llist: Add llist_next()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
d8b4986d 262 struct hrtimer period_timer, slack_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
e8da1b18
NR
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
ab84d31e
PT
268#endif
269};
270
29f59db3 271/* task group related information */
4cf86d77 272struct task_group {
68318b8e 273 struct cgroup_subsys_state css;
6c415b92 274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
2069dd75
PZ
281
282 atomic_t load_weight;
052f1dc7
PZ
283#endif
284
285#ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
d0b27fa7 289 struct rt_bandwidth rt_bandwidth;
052f1dc7 290#endif
6b2d7700 291
ae8393e5 292 struct rcu_head rcu;
6f505b16 293 struct list_head list;
f473aa5e
PZ
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
5091faa4
MG
298
299#ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301#endif
ab84d31e
PT
302
303 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
304};
305
3d4b47b4 306/* task_group_lock serializes the addition/removal of task groups */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
e9036b36
CG
309#ifdef CONFIG_FAIR_GROUP_SCHED
310
07e06b01 311# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 312
cb4ad1ff 313/*
2e084786
LJ
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
cb4ad1ff
MX
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
cd62287e
MG
321#define MIN_SHARES (1UL << 1)
322#define MAX_SHARES (1UL << 18)
18d95a28 323
07e06b01 324static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
325#endif
326
29f59db3 327/* Default task group.
3a252015 328 * Every task in system belong to this group at bootup.
29f59db3 329 */
07e06b01 330struct task_group root_task_group;
29f59db3 331
7c941438 332#endif /* CONFIG_CGROUP_SCHED */
29f59db3 333
6aa645ea
IM
334/* CFS-related fields in a runqueue */
335struct cfs_rq {
336 struct load_weight load;
953bfcd1 337 unsigned long nr_running, h_nr_running;
6aa645ea 338
6aa645ea 339 u64 exec_clock;
e9acbff6 340 u64 min_vruntime;
3fe1698b
PZ
341#ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343#endif
6aa645ea
IM
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
4a55bd5e
PZ
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
ac53db59 355 struct sched_entity *curr, *next, *last, *skip;
ddc97297 356
4934a4d3 357#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 358 unsigned int nr_spread_over;
4934a4d3 359#endif
ddc97297 360
62160e3f 361#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
41a2d6cf
IM
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
3d4b47b4 372 int on_list;
41a2d6cf
IM
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
375
376#ifdef CONFIG_SMP
c09595f6 377 /*
c8cba857 378 * the part of load.weight contributed by tasks
c09595f6 379 */
c8cba857 380 unsigned long task_weight;
c09595f6 381
c8cba857
PZ
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
c09595f6 389
c8cba857 390 /*
3b3d190e
PT
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 396 */
2069dd75
PZ
397 u64 load_avg;
398 u64 load_period;
3b3d190e 399 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 400
2069dd75 401 unsigned long load_contribution;
c09595f6 402#endif
ab84d31e
PT
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
a9cf55b2 405 u64 runtime_expires;
ab84d31e 406 s64 runtime_remaining;
85dac906 407
e8da1b18 408 u64 throttled_timestamp;
64660c86 409 int throttled, throttle_count;
85dac906 410 struct list_head throttled_list;
ab84d31e 411#endif
6aa645ea
IM
412#endif
413};
1da177e4 414
ab84d31e
PT
415#ifdef CONFIG_FAIR_GROUP_SCHED
416#ifdef CONFIG_CFS_BANDWIDTH
417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418{
419 return &tg->cfs_bandwidth;
420}
421
422static inline u64 default_cfs_period(void);
58088ad0 423static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
d8b4986d
PT
424static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427{
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433}
58088ad0
PT
434
435static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436{
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454}
ab84d31e
PT
455
456static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457{
458 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 459 cfs_b->runtime = 0;
ab84d31e
PT
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 462
85dac906 463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
d8b4986d
PT
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
ab84d31e
PT
468}
469
470static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471{
472 cfs_rq->runtime_enabled = 0;
85dac906 473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
474}
475
58088ad0
PT
476/* requires cfs_b->lock, may release to reprogram timer */
477static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478{
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498}
499
ab84d31e 500static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
501{
502 hrtimer_cancel(&cfs_b->period_timer);
d8b4986d 503 hrtimer_cancel(&cfs_b->slack_timer);
58088ad0 504}
ab84d31e
PT
505#else
506static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511{
512 return NULL;
513}
514#endif /* CONFIG_CFS_BANDWIDTH */
515#endif /* CONFIG_FAIR_GROUP_SCHED */
516
6aa645ea
IM
517/* Real-Time classes' related field in a runqueue: */
518struct rt_rq {
519 struct rt_prio_array active;
63489e45 520 unsigned long rt_nr_running;
052f1dc7 521#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
522 struct {
523 int curr; /* highest queued rt task prio */
398a153b 524#ifdef CONFIG_SMP
e864c499 525 int next; /* next highest */
398a153b 526#endif
e864c499 527 } highest_prio;
6f505b16 528#endif
fa85ae24 529#ifdef CONFIG_SMP
73fe6aae 530 unsigned long rt_nr_migratory;
a1ba4d8b 531 unsigned long rt_nr_total;
a22d7fc1 532 int overloaded;
917b627d 533 struct plist_head pushable_tasks;
fa85ae24 534#endif
6f505b16 535 int rt_throttled;
fa85ae24 536 u64 rt_time;
ac086bc2 537 u64 rt_runtime;
ea736ed5 538 /* Nests inside the rq lock: */
0986b11b 539 raw_spinlock_t rt_runtime_lock;
6f505b16 540
052f1dc7 541#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
542 unsigned long rt_nr_boosted;
543
6f505b16
PZ
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
6f505b16 547#endif
6aa645ea
IM
548};
549
57d885fe
GH
550#ifdef CONFIG_SMP
551
552/*
553 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
57d885fe
GH
559 */
560struct root_domain {
561 atomic_t refcount;
26a148eb 562 atomic_t rto_count;
dce840a0 563 struct rcu_head rcu;
c6c4927b
RR
564 cpumask_var_t span;
565 cpumask_var_t online;
637f5085 566
0eab9146 567 /*
637f5085
GH
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
c6c4927b 571 cpumask_var_t rto_mask;
6e0534f2 572 struct cpupri cpupri;
57d885fe
GH
573};
574
dc938520
GH
575/*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
57d885fe
GH
579static struct root_domain def_root_domain;
580
ed2d372c 581#endif /* CONFIG_SMP */
57d885fe 582
1da177e4
LT
583/*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
70b97a7f 590struct rq {
d8016491 591 /* runqueue lock: */
05fa785c 592 raw_spinlock_t lock;
1da177e4
LT
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
6aa645ea
IM
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 601 unsigned long last_load_update_tick;
46cb4b7c 602#ifdef CONFIG_NO_HZ
39c0cbe2 603 u64 nohz_stamp;
83cd4fe2 604 unsigned char nohz_balance_kick;
46cb4b7c 605#endif
61eadef6 606 int skip_clock_update;
a64692a3 607
d8016491
IM
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
6aa645ea
IM
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
6f505b16 614 struct rt_rq rt;
6f505b16 615
6aa645ea 616#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
619#endif
620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 621 struct list_head leaf_rt_rq_list;
1da177e4 622#endif
1da177e4
LT
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
34f971f6 632 struct task_struct *curr, *idle, *stop;
c9819f45 633 unsigned long next_balance;
1da177e4 634 struct mm_struct *prev_mm;
