sched: Simplify cpu-hot-unplug task migration
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
7d478721
PZ
563static inline
564void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 565{
7d478721 566 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
567
568 /*
569 * A queue event has occurred, and we're going to schedule. In
570 * this case, we can save a useless back to back clock update.
571 */
572 if (test_tsk_need_resched(p))
573 rq->skip_clock_update = 1;
dd41f596
IM
574}
575
0a2966b4
CL
576static inline int cpu_of(struct rq *rq)
577{
578#ifdef CONFIG_SMP
579 return rq->cpu;
580#else
581 return 0;
582#endif
583}
584
497f0ab3 585#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
586 rcu_dereference_check((p), \
587 rcu_read_lock_sched_held() || \
588 lockdep_is_held(&sched_domains_mutex))
589
674311d5
NP
590/*
591 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 592 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
593 *
594 * The domain tree of any CPU may only be accessed from within
595 * preempt-disabled sections.
596 */
48f24c4d 597#define for_each_domain(cpu, __sd) \
497f0ab3 598 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
599
600#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
601#define this_rq() (&__get_cpu_var(runqueues))
602#define task_rq(p) cpu_rq(task_cpu(p))
603#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 604#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 605
dc61b1d6
PZ
606#ifdef CONFIG_CGROUP_SCHED
607
608/*
609 * Return the group to which this tasks belongs.
610 *
611 * We use task_subsys_state_check() and extend the RCU verification
612 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
613 * holds that lock for each task it moves into the cgroup. Therefore
614 * by holding that lock, we pin the task to the current cgroup.
615 */
616static inline struct task_group *task_group(struct task_struct *p)
617{
618 struct cgroup_subsys_state *css;
619
620 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
621 lockdep_is_held(&task_rq(p)->lock));
622 return container_of(css, struct task_group, css);
623}
624
625/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627{
628#ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631#endif
632
633#ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636#endif
637}
638
639#else /* CONFIG_CGROUP_SCHED */
640
641static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642static inline struct task_group *task_group(struct task_struct *p)
643{
644 return NULL;
645}
646
647#endif /* CONFIG_CGROUP_SCHED */
648
305e6835 649static u64 irq_time_cpu(int cpu);
aa483808 650static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 651
aa9c4c0f 652inline void update_rq_clock(struct rq *rq)
3e51f33f 653{
305e6835
VP
654 if (!rq->skip_clock_update) {
655 int cpu = cpu_of(rq);
656 u64 irq_time;
657
658 rq->clock = sched_clock_cpu(cpu);
659 irq_time = irq_time_cpu(cpu);
660 if (rq->clock - irq_time > rq->clock_task)
661 rq->clock_task = rq->clock - irq_time;
aa483808
VP
662
663 sched_irq_time_avg_update(rq, irq_time);
305e6835 664 }
3e51f33f
PZ
665}
666
bf5c91ba
IM
667/*
668 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
669 */
670#ifdef CONFIG_SCHED_DEBUG
671# define const_debug __read_mostly
672#else
673# define const_debug static const
674#endif
675
017730c1
IM
676/**
677 * runqueue_is_locked
e17b38bf 678 * @cpu: the processor in question.
017730c1
IM
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
89f19f04 684int runqueue_is_locked(int cpu)
017730c1 685{
05fa785c 686 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
687}
688
bf5c91ba
IM
689/*
690 * Debugging: various feature bits
691 */
f00b45c1
PZ
692
693#define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
bf5c91ba 696enum {
f00b45c1 697#include "sched_features.h"
bf5c91ba
IM
698};
699
f00b45c1
PZ
700#undef SCHED_FEAT
701
702#define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
bf5c91ba 705const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
706#include "sched_features.h"
707 0;
708
709#undef SCHED_FEAT
710
711#ifdef CONFIG_SCHED_DEBUG
712#define SCHED_FEAT(name, enabled) \
713 #name ,
714
983ed7a6 715static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
716#include "sched_features.h"
717 NULL
718};
719
720#undef SCHED_FEAT
721
34f3a814 722static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 723{
f00b45c1
PZ
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 730 }
34f3a814 731 seq_puts(m, "\n");
f00b45c1 732
34f3a814 733 return 0;
f00b45c1
PZ
734}
735
736static ssize_t
737sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739{
740 char buf[64];
7740191c 741 char *cmp;
f00b45c1
PZ
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
7740191c 752 cmp = strstrip(buf);
f00b45c1 753
c24b7c52 754 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
7740191c 760 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
761 if (neg)
762 sysctl_sched_features &= ~(1UL << i);
763 else
764 sysctl_sched_features |= (1UL << i);
765 break;
766 }
767 }
768
769 if (!sched_feat_names[i])
770 return -EINVAL;
771
42994724 772 *ppos += cnt;
f00b45c1
PZ
773
774 return cnt;
775}
776
34f3a814
LZ
777static int sched_feat_open(struct inode *inode, struct file *filp)
778{
779 return single_open(filp, sched_feat_show, NULL);
780}
781
828c0950 782static const struct file_operations sched_feat_fops = {
34f3a814
LZ
783 .open = sched_feat_open,
784 .write = sched_feat_write,
785 .read = seq_read,
786 .llseek = seq_lseek,
787 .release = single_release,
f00b45c1
PZ
788};
789
790static __init int sched_init_debug(void)
791{
f00b45c1
PZ
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796}
797late_initcall(sched_init_debug);
798
799#endif
800
801#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 802
b82d9fdd
PZ
803/*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
2398f2c6
PZ
809/*
810 * ratelimit for updating the group shares.
55cd5340 811 * default: 0.25ms
2398f2c6 812 */
55cd5340 813unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 814unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 815
ffda12a1
PZ
816/*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821unsigned int sysctl_sched_shares_thresh = 4;
822
e9e9250b
PZ
823/*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
fa85ae24 831/*
9f0c1e56 832 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
833 * default: 1s
834 */
9f0c1e56 835unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 836
6892b75e
IM
837static __read_mostly int scheduler_running;
838
9f0c1e56
PZ
839/*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843int sysctl_sched_rt_runtime = 950000;
fa85ae24 844
d0b27fa7
PZ
845static inline u64 global_rt_period(void)
846{
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848}
849
850static inline u64 global_rt_runtime(void)
851{
e26873bb 852 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856}
fa85ae24 857
1da177e4 858#ifndef prepare_arch_switch
4866cde0
NP
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
051a1d1a
DA
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
4866cde0 870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 872{
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874}
875
70b97a7f 876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
877{
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
051a1d1a 902 return task_current(rq, p);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 917 raw_spin_unlock_irq(&rq->lock);
4866cde0 918#else
05fa785c 919 raw_spin_unlock(&rq->lock);
4866cde0
NP
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
0970d299 940/*
65cc8e48
PZ
941 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
942 * against ttwu().
0970d299
PZ
943 */
944static inline int task_is_waking(struct task_struct *p)
945{
0017d735 946 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
947}
948
b29739f9
IM
949/*
950 * __task_rq_lock - lock the runqueue a given task resides on.
951 * Must be called interrupts disabled.
952 */
70b97a7f 953static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
954 __acquires(rq->lock)
955{
0970d299
PZ
956 struct rq *rq;
957
3a5c359a 958 for (;;) {
0970d299 959 rq = task_rq(p);
05fa785c 960 raw_spin_lock(&rq->lock);
65cc8e48 961 if (likely(rq == task_rq(p)))
3a5c359a 962 return rq;
05fa785c 963 raw_spin_unlock(&rq->lock);
b29739f9 964 }
b29739f9
IM
965}
966
1da177e4
LT
967/*
968 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 969 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
970 * explicitly disabling preemption.
971 */
70b97a7f 972static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
973 __acquires(rq->lock)
974{
70b97a7f 975 struct rq *rq;
1da177e4 976
3a5c359a
AK
977 for (;;) {
978 local_irq_save(*flags);
979 rq = task_rq(p);
05fa785c 980 raw_spin_lock(&rq->lock);
65cc8e48 981 if (likely(rq == task_rq(p)))
3a5c359a 982 return rq;
05fa785c 983 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 984 }
1da177e4
LT
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1211/*
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1214 *
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1218 */
1219int get_nohz_timer_target(void)
1220{
1221 int cpu = smp_processor_id();
1222 int i;
1223 struct sched_domain *sd;
1224
1225 for_each_domain(cpu, sd) {
1226 for_each_cpu(i, sched_domain_span(sd))
1227 if (!idle_cpu(i))
1228 return i;
1229 }
1230 return cpu;
1231}
06d8308c
TG
1232/*
1233 * When add_timer_on() enqueues a timer into the timer wheel of an
1234 * idle CPU then this timer might expire before the next timer event
1235 * which is scheduled to wake up that CPU. In case of a completely
1236 * idle system the next event might even be infinite time into the
1237 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1238 * leaves the inner idle loop so the newly added timer is taken into
1239 * account when the CPU goes back to idle and evaluates the timer
1240 * wheel for the next timer event.
1241 */
1242void wake_up_idle_cpu(int cpu)
1243{
1244 struct rq *rq = cpu_rq(cpu);
1245
1246 if (cpu == smp_processor_id())
1247 return;
1248
1249 /*
1250 * This is safe, as this function is called with the timer
1251 * wheel base lock of (cpu) held. When the CPU is on the way
1252 * to idle and has not yet set rq->curr to idle then it will
1253 * be serialized on the timer wheel base lock and take the new
1254 * timer into account automatically.
1255 */
1256 if (rq->curr != rq->idle)
1257 return;
1258
1259 /*
1260 * We can set TIF_RESCHED on the idle task of the other CPU
1261 * lockless. The worst case is that the other CPU runs the
1262 * idle task through an additional NOOP schedule()
1263 */
5ed0cec0 1264 set_tsk_need_resched(rq->idle);
06d8308c
TG
1265
1266 /* NEED_RESCHED must be visible before we test polling */
1267 smp_mb();
1268 if (!tsk_is_polling(rq->idle))
1269 smp_send_reschedule(cpu);
1270}
39c0cbe2 1271
6d6bc0ad 1272#endif /* CONFIG_NO_HZ */
06d8308c 1273
e9e9250b
PZ
1274static u64 sched_avg_period(void)
1275{
1276 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1277}
1278
1279static void sched_avg_update(struct rq *rq)
1280{
1281 s64 period = sched_avg_period();
1282
1283 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1284 /*
1285 * Inline assembly required to prevent the compiler
1286 * optimising this loop into a divmod call.
1287 * See __iter_div_u64_rem() for another example of this.
1288 */
1289 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1290 rq->age_stamp += period;
1291 rq->rt_avg /= 2;
1292 }
1293}
1294
1295static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1296{
1297 rq->rt_avg += rt_delta;
1298 sched_avg_update(rq);
1299}
1300
6d6bc0ad 1301#else /* !CONFIG_SMP */
31656519 1302static void resched_task(struct task_struct *p)
c24d20db 1303{
05fa785c 1304 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1305 set_tsk_need_resched(p);
c24d20db 1306}
e9e9250b
PZ
1307
1308static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1309{
1310}
da2b71ed
SS
1311
1312static void sched_avg_update(struct rq *rq)
1313{
1314}
6d6bc0ad 1315#endif /* CONFIG_SMP */
c24d20db 1316
45bf76df
IM
1317#if BITS_PER_LONG == 32
1318# define WMULT_CONST (~0UL)
1319#else
1320# define WMULT_CONST (1UL << 32)
1321#endif
1322
1323#define WMULT_SHIFT 32
1324
194081eb
IM
1325/*
1326 * Shift right and round:
1327 */
cf2ab469 1328#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1329
a7be37ac
PZ
1330/*
1331 * delta *= weight / lw
1332 */
cb1c4fc9 1333static unsigned long
45bf76df
IM
1334calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1335 struct load_weight *lw)
1336{
1337 u64 tmp;
1338
7a232e03
LJ
1339 if (!lw->inv_weight) {
1340 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1341 lw->inv_weight = 1;
1342 else
1343 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1344 / (lw->weight+1);
1345 }
45bf76df
IM
1346
1347 tmp = (u64)delta_exec * weight;
1348 /*
1349 * Check whether we'd overflow the 64-bit multiplication:
1350 */
194081eb 1351 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1352 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1353 WMULT_SHIFT/2);
1354 else
cf2ab469 1355 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1356
ecf691da 1357 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1358}
1359
1091985b 1360static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1361{
1362 lw->weight += inc;
e89996ae 1363 lw->inv_weight = 0;
45bf76df
IM
1364}
1365
1091985b 1366static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1367{
1368 lw->weight -= dec;
e89996ae 1369 lw->inv_weight = 0;
45bf76df
IM
1370}
1371
2dd73a4f
PW
1372/*
1373 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1374 * of tasks with abnormal "nice" values across CPUs the contribution that
1375 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1376 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1377 * scaled version of the new time slice allocation that they receive on time
1378 * slice expiry etc.
1379 */
1380
cce7ade8
PZ
1381#define WEIGHT_IDLEPRIO 3
1382#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1383
1384/*
1385 * Nice levels are multiplicative, with a gentle 10% change for every
1386 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1387 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1388 * that remained on nice 0.
1389 *
1390 * The "10% effect" is relative and cumulative: from _any_ nice level,
1391 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1392 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1393 * If a task goes up by ~10% and another task goes down by ~10% then
1394 * the relative distance between them is ~25%.)
dd41f596
IM
1395 */
1396static const int prio_to_weight[40] = {
254753dc
IM
1397 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1398 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1399 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1400 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1401 /* 0 */ 1024, 820, 655, 526, 423,
1402 /* 5 */ 335, 272, 215, 172, 137,
1403 /* 10 */ 110, 87, 70, 56, 45,
1404 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1405};
1406
5714d2de
IM
1407/*
1408 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1409 *
1410 * In cases where the weight does not change often, we can use the
1411 * precalculated inverse to speed up arithmetics by turning divisions
1412 * into multiplications:
1413 */
dd41f596 1414static const u32 prio_to_wmult[40] = {
254753dc
IM
1415 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1416 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1417 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1418 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1419 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1420 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1421 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1422 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1423};
2dd73a4f 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
f5f08f39
PZ
1499/* Used instead of source_load when we know the type == 0 */
1500static unsigned long weighted_cpuload(const int cpu)
1501{
1502 return cpu_rq(cpu)->load.weight;
1503}
1504
1505/*
1506 * Return a low guess at the load of a migration-source cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 *
1509 * We want to under-estimate the load of migration sources, to
1510 * balance conservatively.
1511 */
1512static unsigned long source_load(int cpu, int type)
1513{
1514 struct rq *rq = cpu_rq(cpu);
1515 unsigned long total = weighted_cpuload(cpu);
1516
1517 if (type == 0 || !sched_feat(LB_BIAS))
1518 return total;
1519
1520 return min(rq->cpu_load[type-1], total);
1521}
1522
1523/*
1524 * Return a high guess at the load of a migration-target cpu weighted
1525 * according to the scheduling class and "nice" value.
1526 */
1527static unsigned long target_load(int cpu, int type)
1528{
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long total = weighted_cpuload(cpu);
1531
1532 if (type == 0 || !sched_feat(LB_BIAS))
1533 return total;
1534
1535 return max(rq->cpu_load[type-1], total);
1536}
1537
ae154be1
PZ
1538static unsigned long power_of(int cpu)
1539{
e51fd5e2 1540 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1541}
1542
eb755805
PZ
1543static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1544
1545static unsigned long cpu_avg_load_per_task(int cpu)
1546{
1547 struct rq *rq = cpu_rq(cpu);
af6d596f 1548 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1549
4cd42620
SR
1550 if (nr_running)
1551 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1552 else
1553 rq->avg_load_per_task = 0;
eb755805
PZ
1554
1555 return rq->avg_load_per_task;
1556}
1557
1558#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1559
43cf38eb 1560static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1561
c09595f6
PZ
1562static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1563
1564/*
1565 * Calculate and set the cpu's group shares.
1566 */
34d76c41
PZ
1567static void update_group_shares_cpu(struct task_group *tg, int cpu,
1568 unsigned long sd_shares,
1569 unsigned long sd_rq_weight,
4a6cc4bd 1570 unsigned long *usd_rq_weight)
18d95a28 1571{
34d76c41 1572 unsigned long shares, rq_weight;
a5004278 1573 int boost = 0;
c09595f6 1574
4a6cc4bd 1575 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1576 if (!rq_weight) {
1577 boost = 1;
1578 rq_weight = NICE_0_LOAD;
1579 }
c8cba857 1580
c09595f6 1581 /*
a8af7246
PZ
1582 * \Sum_j shares_j * rq_weight_i
1583 * shares_i = -----------------------------
1584 * \Sum_j rq_weight_j
c09595f6 1585 */
ec4e0e2f 1586 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1587 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1588
ffda12a1
PZ
1589 if (abs(shares - tg->se[cpu]->load.weight) >
1590 sysctl_sched_shares_thresh) {
1591 struct rq *rq = cpu_rq(cpu);
1592 unsigned long flags;
c09595f6 1593
05fa785c 1594 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1595 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1596 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1597 __set_se_shares(tg->se[cpu], shares);
05fa785c 1598 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1599 }
18d95a28 1600}
c09595f6
PZ
1601
1602/*
c8cba857
PZ
1603 * Re-compute the task group their per cpu shares over the given domain.
1604 * This needs to be done in a bottom-up fashion because the rq weight of a
1605 * parent group depends on the shares of its child groups.
c09595f6 1606 */
eb755805 1607static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1608{
cd8ad40d 1609 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1610 unsigned long *usd_rq_weight;
eb755805 1611 struct sched_domain *sd = data;
34d76c41 1612 unsigned long flags;
c8cba857 1613 int i;
c09595f6 1614
34d76c41
PZ
1615 if (!tg->se[0])
1616 return 0;
1617
1618 local_irq_save(flags);
4a6cc4bd 1619 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1620
758b2cdc 1621 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1622 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1623 usd_rq_weight[i] = weight;
34d76c41 1624
cd8ad40d 1625 rq_weight += weight;
ec4e0e2f
KC
1626 /*
1627 * If there are currently no tasks on the cpu pretend there
1628 * is one of average load so that when a new task gets to
1629 * run here it will not get delayed by group starvation.
1630 */
ec4e0e2f
KC
1631 if (!weight)
1632 weight = NICE_0_LOAD;
1633
cd8ad40d 1634 sum_weight += weight;
c8cba857 1635 shares += tg->cfs_rq[i]->shares;
c09595f6 1636 }
c09595f6 1637
cd8ad40d
PZ
1638 if (!rq_weight)
1639 rq_weight = sum_weight;
1640
c8cba857
PZ
1641 if ((!shares && rq_weight) || shares > tg->shares)
1642 shares = tg->shares;
1643
1644 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1645 shares = tg->shares;
c09595f6 1646
758b2cdc 1647 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1648 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1649
1650 local_irq_restore(flags);
eb755805
PZ
1651
1652 return 0;
c09595f6
PZ
1653}
1654
1655/*
c8cba857
PZ
1656 * Compute the cpu's hierarchical load factor for each task group.
1657 * This needs to be done in a top-down fashion because the load of a child
1658 * group is a fraction of its parents load.
c09595f6 1659 */
eb755805 1660static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1661{
c8cba857 1662 unsigned long load;
eb755805 1663 long cpu = (long)data;
c09595f6 1664
c8cba857
PZ
1665 if (!tg->parent) {
1666 load = cpu_rq(cpu)->load.weight;
1667 } else {
1668 load = tg->parent->cfs_rq[cpu]->h_load;
1669 load *= tg->cfs_rq[cpu]->shares;
1670 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1671 }
c09595f6 1672
c8cba857 1673 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1674
eb755805 1675 return 0;
c09595f6
PZ
1676}
1677
c8cba857 1678static void update_shares(struct sched_domain *sd)
4d8d595d 1679{
e7097159
PZ
1680 s64 elapsed;
1681 u64 now;
1682
1683 if (root_task_group_empty())
1684 return;
1685
c676329a 1686 now = local_clock();
e7097159 1687 elapsed = now - sd->last_update;
2398f2c6
PZ
1688
1689 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1690 sd->last_update = now;
eb755805 1691 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1692 }
4d8d595d
PZ
1693}
1694
eb755805 1695static void update_h_load(long cpu)
c09595f6 1696{
eb755805 1697 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1698}
1699
c09595f6
PZ
1700#else
1701
c8cba857 1702static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1703{
1704}
1705
18d95a28
PZ
1706#endif
1707
8f45e2b5
GH
1708#ifdef CONFIG_PREEMPT
1709
b78bb868
PZ
1710static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1711
70574a99 1712/*
8f45e2b5
GH
1713 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1714 * way at the expense of forcing extra atomic operations in all
1715 * invocations. This assures that the double_lock is acquired using the
1716 * same underlying policy as the spinlock_t on this architecture, which
1717 * reduces latency compared to the unfair variant below. However, it
1718 * also adds more overhead and therefore may reduce throughput.
70574a99 1719 */
8f45e2b5
GH
1720static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1724{
05fa785c 1725 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1726 double_rq_lock(this_rq, busiest);
1727
1728 return 1;
1729}
1730
1731#else
1732/*
1733 * Unfair double_lock_balance: Optimizes throughput at the expense of
1734 * latency by eliminating extra atomic operations when the locks are
1735 * already in proper order on entry. This favors lower cpu-ids and will
1736 * grant the double lock to lower cpus over higher ids under contention,
1737 * regardless of entry order into the function.
1738 */
1739static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1740 __releases(this_rq->lock)
1741 __acquires(busiest->lock)
1742 __acquires(this_rq->lock)
1743{
1744 int ret = 0;
1745
05fa785c 1746 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1747 if (busiest < this_rq) {
05fa785c
TG
1748 raw_spin_unlock(&this_rq->lock);
1749 raw_spin_lock(&busiest->lock);
1750 raw_spin_lock_nested(&this_rq->lock,
1751 SINGLE_DEPTH_NESTING);
70574a99
AD
1752 ret = 1;
1753 } else
05fa785c
TG
1754 raw_spin_lock_nested(&busiest->lock,
1755 SINGLE_DEPTH_NESTING);
70574a99
AD
1756 }
1757 return ret;
1758}
1759
8f45e2b5
GH
1760#endif /* CONFIG_PREEMPT */
1761
1762/*
1763 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1764 */
1765static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766{
1767 if (unlikely(!irqs_disabled())) {
1768 /* printk() doesn't work good under rq->lock */
05fa785c 1769 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1770 BUG_ON(1);
1771 }
1772
1773 return _double_lock_balance(this_rq, busiest);
1774}
1775
70574a99
AD
1776static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1777 __releases(busiest->lock)
1778{
05fa785c 1779 raw_spin_unlock(&busiest->lock);
70574a99
AD
1780 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1781}
1e3c88bd
PZ
1782
1783/*
1784 * double_rq_lock - safely lock two runqueues
1785 *
1786 * Note this does not disable interrupts like task_rq_lock,
1787 * you need to do so manually before calling.
1788 */
1789static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1790 __acquires(rq1->lock)
1791 __acquires(rq2->lock)
1792{
1793 BUG_ON(!irqs_disabled());
1794 if (rq1 == rq2) {
1795 raw_spin_lock(&rq1->lock);
1796 __acquire(rq2->lock); /* Fake it out ;) */
1797 } else {
1798 if (rq1 < rq2) {
1799 raw_spin_lock(&rq1->lock);
1800 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1801 } else {
1802 raw_spin_lock(&rq2->lock);
1803 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1804 }
1805 }
1e3c88bd
PZ
1806}
1807
1808/*
1809 * double_rq_unlock - safely unlock two runqueues
1810 *
1811 * Note this does not restore interrupts like task_rq_unlock,
1812 * you need to do so manually after calling.
1813 */
1814static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1815 __releases(rq1->lock)
1816 __releases(rq2->lock)
1817{
1818 raw_spin_unlock(&rq1->lock);
1819 if (rq1 != rq2)
1820 raw_spin_unlock(&rq2->lock);
1821 else
1822 __release(rq2->lock);
1823}
1824
18d95a28
PZ
1825#endif
1826
30432094 1827#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1828static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1829{
30432094 1830#ifdef CONFIG_SMP
34e83e85
IM
1831 cfs_rq->shares = shares;
1832#endif
1833}
30432094 1834#endif
e7693a36 1835
74f5187a 1836static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1837static void update_sysctl(void);
acb4a848 1838static int get_update_sysctl_factor(void);
fdf3e95d 1839static void update_cpu_load(struct rq *this_rq);
dce48a84 1840
cd29fe6f
PZ
1841static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1842{
1843 set_task_rq(p, cpu);
1844#ifdef CONFIG_SMP
1845 /*
1846 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1847 * successfuly executed on another CPU. We must ensure that updates of
1848 * per-task data have been completed by this moment.
1849 */
1850 smp_wmb();
1851 task_thread_info(p)->cpu = cpu;
1852#endif
1853}
dce48a84 1854
1e3c88bd 1855static const struct sched_class rt_sched_class;
dd41f596 1856
34f971f6 1857#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1858#define for_each_class(class) \
1859 for (class = sched_class_highest; class; class = class->next)
dd41f596 1860
1e3c88bd
PZ
1861#include "sched_stats.h"
1862
c09595f6 1863static void inc_nr_running(struct rq *rq)
9c217245
IM
1864{
1865 rq->nr_running++;
9c217245
IM
1866}
1867
c09595f6 1868static void dec_nr_running(struct rq *rq)
9c217245
IM
1869{
1870 rq->nr_running--;
9c217245
IM
1871}
1872
45bf76df
IM
1873static void set_load_weight(struct task_struct *p)
1874{
dd41f596
IM
1875 /*
1876 * SCHED_IDLE tasks get minimal weight:
1877 */
1878 if (p->policy == SCHED_IDLE) {
1879 p->se.load.weight = WEIGHT_IDLEPRIO;
1880 p->se.load.inv_weight = WMULT_IDLEPRIO;
1881 return;
1882 }
71f8bd46 1883
dd41f596
IM
1884 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1885 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1886}
1887
371fd7e7 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1889{
a64692a3 1890 update_rq_clock(rq);
dd41f596 1891 sched_info_queued(p);
371fd7e7 1892 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
371fd7e7 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1897{
a64692a3 1898 update_rq_clock(rq);
46ac22ba 1899 sched_info_dequeued(p);
371fd7e7 1900 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1901 p->se.on_rq = 0;
71f8bd46
IM
1902}
1903
1e3c88bd
PZ
1904/*
1905 * activate_task - move a task to the runqueue.
1906 */
371fd7e7 1907static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1908{
1909 if (task_contributes_to_load(p))
1910 rq->nr_uninterruptible--;
1911
371fd7e7 1912 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1913 inc_nr_running(rq);
1914}
1915
1916/*
1917 * deactivate_task - remove a task from the runqueue.
1918 */
371fd7e7 1919static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1920{
1921 if (task_contributes_to_load(p))
1922 rq->nr_uninterruptible++;
1923
371fd7e7 1924 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1925 dec_nr_running(rq);
1926}
1927
b52bfee4
VP
1928#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1929
305e6835
VP
1930/*
1931 * There are no locks covering percpu hardirq/softirq time.
1932 * They are only modified in account_system_vtime, on corresponding CPU
1933 * with interrupts disabled. So, writes are safe.
1934 * They are read and saved off onto struct rq in update_rq_clock().
1935 * This may result in other CPU reading this CPU's irq time and can
1936 * race with irq/account_system_vtime on this CPU. We would either get old
1937 * or new value (or semi updated value on 32 bit) with a side effect of
1938 * accounting a slice of irq time to wrong task when irq is in progress
1939 * while we read rq->clock. That is a worthy compromise in place of having
1940 * locks on each irq in account_system_time.
1941 */
b52bfee4
VP
1942static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1943static DEFINE_PER_CPU(u64, cpu_softirq_time);
1944
1945static DEFINE_PER_CPU(u64, irq_start_time);
1946static int sched_clock_irqtime;
1947
1948void enable_sched_clock_irqtime(void)
1949{
1950 sched_clock_irqtime = 1;
1951}
1952
1953void disable_sched_clock_irqtime(void)
1954{
1955 sched_clock_irqtime = 0;
1956}
1957
305e6835
VP
1958static u64 irq_time_cpu(int cpu)
1959{
1960 if (!sched_clock_irqtime)
1961 return 0;
1962
1963 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1964}
1965
b52bfee4
VP
1966void account_system_vtime(struct task_struct *curr)
1967{
1968 unsigned long flags;
1969 int cpu;
1970 u64 now, delta;
1971
1972 if (!sched_clock_irqtime)
1973 return;
1974
1975 local_irq_save(flags);
1976
b52bfee4 1977 cpu = smp_processor_id();
d267f87f 1978 now = sched_clock_cpu(cpu);
b52bfee4
VP
1979 delta = now - per_cpu(irq_start_time, cpu);
1980 per_cpu(irq_start_time, cpu) = now;
1981 /*
1982 * We do not account for softirq time from ksoftirqd here.
1983 * We want to continue accounting softirq time to ksoftirqd thread
1984 * in that case, so as not to confuse scheduler with a special task
1985 * that do not consume any time, but still wants to run.
1986 */
1987 if (hardirq_count())
1988 per_cpu(cpu_hardirq_time, cpu) += delta;
1989 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1990 per_cpu(cpu_softirq_time, cpu) += delta;
1991
1992 local_irq_restore(flags);
1993}
b7dadc38 1994EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1995
aa483808
VP
1996static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1997{
1998 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1999 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
2000 rq->prev_irq_time = curr_irq_time;
2001 sched_rt_avg_update(rq, delta_irq);
2002 }
2003}
2004
305e6835
VP
2005#else
2006
2007static u64 irq_time_cpu(int cpu)
2008{
2009 return 0;
2010}
2011
aa483808
VP
2012static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2013
b52bfee4
VP
2014#endif
2015
1e3c88bd
PZ
2016#include "sched_idletask.c"
2017#include "sched_fair.c"
2018#include "sched_rt.c"
34f971f6 2019#include "sched_stoptask.c"
1e3c88bd
PZ
2020#ifdef CONFIG_SCHED_DEBUG
2021# include "sched_debug.c"
2022#endif
2023
34f971f6
PZ
2024void sched_set_stop_task(int cpu, struct task_struct *stop)
2025{
2026 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2027 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2028
2029 if (stop) {
2030 /*
2031 * Make it appear like a SCHED_FIFO task, its something
2032 * userspace knows about and won't get confused about.
2033 *
2034 * Also, it will make PI more or less work without too
2035 * much confusion -- but then, stop work should not
2036 * rely on PI working anyway.
2037 */
2038 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2039
2040 stop->sched_class = &stop_sched_class;
2041 }
2042
2043 cpu_rq(cpu)->stop = stop;
2044
2045 if (old_stop) {
2046 /*
2047 * Reset it back to a normal scheduling class so that
2048 * it can die in pieces.
2049 */
2050 old_stop->sched_class = &rt_sched_class;
2051 }
2052}
2053
14531189 2054/*
dd41f596 2055 * __normal_prio - return the priority that is based on the static prio
14531189 2056 */
14531189
IM
2057static inline int __normal_prio(struct task_struct *p)
2058{
dd41f596 2059 return p->static_prio;
14531189
IM
2060}
2061
b29739f9
IM
2062/*
2063 * Calculate the expected normal priority: i.e. priority
2064 * without taking RT-inheritance into account. Might be
2065 * boosted by interactivity modifiers. Changes upon fork,
2066 * setprio syscalls, and whenever the interactivity
2067 * estimator recalculates.
2068 */
36c8b586 2069static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2070{
2071 int prio;
2072
e05606d3 2073 if (task_has_rt_policy(p))
b29739f9
IM
2074 prio = MAX_RT_PRIO-1 - p->rt_priority;
2075 else
2076 prio = __normal_prio(p);
2077 return prio;
2078}
2079
2080/*
2081 * Calculate the current priority, i.e. the priority
2082 * taken into account by the scheduler. This value might
2083 * be boosted by RT tasks, or might be boosted by
2084 * interactivity modifiers. Will be RT if the task got
2085 * RT-boosted. If not then it returns p->normal_prio.
