sched: Remove unlikely() from rt_policy() in sched.c
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
63f01241 126 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
b8efb561
IM
555
556 /* BKL stats */
480b9434 557 unsigned int bkl_count;
1da177e4
LT
558#endif
559};
560
f34e3b61 561static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 562
a64692a3 563
1e5a7405 564static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 565
0a2966b4
CL
566static inline int cpu_of(struct rq *rq)
567{
568#ifdef CONFIG_SMP
569 return rq->cpu;
570#else
571 return 0;
572#endif
573}
574
497f0ab3 575#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
579
674311d5
NP
580/*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 582 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
48f24c4d 587#define for_each_domain(cpu, __sd) \
497f0ab3 588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
589
590#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591#define this_rq() (&__get_cpu_var(runqueues))
592#define task_rq(p) cpu_rq(task_cpu(p))
593#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 594#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 595
dc61b1d6
PZ
596#ifdef CONFIG_CGROUP_SCHED
597
598/*
599 * Return the group to which this tasks belongs.
600 *
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
605 */
606static inline struct task_group *task_group(struct task_struct *p)
607{
608 struct cgroup_subsys_state *css;
609
610 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
611 lockdep_is_held(&task_rq(p)->lock));
612 return container_of(css, struct task_group, css);
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
305e6835 639static u64 irq_time_cpu(int cpu);
aa483808 640static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 641
aa9c4c0f 642inline void update_rq_clock(struct rq *rq)
3e51f33f 643{
305e6835
VP
644 if (!rq->skip_clock_update) {
645 int cpu = cpu_of(rq);
646 u64 irq_time;
647
648 rq->clock = sched_clock_cpu(cpu);
649 irq_time = irq_time_cpu(cpu);
650 if (rq->clock - irq_time > rq->clock_task)
651 rq->clock_task = rq->clock - irq_time;
aa483808
VP
652
653 sched_irq_time_avg_update(rq, irq_time);
305e6835 654 }
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
c24b7c52 744 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
2398f2c6
PZ
799/*
800 * ratelimit for updating the group shares.
55cd5340 801 * default: 0.25ms
2398f2c6 802 */
55cd5340 803unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 804unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 805
ffda12a1
PZ
806/*
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
809 * default: 4
810 */
811unsigned int sysctl_sched_shares_thresh = 4;
812
e9e9250b
PZ
813/*
814 * period over which we average the RT time consumption, measured
815 * in ms.
816 *
817 * default: 1s
818 */
819const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
820
fa85ae24 821/*
9f0c1e56 822 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
823 * default: 1s
824 */
9f0c1e56 825unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 826
6892b75e
IM
827static __read_mostly int scheduler_running;
828
9f0c1e56
PZ
829/*
830 * part of the period that we allow rt tasks to run in us.
831 * default: 0.95s
832 */
833int sysctl_sched_rt_runtime = 950000;
fa85ae24 834
d0b27fa7
PZ
835static inline u64 global_rt_period(void)
836{
837 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
838}
839
840static inline u64 global_rt_runtime(void)
841{
e26873bb 842 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
843 return RUNTIME_INF;
844
845 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
846}
fa85ae24 847
1da177e4 848#ifndef prepare_arch_switch
4866cde0
NP
849# define prepare_arch_switch(next) do { } while (0)
850#endif
851#ifndef finish_arch_switch
852# define finish_arch_switch(prev) do { } while (0)
853#endif
854
051a1d1a
DA
855static inline int task_current(struct rq *rq, struct task_struct *p)
856{
857 return rq->curr == p;
858}
859
4866cde0 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 862{
051a1d1a 863 return task_current(rq, p);
4866cde0
NP
864}
865
70b97a7f 866static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
867{
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 871{
da04c035
IM
872#ifdef CONFIG_DEBUG_SPINLOCK
873 /* this is a valid case when another task releases the spinlock */
874 rq->lock.owner = current;
875#endif
8a25d5de
IM
876 /*
877 * If we are tracking spinlock dependencies then we have to
878 * fix up the runqueue lock - which gets 'carried over' from
879 * prev into current:
880 */
881 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
882
05fa785c 883 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
884}
885
886#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 887static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
888{
889#ifdef CONFIG_SMP
890 return p->oncpu;
891#else
051a1d1a 892 return task_current(rq, p);
4866cde0
NP
893#endif
894}
895
70b97a7f 896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
897{
898#ifdef CONFIG_SMP
899 /*
900 * We can optimise this out completely for !SMP, because the
901 * SMP rebalancing from interrupt is the only thing that cares
902 * here.
903 */
904 next->oncpu = 1;
905#endif
906#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 907 raw_spin_unlock_irq(&rq->lock);
4866cde0 908#else
05fa785c 909 raw_spin_unlock(&rq->lock);
4866cde0
NP
910#endif
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
914{
915#ifdef CONFIG_SMP
916 /*
917 * After ->oncpu is cleared, the task can be moved to a different CPU.
918 * We must ensure this doesn't happen until the switch is completely
919 * finished.
920 */
921 smp_wmb();
922 prev->oncpu = 0;
923#endif
924#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
925 local_irq_enable();
1da177e4 926#endif
4866cde0
NP
927}
928#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 929
0970d299 930/*
65cc8e48
PZ
931 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
932 * against ttwu().
0970d299
PZ
933 */
934static inline int task_is_waking(struct task_struct *p)
935{
0017d735 936 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
937}
938
b29739f9
IM
939/*
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
942 */
70b97a7f 943static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
944 __acquires(rq->lock)
945{
0970d299
PZ
946 struct rq *rq;
947
3a5c359a 948 for (;;) {
0970d299 949 rq = task_rq(p);
05fa785c 950 raw_spin_lock(&rq->lock);
65cc8e48 951 if (likely(rq == task_rq(p)))
3a5c359a 952 return rq;
05fa785c 953 raw_spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
05fa785c 970 raw_spin_lock(&rq->lock);
65cc8e48 971 if (likely(rq == task_rq(p)))
3a5c359a 972 return rq;
05fa785c 973 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
a9957449 977static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock(&rq->lock);
b29739f9
IM
981}
982
70b97a7f 983static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
984 __releases(rq->lock)
985{
05fa785c 986 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
987}
988
1da177e4 989/*
cc2a73b5 990 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 991 */
a9957449 992static struct rq *this_rq_lock(void)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4
LT
996
997 local_irq_disable();
998 rq = this_rq();
05fa785c 999 raw_spin_lock(&rq->lock);
1da177e4
LT
1000
1001 return rq;
1002}
1003
8f4d37ec
PZ
1004#ifdef CONFIG_SCHED_HRTICK
1005/*
1006 * Use HR-timers to deliver accurate preemption points.
1007 *
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * reschedule event.
1011 *
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * rq->lock.
1014 */
8f4d37ec
PZ
1015
1016/*
1017 * Use hrtick when:
1018 * - enabled by features
1019 * - hrtimer is actually high res
1020 */
1021static inline int hrtick_enabled(struct rq *rq)
1022{
1023 if (!sched_feat(HRTICK))
1024 return 0;
ba42059f 1025 if (!cpu_active(cpu_of(rq)))
b328ca18 1026 return 0;
8f4d37ec
PZ
1027 return hrtimer_is_hres_active(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030static void hrtick_clear(struct rq *rq)
1031{
1032 if (hrtimer_active(&rq->hrtick_timer))
1033 hrtimer_cancel(&rq->hrtick_timer);
1034}
1035
8f4d37ec
PZ
1036/*
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1039 */
1040static enum hrtimer_restart hrtick(struct hrtimer *timer)
1041{
1042 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1043
1044 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1045
05fa785c 1046 raw_spin_lock(&rq->lock);
3e51f33f 1047 update_rq_clock(rq);
8f4d37ec 1048 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1049 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1050
1051 return HRTIMER_NORESTART;
1052}
1053
95e904c7 1054#ifdef CONFIG_SMP
31656519
PZ
1055/*
1056 * called from hardirq (IPI) context
1057 */
1058static void __hrtick_start(void *arg)
b328ca18 1059{
31656519 1060 struct rq *rq = arg;
b328ca18 1061
05fa785c 1062 raw_spin_lock(&rq->lock);
31656519
PZ
1063 hrtimer_restart(&rq->hrtick_timer);
1064 rq->hrtick_csd_pending = 0;
05fa785c 1065 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1066}
1067
31656519
PZ
1068/*
1069 * Called to set the hrtick timer state.
1070 *
1071 * called with rq->lock held and irqs disabled
1072 */
1073static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1074{
31656519
PZ
1075 struct hrtimer *timer = &rq->hrtick_timer;
1076 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1077
cc584b21 1078 hrtimer_set_expires(timer, time);
31656519
PZ
1079
1080 if (rq == this_rq()) {
1081 hrtimer_restart(timer);
1082 } else if (!rq->hrtick_csd_pending) {
6e275637 1083 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1084 rq->hrtick_csd_pending = 1;
1085 }
b328ca18
PZ
1086}
1087
1088static int
1089hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1090{
1091 int cpu = (int)(long)hcpu;
1092
1093 switch (action) {
1094 case CPU_UP_CANCELED:
1095 case CPU_UP_CANCELED_FROZEN:
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098 case CPU_DEAD:
1099 case CPU_DEAD_FROZEN:
31656519 1100 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1101 return NOTIFY_OK;
1102 }
1103
1104 return NOTIFY_DONE;
1105}
1106
fa748203 1107static __init void init_hrtick(void)
b328ca18
PZ
1108{
1109 hotcpu_notifier(hotplug_hrtick, 0);
1110}
31656519
PZ
1111#else
1112/*
1113 * Called to set the hrtick timer state.
1114 *
1115 * called with rq->lock held and irqs disabled
1116 */
1117static void hrtick_start(struct rq *rq, u64 delay)
1118{
7f1e2ca9 1119 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1120 HRTIMER_MODE_REL_PINNED, 0);
31656519 1121}
b328ca18 1122
006c75f1 1123static inline void init_hrtick(void)
8f4d37ec 1124{
8f4d37ec 1125}
31656519 1126#endif /* CONFIG_SMP */
8f4d37ec 1127
31656519 1128static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1129{
31656519
PZ
1130#ifdef CONFIG_SMP
1131 rq->hrtick_csd_pending = 0;
8f4d37ec 1132
31656519
PZ
1133 rq->hrtick_csd.flags = 0;
1134 rq->hrtick_csd.func = __hrtick_start;
1135 rq->hrtick_csd.info = rq;
1136#endif
8f4d37ec 1137
31656519
PZ
1138 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139 rq->hrtick_timer.function = hrtick;
8f4d37ec 1140}
006c75f1 1141#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1142static inline void hrtick_clear(struct rq *rq)
1143{
1144}
1145
8f4d37ec
PZ
1146static inline void init_rq_hrtick(struct rq *rq)
1147{
1148}
1149
b328ca18
PZ
1150static inline void init_hrtick(void)
1151{
1152}
006c75f1 1153#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1154
c24d20db
IM
1155/*
1156 * resched_task - mark a task 'to be rescheduled now'.
1157 *
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1160 * the target CPU.
1161 */
1162#ifdef CONFIG_SMP
1163
1164#ifndef tsk_is_polling
1165#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166#endif
1167
31656519 1168static void resched_task(struct task_struct *p)
c24d20db
IM
1169{
1170 int cpu;
1171
05fa785c 1172 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1173
5ed0cec0 1174 if (test_tsk_need_resched(p))
c24d20db
IM
1175 return;
1176
5ed0cec0 1177 set_tsk_need_resched(p);
c24d20db
IM
1178
1179 cpu = task_cpu(p);
1180 if (cpu == smp_processor_id())
1181 return;
1182
1183 /* NEED_RESCHED must be visible before we test polling */
1184 smp_mb();
1185 if (!tsk_is_polling(p))
1186 smp_send_reschedule(cpu);
1187}
1188
1189static void resched_cpu(int cpu)
1190{
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long flags;
1193
05fa785c 1194 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1195 return;
1196 resched_task(cpu_curr(cpu));
05fa785c 1197 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1198}
06d8308c
TG
1199
1200#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1201/*
1202 * In the semi idle case, use the nearest busy cpu for migrating timers
1203 * from an idle cpu. This is good for power-savings.
1204 *
1205 * We don't do similar optimization for completely idle system, as
1206 * selecting an idle cpu will add more delays to the timers than intended
1207 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1208 */
1209int get_nohz_timer_target(void)
1210{
1211 int cpu = smp_processor_id();
1212 int i;
1213 struct sched_domain *sd;
1214
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd))
1217 if (!idle_cpu(i))
1218 return i;
1219 }
1220 return cpu;
1221}
06d8308c
TG
1222/*
1223 * When add_timer_on() enqueues a timer into the timer wheel of an
1224 * idle CPU then this timer might expire before the next timer event
1225 * which is scheduled to wake up that CPU. In case of a completely
1226 * idle system the next event might even be infinite time into the
1227 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1228 * leaves the inner idle loop so the newly added timer is taken into
1229 * account when the CPU goes back to idle and evaluates the timer
1230 * wheel for the next timer event.
1231 */
1232void wake_up_idle_cpu(int cpu)
1233{
1234 struct rq *rq = cpu_rq(cpu);
1235
1236 if (cpu == smp_processor_id())
1237 return;
1238
1239 /*
1240 * This is safe, as this function is called with the timer
1241 * wheel base lock of (cpu) held. When the CPU is on the way
1242 * to idle and has not yet set rq->curr to idle then it will
1243 * be serialized on the timer wheel base lock and take the new
1244 * timer into account automatically.
1245 */
1246 if (rq->curr != rq->idle)
1247 return;
1248
1249 /*
1250 * We can set TIF_RESCHED on the idle task of the other CPU
1251 * lockless. The worst case is that the other CPU runs the
1252 * idle task through an additional NOOP schedule()
1253 */
5ed0cec0 1254 set_tsk_need_resched(rq->idle);
06d8308c
TG
1255
1256 /* NEED_RESCHED must be visible before we test polling */
1257 smp_mb();
1258 if (!tsk_is_polling(rq->idle))
1259 smp_send_reschedule(cpu);
1260}
39c0cbe2 1261
6d6bc0ad 1262#endif /* CONFIG_NO_HZ */
06d8308c 1263
e9e9250b
PZ
1264static u64 sched_avg_period(void)
1265{
1266 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1267}
1268
1269static void sched_avg_update(struct rq *rq)
1270{
1271 s64 period = sched_avg_period();
1272
1273 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1274 /*
1275 * Inline assembly required to prevent the compiler
1276 * optimising this loop into a divmod call.
1277 * See __iter_div_u64_rem() for another example of this.
1278 */
1279 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1280 rq->age_stamp += period;
1281 rq->rt_avg /= 2;
1282 }
1283}
1284
1285static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286{
1287 rq->rt_avg += rt_delta;
1288 sched_avg_update(rq);
1289}
1290
6d6bc0ad 1291#else /* !CONFIG_SMP */
31656519 1292static void resched_task(struct task_struct *p)
c24d20db 1293{
05fa785c 1294 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1295 set_tsk_need_resched(p);
c24d20db 1296}
e9e9250b
PZ
1297
1298static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1299{
1300}
da2b71ed
SS
1301
1302static void sched_avg_update(struct rq *rq)
1303{
1304}
6d6bc0ad 1305#endif /* CONFIG_SMP */
c24d20db 1306
45bf76df
IM
1307#if BITS_PER_LONG == 32
1308# define WMULT_CONST (~0UL)
1309#else
1310# define WMULT_CONST (1UL << 32)
1311#endif
1312
1313#define WMULT_SHIFT 32
1314
194081eb
IM
1315/*
1316 * Shift right and round:
1317 */
cf2ab469 1318#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1319
a7be37ac
PZ
1320/*
1321 * delta *= weight / lw
1322 */
cb1c4fc9 1323static unsigned long
45bf76df
IM
1324calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1325 struct load_weight *lw)
1326{
1327 u64 tmp;
1328
7a232e03
LJ
1329 if (!lw->inv_weight) {
1330 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1331 lw->inv_weight = 1;
1332 else
1333 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1334 / (lw->weight+1);
1335 }
45bf76df
IM
1336
1337 tmp = (u64)delta_exec * weight;
1338 /*
1339 * Check whether we'd overflow the 64-bit multiplication:
1340 */
194081eb 1341 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1342 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1343 WMULT_SHIFT/2);
1344 else
cf2ab469 1345 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1346
ecf691da 1347 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1348}
1349
1091985b 1350static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1351{
1352 lw->weight += inc;
e89996ae 1353 lw->inv_weight = 0;
45bf76df
IM
1354}
1355
1091985b 1356static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1357{
1358 lw->weight -= dec;
e89996ae 1359 lw->inv_weight = 0;
45bf76df
IM
1360}
1361
2dd73a4f
PW
1362/*
1363 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1364 * of tasks with abnormal "nice" values across CPUs the contribution that
1365 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1366 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1367 * scaled version of the new time slice allocation that they receive on time
1368 * slice expiry etc.
1369 */
1370
cce7ade8
PZ
1371#define WEIGHT_IDLEPRIO 3
1372#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1373
1374/*
1375 * Nice levels are multiplicative, with a gentle 10% change for every
1376 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1377 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1378 * that remained on nice 0.
1379 *
1380 * The "10% effect" is relative and cumulative: from _any_ nice level,
1381 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1382 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1383 * If a task goes up by ~10% and another task goes down by ~10% then
1384 * the relative distance between them is ~25%.)
dd41f596
IM
1385 */
1386static const int prio_to_weight[40] = {
254753dc
IM
1387 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1388 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1389 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1390 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1391 /* 0 */ 1024, 820, 655, 526, 423,
1392 /* 5 */ 335, 272, 215, 172, 137,
1393 /* 10 */ 110, 87, 70, 56, 45,
1394 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1395};
1396
5714d2de
IM
1397/*
1398 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1399 *
1400 * In cases where the weight does not change often, we can use the
1401 * precalculated inverse to speed up arithmetics by turning divisions
1402 * into multiplications:
1403 */
dd41f596 1404static const u32 prio_to_wmult[40] = {
254753dc
IM
1405 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1406 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1407 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1408 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1409 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1410 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1411 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1412 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1413};
2dd73a4f 1414
ef12fefa
BR
1415/* Time spent by the tasks of the cpu accounting group executing in ... */
1416enum cpuacct_stat_index {
1417 CPUACCT_STAT_USER, /* ... user mode */
1418 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1419
1420 CPUACCT_STAT_NSTATS,
1421};
1422
d842de87
SV
1423#ifdef CONFIG_CGROUP_CPUACCT
1424static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1425static void cpuacct_update_stats(struct task_struct *tsk,
1426 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1427#else
1428static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1429static inline void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1431#endif
1432
18d95a28
PZ
1433static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1434{
1435 update_load_add(&rq->load, load);
1436}
1437
1438static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1439{
1440 update_load_sub(&rq->load, load);
1441}
1442
7940ca36 1443#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1444typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1445
1446/*
1447 * Iterate the full tree, calling @down when first entering a node and @up when
1448 * leaving it for the final time.
1449 */
eb755805 1450static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1451{
1452 struct task_group *parent, *child;
eb755805 1453 int ret;
c09595f6
PZ
1454
1455 rcu_read_lock();
1456 parent = &root_task_group;
1457down:
eb755805
PZ
1458 ret = (*down)(parent, data);
1459 if (ret)
1460 goto out_unlock;
c09595f6
PZ
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1464
1465up:
1466 continue;
1467 }
eb755805
PZ
1468 ret = (*up)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471
1472 child = parent;
1473 parent = parent->parent;
1474 if (parent)
1475 goto up;
eb755805 1476out_unlock:
c09595f6 1477 rcu_read_unlock();
eb755805
PZ
1478
1479 return ret;
c09595f6
PZ
1480}
1481
eb755805
PZ
1482static int tg_nop(struct task_group *tg, void *data)
1483{
1484 return 0;
c09595f6 1485}
eb755805
PZ
1486#endif
1487
1488#ifdef CONFIG_SMP
f5f08f39
PZ
1489/* Used instead of source_load when we know the type == 0 */
1490static unsigned long weighted_cpuload(const int cpu)
1491{
1492 return cpu_rq(cpu)->load.weight;
1493}
1494
1495/*
1496 * Return a low guess at the load of a migration-source cpu weighted
1497 * according to the scheduling class and "nice" value.
1498 *
1499 * We want to under-estimate the load of migration sources, to
1500 * balance conservatively.
1501 */
1502static unsigned long source_load(int cpu, int type)
1503{
1504 struct rq *rq = cpu_rq(cpu);
1505 unsigned long total = weighted_cpuload(cpu);
1506
1507 if (type == 0 || !sched_feat(LB_BIAS))
1508 return total;
1509
1510 return min(rq->cpu_load[type-1], total);
1511}
1512
1513/*
1514 * Return a high guess at the load of a migration-target cpu weighted
1515 * according to the scheduling class and "nice" value.
1516 */
1517static unsigned long target_load(int cpu, int type)
1518{
1519 struct rq *rq = cpu_rq(cpu);
1520 unsigned long total = weighted_cpuload(cpu);
1521
1522 if (type == 0 || !sched_feat(LB_BIAS))
1523 return total;
1524
1525 return max(rq->cpu_load[type-1], total);
1526}
1527
ae154be1
PZ
1528static unsigned long power_of(int cpu)
1529{
e51fd5e2 1530 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1531}
1532
eb755805
PZ
1533static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1534
1535static unsigned long cpu_avg_load_per_task(int cpu)
1536{
1537 struct rq *rq = cpu_rq(cpu);
af6d596f 1538 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1539
4cd42620
SR
1540 if (nr_running)
1541 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1542 else
1543 rq->avg_load_per_task = 0;
eb755805
PZ
1544
1545 return rq->avg_load_per_task;
1546}
1547
1548#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1549
43cf38eb 1550static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1551
c09595f6
PZ
1552static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1553
1554/*
1555 * Calculate and set the cpu's group shares.
1556 */
34d76c41
PZ
1557static void update_group_shares_cpu(struct task_group *tg, int cpu,
1558 unsigned long sd_shares,
1559 unsigned long sd_rq_weight,
4a6cc4bd 1560 unsigned long *usd_rq_weight)
18d95a28 1561{
34d76c41 1562 unsigned long shares, rq_weight;
a5004278 1563 int boost = 0;
c09595f6 1564
4a6cc4bd 1565 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1566 if (!rq_weight) {
1567 boost = 1;
1568 rq_weight = NICE_0_LOAD;
1569 }
c8cba857 1570
c09595f6 1571 /*
a8af7246
PZ
1572 * \Sum_j shares_j * rq_weight_i
1573 * shares_i = -----------------------------
1574 * \Sum_j rq_weight_j
c09595f6 1575 */
ec4e0e2f 1576 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1577 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1578
ffda12a1
PZ
1579 if (abs(shares - tg->se[cpu]->load.weight) >
1580 sysctl_sched_shares_thresh) {
1581 struct rq *rq = cpu_rq(cpu);
1582 unsigned long flags;
c09595f6 1583
05fa785c 1584 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1585 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1586 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1587 __set_se_shares(tg->se[cpu], shares);
05fa785c 1588 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1589 }
18d95a28 1590}
c09595f6
PZ
1591
1592/*
c8cba857
PZ
1593 * Re-compute the task group their per cpu shares over the given domain.
1594 * This needs to be done in a bottom-up fashion because the rq weight of a
1595 * parent group depends on the shares of its child groups.
c09595f6 1596 */
eb755805 1597static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1598{
cd8ad40d 1599 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1600 unsigned long *usd_rq_weight;
eb755805 1601 struct sched_domain *sd = data;
34d76c41 1602 unsigned long flags;
c8cba857 1603 int i;
c09595f6 1604
34d76c41
PZ
1605 if (!tg->se[0])
1606 return 0;
1607
1608 local_irq_save(flags);
4a6cc4bd 1609 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1610
758b2cdc 1611 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1612 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1613 usd_rq_weight[i] = weight;
34d76c41 1614
cd8ad40d 1615 rq_weight += weight;
ec4e0e2f
KC
1616 /*
1617 * If there are currently no tasks on the cpu pretend there
1618 * is one of average load so that when a new task gets to
1619 * run here it will not get delayed by group starvation.
1620 */
ec4e0e2f
KC
1621 if (!weight)
1622 weight = NICE_0_LOAD;
1623
cd8ad40d 1624 sum_weight += weight;
c8cba857 1625 shares += tg->cfs_rq[i]->shares;
c09595f6 1626 }
c09595f6 1627
cd8ad40d
PZ
1628 if (!rq_weight)
1629 rq_weight = sum_weight;
1630
c8cba857
PZ
1631 if ((!shares && rq_weight) || shares > tg->shares)
1632 shares = tg->shares;
1633
1634 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1635 shares = tg->shares;
c09595f6 1636
758b2cdc 1637 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1638 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1639
1640 local_irq_restore(flags);
eb755805
PZ
1641
1642 return 0;
c09595f6
PZ
1643}
1644
1645/*
c8cba857
PZ
1646 * Compute the cpu's hierarchical load factor for each task group.
1647 * This needs to be done in a top-down fashion because the load of a child
1648 * group is a fraction of its parents load.
c09595f6 1649 */
eb755805 1650static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1651{
c8cba857 1652 unsigned long load;
eb755805 1653 long cpu = (long)data;
c09595f6 1654
c8cba857
PZ
1655 if (!tg->parent) {
1656 load = cpu_rq(cpu)->load.weight;
1657 } else {
1658 load = tg->parent->cfs_rq[cpu]->h_load;
1659 load *= tg->cfs_rq[cpu]->shares;
1660 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1661 }
c09595f6 1662
c8cba857 1663 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1664
eb755805 1665 return 0;
c09595f6
PZ
1666}
1667
c8cba857 1668static void update_shares(struct sched_domain *sd)
4d8d595d 1669{
e7097159
PZ
1670 s64 elapsed;
1671 u64 now;
1672
1673 if (root_task_group_empty())
1674 return;
1675
c676329a 1676 now = local_clock();
e7097159 1677 elapsed = now - sd->last_update;
2398f2c6
PZ
1678
1679 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1680 sd->last_update = now;
eb755805 1681 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1682 }
4d8d595d
PZ
1683}
1684
eb755805 1685static void update_h_load(long cpu)
c09595f6 1686{
eb755805 1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1688}
1689
c09595f6
PZ
1690#else
1691
c8cba857 1692static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1693{
1694}
1695
18d95a28
PZ
1696#endif
1697
8f45e2b5
GH
1698#ifdef CONFIG_PREEMPT
1699
b78bb868
PZ
1700static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1701
70574a99 1702/*
8f45e2b5
GH
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
70574a99 1709 */
8f45e2b5
GH
1710static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1714{
05fa785c 1715 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1716 double_rq_lock(this_rq, busiest);
1717
1718 return 1;
1719}
1720
1721#else
1722/*
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1728 */
1729static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733{
1734 int ret = 0;
1735
05fa785c 1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1737 if (busiest < this_rq) {
05fa785c
TG
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
70574a99
AD
1742 ret = 1;
1743 } else
05fa785c
TG
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
70574a99
AD
1746 }
1747 return ret;
1748}
1749
8f45e2b5
GH
1750#endif /* CONFIG_PREEMPT */
1751
1752/*
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 */
1755static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756{
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
05fa785c 1759 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1760 BUG_ON(1);
1761 }
1762
1763 return _double_lock_balance(this_rq, busiest);
1764}
1765
70574a99
AD
1766static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1768{
05fa785c 1769 raw_spin_unlock(&busiest->lock);
70574a99
AD
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1771}
1e3c88bd
PZ
1772
1773/*
1774 * double_rq_lock - safely lock two runqueues
1775 *
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1778 */
1779static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1782{
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 }
1795 }
1e3c88bd
PZ
1796}
1797
1798/*
1799 * double_rq_unlock - safely unlock two runqueues
1800 *
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1803 */
1804static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1807{
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1813}
1814
18d95a28
PZ
1815#endif
1816
30432094 1817#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1818static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819{
30432094 1820#ifdef CONFIG_SMP
34e83e85
IM
1821 cfs_rq->shares = shares;
1822#endif
1823}
30432094 1824#endif
e7693a36 1825
74f5187a 1826static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1827static void update_sysctl(void);
acb4a848 1828static int get_update_sysctl_factor(void);
fdf3e95d 1829static void update_cpu_load(struct rq *this_rq);
dce48a84 1830
cd29fe6f
PZ
1831static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1832{
1833 set_task_rq(p, cpu);
1834#ifdef CONFIG_SMP
1835 /*
1836 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1837 * successfuly executed on another CPU. We must ensure that updates of
1838 * per-task data have been completed by this moment.
1839 */
1840 smp_wmb();
1841 task_thread_info(p)->cpu = cpu;
1842#endif
1843}
dce48a84 1844
1e3c88bd 1845static const struct sched_class rt_sched_class;
dd41f596 1846
34f971f6 1847#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
1e3c88bd
PZ
1851#include "sched_stats.h"
1852
c09595f6 1853static void inc_nr_running(struct rq *rq)
9c217245
IM
1854{
1855 rq->nr_running++;
9c217245
IM
1856}
1857
c09595f6 1858static void dec_nr_running(struct rq *rq)
9c217245
IM
1859{
1860 rq->nr_running--;
9c217245
IM
1861}
1862
45bf76df
IM
1863static void set_load_weight(struct task_struct *p)
1864{
dd41f596
IM
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
71f8bd46 1873
dd41f596
IM
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1876}
1877
371fd7e7 1878static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1879{
a64692a3 1880 update_rq_clock(rq);
dd41f596 1881 sched_info_queued(p);
371fd7e7 1882 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1883 p->se.on_rq = 1;
71f8bd46
IM
1884}
1885
371fd7e7 1886static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1887{
a64692a3 1888 update_rq_clock(rq);
46ac22ba 1889 sched_info_dequeued(p);
371fd7e7 1890 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1891 p->se.on_rq = 0;
71f8bd46
IM
1892}
1893
1e3c88bd
PZ
1894/*
1895 * activate_task - move a task to the runqueue.
1896 */
371fd7e7 1897static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1898{
1899 if (task_contributes_to_load(p))
1900 rq->nr_uninterruptible--;
1901
371fd7e7 1902 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1903 inc_nr_running(rq);
1904}
1905
1906/*
1907 * deactivate_task - remove a task from the runqueue.
1908 */
371fd7e7 1909static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1910{
1911 if (task_contributes_to_load(p))
1912 rq->nr_uninterruptible++;
1913
371fd7e7 1914 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1915 dec_nr_running(rq);
1916}
1917
b52bfee4
VP
1918#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1919
305e6835
VP
1920/*
1921 * There are no locks covering percpu hardirq/softirq time.
1922 * They are only modified in account_system_vtime, on corresponding CPU
1923 * with interrupts disabled. So, writes are safe.
1924 * They are read and saved off onto struct rq in update_rq_clock().
1925 * This may result in other CPU reading this CPU's irq time and can
1926 * race with irq/account_system_vtime on this CPU. We would either get old
1927 * or new value (or semi updated value on 32 bit) with a side effect of
1928 * accounting a slice of irq time to wrong task when irq is in progress
1929 * while we read rq->clock. That is a worthy compromise in place of having
1930 * locks on each irq in account_system_time.
1931 */
b52bfee4
VP
1932static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1933static DEFINE_PER_CPU(u64, cpu_softirq_time);
1934
1935static DEFINE_PER_CPU(u64, irq_start_time);
1936static int sched_clock_irqtime;
1937
1938void enable_sched_clock_irqtime(void)
1939{
1940 sched_clock_irqtime = 1;
1941}
1942
1943void disable_sched_clock_irqtime(void)
1944{
1945 sched_clock_irqtime = 0;
1946}
1947
305e6835
VP
1948static u64 irq_time_cpu(int cpu)
1949{
1950 if (!sched_clock_irqtime)
1951 return 0;
1952
1953 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1954}
1955
b52bfee4
VP
1956void account_system_vtime(struct task_struct *curr)
1957{
1958 unsigned long flags;
1959 int cpu;
1960 u64 now, delta;
1961
1962 if (!sched_clock_irqtime)
1963 return;
1964
1965 local_irq_save(flags);
1966
b52bfee4 1967 cpu = smp_processor_id();
d267f87f 1968 now = sched_clock_cpu(cpu);
b52bfee4
VP
1969 delta = now - per_cpu(irq_start_time, cpu);
1970 per_cpu(irq_start_time, cpu) = now;
1971 /*
1972 * We do not account for softirq time from ksoftirqd here.
1973 * We want to continue accounting softirq time to ksoftirqd thread
1974 * in that case, so as not to confuse scheduler with a special task
1975 * that do not consume any time, but still wants to run.
