sched: fix missing locking in sched_domains code
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
b035b6de
AD
77/*
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
81 */
82unsigned long long __attribute__((weak)) sched_clock(void)
83{
d6322faf 84 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
85}
86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
5517d86b
ED
126#ifdef CONFIG_SMP
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
149 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
218 if (rt_b->rt_runtime == RUNTIME_INF)
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start(&rt_b->rt_period_timer,
232 rt_b->rt_period_timer.expires,
233 HRTIMER_MODE_ABS);
234 }
235 spin_unlock(&rt_b->rt_runtime_lock);
236}
237
238#ifdef CONFIG_RT_GROUP_SCHED
239static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240{
241 hrtimer_cancel(&rt_b->rt_period_timer);
242}
243#endif
244
712555ee
HC
245/*
246 * sched_domains_mutex serializes calls to arch_init_sched_domains,
247 * detach_destroy_domains and partition_sched_domains.
248 */
249static DEFINE_MUTEX(sched_domains_mutex);
250
052f1dc7 251#ifdef CONFIG_GROUP_SCHED
29f59db3 252
68318b8e
SV
253#include <linux/cgroup.h>
254
29f59db3
SV
255struct cfs_rq;
256
6f505b16
PZ
257static LIST_HEAD(task_groups);
258
29f59db3 259/* task group related information */
4cf86d77 260struct task_group {
052f1dc7 261#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
262 struct cgroup_subsys_state css;
263#endif
052f1dc7
PZ
264
265#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
266 /* schedulable entities of this group on each cpu */
267 struct sched_entity **se;
268 /* runqueue "owned" by this group on each cpu */
269 struct cfs_rq **cfs_rq;
270 unsigned long shares;
052f1dc7
PZ
271#endif
272
273#ifdef CONFIG_RT_GROUP_SCHED
274 struct sched_rt_entity **rt_se;
275 struct rt_rq **rt_rq;
276
d0b27fa7 277 struct rt_bandwidth rt_bandwidth;
052f1dc7 278#endif
6b2d7700 279
ae8393e5 280 struct rcu_head rcu;
6f505b16 281 struct list_head list;
f473aa5e
PZ
282
283 struct task_group *parent;
284 struct list_head siblings;
285 struct list_head children;
29f59db3
SV
286};
287
354d60c2 288#ifdef CONFIG_USER_SCHED
eff766a6
PZ
289
290/*
291 * Root task group.
292 * Every UID task group (including init_task_group aka UID-0) will
293 * be a child to this group.
294 */
295struct task_group root_task_group;
296
052f1dc7 297#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
298/* Default task group's sched entity on each cpu */
299static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
300/* Default task group's cfs_rq on each cpu */
301static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
302#endif
303
304#ifdef CONFIG_RT_GROUP_SCHED
305static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
306static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 307#endif
eff766a6
PZ
308#else
309#define root_task_group init_task_group
354d60c2 310#endif
6f505b16 311
8ed36996 312/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
313 * a task group's cpu shares.
314 */
8ed36996 315static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
318#ifdef CONFIG_USER_SCHED
319# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
320#else
321# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
322#endif
323
18d95a28
PZ
324#define MIN_SHARES 2
325
052f1dc7
PZ
326static int init_task_group_load = INIT_TASK_GROUP_LOAD;
327#endif
328
29f59db3 329/* Default task group.
3a252015 330 * Every task in system belong to this group at bootup.
29f59db3 331 */
434d53b0 332struct task_group init_task_group;
29f59db3
SV
333
334/* return group to which a task belongs */
4cf86d77 335static inline struct task_group *task_group(struct task_struct *p)
29f59db3 336{
4cf86d77 337 struct task_group *tg;
9b5b7751 338
052f1dc7 339#ifdef CONFIG_USER_SCHED
24e377a8 340 tg = p->user->tg;
052f1dc7 341#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
342 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
343 struct task_group, css);
24e377a8 344#else
41a2d6cf 345 tg = &init_task_group;
24e377a8 346#endif
9b5b7751 347 return tg;
29f59db3
SV
348}
349
350/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 351static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 352{
052f1dc7 353#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
354 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
355 p->se.parent = task_group(p)->se[cpu];
052f1dc7 356#endif
6f505b16 357
052f1dc7 358#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
359 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
360 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 361#endif
29f59db3
SV
362}
363
364#else
365
6f505b16 366static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 367
052f1dc7 368#endif /* CONFIG_GROUP_SCHED */
29f59db3 369
6aa645ea
IM
370/* CFS-related fields in a runqueue */
371struct cfs_rq {
372 struct load_weight load;
373 unsigned long nr_running;
374
6aa645ea 375 u64 exec_clock;
e9acbff6 376 u64 min_vruntime;
6aa645ea
IM
377
378 struct rb_root tasks_timeline;
379 struct rb_node *rb_leftmost;
4a55bd5e
PZ
380
381 struct list_head tasks;
382 struct list_head *balance_iterator;
383
384 /*
385 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
386 * It is set to NULL otherwise (i.e when none are currently running).
387 */
aa2ac252 388 struct sched_entity *curr, *next;
ddc97297
PZ
389
390 unsigned long nr_spread_over;
391
62160e3f 392#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
393 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
394
41a2d6cf
IM
395 /*
396 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
397 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
398 * (like users, containers etc.)
399 *
400 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
401 * list is used during load balance.
402 */
41a2d6cf
IM
403 struct list_head leaf_cfs_rq_list;
404 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
405
406#ifdef CONFIG_SMP
407 unsigned long task_weight;
408 unsigned long shares;
409 /*
410 * We need space to build a sched_domain wide view of the full task
411 * group tree, in order to avoid depending on dynamic memory allocation
412 * during the load balancing we place this in the per cpu task group
413 * hierarchy. This limits the load balancing to one instance per cpu,
414 * but more should not be needed anyway.
415 */
416 struct aggregate_struct {
417 /*
418 * load = weight(cpus) * f(tg)
419 *
420 * Where f(tg) is the recursive weight fraction assigned to
421 * this group.
422 */
423 unsigned long load;
424
425 /*
426 * part of the group weight distributed to this span.
427 */
428 unsigned long shares;
429
430 /*
431 * The sum of all runqueue weights within this span.
432 */
433 unsigned long rq_weight;
434
435 /*
436 * Weight contributed by tasks; this is the part we can
437 * influence by moving tasks around.
438 */
439 unsigned long task_weight;
440 } aggregate;
441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
57d885fe
GH
493};
494
dc938520
GH
495/*
496 * By default the system creates a single root-domain with all cpus as
497 * members (mimicking the global state we have today).
498 */
57d885fe
GH
499static struct root_domain def_root_domain;
500
501#endif
502
1da177e4
LT
503/*
504 * This is the main, per-CPU runqueue data structure.
505 *
506 * Locking rule: those places that want to lock multiple runqueues
507 * (such as the load balancing or the thread migration code), lock
508 * acquire operations must be ordered by ascending &runqueue.
509 */
70b97a7f 510struct rq {
d8016491
IM
511 /* runqueue lock: */
512 spinlock_t lock;
1da177e4
LT
513
514 /*
515 * nr_running and cpu_load should be in the same cacheline because
516 * remote CPUs use both these fields when doing load calculation.
517 */
518 unsigned long nr_running;
6aa645ea
IM
519 #define CPU_LOAD_IDX_MAX 5
520 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 521 unsigned char idle_at_tick;
46cb4b7c 522#ifdef CONFIG_NO_HZ
15934a37 523 unsigned long last_tick_seen;
46cb4b7c
SS
524 unsigned char in_nohz_recently;
525#endif
d8016491
IM
526 /* capture load from *all* tasks on this cpu: */
527 struct load_weight load;
6aa645ea
IM
528 unsigned long nr_load_updates;
529 u64 nr_switches;
530
531 struct cfs_rq cfs;
6f505b16 532 struct rt_rq rt;
6f505b16 533
6aa645ea 534#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
535 /* list of leaf cfs_rq on this cpu: */
536 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
537#endif
538#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 539 struct list_head leaf_rt_rq_list;
1da177e4 540#endif
1da177e4
LT
541
542 /*
543 * This is part of a global counter where only the total sum
544 * over all CPUs matters. A task can increase this counter on
545 * one CPU and if it got migrated afterwards it may decrease
546 * it on another CPU. Always updated under the runqueue lock:
547 */
548 unsigned long nr_uninterruptible;
549
36c8b586 550 struct task_struct *curr, *idle;
c9819f45 551 unsigned long next_balance;
1da177e4 552 struct mm_struct *prev_mm;
6aa645ea 553
6aa645ea
IM
554 u64 clock, prev_clock_raw;
555 s64 clock_max_delta;
556
cc203d24 557 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
558 u64 idle_clock;
559 unsigned int clock_deep_idle_events;
529c7726 560 u64 tick_timestamp;
6aa645ea 561
1da177e4
LT
562 atomic_t nr_iowait;
563
564#ifdef CONFIG_SMP
0eab9146 565 struct root_domain *rd;
1da177e4
LT
566 struct sched_domain *sd;
567
568 /* For active balancing */
569 int active_balance;
570 int push_cpu;
d8016491
IM
571 /* cpu of this runqueue: */
572 int cpu;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec
PZ
578#ifdef CONFIG_SCHED_HRTICK
579 unsigned long hrtick_flags;
580 ktime_t hrtick_expire;
581 struct hrtimer hrtick_timer;
582#endif
583
1da177e4
LT
584#ifdef CONFIG_SCHEDSTATS
585 /* latency stats */
586 struct sched_info rq_sched_info;
587
588 /* sys_sched_yield() stats */
480b9434
KC
589 unsigned int yld_exp_empty;
590 unsigned int yld_act_empty;
591 unsigned int yld_both_empty;
592 unsigned int yld_count;
1da177e4
LT
593
594 /* schedule() stats */
480b9434
KC
595 unsigned int sched_switch;
596 unsigned int sched_count;
597 unsigned int sched_goidle;
1da177e4
LT
598
599 /* try_to_wake_up() stats */
480b9434
KC
600 unsigned int ttwu_count;
601 unsigned int ttwu_local;
b8efb561
IM
602
603 /* BKL stats */
480b9434 604 unsigned int bkl_count;
1da177e4 605#endif
fcb99371 606 struct lock_class_key rq_lock_key;
1da177e4
LT
607};
608
f34e3b61 609static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 610
dd41f596
IM
611static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
612{
613 rq->curr->sched_class->check_preempt_curr(rq, p);
614}
615
0a2966b4
CL
616static inline int cpu_of(struct rq *rq)
617{
618#ifdef CONFIG_SMP
619 return rq->cpu;
620#else
621 return 0;
622#endif
623}
624
15934a37
GC
625#ifdef CONFIG_NO_HZ
626static inline bool nohz_on(int cpu)
627{
628 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
629}
630
631static inline u64 max_skipped_ticks(struct rq *rq)
632{
633 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
634}
635
636static inline void update_last_tick_seen(struct rq *rq)
637{
638 rq->last_tick_seen = jiffies;
639}
640#else
641static inline u64 max_skipped_ticks(struct rq *rq)
642{
643 return 1;
644}
645
646static inline void update_last_tick_seen(struct rq *rq)
647{
648}
649#endif
650
20d315d4 651/*
b04a0f4c
IM
652 * Update the per-runqueue clock, as finegrained as the platform can give
653 * us, but without assuming monotonicity, etc.:
20d315d4 654 */
b04a0f4c 655static void __update_rq_clock(struct rq *rq)
20d315d4
IM
656{
657 u64 prev_raw = rq->prev_clock_raw;
658 u64 now = sched_clock();
659 s64 delta = now - prev_raw;
660 u64 clock = rq->clock;
661
b04a0f4c
IM
662#ifdef CONFIG_SCHED_DEBUG
663 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
664#endif
20d315d4
IM
665 /*
666 * Protect against sched_clock() occasionally going backwards:
667 */
668 if (unlikely(delta < 0)) {
669 clock++;
670 rq->clock_warps++;
671 } else {
672 /*
673 * Catch too large forward jumps too:
674 */
15934a37
GC
675 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
676 u64 max_time = rq->tick_timestamp + max_jump;
677
678 if (unlikely(clock + delta > max_time)) {
679 if (clock < max_time)
680 clock = max_time;
529c7726
IM
681 else
682 clock++;
20d315d4
IM
683 rq->clock_overflows++;
684 } else {
685 if (unlikely(delta > rq->clock_max_delta))
686 rq->clock_max_delta = delta;
687 clock += delta;
688 }
689 }
690
691 rq->prev_clock_raw = now;
692 rq->clock = clock;
b04a0f4c 693}
20d315d4 694
b04a0f4c
IM
695static void update_rq_clock(struct rq *rq)
696{
697 if (likely(smp_processor_id() == cpu_of(rq)))
698 __update_rq_clock(rq);
20d315d4
IM
699}
700
674311d5
NP
701/*
702 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 703 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
704 *
705 * The domain tree of any CPU may only be accessed from within
706 * preempt-disabled sections.
707 */
48f24c4d
IM
708#define for_each_domain(cpu, __sd) \
709 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
710
711#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
712#define this_rq() (&__get_cpu_var(runqueues))
713#define task_rq(p) cpu_rq(task_cpu(p))
714#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
715
bf5c91ba
IM
716/*
717 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
718 */
719#ifdef CONFIG_SCHED_DEBUG
720# define const_debug __read_mostly
721#else
722# define const_debug static const
723#endif
724
725/*
726 * Debugging: various feature bits
727 */
f00b45c1
PZ
728
729#define SCHED_FEAT(name, enabled) \
730 __SCHED_FEAT_##name ,
731
bf5c91ba 732enum {
f00b45c1 733#include "sched_features.h"
bf5c91ba
IM
734};
735
f00b45c1
PZ
736#undef SCHED_FEAT
737
738#define SCHED_FEAT(name, enabled) \
739 (1UL << __SCHED_FEAT_##name) * enabled |
740
bf5c91ba 741const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
742#include "sched_features.h"
743 0;
744
745#undef SCHED_FEAT
746
747#ifdef CONFIG_SCHED_DEBUG
748#define SCHED_FEAT(name, enabled) \
749 #name ,
750
983ed7a6 751static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
752#include "sched_features.h"
753 NULL
754};
755
756#undef SCHED_FEAT
757
983ed7a6 758static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
759{
760 filp->private_data = inode->i_private;
761 return 0;
762}
763
764static ssize_t
765sched_feat_read(struct file *filp, char __user *ubuf,
766 size_t cnt, loff_t *ppos)
767{
768 char *buf;
769 int r = 0;
770 int len = 0;
771 int i;
772
773 for (i = 0; sched_feat_names[i]; i++) {
774 len += strlen(sched_feat_names[i]);
775 len += 4;
776 }
777
778 buf = kmalloc(len + 2, GFP_KERNEL);
779 if (!buf)
780 return -ENOMEM;
781
782 for (i = 0; sched_feat_names[i]; i++) {
783 if (sysctl_sched_features & (1UL << i))
784 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
785 else
c24b7c52 786 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
787 }
788
789 r += sprintf(buf + r, "\n");
790 WARN_ON(r >= len + 2);
791
792 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
793
794 kfree(buf);
795
796 return r;
797}
798
799static ssize_t
800sched_feat_write(struct file *filp, const char __user *ubuf,
801 size_t cnt, loff_t *ppos)
802{
803 char buf[64];
804 char *cmp = buf;
805 int neg = 0;
806 int i;
807
808 if (cnt > 63)
809 cnt = 63;
810
811 if (copy_from_user(&buf, ubuf, cnt))
812 return -EFAULT;
813
814 buf[cnt] = 0;
815
c24b7c52 816 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
817 neg = 1;
818 cmp += 3;
819 }
820
821 for (i = 0; sched_feat_names[i]; i++) {
822 int len = strlen(sched_feat_names[i]);
823
824 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
825 if (neg)
826 sysctl_sched_features &= ~(1UL << i);
827 else
828 sysctl_sched_features |= (1UL << i);
829 break;
830 }
831 }
832
833 if (!sched_feat_names[i])
834 return -EINVAL;
835
836 filp->f_pos += cnt;
837
838 return cnt;
839}
840
841static struct file_operations sched_feat_fops = {
842 .open = sched_feat_open,
843 .read = sched_feat_read,
844 .write = sched_feat_write,
845};
846
847static __init int sched_init_debug(void)
848{
f00b45c1
PZ
849 debugfs_create_file("sched_features", 0644, NULL, NULL,
850 &sched_feat_fops);
851
852 return 0;
853}
854late_initcall(sched_init_debug);
855
856#endif
857
858#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 859
b82d9fdd
PZ
860/*
861 * Number of tasks to iterate in a single balance run.
862 * Limited because this is done with IRQs disabled.
863 */
864const_debug unsigned int sysctl_sched_nr_migrate = 32;
865
fa85ae24 866/*
9f0c1e56 867 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
868 * default: 1s
869 */
9f0c1e56 870unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 871
6892b75e
IM
872static __read_mostly int scheduler_running;
873
9f0c1e56
PZ
874/*
875 * part of the period that we allow rt tasks to run in us.
876 * default: 0.95s
877 */
878int sysctl_sched_rt_runtime = 950000;
fa85ae24 879
d0b27fa7
PZ
880static inline u64 global_rt_period(void)
881{
882 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
883}
884
885static inline u64 global_rt_runtime(void)
886{
887 if (sysctl_sched_rt_period < 0)
888 return RUNTIME_INF;
889
890 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
891}
fa85ae24 892
690229a0 893unsigned long long time_sync_thresh = 100000;
27ec4407
IM
894
895static DEFINE_PER_CPU(unsigned long long, time_offset);
896static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
897
e436d800 898/*
27ec4407
IM
899 * Global lock which we take every now and then to synchronize
900 * the CPUs time. This method is not warp-safe, but it's good
901 * enough to synchronize slowly diverging time sources and thus
902 * it's good enough for tracing:
e436d800 903 */
27ec4407
IM
904static DEFINE_SPINLOCK(time_sync_lock);
905static unsigned long long prev_global_time;
906
907static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
908{
909 unsigned long flags;
910
911 spin_lock_irqsave(&time_sync_lock, flags);
912
913 if (time < prev_global_time) {
914 per_cpu(time_offset, cpu) += prev_global_time - time;
915 time = prev_global_time;
916 } else {
917 prev_global_time = time;
918 }
919
920 spin_unlock_irqrestore(&time_sync_lock, flags);
921
922 return time;
923}
924
925static unsigned long long __cpu_clock(int cpu)
e436d800 926{
e436d800
IM
927 unsigned long long now;
928 unsigned long flags;
b04a0f4c 929 struct rq *rq;
e436d800 930
8ced5f69
IM
931 /*
932 * Only call sched_clock() if the scheduler has already been
933 * initialized (some code might call cpu_clock() very early):
934 */
6892b75e
IM
935 if (unlikely(!scheduler_running))
936 return 0;
937
938 local_irq_save(flags);
939 rq = cpu_rq(cpu);
940 update_rq_clock(rq);
b04a0f4c 941 now = rq->clock;
2cd4d0ea 942 local_irq_restore(flags);
e436d800
IM
943
944 return now;
945}
27ec4407
IM
946
947/*
948 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
949 * clock constructed from sched_clock():
950 */
951unsigned long long cpu_clock(int cpu)
952{
953 unsigned long long prev_cpu_time, time, delta_time;
954
955 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
956 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
957 delta_time = time-prev_cpu_time;
958
959 if (unlikely(delta_time > time_sync_thresh))
960 time = __sync_cpu_clock(time, cpu);
961
962 return time;
963}
a58f6f25 964EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 965
1da177e4 966#ifndef prepare_arch_switch
4866cde0
NP
967# define prepare_arch_switch(next) do { } while (0)
968#endif
969#ifndef finish_arch_switch
970# define finish_arch_switch(prev) do { } while (0)
971#endif
972
051a1d1a
DA
973static inline int task_current(struct rq *rq, struct task_struct *p)
974{
975 return rq->curr == p;
976}
977
4866cde0 978#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 979static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 980{
051a1d1a 981 return task_current(rq, p);
4866cde0
NP
982}
983
70b97a7f 984static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
985{
986}
987
70b97a7f 988static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 989{
da04c035
IM
990#ifdef CONFIG_DEBUG_SPINLOCK
991 /* this is a valid case when another task releases the spinlock */
992 rq->lock.owner = current;
993#endif
8a25d5de
IM
994 /*
995 * If we are tracking spinlock dependencies then we have to
996 * fix up the runqueue lock - which gets 'carried over' from
997 * prev into current:
998 */
999 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1000
4866cde0
NP
1001 spin_unlock_irq(&rq->lock);
1002}
1003
1004#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1005static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
1006{
1007#ifdef CONFIG_SMP
1008 return p->oncpu;
1009#else
051a1d1a 1010 return task_current(rq, p);
4866cde0
NP
1011#endif
1012}
1013
70b97a7f 1014static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1015{
1016#ifdef CONFIG_SMP
1017 /*
1018 * We can optimise this out completely for !SMP, because the
1019 * SMP rebalancing from interrupt is the only thing that cares
1020 * here.
1021 */
1022 next->oncpu = 1;
1023#endif
1024#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1025 spin_unlock_irq(&rq->lock);
1026#else
1027 spin_unlock(&rq->lock);
1028#endif
1029}
1030
70b97a7f 1031static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1032{
1033#ifdef CONFIG_SMP
1034 /*
1035 * After ->oncpu is cleared, the task can be moved to a different CPU.
1036 * We must ensure this doesn't happen until the switch is completely
1037 * finished.
1038 */
1039 smp_wmb();
1040 prev->oncpu = 0;
1041#endif
1042#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1043 local_irq_enable();
1da177e4 1044#endif
4866cde0
NP
1045}
1046#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1047
b29739f9
IM
1048/*
1049 * __task_rq_lock - lock the runqueue a given task resides on.
1050 * Must be called interrupts disabled.
1051 */
70b97a7f 1052static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1053 __acquires(rq->lock)
1054{
3a5c359a
AK
1055 for (;;) {
1056 struct rq *rq = task_rq(p);
1057 spin_lock(&rq->lock);
1058 if (likely(rq == task_rq(p)))
1059 return rq;
b29739f9 1060 spin_unlock(&rq->lock);
b29739f9 1061 }
b29739f9
IM
1062}
1063
1da177e4
LT
1064/*
1065 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 1066 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
1067 * explicitly disabling preemption.
1068 */
70b97a7f 1069static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
1070 __acquires(rq->lock)
1071{
70b97a7f 1072 struct rq *rq;
1da177e4 1073
3a5c359a
AK
1074 for (;;) {
1075 local_irq_save(*flags);
1076 rq = task_rq(p);
1077 spin_lock(&rq->lock);
1078 if (likely(rq == task_rq(p)))
1079 return rq;
1da177e4 1080 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1081 }
1da177e4
LT
1082}
1083
a9957449 1084static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1085 __releases(rq->lock)
1086{
1087 spin_unlock(&rq->lock);
1088}
1089
70b97a7f 1090static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1091 __releases(rq->lock)
1092{
1093 spin_unlock_irqrestore(&rq->lock, *flags);
1094}
1095
1da177e4 1096/*
cc2a73b5 1097 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1098 */
a9957449 1099static struct rq *this_rq_lock(void)
1da177e4
LT
1100 __acquires(rq->lock)
1101{
70b97a7f 1102 struct rq *rq;
1da177e4
LT
1103
1104 local_irq_disable();
1105 rq = this_rq();
1106 spin_lock(&rq->lock);
1107
1108 return rq;
1109}
1110
1b9f19c2 1111/*
2aa44d05 1112 * We are going deep-idle (irqs are disabled):
1b9f19c2 1113 */
2aa44d05 1114void sched_clock_idle_sleep_event(void)
1b9f19c2 1115{
2aa44d05
IM
1116 struct rq *rq = cpu_rq(smp_processor_id());
1117
d478c2cf 1118 WARN_ON(!irqs_disabled());
2aa44d05
IM
1119 spin_lock(&rq->lock);
1120 __update_rq_clock(rq);
1121 spin_unlock(&rq->lock);
1122 rq->clock_deep_idle_events++;
1123}
1124EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1125
1126/*
1127 * We just idled delta nanoseconds (called with irqs disabled):
1128 */
1129void sched_clock_idle_wakeup_event(u64 delta_ns)
1130{
1131 struct rq *rq = cpu_rq(smp_processor_id());
1132 u64 now = sched_clock();
1b9f19c2 1133
d478c2cf 1134 WARN_ON(!irqs_disabled());
2aa44d05
IM
1135 rq->idle_clock += delta_ns;
1136 /*
1137 * Override the previous timestamp and ignore all
1138 * sched_clock() deltas that occured while we idled,
1139 * and use the PM-provided delta_ns to advance the
1140 * rq clock:
1141 */
1142 spin_lock(&rq->lock);
1143 rq->prev_clock_raw = now;
1144 rq->clock += delta_ns;
1145 spin_unlock(&rq->lock);
782daeee 1146 touch_softlockup_watchdog();
1b9f19c2 1147}
2aa44d05 1148EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 1149
8f4d37ec
PZ
1150static void __resched_task(struct task_struct *p, int tif_bit);
1151
1152static inline void resched_task(struct task_struct *p)
1153{
1154 __resched_task(p, TIF_NEED_RESCHED);
1155}
1156
1157#ifdef CONFIG_SCHED_HRTICK
1158/*
1159 * Use HR-timers to deliver accurate preemption points.
1160 *
1161 * Its all a bit involved since we cannot program an hrt while holding the
1162 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1163 * reschedule event.
1164 *
1165 * When we get rescheduled we reprogram the hrtick_timer outside of the
1166 * rq->lock.
1167 */
1168static inline void resched_hrt(struct task_struct *p)
1169{
1170 __resched_task(p, TIF_HRTICK_RESCHED);
1171}
1172
1173static inline void resched_rq(struct rq *rq)
1174{
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&rq->lock, flags);
1178 resched_task(rq->curr);
1179 spin_unlock_irqrestore(&rq->lock, flags);
1180}
1181
1182enum {
1183 HRTICK_SET, /* re-programm hrtick_timer */
1184 HRTICK_RESET, /* not a new slice */
b328ca18 1185 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1186};
1187
1188/*
1189 * Use hrtick when:
1190 * - enabled by features
1191 * - hrtimer is actually high res
1192 */
1193static inline int hrtick_enabled(struct rq *rq)
1194{
1195 if (!sched_feat(HRTICK))
1196 return 0;
b328ca18
PZ
1197 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1198 return 0;
8f4d37ec
PZ
1199 return hrtimer_is_hres_active(&rq->hrtick_timer);
1200}
1201
1202/*
1203 * Called to set the hrtick timer state.
1204 *
1205 * called with rq->lock held and irqs disabled
1206 */
1207static void hrtick_start(struct rq *rq, u64 delay, int reset)
1208{
1209 assert_spin_locked(&rq->lock);
1210
1211 /*
1212 * preempt at: now + delay
1213 */
1214 rq->hrtick_expire =
1215 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1216 /*
1217 * indicate we need to program the timer
1218 */
1219 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1220 if (reset)
1221 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1222
1223 /*
1224 * New slices are called from the schedule path and don't need a
1225 * forced reschedule.
1226 */
1227 if (reset)
1228 resched_hrt(rq->curr);
1229}
1230
1231static void hrtick_clear(struct rq *rq)
1232{
1233 if (hrtimer_active(&rq->hrtick_timer))
1234 hrtimer_cancel(&rq->hrtick_timer);
1235}
1236
1237/*
1238 * Update the timer from the possible pending state.
1239 */
1240static void hrtick_set(struct rq *rq)
1241{
1242 ktime_t time;
1243 int set, reset;
1244 unsigned long flags;
1245
1246 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1247
1248 spin_lock_irqsave(&rq->lock, flags);
1249 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1250 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1251 time = rq->hrtick_expire;
1252 clear_thread_flag(TIF_HRTICK_RESCHED);
1253 spin_unlock_irqrestore(&rq->lock, flags);
1254
1255 if (set) {
1256 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1257 if (reset && !hrtimer_active(&rq->hrtick_timer))
1258 resched_rq(rq);
1259 } else
1260 hrtick_clear(rq);
1261}
1262
1263/*
1264 * High-resolution timer tick.
1265 * Runs from hardirq context with interrupts disabled.
1266 */
1267static enum hrtimer_restart hrtick(struct hrtimer *timer)
1268{
1269 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1270
1271 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1272
1273 spin_lock(&rq->lock);
1274 __update_rq_clock(rq);
1275 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1276 spin_unlock(&rq->lock);
1277
1278 return HRTIMER_NORESTART;
1279}
1280
b328ca18
PZ
1281static void hotplug_hrtick_disable(int cpu)
1282{
1283 struct rq *rq = cpu_rq(cpu);
1284 unsigned long flags;
1285
1286 spin_lock_irqsave(&rq->lock, flags);
1287 rq->hrtick_flags = 0;
1288 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1289 spin_unlock_irqrestore(&rq->lock, flags);
1290
1291 hrtick_clear(rq);
1292}
1293
1294static void hotplug_hrtick_enable(int cpu)
1295{
1296 struct rq *rq = cpu_rq(cpu);
1297 unsigned long flags;
1298
1299 spin_lock_irqsave(&rq->lock, flags);
1300 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1301 spin_unlock_irqrestore(&rq->lock, flags);
1302}
1303
1304static int
1305hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1306{
1307 int cpu = (int)(long)hcpu;
1308
1309 switch (action) {
1310 case CPU_UP_CANCELED:
1311 case CPU_UP_CANCELED_FROZEN:
1312 case CPU_DOWN_PREPARE:
1313 case CPU_DOWN_PREPARE_FROZEN:
1314 case CPU_DEAD:
1315 case CPU_DEAD_FROZEN:
1316 hotplug_hrtick_disable(cpu);
1317 return NOTIFY_OK;
1318
1319 case CPU_UP_PREPARE:
1320 case CPU_UP_PREPARE_FROZEN:
1321 case CPU_DOWN_FAILED:
1322 case CPU_DOWN_FAILED_FROZEN:
1323 case CPU_ONLINE:
1324 case CPU_ONLINE_FROZEN:
1325 hotplug_hrtick_enable(cpu);
1326 return NOTIFY_OK;
1327 }
1328
1329 return NOTIFY_DONE;
1330}
1331
1332static void init_hrtick(void)
1333{
1334 hotcpu_notifier(hotplug_hrtick, 0);
1335}
1336
1337static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1338{
1339 rq->hrtick_flags = 0;
1340 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1341 rq->hrtick_timer.function = hrtick;
1342 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1343}
1344
1345void hrtick_resched(void)
1346{
1347 struct rq *rq;
1348 unsigned long flags;
1349
1350 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1351 return;
1352
1353 local_irq_save(flags);
1354 rq = cpu_rq(smp_processor_id());
1355 hrtick_set(rq);
1356 local_irq_restore(flags);
1357}
1358#else
1359static inline void hrtick_clear(struct rq *rq)
1360{
1361}
1362
1363static inline void hrtick_set(struct rq *rq)
1364{
1365}
1366
1367static inline void init_rq_hrtick(struct rq *rq)
1368{
1369}
1370
1371void hrtick_resched(void)
1372{
1373}
b328ca18
PZ
1374
1375static inline void init_hrtick(void)
1376{
1377}
8f4d37ec
PZ
1378#endif
1379
c24d20db
IM
1380/*
1381 * resched_task - mark a task 'to be rescheduled now'.
1382 *
1383 * On UP this means the setting of the need_resched flag, on SMP it
1384 * might also involve a cross-CPU call to trigger the scheduler on
1385 * the target CPU.
1386 */
1387#ifdef CONFIG_SMP
1388
1389#ifndef tsk_is_polling
1390#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1391#endif
1392
8f4d37ec 1393static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1394{
1395 int cpu;
1396
1397 assert_spin_locked(&task_rq(p)->lock);
1398
8f4d37ec 1399 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1400 return;
1401
8f4d37ec 1402 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1403
1404 cpu = task_cpu(p);
1405 if (cpu == smp_processor_id())
1406 return;
1407
1408 /* NEED_RESCHED must be visible before we test polling */
1409 smp_mb();
1410 if (!tsk_is_polling(p))
1411 smp_send_reschedule(cpu);
1412}
1413
1414static void resched_cpu(int cpu)
1415{
1416 struct rq *rq = cpu_rq(cpu);
1417 unsigned long flags;
1418
1419 if (!spin_trylock_irqsave(&rq->lock, flags))
1420 return;
1421 resched_task(cpu_curr(cpu));
1422 spin_unlock_irqrestore(&rq->lock, flags);
1423}
06d8308c
TG
1424
1425#ifdef CONFIG_NO_HZ
1426/*
1427 * When add_timer_on() enqueues a timer into the timer wheel of an
1428 * idle CPU then this timer might expire before the next timer event
1429 * which is scheduled to wake up that CPU. In case of a completely
1430 * idle system the next event might even be infinite time into the
1431 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1432 * leaves the inner idle loop so the newly added timer is taken into
1433 * account when the CPU goes back to idle and evaluates the timer
1434 * wheel for the next timer event.
1435 */
1436void wake_up_idle_cpu(int cpu)
1437{
1438 struct rq *rq = cpu_rq(cpu);
1439
1440 if (cpu == smp_processor_id())
1441 return;
1442
1443 /*
1444 * This is safe, as this function is called with the timer
1445 * wheel base lock of (cpu) held. When the CPU is on the way
1446 * to idle and has not yet set rq->curr to idle then it will
1447 * be serialized on the timer wheel base lock and take the new
1448 * timer into account automatically.
1449 */
1450 if (rq->curr != rq->idle)
1451 return;
1452
1453 /*
1454 * We can set TIF_RESCHED on the idle task of the other CPU
1455 * lockless. The worst case is that the other CPU runs the
1456 * idle task through an additional NOOP schedule()
1457 */
1458 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1459
1460 /* NEED_RESCHED must be visible before we test polling */
1461 smp_mb();
1462 if (!tsk_is_polling(rq->idle))
1463 smp_send_reschedule(cpu);
1464}
1465#endif
1466
c24d20db 1467#else
8f4d37ec 1468static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1469{
1470 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1471 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1472}
1473#endif
1474
45bf76df
IM
1475#if BITS_PER_LONG == 32
1476# define WMULT_CONST (~0UL)
1477#else
1478# define WMULT_CONST (1UL << 32)
1479#endif
1480
1481#define WMULT_SHIFT 32
1482
194081eb
IM
1483/*
1484 * Shift right and round:
1485 */
cf2ab469 1486#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1487
8f1bc385
PZ
1488/*
1489 * delta *= weight / lw
1490 */
cb1c4fc9 1491static unsigned long
45bf76df
IM
1492calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1493 struct load_weight *lw)
1494{
1495 u64 tmp;
1496
e05510d0
PZ
1497 if (!lw->inv_weight)
1498 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
45bf76df
IM
1499
1500 tmp = (u64)delta_exec * weight;
1501 /*
1502 * Check whether we'd overflow the 64-bit multiplication:
1503 */
194081eb 1504 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1505 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1506 WMULT_SHIFT/2);
1507 else
cf2ab469 1508 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1509
ecf691da 1510 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1511}
1512
1091985b 1513static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1514{
1515 lw->weight += inc;
e89996ae 1516 lw->inv_weight = 0;
45bf76df
IM
1517}
1518
1091985b 1519static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1520{
1521 lw->weight -= dec;
e89996ae 1522 lw->inv_weight = 0;
45bf76df
IM
1523}
1524
2dd73a4f
PW
1525/*
1526 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1527 * of tasks with abnormal "nice" values across CPUs the contribution that
1528 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1529 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1530 * scaled version of the new time slice allocation that they receive on time
1531 * slice expiry etc.