6aa645ea 635
3e51f33f 636 u64 clock;
305e6835 637 u64 clock_task;
6aa645ea 638
1da177e4
LT
639 atomic_t nr_iowait;
640
641#ifdef CONFIG_SMP
0eab9146 642 struct root_domain *rd;
1da177e4
LT
643 struct sched_domain *sd;
644
e51fd5e2
PZ
645 unsigned long cpu_power;
646
a0a522ce 647 unsigned char idle_at_tick;
1da177e4 648 /* For active balancing */
3f029d3c 649 int post_schedule;
1da177e4
LT
650 int active_balance;
651 int push_cpu;
969c7921 652 struct cpu_stop_work active_balance_work;
d8016491
IM
653 /* cpu of this runqueue: */
654 int cpu;
1f11eb6a 655 int online;
1da177e4 656
e9e9250b
PZ
657 u64 rt_avg;
658 u64 age_stamp;
1b9508f6
MG
659 u64 idle_stamp;
660 u64 avg_idle;
1da177e4
LT
661#endif
662
aa483808
VP
663#ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665#endif
e6e6685a
GC
666#ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668#endif
095c0aa8
GC
669#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671#endif
aa483808 672
dce48a84
TG
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
8f4d37ec 677#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
678#ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681#endif
8f4d37ec
PZ
682 struct hrtimer hrtick_timer;
683#endif
684
1da177e4
LT
685#ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
9c2c4802
KC
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
690
691 /* sys_sched_yield() stats */
480b9434 692 unsigned int yld_count;
1da177e4
LT
693
694 /* schedule() stats */
480b9434
KC
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
1da177e4
LT
698
699 /* try_to_wake_up() stats */
480b9434
KC
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
1da177e4 702#endif
317f3941
PZ
703
704#ifdef CONFIG_SMP
705 struct task_struct *wake_list;
706#endif
1da177e4
LT
707};
708
f34e3b61 709static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 710
a64692a3 711
1e5a7405 712static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 713
0a2966b4
CL
714static inline int cpu_of(struct rq *rq)
715{
716#ifdef CONFIG_SMP
717 return rq->cpu;
718#else
719 return 0;
720#endif
721}
722
497f0ab3 723#define rcu_dereference_check_sched_domain(p) \
d11c563d 724 rcu_dereference_check((p), \
d11c563d
PM
725 lockdep_is_held(&sched_domains_mutex))
726
674311d5
NP
727/*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 729 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
48f24c4d 734#define for_each_domain(cpu, __sd) \
497f0ab3 735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
736
737#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738#define this_rq() (&__get_cpu_var(runqueues))
739#define task_rq(p) cpu_rq(task_cpu(p))
740#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 741#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 742
dc61b1d6
PZ
743#ifdef CONFIG_CGROUP_SCHED
744
745/*
746 * Return the group to which this tasks belongs.
747 *
6c6c54e1
PZ
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
dc61b1d6
PZ
752 */
753static inline struct task_group *task_group(struct task_struct *p)
754{
5091faa4 755 struct task_group *tg;
dc61b1d6
PZ
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
dc61b1d6
PZ
764}
765
766/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768{
769#ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772#endif
773
774#ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777#endif
778}
779
780#else /* CONFIG_CGROUP_SCHED */
781
782static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783static inline struct task_group *task_group(struct task_struct *p)
784{
785 return NULL;
786}
787
788#endif /* CONFIG_CGROUP_SCHED */
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 791
fe44d621 792static void update_rq_clock(struct rq *rq)
3e51f33f 793{
fe44d621 794 s64 delta;
305e6835 795
61eadef6 796 if (rq->skip_clock_update > 0)
f26f9aff 797 return;
aa483808 798
fe44d621
PZ
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
3e51f33f
PZ
802}
803
bf5c91ba
IM
804/*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807#ifdef CONFIG_SCHED_DEBUG
808# define const_debug __read_mostly
809#else
810# define const_debug static const
811#endif
812
017730c1 813/**
1fd06bb1 814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 815 * @cpu: the processor in question.
017730c1 816 *
017730c1
IM
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
89f19f04 820int runqueue_is_locked(int cpu)
017730c1 821{
05fa785c 822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
823}
824
bf5c91ba
IM
825/*
826 * Debugging: various feature bits
827 */
f00b45c1
PZ
828
829#define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
bf5c91ba 832enum {
f00b45c1 833#include "sched_features.h"
bf5c91ba
IM
834};
835
f00b45c1
PZ
836#undef SCHED_FEAT
837
838#define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
bf5c91ba 841const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
842#include "sched_features.h"
843 0;
844
845#undef SCHED_FEAT
846
847#ifdef CONFIG_SCHED_DEBUG
848#define SCHED_FEAT(name, enabled) \
849 #name ,
850
983ed7a6 851static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
852#include "sched_features.h"
853 NULL
854};
855
856#undef SCHED_FEAT
857
34f3a814 858static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 859{
f00b45c1
PZ
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 866 }
34f3a814 867 seq_puts(m, "\n");
f00b45c1 868
34f3a814 869 return 0;
f00b45c1
PZ
870}
871
872static ssize_t
873sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875{
876 char buf[64];
7740191c 877 char *cmp;
f00b45c1
PZ
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
7740191c 888 cmp = strstrip(buf);
f00b45c1 889
524429c3 890 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
7740191c 896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
42994724 908 *ppos += cnt;
f00b45c1
PZ
909
910 return cnt;
911}
912
34f3a814
LZ
913static int sched_feat_open(struct inode *inode, struct file *filp)
914{
915 return single_open(filp, sched_feat_show, NULL);
916}
917
828c0950 918static const struct file_operations sched_feat_fops = {
34f3a814
LZ
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
f00b45c1
PZ
924};
925
926static __init int sched_init_debug(void)
927{
f00b45c1
PZ
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932}
933late_initcall(sched_init_debug);
934
935#endif
936
937#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 938
b82d9fdd
PZ
939/*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
e9e9250b
PZ
945/*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
fa85ae24 953/*
9f0c1e56 954 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
955 * default: 1s
956 */
9f0c1e56 957unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 958
6892b75e
IM
959static __read_mostly int scheduler_running;
960
9f0c1e56
PZ
961/*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965int sysctl_sched_rt_runtime = 950000;
fa85ae24 966
d0b27fa7
PZ
967static inline u64 global_rt_period(void)
968{
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970}
971
972static inline u64 global_rt_runtime(void)
973{
e26873bb 974 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978}
fa85ae24 979
1da177e4 980#ifndef prepare_arch_switch
4866cde0
NP
981# define prepare_arch_switch(next) do { } while (0)
982#endif
983#ifndef finish_arch_switch
984# define finish_arch_switch(prev) do { } while (0)
985#endif
986
051a1d1a
DA
987static inline int task_current(struct rq *rq, struct task_struct *p)
988{
989 return rq->curr == p;
990}
991
70b97a7f 992static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 993{
3ca7a440
PZ
994#ifdef CONFIG_SMP
995 return p->on_cpu;
996#else
051a1d1a 997 return task_current(rq, p);
3ca7a440 998#endif
4866cde0
NP
999}
1000
3ca7a440 1001#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 1003{
3ca7a440
PZ
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
4866cde0
NP
1012}
1013
70b97a7f 1014static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 1015{
3ca7a440
PZ
1016#ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024#endif
da04c035
