[PATCH] sched: optimize activate_task for RT task
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
1da177e4 163#define SCALE_PRIO(x, prio) \
2dd73a4f 164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 165
2dd73a4f 166static unsigned int static_prio_timeslice(int static_prio)
1da177e4 167{
2dd73a4f
PW
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 170 else
2dd73a4f 171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 172}
2dd73a4f 173
91fcdd4e
BP
174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
b18ec803
MG
228 /* Cached timestamp set by update_cpu_clock() */
229 unsigned long long most_recent_timestamp;
36c8b586 230 struct task_struct *curr, *idle;
c9819f45 231 unsigned long next_balance;
1da177e4 232 struct mm_struct *prev_mm;
70b97a7f 233 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
234 int best_expired_prio;
235 atomic_t nr_iowait;
236
237#ifdef CONFIG_SMP
238 struct sched_domain *sd;
239
240 /* For active balancing */
241 int active_balance;
242 int push_cpu;
0a2966b4 243 int cpu; /* cpu of this runqueue */
1da177e4 244
36c8b586 245 struct task_struct *migration_thread;
1da177e4
LT
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
fcb99371 268 struct lock_class_key rq_lock_key;
1da177e4
LT
269};
270
70b97a7f 271static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 272
0a2966b4
CL
273static inline int cpu_of(struct rq *rq)
274{
275#ifdef CONFIG_SMP
276 return rq->cpu;
277#else
278 return 0;
279#endif
280}
281
674311d5
NP
282/*
283 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 284 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
285 *
286 * The domain tree of any CPU may only be accessed from within
287 * preempt-disabled sections.
288 */
48f24c4d
IM
289#define for_each_domain(cpu, __sd) \
290 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
291
292#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
293#define this_rq() (&__get_cpu_var(runqueues))
294#define task_rq(p) cpu_rq(task_cpu(p))
295#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
296
1da177e4 297#ifndef prepare_arch_switch
4866cde0
NP
298# define prepare_arch_switch(next) do { } while (0)
299#endif
300#ifndef finish_arch_switch
301# define finish_arch_switch(prev) do { } while (0)
302#endif
303
304#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 305static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
306{
307 return rq->curr == p;
308}
309
70b97a7f 310static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
311{
312}
313
70b97a7f 314static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 315{
da04c035
IM
316#ifdef CONFIG_DEBUG_SPINLOCK
317 /* this is a valid case when another task releases the spinlock */
318 rq->lock.owner = current;
319#endif
8a25d5de
IM
320 /*
321 * If we are tracking spinlock dependencies then we have to
322 * fix up the runqueue lock - which gets 'carried over' from
323 * prev into current:
324 */
325 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
326
4866cde0
NP
327 spin_unlock_irq(&rq->lock);
328}
329
330#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 331static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
332{
333#ifdef CONFIG_SMP
334 return p->oncpu;
335#else
336 return rq->curr == p;
337#endif
338}
339
70b97a7f 340static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
341{
342#ifdef CONFIG_SMP
343 /*
344 * We can optimise this out completely for !SMP, because the
345 * SMP rebalancing from interrupt is the only thing that cares
346 * here.
347 */
348 next->oncpu = 1;
349#endif
350#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 spin_unlock_irq(&rq->lock);
352#else
353 spin_unlock(&rq->lock);
354#endif
355}
356
70b97a7f 357static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
358{
359#ifdef CONFIG_SMP
360 /*
361 * After ->oncpu is cleared, the task can be moved to a different CPU.
362 * We must ensure this doesn't happen until the switch is completely
363 * finished.
364 */
365 smp_wmb();
366 prev->oncpu = 0;
367#endif
368#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
369 local_irq_enable();
1da177e4 370#endif
4866cde0
NP
371}
372#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 373
b29739f9
IM
374/*
375 * __task_rq_lock - lock the runqueue a given task resides on.
376 * Must be called interrupts disabled.
377 */
70b97a7f 378static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
379 __acquires(rq->lock)
380{
70b97a7f 381 struct rq *rq;
b29739f9
IM
382
383repeat_lock_task:
384 rq = task_rq(p);
385 spin_lock(&rq->lock);
386 if (unlikely(rq != task_rq(p))) {
387 spin_unlock(&rq->lock);
388 goto repeat_lock_task;
389 }
390 return rq;
391}
392
1da177e4
LT
393/*
394 * task_rq_lock - lock the runqueue a given task resides on and disable
395 * interrupts. Note the ordering: we can safely lookup the task_rq without
396 * explicitly disabling preemption.
397 */
70b97a7f 398static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
399 __acquires(rq->lock)
400{
70b97a7f 401 struct rq *rq;
1da177e4
LT
402
403repeat_lock_task:
404 local_irq_save(*flags);
405 rq = task_rq(p);
406 spin_lock(&rq->lock);
407 if (unlikely(rq != task_rq(p))) {
408 spin_unlock_irqrestore(&rq->lock, *flags);
409 goto repeat_lock_task;
410 }
411 return rq;
412}
413
70b97a7f 414static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
415 __releases(rq->lock)
416{
417 spin_unlock(&rq->lock);
418}
419
70b97a7f 420static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
421 __releases(rq->lock)
422{
423 spin_unlock_irqrestore(&rq->lock, *flags);
424}
425
426#ifdef CONFIG_SCHEDSTATS
427/*
428 * bump this up when changing the output format or the meaning of an existing
429 * format, so that tools can adapt (or abort)
430 */
06066714 431#define SCHEDSTAT_VERSION 14
1da177e4
LT
432
433static int show_schedstat(struct seq_file *seq, void *v)
434{
435 int cpu;
436
437 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
438 seq_printf(seq, "timestamp %lu\n", jiffies);
439 for_each_online_cpu(cpu) {
70b97a7f 440 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
441#ifdef CONFIG_SMP
442 struct sched_domain *sd;
443 int dcnt = 0;
444#endif
445
446 /* runqueue-specific stats */
447 seq_printf(seq,
448 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
449 cpu, rq->yld_both_empty,
450 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
451 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
452 rq->ttwu_cnt, rq->ttwu_local,
453 rq->rq_sched_info.cpu_time,
454 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
455
456 seq_printf(seq, "\n");
457
458#ifdef CONFIG_SMP
459 /* domain-specific stats */
674311d5 460 preempt_disable();
1da177e4
LT
461 for_each_domain(cpu, sd) {
462 enum idle_type itype;
463 char mask_str[NR_CPUS];
464
465 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
466 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
467 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
468 itype++) {
06066714 469 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
1da177e4
LT
470 sd->lb_cnt[itype],
471 sd->lb_balanced[itype],
472 sd->lb_failed[itype],
473 sd->lb_imbalance[itype],
474 sd->lb_gained[itype],
475 sd->lb_hot_gained[itype],
476 sd->lb_nobusyq[itype],
06066714 477 sd->lb_nobusyg[itype]);
1da177e4 478 }
68767a0a 479 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 480 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
481 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
482 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
483 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
484 }
674311d5 485 preempt_enable();
1da177e4
LT
486#endif
487 }
488 return 0;
489}
490
491static int schedstat_open(struct inode *inode, struct file *file)
492{
493 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
494 char *buf = kmalloc(size, GFP_KERNEL);
495 struct seq_file *m;
496 int res;
497
498 if (!buf)
499 return -ENOMEM;
500 res = single_open(file, show_schedstat, NULL);
501 if (!res) {
502 m = file->private_data;
503 m->buf = buf;
504 m->size = size;
505 } else
506 kfree(buf);
507 return res;
508}
509
15ad7cdc 510const struct file_operations proc_schedstat_operations = {
1da177e4
LT
511 .open = schedstat_open,
512 .read = seq_read,
513 .llseek = seq_lseek,
514 .release = single_release,
515};
516
52f17b6c
CS
517/*
518 * Expects runqueue lock to be held for atomicity of update
519 */
520static inline void
521rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
522{
523 if (rq) {
524 rq->rq_sched_info.run_delay += delta_jiffies;
525 rq->rq_sched_info.pcnt++;
526 }
527}
528
529/*
530 * Expects runqueue lock to be held for atomicity of update
531 */
532static inline void
533rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
534{
535 if (rq)
536 rq->rq_sched_info.cpu_time += delta_jiffies;
537}
1da177e4
LT
538# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
539# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
540#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
541static inline void
542rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
543{}
544static inline void
545rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
546{}
1da177e4
LT
547# define schedstat_inc(rq, field) do { } while (0)
548# define schedstat_add(rq, field, amt) do { } while (0)
549#endif
550
551/*
cc2a73b5 552 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 553 */
70b97a7f 554static inline struct rq *this_rq_lock(void)
1da177e4
LT
555 __acquires(rq->lock)
556{
70b97a7f 557 struct rq *rq;
1da177e4
LT
558
559 local_irq_disable();
560 rq = this_rq();
561 spin_lock(&rq->lock);
562
563 return rq;
564}
565
52f17b6c 566#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
567/*
568 * Called when a process is dequeued from the active array and given
569 * the cpu. We should note that with the exception of interactive
570 * tasks, the expired queue will become the active queue after the active
571 * queue is empty, without explicitly dequeuing and requeuing tasks in the
572 * expired queue. (Interactive tasks may be requeued directly to the
573 * active queue, thus delaying tasks in the expired queue from running;
574 * see scheduler_tick()).
575 *
576 * This function is only called from sched_info_arrive(), rather than
577 * dequeue_task(). Even though a task may be queued and dequeued multiple
578 * times as it is shuffled about, we're really interested in knowing how
579 * long it was from the *first* time it was queued to the time that it
580 * finally hit a cpu.
581 */
36c8b586 582static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
583{
584 t->sched_info.last_queued = 0;
585}
586
587/*
588 * Called when a task finally hits the cpu. We can now calculate how
589 * long it was waiting to run. We also note when it began so that we
590 * can keep stats on how long its timeslice is.
591 */
36c8b586 592static void sched_info_arrive(struct task_struct *t)
1da177e4 593{
52f17b6c 594 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
595
596 if (t->sched_info.last_queued)
52f17b6c 597 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 598 sched_info_dequeued(t);
52f17b6c 599 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
600 t->sched_info.last_arrival = now;
601 t->sched_info.pcnt++;
602
52f17b6c 603 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
604}
605
606/*
607 * Called when a process is queued into either the active or expired
608 * array. The time is noted and later used to determine how long we
609 * had to wait for us to reach the cpu. Since the expired queue will
610 * become the active queue after active queue is empty, without dequeuing
611 * and requeuing any tasks, we are interested in queuing to either. It
612 * is unusual but not impossible for tasks to be dequeued and immediately
613 * requeued in the same or another array: this can happen in sched_yield(),
614 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
615 * to runqueue.
616 *
617 * This function is only called from enqueue_task(), but also only updates
618 * the timestamp if it is already not set. It's assumed that
619 * sched_info_dequeued() will clear that stamp when appropriate.
620 */
36c8b586 621static inline void sched_info_queued(struct task_struct *t)
1da177e4 622{
52f17b6c
CS
623 if (unlikely(sched_info_on()))
624 if (!t->sched_info.last_queued)
625 t->sched_info.last_queued = jiffies;
1da177e4
LT
626}
627
628/*
629 * Called when a process ceases being the active-running process, either
630 * voluntarily or involuntarily. Now we can calculate how long we ran.
631 */
36c8b586 632static inline void sched_info_depart(struct task_struct *t)
1da177e4 633{
52f17b6c 634 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 635
52f17b6c
CS
636 t->sched_info.cpu_time += delta_jiffies;
637 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
638}
639
640/*
641 * Called when tasks are switched involuntarily due, typically, to expiring
642 * their time slice. (This may also be called when switching to or from
643 * the idle task.) We are only called when prev != next.
644 */
36c8b586 645static inline void
52f17b6c 646__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 647{
70b97a7f 648 struct rq *rq = task_rq(prev);
1da177e4
LT
649
650 /*
651 * prev now departs the cpu. It's not interesting to record
652 * stats about how efficient we were at scheduling the idle
653 * process, however.
654 */
655 if (prev != rq->idle)
656 sched_info_depart(prev);
657
658 if (next != rq->idle)
659 sched_info_arrive(next);
660}
52f17b6c
CS
661static inline void
662sched_info_switch(struct task_struct *prev, struct task_struct *next)
663{
664 if (unlikely(sched_info_on()))
665 __sched_info_switch(prev, next);
666}
1da177e4
LT
667#else
668#define sched_info_queued(t) do { } while (0)
669#define sched_info_switch(t, next) do { } while (0)
52f17b6c 670#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
671
672/*
673 * Adding/removing a task to/from a priority array:
674 */
70b97a7f 675static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
676{
677 array->nr_active--;
678 list_del(&p->run_list);
679 if (list_empty(array->queue + p->prio))
680 __clear_bit(p->prio, array->bitmap);
681}
682
70b97a7f 683static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
684{
685 sched_info_queued(p);
686 list_add_tail(&p->run_list, array->queue + p->prio);
687 __set_bit(p->prio, array->bitmap);
688 array->nr_active++;
689 p->array = array;
690}
691
692/*
693 * Put task to the end of the run list without the overhead of dequeue
694 * followed by enqueue.
695 */
70b97a7f 696static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
697{
698 list_move_tail(&p->run_list, array->queue + p->prio);
699}
700
70b97a7f
IM
701static inline void
702enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
703{
704 list_add(&p->run_list, array->queue + p->prio);
705 __set_bit(p->prio, array->bitmap);
706 array->nr_active++;
707 p->array = array;
708}
709
710/*
b29739f9 711 * __normal_prio - return the priority that is based on the static
1da177e4
LT
712 * priority but is modified by bonuses/penalties.
713 *
714 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
715 * into the -5 ... 0 ... +5 bonus/penalty range.
716 *
717 * We use 25% of the full 0...39 priority range so that:
718 *
719 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
720 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
721 *
722 * Both properties are important to certain workloads.
723 */
b29739f9 724
36c8b586 725static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
726{
727 int bonus, prio;
728
1da177e4
LT
729 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
730
731 prio = p->static_prio - bonus;
732 if (prio < MAX_RT_PRIO)
733 prio = MAX_RT_PRIO;
734 if (prio > MAX_PRIO-1)
735 prio = MAX_PRIO-1;
736 return prio;
737}
738
2dd73a4f
PW
739/*
740 * To aid in avoiding the subversion of "niceness" due to uneven distribution
741 * of tasks with abnormal "nice" values across CPUs the contribution that
742 * each task makes to its run queue's load is weighted according to its
743 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
744 * scaled version of the new time slice allocation that they receive on time
745 * slice expiry etc.
746 */
747
748/*
749 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
750 * If static_prio_timeslice() is ever changed to break this assumption then
751 * this code will need modification
752 */
753#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
754#define LOAD_WEIGHT(lp) \
755 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
756#define PRIO_TO_LOAD_WEIGHT(prio) \
757 LOAD_WEIGHT(static_prio_timeslice(prio))
758#define RTPRIO_TO_LOAD_WEIGHT(rp) \
759 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
760
36c8b586 761static void set_load_weight(struct task_struct *p)
2dd73a4f 762{
b29739f9 763 if (has_rt_policy(p)) {
2dd73a4f
PW
764#ifdef CONFIG_SMP
765 if (p == task_rq(p)->migration_thread)
766 /*
767 * The migration thread does the actual balancing.
768 * Giving its load any weight will skew balancing
769 * adversely.
770 */
771 p->load_weight = 0;
772 else
773#endif
774 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
775 } else
776 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
777}
778
36c8b586 779static inline void
70b97a7f 780inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
781{
782 rq->raw_weighted_load += p->load_weight;
783}
784
36c8b586 785static inline void
70b97a7f 786dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
787{
788 rq->raw_weighted_load -= p->load_weight;
789}
790
70b97a7f 791static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
792{
793 rq->nr_running++;
794 inc_raw_weighted_load(rq, p);
795}
796
70b97a7f 797static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
798{
799 rq->nr_running--;
800 dec_raw_weighted_load(rq, p);
801}
802
b29739f9
IM
803/*
804 * Calculate the expected normal priority: i.e. priority
805 * without taking RT-inheritance into account. Might be
806 * boosted by interactivity modifiers. Changes upon fork,
807 * setprio syscalls, and whenever the interactivity
808 * estimator recalculates.
809 */
36c8b586 810static inline int normal_prio(struct task_struct *p)
b29739f9
IM
811{
812 int prio;
813
814 if (has_rt_policy(p))
815 prio = MAX_RT_PRIO-1 - p->rt_priority;
816 else
817 prio = __normal_prio(p);
818 return prio;
819}
820
821/*
822 * Calculate the current priority, i.e. the priority
823 * taken into account by the scheduler. This value might
824 * be boosted by RT tasks, or might be boosted by
825 * interactivity modifiers. Will be RT if the task got
826 * RT-boosted. If not then it returns p->normal_prio.
827 */
36c8b586 828static int effective_prio(struct task_struct *p)
b29739f9
IM
829{
830 p->normal_prio = normal_prio(p);
831 /*
832 * If we are RT tasks or we were boosted to RT priority,
833 * keep the priority unchanged. Otherwise, update priority
834 * to the normal priority:
835 */
836 if (!rt_prio(p->prio))
837 return p->normal_prio;
838 return p->prio;
839}
840
1da177e4
LT
841/*
842 * __activate_task - move a task to the runqueue.
843 */
70b97a7f 844static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 845{
70b97a7f 846 struct prio_array *target = rq->active;
d425b274 847
f1adad78 848 if (batch_task(p))
d425b274
CK
849 target = rq->expired;
850 enqueue_task(p, target);
2dd73a4f 851 inc_nr_running(p, rq);
1da177e4
LT
852}
853
854/*
855 * __activate_idle_task - move idle task to the _front_ of runqueue.
856 */
70b97a7f 857static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
858{
859 enqueue_task_head(p, rq->active);
2dd73a4f 860 inc_nr_running(p, rq);
1da177e4
LT
861}
862
b29739f9
IM
863/*
864 * Recalculate p->normal_prio and p->prio after having slept,
865 * updating the sleep-average too:
866 */
36c8b586 867static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
868{
869 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 870 unsigned long sleep_time = now - p->timestamp;
1da177e4 871
d425b274 872 if (batch_task(p))
b0a9499c 873 sleep_time = 0;
1da177e4
LT
874
875 if (likely(sleep_time > 0)) {
876 /*
72d2854d
CK
877 * This ceiling is set to the lowest priority that would allow
878 * a task to be reinserted into the active array on timeslice
879 * completion.
1da177e4 880 */
72d2854d 881 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 882
72d2854d
CK
883 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
884 /*
885 * Prevents user tasks from achieving best priority
886 * with one single large enough sleep.
887 */
888 p->sleep_avg = ceiling;
889 /*
890 * Using INTERACTIVE_SLEEP() as a ceiling places a
891 * nice(0) task 1ms sleep away from promotion, and
892 * gives it 700ms to round-robin with no chance of
893 * being demoted. This is more than generous, so
894 * mark this sleep as non-interactive to prevent the
895 * on-runqueue bonus logic from intervening should
896 * this task not receive cpu immediately.
897 */
898 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 899 } else {
1da177e4
LT
900 /*
901 * Tasks waking from uninterruptible sleep are
902 * limited in their sleep_avg rise as they
903 * are likely to be waiting on I/O
904 */
3dee386e 905 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 906 if (p->sleep_avg >= ceiling)
1da177e4
LT
907 sleep_time = 0;
908 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
909 ceiling) {
910 p->sleep_avg = ceiling;
911 sleep_time = 0;
1da177e4
LT
912 }
913 }
914
915 /*
916 * This code gives a bonus to interactive tasks.
917 *
918 * The boost works by updating the 'average sleep time'
919 * value here, based on ->timestamp. The more time a
920 * task spends sleeping, the higher the average gets -
921 * and the higher the priority boost gets as well.
922 */
923 p->sleep_avg += sleep_time;
924
1da177e4 925 }
72d2854d
CK
926 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
927 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
928 }
929
a3464a10 930 return effective_prio(p);
1da177e4
LT
931}
932
933/*
934 * activate_task - move a task to the runqueue and do priority recalculation
935 *
936 * Update all the scheduling statistics stuff. (sleep average
937 * calculation, priority modifiers, etc.)
938 */
70b97a7f 939static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
940{
941 unsigned long long now;
942
62ab616d
CK
943 if (rt_task(p))
944 goto out;
945
1da177e4
LT
946 now = sched_clock();
947#ifdef CONFIG_SMP
948 if (!local) {
949 /* Compensate for drifting sched_clock */
70b97a7f 950 struct rq *this_rq = this_rq();
b18ec803
MG
951 now = (now - this_rq->most_recent_timestamp)
952 + rq->most_recent_timestamp;
1da177e4
LT
953 }
954#endif
955
ece8a684
IM
956 /*
957 * Sleep time is in units of nanosecs, so shift by 20 to get a
958 * milliseconds-range estimation of the amount of time that the task
959 * spent sleeping:
960 */
961 if (unlikely(prof_on == SLEEP_PROFILING)) {
962 if (p->state == TASK_UNINTERRUPTIBLE)
963 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
964 (now - p->timestamp) >> 20);
965 }
966
62ab616d 967 p->prio = recalc_task_prio(p, now);
1da177e4
LT
968
969 /*
970 * This checks to make sure it's not an uninterruptible task
971 * that is now waking up.
972 */
3dee386e 973 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
974 /*
975 * Tasks which were woken up by interrupts (ie. hw events)
976 * are most likely of interactive nature. So we give them
977 * the credit of extending their sleep time to the period
978 * of time they spend on the runqueue, waiting for execution
979 * on a CPU, first time around:
980 */
981 if (in_interrupt())
3dee386e 982 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
983 else {
984 /*
985 * Normal first-time wakeups get a credit too for
986 * on-runqueue time, but it will be weighted down:
987 */
3dee386e 988 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
989 }
990 }
991 p->timestamp = now;
62ab616d 992out:
1da177e4
LT
993 __activate_task(p, rq);
994}
995
996/*
997 * deactivate_task - remove a task from the runqueue.
998 */
70b97a7f 999static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 1000{
2dd73a4f 1001 dec_nr_running(p, rq);
1da177e4
LT
1002 dequeue_task(p, p->array);
1003 p->array = NULL;
1004}
1005
1006/*
1007 * resched_task - mark a task 'to be rescheduled now'.
1008 *
1009 * On UP this means the setting of the need_resched flag, on SMP it
1010 * might also involve a cross-CPU call to trigger the scheduler on
1011 * the target CPU.
1012 */
1013#ifdef CONFIG_SMP
495ab9c0
AK
1014
1015#ifndef tsk_is_polling
1016#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1017#endif
1018
36c8b586 1019static void resched_task(struct task_struct *p)
1da177e4 1020{
64c7c8f8 1021 int cpu;
1da177e4
LT
1022
1023 assert_spin_locked(&task_rq(p)->lock);
1024
64c7c8f8
NP
1025 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1026 return;
1027
1028 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1029
64c7c8f8
NP
1030 cpu = task_cpu(p);
1031 if (cpu == smp_processor_id())
1032 return;
1033
495ab9c0 1034 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1035 smp_mb();
495ab9c0 1036 if (!tsk_is_polling(p))
64c7c8f8 1037 smp_send_reschedule(cpu);
1da177e4
LT
1038}
1039#else
36c8b586 1040static inline void resched_task(struct task_struct *p)
1da177e4 1041{
64c7c8f8 1042 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1043 set_tsk_need_resched(p);
1044}
1045#endif
1046
1047/**
1048 * task_curr - is this task currently executing on a CPU?
1049 * @p: the task in question.
1050 */
36c8b586 1051inline int task_curr(const struct task_struct *p)
1da177e4
LT
1052{
1053 return cpu_curr(task_cpu(p)) == p;
1054}
1055
2dd73a4f
PW
1056/* Used instead of source_load when we know the type == 0 */
1057unsigned long weighted_cpuload(const int cpu)
1058{
1059 return cpu_rq(cpu)->raw_weighted_load;
1060}
1061
1da177e4 1062#ifdef CONFIG_SMP
70b97a7f 1063struct migration_req {
1da177e4 1064 struct list_head list;
1da177e4 1065
36c8b586 1066 struct task_struct *task;
1da177e4
LT
1067 int dest_cpu;
1068
1da177e4 1069 struct completion done;
70b97a7f 1070};
1da177e4
LT
1071
1072/*
1073 * The task's runqueue lock must be held.
1074 * Returns true if you have to wait for migration thread.
1075 */
36c8b586 1076static int
70b97a7f 1077migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1078{
70b97a7f 1079 struct rq *rq = task_rq(p);
1da177e4
LT
1080
1081 /*
1082 * If the task is not on a runqueue (and not running), then
1083 * it is sufficient to simply update the task's cpu field.
1084 */
1085 if (!p->array && !task_running(rq, p)) {
1086 set_task_cpu(p, dest_cpu);
1087 return 0;
1088 }
1089
1090 init_completion(&req->done);
1da177e4
LT
1091 req->task = p;
1092 req->dest_cpu = dest_cpu;
1093 list_add(&req->list, &rq->migration_queue);
48f24c4d 1094
1da177e4
LT
1095 return 1;
1096}
1097
1098/*
1099 * wait_task_inactive - wait for a thread to unschedule.
1100 *
1101 * The caller must ensure that the task *will* unschedule sometime soon,
1102 * else this function might spin for a *long* time. This function can't
1103 * be called with interrupts off, or it may introduce deadlock with
1104 * smp_call_function() if an IPI is sent by the same process we are
1105 * waiting to become inactive.
1106 */
36c8b586 1107void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1108{
1109 unsigned long flags;
70b97a7f 1110 struct rq *rq;
1da177e4
LT
1111 int preempted;
1112
1113repeat:
1114 rq = task_rq_lock(p, &flags);
1115 /* Must be off runqueue entirely, not preempted. */
1116 if (unlikely(p->array || task_running(rq, p))) {
1117 /* If it's preempted, we yield. It could be a while. */
1118 preempted = !task_running(rq, p);
1119 task_rq_unlock(rq, &flags);
1120 cpu_relax();
1121 if (preempted)
1122 yield();
1123 goto repeat;
1124 }
1125 task_rq_unlock(rq, &flags);
1126}
1127
1128/***
1129 * kick_process - kick a running thread to enter/exit the kernel
1130 * @p: the to-be-kicked thread
1131 *
1132 * Cause a process which is running on another CPU to enter
1133 * kernel-mode, without any delay. (to get signals handled.)
1134 *
1135 * NOTE: this function doesnt have to take the runqueue lock,
1136 * because all it wants to ensure is that the remote task enters
1137 * the kernel. If the IPI races and the task has been migrated
1138 * to another CPU then no harm is done and the purpose has been
1139 * achieved as well.
1140 */
36c8b586 1141void kick_process(struct task_struct *p)
1da177e4
LT
1142{
1143 int cpu;
1144
1145 preempt_disable();
1146 cpu = task_cpu(p);
1147 if ((cpu != smp_processor_id()) && task_curr(p))
1148 smp_send_reschedule(cpu);
1149 preempt_enable();
1150}
1151
1152/*
2dd73a4f
PW
1153 * Return a low guess at the load of a migration-source cpu weighted
1154 * according to the scheduling class and "nice" value.