1532 */
1533
dd41f596
IM
1534#define WEIGHT_IDLEPRIO 2
1535#define WMULT_IDLEPRIO (1 << 31)
1536
1537/*
1538 * Nice levels are multiplicative, with a gentle 10% change for every
1539 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1540 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1541 * that remained on nice 0.
1542 *
1543 * The "10% effect" is relative and cumulative: from _any_ nice level,
1544 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1545 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1546 * If a task goes up by ~10% and another task goes down by ~10% then
1547 * the relative distance between them is ~25%.)
dd41f596
IM
1548 */
1549static const int prio_to_weight[40] = {
254753dc
IM
1550 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1551 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1552 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1553 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1554 /* 0 */ 1024, 820, 655, 526, 423,
1555 /* 5 */ 335, 272, 215, 172, 137,
1556 /* 10 */ 110, 87, 70, 56, 45,
1557 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1558};
1559
5714d2de
IM
1560/*
1561 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1562 *
1563 * In cases where the weight does not change often, we can use the
1564 * precalculated inverse to speed up arithmetics by turning divisions
1565 * into multiplications:
1566 */
dd41f596 1567static const u32 prio_to_wmult[40] = {
254753dc
IM
1568 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1569 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1570 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1571 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1572 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1573 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1574 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1575 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1576};
2dd73a4f 1577
dd41f596
IM
1578static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1579
1580/*
1581 * runqueue iterator, to support SMP load-balancing between different
1582 * scheduling classes, without having to expose their internal data
1583 * structures to the load-balancing proper:
1584 */
1585struct rq_iterator {
1586 void *arg;
1587 struct task_struct *(*start)(void *);
1588 struct task_struct *(*next)(void *);
1589};
1590
e1d1484f
PW
1591#ifdef CONFIG_SMP
1592static unsigned long
1593balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1594 unsigned long max_load_move, struct sched_domain *sd,
1595 enum cpu_idle_type idle, int *all_pinned,
1596 int *this_best_prio, struct rq_iterator *iterator);
1597
1598static int
1599iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1600 struct sched_domain *sd, enum cpu_idle_type idle,
1601 struct rq_iterator *iterator);
e1d1484f 1602#endif
dd41f596 1603
d842de87
SV
1604#ifdef CONFIG_CGROUP_CPUACCT
1605static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1606#else
1607static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1608#endif
1609
18d95a28
PZ
1610static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1611{
1612 update_load_add(&rq->load, load);
1613}
1614
1615static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1616{
1617 update_load_sub(&rq->load, load);
1618}
1619
e7693a36
GH
1620#ifdef CONFIG_SMP
1621static unsigned long source_load(int cpu, int type);
1622static unsigned long target_load(int cpu, int type);
1623static unsigned long cpu_avg_load_per_task(int cpu);
1624static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1625
1626#ifdef CONFIG_FAIR_GROUP_SCHED
1627
1628/*
1629 * Group load balancing.
1630 *
1631 * We calculate a few balance domain wide aggregate numbers; load and weight.
1632 * Given the pictures below, and assuming each item has equal weight:
1633 *
1634 * root 1 - thread
1635 * / | \ A - group
1636 * A 1 B
1637 * /|\ / \
1638 * C 2 D 3 4
1639 * | |
1640 * 5 6
1641 *
1642 * load:
1643 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1644 * which equals 1/9-th of the total load.
1645 *
1646 * shares:
1647 * The weight of this group on the selected cpus.
1648 *
1649 * rq_weight:
1650 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1651 * B would get 2.
1652 *
1653 * task_weight:
1654 * Part of the rq_weight contributed by tasks; all groups except B would
1655 * get 1, B gets 2.
1656 */
1657
1658static inline struct aggregate_struct *
1659aggregate(struct task_group *tg, struct sched_domain *sd)
1660{
1661 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1662}
1663
1664typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1665
1666/*
1667 * Iterate the full tree, calling @down when first entering a node and @up when
1668 * leaving it for the final time.
1669 */
1670static
1671void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1672 struct sched_domain *sd)
1673{
1674 struct task_group *parent, *child;
1675
1676 rcu_read_lock();
1677 parent = &root_task_group;
1678down:
1679 (*down)(parent, sd);
1680 list_for_each_entry_rcu(child, &parent->children, siblings) {
1681 parent = child;
1682 goto down;
1683
1684up:
1685 continue;
1686 }
1687 (*up)(parent, sd);
1688
1689 child = parent;
1690 parent = parent->parent;
1691 if (parent)
1692 goto up;
1693 rcu_read_unlock();
1694}
1695
1696/*
1697 * Calculate the aggregate runqueue weight.
1698 */
1699static
1700void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1701{
1702 unsigned long rq_weight = 0;
1703 unsigned long task_weight = 0;
1704 int i;
1705
1706 for_each_cpu_mask(i, sd->span) {
1707 rq_weight += tg->cfs_rq[i]->load.weight;
1708 task_weight += tg->cfs_rq[i]->task_weight;
1709 }
1710
1711 aggregate(tg, sd)->rq_weight = rq_weight;
1712 aggregate(tg, sd)->task_weight = task_weight;
1713}
1714
18d95a28
PZ
1715/*
1716 * Compute the weight of this group on the given cpus.
1717 */
1718static
1719void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1720{
1721 unsigned long shares = 0;
1722 int i;
1723
18d95a28
PZ
1724 for_each_cpu_mask(i, sd->span)
1725 shares += tg->cfs_rq[i]->shares;
1726
3f5087a2
PZ
1727 if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
1728 shares = tg->shares;
18d95a28
PZ
1729
1730 aggregate(tg, sd)->shares = shares;
1731}
1732
1733/*
1734 * Compute the load fraction assigned to this group, relies on the aggregate
1735 * weight and this group's parent's load, i.e. top-down.
1736 */
1737static
1738void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1739{
1740 unsigned long load;
1741
1742 if (!tg->parent) {
1743 int i;
1744
1745 load = 0;
1746 for_each_cpu_mask(i, sd->span)
1747 load += cpu_rq(i)->load.weight;
1748
1749 } else {
1750 load = aggregate(tg->parent, sd)->load;
1751
1752 /*
1753 * shares is our weight in the parent's rq so
1754 * shares/parent->rq_weight gives our fraction of the load
1755 */
1756 load *= aggregate(tg, sd)->shares;
1757 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1758 }
1759
1760 aggregate(tg, sd)->load = load;
1761}
1762
1763static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1764
1765/*
1766 * Calculate and set the cpu's group shares.
1767 */
1768static void
1769__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1770 int tcpu)
1771{
1772 int boost = 0;
1773 unsigned long shares;
1774 unsigned long rq_weight;
1775
1776 if (!tg->se[tcpu])
1777 return;
1778
1779 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1780
1781 /*
1782 * If there are currently no tasks on the cpu pretend there is one of
1783 * average load so that when a new task gets to run here it will not
1784 * get delayed by group starvation.
1785 */
1786 if (!rq_weight) {
1787 boost = 1;
1788 rq_weight = NICE_0_LOAD;
1789 }
1790
1791 /*
1792 * \Sum shares * rq_weight
1793 * shares = -----------------------
1794 * \Sum rq_weight
1795 *
1796 */
1797 shares = aggregate(tg, sd)->shares * rq_weight;
1798 shares /= aggregate(tg, sd)->rq_weight + 1;
1799
1800 /*
1801 * record the actual number of shares, not the boosted amount.
1802 */
1803 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1804
1805 if (shares < MIN_SHARES)
1806 shares = MIN_SHARES;
1807
1808 __set_se_shares(tg->se[tcpu], shares);
1809}
1810
1811/*
1812 * Re-adjust the weights on the cpu the task came from and on the cpu the
1813 * task went to.
1814 */
1815static void
1816__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1817 int scpu, int dcpu)
1818{
1819 unsigned long shares;
1820
1821 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1822
1823 __update_group_shares_cpu(tg, sd, scpu);
1824 __update_group_shares_cpu(tg, sd, dcpu);
1825
1826 /*
1827 * ensure we never loose shares due to rounding errors in the
1828 * above redistribution.
1829 */
1830 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1831 if (shares)
1832 tg->cfs_rq[dcpu]->shares += shares;
1833}
1834
1835/*
1836 * Because changing a group's shares changes the weight of the super-group
1837 * we need to walk up the tree and change all shares until we hit the root.
1838 */
1839static void
1840move_group_shares(struct task_group *tg, struct sched_domain *sd,
1841 int scpu, int dcpu)
1842{
1843 while (tg) {
1844 __move_group_shares(tg, sd, scpu, dcpu);
1845 tg = tg->parent;
1846 }
1847}
1848
1849static
1850void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1851{
1852 unsigned long shares = aggregate(tg, sd)->shares;
1853 int i;
1854
1855 for_each_cpu_mask(i, sd->span) {
1856 struct rq *rq = cpu_rq(i);
1857 unsigned long flags;
1858
1859 spin_lock_irqsave(&rq->lock, flags);
1860 __update_group_shares_cpu(tg, sd, i);
1861 spin_unlock_irqrestore(&rq->lock, flags);
1862 }
1863
1864 aggregate_group_shares(tg, sd);
1865
1866 /*
1867 * ensure we never loose shares due to rounding errors in the
1868 * above redistribution.
1869 */
1870 shares -= aggregate(tg, sd)->shares;
1871 if (shares) {
1872 tg->cfs_rq[sd->first_cpu]->shares += shares;
1873 aggregate(tg, sd)->shares += shares;
1874 }
1875}
1876
1877/*
1878 * Calculate the accumulative weight and recursive load of each task group
1879 * while walking down the tree.
1880 */
1881static
1882void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1883{
1884 aggregate_group_weight(tg, sd);
1885 aggregate_group_shares(tg, sd);
1886 aggregate_group_load(tg, sd);
1887}
1888
1889/*
1890 * Rebalance the cpu shares while walking back up the tree.
1891 */
1892static
1893void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1894{
1895 aggregate_group_set_shares(tg, sd);
1896}
1897
1898static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1899
1900static void __init init_aggregate(void)
1901{
1902 int i;
1903
1904 for_each_possible_cpu(i)
1905 spin_lock_init(&per_cpu(aggregate_lock, i));
1906}
1907
1908static int get_aggregate(struct sched_domain *sd)
1909{
1910 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1911 return 0;
1912
1913 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1914 return 1;
1915}
1916
1917static void put_aggregate(struct sched_domain *sd)
1918{
1919 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1920}
1921
1922static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1923{
1924 cfs_rq->shares = shares;
1925}
1926
1927#else
1928
1929static inline void init_aggregate(void)
1930{
1931}
1932
1933static inline int get_aggregate(struct sched_domain *sd)
1934{
1935 return 0;
1936}
1937
1938static inline void put_aggregate(struct sched_domain *sd)
1939{
1940}
1941#endif
1942
1943#else /* CONFIG_SMP */
1944
1945#ifdef CONFIG_FAIR_GROUP_SCHED
1946static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1947{
1948}
1949#endif
1950
e7693a36
GH
1951#endif /* CONFIG_SMP */
1952
dd41f596 1953#include "sched_stats.h"
dd41f596 1954#include "sched_idletask.c"
5522d5d5
IM
1955#include "sched_fair.c"
1956#include "sched_rt.c"
dd41f596
IM
1957#ifdef CONFIG_SCHED_DEBUG
1958# include "sched_debug.c"
1959#endif
1960
1961#define sched_class_highest (&rt_sched_class)
1962
18d95a28 1963static void inc_nr_running(struct rq *rq)
9c217245
IM
1964{
1965 rq->nr_running++;
9c217245
IM
1966}
1967
18d95a28 1968static void dec_nr_running(struct rq *rq)
9c217245
IM
1969{
1970 rq->nr_running--;
9c217245
IM
1971}
1972
45bf76df
IM
1973static void set_load_weight(struct task_struct *p)
1974{
1975 if (task_has_rt_policy(p)) {
dd41f596
IM
1976 p->se.load.weight = prio_to_weight[0] * 2;
1977 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1978 return;
1979 }
45bf76df 1980
dd41f596
IM
1981 /*
1982 * SCHED_IDLE tasks get minimal weight:
1983 */
1984 if (p->policy == SCHED_IDLE) {
1985 p->se.load.weight = WEIGHT_IDLEPRIO;
1986 p->se.load.inv_weight = WMULT_IDLEPRIO;
1987 return;
1988 }
71f8bd46 1989
dd41f596
IM
1990 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1991 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1992}
1993
8159f87e 1994static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1995{
dd41f596 1996 sched_info_queued(p);
fd390f6a 1997 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1998 p->se.on_rq = 1;
71f8bd46
IM
1999}
2000
69be72c1 2001static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 2002{
f02231e5 2003 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 2004 p->se.on_rq = 0;
71f8bd46
IM
2005}
2006
14531189 2007/*
dd41f596 2008 * __normal_prio - return the priority that is based on the static prio
14531189 2009 */
14531189
IM
2010static inline int __normal_prio(struct task_struct *p)
2011{
dd41f596 2012 return p->static_prio;
14531189
IM
2013}
2014
b29739f9
IM
2015/*
2016 * Calculate the expected normal priority: i.e. priority
2017 * without taking RT-inheritance into account. Might be
2018 * boosted by interactivity modifiers. Changes upon fork,
2019 * setprio syscalls, and whenever the interactivity
2020 * estimator recalculates.
2021 */
36c8b586 2022static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2023{
2024 int prio;
2025
e05606d3 2026 if (task_has_rt_policy(p))
b29739f9
IM
2027 prio = MAX_RT_PRIO-1 - p->rt_priority;
2028 else
2029 prio = __normal_prio(p);
2030 return prio;
2031}
2032
2033/*
2034 * Calculate the current priority, i.e. the priority
2035 * taken into account by the scheduler. This value might
2036 * be boosted by RT tasks, or might be boosted by
2037 * interactivity modifiers. Will be RT if the task got
2038 * RT-boosted. If not then it returns p->normal_prio.
2039 */
36c8b586 2040static int effective_prio(struct task_struct *p)
b29739f9
IM
2041{
2042 p->normal_prio = normal_prio(p);
2043 /*
2044 * If we are RT tasks or we were boosted to RT priority,
2045 * keep the priority unchanged. Otherwise, update priority
2046 * to the normal priority:
2047 */
2048 if (!rt_prio(p->prio))
2049 return p->normal_prio;
2050 return p->prio;
2051}
2052
1da177e4 2053/*
dd41f596 2054 * activate_task - move a task to the runqueue.
1da177e4 2055 */
dd41f596 2056static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 2057{
d9514f6c 2058 if (task_contributes_to_load(p))
dd41f596 2059 rq->nr_uninterruptible--;
1da177e4 2060
8159f87e 2061 enqueue_task(rq, p, wakeup);
18d95a28 2062 inc_nr_running(rq);
1da177e4
LT
2063}
2064
1da177e4
LT
2065/*
2066 * deactivate_task - remove a task from the runqueue.
2067 */
2e1cb74a 2068static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 2069{
d9514f6c 2070 if (task_contributes_to_load(p))
dd41f596
IM
2071 rq->nr_uninterruptible++;
2072
69be72c1 2073 dequeue_task(rq, p, sleep);
18d95a28 2074 dec_nr_running(rq);
1da177e4
LT
2075}
2076
1da177e4
LT
2077/**
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2080 */
36c8b586 2081inline int task_curr(const struct task_struct *p)
1da177e4
LT
2082{
2083 return cpu_curr(task_cpu(p)) == p;
2084}
2085
2dd73a4f
PW
2086/* Used instead of source_load when we know the type == 0 */
2087unsigned long weighted_cpuload(const int cpu)
2088{
495eca49 2089 return cpu_rq(cpu)->load.weight;
dd41f596
IM
2090}
2091
2092static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2093{
6f505b16 2094 set_task_rq(p, cpu);
dd41f596 2095#ifdef CONFIG_SMP
ce96b5ac
DA
2096 /*
2097 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2098 * successfuly executed on another CPU. We must ensure that updates of
2099 * per-task data have been completed by this moment.
2100 */
2101 smp_wmb();
dd41f596 2102 task_thread_info(p)->cpu = cpu;
dd41f596 2103#endif
2dd73a4f
PW
2104}
2105
cb469845
SR
2106static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2107 const struct sched_class *prev_class,
2108 int oldprio, int running)
2109{
2110 if (prev_class != p->sched_class) {
2111 if (prev_class->switched_from)
2112 prev_class->switched_from(rq, p, running);
2113 p->sched_class->switched_to(rq, p, running);
2114 } else
2115 p->sched_class->prio_changed(rq, p, oldprio, running);
2116}
2117
1da177e4 2118#ifdef CONFIG_SMP
c65cc870 2119
cc367732
IM
2120/*
2121 * Is this task likely cache-hot:
2122 */
e7693a36 2123static int
cc367732
IM
2124task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2125{
2126 s64 delta;
2127
f540a608
IM
2128 /*
2129 * Buddy candidates are cache hot:
2130 */
d25ce4cd 2131 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2132 return 1;
2133
cc367732
IM
2134 if (p->sched_class != &fair_sched_class)
2135 return 0;
2136
6bc1665b
IM
2137 if (sysctl_sched_migration_cost == -1)
2138 return 1;
2139 if (sysctl_sched_migration_cost == 0)
2140 return 0;
2141
cc367732
IM
2142 delta = now - p->se.exec_start;
2143
2144 return delta < (s64)sysctl_sched_migration_cost;
2145}
2146
2147
dd41f596 2148void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2149{
dd41f596
IM
2150 int old_cpu = task_cpu(p);
2151 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2152 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2153 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2154 u64 clock_offset;
dd41f596
IM
2155
2156 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2157
2158#ifdef CONFIG_SCHEDSTATS
2159 if (p->se.wait_start)
2160 p->se.wait_start -= clock_offset;
dd41f596
IM
2161 if (p->se.sleep_start)
2162 p->se.sleep_start -= clock_offset;
2163 if (p->se.block_start)
2164 p->se.block_start -= clock_offset;
cc367732
IM
2165 if (old_cpu != new_cpu) {
2166 schedstat_inc(p, se.nr_migrations);
2167 if (task_hot(p, old_rq->clock, NULL))
2168 schedstat_inc(p, se.nr_forced2_migrations);
2169 }
6cfb0d5d 2170#endif
2830cf8c
SV
2171 p->se.vruntime -= old_cfsrq->min_vruntime -
2172 new_cfsrq->min_vruntime;
dd41f596
IM
2173
2174 __set_task_cpu(p, new_cpu);
c65cc870
IM
2175}
2176
70b97a7f 2177struct migration_req {
1da177e4 2178 struct list_head list;
1da177e4 2179
36c8b586 2180 struct task_struct *task;
1da177e4
LT
2181 int dest_cpu;
2182
1da177e4 2183 struct completion done;
70b97a7f 2184};
1da177e4
LT
2185
2186/*
2187 * The task's runqueue lock must be held.
2188 * Returns true if you have to wait for migration thread.
2189 */
36c8b586 2190static int
70b97a7f 2191migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2192{
70b97a7f 2193 struct rq *rq = task_rq(p);
1da177e4
LT
2194
2195 /*
2196 * If the task is not on a runqueue (and not running), then
2197 * it is sufficient to simply update the task's cpu field.
2198 */
dd41f596 2199 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2200 set_task_cpu(p, dest_cpu);
2201 return 0;
2202 }
2203
2204 init_completion(&req->done);
1da177e4
LT
2205 req->task = p;
2206 req->dest_cpu = dest_cpu;
2207 list_add(&req->list, &rq->migration_queue);
48f24c4d 2208
1da177e4
LT
2209 return 1;
2210}
2211
2212/*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
2215 * The caller must ensure that the task *will* unschedule sometime soon,
2216 * else this function might spin for a *long* time. This function can't
2217 * be called with interrupts off, or it may introduce deadlock with
2218 * smp_call_function() if an IPI is sent by the same process we are
2219 * waiting to become inactive.
2220 */
36c8b586 2221void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2222{
2223 unsigned long flags;
dd41f596 2224 int running, on_rq;
70b97a7f 2225 struct rq *rq;
1da177e4 2226
3a5c359a
AK
2227 for (;;) {
2228 /*
2229 * We do the initial early heuristics without holding
2230 * any task-queue locks at all. We'll only try to get
2231 * the runqueue lock when things look like they will
2232 * work out!
2233 */
2234 rq = task_rq(p);
fa490cfd 2235
3a5c359a
AK
2236 /*
2237 * If the task is actively running on another CPU
2238 * still, just relax and busy-wait without holding
2239 * any locks.
2240 *
2241 * NOTE! Since we don't hold any locks, it's not
2242 * even sure that "rq" stays as the right runqueue!
2243 * But we don't care, since "task_running()" will
2244 * return false if the runqueue has changed and p
2245 * is actually now running somewhere else!
2246 */
2247 while (task_running(rq, p))
2248 cpu_relax();
fa490cfd 2249
3a5c359a
AK
2250 /*
2251 * Ok, time to look more closely! We need the rq
2252 * lock now, to be *sure*. If we're wrong, we'll
2253 * just go back and repeat.
2254 */
2255 rq = task_rq_lock(p, &flags);
2256 running = task_running(rq, p);
2257 on_rq = p->se.on_rq;
2258 task_rq_unlock(rq, &flags);
fa490cfd 2259
3a5c359a
AK
2260 /*
2261 * Was it really running after all now that we
2262 * checked with the proper locks actually held?
2263 *
2264 * Oops. Go back and try again..
2265 */
2266 if (unlikely(running)) {
2267 cpu_relax();
2268 continue;
2269 }
fa490cfd 2270
3a5c359a
AK
2271 /*
2272 * It's not enough that it's not actively running,
2273 * it must be off the runqueue _entirely_, and not
2274 * preempted!
2275 *
2276 * So if it wa still runnable (but just not actively
2277 * running right now), it's preempted, and we should
2278 * yield - it could be a while.
2279 */
2280 if (unlikely(on_rq)) {
2281 schedule_timeout_uninterruptible(1);
2282 continue;
2283 }
fa490cfd 2284
3a5c359a
AK
2285 /*
2286 * Ahh, all good. It wasn't running, and it wasn't
2287 * runnable, which means that it will never become
2288 * running in the future either. We're all done!
2289 */
2290 break;
2291 }
1da177e4
LT
2292}
2293
2294/***
2295 * kick_process - kick a running thread to enter/exit the kernel
2296 * @p: the to-be-kicked thread
2297 *
2298 * Cause a process which is running on another CPU to enter
2299 * kernel-mode, without any delay. (to get signals handled.)
2300 *
2301 * NOTE: this function doesnt have to take the runqueue lock,
2302 * because all it wants to ensure is that the remote task enters
2303 * the kernel. If the IPI races and the task has been migrated
2304 * to another CPU then no harm is done and the purpose has been
2305 * achieved as well.
2306 */
36c8b586 2307void kick_process(struct task_struct *p)
1da177e4
LT
2308{
2309 int cpu;
2310
2311 preempt_disable();
2312 cpu = task_cpu(p);
2313 if ((cpu != smp_processor_id()) && task_curr(p))
2314 smp_send_reschedule(cpu);
2315 preempt_enable();
2316}
2317
2318/*
2dd73a4f
PW
2319 * Return a low guess at the load of a migration-source cpu weighted
2320 * according to the scheduling class and "nice" value.
1da177e4
LT
2321 *
2322 * We want to under-estimate the load of migration sources, to
2323 * balance conservatively.
2324 */
a9957449 2325static unsigned long source_load(int cpu, int type)
1da177e4 2326{
70b97a7f 2327 struct rq *rq = cpu_rq(cpu);
dd41f596 2328 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2329
3b0bd9bc 2330 if (type == 0)
dd41f596 2331 return total;
b910472d 2332
dd41f596 2333 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2334}
2335
2336/*
2dd73a4f
PW
2337 * Return a high guess at the load of a migration-target cpu weighted
2338 * according to the scheduling class and "nice" value.
1da177e4 2339 */
a9957449 2340static unsigned long target_load(int cpu, int type)
1da177e4 2341{
70b97a7f 2342 struct rq *rq = cpu_rq(cpu);
dd41f596 2343 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2344
7897986b 2345 if (type == 0)
dd41f596 2346 return total;
3b0bd9bc 2347
dd41f596 2348 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2349}
2350
2351/*
2352 * Return the average load per task on the cpu's run queue
2353 */
e7693a36 2354static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2355{
70b97a7f 2356 struct rq *rq = cpu_rq(cpu);
dd41f596 2357 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2358 unsigned long n = rq->nr_running;
2359
dd41f596 2360 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2361}
2362
147cbb4b
NP
2363/*
2364 * find_idlest_group finds and returns the least busy CPU group within the
2365 * domain.
2366 */
2367static struct sched_group *
2368find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2369{
2370 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2371 unsigned long min_load = ULONG_MAX, this_load = 0;
2372 int load_idx = sd->forkexec_idx;
2373 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2374
2375 do {
2376 unsigned long load, avg_load;
2377 int local_group;
2378 int i;
2379
da5a5522
BD
2380 /* Skip over this group if it has no CPUs allowed */
2381 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2382 continue;
da5a5522 2383
147cbb4b 2384 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2385
2386 /* Tally up the load of all CPUs in the group */
2387 avg_load = 0;
2388
2389 for_each_cpu_mask(i, group->cpumask) {
2390 /* Bias balancing toward cpus of our domain */
2391 if (local_group)
2392 load = source_load(i, load_idx);
2393 else
2394 load = target_load(i, load_idx);
2395
2396 avg_load += load;
2397 }
2398
2399 /* Adjust by relative CPU power of the group */
5517d86b
ED
2400 avg_load = sg_div_cpu_power(group,
2401 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2402
2403 if (local_group) {
2404 this_load = avg_load;
2405 this = group;
2406 } else if (avg_load < min_load) {
2407 min_load = avg_load;
2408 idlest = group;
2409 }
3a5c359a 2410 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2411
2412 if (!idlest || 100*this_load < imbalance*min_load)
2413 return NULL;
2414 return idlest;
2415}
2416
2417/*
0feaece9 2418 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2419 */
95cdf3b7 2420static int
7c16ec58
MT
2421find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2422 cpumask_t *tmp)
147cbb4b
NP
2423{
2424 unsigned long load, min_load = ULONG_MAX;
2425 int idlest = -1;
2426 int i;
2427
da5a5522 2428 /* Traverse only the allowed CPUs */
7c16ec58 2429 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2430
7c16ec58 2431 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2432 load = weighted_cpuload(i);
147cbb4b
NP
2433
2434 if (load < min_load || (load == min_load && i == this_cpu)) {
2435 min_load = load;
2436 idlest = i;
2437 }
2438 }
2439
2440 return idlest;
2441}
2442
476d139c
NP
2443/*
2444 * sched_balance_self: balance the current task (running on cpu) in domains
2445 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2446 * SD_BALANCE_EXEC.
2447 *
2448 * Balance, ie. select the least loaded group.
2449 *
2450 * Returns the target CPU number, or the same CPU if no balancing is needed.
2451 *
2452 * preempt must be disabled.
2453 */
2454static int sched_balance_self(int cpu, int flag)
2455{
2456 struct task_struct *t = current;
2457 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2458
c96d145e 2459 for_each_domain(cpu, tmp) {
9761eea8
IM
2460 /*
2461 * If power savings logic is enabled for a domain, stop there.
2462 */
5c45bf27
SS
2463 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2464 break;
476d139c
NP
2465 if (tmp->flags & flag)
2466 sd = tmp;
c96d145e 2467 }
476d139c
NP
2468
2469 while (sd) {
7c16ec58 2470 cpumask_t span, tmpmask;
476d139c 2471 struct sched_group *group;
1a848870
SS
2472 int new_cpu, weight;
2473
2474 if (!(sd->flags & flag)) {
2475 sd = sd->child;
2476 continue;
2477 }
476d139c
NP
2478
2479 span = sd->span;
2480 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2481 if (!group) {
2482 sd = sd->child;
2483 continue;
2484 }
476d139c 2485
7c16ec58 2486 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2487 if (new_cpu == -1 || new_cpu == cpu) {
2488 /* Now try balancing at a lower domain level of cpu */
2489 sd = sd->child;
2490 continue;
2491 }
476d139c 2492
1a848870 2493 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2494 cpu = new_cpu;
476d139c
NP
2495 sd = NULL;
2496 weight = cpus_weight(span);
2497 for_each_domain(cpu, tmp) {
2498 if (weight <= cpus_weight(tmp->span))
2499 break;
2500 if (tmp->flags & flag)
2501 sd = tmp;
2502 }
2503 /* while loop will break here if sd == NULL */
2504 }
2505
2506 return cpu;
2507}
2508
2509#endif /* CONFIG_SMP */
1da177e4 2510
1da177e4
LT
2511/***
2512 * try_to_wake_up - wake up a thread
2513 * @p: the to-be-woken-up thread
2514 * @state: the mask of task states that can be woken
2515 * @sync: do a synchronous wakeup?
2516 *
2517 * Put it on the run-queue if it's not already there. The "current"
2518 * thread is always on the run-queue (except when the actual
2519 * re-schedule is in progress), and as such you're allowed to do
2520 * the simpler "current->state = TASK_RUNNING" to mark yourself
2521 * runnable without the overhead of this.
2522 *
2523 * returns failure only if the task is already active.
2524 */
36c8b586 2525static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2526{
cc367732 2527 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2528 unsigned long flags;
2529 long old_state;
70b97a7f 2530 struct rq *rq;
1da177e4 2531
b85d0667
IM
2532 if (!sched_feat(SYNC_WAKEUPS))
2533 sync = 0;
2534
04e2f174 2535 smp_wmb();
1da177e4
LT
2536 rq = task_rq_lock(p, &flags);
2537 old_state = p->state;
2538 if (!(old_state & state))
2539 goto out;
2540
dd41f596 2541 if (p->se.on_rq)
1da177e4
LT
2542 goto out_running;
2543
2544 cpu = task_cpu(p);
cc367732 2545 orig_cpu = cpu;
1da177e4
LT
2546 this_cpu = smp_processor_id();
2547
2548#ifdef CONFIG_SMP
2549 if (unlikely(task_running(rq, p)))
2550 goto out_activate;
2551
5d2f5a61
DA
2552 cpu = p->sched_class->select_task_rq(p, sync);
2553 if (cpu != orig_cpu) {
2554 set_task_cpu(p, cpu);
1da177e4
LT
2555 task_rq_unlock(rq, &flags);
2556 /* might preempt at this point */
2557 rq = task_rq_lock(p, &flags);
2558 old_state = p->state;
2559 if (!(old_state & state))
2560 goto out;
dd41f596 2561 if (p->se.on_rq)
1da177e4
LT
2562 goto out_running;
2563
2564 this_cpu = smp_processor_id();
2565 cpu = task_cpu(p);
2566 }
2567
e7693a36
GH
2568#ifdef CONFIG_SCHEDSTATS
2569 schedstat_inc(rq, ttwu_count);
2570 if (cpu == this_cpu)
2571 schedstat_inc(rq, ttwu_local);
2572 else {
2573 struct sched_domain *sd;
2574 for_each_domain(this_cpu, sd) {
2575 if (cpu_isset(cpu, sd->span)) {
2576 schedstat_inc(sd, ttwu_wake_remote);
2577 break;
2578 }
2579 }
2580 }
e7693a36
GH
2581#endif
2582
1da177e4
LT
2583out_activate:
2584#endif /* CONFIG_SMP */
cc367732
IM
2585 schedstat_inc(p, se.nr_wakeups);
2586 if (sync)
2587 schedstat_inc(p, se.nr_wakeups_sync);
2588 if (orig_cpu != cpu)
2589 schedstat_inc(p, se.nr_wakeups_migrate);
2590 if (cpu == this_cpu)
2591 schedstat_inc(p, se.nr_wakeups_local);
2592 else
2593 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2594 update_rq_clock(rq);
dd41f596 2595 activate_task(rq, p, 1);
1da177e4
LT
2596 success = 1;
2597
2598out_running:
4ae7d5ce
IM
2599 check_preempt_curr(rq, p);
2600
1da177e4 2601 p->state = TASK_RUNNING;
9a897c5a
SR
2602#ifdef CONFIG_SMP
2603 if (p->sched_class->task_wake_up)
2604 p->sched_class->task_wake_up(rq, p);
2605#endif
1da177e4
LT
2606out:
2607 task_rq_unlock(rq, &flags);
2608
2609 return success;
2610}
2611
7ad5b3a5 2612int wake_up_process(struct task_struct *p)
1da177e4 2613{
d9514f6c 2614 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2615}
1da177e4
LT
2616EXPORT_SYMBOL(wake_up_process);
2617
7ad5b3a5 2618int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2619{
2620 return try_to_wake_up(p, state, 0);
2621}
2622
1da177e4
LT
2623/*
2624 * Perform scheduler related setup for a newly forked process p.
2625 * p is forked by current.
dd41f596
IM
2626 *
2627 * __sched_fork() is basic setup used by init_idle() too:
2628 */
2629static void __sched_fork(struct task_struct *p)
2630{
dd41f596
IM
2631 p->se.exec_start = 0;
2632 p->se.sum_exec_runtime = 0;
f6cf891c 2633 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2634 p->se.last_wakeup = 0;
2635 p->se.avg_overlap = 0;
6cfb0d5d
IM
2636
2637#ifdef CONFIG_SCHEDSTATS
2638 p->se.wait_start = 0;
dd41f596
IM
2639 p->se.sum_sleep_runtime = 0;
2640 p->se.sleep_start = 0;
dd41f596
IM
2641 p->se.block_start = 0;
2642 p->se.sleep_max = 0;
2643 p->se.block_max = 0;
2644 p->se.exec_max = 0;
eba1ed4b 2645 p->se.slice_max = 0;
dd41f596 2646 p->se.wait_max = 0;
6cfb0d5d 2647#endif
476d139c 2648
fa717060 2649 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2650 p->se.on_rq = 0;
4a55bd5e 2651 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2652
e107be36
AK
2653#ifdef CONFIG_PREEMPT_NOTIFIERS
2654 INIT_HLIST_HEAD(&p->preempt_notifiers);
2655#endif
2656
1da177e4
LT
2657 /*
2658 * We mark the process as running here, but have not actually
2659 * inserted it onto the runqueue yet. This guarantees that
2660 * nobody will actually run it, and a signal or other external
2661 * event cannot wake it up and insert it on the runqueue either.