IM
1025#ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028#endif
8a25d5de
IM
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
05fa785c 1036 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1037}
1038
1039#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1040static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
3ca7a440 1048 next->on_cpu = 1;
4866cde0
NP
1049#endif
1050#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1051 raw_spin_unlock_irq(&rq->lock);
4866cde0 1052#else
05fa785c 1053 raw_spin_unlock(&rq->lock);
4866cde0
NP
1054#endif
1055}
1056
70b97a7f 1057static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1058{
1059#ifdef CONFIG_SMP
1060 /*
3ca7a440 1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
3ca7a440 1066 prev->on_cpu = 0;
4866cde0
NP
1067#endif
1068#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1da177e4 1070#endif
4866cde0
NP
1071}
1072#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1073
0970d299 1074/*
0122ec5b 1075 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1076 */
70b97a7f 1077static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1078 __acquires(rq->lock)
1079{
0970d299
PZ
1080 struct rq *rq;
1081
0122ec5b
PZ
1082 lockdep_assert_held(&p->pi_lock);
1083
3a5c359a 1084 for (;;) {
0970d299 1085 rq = task_rq(p);
05fa785c 1086 raw_spin_lock(&rq->lock);
65cc8e48 1087 if (likely(rq == task_rq(p)))
3a5c359a 1088 return rq;
05fa785c 1089 raw_spin_unlock(&rq->lock);
b29739f9 1090 }
b29739f9
IM
1091}
1092
1da177e4 1093/*
0122ec5b 1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1095 */
70b97a7f 1096static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1097 __acquires(p->pi_lock)
1da177e4
LT
1098 __acquires(rq->lock)
1099{
70b97a7f 1100 struct rq *rq;
1da177e4 1101
3a5c359a 1102 for (;;) {
0122ec5b 1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1104 rq = task_rq(p);
05fa785c 1105 raw_spin_lock(&rq->lock);
65cc8e48 1106 if (likely(rq == task_rq(p)))
3a5c359a 1107 return rq;
0122ec5b
PZ
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1110 }
1da177e4
LT
1111}
1112
a9957449 1113static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1114 __releases(rq->lock)
1115{
05fa785c 1116 raw_spin_unlock(&rq->lock);
b29739f9
IM
1117}
1118
0122ec5b
PZ
1119static inline void
1120task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1121 __releases(rq->lock)
0122ec5b 1122 __releases(p->pi_lock)
1da177e4 1123{
0122ec5b
PZ
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1126}
1127
1da177e4 1128/*
cc2a73b5 1129 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1130 */
a9957449 1131static struct rq *this_rq_lock(void)
1da177e4
LT
1132 __acquires(rq->lock)
1133{
70b97a7f 1134 struct rq *rq;
1da177e4
LT
1135
1136 local_irq_disable();
1137 rq = this_rq();
05fa785c 1138 raw_spin_lock(&rq->lock);
1da177e4
LT
1139
1140 return rq;
1141}
1142
8f4d37ec
PZ
1143#ifdef CONFIG_SCHED_HRTICK
1144/*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
8f4d37ec
PZ
1154
1155/*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160static inline int hrtick_enabled(struct rq *rq)
1161{
1162 if (!sched_feat(HRTICK))
1163 return 0;
ba42059f 1164 if (!cpu_active(cpu_of(rq)))
b328ca18 1165 return 0;
8f4d37ec
PZ
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167}
1168
8f4d37ec
PZ
1169static void hrtick_clear(struct rq *rq)
1170{
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173}
1174
8f4d37ec
PZ
1175/*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180{
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
05fa785c 1185 raw_spin_lock(&rq->lock);
3e51f33f 1186 update_rq_clock(rq);
8f4d37ec 1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1188 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1189
1190 return HRTIMER_NORESTART;
1191}
1192
95e904c7 1193#ifdef CONFIG_SMP
31656519
PZ
1194/*
1195 * called from hardirq (IPI) context
1196 */
1197static void __hrtick_start(void *arg)
b328ca18 1198{
31656519 1199 struct rq *rq = arg;
b328ca18 1200
05fa785c 1201 raw_spin_lock(&rq->lock);
31656519
PZ
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
05fa785c 1204 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1205}
1206
31656519
PZ
1207/*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1213{
31656519
PZ
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1216
cc584b21 1217 hrtimer_set_expires(timer, time);
31656519
PZ
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
6e275637 1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1223 rq->hrtick_csd_pending = 1;
1224 }
b328ca18
PZ
1225}
1226
1227static int
1228hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229{
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
31656519 1239 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244}
1245
fa748203 1246static __init void init_hrtick(void)
b328ca18
PZ
1247{
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249}
31656519
PZ
1250#else
1251/*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256static void hrtick_start(struct rq *rq, u64 delay)
1257{
7f1e2ca9 1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1259 HRTIMER_MODE_REL_PINNED, 0);
31656519 1260}
b328ca18 1261
006c75f1 1262static inline void init_hrtick(void)
8f4d37ec 1263{
8f4d37ec 1264}
31656519 1265#endif /* CONFIG_SMP */
8f4d37ec 1266
31656519 1267static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1268{
31656519
PZ
1269#ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
8f4d37ec 1271
31656519
PZ
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275#endif
8f4d37ec 1276
31656519
PZ
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
8f4d37ec 1279}
006c75f1 1280#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1281static inline void hrtick_clear(struct rq *rq)
1282{
1283}
1284
8f4d37ec
PZ
1285static inline void init_rq_hrtick(struct rq *rq)
1286{
1287}
1288
b328ca18
PZ
1289static inline void init_hrtick(void)
1290{
1291}
006c75f1 1292#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1293
c24d20db
IM
1294/*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301#ifdef CONFIG_SMP
1302
1303#ifndef tsk_is_polling
1304#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305#endif
1306
31656519 1307static void resched_task(struct task_struct *p)
c24d20db
IM
1308{
1309 int cpu;
1310
05fa785c 1311 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1312
5ed0cec0 1313 if (test_tsk_need_resched(p))
c24d20db
IM
1314 return;
1315
5ed0cec0 1316 set_tsk_need_resched(p);
c24d20db
IM
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326}
1327
1328static void resched_cpu(int cpu)
1329{
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
05fa785c 1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1334 return;
1335 resched_task(cpu_curr(cpu));
05fa785c 1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1337}
06d8308c
TG
1338
1339#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1340/*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348int get_nohz_timer_target(void)
1349{
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
057f3fad 1354 rcu_read_lock();
83cd4fe2 1355 for_each_domain(cpu, sd) {
057f3fad
PZ
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
83cd4fe2 1362 }
057f3fad
PZ
1363unlock:
1364 rcu_read_unlock();
83cd4fe2
VP
1365 return cpu;
1366}
06d8308c
TG
1367/*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377void wake_up_idle_cpu(int cpu)
1378{
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
5ed0cec0 1399 set_tsk_need_resched(rq->idle);
06d8308c
TG
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405}
39c0cbe2 1406
6d6bc0ad 1407#endif /* CONFIG_NO_HZ */
06d8308c 1408
e9e9250b
PZ
1409static u64 sched_avg_period(void)
1410{
1411 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1412}
1413
1414static void sched_avg_update(struct rq *rq)
1415{
1416 s64 period = sched_avg_period();
1417
1418 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1419 /*
1420 * Inline assembly required to prevent the compiler
1421 * optimising this loop into a divmod call.