1976 */
1977 if (hardirq_count())
1978 per_cpu(cpu_hardirq_time, cpu) += delta;
1979 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1980 per_cpu(cpu_softirq_time, cpu) += delta;
1981
1982 local_irq_restore(flags);
1983}
b7dadc38 1984EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1985
aa483808
VP
1986static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1987{
1988 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1989 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1990 rq->prev_irq_time = curr_irq_time;
1991 sched_rt_avg_update(rq, delta_irq);
1992 }
1993}
1994
305e6835
VP
1995#else
1996
1997static u64 irq_time_cpu(int cpu)
1998{
1999 return 0;
2000}
2001
aa483808
VP
2002static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
2003
b52bfee4
VP
2004#endif
2005
1e3c88bd
PZ
2006#include "sched_idletask.c"
2007#include "sched_fair.c"
2008#include "sched_rt.c"
34f971f6 2009#include "sched_stoptask.c"
1e3c88bd
PZ
2010#ifdef CONFIG_SCHED_DEBUG
2011# include "sched_debug.c"
2012#endif
2013
34f971f6
PZ
2014void sched_set_stop_task(int cpu, struct task_struct *stop)
2015{
2016 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2017 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2018
2019 if (stop) {
2020 /*
2021 * Make it appear like a SCHED_FIFO task, its something
2022 * userspace knows about and won't get confused about.
2023 *
2024 * Also, it will make PI more or less work without too
2025 * much confusion -- but then, stop work should not
2026 * rely on PI working anyway.
2027 */
2028 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2029
2030 stop->sched_class = &stop_sched_class;
2031 }
2032
2033 cpu_rq(cpu)->stop = stop;
2034
2035 if (old_stop) {
2036 /*
2037 * Reset it back to a normal scheduling class so that
2038 * it can die in pieces.
2039 */
2040 old_stop->sched_class = &rt_sched_class;
2041 }
2042}
2043
14531189 2044/*
dd41f596 2045 * __normal_prio - return the priority that is based on the static prio
14531189 2046 */
14531189
IM
2047static inline int __normal_prio(struct task_struct *p)
2048{
dd41f596 2049 return p->static_prio;
14531189
IM
2050}
2051
b29739f9
IM
2052/*
2053 * Calculate the expected normal priority: i.e. priority
2054 * without taking RT-inheritance into account. Might be
2055 * boosted by interactivity modifiers. Changes upon fork,
2056 * setprio syscalls, and whenever the interactivity
2057 * estimator recalculates.
2058 */
36c8b586 2059static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2060{
2061 int prio;
2062
e05606d3 2063 if (task_has_rt_policy(p))
b29739f9
IM
2064 prio = MAX_RT_PRIO-1 - p->rt_priority;
2065 else
2066 prio = __normal_prio(p);
2067 return prio;
2068}
2069
2070/*
2071 * Calculate the current priority, i.e. the priority
2072 * taken into account by the scheduler. This value might
2073 * be boosted by RT tasks, or might be boosted by
2074 * interactivity modifiers. Will be RT if the task got
2075 * RT-boosted. If not then it returns p->normal_prio.
2076 */
36c8b586 2077static int effective_prio(struct task_struct *p)
b29739f9
IM
2078{
2079 p->normal_prio = normal_prio(p);
2080 /*
2081 * If we are RT tasks or we were boosted to RT priority,
2082 * keep the priority unchanged. Otherwise, update priority
2083 * to the normal priority:
2084 */
2085 if (!rt_prio(p->prio))
2086 return p->normal_prio;
2087 return p->prio;
2088}
2089
1da177e4
LT
2090/**
2091 * task_curr - is this task currently executing on a CPU?
2092 * @p: the task in question.
2093 */
36c8b586 2094inline int task_curr(const struct task_struct *p)
1da177e4
LT
2095{
2096 return cpu_curr(task_cpu(p)) == p;
2097}
2098
cb469845
SR
2099static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2100 const struct sched_class *prev_class,
2101 int oldprio, int running)
2102{
2103 if (prev_class != p->sched_class) {
2104 if (prev_class->switched_from)
2105 prev_class->switched_from(rq, p, running);
2106 p->sched_class->switched_to(rq, p, running);
2107 } else
2108 p->sched_class->prio_changed(rq, p, oldprio, running);
2109}
2110
1e5a7405
PZ
2111static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2112{
2113 const struct sched_class *class;
2114
2115 if (p->sched_class == rq->curr->sched_class) {
2116 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2117 } else {
2118 for_each_class(class) {
2119 if (class == rq->curr->sched_class)
2120 break;
2121 if (class == p->sched_class) {
2122 resched_task(rq->curr);
2123 break;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * A queue event has occurred, and we're going to schedule. In
2130 * this case, we can save a useless back to back clock update.
2131 */
2132 if (test_tsk_need_resched(rq->curr))
2133 rq->skip_clock_update = 1;
2134}
2135
1da177e4 2136#ifdef CONFIG_SMP
cc367732
IM
2137/*
2138 * Is this task likely cache-hot:
2139 */
e7693a36 2140static int
cc367732
IM
2141task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2142{
2143 s64 delta;
2144
e6c8fba7
PZ
2145 if (p->sched_class != &fair_sched_class)
2146 return 0;
2147
ef8002f6
NR
2148 if (unlikely(p->policy == SCHED_IDLE))
2149 return 0;
2150
f540a608
IM
2151 /*
2152 * Buddy candidates are cache hot:
2153 */
f685ceac 2154 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2155 (&p->se == cfs_rq_of(&p->se)->next ||
2156 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2157 return 1;
2158
6bc1665b
IM
2159 if (sysctl_sched_migration_cost == -1)
2160 return 1;
2161 if (sysctl_sched_migration_cost == 0)
2162 return 0;
2163
cc367732
IM
2164 delta = now - p->se.exec_start;
2165
2166 return delta < (s64)sysctl_sched_migration_cost;
2167}
2168
dd41f596 2169void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2170{
e2912009
PZ
2171#ifdef CONFIG_SCHED_DEBUG
2172 /*
2173 * We should never call set_task_cpu() on a blocked task,
2174 * ttwu() will sort out the placement.
2175 */
077614ee
PZ
2176 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2177 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2178#endif
2179
de1d7286 2180 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2181
0c69774e
PZ
2182 if (task_cpu(p) != new_cpu) {
2183 p->se.nr_migrations++;
2184 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2185 }
dd41f596
IM
2186
2187 __set_task_cpu(p, new_cpu);
c65cc870
IM
2188}
2189
969c7921 2190struct migration_arg {
36c8b586 2191 struct task_struct *task;
1da177e4 2192 int dest_cpu;
70b97a7f 2193};
1da177e4 2194
969c7921
TH
2195static int migration_cpu_stop(void *data);
2196
1da177e4
LT
2197/*
2198 * The task's runqueue lock must be held.
2199 * Returns true if you have to wait for migration thread.
2200 */
969c7921 2201static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2202{
70b97a7f 2203 struct rq *rq = task_rq(p);
1da177e4
LT
2204
2205 /*
2206 * If the task is not on a runqueue (and not running), then
e2912009 2207 * the next wake-up will properly place the task.
1da177e4 2208 */
969c7921 2209 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
85ba2d86
RM
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
1da177e4
LT
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
85ba2d86 2228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2229{
2230 unsigned long flags;
dd41f596 2231 int running, on_rq;
85ba2d86 2232 unsigned long ncsw;
70b97a7f 2233 struct rq *rq;
1da177e4 2234
3a5c359a
AK
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
fa490cfd 2243
3a5c359a
AK
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
85ba2d86
RM
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
3a5c359a 2258 cpu_relax();
85ba2d86 2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &flags);
27a9da65 2267 trace_sched_wait_task(p);
3a5c359a
AK
2268 running = task_running(rq, p);
2269 on_rq = p->se.on_rq;
85ba2d86 2270 ncsw = 0;
f31e11d8 2271 if (!match_state || p->state == match_state)
93dcf55f 2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2273 task_rq_unlock(rq, &flags);
fa490cfd 2274
85ba2d86
RM
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
3a5c359a
AK
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
fa490cfd 2291
3a5c359a
AK
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
80dd99b3 2297 * So if it was still runnable (but just not actively
3a5c359a
AK
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(on_rq)) {
2302 schedule_timeout_uninterruptible(1);
2303 continue;
2304 }
fa490cfd 2305
3a5c359a
AK
2306 /*
2307 * Ahh, all good. It wasn't running, and it wasn't
2308 * runnable, which means that it will never become
2309 * running in the future either. We're all done!
2310 */
2311 break;
2312 }
85ba2d86
RM
2313
2314 return ncsw;
1da177e4
LT
2315}
2316
2317/***
2318 * kick_process - kick a running thread to enter/exit the kernel
2319 * @p: the to-be-kicked thread
2320 *
2321 * Cause a process which is running on another CPU to enter
2322 * kernel-mode, without any delay. (to get signals handled.)
2323 *
2324 * NOTE: this function doesnt have to take the runqueue lock,
2325 * because all it wants to ensure is that the remote task enters
2326 * the kernel. If the IPI races and the task has been migrated
2327 * to another CPU then no harm is done and the purpose has been
2328 * achieved as well.
2329 */
36c8b586 2330void kick_process(struct task_struct *p)
1da177e4
LT
2331{
2332 int cpu;
2333
2334 preempt_disable();
2335 cpu = task_cpu(p);
2336 if ((cpu != smp_processor_id()) && task_curr(p))
2337 smp_send_reschedule(cpu);
2338 preempt_enable();
2339}
b43e3521 2340EXPORT_SYMBOL_GPL(kick_process);
476d139c 2341#endif /* CONFIG_SMP */
1da177e4 2342
0793a61d
TG
2343/**
2344 * task_oncpu_function_call - call a function on the cpu on which a task runs
2345 * @p: the task to evaluate
2346 * @func: the function to be called
2347 * @info: the function call argument
2348 *
2349 * Calls the function @func when the task is currently running. This might
2350 * be on the current CPU, which just calls the function directly
2351 */
2352void task_oncpu_function_call(struct task_struct *p,
2353 void (*func) (void *info), void *info)
2354{
2355 int cpu;
2356
2357 preempt_disable();
2358 cpu = task_cpu(p);
2359 if (task_curr(p))
2360 smp_call_function_single(cpu, func, info, 1);
2361 preempt_enable();
2362}
2363
970b13ba 2364#ifdef CONFIG_SMP
30da688e
ON
2365/*
2366 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2367 */
5da9a0fb
PZ
2368static int select_fallback_rq(int cpu, struct task_struct *p)
2369{
2370 int dest_cpu;
2371 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2372
2373 /* Look for allowed, online CPU in same node. */
2374 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2375 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2376 return dest_cpu;
2377
2378 /* Any allowed, online CPU? */
2379 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2380 if (dest_cpu < nr_cpu_ids)
2381 return dest_cpu;
2382
2383 /* No more Mr. Nice Guy. */
897f0b3c 2384 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2385 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2386 /*
2387 * Don't tell them about moving exiting tasks or
2388 * kernel threads (both mm NULL), since they never
2389 * leave kernel.
2390 */
2391 if (p->mm && printk_ratelimit()) {
2392 printk(KERN_INFO "process %d (%s) no "
2393 "longer affine to cpu%d\n",
2394 task_pid_nr(p), p->comm, cpu);
2395 }
2396 }
2397
2398 return dest_cpu;
2399}
2400
e2912009 2401/*
30da688e 2402 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2403 */
970b13ba 2404static inline
0017d735 2405int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2406{
0017d735 2407 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2408
2409 /*
2410 * In order not to call set_task_cpu() on a blocking task we need
2411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2412 * cpu.
2413 *
2414 * Since this is common to all placement strategies, this lives here.
2415 *
2416 * [ this allows ->select_task() to simply return task_cpu(p) and
2417 * not worry about this generic constraint ]
2418 */
2419 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2420 !cpu_online(cpu)))
5da9a0fb 2421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2422
2423 return cpu;
970b13ba 2424}
09a40af5
MG
2425
2426static void update_avg(u64 *avg, u64 sample)
2427{
2428 s64 diff = sample - *avg;
2429 *avg += diff >> 3;
2430}
970b13ba
PZ
2431#endif
2432
9ed3811a
TH
2433static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2434 bool is_sync, bool is_migrate, bool is_local,
2435 unsigned long en_flags)
2436{
2437 schedstat_inc(p, se.statistics.nr_wakeups);
2438 if (is_sync)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440 if (is_migrate)
2441 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2442 if (is_local)
2443 schedstat_inc(p, se.statistics.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2446
2447 activate_task(rq, p, en_flags);
2448}
2449
2450static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2451 int wake_flags, bool success)
2452{
2453 trace_sched_wakeup(p, success);
2454 check_preempt_curr(rq, p, wake_flags);
2455
2456 p->state = TASK_RUNNING;
2457#ifdef CONFIG_SMP
2458 if (p->sched_class->task_woken)
2459 p->sched_class->task_woken(rq, p);
2460
2461 if (unlikely(rq->idle_stamp)) {
2462 u64 delta = rq->clock - rq->idle_stamp;
2463 u64 max = 2*sysctl_sched_migration_cost;
2464
2465 if (delta > max)
2466 rq->avg_idle = max;
2467 else
2468 update_avg(&rq->avg_idle, delta);
2469 rq->idle_stamp = 0;
2470 }
2471#endif
21aa9af0
TH
2472 /* if a worker is waking up, notify workqueue */
2473 if ((p->flags & PF_WQ_WORKER) && success)
2474 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2475}
2476
2477/**
1da177e4 2478 * try_to_wake_up - wake up a thread
9ed3811a 2479 * @p: the thread to be awakened
1da177e4 2480 * @state: the mask of task states that can be woken
9ed3811a 2481 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2482 *
2483 * Put it on the run-queue if it's not already there. The "current"
2484 * thread is always on the run-queue (except when the actual
2485 * re-schedule is in progress), and as such you're allowed to do
2486 * the simpler "current->state = TASK_RUNNING" to mark yourself
2487 * runnable without the overhead of this.
2488 *
9ed3811a
TH
2489 * Returns %true if @p was woken up, %false if it was already running
2490 * or @state didn't match @p's state.
1da177e4 2491 */
7d478721
PZ
2492static int try_to_wake_up(struct task_struct *p, unsigned int state,
2493 int wake_flags)
1da177e4 2494{
cc367732 2495 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2496 unsigned long flags;
371fd7e7 2497 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2498 struct rq *rq;
1da177e4 2499
e9c84311 2500 this_cpu = get_cpu();
2398f2c6 2501
04e2f174 2502 smp_wmb();
ab3b3aa5 2503 rq = task_rq_lock(p, &flags);
e9c84311 2504 if (!(p->state & state))
1da177e4
LT
2505 goto out;
2506
dd41f596 2507 if (p->se.on_rq)
1da177e4
LT
2508 goto out_running;
2509
2510 cpu = task_cpu(p);
cc367732 2511 orig_cpu = cpu;
1da177e4
LT
2512
2513#ifdef CONFIG_SMP
2514 if (unlikely(task_running(rq, p)))
2515 goto out_activate;
2516
e9c84311
PZ
2517 /*
2518 * In order to handle concurrent wakeups and release the rq->lock
2519 * we put the task in TASK_WAKING state.
eb24073b
IM
2520 *
2521 * First fix up the nr_uninterruptible count:
e9c84311 2522 */
cc87f76a
PZ
2523 if (task_contributes_to_load(p)) {
2524 if (likely(cpu_online(orig_cpu)))
2525 rq->nr_uninterruptible--;
2526 else
2527 this_rq()->nr_uninterruptible--;
2528 }
e9c84311 2529 p->state = TASK_WAKING;
efbbd05a 2530
371fd7e7 2531 if (p->sched_class->task_waking) {
efbbd05a 2532 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2533 en_flags |= ENQUEUE_WAKING;
2534 }
efbbd05a 2535
0017d735
PZ
2536 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2537 if (cpu != orig_cpu)
5d2f5a61 2538 set_task_cpu(p, cpu);
0017d735 2539 __task_rq_unlock(rq);
ab19cb23 2540
0970d299
PZ
2541 rq = cpu_rq(cpu);
2542 raw_spin_lock(&rq->lock);
f5dc3753 2543
0970d299
PZ
2544 /*
2545 * We migrated the task without holding either rq->lock, however
2546 * since the task is not on the task list itself, nobody else
2547 * will try and migrate the task, hence the rq should match the
2548 * cpu we just moved it to.
2549 */
2550 WARN_ON(task_cpu(p) != cpu);
e9c84311 2551 WARN_ON(p->state != TASK_WAKING);
1da177e4 2552
e7693a36
GH
2553#ifdef CONFIG_SCHEDSTATS
2554 schedstat_inc(rq, ttwu_count);
2555 if (cpu == this_cpu)
2556 schedstat_inc(rq, ttwu_local);
2557 else {
2558 struct sched_domain *sd;
2559 for_each_domain(this_cpu, sd) {
758b2cdc 2560 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2561 schedstat_inc(sd, ttwu_wake_remote);
2562 break;
2563 }
2564 }
2565 }
6d6bc0ad 2566#endif /* CONFIG_SCHEDSTATS */
e7693a36 2567
1da177e4
LT
2568out_activate:
2569#endif /* CONFIG_SMP */
9ed3811a
TH
2570 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2571 cpu == this_cpu, en_flags);
1da177e4 2572 success = 1;
1da177e4 2573out_running:
9ed3811a 2574 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2575out:
2576 task_rq_unlock(rq, &flags);
e9c84311 2577 put_cpu();
1da177e4
LT
2578
2579 return success;
2580}
2581
21aa9af0
TH
2582/**
2583 * try_to_wake_up_local - try to wake up a local task with rq lock held
2584 * @p: the thread to be awakened
2585 *
2586 * Put @p on the run-queue if it's not alredy there. The caller must
2587 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2588 * the current task. this_rq() stays locked over invocation.
2589 */
2590static void try_to_wake_up_local(struct task_struct *p)
2591{
2592 struct rq *rq = task_rq(p);
2593 bool success = false;
2594
2595 BUG_ON(rq != this_rq());
2596 BUG_ON(p == current);
2597 lockdep_assert_held(&rq->lock);
2598
2599 if (!(p->state & TASK_NORMAL))
2600 return;
2601
2602 if (!p->se.on_rq) {
2603 if (likely(!task_running(rq, p))) {
2604 schedstat_inc(rq, ttwu_count);
2605 schedstat_inc(rq, ttwu_local);
2606 }
2607 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2608 success = true;
2609 }
2610 ttwu_post_activation(p, rq, 0, success);
2611}
2612
50fa610a
DH
2613/**
2614 * wake_up_process - Wake up a specific process
2615 * @p: The process to be woken up.
2616 *
2617 * Attempt to wake up the nominated process and move it to the set of runnable
2618 * processes. Returns 1 if the process was woken up, 0 if it was already
2619 * running.
2620 *
2621 * It may be assumed that this function implies a write memory barrier before
2622 * changing the task state if and only if any tasks are woken up.
2623 */
7ad5b3a5 2624int wake_up_process(struct task_struct *p)
1da177e4 2625{
d9514f6c 2626 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2627}
1da177e4
LT
2628EXPORT_SYMBOL(wake_up_process);
2629
7ad5b3a5 2630int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2631{
2632 return try_to_wake_up(p, state, 0);
2633}
2634
1da177e4
LT
2635/*
2636 * Perform scheduler related setup for a newly forked process p.
2637 * p is forked by current.
dd41f596
IM
2638 *
2639 * __sched_fork() is basic setup used by init_idle() too:
2640 */
2641static void __sched_fork(struct task_struct *p)
2642{
dd41f596
IM
2643 p->se.exec_start = 0;
2644 p->se.sum_exec_runtime = 0;
f6cf891c 2645 p->se.prev_sum_exec_runtime = 0;
6c594c21 2646 p->se.nr_migrations = 0;
6cfb0d5d
IM
2647
2648#ifdef CONFIG_SCHEDSTATS
41acab88 2649 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2650#endif
476d139c 2651
fa717060 2652 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2653 p->se.on_rq = 0;
4a55bd5e 2654 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2655
e107be36
AK
2656#ifdef CONFIG_PREEMPT_NOTIFIERS
2657 INIT_HLIST_HEAD(&p->preempt_notifiers);
2658#endif
dd41f596
IM
2659}
2660
2661/*
2662 * fork()/clone()-time setup:
2663 */
2664void sched_fork(struct task_struct *p, int clone_flags)
2665{
2666 int cpu = get_cpu();
2667
2668 __sched_fork(p);
06b83b5f 2669 /*
0017d735 2670 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2671 * nobody will actually run it, and a signal or other external
2672 * event cannot wake it up and insert it on the runqueue either.
2673 */
0017d735 2674 p->state = TASK_RUNNING;
dd41f596 2675
b9dc29e7
MG
2676 /*
2677 * Revert to default priority/policy on fork if requested.
2678 */
2679 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2680 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2681 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2682 p->normal_prio = p->static_prio;
2683 }
b9dc29e7 2684
6c697bdf
MG
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2687 p->normal_prio = p->static_prio;
6c697bdf
MG
2688 set_load_weight(p);
2689 }
2690
b9dc29e7
MG
2691 /*
2692 * We don't need the reset flag anymore after the fork. It has
2693 * fulfilled its duty:
2694 */
2695 p->sched_reset_on_fork = 0;
2696 }
ca94c442 2697
f83f9ac2
PW
2698 /*
2699 * Make sure we do not leak PI boosting priority to the child.
2700 */
2701 p->prio = current->normal_prio;
2702
2ddbf952
HS
2703 if (!rt_prio(p->prio))
2704 p->sched_class = &fair_sched_class;
b29739f9 2705
cd29fe6f
PZ
2706 if (p->sched_class->task_fork)
2707 p->sched_class->task_fork(p);
2708
86951599
PZ
2709 /*
2710 * The child is not yet in the pid-hash so no cgroup attach races,
2711 * and the cgroup is pinned to this child due to cgroup_fork()
2712 * is ran before sched_fork().
2713 *
2714 * Silence PROVE_RCU.
2715 */
2716 rcu_read_lock();
5f3edc1b 2717 set_task_cpu(p, cpu);
86951599 2718 rcu_read_unlock();
5f3edc1b 2719
52f17b6c 2720#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2721 if (likely(sched_info_on()))
52f17b6c 2722 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2723#endif
d6077cb8 2724#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2725 p->oncpu = 0;
2726#endif
1da177e4 2727#ifdef CONFIG_PREEMPT
4866cde0 2728 /* Want to start with kernel preemption disabled. */
a1261f54 2729 task_thread_info(p)->preempt_count = 1;
1da177e4 2730#endif
917b627d
GH
2731 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2732
476d139c 2733 put_cpu();
1da177e4
LT
2734}
2735
2736/*
2737 * wake_up_new_task - wake up a newly created task for the first time.
2738 *
2739 * This function will do some initial scheduler statistics housekeeping
2740 * that must be done for every newly created context, then puts the task
2741 * on the runqueue and wakes it.
2742 */
7ad5b3a5 2743void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2744{
2745 unsigned long flags;
dd41f596 2746 struct rq *rq;
c890692b 2747 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2748
2749#ifdef CONFIG_SMP
0017d735
PZ
2750 rq = task_rq_lock(p, &flags);
2751 p->state = TASK_WAKING;
2752
fabf318e
PZ
2753 /*
2754 * Fork balancing, do it here and not earlier because:
2755 * - cpus_allowed can change in the fork path
2756 * - any previously selected cpu might disappear through hotplug
2757 *
0017d735
PZ
2758 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2759 * without people poking at ->cpus_allowed.
fabf318e 2760 */
0017d735 2761 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2762 set_task_cpu(p, cpu);
1da177e4 2763
06b83b5f 2764 p->state = TASK_RUNNING;
0017d735
PZ
2765 task_rq_unlock(rq, &flags);
2766#endif
2767
2768 rq = task_rq_lock(p, &flags);
cd29fe6f 2769 activate_task(rq, p, 0);
27a9da65 2770 trace_sched_wakeup_new(p, 1);
a7558e01 2771 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2772#ifdef CONFIG_SMP
efbbd05a
PZ
2773 if (p->sched_class->task_woken)
2774 p->sched_class->task_woken(rq, p);
9a897c5a 2775#endif
dd41f596 2776 task_rq_unlock(rq, &flags);
fabf318e 2777 put_cpu();
1da177e4
LT
2778}
2779
e107be36
AK
2780#ifdef CONFIG_PREEMPT_NOTIFIERS
2781
2782/**
80dd99b3 2783 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2784 * @notifier: notifier struct to register
e107be36
AK
2785 */
2786void preempt_notifier_register(struct preempt_notifier *notifier)
2787{
2788 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2789}
2790EXPORT_SYMBOL_GPL(preempt_notifier_register);
2791
2792/**
2793 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2794 * @notifier: notifier struct to unregister
e107be36
AK
2795 *
2796 * This is safe to call from within a preemption notifier.
2797 */
2798void preempt_notifier_unregister(struct preempt_notifier *notifier)
2799{
2800 hlist_del(&notifier->link);
2801}
2802EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2803
2804static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2805{
2806 struct preempt_notifier *notifier;
2807 struct hlist_node *node;
2808
2809 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2810 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2811}
2812
2813static void
2814fire_sched_out_preempt_notifiers(struct task_struct *curr,
2815 struct task_struct *next)
2816{
2817 struct preempt_notifier *notifier;
2818 struct hlist_node *node;
2819
2820 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2821 notifier->ops->sched_out(notifier, next);
2822}
2823
6d6bc0ad 2824#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2825
2826static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2827{
2828}
2829
2830static void
2831fire_sched_out_preempt_notifiers(struct task_struct *curr,
2832 struct task_struct *next)
2833{
2834}
2835
6d6bc0ad 2836#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2837
4866cde0
NP
2838/**
2839 * prepare_task_switch - prepare to switch tasks
2840 * @rq: the runqueue preparing to switch
421cee29 2841 * @prev: the current task that is being switched out
4866cde0
NP
2842 * @next: the task we are going to switch to.
2843 *
2844 * This is called with the rq lock held and interrupts off. It must
2845 * be paired with a subsequent finish_task_switch after the context
2846 * switch.
2847 *
2848 * prepare_task_switch sets up locking and calls architecture specific
2849 * hooks.
2850 */
e107be36
AK
2851static inline void
2852prepare_task_switch(struct rq *rq, struct task_struct *prev,
2853 struct task_struct *next)
4866cde0 2854{
e107be36 2855 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2856 prepare_lock_switch(rq, next);
2857 prepare_arch_switch(next);
2858}
2859
1da177e4
LT
2860/**
2861 * finish_task_switch - clean up after a task-switch
344babaa 2862 * @rq: runqueue associated with task-switch
1da177e4
LT
2863 * @prev: the thread we just switched away from.
2864 *
4866cde0
NP
2865 * finish_task_switch must be called after the context switch, paired
2866 * with a prepare_task_switch call before the context switch.
2867 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2868 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2869 *
2870 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2871 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2872 * with the lock held can cause deadlocks; see schedule() for
2873 * details.)
2874 */
a9957449 2875static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2876 __releases(rq->lock)
2877{
1da177e4 2878 struct mm_struct *mm = rq->prev_mm;
55a101f8 2879 long prev_state;
1da177e4
LT
2880
2881 rq->prev_mm = NULL;
2882
2883 /*
2884 * A task struct has one reference for the use as "current".
c394cc9f 2885 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2886 * schedule one last time. The schedule call will never return, and
2887 * the scheduled task must drop that reference.
c394cc9f 2888 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2889 * still held, otherwise prev could be scheduled on another cpu, die
2890 * there before we look at prev->state, and then the reference would
2891 * be dropped twice.
2892 * Manfred Spraul <manfred@colorfullife.com>
2893 */
55a101f8 2894 prev_state = prev->state;
4866cde0 2895 finish_arch_switch(prev);
8381f65d
JI
2896#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2897 local_irq_disable();
2898#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2899 perf_event_task_sched_in(current);
8381f65d
JI
2900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2901 local_irq_enable();
2902#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2903 finish_lock_switch(rq, prev);
e8fa1362 2904
e107be36 2905 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2906 if (mm)
2907 mmdrop(mm);
c394cc9f 2908 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2909 /*
2910 * Remove function-return probe instances associated with this
2911 * task and put them back on the free list.
9761eea8 2912 */
c6fd91f0 2913 kprobe_flush_task(prev);
1da177e4 2914 put_task_struct(prev);
c6fd91f0 2915 }
1da177e4
LT
2916}
2917
3f029d3c
GH
2918#ifdef CONFIG_SMP
2919
2920/* assumes rq->lock is held */
2921static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2922{
2923 if (prev->sched_class->pre_schedule)
2924 prev->sched_class->pre_schedule(rq, prev);
2925}
2926
2927/* rq->lock is NOT held, but preemption is disabled */
2928static inline void post_schedule(struct rq *rq)
2929{
2930 if (rq->post_schedule) {
2931 unsigned long flags;
2932
05fa785c 2933 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2934 if (rq->curr->sched_class->post_schedule)
2935 rq->curr->sched_class->post_schedule(rq);
05fa785c 2936 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2937
2938 rq->post_schedule = 0;
2939 }
2940}
2941
2942#else
da19ab51 2943
3f029d3c
GH
2944static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2945{
2946}
2947
2948static inline void post_schedule(struct rq *rq)
2949{
1da177e4
LT
2950}
2951
3f029d3c
GH
2952#endif
2953
1da177e4
LT
2954/**
2955 * schedule_tail - first thing a freshly forked thread must call.
2956 * @prev: the thread we just switched away from.
2957 */
36c8b586 2958asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2959 __releases(rq->lock)
2960{
70b97a7f
IM
2961 struct rq *rq = this_rq();
2962
4866cde0 2963 finish_task_switch(rq, prev);
da19ab51 2964
3f029d3c
GH
2965 /*
2966 * FIXME: do we need to worry about rq being invalidated by the
2967 * task_switch?
2968 */
2969 post_schedule(rq);
70b97a7f 2970
4866cde0
NP
2971#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2972 /* In this case, finish_task_switch does not reenable preemption */
2973 preempt_enable();
2974#endif
1da177e4 2975 if (current->set_child_tid)
b488893a 2976 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2977}
2978
2979/*
2980 * context_switch - switch to the new MM and the new
2981 * thread's register state.
2982 */
dd41f596 2983static inline void
70b97a7f 2984context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2985 struct task_struct *next)
1da177e4 2986{
dd41f596 2987 struct mm_struct *mm, *oldmm;
1da177e4 2988
e107be36 2989 prepare_task_switch(rq, prev, next);
27a9da65 2990 trace_sched_switch(prev, next);
dd41f596
IM
2991 mm = next->mm;
2992 oldmm = prev->active_mm;
9226d125
ZA
2993 /*
2994 * For paravirt, this is coupled with an exit in switch_to to
2995 * combine the page table reload and the switch backend into
2996 * one hypercall.
2997 */
224101ed 2998 arch_start_context_switch(prev);
9226d125 2999
31915ab4 3000 if (!mm) {
1da177e4
LT
3001 next->active_mm = oldmm;
3002 atomic_inc(&oldmm->mm_count);
3003 enter_lazy_tlb(oldmm, next);
3004 } else
3005 switch_mm(oldmm, mm, next);
3006
31915ab4 3007 if (!prev->mm) {
1da177e4 3008 prev->active_mm = NULL;
1da177e4
LT
3009 rq->prev_mm = oldmm;
3010 }
3a5f5e48
IM
3011 /*
3012 * Since the runqueue lock will be released by the next
3013 * task (which is an invalid locking op but in the case
3014 * of the scheduler it's an obvious special-case), so we
3015 * do an early lockdep release here:
3016 */
3017#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3018 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3019#endif
1da177e4
LT
3020
3021 /* Here we just switch the register state and the stack. */
3022 switch_to(prev, next, prev);
3023
dd41f596
IM
3024 barrier();
3025 /*
3026 * this_rq must be evaluated again because prev may have moved
3027 * CPUs since it called schedule(), thus the 'rq' on its stack
3028 * frame will be invalid.
3029 */
3030 finish_task_switch(this_rq(), prev);
1da177e4
LT
3031}
3032
3033/*
3034 * nr_running, nr_uninterruptible and nr_context_switches:
3035 *
3036 * externally visible scheduler statistics: current number of runnable
3037 * threads, current number of uninterruptible-sleeping threads, total
3038 * number of context switches performed since bootup.