2662 */
2663 p->state = TASK_RUNNING;
dd41f596
IM
2664}
2665
2666/*
2667 * fork()/clone()-time setup:
2668 */
2669void sched_fork(struct task_struct *p, int clone_flags)
2670{
2671 int cpu = get_cpu();
2672
2673 __sched_fork(p);
2674
2675#ifdef CONFIG_SMP
2676 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2677#endif
02e4bac2 2678 set_task_cpu(p, cpu);
b29739f9
IM
2679
2680 /*
2681 * Make sure we do not leak PI boosting priority to the child:
2682 */
2683 p->prio = current->normal_prio;
2ddbf952
HS
2684 if (!rt_prio(p->prio))
2685 p->sched_class = &fair_sched_class;
b29739f9 2686
52f17b6c 2687#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2688 if (likely(sched_info_on()))
52f17b6c 2689 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2690#endif
d6077cb8 2691#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2692 p->oncpu = 0;
2693#endif
1da177e4 2694#ifdef CONFIG_PREEMPT
4866cde0 2695 /* Want to start with kernel preemption disabled. */
a1261f54 2696 task_thread_info(p)->preempt_count = 1;
1da177e4 2697#endif
476d139c 2698 put_cpu();
1da177e4
LT
2699}
2700
2701/*
2702 * wake_up_new_task - wake up a newly created task for the first time.
2703 *
2704 * This function will do some initial scheduler statistics housekeeping
2705 * that must be done for every newly created context, then puts the task
2706 * on the runqueue and wakes it.
2707 */
7ad5b3a5 2708void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2709{
2710 unsigned long flags;
dd41f596 2711 struct rq *rq;
1da177e4
LT
2712
2713 rq = task_rq_lock(p, &flags);
147cbb4b 2714 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2715 update_rq_clock(rq);
1da177e4
LT
2716
2717 p->prio = effective_prio(p);
2718
b9dca1e0 2719 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2720 activate_task(rq, p, 0);
1da177e4 2721 } else {
1da177e4 2722 /*
dd41f596
IM
2723 * Let the scheduling class do new task startup
2724 * management (if any):
1da177e4 2725 */
ee0827d8 2726 p->sched_class->task_new(rq, p);
18d95a28 2727 inc_nr_running(rq);
1da177e4 2728 }
dd41f596 2729 check_preempt_curr(rq, p);
9a897c5a
SR
2730#ifdef CONFIG_SMP
2731 if (p->sched_class->task_wake_up)
2732 p->sched_class->task_wake_up(rq, p);
2733#endif
dd41f596 2734 task_rq_unlock(rq, &flags);
1da177e4
LT
2735}
2736
e107be36
AK
2737#ifdef CONFIG_PREEMPT_NOTIFIERS
2738
2739/**
421cee29
RD
2740 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2741 * @notifier: notifier struct to register
e107be36
AK
2742 */
2743void preempt_notifier_register(struct preempt_notifier *notifier)
2744{
2745 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2746}
2747EXPORT_SYMBOL_GPL(preempt_notifier_register);
2748
2749/**
2750 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2751 * @notifier: notifier struct to unregister
e107be36
AK
2752 *
2753 * This is safe to call from within a preemption notifier.
2754 */
2755void preempt_notifier_unregister(struct preempt_notifier *notifier)
2756{
2757 hlist_del(&notifier->link);
2758}
2759EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2760
2761static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2762{
2763 struct preempt_notifier *notifier;
2764 struct hlist_node *node;
2765
2766 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2767 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2768}
2769
2770static void
2771fire_sched_out_preempt_notifiers(struct task_struct *curr,
2772 struct task_struct *next)
2773{
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_out(notifier, next);
2779}
2780
2781#else
2782
2783static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2784{
2785}
2786
2787static void
2788fire_sched_out_preempt_notifiers(struct task_struct *curr,
2789 struct task_struct *next)
2790{
2791}
2792
2793#endif
2794
4866cde0
NP
2795/**
2796 * prepare_task_switch - prepare to switch tasks
2797 * @rq: the runqueue preparing to switch
421cee29 2798 * @prev: the current task that is being switched out
4866cde0
NP
2799 * @next: the task we are going to switch to.
2800 *
2801 * This is called with the rq lock held and interrupts off. It must
2802 * be paired with a subsequent finish_task_switch after the context
2803 * switch.
2804 *
2805 * prepare_task_switch sets up locking and calls architecture specific
2806 * hooks.
2807 */
e107be36
AK
2808static inline void
2809prepare_task_switch(struct rq *rq, struct task_struct *prev,
2810 struct task_struct *next)
4866cde0 2811{
e107be36 2812 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2813 prepare_lock_switch(rq, next);
2814 prepare_arch_switch(next);
2815}
2816
1da177e4
LT
2817/**
2818 * finish_task_switch - clean up after a task-switch
344babaa 2819 * @rq: runqueue associated with task-switch
1da177e4
LT
2820 * @prev: the thread we just switched away from.
2821 *
4866cde0
NP
2822 * finish_task_switch must be called after the context switch, paired
2823 * with a prepare_task_switch call before the context switch.
2824 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2825 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2826 *
2827 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2828 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2829 * with the lock held can cause deadlocks; see schedule() for
2830 * details.)
2831 */
a9957449 2832static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2833 __releases(rq->lock)
2834{
1da177e4 2835 struct mm_struct *mm = rq->prev_mm;
55a101f8 2836 long prev_state;
1da177e4
LT
2837
2838 rq->prev_mm = NULL;
2839
2840 /*
2841 * A task struct has one reference for the use as "current".
c394cc9f 2842 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2843 * schedule one last time. The schedule call will never return, and
2844 * the scheduled task must drop that reference.
c394cc9f 2845 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2846 * still held, otherwise prev could be scheduled on another cpu, die
2847 * there before we look at prev->state, and then the reference would
2848 * be dropped twice.
2849 * Manfred Spraul <manfred@colorfullife.com>
2850 */
55a101f8 2851 prev_state = prev->state;
4866cde0
NP
2852 finish_arch_switch(prev);
2853 finish_lock_switch(rq, prev);
9a897c5a
SR
2854#ifdef CONFIG_SMP
2855 if (current->sched_class->post_schedule)
2856 current->sched_class->post_schedule(rq);
2857#endif
e8fa1362 2858
e107be36 2859 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2860 if (mm)
2861 mmdrop(mm);
c394cc9f 2862 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2863 /*
2864 * Remove function-return probe instances associated with this
2865 * task and put them back on the free list.
9761eea8 2866 */
c6fd91f0 2867 kprobe_flush_task(prev);
1da177e4 2868 put_task_struct(prev);
c6fd91f0 2869 }
1da177e4
LT
2870}
2871
2872/**
2873 * schedule_tail - first thing a freshly forked thread must call.
2874 * @prev: the thread we just switched away from.
2875 */
36c8b586 2876asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2877 __releases(rq->lock)
2878{
70b97a7f
IM
2879 struct rq *rq = this_rq();
2880
4866cde0
NP
2881 finish_task_switch(rq, prev);
2882#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2883 /* In this case, finish_task_switch does not reenable preemption */
2884 preempt_enable();
2885#endif
1da177e4 2886 if (current->set_child_tid)
b488893a 2887 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2888}
2889
2890/*
2891 * context_switch - switch to the new MM and the new
2892 * thread's register state.
2893 */
dd41f596 2894static inline void
70b97a7f 2895context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2896 struct task_struct *next)
1da177e4 2897{
dd41f596 2898 struct mm_struct *mm, *oldmm;
1da177e4 2899
e107be36 2900 prepare_task_switch(rq, prev, next);
dd41f596
IM
2901 mm = next->mm;
2902 oldmm = prev->active_mm;
9226d125
ZA
2903 /*
2904 * For paravirt, this is coupled with an exit in switch_to to
2905 * combine the page table reload and the switch backend into
2906 * one hypercall.
2907 */
2908 arch_enter_lazy_cpu_mode();
2909
dd41f596 2910 if (unlikely(!mm)) {
1da177e4
LT
2911 next->active_mm = oldmm;
2912 atomic_inc(&oldmm->mm_count);
2913 enter_lazy_tlb(oldmm, next);
2914 } else
2915 switch_mm(oldmm, mm, next);
2916
dd41f596 2917 if (unlikely(!prev->mm)) {
1da177e4 2918 prev->active_mm = NULL;
1da177e4
LT
2919 rq->prev_mm = oldmm;
2920 }
3a5f5e48
IM
2921 /*
2922 * Since the runqueue lock will be released by the next
2923 * task (which is an invalid locking op but in the case
2924 * of the scheduler it's an obvious special-case), so we
2925 * do an early lockdep release here:
2926 */
2927#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2928 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2929#endif
1da177e4
LT
2930
2931 /* Here we just switch the register state and the stack. */
2932 switch_to(prev, next, prev);
2933
dd41f596
IM
2934 barrier();
2935 /*
2936 * this_rq must be evaluated again because prev may have moved
2937 * CPUs since it called schedule(), thus the 'rq' on its stack
2938 * frame will be invalid.
2939 */
2940 finish_task_switch(this_rq(), prev);
1da177e4
LT
2941}
2942
2943/*
2944 * nr_running, nr_uninterruptible and nr_context_switches:
2945 *
2946 * externally visible scheduler statistics: current number of runnable
2947 * threads, current number of uninterruptible-sleeping threads, total
2948 * number of context switches performed since bootup.
2949 */
2950unsigned long nr_running(void)
2951{
2952 unsigned long i, sum = 0;
2953
2954 for_each_online_cpu(i)
2955 sum += cpu_rq(i)->nr_running;
2956
2957 return sum;
2958}
2959
2960unsigned long nr_uninterruptible(void)
2961{
2962 unsigned long i, sum = 0;
2963
0a945022 2964 for_each_possible_cpu(i)
1da177e4
LT
2965 sum += cpu_rq(i)->nr_uninterruptible;
2966
2967 /*
2968 * Since we read the counters lockless, it might be slightly
2969 * inaccurate. Do not allow it to go below zero though:
2970 */
2971 if (unlikely((long)sum < 0))
2972 sum = 0;
2973
2974 return sum;
2975}
2976
2977unsigned long long nr_context_switches(void)
2978{
cc94abfc
SR
2979 int i;
2980 unsigned long long sum = 0;
1da177e4 2981
0a945022 2982 for_each_possible_cpu(i)
1da177e4
LT
2983 sum += cpu_rq(i)->nr_switches;
2984
2985 return sum;
2986}
2987
2988unsigned long nr_iowait(void)
2989{
2990 unsigned long i, sum = 0;
2991
0a945022 2992 for_each_possible_cpu(i)
1da177e4
LT
2993 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2994
2995 return sum;
2996}
2997
db1b1fef
JS
2998unsigned long nr_active(void)
2999{
3000 unsigned long i, running = 0, uninterruptible = 0;
3001
3002 for_each_online_cpu(i) {
3003 running += cpu_rq(i)->nr_running;
3004 uninterruptible += cpu_rq(i)->nr_uninterruptible;
3005 }
3006
3007 if (unlikely((long)uninterruptible < 0))
3008 uninterruptible = 0;
3009
3010 return running + uninterruptible;
3011}
3012
48f24c4d 3013/*
dd41f596
IM
3014 * Update rq->cpu_load[] statistics. This function is usually called every
3015 * scheduler tick (TICK_NSEC).
48f24c4d 3016 */
dd41f596 3017static void update_cpu_load(struct rq *this_rq)
48f24c4d 3018{
495eca49 3019 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3020 int i, scale;
3021
3022 this_rq->nr_load_updates++;
dd41f596
IM
3023
3024 /* Update our load: */
3025 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3026 unsigned long old_load, new_load;
3027
3028 /* scale is effectively 1 << i now, and >> i divides by scale */
3029
3030 old_load = this_rq->cpu_load[i];
3031 new_load = this_load;
a25707f3
IM
3032 /*
3033 * Round up the averaging division if load is increasing. This
3034 * prevents us from getting stuck on 9 if the load is 10, for
3035 * example.
3036 */
3037 if (new_load > old_load)
3038 new_load += scale-1;
dd41f596
IM
3039 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3040 }
48f24c4d
IM
3041}
3042
dd41f596
IM
3043#ifdef CONFIG_SMP
3044
1da177e4
LT
3045/*
3046 * double_rq_lock - safely lock two runqueues
3047 *
3048 * Note this does not disable interrupts like task_rq_lock,
3049 * you need to do so manually before calling.
3050 */
70b97a7f 3051static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3052 __acquires(rq1->lock)
3053 __acquires(rq2->lock)
3054{
054b9108 3055 BUG_ON(!irqs_disabled());
1da177e4
LT
3056 if (rq1 == rq2) {
3057 spin_lock(&rq1->lock);
3058 __acquire(rq2->lock); /* Fake it out ;) */
3059 } else {
c96d145e 3060 if (rq1 < rq2) {
1da177e4
LT
3061 spin_lock(&rq1->lock);
3062 spin_lock(&rq2->lock);
3063 } else {
3064 spin_lock(&rq2->lock);
3065 spin_lock(&rq1->lock);
3066 }
3067 }
6e82a3be
IM
3068 update_rq_clock(rq1);
3069 update_rq_clock(rq2);
1da177e4
LT
3070}
3071
3072/*
3073 * double_rq_unlock - safely unlock two runqueues
3074 *
3075 * Note this does not restore interrupts like task_rq_unlock,
3076 * you need to do so manually after calling.
3077 */
70b97a7f 3078static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3079 __releases(rq1->lock)
3080 __releases(rq2->lock)
3081{
3082 spin_unlock(&rq1->lock);
3083 if (rq1 != rq2)
3084 spin_unlock(&rq2->lock);
3085 else
3086 __release(rq2->lock);
3087}
3088
3089/*
3090 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3091 */
e8fa1362 3092static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
3093 __releases(this_rq->lock)
3094 __acquires(busiest->lock)
3095 __acquires(this_rq->lock)
3096{
e8fa1362
SR
3097 int ret = 0;
3098
054b9108
KK
3099 if (unlikely(!irqs_disabled())) {
3100 /* printk() doesn't work good under rq->lock */
3101 spin_unlock(&this_rq->lock);
3102 BUG_ON(1);
3103 }
1da177e4 3104 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 3105 if (busiest < this_rq) {
1da177e4
LT
3106 spin_unlock(&this_rq->lock);
3107 spin_lock(&busiest->lock);
3108 spin_lock(&this_rq->lock);
e8fa1362 3109 ret = 1;
1da177e4
LT
3110 } else
3111 spin_lock(&busiest->lock);
3112 }
e8fa1362 3113 return ret;
1da177e4
LT
3114}
3115
1da177e4
LT
3116/*
3117 * If dest_cpu is allowed for this process, migrate the task to it.
3118 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3119 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3120 * the cpu_allowed mask is restored.
3121 */
36c8b586 3122static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3123{
70b97a7f 3124 struct migration_req req;
1da177e4 3125 unsigned long flags;
70b97a7f 3126 struct rq *rq;
1da177e4
LT
3127
3128 rq = task_rq_lock(p, &flags);
3129 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3130 || unlikely(cpu_is_offline(dest_cpu)))
3131 goto out;
3132
3133 /* force the process onto the specified CPU */
3134 if (migrate_task(p, dest_cpu, &req)) {
3135 /* Need to wait for migration thread (might exit: take ref). */
3136 struct task_struct *mt = rq->migration_thread;
36c8b586 3137
1da177e4
LT
3138 get_task_struct(mt);
3139 task_rq_unlock(rq, &flags);
3140 wake_up_process(mt);
3141 put_task_struct(mt);
3142 wait_for_completion(&req.done);
36c8b586 3143
1da177e4
LT
3144 return;
3145 }
3146out:
3147 task_rq_unlock(rq, &flags);
3148}
3149
3150/*
476d139c
NP
3151 * sched_exec - execve() is a valuable balancing opportunity, because at
3152 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3153 */
3154void sched_exec(void)
3155{
1da177e4 3156 int new_cpu, this_cpu = get_cpu();
476d139c 3157 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3158 put_cpu();
476d139c
NP
3159 if (new_cpu != this_cpu)
3160 sched_migrate_task(current, new_cpu);
1da177e4
LT
3161}
3162
3163/*
3164 * pull_task - move a task from a remote runqueue to the local runqueue.
3165 * Both runqueues must be locked.
3166 */
dd41f596
IM
3167static void pull_task(struct rq *src_rq, struct task_struct *p,
3168 struct rq *this_rq, int this_cpu)
1da177e4 3169{
2e1cb74a 3170 deactivate_task(src_rq, p, 0);
1da177e4 3171 set_task_cpu(p, this_cpu);
dd41f596 3172 activate_task(this_rq, p, 0);
1da177e4
LT
3173 /*
3174 * Note that idle threads have a prio of MAX_PRIO, for this test
3175 * to be always true for them.
3176 */
dd41f596 3177 check_preempt_curr(this_rq, p);
1da177e4
LT
3178}
3179
3180/*
3181 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3182 */
858119e1 3183static
70b97a7f 3184int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3185 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3186 int *all_pinned)
1da177e4
LT
3187{
3188 /*
3189 * We do not migrate tasks that are:
3190 * 1) running (obviously), or
3191 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3192 * 3) are cache-hot on their current CPU.
3193 */
cc367732
IM
3194 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3195 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3196 return 0;
cc367732 3197 }
81026794
NP
3198 *all_pinned = 0;
3199
cc367732
IM
3200 if (task_running(rq, p)) {
3201 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3202 return 0;
cc367732 3203 }
1da177e4 3204
da84d961
IM
3205 /*
3206 * Aggressive migration if:
3207 * 1) task is cache cold, or
3208 * 2) too many balance attempts have failed.
3209 */
3210
6bc1665b
IM
3211 if (!task_hot(p, rq->clock, sd) ||
3212 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3213#ifdef CONFIG_SCHEDSTATS
cc367732 3214 if (task_hot(p, rq->clock, sd)) {
da84d961 3215 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3216 schedstat_inc(p, se.nr_forced_migrations);
3217 }
da84d961
IM
3218#endif
3219 return 1;
3220 }
3221
cc367732
IM
3222 if (task_hot(p, rq->clock, sd)) {
3223 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3224 return 0;
cc367732 3225 }
1da177e4
LT
3226 return 1;
3227}
3228
e1d1484f
PW
3229static unsigned long
3230balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3231 unsigned long max_load_move, struct sched_domain *sd,
3232 enum cpu_idle_type idle, int *all_pinned,
3233 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3234{
b82d9fdd 3235 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3236 struct task_struct *p;
3237 long rem_load_move = max_load_move;
1da177e4 3238
e1d1484f 3239 if (max_load_move == 0)
1da177e4
LT
3240 goto out;
3241
81026794
NP
3242 pinned = 1;
3243
1da177e4 3244 /*
dd41f596 3245 * Start the load-balancing iterator:
1da177e4 3246 */
dd41f596
IM
3247 p = iterator->start(iterator->arg);
3248next:
b82d9fdd 3249 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3250 goto out;
50ddd969 3251 /*
b82d9fdd 3252 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3253 * skip a task if it will be the highest priority task (i.e. smallest
3254 * prio value) on its new queue regardless of its load weight
3255 */
dd41f596
IM
3256 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3257 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3258 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3259 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3260 p = iterator->next(iterator->arg);
3261 goto next;
1da177e4
LT
3262 }
3263
dd41f596 3264 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3265 pulled++;
dd41f596 3266 rem_load_move -= p->se.load.weight;
1da177e4 3267
2dd73a4f 3268 /*
b82d9fdd 3269 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3270 */
e1d1484f 3271 if (rem_load_move > 0) {
a4ac01c3
PW
3272 if (p->prio < *this_best_prio)
3273 *this_best_prio = p->prio;
dd41f596
IM
3274 p = iterator->next(iterator->arg);
3275 goto next;
1da177e4
LT
3276 }
3277out:
3278 /*
e1d1484f 3279 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3280 * so we can safely collect pull_task() stats here rather than
3281 * inside pull_task().
3282 */
3283 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3284
3285 if (all_pinned)
3286 *all_pinned = pinned;
e1d1484f
PW
3287
3288 return max_load_move - rem_load_move;
1da177e4
LT
3289}
3290
dd41f596 3291/*
43010659
PW
3292 * move_tasks tries to move up to max_load_move weighted load from busiest to
3293 * this_rq, as part of a balancing operation within domain "sd".
3294 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3295 *
3296 * Called with both runqueues locked.
3297 */
3298static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3299 unsigned long max_load_move,
dd41f596
IM
3300 struct sched_domain *sd, enum cpu_idle_type idle,
3301 int *all_pinned)
3302{
5522d5d5 3303 const struct sched_class *class = sched_class_highest;
43010659 3304 unsigned long total_load_moved = 0;
a4ac01c3 3305 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3306
3307 do {
43010659
PW
3308 total_load_moved +=
3309 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3310 max_load_move - total_load_moved,
a4ac01c3 3311 sd, idle, all_pinned, &this_best_prio);
dd41f596 3312 class = class->next;
43010659 3313 } while (class && max_load_move > total_load_moved);
dd41f596 3314
43010659
PW
3315 return total_load_moved > 0;
3316}
3317
e1d1484f
PW
3318static int
3319iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3320 struct sched_domain *sd, enum cpu_idle_type idle,
3321 struct rq_iterator *iterator)
3322{
3323 struct task_struct *p = iterator->start(iterator->arg);
3324 int pinned = 0;
3325
3326 while (p) {
3327 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3328 pull_task(busiest, p, this_rq, this_cpu);
3329 /*
3330 * Right now, this is only the second place pull_task()
3331 * is called, so we can safely collect pull_task()
3332 * stats here rather than inside pull_task().
3333 */
3334 schedstat_inc(sd, lb_gained[idle]);
3335
3336 return 1;
3337 }
3338 p = iterator->next(iterator->arg);
3339 }
3340
3341 return 0;
3342}
3343
43010659
PW
3344/*
3345 * move_one_task tries to move exactly one task from busiest to this_rq, as
3346 * part of active balancing operations within "domain".
3347 * Returns 1 if successful and 0 otherwise.
3348 *
3349 * Called with both runqueues locked.
3350 */
3351static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3352 struct sched_domain *sd, enum cpu_idle_type idle)
3353{
5522d5d5 3354 const struct sched_class *class;
43010659
PW
3355
3356 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3357 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3358 return 1;
3359
3360 return 0;
dd41f596
IM
3361}
3362
1da177e4
LT
3363/*
3364 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3365 * domain. It calculates and returns the amount of weighted load which
3366 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3367 */
3368static struct sched_group *
3369find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3370 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3371 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3372{
3373 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3374 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3375 unsigned long max_pull;
2dd73a4f
PW
3376 unsigned long busiest_load_per_task, busiest_nr_running;
3377 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3378 int load_idx, group_imb = 0;
5c45bf27
SS
3379#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3380 int power_savings_balance = 1;
3381 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3382 unsigned long min_nr_running = ULONG_MAX;
3383 struct sched_group *group_min = NULL, *group_leader = NULL;
3384#endif
1da177e4
LT
3385
3386 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3387 busiest_load_per_task = busiest_nr_running = 0;
3388 this_load_per_task = this_nr_running = 0;
d15bcfdb 3389 if (idle == CPU_NOT_IDLE)
7897986b 3390 load_idx = sd->busy_idx;
d15bcfdb 3391 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3392 load_idx = sd->newidle_idx;
3393 else
3394 load_idx = sd->idle_idx;
1da177e4
LT
3395
3396 do {
908a7c1b 3397 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3398 int local_group;
3399 int i;
908a7c1b 3400 int __group_imb = 0;
783609c6 3401 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3402 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3403
3404 local_group = cpu_isset(this_cpu, group->cpumask);
3405
783609c6
SS
3406 if (local_group)
3407 balance_cpu = first_cpu(group->cpumask);
3408
1da177e4 3409 /* Tally up the load of all CPUs in the group */
2dd73a4f 3410 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3411 max_cpu_load = 0;
3412 min_cpu_load = ~0UL;
1da177e4
LT
3413
3414 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3415 struct rq *rq;
3416
3417 if (!cpu_isset(i, *cpus))
3418 continue;
3419
3420 rq = cpu_rq(i);
2dd73a4f 3421
9439aab8 3422 if (*sd_idle && rq->nr_running)
5969fe06
NP
3423 *sd_idle = 0;
3424
1da177e4 3425 /* Bias balancing toward cpus of our domain */
783609c6
SS
3426 if (local_group) {
3427 if (idle_cpu(i) && !first_idle_cpu) {
3428 first_idle_cpu = 1;
3429 balance_cpu = i;
3430 }
3431
a2000572 3432 load = target_load(i, load_idx);
908a7c1b 3433 } else {
a2000572 3434 load = source_load(i, load_idx);
908a7c1b
KC
3435 if (load > max_cpu_load)
3436 max_cpu_load = load;
3437 if (min_cpu_load > load)
3438 min_cpu_load = load;
3439 }
1da177e4
LT
3440
3441 avg_load += load;
2dd73a4f 3442 sum_nr_running += rq->nr_running;
dd41f596 3443 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3444 }
3445
783609c6
SS
3446 /*
3447 * First idle cpu or the first cpu(busiest) in this sched group
3448 * is eligible for doing load balancing at this and above
9439aab8
SS
3449 * domains. In the newly idle case, we will allow all the cpu's
3450 * to do the newly idle load balance.
783609c6 3451 */
9439aab8
SS
3452 if (idle != CPU_NEWLY_IDLE && local_group &&
3453 balance_cpu != this_cpu && balance) {
783609c6
SS
3454 *balance = 0;
3455 goto ret;
3456 }
3457
1da177e4 3458 total_load += avg_load;
5517d86b 3459 total_pwr += group->__cpu_power;
1da177e4
LT
3460
3461 /* Adjust by relative CPU power of the group */
5517d86b
ED
3462 avg_load = sg_div_cpu_power(group,
3463 avg_load * SCHED_LOAD_SCALE);
1da177e4 3464
908a7c1b
KC
3465 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3466 __group_imb = 1;
3467
5517d86b 3468 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3469
1da177e4
LT
3470 if (local_group) {
3471 this_load = avg_load;
3472 this = group;
2dd73a4f
PW
3473 this_nr_running = sum_nr_running;
3474 this_load_per_task = sum_weighted_load;
3475 } else if (avg_load > max_load &&
908a7c1b 3476 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3477 max_load = avg_load;
3478 busiest = group;
2dd73a4f
PW
3479 busiest_nr_running = sum_nr_running;
3480 busiest_load_per_task = sum_weighted_load;
908a7c1b 3481 group_imb = __group_imb;
1da177e4 3482 }
5c45bf27
SS
3483
3484#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3485 /*
3486 * Busy processors will not participate in power savings
3487 * balance.
3488 */
dd41f596
IM
3489 if (idle == CPU_NOT_IDLE ||
3490 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3491 goto group_next;
5c45bf27
SS
3492
3493 /*
3494 * If the local group is idle or completely loaded
3495 * no need to do power savings balance at this domain
3496 */
3497 if (local_group && (this_nr_running >= group_capacity ||
3498 !this_nr_running))
3499 power_savings_balance = 0;
3500
dd41f596 3501 /*
5c45bf27
SS
3502 * If a group is already running at full capacity or idle,
3503 * don't include that group in power savings calculations
dd41f596
IM
3504 */
3505 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3506 || !sum_nr_running)
dd41f596 3507 goto group_next;
5c45bf27 3508
dd41f596 3509 /*
5c45bf27 3510 * Calculate the group which has the least non-idle load.
dd41f596
IM
3511 * This is the group from where we need to pick up the load
3512 * for saving power
3513 */
3514 if ((sum_nr_running < min_nr_running) ||
3515 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3516 first_cpu(group->cpumask) <
3517 first_cpu(group_min->cpumask))) {
dd41f596
IM
3518 group_min = group;
3519 min_nr_running = sum_nr_running;
5c45bf27
SS
3520 min_load_per_task = sum_weighted_load /
3521 sum_nr_running;
dd41f596 3522 }
5c45bf27 3523
dd41f596 3524 /*
5c45bf27 3525 * Calculate the group which is almost near its
dd41f596
IM
3526 * capacity but still has some space to pick up some load
3527 * from other group and save more power
3528 */
3529 if (sum_nr_running <= group_capacity - 1) {
3530 if (sum_nr_running > leader_nr_running ||
3531 (sum_nr_running == leader_nr_running &&
3532 first_cpu(group->cpumask) >
3533 first_cpu(group_leader->cpumask))) {
3534 group_leader = group;
3535 leader_nr_running = sum_nr_running;
3536 }
48f24c4d 3537 }
5c45bf27
SS
3538group_next:
3539#endif
1da177e4
LT
3540 group = group->next;
3541 } while (group != sd->groups);
3542
2dd73a4f 3543 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3544 goto out_balanced;
3545
3546 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3547
3548 if (this_load >= avg_load ||
3549 100*max_load <= sd->imbalance_pct*this_load)
3550 goto out_balanced;
3551
2dd73a4f 3552 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3553 if (group_imb)
3554 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3555
1da177e4
LT
3556 /*
3557 * We're trying to get all the cpus to the average_load, so we don't
3558 * want to push ourselves above the average load, nor do we wish to
3559 * reduce the max loaded cpu below the average load, as either of these
3560 * actions would just result in more rebalancing later, and ping-pong
3561 * tasks around. Thus we look for the minimum possible imbalance.
3562 * Negative imbalances (*we* are more loaded than anyone else) will
3563 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3564 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3565 * appear as very large values with unsigned longs.
3566 */
2dd73a4f
PW
3567 if (max_load <= busiest_load_per_task)
3568 goto out_balanced;
3569
3570 /*
3571 * In the presence of smp nice balancing, certain scenarios can have
3572 * max load less than avg load(as we skip the groups at or below
3573 * its cpu_power, while calculating max_load..)
3574 */
3575 if (max_load < avg_load) {
3576 *imbalance = 0;
3577 goto small_imbalance;
3578 }
0c117f1b
SS
3579
3580 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3581 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3582
1da177e4 3583 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3584 *imbalance = min(max_pull * busiest->__cpu_power,
3585 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3586 / SCHED_LOAD_SCALE;
3587
2dd73a4f
PW
3588 /*
3589 * if *imbalance is less than the average load per runnable task
3590 * there is no gaurantee that any tasks will be moved so we'll have
3591 * a think about bumping its value to force at least one task to be
3592 * moved
3593 */
7fd0d2dd 3594 if (*imbalance < busiest_load_per_task) {
48f24c4d 3595 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3596 unsigned int imbn;
3597
3598small_imbalance:
3599 pwr_move = pwr_now = 0;
3600 imbn = 2;
3601 if (this_nr_running) {
3602 this_load_per_task /= this_nr_running;
3603 if (busiest_load_per_task > this_load_per_task)
3604 imbn = 1;
3605 } else
3606 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3607
dd41f596
IM
3608 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3609 busiest_load_per_task * imbn) {
2dd73a4f 3610 *imbalance = busiest_load_per_task;
1da177e4
LT
3611 return busiest;
3612 }
3613
3614 /*
3615 * OK, we don't have enough imbalance to justify moving tasks,
3616 * however we may be able to increase total CPU power used by
3617 * moving them.
3618 */
3619
5517d86b
ED
3620 pwr_now += busiest->__cpu_power *
3621 min(busiest_load_per_task, max_load);
3622 pwr_now += this->__cpu_power *
3623 min(this_load_per_task, this_load);
1da177e4
LT
3624 pwr_now /= SCHED_LOAD_SCALE;
3625
3626 /* Amount of load we'd subtract */
5517d86b
ED
3627 tmp = sg_div_cpu_power(busiest,
3628 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3629 if (max_load > tmp)
5517d86b 3630 pwr_move += busiest->__cpu_power *
2dd73a4f 3631 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3632
3633 /* Amount of load we'd add */
5517d86b 3634 if (max_load * busiest->__cpu_power <
33859f7f 3635 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3636 tmp = sg_div_cpu_power(this,
3637 max_load * busiest->__cpu_power);
1da177e4 3638 else
5517d86b
ED
3639 tmp = sg_div_cpu_power(this,
3640 busiest_load_per_task * SCHED_LOAD_SCALE);
3641 pwr_move += this->__cpu_power *
3642 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3643 pwr_move /= SCHED_LOAD_SCALE;
3644
3645 /* Move if we gain throughput */
7fd0d2dd
SS
3646 if (pwr_move > pwr_now)
3647 *imbalance = busiest_load_per_task;
1da177e4
LT
3648 }
3649
1da177e4
LT
3650 return busiest;
3651
3652out_balanced:
5c45bf27 3653#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3654 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3655 goto ret;
1da177e4 3656
5c45bf27
SS
3657 if (this == group_leader && group_leader != group_min) {
3658 *imbalance = min_load_per_task;
3659 return group_min;
3660 }
5c45bf27 3661#endif
783609c6 3662ret:
1da177e4
LT
3663 *imbalance = 0;
3664 return NULL;
3665}
3666
3667/*
3668 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3669 */
70b97a7f 3670static struct rq *
d15bcfdb 3671find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3672 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3673{
70b97a7f 3674 struct rq *busiest = NULL, *rq;
2dd73a4f 3675 unsigned long max_load = 0;
1da177e4
LT
3676 int i;
3677
3678 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3679 unsigned long wl;
0a2966b4
CL
3680
3681 if (!cpu_isset(i, *cpus))
3682 continue;
3683
48f24c4d 3684 rq = cpu_rq(i);
dd41f596 3685 wl = weighted_cpuload(i);
2dd73a4f 3686
dd41f596 3687 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3688 continue;
1da177e4 3689
dd41f596
IM
3690 if (wl > max_load) {
3691 max_load = wl;
48f24c4d 3692 busiest = rq;
1da177e4
LT
3693 }
3694 }
3695
3696 return busiest;
3697}
3698
77391d71
NP
3699/*
3700 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3701 * so long as it is large enough.
3702 */
3703#define MAX_PINNED_INTERVAL 512
3704
1da177e4
LT
3705/*
3706 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3707 * tasks if there is an imbalance.
1da177e4 3708 */
70b97a7f 3709static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3710 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3711 int *balance, cpumask_t *cpus)
1da177e4 3712{
43010659 3713 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3714 struct sched_group *group;
1da177e4 3715 unsigned long imbalance;
70b97a7f 3716 struct rq *busiest;
fe2eea3f 3717 unsigned long flags;
18d95a28 3718 int unlock_aggregate;
5969fe06 3719
7c16ec58
MT
3720 cpus_setall(*cpus);
3721
18d95a28
PZ
3722 unlock_aggregate = get_aggregate(sd);
3723
89c4710e
SS
3724 /*
3725 * When power savings policy is enabled for the parent domain, idle
3726 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3727 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3728 * portraying it as CPU_NOT_IDLE.
89c4710e 3729 */
d15bcfdb 3730 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3732 sd_idle = 1;
1da177e4 3733
2d72376b 3734 schedstat_inc(sd, lb_count[idle]);
1da177e4 3735
0a2966b4
CL
3736redo:
3737 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3738 cpus, balance);
783609c6 3739
06066714 3740 if (*balance == 0)
783609c6 3741 goto out_balanced;
783609c6 3742
1da177e4
LT
3743 if (!group) {
3744 schedstat_inc(sd, lb_nobusyg[idle]);
3745 goto out_balanced;
3746 }
3747
7c16ec58 3748 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3749 if (!busiest) {
3750 schedstat_inc(sd, lb_nobusyq[idle]);
3751 goto out_balanced;
3752 }
3753
db935dbd 3754 BUG_ON(busiest == this_rq);
1da177e4
LT
3755
3756 schedstat_add(sd, lb_imbalance[idle], imbalance);
3757
43010659 3758 ld_moved = 0;
1da177e4
LT
3759 if (busiest->nr_running > 1) {
3760 /*
3761 * Attempt to move tasks. If find_busiest_group has found
3762 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3763 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3764 * correctly treated as an imbalance.