1422 * See __iter_div_u64_rem() for another example of this.
1423 */
1424 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1425 rq->age_stamp += period;
1426 rq->rt_avg /= 2;
1427 }
1428}
1429
1430static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1431{
1432 rq->rt_avg += rt_delta;
1433 sched_avg_update(rq);
1434}
1435
6d6bc0ad 1436#else /* !CONFIG_SMP */
31656519 1437static void resched_task(struct task_struct *p)
c24d20db 1438{
05fa785c 1439 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1440 set_tsk_need_resched(p);
c24d20db 1441}
e9e9250b
PZ
1442
1443static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1444{
1445}
da2b71ed
SS
1446
1447static void sched_avg_update(struct rq *rq)
1448{
1449}
6d6bc0ad 1450#endif /* CONFIG_SMP */
c24d20db 1451
45bf76df
IM
1452#if BITS_PER_LONG == 32
1453# define WMULT_CONST (~0UL)
1454#else
1455# define WMULT_CONST (1UL << 32)
1456#endif
1457
1458#define WMULT_SHIFT 32
1459
194081eb
IM
1460/*
1461 * Shift right and round:
1462 */
cf2ab469 1463#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1464
a7be37ac
PZ
1465/*
1466 * delta *= weight / lw
1467 */
cb1c4fc9 1468static unsigned long
45bf76df
IM
1469calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1470 struct load_weight *lw)
1471{
1472 u64 tmp;
1473
c8b28116
NR
1474 /*
1475 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1476 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1477 * 2^SCHED_LOAD_RESOLUTION.
1478 */
1479 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1480 tmp = (u64)delta_exec * scale_load_down(weight);
1481 else
1482 tmp = (u64)delta_exec;
db670dac 1483
7a232e03 1484 if (!lw->inv_weight) {
c8b28116
NR
1485 unsigned long w = scale_load_down(lw->weight);
1486
1487 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1488 lw->inv_weight = 1;
c8b28116
NR
1489 else if (unlikely(!w))
1490 lw->inv_weight = WMULT_CONST;
7a232e03 1491 else
c8b28116 1492 lw->inv_weight = WMULT_CONST / w;
7a232e03 1493 }
45bf76df 1494
45bf76df
IM
1495 /*
1496 * Check whether we'd overflow the 64-bit multiplication:
1497 */
194081eb 1498 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1499 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1500 WMULT_SHIFT/2);
1501 else
cf2ab469 1502 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1503
ecf691da 1504 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1505}
1506
1091985b 1507static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1508{
1509 lw->weight += inc;
e89996ae 1510 lw->inv_weight = 0;
45bf76df
IM
1511}
1512
1091985b 1513static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1514{
1515 lw->weight -= dec;
e89996ae 1516 lw->inv_weight = 0;
45bf76df
IM
1517}
1518
2069dd75
PZ
1519static inline void update_load_set(struct load_weight *lw, unsigned long w)
1520{
1521 lw->weight = w;
1522 lw->inv_weight = 0;
1523}
1524
2dd73a4f
PW
1525/*
1526 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1527 * of tasks with abnormal "nice" values across CPUs the contribution that
1528 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1529 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1530 * scaled version of the new time slice allocation that they receive on time
1531 * slice expiry etc.
1532 */
1533
cce7ade8
PZ
1534#define WEIGHT_IDLEPRIO 3
1535#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1536
1537/*
1538 * Nice levels are multiplicative, with a gentle 10% change for every
1539 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1540 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1541 * that remained on nice 0.
1542 *
1543 * The "10% effect" is relative and cumulative: from _any_ nice level,
1544 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1545 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1546 * If a task goes up by ~10% and another task goes down by ~10% then
1547 * the relative distance between them is ~25%.)
dd41f596
IM
1548 */
1549static const int prio_to_weight[40] = {
254753dc
IM
1550 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1551 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1552 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1553 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1554 /* 0 */ 1024, 820, 655, 526, 423,
1555 /* 5 */ 335, 272, 215, 172, 137,
1556 /* 10 */ 110, 87, 70, 56, 45,
1557 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1558};
1559
5714d2de
IM
1560/*
1561 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1562 *
1563 * In cases where the weight does not change often, we can use the
1564 * precalculated inverse to speed up arithmetics by turning divisions
1565 * into multiplications:
1566 */
dd41f596 1567static const u32 prio_to_wmult[40] = {
254753dc
IM
1568 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1569 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1570 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1571 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1572 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1573 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1574 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1575 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1576};
2dd73a4f 1577
ef12fefa
BR
1578/* Time spent by the tasks of the cpu accounting group executing in ... */
1579enum cpuacct_stat_index {
1580 CPUACCT_STAT_USER, /* ... user mode */
1581 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1582
1583 CPUACCT_STAT_NSTATS,
1584};
1585
d842de87
SV
1586#ifdef CONFIG_CGROUP_CPUACCT
1587static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1588static void cpuacct_update_stats(struct task_struct *tsk,
1589 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1590#else
1591static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1592static inline void cpuacct_update_stats(struct task_struct *tsk,
1593 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1594#endif
1595
18d95a28
PZ
1596static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1597{
1598 update_load_add(&rq->load, load);
1599}
1600
1601static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1602{
1603 update_load_sub(&rq->load, load);
1604}
1605
a790de99
PT
1606#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1607 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1608typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1609
1610/*
8277434e
PT
1611 * Iterate task_group tree rooted at *from, calling @down when first entering a
1612 * node and @up when leaving it for the final time.
1613 *
1614 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1615 */
8277434e
PT
1616static int walk_tg_tree_from(struct task_group *from,
1617 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1618{
1619 struct task_group *parent, *child;
eb755805 1620 int ret;
c09595f6 1621
8277434e
PT
1622 parent = from;
1623
c09595f6 1624down:
eb755805
PZ
1625 ret = (*down)(parent, data);
1626 if (ret)
8277434e 1627 goto out;
c09595f6
PZ
1628 list_for_each_entry_rcu(child, &parent->children, siblings) {
1629 parent = child;
1630 goto down;
1631
1632up:
1633 continue;
1634 }
eb755805 1635 ret = (*up)(parent, data);
8277434e
PT
1636 if (ret || parent == from)
1637 goto out;
c09595f6
PZ
1638
1639 child = parent;
1640 parent = parent->parent;
1641 if (parent)
1642 goto up;
8277434e 1643out:
eb755805 1644 return ret;
c09595f6
PZ
1645}
1646
8277434e
PT
1647/*
1648 * Iterate the full tree, calling @down when first entering a node and @up when
1649 * leaving it for the final time.
1650 *
1651 * Caller must hold rcu_lock or sufficient equivalent.
1652 */
1653
1654static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1655{
1656 return walk_tg_tree_from(&root_task_group, down, up, data);
1657}
1658
eb755805
PZ
1659static int tg_nop(struct task_group *tg, void *data)
1660{
1661 return 0;
c09595f6 1662}
eb755805
PZ
1663#endif
1664
1665#ifdef CONFIG_SMP
f5f08f39
PZ
1666/* Used instead of source_load when we know the type == 0 */
1667static unsigned long weighted_cpuload(const int cpu)
1668{
1669 return cpu_rq(cpu)->load.weight;
1670}
1671
1672/*
1673 * Return a low guess at the load of a migration-source cpu weighted
1674 * according to the scheduling class and "nice" value.