3039 */
3040unsigned long nr_running(void)
3041{
3042 unsigned long i, sum = 0;
3043
3044 for_each_online_cpu(i)
3045 sum += cpu_rq(i)->nr_running;
3046
3047 return sum;
f711f609 3048}
1da177e4
LT
3049
3050unsigned long nr_uninterruptible(void)
f711f609 3051{
1da177e4 3052 unsigned long i, sum = 0;
f711f609 3053
0a945022 3054 for_each_possible_cpu(i)
1da177e4 3055 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3056
3057 /*
1da177e4
LT
3058 * Since we read the counters lockless, it might be slightly
3059 * inaccurate. Do not allow it to go below zero though:
f711f609 3060 */
1da177e4
LT
3061 if (unlikely((long)sum < 0))
3062 sum = 0;
f711f609 3063
1da177e4 3064 return sum;
f711f609 3065}
f711f609 3066
1da177e4 3067unsigned long long nr_context_switches(void)
46cb4b7c 3068{
cc94abfc
SR
3069 int i;
3070 unsigned long long sum = 0;
46cb4b7c 3071
0a945022 3072 for_each_possible_cpu(i)
1da177e4 3073 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3074
1da177e4
LT
3075 return sum;
3076}
483b4ee6 3077
1da177e4
LT
3078unsigned long nr_iowait(void)
3079{
3080 unsigned long i, sum = 0;
483b4ee6 3081
0a945022 3082 for_each_possible_cpu(i)
1da177e4 3083 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3084
1da177e4
LT
3085 return sum;
3086}
483b4ee6 3087
8c215bd3 3088unsigned long nr_iowait_cpu(int cpu)
69d25870 3089{
8c215bd3 3090 struct rq *this = cpu_rq(cpu);
69d25870
AV
3091 return atomic_read(&this->nr_iowait);
3092}
46cb4b7c 3093
69d25870
AV
3094unsigned long this_cpu_load(void)
3095{
3096 struct rq *this = this_rq();
3097 return this->cpu_load[0];
3098}
e790fb0b 3099
46cb4b7c 3100
dce48a84
TG
3101/* Variables and functions for calc_load */
3102static atomic_long_t calc_load_tasks;
3103static unsigned long calc_load_update;
3104unsigned long avenrun[3];
3105EXPORT_SYMBOL(avenrun);
46cb4b7c 3106
74f5187a
PZ
3107static long calc_load_fold_active(struct rq *this_rq)
3108{
3109 long nr_active, delta = 0;
3110
3111 nr_active = this_rq->nr_running;
3112 nr_active += (long) this_rq->nr_uninterruptible;
3113
3114 if (nr_active != this_rq->calc_load_active) {
3115 delta = nr_active - this_rq->calc_load_active;
3116 this_rq->calc_load_active = nr_active;
3117 }
3118
3119 return delta;
3120}
3121
3122#ifdef CONFIG_NO_HZ
3123/*
3124 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3125 *
3126 * When making the ILB scale, we should try to pull this in as well.
3127 */
3128static atomic_long_t calc_load_tasks_idle;
3129
3130static void calc_load_account_idle(struct rq *this_rq)
3131{
3132 long delta;
3133
3134 delta = calc_load_fold_active(this_rq);
3135 if (delta)
3136 atomic_long_add(delta, &calc_load_tasks_idle);
3137}
3138
3139static long calc_load_fold_idle(void)
3140{
3141 long delta = 0;
3142
3143 /*
3144 * Its got a race, we don't care...
3145 */
3146 if (atomic_long_read(&calc_load_tasks_idle))
3147 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3148
3149 return delta;
3150}
3151#else
3152static void calc_load_account_idle(struct rq *this_rq)
3153{
3154}
3155
3156static inline long calc_load_fold_idle(void)
3157{
3158 return 0;
3159}
3160#endif
3161
2d02494f
TG
3162/**
3163 * get_avenrun - get the load average array
3164 * @loads: pointer to dest load array
3165 * @offset: offset to add
3166 * @shift: shift count to shift the result left
3167 *
3168 * These values are estimates at best, so no need for locking.
3169 */
3170void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3171{
3172 loads[0] = (avenrun[0] + offset) << shift;
3173 loads[1] = (avenrun[1] + offset) << shift;
3174 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3175}
46cb4b7c 3176
dce48a84
TG
3177static unsigned long
3178calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3179{
dce48a84
TG
3180 load *= exp;
3181 load += active * (FIXED_1 - exp);
3182 return load >> FSHIFT;
3183}
46cb4b7c
SS
3184
3185/*
dce48a84
TG
3186 * calc_load - update the avenrun load estimates 10 ticks after the
3187 * CPUs have updated calc_load_tasks.
7835b98b 3188 */
dce48a84 3189void calc_global_load(void)
7835b98b 3190{
dce48a84
TG
3191 unsigned long upd = calc_load_update + 10;
3192 long active;
1da177e4 3193
dce48a84
TG
3194 if (time_before(jiffies, upd))
3195 return;
1da177e4 3196
dce48a84
TG
3197 active = atomic_long_read(&calc_load_tasks);
3198 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3199
dce48a84
TG
3200 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3201 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3202 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3203
dce48a84
TG
3204 calc_load_update += LOAD_FREQ;
3205}
1da177e4 3206
dce48a84 3207/*
74f5187a
PZ
3208 * Called from update_cpu_load() to periodically update this CPU's
3209 * active count.
dce48a84
TG
3210 */
3211static void calc_load_account_active(struct rq *this_rq)
3212{
74f5187a 3213 long delta;
08c183f3 3214
74f5187a
PZ
3215 if (time_before(jiffies, this_rq->calc_load_update))
3216 return;
783609c6 3217
74f5187a
PZ
3218 delta = calc_load_fold_active(this_rq);
3219 delta += calc_load_fold_idle();
3220 if (delta)
dce48a84 3221 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3222
3223 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3224}
3225
fdf3e95d
VP
3226/*
3227 * The exact cpuload at various idx values, calculated at every tick would be
3228 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3229 *
3230 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3231 * on nth tick when cpu may be busy, then we have:
3232 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3233 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3234 *
3235 * decay_load_missed() below does efficient calculation of
3236 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3237 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3238 *
3239 * The calculation is approximated on a 128 point scale.
3240 * degrade_zero_ticks is the number of ticks after which load at any
3241 * particular idx is approximated to be zero.
3242 * degrade_factor is a precomputed table, a row for each load idx.
3243 * Each column corresponds to degradation factor for a power of two ticks,
3244 * based on 128 point scale.
3245 * Example:
3246 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3247 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3248 *
3249 * With this power of 2 load factors, we can degrade the load n times
3250 * by looking at 1 bits in n and doing as many mult/shift instead of
3251 * n mult/shifts needed by the exact degradation.
3252 */
3253#define DEGRADE_SHIFT 7
3254static const unsigned char
3255 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3256static const unsigned char
3257 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3258 {0, 0, 0, 0, 0, 0, 0, 0},
3259 {64, 32, 8, 0, 0, 0, 0, 0},
3260 {96, 72, 40, 12, 1, 0, 0},
3261 {112, 98, 75, 43, 15, 1, 0},
3262 {120, 112, 98, 76, 45, 16, 2} };
3263
3264/*
3265 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3266 * would be when CPU is idle and so we just decay the old load without
3267 * adding any new load.
3268 */
3269static unsigned long
3270decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3271{
3272 int j = 0;
3273
3274 if (!missed_updates)
3275 return load;
3276
3277 if (missed_updates >= degrade_zero_ticks[idx])
3278 return 0;
3279
3280 if (idx == 1)
3281 return load >> missed_updates;
3282
3283 while (missed_updates) {
3284 if (missed_updates % 2)
3285 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3286
3287 missed_updates >>= 1;
3288 j++;
3289 }
3290 return load;
3291}
3292
46cb4b7c 3293/*
dd41f596 3294 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3295 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3296 * every tick. We fix it up based on jiffies.
46cb4b7c 3297 */
dd41f596 3298static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3299{
495eca49 3300 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3301 unsigned long curr_jiffies = jiffies;
3302 unsigned long pending_updates;
dd41f596 3303 int i, scale;
46cb4b7c 3304
dd41f596 3305 this_rq->nr_load_updates++;
46cb4b7c 3306
fdf3e95d
VP
3307 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3308 if (curr_jiffies == this_rq->last_load_update_tick)
3309 return;
3310
3311 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3312 this_rq->last_load_update_tick = curr_jiffies;
3313
dd41f596 3314 /* Update our load: */
fdf3e95d
VP
3315 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3316 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3317 unsigned long old_load, new_load;
7d1e6a9b 3318
dd41f596 3319 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3320
dd41f596 3321 old_load = this_rq->cpu_load[i];
fdf3e95d 3322 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3323 new_load = this_load;
a25707f3
IM
3324 /*
3325 * Round up the averaging division if load is increasing. This
3326 * prevents us from getting stuck on 9 if the load is 10, for
3327 * example.
3328 */
3329 if (new_load > old_load)
fdf3e95d
VP
3330 new_load += scale - 1;
3331
3332 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3333 }
da2b71ed
SS
3334
3335 sched_avg_update(this_rq);
fdf3e95d
VP
3336}
3337
3338static void update_cpu_load_active(struct rq *this_rq)
3339{
3340 update_cpu_load(this_rq);
46cb4b7c 3341
74f5187a 3342 calc_load_account_active(this_rq);
46cb4b7c
SS
3343}
3344
dd41f596 3345#ifdef CONFIG_SMP
8a0be9ef 3346
46cb4b7c 3347/*
38022906
PZ
3348 * sched_exec - execve() is a valuable balancing opportunity, because at
3349 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3350 */
38022906 3351void sched_exec(void)
46cb4b7c 3352{
38022906 3353 struct task_struct *p = current;
1da177e4 3354 unsigned long flags;
70b97a7f 3355 struct rq *rq;
0017d735 3356 int dest_cpu;
46cb4b7c 3357
1da177e4 3358 rq = task_rq_lock(p, &flags);
0017d735
PZ
3359 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3360 if (dest_cpu == smp_processor_id())
3361 goto unlock;
38022906 3362
46cb4b7c 3363 /*
38022906 3364 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3365 */
30da688e 3366 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3367 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3368 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3369
1da177e4 3370 task_rq_unlock(rq, &flags);
969c7921 3371 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3372 return;
3373 }
0017d735 3374unlock:
1da177e4 3375 task_rq_unlock(rq, &flags);
1da177e4 3376}
dd41f596 3377
1da177e4
LT
3378#endif
3379
1da177e4
LT
3380DEFINE_PER_CPU(struct kernel_stat, kstat);
3381
3382EXPORT_PER_CPU_SYMBOL(kstat);
3383
3384/*
c5f8d995 3385 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3386 * @p in case that task is currently running.
c5f8d995
HS
3387 *
3388 * Called with task_rq_lock() held on @rq.
1da177e4 3389 */
c5f8d995
HS
3390static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3391{
3392 u64 ns = 0;
3393
3394 if (task_current(rq, p)) {
3395 update_rq_clock(rq);
305e6835 3396 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3397 if ((s64)ns < 0)
3398 ns = 0;
3399 }
3400
3401 return ns;
3402}
3403
bb34d92f 3404unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3405{
1da177e4 3406 unsigned long flags;
41b86e9c 3407 struct rq *rq;
bb34d92f 3408 u64 ns = 0;
48f24c4d 3409
41b86e9c 3410 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3411 ns = do_task_delta_exec(p, rq);
3412 task_rq_unlock(rq, &flags);
1508487e 3413
c5f8d995
HS
3414 return ns;
3415}
f06febc9 3416
c5f8d995
HS
3417/*
3418 * Return accounted runtime for the task.
3419 * In case the task is currently running, return the runtime plus current's
3420 * pending runtime that have not been accounted yet.
3421 */
3422unsigned long long task_sched_runtime(struct task_struct *p)
3423{
3424 unsigned long flags;
3425 struct rq *rq;
3426 u64 ns = 0;
3427
3428 rq = task_rq_lock(p, &flags);
3429 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3430 task_rq_unlock(rq, &flags);
3431
3432 return ns;
3433}
48f24c4d 3434
c5f8d995
HS
3435/*
3436 * Return sum_exec_runtime for the thread group.
3437 * In case the task is currently running, return the sum plus current's
3438 * pending runtime that have not been accounted yet.
3439 *
3440 * Note that the thread group might have other running tasks as well,
3441 * so the return value not includes other pending runtime that other
3442 * running tasks might have.
3443 */
3444unsigned long long thread_group_sched_runtime(struct task_struct *p)
3445{
3446 struct task_cputime totals;
3447 unsigned long flags;
3448 struct rq *rq;
3449 u64 ns;
3450
3451 rq = task_rq_lock(p, &flags);
3452 thread_group_cputime(p, &totals);
3453 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3454 task_rq_unlock(rq, &flags);
48f24c4d 3455
1da177e4
LT
3456 return ns;
3457}
3458
1da177e4
LT
3459/*
3460 * Account user cpu time to a process.
3461 * @p: the process that the cpu time gets accounted to
1da177e4 3462 * @cputime: the cpu time spent in user space since the last update
457533a7 3463 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3464 */
457533a7
MS
3465void account_user_time(struct task_struct *p, cputime_t cputime,
3466 cputime_t cputime_scaled)
1da177e4
LT
3467{
3468 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3469 cputime64_t tmp;
3470
457533a7 3471 /* Add user time to process. */
1da177e4 3472 p->utime = cputime_add(p->utime, cputime);
457533a7 3473 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3474 account_group_user_time(p, cputime);
1da177e4
LT
3475
3476 /* Add user time to cpustat. */
3477 tmp = cputime_to_cputime64(cputime);
3478 if (TASK_NICE(p) > 0)
3479 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3480 else
3481 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3482
3483 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3484 /* Account for user time used */
3485 acct_update_integrals(p);
1da177e4
LT
3486}
3487
94886b84
LV
3488/*
3489 * Account guest cpu time to a process.
3490 * @p: the process that the cpu time gets accounted to
3491 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3492 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3493 */
457533a7
MS
3494static void account_guest_time(struct task_struct *p, cputime_t cputime,
3495 cputime_t cputime_scaled)
94886b84
LV
3496{
3497 cputime64_t tmp;
3498 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3499
3500 tmp = cputime_to_cputime64(cputime);
3501
457533a7 3502 /* Add guest time to process. */
94886b84 3503 p->utime = cputime_add(p->utime, cputime);
457533a7 3504 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3505 account_group_user_time(p, cputime);
94886b84
LV
3506 p->gtime = cputime_add(p->gtime, cputime);
3507
457533a7 3508 /* Add guest time to cpustat. */
ce0e7b28
RO
3509 if (TASK_NICE(p) > 0) {
3510 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3511 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3512 } else {
3513 cpustat->user = cputime64_add(cpustat->user, tmp);
3514 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3515 }
94886b84
LV
3516}
3517
1da177e4
LT
3518/*
3519 * Account system cpu time to a process.
3520 * @p: the process that the cpu time gets accounted to
3521 * @hardirq_offset: the offset to subtract from hardirq_count()
3522 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3523 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3524 */
3525void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3526 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3527{
3528 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3529 cputime64_t tmp;
3530
983ed7a6 3531 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3532 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3533 return;
3534 }
94886b84 3535
457533a7 3536 /* Add system time to process. */
1da177e4 3537 p->stime = cputime_add(p->stime, cputime);
457533a7 3538 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3539 account_group_system_time(p, cputime);
1da177e4
LT
3540
3541 /* Add system time to cpustat. */
3542 tmp = cputime_to_cputime64(cputime);
3543 if (hardirq_count() - hardirq_offset)
3544 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3545 else if (in_serving_softirq())
1da177e4 3546 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3547 else
79741dd3
MS
3548 cpustat->system = cputime64_add(cpustat->system, tmp);
3549
ef12fefa
BR
3550 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3551
1da177e4
LT
3552 /* Account for system time used */
3553 acct_update_integrals(p);
1da177e4
LT
3554}
3555
c66f08be 3556/*
1da177e4 3557 * Account for involuntary wait time.
1da177e4 3558 * @steal: the cpu time spent in involuntary wait
c66f08be 3559 */
79741dd3 3560void account_steal_time(cputime_t cputime)
c66f08be 3561{
79741dd3
MS
3562 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3563 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3564
3565 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3566}
3567
1da177e4 3568/*
79741dd3
MS
3569 * Account for idle time.
3570 * @cputime: the cpu time spent in idle wait
1da177e4 3571 */
79741dd3 3572void account_idle_time(cputime_t cputime)
1da177e4
LT
3573{
3574 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3575 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3576 struct rq *rq = this_rq();
1da177e4 3577
79741dd3
MS
3578 if (atomic_read(&rq->nr_iowait) > 0)
3579 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3580 else
3581 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3582}
3583
79741dd3
MS
3584#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3585
3586/*
3587 * Account a single tick of cpu time.
3588 * @p: the process that the cpu time gets accounted to
3589 * @user_tick: indicates if the tick is a user or a system tick
3590 */
3591void account_process_tick(struct task_struct *p, int user_tick)
3592{
a42548a1 3593 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3594 struct rq *rq = this_rq();
3595
3596 if (user_tick)
a42548a1 3597 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3598 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3599 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3600 one_jiffy_scaled);
3601 else
a42548a1 3602 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3603}
3604
3605/*
3606 * Account multiple ticks of steal time.
3607 * @p: the process from which the cpu time has been stolen
3608 * @ticks: number of stolen ticks
3609 */
3610void account_steal_ticks(unsigned long ticks)
3611{
3612 account_steal_time(jiffies_to_cputime(ticks));
3613}
3614
3615/*
3616 * Account multiple ticks of idle time.
3617 * @ticks: number of stolen ticks
3618 */
3619void account_idle_ticks(unsigned long ticks)
3620{
3621 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3622}
3623
79741dd3
MS
3624#endif
3625
49048622
BS
3626/*
3627 * Use precise platform statistics if available:
3628 */
3629#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3630void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3631{
d99ca3b9
HS
3632 *ut = p->utime;
3633 *st = p->stime;
49048622
BS
3634}
3635
0cf55e1e 3636void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3637{
0cf55e1e
HS
3638 struct task_cputime cputime;
3639
3640 thread_group_cputime(p, &cputime);
3641
3642 *ut = cputime.utime;
3643 *st = cputime.stime;
49048622
BS
3644}
3645#else
761b1d26
HS
3646
3647#ifndef nsecs_to_cputime
b7b20df9 3648# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3649#endif
3650
d180c5bc 3651void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3652{
d99ca3b9 3653 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3654
3655 /*
3656 * Use CFS's precise accounting:
3657 */
d180c5bc 3658 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3659
3660 if (total) {
e75e863d 3661 u64 temp = rtime;
d180c5bc 3662
e75e863d 3663 temp *= utime;
49048622 3664 do_div(temp, total);
d180c5bc
HS
3665 utime = (cputime_t)temp;
3666 } else
3667 utime = rtime;
49048622 3668
d180c5bc
HS
3669 /*
3670 * Compare with previous values, to keep monotonicity:
3671 */
761b1d26 3672 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3673 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3674
d99ca3b9
HS
3675 *ut = p->prev_utime;
3676 *st = p->prev_stime;
49048622
BS
3677}
3678
0cf55e1e
HS
3679/*
3680 * Must be called with siglock held.
3681 */
3682void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3683{
0cf55e1e
HS
3684 struct signal_struct *sig = p->signal;
3685 struct task_cputime cputime;
3686 cputime_t rtime, utime, total;
49048622 3687
0cf55e1e 3688 thread_group_cputime(p, &cputime);
49048622 3689
0cf55e1e
HS
3690 total = cputime_add(cputime.utime, cputime.stime);
3691 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3692
0cf55e1e 3693 if (total) {
e75e863d 3694 u64 temp = rtime;
49048622 3695
e75e863d 3696 temp *= cputime.utime;
0cf55e1e
HS
3697 do_div(temp, total);
3698 utime = (cputime_t)temp;
3699 } else
3700 utime = rtime;
3701
3702 sig->prev_utime = max(sig->prev_utime, utime);
3703 sig->prev_stime = max(sig->prev_stime,
3704 cputime_sub(rtime, sig->prev_utime));
3705
3706 *ut = sig->prev_utime;
3707 *st = sig->prev_stime;
49048622 3708}
49048622 3709#endif
49048622 3710
7835b98b
CL
3711/*
3712 * This function gets called by the timer code, with HZ frequency.
3713 * We call it with interrupts disabled.
3714 *
3715 * It also gets called by the fork code, when changing the parent's
3716 * timeslices.
3717 */
3718void scheduler_tick(void)
3719{
7835b98b
CL
3720 int cpu = smp_processor_id();
3721 struct rq *rq = cpu_rq(cpu);
dd41f596 3722 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3723
3724 sched_clock_tick();
dd41f596 3725
05fa785c 3726 raw_spin_lock(&rq->lock);
3e51f33f 3727 update_rq_clock(rq);
fdf3e95d 3728 update_cpu_load_active(rq);
fa85ae24 3729 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3730 raw_spin_unlock(&rq->lock);
7835b98b 3731
e9d2b064 3732 perf_event_task_tick();
e220d2dc 3733
e418e1c2 3734#ifdef CONFIG_SMP
dd41f596
IM
3735 rq->idle_at_tick = idle_cpu(cpu);
3736 trigger_load_balance(rq, cpu);
e418e1c2 3737#endif
1da177e4
LT
3738}
3739
132380a0 3740notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3741{
3742 if (in_lock_functions(addr)) {
3743 addr = CALLER_ADDR2;
3744 if (in_lock_functions(addr))
3745 addr = CALLER_ADDR3;
3746 }
3747 return addr;
3748}
1da177e4 3749
7e49fcce
SR
3750#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3751 defined(CONFIG_PREEMPT_TRACER))
3752
43627582 3753void __kprobes add_preempt_count(int val)
1da177e4 3754{
6cd8a4bb 3755#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3756 /*
3757 * Underflow?
3758 */
9a11b49a
IM
3759 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3760 return;
6cd8a4bb 3761#endif
1da177e4 3762 preempt_count() += val;
6cd8a4bb 3763#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3764 /*
3765 * Spinlock count overflowing soon?
3766 */
33859f7f
MOS
3767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3768 PREEMPT_MASK - 10);
6cd8a4bb
SR
3769#endif
3770 if (preempt_count() == val)
3771 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3772}
3773EXPORT_SYMBOL(add_preempt_count);
3774
43627582 3775void __kprobes sub_preempt_count(int val)
1da177e4 3776{
6cd8a4bb 3777#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3778 /*
3779 * Underflow?
3780 */
01e3eb82 3781 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3782 return;
1da177e4
LT
3783 /*
3784 * Is the spinlock portion underflowing?
3785 */
9a11b49a
IM
3786 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3787 !(preempt_count() & PREEMPT_MASK)))
3788 return;
6cd8a4bb 3789#endif
9a11b49a 3790
6cd8a4bb
SR
3791 if (preempt_count() == val)
3792 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3793 preempt_count() -= val;
3794}
3795EXPORT_SYMBOL(sub_preempt_count);
3796
3797#endif
3798
3799/*
dd41f596 3800 * Print scheduling while atomic bug:
1da177e4 3801 */
dd41f596 3802static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3803{
838225b4
SS
3804 struct pt_regs *regs = get_irq_regs();
3805
3df0fc5b
PZ
3806 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3807 prev->comm, prev->pid, preempt_count());
838225b4 3808
dd41f596 3809 debug_show_held_locks(prev);
e21f5b15 3810 print_modules();
dd41f596
IM
3811 if (irqs_disabled())
3812 print_irqtrace_events(prev);
838225b4
SS
3813
3814 if (regs)
3815 show_regs(regs);
3816 else
3817 dump_stack();
dd41f596 3818}
1da177e4 3819
dd41f596
IM
3820/*
3821 * Various schedule()-time debugging checks and statistics:
3822 */
3823static inline void schedule_debug(struct task_struct *prev)
3824{
1da177e4 3825 /*
41a2d6cf 3826 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3827 * schedule() atomically, we ignore that path for now.
3828 * Otherwise, whine if we are scheduling when we should not be.
3829 */
3f33a7ce 3830 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3831 __schedule_bug(prev);
3832
1da177e4
LT
3833 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3834
2d72376b 3835 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3836#ifdef CONFIG_SCHEDSTATS
3837 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3838 schedstat_inc(this_rq(), bkl_count);
3839 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3840 }
3841#endif
dd41f596
IM
3842}
3843
6cecd084 3844static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3845{
a64692a3
MG
3846 if (prev->se.on_rq)
3847 update_rq_clock(rq);
3848 rq->skip_clock_update = 0;
6cecd084 3849 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3850}
3851
dd41f596
IM
3852/*
3853 * Pick up the highest-prio task:
3854 */
3855static inline struct task_struct *
b67802ea 3856pick_next_task(struct rq *rq)
dd41f596 3857{
5522d5d5 3858 const struct sched_class *class;
dd41f596 3859 struct task_struct *p;
1da177e4
LT
3860
3861 /*
dd41f596
IM
3862 * Optimization: we know that if all tasks are in
3863 * the fair class we can call that function directly:
1da177e4 3864 */
dd41f596 3865 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3866 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3867 if (likely(p))
3868 return p;
1da177e4
LT
3869 }
3870
34f971f6 3871 for_each_class(class) {
fb8d4724 3872 p = class->pick_next_task(rq);
dd41f596
IM
3873 if (p)
3874 return p;
dd41f596 3875 }
34f971f6
PZ
3876
3877 BUG(); /* the idle class will always have a runnable task */
dd41f596 3878}
1da177e4 3879
dd41f596
IM
3880/*
3881 * schedule() is the main scheduler function.
3882 */
ff743345 3883asmlinkage void __sched schedule(void)
dd41f596
IM
3884{
3885 struct task_struct *prev, *next;
67ca7bde 3886 unsigned long *switch_count;
dd41f596 3887 struct rq *rq;
31656519 3888 int cpu;
dd41f596 3889
ff743345
PZ
3890need_resched:
3891 preempt_disable();
dd41f596
IM
3892 cpu = smp_processor_id();
3893 rq = cpu_rq(cpu);
25502a6c 3894 rcu_note_context_switch(cpu);
dd41f596 3895 prev = rq->curr;
dd41f596
IM
3896
3897 release_kernel_lock(prev);
3898need_resched_nonpreemptible:
3899
3900 schedule_debug(prev);
1da177e4 3901
31656519 3902 if (sched_feat(HRTICK))
f333fdc9 3903 hrtick_clear(rq);
8f4d37ec 3904
05fa785c 3905 raw_spin_lock_irq(&rq->lock);
1e819950 3906 clear_tsk_need_resched(prev);
1da177e4 3907
246d86b5 3908 switch_count = &prev->nivcsw;
1da177e4 3909 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3910 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3911 prev->state = TASK_RUNNING;
21aa9af0
TH
3912 } else {
3913 /*
3914 * If a worker is going to sleep, notify and
3915 * ask workqueue whether it wants to wake up a
3916 * task to maintain concurrency. If so, wake
3917 * up the task.
3918 */
3919 if (prev->flags & PF_WQ_WORKER) {
3920 struct task_struct *to_wakeup;
3921
3922 to_wakeup = wq_worker_sleeping(prev, cpu);
3923 if (to_wakeup)
3924 try_to_wake_up_local(to_wakeup);
3925 }
371fd7e7 3926 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3927 }
dd41f596 3928 switch_count = &prev->nvcsw;
1da177e4
LT
3929 }
3930
3f029d3c 3931 pre_schedule(rq, prev);
f65eda4f 3932
dd41f596 3933 if (unlikely(!rq->nr_running))
1da177e4 3934 idle_balance(cpu, rq);
1da177e4 3935
df1c99d4 3936 put_prev_task(rq, prev);
b67802ea 3937 next = pick_next_task(rq);
1da177e4 3938
1da177e4 3939 if (likely(prev != next)) {
673a90a1 3940 sched_info_switch(prev, next);
49f47433 3941 perf_event_task_sched_out(prev, next);
673a90a1 3942
1da177e4
LT
3943 rq->nr_switches++;
3944 rq->curr = next;
3945 ++*switch_count;
3946
dd41f596 3947 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3948 /*
246d86b5
ON
3949 * The context switch have flipped the stack from under us
3950 * and restored the local variables which were saved when
3951 * this task called schedule() in the past. prev == current
3952 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3953 */
3954 cpu = smp_processor_id();
3955 rq = cpu_rq(cpu);
1da177e4 3956 } else
05fa785c 3957 raw_spin_unlock_irq(&rq->lock);
1da177e4 3958
3f029d3c 3959 post_schedule(rq);
1da177e4 3960
246d86b5 3961 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3962 goto need_resched_nonpreemptible;
8f4d37ec 3963
1da177e4 3964 preempt_enable_no_resched();
ff743345 3965 if (need_resched())
1da177e4
LT
3966 goto need_resched;
3967}
1da177e4
LT
3968EXPORT_SYMBOL(schedule);
3969
c08f7829 3970#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3971/*
3972 * Look out! "owner" is an entirely speculative pointer
3973 * access and not reliable.
3974 */
3975int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3976{
3977 unsigned int cpu;
3978 struct rq *rq;
3979
3980 if (!sched_feat(OWNER_SPIN))
3981 return 0;
3982
3983#ifdef CONFIG_DEBUG_PAGEALLOC
3984 /*
3985 * Need to access the cpu field knowing that
3986 * DEBUG_PAGEALLOC could have unmapped it if
3987 * the mutex owner just released it and exited.
3988 */
3989 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3990 return 0;
0d66bf6d
PZ
3991#else
3992 cpu = owner->cpu;
3993#endif
3994
3995 /*
3996 * Even if the access succeeded (likely case),
3997 * the cpu field may no longer be valid.
3998 */
3999 if (cpu >= nr_cpumask_bits)
4b402210 4000 return 0;
0d66bf6d
PZ
4001
4002 /*
4003 * We need to validate that we can do a
4004 * get_cpu() and that we have the percpu area.
4005 */
4006 if (!cpu_online(cpu))
4b402210 4007 return 0;
0d66bf6d
PZ
4008
4009 rq = cpu_rq(cpu);
4010
4011 for (;;) {
4012 /*
4013 * Owner changed, break to re-assess state.
4014 */
9d0f4dcc
TC
4015 if (lock->owner != owner) {
4016 /*
4017 * If the lock has switched to a different owner,
4018 * we likely have heavy contention. Return 0 to quit
4019 * optimistic spinning and not contend further:
4020 */
4021 if (lock->owner)
4022 return 0;
0d66bf6d 4023 break;
9d0f4dcc 4024 }
0d66bf6d
PZ
4025
4026 /*
4027 * Is that owner really running on that cpu?
4028 */
4029 if (task_thread_info(rq->curr) != owner || need_resched())
4030 return 0;
4031
4032 cpu_relax();
4033 }
4b402210 4034
0d66bf6d
PZ
4035 return 1;
4036}
4037#endif
4038
1da177e4
LT
4039#ifdef CONFIG_PREEMPT
4040/*
2ed6e34f 4041 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4042 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4043 * occur there and call schedule directly.
4044 */
d1f74e20 4045asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4046{
4047 struct thread_info *ti = current_thread_info();
6478d880 4048
1da177e4
LT
4049 /*
4050 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4051 * we do not want to preempt the current task. Just return..
1da177e4 4052 */
beed33a8 4053 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4054 return;
4055
3a5c359a 4056 do {
d1f74e20 4057 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4058 schedule();
d1f74e20 4059 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4060
3a5c359a
AK
4061 /*
4062 * Check again in case we missed a preemption opportunity
4063 * between schedule and now.
4064 */
4065 barrier();
5ed0cec0 4066 } while (need_resched());
1da177e4 4067}
1da177e4
LT
4068EXPORT_SYMBOL(preempt_schedule);
4069
4070/*
2ed6e34f 4071 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4072 * off of irq context.
4073 * Note, that this is called and return with irqs disabled. This will
4074 * protect us against recursive calling from irq.
4075 */
4076asmlinkage void __sched preempt_schedule_irq(void)
4077{
4078 struct thread_info *ti = current_thread_info();
6478d880 4079
2ed6e34f 4080 /* Catch callers which need to be fixed */
1da177e4
LT
4081 BUG_ON(ti->preempt_count || !irqs_disabled());
4082
3a5c359a
AK
4083 do {
4084 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4085 local_irq_enable();
4086 schedule();
4087 local_irq_disable();
3a5c359a 4088 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4089
3a5c359a
AK
4090 /*
4091 * Check again in case we missed a preemption opportunity
4092 * between schedule and now.
4093 */
4094 barrier();
5ed0cec0 4095 } while (need_resched());
1da177e4
LT
4096}
4097
4098#endif /* CONFIG_PREEMPT */
4099
63859d4f 4100int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4101 void *key)
1da177e4 4102{
63859d4f 4103 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4104}
1da177e4
LT
4105EXPORT_SYMBOL(default_wake_function);
4106
4107/*
41a2d6cf
IM
4108 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4109 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4110 * number) then we wake all the non-exclusive tasks and one exclusive task.
4111 *
4112 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4113 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4114 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4115 */
78ddb08f 4116static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4117 int nr_exclusive, int wake_flags, void *key)
1da177e4 4118{
2e45874c 4119 wait_queue_t *curr, *next;
1da177e4 4120
2e45874c 4121 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4122 unsigned flags = curr->flags;
4123
63859d4f 4124 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4125 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4126 break;
4127 }
4128}
4129
4130/**
4131 * __wake_up - wake up threads blocked on a waitqueue.
