMT
8426 p = sd;
6c99e9ad 8427 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8428 SD_INIT(sd, SIBLING);
1d3504fc 8429 set_domain_attribute(sd, attr);
758b2cdc 8430 cpumask_and(sched_domain_span(sd),
c69fc56d 8431 topology_thread_cpumask(i), cpu_map);
1da177e4 8432 sd->parent = p;
1a848870 8433 p->child = sd;
7c16ec58 8434 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8435#endif
8436 }
8437
8438#ifdef CONFIG_SCHED_SMT
8439 /* Set up CPU (sibling) groups */
abcd083a 8440 for_each_cpu(i, cpu_map) {
96f874e2 8441 cpumask_and(this_sibling_map,
c69fc56d 8442 topology_thread_cpumask(i), cpu_map);
96f874e2 8443 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8444 continue;
8445
dd41f596 8446 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8447 &cpu_to_cpu_group,
8448 send_covered, tmpmask);
1da177e4
LT
8449 }
8450#endif
8451
1e9f28fa
SS
8452#ifdef CONFIG_SCHED_MC
8453 /* Set up multi-core groups */
abcd083a 8454 for_each_cpu(i, cpu_map) {
6ca09dfc 8455 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8456 if (i != cpumask_first(this_core_map))
1e9f28fa 8457 continue;
7c16ec58 8458
dd41f596 8459 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8460 &cpu_to_core_group,
8461 send_covered, tmpmask);
1e9f28fa
SS
8462 }
8463#endif
8464
1da177e4 8465 /* Set up physical groups */
076ac2af 8466 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8467 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8468 if (cpumask_empty(nodemask))
1da177e4
LT
8469 continue;
8470
7c16ec58
MT
8471 init_sched_build_groups(nodemask, cpu_map,
8472 &cpu_to_phys_group,
8473 send_covered, tmpmask);
1da177e4
LT
8474 }
8475
8476#ifdef CONFIG_NUMA
8477 /* Set up node groups */
7c16ec58 8478 if (sd_allnodes) {
7c16ec58
MT
8479 init_sched_build_groups(cpu_map, cpu_map,
8480 &cpu_to_allnodes_group,
8481 send_covered, tmpmask);
8482 }
9c1cfda2 8483
076ac2af 8484 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8485 /* Set up node groups */
8486 struct sched_group *sg, *prev;
9c1cfda2
JH
8487 int j;
8488
96f874e2 8489 cpumask_clear(covered);
6ca09dfc 8490 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8491 if (cpumask_empty(nodemask)) {
d1b55138 8492 sched_group_nodes[i] = NULL;
9c1cfda2 8493 continue;
d1b55138 8494 }
9c1cfda2 8495
4bdbaad3 8496 sched_domain_node_span(i, domainspan);
96f874e2 8497 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8498
6c99e9ad
RR
8499 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8500 GFP_KERNEL, i);
51888ca2
SV
8501 if (!sg) {
8502 printk(KERN_WARNING "Can not alloc domain group for "
8503 "node %d\n", i);
8504 goto error;
8505 }
9c1cfda2 8506 sched_group_nodes[i] = sg;
abcd083a 8507 for_each_cpu(j, nodemask) {
9c1cfda2 8508 struct sched_domain *sd;
9761eea8 8509
62ea9ceb 8510 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8511 sd->groups = sg;
9c1cfda2 8512 }
5517d86b 8513 sg->__cpu_power = 0;
758b2cdc 8514 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8515 sg->next = sg;
96f874e2 8516 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8517 prev = sg;
8518
076ac2af 8519 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8520 int n = (i + j) % nr_node_ids;
9c1cfda2 8521
96f874e2
RR
8522 cpumask_complement(notcovered, covered);
8523 cpumask_and(tmpmask, notcovered, cpu_map);
8524 cpumask_and(tmpmask, tmpmask, domainspan);
8525 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8526 break;
8527
6ca09dfc 8528 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8529 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8530 continue;
8531
6c99e9ad
RR
8532 sg = kmalloc_node(sizeof(struct sched_group) +
8533 cpumask_size(),
15f0b676 8534 GFP_KERNEL, i);
9c1cfda2
JH
8535 if (!sg) {
8536 printk(KERN_WARNING
8537 "Can not alloc domain group for node %d\n", j);
51888ca2 8538 goto error;
9c1cfda2 8539 }
5517d86b 8540 sg->__cpu_power = 0;
758b2cdc 8541 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8542 sg->next = prev->next;
96f874e2 8543 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8544 prev->next = sg;
8545 prev = sg;
8546 }
9c1cfda2 8547 }
1da177e4
LT
8548#endif
8549
8550 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8551#ifdef CONFIG_SCHED_SMT
abcd083a 8552 for_each_cpu(i, cpu_map) {
6c99e9ad 8553 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8554
89c4710e 8555 init_sched_groups_power(i, sd);
5c45bf27 8556 }
1da177e4 8557#endif
1e9f28fa 8558#ifdef CONFIG_SCHED_MC
abcd083a 8559 for_each_cpu(i, cpu_map) {
6c99e9ad 8560 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8561
89c4710e 8562 init_sched_groups_power(i, sd);
5c45bf27
SS
8563 }
8564#endif
1e9f28fa 8565
abcd083a 8566 for_each_cpu(i, cpu_map) {
6c99e9ad 8567 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8568
89c4710e 8569 init_sched_groups_power(i, sd);
1da177e4
LT
8570 }
8571
9c1cfda2 8572#ifdef CONFIG_NUMA
076ac2af 8573 for (i = 0; i < nr_node_ids; i++)
08069033 8574 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8575
6711cab4
SS
8576 if (sd_allnodes) {
8577 struct sched_group *sg;
f712c0c7 8578
96f874e2 8579 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8580 tmpmask);
f712c0c7
SS
8581 init_numa_sched_groups_power(sg);
8582 }
9c1cfda2
JH
8583#endif
8584
1da177e4 8585 /* Attach the domains */
abcd083a 8586 for_each_cpu(i, cpu_map) {
1da177e4
LT
8587 struct sched_domain *sd;
8588#ifdef CONFIG_SCHED_SMT
6c99e9ad 8589 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8590#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8591 sd = &per_cpu(core_domains, i).sd;
1da177e4 8592#else
6c99e9ad 8593 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8594#endif
57d885fe 8595 cpu_attach_domain(sd, rd, i);
1da177e4 8596 }
51888ca2 8597
3404c8d9
RR
8598 err = 0;
8599
8600free_tmpmask:
8601 free_cpumask_var(tmpmask);
8602free_send_covered:
8603 free_cpumask_var(send_covered);
8604free_this_core_map:
8605 free_cpumask_var(this_core_map);
8606free_this_sibling_map:
8607 free_cpumask_var(this_sibling_map);
8608free_nodemask:
8609 free_cpumask_var(nodemask);
8610free_notcovered:
8611#ifdef CONFIG_NUMA
8612 free_cpumask_var(notcovered);
8613free_covered:
8614 free_cpumask_var(covered);
8615free_domainspan:
8616 free_cpumask_var(domainspan);
8617out:
8618#endif
8619 return err;
8620
8621free_sched_groups:
8622#ifdef CONFIG_NUMA
8623 kfree(sched_group_nodes);
8624#endif
8625 goto free_tmpmask;
51888ca2 8626
a616058b 8627#ifdef CONFIG_NUMA
51888ca2 8628error:
7c16ec58 8629 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8630 free_rootdomain(rd);
3404c8d9 8631 goto free_tmpmask;
a616058b 8632#endif
1da177e4 8633}
029190c5 8634
96f874e2 8635static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8636{
8637 return __build_sched_domains(cpu_map, NULL);
8638}
8639
96f874e2 8640static struct cpumask *doms_cur; /* current sched domains */
029190c5 8641static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8642static struct sched_domain_attr *dattr_cur;
8643 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8644
8645/*
8646 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8647 * cpumask) fails, then fallback to a single sched domain,
8648 * as determined by the single cpumask fallback_doms.
029190c5 8649 */
4212823f 8650static cpumask_var_t fallback_doms;
029190c5 8651
ee79d1bd
HC
8652/*
8653 * arch_update_cpu_topology lets virtualized architectures update the
8654 * cpu core maps. It is supposed to return 1 if the topology changed
8655 * or 0 if it stayed the same.