1da177e4
LT
1155 *
1156 * We want to under-estimate the load of migration sources, to
1157 * balance conservatively.
1158 */
a2000572 1159static inline unsigned long source_load(int cpu, int type)
1da177e4 1160{
70b97a7f 1161 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1162
3b0bd9bc 1163 if (type == 0)
2dd73a4f 1164 return rq->raw_weighted_load;
b910472d 1165
2dd73a4f 1166 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1167}
1168
1169/*
2dd73a4f
PW
1170 * Return a high guess at the load of a migration-target cpu weighted
1171 * according to the scheduling class and "nice" value.
1da177e4 1172 */
a2000572 1173static inline unsigned long target_load(int cpu, int type)
1da177e4 1174{
70b97a7f 1175 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1176
7897986b 1177 if (type == 0)
2dd73a4f 1178 return rq->raw_weighted_load;
3b0bd9bc 1179
2dd73a4f
PW
1180 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1181}
1182
1183/*
1184 * Return the average load per task on the cpu's run queue
1185 */
1186static inline unsigned long cpu_avg_load_per_task(int cpu)
1187{
70b97a7f 1188 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1189 unsigned long n = rq->nr_running;
1190
48f24c4d 1191 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1192}
1193
147cbb4b
NP
1194/*
1195 * find_idlest_group finds and returns the least busy CPU group within the
1196 * domain.
1197 */
1198static struct sched_group *
1199find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1200{
1201 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1202 unsigned long min_load = ULONG_MAX, this_load = 0;
1203 int load_idx = sd->forkexec_idx;
1204 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1205
1206 do {
1207 unsigned long load, avg_load;
1208 int local_group;
1209 int i;
1210
da5a5522
BD
1211 /* Skip over this group if it has no CPUs allowed */
1212 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1213 goto nextgroup;
1214
147cbb4b 1215 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1216
1217 /* Tally up the load of all CPUs in the group */
1218 avg_load = 0;
1219
1220 for_each_cpu_mask(i, group->cpumask) {
1221 /* Bias balancing toward cpus of our domain */
1222 if (local_group)
1223 load = source_load(i, load_idx);
1224 else
1225 load = target_load(i, load_idx);
1226
1227 avg_load += load;
1228 }
1229
1230 /* Adjust by relative CPU power of the group */
1231 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1232
1233 if (local_group) {
1234 this_load = avg_load;
1235 this = group;
1236 } else if (avg_load < min_load) {
1237 min_load = avg_load;
1238 idlest = group;
1239 }
da5a5522 1240nextgroup:
147cbb4b
NP
1241 group = group->next;
1242 } while (group != sd->groups);
1243
1244 if (!idlest || 100*this_load < imbalance*min_load)
1245 return NULL;
1246 return idlest;
1247}
1248
1249/*
0feaece9 1250 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1251 */
95cdf3b7
IM
1252static int
1253find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1254{
da5a5522 1255 cpumask_t tmp;
147cbb4b
NP
1256 unsigned long load, min_load = ULONG_MAX;
1257 int idlest = -1;
1258 int i;
1259
da5a5522
BD
1260 /* Traverse only the allowed CPUs */
1261 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1262
1263 for_each_cpu_mask(i, tmp) {
2dd73a4f 1264 load = weighted_cpuload(i);
147cbb4b
NP
1265
1266 if (load < min_load || (load == min_load && i == this_cpu)) {
1267 min_load = load;
1268 idlest = i;
1269 }
1270 }
1271
1272 return idlest;
1273}
1274
476d139c
NP
1275/*
1276 * sched_balance_self: balance the current task (running on cpu) in domains
1277 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1278 * SD_BALANCE_EXEC.
1279 *
1280 * Balance, ie. select the least loaded group.
1281 *
1282 * Returns the target CPU number, or the same CPU if no balancing is needed.
1283 *
1284 * preempt must be disabled.
1285 */
1286static int sched_balance_self(int cpu, int flag)
1287{
1288 struct task_struct *t = current;
1289 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1290
c96d145e 1291 for_each_domain(cpu, tmp) {
5c45bf27
SS
1292 /*
1293 * If power savings logic is enabled for a domain, stop there.
1294 */
1295 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1296 break;
476d139c
NP
1297 if (tmp->flags & flag)
1298 sd = tmp;
c96d145e 1299 }
476d139c
NP
1300
1301 while (sd) {
1302 cpumask_t span;
1303 struct sched_group *group;
1a848870
SS
1304 int new_cpu, weight;
1305
1306 if (!(sd->flags & flag)) {
1307 sd = sd->child;
1308 continue;
1309 }
476d139c
NP
1310
1311 span = sd->span;
1312 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1313 if (!group) {
1314 sd = sd->child;
1315 continue;
1316 }
476d139c 1317
da5a5522 1318 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1319 if (new_cpu == -1 || new_cpu == cpu) {
1320 /* Now try balancing at a lower domain level of cpu */
1321 sd = sd->child;
1322 continue;
1323 }
476d139c 1324
1a848870 1325 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1326 cpu = new_cpu;
476d139c
NP
1327 sd = NULL;
1328 weight = cpus_weight(span);
1329 for_each_domain(cpu, tmp) {
1330 if (weight <= cpus_weight(tmp->span))
1331 break;
1332 if (tmp->flags & flag)
1333 sd = tmp;
1334 }
1335 /* while loop will break here if sd == NULL */
1336 }
1337
1338 return cpu;
1339}
1340
1341#endif /* CONFIG_SMP */
1da177e4
LT
1342
1343/*
1344 * wake_idle() will wake a task on an idle cpu if task->cpu is
1345 * not idle and an idle cpu is available. The span of cpus to
1346 * search starts with cpus closest then further out as needed,
1347 * so we always favor a closer, idle cpu.
1348 *
1349 * Returns the CPU we should wake onto.
1350 */
1351#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1352static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1353{
1354 cpumask_t tmp;
1355 struct sched_domain *sd;
1356 int i;
1357
1358 if (idle_cpu(cpu))
1359 return cpu;
1360
1361 for_each_domain(cpu, sd) {
1362 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1363 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1364 for_each_cpu_mask(i, tmp) {
1365 if (idle_cpu(i))
1366 return i;
1367 }
1368 }
e0f364f4
NP
1369 else
1370 break;
1da177e4
LT
1371 }
1372 return cpu;
1373}
1374#else
36c8b586 1375static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1376{
1377 return cpu;
1378}
1379#endif
1380
1381/***
1382 * try_to_wake_up - wake up a thread
1383 * @p: the to-be-woken-up thread
1384 * @state: the mask of task states that can be woken
1385 * @sync: do a synchronous wakeup?
1386 *
1387 * Put it on the run-queue if it's not already there. The "current"
1388 * thread is always on the run-queue (except when the actual
1389 * re-schedule is in progress), and as such you're allowed to do
1390 * the simpler "current->state = TASK_RUNNING" to mark yourself
1391 * runnable without the overhead of this.
1392 *
1393 * returns failure only if the task is already active.
1394 */
36c8b586 1395static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1396{
1397 int cpu, this_cpu, success = 0;
1398 unsigned long flags;
1399 long old_state;
70b97a7f 1400 struct rq *rq;
1da177e4 1401#ifdef CONFIG_SMP
7897986b 1402 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1403 unsigned long load, this_load;
1da177e4
LT
1404 int new_cpu;
1405#endif
1406
1407 rq = task_rq_lock(p, &flags);
1408 old_state = p->state;
1409 if (!(old_state & state))
1410 goto out;
1411
1412 if (p->array)
1413 goto out_running;
1414
1415 cpu = task_cpu(p);
1416 this_cpu = smp_processor_id();
1417
1418#ifdef CONFIG_SMP
1419 if (unlikely(task_running(rq, p)))
1420 goto out_activate;
1421
7897986b
NP
1422 new_cpu = cpu;
1423
1da177e4
LT
1424 schedstat_inc(rq, ttwu_cnt);
1425 if (cpu == this_cpu) {
1426 schedstat_inc(rq, ttwu_local);
7897986b
NP
1427 goto out_set_cpu;
1428 }
1429
1430 for_each_domain(this_cpu, sd) {
1431 if (cpu_isset(cpu, sd->span)) {
1432 schedstat_inc(sd, ttwu_wake_remote);
1433 this_sd = sd;
1434 break;
1da177e4
LT
1435 }
1436 }
1da177e4 1437
7897986b 1438 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1439 goto out_set_cpu;
1440
1da177e4 1441 /*
7897986b 1442 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1443 */
7897986b
NP
1444 if (this_sd) {
1445 int idx = this_sd->wake_idx;
1446 unsigned int imbalance;
1da177e4 1447
a3f21bce
NP
1448 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1449
7897986b
NP
1450 load = source_load(cpu, idx);
1451 this_load = target_load(this_cpu, idx);
1da177e4 1452
7897986b
NP
1453 new_cpu = this_cpu; /* Wake to this CPU if we can */
1454
a3f21bce
NP
1455 if (this_sd->flags & SD_WAKE_AFFINE) {
1456 unsigned long tl = this_load;
2dd73a4f
PW
1457 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1458
1da177e4 1459 /*
a3f21bce
NP
1460 * If sync wakeup then subtract the (maximum possible)
1461 * effect of the currently running task from the load
1462 * of the current CPU:
1da177e4 1463 */
a3f21bce 1464 if (sync)
2dd73a4f 1465 tl -= current->load_weight;
a3f21bce
NP
1466
1467 if ((tl <= load &&
2dd73a4f
PW
1468 tl + target_load(cpu, idx) <= tl_per_task) ||
1469 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1470 /*
1471 * This domain has SD_WAKE_AFFINE and
1472 * p is cache cold in this domain, and
1473 * there is no bad imbalance.
1474 */
1475 schedstat_inc(this_sd, ttwu_move_affine);
1476 goto out_set_cpu;
1477 }
1478 }
1479
1480 /*
1481 * Start passive balancing when half the imbalance_pct
1482 * limit is reached.
1483 */
1484 if (this_sd->flags & SD_WAKE_BALANCE) {
1485 if (imbalance*this_load <= 100*load) {
1486 schedstat_inc(this_sd, ttwu_move_balance);
1487 goto out_set_cpu;
1488 }
1da177e4
LT
1489 }
1490 }
1491
1492 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1493out_set_cpu:
1494 new_cpu = wake_idle(new_cpu, p);
1495 if (new_cpu != cpu) {
1496 set_task_cpu(p, new_cpu);
1497 task_rq_unlock(rq, &flags);
1498 /* might preempt at this point */
1499 rq = task_rq_lock(p, &flags);
1500 old_state = p->state;
1501 if (!(old_state & state))
1502 goto out;
1503 if (p->array)
1504 goto out_running;
1505
1506 this_cpu = smp_processor_id();
1507 cpu = task_cpu(p);
1508 }
1509
1510out_activate:
1511#endif /* CONFIG_SMP */
1512 if (old_state == TASK_UNINTERRUPTIBLE) {
1513 rq->nr_uninterruptible--;
1514 /*
1515 * Tasks on involuntary sleep don't earn
1516 * sleep_avg beyond just interactive state.
1517 */
3dee386e 1518 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1519 } else
1da177e4 1520
d79fc0fc
IM
1521 /*
1522 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1523 * woken up with their sleep average not weighted in an
1524 * interactive way.
d79fc0fc 1525 */
e7c38cb4
CK
1526 if (old_state & TASK_NONINTERACTIVE)
1527 p->sleep_type = SLEEP_NONINTERACTIVE;
1528
1529
1530 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1531 /*
1532 * Sync wakeups (i.e. those types of wakeups where the waker
1533 * has indicated that it will leave the CPU in short order)
1534 * don't trigger a preemption, if the woken up task will run on
1535 * this cpu. (in this case the 'I will reschedule' promise of
1536 * the waker guarantees that the freshly woken up task is going
1537 * to be considered on this CPU.)
1538 */
1da177e4
LT
1539 if (!sync || cpu != this_cpu) {
1540 if (TASK_PREEMPTS_CURR(p, rq))
1541 resched_task(rq->curr);
1542 }
1543 success = 1;
1544
1545out_running:
1546 p->state = TASK_RUNNING;
1547out:
1548 task_rq_unlock(rq, &flags);
1549
1550 return success;
1551}
1552
36c8b586 1553int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1554{
1555 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1556 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1557}
1da177e4
LT
1558EXPORT_SYMBOL(wake_up_process);
1559
36c8b586 1560int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1561{
1562 return try_to_wake_up(p, state, 0);
1563}
1564
1da177e4
LT
1565/*
1566 * Perform scheduler related setup for a newly forked process p.
1567 * p is forked by current.
1568 */
36c8b586 1569void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1570{
476d139c
NP
1571 int cpu = get_cpu();
1572
1573#ifdef CONFIG_SMP
1574 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1575#endif
1576 set_task_cpu(p, cpu);
1577
1da177e4
LT
1578 /*
1579 * We mark the process as running here, but have not actually
1580 * inserted it onto the runqueue yet. This guarantees that
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
1584 p->state = TASK_RUNNING;
b29739f9
IM
1585
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child:
1588 */
1589 p->prio = current->normal_prio;
1590
1da177e4
LT
1591 INIT_LIST_HEAD(&p->run_list);
1592 p->array = NULL;
52f17b6c
CS
1593#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1594 if (unlikely(sched_info_on()))
1595 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1596#endif
d6077cb8 1597#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1598 p->oncpu = 0;
1599#endif
1da177e4 1600#ifdef CONFIG_PREEMPT
4866cde0 1601 /* Want to start with kernel preemption disabled. */
a1261f54 1602 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1603#endif
1604 /*
1605 * Share the timeslice between parent and child, thus the
1606 * total amount of pending timeslices in the system doesn't change,
1607 * resulting in more scheduling fairness.
1608 */
1609 local_irq_disable();
1610 p->time_slice = (current->time_slice + 1) >> 1;
1611 /*
1612 * The remainder of the first timeslice might be recovered by
1613 * the parent if the child exits early enough.
1614 */
1615 p->first_time_slice = 1;
1616 current->time_slice >>= 1;
1617 p->timestamp = sched_clock();
1618 if (unlikely(!current->time_slice)) {
1619 /*
1620 * This case is rare, it happens when the parent has only
1621 * a single jiffy left from its timeslice. Taking the
1622 * runqueue lock is not a problem.
1623 */
1624 current->time_slice = 1;
1da177e4 1625 scheduler_tick();
476d139c
NP
1626 }
1627 local_irq_enable();
1628 put_cpu();
1da177e4
LT
1629}
1630
1631/*
1632 * wake_up_new_task - wake up a newly created task for the first time.
1633 *
1634 * This function will do some initial scheduler statistics housekeeping
1635 * that must be done for every newly created context, then puts the task
1636 * on the runqueue and wakes it.
1637 */
36c8b586 1638void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1639{
70b97a7f 1640 struct rq *rq, *this_rq;
1da177e4
LT
1641 unsigned long flags;
1642 int this_cpu, cpu;
1da177e4
LT
1643
1644 rq = task_rq_lock(p, &flags);
147cbb4b 1645 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1646 this_cpu = smp_processor_id();
147cbb4b 1647 cpu = task_cpu(p);
1da177e4 1648
1da177e4
LT
1649 /*
1650 * We decrease the sleep average of forking parents
1651 * and children as well, to keep max-interactive tasks
1652 * from forking tasks that are max-interactive. The parent
1653 * (current) is done further down, under its lock.
1654 */
1655 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1656 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1657
1658 p->prio = effective_prio(p);
1659
1660 if (likely(cpu == this_cpu)) {
1661 if (!(clone_flags & CLONE_VM)) {
1662 /*
1663 * The VM isn't cloned, so we're in a good position to
1664 * do child-runs-first in anticipation of an exec. This
1665 * usually avoids a lot of COW overhead.
1666 */
1667 if (unlikely(!current->array))
1668 __activate_task(p, rq);
1669 else {
1670 p->prio = current->prio;
b29739f9 1671 p->normal_prio = current->normal_prio;
1da177e4
LT
1672 list_add_tail(&p->run_list, &current->run_list);
1673 p->array = current->array;
1674 p->array->nr_active++;
2dd73a4f 1675 inc_nr_running(p, rq);
1da177e4
LT
1676 }
1677 set_need_resched();
1678 } else
1679 /* Run child last */
1680 __activate_task(p, rq);
1681 /*
1682 * We skip the following code due to cpu == this_cpu
1683 *
1684 * task_rq_unlock(rq, &flags);
1685 * this_rq = task_rq_lock(current, &flags);
1686 */
1687 this_rq = rq;
1688 } else {
1689 this_rq = cpu_rq(this_cpu);
1690
1691 /*
1692 * Not the local CPU - must adjust timestamp. This should
1693 * get optimised away in the !CONFIG_SMP case.
1694 */
b18ec803
MG
1695 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1696 + rq->most_recent_timestamp;
1da177e4
LT
1697 __activate_task(p, rq);
1698 if (TASK_PREEMPTS_CURR(p, rq))
1699 resched_task(rq->curr);
1700
1701 /*
1702 * Parent and child are on different CPUs, now get the
1703 * parent runqueue to update the parent's ->sleep_avg:
1704 */
1705 task_rq_unlock(rq, &flags);
1706 this_rq = task_rq_lock(current, &flags);
1707 }
1708 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1709 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1710 task_rq_unlock(this_rq, &flags);
1711}
1712
1713/*
1714 * Potentially available exiting-child timeslices are
1715 * retrieved here - this way the parent does not get
1716 * penalized for creating too many threads.
1717 *
1718 * (this cannot be used to 'generate' timeslices
1719 * artificially, because any timeslice recovered here
1720 * was given away by the parent in the first place.)
1721 */
36c8b586 1722void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1723{
1724 unsigned long flags;
70b97a7f 1725 struct rq *rq;
1da177e4
LT
1726
1727 /*
1728 * If the child was a (relative-) CPU hog then decrease
1729 * the sleep_avg of the parent as well.
1730 */
1731 rq = task_rq_lock(p->parent, &flags);
889dfafe 1732 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1733 p->parent->time_slice += p->time_slice;
1734 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1735 p->parent->time_slice = task_timeslice(p);
1736 }
1737 if (p->sleep_avg < p->parent->sleep_avg)
1738 p->parent->sleep_avg = p->parent->sleep_avg /
1739 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1740 (EXIT_WEIGHT + 1);
1741 task_rq_unlock(rq, &flags);
1742}
1743
4866cde0
NP
1744/**
1745 * prepare_task_switch - prepare to switch tasks
1746 * @rq: the runqueue preparing to switch
1747 * @next: the task we are going to switch to.
1748 *
1749 * This is called with the rq lock held and interrupts off. It must
1750 * be paired with a subsequent finish_task_switch after the context
1751 * switch.
1752 *
1753 * prepare_task_switch sets up locking and calls architecture specific
1754 * hooks.
1755 */
70b97a7f 1756static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1757{
1758 prepare_lock_switch(rq, next);
1759 prepare_arch_switch(next);
1760}
1761
1da177e4
LT
1762/**
1763 * finish_task_switch - clean up after a task-switch
344babaa 1764 * @rq: runqueue associated with task-switch
1da177e4
LT
1765 * @prev: the thread we just switched away from.
1766 *
4866cde0
NP
1767 * finish_task_switch must be called after the context switch, paired
1768 * with a prepare_task_switch call before the context switch.
1769 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1770 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1771 *
1772 * Note that we may have delayed dropping an mm in context_switch(). If
1773 * so, we finish that here outside of the runqueue lock. (Doing it
1774 * with the lock held can cause deadlocks; see schedule() for
1775 * details.)
1776 */
70b97a7f 1777static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1778 __releases(rq->lock)
1779{
1da177e4 1780 struct mm_struct *mm = rq->prev_mm;
55a101f8 1781 long prev_state;
1da177e4
LT
1782
1783 rq->prev_mm = NULL;
1784
1785 /*
1786 * A task struct has one reference for the use as "current".
c394cc9f 1787 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1788 * schedule one last time. The schedule call will never return, and
1789 * the scheduled task must drop that reference.
c394cc9f 1790 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1791 * still held, otherwise prev could be scheduled on another cpu, die
1792 * there before we look at prev->state, and then the reference would
1793 * be dropped twice.
1794 * Manfred Spraul <manfred@colorfullife.com>
1795 */
55a101f8 1796 prev_state = prev->state;
4866cde0
NP
1797 finish_arch_switch(prev);
1798 finish_lock_switch(rq, prev);
1da177e4
LT
1799 if (mm)
1800 mmdrop(mm);
c394cc9f 1801 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1802 /*
1803 * Remove function-return probe instances associated with this
1804 * task and put them back on the free list.
1805 */
1806 kprobe_flush_task(prev);
1da177e4 1807 put_task_struct(prev);
c6fd91f0 1808 }
1da177e4
LT
1809}
1810
1811/**
1812 * schedule_tail - first thing a freshly forked thread must call.
1813 * @prev: the thread we just switched away from.
1814 */
36c8b586 1815asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1816 __releases(rq->lock)
1817{
70b97a7f
IM
1818 struct rq *rq = this_rq();
1819
4866cde0
NP
1820 finish_task_switch(rq, prev);
1821#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1822 /* In this case, finish_task_switch does not reenable preemption */
1823 preempt_enable();
1824#endif
1da177e4
LT
1825 if (current->set_child_tid)
1826 put_user(current->pid, current->set_child_tid);
1827}
1828
1829/*
1830 * context_switch - switch to the new MM and the new
1831 * thread's register state.
1832 */
36c8b586 1833static inline struct task_struct *
70b97a7f 1834context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1835 struct task_struct *next)
1da177e4
LT
1836{
1837 struct mm_struct *mm = next->mm;
1838 struct mm_struct *oldmm = prev->active_mm;
1839
beed33a8 1840 if (!mm) {
1da177e4
LT
1841 next->active_mm = oldmm;
1842 atomic_inc(&oldmm->mm_count);
1843 enter_lazy_tlb(oldmm, next);
1844 } else
1845 switch_mm(oldmm, mm, next);
1846
beed33a8 1847 if (!prev->mm) {
1da177e4
LT
1848 prev->active_mm = NULL;
1849 WARN_ON(rq->prev_mm);
1850 rq->prev_mm = oldmm;
1851 }
3a5f5e48
IM
1852 /*
1853 * Since the runqueue lock will be released by the next
1854 * task (which is an invalid locking op but in the case
1855 * of the scheduler it's an obvious special-case), so we
1856 * do an early lockdep release here:
1857 */
1858#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1859 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1860#endif
1da177e4
LT
1861
1862 /* Here we just switch the register state and the stack. */
1863 switch_to(prev, next, prev);
1864
1865 return prev;
1866}
1867
1868/*
1869 * nr_running, nr_uninterruptible and nr_context_switches:
1870 *
1871 * externally visible scheduler statistics: current number of runnable
1872 * threads, current number of uninterruptible-sleeping threads, total
1873 * number of context switches performed since bootup.
1874 */
1875unsigned long nr_running(void)
1876{
1877 unsigned long i, sum = 0;
1878
1879 for_each_online_cpu(i)
1880 sum += cpu_rq(i)->nr_running;
1881
1882 return sum;
1883}
1884
1885unsigned long nr_uninterruptible(void)
1886{
1887 unsigned long i, sum = 0;
1888
0a945022 1889 for_each_possible_cpu(i)
1da177e4
LT
1890 sum += cpu_rq(i)->nr_uninterruptible;
1891
1892 /*
1893 * Since we read the counters lockless, it might be slightly
1894 * inaccurate. Do not allow it to go below zero though:
1895 */
1896 if (unlikely((long)sum < 0))
1897 sum = 0;
1898
1899 return sum;
1900}
1901
1902unsigned long long nr_context_switches(void)
1903{
cc94abfc
SR
1904 int i;
1905 unsigned long long sum = 0;
1da177e4 1906
0a945022 1907 for_each_possible_cpu(i)
1da177e4
LT
1908 sum += cpu_rq(i)->nr_switches;
1909
1910 return sum;
1911}
1912
1913unsigned long nr_iowait(void)
1914{
1915 unsigned long i, sum = 0;
1916
0a945022 1917 for_each_possible_cpu(i)
1da177e4
LT
1918 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1919
1920 return sum;
1921}
1922
db1b1fef
JS
1923unsigned long nr_active(void)
1924{
1925 unsigned long i, running = 0, uninterruptible = 0;
1926
1927 for_each_online_cpu(i) {
1928 running += cpu_rq(i)->nr_running;
1929 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1930 }
1931
1932 if (unlikely((long)uninterruptible < 0))
1933 uninterruptible = 0;
1934
1935 return running + uninterruptible;
1936}
1937
1da177e4
LT
1938#ifdef CONFIG_SMP
1939
48f24c4d
IM
1940/*
1941 * Is this task likely cache-hot:
1942 */
1943static inline int
1944task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1945{
1946 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1947}
1948
1da177e4
LT
1949/*
1950 * double_rq_lock - safely lock two runqueues
1951 *
1952 * Note this does not disable interrupts like task_rq_lock,
1953 * you need to do so manually before calling.
1954 */
70b97a7f 1955static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1956 __acquires(rq1->lock)
1957 __acquires(rq2->lock)
1958{
054b9108 1959 BUG_ON(!irqs_disabled());
1da177e4
LT
1960 if (rq1 == rq2) {
1961 spin_lock(&rq1->lock);
1962 __acquire(rq2->lock); /* Fake it out ;) */
1963 } else {
c96d145e 1964 if (rq1 < rq2) {
1da177e4
LT
1965 spin_lock(&rq1->lock);
1966 spin_lock(&rq2->lock);
1967 } else {
1968 spin_lock(&rq2->lock);
1969 spin_lock(&rq1->lock);
1970 }
1971 }
1972}
1973
1974/*
1975 * double_rq_unlock - safely unlock two runqueues
1976 *
1977 * Note this does not restore interrupts like task_rq_unlock,
1978 * you need to do so manually after calling.
1979 */
70b97a7f 1980static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1981 __releases(rq1->lock)
1982 __releases(rq2->lock)
1983{
1984 spin_unlock(&rq1->lock);
1985 if (rq1 != rq2)
1986 spin_unlock(&rq2->lock);
1987 else
1988 __release(rq2->lock);
1989}
1990
1991/*
1992 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1993 */
70b97a7f 1994static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1995 __releases(this_rq->lock)
1996 __acquires(busiest->lock)
1997 __acquires(this_rq->lock)
1998{
054b9108
KK
1999 if (unlikely(!irqs_disabled())) {
2000 /* printk() doesn't work good under rq->lock */
2001 spin_unlock(&this_rq->lock);
2002 BUG_ON(1);
2003 }
1da177e4 2004 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2005 if (busiest < this_rq) {
1da177e4
LT
2006 spin_unlock(&this_rq->lock);
2007 spin_lock(&busiest->lock);
2008 spin_lock(&this_rq->lock);
2009 } else
2010 spin_lock(&busiest->lock);
2011 }
2012}
2013
1da177e4
LT
2014/*
2015 * If dest_cpu is allowed for this process, migrate the task to it.