3765 */
fe2eea3f 3766 local_irq_save(flags);
e17224bf 3767 double_rq_lock(this_rq, busiest);
43010659 3768 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3769 imbalance, sd, idle, &all_pinned);
e17224bf 3770 double_rq_unlock(this_rq, busiest);
fe2eea3f 3771 local_irq_restore(flags);
81026794 3772
46cb4b7c
SS
3773 /*
3774 * some other cpu did the load balance for us.
3775 */
43010659 3776 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3777 resched_cpu(this_cpu);
3778
81026794 3779 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3780 if (unlikely(all_pinned)) {
7c16ec58
MT
3781 cpu_clear(cpu_of(busiest), *cpus);
3782 if (!cpus_empty(*cpus))
0a2966b4 3783 goto redo;
81026794 3784 goto out_balanced;
0a2966b4 3785 }
1da177e4 3786 }
81026794 3787
43010659 3788 if (!ld_moved) {
1da177e4
LT
3789 schedstat_inc(sd, lb_failed[idle]);
3790 sd->nr_balance_failed++;
3791
3792 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3793
fe2eea3f 3794 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3795
3796 /* don't kick the migration_thread, if the curr
3797 * task on busiest cpu can't be moved to this_cpu
3798 */
3799 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3800 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3801 all_pinned = 1;
3802 goto out_one_pinned;
3803 }
3804
1da177e4
LT
3805 if (!busiest->active_balance) {
3806 busiest->active_balance = 1;
3807 busiest->push_cpu = this_cpu;
81026794 3808 active_balance = 1;
1da177e4 3809 }
fe2eea3f 3810 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3811 if (active_balance)
1da177e4
LT
3812 wake_up_process(busiest->migration_thread);
3813
3814 /*
3815 * We've kicked active balancing, reset the failure
3816 * counter.
3817 */
39507451 3818 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3819 }
81026794 3820 } else
1da177e4
LT
3821 sd->nr_balance_failed = 0;
3822
81026794 3823 if (likely(!active_balance)) {
1da177e4
LT
3824 /* We were unbalanced, so reset the balancing interval */
3825 sd->balance_interval = sd->min_interval;
81026794
NP
3826 } else {
3827 /*
3828 * If we've begun active balancing, start to back off. This
3829 * case may not be covered by the all_pinned logic if there
3830 * is only 1 task on the busy runqueue (because we don't call
3831 * move_tasks).
3832 */
3833 if (sd->balance_interval < sd->max_interval)
3834 sd->balance_interval *= 2;
1da177e4
LT
3835 }
3836
43010659 3837 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3838 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3839 ld_moved = -1;
3840
3841 goto out;
1da177e4
LT
3842
3843out_balanced:
1da177e4
LT
3844 schedstat_inc(sd, lb_balanced[idle]);
3845
16cfb1c0 3846 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3847
3848out_one_pinned:
1da177e4 3849 /* tune up the balancing interval */
77391d71
NP
3850 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3851 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3852 sd->balance_interval *= 2;
3853
48f24c4d 3854 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3855 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3856 ld_moved = -1;
3857 else
3858 ld_moved = 0;
3859out:
3860 if (unlock_aggregate)
3861 put_aggregate(sd);
3862 return ld_moved;
1da177e4
LT
3863}
3864
3865/*
3866 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3867 * tasks if there is an imbalance.
3868 *
d15bcfdb 3869 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3870 * this_rq is locked.
3871 */
48f24c4d 3872static int
7c16ec58
MT
3873load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3874 cpumask_t *cpus)
1da177e4
LT
3875{
3876 struct sched_group *group;
70b97a7f 3877 struct rq *busiest = NULL;
1da177e4 3878 unsigned long imbalance;
43010659 3879 int ld_moved = 0;
5969fe06 3880 int sd_idle = 0;
969bb4e4 3881 int all_pinned = 0;
7c16ec58
MT
3882
3883 cpus_setall(*cpus);
5969fe06 3884
89c4710e
SS
3885 /*
3886 * When power savings policy is enabled for the parent domain, idle
3887 * sibling can pick up load irrespective of busy siblings. In this case,
3888 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3889 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3890 */
3891 if (sd->flags & SD_SHARE_CPUPOWER &&
3892 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3893 sd_idle = 1;
1da177e4 3894
2d72376b 3895 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3896redo:
d15bcfdb 3897 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3898 &sd_idle, cpus, NULL);
1da177e4 3899 if (!group) {
d15bcfdb 3900 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3901 goto out_balanced;
1da177e4
LT
3902 }
3903
7c16ec58 3904 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3905 if (!busiest) {
d15bcfdb 3906 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3907 goto out_balanced;
1da177e4
LT
3908 }
3909
db935dbd
NP
3910 BUG_ON(busiest == this_rq);
3911
d15bcfdb 3912 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3913
43010659 3914 ld_moved = 0;
d6d5cfaf
NP
3915 if (busiest->nr_running > 1) {
3916 /* Attempt to move tasks */
3917 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3918 /* this_rq->clock is already updated */
3919 update_rq_clock(busiest);
43010659 3920 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3921 imbalance, sd, CPU_NEWLY_IDLE,
3922 &all_pinned);
d6d5cfaf 3923 spin_unlock(&busiest->lock);
0a2966b4 3924
969bb4e4 3925 if (unlikely(all_pinned)) {
7c16ec58
MT
3926 cpu_clear(cpu_of(busiest), *cpus);
3927 if (!cpus_empty(*cpus))
0a2966b4
CL
3928 goto redo;
3929 }
d6d5cfaf
NP
3930 }
3931
43010659 3932 if (!ld_moved) {
d15bcfdb 3933 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3934 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3935 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3936 return -1;
3937 } else
16cfb1c0 3938 sd->nr_balance_failed = 0;
1da177e4 3939
43010659 3940 return ld_moved;
16cfb1c0
NP
3941
3942out_balanced:
d15bcfdb 3943 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3944 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3945 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3946 return -1;
16cfb1c0 3947 sd->nr_balance_failed = 0;
48f24c4d 3948
16cfb1c0 3949 return 0;
1da177e4
LT
3950}
3951
3952/*
3953 * idle_balance is called by schedule() if this_cpu is about to become
3954 * idle. Attempts to pull tasks from other CPUs.
3955 */
70b97a7f 3956static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3957{
3958 struct sched_domain *sd;
dd41f596
IM
3959 int pulled_task = -1;
3960 unsigned long next_balance = jiffies + HZ;
7c16ec58 3961 cpumask_t tmpmask;
1da177e4
LT
3962
3963 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3964 unsigned long interval;
3965
3966 if (!(sd->flags & SD_LOAD_BALANCE))
3967 continue;
3968
3969 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3970 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3971 pulled_task = load_balance_newidle(this_cpu, this_rq,
3972 sd, &tmpmask);
92c4ca5c
CL
3973
3974 interval = msecs_to_jiffies(sd->balance_interval);
3975 if (time_after(next_balance, sd->last_balance + interval))
3976 next_balance = sd->last_balance + interval;
3977 if (pulled_task)
3978 break;
1da177e4 3979 }
dd41f596 3980 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3981 /*
3982 * We are going idle. next_balance may be set based on
3983 * a busy processor. So reset next_balance.
3984 */
3985 this_rq->next_balance = next_balance;
dd41f596 3986 }
1da177e4
LT
3987}
3988
3989/*
3990 * active_load_balance is run by migration threads. It pushes running tasks
3991 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3992 * running on each physical CPU where possible, and avoids physical /
3993 * logical imbalances.
3994 *
3995 * Called with busiest_rq locked.
3996 */
70b97a7f 3997static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3998{
39507451 3999 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4000 struct sched_domain *sd;
4001 struct rq *target_rq;
39507451 4002
48f24c4d 4003 /* Is there any task to move? */
39507451 4004 if (busiest_rq->nr_running <= 1)
39507451
NP
4005 return;
4006
4007 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4008
4009 /*
39507451 4010 * This condition is "impossible", if it occurs
41a2d6cf 4011 * we need to fix it. Originally reported by
39507451 4012 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4013 */
39507451 4014 BUG_ON(busiest_rq == target_rq);
1da177e4 4015
39507451
NP
4016 /* move a task from busiest_rq to target_rq */
4017 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4018 update_rq_clock(busiest_rq);
4019 update_rq_clock(target_rq);
39507451
NP
4020
4021 /* Search for an sd spanning us and the target CPU. */
c96d145e 4022 for_each_domain(target_cpu, sd) {
39507451 4023 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 4024 cpu_isset(busiest_cpu, sd->span))
39507451 4025 break;
c96d145e 4026 }
39507451 4027
48f24c4d 4028 if (likely(sd)) {
2d72376b 4029 schedstat_inc(sd, alb_count);
39507451 4030
43010659
PW
4031 if (move_one_task(target_rq, target_cpu, busiest_rq,
4032 sd, CPU_IDLE))
48f24c4d
IM
4033 schedstat_inc(sd, alb_pushed);
4034 else
4035 schedstat_inc(sd, alb_failed);
4036 }
39507451 4037 spin_unlock(&target_rq->lock);
1da177e4
LT
4038}
4039
46cb4b7c
SS
4040#ifdef CONFIG_NO_HZ
4041static struct {
4042 atomic_t load_balancer;
41a2d6cf 4043 cpumask_t cpu_mask;
46cb4b7c
SS
4044} nohz ____cacheline_aligned = {
4045 .load_balancer = ATOMIC_INIT(-1),
4046 .cpu_mask = CPU_MASK_NONE,
4047};
4048
7835b98b 4049/*
46cb4b7c
SS
4050 * This routine will try to nominate the ilb (idle load balancing)
4051 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4052 * load balancing on behalf of all those cpus. If all the cpus in the system
4053 * go into this tickless mode, then there will be no ilb owner (as there is
4054 * no need for one) and all the cpus will sleep till the next wakeup event
4055 * arrives...
4056 *
4057 * For the ilb owner, tick is not stopped. And this tick will be used
4058 * for idle load balancing. ilb owner will still be part of
4059 * nohz.cpu_mask..
7835b98b 4060 *
46cb4b7c
SS
4061 * While stopping the tick, this cpu will become the ilb owner if there
4062 * is no other owner. And will be the owner till that cpu becomes busy
4063 * or if all cpus in the system stop their ticks at which point
4064 * there is no need for ilb owner.
4065 *
4066 * When the ilb owner becomes busy, it nominates another owner, during the
4067 * next busy scheduler_tick()
4068 */
4069int select_nohz_load_balancer(int stop_tick)
4070{
4071 int cpu = smp_processor_id();
4072
4073 if (stop_tick) {
4074 cpu_set(cpu, nohz.cpu_mask);
4075 cpu_rq(cpu)->in_nohz_recently = 1;
4076
4077 /*
4078 * If we are going offline and still the leader, give up!
4079 */
4080 if (cpu_is_offline(cpu) &&
4081 atomic_read(&nohz.load_balancer) == cpu) {
4082 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4083 BUG();
4084 return 0;
4085 }
4086
4087 /* time for ilb owner also to sleep */
4088 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4089 if (atomic_read(&nohz.load_balancer) == cpu)
4090 atomic_set(&nohz.load_balancer, -1);
4091 return 0;
4092 }
4093
4094 if (atomic_read(&nohz.load_balancer) == -1) {
4095 /* make me the ilb owner */
4096 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4097 return 1;
4098 } else if (atomic_read(&nohz.load_balancer) == cpu)
4099 return 1;
4100 } else {
4101 if (!cpu_isset(cpu, nohz.cpu_mask))
4102 return 0;
4103
4104 cpu_clear(cpu, nohz.cpu_mask);
4105
4106 if (atomic_read(&nohz.load_balancer) == cpu)
4107 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4108 BUG();
4109 }
4110 return 0;
4111}
4112#endif
4113
4114static DEFINE_SPINLOCK(balancing);
4115
4116/*
7835b98b
CL
4117 * It checks each scheduling domain to see if it is due to be balanced,
4118 * and initiates a balancing operation if so.
4119 *
4120 * Balancing parameters are set up in arch_init_sched_domains.
4121 */
a9957449 4122static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4123{
46cb4b7c
SS
4124 int balance = 1;
4125 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4126 unsigned long interval;
4127 struct sched_domain *sd;
46cb4b7c 4128 /* Earliest time when we have to do rebalance again */
c9819f45 4129 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4130 int update_next_balance = 0;
7c16ec58 4131 cpumask_t tmp;
1da177e4 4132
46cb4b7c 4133 for_each_domain(cpu, sd) {
1da177e4
LT
4134 if (!(sd->flags & SD_LOAD_BALANCE))
4135 continue;
4136
4137 interval = sd->balance_interval;
d15bcfdb 4138 if (idle != CPU_IDLE)
1da177e4
LT
4139 interval *= sd->busy_factor;
4140
4141 /* scale ms to jiffies */
4142 interval = msecs_to_jiffies(interval);
4143 if (unlikely(!interval))
4144 interval = 1;
dd41f596
IM
4145 if (interval > HZ*NR_CPUS/10)
4146 interval = HZ*NR_CPUS/10;
4147
1da177e4 4148
08c183f3
CL
4149 if (sd->flags & SD_SERIALIZE) {
4150 if (!spin_trylock(&balancing))
4151 goto out;
4152 }
4153
c9819f45 4154 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4155 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4156 /*
4157 * We've pulled tasks over so either we're no
5969fe06
NP
4158 * longer idle, or one of our SMT siblings is
4159 * not idle.
4160 */
d15bcfdb 4161 idle = CPU_NOT_IDLE;
1da177e4 4162 }
1bd77f2d 4163 sd->last_balance = jiffies;
1da177e4 4164 }
08c183f3
CL
4165 if (sd->flags & SD_SERIALIZE)
4166 spin_unlock(&balancing);
4167out:
f549da84 4168 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4169 next_balance = sd->last_balance + interval;
f549da84
SS
4170 update_next_balance = 1;
4171 }
783609c6
SS
4172
4173 /*
4174 * Stop the load balance at this level. There is another
4175 * CPU in our sched group which is doing load balancing more
4176 * actively.
4177 */
4178 if (!balance)
4179 break;
1da177e4 4180 }
f549da84
SS
4181
4182 /*
4183 * next_balance will be updated only when there is a need.
4184 * When the cpu is attached to null domain for ex, it will not be
4185 * updated.
4186 */
4187 if (likely(update_next_balance))
4188 rq->next_balance = next_balance;
46cb4b7c
SS
4189}
4190
4191/*
4192 * run_rebalance_domains is triggered when needed from the scheduler tick.
4193 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4194 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4195 */
4196static void run_rebalance_domains(struct softirq_action *h)
4197{
dd41f596
IM
4198 int this_cpu = smp_processor_id();
4199 struct rq *this_rq = cpu_rq(this_cpu);
4200 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4201 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4202
dd41f596 4203 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4204
4205#ifdef CONFIG_NO_HZ
4206 /*
4207 * If this cpu is the owner for idle load balancing, then do the
4208 * balancing on behalf of the other idle cpus whose ticks are
4209 * stopped.
4210 */
dd41f596
IM
4211 if (this_rq->idle_at_tick &&
4212 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4213 cpumask_t cpus = nohz.cpu_mask;
4214 struct rq *rq;
4215 int balance_cpu;
4216
dd41f596 4217 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4218 for_each_cpu_mask(balance_cpu, cpus) {
4219 /*
4220 * If this cpu gets work to do, stop the load balancing
4221 * work being done for other cpus. Next load
4222 * balancing owner will pick it up.
4223 */
4224 if (need_resched())
4225 break;
4226
de0cf899 4227 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4228
4229 rq = cpu_rq(balance_cpu);
dd41f596
IM
4230 if (time_after(this_rq->next_balance, rq->next_balance))
4231 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4232 }
4233 }
4234#endif
4235}
4236
4237/*
4238 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4239 *
4240 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4241 * idle load balancing owner or decide to stop the periodic load balancing,
4242 * if the whole system is idle.
4243 */
dd41f596 4244static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4245{
46cb4b7c
SS
4246#ifdef CONFIG_NO_HZ
4247 /*
4248 * If we were in the nohz mode recently and busy at the current
4249 * scheduler tick, then check if we need to nominate new idle
4250 * load balancer.
4251 */
4252 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4253 rq->in_nohz_recently = 0;
4254
4255 if (atomic_read(&nohz.load_balancer) == cpu) {
4256 cpu_clear(cpu, nohz.cpu_mask);
4257 atomic_set(&nohz.load_balancer, -1);
4258 }
4259
4260 if (atomic_read(&nohz.load_balancer) == -1) {
4261 /*
4262 * simple selection for now: Nominate the
4263 * first cpu in the nohz list to be the next
4264 * ilb owner.
4265 *
4266 * TBD: Traverse the sched domains and nominate
4267 * the nearest cpu in the nohz.cpu_mask.
4268 */
4269 int ilb = first_cpu(nohz.cpu_mask);
4270
434d53b0 4271 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4272 resched_cpu(ilb);
4273 }
4274 }
4275
4276 /*
4277 * If this cpu is idle and doing idle load balancing for all the
4278 * cpus with ticks stopped, is it time for that to stop?
4279 */
4280 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4281 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4282 resched_cpu(cpu);
4283 return;
4284 }
4285
4286 /*
4287 * If this cpu is idle and the idle load balancing is done by
4288 * someone else, then no need raise the SCHED_SOFTIRQ
4289 */
4290 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4291 cpu_isset(cpu, nohz.cpu_mask))
4292 return;
4293#endif
4294 if (time_after_eq(jiffies, rq->next_balance))
4295 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4296}
dd41f596
IM
4297
4298#else /* CONFIG_SMP */
4299
1da177e4
LT
4300/*
4301 * on UP we do not need to balance between CPUs:
4302 */
70b97a7f 4303static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4304{
4305}
dd41f596 4306
1da177e4
LT
4307#endif
4308
1da177e4
LT
4309DEFINE_PER_CPU(struct kernel_stat, kstat);
4310
4311EXPORT_PER_CPU_SYMBOL(kstat);
4312
4313/*
41b86e9c
IM
4314 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4315 * that have not yet been banked in case the task is currently running.
1da177e4 4316 */
41b86e9c 4317unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4318{
1da177e4 4319 unsigned long flags;
41b86e9c
IM
4320 u64 ns, delta_exec;
4321 struct rq *rq;
48f24c4d 4322
41b86e9c
IM
4323 rq = task_rq_lock(p, &flags);
4324 ns = p->se.sum_exec_runtime;
051a1d1a 4325 if (task_current(rq, p)) {
a8e504d2
IM
4326 update_rq_clock(rq);
4327 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4328 if ((s64)delta_exec > 0)
4329 ns += delta_exec;
4330 }
4331 task_rq_unlock(rq, &flags);
48f24c4d 4332
1da177e4
LT
4333 return ns;
4334}
4335
1da177e4
LT
4336/*
4337 * Account user cpu time to a process.
4338 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4339 * @cputime: the cpu time spent in user space since the last update
4340 */
4341void account_user_time(struct task_struct *p, cputime_t cputime)
4342{
4343 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4344 cputime64_t tmp;
4345
4346 p->utime = cputime_add(p->utime, cputime);
4347
4348 /* Add user time to cpustat. */
4349 tmp = cputime_to_cputime64(cputime);
4350 if (TASK_NICE(p) > 0)
4351 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4352 else
4353 cpustat->user = cputime64_add(cpustat->user, tmp);
4354}
4355
94886b84
LV
4356/*
4357 * Account guest cpu time to a process.
4358 * @p: the process that the cpu time gets accounted to
4359 * @cputime: the cpu time spent in virtual machine since the last update
4360 */
f7402e03 4361static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4362{
4363 cputime64_t tmp;
4364 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4365
4366 tmp = cputime_to_cputime64(cputime);
4367
4368 p->utime = cputime_add(p->utime, cputime);
4369 p->gtime = cputime_add(p->gtime, cputime);
4370
4371 cpustat->user = cputime64_add(cpustat->user, tmp);
4372 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4373}
4374
c66f08be
MN
4375/*
4376 * Account scaled user cpu time to a process.
4377 * @p: the process that the cpu time gets accounted to
4378 * @cputime: the cpu time spent in user space since the last update
4379 */
4380void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4381{
4382 p->utimescaled = cputime_add(p->utimescaled, cputime);
4383}
4384
1da177e4
LT
4385/*
4386 * Account system cpu time to a process.
4387 * @p: the process that the cpu time gets accounted to
4388 * @hardirq_offset: the offset to subtract from hardirq_count()
4389 * @cputime: the cpu time spent in kernel space since the last update
4390 */
4391void account_system_time(struct task_struct *p, int hardirq_offset,
4392 cputime_t cputime)
4393{
4394 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4395 struct rq *rq = this_rq();
1da177e4
LT
4396 cputime64_t tmp;
4397
983ed7a6
HH
4398 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4399 account_guest_time(p, cputime);
4400 return;
4401 }
94886b84 4402
1da177e4
LT
4403 p->stime = cputime_add(p->stime, cputime);
4404
4405 /* Add system time to cpustat. */
4406 tmp = cputime_to_cputime64(cputime);
4407 if (hardirq_count() - hardirq_offset)
4408 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4409 else if (softirq_count())
4410 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4411 else if (p != rq->idle)
1da177e4 4412 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4413 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4414 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4415 else
4416 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4417 /* Account for system time used */
4418 acct_update_integrals(p);
1da177e4
LT
4419}
4420
c66f08be
MN
4421/*
4422 * Account scaled system cpu time to a process.
4423 * @p: the process that the cpu time gets accounted to
4424 * @hardirq_offset: the offset to subtract from hardirq_count()
4425 * @cputime: the cpu time spent in kernel space since the last update
4426 */
4427void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4428{
4429 p->stimescaled = cputime_add(p->stimescaled, cputime);
4430}
4431
1da177e4
LT
4432/*
4433 * Account for involuntary wait time.
4434 * @p: the process from which the cpu time has been stolen
4435 * @steal: the cpu time spent in involuntary wait
4436 */
4437void account_steal_time(struct task_struct *p, cputime_t steal)
4438{
4439 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4440 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4441 struct rq *rq = this_rq();
1da177e4
LT
4442
4443 if (p == rq->idle) {
4444 p->stime = cputime_add(p->stime, steal);
4445 if (atomic_read(&rq->nr_iowait) > 0)
4446 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4447 else
4448 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4449 } else
1da177e4
LT
4450 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4451}
4452
7835b98b
CL
4453/*
4454 * This function gets called by the timer code, with HZ frequency.
4455 * We call it with interrupts disabled.
4456 *
4457 * It also gets called by the fork code, when changing the parent's
4458 * timeslices.
4459 */
4460void scheduler_tick(void)
4461{
7835b98b
CL
4462 int cpu = smp_processor_id();
4463 struct rq *rq = cpu_rq(cpu);
dd41f596 4464 struct task_struct *curr = rq->curr;
529c7726 4465 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
4466
4467 spin_lock(&rq->lock);
546fe3c9 4468 __update_rq_clock(rq);
529c7726
IM
4469 /*
4470 * Let rq->clock advance by at least TICK_NSEC:
4471 */
cc203d24 4472 if (unlikely(rq->clock < next_tick)) {
529c7726 4473 rq->clock = next_tick;
cc203d24
GC
4474 rq->clock_underflows++;
4475 }
529c7726 4476 rq->tick_timestamp = rq->clock;
15934a37 4477 update_last_tick_seen(rq);
f1a438d8 4478 update_cpu_load(rq);
fa85ae24 4479 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4480 spin_unlock(&rq->lock);
7835b98b 4481
e418e1c2 4482#ifdef CONFIG_SMP
dd41f596
IM
4483 rq->idle_at_tick = idle_cpu(cpu);
4484 trigger_load_balance(rq, cpu);
e418e1c2 4485#endif
1da177e4
LT
4486}
4487
1da177e4
LT
4488#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4489
43627582 4490void __kprobes add_preempt_count(int val)
1da177e4
LT
4491{
4492 /*
4493 * Underflow?
4494 */
9a11b49a
IM
4495 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4496 return;
1da177e4
LT
4497 preempt_count() += val;
4498 /*
4499 * Spinlock count overflowing soon?
4500 */
33859f7f
MOS
4501 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4502 PREEMPT_MASK - 10);
1da177e4
LT
4503}
4504EXPORT_SYMBOL(add_preempt_count);
4505
43627582 4506void __kprobes sub_preempt_count(int val)
1da177e4
LT
4507{
4508 /*
4509 * Underflow?
4510 */
9a11b49a
IM
4511 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4512 return;
1da177e4
LT
4513 /*
4514 * Is the spinlock portion underflowing?
4515 */
9a11b49a
IM
4516 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4517 !(preempt_count() & PREEMPT_MASK)))
4518 return;
4519
1da177e4
LT
4520 preempt_count() -= val;
4521}
4522EXPORT_SYMBOL(sub_preempt_count);
4523
4524#endif
4525
4526/*
dd41f596 4527 * Print scheduling while atomic bug:
1da177e4 4528 */
dd41f596 4529static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4530{
838225b4
SS
4531 struct pt_regs *regs = get_irq_regs();
4532
4533 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4534 prev->comm, prev->pid, preempt_count());
4535
dd41f596
IM
4536 debug_show_held_locks(prev);
4537 if (irqs_disabled())
4538 print_irqtrace_events(prev);
838225b4
SS
4539
4540 if (regs)
4541 show_regs(regs);
4542 else
4543 dump_stack();
dd41f596 4544}
1da177e4 4545
dd41f596
IM
4546/*
4547 * Various schedule()-time debugging checks and statistics:
4548 */
4549static inline void schedule_debug(struct task_struct *prev)
4550{
1da177e4 4551 /*
41a2d6cf 4552 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4553 * schedule() atomically, we ignore that path for now.
4554 * Otherwise, whine if we are scheduling when we should not be.
4555 */
dd41f596
IM
4556 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4557 __schedule_bug(prev);
4558
1da177e4
LT
4559 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4560
2d72376b 4561 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4562#ifdef CONFIG_SCHEDSTATS
4563 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4564 schedstat_inc(this_rq(), bkl_count);
4565 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4566 }
4567#endif
dd41f596
IM
4568}
4569
4570/*
4571 * Pick up the highest-prio task:
4572 */
4573static inline struct task_struct *
ff95f3df 4574pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4575{
5522d5d5 4576 const struct sched_class *class;
dd41f596 4577 struct task_struct *p;
1da177e4
LT
4578
4579 /*
dd41f596
IM
4580 * Optimization: we know that if all tasks are in
4581 * the fair class we can call that function directly:
1da177e4 4582 */
dd41f596 4583 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4584 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4585 if (likely(p))
4586 return p;
1da177e4
LT
4587 }
4588
dd41f596
IM
4589 class = sched_class_highest;
4590 for ( ; ; ) {
fb8d4724 4591 p = class->pick_next_task(rq);
dd41f596
IM
4592 if (p)
4593 return p;
4594 /*
4595 * Will never be NULL as the idle class always
4596 * returns a non-NULL p:
4597 */
4598 class = class->next;
4599 }
4600}
1da177e4 4601
dd41f596
IM
4602/*
4603 * schedule() is the main scheduler function.
4604 */
4605asmlinkage void __sched schedule(void)
4606{
4607 struct task_struct *prev, *next;
67ca7bde 4608 unsigned long *switch_count;
dd41f596 4609 struct rq *rq;
dd41f596
IM
4610 int cpu;
4611
4612need_resched:
4613 preempt_disable();
4614 cpu = smp_processor_id();
4615 rq = cpu_rq(cpu);
4616 rcu_qsctr_inc(cpu);
4617 prev = rq->curr;
4618 switch_count = &prev->nivcsw;
4619
4620 release_kernel_lock(prev);
4621need_resched_nonpreemptible:
4622
4623 schedule_debug(prev);
1da177e4 4624
8f4d37ec
PZ
4625 hrtick_clear(rq);
4626
1e819950
IM
4627 /*
4628 * Do the rq-clock update outside the rq lock:
4629 */
4630 local_irq_disable();
c1b3da3e 4631 __update_rq_clock(rq);
1e819950
IM
4632 spin_lock(&rq->lock);
4633 clear_tsk_need_resched(prev);
1da177e4 4634
1da177e4 4635 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4636 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4637 signal_pending(prev))) {
1da177e4 4638 prev->state = TASK_RUNNING;
dd41f596 4639 } else {
2e1cb74a 4640 deactivate_task(rq, prev, 1);
1da177e4 4641 }
dd41f596 4642 switch_count = &prev->nvcsw;
1da177e4
LT
4643 }
4644
9a897c5a
SR
4645#ifdef CONFIG_SMP
4646 if (prev->sched_class->pre_schedule)
4647 prev->sched_class->pre_schedule(rq, prev);
4648#endif
f65eda4f 4649
dd41f596 4650 if (unlikely(!rq->nr_running))
1da177e4 4651 idle_balance(cpu, rq);
1da177e4 4652
31ee529c 4653 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4654 next = pick_next_task(rq, prev);
1da177e4 4655
1da177e4 4656 if (likely(prev != next)) {
673a90a1
DS
4657 sched_info_switch(prev, next);
4658
1da177e4
LT
4659 rq->nr_switches++;
4660 rq->curr = next;
4661 ++*switch_count;
4662
dd41f596 4663 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4664 /*
4665 * the context switch might have flipped the stack from under
4666 * us, hence refresh the local variables.
4667 */
4668 cpu = smp_processor_id();
4669 rq = cpu_rq(cpu);
1da177e4
LT
4670 } else
4671 spin_unlock_irq(&rq->lock);
4672
8f4d37ec
PZ
4673 hrtick_set(rq);
4674
4675 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4676 goto need_resched_nonpreemptible;
8f4d37ec 4677
1da177e4
LT
4678 preempt_enable_no_resched();
4679 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4680 goto need_resched;
4681}
1da177e4
LT
4682EXPORT_SYMBOL(schedule);
4683
4684#ifdef CONFIG_PREEMPT
4685/*
2ed6e34f 4686 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4687 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4688 * occur there and call schedule directly.
4689 */
4690asmlinkage void __sched preempt_schedule(void)
4691{
4692 struct thread_info *ti = current_thread_info();
1da177e4
LT
4693 struct task_struct *task = current;
4694 int saved_lock_depth;
6478d880 4695
1da177e4
LT
4696 /*
4697 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4698 * we do not want to preempt the current task. Just return..
1da177e4 4699 */
beed33a8 4700 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4701 return;
4702
3a5c359a
AK
4703 do {
4704 add_preempt_count(PREEMPT_ACTIVE);
4705
4706 /*
4707 * We keep the big kernel semaphore locked, but we
4708 * clear ->lock_depth so that schedule() doesnt
4709 * auto-release the semaphore:
4710 */
3a5c359a
AK
4711 saved_lock_depth = task->lock_depth;
4712 task->lock_depth = -1;
3a5c359a 4713 schedule();
3a5c359a 4714 task->lock_depth = saved_lock_depth;
3a5c359a 4715 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4716
3a5c359a
AK
4717 /*
4718 * Check again in case we missed a preemption opportunity
4719 * between schedule and now.
4720 */
4721 barrier();
4722 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4723}
1da177e4
LT
4724EXPORT_SYMBOL(preempt_schedule);
4725
4726/*
2ed6e34f 4727 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4728 * off of irq context.
4729 * Note, that this is called and return with irqs disabled. This will
4730 * protect us against recursive calling from irq.
4731 */
4732asmlinkage void __sched preempt_schedule_irq(void)
4733{
4734 struct thread_info *ti = current_thread_info();
1da177e4
LT
4735 struct task_struct *task = current;
4736 int saved_lock_depth;
6478d880 4737
2ed6e34f 4738 /* Catch callers which need to be fixed */
1da177e4
LT
4739 BUG_ON(ti->preempt_count || !irqs_disabled());
4740
3a5c359a
AK
4741 do {
4742 add_preempt_count(PREEMPT_ACTIVE);
4743
4744 /*
4745 * We keep the big kernel semaphore locked, but we
4746 * clear ->lock_depth so that schedule() doesnt
4747 * auto-release the semaphore:
4748 */
3a5c359a
AK
4749 saved_lock_depth = task->lock_depth;
4750 task->lock_depth = -1;
3a5c359a
AK
4751 local_irq_enable();
4752 schedule();
4753 local_irq_disable();
3a5c359a 4754 task->lock_depth = saved_lock_depth;
3a5c359a 4755 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4756
3a5c359a
AK
4757 /*
4758 * Check again in case we missed a preemption opportunity
4759 * between schedule and now.
4760 */
4761 barrier();
4762 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4763}
4764
4765#endif /* CONFIG_PREEMPT */
4766
95cdf3b7
IM
4767int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4768 void *key)
1da177e4 4769{
48f24c4d 4770 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4771}
1da177e4
LT
4772EXPORT_SYMBOL(default_wake_function);
4773
4774/*
41a2d6cf
IM
4775 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4776 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4777 * number) then we wake all the non-exclusive tasks and one exclusive task.
4778 *
4779 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4780 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4781 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4782 */
4783static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4784 int nr_exclusive, int sync, void *key)
4785{
2e45874c 4786 wait_queue_t *curr, *next;
1da177e4 4787
2e45874c 4788 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4789 unsigned flags = curr->flags;
4790
1da177e4 4791 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4792 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4793 break;
4794 }
4795}
4796
4797/**
4798 * __wake_up - wake up threads blocked on a waitqueue.
4799 * @q: the waitqueue
4800 * @mode: which threads
4801 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4802 * @key: is directly passed to the wakeup function
1da177e4 4803 */
7ad5b3a5 4804void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4805 int nr_exclusive, void *key)
1da177e4
LT
4806{
4807 unsigned long flags;
4808
4809 spin_lock_irqsave(&q->lock, flags);
4810 __wake_up_common(q, mode, nr_exclusive, 0, key);
4811 spin_unlock_irqrestore(&q->lock, flags);
4812}
1da177e4
LT
4813EXPORT_SYMBOL(__wake_up);
4814
4815/*
4816 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4817 */
7ad5b3a5 4818void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4819{
4820 __wake_up_common(q, mode, 1, 0, NULL);
4821}
4822
4823/**
67be2dd1 4824 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4825 * @q: the waitqueue
4826 * @mode: which threads
4827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4828 *
4829 * The sync wakeup differs that the waker knows that it will schedule
4830 * away soon, so while the target thread will be woken up, it will not
4831 * be migrated to another CPU - ie. the two threads are 'synchronized'
4832 * with each other. This can prevent needless bouncing between CPUs.
4833 *
4834 * On UP it can prevent extra preemption.