8656 */
8657int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8658{
ee79d1bd 8659 return 0;
22e52b07
HC
8660}
8661
1a20ff27 8662/*
41a2d6cf 8663 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8664 * For now this just excludes isolated cpus, but could be used to
8665 * exclude other special cases in the future.
1a20ff27 8666 */
96f874e2 8667static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8668{
7378547f
MM
8669 int err;
8670
22e52b07 8671 arch_update_cpu_topology();
029190c5 8672 ndoms_cur = 1;
96f874e2 8673 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8674 if (!doms_cur)
4212823f 8675 doms_cur = fallback_doms;
dcc30a35 8676 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8677 dattr_cur = NULL;
7378547f 8678 err = build_sched_domains(doms_cur);
6382bc90 8679 register_sched_domain_sysctl();
7378547f
MM
8680
8681 return err;
1a20ff27
DG
8682}
8683
96f874e2
RR
8684static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8685 struct cpumask *tmpmask)
1da177e4 8686{
7c16ec58 8687 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8688}
1da177e4 8689
1a20ff27
DG
8690/*
8691 * Detach sched domains from a group of cpus specified in cpu_map
8692 * These cpus will now be attached to the NULL domain
8693 */
96f874e2 8694static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8695{
96f874e2
RR
8696 /* Save because hotplug lock held. */
8697 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8698 int i;
8699
abcd083a 8700 for_each_cpu(i, cpu_map)
57d885fe 8701 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8702 synchronize_sched();
96f874e2 8703 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8704}
8705
1d3504fc
HS
8706/* handle null as "default" */
8707static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8708 struct sched_domain_attr *new, int idx_new)
8709{
8710 struct sched_domain_attr tmp;
8711
8712 /* fast path */
8713 if (!new && !cur)
8714 return 1;
8715
8716 tmp = SD_ATTR_INIT;
8717 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8718 new ? (new + idx_new) : &tmp,
8719 sizeof(struct sched_domain_attr));
8720}
8721
029190c5
PJ
8722/*
8723 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8724 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8725 * doms_new[] to the current sched domain partitioning, doms_cur[].
8726 * It destroys each deleted domain and builds each new domain.
8727 *
96f874e2 8728 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8729 * The masks don't intersect (don't overlap.) We should setup one
8730 * sched domain for each mask. CPUs not in any of the cpumasks will
8731 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8732 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8733 * it as it is.
8734 *
41a2d6cf
IM
8735 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8736 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8737 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8738 * ndoms_new == 1, and partition_sched_domains() will fallback to
8739 * the single partition 'fallback_doms', it also forces the domains
8740 * to be rebuilt.
029190c5 8741 *
96f874e2 8742 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8743 * ndoms_new == 0 is a special case for destroying existing domains,
8744 * and it will not create the default domain.
dfb512ec 8745 *
029190c5
PJ
8746 * Call with hotplug lock held
8747 */
96f874e2
RR
8748/* FIXME: Change to struct cpumask *doms_new[] */
8749void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8750 struct sched_domain_attr *dattr_new)
029190c5 8751{
dfb512ec 8752 int i, j, n;
d65bd5ec 8753 int new_topology;
029190c5 8754
712555ee 8755 mutex_lock(&sched_domains_mutex);
a1835615 8756
7378547f
MM
8757 /* always unregister in case we don't destroy any domains */
8758 unregister_sched_domain_sysctl();
8759
d65bd5ec
HC
8760 /* Let architecture update cpu core mappings. */
8761 new_topology = arch_update_cpu_topology();
8762
dfb512ec 8763 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8764
8765 /* Destroy deleted domains */
8766 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8767 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8768 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8769 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8770 goto match1;
8771 }
8772 /* no match - a current sched domain not in new doms_new[] */
8773 detach_destroy_domains(doms_cur + i);
8774match1:
8775 ;
8776 }
8777
e761b772
MK
8778 if (doms_new == NULL) {
8779 ndoms_cur = 0;
4212823f 8780 doms_new = fallback_doms;
dcc30a35 8781 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8782 WARN_ON_ONCE(dattr_new);
e761b772
MK
8783 }
8784
029190c5
PJ
8785 /* Build new domains */
8786 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8787 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8788 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8789 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8790 goto match2;
8791 }
8792 /* no match - add a new doms_new */
1d3504fc
HS
8793 __build_sched_domains(doms_new + i,
8794 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8795match2:
8796 ;
8797 }
8798
8799 /* Remember the new sched domains */
4212823f 8800 if (doms_cur != fallback_doms)
029190c5 8801 kfree(doms_cur);
1d3504fc 8802 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8803 doms_cur = doms_new;
1d3504fc 8804 dattr_cur = dattr_new;
029190c5 8805 ndoms_cur = ndoms_new;
7378547f
MM
8806
8807 register_sched_domain_sysctl();
a1835615 8808
712555ee 8809 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8810}
8811
5c45bf27 8812#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8813static void arch_reinit_sched_domains(void)
5c45bf27 8814{
95402b38 8815 get_online_cpus();
dfb512ec
MK
8816
8817 /* Destroy domains first to force the rebuild */
8818 partition_sched_domains(0, NULL, NULL);
8819
e761b772 8820 rebuild_sched_domains();
95402b38 8821 put_online_cpus();
5c45bf27
SS
8822}
8823
8824static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8825{
afb8a9b7 8826 unsigned int level = 0;
5c45bf27 8827
afb8a9b7
GS
8828 if (sscanf(buf, "%u", &level) != 1)
8829 return -EINVAL;
8830
8831 /*
8832 * level is always be positive so don't check for
8833 * level < POWERSAVINGS_BALANCE_NONE which is 0
8834 * What happens on 0 or 1 byte write,
8835 * need to check for count as well?
8836 */
8837
8838 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8839 return -EINVAL;
8840
8841 if (smt)
afb8a9b7 8842 sched_smt_power_savings = level;
5c45bf27 8843 else
afb8a9b7 8844 sched_mc_power_savings = level;
5c45bf27 8845
c70f22d2 8846 arch_reinit_sched_domains();
5c45bf27 8847
c70f22d2 8848 return count;
5c45bf27
SS
8849}
8850
5c45bf27 8851#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8852static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8853 char *page)
5c45bf27
SS
8854{
8855 return sprintf(page, "%u\n", sched_mc_power_savings);
8856}
f718cd4a 8857static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8858 const char *buf, size_t count)
5c45bf27
SS
8859{
8860 return sched_power_savings_store(buf, count, 0);
8861}
f718cd4a
AK
8862static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8863 sched_mc_power_savings_show,
8864 sched_mc_power_savings_store);
5c45bf27
SS
8865#endif
8866
8867#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8868static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8869 char *page)
5c45bf27
SS
8870{
8871 return sprintf(page, "%u\n", sched_smt_power_savings);
8872}
f718cd4a 8873static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8874 const char *buf, size_t count)
5c45bf27
SS
8875{
8876 return sched_power_savings_store(buf, count, 1);
8877}
f718cd4a
AK
8878static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8879 sched_smt_power_savings_show,
6707de00
AB
8880 sched_smt_power_savings_store);
8881#endif
8882
39aac648 8883int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8884{
8885 int err = 0;
8886
8887#ifdef CONFIG_SCHED_SMT
8888 if (smt_capable())
8889 err = sysfs_create_file(&cls->kset.kobj,
8890 &attr_sched_smt_power_savings.attr);
8891#endif
8892#ifdef CONFIG_SCHED_MC
8893 if (!err && mc_capable())
8894 err = sysfs_create_file(&cls->kset.kobj,
8895 &attr_sched_mc_power_savings.attr);
8896#endif
8897 return err;
8898}
6d6bc0ad 8899#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8900
e761b772 8901#ifndef CONFIG_CPUSETS
1da177e4 8902/*
e761b772
MK
8903 * Add online and remove offline CPUs from the scheduler domains.
8904 * When cpusets are enabled they take over this function.