2016 * This is accomplished by forcing the cpu_allowed mask to only
2017 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2018 * the cpu_allowed mask is restored.
2019 */
36c8b586 2020static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2021{
70b97a7f 2022 struct migration_req req;
1da177e4 2023 unsigned long flags;
70b97a7f 2024 struct rq *rq;
1da177e4
LT
2025
2026 rq = task_rq_lock(p, &flags);
2027 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2028 || unlikely(cpu_is_offline(dest_cpu)))
2029 goto out;
2030
2031 /* force the process onto the specified CPU */
2032 if (migrate_task(p, dest_cpu, &req)) {
2033 /* Need to wait for migration thread (might exit: take ref). */
2034 struct task_struct *mt = rq->migration_thread;
36c8b586 2035
1da177e4
LT
2036 get_task_struct(mt);
2037 task_rq_unlock(rq, &flags);
2038 wake_up_process(mt);
2039 put_task_struct(mt);
2040 wait_for_completion(&req.done);
36c8b586 2041
1da177e4
LT
2042 return;
2043 }
2044out:
2045 task_rq_unlock(rq, &flags);
2046}
2047
2048/*
476d139c
NP
2049 * sched_exec - execve() is a valuable balancing opportunity, because at
2050 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2051 */
2052void sched_exec(void)
2053{
1da177e4 2054 int new_cpu, this_cpu = get_cpu();
476d139c 2055 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2056 put_cpu();
476d139c
NP
2057 if (new_cpu != this_cpu)
2058 sched_migrate_task(current, new_cpu);
1da177e4
LT
2059}
2060
2061/*
2062 * pull_task - move a task from a remote runqueue to the local runqueue.
2063 * Both runqueues must be locked.
2064 */
70b97a7f
IM
2065static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2066 struct task_struct *p, struct rq *this_rq,
2067 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2068{
2069 dequeue_task(p, src_array);
2dd73a4f 2070 dec_nr_running(p, src_rq);
1da177e4 2071 set_task_cpu(p, this_cpu);
2dd73a4f 2072 inc_nr_running(p, this_rq);
1da177e4 2073 enqueue_task(p, this_array);
b18ec803
MG
2074 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2075 + this_rq->most_recent_timestamp;
1da177e4
LT
2076 /*
2077 * Note that idle threads have a prio of MAX_PRIO, for this test
2078 * to be always true for them.
2079 */
2080 if (TASK_PREEMPTS_CURR(p, this_rq))
2081 resched_task(this_rq->curr);
2082}
2083
2084/*
2085 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2086 */
858119e1 2087static
70b97a7f 2088int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2089 struct sched_domain *sd, enum idle_type idle,
2090 int *all_pinned)
1da177e4
LT
2091{
2092 /*
2093 * We do not migrate tasks that are:
2094 * 1) running (obviously), or
2095 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2096 * 3) are cache-hot on their current CPU.
2097 */
1da177e4
LT
2098 if (!cpu_isset(this_cpu, p->cpus_allowed))
2099 return 0;
81026794
NP
2100 *all_pinned = 0;
2101
2102 if (task_running(rq, p))
2103 return 0;
1da177e4
LT
2104
2105 /*
2106 * Aggressive migration if:
cafb20c1 2107 * 1) task is cache cold, or
1da177e4
LT
2108 * 2) too many balance attempts have failed.
2109 */
2110
b18ec803
MG
2111 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2112#ifdef CONFIG_SCHEDSTATS
2113 if (task_hot(p, rq->most_recent_timestamp, sd))
2114 schedstat_inc(sd, lb_hot_gained[idle]);
2115#endif
1da177e4 2116 return 1;
b18ec803 2117 }
1da177e4 2118
b18ec803 2119 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2120 return 0;
1da177e4
LT
2121 return 1;
2122}
2123
615052dc 2124#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2125
1da177e4 2126/*
2dd73a4f
PW
2127 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2128 * load from busiest to this_rq, as part of a balancing operation within
2129 * "domain". Returns the number of tasks moved.
1da177e4
LT
2130 *
2131 * Called with both runqueues locked.
2132 */
70b97a7f 2133static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2134 unsigned long max_nr_move, unsigned long max_load_move,
2135 struct sched_domain *sd, enum idle_type idle,
2136 int *all_pinned)
1da177e4 2137{
48f24c4d
IM
2138 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2139 best_prio_seen, skip_for_load;
70b97a7f 2140 struct prio_array *array, *dst_array;
1da177e4 2141 struct list_head *head, *curr;
36c8b586 2142 struct task_struct *tmp;
2dd73a4f 2143 long rem_load_move;
1da177e4 2144
2dd73a4f 2145 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2146 goto out;
2147
2dd73a4f 2148 rem_load_move = max_load_move;
81026794 2149 pinned = 1;
615052dc 2150 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2151 best_prio = rq_best_prio(busiest);
615052dc
PW
2152 /*
2153 * Enable handling of the case where there is more than one task
2154 * with the best priority. If the current running task is one
48f24c4d 2155 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2156 * and therefore it's safe to override the skip (based on load) of
2157 * any task we find with that prio.
2158 */
48f24c4d 2159 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2160
1da177e4
LT
2161 /*
2162 * We first consider expired tasks. Those will likely not be
2163 * executed in the near future, and they are most likely to
2164 * be cache-cold, thus switching CPUs has the least effect
2165 * on them.
2166 */
2167 if (busiest->expired->nr_active) {
2168 array = busiest->expired;
2169 dst_array = this_rq->expired;
2170 } else {
2171 array = busiest->active;
2172 dst_array = this_rq->active;
2173 }
2174
2175new_array:
2176 /* Start searching at priority 0: */
2177 idx = 0;
2178skip_bitmap:
2179 if (!idx)
2180 idx = sched_find_first_bit(array->bitmap);
2181 else
2182 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2183 if (idx >= MAX_PRIO) {
2184 if (array == busiest->expired && busiest->active->nr_active) {
2185 array = busiest->active;
2186 dst_array = this_rq->active;
2187 goto new_array;
2188 }
2189 goto out;
2190 }
2191
2192 head = array->queue + idx;
2193 curr = head->prev;
2194skip_queue:
36c8b586 2195 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2196
2197 curr = curr->prev;
2198
50ddd969
PW
2199 /*
2200 * To help distribute high priority tasks accross CPUs we don't
2201 * skip a task if it will be the highest priority task (i.e. smallest
2202 * prio value) on its new queue regardless of its load weight
2203 */
615052dc
PW
2204 skip_for_load = tmp->load_weight > rem_load_move;
2205 if (skip_for_load && idx < this_best_prio)
48f24c4d 2206 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2207 if (skip_for_load ||
2dd73a4f 2208 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2209
2210 best_prio_seen |= idx == best_prio;
1da177e4
LT
2211 if (curr != head)
2212 goto skip_queue;
2213 idx++;
2214 goto skip_bitmap;
2215 }
2216
1da177e4
LT
2217 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2218 pulled++;
2dd73a4f 2219 rem_load_move -= tmp->load_weight;
1da177e4 2220
2dd73a4f
PW
2221 /*
2222 * We only want to steal up to the prescribed number of tasks
2223 * and the prescribed amount of weighted load.
2224 */
2225 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2226 if (idx < this_best_prio)
2227 this_best_prio = idx;
1da177e4
LT
2228 if (curr != head)
2229 goto skip_queue;
2230 idx++;
2231 goto skip_bitmap;
2232 }
2233out:
2234 /*
2235 * Right now, this is the only place pull_task() is called,
2236 * so we can safely collect pull_task() stats here rather than
2237 * inside pull_task().
2238 */
2239 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2240
2241 if (all_pinned)
2242 *all_pinned = pinned;
1da177e4
LT
2243 return pulled;
2244}
2245
2246/*
2247 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2248 * domain. It calculates and returns the amount of weighted load which
2249 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2250 */
2251static struct sched_group *
2252find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4 2253 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
783609c6 2254 cpumask_t *cpus, int *balance)
1da177e4
LT
2255{
2256 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2257 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2258 unsigned long max_pull;
2dd73a4f
PW
2259 unsigned long busiest_load_per_task, busiest_nr_running;
2260 unsigned long this_load_per_task, this_nr_running;
7897986b 2261 int load_idx;
5c45bf27
SS
2262#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2263 int power_savings_balance = 1;
2264 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2265 unsigned long min_nr_running = ULONG_MAX;
2266 struct sched_group *group_min = NULL, *group_leader = NULL;
2267#endif
1da177e4
LT
2268
2269 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2270 busiest_load_per_task = busiest_nr_running = 0;
2271 this_load_per_task = this_nr_running = 0;
7897986b
NP
2272 if (idle == NOT_IDLE)
2273 load_idx = sd->busy_idx;
2274 else if (idle == NEWLY_IDLE)
2275 load_idx = sd->newidle_idx;
2276 else
2277 load_idx = sd->idle_idx;
1da177e4
LT
2278
2279 do {
5c45bf27 2280 unsigned long load, group_capacity;
1da177e4
LT
2281 int local_group;
2282 int i;
783609c6 2283 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2284 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2285
2286 local_group = cpu_isset(this_cpu, group->cpumask);
2287
783609c6
SS
2288 if (local_group)
2289 balance_cpu = first_cpu(group->cpumask);
2290
1da177e4 2291 /* Tally up the load of all CPUs in the group */
2dd73a4f 2292 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2293
2294 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2295 struct rq *rq;
2296
2297 if (!cpu_isset(i, *cpus))
2298 continue;
2299
2300 rq = cpu_rq(i);
2dd73a4f 2301
5969fe06
NP
2302 if (*sd_idle && !idle_cpu(i))
2303 *sd_idle = 0;
2304
1da177e4 2305 /* Bias balancing toward cpus of our domain */
783609c6
SS
2306 if (local_group) {
2307 if (idle_cpu(i) && !first_idle_cpu) {
2308 first_idle_cpu = 1;
2309 balance_cpu = i;
2310 }
2311
a2000572 2312 load = target_load(i, load_idx);
783609c6 2313 } else
a2000572 2314 load = source_load(i, load_idx);
1da177e4
LT
2315
2316 avg_load += load;
2dd73a4f
PW
2317 sum_nr_running += rq->nr_running;
2318 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2319 }
2320
783609c6
SS
2321 /*
2322 * First idle cpu or the first cpu(busiest) in this sched group
2323 * is eligible for doing load balancing at this and above
2324 * domains.
2325 */
2326 if (local_group && balance_cpu != this_cpu && balance) {
2327 *balance = 0;
2328 goto ret;
2329 }
2330
1da177e4
LT
2331 total_load += avg_load;
2332 total_pwr += group->cpu_power;
2333
2334 /* Adjust by relative CPU power of the group */
2335 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2336
5c45bf27
SS
2337 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2338
1da177e4
LT
2339 if (local_group) {
2340 this_load = avg_load;
2341 this = group;
2dd73a4f
PW
2342 this_nr_running = sum_nr_running;
2343 this_load_per_task = sum_weighted_load;
2344 } else if (avg_load > max_load &&
5c45bf27 2345 sum_nr_running > group_capacity) {
1da177e4
LT
2346 max_load = avg_load;
2347 busiest = group;
2dd73a4f
PW
2348 busiest_nr_running = sum_nr_running;
2349 busiest_load_per_task = sum_weighted_load;
1da177e4 2350 }
5c45bf27
SS
2351
2352#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2353 /*
2354 * Busy processors will not participate in power savings
2355 * balance.
2356 */
2357 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2358 goto group_next;
2359
2360 /*
2361 * If the local group is idle or completely loaded
2362 * no need to do power savings balance at this domain
2363 */
2364 if (local_group && (this_nr_running >= group_capacity ||
2365 !this_nr_running))
2366 power_savings_balance = 0;
2367
2368 /*
2369 * If a group is already running at full capacity or idle,
2370 * don't include that group in power savings calculations
2371 */
2372 if (!power_savings_balance || sum_nr_running >= group_capacity
2373 || !sum_nr_running)
2374 goto group_next;
2375
2376 /*
2377 * Calculate the group which has the least non-idle load.
2378 * This is the group from where we need to pick up the load
2379 * for saving power
2380 */
2381 if ((sum_nr_running < min_nr_running) ||
2382 (sum_nr_running == min_nr_running &&
2383 first_cpu(group->cpumask) <
2384 first_cpu(group_min->cpumask))) {
2385 group_min = group;
2386 min_nr_running = sum_nr_running;
2387 min_load_per_task = sum_weighted_load /
2388 sum_nr_running;
2389 }
2390
2391 /*
2392 * Calculate the group which is almost near its
2393 * capacity but still has some space to pick up some load
2394 * from other group and save more power
2395 */
48f24c4d 2396 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2397 if (sum_nr_running > leader_nr_running ||
2398 (sum_nr_running == leader_nr_running &&
2399 first_cpu(group->cpumask) >
2400 first_cpu(group_leader->cpumask))) {
2401 group_leader = group;
2402 leader_nr_running = sum_nr_running;
2403 }
48f24c4d 2404 }
5c45bf27
SS
2405group_next:
2406#endif
1da177e4
LT
2407 group = group->next;
2408 } while (group != sd->groups);
2409
2dd73a4f 2410 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2411 goto out_balanced;
2412
2413 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2414
2415 if (this_load >= avg_load ||
2416 100*max_load <= sd->imbalance_pct*this_load)
2417 goto out_balanced;
2418
2dd73a4f 2419 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2420 /*
2421 * We're trying to get all the cpus to the average_load, so we don't
2422 * want to push ourselves above the average load, nor do we wish to
2423 * reduce the max loaded cpu below the average load, as either of these
2424 * actions would just result in more rebalancing later, and ping-pong
2425 * tasks around. Thus we look for the minimum possible imbalance.
2426 * Negative imbalances (*we* are more loaded than anyone else) will
2427 * be counted as no imbalance for these purposes -- we can't fix that
2428 * by pulling tasks to us. Be careful of negative numbers as they'll
2429 * appear as very large values with unsigned longs.
2430 */
2dd73a4f
PW
2431 if (max_load <= busiest_load_per_task)
2432 goto out_balanced;
2433
2434 /*
2435 * In the presence of smp nice balancing, certain scenarios can have
2436 * max load less than avg load(as we skip the groups at or below
2437 * its cpu_power, while calculating max_load..)
2438 */
2439 if (max_load < avg_load) {
2440 *imbalance = 0;
2441 goto small_imbalance;
2442 }
0c117f1b
SS
2443
2444 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2445 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2446
1da177e4 2447 /* How much load to actually move to equalise the imbalance */
0c117f1b 2448 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2449 (avg_load - this_load) * this->cpu_power)
2450 / SCHED_LOAD_SCALE;
2451
2dd73a4f
PW
2452 /*
2453 * if *imbalance is less than the average load per runnable task
2454 * there is no gaurantee that any tasks will be moved so we'll have
2455 * a think about bumping its value to force at least one task to be
2456 * moved
2457 */
2458 if (*imbalance < busiest_load_per_task) {
48f24c4d 2459 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2460 unsigned int imbn;
2461
2462small_imbalance:
2463 pwr_move = pwr_now = 0;
2464 imbn = 2;
2465 if (this_nr_running) {
2466 this_load_per_task /= this_nr_running;
2467 if (busiest_load_per_task > this_load_per_task)
2468 imbn = 1;
2469 } else
2470 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2471
2dd73a4f
PW
2472 if (max_load - this_load >= busiest_load_per_task * imbn) {
2473 *imbalance = busiest_load_per_task;
1da177e4
LT
2474 return busiest;
2475 }
2476
2477 /*
2478 * OK, we don't have enough imbalance to justify moving tasks,
2479 * however we may be able to increase total CPU power used by
2480 * moving them.
2481 */
2482
2dd73a4f
PW
2483 pwr_now += busiest->cpu_power *
2484 min(busiest_load_per_task, max_load);
2485 pwr_now += this->cpu_power *
2486 min(this_load_per_task, this_load);
1da177e4
LT
2487 pwr_now /= SCHED_LOAD_SCALE;
2488
2489 /* Amount of load we'd subtract */
2dd73a4f 2490 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2491 if (max_load > tmp)
2dd73a4f
PW
2492 pwr_move += busiest->cpu_power *
2493 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2494
2495 /* Amount of load we'd add */
2496 if (max_load*busiest->cpu_power <
2dd73a4f 2497 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2498 tmp = max_load*busiest->cpu_power/this->cpu_power;
2499 else
2dd73a4f
PW
2500 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2501 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2502 pwr_move /= SCHED_LOAD_SCALE;
2503
2504 /* Move if we gain throughput */
2505 if (pwr_move <= pwr_now)
2506 goto out_balanced;
2507
2dd73a4f 2508 *imbalance = busiest_load_per_task;
1da177e4
LT
2509 }
2510
1da177e4
LT
2511 return busiest;
2512
2513out_balanced:
5c45bf27
SS
2514#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2515 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2516 goto ret;
1da177e4 2517
5c45bf27
SS
2518 if (this == group_leader && group_leader != group_min) {
2519 *imbalance = min_load_per_task;
2520 return group_min;
2521 }
5c45bf27 2522#endif
783609c6 2523ret:
1da177e4
LT
2524 *imbalance = 0;
2525 return NULL;
2526}
2527
2528/*
2529 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2530 */
70b97a7f 2531static struct rq *
48f24c4d 2532find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2533 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2534{
70b97a7f 2535 struct rq *busiest = NULL, *rq;
2dd73a4f 2536 unsigned long max_load = 0;
1da177e4
LT
2537 int i;
2538
2539 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2540
2541 if (!cpu_isset(i, *cpus))
2542 continue;
2543
48f24c4d 2544 rq = cpu_rq(i);
2dd73a4f 2545
48f24c4d 2546 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2547 continue;
1da177e4 2548
48f24c4d
IM
2549 if (rq->raw_weighted_load > max_load) {
2550 max_load = rq->raw_weighted_load;
2551 busiest = rq;
1da177e4
LT
2552 }
2553 }
2554
2555 return busiest;
2556}
2557
77391d71
NP
2558/*
2559 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2560 * so long as it is large enough.
2561 */
2562#define MAX_PINNED_INTERVAL 512
2563
48f24c4d
IM
2564static inline unsigned long minus_1_or_zero(unsigned long n)
2565{
2566 return n > 0 ? n - 1 : 0;
2567}
2568
1da177e4
LT
2569/*
2570 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2571 * tasks if there is an imbalance.
1da177e4 2572 */
70b97a7f 2573static int load_balance(int this_cpu, struct rq *this_rq,
783609c6
SS
2574 struct sched_domain *sd, enum idle_type idle,
2575 int *balance)
1da177e4 2576{
48f24c4d 2577 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2578 struct sched_group *group;
1da177e4 2579 unsigned long imbalance;
70b97a7f 2580 struct rq *busiest;
0a2966b4 2581 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2582 unsigned long flags;
5969fe06 2583
89c4710e
SS
2584 /*
2585 * When power savings policy is enabled for the parent domain, idle
2586 * sibling can pick up load irrespective of busy siblings. In this case,
2587 * let the state of idle sibling percolate up as IDLE, instead of
2588 * portraying it as NOT_IDLE.
2589 */
5c45bf27 2590 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2592 sd_idle = 1;
1da177e4 2593
1da177e4
LT
2594 schedstat_inc(sd, lb_cnt[idle]);
2595
0a2966b4
CL
2596redo:
2597 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2598 &cpus, balance);
2599
06066714 2600 if (*balance == 0)
783609c6 2601 goto out_balanced;
783609c6 2602
1da177e4
LT
2603 if (!group) {
2604 schedstat_inc(sd, lb_nobusyg[idle]);
2605 goto out_balanced;
2606 }
2607
0a2966b4 2608 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2609 if (!busiest) {
2610 schedstat_inc(sd, lb_nobusyq[idle]);
2611 goto out_balanced;
2612 }
2613
db935dbd 2614 BUG_ON(busiest == this_rq);
1da177e4
LT
2615
2616 schedstat_add(sd, lb_imbalance[idle], imbalance);
2617
2618 nr_moved = 0;
2619 if (busiest->nr_running > 1) {
2620 /*
2621 * Attempt to move tasks. If find_busiest_group has found
2622 * an imbalance but busiest->nr_running <= 1, the group is
2623 * still unbalanced. nr_moved simply stays zero, so it is
2624 * correctly treated as an imbalance.
2625 */
fe2eea3f 2626 local_irq_save(flags);
e17224bf 2627 double_rq_lock(this_rq, busiest);
1da177e4 2628 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2629 minus_1_or_zero(busiest->nr_running),
2630 imbalance, sd, idle, &all_pinned);
e17224bf 2631 double_rq_unlock(this_rq, busiest);
fe2eea3f 2632 local_irq_restore(flags);
81026794
NP
2633
2634 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2635 if (unlikely(all_pinned)) {
2636 cpu_clear(cpu_of(busiest), cpus);
2637 if (!cpus_empty(cpus))
2638 goto redo;
81026794 2639 goto out_balanced;
0a2966b4 2640 }
1da177e4 2641 }
81026794 2642
1da177e4
LT
2643 if (!nr_moved) {
2644 schedstat_inc(sd, lb_failed[idle]);
2645 sd->nr_balance_failed++;
2646
2647 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2648
fe2eea3f 2649 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2650
2651 /* don't kick the migration_thread, if the curr
2652 * task on busiest cpu can't be moved to this_cpu
2653 */
2654 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2655 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2656 all_pinned = 1;
2657 goto out_one_pinned;
2658 }
2659
1da177e4
LT
2660 if (!busiest->active_balance) {
2661 busiest->active_balance = 1;
2662 busiest->push_cpu = this_cpu;
81026794 2663 active_balance = 1;
1da177e4 2664 }
fe2eea3f 2665 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2666 if (active_balance)
1da177e4
LT
2667 wake_up_process(busiest->migration_thread);
2668
2669 /*
2670 * We've kicked active balancing, reset the failure
2671 * counter.
2672 */
39507451 2673 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2674 }
81026794 2675 } else
1da177e4
LT
2676 sd->nr_balance_failed = 0;
2677
81026794 2678 if (likely(!active_balance)) {
1da177e4
LT
2679 /* We were unbalanced, so reset the balancing interval */
2680 sd->balance_interval = sd->min_interval;
81026794
NP
2681 } else {
2682 /*
2683 * If we've begun active balancing, start to back off. This
2684 * case may not be covered by the all_pinned logic if there
2685 * is only 1 task on the busy runqueue (because we don't call
2686 * move_tasks).
2687 */
2688 if (sd->balance_interval < sd->max_interval)
2689 sd->balance_interval *= 2;
1da177e4
LT
2690 }
2691
5c45bf27 2692 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2694 return -1;
1da177e4
LT
2695 return nr_moved;
2696
2697out_balanced:
1da177e4
LT
2698 schedstat_inc(sd, lb_balanced[idle]);
2699
16cfb1c0 2700 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2701
2702out_one_pinned:
1da177e4 2703 /* tune up the balancing interval */
77391d71
NP
2704 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2705 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2706 sd->balance_interval *= 2;
2707
48f24c4d 2708 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2709 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2710 return -1;
1da177e4
LT
2711 return 0;
2712}
2713
2714/*
2715 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2716 * tasks if there is an imbalance.
2717 *
2718 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2719 * this_rq is locked.
2720 */
48f24c4d 2721static int
70b97a7f 2722load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2723{
2724 struct sched_group *group;
70b97a7f 2725 struct rq *busiest = NULL;
1da177e4
LT
2726 unsigned long imbalance;
2727 int nr_moved = 0;
5969fe06 2728 int sd_idle = 0;
0a2966b4 2729 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2730
89c4710e
SS
2731 /*
2732 * When power savings policy is enabled for the parent domain, idle
2733 * sibling can pick up load irrespective of busy siblings. In this case,
2734 * let the state of idle sibling percolate up as IDLE, instead of
2735 * portraying it as NOT_IDLE.
2736 */
2737 if (sd->flags & SD_SHARE_CPUPOWER &&
2738 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2739 sd_idle = 1;
1da177e4
LT
2740
2741 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2742redo:
2743 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
783609c6 2744 &sd_idle, &cpus, NULL);
1da177e4 2745 if (!group) {
1da177e4 2746 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2747 goto out_balanced;
1da177e4
LT
2748 }
2749
0a2966b4
CL
2750 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2751 &cpus);
db935dbd 2752 if (!busiest) {
1da177e4 2753 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2754 goto out_balanced;
1da177e4
LT
2755 }
2756
db935dbd
NP
2757 BUG_ON(busiest == this_rq);
2758
1da177e4 2759 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2760
2761 nr_moved = 0;
2762 if (busiest->nr_running > 1) {
2763 /* Attempt to move tasks */
2764 double_lock_balance(this_rq, busiest);
2765 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2766 minus_1_or_zero(busiest->nr_running),
81026794 2767 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2768 spin_unlock(&busiest->lock);
0a2966b4
CL
2769
2770 if (!nr_moved) {
2771 cpu_clear(cpu_of(busiest), cpus);
2772 if (!cpus_empty(cpus))
2773 goto redo;
2774 }
d6d5cfaf
NP
2775 }
2776
5969fe06 2777 if (!nr_moved) {
1da177e4 2778 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2779 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2780 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2781 return -1;
2782 } else
16cfb1c0 2783 sd->nr_balance_failed = 0;
1da177e4 2784
1da177e4 2785 return nr_moved;
16cfb1c0
NP
2786
2787out_balanced:
2788 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2789 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2790 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2791 return -1;
16cfb1c0 2792 sd->nr_balance_failed = 0;
48f24c4d 2793
16cfb1c0 2794 return 0;
1da177e4
LT
2795}
2796
2797/*
2798 * idle_balance is called by schedule() if this_cpu is about to become
2799 * idle. Attempts to pull tasks from other CPUs.
2800 */
70b97a7f 2801static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2802{
2803 struct sched_domain *sd;
1bd77f2d
CL
2804 int pulled_task = 0;
2805 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2806
2807 for_each_domain(this_cpu, sd) {
2808 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d 2809 /* If we've pulled tasks over stop searching: */
1bd77f2d
CL
2810 pulled_task = load_balance_newidle(this_cpu,
2811 this_rq, sd);
2812 if (time_after(next_balance,
2813 sd->last_balance + sd->balance_interval))
2814 next_balance = sd->last_balance
2815 + sd->balance_interval;
2816 if (pulled_task)
1da177e4 2817 break;
1da177e4
LT
2818 }
2819 }
1bd77f2d
CL
2820 if (!pulled_task)
2821 /*
2822 * We are going idle. next_balance may be set based on
2823 * a busy processor. So reset next_balance.
2824 */
2825 this_rq->next_balance = next_balance;
1da177e4
LT
2826}
2827
2828/*
2829 * active_load_balance is run by migration threads. It pushes running tasks
2830 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2831 * running on each physical CPU where possible, and avoids physical /
2832 * logical imbalances.
2833 *
2834 * Called with busiest_rq locked.