2086 */
36c8b586 2087static int effective_prio(struct task_struct *p)
b29739f9
IM
2088{
2089 p->normal_prio = normal_prio(p);
2090 /*
2091 * If we are RT tasks or we were boosted to RT priority,
2092 * keep the priority unchanged. Otherwise, update priority
2093 * to the normal priority:
2094 */
2095 if (!rt_prio(p->prio))
2096 return p->normal_prio;
2097 return p->prio;
2098}
2099
1da177e4
LT
2100/**
2101 * task_curr - is this task currently executing on a CPU?
2102 * @p: the task in question.
2103 */
36c8b586 2104inline int task_curr(const struct task_struct *p)
1da177e4
LT
2105{
2106 return cpu_curr(task_cpu(p)) == p;
2107}
2108
cb469845
SR
2109static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2110 const struct sched_class *prev_class,
2111 int oldprio, int running)
2112{
2113 if (prev_class != p->sched_class) {
2114 if (prev_class->switched_from)
2115 prev_class->switched_from(rq, p, running);
2116 p->sched_class->switched_to(rq, p, running);
2117 } else
2118 p->sched_class->prio_changed(rq, p, oldprio, running);
2119}
2120
1da177e4 2121#ifdef CONFIG_SMP
cc367732
IM
2122/*
2123 * Is this task likely cache-hot:
2124 */
e7693a36 2125static int
cc367732
IM
2126task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2127{
2128 s64 delta;
2129
e6c8fba7
PZ
2130 if (p->sched_class != &fair_sched_class)
2131 return 0;
2132
ef8002f6
NR
2133 if (unlikely(p->policy == SCHED_IDLE))
2134 return 0;
2135
f540a608
IM
2136 /*
2137 * Buddy candidates are cache hot:
2138 */
f685ceac 2139 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2140 (&p->se == cfs_rq_of(&p->se)->next ||
2141 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2142 return 1;
2143
6bc1665b
IM
2144 if (sysctl_sched_migration_cost == -1)
2145 return 1;
2146 if (sysctl_sched_migration_cost == 0)
2147 return 0;
2148
cc367732
IM
2149 delta = now - p->se.exec_start;
2150
2151 return delta < (s64)sysctl_sched_migration_cost;
2152}
2153
dd41f596 2154void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2155{
e2912009
PZ
2156#ifdef CONFIG_SCHED_DEBUG
2157 /*
2158 * We should never call set_task_cpu() on a blocked task,
2159 * ttwu() will sort out the placement.
2160 */
077614ee
PZ
2161 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2162 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2163#endif
2164
de1d7286 2165 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2166
0c69774e
PZ
2167 if (task_cpu(p) != new_cpu) {
2168 p->se.nr_migrations++;
2169 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2170 }
dd41f596
IM
2171
2172 __set_task_cpu(p, new_cpu);
c65cc870
IM
2173}
2174
969c7921 2175struct migration_arg {
36c8b586 2176 struct task_struct *task;
1da177e4 2177 int dest_cpu;
70b97a7f 2178};
1da177e4 2179
969c7921
TH
2180static int migration_cpu_stop(void *data);
2181
1da177e4
LT
2182/*
2183 * The task's runqueue lock must be held.
2184 * Returns true if you have to wait for migration thread.
2185 */
969c7921 2186static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2187{
70b97a7f 2188 struct rq *rq = task_rq(p);
1da177e4
LT
2189
2190 /*
2191 * If the task is not on a runqueue (and not running), then
e2912009 2192 * the next wake-up will properly place the task.
1da177e4 2193 */
969c7921 2194 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2195}
2196
2197/*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
85ba2d86
RM
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
1da177e4
LT
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
85ba2d86 2213unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2214{
2215 unsigned long flags;
dd41f596 2216 int running, on_rq;
85ba2d86 2217 unsigned long ncsw;
70b97a7f 2218 struct rq *rq;
1da177e4 2219
3a5c359a
AK
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
fa490cfd 2228
3a5c359a
AK
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
85ba2d86
RM
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
3a5c359a 2243 cpu_relax();
85ba2d86 2244 }
fa490cfd 2245
3a5c359a
AK
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
27a9da65 2252 trace_sched_wait_task(p);
3a5c359a
AK
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
85ba2d86 2255 ncsw = 0;
f31e11d8 2256 if (!match_state || p->state == match_state)
93dcf55f 2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2258 task_rq_unlock(rq, &flags);
fa490cfd 2259
85ba2d86
RM
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
3a5c359a
AK
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
fa490cfd 2276
3a5c359a
AK
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
80dd99b3 2282 * So if it was still runnable (but just not actively
3a5c359a
AK
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
2287 schedule_timeout_uninterruptible(1);
2288 continue;
2289 }
fa490cfd 2290
3a5c359a
AK
2291 /*
2292 * Ahh, all good. It wasn't running, and it wasn't
2293 * runnable, which means that it will never become
2294 * running in the future either. We're all done!
2295 */
2296 break;
2297 }
85ba2d86
RM
2298
2299 return ncsw;
1da177e4
LT
2300}
2301
2302/***
2303 * kick_process - kick a running thread to enter/exit the kernel
2304 * @p: the to-be-kicked thread
2305 *
2306 * Cause a process which is running on another CPU to enter
2307 * kernel-mode, without any delay. (to get signals handled.)
2308 *
2309 * NOTE: this function doesnt have to take the runqueue lock,
2310 * because all it wants to ensure is that the remote task enters
2311 * the kernel. If the IPI races and the task has been migrated
2312 * to another CPU then no harm is done and the purpose has been
2313 * achieved as well.
2314 */
36c8b586 2315void kick_process(struct task_struct *p)
1da177e4
LT
2316{
2317 int cpu;
2318
2319 preempt_disable();
2320 cpu = task_cpu(p);
2321 if ((cpu != smp_processor_id()) && task_curr(p))
2322 smp_send_reschedule(cpu);
2323 preempt_enable();
2324}
b43e3521 2325EXPORT_SYMBOL_GPL(kick_process);
476d139c 2326#endif /* CONFIG_SMP */
1da177e4 2327
0793a61d
TG
2328/**
2329 * task_oncpu_function_call - call a function on the cpu on which a task runs
2330 * @p: the task to evaluate
2331 * @func: the function to be called
2332 * @info: the function call argument
2333 *
2334 * Calls the function @func when the task is currently running. This might
2335 * be on the current CPU, which just calls the function directly
2336 */
2337void task_oncpu_function_call(struct task_struct *p,
2338 void (*func) (void *info), void *info)
2339{
2340 int cpu;
2341
2342 preempt_disable();
2343 cpu = task_cpu(p);
2344 if (task_curr(p))
2345 smp_call_function_single(cpu, func, info, 1);
2346 preempt_enable();
2347}
2348
970b13ba 2349#ifdef CONFIG_SMP
30da688e
ON
2350/*
2351 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2352 */
5da9a0fb
PZ
2353static int select_fallback_rq(int cpu, struct task_struct *p)
2354{
2355 int dest_cpu;
2356 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2357
2358 /* Look for allowed, online CPU in same node. */
2359 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2360 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2361 return dest_cpu;
2362
2363 /* Any allowed, online CPU? */
2364 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2365 if (dest_cpu < nr_cpu_ids)
2366 return dest_cpu;
2367
2368 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2369 dest_cpu = cpuset_cpus_allowed_fallback(p);
2370 /*
2371 * Don't tell them about moving exiting tasks or
2372 * kernel threads (both mm NULL), since they never
2373 * leave kernel.
2374 */
2375 if (p->mm && printk_ratelimit()) {
2376 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2377 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2378 }
2379
2380 return dest_cpu;
2381}
2382
e2912009 2383/*
30da688e 2384 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2385 */
970b13ba 2386static inline
0017d735 2387int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2388{
0017d735 2389 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2390
2391 /*
2392 * In order not to call set_task_cpu() on a blocking task we need
2393 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2394 * cpu.
2395 *
2396 * Since this is common to all placement strategies, this lives here.
2397 *
2398 * [ this allows ->select_task() to simply return task_cpu(p) and
2399 * not worry about this generic constraint ]
2400 */
2401 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2402 !cpu_online(cpu)))
5da9a0fb 2403 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2404
2405 return cpu;
970b13ba 2406}
09a40af5
MG
2407
2408static void update_avg(u64 *avg, u64 sample)
2409{
2410 s64 diff = sample - *avg;
2411 *avg += diff >> 3;
2412}
970b13ba
PZ
2413#endif
2414
9ed3811a
TH
2415static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2416 bool is_sync, bool is_migrate, bool is_local,
2417 unsigned long en_flags)
2418{
2419 schedstat_inc(p, se.statistics.nr_wakeups);
2420 if (is_sync)
2421 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2422 if (is_migrate)
2423 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2424 if (is_local)
2425 schedstat_inc(p, se.statistics.nr_wakeups_local);
2426 else
2427 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2428
2429 activate_task(rq, p, en_flags);
2430}
2431
2432static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2433 int wake_flags, bool success)
2434{
2435 trace_sched_wakeup(p, success);
2436 check_preempt_curr(rq, p, wake_flags);
2437
2438 p->state = TASK_RUNNING;
2439#ifdef CONFIG_SMP
2440 if (p->sched_class->task_woken)
2441 p->sched_class->task_woken(rq, p);
2442
2443 if (unlikely(rq->idle_stamp)) {
2444 u64 delta = rq->clock - rq->idle_stamp;
2445 u64 max = 2*sysctl_sched_migration_cost;
2446
2447 if (delta > max)
2448 rq->avg_idle = max;
2449 else
2450 update_avg(&rq->avg_idle, delta);
2451 rq->idle_stamp = 0;
2452 }
2453#endif
21aa9af0
TH
2454 /* if a worker is waking up, notify workqueue */
2455 if ((p->flags & PF_WQ_WORKER) && success)
2456 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2457}
2458
2459/**
1da177e4 2460 * try_to_wake_up - wake up a thread
9ed3811a 2461 * @p: the thread to be awakened
1da177e4 2462 * @state: the mask of task states that can be woken
9ed3811a 2463 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2464 *
2465 * Put it on the run-queue if it's not already there. The "current"
2466 * thread is always on the run-queue (except when the actual
2467 * re-schedule is in progress), and as such you're allowed to do
2468 * the simpler "current->state = TASK_RUNNING" to mark yourself
2469 * runnable without the overhead of this.
2470 *
9ed3811a
TH
2471 * Returns %true if @p was woken up, %false if it was already running
2472 * or @state didn't match @p's state.
1da177e4 2473 */
7d478721
PZ
2474static int try_to_wake_up(struct task_struct *p, unsigned int state,
2475 int wake_flags)
1da177e4 2476{
cc367732 2477 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2478 unsigned long flags;
371fd7e7 2479 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2480 struct rq *rq;
1da177e4 2481
e9c84311 2482 this_cpu = get_cpu();
2398f2c6 2483
04e2f174 2484 smp_wmb();
ab3b3aa5 2485 rq = task_rq_lock(p, &flags);
e9c84311 2486 if (!(p->state & state))
1da177e4
LT
2487 goto out;
2488
dd41f596 2489 if (p->se.on_rq)
1da177e4
LT
2490 goto out_running;
2491
2492 cpu = task_cpu(p);
cc367732 2493 orig_cpu = cpu;
1da177e4
LT
2494
2495#ifdef CONFIG_SMP
2496 if (unlikely(task_running(rq, p)))
2497 goto out_activate;
2498
e9c84311
PZ
2499 /*
2500 * In order to handle concurrent wakeups and release the rq->lock
2501 * we put the task in TASK_WAKING state.
eb24073b
IM
2502 *
2503 * First fix up the nr_uninterruptible count:
e9c84311 2504 */
cc87f76a
PZ
2505 if (task_contributes_to_load(p)) {
2506 if (likely(cpu_online(orig_cpu)))
2507 rq->nr_uninterruptible--;
2508 else
2509 this_rq()->nr_uninterruptible--;
2510 }
e9c84311 2511 p->state = TASK_WAKING;
efbbd05a 2512
371fd7e7 2513 if (p->sched_class->task_waking) {
efbbd05a 2514 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2515 en_flags |= ENQUEUE_WAKING;
2516 }
efbbd05a 2517
0017d735
PZ
2518 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2519 if (cpu != orig_cpu)
5d2f5a61 2520 set_task_cpu(p, cpu);
0017d735 2521 __task_rq_unlock(rq);
ab19cb23 2522
0970d299
PZ
2523 rq = cpu_rq(cpu);
2524 raw_spin_lock(&rq->lock);
f5dc3753 2525
0970d299
PZ
2526 /*
2527 * We migrated the task without holding either rq->lock, however
2528 * since the task is not on the task list itself, nobody else
2529 * will try and migrate the task, hence the rq should match the
2530 * cpu we just moved it to.
2531 */
2532 WARN_ON(task_cpu(p) != cpu);
e9c84311 2533 WARN_ON(p->state != TASK_WAKING);
1da177e4 2534
e7693a36
GH
2535#ifdef CONFIG_SCHEDSTATS
2536 schedstat_inc(rq, ttwu_count);
2537 if (cpu == this_cpu)
2538 schedstat_inc(rq, ttwu_local);
2539 else {
2540 struct sched_domain *sd;
2541 for_each_domain(this_cpu, sd) {
758b2cdc 2542 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2543 schedstat_inc(sd, ttwu_wake_remote);
2544 break;
2545 }
2546 }
2547 }
6d6bc0ad 2548#endif /* CONFIG_SCHEDSTATS */
e7693a36 2549
1da177e4
LT
2550out_activate:
2551#endif /* CONFIG_SMP */
9ed3811a
TH
2552 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2553 cpu == this_cpu, en_flags);
1da177e4 2554 success = 1;
1da177e4 2555out_running:
9ed3811a 2556 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2557out:
2558 task_rq_unlock(rq, &flags);
e9c84311 2559 put_cpu();
1da177e4
LT
2560
2561 return success;
2562}
2563
21aa9af0
TH
2564/**
2565 * try_to_wake_up_local - try to wake up a local task with rq lock held
2566 * @p: the thread to be awakened
2567 *
2568 * Put @p on the run-queue if it's not alredy there. The caller must
2569 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2570 * the current task. this_rq() stays locked over invocation.
2571 */
2572static void try_to_wake_up_local(struct task_struct *p)
2573{
2574 struct rq *rq = task_rq(p);
2575 bool success = false;
2576
2577 BUG_ON(rq != this_rq());
2578 BUG_ON(p == current);
2579 lockdep_assert_held(&rq->lock);
2580
2581 if (!(p->state & TASK_NORMAL))
2582 return;
2583
2584 if (!p->se.on_rq) {
2585 if (likely(!task_running(rq, p))) {
2586 schedstat_inc(rq, ttwu_count);
2587 schedstat_inc(rq, ttwu_local);
2588 }
2589 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2590 success = true;
2591 }
2592 ttwu_post_activation(p, rq, 0, success);
2593}
2594
50fa610a
DH
2595/**
2596 * wake_up_process - Wake up a specific process
2597 * @p: The process to be woken up.
2598 *
2599 * Attempt to wake up the nominated process and move it to the set of runnable
2600 * processes. Returns 1 if the process was woken up, 0 if it was already
2601 * running.
2602 *
2603 * It may be assumed that this function implies a write memory barrier before
2604 * changing the task state if and only if any tasks are woken up.
2605 */
7ad5b3a5 2606int wake_up_process(struct task_struct *p)
1da177e4 2607{
d9514f6c 2608 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2609}
1da177e4
LT
2610EXPORT_SYMBOL(wake_up_process);
2611
7ad5b3a5 2612int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2613{
2614 return try_to_wake_up(p, state, 0);
2615}
2616
1da177e4
LT
2617/*
2618 * Perform scheduler related setup for a newly forked process p.
2619 * p is forked by current.
dd41f596
IM
2620 *
2621 * __sched_fork() is basic setup used by init_idle() too:
2622 */
2623static void __sched_fork(struct task_struct *p)
2624{
dd41f596
IM
2625 p->se.exec_start = 0;
2626 p->se.sum_exec_runtime = 0;
f6cf891c 2627 p->se.prev_sum_exec_runtime = 0;
6c594c21 2628 p->se.nr_migrations = 0;
6cfb0d5d
IM
2629
2630#ifdef CONFIG_SCHEDSTATS
41acab88 2631 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2632#endif
476d139c 2633
fa717060 2634 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2635 p->se.on_rq = 0;
4a55bd5e 2636 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2637
e107be36
AK
2638#ifdef CONFIG_PREEMPT_NOTIFIERS
2639 INIT_HLIST_HEAD(&p->preempt_notifiers);
2640#endif
dd41f596
IM
2641}
2642
2643/*
2644 * fork()/clone()-time setup:
2645 */
2646void sched_fork(struct task_struct *p, int clone_flags)
2647{
2648 int cpu = get_cpu();
2649
2650 __sched_fork(p);
06b83b5f 2651 /*
0017d735 2652 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2653 * nobody will actually run it, and a signal or other external
2654 * event cannot wake it up and insert it on the runqueue either.
2655 */
0017d735 2656 p->state = TASK_RUNNING;
dd41f596 2657
b9dc29e7
MG
2658 /*
2659 * Revert to default priority/policy on fork if requested.
2660 */
2661 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2662 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2663 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2664 p->normal_prio = p->static_prio;
2665 }
b9dc29e7 2666
6c697bdf
MG
2667 if (PRIO_TO_NICE(p->static_prio) < 0) {
2668 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2669 p->normal_prio = p->static_prio;
6c697bdf
MG
2670 set_load_weight(p);
2671 }
2672
b9dc29e7
MG
2673 /*
2674 * We don't need the reset flag anymore after the fork. It has
2675 * fulfilled its duty:
2676 */
2677 p->sched_reset_on_fork = 0;
2678 }
ca94c442 2679
f83f9ac2
PW
2680 /*
2681 * Make sure we do not leak PI boosting priority to the child.
2682 */
2683 p->prio = current->normal_prio;
2684
2ddbf952
HS
2685 if (!rt_prio(p->prio))
2686 p->sched_class = &fair_sched_class;
b29739f9 2687
cd29fe6f
PZ
2688 if (p->sched_class->task_fork)
2689 p->sched_class->task_fork(p);
2690
86951599
PZ
2691 /*
2692 * The child is not yet in the pid-hash so no cgroup attach races,
2693 * and the cgroup is pinned to this child due to cgroup_fork()
2694 * is ran before sched_fork().
2695 *
2696 * Silence PROVE_RCU.
2697 */
2698 rcu_read_lock();
5f3edc1b 2699 set_task_cpu(p, cpu);
86951599 2700 rcu_read_unlock();
5f3edc1b 2701
52f17b6c 2702#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2703 if (likely(sched_info_on()))
52f17b6c 2704 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2705#endif
d6077cb8 2706#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2707 p->oncpu = 0;
2708#endif
1da177e4 2709#ifdef CONFIG_PREEMPT
4866cde0 2710 /* Want to start with kernel preemption disabled. */
a1261f54 2711 task_thread_info(p)->preempt_count = 1;
1da177e4 2712#endif
917b627d
GH
2713 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2714
476d139c 2715 put_cpu();
1da177e4
LT
2716}
2717
2718/*
2719 * wake_up_new_task - wake up a newly created task for the first time.
2720 *
2721 * This function will do some initial scheduler statistics housekeeping
2722 * that must be done for every newly created context, then puts the task
2723 * on the runqueue and wakes it.
2724 */
7ad5b3a5 2725void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2726{
2727 unsigned long flags;
dd41f596 2728 struct rq *rq;
c890692b 2729 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2730
2731#ifdef CONFIG_SMP
0017d735
PZ
2732 rq = task_rq_lock(p, &flags);
2733 p->state = TASK_WAKING;
2734
fabf318e
PZ
2735 /*
2736 * Fork balancing, do it here and not earlier because:
2737 * - cpus_allowed can change in the fork path
2738 * - any previously selected cpu might disappear through hotplug
2739 *
0017d735
PZ
2740 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2741 * without people poking at ->cpus_allowed.
fabf318e 2742 */
0017d735 2743 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2744 set_task_cpu(p, cpu);
1da177e4 2745
06b83b5f 2746 p->state = TASK_RUNNING;
0017d735
PZ
2747 task_rq_unlock(rq, &flags);
2748#endif
2749
2750 rq = task_rq_lock(p, &flags);
cd29fe6f 2751 activate_task(rq, p, 0);
27a9da65 2752 trace_sched_wakeup_new(p, 1);
a7558e01 2753 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2754#ifdef CONFIG_SMP
efbbd05a
PZ
2755 if (p->sched_class->task_woken)
2756 p->sched_class->task_woken(rq, p);
9a897c5a 2757#endif
dd41f596 2758 task_rq_unlock(rq, &flags);
fabf318e 2759 put_cpu();
1da177e4
LT
2760}
2761
e107be36
AK
2762#ifdef CONFIG_PREEMPT_NOTIFIERS
2763
2764/**
80dd99b3 2765 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2766 * @notifier: notifier struct to register
e107be36
AK
2767 */
2768void preempt_notifier_register(struct preempt_notifier *notifier)
2769{
2770 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2771}
2772EXPORT_SYMBOL_GPL(preempt_notifier_register);
2773
2774/**
2775 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2776 * @notifier: notifier struct to unregister
e107be36
AK
2777 *
2778 * This is safe to call from within a preemption notifier.
2779 */
2780void preempt_notifier_unregister(struct preempt_notifier *notifier)
2781{
2782 hlist_del(&notifier->link);
2783}
2784EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2785
2786static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2787{
2788 struct preempt_notifier *notifier;
2789 struct hlist_node *node;
2790
2791 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2792 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2793}
2794
2795static void
2796fire_sched_out_preempt_notifiers(struct task_struct *curr,
2797 struct task_struct *next)
2798{
2799 struct preempt_notifier *notifier;
2800 struct hlist_node *node;
2801
2802 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2803 notifier->ops->sched_out(notifier, next);
2804}
2805
6d6bc0ad 2806#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2807
2808static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2809{
2810}
2811
2812static void
2813fire_sched_out_preempt_notifiers(struct task_struct *curr,
2814 struct task_struct *next)
2815{
2816}
2817
6d6bc0ad 2818#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2819
4866cde0
NP
2820/**
2821 * prepare_task_switch - prepare to switch tasks
2822 * @rq: the runqueue preparing to switch
421cee29 2823 * @prev: the current task that is being switched out
4866cde0
NP
2824 * @next: the task we are going to switch to.
2825 *
2826 * This is called with the rq lock held and interrupts off. It must
2827 * be paired with a subsequent finish_task_switch after the context
2828 * switch.
2829 *
2830 * prepare_task_switch sets up locking and calls architecture specific
2831 * hooks.
2832 */
e107be36
AK
2833static inline void
2834prepare_task_switch(struct rq *rq, struct task_struct *prev,
2835 struct task_struct *next)
4866cde0 2836{
e107be36 2837 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2838 prepare_lock_switch(rq, next);
2839 prepare_arch_switch(next);
2840}
2841
1da177e4
LT
2842/**
2843 * finish_task_switch - clean up after a task-switch
344babaa 2844 * @rq: runqueue associated with task-switch
1da177e4
LT
2845 * @prev: the thread we just switched away from.
2846 *
4866cde0
NP
2847 * finish_task_switch must be called after the context switch, paired
2848 * with a prepare_task_switch call before the context switch.
2849 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2850 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2851 *
2852 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2853 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2854 * with the lock held can cause deadlocks; see schedule() for
2855 * details.)
2856 */
a9957449 2857static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2858 __releases(rq->lock)
2859{
1da177e4 2860 struct mm_struct *mm = rq->prev_mm;
55a101f8 2861 long prev_state;
1da177e4
LT
2862
2863 rq->prev_mm = NULL;
2864
2865 /*
2866 * A task struct has one reference for the use as "current".
c394cc9f 2867 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2868 * schedule one last time. The schedule call will never return, and
2869 * the scheduled task must drop that reference.
c394cc9f 2870 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2871 * still held, otherwise prev could be scheduled on another cpu, die
2872 * there before we look at prev->state, and then the reference would
2873 * be dropped twice.
2874 * Manfred Spraul <manfred@colorfullife.com>
2875 */
55a101f8 2876 prev_state = prev->state;
4866cde0 2877 finish_arch_switch(prev);
8381f65d
JI
2878#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2879 local_irq_disable();
2880#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2881 perf_event_task_sched_in(current);
8381f65d
JI
2882#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2883 local_irq_enable();
2884#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2885 finish_lock_switch(rq, prev);
e8fa1362 2886
e107be36 2887 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2888 if (mm)
2889 mmdrop(mm);
c394cc9f 2890 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2891 /*
2892 * Remove function-return probe instances associated with this
2893 * task and put them back on the free list.
9761eea8 2894 */
c6fd91f0 2895 kprobe_flush_task(prev);
1da177e4 2896 put_task_struct(prev);
c6fd91f0 2897 }
1da177e4
LT
2898}
2899
3f029d3c
GH
2900#ifdef CONFIG_SMP
2901
2902/* assumes rq->lock is held */
2903static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2904{
2905 if (prev->sched_class->pre_schedule)
2906 prev->sched_class->pre_schedule(rq, prev);
2907}
2908
2909/* rq->lock is NOT held, but preemption is disabled */
2910static inline void post_schedule(struct rq *rq)
2911{
2912 if (rq->post_schedule) {
2913 unsigned long flags;
2914
05fa785c 2915 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2916 if (rq->curr->sched_class->post_schedule)
2917 rq->curr->sched_class->post_schedule(rq);
05fa785c 2918 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2919
2920 rq->post_schedule = 0;
2921 }
2922}
2923
2924#else
da19ab51 2925
3f029d3c
GH
2926static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2927{
2928}
2929
2930static inline void post_schedule(struct rq *rq)
2931{
1da177e4
LT
2932}
2933
3f029d3c
GH
2934#endif
2935
1da177e4
LT
2936/**
2937 * schedule_tail - first thing a freshly forked thread must call.
2938 * @prev: the thread we just switched away from.
2939 */
36c8b586 2940asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2941 __releases(rq->lock)
2942{
70b97a7f
IM
2943 struct rq *rq = this_rq();
2944
4866cde0 2945 finish_task_switch(rq, prev);
da19ab51 2946
3f029d3c
GH
2947 /*
2948 * FIXME: do we need to worry about rq being invalidated by the
2949 * task_switch?
2950 */
2951 post_schedule(rq);
70b97a7f 2952
4866cde0
NP
2953#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2954 /* In this case, finish_task_switch does not reenable preemption */
2955 preempt_enable();
2956#endif
1da177e4 2957 if (current->set_child_tid)
b488893a 2958 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2959}
2960
2961/*
2962 * context_switch - switch to the new MM and the new
2963 * thread's register state.
2964 */
dd41f596 2965static inline void
70b97a7f 2966context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2967 struct task_struct *next)
1da177e4 2968{
dd41f596 2969 struct mm_struct *mm, *oldmm;
1da177e4 2970
e107be36 2971 prepare_task_switch(rq, prev, next);
27a9da65 2972 trace_sched_switch(prev, next);
dd41f596
IM
2973 mm = next->mm;
2974 oldmm = prev->active_mm;
9226d125
ZA
2975 /*
2976 * For paravirt, this is coupled with an exit in switch_to to
2977 * combine the page table reload and the switch backend into
2978 * one hypercall.
2979 */
224101ed 2980 arch_start_context_switch(prev);
9226d125 2981
31915ab4 2982 if (!mm) {
1da177e4
LT
2983 next->active_mm = oldmm;
2984 atomic_inc(&oldmm->mm_count);
2985 enter_lazy_tlb(oldmm, next);
2986 } else
2987 switch_mm(oldmm, mm, next);
2988
31915ab4 2989 if (!prev->mm) {
1da177e4 2990 prev->active_mm = NULL;
1da177e4
LT
2991 rq->prev_mm = oldmm;
2992 }
3a5f5e48
IM
2993 /*
2994 * Since the runqueue lock will be released by the next
2995 * task (which is an invalid locking op but in the case
2996 * of the scheduler it's an obvious special-case), so we
2997 * do an early lockdep release here:
2998 */
2999#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3000 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3001#endif
1da177e4
LT
3002
3003 /* Here we just switch the register state and the stack. */
3004 switch_to(prev, next, prev);
3005
dd41f596
IM
3006 barrier();
3007 /*
3008 * this_rq must be evaluated again because prev may have moved
3009 * CPUs since it called schedule(), thus the 'rq' on its stack
3010 * frame will be invalid.
3011 */
3012 finish_task_switch(this_rq(), prev);
1da177e4
LT
3013}
3014
3015/*
3016 * nr_running, nr_uninterruptible and nr_context_switches:
3017 *
3018 * externally visible scheduler statistics: current number of runnable
3019 * threads, current number of uninterruptible-sleeping threads, total
3020 * number of context switches performed since bootup.
3021 */
3022unsigned long nr_running(void)
3023{
3024 unsigned long i, sum = 0;
3025
3026 for_each_online_cpu(i)
3027 sum += cpu_rq(i)->nr_running;
3028
3029 return sum;
f711f609 3030}
1da177e4
LT
3031
3032unsigned long nr_uninterruptible(void)
f711f609 3033{
1da177e4 3034 unsigned long i, sum = 0;
f711f609 3035
0a945022 3036 for_each_possible_cpu(i)
1da177e4 3037 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3038
3039 /*
1da177e4
LT
3040 * Since we read the counters lockless, it might be slightly
3041 * inaccurate. Do not allow it to go below zero though:
f711f609 3042 */
1da177e4
LT
3043 if (unlikely((long)sum < 0))
3044 sum = 0;
f711f609 3045
1da177e4 3046 return sum;
f711f609 3047}
f711f609 3048
1da177e4 3049unsigned long long nr_context_switches(void)
46cb4b7c 3050{
cc94abfc
SR
3051 int i;
3052 unsigned long long sum = 0;
46cb4b7c 3053
0a945022 3054 for_each_possible_cpu(i)
1da177e4 3055 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3056
1da177e4
LT
3057 return sum;
3058}
483b4ee6 3059
1da177e4
LT
3060unsigned long nr_iowait(void)
3061{
3062 unsigned long i, sum = 0;
483b4ee6 3063
0a945022 3064 for_each_possible_cpu(i)
1da177e4 3065 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3066
1da177e4
LT
3067 return sum;
3068}
483b4ee6 3069
8c215bd3 3070unsigned long nr_iowait_cpu(int cpu)
69d25870 3071{
8c215bd3 3072 struct rq *this = cpu_rq(cpu);
69d25870
AV
3073 return atomic_read(&this->nr_iowait);
3074}
46cb4b7c 3075
69d25870
AV
3076unsigned long this_cpu_load(void)
3077{
3078 struct rq *this = this_rq();
3079 return this->cpu_load[0];
3080}
e790fb0b 3081
46cb4b7c 3082
dce48a84
TG
3083/* Variables and functions for calc_load */
3084static atomic_long_t calc_load_tasks;
3085static unsigned long calc_load_update;
3086unsigned long avenrun[3];
3087EXPORT_SYMBOL(avenrun);
46cb4b7c 3088
74f5187a
PZ
3089static long calc_load_fold_active(struct rq *this_rq)
3090{
3091 long nr_active, delta = 0;
3092
3093 nr_active = this_rq->nr_running;
3094 nr_active += (long) this_rq->nr_uninterruptible;
3095
3096 if (nr_active != this_rq->calc_load_active) {
3097 delta = nr_active - this_rq->calc_load_active;
3098 this_rq->calc_load_active = nr_active;
3099 }
3100
3101 return delta;
3102}
3103
3104#ifdef CONFIG_NO_HZ
3105/*
3106 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3107 *
3108 * When making the ILB scale, we should try to pull this in as well.