1da177e4
LT
8905 */
8906static int update_sched_domains(struct notifier_block *nfb,
8907 unsigned long action, void *hcpu)
e761b772
MK
8908{
8909 switch (action) {
8910 case CPU_ONLINE:
8911 case CPU_ONLINE_FROZEN:
8912 case CPU_DEAD:
8913 case CPU_DEAD_FROZEN:
dfb512ec 8914 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8915 return NOTIFY_OK;
8916
8917 default:
8918 return NOTIFY_DONE;
8919 }
8920}
8921#endif
8922
8923static int update_runtime(struct notifier_block *nfb,
8924 unsigned long action, void *hcpu)
1da177e4 8925{
7def2be1
PZ
8926 int cpu = (int)(long)hcpu;
8927
1da177e4 8928 switch (action) {
1da177e4 8929 case CPU_DOWN_PREPARE:
8bb78442 8930 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8931 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8932 return NOTIFY_OK;
8933
1da177e4 8934 case CPU_DOWN_FAILED:
8bb78442 8935 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8936 case CPU_ONLINE:
8bb78442 8937 case CPU_ONLINE_FROZEN:
7def2be1 8938 enable_runtime(cpu_rq(cpu));
e761b772
MK
8939 return NOTIFY_OK;
8940
1da177e4
LT
8941 default:
8942 return NOTIFY_DONE;
8943 }
1da177e4 8944}
1da177e4
LT
8945
8946void __init sched_init_smp(void)
8947{
dcc30a35
RR
8948 cpumask_var_t non_isolated_cpus;
8949
8950 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8951
434d53b0
MT
8952#if defined(CONFIG_NUMA)
8953 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8954 GFP_KERNEL);
8955 BUG_ON(sched_group_nodes_bycpu == NULL);
8956#endif
95402b38 8957 get_online_cpus();
712555ee 8958 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8959 arch_init_sched_domains(cpu_online_mask);
8960 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8961 if (cpumask_empty(non_isolated_cpus))
8962 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8963 mutex_unlock(&sched_domains_mutex);
95402b38 8964 put_online_cpus();
e761b772
MK
8965
8966#ifndef CONFIG_CPUSETS
1da177e4
LT
8967 /* XXX: Theoretical race here - CPU may be hotplugged now */
8968 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8969#endif
8970
8971 /* RT runtime code needs to handle some hotplug events */
8972 hotcpu_notifier(update_runtime, 0);
8973
b328ca18 8974 init_hrtick();
5c1e1767
NP
8975
8976 /* Move init over to a non-isolated CPU */
dcc30a35 8977 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8978 BUG();
19978ca6 8979 sched_init_granularity();
dcc30a35 8980 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8981
8982 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8983 init_sched_rt_class();
1da177e4
LT
8984}
8985#else
8986void __init sched_init_smp(void)
8987{
19978ca6 8988 sched_init_granularity();
1da177e4
LT
8989}
8990#endif /* CONFIG_SMP */
8991
8992int in_sched_functions(unsigned long addr)
8993{
1da177e4
LT
8994 return in_lock_functions(addr) ||
8995 (addr >= (unsigned long)__sched_text_start
8996 && addr < (unsigned long)__sched_text_end);
8997}
8998
a9957449 8999static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9000{
9001 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9002 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9003#ifdef CONFIG_FAIR_GROUP_SCHED
9004 cfs_rq->rq = rq;
9005#endif
67e9fb2a 9006 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9007}
9008
fa85ae24
PZ
9009static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9010{
9011 struct rt_prio_array *array;
9012 int i;
9013
9014 array = &rt_rq->active;
9015 for (i = 0; i < MAX_RT_PRIO; i++) {
9016 INIT_LIST_HEAD(array->queue + i);
9017 __clear_bit(i, array->bitmap);
9018 }
9019 /* delimiter for bitsearch: */
9020 __set_bit(MAX_RT_PRIO, array->bitmap);
9021
052f1dc7 9022#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9023 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9024#ifdef CONFIG_SMP
e864c499 9025 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9026#endif
48d5e258 9027#endif
fa85ae24
PZ
9028#ifdef CONFIG_SMP
9029 rt_rq->rt_nr_migratory = 0;
fa85ae24 9030 rt_rq->overloaded = 0;
917b627d 9031 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9032#endif
9033
9034 rt_rq->rt_time = 0;
9035 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9036 rt_rq->rt_runtime = 0;
9037 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9038
052f1dc7 9039#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9040 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9041 rt_rq->rq = rq;
9042#endif
fa85ae24
PZ
9043}
9044
6f505b16 9045#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9046static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9047 struct sched_entity *se, int cpu, int add,
9048 struct sched_entity *parent)
6f505b16 9049{
ec7dc8ac 9050 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9051 tg->cfs_rq[cpu] = cfs_rq;
9052 init_cfs_rq(cfs_rq, rq);
9053 cfs_rq->tg = tg;
9054 if (add)
9055 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9056
9057 tg->se[cpu] = se;
354d60c2
DG
9058 /* se could be NULL for init_task_group */
9059 if (!se)
9060 return;
9061
ec7dc8ac
DG
9062 if (!parent)
9063 se->cfs_rq = &rq->cfs;
9064 else
9065 se->cfs_rq = parent->my_q;
9066
6f505b16
PZ
9067 se->my_q = cfs_rq;
9068 se->load.weight = tg->shares;
e05510d0 9069 se->load.inv_weight = 0;
ec7dc8ac 9070 se->parent = parent;
6f505b16 9071}
052f1dc7 9072#endif
6f505b16 9073
052f1dc7 9074#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9075static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9076 struct sched_rt_entity *rt_se, int cpu, int add,
9077 struct sched_rt_entity *parent)
6f505b16 9078{
ec7dc8ac
DG
9079 struct rq *rq = cpu_rq(cpu);
9080
6f505b16
PZ
9081 tg->rt_rq[cpu] = rt_rq;
9082 init_rt_rq(rt_rq, rq);
9083 rt_rq->tg = tg;
9084 rt_rq->rt_se = rt_se;
ac086bc2 9085 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9086 if (add)
9087 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9088
9089 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9090 if (!rt_se)
9091 return;
9092
ec7dc8ac
DG
9093 if (!parent)
9094 rt_se->rt_rq = &rq->rt;
9095 else
9096 rt_se->rt_rq = parent->my_q;
9097
6f505b16 9098 rt_se->my_q = rt_rq;
ec7dc8ac 9099 rt_se->parent = parent;
6f505b16
PZ
9100 INIT_LIST_HEAD(&rt_se->run_list);
9101}
9102#endif
9103
1da177e4
LT
9104void __init sched_init(void)
9105{
dd41f596 9106 int i, j;
434d53b0
MT
9107 unsigned long alloc_size = 0, ptr;
9108
9109#ifdef CONFIG_FAIR_GROUP_SCHED
9110 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9111#endif
9112#ifdef CONFIG_RT_GROUP_SCHED
9113 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9114#endif
9115#ifdef CONFIG_USER_SCHED
9116 alloc_size *= 2;
df7c8e84
RR
9117#endif
9118#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9119 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9120#endif
9121 /*
9122 * As sched_init() is called before page_alloc is setup,
9123 * we use alloc_bootmem().