4132 * @q: the waitqueue
4133 * @mode: which threads
4134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4135 * @key: is directly passed to the wakeup function
50fa610a
DH
4136 *
4137 * It may be assumed that this function implies a write memory barrier before
4138 * changing the task state if and only if any tasks are woken up.
1da177e4 4139 */
7ad5b3a5 4140void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4141 int nr_exclusive, void *key)
1da177e4
LT
4142{
4143 unsigned long flags;
4144
4145 spin_lock_irqsave(&q->lock, flags);
4146 __wake_up_common(q, mode, nr_exclusive, 0, key);
4147 spin_unlock_irqrestore(&q->lock, flags);
4148}
1da177e4
LT
4149EXPORT_SYMBOL(__wake_up);
4150
4151/*
4152 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4153 */
7ad5b3a5 4154void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4155{
4156 __wake_up_common(q, mode, 1, 0, NULL);
4157}
22c43c81 4158EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4159
4ede816a
DL
4160void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4161{
4162 __wake_up_common(q, mode, 1, 0, key);
4163}
4164
1da177e4 4165/**
4ede816a 4166 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4167 * @q: the waitqueue
4168 * @mode: which threads
4169 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4170 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4171 *
4172 * The sync wakeup differs that the waker knows that it will schedule
4173 * away soon, so while the target thread will be woken up, it will not
4174 * be migrated to another CPU - ie. the two threads are 'synchronized'
4175 * with each other. This can prevent needless bouncing between CPUs.
4176 *
4177 * On UP it can prevent extra preemption.
50fa610a
DH
4178 *
4179 * It may be assumed that this function implies a write memory barrier before
4180 * changing the task state if and only if any tasks are woken up.
1da177e4 4181 */
4ede816a
DL
4182void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4183 int nr_exclusive, void *key)
1da177e4
LT
4184{
4185 unsigned long flags;
7d478721 4186 int wake_flags = WF_SYNC;
1da177e4
LT
4187
4188 if (unlikely(!q))
4189 return;
4190
4191 if (unlikely(!nr_exclusive))
7d478721 4192 wake_flags = 0;
1da177e4
LT
4193
4194 spin_lock_irqsave(&q->lock, flags);
7d478721 4195 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4196 spin_unlock_irqrestore(&q->lock, flags);
4197}
4ede816a
DL
4198EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4199
4200/*
4201 * __wake_up_sync - see __wake_up_sync_key()
4202 */
4203void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4204{
4205 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4206}
1da177e4
LT
4207EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4208
65eb3dc6
KD
4209/**
4210 * complete: - signals a single thread waiting on this completion
4211 * @x: holds the state of this particular completion
4212 *
4213 * This will wake up a single thread waiting on this completion. Threads will be
4214 * awakened in the same order in which they were queued.
4215 *
4216 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4217 *
4218 * It may be assumed that this function implies a write memory barrier before
4219 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4220 */
b15136e9 4221void complete(struct completion *x)
1da177e4
LT
4222{
4223 unsigned long flags;
4224
4225 spin_lock_irqsave(&x->wait.lock, flags);
4226 x->done++;
d9514f6c 4227 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4228 spin_unlock_irqrestore(&x->wait.lock, flags);
4229}
4230EXPORT_SYMBOL(complete);
4231
65eb3dc6
KD
4232/**
4233 * complete_all: - signals all threads waiting on this completion
4234 * @x: holds the state of this particular completion
4235 *
4236 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4237 *
4238 * It may be assumed that this function implies a write memory barrier before
4239 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4240 */
b15136e9 4241void complete_all(struct completion *x)
1da177e4
LT
4242{
4243 unsigned long flags;
4244
4245 spin_lock_irqsave(&x->wait.lock, flags);
4246 x->done += UINT_MAX/2;
d9514f6c 4247 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4248 spin_unlock_irqrestore(&x->wait.lock, flags);
4249}
4250EXPORT_SYMBOL(complete_all);
4251
8cbbe86d
AK
4252static inline long __sched
4253do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4254{
1da177e4
LT
4255 if (!x->done) {
4256 DECLARE_WAITQUEUE(wait, current);
4257
a93d2f17 4258 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4259 do {
94d3d824 4260 if (signal_pending_state(state, current)) {
ea71a546
ON
4261 timeout = -ERESTARTSYS;
4262 break;
8cbbe86d
AK
4263 }
4264 __set_current_state(state);
1da177e4
LT
4265 spin_unlock_irq(&x->wait.lock);
4266 timeout = schedule_timeout(timeout);
4267 spin_lock_irq(&x->wait.lock);
ea71a546 4268 } while (!x->done && timeout);
1da177e4 4269 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4270 if (!x->done)
4271 return timeout;
1da177e4
LT
4272 }
4273 x->done--;
ea71a546 4274 return timeout ?: 1;
1da177e4 4275}
1da177e4 4276
8cbbe86d
AK
4277static long __sched
4278wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4279{
1da177e4
LT
4280 might_sleep();
4281
4282 spin_lock_irq(&x->wait.lock);
8cbbe86d 4283 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4284 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4285 return timeout;
4286}
1da177e4 4287
65eb3dc6
KD
4288/**
4289 * wait_for_completion: - waits for completion of a task
4290 * @x: holds the state of this particular completion
4291 *
4292 * This waits to be signaled for completion of a specific task. It is NOT
4293 * interruptible and there is no timeout.
4294 *
4295 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4296 * and interrupt capability. Also see complete().
4297 */
b15136e9 4298void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4299{
4300 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4301}
8cbbe86d 4302EXPORT_SYMBOL(wait_for_completion);
1da177e4 4303
65eb3dc6
KD
4304/**
4305 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4306 * @x: holds the state of this particular completion
4307 * @timeout: timeout value in jiffies
4308 *
4309 * This waits for either a completion of a specific task to be signaled or for a
4310 * specified timeout to expire. The timeout is in jiffies. It is not
4311 * interruptible.
4312 */
b15136e9 4313unsigned long __sched
8cbbe86d 4314wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4315{
8cbbe86d 4316 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4317}
8cbbe86d 4318EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4319
65eb3dc6
KD
4320/**
4321 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4322 * @x: holds the state of this particular completion
4323 *
4324 * This waits for completion of a specific task to be signaled. It is
4325 * interruptible.
4326 */
8cbbe86d 4327int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4328{
51e97990
AK
4329 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4330 if (t == -ERESTARTSYS)
4331 return t;
4332 return 0;
0fec171c 4333}
8cbbe86d 4334EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4335
65eb3dc6
KD
4336/**
4337 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4338 * @x: holds the state of this particular completion
4339 * @timeout: timeout value in jiffies
4340 *
4341 * This waits for either a completion of a specific task to be signaled or for a
4342 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4343 */
b15136e9 4344unsigned long __sched
8cbbe86d
AK
4345wait_for_completion_interruptible_timeout(struct completion *x,
4346 unsigned long timeout)
0fec171c 4347{
8cbbe86d 4348 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4349}
8cbbe86d 4350EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4351
65eb3dc6
KD
4352/**
4353 * wait_for_completion_killable: - waits for completion of a task (killable)
4354 * @x: holds the state of this particular completion
4355 *
4356 * This waits to be signaled for completion of a specific task. It can be
4357 * interrupted by a kill signal.
4358 */
009e577e
MW
4359int __sched wait_for_completion_killable(struct completion *x)
4360{
4361 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4362 if (t == -ERESTARTSYS)
4363 return t;
4364 return 0;
4365}
4366EXPORT_SYMBOL(wait_for_completion_killable);
4367
0aa12fb4
SW
4368/**
4369 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4370 * @x: holds the state of this particular completion
4371 * @timeout: timeout value in jiffies
4372 *
4373 * This waits for either a completion of a specific task to be
4374 * signaled or for a specified timeout to expire. It can be
4375 * interrupted by a kill signal. The timeout is in jiffies.
4376 */
4377unsigned long __sched
4378wait_for_completion_killable_timeout(struct completion *x,
4379 unsigned long timeout)
4380{
4381 return wait_for_common(x, timeout, TASK_KILLABLE);
4382}
4383EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4384
be4de352
DC
4385/**
4386 * try_wait_for_completion - try to decrement a completion without blocking
4387 * @x: completion structure
4388 *
4389 * Returns: 0 if a decrement cannot be done without blocking
4390 * 1 if a decrement succeeded.
4391 *
4392 * If a completion is being used as a counting completion,
4393 * attempt to decrement the counter without blocking. This
4394 * enables us to avoid waiting if the resource the completion
4395 * is protecting is not available.
4396 */
4397bool try_wait_for_completion(struct completion *x)
4398{
7539a3b3 4399 unsigned long flags;
be4de352
DC
4400 int ret = 1;
4401
7539a3b3 4402 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4403 if (!x->done)
4404 ret = 0;
4405 else
4406 x->done--;
7539a3b3 4407 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4408 return ret;
4409}
4410EXPORT_SYMBOL(try_wait_for_completion);
4411
4412/**
4413 * completion_done - Test to see if a completion has any waiters
4414 * @x: completion structure
4415 *
4416 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4417 * 1 if there are no waiters.
4418 *
4419 */
4420bool completion_done(struct completion *x)
4421{
7539a3b3 4422 unsigned long flags;
be4de352
DC
4423 int ret = 1;
4424
7539a3b3 4425 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4426 if (!x->done)
4427 ret = 0;
7539a3b3 4428 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4429 return ret;
4430}
4431EXPORT_SYMBOL(completion_done);
4432
8cbbe86d
AK
4433static long __sched
4434sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4435{
0fec171c
IM
4436 unsigned long flags;
4437 wait_queue_t wait;
4438
4439 init_waitqueue_entry(&wait, current);
1da177e4 4440
8cbbe86d 4441 __set_current_state(state);
1da177e4 4442
8cbbe86d
AK
4443 spin_lock_irqsave(&q->lock, flags);
4444 __add_wait_queue(q, &wait);
4445 spin_unlock(&q->lock);
4446 timeout = schedule_timeout(timeout);
4447 spin_lock_irq(&q->lock);
4448 __remove_wait_queue(q, &wait);
4449 spin_unlock_irqrestore(&q->lock, flags);
4450
4451 return timeout;
4452}
4453
4454void __sched interruptible_sleep_on(wait_queue_head_t *q)
4455{
4456 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4457}
1da177e4
LT
4458EXPORT_SYMBOL(interruptible_sleep_on);
4459
0fec171c 4460long __sched
95cdf3b7 4461interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4462{
8cbbe86d 4463 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4464}
1da177e4
LT
4465EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4466
0fec171c 4467void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4468{
8cbbe86d 4469 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4470}
1da177e4
LT
4471EXPORT_SYMBOL(sleep_on);
4472
0fec171c 4473long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4474{
8cbbe86d 4475 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4476}
1da177e4
LT
4477EXPORT_SYMBOL(sleep_on_timeout);
4478
b29739f9
IM
4479#ifdef CONFIG_RT_MUTEXES
4480
4481/*
4482 * rt_mutex_setprio - set the current priority of a task
4483 * @p: task
4484 * @prio: prio value (kernel-internal form)
4485 *
4486 * This function changes the 'effective' priority of a task. It does
4487 * not touch ->normal_prio like __setscheduler().
4488 *
4489 * Used by the rt_mutex code to implement priority inheritance logic.
4490 */
36c8b586 4491void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4492{
4493 unsigned long flags;
83b699ed 4494 int oldprio, on_rq, running;
70b97a7f 4495 struct rq *rq;
83ab0aa0 4496 const struct sched_class *prev_class;
b29739f9
IM
4497
4498 BUG_ON(prio < 0 || prio > MAX_PRIO);
4499
4500 rq = task_rq_lock(p, &flags);
4501
a8027073 4502 trace_sched_pi_setprio(p, prio);
d5f9f942 4503 oldprio = p->prio;
83ab0aa0 4504 prev_class = p->sched_class;
dd41f596 4505 on_rq = p->se.on_rq;
051a1d1a 4506 running = task_current(rq, p);
0e1f3483 4507 if (on_rq)
69be72c1 4508 dequeue_task(rq, p, 0);
0e1f3483
HS
4509 if (running)
4510 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4511
4512 if (rt_prio(prio))
4513 p->sched_class = &rt_sched_class;
4514 else
4515 p->sched_class = &fair_sched_class;
4516
b29739f9
IM
4517 p->prio = prio;
4518
0e1f3483
HS
4519 if (running)
4520 p->sched_class->set_curr_task(rq);
dd41f596 4521 if (on_rq) {
371fd7e7 4522 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4523
4524 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4525 }
4526 task_rq_unlock(rq, &flags);
4527}
4528
4529#endif
4530
36c8b586 4531void set_user_nice(struct task_struct *p, long nice)
1da177e4 4532{
dd41f596 4533 int old_prio, delta, on_rq;
1da177e4 4534 unsigned long flags;
70b97a7f 4535 struct rq *rq;
1da177e4
LT
4536
4537 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4538 return;
4539 /*
4540 * We have to be careful, if called from sys_setpriority(),
4541 * the task might be in the middle of scheduling on another CPU.
4542 */
4543 rq = task_rq_lock(p, &flags);
4544 /*
4545 * The RT priorities are set via sched_setscheduler(), but we still
4546 * allow the 'normal' nice value to be set - but as expected
4547 * it wont have any effect on scheduling until the task is
dd41f596 4548 * SCHED_FIFO/SCHED_RR:
1da177e4 4549 */
e05606d3 4550 if (task_has_rt_policy(p)) {
1da177e4
LT
4551 p->static_prio = NICE_TO_PRIO(nice);
4552 goto out_unlock;
4553 }
dd41f596 4554 on_rq = p->se.on_rq;
c09595f6 4555 if (on_rq)
69be72c1 4556 dequeue_task(rq, p, 0);
1da177e4 4557
1da177e4 4558 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4559 set_load_weight(p);
b29739f9
IM
4560 old_prio = p->prio;
4561 p->prio = effective_prio(p);
4562 delta = p->prio - old_prio;
1da177e4 4563
dd41f596 4564 if (on_rq) {
371fd7e7 4565 enqueue_task(rq, p, 0);
1da177e4 4566 /*
d5f9f942
AM
4567 * If the task increased its priority or is running and
4568 * lowered its priority, then reschedule its CPU:
1da177e4 4569 */
d5f9f942 4570 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4571 resched_task(rq->curr);
4572 }
4573out_unlock:
4574 task_rq_unlock(rq, &flags);
4575}
1da177e4
LT
4576EXPORT_SYMBOL(set_user_nice);
4577
e43379f1
MM
4578/*
4579 * can_nice - check if a task can reduce its nice value
4580 * @p: task
4581 * @nice: nice value
4582 */
36c8b586 4583int can_nice(const struct task_struct *p, const int nice)
e43379f1 4584{
024f4747
MM
4585 /* convert nice value [19,-20] to rlimit style value [1,40] */
4586 int nice_rlim = 20 - nice;
48f24c4d 4587
78d7d407 4588 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4589 capable(CAP_SYS_NICE));
4590}
4591
1da177e4
LT
4592#ifdef __ARCH_WANT_SYS_NICE
4593
4594/*
4595 * sys_nice - change the priority of the current process.
4596 * @increment: priority increment
4597 *
4598 * sys_setpriority is a more generic, but much slower function that
4599 * does similar things.
4600 */
5add95d4 4601SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4602{
48f24c4d 4603 long nice, retval;
1da177e4
LT
4604
4605 /*
4606 * Setpriority might change our priority at the same moment.
4607 * We don't have to worry. Conceptually one call occurs first
4608 * and we have a single winner.
4609 */
e43379f1
MM
4610 if (increment < -40)
4611 increment = -40;
1da177e4
LT
4612 if (increment > 40)
4613 increment = 40;
4614
2b8f836f 4615 nice = TASK_NICE(current) + increment;
1da177e4
LT
4616 if (nice < -20)
4617 nice = -20;
4618 if (nice > 19)
4619 nice = 19;
4620
e43379f1
MM
4621 if (increment < 0 && !can_nice(current, nice))
4622 return -EPERM;
4623
1da177e4
LT
4624 retval = security_task_setnice(current, nice);
4625 if (retval)
4626 return retval;
4627
4628 set_user_nice(current, nice);
4629 return 0;
4630}
4631
4632#endif
4633
4634/**
4635 * task_prio - return the priority value of a given task.
4636 * @p: the task in question.
4637 *
4638 * This is the priority value as seen by users in /proc.
4639 * RT tasks are offset by -200. Normal tasks are centered
4640 * around 0, value goes from -16 to +15.
4641 */
36c8b586 4642int task_prio(const struct task_struct *p)
1da177e4
LT
4643{
4644 return p->prio - MAX_RT_PRIO;
4645}
4646
4647/**
4648 * task_nice - return the nice value of a given task.
4649 * @p: the task in question.
4650 */
36c8b586 4651int task_nice(const struct task_struct *p)
1da177e4
LT
4652{
4653 return TASK_NICE(p);
4654}
150d8bed 4655EXPORT_SYMBOL(task_nice);
1da177e4
LT
4656
4657/**
4658 * idle_cpu - is a given cpu idle currently?
4659 * @cpu: the processor in question.
4660 */
4661int idle_cpu(int cpu)
4662{
4663 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4664}
4665
1da177e4
LT
4666/**
4667 * idle_task - return the idle task for a given cpu.
4668 * @cpu: the processor in question.
4669 */
36c8b586 4670struct task_struct *idle_task(int cpu)
1da177e4
LT
4671{
4672 return cpu_rq(cpu)->idle;
4673}
4674
4675/**
4676 * find_process_by_pid - find a process with a matching PID value.
4677 * @pid: the pid in question.
4678 */
a9957449 4679static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4680{
228ebcbe 4681 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4682}
4683
4684/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4685static void
4686__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4687{
dd41f596 4688 BUG_ON(p->se.on_rq);
48f24c4d 4689
1da177e4
LT
4690 p->policy = policy;
4691 p->rt_priority = prio;
b29739f9
IM
4692 p->normal_prio = normal_prio(p);
4693 /* we are holding p->pi_lock already */
4694 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4695 if (rt_prio(p->prio))
4696 p->sched_class = &rt_sched_class;
4697 else
4698 p->sched_class = &fair_sched_class;
2dd73a4f 4699 set_load_weight(p);
1da177e4
LT
4700}
4701
c69e8d9c
DH
4702/*
4703 * check the target process has a UID that matches the current process's
4704 */
4705static bool check_same_owner(struct task_struct *p)
4706{
4707 const struct cred *cred = current_cred(), *pcred;
4708 bool match;
4709
4710 rcu_read_lock();
4711 pcred = __task_cred(p);
4712 match = (cred->euid == pcred->euid ||
4713 cred->euid == pcred->uid);
4714 rcu_read_unlock();
4715 return match;
4716}
4717
961ccddd
RR
4718static int __sched_setscheduler(struct task_struct *p, int policy,
4719 struct sched_param *param, bool user)
1da177e4 4720{
83b699ed 4721 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4722 unsigned long flags;
83ab0aa0 4723 const struct sched_class *prev_class;
70b97a7f 4724 struct rq *rq;
ca94c442 4725 int reset_on_fork;
1da177e4 4726
66e5393a
SR
4727 /* may grab non-irq protected spin_locks */
4728 BUG_ON(in_interrupt());
1da177e4
LT
4729recheck:
4730 /* double check policy once rq lock held */
ca94c442
LP
4731 if (policy < 0) {
4732 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4733 policy = oldpolicy = p->policy;
ca94c442
LP
4734 } else {
4735 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4736 policy &= ~SCHED_RESET_ON_FORK;
4737
4738 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4739 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4740 policy != SCHED_IDLE)
4741 return -EINVAL;
4742 }
4743
1da177e4
LT
4744 /*
4745 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4746 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4747 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4748 */
4749 if (param->sched_priority < 0 ||
95cdf3b7 4750 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4751 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4752 return -EINVAL;
e05606d3 4753 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4754 return -EINVAL;
4755
37e4ab3f
OC
4756 /*
4757 * Allow unprivileged RT tasks to decrease priority:
4758 */
961ccddd 4759 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4760 if (rt_policy(policy)) {
a44702e8
ON
4761 unsigned long rlim_rtprio =
4762 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4763
4764 /* can't set/change the rt policy */
4765 if (policy != p->policy && !rlim_rtprio)
4766 return -EPERM;
4767
4768 /* can't increase priority */
4769 if (param->sched_priority > p->rt_priority &&
4770 param->sched_priority > rlim_rtprio)
4771 return -EPERM;
4772 }
dd41f596
IM
4773 /*
4774 * Like positive nice levels, dont allow tasks to
4775 * move out of SCHED_IDLE either:
4776 */
4777 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4778 return -EPERM;
5fe1d75f 4779
37e4ab3f 4780 /* can't change other user's priorities */
c69e8d9c 4781 if (!check_same_owner(p))
37e4ab3f 4782 return -EPERM;
ca94c442
LP
4783
4784 /* Normal users shall not reset the sched_reset_on_fork flag */
4785 if (p->sched_reset_on_fork && !reset_on_fork)
4786 return -EPERM;
37e4ab3f 4787 }
1da177e4 4788
725aad24 4789 if (user) {
b0ae1981 4790 retval = security_task_setscheduler(p);
725aad24
JF
4791 if (retval)
4792 return retval;
4793 }
4794
b29739f9
IM
4795 /*
4796 * make sure no PI-waiters arrive (or leave) while we are
4797 * changing the priority of the task:
4798 */
1d615482 4799 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4800 /*
4801 * To be able to change p->policy safely, the apropriate
4802 * runqueue lock must be held.
4803 */
b29739f9 4804 rq = __task_rq_lock(p);
dc61b1d6 4805
34f971f6
PZ
4806 /*
4807 * Changing the policy of the stop threads its a very bad idea
4808 */
4809 if (p == rq->stop) {
4810 __task_rq_unlock(rq);
4811 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4812 return -EINVAL;
4813 }
4814
dc61b1d6
PZ
4815#ifdef CONFIG_RT_GROUP_SCHED
4816 if (user) {
4817 /*
4818 * Do not allow realtime tasks into groups that have no runtime
4819 * assigned.
4820 */
4821 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4822 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4823 __task_rq_unlock(rq);
4824 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4825 return -EPERM;
4826 }
4827 }
4828#endif
4829
1da177e4
LT
4830 /* recheck policy now with rq lock held */
4831 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4832 policy = oldpolicy = -1;
b29739f9 4833 __task_rq_unlock(rq);
1d615482 4834 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4835 goto recheck;
4836 }
dd41f596 4837 on_rq = p->se.on_rq;
051a1d1a 4838 running = task_current(rq, p);
0e1f3483 4839 if (on_rq)
2e1cb74a 4840 deactivate_task(rq, p, 0);
0e1f3483
HS
4841 if (running)
4842 p->sched_class->put_prev_task(rq, p);
f6b53205 4843
ca94c442
LP
4844 p->sched_reset_on_fork = reset_on_fork;
4845
1da177e4 4846 oldprio = p->prio;
83ab0aa0 4847 prev_class = p->sched_class;
dd41f596 4848 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4849
0e1f3483
HS
4850 if (running)
4851 p->sched_class->set_curr_task(rq);
dd41f596
IM
4852 if (on_rq) {
4853 activate_task(rq, p, 0);
cb469845
SR
4854
4855 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4856 }
b29739f9 4857 __task_rq_unlock(rq);
1d615482 4858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4859
95e02ca9
TG
4860 rt_mutex_adjust_pi(p);
4861
1da177e4
LT
4862 return 0;
4863}
961ccddd
RR
4864
4865/**
4866 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4867 * @p: the task in question.
4868 * @policy: new policy.
4869 * @param: structure containing the new RT priority.
4870 *
4871 * NOTE that the task may be already dead.
4872 */
4873int sched_setscheduler(struct task_struct *p, int policy,
4874 struct sched_param *param)
4875{
4876 return __sched_setscheduler(p, policy, param, true);
4877}
1da177e4
LT
4878EXPORT_SYMBOL_GPL(sched_setscheduler);
4879
961ccddd
RR
4880/**
4881 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4882 * @p: the task in question.
4883 * @policy: new policy.
4884 * @param: structure containing the new RT priority.
4885 *
4886 * Just like sched_setscheduler, only don't bother checking if the
4887 * current context has permission. For example, this is needed in
4888 * stop_machine(): we create temporary high priority worker threads,
4889 * but our caller might not have that capability.
4890 */
4891int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4892 struct sched_param *param)
4893{
4894 return __sched_setscheduler(p, policy, param, false);
4895}
4896
95cdf3b7
IM
4897static int
4898do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4899{
1da177e4
LT
4900 struct sched_param lparam;
4901 struct task_struct *p;
36c8b586 4902 int retval;
1da177e4
LT
4903
4904 if (!param || pid < 0)
4905 return -EINVAL;
4906 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4907 return -EFAULT;
5fe1d75f
ON
4908
4909 rcu_read_lock();
4910 retval = -ESRCH;
1da177e4 4911 p = find_process_by_pid(pid);
5fe1d75f
ON
4912 if (p != NULL)
4913 retval = sched_setscheduler(p, policy, &lparam);
4914 rcu_read_unlock();
36c8b586 4915
1da177e4
LT
4916 return retval;
4917}
4918
4919/**
4920 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4921 * @pid: the pid in question.
4922 * @policy: new policy.
4923 * @param: structure containing the new RT priority.
4924 */
5add95d4
HC
4925SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4926 struct sched_param __user *, param)
1da177e4 4927{
c21761f1
JB
4928 /* negative values for policy are not valid */
4929 if (policy < 0)
4930 return -EINVAL;
4931
1da177e4
LT
4932 return do_sched_setscheduler(pid, policy, param);
4933}
4934
4935/**
4936 * sys_sched_setparam - set/change the RT priority of a thread
4937 * @pid: the pid in question.
4938 * @param: structure containing the new RT priority.
4939 */
5add95d4 4940SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4941{
4942 return do_sched_setscheduler(pid, -1, param);
4943}
4944
4945/**
4946 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4947 * @pid: the pid in question.
4948 */
5add95d4 4949SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4950{
36c8b586 4951 struct task_struct *p;
3a5c359a 4952 int retval;
1da177e4
LT
4953
4954 if (pid < 0)
3a5c359a 4955 return -EINVAL;
1da177e4
LT
4956
4957 retval = -ESRCH;
5fe85be0 4958 rcu_read_lock();
1da177e4
LT
4959 p = find_process_by_pid(pid);
4960 if (p) {
4961 retval = security_task_getscheduler(p);
4962 if (!retval)
ca94c442
LP
4963 retval = p->policy
4964 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4965 }
5fe85be0 4966 rcu_read_unlock();
1da177e4
LT
4967 return retval;
4968}
4969
4970/**
ca94c442 4971 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4972 * @pid: the pid in question.
4973 * @param: structure containing the RT priority.
4974 */
5add95d4 4975SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4976{
4977 struct sched_param lp;
36c8b586 4978 struct task_struct *p;
3a5c359a 4979 int retval;
1da177e4
LT
4980
4981 if (!param || pid < 0)
3a5c359a 4982 return -EINVAL;
1da177e4 4983
5fe85be0 4984 rcu_read_lock();
1da177e4
LT
4985 p = find_process_by_pid(pid);
4986 retval = -ESRCH;
4987 if (!p)
4988 goto out_unlock;
4989
4990 retval = security_task_getscheduler(p);
4991 if (retval)
4992 goto out_unlock;
4993
4994 lp.sched_priority = p->rt_priority;
5fe85be0 4995 rcu_read_unlock();
1da177e4
LT
4996
4997 /*
4998 * This one might sleep, we cannot do it with a spinlock held ...
4999 */
5000 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5001
1da177e4
LT
5002 return retval;
5003
5004out_unlock:
5fe85be0 5005 rcu_read_unlock();
1da177e4
LT
5006 return retval;
5007}
5008
96f874e2 5009long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5010{
5a16f3d3 5011 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5012 struct task_struct *p;
5013 int retval;
1da177e4 5014
95402b38 5015 get_online_cpus();
23f5d142 5016 rcu_read_lock();
1da177e4
LT
5017
5018 p = find_process_by_pid(pid);
5019 if (!p) {
23f5d142 5020 rcu_read_unlock();
95402b38 5021 put_online_cpus();
1da177e4
LT
5022 return -ESRCH;
5023 }
5024
23f5d142 5025 /* Prevent p going away */
1da177e4 5026 get_task_struct(p);
23f5d142 5027 rcu_read_unlock();
1da177e4 5028
5a16f3d3
RR
5029 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5030 retval = -ENOMEM;
5031 goto out_put_task;
5032 }
5033 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5034 retval = -ENOMEM;
5035 goto out_free_cpus_allowed;
5036 }
1da177e4 5037 retval = -EPERM;
c69e8d9c 5038 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5039 goto out_unlock;
5040
b0ae1981 5041 retval = security_task_setscheduler(p);
e7834f8f
DQ
5042 if (retval)
5043 goto out_unlock;
5044
5a16f3d3
RR
5045 cpuset_cpus_allowed(p, cpus_allowed);
5046 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5047again:
5a16f3d3 5048 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5049
8707d8b8 5050 if (!retval) {
5a16f3d3
RR
5051 cpuset_cpus_allowed(p, cpus_allowed);
5052 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5053 /*
5054 * We must have raced with a concurrent cpuset
5055 * update. Just reset the cpus_allowed to the
5056 * cpuset's cpus_allowed
5057 */
5a16f3d3 5058 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5059 goto again;
5060 }
5061 }
1da177e4 5062out_unlock:
5a16f3d3
RR
5063 free_cpumask_var(new_mask);
5064out_free_cpus_allowed:
5065 free_cpumask_var(cpus_allowed);
5066out_put_task:
1da177e4 5067 put_task_struct(p);
95402b38 5068 put_online_cpus();
1da177e4
LT
5069 return retval;
5070}
5071
5072static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5073 struct cpumask *new_mask)
1da177e4 5074{
96f874e2
RR
5075 if (len < cpumask_size())
5076 cpumask_clear(new_mask);
5077 else if (len > cpumask_size())
5078 len = cpumask_size();
5079
1da177e4
LT
5080 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5081}
5082
5083/**
5084 * sys_sched_setaffinity - set the cpu affinity of a process
5085 * @pid: pid of the process
5086 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5087 * @user_mask_ptr: user-space pointer to the new cpu mask
5088 */
5add95d4
HC
5089SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5090 unsigned long __user *, user_mask_ptr)
1da177e4 5091{
5a16f3d3 5092 cpumask_var_t new_mask;
1da177e4
LT
5093 int retval;
5094
5a16f3d3
RR
5095 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5096 return -ENOMEM;
1da177e4 5097
5a16f3d3
RR
5098 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5099 if (retval == 0)
5100 retval = sched_setaffinity(pid, new_mask);
5101 free_cpumask_var(new_mask);
5102 return retval;
1da177e4
LT
5103}
5104
96f874e2 5105long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5106{
36c8b586 5107 struct task_struct *p;
31605683
TG
5108 unsigned long flags;
5109 struct rq *rq;
1da177e4 5110 int retval;
1da177e4 5111
95402b38 5112 get_online_cpus();
23f5d142 5113 rcu_read_lock();
1da177e4
LT
5114
5115 retval = -ESRCH;
5116 p = find_process_by_pid(pid);
5117 if (!p)
5118 goto out_unlock;
5119
e7834f8f
DQ
5120 retval = security_task_getscheduler(p);
5121 if (retval)
5122 goto out_unlock;
5123
31605683 5124 rq = task_rq_lock(p, &flags);
96f874e2 5125 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5126 task_rq_unlock(rq, &flags);
1da177e4
LT
5127
5128out_unlock:
23f5d142 5129 rcu_read_unlock();
95402b38 5130 put_online_cpus();
1da177e4 5131
9531b62f 5132 return retval;
1da177e4
LT
5133}
5134
5135/**
5136 * sys_sched_getaffinity - get the cpu affinity of a process
5137 * @pid: pid of the process
5138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5139 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5140 */
5add95d4
HC
5141SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5142 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5143{
5144 int ret;
f17c8607 5145 cpumask_var_t mask;
1da177e4 5146
84fba5ec 5147 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5148 return -EINVAL;
5149 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5150 return -EINVAL;
5151
f17c8607
RR
5152 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5153 return -ENOMEM;
1da177e4 5154
f17c8607
RR
5155 ret = sched_getaffinity(pid, mask);
5156 if (ret == 0) {
8bc037fb 5157 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5158
5159 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5160 ret = -EFAULT;
5161 else
cd3d8031 5162 ret = retlen;
f17c8607
RR
5163 }
5164 free_cpumask_var(mask);
1da177e4 5165
f17c8607 5166 return ret;
1da177e4
LT
5167}
5168
5169/**
5170 * sys_sched_yield - yield the current processor to other threads.