4835 */
7ad5b3a5 4836void
95cdf3b7 4837__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4838{
4839 unsigned long flags;
4840 int sync = 1;
4841
4842 if (unlikely(!q))
4843 return;
4844
4845 if (unlikely(!nr_exclusive))
4846 sync = 0;
4847
4848 spin_lock_irqsave(&q->lock, flags);
4849 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4850 spin_unlock_irqrestore(&q->lock, flags);
4851}
4852EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4853
b15136e9 4854void complete(struct completion *x)
1da177e4
LT
4855{
4856 unsigned long flags;
4857
4858 spin_lock_irqsave(&x->wait.lock, flags);
4859 x->done++;
d9514f6c 4860 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4861 spin_unlock_irqrestore(&x->wait.lock, flags);
4862}
4863EXPORT_SYMBOL(complete);
4864
b15136e9 4865void complete_all(struct completion *x)
1da177e4
LT
4866{
4867 unsigned long flags;
4868
4869 spin_lock_irqsave(&x->wait.lock, flags);
4870 x->done += UINT_MAX/2;
d9514f6c 4871 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4872 spin_unlock_irqrestore(&x->wait.lock, flags);
4873}
4874EXPORT_SYMBOL(complete_all);
4875
8cbbe86d
AK
4876static inline long __sched
4877do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4878{
1da177e4
LT
4879 if (!x->done) {
4880 DECLARE_WAITQUEUE(wait, current);
4881
4882 wait.flags |= WQ_FLAG_EXCLUSIVE;
4883 __add_wait_queue_tail(&x->wait, &wait);
4884 do {
009e577e
MW
4885 if ((state == TASK_INTERRUPTIBLE &&
4886 signal_pending(current)) ||
4887 (state == TASK_KILLABLE &&
4888 fatal_signal_pending(current))) {
8cbbe86d
AK
4889 __remove_wait_queue(&x->wait, &wait);
4890 return -ERESTARTSYS;
4891 }
4892 __set_current_state(state);
1da177e4
LT
4893 spin_unlock_irq(&x->wait.lock);
4894 timeout = schedule_timeout(timeout);
4895 spin_lock_irq(&x->wait.lock);
4896 if (!timeout) {
4897 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4898 return timeout;
1da177e4
LT
4899 }
4900 } while (!x->done);
4901 __remove_wait_queue(&x->wait, &wait);
4902 }
4903 x->done--;
1da177e4
LT
4904 return timeout;
4905}
1da177e4 4906
8cbbe86d
AK
4907static long __sched
4908wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4909{
1da177e4
LT
4910 might_sleep();
4911
4912 spin_lock_irq(&x->wait.lock);
8cbbe86d 4913 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4914 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4915 return timeout;
4916}
1da177e4 4917
b15136e9 4918void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4919{
4920 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4921}
8cbbe86d 4922EXPORT_SYMBOL(wait_for_completion);
1da177e4 4923
b15136e9 4924unsigned long __sched
8cbbe86d 4925wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4926{
8cbbe86d 4927 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4928}
8cbbe86d 4929EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4930
8cbbe86d 4931int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4932{
51e97990
AK
4933 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4934 if (t == -ERESTARTSYS)
4935 return t;
4936 return 0;
0fec171c 4937}
8cbbe86d 4938EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4939
b15136e9 4940unsigned long __sched
8cbbe86d
AK
4941wait_for_completion_interruptible_timeout(struct completion *x,
4942 unsigned long timeout)
0fec171c 4943{
8cbbe86d 4944 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4945}
8cbbe86d 4946EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4947
009e577e
MW
4948int __sched wait_for_completion_killable(struct completion *x)
4949{
4950 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4951 if (t == -ERESTARTSYS)
4952 return t;
4953 return 0;
4954}
4955EXPORT_SYMBOL(wait_for_completion_killable);
4956
8cbbe86d
AK
4957static long __sched
4958sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4959{
0fec171c
IM
4960 unsigned long flags;
4961 wait_queue_t wait;
4962
4963 init_waitqueue_entry(&wait, current);
1da177e4 4964
8cbbe86d 4965 __set_current_state(state);
1da177e4 4966
8cbbe86d
AK
4967 spin_lock_irqsave(&q->lock, flags);
4968 __add_wait_queue(q, &wait);
4969 spin_unlock(&q->lock);
4970 timeout = schedule_timeout(timeout);
4971 spin_lock_irq(&q->lock);
4972 __remove_wait_queue(q, &wait);
4973 spin_unlock_irqrestore(&q->lock, flags);
4974
4975 return timeout;
4976}
4977
4978void __sched interruptible_sleep_on(wait_queue_head_t *q)
4979{
4980 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4981}
1da177e4
LT
4982EXPORT_SYMBOL(interruptible_sleep_on);
4983
0fec171c 4984long __sched
95cdf3b7 4985interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4986{
8cbbe86d 4987 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4988}
1da177e4
LT
4989EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4990
0fec171c 4991void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4992{
8cbbe86d 4993 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4994}
1da177e4
LT
4995EXPORT_SYMBOL(sleep_on);
4996
0fec171c 4997long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4998{
8cbbe86d 4999 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5000}
1da177e4
LT
5001EXPORT_SYMBOL(sleep_on_timeout);
5002
b29739f9
IM
5003#ifdef CONFIG_RT_MUTEXES
5004
5005/*
5006 * rt_mutex_setprio - set the current priority of a task
5007 * @p: task
5008 * @prio: prio value (kernel-internal form)
5009 *
5010 * This function changes the 'effective' priority of a task. It does
5011 * not touch ->normal_prio like __setscheduler().
5012 *
5013 * Used by the rt_mutex code to implement priority inheritance logic.
5014 */
36c8b586 5015void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5016{
5017 unsigned long flags;
83b699ed 5018 int oldprio, on_rq, running;
70b97a7f 5019 struct rq *rq;
cb469845 5020 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5021
5022 BUG_ON(prio < 0 || prio > MAX_PRIO);
5023
5024 rq = task_rq_lock(p, &flags);
a8e504d2 5025 update_rq_clock(rq);
b29739f9 5026
d5f9f942 5027 oldprio = p->prio;
dd41f596 5028 on_rq = p->se.on_rq;
051a1d1a 5029 running = task_current(rq, p);
0e1f3483 5030 if (on_rq)
69be72c1 5031 dequeue_task(rq, p, 0);
0e1f3483
HS
5032 if (running)
5033 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5034
5035 if (rt_prio(prio))
5036 p->sched_class = &rt_sched_class;
5037 else
5038 p->sched_class = &fair_sched_class;
5039
b29739f9
IM
5040 p->prio = prio;
5041
0e1f3483
HS
5042 if (running)
5043 p->sched_class->set_curr_task(rq);
dd41f596 5044 if (on_rq) {
8159f87e 5045 enqueue_task(rq, p, 0);
cb469845
SR
5046
5047 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5048 }
5049 task_rq_unlock(rq, &flags);
5050}
5051
5052#endif
5053
36c8b586 5054void set_user_nice(struct task_struct *p, long nice)
1da177e4 5055{
dd41f596 5056 int old_prio, delta, on_rq;
1da177e4 5057 unsigned long flags;
70b97a7f 5058 struct rq *rq;
1da177e4
LT
5059
5060 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5061 return;
5062 /*
5063 * We have to be careful, if called from sys_setpriority(),
5064 * the task might be in the middle of scheduling on another CPU.
5065 */
5066 rq = task_rq_lock(p, &flags);
a8e504d2 5067 update_rq_clock(rq);
1da177e4
LT
5068 /*
5069 * The RT priorities are set via sched_setscheduler(), but we still
5070 * allow the 'normal' nice value to be set - but as expected
5071 * it wont have any effect on scheduling until the task is
dd41f596 5072 * SCHED_FIFO/SCHED_RR:
1da177e4 5073 */
e05606d3 5074 if (task_has_rt_policy(p)) {
1da177e4
LT
5075 p->static_prio = NICE_TO_PRIO(nice);
5076 goto out_unlock;
5077 }
dd41f596 5078 on_rq = p->se.on_rq;
18d95a28 5079 if (on_rq)
69be72c1 5080 dequeue_task(rq, p, 0);
1da177e4 5081
1da177e4 5082 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5083 set_load_weight(p);
b29739f9
IM
5084 old_prio = p->prio;
5085 p->prio = effective_prio(p);
5086 delta = p->prio - old_prio;
1da177e4 5087
dd41f596 5088 if (on_rq) {
8159f87e 5089 enqueue_task(rq, p, 0);
1da177e4 5090 /*
d5f9f942
AM
5091 * If the task increased its priority or is running and
5092 * lowered its priority, then reschedule its CPU:
1da177e4 5093 */
d5f9f942 5094 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5095 resched_task(rq->curr);
5096 }
5097out_unlock:
5098 task_rq_unlock(rq, &flags);
5099}
1da177e4
LT
5100EXPORT_SYMBOL(set_user_nice);
5101
e43379f1
MM
5102/*
5103 * can_nice - check if a task can reduce its nice value
5104 * @p: task
5105 * @nice: nice value
5106 */
36c8b586 5107int can_nice(const struct task_struct *p, const int nice)
e43379f1 5108{
024f4747
MM
5109 /* convert nice value [19,-20] to rlimit style value [1,40] */
5110 int nice_rlim = 20 - nice;
48f24c4d 5111
e43379f1
MM
5112 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5113 capable(CAP_SYS_NICE));
5114}
5115
1da177e4
LT
5116#ifdef __ARCH_WANT_SYS_NICE
5117
5118/*
5119 * sys_nice - change the priority of the current process.
5120 * @increment: priority increment
5121 *
5122 * sys_setpriority is a more generic, but much slower function that
5123 * does similar things.
5124 */
5125asmlinkage long sys_nice(int increment)
5126{
48f24c4d 5127 long nice, retval;
1da177e4
LT
5128
5129 /*
5130 * Setpriority might change our priority at the same moment.
5131 * We don't have to worry. Conceptually one call occurs first
5132 * and we have a single winner.
5133 */
e43379f1
MM
5134 if (increment < -40)
5135 increment = -40;
1da177e4
LT
5136 if (increment > 40)
5137 increment = 40;
5138
5139 nice = PRIO_TO_NICE(current->static_prio) + increment;
5140 if (nice < -20)
5141 nice = -20;
5142 if (nice > 19)
5143 nice = 19;
5144
e43379f1
MM
5145 if (increment < 0 && !can_nice(current, nice))
5146 return -EPERM;
5147
1da177e4
LT
5148 retval = security_task_setnice(current, nice);
5149 if (retval)
5150 return retval;
5151
5152 set_user_nice(current, nice);
5153 return 0;
5154}
5155
5156#endif
5157
5158/**
5159 * task_prio - return the priority value of a given task.
5160 * @p: the task in question.
5161 *
5162 * This is the priority value as seen by users in /proc.
5163 * RT tasks are offset by -200. Normal tasks are centered
5164 * around 0, value goes from -16 to +15.
5165 */
36c8b586 5166int task_prio(const struct task_struct *p)
1da177e4
LT
5167{
5168 return p->prio - MAX_RT_PRIO;
5169}
5170
5171/**
5172 * task_nice - return the nice value of a given task.
5173 * @p: the task in question.
5174 */
36c8b586 5175int task_nice(const struct task_struct *p)
1da177e4
LT
5176{
5177 return TASK_NICE(p);
5178}
150d8bed 5179EXPORT_SYMBOL(task_nice);
1da177e4
LT
5180
5181/**
5182 * idle_cpu - is a given cpu idle currently?
5183 * @cpu: the processor in question.
5184 */
5185int idle_cpu(int cpu)
5186{
5187 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5188}
5189
1da177e4
LT
5190/**
5191 * idle_task - return the idle task for a given cpu.
5192 * @cpu: the processor in question.
5193 */
36c8b586 5194struct task_struct *idle_task(int cpu)
1da177e4
LT
5195{
5196 return cpu_rq(cpu)->idle;
5197}
5198
5199/**
5200 * find_process_by_pid - find a process with a matching PID value.
5201 * @pid: the pid in question.
5202 */
a9957449 5203static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5204{
228ebcbe 5205 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5206}
5207
5208/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5209static void
5210__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5211{
dd41f596 5212 BUG_ON(p->se.on_rq);
48f24c4d 5213
1da177e4 5214 p->policy = policy;
dd41f596
IM
5215 switch (p->policy) {
5216 case SCHED_NORMAL:
5217 case SCHED_BATCH:
5218 case SCHED_IDLE:
5219 p->sched_class = &fair_sched_class;
5220 break;
5221 case SCHED_FIFO:
5222 case SCHED_RR:
5223 p->sched_class = &rt_sched_class;
5224 break;
5225 }
5226
1da177e4 5227 p->rt_priority = prio;
b29739f9
IM
5228 p->normal_prio = normal_prio(p);
5229 /* we are holding p->pi_lock already */
5230 p->prio = rt_mutex_getprio(p);
2dd73a4f 5231 set_load_weight(p);
1da177e4
LT
5232}
5233
5234/**
72fd4a35 5235 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5236 * @p: the task in question.
5237 * @policy: new policy.
5238 * @param: structure containing the new RT priority.
5fe1d75f 5239 *
72fd4a35 5240 * NOTE that the task may be already dead.
1da177e4 5241 */
95cdf3b7
IM
5242int sched_setscheduler(struct task_struct *p, int policy,
5243 struct sched_param *param)
1da177e4 5244{
83b699ed 5245 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5246 unsigned long flags;
cb469845 5247 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5248 struct rq *rq;
1da177e4 5249
66e5393a
SR
5250 /* may grab non-irq protected spin_locks */
5251 BUG_ON(in_interrupt());
1da177e4
LT
5252recheck:
5253 /* double check policy once rq lock held */
5254 if (policy < 0)
5255 policy = oldpolicy = p->policy;
5256 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5257 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5258 policy != SCHED_IDLE)
b0a9499c 5259 return -EINVAL;
1da177e4
LT
5260 /*
5261 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5263 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5264 */
5265 if (param->sched_priority < 0 ||
95cdf3b7 5266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5268 return -EINVAL;
e05606d3 5269 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5270 return -EINVAL;
5271
37e4ab3f
OC
5272 /*
5273 * Allow unprivileged RT tasks to decrease priority:
5274 */
5275 if (!capable(CAP_SYS_NICE)) {
e05606d3 5276 if (rt_policy(policy)) {
8dc3e909 5277 unsigned long rlim_rtprio;
8dc3e909
ON
5278
5279 if (!lock_task_sighand(p, &flags))
5280 return -ESRCH;
5281 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5282 unlock_task_sighand(p, &flags);
5283
5284 /* can't set/change the rt policy */
5285 if (policy != p->policy && !rlim_rtprio)
5286 return -EPERM;
5287
5288 /* can't increase priority */
5289 if (param->sched_priority > p->rt_priority &&
5290 param->sched_priority > rlim_rtprio)
5291 return -EPERM;
5292 }
dd41f596
IM
5293 /*
5294 * Like positive nice levels, dont allow tasks to
5295 * move out of SCHED_IDLE either:
5296 */
5297 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5298 return -EPERM;
5fe1d75f 5299
37e4ab3f
OC
5300 /* can't change other user's priorities */
5301 if ((current->euid != p->euid) &&
5302 (current->euid != p->uid))
5303 return -EPERM;
5304 }
1da177e4 5305
b68aa230
PZ
5306#ifdef CONFIG_RT_GROUP_SCHED
5307 /*
5308 * Do not allow realtime tasks into groups that have no runtime
5309 * assigned.
5310 */
d0b27fa7 5311 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5312 return -EPERM;
5313#endif
5314
1da177e4
LT
5315 retval = security_task_setscheduler(p, policy, param);
5316 if (retval)
5317 return retval;
b29739f9
IM
5318 /*
5319 * make sure no PI-waiters arrive (or leave) while we are
5320 * changing the priority of the task:
5321 */
5322 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5323 /*
5324 * To be able to change p->policy safely, the apropriate
5325 * runqueue lock must be held.
5326 */
b29739f9 5327 rq = __task_rq_lock(p);
1da177e4
LT
5328 /* recheck policy now with rq lock held */
5329 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5330 policy = oldpolicy = -1;
b29739f9
IM
5331 __task_rq_unlock(rq);
5332 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5333 goto recheck;
5334 }
2daa3577 5335 update_rq_clock(rq);
dd41f596 5336 on_rq = p->se.on_rq;
051a1d1a 5337 running = task_current(rq, p);
0e1f3483 5338 if (on_rq)
2e1cb74a 5339 deactivate_task(rq, p, 0);
0e1f3483
HS
5340 if (running)
5341 p->sched_class->put_prev_task(rq, p);
f6b53205 5342
1da177e4 5343 oldprio = p->prio;
dd41f596 5344 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5345
0e1f3483
HS
5346 if (running)
5347 p->sched_class->set_curr_task(rq);
dd41f596
IM
5348 if (on_rq) {
5349 activate_task(rq, p, 0);
cb469845
SR
5350
5351 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5352 }
b29739f9
IM
5353 __task_rq_unlock(rq);
5354 spin_unlock_irqrestore(&p->pi_lock, flags);
5355
95e02ca9
TG
5356 rt_mutex_adjust_pi(p);
5357
1da177e4
LT
5358 return 0;
5359}
5360EXPORT_SYMBOL_GPL(sched_setscheduler);
5361
95cdf3b7
IM
5362static int
5363do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5364{
1da177e4
LT
5365 struct sched_param lparam;
5366 struct task_struct *p;
36c8b586 5367 int retval;
1da177e4
LT
5368
5369 if (!param || pid < 0)
5370 return -EINVAL;
5371 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5372 return -EFAULT;
5fe1d75f
ON
5373
5374 rcu_read_lock();
5375 retval = -ESRCH;
1da177e4 5376 p = find_process_by_pid(pid);
5fe1d75f
ON
5377 if (p != NULL)
5378 retval = sched_setscheduler(p, policy, &lparam);
5379 rcu_read_unlock();
36c8b586 5380
1da177e4
LT
5381 return retval;
5382}
5383
5384/**
5385 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5386 * @pid: the pid in question.
5387 * @policy: new policy.
5388 * @param: structure containing the new RT priority.
5389 */
41a2d6cf
IM
5390asmlinkage long
5391sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5392{
c21761f1
JB
5393 /* negative values for policy are not valid */
5394 if (policy < 0)
5395 return -EINVAL;
5396
1da177e4
LT
5397 return do_sched_setscheduler(pid, policy, param);
5398}
5399
5400/**
5401 * sys_sched_setparam - set/change the RT priority of a thread
5402 * @pid: the pid in question.
5403 * @param: structure containing the new RT priority.
5404 */
5405asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5406{
5407 return do_sched_setscheduler(pid, -1, param);
5408}
5409
5410/**
5411 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5412 * @pid: the pid in question.
5413 */
5414asmlinkage long sys_sched_getscheduler(pid_t pid)
5415{
36c8b586 5416 struct task_struct *p;
3a5c359a 5417 int retval;
1da177e4
LT
5418
5419 if (pid < 0)
3a5c359a 5420 return -EINVAL;
1da177e4
LT
5421
5422 retval = -ESRCH;
5423 read_lock(&tasklist_lock);
5424 p = find_process_by_pid(pid);
5425 if (p) {
5426 retval = security_task_getscheduler(p);
5427 if (!retval)
5428 retval = p->policy;
5429 }
5430 read_unlock(&tasklist_lock);
1da177e4
LT
5431 return retval;
5432}
5433
5434/**
5435 * sys_sched_getscheduler - get the RT priority of a thread
5436 * @pid: the pid in question.
5437 * @param: structure containing the RT priority.
5438 */
5439asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5440{
5441 struct sched_param lp;
36c8b586 5442 struct task_struct *p;
3a5c359a 5443 int retval;
1da177e4
LT
5444
5445 if (!param || pid < 0)
3a5c359a 5446 return -EINVAL;
1da177e4
LT
5447
5448 read_lock(&tasklist_lock);
5449 p = find_process_by_pid(pid);
5450 retval = -ESRCH;
5451 if (!p)
5452 goto out_unlock;
5453
5454 retval = security_task_getscheduler(p);
5455 if (retval)
5456 goto out_unlock;
5457
5458 lp.sched_priority = p->rt_priority;
5459 read_unlock(&tasklist_lock);
5460
5461 /*
5462 * This one might sleep, we cannot do it with a spinlock held ...
5463 */
5464 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5465
1da177e4
LT
5466 return retval;
5467
5468out_unlock:
5469 read_unlock(&tasklist_lock);
5470 return retval;
5471}
5472
b53e921b 5473long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5474{
1da177e4 5475 cpumask_t cpus_allowed;
b53e921b 5476 cpumask_t new_mask = *in_mask;
36c8b586
IM
5477 struct task_struct *p;
5478 int retval;
1da177e4 5479
95402b38 5480 get_online_cpus();
1da177e4
LT
5481 read_lock(&tasklist_lock);
5482
5483 p = find_process_by_pid(pid);
5484 if (!p) {
5485 read_unlock(&tasklist_lock);
95402b38 5486 put_online_cpus();
1da177e4
LT
5487 return -ESRCH;
5488 }
5489
5490 /*
5491 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5492 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5493 * usage count and then drop tasklist_lock.
5494 */
5495 get_task_struct(p);
5496 read_unlock(&tasklist_lock);
5497
5498 retval = -EPERM;
5499 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5500 !capable(CAP_SYS_NICE))
5501 goto out_unlock;
5502
e7834f8f
DQ
5503 retval = security_task_setscheduler(p, 0, NULL);
5504 if (retval)
5505 goto out_unlock;
5506
f9a86fcb 5507 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5508 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5509 again:
7c16ec58 5510 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5511
8707d8b8 5512 if (!retval) {
f9a86fcb 5513 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5514 if (!cpus_subset(new_mask, cpus_allowed)) {
5515 /*
5516 * We must have raced with a concurrent cpuset
5517 * update. Just reset the cpus_allowed to the
5518 * cpuset's cpus_allowed
5519 */
5520 new_mask = cpus_allowed;
5521 goto again;
5522 }
5523 }
1da177e4
LT
5524out_unlock:
5525 put_task_struct(p);
95402b38 5526 put_online_cpus();
1da177e4
LT
5527 return retval;
5528}
5529
5530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5531 cpumask_t *new_mask)
5532{
5533 if (len < sizeof(cpumask_t)) {
5534 memset(new_mask, 0, sizeof(cpumask_t));
5535 } else if (len > sizeof(cpumask_t)) {
5536 len = sizeof(cpumask_t);
5537 }
5538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5539}
5540
5541/**
5542 * sys_sched_setaffinity - set the cpu affinity of a process
5543 * @pid: pid of the process
5544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5545 * @user_mask_ptr: user-space pointer to the new cpu mask
5546 */
5547asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5548 unsigned long __user *user_mask_ptr)
5549{
5550 cpumask_t new_mask;
5551 int retval;
5552
5553 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5554 if (retval)
5555 return retval;
5556
b53e921b 5557 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5558}
5559
5560/*
5561 * Represents all cpu's present in the system
5562 * In systems capable of hotplug, this map could dynamically grow
5563 * as new cpu's are detected in the system via any platform specific
5564 * method, such as ACPI for e.g.
5565 */
5566
4cef0c61 5567cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5568EXPORT_SYMBOL(cpu_present_map);
5569
5570#ifndef CONFIG_SMP
4cef0c61 5571cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5572EXPORT_SYMBOL(cpu_online_map);
5573
4cef0c61 5574cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5575EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5576#endif
5577
5578long sched_getaffinity(pid_t pid, cpumask_t *mask)
5579{
36c8b586 5580 struct task_struct *p;
1da177e4 5581 int retval;
1da177e4 5582
95402b38 5583 get_online_cpus();
1da177e4
LT
5584 read_lock(&tasklist_lock);
5585
5586 retval = -ESRCH;
5587 p = find_process_by_pid(pid);
5588 if (!p)
5589 goto out_unlock;
5590
e7834f8f
DQ
5591 retval = security_task_getscheduler(p);
5592 if (retval)
5593 goto out_unlock;
5594
2f7016d9 5595 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5596
5597out_unlock:
5598 read_unlock(&tasklist_lock);
95402b38 5599 put_online_cpus();
1da177e4 5600
9531b62f 5601 return retval;
1da177e4
LT
5602}
5603
5604/**
5605 * sys_sched_getaffinity - get the cpu affinity of a process
5606 * @pid: pid of the process
5607 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5608 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5609 */
5610asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5611 unsigned long __user *user_mask_ptr)
5612{
5613 int ret;
5614 cpumask_t mask;
5615
5616 if (len < sizeof(cpumask_t))
5617 return -EINVAL;
5618
5619 ret = sched_getaffinity(pid, &mask);
5620 if (ret < 0)
5621 return ret;
5622
5623 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5624 return -EFAULT;
5625
5626 return sizeof(cpumask_t);
5627}
5628
5629/**
5630 * sys_sched_yield - yield the current processor to other threads.
5631 *
dd41f596
IM
5632 * This function yields the current CPU to other tasks. If there are no
5633 * other threads running on this CPU then this function will return.
1da177e4
LT
5634 */
5635asmlinkage long sys_sched_yield(void)
5636{
70b97a7f 5637 struct rq *rq = this_rq_lock();
1da177e4 5638
2d72376b 5639 schedstat_inc(rq, yld_count);
4530d7ab 5640 current->sched_class->yield_task(rq);
1da177e4
LT
5641
5642 /*
5643 * Since we are going to call schedule() anyway, there's
5644 * no need to preempt or enable interrupts:
5645 */
5646 __release(rq->lock);
8a25d5de 5647 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5648 _raw_spin_unlock(&rq->lock);
5649 preempt_enable_no_resched();
5650
5651 schedule();
5652
5653 return 0;
5654}
5655
e7b38404 5656static void __cond_resched(void)
1da177e4 5657{
8e0a43d8
IM
5658#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5659 __might_sleep(__FILE__, __LINE__);
5660#endif
5bbcfd90
IM
5661 /*
5662 * The BKS might be reacquired before we have dropped
5663 * PREEMPT_ACTIVE, which could trigger a second
5664 * cond_resched() call.
5665 */
1da177e4
LT
5666 do {
5667 add_preempt_count(PREEMPT_ACTIVE);
5668 schedule();
5669 sub_preempt_count(PREEMPT_ACTIVE);
5670 } while (need_resched());
5671}
5672
02b67cc3
HX
5673#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5674int __sched _cond_resched(void)
1da177e4 5675{
9414232f
IM
5676 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5677 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5678 __cond_resched();
5679 return 1;
5680 }
5681 return 0;
5682}
02b67cc3
HX
5683EXPORT_SYMBOL(_cond_resched);
5684#endif
1da177e4
LT
5685
5686/*
5687 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5688 * call schedule, and on return reacquire the lock.
5689 *
41a2d6cf 5690 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5691 * operations here to prevent schedule() from being called twice (once via
5692 * spin_unlock(), once by hand).
5693 */
95cdf3b7 5694int cond_resched_lock(spinlock_t *lock)
1da177e4 5695{
95c354fe 5696 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5697 int ret = 0;
5698
95c354fe 5699 if (spin_needbreak(lock) || resched) {
1da177e4 5700 spin_unlock(lock);
95c354fe
NP
5701 if (resched && need_resched())
5702 __cond_resched();
5703 else
5704 cpu_relax();
6df3cecb 5705 ret = 1;
1da177e4 5706 spin_lock(lock);
1da177e4 5707 }
6df3cecb 5708 return ret;
1da177e4 5709}
1da177e4
LT
5710EXPORT_SYMBOL(cond_resched_lock);
5711
5712int __sched cond_resched_softirq(void)
5713{
5714 BUG_ON(!in_softirq());
5715
9414232f 5716 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5717 local_bh_enable();
1da177e4
LT
5718 __cond_resched();
5719 local_bh_disable();
5720 return 1;
5721 }
5722 return 0;
5723}
1da177e4
LT
5724EXPORT_SYMBOL(cond_resched_softirq);
5725
1da177e4
LT
5726/**
5727 * yield - yield the current processor to other threads.
5728 *
72fd4a35 5729 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5730 * thread runnable and calls sys_sched_yield().
5731 */
5732void __sched yield(void)
5733{
5734 set_current_state(TASK_RUNNING);
5735 sys_sched_yield();
5736}
1da177e4
LT
5737EXPORT_SYMBOL(yield);
5738
5739/*
41a2d6cf 5740 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5741 * that process accounting knows that this is a task in IO wait state.
5742 *
5743 * But don't do that if it is a deliberate, throttling IO wait (this task
5744 * has set its backing_dev_info: the queue against which it should throttle)
5745 */
5746void __sched io_schedule(void)
5747{
70b97a7f 5748 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5749
0ff92245 5750 delayacct_blkio_start();
1da177e4
LT
5751 atomic_inc(&rq->nr_iowait);
5752 schedule();
5753 atomic_dec(&rq->nr_iowait);
0ff92245 5754 delayacct_blkio_end();
1da177e4 5755}
1da177e4
LT
5756EXPORT_SYMBOL(io_schedule);
5757
5758long __sched io_schedule_timeout(long timeout)
5759{
70b97a7f 5760 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5761 long ret;
5762
0ff92245 5763 delayacct_blkio_start();
1da177e4
LT
5764 atomic_inc(&rq->nr_iowait);
5765 ret = schedule_timeout(timeout);
5766 atomic_dec(&rq->nr_iowait);
0ff92245 5767 delayacct_blkio_end();
1da177e4
LT
5768 return ret;
5769}
5770
5771/**
5772 * sys_sched_get_priority_max - return maximum RT priority.
5773 * @policy: scheduling class.
5774 *
5775 * this syscall returns the maximum rt_priority that can be used
5776 * by a given scheduling class.
5777 */
5778asmlinkage long sys_sched_get_priority_max(int policy)
5779{
5780 int ret = -EINVAL;
5781
5782 switch (policy) {
5783 case SCHED_FIFO:
5784 case SCHED_RR:
5785 ret = MAX_USER_RT_PRIO-1;
5786 break;
5787 case SCHED_NORMAL:
b0a9499c 5788 case SCHED_BATCH:
dd41f596 5789 case SCHED_IDLE:
1da177e4
LT
5790 ret = 0;
5791 break;
5792 }
5793 return ret;
5794}
5795
5796/**
5797 * sys_sched_get_priority_min - return minimum RT priority.
5798 * @policy: scheduling class.
5799 *
5800 * this syscall returns the minimum rt_priority that can be used
5801 * by a given scheduling class.
5802 */
5803asmlinkage long sys_sched_get_priority_min(int policy)
5804{
5805 int ret = -EINVAL;
5806
5807 switch (policy) {
5808 case SCHED_FIFO:
5809 case SCHED_RR:
5810 ret = 1;
5811 break;
5812 case SCHED_NORMAL:
b0a9499c 5813 case SCHED_BATCH:
dd41f596 5814 case SCHED_IDLE:
1da177e4
LT
5815 ret = 0;
5816 }
5817 return ret;
5818}
5819
5820/**
5821 * sys_sched_rr_get_interval - return the default timeslice of a process.
5822 * @pid: pid of the process.
5823 * @interval: userspace pointer to the timeslice value.
5824 *
5825 * this syscall writes the default timeslice value of a given process
5826 * into the user-space timespec buffer. A value of '0' means infinity.
5827 */
5828asmlinkage
5829long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5830{
36c8b586 5831 struct task_struct *p;
a4ec24b4 5832 unsigned int time_slice;
3a5c359a 5833 int retval;
1da177e4 5834 struct timespec t;
1da177e4
LT
5835
5836 if (pid < 0)
3a5c359a 5837 return -EINVAL;
1da177e4
LT
5838
5839 retval = -ESRCH;
5840 read_lock(&tasklist_lock);
5841 p = find_process_by_pid(pid);
5842 if (!p)
5843 goto out_unlock;
5844
5845 retval = security_task_getscheduler(p);
5846 if (retval)
5847 goto out_unlock;
5848
77034937
IM
5849 /*
5850 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5851 * tasks that are on an otherwise idle runqueue:
5852 */
5853 time_slice = 0;
5854 if (p->policy == SCHED_RR) {
a4ec24b4 5855 time_slice = DEF_TIMESLICE;
1868f958 5856 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5857 struct sched_entity *se = &p->se;
5858 unsigned long flags;
5859 struct rq *rq;
5860
5861 rq = task_rq_lock(p, &flags);
77034937
IM
5862 if (rq->cfs.load.weight)
5863 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5864 task_rq_unlock(rq, &flags);
5865 }
1da177e4 5866 read_unlock(&tasklist_lock);
a4ec24b4 5867 jiffies_to_timespec(time_slice, &t);
1da177e4 5868 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5869 return retval;
3a5c359a 5870
1da177e4
LT
5871out_unlock:
5872 read_unlock(&tasklist_lock);
5873 return retval;
5874}
5875
2ed6e34f 5876static const char stat_nam[] = "RSDTtZX";
36c8b586 5877
82a1fcb9 5878void sched_show_task(struct task_struct *p)
1da177e4 5879{
1da177e4 5880 unsigned long free = 0;
36c8b586 5881 unsigned state;
1da177e4 5882
1da177e4 5883 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5884 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5885 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5886#if BITS_PER_LONG == 32
1da177e4 5887 if (state == TASK_RUNNING)
cc4ea795 5888 printk(KERN_CONT " running ");
1da177e4 5889 else
cc4ea795 5890 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5891#else
5892 if (state == TASK_RUNNING)
cc4ea795 5893 printk(KERN_CONT " running task ");
1da177e4 5894 else
cc4ea795 5895 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5896#endif
5897#ifdef CONFIG_DEBUG_STACK_USAGE
5898 {
10ebffde 5899 unsigned long *n = end_of_stack(p);
1da177e4
LT
5900 while (!*n)
5901 n++;
10ebffde 5902 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5903 }
5904#endif
ba25f9dc 5905 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5906 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5907
5fb5e6de 5908 show_stack(p, NULL);
1da177e4
LT
5909}
5910
e59e2ae2 5911void show_state_filter(unsigned long state_filter)
1da177e4 5912{
36c8b586 5913 struct task_struct *g, *p;
1da177e4 5914
4bd77321
IM
5915#if BITS_PER_LONG == 32
5916 printk(KERN_INFO
5917 " task PC stack pid father\n");
1da177e4 5918#else
4bd77321
IM
5919 printk(KERN_INFO
5920 " task PC stack pid father\n");
1da177e4
LT
5921#endif
5922 read_lock(&tasklist_lock);
5923 do_each_thread(g, p) {
5924 /*
5925 * reset the NMI-timeout, listing all files on a slow
5926 * console might take alot of time:
5927 */
5928 touch_nmi_watchdog();
39bc89fd 5929 if (!state_filter || (p->state & state_filter))
82a1fcb9 5930 sched_show_task(p);
1da177e4
LT
5931 } while_each_thread(g, p);
5932
04c9167f
JF
5933 touch_all_softlockup_watchdogs();
5934
dd41f596
IM
5935#ifdef CONFIG_SCHED_DEBUG
5936 sysrq_sched_debug_show();
5937#endif
1da177e4 5938 read_unlock(&tasklist_lock);
e59e2ae2
IM
5939 /*
5940 * Only show locks if all tasks are dumped:
5941 */
5942 if (state_filter == -1)
5943 debug_show_all_locks();
1da177e4
LT
5944}
5945
1df21055
IM
5946void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5947{
dd41f596 5948 idle->sched_class = &idle_sched_class;
1df21055
IM
5949}
5950
f340c0d1
IM
5951/**
5952 * init_idle - set up an idle thread for a given CPU
5953 * @idle: task in question
5954 * @cpu: cpu the idle task belongs to
5955 *
5956 * NOTE: this function does not set the idle thread's NEED_RESCHED
5957 * flag, to make booting more robust.