1675 *
1676 * We want to under-estimate the load of migration sources, to
1677 * balance conservatively.
1678 */
1679static unsigned long source_load(int cpu, int type)
1680{
1681 struct rq *rq = cpu_rq(cpu);
1682 unsigned long total = weighted_cpuload(cpu);
1683
1684 if (type == 0 || !sched_feat(LB_BIAS))
1685 return total;
1686
1687 return min(rq->cpu_load[type-1], total);
1688}
1689
1690/*
1691 * Return a high guess at the load of a migration-target cpu weighted
1692 * according to the scheduling class and "nice" value.
1693 */
1694static unsigned long target_load(int cpu, int type)
1695{
1696 struct rq *rq = cpu_rq(cpu);
1697 unsigned long total = weighted_cpuload(cpu);
1698
1699 if (type == 0 || !sched_feat(LB_BIAS))
1700 return total;
1701
1702 return max(rq->cpu_load[type-1], total);
1703}
1704
ae154be1
PZ
1705static unsigned long power_of(int cpu)
1706{
e51fd5e2 1707 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1708}
1709
eb755805
PZ
1710static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1711
1712static unsigned long cpu_avg_load_per_task(int cpu)
1713{
1714 struct rq *rq = cpu_rq(cpu);
af6d596f 1715 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1716
4cd42620 1717 if (nr_running)
e2b245f8 1718 return rq->load.weight / nr_running;
eb755805 1719
e2b245f8 1720 return 0;
eb755805
PZ
1721}
1722
8f45e2b5
GH
1723#ifdef CONFIG_PREEMPT
1724
b78bb868
PZ
1725static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1726
70574a99 1727/*
8f45e2b5
GH
1728 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1729 * way at the expense of forcing extra atomic operations in all
1730 * invocations. This assures that the double_lock is acquired using the
1731 * same underlying policy as the spinlock_t on this architecture, which
1732 * reduces latency compared to the unfair variant below. However, it
1733 * also adds more overhead and therefore may reduce throughput.
70574a99 1734 */
8f45e2b5
GH
1735static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1736 __releases(this_rq->lock)
1737 __acquires(busiest->lock)
1738 __acquires(this_rq->lock)
1739{
05fa785c 1740 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1741 double_rq_lock(this_rq, busiest);
1742
1743 return 1;
1744}
1745
1746#else
1747/*
1748 * Unfair double_lock_balance: Optimizes throughput at the expense of
1749 * latency by eliminating extra atomic operations when the locks are
1750 * already in proper order on entry. This favors lower cpu-ids and will
1751 * grant the double lock to lower cpus over higher ids under contention,
1752 * regardless of entry order into the function.
1753 */
1754static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1755 __releases(this_rq->lock)
1756 __acquires(busiest->lock)
1757 __acquires(this_rq->lock)
1758{
1759 int ret = 0;
1760
05fa785c 1761 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1762 if (busiest < this_rq) {
05fa785c
TG
1763 raw_spin_unlock(&this_rq->lock);
1764 raw_spin_lock(&busiest->lock);
1765 raw_spin_lock_nested(&this_rq->lock,
1766 SINGLE_DEPTH_NESTING);
70574a99
AD
1767 ret = 1;
1768 } else
05fa785c
TG
1769 raw_spin_lock_nested(&busiest->lock,
1770 SINGLE_DEPTH_NESTING);
70574a99
AD
1771 }
1772 return ret;
1773}
1774
8f45e2b5
GH
1775#endif /* CONFIG_PREEMPT */
1776
1777/*
1778 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1779 */
1780static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1781{
1782 if (unlikely(!irqs_disabled())) {
1783 /* printk() doesn't work good under rq->lock */
05fa785c 1784 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1785 BUG_ON(1);
1786 }
1787
1788 return _double_lock_balance(this_rq, busiest);
1789}
1790
70574a99
AD
1791static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1792 __releases(busiest->lock)
1793{
05fa785c 1794 raw_spin_unlock(&busiest->lock);
70574a99
AD
1795 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1796}
1e3c88bd
PZ
1797
1798/*
1799 * double_rq_lock - safely lock two runqueues
1800 *
1801 * Note this does not disable interrupts like task_rq_lock,
1802 * you need to do so manually before calling.
1803 */
1804static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1805 __acquires(rq1->lock)
1806 __acquires(rq2->lock)
1807{
1808 BUG_ON(!irqs_disabled());
1809 if (rq1 == rq2) {
1810 raw_spin_lock(&rq1->lock);
1811 __acquire(rq2->lock); /* Fake it out ;) */
1812 } else {
1813 if (rq1 < rq2) {
1814 raw_spin_lock(&rq1->lock);
1815 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1816 } else {
1817 raw_spin_lock(&rq2->lock);
1818 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1819 }
1820 }
1e3c88bd
PZ
1821}
1822
1823/*
1824 * double_rq_unlock - safely unlock two runqueues
1825 *
1826 * Note this does not restore interrupts like task_rq_unlock,
1827 * you need to do so manually after calling.
1828 */
1829static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1830 __releases(rq1->lock)
1831 __releases(rq2->lock)
1832{
1833 raw_spin_unlock(&rq1->lock);
1834 if (rq1 != rq2)
1835 raw_spin_unlock(&rq2->lock);
1836 else
1837 __release(rq2->lock);
1838}
1839
d95f4122
MG
1840#else /* CONFIG_SMP */
1841
1842/*
1843 * double_rq_lock - safely lock two runqueues
1844 *
1845 * Note this does not disable interrupts like task_rq_lock,
1846 * you need to do so manually before calling.
1847 */
1848static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1849 __acquires(rq1->lock)
1850 __acquires(rq2->lock)
1851{
1852 BUG_ON(!irqs_disabled());
1853 BUG_ON(rq1 != rq2);
1854 raw_spin_lock(&rq1->lock);
1855 __acquire(rq2->lock); /* Fake it out ;) */
1856}
1857
1858/*
1859 * double_rq_unlock - safely unlock two runqueues
1860 *
1861 * Note this does not restore interrupts like task_rq_unlock,
1862 * you need to do so manually after calling.
1863 */
1864static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1865 __releases(rq1->lock)
1866 __releases(rq2->lock)
1867{
1868 BUG_ON(rq1 != rq2);
1869 raw_spin_unlock(&rq1->lock);
1870 __release(rq2->lock);
1871}
1872
18d95a28
PZ
1873#endif
1874
74f5187a 1875static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1876static void update_sysctl(void);
acb4a848 1877static int get_update_sysctl_factor(void);
fdf3e95d 1878static void update_cpu_load(struct rq *this_rq);
dce48a84 1879
cd29fe6f
PZ
1880static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1881{
1882 set_task_rq(p, cpu);
1883#ifdef CONFIG_SMP
1884 /*
1885 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1886 * successfuly executed on another CPU. We must ensure that updates of
1887 * per-task data have been completed by this moment.