5171 *
dd41f596
IM
5172 * This function yields the current CPU to other tasks. If there are no
5173 * other threads running on this CPU then this function will return.
1da177e4 5174 */
5add95d4 5175SYSCALL_DEFINE0(sched_yield)
1da177e4 5176{
70b97a7f 5177 struct rq *rq = this_rq_lock();
1da177e4 5178
2d72376b 5179 schedstat_inc(rq, yld_count);
4530d7ab 5180 current->sched_class->yield_task(rq);
1da177e4
LT
5181
5182 /*
5183 * Since we are going to call schedule() anyway, there's
5184 * no need to preempt or enable interrupts:
5185 */
5186 __release(rq->lock);
8a25d5de 5187 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5188 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5189 preempt_enable_no_resched();
5190
5191 schedule();
5192
5193 return 0;
5194}
5195
d86ee480
PZ
5196static inline int should_resched(void)
5197{
5198 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5199}
5200
e7b38404 5201static void __cond_resched(void)
1da177e4 5202{
e7aaaa69
FW
5203 add_preempt_count(PREEMPT_ACTIVE);
5204 schedule();
5205 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5206}
5207
02b67cc3 5208int __sched _cond_resched(void)
1da177e4 5209{
d86ee480 5210 if (should_resched()) {
1da177e4
LT
5211 __cond_resched();
5212 return 1;
5213 }
5214 return 0;
5215}
02b67cc3 5216EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5217
5218/*
613afbf8 5219 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5220 * call schedule, and on return reacquire the lock.
5221 *
41a2d6cf 5222 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5223 * operations here to prevent schedule() from being called twice (once via
5224 * spin_unlock(), once by hand).
5225 */
613afbf8 5226int __cond_resched_lock(spinlock_t *lock)
1da177e4 5227{
d86ee480 5228 int resched = should_resched();
6df3cecb
JK
5229 int ret = 0;
5230
f607c668
PZ
5231 lockdep_assert_held(lock);
5232
95c354fe 5233 if (spin_needbreak(lock) || resched) {
1da177e4 5234 spin_unlock(lock);
d86ee480 5235 if (resched)
95c354fe
NP
5236 __cond_resched();
5237 else
5238 cpu_relax();
6df3cecb 5239 ret = 1;
1da177e4 5240 spin_lock(lock);
1da177e4 5241 }
6df3cecb 5242 return ret;
1da177e4 5243}
613afbf8 5244EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5245
613afbf8 5246int __sched __cond_resched_softirq(void)
1da177e4
LT
5247{
5248 BUG_ON(!in_softirq());
5249
d86ee480 5250 if (should_resched()) {
98d82567 5251 local_bh_enable();
1da177e4
LT
5252 __cond_resched();
5253 local_bh_disable();
5254 return 1;
5255 }
5256 return 0;
5257}
613afbf8 5258EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5259
1da177e4
LT
5260/**
5261 * yield - yield the current processor to other threads.
5262 *
72fd4a35 5263 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5264 * thread runnable and calls sys_sched_yield().
5265 */
5266void __sched yield(void)
5267{
5268 set_current_state(TASK_RUNNING);
5269 sys_sched_yield();
5270}
1da177e4
LT
5271EXPORT_SYMBOL(yield);
5272
5273/*
41a2d6cf 5274 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5275 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5276 */
5277void __sched io_schedule(void)
5278{
54d35f29 5279 struct rq *rq = raw_rq();
1da177e4 5280
0ff92245 5281 delayacct_blkio_start();
1da177e4 5282 atomic_inc(&rq->nr_iowait);
8f0dfc34 5283 current->in_iowait = 1;
1da177e4 5284 schedule();
8f0dfc34 5285 current->in_iowait = 0;
1da177e4 5286 atomic_dec(&rq->nr_iowait);
0ff92245 5287 delayacct_blkio_end();
1da177e4 5288}
1da177e4
LT
5289EXPORT_SYMBOL(io_schedule);
5290
5291long __sched io_schedule_timeout(long timeout)
5292{
54d35f29 5293 struct rq *rq = raw_rq();
1da177e4
LT
5294 long ret;
5295
0ff92245 5296 delayacct_blkio_start();
1da177e4 5297 atomic_inc(&rq->nr_iowait);
8f0dfc34 5298 current->in_iowait = 1;
1da177e4 5299 ret = schedule_timeout(timeout);
8f0dfc34 5300 current->in_iowait = 0;
1da177e4 5301 atomic_dec(&rq->nr_iowait);
0ff92245 5302 delayacct_blkio_end();
1da177e4
LT
5303 return ret;
5304}
5305
5306/**
5307 * sys_sched_get_priority_max - return maximum RT priority.
5308 * @policy: scheduling class.
5309 *
5310 * this syscall returns the maximum rt_priority that can be used
5311 * by a given scheduling class.
5312 */
5add95d4 5313SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5314{
5315 int ret = -EINVAL;
5316
5317 switch (policy) {
5318 case SCHED_FIFO:
5319 case SCHED_RR:
5320 ret = MAX_USER_RT_PRIO-1;
5321 break;
5322 case SCHED_NORMAL:
b0a9499c 5323 case SCHED_BATCH:
dd41f596 5324 case SCHED_IDLE:
1da177e4
LT
5325 ret = 0;
5326 break;
5327 }
5328 return ret;
5329}
5330
5331/**
5332 * sys_sched_get_priority_min - return minimum RT priority.
5333 * @policy: scheduling class.
5334 *
5335 * this syscall returns the minimum rt_priority that can be used
5336 * by a given scheduling class.
5337 */
5add95d4 5338SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5339{
5340 int ret = -EINVAL;
5341
5342 switch (policy) {
5343 case SCHED_FIFO:
5344 case SCHED_RR:
5345 ret = 1;
5346 break;
5347 case SCHED_NORMAL:
b0a9499c 5348 case SCHED_BATCH:
dd41f596 5349 case SCHED_IDLE:
1da177e4
LT
5350 ret = 0;
5351 }
5352 return ret;
5353}
5354
5355/**
5356 * sys_sched_rr_get_interval - return the default timeslice of a process.
5357 * @pid: pid of the process.
5358 * @interval: userspace pointer to the timeslice value.
5359 *
5360 * this syscall writes the default timeslice value of a given process
5361 * into the user-space timespec buffer. A value of '0' means infinity.
5362 */
17da2bd9 5363SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5364 struct timespec __user *, interval)
1da177e4 5365{
36c8b586 5366 struct task_struct *p;
a4ec24b4 5367 unsigned int time_slice;
dba091b9
TG
5368 unsigned long flags;
5369 struct rq *rq;
3a5c359a 5370 int retval;
1da177e4 5371 struct timespec t;
1da177e4
LT
5372
5373 if (pid < 0)
3a5c359a 5374 return -EINVAL;
1da177e4
LT
5375
5376 retval = -ESRCH;
1a551ae7 5377 rcu_read_lock();
1da177e4
LT
5378 p = find_process_by_pid(pid);
5379 if (!p)
5380 goto out_unlock;
5381
5382 retval = security_task_getscheduler(p);
5383 if (retval)
5384 goto out_unlock;
5385
dba091b9
TG
5386 rq = task_rq_lock(p, &flags);
5387 time_slice = p->sched_class->get_rr_interval(rq, p);
5388 task_rq_unlock(rq, &flags);
a4ec24b4 5389
1a551ae7 5390 rcu_read_unlock();
a4ec24b4 5391 jiffies_to_timespec(time_slice, &t);
1da177e4 5392 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5393 return retval;
3a5c359a 5394
1da177e4 5395out_unlock:
1a551ae7 5396 rcu_read_unlock();
1da177e4
LT
5397 return retval;
5398}
5399
7c731e0a 5400static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5401
82a1fcb9 5402void sched_show_task(struct task_struct *p)
1da177e4 5403{
1da177e4 5404 unsigned long free = 0;
36c8b586 5405 unsigned state;
1da177e4 5406
1da177e4 5407 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5408 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5409 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5410#if BITS_PER_LONG == 32
1da177e4 5411 if (state == TASK_RUNNING)
3df0fc5b 5412 printk(KERN_CONT " running ");
1da177e4 5413 else
3df0fc5b 5414 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5415#else
5416 if (state == TASK_RUNNING)
3df0fc5b 5417 printk(KERN_CONT " running task ");
1da177e4 5418 else
3df0fc5b 5419 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5420#endif
5421#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5422 free = stack_not_used(p);
1da177e4 5423#endif
3df0fc5b 5424 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5425 task_pid_nr(p), task_pid_nr(p->real_parent),
5426 (unsigned long)task_thread_info(p)->flags);
1da177e4 5427
5fb5e6de 5428 show_stack(p, NULL);
1da177e4
LT
5429}
5430
e59e2ae2 5431void show_state_filter(unsigned long state_filter)
1da177e4 5432{
36c8b586 5433 struct task_struct *g, *p;
1da177e4 5434
4bd77321 5435#if BITS_PER_LONG == 32
3df0fc5b
PZ
5436 printk(KERN_INFO
5437 " task PC stack pid father\n");
1da177e4 5438#else
3df0fc5b
PZ
5439 printk(KERN_INFO
5440 " task PC stack pid father\n");
1da177e4
LT
5441#endif
5442 read_lock(&tasklist_lock);
5443 do_each_thread(g, p) {
5444 /*
5445 * reset the NMI-timeout, listing all files on a slow
5446 * console might take alot of time:
5447 */
5448 touch_nmi_watchdog();
39bc89fd 5449 if (!state_filter || (p->state & state_filter))
82a1fcb9 5450 sched_show_task(p);
1da177e4
LT
5451 } while_each_thread(g, p);
5452
04c9167f
JF
5453 touch_all_softlockup_watchdogs();
5454
dd41f596
IM
5455#ifdef CONFIG_SCHED_DEBUG
5456 sysrq_sched_debug_show();
5457#endif
1da177e4 5458 read_unlock(&tasklist_lock);
e59e2ae2
IM
5459 /*
5460 * Only show locks if all tasks are dumped:
5461 */
93335a21 5462 if (!state_filter)
e59e2ae2 5463 debug_show_all_locks();
1da177e4
LT
5464}
5465
1df21055
IM
5466void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5467{
dd41f596 5468 idle->sched_class = &idle_sched_class;
1df21055
IM
5469}
5470
f340c0d1
IM
5471/**
5472 * init_idle - set up an idle thread for a given CPU
5473 * @idle: task in question
5474 * @cpu: cpu the idle task belongs to
5475 *
5476 * NOTE: this function does not set the idle thread's NEED_RESCHED
5477 * flag, to make booting more robust.
5478 */
5c1e1767 5479void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5480{
70b97a7f 5481 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5482 unsigned long flags;
5483
05fa785c 5484 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5485
dd41f596 5486 __sched_fork(idle);
06b83b5f 5487 idle->state = TASK_RUNNING;
dd41f596
IM
5488 idle->se.exec_start = sched_clock();
5489
96f874e2 5490 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5491 /*
5492 * We're having a chicken and egg problem, even though we are
5493 * holding rq->lock, the cpu isn't yet set to this cpu so the
5494 * lockdep check in task_group() will fail.
5495 *
5496 * Similar case to sched_fork(). / Alternatively we could
5497 * use task_rq_lock() here and obtain the other rq->lock.
5498 *
5499 * Silence PROVE_RCU
5500 */
5501 rcu_read_lock();
dd41f596 5502 __set_task_cpu(idle, cpu);
6506cf6c 5503 rcu_read_unlock();
1da177e4 5504
1da177e4 5505 rq->curr = rq->idle = idle;
4866cde0
NP
5506#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5507 idle->oncpu = 1;
5508#endif
05fa785c 5509 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5510
5511 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5512#if defined(CONFIG_PREEMPT)
5513 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5514#else
a1261f54 5515 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5516#endif
dd41f596
IM
5517 /*
5518 * The idle tasks have their own, simple scheduling class:
5519 */
5520 idle->sched_class = &idle_sched_class;
fb52607a 5521 ftrace_graph_init_task(idle);
1da177e4
LT
5522}
5523
5524/*
5525 * In a system that switches off the HZ timer nohz_cpu_mask
5526 * indicates which cpus entered this state. This is used
5527 * in the rcu update to wait only for active cpus. For system
5528 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5529 * always be CPU_BITS_NONE.
1da177e4 5530 */
6a7b3dc3 5531cpumask_var_t nohz_cpu_mask;
1da177e4 5532
19978ca6
IM
5533/*
5534 * Increase the granularity value when there are more CPUs,
5535 * because with more CPUs the 'effective latency' as visible
5536 * to users decreases. But the relationship is not linear,
5537 * so pick a second-best guess by going with the log2 of the
5538 * number of CPUs.
5539 *
5540 * This idea comes from the SD scheduler of Con Kolivas:
5541 */
acb4a848 5542static int get_update_sysctl_factor(void)
19978ca6 5543{
4ca3ef71 5544 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5545 unsigned int factor;
5546
5547 switch (sysctl_sched_tunable_scaling) {
5548 case SCHED_TUNABLESCALING_NONE:
5549 factor = 1;
5550 break;
5551 case SCHED_TUNABLESCALING_LINEAR:
5552 factor = cpus;
5553 break;
5554 case SCHED_TUNABLESCALING_LOG:
5555 default:
5556 factor = 1 + ilog2(cpus);
5557 break;
5558 }
19978ca6 5559
acb4a848
CE
5560 return factor;
5561}
19978ca6 5562
acb4a848
CE
5563static void update_sysctl(void)
5564{
5565 unsigned int factor = get_update_sysctl_factor();
19978ca6 5566
0bcdcf28
CE
5567#define SET_SYSCTL(name) \
5568 (sysctl_##name = (factor) * normalized_sysctl_##name)
5569 SET_SYSCTL(sched_min_granularity);
5570 SET_SYSCTL(sched_latency);
5571 SET_SYSCTL(sched_wakeup_granularity);
5572 SET_SYSCTL(sched_shares_ratelimit);
5573#undef SET_SYSCTL
5574}
55cd5340 5575
0bcdcf28
CE
5576static inline void sched_init_granularity(void)
5577{
5578 update_sysctl();
19978ca6
IM
5579}
5580
1da177e4
LT
5581#ifdef CONFIG_SMP
5582/*
5583 * This is how migration works:
5584 *
969c7921
TH
5585 * 1) we invoke migration_cpu_stop() on the target CPU using
5586 * stop_one_cpu().
5587 * 2) stopper starts to run (implicitly forcing the migrated thread
5588 * off the CPU)
5589 * 3) it checks whether the migrated task is still in the wrong runqueue.
5590 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5591 * it and puts it into the right queue.
969c7921
TH
5592 * 5) stopper completes and stop_one_cpu() returns and the migration
5593 * is done.
1da177e4
LT
5594 */
5595
5596/*
5597 * Change a given task's CPU affinity. Migrate the thread to a
5598 * proper CPU and schedule it away if the CPU it's executing on
5599 * is removed from the allowed bitmask.
5600 *
5601 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5602 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5603 * call is not atomic; no spinlocks may be held.
5604 */
96f874e2 5605int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5606{
5607 unsigned long flags;
70b97a7f 5608 struct rq *rq;
969c7921 5609 unsigned int dest_cpu;
48f24c4d 5610 int ret = 0;
1da177e4 5611
65cc8e48
PZ
5612 /*
5613 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5614 * drop the rq->lock and still rely on ->cpus_allowed.
5615 */
5616again:
5617 while (task_is_waking(p))
5618 cpu_relax();
1da177e4 5619 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5620 if (task_is_waking(p)) {
5621 task_rq_unlock(rq, &flags);
5622 goto again;
5623 }
e2912009 5624
6ad4c188 5625 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5626 ret = -EINVAL;
5627 goto out;
5628 }
5629
9985b0ba 5630 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5631 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5632 ret = -EINVAL;
5633 goto out;
5634 }
5635
73fe6aae 5636 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5637 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5638 else {
96f874e2
RR
5639 cpumask_copy(&p->cpus_allowed, new_mask);
5640 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5641 }
5642
1da177e4 5643 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5644 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5645 goto out;
5646
969c7921
TH
5647 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5648 if (migrate_task(p, dest_cpu)) {
5649 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5650 /* Need help from migration thread: drop lock and wait. */
5651 task_rq_unlock(rq, &flags);
969c7921 5652 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5653 tlb_migrate_finish(p->mm);
5654 return 0;
5655 }
5656out:
5657 task_rq_unlock(rq, &flags);
48f24c4d 5658
1da177e4
LT
5659 return ret;
5660}
cd8ba7cd 5661EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5662
5663/*
41a2d6cf 5664 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5665 * this because either it can't run here any more (set_cpus_allowed()
5666 * away from this CPU, or CPU going down), or because we're
5667 * attempting to rebalance this task on exec (sched_exec).
5668 *
5669 * So we race with normal scheduler movements, but that's OK, as long
5670 * as the task is no longer on this CPU.
efc30814
KK
5671 *
5672 * Returns non-zero if task was successfully migrated.
1da177e4 5673 */
efc30814 5674static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5675{
70b97a7f 5676 struct rq *rq_dest, *rq_src;
e2912009 5677 int ret = 0;
1da177e4 5678
e761b772 5679 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5680 return ret;
1da177e4
LT
5681
5682 rq_src = cpu_rq(src_cpu);
5683 rq_dest = cpu_rq(dest_cpu);
5684
5685 double_rq_lock(rq_src, rq_dest);
5686 /* Already moved. */
5687 if (task_cpu(p) != src_cpu)
b1e38734 5688 goto done;
1da177e4 5689 /* Affinity changed (again). */
96f874e2 5690 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5691 goto fail;
1da177e4 5692
e2912009
PZ
5693 /*
5694 * If we're not on a rq, the next wake-up will ensure we're
5695 * placed properly.
5696 */
5697 if (p->se.on_rq) {
2e1cb74a 5698 deactivate_task(rq_src, p, 0);
e2912009 5699 set_task_cpu(p, dest_cpu);
dd41f596 5700 activate_task(rq_dest, p, 0);
15afe09b 5701 check_preempt_curr(rq_dest, p, 0);
1da177e4 5702 }
b1e38734 5703done:
efc30814 5704 ret = 1;
b1e38734 5705fail:
1da177e4 5706 double_rq_unlock(rq_src, rq_dest);
efc30814 5707 return ret;
1da177e4
LT
5708}
5709
5710/*
969c7921
TH
5711 * migration_cpu_stop - this will be executed by a highprio stopper thread
5712 * and performs thread migration by bumping thread off CPU then
5713 * 'pushing' onto another runqueue.
1da177e4 5714 */
969c7921 5715static int migration_cpu_stop(void *data)
1da177e4 5716{
969c7921 5717 struct migration_arg *arg = data;
f7b4cddc 5718
969c7921
TH
5719 /*
5720 * The original target cpu might have gone down and we might
5721 * be on another cpu but it doesn't matter.
5722 */
f7b4cddc 5723 local_irq_disable();
969c7921 5724 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5725 local_irq_enable();
1da177e4 5726 return 0;
f7b4cddc
ON
5727}
5728
1da177e4 5729#ifdef CONFIG_HOTPLUG_CPU
054b9108 5730/*
3a4fa0a2 5731 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5732 */
6a1bdc1b 5733void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5734{
1445c08d
ON
5735 struct rq *rq = cpu_rq(dead_cpu);
5736 int needs_cpu, uninitialized_var(dest_cpu);
5737 unsigned long flags;
e76bd8d9 5738
1445c08d 5739 local_irq_save(flags);
e76bd8d9 5740
1445c08d
ON
5741 raw_spin_lock(&rq->lock);
5742 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5743 if (needs_cpu)
5744 dest_cpu = select_fallback_rq(dead_cpu, p);
5745 raw_spin_unlock(&rq->lock);
c1804d54
ON
5746 /*
5747 * It can only fail if we race with set_cpus_allowed(),
5748 * in the racer should migrate the task anyway.
5749 */
1445c08d 5750 if (needs_cpu)
c1804d54 5751 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5752 local_irq_restore(flags);
1da177e4
LT
5753}
5754
5755/*
5756 * While a dead CPU has no uninterruptible tasks queued at this point,
5757 * it might still have a nonzero ->nr_uninterruptible counter, because
5758 * for performance reasons the counter is not stricly tracking tasks to
5759 * their home CPUs. So we just add the counter to another CPU's counter,
5760 * to keep the global sum constant after CPU-down:
5761 */
70b97a7f 5762static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5763{
6ad4c188 5764 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5765 unsigned long flags;
5766
5767 local_irq_save(flags);
5768 double_rq_lock(rq_src, rq_dest);
5769 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5770 rq_src->nr_uninterruptible = 0;
5771 double_rq_unlock(rq_src, rq_dest);
5772 local_irq_restore(flags);
5773}
5774
5775/* Run through task list and migrate tasks from the dead cpu. */
5776static void migrate_live_tasks(int src_cpu)
5777{
48f24c4d 5778 struct task_struct *p, *t;
1da177e4 5779
f7b4cddc 5780 read_lock(&tasklist_lock);
1da177e4 5781
48f24c4d
IM
5782 do_each_thread(t, p) {
5783 if (p == current)
1da177e4
LT
5784 continue;
5785
48f24c4d
IM
5786 if (task_cpu(p) == src_cpu)
5787 move_task_off_dead_cpu(src_cpu, p);
5788 } while_each_thread(t, p);
1da177e4 5789
f7b4cddc 5790 read_unlock(&tasklist_lock);
1da177e4
LT
5791}
5792
dd41f596
IM
5793/*
5794 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5795 * It does so by boosting its priority to highest possible.
5796 * Used by CPU offline code.
1da177e4
LT
5797 */
5798void sched_idle_next(void)
5799{
48f24c4d 5800 int this_cpu = smp_processor_id();
70b97a7f 5801 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5802 struct task_struct *p = rq->idle;
5803 unsigned long flags;
5804
5805 /* cpu has to be offline */
48f24c4d 5806 BUG_ON(cpu_online(this_cpu));
1da177e4 5807
48f24c4d
IM
5808 /*
5809 * Strictly not necessary since rest of the CPUs are stopped by now
5810 * and interrupts disabled on the current cpu.
1da177e4 5811 */
05fa785c 5812 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5813
dd41f596 5814 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5815
94bc9a7b 5816 activate_task(rq, p, 0);
1da177e4 5817
05fa785c 5818 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5819}
5820
48f24c4d
IM
5821/*
5822 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5823 * offline.
5824 */
5825void idle_task_exit(void)
5826{
5827 struct mm_struct *mm = current->active_mm;
5828
5829 BUG_ON(cpu_online(smp_processor_id()));
5830
5831 if (mm != &init_mm)
5832 switch_mm(mm, &init_mm, current);
5833 mmdrop(mm);
5834}
5835
054b9108 5836/* called under rq->lock with disabled interrupts */
36c8b586 5837static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5838{
70b97a7f 5839 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5840
5841 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5842 BUG_ON(!p->exit_state);
1da177e4
LT
5843
5844 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5845 BUG_ON(p->state == TASK_DEAD);
1da177e4 5846
48f24c4d 5847 get_task_struct(p);
1da177e4
LT
5848
5849 /*
5850 * Drop lock around migration; if someone else moves it,
41a2d6cf 5851 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5852 * fine.
5853 */
05fa785c 5854 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5855 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5856 raw_spin_lock_irq(&rq->lock);
1da177e4 5857
48f24c4d 5858 put_task_struct(p);
1da177e4
LT
5859}
5860
5861/* release_task() removes task from tasklist, so we won't find dead tasks. */
5862static void migrate_dead_tasks(unsigned int dead_cpu)
5863{
70b97a7f 5864 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5865 struct task_struct *next;
48f24c4d 5866
dd41f596
IM
5867 for ( ; ; ) {
5868 if (!rq->nr_running)
5869 break;
b67802ea 5870 next = pick_next_task(rq);
dd41f596
IM
5871 if (!next)
5872 break;
79c53799 5873 next->sched_class->put_prev_task(rq, next);
dd41f596 5874 migrate_dead(dead_cpu, next);
e692ab53 5875
1da177e4
LT
5876 }
5877}
dce48a84
TG
5878
5879/*
5880 * remove the tasks which were accounted by rq from calc_load_tasks.
5881 */
5882static void calc_global_load_remove(struct rq *rq)
5883{
5884 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5885 rq->calc_load_active = 0;
dce48a84 5886}
1da177e4
LT
5887#endif /* CONFIG_HOTPLUG_CPU */
5888
e692ab53
NP
5889#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5890
5891static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5892 {
5893 .procname = "sched_domain",
c57baf1e 5894 .mode = 0555,
e0361851 5895 },
56992309 5896 {}
e692ab53
NP
5897};
5898
5899static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5900 {
5901 .procname = "kernel",
c57baf1e 5902 .mode = 0555,
e0361851
AD
5903 .child = sd_ctl_dir,
5904 },
56992309 5905 {}
e692ab53
NP
5906};
5907
5908static struct ctl_table *sd_alloc_ctl_entry(int n)
5909{
5910 struct ctl_table *entry =
5cf9f062 5911 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5912
e692ab53
NP
5913 return entry;
5914}
5915
6382bc90
MM
5916static void sd_free_ctl_entry(struct ctl_table **tablep)
5917{
cd790076 5918 struct ctl_table *entry;
6382bc90 5919
cd790076
MM
5920 /*
5921 * In the intermediate directories, both the child directory and
5922 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5923 * will always be set. In the lowest directory the names are
cd790076
MM
5924 * static strings and all have proc handlers.
5925 */
5926 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5927 if (entry->child)
5928 sd_free_ctl_entry(&entry->child);
cd790076
MM
5929 if (entry->proc_handler == NULL)
5930 kfree(entry->procname);
5931 }
6382bc90
MM
5932
5933 kfree(*tablep);
5934 *tablep = NULL;
5935}
5936
e692ab53 5937static void
e0361851 5938set_table_entry(struct ctl_table *entry,
e692ab53
NP
5939 const char *procname, void *data, int maxlen,
5940 mode_t mode, proc_handler *proc_handler)
5941{
e692ab53
NP
5942 entry->procname = procname;
5943 entry->data = data;
5944 entry->maxlen = maxlen;
5945 entry->mode = mode;
5946 entry->proc_handler = proc_handler;
5947}
5948
5949static struct ctl_table *
5950sd_alloc_ctl_domain_table(struct sched_domain *sd)
5951{
a5d8c348 5952 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5953
ad1cdc1d
MM
5954 if (table == NULL)
5955 return NULL;
5956
e0361851 5957 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5958 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5959 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5960 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5961 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5962 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5963 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5964 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5965 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5966 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5967 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5968 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5969 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5970 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5971 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5972 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5973 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5974 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5975 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5976 &sd->cache_nice_tries,
5977 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5978 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5979 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5980 set_table_entry(&table[11], "name", sd->name,
5981 CORENAME_MAX_SIZE, 0444, proc_dostring);
5982 /* &table[12] is terminator */
e692ab53
NP
5983
5984 return table;
5985}
5986
9a4e7159 5987static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5988{
5989 struct ctl_table *entry, *table;
5990 struct sched_domain *sd;
5991 int domain_num = 0, i;
5992 char buf[32];
5993
5994 for_each_domain(cpu, sd)
5995 domain_num++;
5996 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5997 if (table == NULL)
5998 return NULL;
e692ab53
NP
5999
6000 i = 0;
6001 for_each_domain(cpu, sd) {
6002 snprintf(buf, 32, "domain%d", i);
e692ab53 6003 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6004 entry->mode = 0555;
e692ab53
NP
6005 entry->child = sd_alloc_ctl_domain_table(sd);
6006 entry++;
6007 i++;
6008 }
6009 return table;
6010}
6011
6012static struct ctl_table_header *sd_sysctl_header;
6382bc90 6013static void register_sched_domain_sysctl(void)
e692ab53 6014{
6ad4c188 6015 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6016 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6017 char buf[32];
6018
7378547f
MM
6019 WARN_ON(sd_ctl_dir[0].child);
6020 sd_ctl_dir[0].child = entry;
6021
ad1cdc1d
MM
6022 if (entry == NULL)
6023 return;
6024
6ad4c188 6025 for_each_possible_cpu(i) {
e692ab53 6026 snprintf(buf, 32, "cpu%d", i);
e692ab53 6027 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6028 entry->mode = 0555;
e692ab53 6029 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6030 entry++;
e692ab53 6031 }
7378547f
MM
6032
6033 WARN_ON(sd_sysctl_header);
e692ab53
NP
6034 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6035}
6382bc90 6036
7378547f 6037/* may be called multiple times per register */
6382bc90
MM
6038static void unregister_sched_domain_sysctl(void)
6039{
7378547f
MM
6040 if (sd_sysctl_header)
6041 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6042 sd_sysctl_header = NULL;
7378547f
MM
6043 if (sd_ctl_dir[0].child)
6044 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6045}
e692ab53 6046#else
6382bc90
MM
6047static void register_sched_domain_sysctl(void)
6048{
6049}
6050static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6051{
6052}
6053#endif
6054
1f11eb6a
GH
6055static void set_rq_online(struct rq *rq)
6056{
6057 if (!rq->online) {
6058 const struct sched_class *class;
6059
c6c4927b 6060 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6061 rq->online = 1;
6062
6063 for_each_class(class) {
6064 if (class->rq_online)
6065 class->rq_online(rq);
6066 }
6067 }
6068}
6069
6070static void set_rq_offline(struct rq *rq)
6071{
6072 if (rq->online) {
6073 const struct sched_class *class;
6074
6075 for_each_class(class) {
6076 if (class->rq_offline)
6077 class->rq_offline(rq);
6078 }
6079
c6c4927b 6080 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6081 rq->online = 0;
6082 }
6083}
6084
1da177e4
LT
6085/*
6086 * migration_call - callback that gets triggered when a CPU is added.
6087 * Here we can start up the necessary migration thread for the new CPU.
6088 */
48f24c4d
IM
6089static int __cpuinit
6090migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6091{
48f24c4d 6092 int cpu = (long)hcpu;
1da177e4 6093 unsigned long flags;
969c7921 6094 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6095
6096 switch (action) {
5be9361c 6097
1da177e4 6098 case CPU_UP_PREPARE:
8bb78442 6099 case CPU_UP_PREPARE_FROZEN:
a468d389 6100 rq->calc_load_update = calc_load_update;
1da177e4 6101 break;
48f24c4d 6102
1da177e4 6103 case CPU_ONLINE:
8bb78442 6104 case CPU_ONLINE_FROZEN:
1f94ef59 6105 /* Update our root-domain */
05fa785c 6106 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6107 if (rq->rd) {
c6c4927b 6108 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6109
6110 set_rq_online(rq);
1f94ef59 6111 }
05fa785c 6112 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6113 break;
48f24c4d 6114
1da177e4 6115#ifdef CONFIG_HOTPLUG_CPU
1da177e4 6116 case CPU_DEAD:
8bb78442 6117 case CPU_DEAD_FROZEN:
1da177e4 6118 migrate_live_tasks(cpu);
1da177e4 6119 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 6120 raw_spin_lock_irq(&rq->lock);
2e1cb74a 6121 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
6122 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6123 rq->idle->sched_class = &idle_sched_class;
1da177e4 6124 migrate_dead_tasks(cpu);
05fa785c 6125 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
6126 migrate_nr_uninterruptible(rq);
6127 BUG_ON(rq->nr_running != 0);
dce48a84 6128 calc_global_load_remove(rq);
1da177e4 6129 break;
57d885fe 6130
08f503b0
GH
6131 case CPU_DYING:
6132 case CPU_DYING_FROZEN:
57d885fe 6133 /* Update our root-domain */
05fa785c 6134 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6135 if (rq->rd) {
c6c4927b 6136 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6137 set_rq_offline(rq);
57d885fe 6138 }
05fa785c 6139 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6140 break;
1da177e4
LT
6141#endif
6142 }
6143 return NOTIFY_OK;
6144}
6145
f38b0820
PM
6146/*
6147 * Register at high priority so that task migration (migrate_all_tasks)
6148 * happens before everything else. This has to be lower priority than
cdd6c482 6149 * the notifier in the perf_event subsystem, though.