2835 */
70b97a7f 2836static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2837{
39507451 2838 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2839 struct sched_domain *sd;
2840 struct rq *target_rq;
39507451 2841
48f24c4d 2842 /* Is there any task to move? */
39507451 2843 if (busiest_rq->nr_running <= 1)
39507451
NP
2844 return;
2845
2846 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2847
2848 /*
39507451
NP
2849 * This condition is "impossible", if it occurs
2850 * we need to fix it. Originally reported by
2851 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2852 */
39507451 2853 BUG_ON(busiest_rq == target_rq);
1da177e4 2854
39507451
NP
2855 /* move a task from busiest_rq to target_rq */
2856 double_lock_balance(busiest_rq, target_rq);
2857
2858 /* Search for an sd spanning us and the target CPU. */
c96d145e 2859 for_each_domain(target_cpu, sd) {
39507451 2860 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2861 cpu_isset(busiest_cpu, sd->span))
39507451 2862 break;
c96d145e 2863 }
39507451 2864
48f24c4d
IM
2865 if (likely(sd)) {
2866 schedstat_inc(sd, alb_cnt);
39507451 2867
48f24c4d
IM
2868 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2869 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2870 NULL))
2871 schedstat_inc(sd, alb_pushed);
2872 else
2873 schedstat_inc(sd, alb_failed);
2874 }
39507451 2875 spin_unlock(&target_rq->lock);
1da177e4
LT
2876}
2877
7835b98b 2878static void update_load(struct rq *this_rq)
1da177e4 2879{
7835b98b 2880 unsigned long this_load;
48f24c4d 2881 int i, scale;
1da177e4 2882
2dd73a4f 2883 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2884
2885 /* Update our load: */
2886 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2887 unsigned long old_load, new_load;
2888
7897986b 2889 old_load = this_rq->cpu_load[i];
48f24c4d 2890 new_load = this_load;
7897986b
NP
2891 /*
2892 * Round up the averaging division if load is increasing. This
2893 * prevents us from getting stuck on 9 if the load is 10, for
2894 * example.
2895 */
2896 if (new_load > old_load)
2897 new_load += scale-1;
2898 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2899 }
7835b98b
CL
2900}
2901
2902/*
c9819f45 2903 * run_rebalance_domains is triggered when needed from the scheduler tick.
7835b98b
CL
2904 *
2905 * It checks each scheduling domain to see if it is due to be balanced,
2906 * and initiates a balancing operation if so.
2907 *
2908 * Balancing parameters are set up in arch_init_sched_domains.
2909 */
08c183f3 2910static DEFINE_SPINLOCK(balancing);
7835b98b 2911
c9819f45 2912static void run_rebalance_domains(struct softirq_action *h)
7835b98b 2913{
783609c6 2914 int this_cpu = smp_processor_id(), balance = 1;
c9819f45 2915 struct rq *this_rq = cpu_rq(this_cpu);
7835b98b
CL
2916 unsigned long interval;
2917 struct sched_domain *sd;
e418e1c2
CL
2918 /*
2919 * We are idle if there are no processes running. This
2920 * is valid even if we are the idle process (SMT).
2921 */
2922 enum idle_type idle = !this_rq->nr_running ?
2923 SCHED_IDLE : NOT_IDLE;
c9819f45
CL
2924 /* Earliest time when we have to call run_rebalance_domains again */
2925 unsigned long next_balance = jiffies + 60*HZ;
1da177e4
LT
2926
2927 for_each_domain(this_cpu, sd) {
1da177e4
LT
2928 if (!(sd->flags & SD_LOAD_BALANCE))
2929 continue;
2930
2931 interval = sd->balance_interval;
2932 if (idle != SCHED_IDLE)
2933 interval *= sd->busy_factor;
2934
2935 /* scale ms to jiffies */
2936 interval = msecs_to_jiffies(interval);
2937 if (unlikely(!interval))
2938 interval = 1;
2939
08c183f3
CL
2940 if (sd->flags & SD_SERIALIZE) {
2941 if (!spin_trylock(&balancing))
2942 goto out;
2943 }
2944
c9819f45 2945 if (time_after_eq(jiffies, sd->last_balance + interval)) {
783609c6 2946 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
fa3b6ddc
SS
2947 /*
2948 * We've pulled tasks over so either we're no
5969fe06
NP
2949 * longer idle, or one of our SMT siblings is
2950 * not idle.
2951 */
1da177e4
LT
2952 idle = NOT_IDLE;
2953 }
1bd77f2d 2954 sd->last_balance = jiffies;
1da177e4 2955 }
08c183f3
CL
2956 if (sd->flags & SD_SERIALIZE)
2957 spin_unlock(&balancing);
2958out:
c9819f45
CL
2959 if (time_after(next_balance, sd->last_balance + interval))
2960 next_balance = sd->last_balance + interval;
783609c6
SS
2961
2962 /*
2963 * Stop the load balance at this level. There is another
2964 * CPU in our sched group which is doing load balancing more
2965 * actively.
2966 */
2967 if (!balance)
2968 break;
1da177e4 2969 }
c9819f45 2970 this_rq->next_balance = next_balance;
1da177e4
LT
2971}
2972#else
2973/*
2974 * on UP we do not need to balance between CPUs:
2975 */
70b97a7f 2976static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2977{
2978}
2979#endif
2980
e418e1c2 2981static inline void wake_priority_sleeper(struct rq *rq)
1da177e4 2982{
1da177e4 2983#ifdef CONFIG_SCHED_SMT
571f6d2f 2984 if (!rq->nr_running)
e418e1c2 2985 return;
571f6d2f 2986
1da177e4
LT
2987 spin_lock(&rq->lock);
2988 /*
2989 * If an SMT sibling task has been put to sleep for priority
2990 * reasons reschedule the idle task to see if it can now run.
2991 */
e418e1c2 2992 if (rq->nr_running)
1da177e4 2993 resched_task(rq->idle);
1da177e4
LT
2994 spin_unlock(&rq->lock);
2995#endif
1da177e4
LT
2996}
2997
2998DEFINE_PER_CPU(struct kernel_stat, kstat);
2999
3000EXPORT_PER_CPU_SYMBOL(kstat);
3001
3002/*
3003 * This is called on clock ticks and on context switches.
3004 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3005 */
48f24c4d 3006static inline void
70b97a7f 3007update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3008{
b18ec803
MG
3009 p->sched_time += now - p->last_ran;
3010 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3011}
3012
3013/*
3014 * Return current->sched_time plus any more ns on the sched_clock
3015 * that have not yet been banked.
3016 */
36c8b586 3017unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3018{
3019 unsigned long long ns;
3020 unsigned long flags;
48f24c4d 3021
1da177e4 3022 local_irq_save(flags);
b18ec803 3023 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3024 local_irq_restore(flags);
48f24c4d 3025
1da177e4
LT
3026 return ns;
3027}
3028
f1adad78
LT
3029/*
3030 * We place interactive tasks back into the active array, if possible.
3031 *
3032 * To guarantee that this does not starve expired tasks we ignore the
3033 * interactivity of a task if the first expired task had to wait more
3034 * than a 'reasonable' amount of time. This deadline timeout is
3035 * load-dependent, as the frequency of array switched decreases with
3036 * increasing number of running tasks. We also ignore the interactivity
3037 * if a better static_prio task has expired:
3038 */
70b97a7f 3039static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3040{
3041 if (rq->curr->static_prio > rq->best_expired_prio)
3042 return 1;
3043 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3044 return 0;
3045 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3046 return 1;
3047 return 0;
3048}
f1adad78 3049
1da177e4
LT
3050/*
3051 * Account user cpu time to a process.
3052 * @p: the process that the cpu time gets accounted to
3053 * @hardirq_offset: the offset to subtract from hardirq_count()
3054 * @cputime: the cpu time spent in user space since the last update
3055 */
3056void account_user_time(struct task_struct *p, cputime_t cputime)
3057{
3058 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3059 cputime64_t tmp;
3060
3061 p->utime = cputime_add(p->utime, cputime);
3062
3063 /* Add user time to cpustat. */
3064 tmp = cputime_to_cputime64(cputime);
3065 if (TASK_NICE(p) > 0)
3066 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3067 else
3068 cpustat->user = cputime64_add(cpustat->user, tmp);
3069}
3070
3071/*
3072 * Account system cpu time to a process.
3073 * @p: the process that the cpu time gets accounted to
3074 * @hardirq_offset: the offset to subtract from hardirq_count()
3075 * @cputime: the cpu time spent in kernel space since the last update
3076 */
3077void account_system_time(struct task_struct *p, int hardirq_offset,
3078 cputime_t cputime)
3079{
3080 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3081 struct rq *rq = this_rq();
1da177e4
LT
3082 cputime64_t tmp;
3083
3084 p->stime = cputime_add(p->stime, cputime);
3085
3086 /* Add system time to cpustat. */
3087 tmp = cputime_to_cputime64(cputime);
3088 if (hardirq_count() - hardirq_offset)
3089 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3090 else if (softirq_count())
3091 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3092 else if (p != rq->idle)
3093 cpustat->system = cputime64_add(cpustat->system, tmp);
3094 else if (atomic_read(&rq->nr_iowait) > 0)
3095 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3096 else
3097 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3098 /* Account for system time used */
3099 acct_update_integrals(p);
1da177e4
LT
3100}
3101
3102/*
3103 * Account for involuntary wait time.
3104 * @p: the process from which the cpu time has been stolen
3105 * @steal: the cpu time spent in involuntary wait
3106 */
3107void account_steal_time(struct task_struct *p, cputime_t steal)
3108{
3109 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3110 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3111 struct rq *rq = this_rq();
1da177e4
LT
3112
3113 if (p == rq->idle) {
3114 p->stime = cputime_add(p->stime, steal);
3115 if (atomic_read(&rq->nr_iowait) > 0)
3116 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3117 else
3118 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3119 } else
3120 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3121}
3122
7835b98b 3123static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3124{
1da177e4 3125 if (p->array != rq->active) {
7835b98b 3126 /* Task has expired but was not scheduled yet */
1da177e4 3127 set_tsk_need_resched(p);
7835b98b 3128 return;
1da177e4
LT
3129 }
3130 spin_lock(&rq->lock);
3131 /*
3132 * The task was running during this tick - update the
3133 * time slice counter. Note: we do not update a thread's
3134 * priority until it either goes to sleep or uses up its
3135 * timeslice. This makes it possible for interactive tasks
3136 * to use up their timeslices at their highest priority levels.
3137 */
3138 if (rt_task(p)) {
3139 /*
3140 * RR tasks need a special form of timeslice management.
3141 * FIFO tasks have no timeslices.
3142 */
3143 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3144 p->time_slice = task_timeslice(p);
3145 p->first_time_slice = 0;
3146 set_tsk_need_resched(p);
3147
3148 /* put it at the end of the queue: */
3149 requeue_task(p, rq->active);
3150 }
3151 goto out_unlock;
3152 }
3153 if (!--p->time_slice) {
3154 dequeue_task(p, rq->active);
3155 set_tsk_need_resched(p);
3156 p->prio = effective_prio(p);
3157 p->time_slice = task_timeslice(p);
3158 p->first_time_slice = 0;
3159
3160 if (!rq->expired_timestamp)
3161 rq->expired_timestamp = jiffies;
48f24c4d 3162 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3163 enqueue_task(p, rq->expired);
3164 if (p->static_prio < rq->best_expired_prio)
3165 rq->best_expired_prio = p->static_prio;
3166 } else
3167 enqueue_task(p, rq->active);
3168 } else {
3169 /*
3170 * Prevent a too long timeslice allowing a task to monopolize
3171 * the CPU. We do this by splitting up the timeslice into
3172 * smaller pieces.
3173 *
3174 * Note: this does not mean the task's timeslices expire or
3175 * get lost in any way, they just might be preempted by
3176 * another task of equal priority. (one with higher
3177 * priority would have preempted this task already.) We
3178 * requeue this task to the end of the list on this priority
3179 * level, which is in essence a round-robin of tasks with
3180 * equal priority.
3181 *
3182 * This only applies to tasks in the interactive
3183 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3184 */
3185 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3186 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3187 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3188 (p->array == rq->active)) {
3189
3190 requeue_task(p, rq->active);
3191 set_tsk_need_resched(p);
3192 }
3193 }
3194out_unlock:
3195 spin_unlock(&rq->lock);
7835b98b
CL
3196}
3197
3198/*
3199 * This function gets called by the timer code, with HZ frequency.
3200 * We call it with interrupts disabled.
3201 *
3202 * It also gets called by the fork code, when changing the parent's
3203 * timeslices.
3204 */
3205void scheduler_tick(void)
3206{
3207 unsigned long long now = sched_clock();
3208 struct task_struct *p = current;
3209 int cpu = smp_processor_id();
3210 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3211
3212 update_cpu_clock(p, rq, now);
3213
e418e1c2 3214 if (p == rq->idle)
7835b98b 3215 /* Task on the idle queue */
e418e1c2
CL
3216 wake_priority_sleeper(rq);
3217 else
7835b98b 3218 task_running_tick(rq, p);
e418e1c2 3219#ifdef CONFIG_SMP
7835b98b 3220 update_load(rq);
c9819f45
CL
3221 if (time_after_eq(jiffies, rq->next_balance))
3222 raise_softirq(SCHED_SOFTIRQ);
e418e1c2 3223#endif
1da177e4
LT
3224}
3225
3226#ifdef CONFIG_SCHED_SMT
70b97a7f 3227static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3228{
3229 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3230 if (rq->curr == rq->idle && rq->nr_running)
3231 resched_task(rq->idle);
3232}
3233
c96d145e
CK
3234/*
3235 * Called with interrupt disabled and this_rq's runqueue locked.
3236 */
3237static void wake_sleeping_dependent(int this_cpu)
1da177e4 3238{
41c7ce9a 3239 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3240 int i;
3241
c96d145e
CK
3242 for_each_domain(this_cpu, tmp) {
3243 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3244 sd = tmp;
c96d145e
CK
3245 break;
3246 }
3247 }
41c7ce9a
NP
3248
3249 if (!sd)
1da177e4
LT
3250 return;
3251
c96d145e 3252 for_each_cpu_mask(i, sd->span) {
70b97a7f 3253 struct rq *smt_rq = cpu_rq(i);
1da177e4 3254
c96d145e
CK
3255 if (i == this_cpu)
3256 continue;
3257 if (unlikely(!spin_trylock(&smt_rq->lock)))
3258 continue;
3259
fc38ed75 3260 wakeup_busy_runqueue(smt_rq);
c96d145e 3261 spin_unlock(&smt_rq->lock);
1da177e4 3262 }
1da177e4
LT
3263}
3264
67f9a619
IM
3265/*
3266 * number of 'lost' timeslices this task wont be able to fully
3267 * utilize, if another task runs on a sibling. This models the
3268 * slowdown effect of other tasks running on siblings:
3269 */
36c8b586
IM
3270static inline unsigned long
3271smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3272{
3273 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3274}
3275
c96d145e
CK
3276/*
3277 * To minimise lock contention and not have to drop this_rq's runlock we only
3278 * trylock the sibling runqueues and bypass those runqueues if we fail to
3279 * acquire their lock. As we only trylock the normal locking order does not
3280 * need to be obeyed.
3281 */
36c8b586 3282static int
70b97a7f 3283dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3284{
41c7ce9a 3285 struct sched_domain *tmp, *sd = NULL;
1da177e4 3286 int ret = 0, i;
1da177e4 3287
c96d145e
CK
3288 /* kernel/rt threads do not participate in dependent sleeping */
3289 if (!p->mm || rt_task(p))
3290 return 0;
3291
3292 for_each_domain(this_cpu, tmp) {
3293 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3294 sd = tmp;
c96d145e
CK
3295 break;
3296 }
3297 }
41c7ce9a
NP
3298
3299 if (!sd)
1da177e4
LT
3300 return 0;
3301
c96d145e 3302 for_each_cpu_mask(i, sd->span) {
36c8b586 3303 struct task_struct *smt_curr;
70b97a7f 3304 struct rq *smt_rq;
1da177e4 3305
c96d145e
CK
3306 if (i == this_cpu)
3307 continue;
1da177e4 3308
c96d145e
CK
3309 smt_rq = cpu_rq(i);
3310 if (unlikely(!spin_trylock(&smt_rq->lock)))
3311 continue;
1da177e4 3312
c96d145e 3313 smt_curr = smt_rq->curr;
1da177e4 3314
c96d145e
CK
3315 if (!smt_curr->mm)
3316 goto unlock;
fc38ed75 3317
1da177e4
LT
3318 /*
3319 * If a user task with lower static priority than the
3320 * running task on the SMT sibling is trying to schedule,
3321 * delay it till there is proportionately less timeslice
3322 * left of the sibling task to prevent a lower priority
3323 * task from using an unfair proportion of the
3324 * physical cpu's resources. -ck
3325 */
fc38ed75
CK
3326 if (rt_task(smt_curr)) {
3327 /*
3328 * With real time tasks we run non-rt tasks only
3329 * per_cpu_gain% of the time.
3330 */
3331 if ((jiffies % DEF_TIMESLICE) >
3332 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3333 ret = 1;
c96d145e 3334 } else {
67f9a619
IM
3335 if (smt_curr->static_prio < p->static_prio &&
3336 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3337 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3338 ret = 1;
fc38ed75 3339 }
c96d145e
CK
3340unlock:
3341 spin_unlock(&smt_rq->lock);
1da177e4 3342 }
1da177e4
LT
3343 return ret;
3344}
3345#else
c96d145e 3346static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3347{
3348}
48f24c4d 3349static inline int
70b97a7f 3350dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3351{
3352 return 0;
3353}
3354#endif
3355
3356#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3357
3358void fastcall add_preempt_count(int val)
3359{
3360 /*
3361 * Underflow?
3362 */
9a11b49a
IM
3363 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3364 return;
1da177e4
LT
3365 preempt_count() += val;
3366 /*
3367 * Spinlock count overflowing soon?
3368 */
9a11b49a 3369 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3370}
3371EXPORT_SYMBOL(add_preempt_count);
3372
3373void fastcall sub_preempt_count(int val)
3374{
3375 /*
3376 * Underflow?
3377 */
9a11b49a
IM
3378 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3379 return;
1da177e4
LT
3380 /*
3381 * Is the spinlock portion underflowing?
3382 */
9a11b49a
IM
3383 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3384 !(preempt_count() & PREEMPT_MASK)))
3385 return;
3386
1da177e4
LT
3387 preempt_count() -= val;
3388}
3389EXPORT_SYMBOL(sub_preempt_count);
3390
3391#endif
3392
3dee386e
CK
3393static inline int interactive_sleep(enum sleep_type sleep_type)
3394{
3395 return (sleep_type == SLEEP_INTERACTIVE ||
3396 sleep_type == SLEEP_INTERRUPTED);
3397}
3398
1da177e4
LT
3399/*
3400 * schedule() is the main scheduler function.
3401 */
3402asmlinkage void __sched schedule(void)
3403{
36c8b586 3404 struct task_struct *prev, *next;
70b97a7f 3405 struct prio_array *array;
1da177e4
LT
3406 struct list_head *queue;
3407 unsigned long long now;
3408 unsigned long run_time;
a3464a10 3409 int cpu, idx, new_prio;
48f24c4d 3410 long *switch_count;
70b97a7f 3411 struct rq *rq;
1da177e4
LT
3412
3413 /*
3414 * Test if we are atomic. Since do_exit() needs to call into
3415 * schedule() atomically, we ignore that path for now.
3416 * Otherwise, whine if we are scheduling when we should not be.
3417 */
77e4bfbc
AM
3418 if (unlikely(in_atomic() && !current->exit_state)) {
3419 printk(KERN_ERR "BUG: scheduling while atomic: "
3420 "%s/0x%08x/%d\n",
3421 current->comm, preempt_count(), current->pid);
a4c410f0 3422 debug_show_held_locks(current);
77e4bfbc 3423 dump_stack();
1da177e4
LT
3424 }
3425 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3426
3427need_resched:
3428 preempt_disable();
3429 prev = current;
3430 release_kernel_lock(prev);
3431need_resched_nonpreemptible:
3432 rq = this_rq();
3433
3434 /*
3435 * The idle thread is not allowed to schedule!
3436 * Remove this check after it has been exercised a bit.
3437 */
3438 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3439 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3440 dump_stack();
3441 }
3442
3443 schedstat_inc(rq, sched_cnt);
3444 now = sched_clock();
238628ed 3445 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3446 run_time = now - prev->timestamp;
238628ed 3447 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3448 run_time = 0;
3449 } else
3450 run_time = NS_MAX_SLEEP_AVG;
3451
3452 /*
3453 * Tasks charged proportionately less run_time at high sleep_avg to
3454 * delay them losing their interactive status
3455 */
3456 run_time /= (CURRENT_BONUS(prev) ? : 1);
3457
3458 spin_lock_irq(&rq->lock);
3459
1da177e4
LT
3460 switch_count = &prev->nivcsw;
3461 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3462 switch_count = &prev->nvcsw;
3463 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3464 unlikely(signal_pending(prev))))
3465 prev->state = TASK_RUNNING;
3466 else {
3467 if (prev->state == TASK_UNINTERRUPTIBLE)
3468 rq->nr_uninterruptible++;
3469 deactivate_task(prev, rq);
3470 }
3471 }
3472
3473 cpu = smp_processor_id();
3474 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3475 idle_balance(cpu, rq);
3476 if (!rq->nr_running) {
3477 next = rq->idle;
3478 rq->expired_timestamp = 0;
c96d145e 3479 wake_sleeping_dependent(cpu);
1da177e4
LT
3480 goto switch_tasks;
3481 }
1da177e4
LT
3482 }
3483
3484 array = rq->active;
3485 if (unlikely(!array->nr_active)) {
3486 /*
3487 * Switch the active and expired arrays.
3488 */
3489 schedstat_inc(rq, sched_switch);
3490 rq->active = rq->expired;
3491 rq->expired = array;
3492 array = rq->active;
3493 rq->expired_timestamp = 0;
3494 rq->best_expired_prio = MAX_PRIO;
3495 }
3496
3497 idx = sched_find_first_bit(array->bitmap);
3498 queue = array->queue + idx;
36c8b586 3499 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3500
3dee386e 3501 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3502 unsigned long long delta = now - next->timestamp;
238628ed 3503 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3504 delta = 0;
3505
3dee386e 3506 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3507 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3508
3509 array = next->array;
a3464a10
CS
3510 new_prio = recalc_task_prio(next, next->timestamp + delta);
3511
3512 if (unlikely(next->prio != new_prio)) {
3513 dequeue_task(next, array);
3514 next->prio = new_prio;
3515 enqueue_task(next, array);
7c4bb1f9 3516 }
1da177e4 3517 }
3dee386e 3518 next->sleep_type = SLEEP_NORMAL;
c96d145e
CK
3519 if (dependent_sleeper(cpu, rq, next))
3520 next = rq->idle;
1da177e4
LT
3521switch_tasks:
3522 if (next == rq->idle)
3523 schedstat_inc(rq, sched_goidle);
3524 prefetch(next);
383f2835 3525 prefetch_stack(next);
1da177e4
LT
3526 clear_tsk_need_resched(prev);
3527 rcu_qsctr_inc(task_cpu(prev));
3528
3529 update_cpu_clock(prev, rq, now);
3530
3531 prev->sleep_avg -= run_time;
3532 if ((long)prev->sleep_avg <= 0)
3533 prev->sleep_avg = 0;
3534 prev->timestamp = prev->last_ran = now;
3535
3536 sched_info_switch(prev, next);
3537 if (likely(prev != next)) {
3538 next->timestamp = now;
3539 rq->nr_switches++;
3540 rq->curr = next;
3541 ++*switch_count;
3542
4866cde0 3543 prepare_task_switch(rq, next);
1da177e4
LT
3544 prev = context_switch(rq, prev, next);
3545 barrier();
4866cde0
NP
3546 /*
3547 * this_rq must be evaluated again because prev may have moved
3548 * CPUs since it called schedule(), thus the 'rq' on its stack
3549 * frame will be invalid.
3550 */
3551 finish_task_switch(this_rq(), prev);
1da177e4
LT
3552 } else
3553 spin_unlock_irq(&rq->lock);
3554
3555 prev = current;
3556 if (unlikely(reacquire_kernel_lock(prev) < 0))
3557 goto need_resched_nonpreemptible;
3558 preempt_enable_no_resched();
3559 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3560 goto need_resched;
3561}
1da177e4
LT
3562EXPORT_SYMBOL(schedule);
3563
3564#ifdef CONFIG_PREEMPT
3565/*
2ed6e34f 3566 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3567 * off of preempt_enable. Kernel preemptions off return from interrupt
3568 * occur there and call schedule directly.
3569 */
3570asmlinkage void __sched preempt_schedule(void)
3571{
3572 struct thread_info *ti = current_thread_info();
3573#ifdef CONFIG_PREEMPT_BKL
3574 struct task_struct *task = current;
3575 int saved_lock_depth;
3576#endif
3577 /*
3578 * If there is a non-zero preempt_count or interrupts are disabled,
3579 * we do not want to preempt the current task. Just return..
3580 */
beed33a8 3581 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3582 return;
3583
3584need_resched:
3585 add_preempt_count(PREEMPT_ACTIVE);
3586 /*
3587 * We keep the big kernel semaphore locked, but we
3588 * clear ->lock_depth so that schedule() doesnt
3589 * auto-release the semaphore:
3590 */
3591#ifdef CONFIG_PREEMPT_BKL
3592 saved_lock_depth = task->lock_depth;
3593 task->lock_depth = -1;
3594#endif
3595 schedule();
3596#ifdef CONFIG_PREEMPT_BKL
3597 task->lock_depth = saved_lock_depth;
3598#endif
3599 sub_preempt_count(PREEMPT_ACTIVE);
3600
3601 /* we could miss a preemption opportunity between schedule and now */
3602 barrier();
3603 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3604 goto need_resched;
3605}
1da177e4
LT
3606EXPORT_SYMBOL(preempt_schedule);
3607
3608/*
2ed6e34f 3609 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3610 * off of irq context.
3611 * Note, that this is called and return with irqs disabled. This will
3612 * protect us against recursive calling from irq.
3613 */
3614asmlinkage void __sched preempt_schedule_irq(void)
3615{
3616 struct thread_info *ti = current_thread_info();
3617#ifdef CONFIG_PREEMPT_BKL
3618 struct task_struct *task = current;
3619 int saved_lock_depth;
3620#endif
2ed6e34f 3621 /* Catch callers which need to be fixed */
1da177e4
LT
3622 BUG_ON(ti->preempt_count || !irqs_disabled());
3623
3624need_resched:
3625 add_preempt_count(PREEMPT_ACTIVE);
3626 /*
3627 * We keep the big kernel semaphore locked, but we
3628 * clear ->lock_depth so that schedule() doesnt
3629 * auto-release the semaphore:
3630 */
3631#ifdef CONFIG_PREEMPT_BKL
3632 saved_lock_depth = task->lock_depth;
3633 task->lock_depth = -1;
3634#endif
3635 local_irq_enable();
3636 schedule();
3637 local_irq_disable();
3638#ifdef CONFIG_PREEMPT_BKL
3639 task->lock_depth = saved_lock_depth;
3640#endif
3641 sub_preempt_count(PREEMPT_ACTIVE);
3642
3643 /* we could miss a preemption opportunity between schedule and now */
3644 barrier();
3645 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3646 goto need_resched;
3647}
3648
3649#endif /* CONFIG_PREEMPT */
3650
95cdf3b7
IM
3651int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3652 void *key)
1da177e4 3653{
48f24c4d 3654 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3655}
1da177e4
LT
3656EXPORT_SYMBOL(default_wake_function);
3657
3658/*
3659 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3660 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3661 * number) then we wake all the non-exclusive tasks and one exclusive task.