1888 */
1889 smp_wmb();
1890 task_thread_info(p)->cpu = cpu;
1891#endif
1892}
dce48a84 1893
1e3c88bd 1894static const struct sched_class rt_sched_class;
dd41f596 1895
34f971f6 1896#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1897#define for_each_class(class) \
1898 for (class = sched_class_highest; class; class = class->next)
dd41f596 1899
1e3c88bd
PZ
1900#include "sched_stats.h"
1901
c09595f6 1902static void inc_nr_running(struct rq *rq)
9c217245
IM
1903{
1904 rq->nr_running++;
9c217245
IM
1905}
1906
c09595f6 1907static void dec_nr_running(struct rq *rq)
9c217245
IM
1908{
1909 rq->nr_running--;
9c217245
IM
1910}
1911
45bf76df
IM
1912static void set_load_weight(struct task_struct *p)
1913{
f05998d4
NR
1914 int prio = p->static_prio - MAX_RT_PRIO;
1915 struct load_weight *load = &p->se.load;
1916
dd41f596
IM
1917 /*
1918 * SCHED_IDLE tasks get minimal weight:
1919 */
1920 if (p->policy == SCHED_IDLE) {
c8b28116 1921 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1922 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1923 return;
1924 }
71f8bd46 1925
c8b28116 1926 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1927 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1928}
1929
371fd7e7 1930static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1931{
a64692a3 1932 update_rq_clock(rq);
dd41f596 1933 sched_info_queued(p);
371fd7e7 1934 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1935}
1936
371fd7e7 1937static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1938{
a64692a3 1939 update_rq_clock(rq);
46ac22ba 1940 sched_info_dequeued(p);
371fd7e7 1941 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1942}
1943
1e3c88bd
PZ
1944/*
1945 * activate_task - move a task to the runqueue.
1946 */
371fd7e7 1947static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1948{
1949 if (task_contributes_to_load(p))
1950 rq->nr_uninterruptible--;
1951
371fd7e7 1952 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1953}
1954
1955/*
1956 * deactivate_task - remove a task from the runqueue.
1957 */
371fd7e7 1958static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1959{
1960 if (task_contributes_to_load(p))
1961 rq->nr_uninterruptible++;
1962
371fd7e7 1963 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1964}
1965
b52bfee4
VP
1966#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1967
305e6835
VP
1968/*
1969 * There are no locks covering percpu hardirq/softirq time.
1970 * They are only modified in account_system_vtime, on corresponding CPU
1971 * with interrupts disabled. So, writes are safe.
1972 * They are read and saved off onto struct rq in update_rq_clock().
1973 * This may result in other CPU reading this CPU's irq time and can
1974 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1975 * or new value with a side effect of accounting a slice of irq time to wrong
1976 * task when irq is in progress while we read rq->clock. That is a worthy
1977 * compromise in place of having locks on each irq in account_system_time.
305e6835 1978 */
b52bfee4
VP
1979static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1980static DEFINE_PER_CPU(u64, cpu_softirq_time);
1981
1982static DEFINE_PER_CPU(u64, irq_start_time);
1983static int sched_clock_irqtime;
1984
1985void enable_sched_clock_irqtime(void)
1986{
1987 sched_clock_irqtime = 1;
1988}
1989
1990void disable_sched_clock_irqtime(void)
1991{
1992 sched_clock_irqtime = 0;
1993}
1994
8e92c201
PZ
1995#ifndef CONFIG_64BIT
1996static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1997
1998static inline void irq_time_write_begin(void)
1999{
2000 __this_cpu_inc(irq_time_seq.sequence);
2001 smp_wmb();
2002}
2003
2004static inline void irq_time_write_end(void)
2005{
2006 smp_wmb();
2007 __this_cpu_inc(irq_time_seq.sequence);
2008}
2009
2010static inline u64 irq_time_read(int cpu)
2011{
2012 u64 irq_time;
2013 unsigned seq;
2014
2015 do {
2016 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2017 irq_time = per_cpu(cpu_softirq_time, cpu) +
2018 per_cpu(cpu_hardirq_time, cpu);
2019 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2020
2021 return irq_time;
2022}
2023#else /* CONFIG_64BIT */
2024static inline void irq_time_write_begin(void)
2025{
2026}
2027
2028static inline void irq_time_write_end(void)
2029{
2030}
2031
2032static inline u64 irq_time_read(int cpu)
305e6835 2033{
305e6835
VP
2034 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2035}
8e92c201 2036#endif /* CONFIG_64BIT */
305e6835 2037
fe44d621
PZ
2038/*
2039 * Called before incrementing preempt_count on {soft,}irq_enter
2040 * and before decrementing preempt_count on {soft,}irq_exit.
2041 */
b52bfee4
VP
2042void account_system_vtime(struct task_struct *curr)
2043{
2044 unsigned long flags;
fe44d621 2045 s64 delta;
b52bfee4 2046 int cpu;
b52bfee4
VP
2047
2048 if (!sched_clock_irqtime)
2049 return;
2050
2051 local_irq_save(flags);
2052
b52bfee4 2053 cpu = smp_processor_id();
fe44d621
PZ
2054 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2055 __this_cpu_add(irq_start_time, delta);
2056
8e92c201 2057 irq_time_write_begin();
b52bfee4
VP
2058 /*
2059 * We do not account for softirq time from ksoftirqd here.
2060 * We want to continue accounting softirq time to ksoftirqd thread
2061 * in that case, so as not to confuse scheduler with a special task
2062 * that do not consume any time, but still wants to run.
2063 */
2064 if (hardirq_count())
fe44d621 2065 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2066 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2067 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2068
8e92c201 2069 irq_time_write_end();
b52bfee4
VP
2070 local_irq_restore(flags);
2071}
b7dadc38 2072EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2073
e6e6685a
GC
2074#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2075
2076#ifdef CONFIG_PARAVIRT
2077static inline u64 steal_ticks(u64 steal)
aa483808 2078{
e6e6685a
GC
2079 if (unlikely(steal > NSEC_PER_SEC))
2080 return div_u64(steal, TICK_NSEC);
fe44d621 2081
e6e6685a
GC
2082 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2083}
2084#endif
2085
fe44d621 2086static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2087{
095c0aa8
GC
2088/*
2089 * In theory, the compile should just see 0 here, and optimize out the call
2090 * to sched_rt_avg_update. But I don't trust it...
2091 */
2092#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2093 s64 steal = 0, irq_delta = 0;
2094#endif
2095#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2096 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2097
2098 /*
2099 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2100 * this case when a previous update_rq_clock() happened inside a
2101 * {soft,}irq region.
2102 *
2103 * When this happens, we stop ->clock_task and only update the
2104 * prev_irq_time stamp to account for the part that fit, so that a next
2105 * update will consume the rest. This ensures ->clock_task is
2106 * monotonic.
2107 *
2108 * It does however cause some slight miss-attribution of {soft,}irq
2109 * time, a more accurate solution would be to update the irq_time using
2110 * the current rq->clock timestamp, except that would require using
2111 * atomic ops.