1da177e4 6150 */
26c2143b 6151static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6152 .notifier_call = migration_call,
50a323b7 6153 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6154};
6155
3a101d05
TH
6156static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6157 unsigned long action, void *hcpu)
6158{
6159 switch (action & ~CPU_TASKS_FROZEN) {
6160 case CPU_ONLINE:
6161 case CPU_DOWN_FAILED:
6162 set_cpu_active((long)hcpu, true);
6163 return NOTIFY_OK;
6164 default:
6165 return NOTIFY_DONE;
6166 }
6167}
6168
6169static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6170 unsigned long action, void *hcpu)
6171{
6172 switch (action & ~CPU_TASKS_FROZEN) {
6173 case CPU_DOWN_PREPARE:
6174 set_cpu_active((long)hcpu, false);
6175 return NOTIFY_OK;
6176 default:
6177 return NOTIFY_DONE;
6178 }
6179}
6180
7babe8db 6181static int __init migration_init(void)
1da177e4
LT
6182{
6183 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6184 int err;
48f24c4d 6185
3a101d05 6186 /* Initialize migration for the boot CPU */
07dccf33
AM
6187 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6188 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6189 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6190 register_cpu_notifier(&migration_notifier);
7babe8db 6191
3a101d05
TH
6192 /* Register cpu active notifiers */
6193 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6194 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6195
a004cd42 6196 return 0;
1da177e4 6197}
7babe8db 6198early_initcall(migration_init);
1da177e4
LT
6199#endif
6200
6201#ifdef CONFIG_SMP
476f3534 6202
3e9830dc 6203#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6204
f6630114
MT
6205static __read_mostly int sched_domain_debug_enabled;
6206
6207static int __init sched_domain_debug_setup(char *str)
6208{
6209 sched_domain_debug_enabled = 1;
6210
6211 return 0;
6212}
6213early_param("sched_debug", sched_domain_debug_setup);
6214
7c16ec58 6215static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6216 struct cpumask *groupmask)
1da177e4 6217{
4dcf6aff 6218 struct sched_group *group = sd->groups;
434d53b0 6219 char str[256];
1da177e4 6220
968ea6d8 6221 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6222 cpumask_clear(groupmask);
4dcf6aff
IM
6223
6224 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6225
6226 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6227 printk("does not load-balance\n");
4dcf6aff 6228 if (sd->parent)
3df0fc5b
PZ
6229 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6230 " has parent");
4dcf6aff 6231 return -1;
41c7ce9a
NP
6232 }
6233
3df0fc5b 6234 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6235
758b2cdc 6236 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6237 printk(KERN_ERR "ERROR: domain->span does not contain "
6238 "CPU%d\n", cpu);
4dcf6aff 6239 }
758b2cdc 6240 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6241 printk(KERN_ERR "ERROR: domain->groups does not contain"
6242 " CPU%d\n", cpu);
4dcf6aff 6243 }
1da177e4 6244
4dcf6aff 6245 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6246 do {
4dcf6aff 6247 if (!group) {
3df0fc5b
PZ
6248 printk("\n");
6249 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6250 break;
6251 }
6252
18a3885f 6253 if (!group->cpu_power) {
3df0fc5b
PZ
6254 printk(KERN_CONT "\n");
6255 printk(KERN_ERR "ERROR: domain->cpu_power not "
6256 "set\n");
4dcf6aff
IM
6257 break;
6258 }
1da177e4 6259
758b2cdc 6260 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6261 printk(KERN_CONT "\n");
6262 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6263 break;
6264 }
1da177e4 6265
758b2cdc 6266 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6267 printk(KERN_CONT "\n");
6268 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6269 break;
6270 }
1da177e4 6271
758b2cdc 6272 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6273
968ea6d8 6274 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6275
3df0fc5b 6276 printk(KERN_CONT " %s", str);
18a3885f 6277 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6278 printk(KERN_CONT " (cpu_power = %d)",
6279 group->cpu_power);
381512cf 6280 }
1da177e4 6281
4dcf6aff
IM
6282 group = group->next;
6283 } while (group != sd->groups);
3df0fc5b 6284 printk(KERN_CONT "\n");
1da177e4 6285
758b2cdc 6286 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6287 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6288
758b2cdc
RR
6289 if (sd->parent &&
6290 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6291 printk(KERN_ERR "ERROR: parent span is not a superset "
6292 "of domain->span\n");
4dcf6aff
IM
6293 return 0;
6294}
1da177e4 6295
4dcf6aff
IM
6296static void sched_domain_debug(struct sched_domain *sd, int cpu)
6297{
d5dd3db1 6298 cpumask_var_t groupmask;
4dcf6aff 6299 int level = 0;
1da177e4 6300
f6630114
MT
6301 if (!sched_domain_debug_enabled)
6302 return;
6303
4dcf6aff
IM
6304 if (!sd) {
6305 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6306 return;
6307 }
1da177e4 6308
4dcf6aff
IM
6309 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6310
d5dd3db1 6311 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6312 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6313 return;
6314 }
6315
4dcf6aff 6316 for (;;) {
7c16ec58 6317 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6318 break;
1da177e4
LT
6319 level++;
6320 sd = sd->parent;
33859f7f 6321 if (!sd)
4dcf6aff
IM
6322 break;
6323 }
d5dd3db1 6324 free_cpumask_var(groupmask);
1da177e4 6325}
6d6bc0ad 6326#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6327# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6328#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6329
1a20ff27 6330static int sd_degenerate(struct sched_domain *sd)
245af2c7 6331{
758b2cdc 6332 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6333 return 1;
6334
6335 /* Following flags need at least 2 groups */
6336 if (sd->flags & (SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
89c4710e
SS
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6342 if (sd->groups != sd->groups->next)
6343 return 0;
6344 }
6345
6346 /* Following flags don't use groups */
c88d5910 6347 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6348 return 0;
6349
6350 return 1;
6351}
6352
48f24c4d
IM
6353static int
6354sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6355{
6356 unsigned long cflags = sd->flags, pflags = parent->flags;
6357
6358 if (sd_degenerate(parent))
6359 return 1;
6360
758b2cdc 6361 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6362 return 0;
6363
245af2c7
SS
6364 /* Flags needing groups don't count if only 1 group in parent */
6365 if (parent->groups == parent->groups->next) {
6366 pflags &= ~(SD_LOAD_BALANCE |
6367 SD_BALANCE_NEWIDLE |
6368 SD_BALANCE_FORK |
89c4710e
SS
6369 SD_BALANCE_EXEC |
6370 SD_SHARE_CPUPOWER |
6371 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6372 if (nr_node_ids == 1)
6373 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6374 }
6375 if (~cflags & pflags)
6376 return 0;
6377
6378 return 1;
6379}
6380
c6c4927b
RR
6381static void free_rootdomain(struct root_domain *rd)
6382{
047106ad
PZ
6383 synchronize_sched();
6384
68e74568
RR
6385 cpupri_cleanup(&rd->cpupri);
6386
c6c4927b
RR
6387 free_cpumask_var(rd->rto_mask);
6388 free_cpumask_var(rd->online);
6389 free_cpumask_var(rd->span);
6390 kfree(rd);
6391}
6392
57d885fe
GH
6393static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6394{
a0490fa3 6395 struct root_domain *old_rd = NULL;
57d885fe 6396 unsigned long flags;
57d885fe 6397
05fa785c 6398 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6399
6400 if (rq->rd) {
a0490fa3 6401 old_rd = rq->rd;
57d885fe 6402
c6c4927b 6403 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6404 set_rq_offline(rq);
57d885fe 6405
c6c4927b 6406 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6407
a0490fa3
IM
6408 /*
6409 * If we dont want to free the old_rt yet then
6410 * set old_rd to NULL to skip the freeing later
6411 * in this function:
6412 */
6413 if (!atomic_dec_and_test(&old_rd->refcount))
6414 old_rd = NULL;
57d885fe
GH
6415 }
6416
6417 atomic_inc(&rd->refcount);
6418 rq->rd = rd;
6419
c6c4927b 6420 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6421 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6422 set_rq_online(rq);
57d885fe 6423
05fa785c 6424 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6425
6426 if (old_rd)
6427 free_rootdomain(old_rd);
57d885fe
GH
6428}
6429
68c38fc3 6430static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6431{
6432 memset(rd, 0, sizeof(*rd));
6433
68c38fc3 6434 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6435 goto out;
68c38fc3 6436 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6437 goto free_span;
68c38fc3 6438 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6439 goto free_online;
6e0534f2 6440
68c38fc3 6441 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6442 goto free_rto_mask;
c6c4927b 6443 return 0;
6e0534f2 6444
68e74568
RR
6445free_rto_mask:
6446 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6447free_online:
6448 free_cpumask_var(rd->online);
6449free_span:
6450 free_cpumask_var(rd->span);
0c910d28 6451out:
c6c4927b 6452 return -ENOMEM;
57d885fe
GH
6453}
6454
6455static void init_defrootdomain(void)
6456{
68c38fc3 6457 init_rootdomain(&def_root_domain);
c6c4927b 6458
57d885fe
GH
6459 atomic_set(&def_root_domain.refcount, 1);
6460}
6461
dc938520 6462static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6463{
6464 struct root_domain *rd;
6465
6466 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6467 if (!rd)
6468 return NULL;
6469
68c38fc3 6470 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6471 kfree(rd);
6472 return NULL;
6473 }
57d885fe
GH
6474
6475 return rd;
6476}
6477
1da177e4 6478/*
0eab9146 6479 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6480 * hold the hotplug lock.
6481 */
0eab9146
IM
6482static void
6483cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6484{
70b97a7f 6485 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6486 struct sched_domain *tmp;
6487
669c55e9
PZ
6488 for (tmp = sd; tmp; tmp = tmp->parent)
6489 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6490
245af2c7 6491 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6492 for (tmp = sd; tmp; ) {
245af2c7
SS
6493 struct sched_domain *parent = tmp->parent;
6494 if (!parent)
6495 break;
f29c9b1c 6496
1a848870 6497 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6498 tmp->parent = parent->parent;
1a848870
SS
6499 if (parent->parent)
6500 parent->parent->child = tmp;
f29c9b1c
LZ
6501 } else
6502 tmp = tmp->parent;
245af2c7
SS
6503 }
6504
1a848870 6505 if (sd && sd_degenerate(sd)) {
245af2c7 6506 sd = sd->parent;
1a848870
SS
6507 if (sd)
6508 sd->child = NULL;
6509 }
1da177e4
LT
6510
6511 sched_domain_debug(sd, cpu);
6512
57d885fe 6513 rq_attach_root(rq, rd);
674311d5 6514 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6515}
6516
6517/* cpus with isolated domains */
dcc30a35 6518static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6519
6520/* Setup the mask of cpus configured for isolated domains */
6521static int __init isolated_cpu_setup(char *str)
6522{
bdddd296 6523 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6524 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6525 return 1;
6526}
6527
8927f494 6528__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6529
6530/*
6711cab4
SS
6531 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6532 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6533 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6534 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6535 *
6536 * init_sched_build_groups will build a circular linked list of the groups
6537 * covered by the given span, and will set each group's ->cpumask correctly,
6538 * and ->cpu_power to 0.
6539 */
a616058b 6540static void
96f874e2
RR
6541init_sched_build_groups(const struct cpumask *span,
6542 const struct cpumask *cpu_map,
6543 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6544 struct sched_group **sg,
96f874e2
RR
6545 struct cpumask *tmpmask),
6546 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6547{
6548 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6549 int i;
6550
96f874e2 6551 cpumask_clear(covered);
7c16ec58 6552
abcd083a 6553 for_each_cpu(i, span) {
6711cab4 6554 struct sched_group *sg;
7c16ec58 6555 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6556 int j;
6557
758b2cdc 6558 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6559 continue;
6560
758b2cdc 6561 cpumask_clear(sched_group_cpus(sg));
18a3885f 6562 sg->cpu_power = 0;
1da177e4 6563
abcd083a 6564 for_each_cpu(j, span) {
7c16ec58 6565 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6566 continue;
6567
96f874e2 6568 cpumask_set_cpu(j, covered);
758b2cdc 6569 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6570 }
6571 if (!first)
6572 first = sg;
6573 if (last)
6574 last->next = sg;
6575 last = sg;
6576 }
6577 last->next = first;
6578}
6579
9c1cfda2 6580#define SD_NODES_PER_DOMAIN 16
1da177e4 6581
9c1cfda2 6582#ifdef CONFIG_NUMA
198e2f18 6583
9c1cfda2
JH
6584/**
6585 * find_next_best_node - find the next node to include in a sched_domain
6586 * @node: node whose sched_domain we're building
6587 * @used_nodes: nodes already in the sched_domain
6588 *
41a2d6cf 6589 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6590 * finds the closest node not already in the @used_nodes map.
6591 *
6592 * Should use nodemask_t.
6593 */
c5f59f08 6594static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6595{
6596 int i, n, val, min_val, best_node = 0;
6597
6598 min_val = INT_MAX;
6599
076ac2af 6600 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6601 /* Start at @node */
076ac2af 6602 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6603
6604 if (!nr_cpus_node(n))
6605 continue;
6606
6607 /* Skip already used nodes */
c5f59f08 6608 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6609 continue;
6610
6611 /* Simple min distance search */
6612 val = node_distance(node, n);
6613
6614 if (val < min_val) {
6615 min_val = val;
6616 best_node = n;
6617 }
6618 }
6619
c5f59f08 6620 node_set(best_node, *used_nodes);
9c1cfda2
JH
6621 return best_node;
6622}
6623
6624/**
6625 * sched_domain_node_span - get a cpumask for a node's sched_domain
6626 * @node: node whose cpumask we're constructing
73486722 6627 * @span: resulting cpumask
9c1cfda2 6628 *
41a2d6cf 6629 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6630 * should be one that prevents unnecessary balancing, but also spreads tasks
6631 * out optimally.
6632 */
96f874e2 6633static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6634{
c5f59f08 6635 nodemask_t used_nodes;
48f24c4d 6636 int i;
9c1cfda2 6637
6ca09dfc 6638 cpumask_clear(span);
c5f59f08 6639 nodes_clear(used_nodes);
9c1cfda2 6640
6ca09dfc 6641 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6642 node_set(node, used_nodes);
9c1cfda2
JH
6643
6644 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6645 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6646
6ca09dfc 6647 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6648 }
9c1cfda2 6649}
6d6bc0ad 6650#endif /* CONFIG_NUMA */
9c1cfda2 6651
5c45bf27 6652int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6653
6c99e9ad
RR
6654/*
6655 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6656 *
6657 * ( See the the comments in include/linux/sched.h:struct sched_group
6658 * and struct sched_domain. )
6c99e9ad
RR
6659 */
6660struct static_sched_group {
6661 struct sched_group sg;
6662 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6663};
6664
6665struct static_sched_domain {
6666 struct sched_domain sd;
6667 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6668};
6669
49a02c51
AH
6670struct s_data {
6671#ifdef CONFIG_NUMA
6672 int sd_allnodes;
6673 cpumask_var_t domainspan;
6674 cpumask_var_t covered;
6675 cpumask_var_t notcovered;
6676#endif
6677 cpumask_var_t nodemask;
6678 cpumask_var_t this_sibling_map;
6679 cpumask_var_t this_core_map;
01a08546 6680 cpumask_var_t this_book_map;
49a02c51
AH
6681 cpumask_var_t send_covered;
6682 cpumask_var_t tmpmask;
6683 struct sched_group **sched_group_nodes;
6684 struct root_domain *rd;
6685};
6686
2109b99e
AH
6687enum s_alloc {
6688 sa_sched_groups = 0,
6689 sa_rootdomain,
6690 sa_tmpmask,
6691 sa_send_covered,
01a08546 6692 sa_this_book_map,
2109b99e
AH
6693 sa_this_core_map,
6694 sa_this_sibling_map,
6695 sa_nodemask,
6696 sa_sched_group_nodes,
6697#ifdef CONFIG_NUMA
6698 sa_notcovered,
6699 sa_covered,
6700 sa_domainspan,
6701#endif
6702 sa_none,
6703};
6704
9c1cfda2 6705/*
48f24c4d 6706 * SMT sched-domains:
9c1cfda2 6707 */
1da177e4 6708#ifdef CONFIG_SCHED_SMT
6c99e9ad 6709static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6710static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6711
41a2d6cf 6712static int
96f874e2
RR
6713cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6714 struct sched_group **sg, struct cpumask *unused)
1da177e4 6715{
6711cab4 6716 if (sg)
1871e52c 6717 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6718 return cpu;
6719}
6d6bc0ad 6720#endif /* CONFIG_SCHED_SMT */
1da177e4 6721
48f24c4d
IM
6722/*
6723 * multi-core sched-domains:
6724 */
1e9f28fa 6725#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6726static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6727static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6728
41a2d6cf 6729static int
96f874e2
RR
6730cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6731 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6732{
6711cab4 6733 int group;
f269893c 6734#ifdef CONFIG_SCHED_SMT
c69fc56d 6735 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6736 group = cpumask_first(mask);
f269893c
HC
6737#else
6738 group = cpu;
6739#endif
6711cab4 6740 if (sg)
6c99e9ad 6741 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6742 return group;
1e9f28fa 6743}
f269893c 6744#endif /* CONFIG_SCHED_MC */
1e9f28fa 6745
01a08546
HC
6746/*
6747 * book sched-domains:
6748 */
6749#ifdef CONFIG_SCHED_BOOK
6750static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6751static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6752
41a2d6cf 6753static int
01a08546
HC
6754cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6755 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6756{
01a08546
HC
6757 int group = cpu;
6758#ifdef CONFIG_SCHED_MC
6759 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6760 group = cpumask_first(mask);
6761#elif defined(CONFIG_SCHED_SMT)
6762 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6763 group = cpumask_first(mask);
6764#endif
6711cab4 6765 if (sg)
01a08546
HC
6766 *sg = &per_cpu(sched_group_book, group).sg;
6767 return group;
1e9f28fa 6768}
01a08546 6769#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6770
6c99e9ad
RR
6771static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6772static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6773
41a2d6cf 6774static int
96f874e2
RR
6775cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6776 struct sched_group **sg, struct cpumask *mask)
1da177e4 6777{
6711cab4 6778 int group;
01a08546
HC
6779#ifdef CONFIG_SCHED_BOOK
6780 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6781 group = cpumask_first(mask);
6782#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6783 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6784 group = cpumask_first(mask);
1e9f28fa 6785#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6786 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6787 group = cpumask_first(mask);
1da177e4 6788#else
6711cab4 6789 group = cpu;
1da177e4 6790#endif
6711cab4 6791 if (sg)
6c99e9ad 6792 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6793 return group;
1da177e4
LT
6794}
6795
6796#ifdef CONFIG_NUMA
1da177e4 6797/*
9c1cfda2
JH
6798 * The init_sched_build_groups can't handle what we want to do with node
6799 * groups, so roll our own. Now each node has its own list of groups which
6800 * gets dynamically allocated.
1da177e4 6801 */
62ea9ceb 6802static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6803static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6804
62ea9ceb 6805static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6806static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6807
96f874e2
RR
6808static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6809 struct sched_group **sg,
6810 struct cpumask *nodemask)
9c1cfda2 6811{
6711cab4
SS
6812 int group;
6813
6ca09dfc 6814 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6815 group = cpumask_first(nodemask);
6711cab4
SS
6816
6817 if (sg)
6c99e9ad 6818 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6819 return group;
1da177e4 6820}
6711cab4 6821
08069033
SS
6822static void init_numa_sched_groups_power(struct sched_group *group_head)
6823{
6824 struct sched_group *sg = group_head;
6825 int j;
6826
6827 if (!sg)
6828 return;
3a5c359a 6829 do {
758b2cdc 6830 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6831 struct sched_domain *sd;
08069033 6832
6c99e9ad 6833 sd = &per_cpu(phys_domains, j).sd;
13318a71 6834 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6835 /*
6836 * Only add "power" once for each
6837 * physical package.
6838 */
6839 continue;
6840 }
08069033 6841
18a3885f 6842 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6843 }
6844 sg = sg->next;
6845 } while (sg != group_head);
08069033 6846}
0601a88d
AH
6847
6848static int build_numa_sched_groups(struct s_data *d,
6849 const struct cpumask *cpu_map, int num)
6850{
6851 struct sched_domain *sd;
6852 struct sched_group *sg, *prev;
6853 int n, j;
6854
6855 cpumask_clear(d->covered);
6856 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6857 if (cpumask_empty(d->nodemask)) {
6858 d->sched_group_nodes[num] = NULL;
6859 goto out;
6860 }
6861
6862 sched_domain_node_span(num, d->domainspan);
6863 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6864
6865 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6866 GFP_KERNEL, num);
6867 if (!sg) {
3df0fc5b
PZ
6868 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6869 num);
0601a88d
AH
6870 return -ENOMEM;
6871 }
6872 d->sched_group_nodes[num] = sg;
6873
6874 for_each_cpu(j, d->nodemask) {
6875 sd = &per_cpu(node_domains, j).sd;
6876 sd->groups = sg;
6877 }
6878
18a3885f 6879 sg->cpu_power = 0;
0601a88d
AH
6880 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6881 sg->next = sg;
6882 cpumask_or(d->covered, d->covered, d->nodemask);
6883
6884 prev = sg;
6885 for (j = 0; j < nr_node_ids; j++) {
6886 n = (num + j) % nr_node_ids;
6887 cpumask_complement(d->notcovered, d->covered);
6888 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6889 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6890 if (cpumask_empty(d->tmpmask))
6891 break;
6892 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6893 if (cpumask_empty(d->tmpmask))
6894 continue;
6895 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6896 GFP_KERNEL, num);
6897 if (!sg) {
3df0fc5b
PZ
6898 printk(KERN_WARNING
6899 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6900 return -ENOMEM;
6901 }
18a3885f 6902 sg->cpu_power = 0;
0601a88d
AH
6903 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6904 sg->next = prev->next;
6905 cpumask_or(d->covered, d->covered, d->tmpmask);
6906 prev->next = sg;
6907 prev = sg;
6908 }
6909out:
6910 return 0;
6911}
6d6bc0ad 6912#endif /* CONFIG_NUMA */
1da177e4 6913
a616058b 6914#ifdef CONFIG_NUMA
51888ca2 6915/* Free memory allocated for various sched_group structures */
96f874e2
RR
6916static void free_sched_groups(const struct cpumask *cpu_map,
6917 struct cpumask *nodemask)
51888ca2 6918{
a616058b 6919 int cpu, i;
51888ca2 6920
abcd083a 6921 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6922 struct sched_group **sched_group_nodes
6923 = sched_group_nodes_bycpu[cpu];
6924
51888ca2
SV
6925 if (!sched_group_nodes)
6926 continue;
6927
076ac2af 6928 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6929 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6930
6ca09dfc 6931 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6932 if (cpumask_empty(nodemask))
51888ca2
SV
6933 continue;
6934
6935 if (sg == NULL)
6936 continue;
6937 sg = sg->next;
6938next_sg:
6939 oldsg = sg;
6940 sg = sg->next;
6941 kfree(oldsg);
6942 if (oldsg != sched_group_nodes[i])
6943 goto next_sg;
6944 }
6945 kfree(sched_group_nodes);
6946 sched_group_nodes_bycpu[cpu] = NULL;
6947 }
51888ca2 6948}
6d6bc0ad 6949#else /* !CONFIG_NUMA */
96f874e2
RR
6950static void free_sched_groups(const struct cpumask *cpu_map,
6951 struct cpumask *nodemask)
a616058b
SS
6952{
6953}
6d6bc0ad 6954#endif /* CONFIG_NUMA */
51888ca2 6955
89c4710e
SS
6956/*
6957 * Initialize sched groups cpu_power.
6958 *
6959 * cpu_power indicates the capacity of sched group, which is used while
6960 * distributing the load between different sched groups in a sched domain.
6961 * Typically cpu_power for all the groups in a sched domain will be same unless
6962 * there are asymmetries in the topology. If there are asymmetries, group
6963 * having more cpu_power will pickup more load compared to the group having
6964 * less cpu_power.
89c4710e
SS
6965 */
6966static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6967{
6968 struct sched_domain *child;
6969 struct sched_group *group;
f93e65c1
PZ
6970 long power;
6971 int weight;
89c4710e
SS
6972
6973 WARN_ON(!sd || !sd->groups);
6974
13318a71 6975 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6976 return;
6977
aae6d3dd
SS
6978 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6979
89c4710e
SS
6980 child = sd->child;
6981
18a3885f 6982 sd->groups->cpu_power = 0;
5517d86b 6983
f93e65c1
PZ
6984 if (!child) {
6985 power = SCHED_LOAD_SCALE;
6986 weight = cpumask_weight(sched_domain_span(sd));
6987 /*
6988 * SMT siblings share the power of a single core.
a52bfd73
PZ
6989 * Usually multiple threads get a better yield out of
6990 * that one core than a single thread would have,
6991 * reflect that in sd->smt_gain.
f93e65c1 6992 */
a52bfd73
PZ
6993 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6994 power *= sd->smt_gain;
f93e65c1 6995 power /= weight;
a52bfd73
PZ
6996 power >>= SCHED_LOAD_SHIFT;
6997 }
18a3885f 6998 sd->groups->cpu_power += power;
89c4710e
SS
6999 return;
7000 }
7001
89c4710e 7002 /*
f93e65c1 7003 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7004 */
7005 group = child->groups;
7006 do {
18a3885f 7007 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7008 group = group->next;
7009 } while (group != child->groups);
7010}
7011
7c16ec58
MT
7012/*
7013 * Initializers for schedule domains
7014 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7015 */
7016
a5d8c348
IM
7017#ifdef CONFIG_SCHED_DEBUG
7018# define SD_INIT_NAME(sd, type) sd->name = #type
7019#else
7020# define SD_INIT_NAME(sd, type) do { } while (0)
7021#endif
7022
7c16ec58 7023#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7024
7c16ec58
MT
7025#define SD_INIT_FUNC(type) \
7026static noinline void sd_init_##type(struct sched_domain *sd) \
7027{ \
7028 memset(sd, 0, sizeof(*sd)); \
7029 *sd = SD_##type##_INIT; \
1d3504fc 7030 sd->level = SD_LV_##type; \
a5d8c348 7031 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7032}
7033
7034SD_INIT_FUNC(CPU)
7035#ifdef CONFIG_NUMA
7036 SD_INIT_FUNC(ALLNODES)
7037 SD_INIT_FUNC(NODE)
7038#endif
7039#ifdef CONFIG_SCHED_SMT
7040 SD_INIT_FUNC(SIBLING)
7041#endif
7042#ifdef CONFIG_SCHED_MC
7043 SD_INIT_FUNC(MC)
7044#endif
01a08546
HC
7045#ifdef CONFIG_SCHED_BOOK
7046 SD_INIT_FUNC(BOOK)
7047#endif
7c16ec58 7048
1d3504fc
HS
7049static int default_relax_domain_level = -1;
7050
7051static int __init setup_relax_domain_level(char *str)
7052{
30e0e178
LZ
7053 unsigned long val;
7054
7055 val = simple_strtoul(str, NULL, 0);
7056 if (val < SD_LV_MAX)
7057 default_relax_domain_level = val;
7058
1d3504fc
HS
7059 return 1;
7060}
7061__setup("relax_domain_level=", setup_relax_domain_level);
7062
7063static void set_domain_attribute(struct sched_domain *sd,
7064 struct sched_domain_attr *attr)
7065{
7066 int request;
7067
7068 if (!attr || attr->relax_domain_level < 0) {
7069 if (default_relax_domain_level < 0)
7070 return;
7071 else
7072 request = default_relax_domain_level;
7073 } else
7074 request = attr->relax_domain_level;
7075 if (request < sd->level) {
7076 /* turn off idle balance on this domain */
c88d5910 7077 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7078 } else {
7079 /* turn on idle balance on this domain */
c88d5910 7080 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7081 }
7082}
7083
2109b99e
AH
7084static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7085 const struct cpumask *cpu_map)
7086{
7087 switch (what) {
7088 case sa_sched_groups:
7089 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7090 d->sched_group_nodes = NULL;
7091 case sa_rootdomain:
7092 free_rootdomain(d->rd); /* fall through */
7093 case sa_tmpmask:
7094 free_cpumask_var(d->tmpmask); /* fall through */
7095 case sa_send_covered:
7096 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7097 case sa_this_book_map:
7098 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7099 case sa_this_core_map:
7100 free_cpumask_var(d->this_core_map); /* fall through */
7101 case sa_this_sibling_map:
7102 free_cpumask_var(d->this_sibling_map); /* fall through */
7103 case sa_nodemask:
7104 free_cpumask_var(d->nodemask); /* fall through */
7105 case sa_sched_group_nodes:
d1b55138 7106#ifdef CONFIG_NUMA
2109b99e
AH
7107 kfree(d->sched_group_nodes); /* fall through */
7108 case sa_notcovered:
7109 free_cpumask_var(d->notcovered); /* fall through */
7110 case sa_covered:
7111 free_cpumask_var(d->covered); /* fall through */
7112 case sa_domainspan:
7113 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7114#endif
2109b99e
AH
7115 case sa_none:
7116 break;
7117 }
7118}
3404c8d9 7119
2109b99e
AH
7120static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7121 const struct cpumask *cpu_map)
7122{
3404c8d9 7123#ifdef CONFIG_NUMA
2109b99e
AH
7124 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7125 return sa_none;
7126 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7127 return sa_domainspan;
7128 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7129 return sa_covered;
7130 /* Allocate the per-node list of sched groups */
7131 d->sched_group_nodes = kcalloc(nr_node_ids,
7132 sizeof(struct sched_group *), GFP_KERNEL);
7133 if (!d->sched_group_nodes) {
3df0fc5b 7134 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7135 return sa_notcovered;
d1b55138 7136 }
2109b99e 7137 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7138#endif
2109b99e
AH
7139 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7140 return sa_sched_group_nodes;
7141 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7142 return sa_nodemask;
7143 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7144 return sa_this_sibling_map;
01a08546 7145 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7146 return sa_this_core_map;
01a08546
HC
7147 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7148 return sa_this_book_map;
2109b99e
AH
7149 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7150 return sa_send_covered;
7151 d->rd = alloc_rootdomain();
7152 if (!d->rd) {
3df0fc5b 7153 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7154 return sa_tmpmask;
57d885fe 7155 }
2109b99e
AH
7156 return sa_rootdomain;
7157}
57d885fe 7158
7f4588f3
AH
7159static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7160 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7161{
7162 struct sched_domain *sd = NULL;
7c16ec58 7163#ifdef CONFIG_NUMA
7f4588f3 7164 struct sched_domain *parent;
1da177e4 7165
7f4588f3
AH
7166 d->sd_allnodes = 0;
7167 if (cpumask_weight(cpu_map) >
7168 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7169 sd = &per_cpu(allnodes_domains, i).sd;
7170 SD_INIT(sd, ALLNODES);
1d3504fc 7171 set_domain_attribute(sd, attr);
7f4588f3
AH
7172 cpumask_copy(sched_domain_span(sd), cpu_map);
7173 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7174 d->sd_allnodes = 1;
7175 }
7176 parent = sd;
7177
7178 sd = &per_cpu(node_domains, i).sd;
7179 SD_INIT(sd, NODE);
7180 set_domain_attribute(sd, attr);
7181 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7182 sd->parent = parent;
7183 if (parent)
7184 parent->child = sd;
7185 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7186#endif
7f4588f3
AH
7187 return sd;
7188}
1da177e4 7189
87cce662
AH
7190static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7191 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7192 struct sched_domain *parent, int i)
7193{
7194 struct sched_domain *sd;
7195 sd = &per_cpu(phys_domains, i).sd;
7196 SD_INIT(sd, CPU);
7197 set_domain_attribute(sd, attr);
7198 cpumask_copy(sched_domain_span(sd), d->nodemask);
7199 sd->parent = parent;
7200 if (parent)
7201 parent->child = sd;
7202 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7203 return sd;
7204}
1da177e4 7205
01a08546
HC
7206static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7207 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7208 struct sched_domain *parent, int i)
7209{
7210 struct sched_domain *sd = parent;
7211#ifdef CONFIG_SCHED_BOOK
7212 sd = &per_cpu(book_domains, i).sd;
7213 SD_INIT(sd, BOOK);
7214 set_domain_attribute(sd, attr);
7215 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7216 sd->parent = parent;
7217 parent->child = sd;
7218 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7219#endif
7220 return sd;
7221}
7222
410c4081
AH
7223static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7224 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7225 struct sched_domain *parent, int i)
7226{
7227 struct sched_domain *sd = parent;
1e9f28fa 7228#ifdef CONFIG_SCHED_MC
410c4081
AH
7229 sd = &per_cpu(core_domains, i).sd;
7230 SD_INIT(sd, MC);
7231 set_domain_attribute(sd, attr);
7232 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7233 sd->parent = parent;
7234 parent->child = sd;
7235 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7236#endif
410c4081
AH
7237 return sd;
7238}
1e9f28fa 7239
d8173535
AH
7240static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7241 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7242 struct sched_domain *parent, int i)
7243{
7244 struct sched_domain *sd = parent;
1da177e4 7245#ifdef CONFIG_SCHED_SMT
d8173535
AH
7246 sd = &per_cpu(cpu_domains, i).sd;
7247 SD_INIT(sd, SIBLING);
7248 set_domain_attribute(sd, attr);
7249 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7250 sd->parent = parent;
7251 parent->child = sd;
7252 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7253#endif
d8173535
AH
7254 return sd;
7255}
1da177e4 7256
0e8e85c9
AH
7257static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7258 const struct cpumask *cpu_map, int cpu)
7259{
7260 switch (l) {
1da177e4 7261#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7262 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7263 cpumask_and(d->this_sibling_map, cpu_map,
7264 topology_thread_cpumask(cpu));
7265 if (cpu == cpumask_first(d->this_sibling_map))
7266 init_sched_build_groups(d->this_sibling_map, cpu_map,
7267 &cpu_to_cpu_group,
7268 d->send_covered, d->tmpmask);
7269 break;
1da177e4 7270#endif
1e9f28fa 7271#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7272 case SD_LV_MC: /* set up multi-core groups */
7273 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7274 if (cpu == cpumask_first(d->this_core_map))
7275 init_sched_build_groups(d->this_core_map, cpu_map,
7276 &cpu_to_core_group,
7277 d->send_covered, d->tmpmask);
7278 break;
01a08546
HC
7279#endif
7280#ifdef CONFIG_SCHED_BOOK
7281 case SD_LV_BOOK: /* set up book groups */
7282 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7283 if (cpu == cpumask_first(d->this_book_map))
7284 init_sched_build_groups(d->this_book_map, cpu_map,
7285 &cpu_to_book_group,
7286 d->send_covered, d->tmpmask);
7287 break;
1e9f28fa 7288#endif
86548096
AH
7289 case SD_LV_CPU: /* set up physical groups */
7290 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7291 if (!cpumask_empty(d->nodemask))
7292 init_sched_build_groups(d->nodemask, cpu_map,
7293 &cpu_to_phys_group,
7294 d->send_covered, d->tmpmask);
7295 break;
1da177e4 7296#ifdef CONFIG_NUMA
de616e36
AH
7297 case SD_LV_ALLNODES:
7298 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7299 d->send_covered, d->tmpmask);
7300 break;
7301#endif
0e8e85c9
AH
7302 default:
7303 break;
7c16ec58 7304 }
0e8e85c9 7305}
9c1cfda2 7306
2109b99e
AH
7307/*
7308 * Build sched domains for a given set of cpus and attach the sched domains
7309 * to the individual cpus
7310 */
7311static int __build_sched_domains(const struct cpumask *cpu_map,
7312 struct sched_domain_attr *attr)
7313{
7314 enum s_alloc alloc_state = sa_none;
7315 struct s_data d;
294b0c96 7316 struct sched_domain *sd;
2109b99e 7317 int i;
7c16ec58 7318#ifdef CONFIG_NUMA
2109b99e 7319 d.sd_allnodes = 0;
7c16ec58 7320#endif
9c1cfda2 7321
2109b99e
AH
7322 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7323 if (alloc_state != sa_rootdomain)
7324 goto error;
7325 alloc_state = sa_sched_groups;
9c1cfda2 7326
1da177e4 7327 /*
1a20ff27 7328 * Set up domains for cpus specified by the cpu_map.