9124 */
9125 if (alloc_size) {
5a9d3225 9126 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
9127
9128#ifdef CONFIG_FAIR_GROUP_SCHED
9129 init_task_group.se = (struct sched_entity **)ptr;
9130 ptr += nr_cpu_ids * sizeof(void **);
9131
9132 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9133 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9134
9135#ifdef CONFIG_USER_SCHED
9136 root_task_group.se = (struct sched_entity **)ptr;
9137 ptr += nr_cpu_ids * sizeof(void **);
9138
9139 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9140 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9141#endif /* CONFIG_USER_SCHED */
9142#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9143#ifdef CONFIG_RT_GROUP_SCHED
9144 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9145 ptr += nr_cpu_ids * sizeof(void **);
9146
9147 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9148 ptr += nr_cpu_ids * sizeof(void **);
9149
9150#ifdef CONFIG_USER_SCHED
9151 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9152 ptr += nr_cpu_ids * sizeof(void **);
9153
9154 root_task_group.rt_rq = (struct rt_rq **)ptr;
9155 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9156#endif /* CONFIG_USER_SCHED */
9157#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9158#ifdef CONFIG_CPUMASK_OFFSTACK
9159 for_each_possible_cpu(i) {
9160 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9161 ptr += cpumask_size();
9162 }
9163#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9164 }
dd41f596 9165
57d885fe
GH
9166#ifdef CONFIG_SMP
9167 init_defrootdomain();
9168#endif
9169
d0b27fa7
PZ
9170 init_rt_bandwidth(&def_rt_bandwidth,
9171 global_rt_period(), global_rt_runtime());
9172
9173#ifdef CONFIG_RT_GROUP_SCHED
9174 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9175 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9176#ifdef CONFIG_USER_SCHED
9177 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9178 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9179#endif /* CONFIG_USER_SCHED */
9180#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9181
052f1dc7 9182#ifdef CONFIG_GROUP_SCHED
6f505b16 9183 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9184 INIT_LIST_HEAD(&init_task_group.children);
9185
9186#ifdef CONFIG_USER_SCHED
9187 INIT_LIST_HEAD(&root_task_group.children);
9188 init_task_group.parent = &root_task_group;
9189 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9190#endif /* CONFIG_USER_SCHED */
9191#endif /* CONFIG_GROUP_SCHED */
6f505b16 9192
0a945022 9193 for_each_possible_cpu(i) {
70b97a7f 9194 struct rq *rq;
1da177e4
LT
9195
9196 rq = cpu_rq(i);
9197 spin_lock_init(&rq->lock);
7897986b 9198 rq->nr_running = 0;
dce48a84
TG
9199 rq->calc_load_active = 0;
9200 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9201 init_cfs_rq(&rq->cfs, rq);
6f505b16 9202 init_rt_rq(&rq->rt, rq);
dd41f596 9203#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9204 init_task_group.shares = init_task_group_load;
6f505b16 9205 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9206#ifdef CONFIG_CGROUP_SCHED
9207 /*
9208 * How much cpu bandwidth does init_task_group get?
9209 *
9210 * In case of task-groups formed thr' the cgroup filesystem, it
9211 * gets 100% of the cpu resources in the system. This overall
9212 * system cpu resource is divided among the tasks of
9213 * init_task_group and its child task-groups in a fair manner,
9214 * based on each entity's (task or task-group's) weight
9215 * (se->load.weight).
9216 *
9217 * In other words, if init_task_group has 10 tasks of weight
9218 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9219 * then A0's share of the cpu resource is:
9220 *
9221 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9222 *
9223 * We achieve this by letting init_task_group's tasks sit
9224 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9225 */
ec7dc8ac 9226 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9227#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9228 root_task_group.shares = NICE_0_LOAD;
9229 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9230 /*
9231 * In case of task-groups formed thr' the user id of tasks,
9232 * init_task_group represents tasks belonging to root user.
9233 * Hence it forms a sibling of all subsequent groups formed.
9234 * In this case, init_task_group gets only a fraction of overall
9235 * system cpu resource, based on the weight assigned to root
9236 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9237 * by letting tasks of init_task_group sit in a separate cfs_rq
9238 * (init_cfs_rq) and having one entity represent this group of
9239 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9240 */
ec7dc8ac 9241 init_tg_cfs_entry(&init_task_group,
6f505b16 9242 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9243 &per_cpu(init_sched_entity, i), i, 1,
9244 root_task_group.se[i]);
6f505b16 9245
052f1dc7 9246#endif
354d60c2
DG
9247#endif /* CONFIG_FAIR_GROUP_SCHED */
9248
9249 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9250#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9251 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9252#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9253 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9254#elif defined CONFIG_USER_SCHED
eff766a6 9255 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9256 init_tg_rt_entry(&init_task_group,
6f505b16 9257 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9258 &per_cpu(init_sched_rt_entity, i), i, 1,
9259 root_task_group.rt_se[i]);
354d60c2 9260#endif
dd41f596 9261#endif
1da177e4 9262
dd41f596
IM
9263 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9264 rq->cpu_load[j] = 0;
1da177e4 9265#ifdef CONFIG_SMP
41c7ce9a 9266 rq->sd = NULL;
57d885fe 9267 rq->rd = NULL;
1da177e4 9268 rq->active_balance = 0;
dd41f596 9269 rq->next_balance = jiffies;
1da177e4 9270 rq->push_cpu = 0;
0a2966b4 9271 rq->cpu = i;
1f11eb6a 9272 rq->online = 0;
1da177e4
LT
9273 rq->migration_thread = NULL;
9274 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9275 rq_attach_root(rq, &def_root_domain);
1da177e4 9276#endif
8f4d37ec 9277 init_rq_hrtick(rq);
1da177e4 9278 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9279 }
9280
2dd73a4f 9281 set_load_weight(&init_task);
b50f60ce 9282
e107be36
AK
9283#ifdef CONFIG_PREEMPT_NOTIFIERS
9284 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9285#endif
9286
c9819f45 9287#ifdef CONFIG_SMP
962cf36c 9288 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9289#endif
9290
b50f60ce
HC
9291#ifdef CONFIG_RT_MUTEXES
9292 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9293#endif
9294
1da177e4
LT
9295 /*
9296 * The boot idle thread does lazy MMU switching as well:
9297 */
9298 atomic_inc(&init_mm.mm_count);
9299 enter_lazy_tlb(&init_mm, current);
9300
9301 /*
9302 * Make us the idle thread. Technically, schedule() should not be
9303 * called from this thread, however somewhere below it might be,
9304 * but because we are the idle thread, we just pick up running again
9305 * when this runqueue becomes "idle".
9306 */
9307 init_idle(current, smp_processor_id());
dce48a84
TG
9308
9309 calc_load_update = jiffies + LOAD_FREQ;
9310
dd41f596
IM
9311 /*
9312 * During early bootup we pretend to be a normal task:
9313 */
9314 current->sched_class = &fair_sched_class;
6892b75e 9315
6a7b3dc3
RR
9316 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9317 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9318#ifdef CONFIG_SMP
7d1e6a9b
RR
9319#ifdef CONFIG_NO_HZ
9320 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
f711f609 9321 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
7d1e6a9b 9322#endif
dcc30a35 9323 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9324#endif /* SMP */
6a7b3dc3 9325
6892b75e 9326 scheduler_running = 1;
1da177e4
LT
9327}
9328
9329#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9330void __might_sleep(char *file, int line)
9331{
48f24c4d 9332#ifdef in_atomic
1da177e4
LT
9333 static unsigned long prev_jiffy; /* ratelimiting */
9334
aef745fc
IM
9335 if ((!in_atomic() && !irqs_disabled()) ||
9336 system_state != SYSTEM_RUNNING || oops_in_progress)
9337 return;
9338 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9339 return;
9340 prev_jiffy = jiffies;
9341
9342 printk(KERN_ERR
9343 "BUG: sleeping function called from invalid context at %s:%d\n",
9344 file, line);
9345 printk(KERN_ERR
9346 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9347 in_atomic(), irqs_disabled(),
9348 current->pid, current->comm);
9349
9350 debug_show_held_locks(current);
9351 if (irqs_disabled())
9352 print_irqtrace_events(current);
9353 dump_stack();
1da177e4
LT
9354#endif
9355}
9356EXPORT_SYMBOL(__might_sleep);
9357#endif
9358
9359#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9360static void normalize_task(struct rq *rq, struct task_struct *p)
9361{
9362 int on_rq;
3e51f33f 9363
3a5e4dc1
AK
9364 update_rq_clock(rq);
9365 on_rq = p->se.on_rq;
9366 if (on_rq)
9367 deactivate_task(rq, p, 0);
9368 __setscheduler(rq, p, SCHED_NORMAL, 0);
9369 if (on_rq) {
9370 activate_task(rq, p, 0);
9371 resched_task(rq->curr);
9372 }
9373}
9374
1da177e4
LT
9375void normalize_rt_tasks(void)
9376{
a0f98a1c 9377 struct task_struct *g, *p;
1da177e4 9378 unsigned long flags;
70b97a7f 9379 struct rq *rq;
1da177e4 9380
4cf5d77a 9381 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9382 do_each_thread(g, p) {
178be793
IM
9383 /*
9384 * Only normalize user tasks:
9385 */
9386 if (!p->mm)
9387 continue;
9388
6cfb0d5d 9389 p->se.exec_start = 0;
6cfb0d5d 9390#ifdef CONFIG_SCHEDSTATS
dd41f596 9391 p->se.wait_start = 0;
dd41f596 9392 p->se.sleep_start = 0;
dd41f596 9393 p->se.block_start = 0;
6cfb0d5d 9394#endif
dd41f596
IM
9395
9396 if (!rt_task(p)) {
9397 /*
9398 * Renice negative nice level userspace
9399 * tasks back to 0:
9400 */
9401 if (TASK_NICE(p) < 0 && p->mm)
9402 set_user_nice(p, 0);
1da177e4 9403 continue;
dd41f596 9404 }
1da177e4 9405
4cf5d77a 9406 spin_lock(&p->pi_lock);
b29739f9 9407 rq = __task_rq_lock(p);
1da177e4 9408
178be793 9409 normalize_task(rq, p);
3a5e4dc1 9410
b29739f9 9411 __task_rq_unlock(rq);
4cf5d77a 9412 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9413 } while_each_thread(g, p);
9414
4cf5d77a 9415 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9416}
9417
9418#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9419
9420#ifdef CONFIG_IA64
9421/*
9422 * These functions are only useful for the IA64 MCA handling.