3109 */
3110static atomic_long_t calc_load_tasks_idle;
3111
3112static void calc_load_account_idle(struct rq *this_rq)
3113{
3114 long delta;
3115
3116 delta = calc_load_fold_active(this_rq);
3117 if (delta)
3118 atomic_long_add(delta, &calc_load_tasks_idle);
3119}
3120
3121static long calc_load_fold_idle(void)
3122{
3123 long delta = 0;
3124
3125 /*
3126 * Its got a race, we don't care...
3127 */
3128 if (atomic_long_read(&calc_load_tasks_idle))
3129 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3130
3131 return delta;
3132}
3133#else
3134static void calc_load_account_idle(struct rq *this_rq)
3135{
3136}
3137
3138static inline long calc_load_fold_idle(void)
3139{
3140 return 0;
3141}
3142#endif
3143
2d02494f
TG
3144/**
3145 * get_avenrun - get the load average array
3146 * @loads: pointer to dest load array
3147 * @offset: offset to add
3148 * @shift: shift count to shift the result left
3149 *
3150 * These values are estimates at best, so no need for locking.
3151 */
3152void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3153{
3154 loads[0] = (avenrun[0] + offset) << shift;
3155 loads[1] = (avenrun[1] + offset) << shift;
3156 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3157}
46cb4b7c 3158
dce48a84
TG
3159static unsigned long
3160calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3161{
dce48a84
TG
3162 load *= exp;
3163 load += active * (FIXED_1 - exp);
3164 return load >> FSHIFT;
3165}
46cb4b7c
SS
3166
3167/*
dce48a84
TG
3168 * calc_load - update the avenrun load estimates 10 ticks after the
3169 * CPUs have updated calc_load_tasks.
7835b98b 3170 */
dce48a84 3171void calc_global_load(void)
7835b98b 3172{
dce48a84
TG
3173 unsigned long upd = calc_load_update + 10;
3174 long active;
1da177e4 3175
dce48a84
TG
3176 if (time_before(jiffies, upd))
3177 return;
1da177e4 3178
dce48a84
TG
3179 active = atomic_long_read(&calc_load_tasks);
3180 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3181
dce48a84
TG
3182 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3183 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3184 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3185
dce48a84
TG
3186 calc_load_update += LOAD_FREQ;
3187}
1da177e4 3188
dce48a84 3189/*
74f5187a
PZ
3190 * Called from update_cpu_load() to periodically update this CPU's
3191 * active count.
dce48a84
TG
3192 */
3193static void calc_load_account_active(struct rq *this_rq)
3194{
74f5187a 3195 long delta;
08c183f3 3196
74f5187a
PZ
3197 if (time_before(jiffies, this_rq->calc_load_update))
3198 return;
783609c6 3199
74f5187a
PZ
3200 delta = calc_load_fold_active(this_rq);
3201 delta += calc_load_fold_idle();
3202 if (delta)
dce48a84 3203 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3204
3205 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3206}
3207
fdf3e95d
VP
3208/*
3209 * The exact cpuload at various idx values, calculated at every tick would be
3210 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3211 *
3212 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3213 * on nth tick when cpu may be busy, then we have:
3214 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3215 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3216 *
3217 * decay_load_missed() below does efficient calculation of
3218 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3219 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3220 *
3221 * The calculation is approximated on a 128 point scale.
3222 * degrade_zero_ticks is the number of ticks after which load at any
3223 * particular idx is approximated to be zero.
3224 * degrade_factor is a precomputed table, a row for each load idx.
3225 * Each column corresponds to degradation factor for a power of two ticks,
3226 * based on 128 point scale.
3227 * Example:
3228 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3229 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3230 *
3231 * With this power of 2 load factors, we can degrade the load n times
3232 * by looking at 1 bits in n and doing as many mult/shift instead of
3233 * n mult/shifts needed by the exact degradation.
3234 */
3235#define DEGRADE_SHIFT 7
3236static const unsigned char
3237 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3238static const unsigned char
3239 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3240 {0, 0, 0, 0, 0, 0, 0, 0},
3241 {64, 32, 8, 0, 0, 0, 0, 0},
3242 {96, 72, 40, 12, 1, 0, 0},
3243 {112, 98, 75, 43, 15, 1, 0},
3244 {120, 112, 98, 76, 45, 16, 2} };
3245
3246/*
3247 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3248 * would be when CPU is idle and so we just decay the old load without
3249 * adding any new load.
3250 */
3251static unsigned long
3252decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3253{
3254 int j = 0;
3255
3256 if (!missed_updates)
3257 return load;
3258
3259 if (missed_updates >= degrade_zero_ticks[idx])
3260 return 0;
3261
3262 if (idx == 1)
3263 return load >> missed_updates;
3264
3265 while (missed_updates) {
3266 if (missed_updates % 2)
3267 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3268
3269 missed_updates >>= 1;
3270 j++;
3271 }
3272 return load;
3273}
3274
46cb4b7c 3275/*
dd41f596 3276 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3277 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3278 * every tick. We fix it up based on jiffies.
46cb4b7c 3279 */
dd41f596 3280static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3281{
495eca49 3282 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3283 unsigned long curr_jiffies = jiffies;
3284 unsigned long pending_updates;
dd41f596 3285 int i, scale;
46cb4b7c 3286
dd41f596 3287 this_rq->nr_load_updates++;
46cb4b7c 3288
fdf3e95d
VP
3289 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3290 if (curr_jiffies == this_rq->last_load_update_tick)
3291 return;
3292
3293 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3294 this_rq->last_load_update_tick = curr_jiffies;
3295
dd41f596 3296 /* Update our load: */
fdf3e95d
VP
3297 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3298 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3299 unsigned long old_load, new_load;
7d1e6a9b 3300
dd41f596 3301 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3302
dd41f596 3303 old_load = this_rq->cpu_load[i];
fdf3e95d 3304 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3305 new_load = this_load;
a25707f3
IM
3306 /*
3307 * Round up the averaging division if load is increasing. This
3308 * prevents us from getting stuck on 9 if the load is 10, for
3309 * example.
3310 */
3311 if (new_load > old_load)
fdf3e95d
VP
3312 new_load += scale - 1;
3313
3314 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3315 }
da2b71ed
SS
3316
3317 sched_avg_update(this_rq);
fdf3e95d
VP
3318}
3319
3320static void update_cpu_load_active(struct rq *this_rq)
3321{
3322 update_cpu_load(this_rq);
46cb4b7c 3323
74f5187a 3324 calc_load_account_active(this_rq);
46cb4b7c
SS
3325}
3326
dd41f596 3327#ifdef CONFIG_SMP
8a0be9ef 3328
46cb4b7c 3329/*
38022906
PZ
3330 * sched_exec - execve() is a valuable balancing opportunity, because at
3331 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3332 */
38022906 3333void sched_exec(void)
46cb4b7c 3334{
38022906 3335 struct task_struct *p = current;
1da177e4 3336 unsigned long flags;
70b97a7f 3337 struct rq *rq;
0017d735 3338 int dest_cpu;
46cb4b7c 3339
1da177e4 3340 rq = task_rq_lock(p, &flags);
0017d735
PZ
3341 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3342 if (dest_cpu == smp_processor_id())
3343 goto unlock;
38022906 3344
46cb4b7c 3345 /*
38022906 3346 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3347 */
30da688e 3348 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3349 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3350 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3351
1da177e4 3352 task_rq_unlock(rq, &flags);
969c7921 3353 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3354 return;
3355 }
0017d735 3356unlock:
1da177e4 3357 task_rq_unlock(rq, &flags);
1da177e4 3358}
dd41f596 3359
1da177e4
LT
3360#endif
3361
1da177e4
LT
3362DEFINE_PER_CPU(struct kernel_stat, kstat);
3363
3364EXPORT_PER_CPU_SYMBOL(kstat);
3365
3366/*
c5f8d995 3367 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3368 * @p in case that task is currently running.
c5f8d995
HS
3369 *
3370 * Called with task_rq_lock() held on @rq.
1da177e4 3371 */
c5f8d995
HS
3372static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3373{
3374 u64 ns = 0;
3375
3376 if (task_current(rq, p)) {
3377 update_rq_clock(rq);
305e6835 3378 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3379 if ((s64)ns < 0)
3380 ns = 0;
3381 }
3382
3383 return ns;
3384}
3385
bb34d92f 3386unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3387{
1da177e4 3388 unsigned long flags;
41b86e9c 3389 struct rq *rq;
bb34d92f 3390 u64 ns = 0;
48f24c4d 3391
41b86e9c 3392 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3393 ns = do_task_delta_exec(p, rq);
3394 task_rq_unlock(rq, &flags);
1508487e 3395
c5f8d995
HS
3396 return ns;
3397}
f06febc9 3398
c5f8d995
HS
3399/*
3400 * Return accounted runtime for the task.
3401 * In case the task is currently running, return the runtime plus current's
3402 * pending runtime that have not been accounted yet.
3403 */
3404unsigned long long task_sched_runtime(struct task_struct *p)
3405{
3406 unsigned long flags;
3407 struct rq *rq;
3408 u64 ns = 0;
3409
3410 rq = task_rq_lock(p, &flags);
3411 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3412 task_rq_unlock(rq, &flags);
3413
3414 return ns;
3415}
48f24c4d 3416
c5f8d995
HS
3417/*
3418 * Return sum_exec_runtime for the thread group.
3419 * In case the task is currently running, return the sum plus current's
3420 * pending runtime that have not been accounted yet.
3421 *
3422 * Note that the thread group might have other running tasks as well,
3423 * so the return value not includes other pending runtime that other
3424 * running tasks might have.
3425 */
3426unsigned long long thread_group_sched_runtime(struct task_struct *p)
3427{
3428 struct task_cputime totals;
3429 unsigned long flags;
3430 struct rq *rq;
3431 u64 ns;
3432
3433 rq = task_rq_lock(p, &flags);
3434 thread_group_cputime(p, &totals);
3435 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3436 task_rq_unlock(rq, &flags);
48f24c4d 3437
1da177e4
LT
3438 return ns;
3439}
3440
1da177e4
LT
3441/*
3442 * Account user cpu time to a process.
3443 * @p: the process that the cpu time gets accounted to
1da177e4 3444 * @cputime: the cpu time spent in user space since the last update
457533a7 3445 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3446 */
457533a7
MS
3447void account_user_time(struct task_struct *p, cputime_t cputime,
3448 cputime_t cputime_scaled)
1da177e4
LT
3449{
3450 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3451 cputime64_t tmp;
3452
457533a7 3453 /* Add user time to process. */
1da177e4 3454 p->utime = cputime_add(p->utime, cputime);
457533a7 3455 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3456 account_group_user_time(p, cputime);
1da177e4
LT
3457
3458 /* Add user time to cpustat. */
3459 tmp = cputime_to_cputime64(cputime);
3460 if (TASK_NICE(p) > 0)
3461 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3462 else
3463 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3464
3465 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3466 /* Account for user time used */
3467 acct_update_integrals(p);
1da177e4
LT
3468}
3469
94886b84
LV
3470/*
3471 * Account guest cpu time to a process.
3472 * @p: the process that the cpu time gets accounted to
3473 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3474 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3475 */
457533a7
MS
3476static void account_guest_time(struct task_struct *p, cputime_t cputime,
3477 cputime_t cputime_scaled)
94886b84
LV
3478{
3479 cputime64_t tmp;
3480 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3481
3482 tmp = cputime_to_cputime64(cputime);
3483
457533a7 3484 /* Add guest time to process. */
94886b84 3485 p->utime = cputime_add(p->utime, cputime);
457533a7 3486 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3487 account_group_user_time(p, cputime);
94886b84
LV
3488 p->gtime = cputime_add(p->gtime, cputime);
3489
457533a7 3490 /* Add guest time to cpustat. */
ce0e7b28
RO
3491 if (TASK_NICE(p) > 0) {
3492 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3493 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3494 } else {
3495 cpustat->user = cputime64_add(cpustat->user, tmp);
3496 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3497 }
94886b84
LV
3498}
3499
1da177e4
LT
3500/*
3501 * Account system cpu time to a process.
3502 * @p: the process that the cpu time gets accounted to
3503 * @hardirq_offset: the offset to subtract from hardirq_count()
3504 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3505 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3506 */
3507void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3508 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3509{
3510 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3511 cputime64_t tmp;
3512
983ed7a6 3513 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3514 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3515 return;
3516 }
94886b84 3517
457533a7 3518 /* Add system time to process. */
1da177e4 3519 p->stime = cputime_add(p->stime, cputime);
457533a7 3520 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3521 account_group_system_time(p, cputime);
1da177e4
LT
3522
3523 /* Add system time to cpustat. */
3524 tmp = cputime_to_cputime64(cputime);
3525 if (hardirq_count() - hardirq_offset)
3526 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3527 else if (in_serving_softirq())
1da177e4 3528 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3529 else
79741dd3
MS
3530 cpustat->system = cputime64_add(cpustat->system, tmp);
3531
ef12fefa
BR
3532 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3533
1da177e4
LT
3534 /* Account for system time used */
3535 acct_update_integrals(p);
1da177e4
LT
3536}
3537
c66f08be 3538/*
1da177e4 3539 * Account for involuntary wait time.
1da177e4 3540 * @steal: the cpu time spent in involuntary wait
c66f08be 3541 */
79741dd3 3542void account_steal_time(cputime_t cputime)
c66f08be 3543{
79741dd3
MS
3544 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3545 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3546
3547 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3548}
3549
1da177e4 3550/*
79741dd3
MS
3551 * Account for idle time.
3552 * @cputime: the cpu time spent in idle wait
1da177e4 3553 */
79741dd3 3554void account_idle_time(cputime_t cputime)
1da177e4
LT
3555{
3556 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3557 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3558 struct rq *rq = this_rq();
1da177e4 3559
79741dd3
MS
3560 if (atomic_read(&rq->nr_iowait) > 0)
3561 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3562 else
3563 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3564}
3565
79741dd3
MS
3566#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3567
3568/*
3569 * Account a single tick of cpu time.
3570 * @p: the process that the cpu time gets accounted to
3571 * @user_tick: indicates if the tick is a user or a system tick
3572 */
3573void account_process_tick(struct task_struct *p, int user_tick)
3574{
a42548a1 3575 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3576 struct rq *rq = this_rq();
3577
3578 if (user_tick)
a42548a1 3579 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3580 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3581 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3582 one_jiffy_scaled);
3583 else
a42548a1 3584 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3585}
3586
3587/*
3588 * Account multiple ticks of steal time.
3589 * @p: the process from which the cpu time has been stolen
3590 * @ticks: number of stolen ticks
3591 */
3592void account_steal_ticks(unsigned long ticks)
3593{
3594 account_steal_time(jiffies_to_cputime(ticks));
3595}
3596
3597/*
3598 * Account multiple ticks of idle time.
3599 * @ticks: number of stolen ticks
3600 */
3601void account_idle_ticks(unsigned long ticks)
3602{
3603 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3604}
3605
79741dd3
MS
3606#endif
3607
49048622
BS
3608/*
3609 * Use precise platform statistics if available:
3610 */
3611#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3612void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3613{
d99ca3b9
HS
3614 *ut = p->utime;
3615 *st = p->stime;
49048622
BS
3616}
3617
0cf55e1e 3618void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3619{
0cf55e1e
HS
3620 struct task_cputime cputime;
3621
3622 thread_group_cputime(p, &cputime);
3623
3624 *ut = cputime.utime;
3625 *st = cputime.stime;
49048622
BS
3626}
3627#else
761b1d26
HS
3628
3629#ifndef nsecs_to_cputime
b7b20df9 3630# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3631#endif
3632
d180c5bc 3633void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3634{
d99ca3b9 3635 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3636
3637 /*
3638 * Use CFS's precise accounting:
3639 */
d180c5bc 3640 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3641
3642 if (total) {
e75e863d 3643 u64 temp = rtime;
d180c5bc 3644
e75e863d 3645 temp *= utime;
49048622 3646 do_div(temp, total);
d180c5bc
HS
3647 utime = (cputime_t)temp;
3648 } else
3649 utime = rtime;
49048622 3650
d180c5bc
HS
3651 /*
3652 * Compare with previous values, to keep monotonicity:
3653 */
761b1d26 3654 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3655 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3656
d99ca3b9
HS
3657 *ut = p->prev_utime;
3658 *st = p->prev_stime;
49048622
BS
3659}
3660
0cf55e1e
HS
3661/*
3662 * Must be called with siglock held.
3663 */
3664void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3665{
0cf55e1e
HS
3666 struct signal_struct *sig = p->signal;
3667 struct task_cputime cputime;
3668 cputime_t rtime, utime, total;
49048622 3669
0cf55e1e 3670 thread_group_cputime(p, &cputime);
49048622 3671
0cf55e1e
HS
3672 total = cputime_add(cputime.utime, cputime.stime);
3673 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3674
0cf55e1e 3675 if (total) {
e75e863d 3676 u64 temp = rtime;
49048622 3677
e75e863d 3678 temp *= cputime.utime;
0cf55e1e
HS
3679 do_div(temp, total);
3680 utime = (cputime_t)temp;
3681 } else
3682 utime = rtime;
3683
3684 sig->prev_utime = max(sig->prev_utime, utime);
3685 sig->prev_stime = max(sig->prev_stime,
3686 cputime_sub(rtime, sig->prev_utime));
3687
3688 *ut = sig->prev_utime;
3689 *st = sig->prev_stime;
49048622 3690}
49048622 3691#endif
49048622 3692
7835b98b
CL
3693/*
3694 * This function gets called by the timer code, with HZ frequency.
3695 * We call it with interrupts disabled.
3696 *
3697 * It also gets called by the fork code, when changing the parent's
3698 * timeslices.
3699 */
3700void scheduler_tick(void)
3701{
7835b98b
CL
3702 int cpu = smp_processor_id();
3703 struct rq *rq = cpu_rq(cpu);
dd41f596 3704 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3705
3706 sched_clock_tick();
dd41f596 3707
05fa785c 3708 raw_spin_lock(&rq->lock);
3e51f33f 3709 update_rq_clock(rq);
fdf3e95d 3710 update_cpu_load_active(rq);
fa85ae24 3711 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3712 raw_spin_unlock(&rq->lock);
7835b98b 3713
e9d2b064 3714 perf_event_task_tick();
e220d2dc 3715
e418e1c2 3716#ifdef CONFIG_SMP
dd41f596
IM
3717 rq->idle_at_tick = idle_cpu(cpu);
3718 trigger_load_balance(rq, cpu);
e418e1c2 3719#endif
1da177e4
LT
3720}
3721
132380a0 3722notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3723{
3724 if (in_lock_functions(addr)) {
3725 addr = CALLER_ADDR2;
3726 if (in_lock_functions(addr))
3727 addr = CALLER_ADDR3;
3728 }
3729 return addr;
3730}
1da177e4 3731
7e49fcce
SR
3732#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3733 defined(CONFIG_PREEMPT_TRACER))
3734
43627582 3735void __kprobes add_preempt_count(int val)
1da177e4 3736{
6cd8a4bb 3737#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3738 /*
3739 * Underflow?
3740 */
9a11b49a
IM
3741 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3742 return;
6cd8a4bb 3743#endif
1da177e4 3744 preempt_count() += val;
6cd8a4bb 3745#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3746 /*
3747 * Spinlock count overflowing soon?
3748 */
33859f7f
MOS
3749 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3750 PREEMPT_MASK - 10);
6cd8a4bb
SR
3751#endif
3752 if (preempt_count() == val)
3753 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3754}
3755EXPORT_SYMBOL(add_preempt_count);
3756
43627582 3757void __kprobes sub_preempt_count(int val)
1da177e4 3758{
6cd8a4bb 3759#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3760 /*
3761 * Underflow?
3762 */
01e3eb82 3763 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3764 return;
1da177e4
LT
3765 /*
3766 * Is the spinlock portion underflowing?
3767 */
9a11b49a
IM
3768 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3769 !(preempt_count() & PREEMPT_MASK)))
3770 return;
6cd8a4bb 3771#endif
9a11b49a 3772
6cd8a4bb
SR
3773 if (preempt_count() == val)
3774 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3775 preempt_count() -= val;
3776}
3777EXPORT_SYMBOL(sub_preempt_count);
3778
3779#endif
3780
3781/*
dd41f596 3782 * Print scheduling while atomic bug:
1da177e4 3783 */
dd41f596 3784static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3785{
838225b4
SS
3786 struct pt_regs *regs = get_irq_regs();
3787
3df0fc5b
PZ
3788 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3789 prev->comm, prev->pid, preempt_count());
838225b4 3790
dd41f596 3791 debug_show_held_locks(prev);
e21f5b15 3792 print_modules();
dd41f596
IM
3793 if (irqs_disabled())
3794 print_irqtrace_events(prev);
838225b4
SS
3795
3796 if (regs)
3797 show_regs(regs);
3798 else
3799 dump_stack();
dd41f596 3800}
1da177e4 3801
dd41f596
IM
3802/*
3803 * Various schedule()-time debugging checks and statistics:
3804 */
3805static inline void schedule_debug(struct task_struct *prev)
3806{
1da177e4 3807 /*
41a2d6cf 3808 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3809 * schedule() atomically, we ignore that path for now.
3810 * Otherwise, whine if we are scheduling when we should not be.
3811 */
3f33a7ce 3812 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3813 __schedule_bug(prev);
3814
1da177e4
LT
3815 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3816
2d72376b 3817 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3818#ifdef CONFIG_SCHEDSTATS
3819 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3820 schedstat_inc(this_rq(), bkl_count);
3821 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3822 }
3823#endif
dd41f596
IM
3824}
3825
6cecd084 3826static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3827{
a64692a3
MG
3828 if (prev->se.on_rq)
3829 update_rq_clock(rq);
3830 rq->skip_clock_update = 0;
6cecd084 3831 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3832}
3833
dd41f596
IM
3834/*
3835 * Pick up the highest-prio task:
3836 */
3837static inline struct task_struct *
b67802ea 3838pick_next_task(struct rq *rq)
dd41f596 3839{
5522d5d5 3840 const struct sched_class *class;
dd41f596 3841 struct task_struct *p;
1da177e4
LT
3842
3843 /*
dd41f596
IM
3844 * Optimization: we know that if all tasks are in
3845 * the fair class we can call that function directly:
1da177e4 3846 */
dd41f596 3847 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3848 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3849 if (likely(p))
3850 return p;
1da177e4
LT
3851 }
3852
34f971f6 3853 for_each_class(class) {
fb8d4724 3854 p = class->pick_next_task(rq);
dd41f596
IM
3855 if (p)
3856 return p;
dd41f596 3857 }
34f971f6
PZ
3858
3859 BUG(); /* the idle class will always have a runnable task */
dd41f596 3860}
1da177e4 3861
dd41f596
IM
3862/*
3863 * schedule() is the main scheduler function.
3864 */
ff743345 3865asmlinkage void __sched schedule(void)
dd41f596
IM
3866{
3867 struct task_struct *prev, *next;
67ca7bde 3868 unsigned long *switch_count;
dd41f596 3869 struct rq *rq;
31656519 3870 int cpu;
dd41f596 3871
ff743345
PZ
3872need_resched:
3873 preempt_disable();
dd41f596
IM
3874 cpu = smp_processor_id();
3875 rq = cpu_rq(cpu);
25502a6c 3876 rcu_note_context_switch(cpu);
dd41f596 3877 prev = rq->curr;
dd41f596
IM
3878
3879 release_kernel_lock(prev);
3880need_resched_nonpreemptible:
3881
3882 schedule_debug(prev);
1da177e4 3883
31656519 3884 if (sched_feat(HRTICK))
f333fdc9 3885 hrtick_clear(rq);
8f4d37ec 3886
05fa785c 3887 raw_spin_lock_irq(&rq->lock);
1e819950 3888 clear_tsk_need_resched(prev);
1da177e4 3889
246d86b5 3890 switch_count = &prev->nivcsw;
1da177e4 3891 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3892 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3893 prev->state = TASK_RUNNING;
21aa9af0
TH
3894 } else {
3895 /*
3896 * If a worker is going to sleep, notify and
3897 * ask workqueue whether it wants to wake up a
3898 * task to maintain concurrency. If so, wake
3899 * up the task.
3900 */
3901 if (prev->flags & PF_WQ_WORKER) {
3902 struct task_struct *to_wakeup;
3903
3904 to_wakeup = wq_worker_sleeping(prev, cpu);
3905 if (to_wakeup)
3906 try_to_wake_up_local(to_wakeup);
3907 }
371fd7e7 3908 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3909 }
dd41f596 3910 switch_count = &prev->nvcsw;
1da177e4
LT
3911 }
3912
3f029d3c 3913 pre_schedule(rq, prev);
f65eda4f 3914
dd41f596 3915 if (unlikely(!rq->nr_running))
1da177e4 3916 idle_balance(cpu, rq);
1da177e4 3917
df1c99d4 3918 put_prev_task(rq, prev);
b67802ea 3919 next = pick_next_task(rq);
1da177e4 3920
1da177e4 3921 if (likely(prev != next)) {
673a90a1 3922 sched_info_switch(prev, next);
49f47433 3923 perf_event_task_sched_out(prev, next);
673a90a1 3924
1da177e4
LT
3925 rq->nr_switches++;
3926 rq->curr = next;
3927 ++*switch_count;
3928
dd41f596 3929 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3930 /*
246d86b5
ON
3931 * The context switch have flipped the stack from under us
3932 * and restored the local variables which were saved when
3933 * this task called schedule() in the past. prev == current
3934 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3935 */
3936 cpu = smp_processor_id();
3937 rq = cpu_rq(cpu);
1da177e4 3938 } else
05fa785c 3939 raw_spin_unlock_irq(&rq->lock);
1da177e4 3940
3f029d3c 3941 post_schedule(rq);
1da177e4 3942
246d86b5 3943 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3944 goto need_resched_nonpreemptible;
8f4d37ec 3945
1da177e4 3946 preempt_enable_no_resched();
ff743345 3947 if (need_resched())
1da177e4
LT
3948 goto need_resched;
3949}
1da177e4
LT
3950EXPORT_SYMBOL(schedule);
3951
c08f7829 3952#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3953/*
3954 * Look out! "owner" is an entirely speculative pointer
3955 * access and not reliable.
3956 */
3957int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3958{
3959 unsigned int cpu;
3960 struct rq *rq;
3961
3962 if (!sched_feat(OWNER_SPIN))
3963 return 0;
3964
3965#ifdef CONFIG_DEBUG_PAGEALLOC
3966 /*
3967 * Need to access the cpu field knowing that
3968 * DEBUG_PAGEALLOC could have unmapped it if
3969 * the mutex owner just released it and exited.
3970 */
3971 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3972 return 0;
0d66bf6d
PZ
3973#else
3974 cpu = owner->cpu;
3975#endif
3976
3977 /*
3978 * Even if the access succeeded (likely case),
3979 * the cpu field may no longer be valid.
3980 */
3981 if (cpu >= nr_cpumask_bits)
4b402210 3982 return 0;
0d66bf6d
PZ
3983
3984 /*
3985 * We need to validate that we can do a
3986 * get_cpu() and that we have the percpu area.
3987 */
3988 if (!cpu_online(cpu))
4b402210 3989 return 0;
0d66bf6d
PZ
3990
3991 rq = cpu_rq(cpu);
3992
3993 for (;;) {
3994 /*
3995 * Owner changed, break to re-assess state.
3996 */
9d0f4dcc
TC
3997 if (lock->owner != owner) {
3998 /*
3999 * If the lock has switched to a different owner,
4000 * we likely have heavy contention. Return 0 to quit
4001 * optimistic spinning and not contend further:
4002 */
4003 if (lock->owner)
4004 return 0;
0d66bf6d 4005 break;
9d0f4dcc 4006 }
0d66bf6d
PZ
4007
4008 /*
4009 * Is that owner really running on that cpu?
4010 */
4011 if (task_thread_info(rq->curr) != owner || need_resched())
4012 return 0;
4013
4014 cpu_relax();
4015 }
4b402210 4016
0d66bf6d
PZ
4017 return 1;
4018}
4019#endif
4020
1da177e4
LT
4021#ifdef CONFIG_PREEMPT
4022/*
2ed6e34f 4023 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4024 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4025 * occur there and call schedule directly.
4026 */
d1f74e20 4027asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4028{
4029 struct thread_info *ti = current_thread_info();
6478d880 4030
1da177e4
LT
4031 /*
4032 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4033 * we do not want to preempt the current task. Just return..
1da177e4 4034 */
beed33a8 4035 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4036 return;
4037
3a5c359a 4038 do {
d1f74e20 4039 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4040 schedule();
d1f74e20 4041 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4042
3a5c359a
AK
4043 /*
4044 * Check again in case we missed a preemption opportunity
4045 * between schedule and now.
4046 */
4047 barrier();
5ed0cec0 4048 } while (need_resched());
1da177e4 4049}
1da177e4
LT
4050EXPORT_SYMBOL(preempt_schedule);
4051
4052/*
2ed6e34f 4053 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4054 * off of irq context.
4055 * Note, that this is called and return with irqs disabled. This will
4056 * protect us against recursive calling from irq.
4057 */
4058asmlinkage void __sched preempt_schedule_irq(void)
4059{
4060 struct thread_info *ti = current_thread_info();
6478d880 4061
2ed6e34f 4062 /* Catch callers which need to be fixed */
1da177e4
LT
4063 BUG_ON(ti->preempt_count || !irqs_disabled());
4064
3a5c359a
AK
4065 do {
4066 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4067 local_irq_enable();
4068 schedule();
4069 local_irq_disable();
3a5c359a 4070 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4071
3a5c359a
AK
4072 /*
4073 * Check again in case we missed a preemption opportunity
4074 * between schedule and now.
4075 */
4076 barrier();
5ed0cec0 4077 } while (need_resched());
1da177e4
LT
4078}
4079
4080#endif /* CONFIG_PREEMPT */
4081
63859d4f 4082int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4083 void *key)
1da177e4 4084{
63859d4f 4085 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4086}
1da177e4
LT
4087EXPORT_SYMBOL(default_wake_function);
4088
4089/*
41a2d6cf
IM
4090 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4091 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4092 * number) then we wake all the non-exclusive tasks and one exclusive task.
4093 *
4094 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4095 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4096 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4097 */
78ddb08f 4098static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4099 int nr_exclusive, int wake_flags, void *key)
1da177e4 4100{
2e45874c 4101 wait_queue_t *curr, *next;
1da177e4 4102
2e45874c 4103 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4104 unsigned flags = curr->flags;
4105
63859d4f 4106 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4107 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4108 break;
4109 }
4110}
4111
4112/**
4113 * __wake_up - wake up threads blocked on a waitqueue.
4114 * @q: the waitqueue
4115 * @mode: which threads
4116 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4117 * @key: is directly passed to the wakeup function
50fa610a
DH
4118 *
4119 * It may be assumed that this function implies a write memory barrier before
4120 * changing the task state if and only if any tasks are woken up.
1da177e4 4121 */
7ad5b3a5 4122void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4123 int nr_exclusive, void *key)
1da177e4
LT
4124{
4125 unsigned long flags;
4126
4127 spin_lock_irqsave(&q->lock, flags);
4128 __wake_up_common(q, mode, nr_exclusive, 0, key);
4129 spin_unlock_irqrestore(&q->lock, flags);
4130}
1da177e4
LT
4131EXPORT_SYMBOL(__wake_up);
4132
4133/*
4134 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4135 */
7ad5b3a5 4136void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4137{
4138 __wake_up_common(q, mode, 1, 0, NULL);
4139}
22c43c81 4140EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4141
4ede816a
DL
4142void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4143{
4144 __wake_up_common(q, mode, 1, 0, key);
4145}
4146
1da177e4 4147/**
4ede816a 4148 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4149 * @q: the waitqueue
4150 * @mode: which threads
4151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4152 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4153 *
4154 * The sync wakeup differs that the waker knows that it will schedule
4155 * away soon, so while the target thread will be woken up, it will not
4156 * be migrated to another CPU - ie. the two threads are 'synchronized'
4157 * with each other. This can prevent needless bouncing between CPUs.