3662 *
3663 * There are circumstances in which we can try to wake a task which has already
3664 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3665 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3666 */
3667static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3668 int nr_exclusive, int sync, void *key)
3669{
3670 struct list_head *tmp, *next;
3671
3672 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3673 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3674 unsigned flags = curr->flags;
3675
1da177e4 3676 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3677 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3678 break;
3679 }
3680}
3681
3682/**
3683 * __wake_up - wake up threads blocked on a waitqueue.
3684 * @q: the waitqueue
3685 * @mode: which threads
3686 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3687 * @key: is directly passed to the wakeup function
1da177e4
LT
3688 */
3689void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3690 int nr_exclusive, void *key)
1da177e4
LT
3691{
3692 unsigned long flags;
3693
3694 spin_lock_irqsave(&q->lock, flags);
3695 __wake_up_common(q, mode, nr_exclusive, 0, key);
3696 spin_unlock_irqrestore(&q->lock, flags);
3697}
1da177e4
LT
3698EXPORT_SYMBOL(__wake_up);
3699
3700/*
3701 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3702 */
3703void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3704{
3705 __wake_up_common(q, mode, 1, 0, NULL);
3706}
3707
3708/**
67be2dd1 3709 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3710 * @q: the waitqueue
3711 * @mode: which threads
3712 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3713 *
3714 * The sync wakeup differs that the waker knows that it will schedule
3715 * away soon, so while the target thread will be woken up, it will not
3716 * be migrated to another CPU - ie. the two threads are 'synchronized'
3717 * with each other. This can prevent needless bouncing between CPUs.
3718 *
3719 * On UP it can prevent extra preemption.
3720 */
95cdf3b7
IM
3721void fastcall
3722__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3723{
3724 unsigned long flags;
3725 int sync = 1;
3726
3727 if (unlikely(!q))
3728 return;
3729
3730 if (unlikely(!nr_exclusive))
3731 sync = 0;
3732
3733 spin_lock_irqsave(&q->lock, flags);
3734 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3735 spin_unlock_irqrestore(&q->lock, flags);
3736}
3737EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3738
3739void fastcall complete(struct completion *x)
3740{
3741 unsigned long flags;
3742
3743 spin_lock_irqsave(&x->wait.lock, flags);
3744 x->done++;
3745 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3746 1, 0, NULL);
3747 spin_unlock_irqrestore(&x->wait.lock, flags);
3748}
3749EXPORT_SYMBOL(complete);
3750
3751void fastcall complete_all(struct completion *x)
3752{
3753 unsigned long flags;
3754
3755 spin_lock_irqsave(&x->wait.lock, flags);
3756 x->done += UINT_MAX/2;
3757 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3758 0, 0, NULL);
3759 spin_unlock_irqrestore(&x->wait.lock, flags);
3760}
3761EXPORT_SYMBOL(complete_all);
3762
3763void fastcall __sched wait_for_completion(struct completion *x)
3764{
3765 might_sleep();
48f24c4d 3766
1da177e4
LT
3767 spin_lock_irq(&x->wait.lock);
3768 if (!x->done) {
3769 DECLARE_WAITQUEUE(wait, current);
3770
3771 wait.flags |= WQ_FLAG_EXCLUSIVE;
3772 __add_wait_queue_tail(&x->wait, &wait);
3773 do {
3774 __set_current_state(TASK_UNINTERRUPTIBLE);
3775 spin_unlock_irq(&x->wait.lock);
3776 schedule();
3777 spin_lock_irq(&x->wait.lock);
3778 } while (!x->done);
3779 __remove_wait_queue(&x->wait, &wait);
3780 }
3781 x->done--;
3782 spin_unlock_irq(&x->wait.lock);
3783}
3784EXPORT_SYMBOL(wait_for_completion);
3785
3786unsigned long fastcall __sched
3787wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3788{
3789 might_sleep();
3790
3791 spin_lock_irq(&x->wait.lock);
3792 if (!x->done) {
3793 DECLARE_WAITQUEUE(wait, current);
3794
3795 wait.flags |= WQ_FLAG_EXCLUSIVE;
3796 __add_wait_queue_tail(&x->wait, &wait);
3797 do {
3798 __set_current_state(TASK_UNINTERRUPTIBLE);
3799 spin_unlock_irq(&x->wait.lock);
3800 timeout = schedule_timeout(timeout);
3801 spin_lock_irq(&x->wait.lock);
3802 if (!timeout) {
3803 __remove_wait_queue(&x->wait, &wait);
3804 goto out;
3805 }
3806 } while (!x->done);
3807 __remove_wait_queue(&x->wait, &wait);
3808 }
3809 x->done--;
3810out:
3811 spin_unlock_irq(&x->wait.lock);
3812 return timeout;
3813}
3814EXPORT_SYMBOL(wait_for_completion_timeout);
3815
3816int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3817{
3818 int ret = 0;
3819
3820 might_sleep();
3821
3822 spin_lock_irq(&x->wait.lock);
3823 if (!x->done) {
3824 DECLARE_WAITQUEUE(wait, current);
3825
3826 wait.flags |= WQ_FLAG_EXCLUSIVE;
3827 __add_wait_queue_tail(&x->wait, &wait);
3828 do {
3829 if (signal_pending(current)) {
3830 ret = -ERESTARTSYS;
3831 __remove_wait_queue(&x->wait, &wait);
3832 goto out;
3833 }
3834 __set_current_state(TASK_INTERRUPTIBLE);
3835 spin_unlock_irq(&x->wait.lock);
3836 schedule();
3837 spin_lock_irq(&x->wait.lock);
3838 } while (!x->done);
3839 __remove_wait_queue(&x->wait, &wait);
3840 }
3841 x->done--;
3842out:
3843 spin_unlock_irq(&x->wait.lock);
3844
3845 return ret;
3846}
3847EXPORT_SYMBOL(wait_for_completion_interruptible);
3848
3849unsigned long fastcall __sched
3850wait_for_completion_interruptible_timeout(struct completion *x,
3851 unsigned long timeout)
3852{
3853 might_sleep();
3854
3855 spin_lock_irq(&x->wait.lock);
3856 if (!x->done) {
3857 DECLARE_WAITQUEUE(wait, current);
3858
3859 wait.flags |= WQ_FLAG_EXCLUSIVE;
3860 __add_wait_queue_tail(&x->wait, &wait);
3861 do {
3862 if (signal_pending(current)) {
3863 timeout = -ERESTARTSYS;
3864 __remove_wait_queue(&x->wait, &wait);
3865 goto out;
3866 }
3867 __set_current_state(TASK_INTERRUPTIBLE);
3868 spin_unlock_irq(&x->wait.lock);
3869 timeout = schedule_timeout(timeout);
3870 spin_lock_irq(&x->wait.lock);
3871 if (!timeout) {
3872 __remove_wait_queue(&x->wait, &wait);
3873 goto out;
3874 }
3875 } while (!x->done);
3876 __remove_wait_queue(&x->wait, &wait);
3877 }
3878 x->done--;
3879out:
3880 spin_unlock_irq(&x->wait.lock);
3881 return timeout;
3882}
3883EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3884
3885
3886#define SLEEP_ON_VAR \
3887 unsigned long flags; \
3888 wait_queue_t wait; \
3889 init_waitqueue_entry(&wait, current);
3890
3891#define SLEEP_ON_HEAD \
3892 spin_lock_irqsave(&q->lock,flags); \
3893 __add_wait_queue(q, &wait); \
3894 spin_unlock(&q->lock);
3895
3896#define SLEEP_ON_TAIL \
3897 spin_lock_irq(&q->lock); \
3898 __remove_wait_queue(q, &wait); \
3899 spin_unlock_irqrestore(&q->lock, flags);
3900
3901void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3902{
3903 SLEEP_ON_VAR
3904
3905 current->state = TASK_INTERRUPTIBLE;
3906
3907 SLEEP_ON_HEAD
3908 schedule();
3909 SLEEP_ON_TAIL
3910}
1da177e4
LT
3911EXPORT_SYMBOL(interruptible_sleep_on);
3912
95cdf3b7
IM
3913long fastcall __sched
3914interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3915{
3916 SLEEP_ON_VAR
3917
3918 current->state = TASK_INTERRUPTIBLE;
3919
3920 SLEEP_ON_HEAD
3921 timeout = schedule_timeout(timeout);
3922 SLEEP_ON_TAIL
3923
3924 return timeout;
3925}
1da177e4
LT
3926EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3927
3928void fastcall __sched sleep_on(wait_queue_head_t *q)
3929{
3930 SLEEP_ON_VAR
3931
3932 current->state = TASK_UNINTERRUPTIBLE;
3933
3934 SLEEP_ON_HEAD
3935 schedule();
3936 SLEEP_ON_TAIL
3937}
1da177e4
LT
3938EXPORT_SYMBOL(sleep_on);
3939
3940long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3941{
3942 SLEEP_ON_VAR
3943
3944 current->state = TASK_UNINTERRUPTIBLE;
3945
3946 SLEEP_ON_HEAD
3947 timeout = schedule_timeout(timeout);
3948 SLEEP_ON_TAIL
3949
3950 return timeout;
3951}
3952
3953EXPORT_SYMBOL(sleep_on_timeout);
3954
b29739f9
IM
3955#ifdef CONFIG_RT_MUTEXES
3956
3957/*
3958 * rt_mutex_setprio - set the current priority of a task
3959 * @p: task
3960 * @prio: prio value (kernel-internal form)
3961 *
3962 * This function changes the 'effective' priority of a task. It does
3963 * not touch ->normal_prio like __setscheduler().
3964 *
3965 * Used by the rt_mutex code to implement priority inheritance logic.
3966 */
36c8b586 3967void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3968{
70b97a7f 3969 struct prio_array *array;
b29739f9 3970 unsigned long flags;
70b97a7f 3971 struct rq *rq;
b29739f9
IM
3972 int oldprio;
3973
3974 BUG_ON(prio < 0 || prio > MAX_PRIO);
3975
3976 rq = task_rq_lock(p, &flags);
3977
3978 oldprio = p->prio;
3979 array = p->array;
3980 if (array)
3981 dequeue_task(p, array);
3982 p->prio = prio;
3983
3984 if (array) {
3985 /*
3986 * If changing to an RT priority then queue it
3987 * in the active array!
3988 */
3989 if (rt_task(p))
3990 array = rq->active;
3991 enqueue_task(p, array);
3992 /*
3993 * Reschedule if we are currently running on this runqueue and
3994 * our priority decreased, or if we are not currently running on
3995 * this runqueue and our priority is higher than the current's
3996 */
3997 if (task_running(rq, p)) {
3998 if (p->prio > oldprio)
3999 resched_task(rq->curr);
4000 } else if (TASK_PREEMPTS_CURR(p, rq))
4001 resched_task(rq->curr);
4002 }
4003 task_rq_unlock(rq, &flags);
4004}
4005
4006#endif
4007
36c8b586 4008void set_user_nice(struct task_struct *p, long nice)
1da177e4 4009{
70b97a7f 4010 struct prio_array *array;
48f24c4d 4011 int old_prio, delta;
1da177e4 4012 unsigned long flags;
70b97a7f 4013 struct rq *rq;
1da177e4
LT
4014
4015 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4016 return;
4017 /*
4018 * We have to be careful, if called from sys_setpriority(),
4019 * the task might be in the middle of scheduling on another CPU.
4020 */
4021 rq = task_rq_lock(p, &flags);
4022 /*
4023 * The RT priorities are set via sched_setscheduler(), but we still
4024 * allow the 'normal' nice value to be set - but as expected
4025 * it wont have any effect on scheduling until the task is
b0a9499c 4026 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4027 */
b29739f9 4028 if (has_rt_policy(p)) {
1da177e4
LT
4029 p->static_prio = NICE_TO_PRIO(nice);
4030 goto out_unlock;
4031 }
4032 array = p->array;
2dd73a4f 4033 if (array) {
1da177e4 4034 dequeue_task(p, array);
2dd73a4f
PW
4035 dec_raw_weighted_load(rq, p);
4036 }
1da177e4 4037
1da177e4 4038 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4039 set_load_weight(p);
b29739f9
IM
4040 old_prio = p->prio;
4041 p->prio = effective_prio(p);
4042 delta = p->prio - old_prio;
1da177e4
LT
4043
4044 if (array) {
4045 enqueue_task(p, array);
2dd73a4f 4046 inc_raw_weighted_load(rq, p);
1da177e4
LT
4047 /*
4048 * If the task increased its priority or is running and
4049 * lowered its priority, then reschedule its CPU:
4050 */
4051 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4052 resched_task(rq->curr);
4053 }
4054out_unlock:
4055 task_rq_unlock(rq, &flags);
4056}
1da177e4
LT
4057EXPORT_SYMBOL(set_user_nice);
4058
e43379f1
MM
4059/*
4060 * can_nice - check if a task can reduce its nice value
4061 * @p: task
4062 * @nice: nice value
4063 */
36c8b586 4064int can_nice(const struct task_struct *p, const int nice)
e43379f1 4065{
024f4747
MM
4066 /* convert nice value [19,-20] to rlimit style value [1,40] */
4067 int nice_rlim = 20 - nice;
48f24c4d 4068
e43379f1
MM
4069 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4070 capable(CAP_SYS_NICE));
4071}
4072
1da177e4
LT
4073#ifdef __ARCH_WANT_SYS_NICE
4074
4075/*
4076 * sys_nice - change the priority of the current process.
4077 * @increment: priority increment
4078 *
4079 * sys_setpriority is a more generic, but much slower function that
4080 * does similar things.
4081 */
4082asmlinkage long sys_nice(int increment)
4083{
48f24c4d 4084 long nice, retval;
1da177e4
LT
4085
4086 /*
4087 * Setpriority might change our priority at the same moment.
4088 * We don't have to worry. Conceptually one call occurs first
4089 * and we have a single winner.
4090 */
e43379f1
MM
4091 if (increment < -40)
4092 increment = -40;
1da177e4
LT
4093 if (increment > 40)
4094 increment = 40;
4095
4096 nice = PRIO_TO_NICE(current->static_prio) + increment;
4097 if (nice < -20)
4098 nice = -20;
4099 if (nice > 19)
4100 nice = 19;
4101
e43379f1
MM
4102 if (increment < 0 && !can_nice(current, nice))
4103 return -EPERM;
4104
1da177e4
LT
4105 retval = security_task_setnice(current, nice);
4106 if (retval)
4107 return retval;
4108
4109 set_user_nice(current, nice);
4110 return 0;
4111}
4112
4113#endif
4114
4115/**
4116 * task_prio - return the priority value of a given task.
4117 * @p: the task in question.
4118 *
4119 * This is the priority value as seen by users in /proc.
4120 * RT tasks are offset by -200. Normal tasks are centered
4121 * around 0, value goes from -16 to +15.
4122 */
36c8b586 4123int task_prio(const struct task_struct *p)
1da177e4
LT
4124{
4125 return p->prio - MAX_RT_PRIO;
4126}
4127
4128/**
4129 * task_nice - return the nice value of a given task.
4130 * @p: the task in question.
4131 */
36c8b586 4132int task_nice(const struct task_struct *p)
1da177e4
LT
4133{
4134 return TASK_NICE(p);
4135}
1da177e4 4136EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4137
4138/**
4139 * idle_cpu - is a given cpu idle currently?
4140 * @cpu: the processor in question.
4141 */
4142int idle_cpu(int cpu)
4143{
4144 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4145}
4146
1da177e4
LT
4147/**
4148 * idle_task - return the idle task for a given cpu.
4149 * @cpu: the processor in question.
4150 */
36c8b586 4151struct task_struct *idle_task(int cpu)
1da177e4
LT
4152{
4153 return cpu_rq(cpu)->idle;
4154}
4155
4156/**
4157 * find_process_by_pid - find a process with a matching PID value.
4158 * @pid: the pid in question.
4159 */
36c8b586 4160static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4161{
4162 return pid ? find_task_by_pid(pid) : current;
4163}
4164
4165/* Actually do priority change: must hold rq lock. */
4166static void __setscheduler(struct task_struct *p, int policy, int prio)
4167{
4168 BUG_ON(p->array);
48f24c4d 4169
1da177e4
LT
4170 p->policy = policy;
4171 p->rt_priority = prio;
b29739f9
IM
4172 p->normal_prio = normal_prio(p);
4173 /* we are holding p->pi_lock already */
4174 p->prio = rt_mutex_getprio(p);
4175 /*
4176 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4177 */
4178 if (policy == SCHED_BATCH)
4179 p->sleep_avg = 0;
2dd73a4f 4180 set_load_weight(p);
1da177e4
LT
4181}
4182
4183/**
4184 * sched_setscheduler - change the scheduling policy and/or RT priority of
4185 * a thread.
4186 * @p: the task in question.
4187 * @policy: new policy.
4188 * @param: structure containing the new RT priority.
5fe1d75f
ON
4189 *
4190 * NOTE: the task may be already dead
1da177e4 4191 */
95cdf3b7
IM
4192int sched_setscheduler(struct task_struct *p, int policy,
4193 struct sched_param *param)
1da177e4 4194{
48f24c4d 4195 int retval, oldprio, oldpolicy = -1;
70b97a7f 4196 struct prio_array *array;
1da177e4 4197 unsigned long flags;
70b97a7f 4198 struct rq *rq;
1da177e4 4199
66e5393a
SR
4200 /* may grab non-irq protected spin_locks */
4201 BUG_ON(in_interrupt());
1da177e4
LT
4202recheck:
4203 /* double check policy once rq lock held */
4204 if (policy < 0)
4205 policy = oldpolicy = p->policy;
4206 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4207 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4208 return -EINVAL;
1da177e4
LT
4209 /*
4210 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4211 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4212 * SCHED_BATCH is 0.
1da177e4
LT
4213 */
4214 if (param->sched_priority < 0 ||
95cdf3b7 4215 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4216 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4217 return -EINVAL;
57a6f51c 4218 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4219 return -EINVAL;
4220
37e4ab3f
OC
4221 /*
4222 * Allow unprivileged RT tasks to decrease priority:
4223 */
4224 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4225 if (is_rt_policy(policy)) {
4226 unsigned long rlim_rtprio;
4227 unsigned long flags;
4228
4229 if (!lock_task_sighand(p, &flags))
4230 return -ESRCH;
4231 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4232 unlock_task_sighand(p, &flags);
4233
4234 /* can't set/change the rt policy */
4235 if (policy != p->policy && !rlim_rtprio)
4236 return -EPERM;
4237
4238 /* can't increase priority */
4239 if (param->sched_priority > p->rt_priority &&
4240 param->sched_priority > rlim_rtprio)
4241 return -EPERM;
4242 }
5fe1d75f 4243
37e4ab3f
OC
4244 /* can't change other user's priorities */
4245 if ((current->euid != p->euid) &&
4246 (current->euid != p->uid))
4247 return -EPERM;
4248 }
1da177e4
LT
4249
4250 retval = security_task_setscheduler(p, policy, param);
4251 if (retval)
4252 return retval;
b29739f9
IM
4253 /*
4254 * make sure no PI-waiters arrive (or leave) while we are
4255 * changing the priority of the task:
4256 */
4257 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4258 /*
4259 * To be able to change p->policy safely, the apropriate
4260 * runqueue lock must be held.
4261 */
b29739f9 4262 rq = __task_rq_lock(p);
1da177e4
LT
4263 /* recheck policy now with rq lock held */
4264 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4265 policy = oldpolicy = -1;
b29739f9
IM
4266 __task_rq_unlock(rq);
4267 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4268 goto recheck;
4269 }
4270 array = p->array;
4271 if (array)
4272 deactivate_task(p, rq);
4273 oldprio = p->prio;
4274 __setscheduler(p, policy, param->sched_priority);
4275 if (array) {
4276 __activate_task(p, rq);
4277 /*
4278 * Reschedule if we are currently running on this runqueue and
4279 * our priority decreased, or if we are not currently running on
4280 * this runqueue and our priority is higher than the current's
4281 */
4282 if (task_running(rq, p)) {
4283 if (p->prio > oldprio)
4284 resched_task(rq->curr);
4285 } else if (TASK_PREEMPTS_CURR(p, rq))
4286 resched_task(rq->curr);
4287 }
b29739f9
IM
4288 __task_rq_unlock(rq);
4289 spin_unlock_irqrestore(&p->pi_lock, flags);
4290
95e02ca9
TG
4291 rt_mutex_adjust_pi(p);
4292
1da177e4
LT
4293 return 0;
4294}
4295EXPORT_SYMBOL_GPL(sched_setscheduler);
4296
95cdf3b7
IM
4297static int
4298do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4299{
1da177e4
LT
4300 struct sched_param lparam;
4301 struct task_struct *p;
36c8b586 4302 int retval;
1da177e4
LT
4303
4304 if (!param || pid < 0)
4305 return -EINVAL;
4306 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4307 return -EFAULT;
5fe1d75f
ON
4308
4309 rcu_read_lock();
4310 retval = -ESRCH;
1da177e4 4311 p = find_process_by_pid(pid);
5fe1d75f
ON
4312 if (p != NULL)
4313 retval = sched_setscheduler(p, policy, &lparam);
4314 rcu_read_unlock();
36c8b586 4315
1da177e4
LT
4316 return retval;
4317}
4318
4319/**
4320 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4321 * @pid: the pid in question.
4322 * @policy: new policy.
4323 * @param: structure containing the new RT priority.
4324 */
4325asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4326 struct sched_param __user *param)
4327{
c21761f1
JB
4328 /* negative values for policy are not valid */
4329 if (policy < 0)
4330 return -EINVAL;
4331
1da177e4
LT
4332 return do_sched_setscheduler(pid, policy, param);
4333}
4334
4335/**
4336 * sys_sched_setparam - set/change the RT priority of a thread
4337 * @pid: the pid in question.
4338 * @param: structure containing the new RT priority.
4339 */
4340asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4341{
4342 return do_sched_setscheduler(pid, -1, param);
4343}
4344
4345/**
4346 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4347 * @pid: the pid in question.
4348 */
4349asmlinkage long sys_sched_getscheduler(pid_t pid)
4350{
36c8b586 4351 struct task_struct *p;
1da177e4 4352 int retval = -EINVAL;
1da177e4
LT
4353
4354 if (pid < 0)
4355 goto out_nounlock;
4356
4357 retval = -ESRCH;
4358 read_lock(&tasklist_lock);
4359 p = find_process_by_pid(pid);
4360 if (p) {
4361 retval = security_task_getscheduler(p);
4362 if (!retval)
4363 retval = p->policy;
4364 }
4365 read_unlock(&tasklist_lock);
4366
4367out_nounlock:
4368 return retval;
4369}
4370
4371/**
4372 * sys_sched_getscheduler - get the RT priority of a thread
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4375 */
4376asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4377{
4378 struct sched_param lp;
36c8b586 4379 struct task_struct *p;
1da177e4 4380 int retval = -EINVAL;
1da177e4
LT
4381
4382 if (!param || pid < 0)
4383 goto out_nounlock;
4384
4385 read_lock(&tasklist_lock);
4386 p = find_process_by_pid(pid);
4387 retval = -ESRCH;
4388 if (!p)
4389 goto out_unlock;
4390
4391 retval = security_task_getscheduler(p);
4392 if (retval)
4393 goto out_unlock;
4394
4395 lp.sched_priority = p->rt_priority;
4396 read_unlock(&tasklist_lock);
4397
4398 /*
4399 * This one might sleep, we cannot do it with a spinlock held ...
4400 */
4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402
4403out_nounlock:
4404 return retval;
4405
4406out_unlock:
4407 read_unlock(&tasklist_lock);
4408 return retval;
4409}
4410
4411long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4412{
1da177e4 4413 cpumask_t cpus_allowed;
36c8b586
IM
4414 struct task_struct *p;
4415 int retval;
1da177e4
LT
4416
4417 lock_cpu_hotplug();
4418 read_lock(&tasklist_lock);
4419
4420 p = find_process_by_pid(pid);
4421 if (!p) {
4422 read_unlock(&tasklist_lock);
4423 unlock_cpu_hotplug();
4424 return -ESRCH;
4425 }
4426
4427 /*
4428 * It is not safe to call set_cpus_allowed with the
4429 * tasklist_lock held. We will bump the task_struct's
4430 * usage count and then drop tasklist_lock.
4431 */
4432 get_task_struct(p);
4433 read_unlock(&tasklist_lock);
4434
4435 retval = -EPERM;
4436 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4437 !capable(CAP_SYS_NICE))
4438 goto out_unlock;
4439
e7834f8f
DQ
4440 retval = security_task_setscheduler(p, 0, NULL);
4441 if (retval)
4442 goto out_unlock;
4443
1da177e4
LT
4444 cpus_allowed = cpuset_cpus_allowed(p);
4445 cpus_and(new_mask, new_mask, cpus_allowed);
4446 retval = set_cpus_allowed(p, new_mask);
4447
4448out_unlock:
4449 put_task_struct(p);
4450 unlock_cpu_hotplug();
4451 return retval;
4452}
4453
4454static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4455 cpumask_t *new_mask)
4456{
4457 if (len < sizeof(cpumask_t)) {
4458 memset(new_mask, 0, sizeof(cpumask_t));
4459 } else if (len > sizeof(cpumask_t)) {
4460 len = sizeof(cpumask_t);
4461 }
4462 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4463}
4464
4465/**
4466 * sys_sched_setaffinity - set the cpu affinity of a process
4467 * @pid: pid of the process
4468 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4469 * @user_mask_ptr: user-space pointer to the new cpu mask
4470 */
4471asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4472 unsigned long __user *user_mask_ptr)
4473{
4474 cpumask_t new_mask;
4475 int retval;
4476
4477 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4478 if (retval)
4479 return retval;
4480
4481 return sched_setaffinity(pid, new_mask);
4482}
4483
4484/*
4485 * Represents all cpu's present in the system
4486 * In systems capable of hotplug, this map could dynamically grow
4487 * as new cpu's are detected in the system via any platform specific
4488 * method, such as ACPI for e.g.