9423 *
9424 * They can only be called when the whole system has been
9425 * stopped - every CPU needs to be quiescent, and no scheduling
9426 * activity can take place. Using them for anything else would
9427 * be a serious bug, and as a result, they aren't even visible
9428 * under any other configuration.
9429 */
9430
9431/**
9432 * curr_task - return the current task for a given cpu.
9433 * @cpu: the processor in question.
9434 *
9435 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9436 */
36c8b586 9437struct task_struct *curr_task(int cpu)
1df5c10a
LT
9438{
9439 return cpu_curr(cpu);
9440}
9441
9442/**
9443 * set_curr_task - set the current task for a given cpu.
9444 * @cpu: the processor in question.
9445 * @p: the task pointer to set.
9446 *
9447 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9448 * are serviced on a separate stack. It allows the architecture to switch the
9449 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9450 * must be called with all CPU's synchronized, and interrupts disabled, the
9451 * and caller must save the original value of the current task (see
9452 * curr_task() above) and restore that value before reenabling interrupts and
9453 * re-starting the system.
9454 *
9455 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9456 */
36c8b586 9457void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9458{
9459 cpu_curr(cpu) = p;
9460}
9461
9462#endif
29f59db3 9463
bccbe08a
PZ
9464#ifdef CONFIG_FAIR_GROUP_SCHED
9465static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9466{
9467 int i;
9468
9469 for_each_possible_cpu(i) {
9470 if (tg->cfs_rq)
9471 kfree(tg->cfs_rq[i]);
9472 if (tg->se)
9473 kfree(tg->se[i]);
6f505b16
PZ
9474 }
9475
9476 kfree(tg->cfs_rq);
9477 kfree(tg->se);
6f505b16
PZ
9478}
9479
ec7dc8ac
DG
9480static
9481int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9482{
29f59db3 9483 struct cfs_rq *cfs_rq;
eab17229 9484 struct sched_entity *se;
9b5b7751 9485 struct rq *rq;
29f59db3
SV
9486 int i;
9487
434d53b0 9488 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9489 if (!tg->cfs_rq)
9490 goto err;
434d53b0 9491 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9492 if (!tg->se)
9493 goto err;
052f1dc7
PZ
9494
9495 tg->shares = NICE_0_LOAD;
29f59db3
SV
9496
9497 for_each_possible_cpu(i) {
9b5b7751 9498 rq = cpu_rq(i);
29f59db3 9499
eab17229
LZ
9500 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9501 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9502 if (!cfs_rq)
9503 goto err;
9504
eab17229
LZ
9505 se = kzalloc_node(sizeof(struct sched_entity),
9506 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9507 if (!se)
9508 goto err;
9509
eab17229 9510 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9511 }
9512
9513 return 1;
9514
9515 err:
9516 return 0;
9517}
9518
9519static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9520{
9521 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9522 &cpu_rq(cpu)->leaf_cfs_rq_list);
9523}
9524
9525static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9526{
9527 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9528}
6d6bc0ad 9529#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9530static inline void free_fair_sched_group(struct task_group *tg)
9531{
9532}
9533
ec7dc8ac
DG
9534static inline
9535int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9536{
9537 return 1;
9538}
9539
9540static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9541{
9542}
9543
9544static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9545{
9546}
6d6bc0ad 9547#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9548
9549#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9550static void free_rt_sched_group(struct task_group *tg)
9551{
9552 int i;
9553
d0b27fa7
PZ
9554 destroy_rt_bandwidth(&tg->rt_bandwidth);
9555
bccbe08a
PZ
9556 for_each_possible_cpu(i) {
9557 if (tg->rt_rq)
9558 kfree(tg->rt_rq[i]);
9559 if (tg->rt_se)
9560 kfree(tg->rt_se[i]);
9561 }
9562
9563 kfree(tg->rt_rq);
9564 kfree(tg->rt_se);
9565}
9566
ec7dc8ac
DG
9567static
9568int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9569{
9570 struct rt_rq *rt_rq;
eab17229 9571 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9572 struct rq *rq;
9573 int i;
9574
434d53b0 9575 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9576 if (!tg->rt_rq)
9577 goto err;
434d53b0 9578 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9579 if (!tg->rt_se)
9580 goto err;
9581
d0b27fa7
PZ
9582 init_rt_bandwidth(&tg->rt_bandwidth,
9583 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9584
9585 for_each_possible_cpu(i) {
9586 rq = cpu_rq(i);
9587
eab17229
LZ
9588 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9589 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9590 if (!rt_rq)
9591 goto err;
29f59db3 9592
eab17229
LZ
9593 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9594 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9595 if (!rt_se)
9596 goto err;
29f59db3 9597
eab17229 9598 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9599 }
9600
bccbe08a
PZ
9601 return 1;
9602
9603 err:
9604 return 0;
9605}
9606
9607static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9608{
9609 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9610 &cpu_rq(cpu)->leaf_rt_rq_list);
9611}
9612
9613static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9614{
9615 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9616}
6d6bc0ad 9617#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9618static inline void free_rt_sched_group(struct task_group *tg)
9619{
9620}
9621
ec7dc8ac
DG
9622static inline
9623int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9624{
9625 return 1;
9626}
9627
9628static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9629{
9630}
9631
9632static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9633{
9634}
6d6bc0ad 9635#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9636
d0b27fa7 9637#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9638static void free_sched_group(struct task_group *tg)
9639{
9640 free_fair_sched_group(tg);
9641 free_rt_sched_group(tg);
9642 kfree(tg);
9643}
9644
9645/* allocate runqueue etc for a new task group */
ec7dc8ac 9646struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9647{
9648 struct task_group *tg;
9649 unsigned long flags;
9650 int i;
9651
9652 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9653 if (!tg)
9654 return ERR_PTR(-ENOMEM);
9655
ec7dc8ac 9656 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9657 goto err;
9658
ec7dc8ac 9659 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9660 goto err;
9661
8ed36996 9662 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9663 for_each_possible_cpu(i) {
bccbe08a
PZ
9664 register_fair_sched_group(tg, i);
9665 register_rt_sched_group(tg, i);
9b5b7751 9666 }
6f505b16 9667 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9668
9669 WARN_ON(!parent); /* root should already exist */
9670
9671 tg->parent = parent;
f473aa5e 9672 INIT_LIST_HEAD(&tg->children);
09f2724a 9673 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9674 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9675
9b5b7751 9676 return tg;
29f59db3
SV
9677
9678err:
6f505b16 9679 free_sched_group(tg);
29f59db3
SV
9680 return ERR_PTR(-ENOMEM);
9681}
9682
9b5b7751 9683/* rcu callback to free various structures associated with a task group */
6f505b16 9684static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9685{
29f59db3 9686 /* now it should be safe to free those cfs_rqs */
6f505b16 9687 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9688}
9689
9b5b7751 9690/* Destroy runqueue etc associated with a task group */
4cf86d77 9691void sched_destroy_group(struct task_group *tg)
29f59db3 9692{
8ed36996 9693 unsigned long flags;
9b5b7751 9694 int i;
29f59db3 9695
8ed36996 9696 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9697 for_each_possible_cpu(i) {
bccbe08a
PZ
9698 unregister_fair_sched_group(tg, i);
9699 unregister_rt_sched_group(tg, i);
9b5b7751 9700 }
6f505b16 9701 list_del_rcu(&tg->list);
f473aa5e 9702 list_del_rcu(&tg->siblings);
8ed36996 9703 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9704
9b5b7751 9705 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9706 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9707}
9708
9b5b7751 9709/* change task's runqueue when it moves between groups.