4158 *
4159 * On UP it can prevent extra preemption.
50fa610a
DH
4160 *
4161 * It may be assumed that this function implies a write memory barrier before
4162 * changing the task state if and only if any tasks are woken up.
1da177e4 4163 */
4ede816a
DL
4164void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4165 int nr_exclusive, void *key)
1da177e4
LT
4166{
4167 unsigned long flags;
7d478721 4168 int wake_flags = WF_SYNC;
1da177e4
LT
4169
4170 if (unlikely(!q))
4171 return;
4172
4173 if (unlikely(!nr_exclusive))
7d478721 4174 wake_flags = 0;
1da177e4
LT
4175
4176 spin_lock_irqsave(&q->lock, flags);
7d478721 4177 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4178 spin_unlock_irqrestore(&q->lock, flags);
4179}
4ede816a
DL
4180EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4181
4182/*
4183 * __wake_up_sync - see __wake_up_sync_key()
4184 */
4185void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4186{
4187 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4188}
1da177e4
LT
4189EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4190
65eb3dc6
KD
4191/**
4192 * complete: - signals a single thread waiting on this completion
4193 * @x: holds the state of this particular completion
4194 *
4195 * This will wake up a single thread waiting on this completion. Threads will be
4196 * awakened in the same order in which they were queued.
4197 *
4198 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4199 *
4200 * It may be assumed that this function implies a write memory barrier before
4201 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4202 */
b15136e9 4203void complete(struct completion *x)
1da177e4
LT
4204{
4205 unsigned long flags;
4206
4207 spin_lock_irqsave(&x->wait.lock, flags);
4208 x->done++;
d9514f6c 4209 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4210 spin_unlock_irqrestore(&x->wait.lock, flags);
4211}
4212EXPORT_SYMBOL(complete);
4213
65eb3dc6
KD
4214/**
4215 * complete_all: - signals all threads waiting on this completion
4216 * @x: holds the state of this particular completion
4217 *
4218 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4219 *
4220 * It may be assumed that this function implies a write memory barrier before
4221 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4222 */
b15136e9 4223void complete_all(struct completion *x)
1da177e4
LT
4224{
4225 unsigned long flags;
4226
4227 spin_lock_irqsave(&x->wait.lock, flags);
4228 x->done += UINT_MAX/2;
d9514f6c 4229 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4230 spin_unlock_irqrestore(&x->wait.lock, flags);
4231}
4232EXPORT_SYMBOL(complete_all);
4233
8cbbe86d
AK
4234static inline long __sched
4235do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4236{
1da177e4
LT
4237 if (!x->done) {
4238 DECLARE_WAITQUEUE(wait, current);
4239
a93d2f17 4240 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4241 do {
94d3d824 4242 if (signal_pending_state(state, current)) {
ea71a546
ON
4243 timeout = -ERESTARTSYS;
4244 break;
8cbbe86d
AK
4245 }
4246 __set_current_state(state);
1da177e4
LT
4247 spin_unlock_irq(&x->wait.lock);
4248 timeout = schedule_timeout(timeout);
4249 spin_lock_irq(&x->wait.lock);
ea71a546 4250 } while (!x->done && timeout);
1da177e4 4251 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4252 if (!x->done)
4253 return timeout;
1da177e4
LT
4254 }
4255 x->done--;
ea71a546 4256 return timeout ?: 1;
1da177e4 4257}
1da177e4 4258
8cbbe86d
AK
4259static long __sched
4260wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4261{
1da177e4
LT
4262 might_sleep();
4263
4264 spin_lock_irq(&x->wait.lock);
8cbbe86d 4265 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4266 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4267 return timeout;
4268}
1da177e4 4269
65eb3dc6
KD
4270/**
4271 * wait_for_completion: - waits for completion of a task
4272 * @x: holds the state of this particular completion
4273 *
4274 * This waits to be signaled for completion of a specific task. It is NOT
4275 * interruptible and there is no timeout.
4276 *
4277 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4278 * and interrupt capability. Also see complete().
4279 */
b15136e9 4280void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4281{
4282 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4283}
8cbbe86d 4284EXPORT_SYMBOL(wait_for_completion);
1da177e4 4285
65eb3dc6
KD
4286/**
4287 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4288 * @x: holds the state of this particular completion
4289 * @timeout: timeout value in jiffies
4290 *
4291 * This waits for either a completion of a specific task to be signaled or for a
4292 * specified timeout to expire. The timeout is in jiffies. It is not
4293 * interruptible.
4294 */
b15136e9 4295unsigned long __sched
8cbbe86d 4296wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4297{
8cbbe86d 4298 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4299}
8cbbe86d 4300EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4301
65eb3dc6
KD
4302/**
4303 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4304 * @x: holds the state of this particular completion
4305 *
4306 * This waits for completion of a specific task to be signaled. It is
4307 * interruptible.
4308 */
8cbbe86d 4309int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4310{
51e97990
AK
4311 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4312 if (t == -ERESTARTSYS)
4313 return t;
4314 return 0;
0fec171c 4315}
8cbbe86d 4316EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4317
65eb3dc6
KD
4318/**
4319 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4320 * @x: holds the state of this particular completion
4321 * @timeout: timeout value in jiffies
4322 *
4323 * This waits for either a completion of a specific task to be signaled or for a
4324 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4325 */
b15136e9 4326unsigned long __sched
8cbbe86d
AK
4327wait_for_completion_interruptible_timeout(struct completion *x,
4328 unsigned long timeout)
0fec171c 4329{
8cbbe86d 4330 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4331}
8cbbe86d 4332EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4333
65eb3dc6
KD
4334/**
4335 * wait_for_completion_killable: - waits for completion of a task (killable)
4336 * @x: holds the state of this particular completion
4337 *
4338 * This waits to be signaled for completion of a specific task. It can be
4339 * interrupted by a kill signal.
4340 */
009e577e
MW
4341int __sched wait_for_completion_killable(struct completion *x)
4342{
4343 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4344 if (t == -ERESTARTSYS)
4345 return t;
4346 return 0;
4347}
4348EXPORT_SYMBOL(wait_for_completion_killable);
4349
0aa12fb4
SW
4350/**
4351 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4352 * @x: holds the state of this particular completion
4353 * @timeout: timeout value in jiffies
4354 *
4355 * This waits for either a completion of a specific task to be
4356 * signaled or for a specified timeout to expire. It can be
4357 * interrupted by a kill signal. The timeout is in jiffies.
4358 */
4359unsigned long __sched
4360wait_for_completion_killable_timeout(struct completion *x,
4361 unsigned long timeout)
4362{
4363 return wait_for_common(x, timeout, TASK_KILLABLE);
4364}
4365EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4366
be4de352
DC
4367/**
4368 * try_wait_for_completion - try to decrement a completion without blocking
4369 * @x: completion structure
4370 *
4371 * Returns: 0 if a decrement cannot be done without blocking
4372 * 1 if a decrement succeeded.
4373 *
4374 * If a completion is being used as a counting completion,
4375 * attempt to decrement the counter without blocking. This
4376 * enables us to avoid waiting if the resource the completion
4377 * is protecting is not available.
4378 */
4379bool try_wait_for_completion(struct completion *x)
4380{
7539a3b3 4381 unsigned long flags;
be4de352
DC
4382 int ret = 1;
4383
7539a3b3 4384 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4385 if (!x->done)
4386 ret = 0;
4387 else
4388 x->done--;
7539a3b3 4389 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4390 return ret;
4391}
4392EXPORT_SYMBOL(try_wait_for_completion);
4393
4394/**
4395 * completion_done - Test to see if a completion has any waiters
4396 * @x: completion structure
4397 *
4398 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4399 * 1 if there are no waiters.
4400 *
4401 */
4402bool completion_done(struct completion *x)
4403{
7539a3b3 4404 unsigned long flags;
be4de352
DC
4405 int ret = 1;
4406
7539a3b3 4407 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4408 if (!x->done)
4409 ret = 0;
7539a3b3 4410 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4411 return ret;
4412}
4413EXPORT_SYMBOL(completion_done);
4414
8cbbe86d
AK
4415static long __sched
4416sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4417{
0fec171c
IM
4418 unsigned long flags;
4419 wait_queue_t wait;
4420
4421 init_waitqueue_entry(&wait, current);
1da177e4 4422
8cbbe86d 4423 __set_current_state(state);
1da177e4 4424
8cbbe86d
AK
4425 spin_lock_irqsave(&q->lock, flags);
4426 __add_wait_queue(q, &wait);
4427 spin_unlock(&q->lock);
4428 timeout = schedule_timeout(timeout);
4429 spin_lock_irq(&q->lock);
4430 __remove_wait_queue(q, &wait);
4431 spin_unlock_irqrestore(&q->lock, flags);
4432
4433 return timeout;
4434}
4435
4436void __sched interruptible_sleep_on(wait_queue_head_t *q)
4437{
4438 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4439}
1da177e4
LT
4440EXPORT_SYMBOL(interruptible_sleep_on);
4441
0fec171c 4442long __sched
95cdf3b7 4443interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4444{
8cbbe86d 4445 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4446}
1da177e4
LT
4447EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4448
0fec171c 4449void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4450{
8cbbe86d 4451 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4452}
1da177e4
LT
4453EXPORT_SYMBOL(sleep_on);
4454
0fec171c 4455long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4456{
8cbbe86d 4457 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4458}
1da177e4
LT
4459EXPORT_SYMBOL(sleep_on_timeout);
4460
b29739f9
IM
4461#ifdef CONFIG_RT_MUTEXES
4462
4463/*
4464 * rt_mutex_setprio - set the current priority of a task
4465 * @p: task
4466 * @prio: prio value (kernel-internal form)
4467 *
4468 * This function changes the 'effective' priority of a task. It does
4469 * not touch ->normal_prio like __setscheduler().
4470 *
4471 * Used by the rt_mutex code to implement priority inheritance logic.
4472 */
36c8b586 4473void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4474{
4475 unsigned long flags;
83b699ed 4476 int oldprio, on_rq, running;
70b97a7f 4477 struct rq *rq;
83ab0aa0 4478 const struct sched_class *prev_class;
b29739f9
IM
4479
4480 BUG_ON(prio < 0 || prio > MAX_PRIO);
4481
4482 rq = task_rq_lock(p, &flags);
4483
a8027073 4484 trace_sched_pi_setprio(p, prio);
d5f9f942 4485 oldprio = p->prio;
83ab0aa0 4486 prev_class = p->sched_class;
dd41f596 4487 on_rq = p->se.on_rq;
051a1d1a 4488 running = task_current(rq, p);
0e1f3483 4489 if (on_rq)
69be72c1 4490 dequeue_task(rq, p, 0);
0e1f3483
HS
4491 if (running)
4492 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4493
4494 if (rt_prio(prio))
4495 p->sched_class = &rt_sched_class;
4496 else
4497 p->sched_class = &fair_sched_class;
4498
b29739f9
IM
4499 p->prio = prio;
4500
0e1f3483
HS
4501 if (running)
4502 p->sched_class->set_curr_task(rq);
dd41f596 4503 if (on_rq) {
371fd7e7 4504 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4505
4506 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4507 }
4508 task_rq_unlock(rq, &flags);
4509}
4510
4511#endif
4512
36c8b586 4513void set_user_nice(struct task_struct *p, long nice)
1da177e4 4514{
dd41f596 4515 int old_prio, delta, on_rq;
1da177e4 4516 unsigned long flags;
70b97a7f 4517 struct rq *rq;
1da177e4
LT
4518
4519 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4520 return;
4521 /*
4522 * We have to be careful, if called from sys_setpriority(),
4523 * the task might be in the middle of scheduling on another CPU.
4524 */
4525 rq = task_rq_lock(p, &flags);
4526 /*
4527 * The RT priorities are set via sched_setscheduler(), but we still
4528 * allow the 'normal' nice value to be set - but as expected
4529 * it wont have any effect on scheduling until the task is
dd41f596 4530 * SCHED_FIFO/SCHED_RR:
1da177e4 4531 */
e05606d3 4532 if (task_has_rt_policy(p)) {
1da177e4
LT
4533 p->static_prio = NICE_TO_PRIO(nice);
4534 goto out_unlock;
4535 }
dd41f596 4536 on_rq = p->se.on_rq;
c09595f6 4537 if (on_rq)
69be72c1 4538 dequeue_task(rq, p, 0);
1da177e4 4539
1da177e4 4540 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4541 set_load_weight(p);
b29739f9
IM
4542 old_prio = p->prio;
4543 p->prio = effective_prio(p);
4544 delta = p->prio - old_prio;
1da177e4 4545
dd41f596 4546 if (on_rq) {
371fd7e7 4547 enqueue_task(rq, p, 0);
1da177e4 4548 /*
d5f9f942
AM
4549 * If the task increased its priority or is running and
4550 * lowered its priority, then reschedule its CPU:
1da177e4 4551 */
d5f9f942 4552 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4553 resched_task(rq->curr);
4554 }
4555out_unlock:
4556 task_rq_unlock(rq, &flags);
4557}
1da177e4
LT
4558EXPORT_SYMBOL(set_user_nice);
4559
e43379f1
MM
4560/*
4561 * can_nice - check if a task can reduce its nice value
4562 * @p: task
4563 * @nice: nice value
4564 */
36c8b586 4565int can_nice(const struct task_struct *p, const int nice)
e43379f1 4566{
024f4747
MM
4567 /* convert nice value [19,-20] to rlimit style value [1,40] */
4568 int nice_rlim = 20 - nice;
48f24c4d 4569
78d7d407 4570 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4571 capable(CAP_SYS_NICE));
4572}
4573
1da177e4
LT
4574#ifdef __ARCH_WANT_SYS_NICE
4575
4576/*
4577 * sys_nice - change the priority of the current process.
4578 * @increment: priority increment
4579 *
4580 * sys_setpriority is a more generic, but much slower function that
4581 * does similar things.
4582 */
5add95d4 4583SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4584{
48f24c4d 4585 long nice, retval;
1da177e4
LT
4586
4587 /*
4588 * Setpriority might change our priority at the same moment.
4589 * We don't have to worry. Conceptually one call occurs first
4590 * and we have a single winner.
4591 */
e43379f1
MM
4592 if (increment < -40)
4593 increment = -40;
1da177e4
LT
4594 if (increment > 40)
4595 increment = 40;
4596
2b8f836f 4597 nice = TASK_NICE(current) + increment;
1da177e4
LT
4598 if (nice < -20)
4599 nice = -20;
4600 if (nice > 19)
4601 nice = 19;
4602
e43379f1
MM
4603 if (increment < 0 && !can_nice(current, nice))
4604 return -EPERM;
4605
1da177e4
LT
4606 retval = security_task_setnice(current, nice);
4607 if (retval)
4608 return retval;
4609
4610 set_user_nice(current, nice);
4611 return 0;
4612}
4613
4614#endif
4615
4616/**
4617 * task_prio - return the priority value of a given task.
4618 * @p: the task in question.
4619 *
4620 * This is the priority value as seen by users in /proc.
4621 * RT tasks are offset by -200. Normal tasks are centered
4622 * around 0, value goes from -16 to +15.
4623 */
36c8b586 4624int task_prio(const struct task_struct *p)
1da177e4
LT
4625{
4626 return p->prio - MAX_RT_PRIO;
4627}
4628
4629/**
4630 * task_nice - return the nice value of a given task.
4631 * @p: the task in question.
4632 */
36c8b586 4633int task_nice(const struct task_struct *p)
1da177e4
LT
4634{
4635 return TASK_NICE(p);
4636}
150d8bed 4637EXPORT_SYMBOL(task_nice);
1da177e4
LT
4638
4639/**
4640 * idle_cpu - is a given cpu idle currently?
4641 * @cpu: the processor in question.
4642 */
4643int idle_cpu(int cpu)
4644{
4645 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4646}
4647
1da177e4
LT
4648/**
4649 * idle_task - return the idle task for a given cpu.
4650 * @cpu: the processor in question.
4651 */
36c8b586 4652struct task_struct *idle_task(int cpu)
1da177e4
LT
4653{
4654 return cpu_rq(cpu)->idle;
4655}
4656
4657/**
4658 * find_process_by_pid - find a process with a matching PID value.
4659 * @pid: the pid in question.
4660 */
a9957449 4661static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4662{
228ebcbe 4663 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4664}
4665
4666/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4667static void
4668__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4669{
dd41f596 4670 BUG_ON(p->se.on_rq);
48f24c4d 4671
1da177e4
LT
4672 p->policy = policy;
4673 p->rt_priority = prio;
b29739f9
IM
4674 p->normal_prio = normal_prio(p);
4675 /* we are holding p->pi_lock already */
4676 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4677 if (rt_prio(p->prio))
4678 p->sched_class = &rt_sched_class;
4679 else
4680 p->sched_class = &fair_sched_class;
2dd73a4f 4681 set_load_weight(p);
1da177e4
LT
4682}
4683
c69e8d9c
DH
4684/*
4685 * check the target process has a UID that matches the current process's
4686 */
4687static bool check_same_owner(struct task_struct *p)
4688{
4689 const struct cred *cred = current_cred(), *pcred;
4690 bool match;
4691
4692 rcu_read_lock();
4693 pcred = __task_cred(p);
4694 match = (cred->euid == pcred->euid ||
4695 cred->euid == pcred->uid);
4696 rcu_read_unlock();
4697 return match;
4698}
4699
961ccddd 4700static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4701 const struct sched_param *param, bool user)
1da177e4 4702{
83b699ed 4703 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4704 unsigned long flags;
83ab0aa0 4705 const struct sched_class *prev_class;
70b97a7f 4706 struct rq *rq;
ca94c442 4707 int reset_on_fork;
1da177e4 4708
66e5393a
SR
4709 /* may grab non-irq protected spin_locks */
4710 BUG_ON(in_interrupt());
1da177e4
LT
4711recheck:
4712 /* double check policy once rq lock held */
ca94c442
LP
4713 if (policy < 0) {
4714 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4715 policy = oldpolicy = p->policy;
ca94c442
LP
4716 } else {
4717 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4718 policy &= ~SCHED_RESET_ON_FORK;
4719
4720 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4721 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4722 policy != SCHED_IDLE)
4723 return -EINVAL;
4724 }
4725
1da177e4
LT
4726 /*
4727 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4728 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4729 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4730 */
4731 if (param->sched_priority < 0 ||
95cdf3b7 4732 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4733 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4734 return -EINVAL;
e05606d3 4735 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4736 return -EINVAL;
4737
37e4ab3f
OC
4738 /*
4739 * Allow unprivileged RT tasks to decrease priority:
4740 */
961ccddd 4741 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4742 if (rt_policy(policy)) {
a44702e8
ON
4743 unsigned long rlim_rtprio =
4744 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4745
4746 /* can't set/change the rt policy */
4747 if (policy != p->policy && !rlim_rtprio)
4748 return -EPERM;
4749
4750 /* can't increase priority */
4751 if (param->sched_priority > p->rt_priority &&
4752 param->sched_priority > rlim_rtprio)
4753 return -EPERM;
4754 }
dd41f596
IM
4755 /*
4756 * Like positive nice levels, dont allow tasks to
4757 * move out of SCHED_IDLE either:
4758 */
4759 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4760 return -EPERM;
5fe1d75f 4761
37e4ab3f 4762 /* can't change other user's priorities */
c69e8d9c 4763 if (!check_same_owner(p))
37e4ab3f 4764 return -EPERM;
ca94c442
LP
4765
4766 /* Normal users shall not reset the sched_reset_on_fork flag */
4767 if (p->sched_reset_on_fork && !reset_on_fork)
4768 return -EPERM;
37e4ab3f 4769 }
1da177e4 4770
725aad24 4771 if (user) {
b0ae1981 4772 retval = security_task_setscheduler(p);
725aad24
JF
4773 if (retval)
4774 return retval;
4775 }
4776
b29739f9
IM
4777 /*
4778 * make sure no PI-waiters arrive (or leave) while we are
4779 * changing the priority of the task:
4780 */
1d615482 4781 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4782 /*
4783 * To be able to change p->policy safely, the apropriate
4784 * runqueue lock must be held.
4785 */
b29739f9 4786 rq = __task_rq_lock(p);
dc61b1d6 4787
34f971f6
PZ
4788 /*
4789 * Changing the policy of the stop threads its a very bad idea
4790 */
4791 if (p == rq->stop) {
4792 __task_rq_unlock(rq);
4793 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4794 return -EINVAL;
4795 }
4796
dc61b1d6
PZ
4797#ifdef CONFIG_RT_GROUP_SCHED
4798 if (user) {
4799 /*
4800 * Do not allow realtime tasks into groups that have no runtime
4801 * assigned.
4802 */
4803 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4804 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4805 __task_rq_unlock(rq);
4806 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4807 return -EPERM;
4808 }
4809 }
4810#endif
4811
1da177e4
LT
4812 /* recheck policy now with rq lock held */
4813 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4814 policy = oldpolicy = -1;
b29739f9 4815 __task_rq_unlock(rq);
1d615482 4816 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4817 goto recheck;
4818 }
dd41f596 4819 on_rq = p->se.on_rq;
051a1d1a 4820 running = task_current(rq, p);
0e1f3483 4821 if (on_rq)
2e1cb74a 4822 deactivate_task(rq, p, 0);
0e1f3483
HS
4823 if (running)
4824 p->sched_class->put_prev_task(rq, p);
f6b53205 4825
ca94c442
LP
4826 p->sched_reset_on_fork = reset_on_fork;
4827
1da177e4 4828 oldprio = p->prio;
83ab0aa0 4829 prev_class = p->sched_class;
dd41f596 4830 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4831
0e1f3483
HS
4832 if (running)
4833 p->sched_class->set_curr_task(rq);
dd41f596
IM
4834 if (on_rq) {
4835 activate_task(rq, p, 0);
cb469845
SR
4836
4837 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4838 }
b29739f9 4839 __task_rq_unlock(rq);
1d615482 4840 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4841
95e02ca9
TG
4842 rt_mutex_adjust_pi(p);
4843
1da177e4
LT
4844 return 0;
4845}
961ccddd
RR
4846
4847/**
4848 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4849 * @p: the task in question.
4850 * @policy: new policy.
4851 * @param: structure containing the new RT priority.
4852 *
4853 * NOTE that the task may be already dead.
4854 */
4855int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4856 const struct sched_param *param)
961ccddd
RR
4857{
4858 return __sched_setscheduler(p, policy, param, true);
4859}
1da177e4
LT
4860EXPORT_SYMBOL_GPL(sched_setscheduler);
4861
961ccddd
RR
4862/**
4863 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4864 * @p: the task in question.
4865 * @policy: new policy.
4866 * @param: structure containing the new RT priority.
4867 *
4868 * Just like sched_setscheduler, only don't bother checking if the
4869 * current context has permission. For example, this is needed in
4870 * stop_machine(): we create temporary high priority worker threads,
4871 * but our caller might not have that capability.
4872 */
4873int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4874 const struct sched_param *param)
961ccddd
RR
4875{
4876 return __sched_setscheduler(p, policy, param, false);
4877}
4878
95cdf3b7
IM
4879static int
4880do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4881{
1da177e4
LT
4882 struct sched_param lparam;
4883 struct task_struct *p;
36c8b586 4884 int retval;
1da177e4
LT
4885
4886 if (!param || pid < 0)
4887 return -EINVAL;
4888 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4889 return -EFAULT;
5fe1d75f
ON
4890
4891 rcu_read_lock();
4892 retval = -ESRCH;
1da177e4 4893 p = find_process_by_pid(pid);
5fe1d75f
ON
4894 if (p != NULL)
4895 retval = sched_setscheduler(p, policy, &lparam);
4896 rcu_read_unlock();
36c8b586 4897
1da177e4
LT
4898 return retval;
4899}
4900
4901/**
4902 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4903 * @pid: the pid in question.
4904 * @policy: new policy.
4905 * @param: structure containing the new RT priority.
4906 */
5add95d4
HC
4907SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4908 struct sched_param __user *, param)
1da177e4 4909{
c21761f1
JB
4910 /* negative values for policy are not valid */
4911 if (policy < 0)
4912 return -EINVAL;
4913
1da177e4
LT
4914 return do_sched_setscheduler(pid, policy, param);
4915}
4916
4917/**
4918 * sys_sched_setparam - set/change the RT priority of a thread
4919 * @pid: the pid in question.
4920 * @param: structure containing the new RT priority.
4921 */
5add95d4 4922SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4923{
4924 return do_sched_setscheduler(pid, -1, param);
4925}
4926
4927/**
4928 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4929 * @pid: the pid in question.
4930 */
5add95d4 4931SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4932{
36c8b586 4933 struct task_struct *p;
3a5c359a 4934 int retval;
1da177e4
LT
4935
4936 if (pid < 0)
3a5c359a 4937 return -EINVAL;
1da177e4
LT
4938
4939 retval = -ESRCH;
5fe85be0 4940 rcu_read_lock();
1da177e4
LT
4941 p = find_process_by_pid(pid);
4942 if (p) {
4943 retval = security_task_getscheduler(p);
4944 if (!retval)
ca94c442
LP
4945 retval = p->policy
4946 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4947 }
5fe85be0 4948 rcu_read_unlock();
1da177e4
LT
4949 return retval;
4950}
4951
4952/**
ca94c442 4953 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4954 * @pid: the pid in question.
4955 * @param: structure containing the RT priority.
4956 */
5add95d4 4957SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4958{
4959 struct sched_param lp;
36c8b586 4960 struct task_struct *p;
3a5c359a 4961 int retval;
1da177e4
LT
4962
4963 if (!param || pid < 0)
3a5c359a 4964 return -EINVAL;
1da177e4 4965
5fe85be0 4966 rcu_read_lock();
1da177e4
LT
4967 p = find_process_by_pid(pid);
4968 retval = -ESRCH;
4969 if (!p)
4970 goto out_unlock;
4971
4972 retval = security_task_getscheduler(p);
4973 if (retval)
4974 goto out_unlock;
4975
4976 lp.sched_priority = p->rt_priority;
5fe85be0 4977 rcu_read_unlock();
1da177e4
LT
4978
4979 /*
4980 * This one might sleep, we cannot do it with a spinlock held ...
4981 */
4982 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4983
1da177e4
LT
4984 return retval;
4985
4986out_unlock:
5fe85be0 4987 rcu_read_unlock();
1da177e4
LT
4988 return retval;
4989}
4990
96f874e2 4991long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4992{
5a16f3d3 4993 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4994 struct task_struct *p;
4995 int retval;
1da177e4 4996
95402b38 4997 get_online_cpus();
23f5d142 4998 rcu_read_lock();
1da177e4
LT
4999
5000 p = find_process_by_pid(pid);
5001 if (!p) {
23f5d142 5002 rcu_read_unlock();
95402b38 5003 put_online_cpus();
1da177e4
LT
5004 return -ESRCH;
5005 }
5006
23f5d142 5007 /* Prevent p going away */
1da177e4 5008 get_task_struct(p);
23f5d142 5009 rcu_read_unlock();
1da177e4 5010
5a16f3d3
RR
5011 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5012 retval = -ENOMEM;
5013 goto out_put_task;
5014 }
5015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5016 retval = -ENOMEM;
5017 goto out_free_cpus_allowed;
5018 }
1da177e4 5019 retval = -EPERM;
c69e8d9c 5020 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5021 goto out_unlock;
5022
b0ae1981 5023 retval = security_task_setscheduler(p);
e7834f8f
DQ
5024 if (retval)
5025 goto out_unlock;
5026
5a16f3d3
RR
5027 cpuset_cpus_allowed(p, cpus_allowed);
5028 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5029again:
5a16f3d3 5030 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5031
8707d8b8 5032 if (!retval) {
5a16f3d3
RR
5033 cpuset_cpus_allowed(p, cpus_allowed);
5034 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5035 /*
5036 * We must have raced with a concurrent cpuset
5037 * update. Just reset the cpus_allowed to the
5038 * cpuset's cpus_allowed
5039 */
5a16f3d3 5040 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5041 goto again;
5042 }
5043 }
1da177e4 5044out_unlock:
5a16f3d3
RR
5045 free_cpumask_var(new_mask);
5046out_free_cpus_allowed:
5047 free_cpumask_var(cpus_allowed);
5048out_put_task:
1da177e4 5049 put_task_struct(p);
95402b38 5050 put_online_cpus();
1da177e4
LT
5051 return retval;
5052}
5053
5054static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5055 struct cpumask *new_mask)
1da177e4 5056{
96f874e2
RR
5057 if (len < cpumask_size())
5058 cpumask_clear(new_mask);
5059 else if (len > cpumask_size())
5060 len = cpumask_size();
5061
1da177e4
LT
5062 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5063}
5064
5065/**
5066 * sys_sched_setaffinity - set the cpu affinity of a process
5067 * @pid: pid of the process
5068 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5069 * @user_mask_ptr: user-space pointer to the new cpu mask
5070 */
5add95d4
HC
5071SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5072 unsigned long __user *, user_mask_ptr)
1da177e4 5073{
5a16f3d3 5074 cpumask_var_t new_mask;
1da177e4
LT
5075 int retval;
5076
5a16f3d3
RR
5077 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5078 return -ENOMEM;
1da177e4 5079
5a16f3d3
RR
5080 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5081 if (retval == 0)
5082 retval = sched_setaffinity(pid, new_mask);
5083 free_cpumask_var(new_mask);
5084 return retval;
1da177e4
LT
5085}
5086
96f874e2 5087long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5088{
36c8b586 5089 struct task_struct *p;
31605683
TG
5090 unsigned long flags;
5091 struct rq *rq;
1da177e4 5092 int retval;
1da177e4 5093
95402b38 5094 get_online_cpus();
23f5d142 5095 rcu_read_lock();
1da177e4
LT
5096
5097 retval = -ESRCH;
5098 p = find_process_by_pid(pid);
5099 if (!p)
5100 goto out_unlock;
5101
e7834f8f
DQ
5102 retval = security_task_getscheduler(p);
5103 if (retval)
5104 goto out_unlock;
5105
31605683 5106 rq = task_rq_lock(p, &flags);
96f874e2 5107 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5108 task_rq_unlock(rq, &flags);
1da177e4
LT
5109
5110out_unlock:
23f5d142 5111 rcu_read_unlock();
95402b38 5112 put_online_cpus();
1da177e4 5113
9531b62f 5114 return retval;
1da177e4
LT
5115}
5116
5117/**
5118 * sys_sched_getaffinity - get the cpu affinity of a process
5119 * @pid: pid of the process
5120 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5121 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5122 */
5add95d4
HC
5123SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5124 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5125{
5126 int ret;
f17c8607 5127 cpumask_var_t mask;
1da177e4 5128
84fba5ec 5129 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5130 return -EINVAL;
5131 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5132 return -EINVAL;
5133
f17c8607
RR
5134 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5135 return -ENOMEM;
1da177e4 5136
f17c8607
RR
5137 ret = sched_getaffinity(pid, mask);
5138 if (ret == 0) {
8bc037fb 5139 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5140
5141 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5142 ret = -EFAULT;
5143 else
cd3d8031 5144 ret = retlen;
f17c8607
RR
5145 }
5146 free_cpumask_var(mask);
1da177e4 5147
f17c8607 5148 return ret;
1da177e4
LT
5149}
5150
5151/**
5152 * sys_sched_yield - yield the current processor to other threads.
5153 *
dd41f596
IM
5154 * This function yields the current CPU to other tasks. If there are no
5155 * other threads running on this CPU then this function will return.