4489 */
4490
4cef0c61 4491cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4492EXPORT_SYMBOL(cpu_present_map);
4493
4494#ifndef CONFIG_SMP
4cef0c61 4495cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4496EXPORT_SYMBOL(cpu_online_map);
4497
4cef0c61 4498cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4499EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4500#endif
4501
4502long sched_getaffinity(pid_t pid, cpumask_t *mask)
4503{
36c8b586 4504 struct task_struct *p;
1da177e4 4505 int retval;
1da177e4
LT
4506
4507 lock_cpu_hotplug();
4508 read_lock(&tasklist_lock);
4509
4510 retval = -ESRCH;
4511 p = find_process_by_pid(pid);
4512 if (!p)
4513 goto out_unlock;
4514
e7834f8f
DQ
4515 retval = security_task_getscheduler(p);
4516 if (retval)
4517 goto out_unlock;
4518
2f7016d9 4519 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4520
4521out_unlock:
4522 read_unlock(&tasklist_lock);
4523 unlock_cpu_hotplug();
4524 if (retval)
4525 return retval;
4526
4527 return 0;
4528}
4529
4530/**
4531 * sys_sched_getaffinity - get the cpu affinity of a process
4532 * @pid: pid of the process
4533 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4534 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4535 */
4536asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4537 unsigned long __user *user_mask_ptr)
4538{
4539 int ret;
4540 cpumask_t mask;
4541
4542 if (len < sizeof(cpumask_t))
4543 return -EINVAL;
4544
4545 ret = sched_getaffinity(pid, &mask);
4546 if (ret < 0)
4547 return ret;
4548
4549 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4550 return -EFAULT;
4551
4552 return sizeof(cpumask_t);
4553}
4554
4555/**
4556 * sys_sched_yield - yield the current processor to other threads.
4557 *
4558 * this function yields the current CPU by moving the calling thread
4559 * to the expired array. If there are no other threads running on this
4560 * CPU then this function will return.
4561 */
4562asmlinkage long sys_sched_yield(void)
4563{
70b97a7f
IM
4564 struct rq *rq = this_rq_lock();
4565 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4566
4567 schedstat_inc(rq, yld_cnt);
4568 /*
4569 * We implement yielding by moving the task into the expired
4570 * queue.
4571 *
4572 * (special rule: RT tasks will just roundrobin in the active
4573 * array.)
4574 */
4575 if (rt_task(current))
4576 target = rq->active;
4577
5927ad78 4578 if (array->nr_active == 1) {
1da177e4
LT
4579 schedstat_inc(rq, yld_act_empty);
4580 if (!rq->expired->nr_active)
4581 schedstat_inc(rq, yld_both_empty);
4582 } else if (!rq->expired->nr_active)
4583 schedstat_inc(rq, yld_exp_empty);
4584
4585 if (array != target) {
4586 dequeue_task(current, array);
4587 enqueue_task(current, target);
4588 } else
4589 /*
4590 * requeue_task is cheaper so perform that if possible.
4591 */
4592 requeue_task(current, array);
4593
4594 /*
4595 * Since we are going to call schedule() anyway, there's
4596 * no need to preempt or enable interrupts:
4597 */
4598 __release(rq->lock);
8a25d5de 4599 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4600 _raw_spin_unlock(&rq->lock);
4601 preempt_enable_no_resched();
4602
4603 schedule();
4604
4605 return 0;
4606}
4607
2d7d2535 4608static inline int __resched_legal(int expected_preempt_count)
e7b38404 4609{
2d7d2535 4610 if (unlikely(preempt_count() != expected_preempt_count))
e7b38404
AM
4611 return 0;
4612 if (unlikely(system_state != SYSTEM_RUNNING))
4613 return 0;
4614 return 1;
4615}
4616
4617static void __cond_resched(void)
1da177e4 4618{
8e0a43d8
IM
4619#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4620 __might_sleep(__FILE__, __LINE__);
4621#endif
5bbcfd90
IM
4622 /*
4623 * The BKS might be reacquired before we have dropped
4624 * PREEMPT_ACTIVE, which could trigger a second
4625 * cond_resched() call.
4626 */
1da177e4
LT
4627 do {
4628 add_preempt_count(PREEMPT_ACTIVE);
4629 schedule();
4630 sub_preempt_count(PREEMPT_ACTIVE);
4631 } while (need_resched());
4632}
4633
4634int __sched cond_resched(void)
4635{
2d7d2535 4636 if (need_resched() && __resched_legal(0)) {
1da177e4
LT
4637 __cond_resched();
4638 return 1;
4639 }
4640 return 0;
4641}
1da177e4
LT
4642EXPORT_SYMBOL(cond_resched);
4643
4644/*
4645 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4646 * call schedule, and on return reacquire the lock.
4647 *
4648 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4649 * operations here to prevent schedule() from being called twice (once via
4650 * spin_unlock(), once by hand).
4651 */
95cdf3b7 4652int cond_resched_lock(spinlock_t *lock)
1da177e4 4653{
6df3cecb
JK
4654 int ret = 0;
4655
1da177e4
LT
4656 if (need_lockbreak(lock)) {
4657 spin_unlock(lock);
4658 cpu_relax();
6df3cecb 4659 ret = 1;
1da177e4
LT
4660 spin_lock(lock);
4661 }
2d7d2535 4662 if (need_resched() && __resched_legal(1)) {
8a25d5de 4663 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4664 _raw_spin_unlock(lock);
4665 preempt_enable_no_resched();
4666 __cond_resched();
6df3cecb 4667 ret = 1;
1da177e4 4668 spin_lock(lock);
1da177e4 4669 }
6df3cecb 4670 return ret;
1da177e4 4671}
1da177e4
LT
4672EXPORT_SYMBOL(cond_resched_lock);
4673
4674int __sched cond_resched_softirq(void)
4675{
4676 BUG_ON(!in_softirq());
4677
2d7d2535 4678 if (need_resched() && __resched_legal(0)) {
de30a2b3
IM
4679 raw_local_irq_disable();
4680 _local_bh_enable();
4681 raw_local_irq_enable();
1da177e4
LT
4682 __cond_resched();
4683 local_bh_disable();
4684 return 1;
4685 }
4686 return 0;
4687}
1da177e4
LT
4688EXPORT_SYMBOL(cond_resched_softirq);
4689
1da177e4
LT
4690/**
4691 * yield - yield the current processor to other threads.
4692 *
4693 * this is a shortcut for kernel-space yielding - it marks the
4694 * thread runnable and calls sys_sched_yield().
4695 */
4696void __sched yield(void)
4697{
4698 set_current_state(TASK_RUNNING);
4699 sys_sched_yield();
4700}
1da177e4
LT
4701EXPORT_SYMBOL(yield);
4702
4703/*
4704 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4705 * that process accounting knows that this is a task in IO wait state.
4706 *
4707 * But don't do that if it is a deliberate, throttling IO wait (this task
4708 * has set its backing_dev_info: the queue against which it should throttle)
4709 */
4710void __sched io_schedule(void)
4711{
70b97a7f 4712 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4713
0ff92245 4714 delayacct_blkio_start();
1da177e4
LT
4715 atomic_inc(&rq->nr_iowait);
4716 schedule();
4717 atomic_dec(&rq->nr_iowait);
0ff92245 4718 delayacct_blkio_end();
1da177e4 4719}
1da177e4
LT
4720EXPORT_SYMBOL(io_schedule);
4721
4722long __sched io_schedule_timeout(long timeout)
4723{
70b97a7f 4724 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4725 long ret;
4726
0ff92245 4727 delayacct_blkio_start();
1da177e4
LT
4728 atomic_inc(&rq->nr_iowait);
4729 ret = schedule_timeout(timeout);
4730 atomic_dec(&rq->nr_iowait);
0ff92245 4731 delayacct_blkio_end();
1da177e4
LT
4732 return ret;
4733}
4734
4735/**
4736 * sys_sched_get_priority_max - return maximum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * this syscall returns the maximum rt_priority that can be used
4740 * by a given scheduling class.
4741 */
4742asmlinkage long sys_sched_get_priority_max(int policy)
4743{
4744 int ret = -EINVAL;
4745
4746 switch (policy) {
4747 case SCHED_FIFO:
4748 case SCHED_RR:
4749 ret = MAX_USER_RT_PRIO-1;
4750 break;
4751 case SCHED_NORMAL:
b0a9499c 4752 case SCHED_BATCH:
1da177e4
LT
4753 ret = 0;
4754 break;
4755 }
4756 return ret;
4757}
4758
4759/**
4760 * sys_sched_get_priority_min - return minimum RT priority.
4761 * @policy: scheduling class.
4762 *
4763 * this syscall returns the minimum rt_priority that can be used
4764 * by a given scheduling class.
4765 */
4766asmlinkage long sys_sched_get_priority_min(int policy)
4767{
4768 int ret = -EINVAL;
4769
4770 switch (policy) {
4771 case SCHED_FIFO:
4772 case SCHED_RR:
4773 ret = 1;
4774 break;
4775 case SCHED_NORMAL:
b0a9499c 4776 case SCHED_BATCH:
1da177e4
LT
4777 ret = 0;
4778 }
4779 return ret;
4780}
4781
4782/**
4783 * sys_sched_rr_get_interval - return the default timeslice of a process.
4784 * @pid: pid of the process.
4785 * @interval: userspace pointer to the timeslice value.
4786 *
4787 * this syscall writes the default timeslice value of a given process
4788 * into the user-space timespec buffer. A value of '0' means infinity.
4789 */
4790asmlinkage
4791long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4792{
36c8b586 4793 struct task_struct *p;
1da177e4
LT
4794 int retval = -EINVAL;
4795 struct timespec t;
1da177e4
LT
4796
4797 if (pid < 0)
4798 goto out_nounlock;
4799
4800 retval = -ESRCH;
4801 read_lock(&tasklist_lock);
4802 p = find_process_by_pid(pid);
4803 if (!p)
4804 goto out_unlock;
4805
4806 retval = security_task_getscheduler(p);
4807 if (retval)
4808 goto out_unlock;
4809
b78709cf 4810 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4811 0 : task_timeslice(p), &t);
4812 read_unlock(&tasklist_lock);
4813 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4814out_nounlock:
4815 return retval;
4816out_unlock:
4817 read_unlock(&tasklist_lock);
4818 return retval;
4819}
4820
4821static inline struct task_struct *eldest_child(struct task_struct *p)
4822{
48f24c4d
IM
4823 if (list_empty(&p->children))
4824 return NULL;
1da177e4
LT
4825 return list_entry(p->children.next,struct task_struct,sibling);
4826}
4827
4828static inline struct task_struct *older_sibling(struct task_struct *p)
4829{
48f24c4d
IM
4830 if (p->sibling.prev==&p->parent->children)
4831 return NULL;
1da177e4
LT
4832 return list_entry(p->sibling.prev,struct task_struct,sibling);
4833}
4834
4835static inline struct task_struct *younger_sibling(struct task_struct *p)
4836{
48f24c4d
IM
4837 if (p->sibling.next==&p->parent->children)
4838 return NULL;
1da177e4
LT
4839 return list_entry(p->sibling.next,struct task_struct,sibling);
4840}
4841
2ed6e34f 4842static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4843
4844static void show_task(struct task_struct *p)
1da177e4 4845{
36c8b586 4846 struct task_struct *relative;
1da177e4 4847 unsigned long free = 0;
36c8b586 4848 unsigned state;
1da177e4 4849
1da177e4 4850 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4851 printk("%-13.13s %c", p->comm,
4852 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4853#if (BITS_PER_LONG == 32)
4854 if (state == TASK_RUNNING)
4855 printk(" running ");
4856 else
4857 printk(" %08lX ", thread_saved_pc(p));
4858#else
4859 if (state == TASK_RUNNING)
4860 printk(" running task ");
4861 else
4862 printk(" %016lx ", thread_saved_pc(p));
4863#endif
4864#ifdef CONFIG_DEBUG_STACK_USAGE
4865 {
10ebffde 4866 unsigned long *n = end_of_stack(p);
1da177e4
LT
4867 while (!*n)
4868 n++;
10ebffde 4869 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4870 }
4871#endif
4872 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4873 if ((relative = eldest_child(p)))
4874 printk("%5d ", relative->pid);
4875 else
4876 printk(" ");
4877 if ((relative = younger_sibling(p)))
4878 printk("%7d", relative->pid);
4879 else
4880 printk(" ");
4881 if ((relative = older_sibling(p)))
4882 printk(" %5d", relative->pid);
4883 else
4884 printk(" ");
4885 if (!p->mm)
4886 printk(" (L-TLB)\n");
4887 else
4888 printk(" (NOTLB)\n");
4889
4890 if (state != TASK_RUNNING)
4891 show_stack(p, NULL);
4892}
4893
e59e2ae2 4894void show_state_filter(unsigned long state_filter)
1da177e4 4895{
36c8b586 4896 struct task_struct *g, *p;
1da177e4
LT
4897
4898#if (BITS_PER_LONG == 32)
4899 printk("\n"
301827ac
CC
4900 " free sibling\n");
4901 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4902#else
4903 printk("\n"
301827ac
CC
4904 " free sibling\n");
4905 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4906#endif
4907 read_lock(&tasklist_lock);
4908 do_each_thread(g, p) {
4909 /*
4910 * reset the NMI-timeout, listing all files on a slow
4911 * console might take alot of time:
4912 */
4913 touch_nmi_watchdog();
e59e2ae2
IM
4914 if (p->state & state_filter)
4915 show_task(p);
1da177e4
LT
4916 } while_each_thread(g, p);
4917
4918 read_unlock(&tasklist_lock);
e59e2ae2
IM
4919 /*
4920 * Only show locks if all tasks are dumped:
4921 */
4922 if (state_filter == -1)
4923 debug_show_all_locks();
1da177e4
LT
4924}
4925
f340c0d1
IM
4926/**
4927 * init_idle - set up an idle thread for a given CPU
4928 * @idle: task in question
4929 * @cpu: cpu the idle task belongs to
4930 *
4931 * NOTE: this function does not set the idle thread's NEED_RESCHED
4932 * flag, to make booting more robust.
4933 */
5c1e1767 4934void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4935{
70b97a7f 4936 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4937 unsigned long flags;
4938
81c29a85 4939 idle->timestamp = sched_clock();
1da177e4
LT
4940 idle->sleep_avg = 0;
4941 idle->array = NULL;
b29739f9 4942 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4943 idle->state = TASK_RUNNING;
4944 idle->cpus_allowed = cpumask_of_cpu(cpu);
4945 set_task_cpu(idle, cpu);
4946
4947 spin_lock_irqsave(&rq->lock, flags);
4948 rq->curr = rq->idle = idle;
4866cde0
NP
4949#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4950 idle->oncpu = 1;
4951#endif
1da177e4
LT
4952 spin_unlock_irqrestore(&rq->lock, flags);
4953
4954 /* Set the preempt count _outside_ the spinlocks! */
4955#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4956 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4957#else
a1261f54 4958 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4959#endif
4960}
4961
4962/*
4963 * In a system that switches off the HZ timer nohz_cpu_mask
4964 * indicates which cpus entered this state. This is used
4965 * in the rcu update to wait only for active cpus. For system
4966 * which do not switch off the HZ timer nohz_cpu_mask should
4967 * always be CPU_MASK_NONE.
4968 */
4969cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4970
4971#ifdef CONFIG_SMP
4972/*
4973 * This is how migration works:
4974 *
70b97a7f 4975 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4976 * runqueue and wake up that CPU's migration thread.
4977 * 2) we down() the locked semaphore => thread blocks.
4978 * 3) migration thread wakes up (implicitly it forces the migrated
4979 * thread off the CPU)
4980 * 4) it gets the migration request and checks whether the migrated
4981 * task is still in the wrong runqueue.
4982 * 5) if it's in the wrong runqueue then the migration thread removes
4983 * it and puts it into the right queue.
4984 * 6) migration thread up()s the semaphore.
4985 * 7) we wake up and the migration is done.
4986 */
4987
4988/*
4989 * Change a given task's CPU affinity. Migrate the thread to a
4990 * proper CPU and schedule it away if the CPU it's executing on
4991 * is removed from the allowed bitmask.
4992 *
4993 * NOTE: the caller must have a valid reference to the task, the
4994 * task must not exit() & deallocate itself prematurely. The
4995 * call is not atomic; no spinlocks may be held.
4996 */
36c8b586 4997int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4998{
70b97a7f 4999 struct migration_req req;
1da177e4 5000 unsigned long flags;
70b97a7f 5001 struct rq *rq;
48f24c4d 5002 int ret = 0;
1da177e4
LT
5003
5004 rq = task_rq_lock(p, &flags);
5005 if (!cpus_intersects(new_mask, cpu_online_map)) {
5006 ret = -EINVAL;
5007 goto out;
5008 }
5009
5010 p->cpus_allowed = new_mask;
5011 /* Can the task run on the task's current CPU? If so, we're done */
5012 if (cpu_isset(task_cpu(p), new_mask))
5013 goto out;
5014
5015 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5016 /* Need help from migration thread: drop lock and wait. */
5017 task_rq_unlock(rq, &flags);
5018 wake_up_process(rq->migration_thread);
5019 wait_for_completion(&req.done);
5020 tlb_migrate_finish(p->mm);
5021 return 0;
5022 }
5023out:
5024 task_rq_unlock(rq, &flags);
48f24c4d 5025
1da177e4
LT
5026 return ret;
5027}
1da177e4
LT
5028EXPORT_SYMBOL_GPL(set_cpus_allowed);
5029
5030/*
5031 * Move (not current) task off this cpu, onto dest cpu. We're doing
5032 * this because either it can't run here any more (set_cpus_allowed()
5033 * away from this CPU, or CPU going down), or because we're
5034 * attempting to rebalance this task on exec (sched_exec).
5035 *
5036 * So we race with normal scheduler movements, but that's OK, as long
5037 * as the task is no longer on this CPU.
efc30814
KK
5038 *
5039 * Returns non-zero if task was successfully migrated.
1da177e4 5040 */
efc30814 5041static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5042{
70b97a7f 5043 struct rq *rq_dest, *rq_src;
efc30814 5044 int ret = 0;
1da177e4
LT
5045
5046 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5047 return ret;
1da177e4
LT
5048
5049 rq_src = cpu_rq(src_cpu);
5050 rq_dest = cpu_rq(dest_cpu);
5051
5052 double_rq_lock(rq_src, rq_dest);
5053 /* Already moved. */
5054 if (task_cpu(p) != src_cpu)
5055 goto out;
5056 /* Affinity changed (again). */
5057 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5058 goto out;
5059
5060 set_task_cpu(p, dest_cpu);
5061 if (p->array) {
5062 /*
5063 * Sync timestamp with rq_dest's before activating.
5064 * The same thing could be achieved by doing this step
5065 * afterwards, and pretending it was a local activate.
5066 * This way is cleaner and logically correct.
5067 */
b18ec803
MG
5068 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5069 + rq_dest->most_recent_timestamp;
1da177e4 5070 deactivate_task(p, rq_src);
0a565f79 5071 __activate_task(p, rq_dest);
1da177e4
LT
5072 if (TASK_PREEMPTS_CURR(p, rq_dest))
5073 resched_task(rq_dest->curr);
5074 }
efc30814 5075 ret = 1;
1da177e4
LT
5076out:
5077 double_rq_unlock(rq_src, rq_dest);
efc30814 5078 return ret;
1da177e4
LT
5079}
5080
5081/*
5082 * migration_thread - this is a highprio system thread that performs
5083 * thread migration by bumping thread off CPU then 'pushing' onto
5084 * another runqueue.
5085 */
95cdf3b7 5086static int migration_thread(void *data)
1da177e4 5087{
1da177e4 5088 int cpu = (long)data;
70b97a7f 5089 struct rq *rq;
1da177e4
LT
5090
5091 rq = cpu_rq(cpu);
5092 BUG_ON(rq->migration_thread != current);
5093
5094 set_current_state(TASK_INTERRUPTIBLE);
5095 while (!kthread_should_stop()) {
70b97a7f 5096 struct migration_req *req;
1da177e4 5097 struct list_head *head;
1da177e4 5098
3e1d1d28 5099 try_to_freeze();
1da177e4
LT
5100
5101 spin_lock_irq(&rq->lock);
5102
5103 if (cpu_is_offline(cpu)) {
5104 spin_unlock_irq(&rq->lock);
5105 goto wait_to_die;
5106 }
5107
5108 if (rq->active_balance) {
5109 active_load_balance(rq, cpu);
5110 rq->active_balance = 0;
5111 }
5112
5113 head = &rq->migration_queue;
5114
5115 if (list_empty(head)) {
5116 spin_unlock_irq(&rq->lock);
5117 schedule();
5118 set_current_state(TASK_INTERRUPTIBLE);
5119 continue;
5120 }
70b97a7f 5121 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5122 list_del_init(head->next);
5123
674311d5
NP
5124 spin_unlock(&rq->lock);
5125 __migrate_task(req->task, cpu, req->dest_cpu);
5126 local_irq_enable();
1da177e4
LT
5127
5128 complete(&req->done);
5129 }
5130 __set_current_state(TASK_RUNNING);
5131 return 0;
5132
5133wait_to_die:
5134 /* Wait for kthread_stop */
5135 set_current_state(TASK_INTERRUPTIBLE);
5136 while (!kthread_should_stop()) {
5137 schedule();
5138 set_current_state(TASK_INTERRUPTIBLE);
5139 }
5140 __set_current_state(TASK_RUNNING);
5141 return 0;
5142}
5143
5144#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5145/*
5146 * Figure out where task on dead CPU should go, use force if neccessary.
5147 * NOTE: interrupts should be disabled by the caller
5148 */
48f24c4d 5149static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5150{
efc30814 5151 unsigned long flags;
1da177e4 5152 cpumask_t mask;
70b97a7f
IM
5153 struct rq *rq;
5154 int dest_cpu;
1da177e4 5155
efc30814 5156restart:
1da177e4
LT
5157 /* On same node? */
5158 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5159 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5160 dest_cpu = any_online_cpu(mask);
5161
5162 /* On any allowed CPU? */
5163 if (dest_cpu == NR_CPUS)
48f24c4d 5164 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5165
5166 /* No more Mr. Nice Guy. */
5167 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5168 rq = task_rq_lock(p, &flags);
5169 cpus_setall(p->cpus_allowed);
5170 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5171 task_rq_unlock(rq, &flags);
1da177e4
LT
5172
5173 /*
5174 * Don't tell them about moving exiting tasks or
5175 * kernel threads (both mm NULL), since they never
5176 * leave kernel.
5177 */
48f24c4d 5178 if (p->mm && printk_ratelimit())
1da177e4
LT
5179 printk(KERN_INFO "process %d (%s) no "
5180 "longer affine to cpu%d\n",
48f24c4d 5181 p->pid, p->comm, dead_cpu);
1da177e4 5182 }
48f24c4d 5183 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5184 goto restart;
1da177e4
LT
5185}
5186
5187/*
5188 * While a dead CPU has no uninterruptible tasks queued at this point,
5189 * it might still have a nonzero ->nr_uninterruptible counter, because
5190 * for performance reasons the counter is not stricly tracking tasks to
5191 * their home CPUs. So we just add the counter to another CPU's counter,
5192 * to keep the global sum constant after CPU-down:
5193 */
70b97a7f 5194static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5195{
70b97a7f 5196 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5197 unsigned long flags;
5198
5199 local_irq_save(flags);
5200 double_rq_lock(rq_src, rq_dest);
5201 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5202 rq_src->nr_uninterruptible = 0;
5203 double_rq_unlock(rq_src, rq_dest);
5204 local_irq_restore(flags);
5205}
5206
5207/* Run through task list and migrate tasks from the dead cpu. */
5208static void migrate_live_tasks(int src_cpu)
5209{
48f24c4d 5210 struct task_struct *p, *t;
1da177e4
LT
5211
5212 write_lock_irq(&tasklist_lock);
5213
48f24c4d
IM
5214 do_each_thread(t, p) {
5215 if (p == current)
1da177e4
LT
5216 continue;
5217
48f24c4d
IM
5218 if (task_cpu(p) == src_cpu)
5219 move_task_off_dead_cpu(src_cpu, p);
5220 } while_each_thread(t, p);
1da177e4
LT
5221
5222 write_unlock_irq(&tasklist_lock);
5223}
5224
5225/* Schedules idle task to be the next runnable task on current CPU.
5226 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5227 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5228 */
5229void sched_idle_next(void)
5230{
48f24c4d 5231 int this_cpu = smp_processor_id();
70b97a7f 5232 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5233 struct task_struct *p = rq->idle;
5234 unsigned long flags;
5235
5236 /* cpu has to be offline */
48f24c4d 5237 BUG_ON(cpu_online(this_cpu));
1da177e4 5238
48f24c4d
IM
5239 /*
5240 * Strictly not necessary since rest of the CPUs are stopped by now
5241 * and interrupts disabled on the current cpu.
1da177e4
LT
5242 */
5243 spin_lock_irqsave(&rq->lock, flags);
5244
5245 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5246
5247 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5248 __activate_idle_task(p, rq);
5249
5250 spin_unlock_irqrestore(&rq->lock, flags);
5251}
5252
48f24c4d
IM
5253/*
5254 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5255 * offline.
5256 */
5257void idle_task_exit(void)
5258{
5259 struct mm_struct *mm = current->active_mm;
5260
5261 BUG_ON(cpu_online(smp_processor_id()));
5262
5263 if (mm != &init_mm)
5264 switch_mm(mm, &init_mm, current);
5265 mmdrop(mm);
5266}
5267
054b9108 5268/* called under rq->lock with disabled interrupts */
36c8b586 5269static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5270{
70b97a7f 5271 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5272
5273 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5274 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5275
5276 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5277 BUG_ON(p->state == TASK_DEAD);
1da177e4 5278
48f24c4d 5279 get_task_struct(p);
1da177e4
LT
5280
5281 /*
5282 * Drop lock around migration; if someone else moves it,
5283 * that's OK. No task can be added to this CPU, so iteration is
5284 * fine.
054b9108 5285 * NOTE: interrupts should be left disabled --dev@
1da177e4 5286 */
054b9108 5287 spin_unlock(&rq->lock);
48f24c4d 5288 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5289 spin_lock(&rq->lock);
1da177e4 5290
48f24c4d 5291 put_task_struct(p);
1da177e4
LT
5292}
5293
5294/* release_task() removes task from tasklist, so we won't find dead tasks. */
5295static void migrate_dead_tasks(unsigned int dead_cpu)
5296{
70b97a7f 5297 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5298 unsigned int arr, i;
1da177e4
LT
5299
5300 for (arr = 0; arr < 2; arr++) {
5301 for (i = 0; i < MAX_PRIO; i++) {
5302 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5303
1da177e4 5304 while (!list_empty(list))
36c8b586
IM
5305 migrate_dead(dead_cpu, list_entry(list->next,
5306 struct task_struct, run_list));
1da177e4
LT
5307 }
5308 }
5309}
5310#endif /* CONFIG_HOTPLUG_CPU */
5311
5312/*
5313 * migration_call - callback that gets triggered when a CPU is added.
5314 * Here we can start up the necessary migration thread for the new CPU.