3a252015
IM
9710 * The caller of this function should have put the task in its new group
9711 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9712 * reflect its new group.
9b5b7751
SV
9713 */
9714void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9715{
9716 int on_rq, running;
9717 unsigned long flags;
9718 struct rq *rq;
9719
9720 rq = task_rq_lock(tsk, &flags);
9721
29f59db3
SV
9722 update_rq_clock(rq);
9723
051a1d1a 9724 running = task_current(rq, tsk);
29f59db3
SV
9725 on_rq = tsk->se.on_rq;
9726
0e1f3483 9727 if (on_rq)
29f59db3 9728 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9729 if (unlikely(running))
9730 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9731
6f505b16 9732 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9733
810b3817
PZ
9734#ifdef CONFIG_FAIR_GROUP_SCHED
9735 if (tsk->sched_class->moved_group)
9736 tsk->sched_class->moved_group(tsk);
9737#endif
9738
0e1f3483
HS
9739 if (unlikely(running))
9740 tsk->sched_class->set_curr_task(rq);
9741 if (on_rq)
7074badb 9742 enqueue_task(rq, tsk, 0);
29f59db3 9743
29f59db3
SV
9744 task_rq_unlock(rq, &flags);
9745}
6d6bc0ad 9746#endif /* CONFIG_GROUP_SCHED */
29f59db3 9747
052f1dc7 9748#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9749static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9750{
9751 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9752 int on_rq;
9753
29f59db3 9754 on_rq = se->on_rq;
62fb1851 9755 if (on_rq)
29f59db3
SV
9756 dequeue_entity(cfs_rq, se, 0);
9757
9758 se->load.weight = shares;
e05510d0 9759 se->load.inv_weight = 0;
29f59db3 9760
62fb1851 9761 if (on_rq)
29f59db3 9762 enqueue_entity(cfs_rq, se, 0);
c09595f6 9763}
62fb1851 9764
c09595f6
PZ
9765static void set_se_shares(struct sched_entity *se, unsigned long shares)
9766{
9767 struct cfs_rq *cfs_rq = se->cfs_rq;
9768 struct rq *rq = cfs_rq->rq;
9769 unsigned long flags;
9770
9771 spin_lock_irqsave(&rq->lock, flags);
9772 __set_se_shares(se, shares);
9773 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9774}
9775
8ed36996
PZ
9776static DEFINE_MUTEX(shares_mutex);
9777
4cf86d77 9778int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9779{
9780 int i;
8ed36996 9781 unsigned long flags;
c61935fd 9782
ec7dc8ac
DG
9783 /*
9784 * We can't change the weight of the root cgroup.
9785 */
9786 if (!tg->se[0])
9787 return -EINVAL;
9788
18d95a28
PZ
9789 if (shares < MIN_SHARES)
9790 shares = MIN_SHARES;
cb4ad1ff
MX
9791 else if (shares > MAX_SHARES)
9792 shares = MAX_SHARES;
62fb1851 9793
8ed36996 9794 mutex_lock(&shares_mutex);
9b5b7751 9795 if (tg->shares == shares)
5cb350ba 9796 goto done;
29f59db3 9797
8ed36996 9798 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9799 for_each_possible_cpu(i)
9800 unregister_fair_sched_group(tg, i);
f473aa5e 9801 list_del_rcu(&tg->siblings);
8ed36996 9802 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9803
9804 /* wait for any ongoing reference to this group to finish */
9805 synchronize_sched();
9806
9807 /*
9808 * Now we are free to modify the group's share on each cpu
9809 * w/o tripping rebalance_share or load_balance_fair.
9810 */
9b5b7751 9811 tg->shares = shares;
c09595f6
PZ
9812 for_each_possible_cpu(i) {
9813 /*
9814 * force a rebalance
9815 */
9816 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9817 set_se_shares(tg->se[i], shares);
c09595f6 9818 }
29f59db3 9819
6b2d7700
SV
9820 /*
9821 * Enable load balance activity on this group, by inserting it back on
9822 * each cpu's rq->leaf_cfs_rq_list.
9823 */
8ed36996 9824 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9825 for_each_possible_cpu(i)
9826 register_fair_sched_group(tg, i);
f473aa5e 9827 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9828 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9829done:
8ed36996 9830 mutex_unlock(&shares_mutex);
9b5b7751 9831 return 0;
29f59db3
SV
9832}
9833
5cb350ba
DG
9834unsigned long sched_group_shares(struct task_group *tg)
9835{
9836 return tg->shares;
9837}
052f1dc7 9838#endif
5cb350ba 9839
052f1dc7 9840#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9841/*
9f0c1e56 9842 * Ensure that the real time constraints are schedulable.
6f505b16 9843 */
9f0c1e56
PZ
9844static DEFINE_MUTEX(rt_constraints_mutex);
9845
9846static unsigned long to_ratio(u64 period, u64 runtime)
9847{
9848 if (runtime == RUNTIME_INF)
9a7e0b18 9849 return 1ULL << 20;
9f0c1e56 9850
9a7e0b18 9851 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9852}
9853
9a7e0b18
PZ
9854/* Must be called with tasklist_lock held */
9855static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9856{
9a7e0b18 9857 struct task_struct *g, *p;
b40b2e8e 9858
9a7e0b18
PZ
9859 do_each_thread(g, p) {
9860 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9861 return 1;
9862 } while_each_thread(g, p);
b40b2e8e 9863
9a7e0b18
PZ
9864 return 0;
9865}
b40b2e8e 9866
9a7e0b18
PZ
9867struct rt_schedulable_data {
9868 struct task_group *tg;
9869 u64 rt_period;
9870 u64 rt_runtime;
9871};
b40b2e8e 9872
9a7e0b18
PZ
9873static int tg_schedulable(struct task_group *tg, void *data)
9874{
9875 struct rt_schedulable_data *d = data;
9876 struct task_group *child;
9877 unsigned long total, sum = 0;
9878 u64 period, runtime;
b40b2e8e 9879
9a7e0b18
PZ
9880 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9881 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9882
9a7e0b18
PZ
9883 if (tg == d->tg) {
9884 period = d->rt_period;
9885 runtime = d->rt_runtime;
b40b2e8e 9886 }
b40b2e8e 9887
98a4826b
PZ
9888#ifdef CONFIG_USER_SCHED
9889 if (tg == &root_task_group) {
9890 period = global_rt_period();
9891 runtime = global_rt_runtime();
9892 }
9893#endif
9894
4653f803
PZ
9895 /*
9896 * Cannot have more runtime than the period.
9897 */
9898 if (runtime > period && runtime != RUNTIME_INF)
9899 return -EINVAL;
6f505b16 9900
4653f803
PZ
9901 /*
9902 * Ensure we don't starve existing RT tasks.
9903 */
9a7e0b18
PZ
9904 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9905 return -EBUSY;
6f505b16 9906
9a7e0b18 9907 total = to_ratio(period, runtime);
6f505b16 9908
4653f803
PZ
9909 /*
9910 * Nobody can have more than the global setting allows.
9911 */
9912 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9913 return -EINVAL;
6f505b16 9914
4653f803
PZ
9915 /*
9916 * The sum of our children's runtime should not exceed our own.