1da177e4 5156 */
5add95d4 5157SYSCALL_DEFINE0(sched_yield)
1da177e4 5158{
70b97a7f 5159 struct rq *rq = this_rq_lock();
1da177e4 5160
2d72376b 5161 schedstat_inc(rq, yld_count);
4530d7ab 5162 current->sched_class->yield_task(rq);
1da177e4
LT
5163
5164 /*
5165 * Since we are going to call schedule() anyway, there's
5166 * no need to preempt or enable interrupts:
5167 */
5168 __release(rq->lock);
8a25d5de 5169 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5170 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5171 preempt_enable_no_resched();
5172
5173 schedule();
5174
5175 return 0;
5176}
5177
d86ee480
PZ
5178static inline int should_resched(void)
5179{
5180 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5181}
5182
e7b38404 5183static void __cond_resched(void)
1da177e4 5184{
e7aaaa69
FW
5185 add_preempt_count(PREEMPT_ACTIVE);
5186 schedule();
5187 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5188}
5189
02b67cc3 5190int __sched _cond_resched(void)
1da177e4 5191{
d86ee480 5192 if (should_resched()) {
1da177e4
LT
5193 __cond_resched();
5194 return 1;
5195 }
5196 return 0;
5197}
02b67cc3 5198EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5199
5200/*
613afbf8 5201 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5202 * call schedule, and on return reacquire the lock.
5203 *
41a2d6cf 5204 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5205 * operations here to prevent schedule() from being called twice (once via
5206 * spin_unlock(), once by hand).
5207 */
613afbf8 5208int __cond_resched_lock(spinlock_t *lock)
1da177e4 5209{
d86ee480 5210 int resched = should_resched();
6df3cecb
JK
5211 int ret = 0;
5212
f607c668
PZ
5213 lockdep_assert_held(lock);
5214
95c354fe 5215 if (spin_needbreak(lock) || resched) {
1da177e4 5216 spin_unlock(lock);
d86ee480 5217 if (resched)
95c354fe
NP
5218 __cond_resched();
5219 else
5220 cpu_relax();
6df3cecb 5221 ret = 1;
1da177e4 5222 spin_lock(lock);
1da177e4 5223 }
6df3cecb 5224 return ret;
1da177e4 5225}
613afbf8 5226EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5227
613afbf8 5228int __sched __cond_resched_softirq(void)
1da177e4
LT
5229{
5230 BUG_ON(!in_softirq());
5231
d86ee480 5232 if (should_resched()) {
98d82567 5233 local_bh_enable();
1da177e4
LT
5234 __cond_resched();
5235 local_bh_disable();
5236 return 1;
5237 }
5238 return 0;
5239}
613afbf8 5240EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5241
1da177e4
LT
5242/**
5243 * yield - yield the current processor to other threads.
5244 *
72fd4a35 5245 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5246 * thread runnable and calls sys_sched_yield().
5247 */
5248void __sched yield(void)
5249{
5250 set_current_state(TASK_RUNNING);
5251 sys_sched_yield();
5252}
1da177e4
LT
5253EXPORT_SYMBOL(yield);
5254
5255/*
41a2d6cf 5256 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5257 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5258 */
5259void __sched io_schedule(void)
5260{
54d35f29 5261 struct rq *rq = raw_rq();
1da177e4 5262
0ff92245 5263 delayacct_blkio_start();
1da177e4 5264 atomic_inc(&rq->nr_iowait);
8f0dfc34 5265 current->in_iowait = 1;
1da177e4 5266 schedule();
8f0dfc34 5267 current->in_iowait = 0;
1da177e4 5268 atomic_dec(&rq->nr_iowait);
0ff92245 5269 delayacct_blkio_end();
1da177e4 5270}
1da177e4
LT
5271EXPORT_SYMBOL(io_schedule);
5272
5273long __sched io_schedule_timeout(long timeout)
5274{
54d35f29 5275 struct rq *rq = raw_rq();
1da177e4
LT
5276 long ret;
5277
0ff92245 5278 delayacct_blkio_start();
1da177e4 5279 atomic_inc(&rq->nr_iowait);
8f0dfc34 5280 current->in_iowait = 1;
1da177e4 5281 ret = schedule_timeout(timeout);
8f0dfc34 5282 current->in_iowait = 0;
1da177e4 5283 atomic_dec(&rq->nr_iowait);
0ff92245 5284 delayacct_blkio_end();
1da177e4
LT
5285 return ret;
5286}
5287
5288/**
5289 * sys_sched_get_priority_max - return maximum RT priority.
5290 * @policy: scheduling class.
5291 *
5292 * this syscall returns the maximum rt_priority that can be used
5293 * by a given scheduling class.
5294 */
5add95d4 5295SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5296{
5297 int ret = -EINVAL;
5298
5299 switch (policy) {
5300 case SCHED_FIFO:
5301 case SCHED_RR:
5302 ret = MAX_USER_RT_PRIO-1;
5303 break;
5304 case SCHED_NORMAL:
b0a9499c 5305 case SCHED_BATCH:
dd41f596 5306 case SCHED_IDLE:
1da177e4
LT
5307 ret = 0;
5308 break;
5309 }
5310 return ret;
5311}
5312
5313/**
5314 * sys_sched_get_priority_min - return minimum RT priority.
5315 * @policy: scheduling class.
5316 *
5317 * this syscall returns the minimum rt_priority that can be used
5318 * by a given scheduling class.
5319 */
5add95d4 5320SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5321{
5322 int ret = -EINVAL;
5323
5324 switch (policy) {
5325 case SCHED_FIFO:
5326 case SCHED_RR:
5327 ret = 1;
5328 break;
5329 case SCHED_NORMAL:
b0a9499c 5330 case SCHED_BATCH:
dd41f596 5331 case SCHED_IDLE:
1da177e4
LT
5332 ret = 0;
5333 }
5334 return ret;
5335}
5336
5337/**
5338 * sys_sched_rr_get_interval - return the default timeslice of a process.
5339 * @pid: pid of the process.
5340 * @interval: userspace pointer to the timeslice value.
5341 *
5342 * this syscall writes the default timeslice value of a given process
5343 * into the user-space timespec buffer. A value of '0' means infinity.
5344 */
17da2bd9 5345SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5346 struct timespec __user *, interval)
1da177e4 5347{
36c8b586 5348 struct task_struct *p;
a4ec24b4 5349 unsigned int time_slice;
dba091b9
TG
5350 unsigned long flags;
5351 struct rq *rq;
3a5c359a 5352 int retval;
1da177e4 5353 struct timespec t;
1da177e4
LT
5354
5355 if (pid < 0)
3a5c359a 5356 return -EINVAL;
1da177e4
LT
5357
5358 retval = -ESRCH;
1a551ae7 5359 rcu_read_lock();
1da177e4
LT
5360 p = find_process_by_pid(pid);
5361 if (!p)
5362 goto out_unlock;
5363
5364 retval = security_task_getscheduler(p);
5365 if (retval)
5366 goto out_unlock;
5367
dba091b9
TG
5368 rq = task_rq_lock(p, &flags);
5369 time_slice = p->sched_class->get_rr_interval(rq, p);
5370 task_rq_unlock(rq, &flags);
a4ec24b4 5371
1a551ae7 5372 rcu_read_unlock();
a4ec24b4 5373 jiffies_to_timespec(time_slice, &t);
1da177e4 5374 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5375 return retval;
3a5c359a 5376
1da177e4 5377out_unlock:
1a551ae7 5378 rcu_read_unlock();
1da177e4
LT
5379 return retval;
5380}
5381
7c731e0a 5382static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5383
82a1fcb9 5384void sched_show_task(struct task_struct *p)
1da177e4 5385{
1da177e4 5386 unsigned long free = 0;
36c8b586 5387 unsigned state;
1da177e4 5388
1da177e4 5389 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5390 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5391 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5392#if BITS_PER_LONG == 32
1da177e4 5393 if (state == TASK_RUNNING)
3df0fc5b 5394 printk(KERN_CONT " running ");
1da177e4 5395 else
3df0fc5b 5396 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5397#else
5398 if (state == TASK_RUNNING)
3df0fc5b 5399 printk(KERN_CONT " running task ");
1da177e4 5400 else
3df0fc5b 5401 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5402#endif
5403#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5404 free = stack_not_used(p);
1da177e4 5405#endif
3df0fc5b 5406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5407 task_pid_nr(p), task_pid_nr(p->real_parent),
5408 (unsigned long)task_thread_info(p)->flags);
1da177e4 5409
5fb5e6de 5410 show_stack(p, NULL);
1da177e4
LT
5411}
5412
e59e2ae2 5413void show_state_filter(unsigned long state_filter)
1da177e4 5414{
36c8b586 5415 struct task_struct *g, *p;
1da177e4 5416
4bd77321 5417#if BITS_PER_LONG == 32
3df0fc5b
PZ
5418 printk(KERN_INFO
5419 " task PC stack pid father\n");
1da177e4 5420#else
3df0fc5b
PZ
5421 printk(KERN_INFO
5422 " task PC stack pid father\n");
1da177e4
LT
5423#endif
5424 read_lock(&tasklist_lock);
5425 do_each_thread(g, p) {
5426 /*
5427 * reset the NMI-timeout, listing all files on a slow
5428 * console might take alot of time:
5429 */
5430 touch_nmi_watchdog();
39bc89fd 5431 if (!state_filter || (p->state & state_filter))
82a1fcb9 5432 sched_show_task(p);
1da177e4
LT
5433 } while_each_thread(g, p);
5434
04c9167f
JF
5435 touch_all_softlockup_watchdogs();
5436
dd41f596
IM
5437#ifdef CONFIG_SCHED_DEBUG
5438 sysrq_sched_debug_show();
5439#endif
1da177e4 5440 read_unlock(&tasklist_lock);
e59e2ae2
IM
5441 /*
5442 * Only show locks if all tasks are dumped:
5443 */
93335a21 5444 if (!state_filter)
e59e2ae2 5445 debug_show_all_locks();
1da177e4
LT
5446}
5447
1df21055
IM
5448void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5449{
dd41f596 5450 idle->sched_class = &idle_sched_class;
1df21055
IM
5451}
5452
f340c0d1
IM
5453/**
5454 * init_idle - set up an idle thread for a given CPU
5455 * @idle: task in question
5456 * @cpu: cpu the idle task belongs to
5457 *
5458 * NOTE: this function does not set the idle thread's NEED_RESCHED
5459 * flag, to make booting more robust.
5460 */
5c1e1767 5461void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5462{
70b97a7f 5463 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5464 unsigned long flags;
5465
05fa785c 5466 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5467
dd41f596 5468 __sched_fork(idle);
06b83b5f 5469 idle->state = TASK_RUNNING;
dd41f596
IM
5470 idle->se.exec_start = sched_clock();
5471
96f874e2 5472 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5473 /*
5474 * We're having a chicken and egg problem, even though we are
5475 * holding rq->lock, the cpu isn't yet set to this cpu so the
5476 * lockdep check in task_group() will fail.
5477 *
5478 * Similar case to sched_fork(). / Alternatively we could
5479 * use task_rq_lock() here and obtain the other rq->lock.
5480 *
5481 * Silence PROVE_RCU
5482 */
5483 rcu_read_lock();
dd41f596 5484 __set_task_cpu(idle, cpu);
6506cf6c 5485 rcu_read_unlock();
1da177e4 5486
1da177e4 5487 rq->curr = rq->idle = idle;
4866cde0
NP
5488#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5489 idle->oncpu = 1;
5490#endif
05fa785c 5491 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5492
5493 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5494#if defined(CONFIG_PREEMPT)
5495 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5496#else
a1261f54 5497 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5498#endif
dd41f596
IM
5499 /*
5500 * The idle tasks have their own, simple scheduling class:
5501 */
5502 idle->sched_class = &idle_sched_class;
fb52607a 5503 ftrace_graph_init_task(idle);
1da177e4
LT
5504}
5505
5506/*
5507 * In a system that switches off the HZ timer nohz_cpu_mask
5508 * indicates which cpus entered this state. This is used
5509 * in the rcu update to wait only for active cpus. For system
5510 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5511 * always be CPU_BITS_NONE.
1da177e4 5512 */
6a7b3dc3 5513cpumask_var_t nohz_cpu_mask;
1da177e4 5514
19978ca6
IM
5515/*
5516 * Increase the granularity value when there are more CPUs,
5517 * because with more CPUs the 'effective latency' as visible
5518 * to users decreases. But the relationship is not linear,
5519 * so pick a second-best guess by going with the log2 of the
5520 * number of CPUs.
5521 *
5522 * This idea comes from the SD scheduler of Con Kolivas:
5523 */
acb4a848 5524static int get_update_sysctl_factor(void)
19978ca6 5525{
4ca3ef71 5526 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5527 unsigned int factor;
5528
5529 switch (sysctl_sched_tunable_scaling) {
5530 case SCHED_TUNABLESCALING_NONE:
5531 factor = 1;
5532 break;
5533 case SCHED_TUNABLESCALING_LINEAR:
5534 factor = cpus;
5535 break;
5536 case SCHED_TUNABLESCALING_LOG:
5537 default:
5538 factor = 1 + ilog2(cpus);
5539 break;
5540 }
19978ca6 5541
acb4a848
CE
5542 return factor;
5543}
19978ca6 5544
acb4a848
CE
5545static void update_sysctl(void)
5546{
5547 unsigned int factor = get_update_sysctl_factor();
19978ca6 5548
0bcdcf28
CE
5549#define SET_SYSCTL(name) \
5550 (sysctl_##name = (factor) * normalized_sysctl_##name)
5551 SET_SYSCTL(sched_min_granularity);
5552 SET_SYSCTL(sched_latency);
5553 SET_SYSCTL(sched_wakeup_granularity);
5554 SET_SYSCTL(sched_shares_ratelimit);
5555#undef SET_SYSCTL
5556}
55cd5340 5557
0bcdcf28
CE
5558static inline void sched_init_granularity(void)
5559{
5560 update_sysctl();
19978ca6
IM
5561}
5562
1da177e4
LT
5563#ifdef CONFIG_SMP
5564/*
5565 * This is how migration works:
5566 *
969c7921
TH
5567 * 1) we invoke migration_cpu_stop() on the target CPU using
5568 * stop_one_cpu().
5569 * 2) stopper starts to run (implicitly forcing the migrated thread
5570 * off the CPU)
5571 * 3) it checks whether the migrated task is still in the wrong runqueue.
5572 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5573 * it and puts it into the right queue.
969c7921
TH
5574 * 5) stopper completes and stop_one_cpu() returns and the migration
5575 * is done.
1da177e4
LT
5576 */
5577
5578/*
5579 * Change a given task's CPU affinity. Migrate the thread to a
5580 * proper CPU and schedule it away if the CPU it's executing on
5581 * is removed from the allowed bitmask.
5582 *
5583 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5584 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5585 * call is not atomic; no spinlocks may be held.
5586 */
96f874e2 5587int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5588{
5589 unsigned long flags;
70b97a7f 5590 struct rq *rq;
969c7921 5591 unsigned int dest_cpu;
48f24c4d 5592 int ret = 0;
1da177e4 5593
65cc8e48
PZ
5594 /*
5595 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5596 * drop the rq->lock and still rely on ->cpus_allowed.
5597 */
5598again:
5599 while (task_is_waking(p))
5600 cpu_relax();
1da177e4 5601 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5602 if (task_is_waking(p)) {
5603 task_rq_unlock(rq, &flags);
5604 goto again;
5605 }
e2912009 5606
6ad4c188 5607 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5608 ret = -EINVAL;
5609 goto out;
5610 }
5611
9985b0ba 5612 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5613 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5614 ret = -EINVAL;
5615 goto out;
5616 }
5617
73fe6aae 5618 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5619 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5620 else {
96f874e2
RR
5621 cpumask_copy(&p->cpus_allowed, new_mask);
5622 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5623 }
5624
1da177e4 5625 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5626 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5627 goto out;
5628
969c7921
TH
5629 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5630 if (migrate_task(p, dest_cpu)) {
5631 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5632 /* Need help from migration thread: drop lock and wait. */
5633 task_rq_unlock(rq, &flags);
969c7921 5634 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5635 tlb_migrate_finish(p->mm);
5636 return 0;
5637 }
5638out:
5639 task_rq_unlock(rq, &flags);
48f24c4d 5640
1da177e4
LT
5641 return ret;
5642}
cd8ba7cd 5643EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5644
5645/*
41a2d6cf 5646 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5647 * this because either it can't run here any more (set_cpus_allowed()
5648 * away from this CPU, or CPU going down), or because we're
5649 * attempting to rebalance this task on exec (sched_exec).
5650 *
5651 * So we race with normal scheduler movements, but that's OK, as long
5652 * as the task is no longer on this CPU.
efc30814
KK
5653 *
5654 * Returns non-zero if task was successfully migrated.
1da177e4 5655 */
efc30814 5656static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5657{
70b97a7f 5658 struct rq *rq_dest, *rq_src;
e2912009 5659 int ret = 0;
1da177e4 5660
e761b772 5661 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5662 return ret;
1da177e4
LT
5663
5664 rq_src = cpu_rq(src_cpu);
5665 rq_dest = cpu_rq(dest_cpu);
5666
5667 double_rq_lock(rq_src, rq_dest);
5668 /* Already moved. */
5669 if (task_cpu(p) != src_cpu)
b1e38734 5670 goto done;
1da177e4 5671 /* Affinity changed (again). */
96f874e2 5672 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5673 goto fail;
1da177e4 5674
e2912009
PZ
5675 /*
5676 * If we're not on a rq, the next wake-up will ensure we're
5677 * placed properly.
5678 */
5679 if (p->se.on_rq) {
2e1cb74a 5680 deactivate_task(rq_src, p, 0);
e2912009 5681 set_task_cpu(p, dest_cpu);
dd41f596 5682 activate_task(rq_dest, p, 0);
15afe09b 5683 check_preempt_curr(rq_dest, p, 0);
1da177e4 5684 }
b1e38734 5685done:
efc30814 5686 ret = 1;
b1e38734 5687fail:
1da177e4 5688 double_rq_unlock(rq_src, rq_dest);
efc30814 5689 return ret;
1da177e4
LT
5690}
5691
5692/*
969c7921
TH
5693 * migration_cpu_stop - this will be executed by a highprio stopper thread
5694 * and performs thread migration by bumping thread off CPU then
5695 * 'pushing' onto another runqueue.
1da177e4 5696 */
969c7921 5697static int migration_cpu_stop(void *data)
1da177e4 5698{
969c7921 5699 struct migration_arg *arg = data;
f7b4cddc 5700
969c7921
TH
5701 /*
5702 * The original target cpu might have gone down and we might
5703 * be on another cpu but it doesn't matter.
5704 */
f7b4cddc 5705 local_irq_disable();
969c7921 5706 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5707 local_irq_enable();
1da177e4 5708 return 0;
f7b4cddc
ON
5709}
5710
1da177e4 5711#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5712
054b9108 5713/*
48c5ccae
PZ
5714 * Ensures that the idle task is using init_mm right before its cpu goes
5715 * offline.
054b9108 5716 */
48c5ccae 5717void idle_task_exit(void)
1da177e4 5718{
48c5ccae 5719 struct mm_struct *mm = current->active_mm;
e76bd8d9 5720
48c5ccae 5721 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5722
48c5ccae
PZ
5723 if (mm != &init_mm)
5724 switch_mm(mm, &init_mm, current);
5725 mmdrop(mm);
1da177e4
LT
5726}
5727
5728/*
5729 * While a dead CPU has no uninterruptible tasks queued at this point,
5730 * it might still have a nonzero ->nr_uninterruptible counter, because
5731 * for performance reasons the counter is not stricly tracking tasks to
5732 * their home CPUs. So we just add the counter to another CPU's counter,
5733 * to keep the global sum constant after CPU-down:
5734 */
70b97a7f 5735static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5736{
6ad4c188 5737 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5738
1da177e4
LT
5739 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5740 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5741}
5742
dd41f596 5743/*
48c5ccae 5744 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5745 */
48c5ccae 5746static void calc_global_load_remove(struct rq *rq)
1da177e4 5747{
48c5ccae
PZ
5748 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5749 rq->calc_load_active = 0;
1da177e4
LT
5750}
5751
48f24c4d 5752/*
48c5ccae
PZ
5753 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5754 * try_to_wake_up()->select_task_rq().
5755 *
5756 * Called with rq->lock held even though we'er in stop_machine() and
5757 * there's no concurrency possible, we hold the required locks anyway
5758 * because of lock validation efforts.
1da177e4 5759 */
48c5ccae 5760static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5761{
70b97a7f 5762 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5763 struct task_struct *next, *stop = rq->stop;
5764 int dest_cpu;
1da177e4
LT
5765
5766 /*
48c5ccae
PZ
5767 * Fudge the rq selection such that the below task selection loop
5768 * doesn't get stuck on the currently eligible stop task.
5769 *
5770 * We're currently inside stop_machine() and the rq is either stuck
5771 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5772 * either way we should never end up calling schedule() until we're
5773 * done here.
1da177e4 5774 */
48c5ccae 5775 rq->stop = NULL;
48f24c4d 5776
dd41f596 5777 for ( ; ; ) {
48c5ccae
PZ
5778 /*
5779 * There's this thread running, bail when that's the only
5780 * remaining thread.
5781 */
5782 if (rq->nr_running == 1)
dd41f596 5783 break;
48c5ccae 5784
b67802ea 5785 next = pick_next_task(rq);
48c5ccae 5786 BUG_ON(!next);
79c53799 5787 next->sched_class->put_prev_task(rq, next);
e692ab53 5788
48c5ccae
PZ
5789 /* Find suitable destination for @next, with force if needed. */
5790 dest_cpu = select_fallback_rq(dead_cpu, next);
5791 raw_spin_unlock(&rq->lock);
5792
5793 __migrate_task(next, dead_cpu, dest_cpu);
5794
5795 raw_spin_lock(&rq->lock);
1da177e4 5796 }
dce48a84 5797
48c5ccae 5798 rq->stop = stop;
dce48a84 5799}
48c5ccae 5800
1da177e4
LT
5801#endif /* CONFIG_HOTPLUG_CPU */
5802
e692ab53
NP
5803#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5804
5805static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5806 {
5807 .procname = "sched_domain",
c57baf1e 5808 .mode = 0555,
e0361851 5809 },
56992309 5810 {}
e692ab53
NP
5811};
5812
5813static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5814 {
5815 .procname = "kernel",
c57baf1e 5816 .mode = 0555,
e0361851
AD
5817 .child = sd_ctl_dir,
5818 },
56992309 5819 {}
e692ab53
NP
5820};
5821
5822static struct ctl_table *sd_alloc_ctl_entry(int n)
5823{
5824 struct ctl_table *entry =
5cf9f062 5825 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5826
e692ab53
NP
5827 return entry;
5828}
5829
6382bc90
MM
5830static void sd_free_ctl_entry(struct ctl_table **tablep)
5831{
cd790076 5832 struct ctl_table *entry;
6382bc90 5833
cd790076
MM
5834 /*
5835 * In the intermediate directories, both the child directory and
5836 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5837 * will always be set. In the lowest directory the names are
cd790076
MM
5838 * static strings and all have proc handlers.
5839 */
5840 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5841 if (entry->child)
5842 sd_free_ctl_entry(&entry->child);
cd790076
MM
5843 if (entry->proc_handler == NULL)
5844 kfree(entry->procname);
5845 }
6382bc90
MM
5846
5847 kfree(*tablep);
5848 *tablep = NULL;
5849}
5850
e692ab53 5851static void
e0361851 5852set_table_entry(struct ctl_table *entry,
e692ab53
NP
5853 const char *procname, void *data, int maxlen,
5854 mode_t mode, proc_handler *proc_handler)
5855{
e692ab53
NP
5856 entry->procname = procname;
5857 entry->data = data;
5858 entry->maxlen = maxlen;
5859 entry->mode = mode;
5860 entry->proc_handler = proc_handler;
5861}
5862
5863static struct ctl_table *
5864sd_alloc_ctl_domain_table(struct sched_domain *sd)
5865{
a5d8c348 5866 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5867
ad1cdc1d
MM
5868 if (table == NULL)
5869 return NULL;
5870
e0361851 5871 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5872 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5873 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5874 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5875 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5876 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5877 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5878 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5879 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5880 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5881 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5882 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5883 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5884 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5885 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5886 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5887 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5888 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5889 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5890 &sd->cache_nice_tries,
5891 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5892 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5893 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5894 set_table_entry(&table[11], "name", sd->name,
5895 CORENAME_MAX_SIZE, 0444, proc_dostring);
5896 /* &table[12] is terminator */
e692ab53
NP
5897
5898 return table;
5899}
5900
9a4e7159 5901static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5902{
5903 struct ctl_table *entry, *table;
5904 struct sched_domain *sd;
5905 int domain_num = 0, i;
5906 char buf[32];
5907
5908 for_each_domain(cpu, sd)
5909 domain_num++;
5910 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5911 if (table == NULL)
5912 return NULL;
e692ab53
NP
5913
5914 i = 0;
5915 for_each_domain(cpu, sd) {
5916 snprintf(buf, 32, "domain%d", i);
e692ab53 5917 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5918 entry->mode = 0555;
e692ab53
NP
5919 entry->child = sd_alloc_ctl_domain_table(sd);
5920 entry++;
5921 i++;
5922 }
5923 return table;
5924}
5925
5926static struct ctl_table_header *sd_sysctl_header;
6382bc90 5927static void register_sched_domain_sysctl(void)
e692ab53 5928{
6ad4c188 5929 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5930 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5931 char buf[32];
5932
7378547f
MM
5933 WARN_ON(sd_ctl_dir[0].child);
5934 sd_ctl_dir[0].child = entry;
5935
ad1cdc1d
MM
5936 if (entry == NULL)
5937 return;
5938
6ad4c188 5939 for_each_possible_cpu(i) {
e692ab53 5940 snprintf(buf, 32, "cpu%d", i);
e692ab53 5941 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5942 entry->mode = 0555;
e692ab53 5943 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5944 entry++;
e692ab53 5945 }
7378547f
MM
5946
5947 WARN_ON(sd_sysctl_header);
e692ab53
NP
5948 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5949}
6382bc90 5950
7378547f 5951/* may be called multiple times per register */
6382bc90
MM
5952static void unregister_sched_domain_sysctl(void)
5953{
7378547f
MM
5954 if (sd_sysctl_header)
5955 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5956 sd_sysctl_header = NULL;
7378547f
MM
5957 if (sd_ctl_dir[0].child)
5958 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5959}
e692ab53 5960#else
6382bc90
MM
5961static void register_sched_domain_sysctl(void)
5962{
5963}
5964static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5965{
5966}
5967#endif
5968
1f11eb6a
GH
5969static void set_rq_online(struct rq *rq)
5970{
5971 if (!rq->online) {
5972 const struct sched_class *class;
5973
c6c4927b 5974 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5975 rq->online = 1;
5976
5977 for_each_class(class) {
5978 if (class->rq_online)
5979 class->rq_online(rq);
5980 }
5981 }
5982}
5983
5984static void set_rq_offline(struct rq *rq)
5985{
5986 if (rq->online) {
5987 const struct sched_class *class;
5988
5989 for_each_class(class) {
5990 if (class->rq_offline)
5991 class->rq_offline(rq);
5992 }
5993
c6c4927b 5994 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5995 rq->online = 0;
5996 }
5997}
5998
1da177e4
LT
5999/*
6000 * migration_call - callback that gets triggered when a CPU is added.
6001 * Here we can start up the necessary migration thread for the new CPU.
6002 */
48f24c4d
IM
6003static int __cpuinit
6004migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6005{
48f24c4d 6006 int cpu = (long)hcpu;
1da177e4 6007 unsigned long flags;
969c7921 6008 struct rq *rq = cpu_rq(cpu);
1da177e4 6009
48c5ccae 6010 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6011
1da177e4 6012 case CPU_UP_PREPARE:
a468d389 6013 rq->calc_load_update = calc_load_update;
1da177e4 6014 break;
48f24c4d 6015
1da177e4 6016 case CPU_ONLINE:
1f94ef59 6017 /* Update our root-domain */
05fa785c 6018 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6019 if (rq->rd) {
c6c4927b 6020 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6021
6022 set_rq_online(rq);
1f94ef59 6023 }
05fa785c 6024 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6025 break;
48f24c4d 6026
1da177e4 6027#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6028 case CPU_DYING:
57d885fe 6029 /* Update our root-domain */
05fa785c 6030 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6031 if (rq->rd) {
c6c4927b 6032 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6033 set_rq_offline(rq);
57d885fe 6034 }
48c5ccae
PZ
6035 migrate_tasks(cpu);
6036 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6037 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6038
6039 migrate_nr_uninterruptible(rq);
6040 calc_global_load_remove(rq);
57d885fe 6041 break;
1da177e4
LT
6042#endif
6043 }
6044 return NOTIFY_OK;
6045}
6046
f38b0820
PM
6047/*
6048 * Register at high priority so that task migration (migrate_all_tasks)
6049 * happens before everything else. This has to be lower priority than
cdd6c482 6050 * the notifier in the perf_event subsystem, though.