5315 */
48f24c4d
IM
5316static int __cpuinit
5317migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5318{
1da177e4 5319 struct task_struct *p;
48f24c4d 5320 int cpu = (long)hcpu;
1da177e4 5321 unsigned long flags;
70b97a7f 5322 struct rq *rq;
1da177e4
LT
5323
5324 switch (action) {
5325 case CPU_UP_PREPARE:
5326 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5327 if (IS_ERR(p))
5328 return NOTIFY_BAD;
5329 p->flags |= PF_NOFREEZE;
5330 kthread_bind(p, cpu);
5331 /* Must be high prio: stop_machine expects to yield to it. */
5332 rq = task_rq_lock(p, &flags);
5333 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5334 task_rq_unlock(rq, &flags);
5335 cpu_rq(cpu)->migration_thread = p;
5336 break;
48f24c4d 5337
1da177e4
LT
5338 case CPU_ONLINE:
5339 /* Strictly unneccessary, as first user will wake it. */
5340 wake_up_process(cpu_rq(cpu)->migration_thread);
5341 break;
48f24c4d 5342
1da177e4
LT
5343#ifdef CONFIG_HOTPLUG_CPU
5344 case CPU_UP_CANCELED:
fc75cdfa
HC
5345 if (!cpu_rq(cpu)->migration_thread)
5346 break;
1da177e4 5347 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5348 kthread_bind(cpu_rq(cpu)->migration_thread,
5349 any_online_cpu(cpu_online_map));
1da177e4
LT
5350 kthread_stop(cpu_rq(cpu)->migration_thread);
5351 cpu_rq(cpu)->migration_thread = NULL;
5352 break;
48f24c4d 5353
1da177e4
LT
5354 case CPU_DEAD:
5355 migrate_live_tasks(cpu);
5356 rq = cpu_rq(cpu);
5357 kthread_stop(rq->migration_thread);
5358 rq->migration_thread = NULL;
5359 /* Idle task back to normal (off runqueue, low prio) */
5360 rq = task_rq_lock(rq->idle, &flags);
5361 deactivate_task(rq->idle, rq);
5362 rq->idle->static_prio = MAX_PRIO;
5363 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5364 migrate_dead_tasks(cpu);
5365 task_rq_unlock(rq, &flags);
5366 migrate_nr_uninterruptible(rq);
5367 BUG_ON(rq->nr_running != 0);
5368
5369 /* No need to migrate the tasks: it was best-effort if
5370 * they didn't do lock_cpu_hotplug(). Just wake up
5371 * the requestors. */
5372 spin_lock_irq(&rq->lock);
5373 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5374 struct migration_req *req;
5375
1da177e4 5376 req = list_entry(rq->migration_queue.next,
70b97a7f 5377 struct migration_req, list);
1da177e4
LT
5378 list_del_init(&req->list);
5379 complete(&req->done);
5380 }
5381 spin_unlock_irq(&rq->lock);
5382 break;
5383#endif
5384 }
5385 return NOTIFY_OK;
5386}
5387
5388/* Register at highest priority so that task migration (migrate_all_tasks)
5389 * happens before everything else.
5390 */
26c2143b 5391static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5392 .notifier_call = migration_call,
5393 .priority = 10
5394};
5395
5396int __init migration_init(void)
5397{
5398 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5399 int err;
48f24c4d
IM
5400
5401 /* Start one for the boot CPU: */
07dccf33
AM
5402 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5403 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5404 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5405 register_cpu_notifier(&migration_notifier);
48f24c4d 5406
1da177e4
LT
5407 return 0;
5408}
5409#endif
5410
5411#ifdef CONFIG_SMP
1a20ff27 5412#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5413#ifdef SCHED_DOMAIN_DEBUG
5414static void sched_domain_debug(struct sched_domain *sd, int cpu)
5415{
5416 int level = 0;
5417
41c7ce9a
NP
5418 if (!sd) {
5419 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5420 return;
5421 }
5422
1da177e4
LT
5423 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5424
5425 do {
5426 int i;
5427 char str[NR_CPUS];
5428 struct sched_group *group = sd->groups;
5429 cpumask_t groupmask;
5430
5431 cpumask_scnprintf(str, NR_CPUS, sd->span);
5432 cpus_clear(groupmask);
5433
5434 printk(KERN_DEBUG);
5435 for (i = 0; i < level + 1; i++)
5436 printk(" ");
5437 printk("domain %d: ", level);
5438
5439 if (!(sd->flags & SD_LOAD_BALANCE)) {
5440 printk("does not load-balance\n");
5441 if (sd->parent)
5442 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5443 break;
5444 }
5445
5446 printk("span %s\n", str);
5447
5448 if (!cpu_isset(cpu, sd->span))
5449 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5450 if (!cpu_isset(cpu, group->cpumask))
5451 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5452
5453 printk(KERN_DEBUG);
5454 for (i = 0; i < level + 2; i++)
5455 printk(" ");
5456 printk("groups:");
5457 do {
5458 if (!group) {
5459 printk("\n");
5460 printk(KERN_ERR "ERROR: group is NULL\n");
5461 break;
5462 }
5463
5464 if (!group->cpu_power) {
5465 printk("\n");
5466 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5467 }
5468
5469 if (!cpus_weight(group->cpumask)) {
5470 printk("\n");
5471 printk(KERN_ERR "ERROR: empty group\n");
5472 }
5473
5474 if (cpus_intersects(groupmask, group->cpumask)) {
5475 printk("\n");
5476 printk(KERN_ERR "ERROR: repeated CPUs\n");
5477 }
5478
5479 cpus_or(groupmask, groupmask, group->cpumask);
5480
5481 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5482 printk(" %s", str);
5483
5484 group = group->next;
5485 } while (group != sd->groups);
5486 printk("\n");
5487
5488 if (!cpus_equal(sd->span, groupmask))
5489 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5490
5491 level++;
5492 sd = sd->parent;
5493
5494 if (sd) {
5495 if (!cpus_subset(groupmask, sd->span))
5496 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5497 }
5498
5499 } while (sd);
5500}
5501#else
48f24c4d 5502# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5503#endif
5504
1a20ff27 5505static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5506{
5507 if (cpus_weight(sd->span) == 1)
5508 return 1;
5509
5510 /* Following flags need at least 2 groups */
5511 if (sd->flags & (SD_LOAD_BALANCE |
5512 SD_BALANCE_NEWIDLE |
5513 SD_BALANCE_FORK |
89c4710e
SS
5514 SD_BALANCE_EXEC |
5515 SD_SHARE_CPUPOWER |
5516 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5517 if (sd->groups != sd->groups->next)
5518 return 0;
5519 }
5520
5521 /* Following flags don't use groups */
5522 if (sd->flags & (SD_WAKE_IDLE |
5523 SD_WAKE_AFFINE |
5524 SD_WAKE_BALANCE))
5525 return 0;
5526
5527 return 1;
5528}
5529
48f24c4d
IM
5530static int
5531sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5532{
5533 unsigned long cflags = sd->flags, pflags = parent->flags;
5534
5535 if (sd_degenerate(parent))
5536 return 1;
5537
5538 if (!cpus_equal(sd->span, parent->span))
5539 return 0;
5540
5541 /* Does parent contain flags not in child? */
5542 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5543 if (cflags & SD_WAKE_AFFINE)
5544 pflags &= ~SD_WAKE_BALANCE;
5545 /* Flags needing groups don't count if only 1 group in parent */
5546 if (parent->groups == parent->groups->next) {
5547 pflags &= ~(SD_LOAD_BALANCE |
5548 SD_BALANCE_NEWIDLE |
5549 SD_BALANCE_FORK |
89c4710e
SS
5550 SD_BALANCE_EXEC |
5551 SD_SHARE_CPUPOWER |
5552 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5553 }
5554 if (~cflags & pflags)
5555 return 0;
5556
5557 return 1;
5558}
5559
1da177e4
LT
5560/*
5561 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5562 * hold the hotplug lock.
5563 */
9c1cfda2 5564static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5565{
70b97a7f 5566 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5567 struct sched_domain *tmp;
5568
5569 /* Remove the sched domains which do not contribute to scheduling. */
5570 for (tmp = sd; tmp; tmp = tmp->parent) {
5571 struct sched_domain *parent = tmp->parent;
5572 if (!parent)
5573 break;
1a848870 5574 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5575 tmp->parent = parent->parent;
1a848870
SS
5576 if (parent->parent)
5577 parent->parent->child = tmp;
5578 }
245af2c7
SS
5579 }
5580
1a848870 5581 if (sd && sd_degenerate(sd)) {
245af2c7 5582 sd = sd->parent;
1a848870
SS
5583 if (sd)
5584 sd->child = NULL;
5585 }
1da177e4
LT
5586
5587 sched_domain_debug(sd, cpu);
5588
674311d5 5589 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5590}
5591
5592/* cpus with isolated domains */
5c1e1767 5593static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5594
5595/* Setup the mask of cpus configured for isolated domains */
5596static int __init isolated_cpu_setup(char *str)
5597{
5598 int ints[NR_CPUS], i;
5599
5600 str = get_options(str, ARRAY_SIZE(ints), ints);
5601 cpus_clear(cpu_isolated_map);
5602 for (i = 1; i <= ints[0]; i++)
5603 if (ints[i] < NR_CPUS)
5604 cpu_set(ints[i], cpu_isolated_map);
5605 return 1;
5606}
5607
5608__setup ("isolcpus=", isolated_cpu_setup);
5609
5610/*
6711cab4
SS
5611 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5612 * to a function which identifies what group(along with sched group) a CPU
5613 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5614 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5615 *
5616 * init_sched_build_groups will build a circular linked list of the groups
5617 * covered by the given span, and will set each group's ->cpumask correctly,
5618 * and ->cpu_power to 0.
5619 */
a616058b 5620static void
6711cab4
SS
5621init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5622 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5623 struct sched_group **sg))
1da177e4
LT
5624{
5625 struct sched_group *first = NULL, *last = NULL;
5626 cpumask_t covered = CPU_MASK_NONE;
5627 int i;
5628
5629 for_each_cpu_mask(i, span) {
6711cab4
SS
5630 struct sched_group *sg;
5631 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5632 int j;
5633
5634 if (cpu_isset(i, covered))
5635 continue;
5636
5637 sg->cpumask = CPU_MASK_NONE;
5638 sg->cpu_power = 0;
5639
5640 for_each_cpu_mask(j, span) {
6711cab4 5641 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5642 continue;
5643
5644 cpu_set(j, covered);
5645 cpu_set(j, sg->cpumask);
5646 }
5647 if (!first)
5648 first = sg;
5649 if (last)
5650 last->next = sg;
5651 last = sg;
5652 }
5653 last->next = first;
5654}
5655
9c1cfda2 5656#define SD_NODES_PER_DOMAIN 16
1da177e4 5657
198e2f18 5658/*
5659 * Self-tuning task migration cost measurement between source and target CPUs.
5660 *
5661 * This is done by measuring the cost of manipulating buffers of varying
5662 * sizes. For a given buffer-size here are the steps that are taken:
5663 *
5664 * 1) the source CPU reads+dirties a shared buffer
5665 * 2) the target CPU reads+dirties the same shared buffer
5666 *
5667 * We measure how long they take, in the following 4 scenarios:
5668 *
5669 * - source: CPU1, target: CPU2 | cost1
5670 * - source: CPU2, target: CPU1 | cost2
5671 * - source: CPU1, target: CPU1 | cost3
5672 * - source: CPU2, target: CPU2 | cost4
5673 *
5674 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5675 * the cost of migration.
5676 *
5677 * We then start off from a small buffer-size and iterate up to larger
5678 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5679 * doing a maximum search for the cost. (The maximum cost for a migration
5680 * normally occurs when the working set size is around the effective cache
5681 * size.)
5682 */
5683#define SEARCH_SCOPE 2
5684#define MIN_CACHE_SIZE (64*1024U)
5685#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5686#define ITERATIONS 1
198e2f18 5687#define SIZE_THRESH 130
5688#define COST_THRESH 130
5689
5690/*
5691 * The migration cost is a function of 'domain distance'. Domain
5692 * distance is the number of steps a CPU has to iterate down its
5693 * domain tree to share a domain with the other CPU. The farther
5694 * two CPUs are from each other, the larger the distance gets.
5695 *
5696 * Note that we use the distance only to cache measurement results,
5697 * the distance value is not used numerically otherwise. When two
5698 * CPUs have the same distance it is assumed that the migration
5699 * cost is the same. (this is a simplification but quite practical)
5700 */
5701#define MAX_DOMAIN_DISTANCE 32
5702
5703static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5704 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5705/*
5706 * Architectures may override the migration cost and thus avoid
5707 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5708 * virtualized hardware:
5709 */
5710#ifdef CONFIG_DEFAULT_MIGRATION_COST
5711 CONFIG_DEFAULT_MIGRATION_COST
5712#else
5713 -1LL
5714#endif
5715};
198e2f18 5716
5717/*
5718 * Allow override of migration cost - in units of microseconds.
5719 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5720 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5721 */
5722static int __init migration_cost_setup(char *str)
5723{
5724 int ints[MAX_DOMAIN_DISTANCE+1], i;
5725
5726 str = get_options(str, ARRAY_SIZE(ints), ints);
5727
5728 printk("#ints: %d\n", ints[0]);
5729 for (i = 1; i <= ints[0]; i++) {
5730 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5731 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5732 }
5733 return 1;
5734}
5735
5736__setup ("migration_cost=", migration_cost_setup);
5737
5738/*
5739 * Global multiplier (divisor) for migration-cutoff values,
5740 * in percentiles. E.g. use a value of 150 to get 1.5 times
5741 * longer cache-hot cutoff times.
5742 *
5743 * (We scale it from 100 to 128 to long long handling easier.)
5744 */
5745
5746#define MIGRATION_FACTOR_SCALE 128
5747
5748static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5749
5750static int __init setup_migration_factor(char *str)
5751{
5752 get_option(&str, &migration_factor);
5753 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5754 return 1;
5755}
5756
5757__setup("migration_factor=", setup_migration_factor);
5758
5759/*
5760 * Estimated distance of two CPUs, measured via the number of domains
5761 * we have to pass for the two CPUs to be in the same span:
5762 */
5763static unsigned long domain_distance(int cpu1, int cpu2)
5764{
5765 unsigned long distance = 0;
5766 struct sched_domain *sd;
5767
5768 for_each_domain(cpu1, sd) {
5769 WARN_ON(!cpu_isset(cpu1, sd->span));
5770 if (cpu_isset(cpu2, sd->span))
5771 return distance;
5772 distance++;
5773 }
5774 if (distance >= MAX_DOMAIN_DISTANCE) {
5775 WARN_ON(1);
5776 distance = MAX_DOMAIN_DISTANCE-1;
5777 }
5778
5779 return distance;
5780}
5781
5782static unsigned int migration_debug;
5783
5784static int __init setup_migration_debug(char *str)
5785{
5786 get_option(&str, &migration_debug);
5787 return 1;
5788}
5789
5790__setup("migration_debug=", setup_migration_debug);
5791
5792/*
5793 * Maximum cache-size that the scheduler should try to measure.
5794 * Architectures with larger caches should tune this up during
5795 * bootup. Gets used in the domain-setup code (i.e. during SMP
5796 * bootup).
5797 */
5798unsigned int max_cache_size;
5799
5800static int __init setup_max_cache_size(char *str)
5801{
5802 get_option(&str, &max_cache_size);
5803 return 1;
5804}
5805
5806__setup("max_cache_size=", setup_max_cache_size);
5807
5808/*
5809 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5810 * is the operation that is timed, so we try to generate unpredictable
5811 * cachemisses that still end up filling the L2 cache:
5812 */
5813static void touch_cache(void *__cache, unsigned long __size)
5814{
5815 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5816 chunk2 = 2*size/3;
5817 unsigned long *cache = __cache;
5818 int i;
5819
5820 for (i = 0; i < size/6; i += 8) {
5821 switch (i % 6) {
5822 case 0: cache[i]++;
5823 case 1: cache[size-1-i]++;
5824 case 2: cache[chunk1-i]++;
5825 case 3: cache[chunk1+i]++;
5826 case 4: cache[chunk2-i]++;
5827 case 5: cache[chunk2+i]++;
5828 }
5829 }
5830}
5831
5832/*
5833 * Measure the cache-cost of one task migration. Returns in units of nsec.
5834 */
48f24c4d
IM
5835static unsigned long long
5836measure_one(void *cache, unsigned long size, int source, int target)
198e2f18 5837{
5838 cpumask_t mask, saved_mask;
5839 unsigned long long t0, t1, t2, t3, cost;
5840
5841 saved_mask = current->cpus_allowed;
5842
5843 /*
5844 * Flush source caches to RAM and invalidate them:
5845 */
5846 sched_cacheflush();
5847
5848 /*
5849 * Migrate to the source CPU:
5850 */
5851 mask = cpumask_of_cpu(source);
5852 set_cpus_allowed(current, mask);
5853 WARN_ON(smp_processor_id() != source);
5854
5855 /*
5856 * Dirty the working set:
5857 */
5858 t0 = sched_clock();
5859 touch_cache(cache, size);
5860 t1 = sched_clock();
5861
5862 /*
5863 * Migrate to the target CPU, dirty the L2 cache and access
5864 * the shared buffer. (which represents the working set
5865 * of a migrated task.)
5866 */
5867 mask = cpumask_of_cpu(target);
5868 set_cpus_allowed(current, mask);
5869 WARN_ON(smp_processor_id() != target);
5870
5871 t2 = sched_clock();
5872 touch_cache(cache, size);
5873 t3 = sched_clock();
5874
5875 cost = t1-t0 + t3-t2;
5876
5877 if (migration_debug >= 2)
5878 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5879 source, target, t1-t0, t1-t0, t3-t2, cost);
5880 /*
5881 * Flush target caches to RAM and invalidate them:
5882 */
5883 sched_cacheflush();
5884
5885 set_cpus_allowed(current, saved_mask);
5886
5887 return cost;
5888}
5889
5890/*
5891 * Measure a series of task migrations and return the average
5892 * result. Since this code runs early during bootup the system
5893 * is 'undisturbed' and the average latency makes sense.
5894 *
5895 * The algorithm in essence auto-detects the relevant cache-size,
5896 * so it will properly detect different cachesizes for different
5897 * cache-hierarchies, depending on how the CPUs are connected.
5898 *
5899 * Architectures can prime the upper limit of the search range via
5900 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5901 */
5902static unsigned long long
5903measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5904{
5905 unsigned long long cost1, cost2;
5906 int i;
5907
5908 /*
5909 * Measure the migration cost of 'size' bytes, over an
5910 * average of 10 runs:
5911 *
5912 * (We perturb the cache size by a small (0..4k)
5913 * value to compensate size/alignment related artifacts.
5914 * We also subtract the cost of the operation done on
5915 * the same CPU.)
5916 */
5917 cost1 = 0;
5918
5919 /*
5920 * dry run, to make sure we start off cache-cold on cpu1,
5921 * and to get any vmalloc pagefaults in advance:
5922 */
5923 measure_one(cache, size, cpu1, cpu2);
5924 for (i = 0; i < ITERATIONS; i++)
5925 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5926
5927 measure_one(cache, size, cpu2, cpu1);
5928 for (i = 0; i < ITERATIONS; i++)
5929 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5930
5931 /*
5932 * (We measure the non-migrating [cached] cost on both
5933 * cpu1 and cpu2, to handle CPUs with different speeds)
5934 */
5935 cost2 = 0;
5936
5937 measure_one(cache, size, cpu1, cpu1);
5938 for (i = 0; i < ITERATIONS; i++)
5939 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5940
5941 measure_one(cache, size, cpu2, cpu2);
5942 for (i = 0; i < ITERATIONS; i++)
5943 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5944
5945 /*
5946 * Get the per-iteration migration cost:
5947 */
5948 do_div(cost1, 2*ITERATIONS);
5949 do_div(cost2, 2*ITERATIONS);
5950
5951 return cost1 - cost2;
5952}
5953
5954static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5955{
5956 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5957 unsigned int max_size, size, size_found = 0;
5958 long long cost = 0, prev_cost;
5959 void *cache;
5960
5961 /*
5962 * Search from max_cache_size*5 down to 64K - the real relevant
5963 * cachesize has to lie somewhere inbetween.
5964 */
5965 if (max_cache_size) {
5966 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5967 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5968 } else {
5969 /*
5970 * Since we have no estimation about the relevant
5971 * search range
5972 */
5973 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5974 size = MIN_CACHE_SIZE;
5975 }
5976
5977 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5978 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5979 return 0;
5980 }
5981
5982 /*
5983 * Allocate the working set:
5984 */
5985 cache = vmalloc(max_size);
5986 if (!cache) {
5987 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
2ed6e34f 5988 return 1000000; /* return 1 msec on very small boxen */
198e2f18 5989 }
5990
5991 while (size <= max_size) {
5992 prev_cost = cost;
5993 cost = measure_cost(cpu1, cpu2, cache, size);
5994
5995 /*
5996 * Update the max:
5997 */
5998 if (cost > 0) {
5999 if (max_cost < cost) {
6000 max_cost = cost;
6001 size_found = size;
6002 }
6003 }
6004 /*
6005 * Calculate average fluctuation, we use this to prevent
6006 * noise from triggering an early break out of the loop:
6007 */
6008 fluct = abs(cost - prev_cost);
6009 avg_fluct = (avg_fluct + fluct)/2;
6010
6011 if (migration_debug)
6012 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
6013 cpu1, cpu2, size,
6014 (long)cost / 1000000,
6015 ((long)cost / 100000) % 10,
6016 (long)max_cost / 1000000,
6017 ((long)max_cost / 100000) % 10,
6018 domain_distance(cpu1, cpu2),
6019 cost, avg_fluct);
6020
6021 /*
6022 * If we iterated at least 20% past the previous maximum,
6023 * and the cost has dropped by more than 20% already,
6024 * (taking fluctuations into account) then we assume to
6025 * have found the maximum and break out of the loop early:
6026 */
6027 if (size_found && (size*100 > size_found*SIZE_THRESH))
6028 if (cost+avg_fluct <= 0 ||
6029 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6030
6031 if (migration_debug)
6032 printk("-> found max.\n");
6033 break;
6034 }
6035 /*
70b4d63e 6036 * Increase the cachesize in 10% steps:
198e2f18 6037 */
70b4d63e 6038 size = size * 10 / 9;
198e2f18 6039 }
6040
6041 if (migration_debug)
6042 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6043 cpu1, cpu2, size_found, max_cost);
6044
6045 vfree(cache);
6046
6047 /*
6048 * A task is considered 'cache cold' if at least 2 times
6049 * the worst-case cost of migration has passed.
6050 *
6051 * (this limit is only listened to if the load-balancing
6052 * situation is 'nice' - if there is a large imbalance we
6053 * ignore it for the sake of CPU utilization and
6054 * processing fairness.)
6055 */
6056 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6057}
6058
6059static void calibrate_migration_costs(const cpumask_t *cpu_map)
6060{
6061 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6062 unsigned long j0, j1, distance, max_distance = 0;
6063 struct sched_domain *sd;
6064
6065 j0 = jiffies;
6066
6067 /*
6068 * First pass - calculate the cacheflush times:
6069 */
6070 for_each_cpu_mask(cpu1, *cpu_map) {
6071 for_each_cpu_mask(cpu2, *cpu_map) {
6072 if (cpu1 == cpu2)
6073 continue;
6074 distance = domain_distance(cpu1, cpu2);
6075 max_distance = max(max_distance, distance);
6076 /*
6077 * No result cached yet?
6078 */
6079 if (migration_cost[distance] == -1LL)
6080 migration_cost[distance] =
6081 measure_migration_cost(cpu1, cpu2);
6082 }
6083 }
6084 /*
6085 * Second pass - update the sched domain hierarchy with
6086 * the new cache-hot-time estimations:
6087 */
6088 for_each_cpu_mask(cpu, *cpu_map) {
6089 distance = 0;
6090 for_each_domain(cpu, sd) {
6091 sd->cache_hot_time = migration_cost[distance];
6092 distance++;
6093 }
6094 }
6095 /*
6096 * Print the matrix:
6097 */
6098 if (migration_debug)
6099 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6100 max_cache_size,
6101#ifdef CONFIG_X86
6102 cpu_khz/1000
6103#else
6104 -1
6105#endif
6106 );
bd576c95 6107 if (system_state == SYSTEM_BOOTING) {
74732646
DJ
6108 if (num_online_cpus() > 1) {
6109 printk("migration_cost=");
6110 for (distance = 0; distance <= max_distance; distance++) {
6111 if (distance)
6112 printk(",");
6113 printk("%ld", (long)migration_cost[distance] / 1000);
6114 }
6115 printk("\n");
bd576c95 6116 }
198e2f18 6117 }
198e2f18 6118 j1 = jiffies;
6119 if (migration_debug)
6120 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6121
6122 /*
6123 * Move back to the original CPU. NUMA-Q gets confused
6124 * if we migrate to another quad during bootup.
6125 */
6126 if (raw_smp_processor_id() != orig_cpu) {
6127 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6128 saved_mask = current->cpus_allowed;
6129
6130 set_cpus_allowed(current, mask);
6131 set_cpus_allowed(current, saved_mask);
6132 }
6133}
6134
9c1cfda2 6135#ifdef CONFIG_NUMA
198e2f18 6136
9c1cfda2
JH
6137/**
6138 * find_next_best_node - find the next node to include in a sched_domain
6139 * @node: node whose sched_domain we're building
6140 * @used_nodes: nodes already in the sched_domain
6141 *
6142 * Find the next node to include in a given scheduling domain. Simply
6143 * finds the closest node not already in the @used_nodes map.
6144 *
6145 * Should use nodemask_t.
6146 */
6147static int find_next_best_node(int node, unsigned long *used_nodes)
6148{
6149 int i, n, val, min_val, best_node = 0;
6150
6151 min_val = INT_MAX;
6152
6153 for (i = 0; i < MAX_NUMNODES; i++) {
6154 /* Start at @node */
6155 n = (node + i) % MAX_NUMNODES;
6156
6157 if (!nr_cpus_node(n))
6158 continue;
6159
6160 /* Skip already used nodes */
6161 if (test_bit(n, used_nodes))
6162 continue;
6163
6164 /* Simple min distance search */
6165 val = node_distance(node, n);
6166
6167 if (val < min_val) {
6168 min_val = val;
6169 best_node = n;
6170 }
6171 }
6172
6173 set_bit(best_node, used_nodes);
6174 return best_node;
6175}
6176
6177/**
6178 * sched_domain_node_span - get a cpumask for a node's sched_domain
6179 * @node: node whose cpumask we're constructing
6180 * @size: number of nodes to include in this span
6181 *
6182 * Given a node, construct a good cpumask for its sched_domain to span. It
6183 * should be one that prevents unnecessary balancing, but also spreads tasks
6184 * out optimally.