5958 */
5c1e1767 5959void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5960{
70b97a7f 5961 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5962 unsigned long flags;
5963
dd41f596
IM
5964 __sched_fork(idle);
5965 idle->se.exec_start = sched_clock();
5966
b29739f9 5967 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5968 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5969 __set_task_cpu(idle, cpu);
1da177e4
LT
5970
5971 spin_lock_irqsave(&rq->lock, flags);
5972 rq->curr = rq->idle = idle;
4866cde0
NP
5973#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5974 idle->oncpu = 1;
5975#endif
1da177e4
LT
5976 spin_unlock_irqrestore(&rq->lock, flags);
5977
5978 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5979 task_thread_info(idle)->preempt_count = 0;
6478d880 5980
dd41f596
IM
5981 /*
5982 * The idle tasks have their own, simple scheduling class:
5983 */
5984 idle->sched_class = &idle_sched_class;
1da177e4
LT
5985}
5986
5987/*
5988 * In a system that switches off the HZ timer nohz_cpu_mask
5989 * indicates which cpus entered this state. This is used
5990 * in the rcu update to wait only for active cpus. For system
5991 * which do not switch off the HZ timer nohz_cpu_mask should
5992 * always be CPU_MASK_NONE.
5993 */
5994cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5995
19978ca6
IM
5996/*
5997 * Increase the granularity value when there are more CPUs,
5998 * because with more CPUs the 'effective latency' as visible
5999 * to users decreases. But the relationship is not linear,
6000 * so pick a second-best guess by going with the log2 of the
6001 * number of CPUs.
6002 *
6003 * This idea comes from the SD scheduler of Con Kolivas:
6004 */
6005static inline void sched_init_granularity(void)
6006{
6007 unsigned int factor = 1 + ilog2(num_online_cpus());
6008 const unsigned long limit = 200000000;
6009
6010 sysctl_sched_min_granularity *= factor;
6011 if (sysctl_sched_min_granularity > limit)
6012 sysctl_sched_min_granularity = limit;
6013
6014 sysctl_sched_latency *= factor;
6015 if (sysctl_sched_latency > limit)
6016 sysctl_sched_latency = limit;
6017
6018 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
6019}
6020
1da177e4
LT
6021#ifdef CONFIG_SMP
6022/*
6023 * This is how migration works:
6024 *
70b97a7f 6025 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6026 * runqueue and wake up that CPU's migration thread.
6027 * 2) we down() the locked semaphore => thread blocks.
6028 * 3) migration thread wakes up (implicitly it forces the migrated
6029 * thread off the CPU)
6030 * 4) it gets the migration request and checks whether the migrated
6031 * task is still in the wrong runqueue.
6032 * 5) if it's in the wrong runqueue then the migration thread removes
6033 * it and puts it into the right queue.
6034 * 6) migration thread up()s the semaphore.
6035 * 7) we wake up and the migration is done.
6036 */
6037
6038/*
6039 * Change a given task's CPU affinity. Migrate the thread to a
6040 * proper CPU and schedule it away if the CPU it's executing on
6041 * is removed from the allowed bitmask.
6042 *
6043 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6044 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6045 * call is not atomic; no spinlocks may be held.
6046 */
cd8ba7cd 6047int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 6048{
70b97a7f 6049 struct migration_req req;
1da177e4 6050 unsigned long flags;
70b97a7f 6051 struct rq *rq;
48f24c4d 6052 int ret = 0;
1da177e4
LT
6053
6054 rq = task_rq_lock(p, &flags);
cd8ba7cd 6055 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
6056 ret = -EINVAL;
6057 goto out;
6058 }
6059
73fe6aae 6060 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6061 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6062 else {
cd8ba7cd
MT
6063 p->cpus_allowed = *new_mask;
6064 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
6065 }
6066
1da177e4 6067 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 6068 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
6069 goto out;
6070
cd8ba7cd 6071 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6072 /* Need help from migration thread: drop lock and wait. */
6073 task_rq_unlock(rq, &flags);
6074 wake_up_process(rq->migration_thread);
6075 wait_for_completion(&req.done);
6076 tlb_migrate_finish(p->mm);
6077 return 0;
6078 }
6079out:
6080 task_rq_unlock(rq, &flags);
48f24c4d 6081
1da177e4
LT
6082 return ret;
6083}
cd8ba7cd 6084EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6085
6086/*
41a2d6cf 6087 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6088 * this because either it can't run here any more (set_cpus_allowed()
6089 * away from this CPU, or CPU going down), or because we're
6090 * attempting to rebalance this task on exec (sched_exec).
6091 *
6092 * So we race with normal scheduler movements, but that's OK, as long
6093 * as the task is no longer on this CPU.
efc30814
KK
6094 *
6095 * Returns non-zero if task was successfully migrated.
1da177e4 6096 */
efc30814 6097static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6098{
70b97a7f 6099 struct rq *rq_dest, *rq_src;
dd41f596 6100 int ret = 0, on_rq;
1da177e4
LT
6101
6102 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 6103 return ret;
1da177e4
LT
6104
6105 rq_src = cpu_rq(src_cpu);
6106 rq_dest = cpu_rq(dest_cpu);
6107
6108 double_rq_lock(rq_src, rq_dest);
6109 /* Already moved. */
6110 if (task_cpu(p) != src_cpu)
6111 goto out;
6112 /* Affinity changed (again). */
6113 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6114 goto out;
6115
dd41f596 6116 on_rq = p->se.on_rq;
6e82a3be 6117 if (on_rq)
2e1cb74a 6118 deactivate_task(rq_src, p, 0);
6e82a3be 6119
1da177e4 6120 set_task_cpu(p, dest_cpu);
dd41f596
IM
6121 if (on_rq) {
6122 activate_task(rq_dest, p, 0);
6123 check_preempt_curr(rq_dest, p);
1da177e4 6124 }
efc30814 6125 ret = 1;
1da177e4
LT
6126out:
6127 double_rq_unlock(rq_src, rq_dest);
efc30814 6128 return ret;
1da177e4
LT
6129}
6130
6131/*
6132 * migration_thread - this is a highprio system thread that performs
6133 * thread migration by bumping thread off CPU then 'pushing' onto
6134 * another runqueue.
6135 */
95cdf3b7 6136static int migration_thread(void *data)
1da177e4 6137{
1da177e4 6138 int cpu = (long)data;
70b97a7f 6139 struct rq *rq;
1da177e4
LT
6140
6141 rq = cpu_rq(cpu);
6142 BUG_ON(rq->migration_thread != current);
6143
6144 set_current_state(TASK_INTERRUPTIBLE);
6145 while (!kthread_should_stop()) {
70b97a7f 6146 struct migration_req *req;
1da177e4 6147 struct list_head *head;
1da177e4 6148
1da177e4
LT
6149 spin_lock_irq(&rq->lock);
6150
6151 if (cpu_is_offline(cpu)) {
6152 spin_unlock_irq(&rq->lock);
6153 goto wait_to_die;
6154 }
6155
6156 if (rq->active_balance) {
6157 active_load_balance(rq, cpu);
6158 rq->active_balance = 0;
6159 }
6160
6161 head = &rq->migration_queue;
6162
6163 if (list_empty(head)) {
6164 spin_unlock_irq(&rq->lock);
6165 schedule();
6166 set_current_state(TASK_INTERRUPTIBLE);
6167 continue;
6168 }
70b97a7f 6169 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6170 list_del_init(head->next);
6171
674311d5
NP
6172 spin_unlock(&rq->lock);
6173 __migrate_task(req->task, cpu, req->dest_cpu);
6174 local_irq_enable();
1da177e4
LT
6175
6176 complete(&req->done);
6177 }
6178 __set_current_state(TASK_RUNNING);
6179 return 0;
6180
6181wait_to_die:
6182 /* Wait for kthread_stop */
6183 set_current_state(TASK_INTERRUPTIBLE);
6184 while (!kthread_should_stop()) {
6185 schedule();
6186 set_current_state(TASK_INTERRUPTIBLE);
6187 }
6188 __set_current_state(TASK_RUNNING);
6189 return 0;
6190}
6191
6192#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6193
6194static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6195{
6196 int ret;
6197
6198 local_irq_disable();
6199 ret = __migrate_task(p, src_cpu, dest_cpu);
6200 local_irq_enable();
6201 return ret;
6202}
6203
054b9108 6204/*
3a4fa0a2 6205 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6206 * NOTE: interrupts should be disabled by the caller
6207 */
48f24c4d 6208static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6209{
efc30814 6210 unsigned long flags;
1da177e4 6211 cpumask_t mask;
70b97a7f
IM
6212 struct rq *rq;
6213 int dest_cpu;
1da177e4 6214
3a5c359a
AK
6215 do {
6216 /* On same node? */
6217 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6218 cpus_and(mask, mask, p->cpus_allowed);
6219 dest_cpu = any_online_cpu(mask);
6220
6221 /* On any allowed CPU? */
434d53b0 6222 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6223 dest_cpu = any_online_cpu(p->cpus_allowed);
6224
6225 /* No more Mr. Nice Guy. */
434d53b0 6226 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6227 cpumask_t cpus_allowed;
6228
6229 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6230 /*
6231 * Try to stay on the same cpuset, where the
6232 * current cpuset may be a subset of all cpus.
6233 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6234 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6235 * called within calls to cpuset_lock/cpuset_unlock.
6236 */
3a5c359a 6237 rq = task_rq_lock(p, &flags);
470fd646 6238 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6239 dest_cpu = any_online_cpu(p->cpus_allowed);
6240 task_rq_unlock(rq, &flags);
1da177e4 6241
3a5c359a
AK
6242 /*
6243 * Don't tell them about moving exiting tasks or
6244 * kernel threads (both mm NULL), since they never
6245 * leave kernel.
6246 */
41a2d6cf 6247 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6248 printk(KERN_INFO "process %d (%s) no "
6249 "longer affine to cpu%d\n",
41a2d6cf
IM
6250 task_pid_nr(p), p->comm, dead_cpu);
6251 }
3a5c359a 6252 }
f7b4cddc 6253 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6254}
6255
6256/*
6257 * While a dead CPU has no uninterruptible tasks queued at this point,
6258 * it might still have a nonzero ->nr_uninterruptible counter, because
6259 * for performance reasons the counter is not stricly tracking tasks to
6260 * their home CPUs. So we just add the counter to another CPU's counter,
6261 * to keep the global sum constant after CPU-down:
6262 */
70b97a7f 6263static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6264{
7c16ec58 6265 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6266 unsigned long flags;
6267
6268 local_irq_save(flags);
6269 double_rq_lock(rq_src, rq_dest);
6270 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6271 rq_src->nr_uninterruptible = 0;
6272 double_rq_unlock(rq_src, rq_dest);
6273 local_irq_restore(flags);
6274}
6275
6276/* Run through task list and migrate tasks from the dead cpu. */
6277static void migrate_live_tasks(int src_cpu)
6278{
48f24c4d 6279 struct task_struct *p, *t;
1da177e4 6280
f7b4cddc 6281 read_lock(&tasklist_lock);
1da177e4 6282
48f24c4d
IM
6283 do_each_thread(t, p) {
6284 if (p == current)
1da177e4
LT
6285 continue;
6286
48f24c4d
IM
6287 if (task_cpu(p) == src_cpu)
6288 move_task_off_dead_cpu(src_cpu, p);
6289 } while_each_thread(t, p);
1da177e4 6290
f7b4cddc 6291 read_unlock(&tasklist_lock);
1da177e4
LT
6292}
6293
dd41f596
IM
6294/*
6295 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6296 * It does so by boosting its priority to highest possible.
6297 * Used by CPU offline code.
1da177e4
LT
6298 */
6299void sched_idle_next(void)
6300{
48f24c4d 6301 int this_cpu = smp_processor_id();
70b97a7f 6302 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6303 struct task_struct *p = rq->idle;
6304 unsigned long flags;
6305
6306 /* cpu has to be offline */
48f24c4d 6307 BUG_ON(cpu_online(this_cpu));
1da177e4 6308
48f24c4d
IM
6309 /*
6310 * Strictly not necessary since rest of the CPUs are stopped by now
6311 * and interrupts disabled on the current cpu.
1da177e4
LT
6312 */
6313 spin_lock_irqsave(&rq->lock, flags);
6314
dd41f596 6315 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6316
94bc9a7b
DA
6317 update_rq_clock(rq);
6318 activate_task(rq, p, 0);
1da177e4
LT
6319
6320 spin_unlock_irqrestore(&rq->lock, flags);
6321}
6322
48f24c4d
IM
6323/*
6324 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6325 * offline.
6326 */
6327void idle_task_exit(void)
6328{
6329 struct mm_struct *mm = current->active_mm;
6330
6331 BUG_ON(cpu_online(smp_processor_id()));
6332
6333 if (mm != &init_mm)
6334 switch_mm(mm, &init_mm, current);
6335 mmdrop(mm);
6336}
6337
054b9108 6338/* called under rq->lock with disabled interrupts */
36c8b586 6339static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6340{
70b97a7f 6341 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6342
6343 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6344 BUG_ON(!p->exit_state);
1da177e4
LT
6345
6346 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6347 BUG_ON(p->state == TASK_DEAD);
1da177e4 6348
48f24c4d 6349 get_task_struct(p);
1da177e4
LT
6350
6351 /*
6352 * Drop lock around migration; if someone else moves it,
41a2d6cf 6353 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6354 * fine.
6355 */
f7b4cddc 6356 spin_unlock_irq(&rq->lock);
48f24c4d 6357 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6358 spin_lock_irq(&rq->lock);
1da177e4 6359
48f24c4d 6360 put_task_struct(p);
1da177e4
LT
6361}
6362
6363/* release_task() removes task from tasklist, so we won't find dead tasks. */
6364static void migrate_dead_tasks(unsigned int dead_cpu)
6365{
70b97a7f 6366 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6367 struct task_struct *next;
48f24c4d 6368
dd41f596
IM
6369 for ( ; ; ) {
6370 if (!rq->nr_running)
6371 break;
a8e504d2 6372 update_rq_clock(rq);
ff95f3df 6373 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6374 if (!next)
6375 break;
6376 migrate_dead(dead_cpu, next);
e692ab53 6377
1da177e4
LT
6378 }
6379}
6380#endif /* CONFIG_HOTPLUG_CPU */
6381
e692ab53
NP
6382#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6383
6384static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6385 {
6386 .procname = "sched_domain",
c57baf1e 6387 .mode = 0555,
e0361851 6388 },
38605cae 6389 {0, },
e692ab53
NP
6390};
6391
6392static struct ctl_table sd_ctl_root[] = {
e0361851 6393 {
c57baf1e 6394 .ctl_name = CTL_KERN,
e0361851 6395 .procname = "kernel",
c57baf1e 6396 .mode = 0555,
e0361851
AD
6397 .child = sd_ctl_dir,
6398 },
38605cae 6399 {0, },
e692ab53
NP
6400};
6401
6402static struct ctl_table *sd_alloc_ctl_entry(int n)
6403{
6404 struct ctl_table *entry =
5cf9f062 6405 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6406
e692ab53
NP
6407 return entry;
6408}
6409
6382bc90
MM
6410static void sd_free_ctl_entry(struct ctl_table **tablep)
6411{
cd790076 6412 struct ctl_table *entry;
6382bc90 6413
cd790076
MM
6414 /*
6415 * In the intermediate directories, both the child directory and
6416 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6417 * will always be set. In the lowest directory the names are
cd790076
MM
6418 * static strings and all have proc handlers.
6419 */
6420 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6421 if (entry->child)
6422 sd_free_ctl_entry(&entry->child);
cd790076
MM
6423 if (entry->proc_handler == NULL)
6424 kfree(entry->procname);
6425 }
6382bc90
MM
6426
6427 kfree(*tablep);
6428 *tablep = NULL;
6429}
6430
e692ab53 6431static void
e0361851 6432set_table_entry(struct ctl_table *entry,
e692ab53
NP
6433 const char *procname, void *data, int maxlen,
6434 mode_t mode, proc_handler *proc_handler)
6435{
e692ab53
NP
6436 entry->procname = procname;
6437 entry->data = data;
6438 entry->maxlen = maxlen;
6439 entry->mode = mode;
6440 entry->proc_handler = proc_handler;
6441}
6442
6443static struct ctl_table *
6444sd_alloc_ctl_domain_table(struct sched_domain *sd)
6445{
ace8b3d6 6446 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6447
ad1cdc1d
MM
6448 if (table == NULL)
6449 return NULL;
6450
e0361851 6451 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6452 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6453 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6454 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6455 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6457 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6459 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6461 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6463 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6465 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6467 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6468 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6469 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6470 &sd->cache_nice_tries,
6471 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6472 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6473 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6474 /* &table[11] is terminator */
e692ab53
NP
6475
6476 return table;
6477}
6478
9a4e7159 6479static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6480{
6481 struct ctl_table *entry, *table;
6482 struct sched_domain *sd;
6483 int domain_num = 0, i;
6484 char buf[32];
6485
6486 for_each_domain(cpu, sd)
6487 domain_num++;
6488 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6489 if (table == NULL)
6490 return NULL;
e692ab53
NP
6491
6492 i = 0;
6493 for_each_domain(cpu, sd) {
6494 snprintf(buf, 32, "domain%d", i);
e692ab53 6495 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6496 entry->mode = 0555;
e692ab53
NP
6497 entry->child = sd_alloc_ctl_domain_table(sd);
6498 entry++;
6499 i++;
6500 }
6501 return table;
6502}
6503
6504static struct ctl_table_header *sd_sysctl_header;
6382bc90 6505static void register_sched_domain_sysctl(void)
e692ab53
NP
6506{
6507 int i, cpu_num = num_online_cpus();
6508 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6509 char buf[32];
6510
7378547f
MM
6511 WARN_ON(sd_ctl_dir[0].child);
6512 sd_ctl_dir[0].child = entry;
6513
ad1cdc1d
MM
6514 if (entry == NULL)
6515 return;
6516
97b6ea7b 6517 for_each_online_cpu(i) {
e692ab53 6518 snprintf(buf, 32, "cpu%d", i);
e692ab53 6519 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6520 entry->mode = 0555;
e692ab53 6521 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6522 entry++;
e692ab53 6523 }
7378547f
MM
6524
6525 WARN_ON(sd_sysctl_header);
e692ab53
NP
6526 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6527}
6382bc90 6528
7378547f 6529/* may be called multiple times per register */
6382bc90
MM
6530static void unregister_sched_domain_sysctl(void)
6531{
7378547f
MM
6532 if (sd_sysctl_header)
6533 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6534 sd_sysctl_header = NULL;
7378547f
MM
6535 if (sd_ctl_dir[0].child)
6536 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6537}
e692ab53 6538#else
6382bc90
MM
6539static void register_sched_domain_sysctl(void)
6540{
6541}
6542static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6543{
6544}
6545#endif
6546
1da177e4
LT
6547/*
6548 * migration_call - callback that gets triggered when a CPU is added.
6549 * Here we can start up the necessary migration thread for the new CPU.
6550 */
48f24c4d
IM
6551static int __cpuinit
6552migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6553{
1da177e4 6554 struct task_struct *p;
48f24c4d 6555 int cpu = (long)hcpu;
1da177e4 6556 unsigned long flags;
70b97a7f 6557 struct rq *rq;
1da177e4
LT
6558
6559 switch (action) {
5be9361c 6560
1da177e4 6561 case CPU_UP_PREPARE:
8bb78442 6562 case CPU_UP_PREPARE_FROZEN:
dd41f596 6563 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6564 if (IS_ERR(p))
6565 return NOTIFY_BAD;
1da177e4
LT
6566 kthread_bind(p, cpu);
6567 /* Must be high prio: stop_machine expects to yield to it. */
6568 rq = task_rq_lock(p, &flags);
dd41f596 6569 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6570 task_rq_unlock(rq, &flags);
6571 cpu_rq(cpu)->migration_thread = p;
6572 break;
48f24c4d 6573
1da177e4 6574 case CPU_ONLINE:
8bb78442 6575 case CPU_ONLINE_FROZEN:
3a4fa0a2 6576 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6577 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6578
6579 /* Update our root-domain */
6580 rq = cpu_rq(cpu);
6581 spin_lock_irqsave(&rq->lock, flags);
6582 if (rq->rd) {
6583 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6584 cpu_set(cpu, rq->rd->online);
6585 }
6586 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6587 break;
48f24c4d 6588
1da177e4
LT
6589#ifdef CONFIG_HOTPLUG_CPU
6590 case CPU_UP_CANCELED:
8bb78442 6591 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6592 if (!cpu_rq(cpu)->migration_thread)
6593 break;
41a2d6cf 6594 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6595 kthread_bind(cpu_rq(cpu)->migration_thread,
6596 any_online_cpu(cpu_online_map));
1da177e4
LT
6597 kthread_stop(cpu_rq(cpu)->migration_thread);
6598 cpu_rq(cpu)->migration_thread = NULL;
6599 break;
48f24c4d 6600
1da177e4 6601 case CPU_DEAD:
8bb78442 6602 case CPU_DEAD_FROZEN:
470fd646 6603 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6604 migrate_live_tasks(cpu);
6605 rq = cpu_rq(cpu);
6606 kthread_stop(rq->migration_thread);
6607 rq->migration_thread = NULL;
6608 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6609 spin_lock_irq(&rq->lock);
a8e504d2 6610 update_rq_clock(rq);
2e1cb74a 6611 deactivate_task(rq, rq->idle, 0);
1da177e4 6612 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6613 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6614 rq->idle->sched_class = &idle_sched_class;
1da177e4 6615 migrate_dead_tasks(cpu);
d2da272a 6616 spin_unlock_irq(&rq->lock);
470fd646 6617 cpuset_unlock();
1da177e4
LT
6618 migrate_nr_uninterruptible(rq);
6619 BUG_ON(rq->nr_running != 0);
6620
41a2d6cf
IM
6621 /*
6622 * No need to migrate the tasks: it was best-effort if
6623 * they didn't take sched_hotcpu_mutex. Just wake up
6624 * the requestors.
6625 */
1da177e4
LT
6626 spin_lock_irq(&rq->lock);
6627 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6628 struct migration_req *req;
6629
1da177e4 6630 req = list_entry(rq->migration_queue.next,
70b97a7f 6631 struct migration_req, list);
1da177e4
LT
6632 list_del_init(&req->list);
6633 complete(&req->done);
6634 }
6635 spin_unlock_irq(&rq->lock);
6636 break;
57d885fe 6637
08f503b0
GH
6638 case CPU_DYING:
6639 case CPU_DYING_FROZEN:
57d885fe
GH
6640 /* Update our root-domain */
6641 rq = cpu_rq(cpu);
6642 spin_lock_irqsave(&rq->lock, flags);
6643 if (rq->rd) {
6644 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6645 cpu_clear(cpu, rq->rd->online);
6646 }
6647 spin_unlock_irqrestore(&rq->lock, flags);
6648 break;
1da177e4
LT
6649#endif
6650 }
6651 return NOTIFY_OK;
6652}
6653
6654/* Register at highest priority so that task migration (migrate_all_tasks)
6655 * happens before everything else.
6656 */
26c2143b 6657static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6658 .notifier_call = migration_call,
6659 .priority = 10
6660};
6661
e6fe6649 6662void __init migration_init(void)
1da177e4
LT
6663{
6664 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6665 int err;
48f24c4d
IM
6666
6667 /* Start one for the boot CPU: */
07dccf33
AM
6668 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6669 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6670 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6671 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6672}
6673#endif
6674
6675#ifdef CONFIG_SMP
476f3534 6676
3e9830dc 6677#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6678
7c16ec58
MT
6679static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6680 cpumask_t *groupmask)
1da177e4 6681{
4dcf6aff 6682 struct sched_group *group = sd->groups;
434d53b0 6683 char str[256];
1da177e4 6684
434d53b0 6685 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6686 cpus_clear(*groupmask);
4dcf6aff
IM
6687
6688 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6689
6690 if (!(sd->flags & SD_LOAD_BALANCE)) {
6691 printk("does not load-balance\n");
6692 if (sd->parent)
6693 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6694 " has parent");
6695 return -1;
41c7ce9a
NP
6696 }
6697
4dcf6aff
IM
6698 printk(KERN_CONT "span %s\n", str);
6699
6700 if (!cpu_isset(cpu, sd->span)) {
6701 printk(KERN_ERR "ERROR: domain->span does not contain "
6702 "CPU%d\n", cpu);
6703 }
6704 if (!cpu_isset(cpu, group->cpumask)) {
6705 printk(KERN_ERR "ERROR: domain->groups does not contain"
6706 " CPU%d\n", cpu);
6707 }
1da177e4 6708
4dcf6aff 6709 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6710 do {
4dcf6aff
IM
6711 if (!group) {
6712 printk("\n");
6713 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6714 break;
6715 }
6716
4dcf6aff
IM
6717 if (!group->__cpu_power) {
6718 printk(KERN_CONT "\n");
6719 printk(KERN_ERR "ERROR: domain->cpu_power not "
6720 "set\n");
6721 break;
6722 }
1da177e4 6723
4dcf6aff
IM
6724 if (!cpus_weight(group->cpumask)) {
6725 printk(KERN_CONT "\n");
6726 printk(KERN_ERR "ERROR: empty group\n");
6727 break;
6728 }
1da177e4 6729
7c16ec58 6730 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6731 printk(KERN_CONT "\n");
6732 printk(KERN_ERR "ERROR: repeated CPUs\n");
6733 break;
6734 }
1da177e4 6735
7c16ec58 6736 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6737
434d53b0 6738 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6739 printk(KERN_CONT " %s", str);
1da177e4 6740
4dcf6aff
IM
6741 group = group->next;
6742 } while (group != sd->groups);
6743 printk(KERN_CONT "\n");
1da177e4 6744
7c16ec58 6745 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6746 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6747
7c16ec58 6748 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6749 printk(KERN_ERR "ERROR: parent span is not a superset "
6750 "of domain->span\n");
6751 return 0;
6752}
1da177e4 6753
4dcf6aff
IM
6754static void sched_domain_debug(struct sched_domain *sd, int cpu)
6755{
7c16ec58 6756 cpumask_t *groupmask;
4dcf6aff 6757 int level = 0;
1da177e4 6758
4dcf6aff
IM
6759 if (!sd) {
6760 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6761 return;
6762 }
1da177e4 6763
4dcf6aff
IM
6764 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6765
7c16ec58
MT
6766 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6767 if (!groupmask) {
6768 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6769 return;
6770 }
6771
4dcf6aff 6772 for (;;) {
7c16ec58 6773 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6774 break;
1da177e4
LT
6775 level++;
6776 sd = sd->parent;
33859f7f 6777 if (!sd)
4dcf6aff
IM
6778 break;
6779 }
7c16ec58 6780 kfree(groupmask);
1da177e4
LT
6781}
6782#else
48f24c4d 6783# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6784#endif
6785
1a20ff27 6786static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6787{
6788 if (cpus_weight(sd->span) == 1)
6789 return 1;
6790
6791 /* Following flags need at least 2 groups */
6792 if (sd->flags & (SD_LOAD_BALANCE |
6793 SD_BALANCE_NEWIDLE |
6794 SD_BALANCE_FORK |
89c4710e
SS
6795 SD_BALANCE_EXEC |
6796 SD_SHARE_CPUPOWER |
6797 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6798 if (sd->groups != sd->groups->next)
6799 return 0;
6800 }
6801
6802 /* Following flags don't use groups */
6803 if (sd->flags & (SD_WAKE_IDLE |
6804 SD_WAKE_AFFINE |
6805 SD_WAKE_BALANCE))
6806 return 0;
6807
6808 return 1;
6809}
6810
48f24c4d
IM
6811static int
6812sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6813{
6814 unsigned long cflags = sd->flags, pflags = parent->flags;
6815
6816 if (sd_degenerate(parent))
6817 return 1;
6818
6819 if (!cpus_equal(sd->span, parent->span))
6820 return 0;
6821
6822 /* Does parent contain flags not in child? */
6823 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6824 if (cflags & SD_WAKE_AFFINE)
6825 pflags &= ~SD_WAKE_BALANCE;
6826 /* Flags needing groups don't count if only 1 group in parent */
6827 if (parent->groups == parent->groups->next) {
6828 pflags &= ~(SD_LOAD_BALANCE |
6829 SD_BALANCE_NEWIDLE |
6830 SD_BALANCE_FORK |
89c4710e
SS
6831 SD_BALANCE_EXEC |
6832 SD_SHARE_CPUPOWER |
6833 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6834 }
6835 if (~cflags & pflags)
6836 return 0;
6837
6838 return 1;
6839}
6840
57d885fe
GH
6841static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6842{
6843 unsigned long flags;
6844 const struct sched_class *class;
6845
6846 spin_lock_irqsave(&rq->lock, flags);
6847
6848 if (rq->rd) {
6849 struct root_domain *old_rd = rq->rd;
6850
0eab9146 6851 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6852 if (class->leave_domain)
6853 class->leave_domain(rq);
0eab9146 6854 }
57d885fe 6855
dc938520
GH
6856 cpu_clear(rq->cpu, old_rd->span);
6857 cpu_clear(rq->cpu, old_rd->online);
6858
57d885fe
GH
6859 if (atomic_dec_and_test(&old_rd->refcount))
6860 kfree(old_rd);
6861 }
6862
6863 atomic_inc(&rd->refcount);
6864 rq->rd = rd;
6865
dc938520 6866 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6867 if (cpu_isset(rq->cpu, cpu_online_map))
6868 cpu_set(rq->cpu, rd->online);
dc938520 6869
0eab9146 6870 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6871 if (class->join_domain)
6872 class->join_domain(rq);
0eab9146 6873 }
57d885fe
GH
6874
6875 spin_unlock_irqrestore(&rq->lock, flags);
6876}
6877
dc938520 6878static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6879{
6880 memset(rd, 0, sizeof(*rd));
6881
dc938520
GH
6882 cpus_clear(rd->span);
6883 cpus_clear(rd->online);
57d885fe
GH
6884}
6885
6886static void init_defrootdomain(void)
6887{
dc938520 6888 init_rootdomain(&def_root_domain);
57d885fe
GH
6889 atomic_set(&def_root_domain.refcount, 1);
6890}
6891
dc938520 6892static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6893{
6894 struct root_domain *rd;
6895
6896 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6897 if (!rd)
6898 return NULL;
6899
dc938520 6900 init_rootdomain(rd);
57d885fe
GH
6901
6902 return rd;
6903}
6904
1da177e4 6905/*
0eab9146 6906 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6907 * hold the hotplug lock.
6908 */
0eab9146
IM
6909static void
6910cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6911{
70b97a7f 6912 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6913 struct sched_domain *tmp;
6914
6915 /* Remove the sched domains which do not contribute to scheduling. */
6916 for (tmp = sd; tmp; tmp = tmp->parent) {
6917 struct sched_domain *parent = tmp->parent;
6918 if (!parent)
6919 break;
1a848870 6920 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6921 tmp->parent = parent->parent;
1a848870
SS
6922 if (parent->parent)
6923 parent->parent->child = tmp;
6924 }
245af2c7
SS
6925 }
6926
1a848870 6927 if (sd && sd_degenerate(sd)) {
245af2c7 6928 sd = sd->parent;
1a848870
SS
6929 if (sd)
6930 sd->child = NULL;
6931 }
1da177e4
LT
6932
6933 sched_domain_debug(sd, cpu);
6934
57d885fe 6935 rq_attach_root(rq, rd);
674311d5 6936 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6937}
6938
6939/* cpus with isolated domains */
67af63a6 6940static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6941
6942/* Setup the mask of cpus configured for isolated domains */
6943static int __init isolated_cpu_setup(char *str)
6944{
6945 int ints[NR_CPUS], i;
6946
6947 str = get_options(str, ARRAY_SIZE(ints), ints);
6948 cpus_clear(cpu_isolated_map);
6949 for (i = 1; i <= ints[0]; i++)
6950 if (ints[i] < NR_CPUS)
6951 cpu_set(ints[i], cpu_isolated_map);
6952 return 1;
6953}
6954
8927f494 6955__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6956
6957/*
6711cab4
SS
6958 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6959 * to a function which identifies what group(along with sched group) a CPU
6960 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6961 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6962 *
6963 * init_sched_build_groups will build a circular linked list of the groups
6964 * covered by the given span, and will set each group's ->cpumask correctly,
6965 * and ->cpu_power to 0.
6966 */
a616058b 6967static void
7c16ec58 6968init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6969 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6970 struct sched_group **sg,
6971 cpumask_t *tmpmask),
6972 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6973{
6974 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6975 int i;
6976
7c16ec58
MT
6977 cpus_clear(*covered);
6978
6979 for_each_cpu_mask(i, *span) {
6711cab4 6980 struct sched_group *sg;
7c16ec58 6981 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6982 int j;
6983
7c16ec58 6984 if (cpu_isset(i, *covered))
1da177e4
LT
6985 continue;
6986
7c16ec58 6987 cpus_clear(sg->cpumask);
5517d86b 6988 sg->__cpu_power = 0;
1da177e4 6989
7c16ec58
MT
6990 for_each_cpu_mask(j, *span) {
6991 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6992 continue;
6993
7c16ec58 6994 cpu_set(j, *covered);
1da177e4
LT
6995 cpu_set(j, sg->cpumask);
6996 }
6997 if (!first)
6998 first = sg;
6999 if (last)
7000 last->next = sg;
7001 last = sg;
7002 }
7003 last->next = first;
7004}
7005
9c1cfda2 7006#define SD_NODES_PER_DOMAIN 16
1da177e4 7007
9c1cfda2 7008#ifdef CONFIG_NUMA
198e2f18 7009
9c1cfda2
JH
7010/**
7011 * find_next_best_node - find the next node to include in a sched_domain
7012 * @node: node whose sched_domain we're building
7013 * @used_nodes: nodes already in the sched_domain
7014 *
41a2d6cf 7015 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7016 * finds the closest node not already in the @used_nodes map.
7017 *
7018 * Should use nodemask_t.
7019 */
c5f59f08 7020static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7021{
7022 int i, n, val, min_val, best_node = 0;
7023
7024 min_val = INT_MAX;
7025
7026 for (i = 0; i < MAX_NUMNODES; i++) {
7027 /* Start at @node */
7028 n = (node + i) % MAX_NUMNODES;
7029
7030 if (!nr_cpus_node(n))
7031 continue;
7032
7033 /* Skip already used nodes */
c5f59f08 7034 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7035 continue;
7036
7037 /* Simple min distance search */
7038 val = node_distance(node, n);
7039
7040 if (val < min_val) {
7041 min_val = val;
7042 best_node = n;
7043 }
7044 }
7045
c5f59f08 7046 node_set(best_node, *used_nodes);
9c1cfda2
JH
7047 return best_node;
7048}
7049
7050/**
7051 * sched_domain_node_span - get a cpumask for a node's sched_domain
7052 * @node: node whose cpumask we're constructing
73486722 7053 * @span: resulting cpumask
9c1cfda2 7054 *
41a2d6cf 7055 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7056 * should be one that prevents unnecessary balancing, but also spreads tasks
7057 * out optimally.