1da177e4 6051 */
26c2143b 6052static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6053 .notifier_call = migration_call,
50a323b7 6054 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6055};
6056
3a101d05
TH
6057static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6058 unsigned long action, void *hcpu)
6059{
6060 switch (action & ~CPU_TASKS_FROZEN) {
6061 case CPU_ONLINE:
6062 case CPU_DOWN_FAILED:
6063 set_cpu_active((long)hcpu, true);
6064 return NOTIFY_OK;
6065 default:
6066 return NOTIFY_DONE;
6067 }
6068}
6069
6070static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6071 unsigned long action, void *hcpu)
6072{
6073 switch (action & ~CPU_TASKS_FROZEN) {
6074 case CPU_DOWN_PREPARE:
6075 set_cpu_active((long)hcpu, false);
6076 return NOTIFY_OK;
6077 default:
6078 return NOTIFY_DONE;
6079 }
6080}
6081
7babe8db 6082static int __init migration_init(void)
1da177e4
LT
6083{
6084 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6085 int err;
48f24c4d 6086
3a101d05 6087 /* Initialize migration for the boot CPU */
07dccf33
AM
6088 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6089 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6090 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6091 register_cpu_notifier(&migration_notifier);
7babe8db 6092
3a101d05
TH
6093 /* Register cpu active notifiers */
6094 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6095 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6096
a004cd42 6097 return 0;
1da177e4 6098}
7babe8db 6099early_initcall(migration_init);
1da177e4
LT
6100#endif
6101
6102#ifdef CONFIG_SMP
476f3534 6103
3e9830dc 6104#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6105
f6630114
MT
6106static __read_mostly int sched_domain_debug_enabled;
6107
6108static int __init sched_domain_debug_setup(char *str)
6109{
6110 sched_domain_debug_enabled = 1;
6111
6112 return 0;
6113}
6114early_param("sched_debug", sched_domain_debug_setup);
6115
7c16ec58 6116static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6117 struct cpumask *groupmask)
1da177e4 6118{
4dcf6aff 6119 struct sched_group *group = sd->groups;
434d53b0 6120 char str[256];
1da177e4 6121
968ea6d8 6122 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6123 cpumask_clear(groupmask);
4dcf6aff
IM
6124
6125 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6126
6127 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6128 printk("does not load-balance\n");
4dcf6aff 6129 if (sd->parent)
3df0fc5b
PZ
6130 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6131 " has parent");
4dcf6aff 6132 return -1;
41c7ce9a
NP
6133 }
6134
3df0fc5b 6135 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6136
758b2cdc 6137 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6138 printk(KERN_ERR "ERROR: domain->span does not contain "
6139 "CPU%d\n", cpu);
4dcf6aff 6140 }
758b2cdc 6141 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6142 printk(KERN_ERR "ERROR: domain->groups does not contain"
6143 " CPU%d\n", cpu);
4dcf6aff 6144 }
1da177e4 6145
4dcf6aff 6146 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6147 do {
4dcf6aff 6148 if (!group) {
3df0fc5b
PZ
6149 printk("\n");
6150 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6151 break;
6152 }
6153
18a3885f 6154 if (!group->cpu_power) {
3df0fc5b
PZ
6155 printk(KERN_CONT "\n");
6156 printk(KERN_ERR "ERROR: domain->cpu_power not "
6157 "set\n");
4dcf6aff
IM
6158 break;
6159 }
1da177e4 6160
758b2cdc 6161 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6162 printk(KERN_CONT "\n");
6163 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6164 break;
6165 }
1da177e4 6166
758b2cdc 6167 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6168 printk(KERN_CONT "\n");
6169 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6170 break;
6171 }
1da177e4 6172
758b2cdc 6173 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6174
968ea6d8 6175 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6176
3df0fc5b 6177 printk(KERN_CONT " %s", str);
18a3885f 6178 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6179 printk(KERN_CONT " (cpu_power = %d)",
6180 group->cpu_power);
381512cf 6181 }
1da177e4 6182
4dcf6aff
IM
6183 group = group->next;
6184 } while (group != sd->groups);
3df0fc5b 6185 printk(KERN_CONT "\n");
1da177e4 6186
758b2cdc 6187 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6188 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6189
758b2cdc
RR
6190 if (sd->parent &&
6191 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6192 printk(KERN_ERR "ERROR: parent span is not a superset "
6193 "of domain->span\n");
4dcf6aff
IM
6194 return 0;
6195}
1da177e4 6196
4dcf6aff
IM
6197static void sched_domain_debug(struct sched_domain *sd, int cpu)
6198{
d5dd3db1 6199 cpumask_var_t groupmask;
4dcf6aff 6200 int level = 0;
1da177e4 6201
f6630114
MT
6202 if (!sched_domain_debug_enabled)
6203 return;
6204
4dcf6aff
IM
6205 if (!sd) {
6206 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6207 return;
6208 }
1da177e4 6209
4dcf6aff
IM
6210 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6211
d5dd3db1 6212 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6213 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6214 return;
6215 }
6216
4dcf6aff 6217 for (;;) {
7c16ec58 6218 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6219 break;
1da177e4
LT
6220 level++;
6221 sd = sd->parent;
33859f7f 6222 if (!sd)
4dcf6aff
IM
6223 break;
6224 }
d5dd3db1 6225 free_cpumask_var(groupmask);
1da177e4 6226}
6d6bc0ad 6227#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6228# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6229#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6230
1a20ff27 6231static int sd_degenerate(struct sched_domain *sd)
245af2c7 6232{
758b2cdc 6233 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6234 return 1;
6235
6236 /* Following flags need at least 2 groups */
6237 if (sd->flags & (SD_LOAD_BALANCE |
6238 SD_BALANCE_NEWIDLE |
6239 SD_BALANCE_FORK |
89c4710e
SS
6240 SD_BALANCE_EXEC |
6241 SD_SHARE_CPUPOWER |
6242 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6243 if (sd->groups != sd->groups->next)
6244 return 0;
6245 }
6246
6247 /* Following flags don't use groups */
c88d5910 6248 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6249 return 0;
6250
6251 return 1;
6252}
6253
48f24c4d
IM
6254static int
6255sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6256{
6257 unsigned long cflags = sd->flags, pflags = parent->flags;
6258
6259 if (sd_degenerate(parent))
6260 return 1;
6261
758b2cdc 6262 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6263 return 0;
6264
245af2c7
SS
6265 /* Flags needing groups don't count if only 1 group in parent */
6266 if (parent->groups == parent->groups->next) {
6267 pflags &= ~(SD_LOAD_BALANCE |
6268 SD_BALANCE_NEWIDLE |
6269 SD_BALANCE_FORK |
89c4710e
SS
6270 SD_BALANCE_EXEC |
6271 SD_SHARE_CPUPOWER |
6272 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6273 if (nr_node_ids == 1)
6274 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6275 }
6276 if (~cflags & pflags)
6277 return 0;
6278
6279 return 1;
6280}
6281
c6c4927b
RR
6282static void free_rootdomain(struct root_domain *rd)
6283{
047106ad
PZ
6284 synchronize_sched();
6285
68e74568
RR
6286 cpupri_cleanup(&rd->cpupri);
6287
c6c4927b
RR
6288 free_cpumask_var(rd->rto_mask);
6289 free_cpumask_var(rd->online);
6290 free_cpumask_var(rd->span);
6291 kfree(rd);
6292}
6293
57d885fe
GH
6294static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6295{
a0490fa3 6296 struct root_domain *old_rd = NULL;
57d885fe 6297 unsigned long flags;
57d885fe 6298
05fa785c 6299 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6300
6301 if (rq->rd) {
a0490fa3 6302 old_rd = rq->rd;
57d885fe 6303
c6c4927b 6304 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6305 set_rq_offline(rq);
57d885fe 6306
c6c4927b 6307 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6308
a0490fa3
IM
6309 /*
6310 * If we dont want to free the old_rt yet then
6311 * set old_rd to NULL to skip the freeing later
6312 * in this function:
6313 */
6314 if (!atomic_dec_and_test(&old_rd->refcount))
6315 old_rd = NULL;
57d885fe
GH
6316 }
6317
6318 atomic_inc(&rd->refcount);
6319 rq->rd = rd;
6320
c6c4927b 6321 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6322 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6323 set_rq_online(rq);
57d885fe 6324
05fa785c 6325 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6326
6327 if (old_rd)
6328 free_rootdomain(old_rd);
57d885fe
GH
6329}
6330
68c38fc3 6331static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6332{
6333 memset(rd, 0, sizeof(*rd));
6334
68c38fc3 6335 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6336 goto out;
68c38fc3 6337 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6338 goto free_span;
68c38fc3 6339 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6340 goto free_online;
6e0534f2 6341
68c38fc3 6342 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6343 goto free_rto_mask;
c6c4927b 6344 return 0;
6e0534f2 6345
68e74568
RR
6346free_rto_mask:
6347 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6348free_online:
6349 free_cpumask_var(rd->online);
6350free_span:
6351 free_cpumask_var(rd->span);
0c910d28 6352out:
c6c4927b 6353 return -ENOMEM;
57d885fe
GH
6354}
6355
6356static void init_defrootdomain(void)
6357{
68c38fc3 6358 init_rootdomain(&def_root_domain);
c6c4927b 6359
57d885fe
GH
6360 atomic_set(&def_root_domain.refcount, 1);
6361}
6362
dc938520 6363static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6364{
6365 struct root_domain *rd;
6366
6367 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6368 if (!rd)
6369 return NULL;
6370
68c38fc3 6371 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6372 kfree(rd);
6373 return NULL;
6374 }
57d885fe
GH
6375
6376 return rd;
6377}
6378
1da177e4 6379/*
0eab9146 6380 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6381 * hold the hotplug lock.
6382 */
0eab9146
IM
6383static void
6384cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6385{
70b97a7f 6386 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6387 struct sched_domain *tmp;
6388
669c55e9
PZ
6389 for (tmp = sd; tmp; tmp = tmp->parent)
6390 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6391
245af2c7 6392 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6393 for (tmp = sd; tmp; ) {
245af2c7
SS
6394 struct sched_domain *parent = tmp->parent;
6395 if (!parent)
6396 break;
f29c9b1c 6397
1a848870 6398 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6399 tmp->parent = parent->parent;
1a848870
SS
6400 if (parent->parent)
6401 parent->parent->child = tmp;
f29c9b1c
LZ
6402 } else
6403 tmp = tmp->parent;
245af2c7
SS
6404 }
6405
1a848870 6406 if (sd && sd_degenerate(sd)) {
245af2c7 6407 sd = sd->parent;
1a848870
SS
6408 if (sd)
6409 sd->child = NULL;
6410 }
1da177e4
LT
6411
6412 sched_domain_debug(sd, cpu);
6413
57d885fe 6414 rq_attach_root(rq, rd);
674311d5 6415 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6416}
6417
6418/* cpus with isolated domains */
dcc30a35 6419static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6420
6421/* Setup the mask of cpus configured for isolated domains */
6422static int __init isolated_cpu_setup(char *str)
6423{
bdddd296 6424 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6425 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6426 return 1;
6427}
6428
8927f494 6429__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6430
6431/*
6711cab4
SS
6432 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6433 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6434 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6435 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6436 *
6437 * init_sched_build_groups will build a circular linked list of the groups
6438 * covered by the given span, and will set each group's ->cpumask correctly,
6439 * and ->cpu_power to 0.
6440 */
a616058b 6441static void
96f874e2
RR
6442init_sched_build_groups(const struct cpumask *span,
6443 const struct cpumask *cpu_map,
6444 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6445 struct sched_group **sg,
96f874e2
RR
6446 struct cpumask *tmpmask),
6447 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6448{
6449 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6450 int i;
6451
96f874e2 6452 cpumask_clear(covered);
7c16ec58 6453
abcd083a 6454 for_each_cpu(i, span) {
6711cab4 6455 struct sched_group *sg;
7c16ec58 6456 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6457 int j;
6458
758b2cdc 6459 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6460 continue;
6461
758b2cdc 6462 cpumask_clear(sched_group_cpus(sg));
18a3885f 6463 sg->cpu_power = 0;
1da177e4 6464
abcd083a 6465 for_each_cpu(j, span) {
7c16ec58 6466 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6467 continue;
6468
96f874e2 6469 cpumask_set_cpu(j, covered);
758b2cdc 6470 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6471 }
6472 if (!first)
6473 first = sg;
6474 if (last)
6475 last->next = sg;
6476 last = sg;
6477 }
6478 last->next = first;
6479}
6480
9c1cfda2 6481#define SD_NODES_PER_DOMAIN 16
1da177e4 6482
9c1cfda2 6483#ifdef CONFIG_NUMA
198e2f18 6484
9c1cfda2
JH
6485/**
6486 * find_next_best_node - find the next node to include in a sched_domain
6487 * @node: node whose sched_domain we're building
6488 * @used_nodes: nodes already in the sched_domain
6489 *
41a2d6cf 6490 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6491 * finds the closest node not already in the @used_nodes map.
6492 *
6493 * Should use nodemask_t.
6494 */
c5f59f08 6495static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6496{
6497 int i, n, val, min_val, best_node = 0;
6498
6499 min_val = INT_MAX;
6500
076ac2af 6501 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6502 /* Start at @node */
076ac2af 6503 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6504
6505 if (!nr_cpus_node(n))
6506 continue;
6507
6508 /* Skip already used nodes */
c5f59f08 6509 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6510 continue;
6511
6512 /* Simple min distance search */
6513 val = node_distance(node, n);
6514
6515 if (val < min_val) {
6516 min_val = val;
6517 best_node = n;
6518 }
6519 }
6520
c5f59f08 6521 node_set(best_node, *used_nodes);
9c1cfda2
JH
6522 return best_node;
6523}
6524
6525/**
6526 * sched_domain_node_span - get a cpumask for a node's sched_domain
6527 * @node: node whose cpumask we're constructing
73486722 6528 * @span: resulting cpumask
9c1cfda2 6529 *
41a2d6cf 6530 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6531 * should be one that prevents unnecessary balancing, but also spreads tasks
6532 * out optimally.
6533 */
96f874e2 6534static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6535{
c5f59f08 6536 nodemask_t used_nodes;
48f24c4d 6537 int i;
9c1cfda2 6538
6ca09dfc 6539 cpumask_clear(span);
c5f59f08 6540 nodes_clear(used_nodes);
9c1cfda2 6541
6ca09dfc 6542 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6543 node_set(node, used_nodes);
9c1cfda2
JH
6544
6545 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6546 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6547
6ca09dfc 6548 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6549 }
9c1cfda2 6550}
6d6bc0ad 6551#endif /* CONFIG_NUMA */
9c1cfda2 6552
5c45bf27 6553int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6554
6c99e9ad
RR
6555/*
6556 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6557 *
6558 * ( See the the comments in include/linux/sched.h:struct sched_group
6559 * and struct sched_domain. )
6c99e9ad
RR
6560 */
6561struct static_sched_group {
6562 struct sched_group sg;
6563 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6564};
6565
6566struct static_sched_domain {
6567 struct sched_domain sd;
6568 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6569};
6570
49a02c51
AH
6571struct s_data {
6572#ifdef CONFIG_NUMA
6573 int sd_allnodes;
6574 cpumask_var_t domainspan;
6575 cpumask_var_t covered;
6576 cpumask_var_t notcovered;
6577#endif
6578 cpumask_var_t nodemask;
6579 cpumask_var_t this_sibling_map;
6580 cpumask_var_t this_core_map;
01a08546 6581 cpumask_var_t this_book_map;
49a02c51
AH
6582 cpumask_var_t send_covered;
6583 cpumask_var_t tmpmask;
6584 struct sched_group **sched_group_nodes;
6585 struct root_domain *rd;
6586};
6587
2109b99e
AH
6588enum s_alloc {
6589 sa_sched_groups = 0,
6590 sa_rootdomain,
6591 sa_tmpmask,
6592 sa_send_covered,
01a08546 6593 sa_this_book_map,
2109b99e
AH
6594 sa_this_core_map,
6595 sa_this_sibling_map,
6596 sa_nodemask,
6597 sa_sched_group_nodes,
6598#ifdef CONFIG_NUMA
6599 sa_notcovered,
6600 sa_covered,
6601 sa_domainspan,
6602#endif
6603 sa_none,
6604};
6605
9c1cfda2 6606/*
48f24c4d 6607 * SMT sched-domains:
9c1cfda2 6608 */
1da177e4 6609#ifdef CONFIG_SCHED_SMT
6c99e9ad 6610static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6611static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6612
41a2d6cf 6613static int
96f874e2
RR
6614cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6615 struct sched_group **sg, struct cpumask *unused)
1da177e4 6616{
6711cab4 6617 if (sg)
1871e52c 6618 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6619 return cpu;
6620}
6d6bc0ad 6621#endif /* CONFIG_SCHED_SMT */
1da177e4 6622
48f24c4d
IM
6623/*
6624 * multi-core sched-domains:
6625 */
1e9f28fa 6626#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6627static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6628static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6629
41a2d6cf 6630static int
96f874e2
RR
6631cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6632 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6633{
6711cab4 6634 int group;
f269893c 6635#ifdef CONFIG_SCHED_SMT
c69fc56d 6636 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6637 group = cpumask_first(mask);
f269893c
HC
6638#else
6639 group = cpu;
6640#endif
6711cab4 6641 if (sg)
6c99e9ad 6642 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6643 return group;
1e9f28fa 6644}
f269893c 6645#endif /* CONFIG_SCHED_MC */
1e9f28fa 6646
01a08546
HC
6647/*
6648 * book sched-domains:
6649 */
6650#ifdef CONFIG_SCHED_BOOK
6651static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6652static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6653
41a2d6cf 6654static int
01a08546
HC
6655cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6656 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6657{
01a08546
HC
6658 int group = cpu;
6659#ifdef CONFIG_SCHED_MC
6660 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6661 group = cpumask_first(mask);
6662#elif defined(CONFIG_SCHED_SMT)
6663 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6664 group = cpumask_first(mask);
6665#endif
6711cab4 6666 if (sg)
01a08546
HC
6667 *sg = &per_cpu(sched_group_book, group).sg;
6668 return group;
1e9f28fa 6669}
01a08546 6670#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6671
6c99e9ad
RR
6672static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6673static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6674
41a2d6cf 6675static int
96f874e2
RR
6676cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6677 struct sched_group **sg, struct cpumask *mask)
1da177e4 6678{
6711cab4 6679 int group;
01a08546
HC
6680#ifdef CONFIG_SCHED_BOOK
6681 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6682 group = cpumask_first(mask);
6683#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6684 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6685 group = cpumask_first(mask);
1e9f28fa 6686#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6687 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6688 group = cpumask_first(mask);
1da177e4 6689#else
6711cab4 6690 group = cpu;
1da177e4 6691#endif
6711cab4 6692 if (sg)
6c99e9ad 6693 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6694 return group;
1da177e4
LT
6695}
6696
6697#ifdef CONFIG_NUMA
1da177e4 6698/*
9c1cfda2
JH
6699 * The init_sched_build_groups can't handle what we want to do with node
6700 * groups, so roll our own. Now each node has its own list of groups which
6701 * gets dynamically allocated.
1da177e4 6702 */
62ea9ceb 6703static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6704static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6705
62ea9ceb 6706static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6707static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6708
96f874e2
RR
6709static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6710 struct sched_group **sg,
6711 struct cpumask *nodemask)
9c1cfda2 6712{
6711cab4
SS
6713 int group;
6714
6ca09dfc 6715 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6716 group = cpumask_first(nodemask);
6711cab4
SS
6717
6718 if (sg)
6c99e9ad 6719 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6720 return group;
1da177e4 6721}
6711cab4 6722
08069033
SS
6723static void init_numa_sched_groups_power(struct sched_group *group_head)
6724{
6725 struct sched_group *sg = group_head;
6726 int j;
6727
6728 if (!sg)
6729 return;
3a5c359a 6730 do {
758b2cdc 6731 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6732 struct sched_domain *sd;
08069033 6733
6c99e9ad 6734 sd = &per_cpu(phys_domains, j).sd;
13318a71 6735 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6736 /*
6737 * Only add "power" once for each
6738 * physical package.
6739 */
6740 continue;
6741 }
08069033 6742
18a3885f 6743 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6744 }
6745 sg = sg->next;
6746 } while (sg != group_head);
08069033 6747}
0601a88d
AH
6748
6749static int build_numa_sched_groups(struct s_data *d,
6750 const struct cpumask *cpu_map, int num)
6751{
6752 struct sched_domain *sd;
6753 struct sched_group *sg, *prev;
6754 int n, j;
6755
6756 cpumask_clear(d->covered);
6757 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6758 if (cpumask_empty(d->nodemask)) {
6759 d->sched_group_nodes[num] = NULL;
6760 goto out;
6761 }
6762
6763 sched_domain_node_span(num, d->domainspan);
6764 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6765
6766 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6767 GFP_KERNEL, num);
6768 if (!sg) {
3df0fc5b
PZ
6769 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6770 num);
0601a88d
AH
6771 return -ENOMEM;
6772 }
6773 d->sched_group_nodes[num] = sg;
6774
6775 for_each_cpu(j, d->nodemask) {
6776 sd = &per_cpu(node_domains, j).sd;
6777 sd->groups = sg;
6778 }
6779
18a3885f 6780 sg->cpu_power = 0;
0601a88d
AH
6781 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6782 sg->next = sg;
6783 cpumask_or(d->covered, d->covered, d->nodemask);
6784
6785 prev = sg;
6786 for (j = 0; j < nr_node_ids; j++) {
6787 n = (num + j) % nr_node_ids;
6788 cpumask_complement(d->notcovered, d->covered);
6789 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6790 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6791 if (cpumask_empty(d->tmpmask))
6792 break;
6793 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6794 if (cpumask_empty(d->tmpmask))
6795 continue;
6796 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6797 GFP_KERNEL, num);
6798 if (!sg) {
3df0fc5b
PZ
6799 printk(KERN_WARNING
6800 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6801 return -ENOMEM;
6802 }
18a3885f 6803 sg->cpu_power = 0;
0601a88d
AH
6804 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6805 sg->next = prev->next;
6806 cpumask_or(d->covered, d->covered, d->tmpmask);
6807 prev->next = sg;
6808 prev = sg;
6809 }
6810out:
6811 return 0;
6812}
6d6bc0ad 6813#endif /* CONFIG_NUMA */
1da177e4 6814
a616058b 6815#ifdef CONFIG_NUMA
51888ca2 6816/* Free memory allocated for various sched_group structures */
96f874e2
RR
6817static void free_sched_groups(const struct cpumask *cpu_map,
6818 struct cpumask *nodemask)
51888ca2 6819{
a616058b 6820 int cpu, i;
51888ca2 6821
abcd083a 6822 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6823 struct sched_group **sched_group_nodes
6824 = sched_group_nodes_bycpu[cpu];
6825
51888ca2
SV
6826 if (!sched_group_nodes)
6827 continue;
6828
076ac2af 6829 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6830 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6831
6ca09dfc 6832 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6833 if (cpumask_empty(nodemask))
51888ca2
SV
6834 continue;
6835
6836 if (sg == NULL)
6837 continue;
6838 sg = sg->next;
6839next_sg:
6840 oldsg = sg;
6841 sg = sg->next;
6842 kfree(oldsg);
6843 if (oldsg != sched_group_nodes[i])
6844 goto next_sg;
6845 }
6846 kfree(sched_group_nodes);
6847 sched_group_nodes_bycpu[cpu] = NULL;
6848 }
51888ca2 6849}
6d6bc0ad 6850#else /* !CONFIG_NUMA */
96f874e2
RR
6851static void free_sched_groups(const struct cpumask *cpu_map,
6852 struct cpumask *nodemask)
a616058b
SS
6853{
6854}
6d6bc0ad 6855#endif /* CONFIG_NUMA */
51888ca2 6856
89c4710e
SS
6857/*
6858 * Initialize sched groups cpu_power.
6859 *
6860 * cpu_power indicates the capacity of sched group, which is used while
6861 * distributing the load between different sched groups in a sched domain.
6862 * Typically cpu_power for all the groups in a sched domain will be same unless
6863 * there are asymmetries in the topology. If there are asymmetries, group
6864 * having more cpu_power will pickup more load compared to the group having
6865 * less cpu_power.
89c4710e
SS
6866 */
6867static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6868{
6869 struct sched_domain *child;
6870 struct sched_group *group;
f93e65c1
PZ
6871 long power;
6872 int weight;
89c4710e
SS
6873
6874 WARN_ON(!sd || !sd->groups);
6875
13318a71 6876 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6877 return;
6878
6879 child = sd->child;
6880
18a3885f 6881 sd->groups->cpu_power = 0;
5517d86b 6882
f93e65c1
PZ
6883 if (!child) {
6884 power = SCHED_LOAD_SCALE;
6885 weight = cpumask_weight(sched_domain_span(sd));
6886 /*
6887 * SMT siblings share the power of a single core.
a52bfd73
PZ
6888 * Usually multiple threads get a better yield out of
6889 * that one core than a single thread would have,
6890 * reflect that in sd->smt_gain.
f93e65c1 6891 */
a52bfd73
PZ
6892 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6893 power *= sd->smt_gain;
f93e65c1 6894 power /= weight;
a52bfd73
PZ
6895 power >>= SCHED_LOAD_SHIFT;
6896 }
18a3885f 6897 sd->groups->cpu_power += power;
89c4710e
SS
6898 return;
6899 }
6900
89c4710e 6901 /*
f93e65c1 6902 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6903 */
6904 group = child->groups;
6905 do {
18a3885f 6906 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6907 group = group->next;
6908 } while (group != child->groups);
6909}
6910
7c16ec58
MT
6911/*
6912 * Initializers for schedule domains
6913 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6914 */
6915
a5d8c348
IM
6916#ifdef CONFIG_SCHED_DEBUG
6917# define SD_INIT_NAME(sd, type) sd->name = #type
6918#else
6919# define SD_INIT_NAME(sd, type) do { } while (0)
6920#endif
6921
7c16ec58 6922#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6923
7c16ec58
MT
6924#define SD_INIT_FUNC(type) \
6925static noinline void sd_init_##type(struct sched_domain *sd) \
6926{ \
6927 memset(sd, 0, sizeof(*sd)); \
6928 *sd = SD_##type##_INIT; \
1d3504fc 6929 sd->level = SD_LV_##type; \
a5d8c348 6930 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6931}
6932
6933SD_INIT_FUNC(CPU)
6934#ifdef CONFIG_NUMA
6935 SD_INIT_FUNC(ALLNODES)
6936 SD_INIT_FUNC(NODE)
6937#endif
6938#ifdef CONFIG_SCHED_SMT
6939 SD_INIT_FUNC(SIBLING)
6940#endif
6941#ifdef CONFIG_SCHED_MC
6942 SD_INIT_FUNC(MC)
6943#endif
01a08546
HC
6944#ifdef CONFIG_SCHED_BOOK
6945 SD_INIT_FUNC(BOOK)
6946#endif
7c16ec58 6947
1d3504fc
HS
6948static int default_relax_domain_level = -1;
6949
6950static int __init setup_relax_domain_level(char *str)
6951{
30e0e178
LZ
6952 unsigned long val;
6953
6954 val = simple_strtoul(str, NULL, 0);
6955 if (val < SD_LV_MAX)
6956 default_relax_domain_level = val;
6957
1d3504fc
HS
6958 return 1;
6959}
6960__setup("relax_domain_level=", setup_relax_domain_level);
6961
6962static void set_domain_attribute(struct sched_domain *sd,
6963 struct sched_domain_attr *attr)
6964{
6965 int request;
6966
6967 if (!attr || attr->relax_domain_level < 0) {
6968 if (default_relax_domain_level < 0)
6969 return;
6970 else
6971 request = default_relax_domain_level;
6972 } else
6973 request = attr->relax_domain_level;
6974 if (request < sd->level) {
6975 /* turn off idle balance on this domain */
c88d5910 6976 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6977 } else {
6978 /* turn on idle balance on this domain */
c88d5910 6979 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6980 }
6981}
6982
2109b99e
AH
6983static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6984 const struct cpumask *cpu_map)
6985{
6986 switch (what) {
6987 case sa_sched_groups:
6988 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6989 d->sched_group_nodes = NULL;
6990 case sa_rootdomain:
6991 free_rootdomain(d->rd); /* fall through */
6992 case sa_tmpmask:
6993 free_cpumask_var(d->tmpmask); /* fall through */
6994 case sa_send_covered:
6995 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
6996 case sa_this_book_map:
6997 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
6998 case sa_this_core_map:
6999 free_cpumask_var(d->this_core_map); /* fall through */
7000 case sa_this_sibling_map:
7001 free_cpumask_var(d->this_sibling_map); /* fall through */
7002 case sa_nodemask:
7003 free_cpumask_var(d->nodemask); /* fall through */
7004 case sa_sched_group_nodes:
d1b55138 7005#ifdef CONFIG_NUMA
2109b99e
AH
7006 kfree(d->sched_group_nodes); /* fall through */
7007 case sa_notcovered:
7008 free_cpumask_var(d->notcovered); /* fall through */
7009 case sa_covered:
7010 free_cpumask_var(d->covered); /* fall through */
7011 case sa_domainspan:
7012 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7013#endif
2109b99e
AH
7014 case sa_none:
7015 break;
7016 }
7017}
3404c8d9 7018
2109b99e
AH
7019static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7020 const struct cpumask *cpu_map)
7021{
3404c8d9 7022#ifdef CONFIG_NUMA
2109b99e
AH
7023 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7024 return sa_none;
7025 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7026 return sa_domainspan;
7027 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7028 return sa_covered;
7029 /* Allocate the per-node list of sched groups */
7030 d->sched_group_nodes = kcalloc(nr_node_ids,
7031 sizeof(struct sched_group *), GFP_KERNEL);
7032 if (!d->sched_group_nodes) {
3df0fc5b 7033 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7034 return sa_notcovered;
d1b55138 7035 }
2109b99e 7036 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7037#endif
2109b99e
AH
7038 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7039 return sa_sched_group_nodes;
7040 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7041 return sa_nodemask;
7042 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7043 return sa_this_sibling_map;
01a08546 7044 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7045 return sa_this_core_map;
01a08546
HC
7046 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7047 return sa_this_book_map;
2109b99e
AH
7048 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7049 return sa_send_covered;
7050 d->rd = alloc_rootdomain();
7051 if (!d->rd) {
3df0fc5b 7052 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7053 return sa_tmpmask;
57d885fe 7054 }
2109b99e
AH
7055 return sa_rootdomain;
7056}
57d885fe 7057
7f4588f3
AH
7058static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7059 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7060{
7061 struct sched_domain *sd = NULL;
7c16ec58 7062#ifdef CONFIG_NUMA
7f4588f3 7063 struct sched_domain *parent;
1da177e4 7064
7f4588f3
AH
7065 d->sd_allnodes = 0;
7066 if (cpumask_weight(cpu_map) >
7067 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7068 sd = &per_cpu(allnodes_domains, i).sd;
7069 SD_INIT(sd, ALLNODES);
1d3504fc 7070 set_domain_attribute(sd, attr);
7f4588f3
AH
7071 cpumask_copy(sched_domain_span(sd), cpu_map);
7072 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7073 d->sd_allnodes = 1;
7074 }
7075 parent = sd;
7076
7077 sd = &per_cpu(node_domains, i).sd;
7078 SD_INIT(sd, NODE);
7079 set_domain_attribute(sd, attr);
7080 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7081 sd->parent = parent;
7082 if (parent)
7083 parent->child = sd;
7084 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7085#endif
7f4588f3
AH
7086 return sd;
7087}
1da177e4 7088
87cce662
AH
7089static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7090 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7091 struct sched_domain *parent, int i)
7092{
7093 struct sched_domain *sd;
7094 sd = &per_cpu(phys_domains, i).sd;
7095 SD_INIT(sd, CPU);
7096 set_domain_attribute(sd, attr);
7097 cpumask_copy(sched_domain_span(sd), d->nodemask);
7098 sd->parent = parent;
7099 if (parent)
7100 parent->child = sd;
7101 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7102 return sd;
7103}
1da177e4 7104
01a08546
HC
7105static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7106 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7107 struct sched_domain *parent, int i)
7108{
7109 struct sched_domain *sd = parent;
7110#ifdef CONFIG_SCHED_BOOK
7111 sd = &per_cpu(book_domains, i).sd;
7112 SD_INIT(sd, BOOK);
7113 set_domain_attribute(sd, attr);
7114 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7115 sd->parent = parent;
7116 parent->child = sd;
7117 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7118#endif
7119 return sd;
7120}
7121
410c4081
AH
7122static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7123 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7124 struct sched_domain *parent, int i)
7125{
7126 struct sched_domain *sd = parent;
1e9f28fa 7127#ifdef CONFIG_SCHED_MC
410c4081
AH
7128 sd = &per_cpu(core_domains, i).sd;
7129 SD_INIT(sd, MC);
7130 set_domain_attribute(sd, attr);
7131 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7132 sd->parent = parent;
7133 parent->child = sd;
7134 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7135#endif
410c4081
AH
7136 return sd;
7137}
1e9f28fa 7138
d8173535
AH
7139static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7140 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7141 struct sched_domain *parent, int i)
7142{
7143 struct sched_domain *sd = parent;
1da177e4 7144#ifdef CONFIG_SCHED_SMT
d8173535
AH
7145 sd = &per_cpu(cpu_domains, i).sd;
7146 SD_INIT(sd, SIBLING);
7147 set_domain_attribute(sd, attr);
7148 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7149 sd->parent = parent;
7150 parent->child = sd;
7151 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7152#endif
d8173535
AH
7153 return sd;
7154}
1da177e4 7155
0e8e85c9
AH
7156static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7157 const struct cpumask *cpu_map, int cpu)
7158{
7159 switch (l) {
1da177e4 7160#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7161 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7162 cpumask_and(d->this_sibling_map, cpu_map,
7163 topology_thread_cpumask(cpu));
7164 if (cpu == cpumask_first(d->this_sibling_map))
7165 init_sched_build_groups(d->this_sibling_map, cpu_map,
7166 &cpu_to_cpu_group,
7167 d->send_covered, d->tmpmask);
7168 break;
1da177e4 7169#endif
1e9f28fa 7170#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7171 case SD_LV_MC: /* set up multi-core groups */
7172 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7173 if (cpu == cpumask_first(d->this_core_map))
7174 init_sched_build_groups(d->this_core_map, cpu_map,
7175 &cpu_to_core_group,
7176 d->send_covered, d->tmpmask);
7177 break;
01a08546
HC
7178#endif
7179#ifdef CONFIG_SCHED_BOOK
7180 case SD_LV_BOOK: /* set up book groups */
7181 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7182 if (cpu == cpumask_first(d->this_book_map))
7183 init_sched_build_groups(d->this_book_map, cpu_map,
7184 &cpu_to_book_group,
7185 d->send_covered, d->tmpmask);
7186 break;
1e9f28fa 7187#endif
86548096
AH
7188 case SD_LV_CPU: /* set up physical groups */
7189 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7190 if (!cpumask_empty(d->nodemask))
7191 init_sched_build_groups(d->nodemask, cpu_map,
7192 &cpu_to_phys_group,
7193 d->send_covered, d->tmpmask);
7194 break;
1da177e4 7195#ifdef CONFIG_NUMA
de616e36
AH
7196 case SD_LV_ALLNODES:
7197 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7198 d->send_covered, d->tmpmask);
7199 break;
7200#endif
0e8e85c9
AH
7201 default:
7202 break;
7c16ec58 7203 }
0e8e85c9 7204}
9c1cfda2 7205
2109b99e
AH
7206/*
7207 * Build sched domains for a given set of cpus and attach the sched domains
7208 * to the individual cpus
7209 */
7210static int __build_sched_domains(const struct cpumask *cpu_map,
7211 struct sched_domain_attr *attr)
7212{
7213 enum s_alloc alloc_state = sa_none;
7214 struct s_data d;
294b0c96 7215 struct sched_domain *sd;
2109b99e 7216 int i;
7c16ec58 7217#ifdef CONFIG_NUMA
2109b99e 7218 d.sd_allnodes = 0;
7c16ec58 7219#endif
9c1cfda2 7220
2109b99e
AH
7221 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7222 if (alloc_state != sa_rootdomain)
7223 goto error;
7224 alloc_state = sa_sched_groups;
9c1cfda2 7225
1da177e4 7226 /*
1a20ff27 7227 * Set up domains for cpus specified by the cpu_map.