9917 */
9a7e0b18
PZ
9918 list_for_each_entry_rcu(child, &tg->children, siblings) {
9919 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9920 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9921
9a7e0b18
PZ
9922 if (child == d->tg) {
9923 period = d->rt_period;
9924 runtime = d->rt_runtime;
9925 }
6f505b16 9926
9a7e0b18 9927 sum += to_ratio(period, runtime);
9f0c1e56 9928 }
6f505b16 9929
9a7e0b18
PZ
9930 if (sum > total)
9931 return -EINVAL;
9932
9933 return 0;
6f505b16
PZ
9934}
9935
9a7e0b18 9936static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9937{
9a7e0b18
PZ
9938 struct rt_schedulable_data data = {
9939 .tg = tg,
9940 .rt_period = period,
9941 .rt_runtime = runtime,
9942 };
9943
9944 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9945}
9946
d0b27fa7
PZ
9947static int tg_set_bandwidth(struct task_group *tg,
9948 u64 rt_period, u64 rt_runtime)
6f505b16 9949{
ac086bc2 9950 int i, err = 0;
9f0c1e56 9951
9f0c1e56 9952 mutex_lock(&rt_constraints_mutex);
521f1a24 9953 read_lock(&tasklist_lock);
9a7e0b18
PZ
9954 err = __rt_schedulable(tg, rt_period, rt_runtime);
9955 if (err)
9f0c1e56 9956 goto unlock;
ac086bc2
PZ
9957
9958 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9959 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9960 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9961
9962 for_each_possible_cpu(i) {
9963 struct rt_rq *rt_rq = tg->rt_rq[i];
9964
9965 spin_lock(&rt_rq->rt_runtime_lock);
9966 rt_rq->rt_runtime = rt_runtime;
9967 spin_unlock(&rt_rq->rt_runtime_lock);
9968 }
9969 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9970 unlock:
521f1a24 9971 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9972 mutex_unlock(&rt_constraints_mutex);
9973
9974 return err;
6f505b16
PZ
9975}
9976
d0b27fa7
PZ
9977int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9978{
9979 u64 rt_runtime, rt_period;
9980
9981 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9982 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9983 if (rt_runtime_us < 0)
9984 rt_runtime = RUNTIME_INF;
9985
9986 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9987}
9988
9f0c1e56
PZ
9989long sched_group_rt_runtime(struct task_group *tg)
9990{
9991 u64 rt_runtime_us;
9992
d0b27fa7 9993 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9994 return -1;
9995
d0b27fa7 9996 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9997 do_div(rt_runtime_us, NSEC_PER_USEC);
9998 return rt_runtime_us;
9999}
d0b27fa7
PZ
10000
10001int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10002{
10003 u64 rt_runtime, rt_period;
10004
10005 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10006 rt_runtime = tg->rt_bandwidth.rt_runtime;
10007
619b0488
R
10008 if (rt_period == 0)
10009 return -EINVAL;
10010
d0b27fa7
PZ
10011 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10012}
10013
10014long sched_group_rt_period(struct task_group *tg)
10015{
10016 u64 rt_period_us;
10017
10018 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10019 do_div(rt_period_us, NSEC_PER_USEC);
10020 return rt_period_us;
10021}
10022
10023static int sched_rt_global_constraints(void)
10024{
4653f803 10025 u64 runtime, period;
d0b27fa7
PZ
10026 int ret = 0;
10027
ec5d4989
HS
10028 if (sysctl_sched_rt_period <= 0)
10029 return -EINVAL;
10030
4653f803
PZ
10031 runtime = global_rt_runtime();
10032 period = global_rt_period();
10033
10034 /*
10035 * Sanity check on the sysctl variables.
10036 */
10037 if (runtime > period && runtime != RUNTIME_INF)
10038 return -EINVAL;
10b612f4 10039
d0b27fa7 10040 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10041 read_lock(&tasklist_lock);
4653f803 10042 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10043 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10044 mutex_unlock(&rt_constraints_mutex);
10045
10046 return ret;
10047}
54e99124
DG
10048
10049int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10050{
10051 /* Don't accept realtime tasks when there is no way for them to run */
10052 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10053 return 0;
10054
10055 return 1;
10056}
10057
6d6bc0ad 10058#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10059static int sched_rt_global_constraints(void)
10060{
ac086bc2
PZ
10061 unsigned long flags;
10062 int i;
10063
ec5d4989
HS
10064 if (sysctl_sched_rt_period <= 0)
10065 return -EINVAL;
10066
60aa605d
PZ
10067 /*
10068 * There's always some RT tasks in the root group
10069 * -- migration, kstopmachine etc..
10070 */
10071 if (sysctl_sched_rt_runtime == 0)
10072 return -EBUSY;
10073
ac086bc2
PZ
10074 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10075 for_each_possible_cpu(i) {
10076 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10077
10078 spin_lock(&rt_rq->rt_runtime_lock);
10079 rt_rq->rt_runtime = global_rt_runtime();
10080 spin_unlock(&rt_rq->rt_runtime_lock);
10081 }
10082 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10083
d0b27fa7
PZ
10084 return 0;
10085}
6d6bc0ad 10086#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10087
10088int sched_rt_handler(struct ctl_table *table, int write,
10089 struct file *filp, void __user *buffer, size_t *lenp,
10090 loff_t *ppos)
10091{
10092 int ret;
10093 int old_period, old_runtime;
10094 static DEFINE_MUTEX(mutex);
10095
10096 mutex_lock(&mutex);
10097 old_period = sysctl_sched_rt_period;
10098 old_runtime = sysctl_sched_rt_runtime;
10099
10100 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10101
10102 if (!ret && write) {
10103 ret = sched_rt_global_constraints();
10104 if (ret) {
10105 sysctl_sched_rt_period = old_period;
10106 sysctl_sched_rt_runtime = old_runtime;
10107 } else {
10108 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10109 def_rt_bandwidth.rt_period =
10110 ns_to_ktime(global_rt_period());
10111 }
10112 }
10113 mutex_unlock(&mutex);
10114
10115 return ret;
10116}
68318b8e 10117
052f1dc7 10118#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10119
10120/* return corresponding task_group object of a cgroup */
2b01dfe3 10121static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10122{
2b01dfe3
PM
10123 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10124 struct task_group, css);
68318b8e
SV
10125}
10126
10127static struct cgroup_subsys_state *
2b01dfe3 10128cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10129{
ec7dc8ac 10130 struct task_group *tg, *parent;
68318b8e 10131
2b01dfe3 10132 if (!cgrp->parent) {
68318b8e 10133 /* This is early initialization for the top cgroup */
68318b8e
SV
10134 return &init_task_group.css;
10135 }
10136
ec7dc8ac
DG
10137 parent = cgroup_tg(cgrp->parent);
10138 tg = sched_create_group(parent);
68318b8e
SV
10139 if (IS_ERR(tg))
10140 return ERR_PTR(-ENOMEM);
10141
68318b8e
SV
10142 return &tg->css;
10143}
10144
41a2d6cf
IM
10145static void
10146cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10147{
2b01dfe3 10148 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10149
10150 sched_destroy_group(tg);
10151}
10152
41a2d6cf
IM
10153static int
10154cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10155 struct task_struct *tsk)
68318b8e 10156{
b68aa230 10157#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10158 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10159 return -EINVAL;
10160#else
68318b8e
SV
10161 /* We don't support RT-tasks being in separate groups */
10162 if (tsk->sched_class != &fair_sched_class)
10163 return -EINVAL;
b68aa230 10164#endif
68318b8e
SV
10165
10166 return 0;
10167}
10168
10169static void
2b01dfe3 10170cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10171 struct cgroup *old_cont, struct task_struct *tsk)
10172{
10173 sched_move_task(tsk);
10174}
10175
052f1dc7 10176#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10177static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10178 u64 shareval)
68318b8e 10179{
2b01dfe3 10180 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10181}
10182
f4c753b7 10183static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10184{
2b01dfe3 10185 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10186
10187 return (u64) tg->shares;
10188}
6d6bc0ad 10189#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10190
052f1dc7 10191#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10192static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10193 s64 val)
6f505b16 10194{
06ecb27c 10195 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10196}
10197
06ecb27c 10198static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10199{
06ecb27c 10200 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10201}
d0b27fa7
PZ
10202
10203static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10204 u64 rt_period_us)
10205{
10206 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10207}
10208
10209static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10210{
10211 return sched_group_rt_period(cgroup_tg(cgrp));
10212}
6d6bc0ad 10213#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10214
fe5c7cc2 10215static struct cftype cpu_files[] = {
052f1dc7 10216#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10217 {
10218 .name = "shares",
f4c753b7
PM
10219 .read_u64 = cpu_shares_read_u64,
10220 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10221 },
052f1dc7
PZ
10222#endif
10223#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10224 {
9f0c1e56 10225 .name = "rt_runtime_us",
06ecb27c
PM
10226 .read_s64 = cpu_rt_runtime_read,
10227 .write_s64 = cpu_rt_runtime_write,
6f505b16 10228 },
d0b27fa7
PZ
10229 {
10230 .name = "rt_period_us",
f4c753b7
PM
10231 .read_u64 = cpu_rt_period_read_uint,
10232 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10233 },
052f1dc7 10234#endif
68318b8e
SV
10235};
10236
10237static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10238{
fe5c7cc2 10239 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10240}
10241
10242struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10243 .name = "cpu",
10244 .create = cpu_cgroup_create,
10245 .destroy = cpu_cgroup_destroy,
10246 .can_attach = cpu_cgroup_can_attach,
10247 .attach = cpu_cgroup_attach,
10248 .populate = cpu_cgroup_populate,
10249 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10250 .early_init = 1,
10251};
10252
052f1dc7 10253#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10254
10255#ifdef CONFIG_CGROUP_CPUACCT
10256
10257/*
10258 * CPU accounting code for task groups.