7058 */
4bdbaad3 7059static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7060{
c5f59f08 7061 nodemask_t used_nodes;
c5f59f08 7062 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7063 int i;
9c1cfda2 7064
4bdbaad3 7065 cpus_clear(*span);
c5f59f08 7066 nodes_clear(used_nodes);
9c1cfda2 7067
4bdbaad3 7068 cpus_or(*span, *span, *nodemask);
c5f59f08 7069 node_set(node, used_nodes);
9c1cfda2
JH
7070
7071 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7072 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7073
c5f59f08 7074 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7075 cpus_or(*span, *span, *nodemask);
9c1cfda2 7076 }
9c1cfda2
JH
7077}
7078#endif
7079
5c45bf27 7080int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7081
9c1cfda2 7082/*
48f24c4d 7083 * SMT sched-domains:
9c1cfda2 7084 */
1da177e4
LT
7085#ifdef CONFIG_SCHED_SMT
7086static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7087static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7088
41a2d6cf 7089static int
7c16ec58
MT
7090cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7091 cpumask_t *unused)
1da177e4 7092{
6711cab4
SS
7093 if (sg)
7094 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7095 return cpu;
7096}
7097#endif
7098
48f24c4d
IM
7099/*
7100 * multi-core sched-domains:
7101 */
1e9f28fa
SS
7102#ifdef CONFIG_SCHED_MC
7103static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7104static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
7105#endif
7106
7107#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7108static int
7c16ec58
MT
7109cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7110 cpumask_t *mask)
1e9f28fa 7111{
6711cab4 7112 int group;
7c16ec58
MT
7113
7114 *mask = per_cpu(cpu_sibling_map, cpu);
7115 cpus_and(*mask, *mask, *cpu_map);
7116 group = first_cpu(*mask);
6711cab4
SS
7117 if (sg)
7118 *sg = &per_cpu(sched_group_core, group);
7119 return group;
1e9f28fa
SS
7120}
7121#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7122static int
7c16ec58
MT
7123cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7124 cpumask_t *unused)
1e9f28fa 7125{
6711cab4
SS
7126 if (sg)
7127 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7128 return cpu;
7129}
7130#endif
7131
1da177e4 7132static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7133static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7134
41a2d6cf 7135static int
7c16ec58
MT
7136cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7137 cpumask_t *mask)
1da177e4 7138{
6711cab4 7139 int group;
48f24c4d 7140#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7141 *mask = cpu_coregroup_map(cpu);
7142 cpus_and(*mask, *mask, *cpu_map);
7143 group = first_cpu(*mask);
1e9f28fa 7144#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7145 *mask = per_cpu(cpu_sibling_map, cpu);
7146 cpus_and(*mask, *mask, *cpu_map);
7147 group = first_cpu(*mask);
1da177e4 7148#else
6711cab4 7149 group = cpu;
1da177e4 7150#endif
6711cab4
SS
7151 if (sg)
7152 *sg = &per_cpu(sched_group_phys, group);
7153 return group;
1da177e4
LT
7154}
7155
7156#ifdef CONFIG_NUMA
1da177e4 7157/*
9c1cfda2
JH
7158 * The init_sched_build_groups can't handle what we want to do with node
7159 * groups, so roll our own. Now each node has its own list of groups which
7160 * gets dynamically allocated.
1da177e4 7161 */
9c1cfda2 7162static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7163static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7164
9c1cfda2 7165static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7166static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7167
6711cab4 7168static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7169 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7170{
6711cab4
SS
7171 int group;
7172
7c16ec58
MT
7173 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7174 cpus_and(*nodemask, *nodemask, *cpu_map);
7175 group = first_cpu(*nodemask);
6711cab4
SS
7176
7177 if (sg)
7178 *sg = &per_cpu(sched_group_allnodes, group);
7179 return group;
1da177e4 7180}
6711cab4 7181
08069033
SS
7182static void init_numa_sched_groups_power(struct sched_group *group_head)
7183{
7184 struct sched_group *sg = group_head;
7185 int j;
7186
7187 if (!sg)
7188 return;
3a5c359a
AK
7189 do {
7190 for_each_cpu_mask(j, sg->cpumask) {
7191 struct sched_domain *sd;
08069033 7192
3a5c359a
AK
7193 sd = &per_cpu(phys_domains, j);
7194 if (j != first_cpu(sd->groups->cpumask)) {
7195 /*
7196 * Only add "power" once for each
7197 * physical package.
7198 */
7199 continue;
7200 }
08069033 7201
3a5c359a
AK
7202 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7203 }
7204 sg = sg->next;
7205 } while (sg != group_head);
08069033 7206}
1da177e4
LT
7207#endif
7208
a616058b 7209#ifdef CONFIG_NUMA
51888ca2 7210/* Free memory allocated for various sched_group structures */
7c16ec58 7211static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7212{
a616058b 7213 int cpu, i;
51888ca2
SV
7214
7215 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7216 struct sched_group **sched_group_nodes
7217 = sched_group_nodes_bycpu[cpu];
7218
51888ca2
SV
7219 if (!sched_group_nodes)
7220 continue;
7221
7222 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7223 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7224
7c16ec58
MT
7225 *nodemask = node_to_cpumask(i);
7226 cpus_and(*nodemask, *nodemask, *cpu_map);
7227 if (cpus_empty(*nodemask))
51888ca2
SV
7228 continue;
7229
7230 if (sg == NULL)
7231 continue;
7232 sg = sg->next;
7233next_sg:
7234 oldsg = sg;
7235 sg = sg->next;
7236 kfree(oldsg);
7237 if (oldsg != sched_group_nodes[i])
7238 goto next_sg;
7239 }
7240 kfree(sched_group_nodes);
7241 sched_group_nodes_bycpu[cpu] = NULL;
7242 }
51888ca2 7243}
a616058b 7244#else
7c16ec58 7245static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7246{
7247}
7248#endif
51888ca2 7249
89c4710e
SS
7250/*
7251 * Initialize sched groups cpu_power.
7252 *
7253 * cpu_power indicates the capacity of sched group, which is used while
7254 * distributing the load between different sched groups in a sched domain.
7255 * Typically cpu_power for all the groups in a sched domain will be same unless
7256 * there are asymmetries in the topology. If there are asymmetries, group
7257 * having more cpu_power will pickup more load compared to the group having
7258 * less cpu_power.
7259 *
7260 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7261 * the maximum number of tasks a group can handle in the presence of other idle
7262 * or lightly loaded groups in the same sched domain.
7263 */
7264static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7265{
7266 struct sched_domain *child;
7267 struct sched_group *group;
7268
7269 WARN_ON(!sd || !sd->groups);
7270
7271 if (cpu != first_cpu(sd->groups->cpumask))
7272 return;
7273
7274 child = sd->child;
7275
5517d86b
ED
7276 sd->groups->__cpu_power = 0;
7277
89c4710e
SS
7278 /*
7279 * For perf policy, if the groups in child domain share resources
7280 * (for example cores sharing some portions of the cache hierarchy
7281 * or SMT), then set this domain groups cpu_power such that each group
7282 * can handle only one task, when there are other idle groups in the
7283 * same sched domain.
7284 */
7285 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7286 (child->flags &
7287 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7288 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7289 return;
7290 }
7291
89c4710e
SS
7292 /*
7293 * add cpu_power of each child group to this groups cpu_power
7294 */
7295 group = child->groups;
7296 do {
5517d86b 7297 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7298 group = group->next;
7299 } while (group != child->groups);
7300}
7301
7c16ec58
MT
7302/*
7303 * Initializers for schedule domains
7304 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7305 */
7306
7307#define SD_INIT(sd, type) sd_init_##type(sd)
7308#define SD_INIT_FUNC(type) \
7309static noinline void sd_init_##type(struct sched_domain *sd) \
7310{ \
7311 memset(sd, 0, sizeof(*sd)); \
7312 *sd = SD_##type##_INIT; \
1d3504fc 7313 sd->level = SD_LV_##type; \
7c16ec58
MT
7314}
7315
7316SD_INIT_FUNC(CPU)
7317#ifdef CONFIG_NUMA
7318 SD_INIT_FUNC(ALLNODES)
7319 SD_INIT_FUNC(NODE)
7320#endif
7321#ifdef CONFIG_SCHED_SMT
7322 SD_INIT_FUNC(SIBLING)
7323#endif
7324#ifdef CONFIG_SCHED_MC
7325 SD_INIT_FUNC(MC)
7326#endif
7327
7328/*
7329 * To minimize stack usage kmalloc room for cpumasks and share the
7330 * space as the usage in build_sched_domains() dictates. Used only
7331 * if the amount of space is significant.
7332 */
7333struct allmasks {
7334 cpumask_t tmpmask; /* make this one first */
7335 union {
7336 cpumask_t nodemask;
7337 cpumask_t this_sibling_map;
7338 cpumask_t this_core_map;
7339 };
7340 cpumask_t send_covered;
7341
7342#ifdef CONFIG_NUMA
7343 cpumask_t domainspan;
7344 cpumask_t covered;
7345 cpumask_t notcovered;
7346#endif
7347};
7348
7349#if NR_CPUS > 128
7350#define SCHED_CPUMASK_ALLOC 1
7351#define SCHED_CPUMASK_FREE(v) kfree(v)
7352#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7353#else
7354#define SCHED_CPUMASK_ALLOC 0
7355#define SCHED_CPUMASK_FREE(v)
7356#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7357#endif
7358
7359#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7360 ((unsigned long)(a) + offsetof(struct allmasks, v))
7361
1d3504fc
HS
7362static int default_relax_domain_level = -1;
7363
7364static int __init setup_relax_domain_level(char *str)
7365{
7366 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7367 return 1;
7368}
7369__setup("relax_domain_level=", setup_relax_domain_level);
7370
7371static void set_domain_attribute(struct sched_domain *sd,
7372 struct sched_domain_attr *attr)
7373{
7374 int request;
7375
7376 if (!attr || attr->relax_domain_level < 0) {
7377 if (default_relax_domain_level < 0)
7378 return;
7379 else
7380 request = default_relax_domain_level;
7381 } else
7382 request = attr->relax_domain_level;
7383 if (request < sd->level) {
7384 /* turn off idle balance on this domain */
7385 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7386 } else {
7387 /* turn on idle balance on this domain */
7388 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7389 }
7390}
7391
1da177e4 7392/*
1a20ff27
DG
7393 * Build sched domains for a given set of cpus and attach the sched domains
7394 * to the individual cpus
1da177e4 7395 */
1d3504fc
HS
7396static int __build_sched_domains(const cpumask_t *cpu_map,
7397 struct sched_domain_attr *attr)
1da177e4
LT
7398{
7399 int i;
57d885fe 7400 struct root_domain *rd;
7c16ec58
MT
7401 SCHED_CPUMASK_DECLARE(allmasks);
7402 cpumask_t *tmpmask;
d1b55138
JH
7403#ifdef CONFIG_NUMA
7404 struct sched_group **sched_group_nodes = NULL;
6711cab4 7405 int sd_allnodes = 0;
d1b55138
JH
7406
7407 /*
7408 * Allocate the per-node list of sched groups
7409 */
5cf9f062 7410 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7411 GFP_KERNEL);
d1b55138
JH
7412 if (!sched_group_nodes) {
7413 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7414 return -ENOMEM;
d1b55138 7415 }
d1b55138 7416#endif
1da177e4 7417
dc938520 7418 rd = alloc_rootdomain();
57d885fe
GH
7419 if (!rd) {
7420 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7421#ifdef CONFIG_NUMA
7422 kfree(sched_group_nodes);
7423#endif
57d885fe
GH
7424 return -ENOMEM;
7425 }
7426
7c16ec58
MT
7427#if SCHED_CPUMASK_ALLOC
7428 /* get space for all scratch cpumask variables */
7429 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7430 if (!allmasks) {
7431 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7432 kfree(rd);
7433#ifdef CONFIG_NUMA
7434 kfree(sched_group_nodes);
7435#endif
7436 return -ENOMEM;
7437 }
7438#endif
7439 tmpmask = (cpumask_t *)allmasks;
7440
7441
7442#ifdef CONFIG_NUMA
7443 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7444#endif
7445
1da177e4 7446 /*
1a20ff27 7447 * Set up domains for cpus specified by the cpu_map.
1da177e4 7448 */
1a20ff27 7449 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7450 struct sched_domain *sd = NULL, *p;
7c16ec58 7451 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7452
7c16ec58
MT
7453 *nodemask = node_to_cpumask(cpu_to_node(i));
7454 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7455
7456#ifdef CONFIG_NUMA
dd41f596 7457 if (cpus_weight(*cpu_map) >
7c16ec58 7458 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7459 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7460 SD_INIT(sd, ALLNODES);
1d3504fc 7461 set_domain_attribute(sd, attr);
9c1cfda2 7462 sd->span = *cpu_map;
18d95a28 7463 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7464 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7465 p = sd;
6711cab4 7466 sd_allnodes = 1;
9c1cfda2
JH
7467 } else
7468 p = NULL;
7469
1da177e4 7470 sd = &per_cpu(node_domains, i);
7c16ec58 7471 SD_INIT(sd, NODE);
1d3504fc 7472 set_domain_attribute(sd, attr);
4bdbaad3 7473 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7474 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7475 sd->parent = p;
1a848870
SS
7476 if (p)
7477 p->child = sd;
9c1cfda2 7478 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7479#endif
7480
7481 p = sd;
7482 sd = &per_cpu(phys_domains, i);
7c16ec58 7483 SD_INIT(sd, CPU);
1d3504fc 7484 set_domain_attribute(sd, attr);
7c16ec58 7485 sd->span = *nodemask;
18d95a28 7486 sd->first_cpu = first_cpu(sd->span);
1da177e4 7487 sd->parent = p;
1a848870
SS
7488 if (p)
7489 p->child = sd;
7c16ec58 7490 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7491
1e9f28fa
SS
7492#ifdef CONFIG_SCHED_MC
7493 p = sd;
7494 sd = &per_cpu(core_domains, i);
7c16ec58 7495 SD_INIT(sd, MC);
1d3504fc 7496 set_domain_attribute(sd, attr);
1e9f28fa 7497 sd->span = cpu_coregroup_map(i);
18d95a28 7498 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7499 cpus_and(sd->span, sd->span, *cpu_map);
7500 sd->parent = p;
1a848870 7501 p->child = sd;
7c16ec58 7502 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7503#endif
7504
1da177e4
LT
7505#ifdef CONFIG_SCHED_SMT
7506 p = sd;
7507 sd = &per_cpu(cpu_domains, i);
7c16ec58 7508 SD_INIT(sd, SIBLING);
1d3504fc 7509 set_domain_attribute(sd, attr);
d5a7430d 7510 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7511 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7512 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7513 sd->parent = p;
1a848870 7514 p->child = sd;
7c16ec58 7515 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7516#endif
7517 }
7518
7519#ifdef CONFIG_SCHED_SMT
7520 /* Set up CPU (sibling) groups */
9c1cfda2 7521 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7522 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7523 SCHED_CPUMASK_VAR(send_covered, allmasks);
7524
7525 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7526 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7527 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7528 continue;
7529
dd41f596 7530 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7531 &cpu_to_cpu_group,
7532 send_covered, tmpmask);
1da177e4
LT
7533 }
7534#endif
7535
1e9f28fa
SS
7536#ifdef CONFIG_SCHED_MC
7537 /* Set up multi-core groups */
7538 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7539 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7540 SCHED_CPUMASK_VAR(send_covered, allmasks);
7541
7542 *this_core_map = cpu_coregroup_map(i);
7543 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7544 if (i != first_cpu(*this_core_map))
1e9f28fa 7545 continue;
7c16ec58 7546
dd41f596 7547 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7548 &cpu_to_core_group,
7549 send_covered, tmpmask);
1e9f28fa
SS
7550 }
7551#endif
7552
1da177e4
LT
7553 /* Set up physical groups */
7554 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7555 SCHED_CPUMASK_VAR(nodemask, allmasks);
7556 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7557
7c16ec58
MT
7558 *nodemask = node_to_cpumask(i);
7559 cpus_and(*nodemask, *nodemask, *cpu_map);
7560 if (cpus_empty(*nodemask))
1da177e4
LT
7561 continue;
7562
7c16ec58
MT
7563 init_sched_build_groups(nodemask, cpu_map,
7564 &cpu_to_phys_group,
7565 send_covered, tmpmask);
1da177e4
LT
7566 }
7567
7568#ifdef CONFIG_NUMA
7569 /* Set up node groups */
7c16ec58
MT
7570 if (sd_allnodes) {
7571 SCHED_CPUMASK_VAR(send_covered, allmasks);
7572
7573 init_sched_build_groups(cpu_map, cpu_map,
7574 &cpu_to_allnodes_group,
7575 send_covered, tmpmask);
7576 }
9c1cfda2
JH
7577
7578 for (i = 0; i < MAX_NUMNODES; i++) {
7579 /* Set up node groups */
7580 struct sched_group *sg, *prev;
7c16ec58
MT
7581 SCHED_CPUMASK_VAR(nodemask, allmasks);
7582 SCHED_CPUMASK_VAR(domainspan, allmasks);
7583 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7584 int j;
7585
7c16ec58
MT
7586 *nodemask = node_to_cpumask(i);
7587 cpus_clear(*covered);
7588
7589 cpus_and(*nodemask, *nodemask, *cpu_map);
7590 if (cpus_empty(*nodemask)) {
d1b55138 7591 sched_group_nodes[i] = NULL;
9c1cfda2 7592 continue;
d1b55138 7593 }
9c1cfda2 7594
4bdbaad3 7595 sched_domain_node_span(i, domainspan);
7c16ec58 7596 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7597
15f0b676 7598 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7599 if (!sg) {
7600 printk(KERN_WARNING "Can not alloc domain group for "
7601 "node %d\n", i);
7602 goto error;
7603 }
9c1cfda2 7604 sched_group_nodes[i] = sg;
7c16ec58 7605 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7606 struct sched_domain *sd;
9761eea8 7607
9c1cfda2
JH
7608 sd = &per_cpu(node_domains, j);
7609 sd->groups = sg;
9c1cfda2 7610 }
5517d86b 7611 sg->__cpu_power = 0;
7c16ec58 7612 sg->cpumask = *nodemask;
51888ca2 7613 sg->next = sg;
7c16ec58 7614 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7615 prev = sg;
7616
7617 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7618 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7619 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7620 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7621
7c16ec58
MT
7622 cpus_complement(*notcovered, *covered);
7623 cpus_and(*tmpmask, *notcovered, *cpu_map);
7624 cpus_and(*tmpmask, *tmpmask, *domainspan);
7625 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7626 break;
7627
7c16ec58
MT
7628 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7629 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7630 continue;
7631
15f0b676
SV
7632 sg = kmalloc_node(sizeof(struct sched_group),
7633 GFP_KERNEL, i);
9c1cfda2
JH
7634 if (!sg) {
7635 printk(KERN_WARNING
7636 "Can not alloc domain group for node %d\n", j);
51888ca2 7637 goto error;
9c1cfda2 7638 }
5517d86b 7639 sg->__cpu_power = 0;
7c16ec58 7640 sg->cpumask = *tmpmask;
51888ca2 7641 sg->next = prev->next;
7c16ec58 7642 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7643 prev->next = sg;
7644 prev = sg;
7645 }
9c1cfda2 7646 }
1da177e4
LT
7647#endif
7648
7649 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7650#ifdef CONFIG_SCHED_SMT
1a20ff27 7651 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7652 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7653
89c4710e 7654 init_sched_groups_power(i, sd);
5c45bf27 7655 }
1da177e4 7656#endif
1e9f28fa 7657#ifdef CONFIG_SCHED_MC
5c45bf27 7658 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7659 struct sched_domain *sd = &per_cpu(core_domains, i);
7660
89c4710e 7661 init_sched_groups_power(i, sd);
5c45bf27
SS
7662 }
7663#endif
1e9f28fa 7664
5c45bf27 7665 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7666 struct sched_domain *sd = &per_cpu(phys_domains, i);
7667
89c4710e 7668 init_sched_groups_power(i, sd);
1da177e4
LT
7669 }
7670
9c1cfda2 7671#ifdef CONFIG_NUMA
08069033
SS
7672 for (i = 0; i < MAX_NUMNODES; i++)
7673 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7674
6711cab4
SS
7675 if (sd_allnodes) {
7676 struct sched_group *sg;
f712c0c7 7677
7c16ec58
MT
7678 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7679 tmpmask);
f712c0c7
SS
7680 init_numa_sched_groups_power(sg);
7681 }
9c1cfda2
JH
7682#endif
7683
1da177e4 7684 /* Attach the domains */
1a20ff27 7685 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7686 struct sched_domain *sd;
7687#ifdef CONFIG_SCHED_SMT
7688 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7689#elif defined(CONFIG_SCHED_MC)
7690 sd = &per_cpu(core_domains, i);
1da177e4
LT
7691#else
7692 sd = &per_cpu(phys_domains, i);
7693#endif
57d885fe 7694 cpu_attach_domain(sd, rd, i);
1da177e4 7695 }
51888ca2 7696
7c16ec58 7697 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7698 return 0;
7699
a616058b 7700#ifdef CONFIG_NUMA
51888ca2 7701error:
7c16ec58
MT
7702 free_sched_groups(cpu_map, tmpmask);
7703 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7704 return -ENOMEM;
a616058b 7705#endif
1da177e4 7706}
029190c5 7707
1d3504fc
HS
7708static int build_sched_domains(const cpumask_t *cpu_map)
7709{
7710 return __build_sched_domains(cpu_map, NULL);
7711}
7712
029190c5
PJ
7713static cpumask_t *doms_cur; /* current sched domains */
7714static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7715static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7716 in 'doms_cur' */
029190c5
PJ
7717
7718/*
7719 * Special case: If a kmalloc of a doms_cur partition (array of
7720 * cpumask_t) fails, then fallback to a single sched domain,
7721 * as determined by the single cpumask_t fallback_doms.
7722 */
7723static cpumask_t fallback_doms;
7724
22e52b07
HC
7725void __attribute__((weak)) arch_update_cpu_topology(void)
7726{
7727}
7728
1a20ff27 7729/*
41a2d6cf 7730 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7731 * For now this just excludes isolated cpus, but could be used to
7732 * exclude other special cases in the future.
1a20ff27 7733 */
51888ca2 7734static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7735{
7378547f
MM
7736 int err;
7737
22e52b07 7738 arch_update_cpu_topology();
029190c5
PJ
7739 ndoms_cur = 1;
7740 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7741 if (!doms_cur)
7742 doms_cur = &fallback_doms;
7743 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7744 dattr_cur = NULL;
7378547f 7745 err = build_sched_domains(doms_cur);
6382bc90 7746 register_sched_domain_sysctl();
7378547f
MM
7747
7748 return err;
1a20ff27
DG
7749}
7750
7c16ec58
MT
7751static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7752 cpumask_t *tmpmask)
1da177e4 7753{
7c16ec58 7754 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7755}
1da177e4 7756
1a20ff27
DG
7757/*
7758 * Detach sched domains from a group of cpus specified in cpu_map
7759 * These cpus will now be attached to the NULL domain
7760 */
858119e1 7761static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7762{
7c16ec58 7763 cpumask_t tmpmask;
1a20ff27
DG
7764 int i;
7765
6382bc90
MM
7766 unregister_sched_domain_sysctl();
7767
1a20ff27 7768 for_each_cpu_mask(i, *cpu_map)
57d885fe 7769 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7770 synchronize_sched();
7c16ec58 7771 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7772}
7773
1d3504fc
HS
7774/* handle null as "default" */
7775static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7776 struct sched_domain_attr *new, int idx_new)
7777{
7778 struct sched_domain_attr tmp;
7779
7780 /* fast path */
7781 if (!new && !cur)
7782 return 1;
7783
7784 tmp = SD_ATTR_INIT;
7785 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7786 new ? (new + idx_new) : &tmp,
7787 sizeof(struct sched_domain_attr));
7788}
7789
029190c5
PJ
7790/*
7791 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7792 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7793 * doms_new[] to the current sched domain partitioning, doms_cur[].
7794 * It destroys each deleted domain and builds each new domain.
7795 *
7796 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7797 * The masks don't intersect (don't overlap.) We should setup one
7798 * sched domain for each mask. CPUs not in any of the cpumasks will
7799 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7800 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7801 * it as it is.
7802 *
41a2d6cf
IM
7803 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7804 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7805 * failed the kmalloc call, then it can pass in doms_new == NULL,
7806 * and partition_sched_domains() will fallback to the single partition
7807 * 'fallback_doms'.
7808 *
7809 * Call with hotplug lock held
7810 */
1d3504fc
HS
7811void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7812 struct sched_domain_attr *dattr_new)
029190c5
PJ
7813{
7814 int i, j;
7815
712555ee 7816 mutex_lock(&sched_domains_mutex);
a1835615 7817
7378547f
MM
7818 /* always unregister in case we don't destroy any domains */
7819 unregister_sched_domain_sysctl();
7820
029190c5
PJ
7821 if (doms_new == NULL) {
7822 ndoms_new = 1;
7823 doms_new = &fallback_doms;
7824 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7825 dattr_new = NULL;
029190c5
PJ
7826 }
7827
7828 /* Destroy deleted domains */
7829 for (i = 0; i < ndoms_cur; i++) {
7830 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7831 if (cpus_equal(doms_cur[i], doms_new[j])
7832 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7833 goto match1;
7834 }
7835 /* no match - a current sched domain not in new doms_new[] */
7836 detach_destroy_domains(doms_cur + i);
7837match1:
7838 ;
7839 }
7840
7841 /* Build new domains */
7842 for (i = 0; i < ndoms_new; i++) {
7843 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7844 if (cpus_equal(doms_new[i], doms_cur[j])
7845 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7846 goto match2;
7847 }
7848 /* no match - add a new doms_new */
1d3504fc
HS
7849 __build_sched_domains(doms_new + i,
7850 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7851match2:
7852 ;
7853 }
7854
7855 /* Remember the new sched domains */
7856 if (doms_cur != &fallback_doms)
7857 kfree(doms_cur);
1d3504fc 7858 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7859 doms_cur = doms_new;
1d3504fc 7860 dattr_cur = dattr_new;
029190c5 7861 ndoms_cur = ndoms_new;
7378547f
MM
7862
7863 register_sched_domain_sysctl();
a1835615 7864
712555ee 7865 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7866}
7867
5c45bf27 7868#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7869int arch_reinit_sched_domains(void)
5c45bf27
SS
7870{
7871 int err;
7872
95402b38 7873 get_online_cpus();
712555ee 7874 mutex_lock(&sched_domains_mutex);
5c45bf27
SS
7875 detach_destroy_domains(&cpu_online_map);
7876 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7877 mutex_unlock(&sched_domains_mutex);
95402b38 7878 put_online_cpus();
5c45bf27
SS
7879
7880 return err;
7881}
7882
7883static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7884{
7885 int ret;
7886
7887 if (buf[0] != '0' && buf[0] != '1')
7888 return -EINVAL;
7889
7890 if (smt)
7891 sched_smt_power_savings = (buf[0] == '1');
7892 else
7893 sched_mc_power_savings = (buf[0] == '1');
7894
7895 ret = arch_reinit_sched_domains();
7896
7897 return ret ? ret : count;
7898}
7899
5c45bf27
SS
7900#ifdef CONFIG_SCHED_MC
7901static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7902{
7903 return sprintf(page, "%u\n", sched_mc_power_savings);
7904}
48f24c4d
IM
7905static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7906 const char *buf, size_t count)
5c45bf27
SS
7907{
7908 return sched_power_savings_store(buf, count, 0);
7909}
6707de00
AB
7910static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7911 sched_mc_power_savings_store);
5c45bf27
SS
7912#endif
7913
7914#ifdef CONFIG_SCHED_SMT
7915static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7916{
7917 return sprintf(page, "%u\n", sched_smt_power_savings);
7918}
48f24c4d
IM
7919static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7920 const char *buf, size_t count)
5c45bf27
SS
7921{
7922 return sched_power_savings_store(buf, count, 1);
7923}
6707de00
AB
7924static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7925 sched_smt_power_savings_store);
7926#endif
7927
7928int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7929{
7930 int err = 0;
7931
7932#ifdef CONFIG_SCHED_SMT
7933 if (smt_capable())
7934 err = sysfs_create_file(&cls->kset.kobj,
7935 &attr_sched_smt_power_savings.attr);
7936#endif
7937#ifdef CONFIG_SCHED_MC
7938 if (!err && mc_capable())
7939 err = sysfs_create_file(&cls->kset.kobj,
7940 &attr_sched_mc_power_savings.attr);
7941#endif
7942 return err;
7943}
5c45bf27
SS
7944#endif
7945
1da177e4 7946/*
41a2d6cf 7947 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7948 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7949 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7950 * which will prevent rebalancing while the sched domains are recalculated.
7951 */
7952static int update_sched_domains(struct notifier_block *nfb,
7953 unsigned long action, void *hcpu)
7954{
1da177e4
LT
7955 switch (action) {
7956 case CPU_UP_PREPARE:
8bb78442 7957 case CPU_UP_PREPARE_FROZEN:
1da177e4 7958 case CPU_DOWN_PREPARE:
8bb78442 7959 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7960 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7961 return NOTIFY_OK;
7962
7963 case CPU_UP_CANCELED:
8bb78442 7964 case CPU_UP_CANCELED_FROZEN:
1da177e4 7965 case CPU_DOWN_FAILED:
8bb78442 7966 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7967 case CPU_ONLINE:
8bb78442 7968 case CPU_ONLINE_FROZEN:
1da177e4 7969 case CPU_DEAD:
8bb78442 7970 case CPU_DEAD_FROZEN:
1da177e4
LT
7971 /*
7972 * Fall through and re-initialise the domains.
7973 */
7974 break;
7975 default:
7976 return NOTIFY_DONE;
7977 }
7978
7979 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7980 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7981
7982 return NOTIFY_OK;
7983}
1da177e4
LT
7984
7985void __init sched_init_smp(void)
7986{
5c1e1767
NP
7987 cpumask_t non_isolated_cpus;
7988
434d53b0
MT
7989#if defined(CONFIG_NUMA)
7990 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7991 GFP_KERNEL);
7992 BUG_ON(sched_group_nodes_bycpu == NULL);
7993#endif
95402b38 7994 get_online_cpus();
712555ee 7995 mutex_lock(&sched_domains_mutex);
1a20ff27 7996 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7997 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7998 if (cpus_empty(non_isolated_cpus))
7999 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8000 mutex_unlock(&sched_domains_mutex);
95402b38 8001 put_online_cpus();
1da177e4
LT
8002 /* XXX: Theoretical race here - CPU may be hotplugged now */
8003 hotcpu_notifier(update_sched_domains, 0);
b328ca18 8004 init_hrtick();
5c1e1767
NP
8005
8006 /* Move init over to a non-isolated CPU */
7c16ec58 8007 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8008 BUG();
19978ca6 8009 sched_init_granularity();
1da177e4
LT
8010}
8011#else
8012void __init sched_init_smp(void)
8013{
19978ca6 8014 sched_init_granularity();
1da177e4
LT
8015}
8016#endif /* CONFIG_SMP */
8017
8018int in_sched_functions(unsigned long addr)
8019{
1da177e4
LT
8020 return in_lock_functions(addr) ||
8021 (addr >= (unsigned long)__sched_text_start
8022 && addr < (unsigned long)__sched_text_end);
8023}
8024
a9957449 8025static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8026{
8027 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8028 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8029#ifdef CONFIG_FAIR_GROUP_SCHED
8030 cfs_rq->rq = rq;
8031#endif
67e9fb2a 8032 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8033}
8034
fa85ae24
PZ
8035static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8036{
8037 struct rt_prio_array *array;
8038 int i;
8039
8040 array = &rt_rq->active;
8041 for (i = 0; i < MAX_RT_PRIO; i++) {
8042 INIT_LIST_HEAD(array->queue + i);
8043 __clear_bit(i, array->bitmap);
8044 }
8045 /* delimiter for bitsearch: */
8046 __set_bit(MAX_RT_PRIO, array->bitmap);
8047
052f1dc7 8048#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8049 rt_rq->highest_prio = MAX_RT_PRIO;
8050#endif
fa85ae24
PZ
8051#ifdef CONFIG_SMP
8052 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8053 rt_rq->overloaded = 0;
8054#endif
8055
8056 rt_rq->rt_time = 0;
8057 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8058 rt_rq->rt_runtime = 0;
8059 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8060
052f1dc7 8061#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8062 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8063 rt_rq->rq = rq;
8064#endif
fa85ae24
PZ
8065}
8066
6f505b16 8067#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8068static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8069 struct sched_entity *se, int cpu, int add,
8070 struct sched_entity *parent)
6f505b16 8071{
ec7dc8ac 8072 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8073 tg->cfs_rq[cpu] = cfs_rq;
8074 init_cfs_rq(cfs_rq, rq);
8075 cfs_rq->tg = tg;
8076 if (add)
8077 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8078
8079 tg->se[cpu] = se;
354d60c2
DG
8080 /* se could be NULL for init_task_group */
8081 if (!se)
8082 return;
8083
ec7dc8ac
DG
8084 if (!parent)
8085 se->cfs_rq = &rq->cfs;
8086 else
8087 se->cfs_rq = parent->my_q;
8088
6f505b16
PZ
8089 se->my_q = cfs_rq;
8090 se->load.weight = tg->shares;
e05510d0 8091 se->load.inv_weight = 0;
ec7dc8ac 8092 se->parent = parent;
6f505b16 8093}
052f1dc7 8094#endif
6f505b16 8095
052f1dc7 8096#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8097static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8098 struct sched_rt_entity *rt_se, int cpu, int add,
8099 struct sched_rt_entity *parent)
6f505b16 8100{
ec7dc8ac
DG
8101 struct rq *rq = cpu_rq(cpu);
8102
6f505b16
PZ
8103 tg->rt_rq[cpu] = rt_rq;
8104 init_rt_rq(rt_rq, rq);
8105 rt_rq->tg = tg;
8106 rt_rq->rt_se = rt_se;
ac086bc2 8107 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8108 if (add)
8109 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8110
8111 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8112 if (!rt_se)
8113 return;
8114
ec7dc8ac
DG
8115 if (!parent)
8116 rt_se->rt_rq = &rq->rt;
8117 else
8118 rt_se->rt_rq = parent->my_q;
8119
6f505b16
PZ
8120 rt_se->rt_rq = &rq->rt;
8121 rt_se->my_q = rt_rq;
ec7dc8ac 8122 rt_se->parent = parent;
6f505b16
PZ
8123 INIT_LIST_HEAD(&rt_se->run_list);
8124}
8125#endif
8126
1da177e4
LT
8127void __init sched_init(void)
8128{
dd41f596 8129 int i, j;
434d53b0
MT
8130 unsigned long alloc_size = 0, ptr;
8131
8132#ifdef CONFIG_FAIR_GROUP_SCHED
8133 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8134#endif
8135#ifdef CONFIG_RT_GROUP_SCHED
8136 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8137#endif
8138#ifdef CONFIG_USER_SCHED
8139 alloc_size *= 2;
434d53b0
MT
8140#endif
8141 /*
8142 * As sched_init() is called before page_alloc is setup,
8143 * we use alloc_bootmem().