1da177e4 7228 */
abcd083a 7229 for_each_cpu(i, cpu_map) {
49a02c51
AH
7230 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7231 cpu_map);
9761eea8 7232
7f4588f3 7233 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7234 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7235 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7236 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7237 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7238 }
9c1cfda2 7239
abcd083a 7240 for_each_cpu(i, cpu_map) {
0e8e85c9 7241 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7242 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7243 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7244 }
9c1cfda2 7245
1da177e4 7246 /* Set up physical groups */
86548096
AH
7247 for (i = 0; i < nr_node_ids; i++)
7248 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7249
1da177e4
LT
7250#ifdef CONFIG_NUMA
7251 /* Set up node groups */
de616e36
AH
7252 if (d.sd_allnodes)
7253 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7254
0601a88d
AH
7255 for (i = 0; i < nr_node_ids; i++)
7256 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7257 goto error;
1da177e4
LT
7258#endif
7259
7260 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7261#ifdef CONFIG_SCHED_SMT
abcd083a 7262 for_each_cpu(i, cpu_map) {
294b0c96 7263 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7264 init_sched_groups_power(i, sd);
5c45bf27 7265 }
1da177e4 7266#endif
1e9f28fa 7267#ifdef CONFIG_SCHED_MC
abcd083a 7268 for_each_cpu(i, cpu_map) {
294b0c96 7269 sd = &per_cpu(core_domains, i).sd;
89c4710e 7270 init_sched_groups_power(i, sd);
5c45bf27
SS
7271 }
7272#endif
01a08546
HC
7273#ifdef CONFIG_SCHED_BOOK
7274 for_each_cpu(i, cpu_map) {
7275 sd = &per_cpu(book_domains, i).sd;
7276 init_sched_groups_power(i, sd);
7277 }
7278#endif
1e9f28fa 7279
abcd083a 7280 for_each_cpu(i, cpu_map) {
294b0c96 7281 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7282 init_sched_groups_power(i, sd);
1da177e4
LT
7283 }
7284
9c1cfda2 7285#ifdef CONFIG_NUMA
076ac2af 7286 for (i = 0; i < nr_node_ids; i++)
49a02c51 7287 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7288
49a02c51 7289 if (d.sd_allnodes) {
6711cab4 7290 struct sched_group *sg;
f712c0c7 7291
96f874e2 7292 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7293 d.tmpmask);
f712c0c7
SS
7294 init_numa_sched_groups_power(sg);
7295 }
9c1cfda2
JH
7296#endif
7297
1da177e4 7298 /* Attach the domains */
abcd083a 7299 for_each_cpu(i, cpu_map) {
1da177e4 7300#ifdef CONFIG_SCHED_SMT
6c99e9ad 7301 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7302#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7303 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7304#elif defined(CONFIG_SCHED_BOOK)
7305 sd = &per_cpu(book_domains, i).sd;
1da177e4 7306#else
6c99e9ad 7307 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7308#endif
49a02c51 7309 cpu_attach_domain(sd, d.rd, i);
1da177e4 7310 }
51888ca2 7311
2109b99e
AH
7312 d.sched_group_nodes = NULL; /* don't free this we still need it */
7313 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7314 return 0;
51888ca2 7315
51888ca2 7316error:
2109b99e
AH
7317 __free_domain_allocs(&d, alloc_state, cpu_map);
7318 return -ENOMEM;
1da177e4 7319}
029190c5 7320
96f874e2 7321static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7322{
7323 return __build_sched_domains(cpu_map, NULL);
7324}
7325
acc3f5d7 7326static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7327static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7328static struct sched_domain_attr *dattr_cur;
7329 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7330
7331/*
7332 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7333 * cpumask) fails, then fallback to a single sched domain,
7334 * as determined by the single cpumask fallback_doms.
029190c5 7335 */
4212823f 7336static cpumask_var_t fallback_doms;
029190c5 7337
ee79d1bd
HC
7338/*
7339 * arch_update_cpu_topology lets virtualized architectures update the
7340 * cpu core maps. It is supposed to return 1 if the topology changed
7341 * or 0 if it stayed the same.
7342 */
7343int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7344{
ee79d1bd 7345 return 0;
22e52b07
HC
7346}
7347
acc3f5d7
RR
7348cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7349{
7350 int i;
7351 cpumask_var_t *doms;
7352
7353 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7354 if (!doms)
7355 return NULL;
7356 for (i = 0; i < ndoms; i++) {
7357 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7358 free_sched_domains(doms, i);
7359 return NULL;
7360 }
7361 }
7362 return doms;
7363}
7364
7365void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7366{
7367 unsigned int i;
7368 for (i = 0; i < ndoms; i++)
7369 free_cpumask_var(doms[i]);
7370 kfree(doms);
7371}
7372
1a20ff27 7373/*
41a2d6cf 7374 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7375 * For now this just excludes isolated cpus, but could be used to
7376 * exclude other special cases in the future.
1a20ff27 7377 */
96f874e2 7378static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7379{
7378547f
MM
7380 int err;
7381
22e52b07 7382 arch_update_cpu_topology();
029190c5 7383 ndoms_cur = 1;
acc3f5d7 7384 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7385 if (!doms_cur)
acc3f5d7
RR
7386 doms_cur = &fallback_doms;
7387 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7388 dattr_cur = NULL;
acc3f5d7 7389 err = build_sched_domains(doms_cur[0]);
6382bc90 7390 register_sched_domain_sysctl();
7378547f
MM
7391
7392 return err;
1a20ff27
DG
7393}
7394
96f874e2
RR
7395static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7396 struct cpumask *tmpmask)
1da177e4 7397{
7c16ec58 7398 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7399}
1da177e4 7400
1a20ff27
DG
7401/*
7402 * Detach sched domains from a group of cpus specified in cpu_map
7403 * These cpus will now be attached to the NULL domain
7404 */
96f874e2 7405static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7406{
96f874e2
RR
7407 /* Save because hotplug lock held. */
7408 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7409 int i;
7410
abcd083a 7411 for_each_cpu(i, cpu_map)
57d885fe 7412 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7413 synchronize_sched();
96f874e2 7414 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7415}
7416
1d3504fc
HS
7417/* handle null as "default" */
7418static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7419 struct sched_domain_attr *new, int idx_new)
7420{
7421 struct sched_domain_attr tmp;
7422
7423 /* fast path */
7424 if (!new && !cur)
7425 return 1;
7426
7427 tmp = SD_ATTR_INIT;
7428 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7429 new ? (new + idx_new) : &tmp,
7430 sizeof(struct sched_domain_attr));
7431}
7432
029190c5
PJ
7433/*
7434 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7435 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7436 * doms_new[] to the current sched domain partitioning, doms_cur[].
7437 * It destroys each deleted domain and builds each new domain.
7438 *
acc3f5d7 7439 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7440 * The masks don't intersect (don't overlap.) We should setup one
7441 * sched domain for each mask. CPUs not in any of the cpumasks will
7442 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7443 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7444 * it as it is.
7445 *
acc3f5d7
RR
7446 * The passed in 'doms_new' should be allocated using
7447 * alloc_sched_domains. This routine takes ownership of it and will
7448 * free_sched_domains it when done with it. If the caller failed the
7449 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7450 * and partition_sched_domains() will fallback to the single partition
7451 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7452 *
96f874e2 7453 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7454 * ndoms_new == 0 is a special case for destroying existing domains,
7455 * and it will not create the default domain.
dfb512ec 7456 *
029190c5
PJ
7457 * Call with hotplug lock held
7458 */
acc3f5d7 7459void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7460 struct sched_domain_attr *dattr_new)
029190c5 7461{
dfb512ec 7462 int i, j, n;
d65bd5ec 7463 int new_topology;
029190c5 7464
712555ee 7465 mutex_lock(&sched_domains_mutex);
a1835615 7466
7378547f
MM
7467 /* always unregister in case we don't destroy any domains */
7468 unregister_sched_domain_sysctl();
7469
d65bd5ec
HC
7470 /* Let architecture update cpu core mappings. */
7471 new_topology = arch_update_cpu_topology();
7472
dfb512ec 7473 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7474
7475 /* Destroy deleted domains */
7476 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7477 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7478 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7479 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7480 goto match1;
7481 }
7482 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7483 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7484match1:
7485 ;
7486 }
7487
e761b772
MK
7488 if (doms_new == NULL) {
7489 ndoms_cur = 0;
acc3f5d7 7490 doms_new = &fallback_doms;
6ad4c188 7491 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7492 WARN_ON_ONCE(dattr_new);
e761b772
MK
7493 }
7494
029190c5
PJ
7495 /* Build new domains */
7496 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7497 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7498 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7499 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7500 goto match2;
7501 }
7502 /* no match - add a new doms_new */
acc3f5d7 7503 __build_sched_domains(doms_new[i],
1d3504fc 7504 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7505match2:
7506 ;
7507 }
7508
7509 /* Remember the new sched domains */
acc3f5d7
RR
7510 if (doms_cur != &fallback_doms)
7511 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7512 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7513 doms_cur = doms_new;
1d3504fc 7514 dattr_cur = dattr_new;
029190c5 7515 ndoms_cur = ndoms_new;
7378547f
MM
7516
7517 register_sched_domain_sysctl();
a1835615 7518
712555ee 7519 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7520}
7521
5c45bf27 7522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7523static void arch_reinit_sched_domains(void)
5c45bf27 7524{
95402b38 7525 get_online_cpus();
dfb512ec
MK
7526
7527 /* Destroy domains first to force the rebuild */
7528 partition_sched_domains(0, NULL, NULL);
7529
e761b772 7530 rebuild_sched_domains();
95402b38 7531 put_online_cpus();
5c45bf27
SS
7532}
7533
7534static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7535{
afb8a9b7 7536 unsigned int level = 0;
5c45bf27 7537
afb8a9b7
GS
7538 if (sscanf(buf, "%u", &level) != 1)
7539 return -EINVAL;
7540
7541 /*
7542 * level is always be positive so don't check for
7543 * level < POWERSAVINGS_BALANCE_NONE which is 0
7544 * What happens on 0 or 1 byte write,
7545 * need to check for count as well?
7546 */
7547
7548 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7549 return -EINVAL;
7550
7551 if (smt)
afb8a9b7 7552 sched_smt_power_savings = level;
5c45bf27 7553 else
afb8a9b7 7554 sched_mc_power_savings = level;
5c45bf27 7555
c70f22d2 7556 arch_reinit_sched_domains();
5c45bf27 7557
c70f22d2 7558 return count;
5c45bf27
SS
7559}
7560
5c45bf27 7561#ifdef CONFIG_SCHED_MC
f718cd4a 7562static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7563 struct sysdev_class_attribute *attr,
f718cd4a 7564 char *page)
5c45bf27
SS
7565{
7566 return sprintf(page, "%u\n", sched_mc_power_savings);
7567}
f718cd4a 7568static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7569 struct sysdev_class_attribute *attr,
48f24c4d 7570 const char *buf, size_t count)
5c45bf27
SS
7571{
7572 return sched_power_savings_store(buf, count, 0);
7573}
f718cd4a
AK
7574static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7575 sched_mc_power_savings_show,
7576 sched_mc_power_savings_store);
5c45bf27
SS
7577#endif
7578
7579#ifdef CONFIG_SCHED_SMT
f718cd4a 7580static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7581 struct sysdev_class_attribute *attr,
f718cd4a 7582 char *page)
5c45bf27
SS
7583{
7584 return sprintf(page, "%u\n", sched_smt_power_savings);
7585}
f718cd4a 7586static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7587 struct sysdev_class_attribute *attr,
48f24c4d 7588 const char *buf, size_t count)
5c45bf27
SS
7589{
7590 return sched_power_savings_store(buf, count, 1);
7591}
f718cd4a
AK
7592static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7593 sched_smt_power_savings_show,
6707de00
AB
7594 sched_smt_power_savings_store);
7595#endif
7596
39aac648 7597int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7598{
7599 int err = 0;
7600
7601#ifdef CONFIG_SCHED_SMT
7602 if (smt_capable())
7603 err = sysfs_create_file(&cls->kset.kobj,
7604 &attr_sched_smt_power_savings.attr);
7605#endif
7606#ifdef CONFIG_SCHED_MC
7607 if (!err && mc_capable())
7608 err = sysfs_create_file(&cls->kset.kobj,
7609 &attr_sched_mc_power_savings.attr);
7610#endif
7611 return err;
7612}
6d6bc0ad 7613#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7614
1da177e4 7615/*
3a101d05
TH
7616 * Update cpusets according to cpu_active mask. If cpusets are
7617 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7618 * around partition_sched_domains().
1da177e4 7619 */
0b2e918a
TH
7620static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7621 void *hcpu)
e761b772 7622{
3a101d05 7623 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7624 case CPU_ONLINE:
6ad4c188 7625 case CPU_DOWN_FAILED:
3a101d05 7626 cpuset_update_active_cpus();
e761b772 7627 return NOTIFY_OK;
3a101d05
TH
7628 default:
7629 return NOTIFY_DONE;
7630 }
7631}
e761b772 7632
0b2e918a
TH
7633static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7634 void *hcpu)
3a101d05
TH
7635{
7636 switch (action & ~CPU_TASKS_FROZEN) {
7637 case CPU_DOWN_PREPARE:
7638 cpuset_update_active_cpus();
7639 return NOTIFY_OK;
e761b772
MK
7640 default:
7641 return NOTIFY_DONE;
7642 }
7643}
e761b772
MK
7644
7645static int update_runtime(struct notifier_block *nfb,
7646 unsigned long action, void *hcpu)
1da177e4 7647{
7def2be1
PZ
7648 int cpu = (int)(long)hcpu;
7649
1da177e4 7650 switch (action) {
1da177e4 7651 case CPU_DOWN_PREPARE:
8bb78442 7652 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7653 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7654 return NOTIFY_OK;
7655
1da177e4 7656 case CPU_DOWN_FAILED:
8bb78442 7657 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7658 case CPU_ONLINE:
8bb78442 7659 case CPU_ONLINE_FROZEN:
7def2be1 7660 enable_runtime(cpu_rq(cpu));
e761b772
MK
7661 return NOTIFY_OK;
7662
1da177e4
LT
7663 default:
7664 return NOTIFY_DONE;
7665 }
1da177e4 7666}
1da177e4
LT
7667
7668void __init sched_init_smp(void)
7669{
dcc30a35
RR
7670 cpumask_var_t non_isolated_cpus;
7671
7672 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7673 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7674
434d53b0
MT
7675#if defined(CONFIG_NUMA)
7676 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7677 GFP_KERNEL);
7678 BUG_ON(sched_group_nodes_bycpu == NULL);
7679#endif
95402b38 7680 get_online_cpus();
712555ee 7681 mutex_lock(&sched_domains_mutex);
6ad4c188 7682 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7683 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7684 if (cpumask_empty(non_isolated_cpus))
7685 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7686 mutex_unlock(&sched_domains_mutex);
95402b38 7687 put_online_cpus();
e761b772 7688
3a101d05
TH
7689 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7690 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7691
7692 /* RT runtime code needs to handle some hotplug events */
7693 hotcpu_notifier(update_runtime, 0);
7694
b328ca18 7695 init_hrtick();
5c1e1767
NP
7696
7697 /* Move init over to a non-isolated CPU */
dcc30a35 7698 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7699 BUG();
19978ca6 7700 sched_init_granularity();
dcc30a35 7701 free_cpumask_var(non_isolated_cpus);
4212823f 7702
0e3900e6 7703 init_sched_rt_class();
1da177e4
LT
7704}
7705#else
7706void __init sched_init_smp(void)
7707{
19978ca6 7708 sched_init_granularity();
1da177e4
LT
7709}
7710#endif /* CONFIG_SMP */
7711
cd1bb94b
AB
7712const_debug unsigned int sysctl_timer_migration = 1;
7713
1da177e4
LT
7714int in_sched_functions(unsigned long addr)
7715{
1da177e4
LT
7716 return in_lock_functions(addr) ||
7717 (addr >= (unsigned long)__sched_text_start
7718 && addr < (unsigned long)__sched_text_end);
7719}
7720
a9957449 7721static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7722{
7723 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7724 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7725#ifdef CONFIG_FAIR_GROUP_SCHED
7726 cfs_rq->rq = rq;
7727#endif
67e9fb2a 7728 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7729}
7730
fa85ae24
PZ
7731static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7732{
7733 struct rt_prio_array *array;
7734 int i;
7735
7736 array = &rt_rq->active;
7737 for (i = 0; i < MAX_RT_PRIO; i++) {
7738 INIT_LIST_HEAD(array->queue + i);
7739 __clear_bit(i, array->bitmap);
7740 }
7741 /* delimiter for bitsearch: */
7742 __set_bit(MAX_RT_PRIO, array->bitmap);
7743
052f1dc7 7744#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7745 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7746#ifdef CONFIG_SMP
e864c499 7747 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7748#endif
48d5e258 7749#endif
fa85ae24
PZ
7750#ifdef CONFIG_SMP
7751 rt_rq->rt_nr_migratory = 0;
fa85ae24 7752 rt_rq->overloaded = 0;
05fa785c 7753 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7754#endif
7755
7756 rt_rq->rt_time = 0;
7757 rt_rq->rt_throttled = 0;
ac086bc2 7758 rt_rq->rt_runtime = 0;
0986b11b 7759 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7760
052f1dc7 7761#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7762 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7763 rt_rq->rq = rq;
7764#endif
fa85ae24
PZ
7765}
7766
6f505b16 7767#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7768static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7769 struct sched_entity *se, int cpu, int add,
7770 struct sched_entity *parent)
6f505b16 7771{
ec7dc8ac 7772 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7773 tg->cfs_rq[cpu] = cfs_rq;
7774 init_cfs_rq(cfs_rq, rq);
7775 cfs_rq->tg = tg;
7776 if (add)
7777 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7778
7779 tg->se[cpu] = se;
354d60c2
DG
7780 /* se could be NULL for init_task_group */
7781 if (!se)
7782 return;
7783
ec7dc8ac
DG
7784 if (!parent)
7785 se->cfs_rq = &rq->cfs;
7786 else
7787 se->cfs_rq = parent->my_q;
7788
6f505b16
PZ
7789 se->my_q = cfs_rq;
7790 se->load.weight = tg->shares;
e05510d0 7791 se->load.inv_weight = 0;
ec7dc8ac 7792 se->parent = parent;
6f505b16 7793}
052f1dc7 7794#endif
6f505b16 7795
052f1dc7 7796#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7797static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7798 struct sched_rt_entity *rt_se, int cpu, int add,
7799 struct sched_rt_entity *parent)
6f505b16 7800{
ec7dc8ac
DG
7801 struct rq *rq = cpu_rq(cpu);
7802
6f505b16
PZ
7803 tg->rt_rq[cpu] = rt_rq;
7804 init_rt_rq(rt_rq, rq);
7805 rt_rq->tg = tg;
ac086bc2 7806 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7807 if (add)
7808 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7809
7810 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7811 if (!rt_se)
7812 return;
7813
ec7dc8ac
DG
7814 if (!parent)
7815 rt_se->rt_rq = &rq->rt;
7816 else
7817 rt_se->rt_rq = parent->my_q;
7818
6f505b16 7819 rt_se->my_q = rt_rq;
ec7dc8ac 7820 rt_se->parent = parent;
6f505b16
PZ
7821 INIT_LIST_HEAD(&rt_se->run_list);
7822}
7823#endif
7824
1da177e4
LT
7825void __init sched_init(void)
7826{
dd41f596 7827 int i, j;
434d53b0
MT
7828 unsigned long alloc_size = 0, ptr;
7829
7830#ifdef CONFIG_FAIR_GROUP_SCHED
7831 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7832#endif
7833#ifdef CONFIG_RT_GROUP_SCHED
7834 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7835#endif
df7c8e84 7836#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7837 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7838#endif
434d53b0 7839 if (alloc_size) {
36b7b6d4 7840 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7841
7842#ifdef CONFIG_FAIR_GROUP_SCHED
7843 init_task_group.se = (struct sched_entity **)ptr;
7844 ptr += nr_cpu_ids * sizeof(void **);
7845
7846 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7847 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7848
6d6bc0ad 7849#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7850#ifdef CONFIG_RT_GROUP_SCHED
7851 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7852 ptr += nr_cpu_ids * sizeof(void **);
7853
7854 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7855 ptr += nr_cpu_ids * sizeof(void **);
7856
6d6bc0ad 7857#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7858#ifdef CONFIG_CPUMASK_OFFSTACK
7859 for_each_possible_cpu(i) {
7860 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7861 ptr += cpumask_size();
7862 }
7863#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7864 }
dd41f596 7865
57d885fe
GH
7866#ifdef CONFIG_SMP
7867 init_defrootdomain();
7868#endif
7869
d0b27fa7
PZ
7870 init_rt_bandwidth(&def_rt_bandwidth,
7871 global_rt_period(), global_rt_runtime());
7872
7873#ifdef CONFIG_RT_GROUP_SCHED
7874 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7875 global_rt_period(), global_rt_runtime());
6d6bc0ad 7876#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7877
7c941438 7878#ifdef CONFIG_CGROUP_SCHED
6f505b16 7879 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7880 INIT_LIST_HEAD(&init_task_group.children);
7881
7c941438 7882#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7883
4a6cc4bd
JK
7884#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7885 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7886 __alignof__(unsigned long));
7887#endif
0a945022 7888 for_each_possible_cpu(i) {
70b97a7f 7889 struct rq *rq;
1da177e4
LT
7890
7891 rq = cpu_rq(i);
05fa785c 7892 raw_spin_lock_init(&rq->lock);
7897986b 7893 rq->nr_running = 0;
dce48a84
TG
7894 rq->calc_load_active = 0;
7895 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7896 init_cfs_rq(&rq->cfs, rq);
6f505b16 7897 init_rt_rq(&rq->rt, rq);
dd41f596 7898#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7899 init_task_group.shares = init_task_group_load;
6f505b16 7900 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7901#ifdef CONFIG_CGROUP_SCHED
7902 /*
7903 * How much cpu bandwidth does init_task_group get?
7904 *
7905 * In case of task-groups formed thr' the cgroup filesystem, it
7906 * gets 100% of the cpu resources in the system. This overall
7907 * system cpu resource is divided among the tasks of
7908 * init_task_group and its child task-groups in a fair manner,
7909 * based on each entity's (task or task-group's) weight
7910 * (se->load.weight).
7911 *
7912 * In other words, if init_task_group has 10 tasks of weight
7913 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7914 * then A0's share of the cpu resource is:
7915 *
0d905bca 7916 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7917 *
7918 * We achieve this by letting init_task_group's tasks sit
7919 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7920 */
ec7dc8ac 7921 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7922#endif
354d60c2
DG
7923#endif /* CONFIG_FAIR_GROUP_SCHED */
7924
7925 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7926#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7927 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7928#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7929 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7930#endif
dd41f596 7931#endif
1da177e4 7932
dd41f596
IM
7933 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7934 rq->cpu_load[j] = 0;
fdf3e95d
VP
7935
7936 rq->last_load_update_tick = jiffies;
7937
1da177e4 7938#ifdef CONFIG_SMP
41c7ce9a 7939 rq->sd = NULL;
57d885fe 7940 rq->rd = NULL;
e51fd5e2 7941 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7942 rq->post_schedule = 0;
1da177e4 7943 rq->active_balance = 0;
dd41f596 7944 rq->next_balance = jiffies;
1da177e4 7945 rq->push_cpu = 0;
0a2966b4 7946 rq->cpu = i;
1f11eb6a 7947 rq->online = 0;
eae0c9df
MG
7948 rq->idle_stamp = 0;
7949 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7950 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7951#ifdef CONFIG_NO_HZ
7952 rq->nohz_balance_kick = 0;
7953 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7954#endif
1da177e4 7955#endif
8f4d37ec 7956 init_rq_hrtick(rq);
1da177e4 7957 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7958 }
7959
2dd73a4f 7960 set_load_weight(&init_task);
b50f60ce 7961
e107be36
AK
7962#ifdef CONFIG_PREEMPT_NOTIFIERS
7963 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7964#endif
7965
c9819f45 7966#ifdef CONFIG_SMP
962cf36c 7967 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7968#endif
7969
b50f60ce 7970#ifdef CONFIG_RT_MUTEXES
1d615482 7971 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7972#endif
7973
1da177e4
LT
7974 /*
7975 * The boot idle thread does lazy MMU switching as well:
7976 */
7977 atomic_inc(&init_mm.mm_count);
7978 enter_lazy_tlb(&init_mm, current);
7979
7980 /*
7981 * Make us the idle thread. Technically, schedule() should not be
7982 * called from this thread, however somewhere below it might be,
7983 * but because we are the idle thread, we just pick up running again
7984 * when this runqueue becomes "idle".
7985 */
7986 init_idle(current, smp_processor_id());
dce48a84
TG
7987
7988 calc_load_update = jiffies + LOAD_FREQ;
7989
dd41f596
IM
7990 /*
7991 * During early bootup we pretend to be a normal task:
7992 */
7993 current->sched_class = &fair_sched_class;
6892b75e 7994
6a7b3dc3 7995 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7996 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7997#ifdef CONFIG_SMP
7d1e6a9b 7998#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7999 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8000 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8001 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8002 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8003 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8004#endif
bdddd296
RR
8005 /* May be allocated at isolcpus cmdline parse time */
8006 if (cpu_isolated_map == NULL)
8007 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8008#endif /* SMP */
6a7b3dc3 8009
cdd6c482 8010 perf_event_init();
0d905bca 8011
6892b75e 8012 scheduler_running = 1;
1da177e4
LT
8013}
8014
8015#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8016static inline int preempt_count_equals(int preempt_offset)
8017{
234da7bc 8018 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8019
8020 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8021}
8022
d894837f 8023void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8024{
48f24c4d 8025#ifdef in_atomic
1da177e4
LT
8026 static unsigned long prev_jiffy; /* ratelimiting */
8027
e4aafea2
FW
8028 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8029 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8030 return;
8031 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8032 return;
8033 prev_jiffy = jiffies;
8034
3df0fc5b
PZ
8035 printk(KERN_ERR
8036 "BUG: sleeping function called from invalid context at %s:%d\n",
8037 file, line);
8038 printk(KERN_ERR
8039 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8040 in_atomic(), irqs_disabled(),
8041 current->pid, current->comm);
aef745fc
IM
8042
8043 debug_show_held_locks(current);
8044 if (irqs_disabled())
8045 print_irqtrace_events(current);
8046 dump_stack();
1da177e4
LT
8047#endif
8048}
8049EXPORT_SYMBOL(__might_sleep);
8050#endif
8051
8052#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8053static void normalize_task(struct rq *rq, struct task_struct *p)
8054{
8055 int on_rq;
3e51f33f 8056
3a5e4dc1
AK
8057 on_rq = p->se.on_rq;
8058 if (on_rq)
8059 deactivate_task(rq, p, 0);
8060 __setscheduler(rq, p, SCHED_NORMAL, 0);
8061 if (on_rq) {
8062 activate_task(rq, p, 0);
8063 resched_task(rq->curr);
8064 }
8065}
8066
1da177e4
LT
8067void normalize_rt_tasks(void)
8068{
a0f98a1c 8069 struct task_struct *g, *p;
1da177e4 8070 unsigned long flags;
70b97a7f 8071 struct rq *rq;
1da177e4 8072
4cf5d77a 8073 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8074 do_each_thread(g, p) {
178be793
IM
8075 /*
8076 * Only normalize user tasks:
8077 */
8078 if (!p->mm)
8079 continue;
8080
6cfb0d5d 8081 p->se.exec_start = 0;
6cfb0d5d 8082#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8083 p->se.statistics.wait_start = 0;
8084 p->se.statistics.sleep_start = 0;
8085 p->se.statistics.block_start = 0;
6cfb0d5d 8086#endif
dd41f596
IM
8087
8088 if (!rt_task(p)) {
8089 /*
8090 * Renice negative nice level userspace
8091 * tasks back to 0:
8092 */
8093 if (TASK_NICE(p) < 0 && p->mm)
8094 set_user_nice(p, 0);
1da177e4 8095 continue;
dd41f596 8096 }
1da177e4 8097
1d615482 8098 raw_spin_lock(&p->pi_lock);
b29739f9 8099 rq = __task_rq_lock(p);
1da177e4 8100
178be793 8101 normalize_task(rq, p);
3a5e4dc1 8102
b29739f9 8103 __task_rq_unlock(rq);
1d615482 8104 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8105 } while_each_thread(g, p);
8106
4cf5d77a 8107 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8108}
8109
8110#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8111
67fc4e0c 8112#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8113/*
67fc4e0c 8114 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8115 *
8116 * They can only be called when the whole system has been
8117 * stopped - every CPU needs to be quiescent, and no scheduling
8118 * activity can take place. Using them for anything else would
8119 * be a serious bug, and as a result, they aren't even visible
8120 * under any other configuration.
8121 */
8122
8123/**
8124 * curr_task - return the current task for a given cpu.
8125 * @cpu: the processor in question.
8126 *
8127 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8128 */
36c8b586 8129struct task_struct *curr_task(int cpu)
1df5c10a
LT
8130{
8131 return cpu_curr(cpu);
8132}
8133
67fc4e0c
JW
8134#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8135
8136#ifdef CONFIG_IA64
1df5c10a
LT
8137/**
8138 * set_curr_task - set the current task for a given cpu.
8139 * @cpu: the processor in question.
8140 * @p: the task pointer to set.
8141 *
8142 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8143 * are serviced on a separate stack. It allows the architecture to switch the
8144 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8145 * must be called with all CPU's synchronized, and interrupts disabled, the
8146 * and caller must save the original value of the current task (see
8147 * curr_task() above) and restore that value before reenabling interrupts and
8148 * re-starting the system.