1da177e4 7329 */
abcd083a 7330 for_each_cpu(i, cpu_map) {
49a02c51
AH
7331 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7332 cpu_map);
9761eea8 7333
7f4588f3 7334 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7335 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7336 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7337 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7338 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7339 }
9c1cfda2 7340
abcd083a 7341 for_each_cpu(i, cpu_map) {
0e8e85c9 7342 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7343 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7344 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7345 }
9c1cfda2 7346
1da177e4 7347 /* Set up physical groups */
86548096
AH
7348 for (i = 0; i < nr_node_ids; i++)
7349 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7350
1da177e4
LT
7351#ifdef CONFIG_NUMA
7352 /* Set up node groups */
de616e36
AH
7353 if (d.sd_allnodes)
7354 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7355
0601a88d
AH
7356 for (i = 0; i < nr_node_ids; i++)
7357 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7358 goto error;
1da177e4
LT
7359#endif
7360
7361 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7362#ifdef CONFIG_SCHED_SMT
abcd083a 7363 for_each_cpu(i, cpu_map) {
294b0c96 7364 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7365 init_sched_groups_power(i, sd);
5c45bf27 7366 }
1da177e4 7367#endif
1e9f28fa 7368#ifdef CONFIG_SCHED_MC
abcd083a 7369 for_each_cpu(i, cpu_map) {
294b0c96 7370 sd = &per_cpu(core_domains, i).sd;
89c4710e 7371 init_sched_groups_power(i, sd);
5c45bf27
SS
7372 }
7373#endif
01a08546
HC
7374#ifdef CONFIG_SCHED_BOOK
7375 for_each_cpu(i, cpu_map) {
7376 sd = &per_cpu(book_domains, i).sd;
7377 init_sched_groups_power(i, sd);
7378 }
7379#endif
1e9f28fa 7380
abcd083a 7381 for_each_cpu(i, cpu_map) {
294b0c96 7382 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7383 init_sched_groups_power(i, sd);
1da177e4
LT
7384 }
7385
9c1cfda2 7386#ifdef CONFIG_NUMA
076ac2af 7387 for (i = 0; i < nr_node_ids; i++)
49a02c51 7388 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7389
49a02c51 7390 if (d.sd_allnodes) {
6711cab4 7391 struct sched_group *sg;
f712c0c7 7392
96f874e2 7393 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7394 d.tmpmask);
f712c0c7
SS
7395 init_numa_sched_groups_power(sg);
7396 }
9c1cfda2
JH
7397#endif
7398
1da177e4 7399 /* Attach the domains */
abcd083a 7400 for_each_cpu(i, cpu_map) {
1da177e4 7401#ifdef CONFIG_SCHED_SMT
6c99e9ad 7402 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7403#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7404 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7405#elif defined(CONFIG_SCHED_BOOK)
7406 sd = &per_cpu(book_domains, i).sd;
1da177e4 7407#else
6c99e9ad 7408 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7409#endif
49a02c51 7410 cpu_attach_domain(sd, d.rd, i);
1da177e4 7411 }
51888ca2 7412
2109b99e
AH
7413 d.sched_group_nodes = NULL; /* don't free this we still need it */
7414 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7415 return 0;
51888ca2 7416
51888ca2 7417error:
2109b99e
AH
7418 __free_domain_allocs(&d, alloc_state, cpu_map);
7419 return -ENOMEM;
1da177e4 7420}
029190c5 7421
96f874e2 7422static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7423{
7424 return __build_sched_domains(cpu_map, NULL);
7425}
7426
acc3f5d7 7427static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7428static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7429static struct sched_domain_attr *dattr_cur;
7430 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7431
7432/*
7433 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7434 * cpumask) fails, then fallback to a single sched domain,
7435 * as determined by the single cpumask fallback_doms.
029190c5 7436 */
4212823f 7437static cpumask_var_t fallback_doms;
029190c5 7438
ee79d1bd
HC
7439/*
7440 * arch_update_cpu_topology lets virtualized architectures update the
7441 * cpu core maps. It is supposed to return 1 if the topology changed
7442 * or 0 if it stayed the same.
7443 */
7444int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7445{
ee79d1bd 7446 return 0;
22e52b07
HC
7447}
7448
acc3f5d7
RR
7449cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7450{
7451 int i;
7452 cpumask_var_t *doms;
7453
7454 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7455 if (!doms)
7456 return NULL;
7457 for (i = 0; i < ndoms; i++) {
7458 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7459 free_sched_domains(doms, i);
7460 return NULL;
7461 }
7462 }
7463 return doms;
7464}
7465
7466void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7467{
7468 unsigned int i;
7469 for (i = 0; i < ndoms; i++)
7470 free_cpumask_var(doms[i]);
7471 kfree(doms);
7472}
7473
1a20ff27 7474/*
41a2d6cf 7475 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7476 * For now this just excludes isolated cpus, but could be used to
7477 * exclude other special cases in the future.
1a20ff27 7478 */
96f874e2 7479static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7480{
7378547f
MM
7481 int err;
7482
22e52b07 7483 arch_update_cpu_topology();
029190c5 7484 ndoms_cur = 1;
acc3f5d7 7485 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7486 if (!doms_cur)
acc3f5d7
RR
7487 doms_cur = &fallback_doms;
7488 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7489 dattr_cur = NULL;
acc3f5d7 7490 err = build_sched_domains(doms_cur[0]);
6382bc90 7491 register_sched_domain_sysctl();
7378547f
MM
7492
7493 return err;
1a20ff27
DG
7494}
7495
96f874e2
RR
7496static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7497 struct cpumask *tmpmask)
1da177e4 7498{
7c16ec58 7499 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7500}
1da177e4 7501
1a20ff27
DG
7502/*
7503 * Detach sched domains from a group of cpus specified in cpu_map
7504 * These cpus will now be attached to the NULL domain
7505 */
96f874e2 7506static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7507{
96f874e2
RR
7508 /* Save because hotplug lock held. */
7509 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7510 int i;
7511
abcd083a 7512 for_each_cpu(i, cpu_map)
57d885fe 7513 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7514 synchronize_sched();
96f874e2 7515 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7516}
7517
1d3504fc
HS
7518/* handle null as "default" */
7519static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7520 struct sched_domain_attr *new, int idx_new)
7521{
7522 struct sched_domain_attr tmp;
7523
7524 /* fast path */
7525 if (!new && !cur)
7526 return 1;
7527
7528 tmp = SD_ATTR_INIT;
7529 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7530 new ? (new + idx_new) : &tmp,
7531 sizeof(struct sched_domain_attr));
7532}
7533
029190c5
PJ
7534/*
7535 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7536 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7537 * doms_new[] to the current sched domain partitioning, doms_cur[].
7538 * It destroys each deleted domain and builds each new domain.
7539 *
acc3f5d7 7540 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7541 * The masks don't intersect (don't overlap.) We should setup one
7542 * sched domain for each mask. CPUs not in any of the cpumasks will
7543 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7544 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7545 * it as it is.
7546 *
acc3f5d7
RR
7547 * The passed in 'doms_new' should be allocated using
7548 * alloc_sched_domains. This routine takes ownership of it and will
7549 * free_sched_domains it when done with it. If the caller failed the
7550 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7551 * and partition_sched_domains() will fallback to the single partition
7552 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7553 *
96f874e2 7554 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7555 * ndoms_new == 0 is a special case for destroying existing domains,
7556 * and it will not create the default domain.
dfb512ec 7557 *
029190c5
PJ
7558 * Call with hotplug lock held
7559 */
acc3f5d7 7560void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7561 struct sched_domain_attr *dattr_new)
029190c5 7562{
dfb512ec 7563 int i, j, n;
d65bd5ec 7564 int new_topology;
029190c5 7565
712555ee 7566 mutex_lock(&sched_domains_mutex);
a1835615 7567
7378547f
MM
7568 /* always unregister in case we don't destroy any domains */
7569 unregister_sched_domain_sysctl();
7570
d65bd5ec
HC
7571 /* Let architecture update cpu core mappings. */
7572 new_topology = arch_update_cpu_topology();
7573
dfb512ec 7574 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7575
7576 /* Destroy deleted domains */
7577 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7578 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7579 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7580 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7581 goto match1;
7582 }
7583 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7584 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7585match1:
7586 ;
7587 }
7588
e761b772
MK
7589 if (doms_new == NULL) {
7590 ndoms_cur = 0;
acc3f5d7 7591 doms_new = &fallback_doms;
6ad4c188 7592 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7593 WARN_ON_ONCE(dattr_new);
e761b772
MK
7594 }
7595
029190c5
PJ
7596 /* Build new domains */
7597 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7598 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7599 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7600 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7601 goto match2;
7602 }
7603 /* no match - add a new doms_new */
acc3f5d7 7604 __build_sched_domains(doms_new[i],
1d3504fc 7605 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7606match2:
7607 ;
7608 }
7609
7610 /* Remember the new sched domains */
acc3f5d7
RR
7611 if (doms_cur != &fallback_doms)
7612 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7613 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7614 doms_cur = doms_new;
1d3504fc 7615 dattr_cur = dattr_new;
029190c5 7616 ndoms_cur = ndoms_new;
7378547f
MM
7617
7618 register_sched_domain_sysctl();
a1835615 7619
712555ee 7620 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7621}
7622
5c45bf27 7623#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7624static void arch_reinit_sched_domains(void)
5c45bf27 7625{
95402b38 7626 get_online_cpus();
dfb512ec
MK
7627
7628 /* Destroy domains first to force the rebuild */
7629 partition_sched_domains(0, NULL, NULL);
7630
e761b772 7631 rebuild_sched_domains();
95402b38 7632 put_online_cpus();
5c45bf27
SS
7633}
7634
7635static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7636{
afb8a9b7 7637 unsigned int level = 0;
5c45bf27 7638
afb8a9b7
GS
7639 if (sscanf(buf, "%u", &level) != 1)
7640 return -EINVAL;
7641
7642 /*
7643 * level is always be positive so don't check for
7644 * level < POWERSAVINGS_BALANCE_NONE which is 0
7645 * What happens on 0 or 1 byte write,
7646 * need to check for count as well?
7647 */
7648
7649 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7650 return -EINVAL;
7651
7652 if (smt)
afb8a9b7 7653 sched_smt_power_savings = level;
5c45bf27 7654 else
afb8a9b7 7655 sched_mc_power_savings = level;
5c45bf27 7656
c70f22d2 7657 arch_reinit_sched_domains();
5c45bf27 7658
c70f22d2 7659 return count;
5c45bf27
SS
7660}
7661
5c45bf27 7662#ifdef CONFIG_SCHED_MC
f718cd4a 7663static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7664 struct sysdev_class_attribute *attr,
f718cd4a 7665 char *page)
5c45bf27
SS
7666{
7667 return sprintf(page, "%u\n", sched_mc_power_savings);
7668}
f718cd4a 7669static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7670 struct sysdev_class_attribute *attr,
48f24c4d 7671 const char *buf, size_t count)
5c45bf27
SS
7672{
7673 return sched_power_savings_store(buf, count, 0);
7674}
f718cd4a
AK
7675static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7676 sched_mc_power_savings_show,
7677 sched_mc_power_savings_store);
5c45bf27
SS
7678#endif
7679
7680#ifdef CONFIG_SCHED_SMT
f718cd4a 7681static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7682 struct sysdev_class_attribute *attr,
f718cd4a 7683 char *page)
5c45bf27
SS
7684{
7685 return sprintf(page, "%u\n", sched_smt_power_savings);
7686}
f718cd4a 7687static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7688 struct sysdev_class_attribute *attr,
48f24c4d 7689 const char *buf, size_t count)
5c45bf27
SS
7690{
7691 return sched_power_savings_store(buf, count, 1);
7692}
f718cd4a
AK
7693static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7694 sched_smt_power_savings_show,
6707de00
AB
7695 sched_smt_power_savings_store);
7696#endif
7697
39aac648 7698int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7699{
7700 int err = 0;
7701
7702#ifdef CONFIG_SCHED_SMT
7703 if (smt_capable())
7704 err = sysfs_create_file(&cls->kset.kobj,
7705 &attr_sched_smt_power_savings.attr);
7706#endif
7707#ifdef CONFIG_SCHED_MC
7708 if (!err && mc_capable())
7709 err = sysfs_create_file(&cls->kset.kobj,
7710 &attr_sched_mc_power_savings.attr);
7711#endif
7712 return err;
7713}
6d6bc0ad 7714#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7715
1da177e4 7716/*
3a101d05
TH
7717 * Update cpusets according to cpu_active mask. If cpusets are
7718 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7719 * around partition_sched_domains().
1da177e4 7720 */
0b2e918a
TH
7721static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7722 void *hcpu)
e761b772 7723{
3a101d05 7724 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7725 case CPU_ONLINE:
6ad4c188 7726 case CPU_DOWN_FAILED:
3a101d05 7727 cpuset_update_active_cpus();
e761b772 7728 return NOTIFY_OK;
3a101d05
TH
7729 default:
7730 return NOTIFY_DONE;
7731 }
7732}
e761b772 7733
0b2e918a
TH
7734static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7735 void *hcpu)
3a101d05
TH
7736{
7737 switch (action & ~CPU_TASKS_FROZEN) {
7738 case CPU_DOWN_PREPARE:
7739 cpuset_update_active_cpus();
7740 return NOTIFY_OK;
e761b772
MK
7741 default:
7742 return NOTIFY_DONE;
7743 }
7744}
e761b772
MK
7745
7746static int update_runtime(struct notifier_block *nfb,
7747 unsigned long action, void *hcpu)
1da177e4 7748{
7def2be1
PZ
7749 int cpu = (int)(long)hcpu;
7750
1da177e4 7751 switch (action) {
1da177e4 7752 case CPU_DOWN_PREPARE:
8bb78442 7753 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7754 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7755 return NOTIFY_OK;
7756
1da177e4 7757 case CPU_DOWN_FAILED:
8bb78442 7758 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7759 case CPU_ONLINE:
8bb78442 7760 case CPU_ONLINE_FROZEN:
7def2be1 7761 enable_runtime(cpu_rq(cpu));
e761b772
MK
7762 return NOTIFY_OK;
7763
1da177e4
LT
7764 default:
7765 return NOTIFY_DONE;
7766 }
1da177e4 7767}
1da177e4
LT
7768
7769void __init sched_init_smp(void)
7770{
dcc30a35
RR
7771 cpumask_var_t non_isolated_cpus;
7772
7773 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7774 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7775
434d53b0
MT
7776#if defined(CONFIG_NUMA)
7777 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7778 GFP_KERNEL);
7779 BUG_ON(sched_group_nodes_bycpu == NULL);
7780#endif
95402b38 7781 get_online_cpus();
712555ee 7782 mutex_lock(&sched_domains_mutex);
6ad4c188 7783 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7784 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7785 if (cpumask_empty(non_isolated_cpus))
7786 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7787 mutex_unlock(&sched_domains_mutex);
95402b38 7788 put_online_cpus();
e761b772 7789
3a101d05
TH
7790 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7791 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7792
7793 /* RT runtime code needs to handle some hotplug events */
7794 hotcpu_notifier(update_runtime, 0);
7795
b328ca18 7796 init_hrtick();
5c1e1767
NP
7797
7798 /* Move init over to a non-isolated CPU */
dcc30a35 7799 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7800 BUG();
19978ca6 7801 sched_init_granularity();
dcc30a35 7802 free_cpumask_var(non_isolated_cpus);
4212823f 7803
0e3900e6 7804 init_sched_rt_class();
1da177e4
LT
7805}
7806#else
7807void __init sched_init_smp(void)
7808{
19978ca6 7809 sched_init_granularity();
1da177e4
LT
7810}
7811#endif /* CONFIG_SMP */
7812
cd1bb94b
AB
7813const_debug unsigned int sysctl_timer_migration = 1;
7814
1da177e4
LT
7815int in_sched_functions(unsigned long addr)
7816{
1da177e4
LT
7817 return in_lock_functions(addr) ||
7818 (addr >= (unsigned long)__sched_text_start
7819 && addr < (unsigned long)__sched_text_end);
7820}
7821
a9957449 7822static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7823{
7824 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7825 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7826#ifdef CONFIG_FAIR_GROUP_SCHED
7827 cfs_rq->rq = rq;
7828#endif
67e9fb2a 7829 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7830}
7831
fa85ae24
PZ
7832static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7833{
7834 struct rt_prio_array *array;
7835 int i;
7836
7837 array = &rt_rq->active;
7838 for (i = 0; i < MAX_RT_PRIO; i++) {
7839 INIT_LIST_HEAD(array->queue + i);
7840 __clear_bit(i, array->bitmap);
7841 }
7842 /* delimiter for bitsearch: */
7843 __set_bit(MAX_RT_PRIO, array->bitmap);
7844
052f1dc7 7845#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7846 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7847#ifdef CONFIG_SMP
e864c499 7848 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7849#endif
48d5e258 7850#endif
fa85ae24
PZ
7851#ifdef CONFIG_SMP
7852 rt_rq->rt_nr_migratory = 0;
fa85ae24 7853 rt_rq->overloaded = 0;
05fa785c 7854 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7855#endif
7856
7857 rt_rq->rt_time = 0;
7858 rt_rq->rt_throttled = 0;
ac086bc2 7859 rt_rq->rt_runtime = 0;
0986b11b 7860 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7861
052f1dc7 7862#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7863 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7864 rt_rq->rq = rq;
7865#endif
fa85ae24
PZ
7866}
7867
6f505b16 7868#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7869static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7870 struct sched_entity *se, int cpu, int add,
7871 struct sched_entity *parent)
6f505b16 7872{
ec7dc8ac 7873 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7874 tg->cfs_rq[cpu] = cfs_rq;
7875 init_cfs_rq(cfs_rq, rq);
7876 cfs_rq->tg = tg;
7877 if (add)
7878 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7879
7880 tg->se[cpu] = se;
354d60c2
DG
7881 /* se could be NULL for init_task_group */
7882 if (!se)
7883 return;
7884
ec7dc8ac
DG
7885 if (!parent)
7886 se->cfs_rq = &rq->cfs;
7887 else
7888 se->cfs_rq = parent->my_q;
7889
6f505b16
PZ
7890 se->my_q = cfs_rq;
7891 se->load.weight = tg->shares;
e05510d0 7892 se->load.inv_weight = 0;
ec7dc8ac 7893 se->parent = parent;
6f505b16 7894}
052f1dc7 7895#endif
6f505b16 7896
052f1dc7 7897#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7898static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7899 struct sched_rt_entity *rt_se, int cpu, int add,
7900 struct sched_rt_entity *parent)
6f505b16 7901{
ec7dc8ac
DG
7902 struct rq *rq = cpu_rq(cpu);
7903
6f505b16
PZ
7904 tg->rt_rq[cpu] = rt_rq;
7905 init_rt_rq(rt_rq, rq);
7906 rt_rq->tg = tg;
ac086bc2 7907 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7908 if (add)
7909 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7910
7911 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7912 if (!rt_se)
7913 return;
7914
ec7dc8ac
DG
7915 if (!parent)
7916 rt_se->rt_rq = &rq->rt;
7917 else
7918 rt_se->rt_rq = parent->my_q;
7919
6f505b16 7920 rt_se->my_q = rt_rq;
ec7dc8ac 7921 rt_se->parent = parent;
6f505b16
PZ
7922 INIT_LIST_HEAD(&rt_se->run_list);
7923}
7924#endif
7925
1da177e4
LT
7926void __init sched_init(void)
7927{
dd41f596 7928 int i, j;
434d53b0
MT
7929 unsigned long alloc_size = 0, ptr;
7930
7931#ifdef CONFIG_FAIR_GROUP_SCHED
7932 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7933#endif
7934#ifdef CONFIG_RT_GROUP_SCHED
7935 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7936#endif
df7c8e84 7937#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7938 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7939#endif
434d53b0 7940 if (alloc_size) {
36b7b6d4 7941 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7942
7943#ifdef CONFIG_FAIR_GROUP_SCHED
7944 init_task_group.se = (struct sched_entity **)ptr;
7945 ptr += nr_cpu_ids * sizeof(void **);
7946
7947 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7948 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7949
6d6bc0ad 7950#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7951#ifdef CONFIG_RT_GROUP_SCHED
7952 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7953 ptr += nr_cpu_ids * sizeof(void **);
7954
7955 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7956 ptr += nr_cpu_ids * sizeof(void **);
7957
6d6bc0ad 7958#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7959#ifdef CONFIG_CPUMASK_OFFSTACK
7960 for_each_possible_cpu(i) {
7961 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7962 ptr += cpumask_size();
7963 }
7964#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7965 }
dd41f596 7966
57d885fe
GH
7967#ifdef CONFIG_SMP
7968 init_defrootdomain();
7969#endif
7970
d0b27fa7
PZ
7971 init_rt_bandwidth(&def_rt_bandwidth,
7972 global_rt_period(), global_rt_runtime());
7973
7974#ifdef CONFIG_RT_GROUP_SCHED
7975 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7976 global_rt_period(), global_rt_runtime());
6d6bc0ad 7977#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7978
7c941438 7979#ifdef CONFIG_CGROUP_SCHED
6f505b16 7980 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7981 INIT_LIST_HEAD(&init_task_group.children);
7982
7c941438 7983#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7984
4a6cc4bd
JK
7985#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7986 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7987 __alignof__(unsigned long));
7988#endif
0a945022 7989 for_each_possible_cpu(i) {
70b97a7f 7990 struct rq *rq;
1da177e4
LT
7991
7992 rq = cpu_rq(i);
05fa785c 7993 raw_spin_lock_init(&rq->lock);
7897986b 7994 rq->nr_running = 0;
dce48a84
TG
7995 rq->calc_load_active = 0;
7996 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7997 init_cfs_rq(&rq->cfs, rq);
6f505b16 7998 init_rt_rq(&rq->rt, rq);
dd41f596 7999#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8000 init_task_group.shares = init_task_group_load;
6f505b16 8001 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8002#ifdef CONFIG_CGROUP_SCHED
8003 /*
8004 * How much cpu bandwidth does init_task_group get?
8005 *
8006 * In case of task-groups formed thr' the cgroup filesystem, it
8007 * gets 100% of the cpu resources in the system. This overall
8008 * system cpu resource is divided among the tasks of
8009 * init_task_group and its child task-groups in a fair manner,
8010 * based on each entity's (task or task-group's) weight
8011 * (se->load.weight).
8012 *
8013 * In other words, if init_task_group has 10 tasks of weight
8014 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8015 * then A0's share of the cpu resource is:
8016 *
0d905bca 8017 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
8018 *
8019 * We achieve this by letting init_task_group's tasks sit
8020 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8021 */
ec7dc8ac 8022 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 8023#endif
354d60c2
DG
8024#endif /* CONFIG_FAIR_GROUP_SCHED */
8025
8026 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8027#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8028 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8029#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8030 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8031#endif
dd41f596 8032#endif
1da177e4 8033
dd41f596
IM
8034 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8035 rq->cpu_load[j] = 0;
fdf3e95d
VP
8036
8037 rq->last_load_update_tick = jiffies;
8038
1da177e4 8039#ifdef CONFIG_SMP
41c7ce9a 8040 rq->sd = NULL;
57d885fe 8041 rq->rd = NULL;
e51fd5e2 8042 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8043 rq->post_schedule = 0;
1da177e4 8044 rq->active_balance = 0;
dd41f596 8045 rq->next_balance = jiffies;
1da177e4 8046 rq->push_cpu = 0;
0a2966b4 8047 rq->cpu = i;
1f11eb6a 8048 rq->online = 0;
eae0c9df
MG
8049 rq->idle_stamp = 0;
8050 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8051 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8052#ifdef CONFIG_NO_HZ
8053 rq->nohz_balance_kick = 0;
8054 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8055#endif
1da177e4 8056#endif
8f4d37ec 8057 init_rq_hrtick(rq);
1da177e4 8058 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8059 }
8060
2dd73a4f 8061 set_load_weight(&init_task);
b50f60ce 8062
e107be36
AK
8063#ifdef CONFIG_PREEMPT_NOTIFIERS
8064 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8065#endif
8066
c9819f45 8067#ifdef CONFIG_SMP
962cf36c 8068 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8069#endif
8070
b50f60ce 8071#ifdef CONFIG_RT_MUTEXES
1d615482 8072 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8073#endif
8074
1da177e4
LT
8075 /*
8076 * The boot idle thread does lazy MMU switching as well:
8077 */
8078 atomic_inc(&init_mm.mm_count);
8079 enter_lazy_tlb(&init_mm, current);
8080
8081 /*
8082 * Make us the idle thread. Technically, schedule() should not be
8083 * called from this thread, however somewhere below it might be,
8084 * but because we are the idle thread, we just pick up running again
8085 * when this runqueue becomes "idle".
8086 */
8087 init_idle(current, smp_processor_id());
dce48a84
TG
8088
8089 calc_load_update = jiffies + LOAD_FREQ;
8090
dd41f596
IM
8091 /*
8092 * During early bootup we pretend to be a normal task:
8093 */
8094 current->sched_class = &fair_sched_class;
6892b75e 8095
6a7b3dc3 8096 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8097 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8098#ifdef CONFIG_SMP
7d1e6a9b 8099#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8100 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8101 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8102 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8103 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8104 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8105#endif
bdddd296
RR
8106 /* May be allocated at isolcpus cmdline parse time */
8107 if (cpu_isolated_map == NULL)
8108 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8109#endif /* SMP */
6a7b3dc3 8110
cdd6c482 8111 perf_event_init();
0d905bca 8112
6892b75e 8113 scheduler_running = 1;
1da177e4
LT
8114}
8115
8116#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8117static inline int preempt_count_equals(int preempt_offset)
8118{
234da7bc 8119 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8120
8121 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8122}
8123
d894837f 8124void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8125{
48f24c4d 8126#ifdef in_atomic
1da177e4
LT
8127 static unsigned long prev_jiffy; /* ratelimiting */
8128
e4aafea2
FW
8129 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8130 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8131 return;
8132 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8133 return;
8134 prev_jiffy = jiffies;
8135
3df0fc5b
PZ
8136 printk(KERN_ERR
8137 "BUG: sleeping function called from invalid context at %s:%d\n",
8138 file, line);
8139 printk(KERN_ERR
8140 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8141 in_atomic(), irqs_disabled(),
8142 current->pid, current->comm);
aef745fc
IM
8143
8144 debug_show_held_locks(current);
8145 if (irqs_disabled())
8146 print_irqtrace_events(current);
8147 dump_stack();
1da177e4
LT
8148#endif
8149}
8150EXPORT_SYMBOL(__might_sleep);
8151#endif
8152
8153#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8154static void normalize_task(struct rq *rq, struct task_struct *p)
8155{
8156 int on_rq;
3e51f33f 8157
3a5e4dc1
AK
8158 on_rq = p->se.on_rq;
8159 if (on_rq)
8160 deactivate_task(rq, p, 0);
8161 __setscheduler(rq, p, SCHED_NORMAL, 0);
8162 if (on_rq) {
8163 activate_task(rq, p, 0);
8164 resched_task(rq->curr);
8165 }
8166}
8167
1da177e4
LT
8168void normalize_rt_tasks(void)
8169{
a0f98a1c 8170 struct task_struct *g, *p;
1da177e4 8171 unsigned long flags;
70b97a7f 8172 struct rq *rq;
1da177e4 8173
4cf5d77a 8174 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8175 do_each_thread(g, p) {
178be793
IM
8176 /*
8177 * Only normalize user tasks:
8178 */
8179 if (!p->mm)
8180 continue;
8181
6cfb0d5d 8182 p->se.exec_start = 0;
6cfb0d5d 8183#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8184 p->se.statistics.wait_start = 0;
8185 p->se.statistics.sleep_start = 0;
8186 p->se.statistics.block_start = 0;
6cfb0d5d 8187#endif
dd41f596
IM
8188
8189 if (!rt_task(p)) {
8190 /*
8191 * Renice negative nice level userspace
8192 * tasks back to 0:
8193 */
8194 if (TASK_NICE(p) < 0 && p->mm)
8195 set_user_nice(p, 0);
1da177e4 8196 continue;
dd41f596 8197 }
1da177e4 8198
1d615482 8199 raw_spin_lock(&p->pi_lock);
b29739f9 8200 rq = __task_rq_lock(p);
1da177e4 8201
178be793 8202 normalize_task(rq, p);
3a5e4dc1 8203
b29739f9 8204 __task_rq_unlock(rq);
1d615482 8205 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8206 } while_each_thread(g, p);
8207
4cf5d77a 8208 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8209}
8210
8211#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8212
67fc4e0c 8213#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8214/*
67fc4e0c 8215 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8216 *
8217 * They can only be called when the whole system has been
8218 * stopped - every CPU needs to be quiescent, and no scheduling
8219 * activity can take place. Using them for anything else would
8220 * be a serious bug, and as a result, they aren't even visible
8221 * under any other configuration.
8222 */
8223
8224/**
8225 * curr_task - return the current task for a given cpu.
8226 * @cpu: the processor in question.
8227 *
8228 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8229 */
36c8b586 8230struct task_struct *curr_task(int cpu)
1df5c10a
LT
8231{
8232 return cpu_curr(cpu);
8233}
8234
67fc4e0c
JW
8235#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8236
8237#ifdef CONFIG_IA64
1df5c10a
LT
8238/**
8239 * set_curr_task - set the current task for a given cpu.
8240 * @cpu: the processor in question.
8241 * @p: the task pointer to set.
8242 *
8243 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8244 * are serviced on a separate stack. It allows the architecture to switch the
8245 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8246 * must be called with all CPU's synchronized, and interrupts disabled, the
8247 * and caller must save the original value of the current task (see
8248 * curr_task() above) and restore that value before reenabling interrupts and
8249 * re-starting the system.