6185 */
6186static cpumask_t sched_domain_node_span(int node)
6187{
9c1cfda2 6188 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6189 cpumask_t span, nodemask;
6190 int i;
9c1cfda2
JH
6191
6192 cpus_clear(span);
6193 bitmap_zero(used_nodes, MAX_NUMNODES);
6194
6195 nodemask = node_to_cpumask(node);
6196 cpus_or(span, span, nodemask);
6197 set_bit(node, used_nodes);
6198
6199 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6200 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6201
9c1cfda2
JH
6202 nodemask = node_to_cpumask(next_node);
6203 cpus_or(span, span, nodemask);
6204 }
6205
6206 return span;
6207}
6208#endif
6209
5c45bf27 6210int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6211
9c1cfda2 6212/*
48f24c4d 6213 * SMT sched-domains:
9c1cfda2 6214 */
1da177e4
LT
6215#ifdef CONFIG_SCHED_SMT
6216static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6217static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6218
6711cab4
SS
6219static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6220 struct sched_group **sg)
1da177e4 6221{
6711cab4
SS
6222 if (sg)
6223 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6224 return cpu;
6225}
6226#endif
6227
48f24c4d
IM
6228/*
6229 * multi-core sched-domains:
6230 */
1e9f28fa
SS
6231#ifdef CONFIG_SCHED_MC
6232static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6233static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6234#endif
6235
6236#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6237static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6238 struct sched_group **sg)
1e9f28fa 6239{
6711cab4 6240 int group;
a616058b
SS
6241 cpumask_t mask = cpu_sibling_map[cpu];
6242 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6243 group = first_cpu(mask);
6244 if (sg)
6245 *sg = &per_cpu(sched_group_core, group);
6246 return group;
1e9f28fa
SS
6247}
6248#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6249static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6250 struct sched_group **sg)
1e9f28fa 6251{
6711cab4
SS
6252 if (sg)
6253 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6254 return cpu;
6255}
6256#endif
6257
1da177e4 6258static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6259static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6260
6711cab4
SS
6261static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6262 struct sched_group **sg)
1da177e4 6263{
6711cab4 6264 int group;
48f24c4d 6265#ifdef CONFIG_SCHED_MC
1e9f28fa 6266 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6267 cpus_and(mask, mask, *cpu_map);
6711cab4 6268 group = first_cpu(mask);
1e9f28fa 6269#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6270 cpumask_t mask = cpu_sibling_map[cpu];
6271 cpus_and(mask, mask, *cpu_map);
6711cab4 6272 group = first_cpu(mask);
1da177e4 6273#else
6711cab4 6274 group = cpu;
1da177e4 6275#endif
6711cab4
SS
6276 if (sg)
6277 *sg = &per_cpu(sched_group_phys, group);
6278 return group;
1da177e4
LT
6279}
6280
6281#ifdef CONFIG_NUMA
1da177e4 6282/*
9c1cfda2
JH
6283 * The init_sched_build_groups can't handle what we want to do with node
6284 * groups, so roll our own. Now each node has its own list of groups which
6285 * gets dynamically allocated.
1da177e4 6286 */
9c1cfda2 6287static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6288static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6289
9c1cfda2 6290static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6291static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6292
6711cab4
SS
6293static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6294 struct sched_group **sg)
9c1cfda2 6295{
6711cab4
SS
6296 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6297 int group;
6298
6299 cpus_and(nodemask, nodemask, *cpu_map);
6300 group = first_cpu(nodemask);
6301
6302 if (sg)
6303 *sg = &per_cpu(sched_group_allnodes, group);
6304 return group;
1da177e4 6305}
6711cab4 6306
08069033
SS
6307static void init_numa_sched_groups_power(struct sched_group *group_head)
6308{
6309 struct sched_group *sg = group_head;
6310 int j;
6311
6312 if (!sg)
6313 return;
6314next_sg:
6315 for_each_cpu_mask(j, sg->cpumask) {
6316 struct sched_domain *sd;
6317
6318 sd = &per_cpu(phys_domains, j);
6319 if (j != first_cpu(sd->groups->cpumask)) {
6320 /*
6321 * Only add "power" once for each
6322 * physical package.
6323 */
6324 continue;
6325 }
6326
6327 sg->cpu_power += sd->groups->cpu_power;
6328 }
6329 sg = sg->next;
6330 if (sg != group_head)
6331 goto next_sg;
6332}
1da177e4
LT
6333#endif
6334
a616058b 6335#ifdef CONFIG_NUMA
51888ca2
SV
6336/* Free memory allocated for various sched_group structures */
6337static void free_sched_groups(const cpumask_t *cpu_map)
6338{
a616058b 6339 int cpu, i;
51888ca2
SV
6340
6341 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6342 struct sched_group **sched_group_nodes
6343 = sched_group_nodes_bycpu[cpu];
6344
51888ca2
SV
6345 if (!sched_group_nodes)
6346 continue;
6347
6348 for (i = 0; i < MAX_NUMNODES; i++) {
6349 cpumask_t nodemask = node_to_cpumask(i);
6350 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6351
6352 cpus_and(nodemask, nodemask, *cpu_map);
6353 if (cpus_empty(nodemask))
6354 continue;
6355
6356 if (sg == NULL)
6357 continue;
6358 sg = sg->next;
6359next_sg:
6360 oldsg = sg;
6361 sg = sg->next;
6362 kfree(oldsg);
6363 if (oldsg != sched_group_nodes[i])
6364 goto next_sg;
6365 }
6366 kfree(sched_group_nodes);
6367 sched_group_nodes_bycpu[cpu] = NULL;
6368 }
51888ca2 6369}
a616058b
SS
6370#else
6371static void free_sched_groups(const cpumask_t *cpu_map)
6372{
6373}
6374#endif
51888ca2 6375
89c4710e
SS
6376/*
6377 * Initialize sched groups cpu_power.
6378 *
6379 * cpu_power indicates the capacity of sched group, which is used while
6380 * distributing the load between different sched groups in a sched domain.
6381 * Typically cpu_power for all the groups in a sched domain will be same unless
6382 * there are asymmetries in the topology. If there are asymmetries, group
6383 * having more cpu_power will pickup more load compared to the group having
6384 * less cpu_power.
6385 *
6386 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6387 * the maximum number of tasks a group can handle in the presence of other idle
6388 * or lightly loaded groups in the same sched domain.
6389 */
6390static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6391{
6392 struct sched_domain *child;
6393 struct sched_group *group;
6394
6395 WARN_ON(!sd || !sd->groups);
6396
6397 if (cpu != first_cpu(sd->groups->cpumask))
6398 return;
6399
6400 child = sd->child;
6401
6402 /*
6403 * For perf policy, if the groups in child domain share resources
6404 * (for example cores sharing some portions of the cache hierarchy
6405 * or SMT), then set this domain groups cpu_power such that each group
6406 * can handle only one task, when there are other idle groups in the
6407 * same sched domain.
6408 */
6409 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6410 (child->flags &
6411 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6412 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6413 return;
6414 }
6415
6416 sd->groups->cpu_power = 0;
6417
6418 /*
6419 * add cpu_power of each child group to this groups cpu_power
6420 */
6421 group = child->groups;
6422 do {
6423 sd->groups->cpu_power += group->cpu_power;
6424 group = group->next;
6425 } while (group != child->groups);
6426}
6427
1da177e4 6428/*
1a20ff27
DG
6429 * Build sched domains for a given set of cpus and attach the sched domains
6430 * to the individual cpus
1da177e4 6431 */
51888ca2 6432static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6433{
6434 int i;
89c4710e 6435 struct sched_domain *sd;
d1b55138
JH
6436#ifdef CONFIG_NUMA
6437 struct sched_group **sched_group_nodes = NULL;
6711cab4 6438 int sd_allnodes = 0;
d1b55138
JH
6439
6440 /*
6441 * Allocate the per-node list of sched groups
6442 */
51888ca2 6443 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6444 GFP_KERNEL);
d1b55138
JH
6445 if (!sched_group_nodes) {
6446 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6447 return -ENOMEM;
d1b55138
JH
6448 }
6449 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6450#endif
1da177e4
LT
6451
6452 /*
1a20ff27 6453 * Set up domains for cpus specified by the cpu_map.
1da177e4 6454 */
1a20ff27 6455 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6456 struct sched_domain *sd = NULL, *p;
6457 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6458
1a20ff27 6459 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6460
6461#ifdef CONFIG_NUMA
d1b55138 6462 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6463 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6464 sd = &per_cpu(allnodes_domains, i);
6465 *sd = SD_ALLNODES_INIT;
6466 sd->span = *cpu_map;
6711cab4 6467 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6468 p = sd;
6711cab4 6469 sd_allnodes = 1;
9c1cfda2
JH
6470 } else
6471 p = NULL;
6472
1da177e4 6473 sd = &per_cpu(node_domains, i);
1da177e4 6474 *sd = SD_NODE_INIT;
9c1cfda2
JH
6475 sd->span = sched_domain_node_span(cpu_to_node(i));
6476 sd->parent = p;
1a848870
SS
6477 if (p)
6478 p->child = sd;
9c1cfda2 6479 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6480#endif
6481
6482 p = sd;
6483 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6484 *sd = SD_CPU_INIT;
6485 sd->span = nodemask;
6486 sd->parent = p;
1a848870
SS
6487 if (p)
6488 p->child = sd;
6711cab4 6489 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6490
1e9f28fa
SS
6491#ifdef CONFIG_SCHED_MC
6492 p = sd;
6493 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6494 *sd = SD_MC_INIT;
6495 sd->span = cpu_coregroup_map(i);
6496 cpus_and(sd->span, sd->span, *cpu_map);
6497 sd->parent = p;
1a848870 6498 p->child = sd;
6711cab4 6499 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6500#endif
6501
1da177e4
LT
6502#ifdef CONFIG_SCHED_SMT
6503 p = sd;
6504 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6505 *sd = SD_SIBLING_INIT;
6506 sd->span = cpu_sibling_map[i];
1a20ff27 6507 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6508 sd->parent = p;
1a848870 6509 p->child = sd;
6711cab4 6510 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6511#endif
6512 }
6513
6514#ifdef CONFIG_SCHED_SMT
6515 /* Set up CPU (sibling) groups */
9c1cfda2 6516 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6517 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6518 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6519 if (i != first_cpu(this_sibling_map))
6520 continue;
6521
6711cab4 6522 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6523 }
6524#endif
6525
1e9f28fa
SS
6526#ifdef CONFIG_SCHED_MC
6527 /* Set up multi-core groups */
6528 for_each_cpu_mask(i, *cpu_map) {
6529 cpumask_t this_core_map = cpu_coregroup_map(i);
6530 cpus_and(this_core_map, this_core_map, *cpu_map);
6531 if (i != first_cpu(this_core_map))
6532 continue;
6711cab4 6533 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6534 }
6535#endif
6536
6537
1da177e4
LT
6538 /* Set up physical groups */
6539 for (i = 0; i < MAX_NUMNODES; i++) {
6540 cpumask_t nodemask = node_to_cpumask(i);
6541
1a20ff27 6542 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6543 if (cpus_empty(nodemask))
6544 continue;
6545
6711cab4 6546 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6547 }
6548
6549#ifdef CONFIG_NUMA
6550 /* Set up node groups */
6711cab4
SS
6551 if (sd_allnodes)
6552 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6553
6554 for (i = 0; i < MAX_NUMNODES; i++) {
6555 /* Set up node groups */
6556 struct sched_group *sg, *prev;
6557 cpumask_t nodemask = node_to_cpumask(i);
6558 cpumask_t domainspan;
6559 cpumask_t covered = CPU_MASK_NONE;
6560 int j;
6561
6562 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6563 if (cpus_empty(nodemask)) {
6564 sched_group_nodes[i] = NULL;
9c1cfda2 6565 continue;
d1b55138 6566 }
9c1cfda2
JH
6567
6568 domainspan = sched_domain_node_span(i);
6569 cpus_and(domainspan, domainspan, *cpu_map);
6570
15f0b676 6571 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6572 if (!sg) {
6573 printk(KERN_WARNING "Can not alloc domain group for "
6574 "node %d\n", i);
6575 goto error;
6576 }
9c1cfda2
JH
6577 sched_group_nodes[i] = sg;
6578 for_each_cpu_mask(j, nodemask) {
6579 struct sched_domain *sd;
6580 sd = &per_cpu(node_domains, j);
6581 sd->groups = sg;
9c1cfda2
JH
6582 }
6583 sg->cpu_power = 0;
6584 sg->cpumask = nodemask;
51888ca2 6585 sg->next = sg;
9c1cfda2
JH
6586 cpus_or(covered, covered, nodemask);
6587 prev = sg;
6588
6589 for (j = 0; j < MAX_NUMNODES; j++) {
6590 cpumask_t tmp, notcovered;
6591 int n = (i + j) % MAX_NUMNODES;
6592
6593 cpus_complement(notcovered, covered);
6594 cpus_and(tmp, notcovered, *cpu_map);
6595 cpus_and(tmp, tmp, domainspan);
6596 if (cpus_empty(tmp))
6597 break;
6598
6599 nodemask = node_to_cpumask(n);
6600 cpus_and(tmp, tmp, nodemask);
6601 if (cpus_empty(tmp))
6602 continue;
6603
15f0b676
SV
6604 sg = kmalloc_node(sizeof(struct sched_group),
6605 GFP_KERNEL, i);
9c1cfda2
JH
6606 if (!sg) {
6607 printk(KERN_WARNING
6608 "Can not alloc domain group for node %d\n", j);
51888ca2 6609 goto error;
9c1cfda2
JH
6610 }
6611 sg->cpu_power = 0;
6612 sg->cpumask = tmp;
51888ca2 6613 sg->next = prev->next;
9c1cfda2
JH
6614 cpus_or(covered, covered, tmp);
6615 prev->next = sg;
6616 prev = sg;
6617 }
9c1cfda2 6618 }
1da177e4
LT
6619#endif
6620
6621 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6622#ifdef CONFIG_SCHED_SMT
1a20ff27 6623 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6624 sd = &per_cpu(cpu_domains, i);
89c4710e 6625 init_sched_groups_power(i, sd);
5c45bf27 6626 }
1da177e4 6627#endif
1e9f28fa 6628#ifdef CONFIG_SCHED_MC
5c45bf27 6629 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6630 sd = &per_cpu(core_domains, i);
89c4710e 6631 init_sched_groups_power(i, sd);
5c45bf27
SS
6632 }
6633#endif
1e9f28fa 6634
5c45bf27 6635 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6636 sd = &per_cpu(phys_domains, i);
89c4710e 6637 init_sched_groups_power(i, sd);
1da177e4
LT
6638 }
6639
9c1cfda2 6640#ifdef CONFIG_NUMA
08069033
SS
6641 for (i = 0; i < MAX_NUMNODES; i++)
6642 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6643
6711cab4
SS
6644 if (sd_allnodes) {
6645 struct sched_group *sg;
f712c0c7 6646
6711cab4 6647 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6648 init_numa_sched_groups_power(sg);
6649 }
9c1cfda2
JH
6650#endif
6651
1da177e4 6652 /* Attach the domains */
1a20ff27 6653 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6654 struct sched_domain *sd;
6655#ifdef CONFIG_SCHED_SMT
6656 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6657#elif defined(CONFIG_SCHED_MC)
6658 sd = &per_cpu(core_domains, i);
1da177e4
LT
6659#else
6660 sd = &per_cpu(phys_domains, i);
6661#endif
6662 cpu_attach_domain(sd, i);
6663 }
198e2f18 6664 /*
6665 * Tune cache-hot values:
6666 */
6667 calibrate_migration_costs(cpu_map);
51888ca2
SV
6668
6669 return 0;
6670
a616058b 6671#ifdef CONFIG_NUMA
51888ca2
SV
6672error:
6673 free_sched_groups(cpu_map);
6674 return -ENOMEM;
a616058b 6675#endif
1da177e4 6676}
1a20ff27
DG
6677/*
6678 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6679 */
51888ca2 6680static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6681{
6682 cpumask_t cpu_default_map;
51888ca2 6683 int err;
1da177e4 6684
1a20ff27
DG
6685 /*
6686 * Setup mask for cpus without special case scheduling requirements.
6687 * For now this just excludes isolated cpus, but could be used to
6688 * exclude other special cases in the future.
6689 */
6690 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6691
51888ca2
SV
6692 err = build_sched_domains(&cpu_default_map);
6693
6694 return err;
1a20ff27
DG
6695}
6696
6697static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6698{
51888ca2 6699 free_sched_groups(cpu_map);
9c1cfda2 6700}
1da177e4 6701
1a20ff27
DG
6702/*
6703 * Detach sched domains from a group of cpus specified in cpu_map
6704 * These cpus will now be attached to the NULL domain
6705 */
858119e1 6706static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6707{
6708 int i;
6709
6710 for_each_cpu_mask(i, *cpu_map)
6711 cpu_attach_domain(NULL, i);
6712 synchronize_sched();
6713 arch_destroy_sched_domains(cpu_map);
6714}
6715
6716/*
6717 * Partition sched domains as specified by the cpumasks below.
6718 * This attaches all cpus from the cpumasks to the NULL domain,
6719 * waits for a RCU quiescent period, recalculates sched
6720 * domain information and then attaches them back to the
6721 * correct sched domains
6722 * Call with hotplug lock held
6723 */
51888ca2 6724int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6725{
6726 cpumask_t change_map;
51888ca2 6727 int err = 0;
1a20ff27
DG
6728
6729 cpus_and(*partition1, *partition1, cpu_online_map);
6730 cpus_and(*partition2, *partition2, cpu_online_map);
6731 cpus_or(change_map, *partition1, *partition2);
6732
6733 /* Detach sched domains from all of the affected cpus */
6734 detach_destroy_domains(&change_map);
6735 if (!cpus_empty(*partition1))
51888ca2
SV
6736 err = build_sched_domains(partition1);
6737 if (!err && !cpus_empty(*partition2))
6738 err = build_sched_domains(partition2);
6739
6740 return err;
1a20ff27
DG
6741}
6742
5c45bf27
SS
6743#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6744int arch_reinit_sched_domains(void)
6745{
6746 int err;
6747
6748 lock_cpu_hotplug();
6749 detach_destroy_domains(&cpu_online_map);
6750 err = arch_init_sched_domains(&cpu_online_map);
6751 unlock_cpu_hotplug();
6752
6753 return err;
6754}
6755
6756static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6757{
6758 int ret;
6759
6760 if (buf[0] != '0' && buf[0] != '1')
6761 return -EINVAL;
6762
6763 if (smt)
6764 sched_smt_power_savings = (buf[0] == '1');
6765 else
6766 sched_mc_power_savings = (buf[0] == '1');
6767
6768 ret = arch_reinit_sched_domains();
6769
6770 return ret ? ret : count;
6771}
6772
6773int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6774{
6775 int err = 0;
48f24c4d 6776
5c45bf27
SS
6777#ifdef CONFIG_SCHED_SMT
6778 if (smt_capable())
6779 err = sysfs_create_file(&cls->kset.kobj,
6780 &attr_sched_smt_power_savings.attr);
6781#endif
6782#ifdef CONFIG_SCHED_MC
6783 if (!err && mc_capable())
6784 err = sysfs_create_file(&cls->kset.kobj,
6785 &attr_sched_mc_power_savings.attr);
6786#endif
6787 return err;
6788}
6789#endif
6790
6791#ifdef CONFIG_SCHED_MC
6792static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6793{
6794 return sprintf(page, "%u\n", sched_mc_power_savings);
6795}
48f24c4d
IM
6796static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6797 const char *buf, size_t count)
5c45bf27
SS
6798{
6799 return sched_power_savings_store(buf, count, 0);
6800}
6801SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6802 sched_mc_power_savings_store);
6803#endif
6804
6805#ifdef CONFIG_SCHED_SMT
6806static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6807{
6808 return sprintf(page, "%u\n", sched_smt_power_savings);
6809}
48f24c4d
IM
6810static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6811 const char *buf, size_t count)
5c45bf27
SS
6812{
6813 return sched_power_savings_store(buf, count, 1);
6814}
6815SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6816 sched_smt_power_savings_store);
6817#endif
6818
1da177e4
LT
6819/*
6820 * Force a reinitialization of the sched domains hierarchy. The domains
6821 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6822 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6823 * which will prevent rebalancing while the sched domains are recalculated.
6824 */
6825static int update_sched_domains(struct notifier_block *nfb,
6826 unsigned long action, void *hcpu)
6827{
1da177e4
LT
6828 switch (action) {
6829 case CPU_UP_PREPARE:
6830 case CPU_DOWN_PREPARE:
1a20ff27 6831 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6832 return NOTIFY_OK;
6833
6834 case CPU_UP_CANCELED:
6835 case CPU_DOWN_FAILED:
6836 case CPU_ONLINE:
6837 case CPU_DEAD:
6838 /*
6839 * Fall through and re-initialise the domains.
6840 */
6841 break;
6842 default:
6843 return NOTIFY_DONE;
6844 }
6845
6846 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6847 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6848
6849 return NOTIFY_OK;
6850}
1da177e4
LT
6851
6852void __init sched_init_smp(void)
6853{
5c1e1767
NP
6854 cpumask_t non_isolated_cpus;
6855
1da177e4 6856 lock_cpu_hotplug();
1a20ff27 6857 arch_init_sched_domains(&cpu_online_map);
5c1e1767
NP
6858 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6859 if (cpus_empty(non_isolated_cpus))
6860 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6861 unlock_cpu_hotplug();
6862 /* XXX: Theoretical race here - CPU may be hotplugged now */
6863 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6864
6865 /* Move init over to a non-isolated CPU */
6866 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6867 BUG();
1da177e4
LT
6868}
6869#else
6870void __init sched_init_smp(void)
6871{
6872}
6873#endif /* CONFIG_SMP */
6874
6875int in_sched_functions(unsigned long addr)
6876{
6877 /* Linker adds these: start and end of __sched functions */
6878 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6879
1da177e4
LT
6880 return in_lock_functions(addr) ||
6881 (addr >= (unsigned long)__sched_text_start
6882 && addr < (unsigned long)__sched_text_end);
6883}
6884
6885void __init sched_init(void)
6886{
1da177e4
LT
6887 int i, j, k;
6888
0a945022 6889 for_each_possible_cpu(i) {
70b97a7f
IM
6890 struct prio_array *array;
6891 struct rq *rq;
1da177e4
LT
6892
6893 rq = cpu_rq(i);
6894 spin_lock_init(&rq->lock);
fcb99371 6895 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6896 rq->nr_running = 0;
1da177e4
LT
6897 rq->active = rq->arrays;
6898 rq->expired = rq->arrays + 1;
6899 rq->best_expired_prio = MAX_PRIO;
6900
6901#ifdef CONFIG_SMP
41c7ce9a 6902 rq->sd = NULL;
7897986b
NP
6903 for (j = 1; j < 3; j++)
6904 rq->cpu_load[j] = 0;
1da177e4
LT
6905 rq->active_balance = 0;
6906 rq->push_cpu = 0;
0a2966b4 6907 rq->cpu = i;
1da177e4
LT
6908 rq->migration_thread = NULL;
6909 INIT_LIST_HEAD(&rq->migration_queue);
6910#endif
6911 atomic_set(&rq->nr_iowait, 0);
6912
6913 for (j = 0; j < 2; j++) {
6914 array = rq->arrays + j;
6915 for (k = 0; k < MAX_PRIO; k++) {
6916 INIT_LIST_HEAD(array->queue + k);
6917 __clear_bit(k, array->bitmap);
6918 }
6919 // delimiter for bitsearch
6920 __set_bit(MAX_PRIO, array->bitmap);
6921 }
6922 }
6923
2dd73a4f 6924 set_load_weight(&init_task);
b50f60ce 6925
c9819f45
CL
6926#ifdef CONFIG_SMP
6927 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6928#endif
6929
b50f60ce
HC
6930#ifdef CONFIG_RT_MUTEXES
6931 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6932#endif
6933
1da177e4
LT
6934 /*
6935 * The boot idle thread does lazy MMU switching as well:
6936 */
6937 atomic_inc(&init_mm.mm_count);
6938 enter_lazy_tlb(&init_mm, current);
6939
6940 /*
6941 * Make us the idle thread. Technically, schedule() should not be
6942 * called from this thread, however somewhere below it might be,
6943 * but because we are the idle thread, we just pick up running again
6944 * when this runqueue becomes "idle".
6945 */
6946 init_idle(current, smp_processor_id());
6947}
6948
6949#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6950void __might_sleep(char *file, int line)
6951{
48f24c4d 6952#ifdef in_atomic
1da177e4
LT
6953 static unsigned long prev_jiffy; /* ratelimiting */
6954
6955 if ((in_atomic() || irqs_disabled()) &&
6956 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6957 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6958 return;
6959 prev_jiffy = jiffies;
91368d73 6960 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6961 " context at %s:%d\n", file, line);
6962 printk("in_atomic():%d, irqs_disabled():%d\n",
6963 in_atomic(), irqs_disabled());
a4c410f0 6964 debug_show_held_locks(current);
1da177e4
LT
6965 dump_stack();
6966 }
6967#endif
6968}
6969EXPORT_SYMBOL(__might_sleep);
6970#endif
6971
6972#ifdef CONFIG_MAGIC_SYSRQ
6973void normalize_rt_tasks(void)
6974{
70b97a7f 6975 struct prio_array *array;
1da177e4 6976 struct task_struct *p;
1da177e4 6977 unsigned long flags;
70b97a7f 6978 struct rq *rq;
1da177e4
LT
6979
6980 read_lock_irq(&tasklist_lock);
c96d145e 6981 for_each_process(p) {
1da177e4
LT
6982 if (!rt_task(p))
6983 continue;
6984
b29739f9
IM
6985 spin_lock_irqsave(&p->pi_lock, flags);
6986 rq = __task_rq_lock(p);
1da177e4
LT
6987
6988 array = p->array;
6989 if (array)
6990 deactivate_task(p, task_rq(p));
6991 __setscheduler(p, SCHED_NORMAL, 0);
6992 if (array) {
6993 __activate_task(p, task_rq(p));
6994 resched_task(rq->curr);
6995 }
6996
b29739f9
IM
6997 __task_rq_unlock(rq);
6998 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6999 }
7000 read_unlock_irq(&tasklist_lock);
7001}
7002
7003#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7004
7005#ifdef CONFIG_IA64
7006/*
7007 * These functions are only useful for the IA64 MCA handling.
7008 *
7009 * They can only be called when the whole system has been
7010 * stopped - every CPU needs to be quiescent, and no scheduling
7011 * activity can take place. Using them for anything else would
7012 * be a serious bug, and as a result, they aren't even visible
7013 * under any other configuration.
7014 */
7015
7016/**
7017 * curr_task - return the current task for a given cpu.
7018 * @cpu: the processor in question.
7019 *
7020 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7021 */
36c8b586 7022struct task_struct *curr_task(int cpu)
1df5c10a
LT
7023{
7024 return cpu_curr(cpu);
7025}
7026
7027/**
7028 * set_curr_task - set the current task for a given cpu.
7029 * @cpu: the processor in question.
7030 * @p: the task pointer to set.
7031 *
7032 * Description: This function must only be used when non-maskable interrupts
7033 * are serviced on a separate stack. It allows the architecture to switch the
7034 * notion of the current task on a cpu in a non-blocking manner. This function
7035 * must be called with all CPU's synchronized, and interrupts disabled, the
7036 * and caller must save the original value of the current task (see
7037 * curr_task() above) and restore that value before reenabling interrupts and
7038 * re-starting the system.
7039 *
7040 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7041 */
36c8b586 7042void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7043{
7044 cpu_curr(cpu) = p;
7045}
7046
7047#endif
This page took 0.656139 seconds and 5 git commands to generate.