8149 *
8150 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8151 */
36c8b586 8152void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8153{
8154 cpu_curr(cpu) = p;
8155}
8156
8157#endif
29f59db3 8158
bccbe08a
PZ
8159#ifdef CONFIG_FAIR_GROUP_SCHED
8160static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8161{
8162 int i;
8163
8164 for_each_possible_cpu(i) {
8165 if (tg->cfs_rq)
8166 kfree(tg->cfs_rq[i]);
8167 if (tg->se)
8168 kfree(tg->se[i]);
6f505b16
PZ
8169 }
8170
8171 kfree(tg->cfs_rq);
8172 kfree(tg->se);
6f505b16
PZ
8173}
8174
ec7dc8ac
DG
8175static
8176int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8177{
29f59db3 8178 struct cfs_rq *cfs_rq;
eab17229 8179 struct sched_entity *se;
9b5b7751 8180 struct rq *rq;
29f59db3
SV
8181 int i;
8182
434d53b0 8183 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8184 if (!tg->cfs_rq)
8185 goto err;
434d53b0 8186 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8187 if (!tg->se)
8188 goto err;
052f1dc7
PZ
8189
8190 tg->shares = NICE_0_LOAD;
29f59db3
SV
8191
8192 for_each_possible_cpu(i) {
9b5b7751 8193 rq = cpu_rq(i);
29f59db3 8194
eab17229
LZ
8195 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8196 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8197 if (!cfs_rq)
8198 goto err;
8199
eab17229
LZ
8200 se = kzalloc_node(sizeof(struct sched_entity),
8201 GFP_KERNEL, cpu_to_node(i));
29f59db3 8202 if (!se)
dfc12eb2 8203 goto err_free_rq;
29f59db3 8204
eab17229 8205 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8206 }
8207
8208 return 1;
8209
49246274 8210err_free_rq:
dfc12eb2 8211 kfree(cfs_rq);
49246274 8212err:
bccbe08a
PZ
8213 return 0;
8214}
8215
8216static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8217{
8218 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8219 &cpu_rq(cpu)->leaf_cfs_rq_list);
8220}
8221
8222static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8223{
8224 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8225}
6d6bc0ad 8226#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8227static inline void free_fair_sched_group(struct task_group *tg)
8228{
8229}
8230
ec7dc8ac
DG
8231static inline
8232int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8233{
8234 return 1;
8235}
8236
8237static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8238{
8239}
8240
8241static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8242{
8243}
6d6bc0ad 8244#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8245
8246#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8247static void free_rt_sched_group(struct task_group *tg)
8248{
8249 int i;
8250
d0b27fa7
PZ
8251 destroy_rt_bandwidth(&tg->rt_bandwidth);
8252
bccbe08a
PZ
8253 for_each_possible_cpu(i) {
8254 if (tg->rt_rq)
8255 kfree(tg->rt_rq[i]);
8256 if (tg->rt_se)
8257 kfree(tg->rt_se[i]);
8258 }
8259
8260 kfree(tg->rt_rq);
8261 kfree(tg->rt_se);
8262}
8263
ec7dc8ac
DG
8264static
8265int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8266{
8267 struct rt_rq *rt_rq;
eab17229 8268 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8269 struct rq *rq;
8270 int i;
8271
434d53b0 8272 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8273 if (!tg->rt_rq)
8274 goto err;
434d53b0 8275 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8276 if (!tg->rt_se)
8277 goto err;
8278
d0b27fa7
PZ
8279 init_rt_bandwidth(&tg->rt_bandwidth,
8280 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8281
8282 for_each_possible_cpu(i) {
8283 rq = cpu_rq(i);
8284
eab17229
LZ
8285 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8286 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8287 if (!rt_rq)
8288 goto err;
29f59db3 8289
eab17229
LZ
8290 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8291 GFP_KERNEL, cpu_to_node(i));
6f505b16 8292 if (!rt_se)
dfc12eb2 8293 goto err_free_rq;
29f59db3 8294
eab17229 8295 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8296 }
8297
bccbe08a
PZ
8298 return 1;
8299
49246274 8300err_free_rq:
dfc12eb2 8301 kfree(rt_rq);
49246274 8302err:
bccbe08a
PZ
8303 return 0;
8304}
8305
8306static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8307{
8308 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8309 &cpu_rq(cpu)->leaf_rt_rq_list);
8310}
8311
8312static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8313{
8314 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8315}
6d6bc0ad 8316#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8317static inline void free_rt_sched_group(struct task_group *tg)
8318{
8319}
8320
ec7dc8ac
DG
8321static inline
8322int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8323{
8324 return 1;
8325}
8326
8327static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8328{
8329}
8330
8331static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8332{
8333}
6d6bc0ad 8334#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8335
7c941438 8336#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8337static void free_sched_group(struct task_group *tg)
8338{
8339 free_fair_sched_group(tg);
8340 free_rt_sched_group(tg);
8341 kfree(tg);
8342}
8343
8344/* allocate runqueue etc for a new task group */
ec7dc8ac 8345struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8346{
8347 struct task_group *tg;
8348 unsigned long flags;
8349 int i;
8350
8351 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8352 if (!tg)
8353 return ERR_PTR(-ENOMEM);
8354
ec7dc8ac 8355 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8356 goto err;
8357
ec7dc8ac 8358 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8359 goto err;
8360
8ed36996 8361 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8362 for_each_possible_cpu(i) {
bccbe08a
PZ
8363 register_fair_sched_group(tg, i);
8364 register_rt_sched_group(tg, i);
9b5b7751 8365 }
6f505b16 8366 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8367
8368 WARN_ON(!parent); /* root should already exist */
8369
8370 tg->parent = parent;
f473aa5e 8371 INIT_LIST_HEAD(&tg->children);
09f2724a 8372 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8373 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8374
9b5b7751 8375 return tg;
29f59db3
SV
8376
8377err:
6f505b16 8378 free_sched_group(tg);
29f59db3
SV
8379 return ERR_PTR(-ENOMEM);
8380}
8381
9b5b7751 8382/* rcu callback to free various structures associated with a task group */
6f505b16 8383static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8384{
29f59db3 8385 /* now it should be safe to free those cfs_rqs */
6f505b16 8386 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8387}
8388
9b5b7751 8389/* Destroy runqueue etc associated with a task group */
4cf86d77 8390void sched_destroy_group(struct task_group *tg)
29f59db3 8391{
8ed36996 8392 unsigned long flags;
9b5b7751 8393 int i;
29f59db3 8394
8ed36996 8395 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8396 for_each_possible_cpu(i) {
bccbe08a
PZ
8397 unregister_fair_sched_group(tg, i);
8398 unregister_rt_sched_group(tg, i);
9b5b7751 8399 }
6f505b16 8400 list_del_rcu(&tg->list);
f473aa5e 8401 list_del_rcu(&tg->siblings);
8ed36996 8402 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8403
9b5b7751 8404 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8405 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8406}
8407
9b5b7751 8408/* change task's runqueue when it moves between groups.
3a252015
IM
8409 * The caller of this function should have put the task in its new group
8410 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8411 * reflect its new group.
9b5b7751
SV
8412 */
8413void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8414{
8415 int on_rq, running;
8416 unsigned long flags;
8417 struct rq *rq;
8418
8419 rq = task_rq_lock(tsk, &flags);
8420
051a1d1a 8421 running = task_current(rq, tsk);
29f59db3
SV
8422 on_rq = tsk->se.on_rq;
8423
0e1f3483 8424 if (on_rq)
29f59db3 8425 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8426 if (unlikely(running))
8427 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8428
810b3817 8429#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8430 if (tsk->sched_class->task_move_group)
8431 tsk->sched_class->task_move_group(tsk, on_rq);
8432 else
810b3817 8433#endif
b2b5ce02 8434 set_task_rq(tsk, task_cpu(tsk));
810b3817 8435
0e1f3483
HS
8436 if (unlikely(running))
8437 tsk->sched_class->set_curr_task(rq);
8438 if (on_rq)
371fd7e7 8439 enqueue_task(rq, tsk, 0);
29f59db3 8440
29f59db3
SV
8441 task_rq_unlock(rq, &flags);
8442}
7c941438 8443#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8444
052f1dc7 8445#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8446static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8447{
8448 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8449 int on_rq;
8450
29f59db3 8451 on_rq = se->on_rq;
62fb1851 8452 if (on_rq)
29f59db3
SV
8453 dequeue_entity(cfs_rq, se, 0);
8454
8455 se->load.weight = shares;
e05510d0 8456 se->load.inv_weight = 0;
29f59db3 8457
62fb1851 8458 if (on_rq)
29f59db3 8459 enqueue_entity(cfs_rq, se, 0);
c09595f6 8460}
62fb1851 8461
c09595f6
PZ
8462static void set_se_shares(struct sched_entity *se, unsigned long shares)
8463{
8464 struct cfs_rq *cfs_rq = se->cfs_rq;
8465 struct rq *rq = cfs_rq->rq;
8466 unsigned long flags;
8467
05fa785c 8468 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8469 __set_se_shares(se, shares);
05fa785c 8470 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8471}
8472
8ed36996
PZ
8473static DEFINE_MUTEX(shares_mutex);
8474
4cf86d77 8475int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8476{
8477 int i;
8ed36996 8478 unsigned long flags;
c61935fd 8479
ec7dc8ac
DG
8480 /*
8481 * We can't change the weight of the root cgroup.
8482 */
8483 if (!tg->se[0])
8484 return -EINVAL;
8485
18d95a28
PZ
8486 if (shares < MIN_SHARES)
8487 shares = MIN_SHARES;
cb4ad1ff
MX
8488 else if (shares > MAX_SHARES)
8489 shares = MAX_SHARES;
62fb1851 8490
8ed36996 8491 mutex_lock(&shares_mutex);
9b5b7751 8492 if (tg->shares == shares)
5cb350ba 8493 goto done;
29f59db3 8494
8ed36996 8495 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8496 for_each_possible_cpu(i)
8497 unregister_fair_sched_group(tg, i);
f473aa5e 8498 list_del_rcu(&tg->siblings);
8ed36996 8499 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8500
8501 /* wait for any ongoing reference to this group to finish */
8502 synchronize_sched();
8503
8504 /*
8505 * Now we are free to modify the group's share on each cpu
8506 * w/o tripping rebalance_share or load_balance_fair.
8507 */
9b5b7751 8508 tg->shares = shares;
c09595f6
PZ
8509 for_each_possible_cpu(i) {
8510 /*
8511 * force a rebalance
8512 */
8513 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8514 set_se_shares(tg->se[i], shares);
c09595f6 8515 }
29f59db3 8516
6b2d7700
SV
8517 /*
8518 * Enable load balance activity on this group, by inserting it back on
8519 * each cpu's rq->leaf_cfs_rq_list.
8520 */
8ed36996 8521 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8522 for_each_possible_cpu(i)
8523 register_fair_sched_group(tg, i);
f473aa5e 8524 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8525 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8526done:
8ed36996 8527 mutex_unlock(&shares_mutex);
9b5b7751 8528 return 0;
29f59db3
SV
8529}
8530
5cb350ba
DG
8531unsigned long sched_group_shares(struct task_group *tg)
8532{
8533 return tg->shares;
8534}
052f1dc7 8535#endif
5cb350ba 8536
052f1dc7 8537#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8538/*
9f0c1e56 8539 * Ensure that the real time constraints are schedulable.
6f505b16 8540 */
9f0c1e56
PZ
8541static DEFINE_MUTEX(rt_constraints_mutex);
8542
8543static unsigned long to_ratio(u64 period, u64 runtime)
8544{
8545 if (runtime == RUNTIME_INF)
9a7e0b18 8546 return 1ULL << 20;
9f0c1e56 8547
9a7e0b18 8548 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8549}
8550
9a7e0b18
PZ
8551/* Must be called with tasklist_lock held */
8552static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8553{
9a7e0b18 8554 struct task_struct *g, *p;
b40b2e8e 8555
9a7e0b18
PZ
8556 do_each_thread(g, p) {
8557 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8558 return 1;
8559 } while_each_thread(g, p);
b40b2e8e 8560
9a7e0b18
PZ
8561 return 0;
8562}
b40b2e8e 8563
9a7e0b18
PZ
8564struct rt_schedulable_data {
8565 struct task_group *tg;
8566 u64 rt_period;
8567 u64 rt_runtime;
8568};
b40b2e8e 8569
9a7e0b18
PZ
8570static int tg_schedulable(struct task_group *tg, void *data)
8571{
8572 struct rt_schedulable_data *d = data;
8573 struct task_group *child;
8574 unsigned long total, sum = 0;
8575 u64 period, runtime;
b40b2e8e 8576
9a7e0b18
PZ
8577 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8578 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8579
9a7e0b18
PZ
8580 if (tg == d->tg) {
8581 period = d->rt_period;
8582 runtime = d->rt_runtime;
b40b2e8e 8583 }
b40b2e8e 8584
4653f803
PZ
8585 /*
8586 * Cannot have more runtime than the period.
8587 */
8588 if (runtime > period && runtime != RUNTIME_INF)
8589 return -EINVAL;
6f505b16 8590
4653f803
PZ
8591 /*
8592 * Ensure we don't starve existing RT tasks.
8593 */
9a7e0b18
PZ
8594 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8595 return -EBUSY;
6f505b16 8596
9a7e0b18 8597 total = to_ratio(period, runtime);
6f505b16 8598
4653f803
PZ
8599 /*
8600 * Nobody can have more than the global setting allows.
8601 */
8602 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8603 return -EINVAL;
6f505b16 8604
4653f803
PZ
8605 /*
8606 * The sum of our children's runtime should not exceed our own.
8607 */
9a7e0b18
PZ
8608 list_for_each_entry_rcu(child, &tg->children, siblings) {
8609 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8610 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8611
9a7e0b18
PZ
8612 if (child == d->tg) {
8613 period = d->rt_period;
8614 runtime = d->rt_runtime;
8615 }
6f505b16 8616
9a7e0b18 8617 sum += to_ratio(period, runtime);
9f0c1e56 8618 }
6f505b16 8619
9a7e0b18
PZ
8620 if (sum > total)
8621 return -EINVAL;
8622
8623 return 0;
6f505b16
PZ
8624}
8625
9a7e0b18 8626static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8627{
9a7e0b18
PZ
8628 struct rt_schedulable_data data = {
8629 .tg = tg,
8630 .rt_period = period,
8631 .rt_runtime = runtime,
8632 };
8633
8634 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8635}
8636
d0b27fa7
PZ
8637static int tg_set_bandwidth(struct task_group *tg,
8638 u64 rt_period, u64 rt_runtime)
6f505b16 8639{
ac086bc2 8640 int i, err = 0;
9f0c1e56 8641
9f0c1e56 8642 mutex_lock(&rt_constraints_mutex);
521f1a24 8643 read_lock(&tasklist_lock);
9a7e0b18
PZ
8644 err = __rt_schedulable(tg, rt_period, rt_runtime);
8645 if (err)
9f0c1e56 8646 goto unlock;
ac086bc2 8647
0986b11b 8648 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8649 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8650 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8651
8652 for_each_possible_cpu(i) {
8653 struct rt_rq *rt_rq = tg->rt_rq[i];
8654
0986b11b 8655 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8656 rt_rq->rt_runtime = rt_runtime;
0986b11b 8657 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8658 }
0986b11b 8659 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8660unlock:
521f1a24 8661 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8662 mutex_unlock(&rt_constraints_mutex);
8663
8664 return err;
6f505b16
PZ
8665}
8666
d0b27fa7
PZ
8667int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8668{
8669 u64 rt_runtime, rt_period;
8670
8671 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8672 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8673 if (rt_runtime_us < 0)
8674 rt_runtime = RUNTIME_INF;
8675
8676 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8677}
8678
9f0c1e56
PZ
8679long sched_group_rt_runtime(struct task_group *tg)
8680{
8681 u64 rt_runtime_us;
8682
d0b27fa7 8683 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8684 return -1;
8685
d0b27fa7 8686 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8687 do_div(rt_runtime_us, NSEC_PER_USEC);
8688 return rt_runtime_us;
8689}
d0b27fa7
PZ
8690
8691int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8692{
8693 u64 rt_runtime, rt_period;
8694
8695 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8696 rt_runtime = tg->rt_bandwidth.rt_runtime;
8697
619b0488
R
8698 if (rt_period == 0)
8699 return -EINVAL;
8700
d0b27fa7
PZ
8701 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8702}
8703
8704long sched_group_rt_period(struct task_group *tg)
8705{
8706 u64 rt_period_us;
8707
8708 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8709 do_div(rt_period_us, NSEC_PER_USEC);
8710 return rt_period_us;
8711}
8712
8713static int sched_rt_global_constraints(void)
8714{
4653f803 8715 u64 runtime, period;
d0b27fa7
PZ
8716 int ret = 0;
8717
ec5d4989
HS
8718 if (sysctl_sched_rt_period <= 0)
8719 return -EINVAL;
8720
4653f803
PZ
8721 runtime = global_rt_runtime();
8722 period = global_rt_period();
8723
8724 /*
8725 * Sanity check on the sysctl variables.
8726 */
8727 if (runtime > period && runtime != RUNTIME_INF)
8728 return -EINVAL;
10b612f4 8729
d0b27fa7 8730 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8731 read_lock(&tasklist_lock);
4653f803 8732 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8733 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8734 mutex_unlock(&rt_constraints_mutex);
8735
8736 return ret;
8737}
54e99124
DG
8738
8739int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8740{
8741 /* Don't accept realtime tasks when there is no way for them to run */
8742 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8743 return 0;
8744
8745 return 1;
8746}
8747
6d6bc0ad 8748#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8749static int sched_rt_global_constraints(void)
8750{
ac086bc2
PZ
8751 unsigned long flags;
8752 int i;
8753
ec5d4989
HS
8754 if (sysctl_sched_rt_period <= 0)
8755 return -EINVAL;
8756
60aa605d
PZ
8757 /*
8758 * There's always some RT tasks in the root group
8759 * -- migration, kstopmachine etc..
8760 */
8761 if (sysctl_sched_rt_runtime == 0)
8762 return -EBUSY;
8763
0986b11b 8764 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8765 for_each_possible_cpu(i) {
8766 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8767
0986b11b 8768 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8769 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8770 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8771 }
0986b11b 8772 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8773
d0b27fa7
PZ
8774 return 0;
8775}
6d6bc0ad 8776#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8777
8778int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8779 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8780 loff_t *ppos)
8781{
8782 int ret;
8783 int old_period, old_runtime;
8784 static DEFINE_MUTEX(mutex);
8785
8786 mutex_lock(&mutex);
8787 old_period = sysctl_sched_rt_period;
8788 old_runtime = sysctl_sched_rt_runtime;
8789
8d65af78 8790 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8791
8792 if (!ret && write) {
8793 ret = sched_rt_global_constraints();
8794 if (ret) {
8795 sysctl_sched_rt_period = old_period;
8796 sysctl_sched_rt_runtime = old_runtime;
8797 } else {
8798 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8799 def_rt_bandwidth.rt_period =
8800 ns_to_ktime(global_rt_period());
8801 }
8802 }
8803 mutex_unlock(&mutex);
8804
8805 return ret;
8806}
68318b8e 8807
052f1dc7 8808#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8809
8810/* return corresponding task_group object of a cgroup */
2b01dfe3 8811static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8812{
2b01dfe3
PM
8813 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8814 struct task_group, css);
68318b8e
SV
8815}
8816
8817static struct cgroup_subsys_state *
2b01dfe3 8818cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8819{
ec7dc8ac 8820 struct task_group *tg, *parent;
68318b8e 8821
2b01dfe3 8822 if (!cgrp->parent) {
68318b8e 8823 /* This is early initialization for the top cgroup */
68318b8e
SV
8824 return &init_task_group.css;
8825 }
8826
ec7dc8ac
DG
8827 parent = cgroup_tg(cgrp->parent);
8828 tg = sched_create_group(parent);
68318b8e
SV
8829 if (IS_ERR(tg))
8830 return ERR_PTR(-ENOMEM);
8831
68318b8e
SV
8832 return &tg->css;
8833}
8834
41a2d6cf
IM
8835static void
8836cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8837{
2b01dfe3 8838 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8839
8840 sched_destroy_group(tg);
8841}
8842
41a2d6cf 8843static int
be367d09 8844cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8845{
b68aa230 8846#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8847 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8848 return -EINVAL;
8849#else
68318b8e
SV
8850 /* We don't support RT-tasks being in separate groups */
8851 if (tsk->sched_class != &fair_sched_class)
8852 return -EINVAL;
b68aa230 8853#endif
be367d09
BB
8854 return 0;
8855}
68318b8e 8856
be367d09
BB
8857static int
8858cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8859 struct task_struct *tsk, bool threadgroup)
8860{
8861 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8862 if (retval)
8863 return retval;
8864 if (threadgroup) {
8865 struct task_struct *c;
8866 rcu_read_lock();
8867 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8868 retval = cpu_cgroup_can_attach_task(cgrp, c);
8869 if (retval) {
8870 rcu_read_unlock();
8871 return retval;
8872 }
8873 }
8874 rcu_read_unlock();
8875 }
68318b8e
SV
8876 return 0;
8877}
8878
8879static void
2b01dfe3 8880cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8881 struct cgroup *old_cont, struct task_struct *tsk,
8882 bool threadgroup)
68318b8e
SV
8883{
8884 sched_move_task(tsk);
be367d09
BB
8885 if (threadgroup) {
8886 struct task_struct *c;
8887 rcu_read_lock();
8888 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8889 sched_move_task(c);
8890 }
8891 rcu_read_unlock();
8892 }
68318b8e
SV
8893}
8894
052f1dc7 8895#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8896static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8897 u64 shareval)
68318b8e 8898{
2b01dfe3 8899 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8900}
8901
f4c753b7 8902static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8903{
2b01dfe3 8904 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8905
8906 return (u64) tg->shares;
8907}
6d6bc0ad 8908#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8909
052f1dc7 8910#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8911static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8912 s64 val)
6f505b16 8913{
06ecb27c 8914 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8915}
8916
06ecb27c 8917static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8918{
06ecb27c 8919 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8920}
d0b27fa7
PZ
8921
8922static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8923 u64 rt_period_us)
8924{
8925 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8926}
8927
8928static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8929{
8930 return sched_group_rt_period(cgroup_tg(cgrp));
8931}
6d6bc0ad 8932#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8933
fe5c7cc2 8934static struct cftype cpu_files[] = {
052f1dc7 8935#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8936 {
8937 .name = "shares",
f4c753b7
PM
8938 .read_u64 = cpu_shares_read_u64,
8939 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8940 },
052f1dc7
PZ
8941#endif
8942#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8943 {
9f0c1e56 8944 .name = "rt_runtime_us",
06ecb27c
PM
8945 .read_s64 = cpu_rt_runtime_read,
8946 .write_s64 = cpu_rt_runtime_write,
6f505b16 8947 },
d0b27fa7
PZ
8948 {
8949 .name = "rt_period_us",
f4c753b7
PM
8950 .read_u64 = cpu_rt_period_read_uint,
8951 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8952 },
052f1dc7 8953#endif
68318b8e
SV
8954};
8955
8956static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8957{
fe5c7cc2 8958 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8959}
8960
8961struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8962 .name = "cpu",
8963 .create = cpu_cgroup_create,
8964 .destroy = cpu_cgroup_destroy,
8965 .can_attach = cpu_cgroup_can_attach,
8966 .attach = cpu_cgroup_attach,
8967 .populate = cpu_cgroup_populate,
8968 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8969 .early_init = 1,
8970};
8971
052f1dc7 8972#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8973
8974#ifdef CONFIG_CGROUP_CPUACCT
8975
8976/*
8977 * CPU accounting code for task groups.
8978 *
8979 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8980 * (balbir@in.ibm.com).
8981 */
8982
934352f2 8983/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8984struct cpuacct {
8985 struct cgroup_subsys_state css;
8986 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8987 u64 __percpu *cpuusage;
ef12fefa 8988 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8989 struct cpuacct *parent;
d842de87
SV
8990};
8991
8992struct cgroup_subsys cpuacct_subsys;
8993
8994/* return cpu accounting group corresponding to this container */
32cd756a 8995static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8996{
32cd756a 8997 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8998 struct cpuacct, css);
8999}
9000
9001/* return cpu accounting group to which this task belongs */
9002static inline struct cpuacct *task_ca(struct task_struct *tsk)
9003{
9004 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9005 struct cpuacct, css);
9006}
9007
9008/* create a new cpu accounting group */
9009static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9010 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9011{
9012 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9013 int i;
d842de87
SV
9014
9015 if (!ca)
ef12fefa 9016 goto out;
d842de87
SV
9017
9018 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9019 if (!ca->cpuusage)
9020 goto out_free_ca;
9021
9022 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9023 if (percpu_counter_init(&ca->cpustat[i], 0))
9024 goto out_free_counters;
d842de87 9025
934352f2
BR
9026 if (cgrp->parent)
9027 ca->parent = cgroup_ca(cgrp->parent);
9028
d842de87 9029 return &ca->css;
ef12fefa
BR
9030
9031out_free_counters:
9032 while (--i >= 0)
9033 percpu_counter_destroy(&ca->cpustat[i]);
9034 free_percpu(ca->cpuusage);
9035out_free_ca:
9036 kfree(ca);
9037out:
9038 return ERR_PTR(-ENOMEM);
d842de87
SV
9039}
9040
9041/* destroy an existing cpu accounting group */
41a2d6cf 9042static void
32cd756a 9043cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9044{
32cd756a 9045 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9046 int i;
d842de87 9047
ef12fefa
BR
9048 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9049 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9050 free_percpu(ca->cpuusage);
9051 kfree(ca);
9052}
9053
720f5498
KC
9054static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9055{
b36128c8 9056 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9057 u64 data;
9058
9059#ifndef CONFIG_64BIT
9060 /*
9061 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9062 */
05fa785c 9063 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9064 data = *cpuusage;
05fa785c 9065 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9066#else
9067 data = *cpuusage;
9068#endif
9069
9070 return data;
9071}
9072
9073static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9074{
b36128c8 9075 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9076
9077#ifndef CONFIG_64BIT
9078 /*
9079 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9080 */
05fa785c 9081 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9082 *cpuusage = val;
05fa785c 9083 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9084#else
9085 *cpuusage = val;
9086#endif
9087}
9088
d842de87 9089/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9090static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9091{
32cd756a 9092 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9093 u64 totalcpuusage = 0;
9094 int i;
9095
720f5498
KC
9096 for_each_present_cpu(i)
9097 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9098
9099 return totalcpuusage;
9100}
9101
0297b803
DG
9102static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9103 u64 reset)
9104{
9105 struct cpuacct *ca = cgroup_ca(cgrp);
9106 int err = 0;
9107 int i;
9108
9109 if (reset) {
9110 err = -EINVAL;
9111 goto out;
9112 }
9113
720f5498
KC
9114 for_each_present_cpu(i)
9115 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9116
0297b803
DG
9117out:
9118 return err;
9119}
9120
e9515c3c
KC
9121static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9122 struct seq_file *m)
9123{
9124 struct cpuacct *ca = cgroup_ca(cgroup);
9125 u64 percpu;
9126 int i;
9127
9128 for_each_present_cpu(i) {
9129 percpu = cpuacct_cpuusage_read(ca, i);
9130 seq_printf(m, "%llu ", (unsigned long long) percpu);
9131 }
9132 seq_printf(m, "\n");
9133 return 0;
9134}
9135
ef12fefa
BR
9136static const char *cpuacct_stat_desc[] = {
9137 [CPUACCT_STAT_USER] = "user",
9138 [CPUACCT_STAT_SYSTEM] = "system",
9139};
9140
9141static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9142 struct cgroup_map_cb *cb)
9143{
9144 struct cpuacct *ca = cgroup_ca(cgrp);
9145 int i;
9146
9147 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9148 s64 val = percpu_counter_read(&ca->cpustat[i]);
9149 val = cputime64_to_clock_t(val);
9150 cb->fill(cb, cpuacct_stat_desc[i], val);
9151 }
9152 return 0;
9153}
9154
d842de87
SV
9155static struct cftype files[] = {
9156 {
9157 .name = "usage",
f4c753b7
PM
9158 .read_u64 = cpuusage_read,
9159 .write_u64 = cpuusage_write,
d842de87 9160 },
e9515c3c
KC
9161 {
9162 .name = "usage_percpu",
9163 .read_seq_string = cpuacct_percpu_seq_read,
9164 },
ef12fefa
BR
9165 {
9166 .name = "stat",
9167 .read_map = cpuacct_stats_show,
9168 },
d842de87
SV
9169};
9170
32cd756a 9171static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9172{
32cd756a 9173 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9174}
9175
9176/*
9177 * charge this task's execution time to its accounting group.
9178 *
9179 * called with rq->lock held.
9180 */
9181static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9182{
9183 struct cpuacct *ca;
934352f2 9184 int cpu;
d842de87 9185
c40c6f85 9186 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9187 return;
9188
934352f2 9189 cpu = task_cpu(tsk);
a18b83b7
BR
9190
9191 rcu_read_lock();
9192
d842de87 9193 ca = task_ca(tsk);
d842de87 9194
934352f2 9195 for (; ca; ca = ca->parent) {
b36128c8 9196 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9197 *cpuusage += cputime;
9198 }
a18b83b7
BR
9199
9200 rcu_read_unlock();
d842de87
SV
9201}
9202
fa535a77
AB
9203/*
9204 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9205 * in cputime_t units. As a result, cpuacct_update_stats calls
9206 * percpu_counter_add with values large enough to always overflow the
9207 * per cpu batch limit causing bad SMP scalability.
9208 *
9209 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9210 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9211 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9212 */
9213#ifdef CONFIG_SMP
9214#define CPUACCT_BATCH \
9215 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9216#else
9217#define CPUACCT_BATCH 0
9218#endif
9219
ef12fefa
BR
9220/*
9221 * Charge the system/user time to the task's accounting group.
9222 */
9223static void cpuacct_update_stats(struct task_struct *tsk,
9224 enum cpuacct_stat_index idx, cputime_t val)
9225{
9226 struct cpuacct *ca;
fa535a77 9227 int batch = CPUACCT_BATCH;
ef12fefa
BR
9228
9229 if (unlikely(!cpuacct_subsys.active))
9230 return;
9231
9232 rcu_read_lock();
9233 ca = task_ca(tsk);
9234
9235 do {
fa535a77 9236 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9237 ca = ca->parent;
9238 } while (ca);
9239 rcu_read_unlock();
9240}
9241
d842de87
SV
9242struct cgroup_subsys cpuacct_subsys = {
9243 .name = "cpuacct",
9244 .create = cpuacct_create,
9245 .destroy = cpuacct_destroy,
9246 .populate = cpuacct_populate,
9247 .subsys_id = cpuacct_subsys_id,
9248};
9249#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9250
9251#ifndef CONFIG_SMP
9252
03b042bf
PM
9253void synchronize_sched_expedited(void)
9254{
fc390cde 9255 barrier();
03b042bf
PM
9256}
9257EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9258
9259#else /* #ifndef CONFIG_SMP */
9260
cc631fb7 9261static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9262
cc631fb7 9263static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9264{
969c7921
TH
9265 /*
9266 * There must be a full memory barrier on each affected CPU
9267 * between the time that try_stop_cpus() is called and the
9268 * time that it returns.
9269 *
9270 * In the current initial implementation of cpu_stop, the
9271 * above condition is already met when the control reaches
9272 * this point and the following smp_mb() is not strictly
9273 * necessary. Do smp_mb() anyway for documentation and
9274 * robustness against future implementation changes.
9275 */
cc631fb7 9276 smp_mb(); /* See above comment block. */
969c7921 9277 return 0;
03b042bf 9278}
03b042bf
PM
9279
9280/*
9281 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9282 * approach to force grace period to end quickly. This consumes
9283 * significant time on all CPUs, and is thus not recommended for
9284 * any sort of common-case code.
9285 *
9286 * Note that it is illegal to call this function while holding any
9287 * lock that is acquired by a CPU-hotplug notifier. Failing to
9288 * observe this restriction will result in deadlock.
9289 */
9290void synchronize_sched_expedited(void)
9291{
969c7921 9292 int snap, trycount = 0;
03b042bf
PM
9293
9294 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9295 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9296 get_online_cpus();
969c7921
TH
9297 while (try_stop_cpus(cpu_online_mask,
9298 synchronize_sched_expedited_cpu_stop,
94458d5e 9299 NULL) == -EAGAIN) {
03b042bf
PM
9300 put_online_cpus();
9301 if (trycount++ < 10)
9302 udelay(trycount * num_online_cpus());
9303 else {
9304 synchronize_sched();
9305 return;
9306 }
969c7921 9307 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9308 smp_mb(); /* ensure test happens before caller kfree */
9309 return;
9310 }
9311 get_online_cpus();
9312 }
969c7921 9313 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9314 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9315 put_online_cpus();
03b042bf
PM
9316}
9317EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9318
9319#endif /* #else #ifndef CONFIG_SMP */
This page took 2.005822 seconds and 5 git commands to generate.