8250 *
8251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8252 */
36c8b586 8253void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8254{
8255 cpu_curr(cpu) = p;
8256}
8257
8258#endif
29f59db3 8259
bccbe08a
PZ
8260#ifdef CONFIG_FAIR_GROUP_SCHED
8261static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8262{
8263 int i;
8264
8265 for_each_possible_cpu(i) {
8266 if (tg->cfs_rq)
8267 kfree(tg->cfs_rq[i]);
8268 if (tg->se)
8269 kfree(tg->se[i]);
6f505b16
PZ
8270 }
8271
8272 kfree(tg->cfs_rq);
8273 kfree(tg->se);
6f505b16
PZ
8274}
8275
ec7dc8ac
DG
8276static
8277int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8278{
29f59db3 8279 struct cfs_rq *cfs_rq;
eab17229 8280 struct sched_entity *se;
9b5b7751 8281 struct rq *rq;
29f59db3
SV
8282 int i;
8283
434d53b0 8284 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8285 if (!tg->cfs_rq)
8286 goto err;
434d53b0 8287 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8288 if (!tg->se)
8289 goto err;
052f1dc7
PZ
8290
8291 tg->shares = NICE_0_LOAD;
29f59db3
SV
8292
8293 for_each_possible_cpu(i) {
9b5b7751 8294 rq = cpu_rq(i);
29f59db3 8295
eab17229
LZ
8296 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8297 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8298 if (!cfs_rq)
8299 goto err;
8300
eab17229
LZ
8301 se = kzalloc_node(sizeof(struct sched_entity),
8302 GFP_KERNEL, cpu_to_node(i));
29f59db3 8303 if (!se)
dfc12eb2 8304 goto err_free_rq;
29f59db3 8305
eab17229 8306 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8307 }
8308
8309 return 1;
8310
49246274 8311err_free_rq:
dfc12eb2 8312 kfree(cfs_rq);
49246274 8313err:
bccbe08a
PZ
8314 return 0;
8315}
8316
8317static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8318{
8319 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8320 &cpu_rq(cpu)->leaf_cfs_rq_list);
8321}
8322
8323static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8324{
8325 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8326}
6d6bc0ad 8327#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8328static inline void free_fair_sched_group(struct task_group *tg)
8329{
8330}
8331
ec7dc8ac
DG
8332static inline
8333int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8334{
8335 return 1;
8336}
8337
8338static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8339{
8340}
8341
8342static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8343{
8344}
6d6bc0ad 8345#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8346
8347#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8348static void free_rt_sched_group(struct task_group *tg)
8349{
8350 int i;
8351
d0b27fa7
PZ
8352 destroy_rt_bandwidth(&tg->rt_bandwidth);
8353
bccbe08a
PZ
8354 for_each_possible_cpu(i) {
8355 if (tg->rt_rq)
8356 kfree(tg->rt_rq[i]);
8357 if (tg->rt_se)
8358 kfree(tg->rt_se[i]);
8359 }
8360
8361 kfree(tg->rt_rq);
8362 kfree(tg->rt_se);
8363}
8364
ec7dc8ac
DG
8365static
8366int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8367{
8368 struct rt_rq *rt_rq;
eab17229 8369 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8370 struct rq *rq;
8371 int i;
8372
434d53b0 8373 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8374 if (!tg->rt_rq)
8375 goto err;
434d53b0 8376 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8377 if (!tg->rt_se)
8378 goto err;
8379
d0b27fa7
PZ
8380 init_rt_bandwidth(&tg->rt_bandwidth,
8381 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8382
8383 for_each_possible_cpu(i) {
8384 rq = cpu_rq(i);
8385
eab17229
LZ
8386 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8387 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8388 if (!rt_rq)
8389 goto err;
29f59db3 8390
eab17229
LZ
8391 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8392 GFP_KERNEL, cpu_to_node(i));
6f505b16 8393 if (!rt_se)
dfc12eb2 8394 goto err_free_rq;
29f59db3 8395
eab17229 8396 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8397 }
8398
bccbe08a
PZ
8399 return 1;
8400
49246274 8401err_free_rq:
dfc12eb2 8402 kfree(rt_rq);
49246274 8403err:
bccbe08a
PZ
8404 return 0;
8405}
8406
8407static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8408{
8409 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8410 &cpu_rq(cpu)->leaf_rt_rq_list);
8411}
8412
8413static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8414{
8415 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8416}
6d6bc0ad 8417#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8418static inline void free_rt_sched_group(struct task_group *tg)
8419{
8420}
8421
ec7dc8ac
DG
8422static inline
8423int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8424{
8425 return 1;
8426}
8427
8428static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8429{
8430}
8431
8432static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8433{
8434}
6d6bc0ad 8435#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8436
7c941438 8437#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8438static void free_sched_group(struct task_group *tg)
8439{
8440 free_fair_sched_group(tg);
8441 free_rt_sched_group(tg);
8442 kfree(tg);
8443}
8444
8445/* allocate runqueue etc for a new task group */
ec7dc8ac 8446struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8447{
8448 struct task_group *tg;
8449 unsigned long flags;
8450 int i;
8451
8452 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8453 if (!tg)
8454 return ERR_PTR(-ENOMEM);
8455
ec7dc8ac 8456 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8457 goto err;
8458
ec7dc8ac 8459 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8460 goto err;
8461
8ed36996 8462 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8463 for_each_possible_cpu(i) {
bccbe08a
PZ
8464 register_fair_sched_group(tg, i);
8465 register_rt_sched_group(tg, i);
9b5b7751 8466 }
6f505b16 8467 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8468
8469 WARN_ON(!parent); /* root should already exist */
8470
8471 tg->parent = parent;
f473aa5e 8472 INIT_LIST_HEAD(&tg->children);
09f2724a 8473 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8474 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8475
9b5b7751 8476 return tg;
29f59db3
SV
8477
8478err:
6f505b16 8479 free_sched_group(tg);
29f59db3
SV
8480 return ERR_PTR(-ENOMEM);
8481}
8482
9b5b7751 8483/* rcu callback to free various structures associated with a task group */
6f505b16 8484static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8485{
29f59db3 8486 /* now it should be safe to free those cfs_rqs */
6f505b16 8487 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8488}
8489
9b5b7751 8490/* Destroy runqueue etc associated with a task group */
4cf86d77 8491void sched_destroy_group(struct task_group *tg)
29f59db3 8492{
8ed36996 8493 unsigned long flags;
9b5b7751 8494 int i;
29f59db3 8495
8ed36996 8496 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8497 for_each_possible_cpu(i) {
bccbe08a
PZ
8498 unregister_fair_sched_group(tg, i);
8499 unregister_rt_sched_group(tg, i);
9b5b7751 8500 }
6f505b16 8501 list_del_rcu(&tg->list);
f473aa5e 8502 list_del_rcu(&tg->siblings);
8ed36996 8503 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8504
9b5b7751 8505 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8506 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8507}
8508
9b5b7751 8509/* change task's runqueue when it moves between groups.
3a252015
IM
8510 * The caller of this function should have put the task in its new group
8511 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8512 * reflect its new group.
9b5b7751
SV
8513 */
8514void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8515{
8516 int on_rq, running;
8517 unsigned long flags;
8518 struct rq *rq;
8519
8520 rq = task_rq_lock(tsk, &flags);
8521
051a1d1a 8522 running = task_current(rq, tsk);
29f59db3
SV
8523 on_rq = tsk->se.on_rq;
8524
0e1f3483 8525 if (on_rq)
29f59db3 8526 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8527 if (unlikely(running))
8528 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8529
810b3817 8530#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8531 if (tsk->sched_class->task_move_group)
8532 tsk->sched_class->task_move_group(tsk, on_rq);
8533 else
810b3817 8534#endif
b2b5ce02 8535 set_task_rq(tsk, task_cpu(tsk));
810b3817 8536
0e1f3483
HS
8537 if (unlikely(running))
8538 tsk->sched_class->set_curr_task(rq);
8539 if (on_rq)
371fd7e7 8540 enqueue_task(rq, tsk, 0);
29f59db3 8541
29f59db3
SV
8542 task_rq_unlock(rq, &flags);
8543}
7c941438 8544#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8545
052f1dc7 8546#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8547static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8548{
8549 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8550 int on_rq;
8551
29f59db3 8552 on_rq = se->on_rq;
62fb1851 8553 if (on_rq)
29f59db3
SV
8554 dequeue_entity(cfs_rq, se, 0);
8555
8556 se->load.weight = shares;
e05510d0 8557 se->load.inv_weight = 0;
29f59db3 8558
62fb1851 8559 if (on_rq)
29f59db3 8560 enqueue_entity(cfs_rq, se, 0);
c09595f6 8561}
62fb1851 8562
c09595f6
PZ
8563static void set_se_shares(struct sched_entity *se, unsigned long shares)
8564{
8565 struct cfs_rq *cfs_rq = se->cfs_rq;
8566 struct rq *rq = cfs_rq->rq;
8567 unsigned long flags;
8568
05fa785c 8569 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8570 __set_se_shares(se, shares);
05fa785c 8571 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8572}
8573
8ed36996
PZ
8574static DEFINE_MUTEX(shares_mutex);
8575
4cf86d77 8576int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8577{
8578 int i;
8ed36996 8579 unsigned long flags;
c61935fd 8580
ec7dc8ac
DG
8581 /*
8582 * We can't change the weight of the root cgroup.
8583 */
8584 if (!tg->se[0])
8585 return -EINVAL;
8586
18d95a28
PZ
8587 if (shares < MIN_SHARES)
8588 shares = MIN_SHARES;
cb4ad1ff
MX
8589 else if (shares > MAX_SHARES)
8590 shares = MAX_SHARES;
62fb1851 8591
8ed36996 8592 mutex_lock(&shares_mutex);
9b5b7751 8593 if (tg->shares == shares)
5cb350ba 8594 goto done;
29f59db3 8595
8ed36996 8596 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8597 for_each_possible_cpu(i)
8598 unregister_fair_sched_group(tg, i);
f473aa5e 8599 list_del_rcu(&tg->siblings);
8ed36996 8600 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8601
8602 /* wait for any ongoing reference to this group to finish */
8603 synchronize_sched();
8604
8605 /*
8606 * Now we are free to modify the group's share on each cpu
8607 * w/o tripping rebalance_share or load_balance_fair.
8608 */
9b5b7751 8609 tg->shares = shares;
c09595f6
PZ
8610 for_each_possible_cpu(i) {
8611 /*
8612 * force a rebalance
8613 */
8614 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8615 set_se_shares(tg->se[i], shares);
c09595f6 8616 }
29f59db3 8617
6b2d7700
SV
8618 /*
8619 * Enable load balance activity on this group, by inserting it back on
8620 * each cpu's rq->leaf_cfs_rq_list.
8621 */
8ed36996 8622 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8623 for_each_possible_cpu(i)
8624 register_fair_sched_group(tg, i);
f473aa5e 8625 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8626 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8627done:
8ed36996 8628 mutex_unlock(&shares_mutex);
9b5b7751 8629 return 0;
29f59db3
SV
8630}
8631
5cb350ba
DG
8632unsigned long sched_group_shares(struct task_group *tg)
8633{
8634 return tg->shares;
8635}
052f1dc7 8636#endif
5cb350ba 8637
052f1dc7 8638#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8639/*
9f0c1e56 8640 * Ensure that the real time constraints are schedulable.
6f505b16 8641 */
9f0c1e56
PZ
8642static DEFINE_MUTEX(rt_constraints_mutex);
8643
8644static unsigned long to_ratio(u64 period, u64 runtime)
8645{
8646 if (runtime == RUNTIME_INF)
9a7e0b18 8647 return 1ULL << 20;
9f0c1e56 8648
9a7e0b18 8649 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8650}
8651
9a7e0b18
PZ
8652/* Must be called with tasklist_lock held */
8653static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8654{
9a7e0b18 8655 struct task_struct *g, *p;
b40b2e8e 8656
9a7e0b18
PZ
8657 do_each_thread(g, p) {
8658 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8659 return 1;
8660 } while_each_thread(g, p);
b40b2e8e 8661
9a7e0b18
PZ
8662 return 0;
8663}
b40b2e8e 8664
9a7e0b18
PZ
8665struct rt_schedulable_data {
8666 struct task_group *tg;
8667 u64 rt_period;
8668 u64 rt_runtime;
8669};
b40b2e8e 8670
9a7e0b18
PZ
8671static int tg_schedulable(struct task_group *tg, void *data)
8672{
8673 struct rt_schedulable_data *d = data;
8674 struct task_group *child;
8675 unsigned long total, sum = 0;
8676 u64 period, runtime;
b40b2e8e 8677
9a7e0b18
PZ
8678 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8679 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8680
9a7e0b18
PZ
8681 if (tg == d->tg) {
8682 period = d->rt_period;
8683 runtime = d->rt_runtime;
b40b2e8e 8684 }
b40b2e8e 8685
4653f803
PZ
8686 /*
8687 * Cannot have more runtime than the period.
8688 */
8689 if (runtime > period && runtime != RUNTIME_INF)
8690 return -EINVAL;
6f505b16 8691
4653f803
PZ
8692 /*
8693 * Ensure we don't starve existing RT tasks.
8694 */
9a7e0b18
PZ
8695 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8696 return -EBUSY;
6f505b16 8697
9a7e0b18 8698 total = to_ratio(period, runtime);
6f505b16 8699
4653f803
PZ
8700 /*
8701 * Nobody can have more than the global setting allows.
8702 */
8703 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8704 return -EINVAL;
6f505b16 8705
4653f803
PZ
8706 /*
8707 * The sum of our children's runtime should not exceed our own.
8708 */
9a7e0b18
PZ
8709 list_for_each_entry_rcu(child, &tg->children, siblings) {
8710 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8711 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8712
9a7e0b18
PZ
8713 if (child == d->tg) {
8714 period = d->rt_period;
8715 runtime = d->rt_runtime;
8716 }
6f505b16 8717
9a7e0b18 8718 sum += to_ratio(period, runtime);
9f0c1e56 8719 }
6f505b16 8720
9a7e0b18
PZ
8721 if (sum > total)
8722 return -EINVAL;
8723
8724 return 0;
6f505b16
PZ
8725}
8726
9a7e0b18 8727static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8728{
9a7e0b18
PZ
8729 struct rt_schedulable_data data = {
8730 .tg = tg,
8731 .rt_period = period,
8732 .rt_runtime = runtime,
8733 };
8734
8735 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8736}
8737
d0b27fa7
PZ
8738static int tg_set_bandwidth(struct task_group *tg,
8739 u64 rt_period, u64 rt_runtime)
6f505b16 8740{
ac086bc2 8741 int i, err = 0;
9f0c1e56 8742
9f0c1e56 8743 mutex_lock(&rt_constraints_mutex);
521f1a24 8744 read_lock(&tasklist_lock);
9a7e0b18
PZ
8745 err = __rt_schedulable(tg, rt_period, rt_runtime);
8746 if (err)
9f0c1e56 8747 goto unlock;
ac086bc2 8748
0986b11b 8749 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8750 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8751 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8752
8753 for_each_possible_cpu(i) {
8754 struct rt_rq *rt_rq = tg->rt_rq[i];
8755
0986b11b 8756 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8757 rt_rq->rt_runtime = rt_runtime;
0986b11b 8758 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8759 }
0986b11b 8760 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8761unlock:
521f1a24 8762 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8763 mutex_unlock(&rt_constraints_mutex);
8764
8765 return err;
6f505b16
PZ
8766}
8767
d0b27fa7
PZ
8768int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8769{
8770 u64 rt_runtime, rt_period;
8771
8772 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8773 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8774 if (rt_runtime_us < 0)
8775 rt_runtime = RUNTIME_INF;
8776
8777 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8778}
8779
9f0c1e56
PZ
8780long sched_group_rt_runtime(struct task_group *tg)
8781{
8782 u64 rt_runtime_us;
8783
d0b27fa7 8784 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8785 return -1;
8786
d0b27fa7 8787 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8788 do_div(rt_runtime_us, NSEC_PER_USEC);
8789 return rt_runtime_us;
8790}
d0b27fa7
PZ
8791
8792int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8793{
8794 u64 rt_runtime, rt_period;
8795
8796 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8797 rt_runtime = tg->rt_bandwidth.rt_runtime;
8798
619b0488
R
8799 if (rt_period == 0)
8800 return -EINVAL;
8801
d0b27fa7
PZ
8802 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8803}
8804
8805long sched_group_rt_period(struct task_group *tg)
8806{
8807 u64 rt_period_us;
8808
8809 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8810 do_div(rt_period_us, NSEC_PER_USEC);
8811 return rt_period_us;
8812}
8813
8814static int sched_rt_global_constraints(void)
8815{
4653f803 8816 u64 runtime, period;
d0b27fa7
PZ
8817 int ret = 0;
8818
ec5d4989
HS
8819 if (sysctl_sched_rt_period <= 0)
8820 return -EINVAL;
8821
4653f803
PZ
8822 runtime = global_rt_runtime();
8823 period = global_rt_period();
8824
8825 /*
8826 * Sanity check on the sysctl variables.
8827 */
8828 if (runtime > period && runtime != RUNTIME_INF)
8829 return -EINVAL;
10b612f4 8830
d0b27fa7 8831 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8832 read_lock(&tasklist_lock);
4653f803 8833 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8834 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8835 mutex_unlock(&rt_constraints_mutex);
8836
8837 return ret;
8838}
54e99124
DG
8839
8840int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8841{
8842 /* Don't accept realtime tasks when there is no way for them to run */
8843 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8844 return 0;
8845
8846 return 1;
8847}
8848
6d6bc0ad 8849#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8850static int sched_rt_global_constraints(void)
8851{
ac086bc2
PZ
8852 unsigned long flags;
8853 int i;
8854
ec5d4989
HS
8855 if (sysctl_sched_rt_period <= 0)
8856 return -EINVAL;
8857
60aa605d
PZ
8858 /*
8859 * There's always some RT tasks in the root group
8860 * -- migration, kstopmachine etc..
8861 */
8862 if (sysctl_sched_rt_runtime == 0)
8863 return -EBUSY;
8864
0986b11b 8865 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8866 for_each_possible_cpu(i) {
8867 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8868
0986b11b 8869 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8870 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8871 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8872 }
0986b11b 8873 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8874
d0b27fa7
PZ
8875 return 0;
8876}
6d6bc0ad 8877#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8878
8879int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8880 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8881 loff_t *ppos)
8882{
8883 int ret;
8884 int old_period, old_runtime;
8885 static DEFINE_MUTEX(mutex);
8886
8887 mutex_lock(&mutex);
8888 old_period = sysctl_sched_rt_period;
8889 old_runtime = sysctl_sched_rt_runtime;
8890
8d65af78 8891 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8892
8893 if (!ret && write) {
8894 ret = sched_rt_global_constraints();
8895 if (ret) {
8896 sysctl_sched_rt_period = old_period;
8897 sysctl_sched_rt_runtime = old_runtime;
8898 } else {
8899 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8900 def_rt_bandwidth.rt_period =
8901 ns_to_ktime(global_rt_period());
8902 }
8903 }
8904 mutex_unlock(&mutex);
8905
8906 return ret;
8907}
68318b8e 8908
052f1dc7 8909#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8910
8911/* return corresponding task_group object of a cgroup */
2b01dfe3 8912static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8913{
2b01dfe3
PM
8914 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8915 struct task_group, css);
68318b8e
SV
8916}
8917
8918static struct cgroup_subsys_state *
2b01dfe3 8919cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8920{
ec7dc8ac 8921 struct task_group *tg, *parent;
68318b8e 8922
2b01dfe3 8923 if (!cgrp->parent) {
68318b8e 8924 /* This is early initialization for the top cgroup */
68318b8e
SV
8925 return &init_task_group.css;
8926 }
8927
ec7dc8ac
DG
8928 parent = cgroup_tg(cgrp->parent);
8929 tg = sched_create_group(parent);
68318b8e
SV
8930 if (IS_ERR(tg))
8931 return ERR_PTR(-ENOMEM);
8932
68318b8e
SV
8933 return &tg->css;
8934}
8935
41a2d6cf
IM
8936static void
8937cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8938{
2b01dfe3 8939 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8940
8941 sched_destroy_group(tg);
8942}
8943
41a2d6cf 8944static int
be367d09 8945cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8946{
b68aa230 8947#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8948 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8949 return -EINVAL;
8950#else
68318b8e
SV
8951 /* We don't support RT-tasks being in separate groups */
8952 if (tsk->sched_class != &fair_sched_class)
8953 return -EINVAL;
b68aa230 8954#endif
be367d09
BB
8955 return 0;
8956}
68318b8e 8957
be367d09
BB
8958static int
8959cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8960 struct task_struct *tsk, bool threadgroup)
8961{
8962 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8963 if (retval)
8964 return retval;
8965 if (threadgroup) {
8966 struct task_struct *c;
8967 rcu_read_lock();
8968 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8969 retval = cpu_cgroup_can_attach_task(cgrp, c);
8970 if (retval) {
8971 rcu_read_unlock();
8972 return retval;
8973 }
8974 }
8975 rcu_read_unlock();
8976 }
68318b8e
SV
8977 return 0;
8978}
8979
8980static void
2b01dfe3 8981cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8982 struct cgroup *old_cont, struct task_struct *tsk,
8983 bool threadgroup)
68318b8e
SV
8984{
8985 sched_move_task(tsk);
be367d09
BB
8986 if (threadgroup) {
8987 struct task_struct *c;
8988 rcu_read_lock();
8989 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8990 sched_move_task(c);
8991 }
8992 rcu_read_unlock();
8993 }
68318b8e
SV
8994}
8995
052f1dc7 8996#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8997static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8998 u64 shareval)
68318b8e 8999{
2b01dfe3 9000 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9001}
9002
f4c753b7 9003static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9004{
2b01dfe3 9005 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9006
9007 return (u64) tg->shares;
9008}
6d6bc0ad 9009#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9010
052f1dc7 9011#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9012static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9013 s64 val)
6f505b16 9014{
06ecb27c 9015 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9016}
9017
06ecb27c 9018static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9019{
06ecb27c 9020 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9021}
d0b27fa7
PZ
9022
9023static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9024 u64 rt_period_us)
9025{
9026 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9027}
9028
9029static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9030{
9031 return sched_group_rt_period(cgroup_tg(cgrp));
9032}
6d6bc0ad 9033#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9034
fe5c7cc2 9035static struct cftype cpu_files[] = {
052f1dc7 9036#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9037 {
9038 .name = "shares",
f4c753b7
PM
9039 .read_u64 = cpu_shares_read_u64,
9040 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9041 },
052f1dc7
PZ
9042#endif
9043#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9044 {
9f0c1e56 9045 .name = "rt_runtime_us",
06ecb27c
PM
9046 .read_s64 = cpu_rt_runtime_read,
9047 .write_s64 = cpu_rt_runtime_write,
6f505b16 9048 },
d0b27fa7
PZ
9049 {
9050 .name = "rt_period_us",
f4c753b7
PM
9051 .read_u64 = cpu_rt_period_read_uint,
9052 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9053 },
052f1dc7 9054#endif
68318b8e
SV
9055};
9056
9057static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9058{
fe5c7cc2 9059 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9060}
9061
9062struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9063 .name = "cpu",
9064 .create = cpu_cgroup_create,
9065 .destroy = cpu_cgroup_destroy,
9066 .can_attach = cpu_cgroup_can_attach,
9067 .attach = cpu_cgroup_attach,
9068 .populate = cpu_cgroup_populate,
9069 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9070 .early_init = 1,
9071};
9072
052f1dc7 9073#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9074
9075#ifdef CONFIG_CGROUP_CPUACCT
9076
9077/*
9078 * CPU accounting code for task groups.
9079 *
9080 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9081 * (balbir@in.ibm.com).
9082 */
9083
934352f2 9084/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9085struct cpuacct {
9086 struct cgroup_subsys_state css;
9087 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9088 u64 __percpu *cpuusage;
ef12fefa 9089 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9090 struct cpuacct *parent;
d842de87
SV
9091};
9092
9093struct cgroup_subsys cpuacct_subsys;
9094
9095/* return cpu accounting group corresponding to this container */
32cd756a 9096static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9097{
32cd756a 9098 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9099 struct cpuacct, css);
9100}
9101
9102/* return cpu accounting group to which this task belongs */
9103static inline struct cpuacct *task_ca(struct task_struct *tsk)
9104{
9105 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9106 struct cpuacct, css);
9107}
9108
9109/* create a new cpu accounting group */
9110static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9111 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9112{
9113 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9114 int i;
d842de87
SV
9115
9116 if (!ca)
ef12fefa 9117 goto out;
d842de87
SV
9118
9119 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9120 if (!ca->cpuusage)
9121 goto out_free_ca;
9122
9123 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9124 if (percpu_counter_init(&ca->cpustat[i], 0))
9125 goto out_free_counters;
d842de87 9126
934352f2
BR
9127 if (cgrp->parent)
9128 ca->parent = cgroup_ca(cgrp->parent);
9129
d842de87 9130 return &ca->css;
ef12fefa
BR
9131
9132out_free_counters:
9133 while (--i >= 0)
9134 percpu_counter_destroy(&ca->cpustat[i]);
9135 free_percpu(ca->cpuusage);
9136out_free_ca:
9137 kfree(ca);
9138out:
9139 return ERR_PTR(-ENOMEM);
d842de87
SV
9140}
9141
9142/* destroy an existing cpu accounting group */
41a2d6cf 9143static void
32cd756a 9144cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9145{
32cd756a 9146 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9147 int i;
d842de87 9148
ef12fefa
BR
9149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9150 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9151 free_percpu(ca->cpuusage);
9152 kfree(ca);
9153}
9154
720f5498
KC
9155static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9156{
b36128c8 9157 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9158 u64 data;
9159
9160#ifndef CONFIG_64BIT
9161 /*
9162 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9163 */
05fa785c 9164 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9165 data = *cpuusage;
05fa785c 9166 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9167#else
9168 data = *cpuusage;
9169#endif
9170
9171 return data;
9172}
9173
9174static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9175{
b36128c8 9176 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9177
9178#ifndef CONFIG_64BIT
9179 /*
9180 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9181 */
05fa785c 9182 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9183 *cpuusage = val;
05fa785c 9184 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9185#else
9186 *cpuusage = val;
9187#endif
9188}
9189
d842de87 9190/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9191static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9192{
32cd756a 9193 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9194 u64 totalcpuusage = 0;
9195 int i;
9196
720f5498
KC
9197 for_each_present_cpu(i)
9198 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9199
9200 return totalcpuusage;
9201}
9202
0297b803
DG
9203static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9204 u64 reset)
9205{
9206 struct cpuacct *ca = cgroup_ca(cgrp);
9207 int err = 0;
9208 int i;
9209
9210 if (reset) {
9211 err = -EINVAL;
9212 goto out;
9213 }
9214
720f5498
KC
9215 for_each_present_cpu(i)
9216 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9217
0297b803
DG
9218out:
9219 return err;
9220}
9221
e9515c3c
KC
9222static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9223 struct seq_file *m)
9224{
9225 struct cpuacct *ca = cgroup_ca(cgroup);
9226 u64 percpu;
9227 int i;
9228
9229 for_each_present_cpu(i) {
9230 percpu = cpuacct_cpuusage_read(ca, i);
9231 seq_printf(m, "%llu ", (unsigned long long) percpu);
9232 }
9233 seq_printf(m, "\n");
9234 return 0;
9235}
9236
ef12fefa
BR
9237static const char *cpuacct_stat_desc[] = {
9238 [CPUACCT_STAT_USER] = "user",
9239 [CPUACCT_STAT_SYSTEM] = "system",
9240};
9241
9242static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9243 struct cgroup_map_cb *cb)
9244{
9245 struct cpuacct *ca = cgroup_ca(cgrp);
9246 int i;
9247
9248 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9249 s64 val = percpu_counter_read(&ca->cpustat[i]);
9250 val = cputime64_to_clock_t(val);
9251 cb->fill(cb, cpuacct_stat_desc[i], val);
9252 }
9253 return 0;
9254}
9255
d842de87
SV
9256static struct cftype files[] = {
9257 {
9258 .name = "usage",
f4c753b7
PM
9259 .read_u64 = cpuusage_read,
9260 .write_u64 = cpuusage_write,
d842de87 9261 },
e9515c3c
KC
9262 {
9263 .name = "usage_percpu",
9264 .read_seq_string = cpuacct_percpu_seq_read,
9265 },
ef12fefa
BR
9266 {
9267 .name = "stat",
9268 .read_map = cpuacct_stats_show,
9269 },
d842de87
SV
9270};
9271
32cd756a 9272static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9273{
32cd756a 9274 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9275}
9276
9277/*
9278 * charge this task's execution time to its accounting group.
9279 *
9280 * called with rq->lock held.
9281 */
9282static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9283{
9284 struct cpuacct *ca;
934352f2 9285 int cpu;
d842de87 9286
c40c6f85 9287 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9288 return;
9289
934352f2 9290 cpu = task_cpu(tsk);
a18b83b7
BR
9291
9292 rcu_read_lock();
9293
d842de87 9294 ca = task_ca(tsk);
d842de87 9295
934352f2 9296 for (; ca; ca = ca->parent) {
b36128c8 9297 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9298 *cpuusage += cputime;
9299 }
a18b83b7
BR
9300
9301 rcu_read_unlock();
d842de87
SV
9302}
9303
fa535a77
AB
9304/*
9305 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9306 * in cputime_t units. As a result, cpuacct_update_stats calls
9307 * percpu_counter_add with values large enough to always overflow the
9308 * per cpu batch limit causing bad SMP scalability.
9309 *
9310 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9311 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9312 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9313 */
9314#ifdef CONFIG_SMP
9315#define CPUACCT_BATCH \
9316 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9317#else
9318#define CPUACCT_BATCH 0
9319#endif
9320
ef12fefa
BR
9321/*
9322 * Charge the system/user time to the task's accounting group.
9323 */
9324static void cpuacct_update_stats(struct task_struct *tsk,
9325 enum cpuacct_stat_index idx, cputime_t val)
9326{
9327 struct cpuacct *ca;
fa535a77 9328 int batch = CPUACCT_BATCH;
ef12fefa
BR
9329
9330 if (unlikely(!cpuacct_subsys.active))
9331 return;
9332
9333 rcu_read_lock();
9334 ca = task_ca(tsk);
9335
9336 do {
fa535a77 9337 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9338 ca = ca->parent;
9339 } while (ca);
9340 rcu_read_unlock();
9341}
9342
d842de87
SV
9343struct cgroup_subsys cpuacct_subsys = {
9344 .name = "cpuacct",
9345 .create = cpuacct_create,
9346 .destroy = cpuacct_destroy,
9347 .populate = cpuacct_populate,
9348 .subsys_id = cpuacct_subsys_id,
9349};
9350#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9351
9352#ifndef CONFIG_SMP
9353
03b042bf
PM
9354void synchronize_sched_expedited(void)
9355{
fc390cde 9356 barrier();
03b042bf
PM
9357}
9358EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9359
9360#else /* #ifndef CONFIG_SMP */
9361
cc631fb7 9362static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9363
cc631fb7 9364static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9365{
969c7921
TH
9366 /*
9367 * There must be a full memory barrier on each affected CPU
9368 * between the time that try_stop_cpus() is called and the
9369 * time that it returns.
9370 *
9371 * In the current initial implementation of cpu_stop, the
9372 * above condition is already met when the control reaches
9373 * this point and the following smp_mb() is not strictly
9374 * necessary. Do smp_mb() anyway for documentation and
9375 * robustness against future implementation changes.
9376 */
cc631fb7 9377 smp_mb(); /* See above comment block. */
969c7921 9378 return 0;
03b042bf 9379}
03b042bf
PM
9380
9381/*
9382 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9383 * approach to force grace period to end quickly. This consumes
9384 * significant time on all CPUs, and is thus not recommended for
9385 * any sort of common-case code.
9386 *
9387 * Note that it is illegal to call this function while holding any
9388 * lock that is acquired by a CPU-hotplug notifier. Failing to
9389 * observe this restriction will result in deadlock.
9390 */
9391void synchronize_sched_expedited(void)
9392{
969c7921 9393 int snap, trycount = 0;
03b042bf
PM
9394
9395 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9396 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9397 get_online_cpus();
969c7921
TH
9398 while (try_stop_cpus(cpu_online_mask,
9399 synchronize_sched_expedited_cpu_stop,
94458d5e 9400 NULL) == -EAGAIN) {
03b042bf
PM
9401 put_online_cpus();
9402 if (trycount++ < 10)
9403 udelay(trycount * num_online_cpus());
9404 else {
9405 synchronize_sched();
9406 return;
9407 }
969c7921 9408 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9409 smp_mb(); /* ensure test happens before caller kfree */
9410 return;
9411 }
9412 get_online_cpus();
9413 }
969c7921 9414 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9415 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9416 put_online_cpus();
03b042bf
PM
9417}
9418EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9419
9420#endif /* #else #ifndef CONFIG_SMP */
This page took 3.019329 seconds and 5 git commands to generate.