2112 */
2113 if (irq_delta > delta)
2114 irq_delta = delta;
2115
2116 rq->prev_irq_time += irq_delta;
2117 delta -= irq_delta;
095c0aa8
GC
2118#endif
2119#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2120 if (static_branch((&paravirt_steal_rq_enabled))) {
2121 u64 st;
2122
2123 steal = paravirt_steal_clock(cpu_of(rq));
2124 steal -= rq->prev_steal_time_rq;
2125
2126 if (unlikely(steal > delta))
2127 steal = delta;
2128
2129 st = steal_ticks(steal);
2130 steal = st * TICK_NSEC;
2131
2132 rq->prev_steal_time_rq += steal;
2133
2134 delta -= steal;
2135 }
2136#endif
2137
fe44d621
PZ
2138 rq->clock_task += delta;
2139
095c0aa8
GC
2140#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2141 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2142 sched_rt_avg_update(rq, irq_delta + steal);
2143#endif
aa483808
VP
2144}
2145
095c0aa8 2146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2147static int irqtime_account_hi_update(void)
2148{
2149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2150 unsigned long flags;
2151 u64 latest_ns;
2152 int ret = 0;
2153
2154 local_irq_save(flags);
2155 latest_ns = this_cpu_read(cpu_hardirq_time);
2156 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2157 ret = 1;
2158 local_irq_restore(flags);
2159 return ret;
2160}
2161
2162static int irqtime_account_si_update(void)
2163{
2164 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2165 unsigned long flags;
2166 u64 latest_ns;
2167 int ret = 0;
2168
2169 local_irq_save(flags);
2170 latest_ns = this_cpu_read(cpu_softirq_time);
2171 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2172 ret = 1;
2173 local_irq_restore(flags);
2174 return ret;
2175}
2176
fe44d621 2177#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2178
abb74cef
VP
2179#define sched_clock_irqtime (0)
2180
095c0aa8 2181#endif
b52bfee4 2182
1e3c88bd
PZ
2183#include "sched_idletask.c"
2184#include "sched_fair.c"
2185#include "sched_rt.c"
5091faa4 2186#include "sched_autogroup.c"
34f971f6 2187#include "sched_stoptask.c"
1e3c88bd
PZ
2188#ifdef CONFIG_SCHED_DEBUG
2189# include "sched_debug.c"
2190#endif
2191
34f971f6
PZ
2192void sched_set_stop_task(int cpu, struct task_struct *stop)
2193{
2194 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2195 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2196
2197 if (stop) {
2198 /*
2199 * Make it appear like a SCHED_FIFO task, its something
2200 * userspace knows about and won't get confused about.
2201 *
2202 * Also, it will make PI more or less work without too
2203 * much confusion -- but then, stop work should not
2204 * rely on PI working anyway.
2205 */
2206 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2207
2208 stop->sched_class = &stop_sched_class;
2209 }
2210
2211 cpu_rq(cpu)->stop = stop;
2212
2213 if (old_stop) {
2214 /*
2215 * Reset it back to a normal scheduling class so that
2216 * it can die in pieces.
2217 */
2218 old_stop->sched_class = &rt_sched_class;
2219 }
2220}
2221
14531189 2222/*
dd41f596 2223 * __normal_prio - return the priority that is based on the static prio
14531189 2224 */
14531189
IM
2225static inline int __normal_prio(struct task_struct *p)
2226{
dd41f596 2227 return p->static_prio;
14531189
IM
2228}
2229
b29739f9
IM
2230/*
2231 * Calculate the expected normal priority: i.e. priority
2232 * without taking RT-inheritance into account. Might be
2233 * boosted by interactivity modifiers. Changes upon fork,
2234 * setprio syscalls, and whenever the interactivity
2235 * estimator recalculates.
2236 */
36c8b586 2237static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2238{
2239 int prio;
2240
e05606d3 2241 if (task_has_rt_policy(p))
b29739f9
IM
2242 prio = MAX_RT_PRIO-1 - p->rt_priority;
2243 else
2244 prio = __normal_prio(p);
2245 return prio;
2246}
2247
2248/*
2249 * Calculate the current priority, i.e. the priority
2250 * taken into account by the scheduler. This value might
2251 * be boosted by RT tasks, or might be boosted by
2252 * interactivity modifiers. Will be RT if the task got
2253 * RT-boosted. If not then it returns p->normal_prio.
2254 */
36c8b586 2255static int effective_prio(struct task_struct *p)
b29739f9
IM
2256{
2257 p->normal_prio = normal_prio(p);
2258 /*
2259 * If we are RT tasks or we were boosted to RT priority,
2260 * keep the priority unchanged. Otherwise, update priority
2261 * to the normal priority:
2262 */
2263 if (!rt_prio(p->prio))
2264 return p->normal_prio;
2265 return p->prio;
2266}
2267
1da177e4
LT
2268/**
2269 * task_curr - is this task currently executing on a CPU?
2270 * @p: the task in question.
2271 */
36c8b586 2272inline int task_curr(const struct task_struct *p)
1da177e4
LT
2273{
2274 return cpu_curr(task_cpu(p)) == p;
2275}
2276
cb469845
SR
2277static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2278 const struct sched_class *prev_class,
da7a735e 2279 int oldprio)
cb469845
SR
2280{
2281 if (prev_class != p->sched_class) {
2282 if (prev_class->switched_from)
da7a735e
PZ
2283 prev_class->switched_from(rq, p);
2284 p->sched_class->switched_to(rq, p);
2285 } else if (oldprio != p->prio)
2286 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2287}
2288
1e5a7405
PZ
2289static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2290{
2291 const struct sched_class *class;
2292
2293 if (p->sched_class == rq->curr->sched_class) {
2294 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2295 } else {
2296 for_each_class(class) {
2297 if (class == rq->curr->sched_class)
2298 break;
2299 if (class == p->sched_class) {
2300 resched_task(rq->curr);
2301 break;
2302 }
2303 }
2304 }
2305
2306 /*
2307 * A queue event has occurred, and we're going to schedule. In
2308 * this case, we can save a useless back to back clock update.
2309 */
fd2f4419 2310 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2311 rq->skip_clock_update = 1;
2312}
2313
1da177e4 2314#ifdef CONFIG_SMP
cc367732
IM
2315/*
2316 * Is this task likely cache-hot:
2317 */
e7693a36 2318static int
cc367732
IM
2319task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2320{
2321 s64 delta;
2322
e6c8fba7
PZ
2323 if (p->sched_class != &fair_sched_class)
2324 return 0;
2325
ef8002f6
NR
2326 if (unlikely(p->policy == SCHED_IDLE))
2327 return 0;
2328
f540a608
IM
2329 /*
2330 * Buddy candidates are cache hot:
2331 */
f685ceac 2332 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2333 (&p->se == cfs_rq_of(&p->se)->next ||
2334 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2335 return 1;
2336
6bc1665b
IM
2337 if (sysctl_sched_migration_cost == -1)
2338 return 1;
2339 if (sysctl_sched_migration_cost == 0)
2340 return 0;
2341
cc367732
IM
2342 delta = now - p->se.exec_start;
2343
2344 return delta < (s64)sysctl_sched_migration_cost;
2345}
2346
dd41f596 2347void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2348{
e2912009
PZ
2349#ifdef CONFIG_SCHED_DEBUG
2350 /*
2351 * We should never call set_task_cpu() on a blocked task,
2352 * ttwu() will sort out the placement.
2353 */
077614ee
PZ
2354 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2355 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2356
2357#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2358 /*
2359 * The caller should hold either p->pi_lock or rq->lock, when changing
2360 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2361 *
2362 * sched_move_task() holds both and thus holding either pins the cgroup,
2363 * see set_task_rq().