8144 */
8145 if (alloc_size) {
5a9d3225 8146 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8147
8148#ifdef CONFIG_FAIR_GROUP_SCHED
8149 init_task_group.se = (struct sched_entity **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
8152 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8153 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8154
8155#ifdef CONFIG_USER_SCHED
8156 root_task_group.se = (struct sched_entity **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8160 ptr += nr_cpu_ids * sizeof(void **);
8161#endif
434d53b0
MT
8162#endif
8163#ifdef CONFIG_RT_GROUP_SCHED
8164 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8166
8167 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8168 ptr += nr_cpu_ids * sizeof(void **);
8169
8170#ifdef CONFIG_USER_SCHED
8171 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
8173
8174 root_task_group.rt_rq = (struct rt_rq **)ptr;
8175 ptr += nr_cpu_ids * sizeof(void **);
8176#endif
434d53b0
MT
8177#endif
8178 }
dd41f596 8179
57d885fe 8180#ifdef CONFIG_SMP
18d95a28 8181 init_aggregate();
57d885fe
GH
8182 init_defrootdomain();
8183#endif
8184
d0b27fa7
PZ
8185 init_rt_bandwidth(&def_rt_bandwidth,
8186 global_rt_period(), global_rt_runtime());
8187
8188#ifdef CONFIG_RT_GROUP_SCHED
8189 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8190 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8191#ifdef CONFIG_USER_SCHED
8192 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8193 global_rt_period(), RUNTIME_INF);
8194#endif
d0b27fa7
PZ
8195#endif
8196
052f1dc7 8197#ifdef CONFIG_GROUP_SCHED
6f505b16 8198 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8199 INIT_LIST_HEAD(&init_task_group.children);
8200
8201#ifdef CONFIG_USER_SCHED
8202 INIT_LIST_HEAD(&root_task_group.children);
8203 init_task_group.parent = &root_task_group;
8204 list_add(&init_task_group.siblings, &root_task_group.children);
8205#endif
6f505b16
PZ
8206#endif
8207
0a945022 8208 for_each_possible_cpu(i) {
70b97a7f 8209 struct rq *rq;
1da177e4
LT
8210
8211 rq = cpu_rq(i);
8212 spin_lock_init(&rq->lock);
fcb99371 8213 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8214 rq->nr_running = 0;
dd41f596 8215 rq->clock = 1;
15934a37 8216 update_last_tick_seen(rq);
dd41f596 8217 init_cfs_rq(&rq->cfs, rq);
6f505b16 8218 init_rt_rq(&rq->rt, rq);
dd41f596 8219#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8220 init_task_group.shares = init_task_group_load;
6f505b16 8221 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8222#ifdef CONFIG_CGROUP_SCHED
8223 /*
8224 * How much cpu bandwidth does init_task_group get?
8225 *
8226 * In case of task-groups formed thr' the cgroup filesystem, it
8227 * gets 100% of the cpu resources in the system. This overall
8228 * system cpu resource is divided among the tasks of
8229 * init_task_group and its child task-groups in a fair manner,
8230 * based on each entity's (task or task-group's) weight
8231 * (se->load.weight).
8232 *
8233 * In other words, if init_task_group has 10 tasks of weight
8234 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8235 * then A0's share of the cpu resource is:
8236 *
8237 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8238 *
8239 * We achieve this by letting init_task_group's tasks sit
8240 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8241 */
ec7dc8ac 8242 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8243#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8244 root_task_group.shares = NICE_0_LOAD;
8245 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8246 /*
8247 * In case of task-groups formed thr' the user id of tasks,
8248 * init_task_group represents tasks belonging to root user.
8249 * Hence it forms a sibling of all subsequent groups formed.
8250 * In this case, init_task_group gets only a fraction of overall
8251 * system cpu resource, based on the weight assigned to root
8252 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8253 * by letting tasks of init_task_group sit in a separate cfs_rq
8254 * (init_cfs_rq) and having one entity represent this group of
8255 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8256 */
ec7dc8ac 8257 init_tg_cfs_entry(&init_task_group,
6f505b16 8258 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8259 &per_cpu(init_sched_entity, i), i, 1,
8260 root_task_group.se[i]);
6f505b16 8261
052f1dc7 8262#endif
354d60c2
DG
8263#endif /* CONFIG_FAIR_GROUP_SCHED */
8264
8265 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8266#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8267 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8268#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8269 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8270#elif defined CONFIG_USER_SCHED
eff766a6 8271 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8272 init_tg_rt_entry(&init_task_group,
6f505b16 8273 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8274 &per_cpu(init_sched_rt_entity, i), i, 1,
8275 root_task_group.rt_se[i]);
354d60c2 8276#endif
dd41f596 8277#endif
1da177e4 8278
dd41f596
IM
8279 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8280 rq->cpu_load[j] = 0;
1da177e4 8281#ifdef CONFIG_SMP
41c7ce9a 8282 rq->sd = NULL;
57d885fe 8283 rq->rd = NULL;
1da177e4 8284 rq->active_balance = 0;
dd41f596 8285 rq->next_balance = jiffies;
1da177e4 8286 rq->push_cpu = 0;
0a2966b4 8287 rq->cpu = i;
1da177e4
LT
8288 rq->migration_thread = NULL;
8289 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8290 rq_attach_root(rq, &def_root_domain);
1da177e4 8291#endif
8f4d37ec 8292 init_rq_hrtick(rq);
1da177e4 8293 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8294 }
8295
2dd73a4f 8296 set_load_weight(&init_task);
b50f60ce 8297
e107be36
AK
8298#ifdef CONFIG_PREEMPT_NOTIFIERS
8299 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8300#endif
8301
c9819f45
CL
8302#ifdef CONFIG_SMP
8303 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8304#endif
8305
b50f60ce
HC
8306#ifdef CONFIG_RT_MUTEXES
8307 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8308#endif
8309
1da177e4
LT
8310 /*
8311 * The boot idle thread does lazy MMU switching as well:
8312 */
8313 atomic_inc(&init_mm.mm_count);
8314 enter_lazy_tlb(&init_mm, current);
8315
8316 /*
8317 * Make us the idle thread. Technically, schedule() should not be
8318 * called from this thread, however somewhere below it might be,
8319 * but because we are the idle thread, we just pick up running again
8320 * when this runqueue becomes "idle".
8321 */
8322 init_idle(current, smp_processor_id());
dd41f596
IM
8323 /*
8324 * During early bootup we pretend to be a normal task:
8325 */
8326 current->sched_class = &fair_sched_class;
6892b75e
IM
8327
8328 scheduler_running = 1;
1da177e4
LT
8329}
8330
8331#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8332void __might_sleep(char *file, int line)
8333{
48f24c4d 8334#ifdef in_atomic
1da177e4
LT
8335 static unsigned long prev_jiffy; /* ratelimiting */
8336
8337 if ((in_atomic() || irqs_disabled()) &&
8338 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8339 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8340 return;
8341 prev_jiffy = jiffies;
91368d73 8342 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8343 " context at %s:%d\n", file, line);
8344 printk("in_atomic():%d, irqs_disabled():%d\n",
8345 in_atomic(), irqs_disabled());
a4c410f0 8346 debug_show_held_locks(current);
3117df04
IM
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
1da177e4
LT
8349 dump_stack();
8350 }
8351#endif
8352}
8353EXPORT_SYMBOL(__might_sleep);
8354#endif
8355
8356#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8357static void normalize_task(struct rq *rq, struct task_struct *p)
8358{
8359 int on_rq;
8360 update_rq_clock(rq);
8361 on_rq = p->se.on_rq;
8362 if (on_rq)
8363 deactivate_task(rq, p, 0);
8364 __setscheduler(rq, p, SCHED_NORMAL, 0);
8365 if (on_rq) {
8366 activate_task(rq, p, 0);
8367 resched_task(rq->curr);
8368 }
8369}
8370
1da177e4
LT
8371void normalize_rt_tasks(void)
8372{
a0f98a1c 8373 struct task_struct *g, *p;
1da177e4 8374 unsigned long flags;
70b97a7f 8375 struct rq *rq;
1da177e4 8376
4cf5d77a 8377 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8378 do_each_thread(g, p) {
178be793
IM
8379 /*
8380 * Only normalize user tasks:
8381 */
8382 if (!p->mm)
8383 continue;
8384
6cfb0d5d 8385 p->se.exec_start = 0;
6cfb0d5d 8386#ifdef CONFIG_SCHEDSTATS
dd41f596 8387 p->se.wait_start = 0;
dd41f596 8388 p->se.sleep_start = 0;
dd41f596 8389 p->se.block_start = 0;
6cfb0d5d 8390#endif
dd41f596
IM
8391 task_rq(p)->clock = 0;
8392
8393 if (!rt_task(p)) {
8394 /*
8395 * Renice negative nice level userspace
8396 * tasks back to 0:
8397 */
8398 if (TASK_NICE(p) < 0 && p->mm)
8399 set_user_nice(p, 0);
1da177e4 8400 continue;
dd41f596 8401 }
1da177e4 8402
4cf5d77a 8403 spin_lock(&p->pi_lock);
b29739f9 8404 rq = __task_rq_lock(p);
1da177e4 8405
178be793 8406 normalize_task(rq, p);
3a5e4dc1 8407
b29739f9 8408 __task_rq_unlock(rq);
4cf5d77a 8409 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8410 } while_each_thread(g, p);
8411
4cf5d77a 8412 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8413}
8414
8415#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8416
8417#ifdef CONFIG_IA64
8418/*
8419 * These functions are only useful for the IA64 MCA handling.
8420 *
8421 * They can only be called when the whole system has been
8422 * stopped - every CPU needs to be quiescent, and no scheduling
8423 * activity can take place. Using them for anything else would
8424 * be a serious bug, and as a result, they aren't even visible
8425 * under any other configuration.
8426 */
8427
8428/**
8429 * curr_task - return the current task for a given cpu.
8430 * @cpu: the processor in question.
8431 *
8432 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8433 */
36c8b586 8434struct task_struct *curr_task(int cpu)
1df5c10a
LT
8435{
8436 return cpu_curr(cpu);
8437}
8438
8439/**
8440 * set_curr_task - set the current task for a given cpu.
8441 * @cpu: the processor in question.
8442 * @p: the task pointer to set.
8443 *
8444 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8445 * are serviced on a separate stack. It allows the architecture to switch the
8446 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8447 * must be called with all CPU's synchronized, and interrupts disabled, the
8448 * and caller must save the original value of the current task (see
8449 * curr_task() above) and restore that value before reenabling interrupts and
8450 * re-starting the system.
8451 *
8452 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8453 */
36c8b586 8454void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8455{
8456 cpu_curr(cpu) = p;
8457}
8458
8459#endif
29f59db3 8460
bccbe08a
PZ
8461#ifdef CONFIG_FAIR_GROUP_SCHED
8462static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8463{
8464 int i;
8465
8466 for_each_possible_cpu(i) {
8467 if (tg->cfs_rq)
8468 kfree(tg->cfs_rq[i]);
8469 if (tg->se)
8470 kfree(tg->se[i]);
6f505b16
PZ
8471 }
8472
8473 kfree(tg->cfs_rq);
8474 kfree(tg->se);
6f505b16
PZ
8475}
8476
ec7dc8ac
DG
8477static
8478int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8479{
29f59db3 8480 struct cfs_rq *cfs_rq;
ec7dc8ac 8481 struct sched_entity *se, *parent_se;
9b5b7751 8482 struct rq *rq;
29f59db3
SV
8483 int i;
8484
434d53b0 8485 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8486 if (!tg->cfs_rq)
8487 goto err;
434d53b0 8488 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8489 if (!tg->se)
8490 goto err;
052f1dc7
PZ
8491
8492 tg->shares = NICE_0_LOAD;
29f59db3
SV
8493
8494 for_each_possible_cpu(i) {
9b5b7751 8495 rq = cpu_rq(i);
29f59db3 8496
6f505b16
PZ
8497 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8498 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8499 if (!cfs_rq)
8500 goto err;
8501
6f505b16
PZ
8502 se = kmalloc_node(sizeof(struct sched_entity),
8503 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8504 if (!se)
8505 goto err;
8506
ec7dc8ac
DG
8507 parent_se = parent ? parent->se[i] : NULL;
8508 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8509 }
8510
8511 return 1;
8512
8513 err:
8514 return 0;
8515}
8516
8517static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8518{
8519 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8520 &cpu_rq(cpu)->leaf_cfs_rq_list);
8521}
8522
8523static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8524{
8525 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8526}
8527#else
8528static inline void free_fair_sched_group(struct task_group *tg)
8529{
8530}
8531
ec7dc8ac
DG
8532static inline
8533int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8534{
8535 return 1;
8536}
8537
8538static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8539{
8540}
8541
8542static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8543{
8544}
052f1dc7
PZ
8545#endif
8546
8547#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8548static void free_rt_sched_group(struct task_group *tg)
8549{
8550 int i;
8551
d0b27fa7
PZ
8552 destroy_rt_bandwidth(&tg->rt_bandwidth);
8553
bccbe08a
PZ
8554 for_each_possible_cpu(i) {
8555 if (tg->rt_rq)
8556 kfree(tg->rt_rq[i]);
8557 if (tg->rt_se)
8558 kfree(tg->rt_se[i]);
8559 }
8560
8561 kfree(tg->rt_rq);
8562 kfree(tg->rt_se);
8563}
8564
ec7dc8ac
DG
8565static
8566int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8567{
8568 struct rt_rq *rt_rq;
ec7dc8ac 8569 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8570 struct rq *rq;
8571 int i;
8572
434d53b0 8573 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8574 if (!tg->rt_rq)
8575 goto err;
434d53b0 8576 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8577 if (!tg->rt_se)
8578 goto err;
8579
d0b27fa7
PZ
8580 init_rt_bandwidth(&tg->rt_bandwidth,
8581 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8582
8583 for_each_possible_cpu(i) {
8584 rq = cpu_rq(i);
8585
6f505b16
PZ
8586 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8587 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8588 if (!rt_rq)
8589 goto err;
29f59db3 8590
6f505b16
PZ
8591 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8592 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8593 if (!rt_se)
8594 goto err;
29f59db3 8595
ec7dc8ac
DG
8596 parent_se = parent ? parent->rt_se[i] : NULL;
8597 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8598 }
8599
bccbe08a
PZ
8600 return 1;
8601
8602 err:
8603 return 0;
8604}
8605
8606static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8607{
8608 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8609 &cpu_rq(cpu)->leaf_rt_rq_list);
8610}
8611
8612static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8613{
8614 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8615}
8616#else
8617static inline void free_rt_sched_group(struct task_group *tg)
8618{
8619}
8620
ec7dc8ac
DG
8621static inline
8622int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8623{
8624 return 1;
8625}
8626
8627static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8628{
8629}
8630
8631static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8632{
8633}
8634#endif
8635
d0b27fa7 8636#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8637static void free_sched_group(struct task_group *tg)
8638{
8639 free_fair_sched_group(tg);
8640 free_rt_sched_group(tg);
8641 kfree(tg);
8642}
8643
8644/* allocate runqueue etc for a new task group */
ec7dc8ac 8645struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8646{
8647 struct task_group *tg;
8648 unsigned long flags;
8649 int i;
8650
8651 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8652 if (!tg)
8653 return ERR_PTR(-ENOMEM);
8654
ec7dc8ac 8655 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8656 goto err;
8657
ec7dc8ac 8658 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8659 goto err;
8660
8ed36996 8661 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8662 for_each_possible_cpu(i) {
bccbe08a
PZ
8663 register_fair_sched_group(tg, i);
8664 register_rt_sched_group(tg, i);
9b5b7751 8665 }
6f505b16 8666 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8667
8668 WARN_ON(!parent); /* root should already exist */
8669
8670 tg->parent = parent;
8671 list_add_rcu(&tg->siblings, &parent->children);
8672 INIT_LIST_HEAD(&tg->children);
8ed36996 8673 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8674
9b5b7751 8675 return tg;
29f59db3
SV
8676
8677err:
6f505b16 8678 free_sched_group(tg);
29f59db3
SV
8679 return ERR_PTR(-ENOMEM);
8680}
8681
9b5b7751 8682/* rcu callback to free various structures associated with a task group */
6f505b16 8683static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8684{
29f59db3 8685 /* now it should be safe to free those cfs_rqs */
6f505b16 8686 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8687}
8688
9b5b7751 8689/* Destroy runqueue etc associated with a task group */
4cf86d77 8690void sched_destroy_group(struct task_group *tg)
29f59db3 8691{
8ed36996 8692 unsigned long flags;
9b5b7751 8693 int i;
29f59db3 8694
8ed36996 8695 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8696 for_each_possible_cpu(i) {
bccbe08a
PZ
8697 unregister_fair_sched_group(tg, i);
8698 unregister_rt_sched_group(tg, i);
9b5b7751 8699 }
6f505b16 8700 list_del_rcu(&tg->list);
f473aa5e 8701 list_del_rcu(&tg->siblings);
8ed36996 8702 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8703
9b5b7751 8704 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8705 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8706}
8707
9b5b7751 8708/* change task's runqueue when it moves between groups.
3a252015
IM
8709 * The caller of this function should have put the task in its new group
8710 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8711 * reflect its new group.
9b5b7751
SV
8712 */
8713void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8714{
8715 int on_rq, running;
8716 unsigned long flags;
8717 struct rq *rq;
8718
8719 rq = task_rq_lock(tsk, &flags);
8720
29f59db3
SV
8721 update_rq_clock(rq);
8722
051a1d1a 8723 running = task_current(rq, tsk);
29f59db3
SV
8724 on_rq = tsk->se.on_rq;
8725
0e1f3483 8726 if (on_rq)
29f59db3 8727 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8728 if (unlikely(running))
8729 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8730
6f505b16 8731 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8732
810b3817
PZ
8733#ifdef CONFIG_FAIR_GROUP_SCHED
8734 if (tsk->sched_class->moved_group)
8735 tsk->sched_class->moved_group(tsk);
8736#endif
8737
0e1f3483
HS
8738 if (unlikely(running))
8739 tsk->sched_class->set_curr_task(rq);
8740 if (on_rq)
7074badb 8741 enqueue_task(rq, tsk, 0);
29f59db3 8742
29f59db3
SV
8743 task_rq_unlock(rq, &flags);
8744}
d0b27fa7 8745#endif
29f59db3 8746
052f1dc7 8747#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8748static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8749{
8750 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8751 int on_rq;
8752
29f59db3 8753 on_rq = se->on_rq;
62fb1851 8754 if (on_rq)
29f59db3
SV
8755 dequeue_entity(cfs_rq, se, 0);
8756
8757 se->load.weight = shares;
e05510d0 8758 se->load.inv_weight = 0;
29f59db3 8759
62fb1851 8760 if (on_rq)
29f59db3 8761 enqueue_entity(cfs_rq, se, 0);
18d95a28 8762}
62fb1851 8763
18d95a28
PZ
8764static void set_se_shares(struct sched_entity *se, unsigned long shares)
8765{
8766 struct cfs_rq *cfs_rq = se->cfs_rq;
8767 struct rq *rq = cfs_rq->rq;
8768 unsigned long flags;
8769
8770 spin_lock_irqsave(&rq->lock, flags);
8771 __set_se_shares(se, shares);
8772 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8773}
8774
8ed36996
PZ
8775static DEFINE_MUTEX(shares_mutex);
8776
4cf86d77 8777int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8778{
8779 int i;
8ed36996 8780 unsigned long flags;
c61935fd 8781
ec7dc8ac
DG
8782 /*
8783 * We can't change the weight of the root cgroup.
8784 */
8785 if (!tg->se[0])
8786 return -EINVAL;
8787
62fb1851
PZ
8788 /*
8789 * A weight of 0 or 1 can cause arithmetics problems.
8790 * (The default weight is 1024 - so there's no practical
8791 * limitation from this.)
8792 */
18d95a28
PZ
8793 if (shares < MIN_SHARES)
8794 shares = MIN_SHARES;
62fb1851 8795
8ed36996 8796 mutex_lock(&shares_mutex);
9b5b7751 8797 if (tg->shares == shares)
5cb350ba 8798 goto done;
29f59db3 8799
8ed36996 8800 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8801 for_each_possible_cpu(i)
8802 unregister_fair_sched_group(tg, i);
f473aa5e 8803 list_del_rcu(&tg->siblings);
8ed36996 8804 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8805
8806 /* wait for any ongoing reference to this group to finish */
8807 synchronize_sched();
8808
8809 /*
8810 * Now we are free to modify the group's share on each cpu
8811 * w/o tripping rebalance_share or load_balance_fair.
8812 */
9b5b7751 8813 tg->shares = shares;
18d95a28
PZ
8814 for_each_possible_cpu(i) {
8815 /*
8816 * force a rebalance
8817 */
8818 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8819 set_se_shares(tg->se[i], shares/nr_cpu_ids);
8820 }
29f59db3 8821
6b2d7700
SV
8822 /*
8823 * Enable load balance activity on this group, by inserting it back on
8824 * each cpu's rq->leaf_cfs_rq_list.
8825 */
8ed36996 8826 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8827 for_each_possible_cpu(i)
8828 register_fair_sched_group(tg, i);
f473aa5e 8829 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8830 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8831done:
8ed36996 8832 mutex_unlock(&shares_mutex);
9b5b7751 8833 return 0;
29f59db3
SV
8834}
8835
5cb350ba
DG
8836unsigned long sched_group_shares(struct task_group *tg)
8837{
8838 return tg->shares;
8839}
052f1dc7 8840#endif
5cb350ba 8841
052f1dc7 8842#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8843/*
9f0c1e56 8844 * Ensure that the real time constraints are schedulable.
6f505b16 8845 */
9f0c1e56
PZ
8846static DEFINE_MUTEX(rt_constraints_mutex);
8847
8848static unsigned long to_ratio(u64 period, u64 runtime)
8849{
8850 if (runtime == RUNTIME_INF)
8851 return 1ULL << 16;
8852
6f6d6a1a 8853 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8854}
8855
b40b2e8e
PZ
8856#ifdef CONFIG_CGROUP_SCHED
8857static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8858{
8859 struct task_group *tgi, *parent = tg->parent;
8860 unsigned long total = 0;
8861
8862 if (!parent) {
8863 if (global_rt_period() < period)
8864 return 0;
8865
8866 return to_ratio(period, runtime) <
8867 to_ratio(global_rt_period(), global_rt_runtime());
8868 }
8869
8870 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8871 return 0;
8872
8873 rcu_read_lock();
8874 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8875 if (tgi == tg)
8876 continue;
8877
8878 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8879 tgi->rt_bandwidth.rt_runtime);
8880 }
8881 rcu_read_unlock();
8882
8883 return total + to_ratio(period, runtime) <
8884 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8885 parent->rt_bandwidth.rt_runtime);
8886}
8887#elif defined CONFIG_USER_SCHED
9f0c1e56 8888static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8889{
8890 struct task_group *tgi;
8891 unsigned long total = 0;
9f0c1e56 8892 unsigned long global_ratio =
d0b27fa7 8893 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8894
8895 rcu_read_lock();
9f0c1e56
PZ
8896 list_for_each_entry_rcu(tgi, &task_groups, list) {
8897 if (tgi == tg)
8898 continue;
6f505b16 8899
d0b27fa7
PZ
8900 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8901 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8902 }
8903 rcu_read_unlock();
6f505b16 8904
9f0c1e56 8905 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8906}
b40b2e8e 8907#endif
6f505b16 8908
521f1a24
DG
8909/* Must be called with tasklist_lock held */
8910static inline int tg_has_rt_tasks(struct task_group *tg)
8911{
8912 struct task_struct *g, *p;
8913 do_each_thread(g, p) {
8914 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8915 return 1;
8916 } while_each_thread(g, p);
8917 return 0;
8918}
8919
d0b27fa7
PZ
8920static int tg_set_bandwidth(struct task_group *tg,
8921 u64 rt_period, u64 rt_runtime)
6f505b16 8922{
ac086bc2 8923 int i, err = 0;
9f0c1e56 8924
9f0c1e56 8925 mutex_lock(&rt_constraints_mutex);
521f1a24 8926 read_lock(&tasklist_lock);
ac086bc2 8927 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8928 err = -EBUSY;
8929 goto unlock;
8930 }
9f0c1e56
PZ
8931 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8932 err = -EINVAL;
8933 goto unlock;
8934 }
ac086bc2
PZ
8935
8936 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8937 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8938 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8939
8940 for_each_possible_cpu(i) {
8941 struct rt_rq *rt_rq = tg->rt_rq[i];
8942
8943 spin_lock(&rt_rq->rt_runtime_lock);
8944 rt_rq->rt_runtime = rt_runtime;
8945 spin_unlock(&rt_rq->rt_runtime_lock);
8946 }
8947 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8948 unlock:
521f1a24 8949 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8950 mutex_unlock(&rt_constraints_mutex);
8951
8952 return err;
6f505b16
PZ
8953}
8954
d0b27fa7
PZ
8955int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8956{
8957 u64 rt_runtime, rt_period;
8958
8959 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8960 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8961 if (rt_runtime_us < 0)
8962 rt_runtime = RUNTIME_INF;
8963
8964 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8965}
8966
9f0c1e56
PZ
8967long sched_group_rt_runtime(struct task_group *tg)
8968{
8969 u64 rt_runtime_us;
8970
d0b27fa7 8971 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8972 return -1;
8973
d0b27fa7 8974 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8975 do_div(rt_runtime_us, NSEC_PER_USEC);
8976 return rt_runtime_us;
8977}
d0b27fa7
PZ
8978
8979int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8980{
8981 u64 rt_runtime, rt_period;
8982
8983 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8984 rt_runtime = tg->rt_bandwidth.rt_runtime;
8985
8986 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8987}
8988
8989long sched_group_rt_period(struct task_group *tg)
8990{
8991 u64 rt_period_us;
8992
8993 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8994 do_div(rt_period_us, NSEC_PER_USEC);
8995 return rt_period_us;
8996}
8997
8998static int sched_rt_global_constraints(void)
8999{
9000 int ret = 0;
9001
9002 mutex_lock(&rt_constraints_mutex);
9003 if (!__rt_schedulable(NULL, 1, 0))
9004 ret = -EINVAL;
9005 mutex_unlock(&rt_constraints_mutex);
9006
9007 return ret;
9008}
9009#else
9010static int sched_rt_global_constraints(void)
9011{
ac086bc2
PZ
9012 unsigned long flags;
9013 int i;
9014
9015 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9016 for_each_possible_cpu(i) {
9017 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9018
9019 spin_lock(&rt_rq->rt_runtime_lock);
9020 rt_rq->rt_runtime = global_rt_runtime();
9021 spin_unlock(&rt_rq->rt_runtime_lock);
9022 }
9023 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9024
d0b27fa7
PZ
9025 return 0;
9026}
052f1dc7 9027#endif
d0b27fa7
PZ
9028
9029int sched_rt_handler(struct ctl_table *table, int write,
9030 struct file *filp, void __user *buffer, size_t *lenp,
9031 loff_t *ppos)
9032{
9033 int ret;
9034 int old_period, old_runtime;
9035 static DEFINE_MUTEX(mutex);
9036
9037 mutex_lock(&mutex);
9038 old_period = sysctl_sched_rt_period;
9039 old_runtime = sysctl_sched_rt_runtime;
9040
9041 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9042
9043 if (!ret && write) {
9044 ret = sched_rt_global_constraints();
9045 if (ret) {
9046 sysctl_sched_rt_period = old_period;
9047 sysctl_sched_rt_runtime = old_runtime;
9048 } else {
9049 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9050 def_rt_bandwidth.rt_period =
9051 ns_to_ktime(global_rt_period());
9052 }
9053 }
9054 mutex_unlock(&mutex);
9055
9056 return ret;
9057}
68318b8e 9058
052f1dc7 9059#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9060
9061/* return corresponding task_group object of a cgroup */
2b01dfe3 9062static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9063{
2b01dfe3
PM
9064 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9065 struct task_group, css);
68318b8e
SV
9066}
9067
9068static struct cgroup_subsys_state *
2b01dfe3 9069cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9070{
ec7dc8ac 9071 struct task_group *tg, *parent;
68318b8e 9072
2b01dfe3 9073 if (!cgrp->parent) {
68318b8e 9074 /* This is early initialization for the top cgroup */
2b01dfe3 9075 init_task_group.css.cgroup = cgrp;
68318b8e
SV
9076 return &init_task_group.css;
9077 }
9078
ec7dc8ac
DG
9079 parent = cgroup_tg(cgrp->parent);
9080 tg = sched_create_group(parent);
68318b8e
SV
9081 if (IS_ERR(tg))
9082 return ERR_PTR(-ENOMEM);
9083
9084 /* Bind the cgroup to task_group object we just created */
2b01dfe3 9085 tg->css.cgroup = cgrp;
68318b8e
SV
9086
9087 return &tg->css;
9088}
9089
41a2d6cf
IM
9090static void
9091cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9092{
2b01dfe3 9093 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9094
9095 sched_destroy_group(tg);
9096}
9097
41a2d6cf
IM
9098static int
9099cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9100 struct task_struct *tsk)
68318b8e 9101{
b68aa230
PZ
9102#ifdef CONFIG_RT_GROUP_SCHED
9103 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9104 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9105 return -EINVAL;
9106#else
68318b8e
SV
9107 /* We don't support RT-tasks being in separate groups */
9108 if (tsk->sched_class != &fair_sched_class)
9109 return -EINVAL;
b68aa230 9110#endif
68318b8e
SV
9111
9112 return 0;
9113}
9114
9115static void
2b01dfe3 9116cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9117 struct cgroup *old_cont, struct task_struct *tsk)
9118{
9119 sched_move_task(tsk);
9120}
9121
052f1dc7 9122#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9123static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9124 u64 shareval)
68318b8e 9125{
2b01dfe3 9126 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9127}
9128
f4c753b7 9129static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9130{
2b01dfe3 9131 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9132
9133 return (u64) tg->shares;
9134}
052f1dc7 9135#endif
68318b8e 9136
052f1dc7 9137#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 9138static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9139 s64 val)
6f505b16 9140{
06ecb27c 9141 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9142}
9143
06ecb27c 9144static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9145{
06ecb27c 9146 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9147}
d0b27fa7
PZ
9148
9149static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9150 u64 rt_period_us)
9151{
9152 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9153}
9154
9155static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9156{
9157 return sched_group_rt_period(cgroup_tg(cgrp));
9158}
052f1dc7 9159#endif
6f505b16 9160
fe5c7cc2 9161static struct cftype cpu_files[] = {
052f1dc7 9162#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9163 {
9164 .name = "shares",
f4c753b7
PM
9165 .read_u64 = cpu_shares_read_u64,
9166 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9167 },
052f1dc7
PZ
9168#endif
9169#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9170 {
9f0c1e56 9171 .name = "rt_runtime_us",
06ecb27c
PM
9172 .read_s64 = cpu_rt_runtime_read,
9173 .write_s64 = cpu_rt_runtime_write,
6f505b16 9174 },
d0b27fa7
PZ
9175 {
9176 .name = "rt_period_us",
f4c753b7
PM
9177 .read_u64 = cpu_rt_period_read_uint,
9178 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9179 },
052f1dc7 9180#endif
68318b8e
SV
9181};
9182
9183static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9184{
fe5c7cc2 9185 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9186}
9187
9188struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9189 .name = "cpu",
9190 .create = cpu_cgroup_create,
9191 .destroy = cpu_cgroup_destroy,
9192 .can_attach = cpu_cgroup_can_attach,
9193 .attach = cpu_cgroup_attach,
9194 .populate = cpu_cgroup_populate,
9195 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9196 .early_init = 1,
9197};
9198
052f1dc7 9199#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9200
9201#ifdef CONFIG_CGROUP_CPUACCT
9202
9203/*
9204 * CPU accounting code for task groups.
9205 *
9206 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9207 * (balbir@in.ibm.com).
9208 */
9209
9210/* track cpu usage of a group of tasks */
9211struct cpuacct {
9212 struct cgroup_subsys_state css;
9213 /* cpuusage holds pointer to a u64-type object on every cpu */
9214 u64 *cpuusage;
9215};
9216
9217struct cgroup_subsys cpuacct_subsys;
9218
9219/* return cpu accounting group corresponding to this container */
32cd756a 9220static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9221{
32cd756a 9222 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9223 struct cpuacct, css);
9224}
9225
9226/* return cpu accounting group to which this task belongs */
9227static inline struct cpuacct *task_ca(struct task_struct *tsk)
9228{
9229 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9230 struct cpuacct, css);
9231}
9232
9233/* create a new cpu accounting group */
9234static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9235 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9236{
9237 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9238
9239 if (!ca)
9240 return ERR_PTR(-ENOMEM);
9241
9242 ca->cpuusage = alloc_percpu(u64);
9243 if (!ca->cpuusage) {
9244 kfree(ca);
9245 return ERR_PTR(-ENOMEM);
9246 }
9247
9248 return &ca->css;
9249}
9250
9251/* destroy an existing cpu accounting group */
41a2d6cf 9252static void
32cd756a 9253cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9254{
32cd756a 9255 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9256
9257 free_percpu(ca->cpuusage);
9258 kfree(ca);
9259}
9260
9261/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9262static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9263{
32cd756a 9264 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9265 u64 totalcpuusage = 0;
9266 int i;
9267
9268 for_each_possible_cpu(i) {
9269 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9270
9271 /*
9272 * Take rq->lock to make 64-bit addition safe on 32-bit
9273 * platforms.
9274 */
9275 spin_lock_irq(&cpu_rq(i)->lock);
9276 totalcpuusage += *cpuusage;
9277 spin_unlock_irq(&cpu_rq(i)->lock);
9278 }
9279
9280 return totalcpuusage;
9281}
9282
0297b803
DG
9283static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9284 u64 reset)
9285{
9286 struct cpuacct *ca = cgroup_ca(cgrp);
9287 int err = 0;
9288 int i;
9289
9290 if (reset) {
9291 err = -EINVAL;
9292 goto out;
9293 }
9294
9295 for_each_possible_cpu(i) {
9296 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9297
9298 spin_lock_irq(&cpu_rq(i)->lock);
9299 *cpuusage = 0;
9300 spin_unlock_irq(&cpu_rq(i)->lock);
9301 }
9302out:
9303 return err;
9304}
9305
d842de87
SV
9306static struct cftype files[] = {
9307 {
9308 .name = "usage",
f4c753b7
PM
9309 .read_u64 = cpuusage_read,
9310 .write_u64 = cpuusage_write,
d842de87
SV
9311 },
9312};
9313
32cd756a 9314static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9315{
32cd756a 9316 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9317}
9318
9319/*
9320 * charge this task's execution time to its accounting group.
9321 *
9322 * called with rq->lock held.
9323 */
9324static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9325{
9326 struct cpuacct *ca;
9327
9328 if (!cpuacct_subsys.active)
9329 return;
9330
9331 ca = task_ca(tsk);
9332 if (ca) {
9333 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9334
9335 *cpuusage += cputime;
9336 }
9337}
9338
9339struct cgroup_subsys cpuacct_subsys = {
9340 .name = "cpuacct",
9341 .create = cpuacct_create,
9342 .destroy = cpuacct_destroy,
9343 .populate = cpuacct_populate,
9344 .subsys_id = cpuacct_subsys_id,
9345};
9346#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.181255 seconds and 5 git commands to generate.