10259 *
10260 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10261 * (balbir@in.ibm.com).
10262 */
10263
934352f2 10264/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10265struct cpuacct {
10266 struct cgroup_subsys_state css;
10267 /* cpuusage holds pointer to a u64-type object on every cpu */
10268 u64 *cpuusage;
ef12fefa 10269 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10270 struct cpuacct *parent;
d842de87
SV
10271};
10272
10273struct cgroup_subsys cpuacct_subsys;
10274
10275/* return cpu accounting group corresponding to this container */
32cd756a 10276static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10277{
32cd756a 10278 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10279 struct cpuacct, css);
10280}
10281
10282/* return cpu accounting group to which this task belongs */
10283static inline struct cpuacct *task_ca(struct task_struct *tsk)
10284{
10285 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10286 struct cpuacct, css);
10287}
10288
10289/* create a new cpu accounting group */
10290static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10291 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10292{
10293 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10294 int i;
d842de87
SV
10295
10296 if (!ca)
ef12fefa 10297 goto out;
d842de87
SV
10298
10299 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10300 if (!ca->cpuusage)
10301 goto out_free_ca;
10302
10303 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10304 if (percpu_counter_init(&ca->cpustat[i], 0))
10305 goto out_free_counters;
d842de87 10306
934352f2
BR
10307 if (cgrp->parent)
10308 ca->parent = cgroup_ca(cgrp->parent);
10309
d842de87 10310 return &ca->css;
ef12fefa
BR
10311
10312out_free_counters:
10313 while (--i >= 0)
10314 percpu_counter_destroy(&ca->cpustat[i]);
10315 free_percpu(ca->cpuusage);
10316out_free_ca:
10317 kfree(ca);
10318out:
10319 return ERR_PTR(-ENOMEM);
d842de87
SV
10320}
10321
10322/* destroy an existing cpu accounting group */
41a2d6cf 10323static void
32cd756a 10324cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10325{
32cd756a 10326 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10327 int i;
d842de87 10328
ef12fefa
BR
10329 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10330 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10331 free_percpu(ca->cpuusage);
10332 kfree(ca);
10333}
10334
720f5498
KC
10335static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10336{
b36128c8 10337 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10338 u64 data;
10339
10340#ifndef CONFIG_64BIT
10341 /*
10342 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10343 */
10344 spin_lock_irq(&cpu_rq(cpu)->lock);
10345 data = *cpuusage;
10346 spin_unlock_irq(&cpu_rq(cpu)->lock);
10347#else
10348 data = *cpuusage;
10349#endif
10350
10351 return data;
10352}
10353
10354static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10355{
b36128c8 10356 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10357
10358#ifndef CONFIG_64BIT
10359 /*
10360 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10361 */
10362 spin_lock_irq(&cpu_rq(cpu)->lock);
10363 *cpuusage = val;
10364 spin_unlock_irq(&cpu_rq(cpu)->lock);
10365#else
10366 *cpuusage = val;
10367#endif
10368}
10369
d842de87 10370/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10371static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10372{
32cd756a 10373 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10374 u64 totalcpuusage = 0;
10375 int i;
10376
720f5498
KC
10377 for_each_present_cpu(i)
10378 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10379
10380 return totalcpuusage;
10381}
10382
0297b803
DG
10383static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10384 u64 reset)
10385{
10386 struct cpuacct *ca = cgroup_ca(cgrp);
10387 int err = 0;
10388 int i;
10389
10390 if (reset) {
10391 err = -EINVAL;
10392 goto out;
10393 }
10394
720f5498
KC
10395 for_each_present_cpu(i)
10396 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10397
0297b803
DG
10398out:
10399 return err;
10400}
10401
e9515c3c
KC
10402static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10403 struct seq_file *m)
10404{
10405 struct cpuacct *ca = cgroup_ca(cgroup);
10406 u64 percpu;
10407 int i;
10408
10409 for_each_present_cpu(i) {
10410 percpu = cpuacct_cpuusage_read(ca, i);
10411 seq_printf(m, "%llu ", (unsigned long long) percpu);
10412 }
10413 seq_printf(m, "\n");
10414 return 0;
10415}
10416
ef12fefa
BR
10417static const char *cpuacct_stat_desc[] = {
10418 [CPUACCT_STAT_USER] = "user",
10419 [CPUACCT_STAT_SYSTEM] = "system",
10420};
10421
10422static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10423 struct cgroup_map_cb *cb)
10424{
10425 struct cpuacct *ca = cgroup_ca(cgrp);
10426 int i;
10427
10428 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10429 s64 val = percpu_counter_read(&ca->cpustat[i]);
10430 val = cputime64_to_clock_t(val);
10431 cb->fill(cb, cpuacct_stat_desc[i], val);
10432 }
10433 return 0;
10434}
10435
d842de87
SV
10436static struct cftype files[] = {
10437 {
10438 .name = "usage",
f4c753b7
PM
10439 .read_u64 = cpuusage_read,
10440 .write_u64 = cpuusage_write,
d842de87 10441 },
e9515c3c
KC
10442 {
10443 .name = "usage_percpu",
10444 .read_seq_string = cpuacct_percpu_seq_read,
10445 },
ef12fefa
BR
10446 {
10447 .name = "stat",
10448 .read_map = cpuacct_stats_show,
10449 },
d842de87
SV
10450};
10451
32cd756a 10452static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10453{
32cd756a 10454 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10455}
10456
10457/*
10458 * charge this task's execution time to its accounting group.
10459 *
10460 * called with rq->lock held.
10461 */
10462static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10463{
10464 struct cpuacct *ca;
934352f2 10465 int cpu;
d842de87 10466
c40c6f85 10467 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10468 return;
10469
934352f2 10470 cpu = task_cpu(tsk);
a18b83b7
BR
10471
10472 rcu_read_lock();
10473
d842de87 10474 ca = task_ca(tsk);
d842de87 10475
934352f2 10476 for (; ca; ca = ca->parent) {
b36128c8 10477 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10478 *cpuusage += cputime;
10479 }
a18b83b7
BR
10480
10481 rcu_read_unlock();
d842de87
SV
10482}
10483
ef12fefa
BR
10484/*
10485 * Charge the system/user time to the task's accounting group.
10486 */
10487static void cpuacct_update_stats(struct task_struct *tsk,
10488 enum cpuacct_stat_index idx, cputime_t val)
10489{
10490 struct cpuacct *ca;
10491
10492 if (unlikely(!cpuacct_subsys.active))
10493 return;
10494
10495 rcu_read_lock();
10496 ca = task_ca(tsk);
10497
10498 do {
10499 percpu_counter_add(&ca->cpustat[idx], val);
10500 ca = ca->parent;
10501 } while (ca);
10502 rcu_read_unlock();
10503}
10504
d842de87
SV
10505struct cgroup_subsys cpuacct_subsys = {
10506 .name = "cpuacct",
10507 .create = cpuacct_create,
10508 .destroy = cpuacct_destroy,
10509 .populate = cpuacct_populate,
10510 .subsys_id = cpuacct_subsys_id,
10511};
10512#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.738925 seconds and 5 git commands to generate.