2364 *
2365 * Furthermore, all task_rq users should acquire both locks, see
2366 * task_rq_lock().
2367 */
0122ec5b
PZ
2368 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2369 lockdep_is_held(&task_rq(p)->lock)));
2370#endif
e2912009
PZ
2371#endif
2372
de1d7286 2373 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2374
0c69774e
PZ
2375 if (task_cpu(p) != new_cpu) {
2376 p->se.nr_migrations++;
a8b0ca17 2377 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2378 }
dd41f596
IM
2379
2380 __set_task_cpu(p, new_cpu);
c65cc870
IM
2381}
2382
969c7921 2383struct migration_arg {
36c8b586 2384 struct task_struct *task;
1da177e4 2385 int dest_cpu;
70b97a7f 2386};
1da177e4 2387
969c7921
TH
2388static int migration_cpu_stop(void *data);
2389
1da177e4
LT
2390/*
2391 * wait_task_inactive - wait for a thread to unschedule.
2392 *
85ba2d86
RM
2393 * If @match_state is nonzero, it's the @p->state value just checked and
2394 * not expected to change. If it changes, i.e. @p might have woken up,
2395 * then return zero. When we succeed in waiting for @p to be off its CPU,
2396 * we return a positive number (its total switch count). If a second call
2397 * a short while later returns the same number, the caller can be sure that
2398 * @p has remained unscheduled the whole time.
2399 *
1da177e4
LT
2400 * The caller must ensure that the task *will* unschedule sometime soon,
2401 * else this function might spin for a *long* time. This function can't
2402 * be called with interrupts off, or it may introduce deadlock with
2403 * smp_call_function() if an IPI is sent by the same process we are
2404 * waiting to become inactive.
2405 */
85ba2d86 2406unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2407{
2408 unsigned long flags;
dd41f596 2409 int running, on_rq;
85ba2d86 2410 unsigned long ncsw;
70b97a7f 2411 struct rq *rq;
1da177e4 2412
3a5c359a
AK
2413 for (;;) {
2414 /*
2415 * We do the initial early heuristics without holding
2416 * any task-queue locks at all. We'll only try to get
2417 * the runqueue lock when things look like they will
2418 * work out!
2419 */
2420 rq = task_rq(p);
fa490cfd 2421
3a5c359a
AK
2422 /*
2423 * If the task is actively running on another CPU
2424 * still, just relax and busy-wait without holding
2425 * any locks.
2426 *
2427 * NOTE! Since we don't hold any locks, it's not
2428 * even sure that "rq" stays as the right runqueue!
2429 * But we don't care, since "task_running()" will
2430 * return false if the runqueue has changed and p
2431 * is actually now running somewhere else!
2432 */
85ba2d86
RM
2433 while (task_running(rq, p)) {
2434 if (match_state && unlikely(p->state != match_state))
2435 return 0;
3a5c359a 2436 cpu_relax();
85ba2d86 2437 }
fa490cfd 2438
3a5c359a
AK
2439 /*
2440 * Ok, time to look more closely! We need the rq
2441 * lock now, to be *sure*. If we're wrong, we'll
2442 * just go back and repeat.
2443 */
2444 rq = task_rq_lock(p, &flags);
27a9da65 2445 trace_sched_wait_task(p);
3a5c359a 2446 running = task_running(rq, p);
fd2f4419 2447 on_rq = p->on_rq;
85ba2d86 2448 ncsw = 0;
f31e11d8 2449 if (!match_state || p->state == match_state)
93dcf55f 2450 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2451 task_rq_unlock(rq, p, &flags);
fa490cfd 2452
85ba2d86
RM
2453 /*
2454 * If it changed from the expected state, bail out now.
2455 */
2456 if (unlikely(!ncsw))
2457 break;
2458
3a5c359a
AK
2459 /*
2460 * Was it really running after all now that we
2461 * checked with the proper locks actually held?
2462 *
2463 * Oops. Go back and try again..
2464 */
2465 if (unlikely(running)) {
2466 cpu_relax();
2467 continue;
2468 }
fa490cfd 2469
3a5c359a
AK
2470 /*
2471 * It's not enough that it's not actively running,
2472 * it must be off the runqueue _entirely_, and not
2473 * preempted!
2474 *
80dd99b3 2475 * So if it was still runnable (but just not actively
3a5c359a
AK
2476 * running right now), it's preempted, and we should
2477 * yield - it could be a while.
2478 */
2479 if (unlikely(on_rq)) {
8eb90c30
TG
2480 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2481
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2484 continue;
2485 }
fa490cfd 2486
3a5c359a
AK
2487 /*
2488 * Ahh, all good. It wasn't running, and it wasn't
2489 * runnable, which means that it will never become
2490 * running in the future either. We're all done!
2491 */
2492 break;
2493 }
85ba2d86
RM
2494
2495 return ncsw;
1da177e4
LT
2496}
2497
2498/***
2499 * kick_process - kick a running thread to enter/exit the kernel
2500 * @p: the to-be-kicked thread
2501 *
2502 * Cause a process which is running on another CPU to enter
2503 * kernel-mode, without any delay. (to get signals handled.)
2504 *
25985edc 2505 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2506 * because all it wants to ensure is that the remote task enters
2507 * the kernel. If the IPI races and the task has been migrated
2508 * to another CPU then no harm is done and the purpose has been
2509 * achieved as well.
2510 */
36c8b586 2511void kick_process(struct task_struct *p)
1da177e4
LT
2512{
2513 int cpu;
2514
2515 preempt_disable();
2516 cpu = task_cpu(p);
2517 if ((cpu != smp_processor_id()) && task_curr(p))
2518 smp_send_reschedule(cpu);
2519 preempt_enable();
2520}
b43e3521 2521EXPORT_SYMBOL_GPL(kick_process);
476d139c 2522#endif /* CONFIG_SMP */
1da177e4 2523
970b13ba 2524#ifdef CONFIG_SMP
30da688e 2525/*
013fdb80 2526 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2527 */
5da9a0fb
PZ
2528static int select_fallback_rq(int cpu, struct task_struct *p)
2529{
2530 int dest_cpu;
2531 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2532
2533 /* Look for allowed, online CPU in same node. */
2534 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2535 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2536 return dest_cpu;
2537
2538 /* Any allowed, online CPU? */
2539 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2540 if (dest_cpu < nr_cpu_ids)
2541 return dest_cpu;
2542
2543 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2544 dest_cpu = cpuset_cpus_allowed_fallback(p);
2545 /*
2546 * Don't tell them about moving exiting tasks or
2547 * kernel threads (both mm NULL), since they never
2548 * leave kernel.
2549 */
2550 if (p->mm && printk_ratelimit()) {
2551 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2552 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2553 }
2554
2555 return dest_cpu;
2556}
2557
e2912009 2558/*
013fdb80 2559 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2560 */
970b13ba 2561static inline
7608dec2 2562int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2563{
7608dec2 2564 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2565
2566 /*
2567 * In order not to call set_task_cpu() on a blocking task we need
2568 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2569 * cpu.
2570 *
2571 * Since this is common to all placement strategies, this lives here.
2572 *
2573 * [ this allows ->select_task() to simply return task_cpu(p) and
2574 * not worry about this generic constraint ]
2575 */
2576 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2577 !cpu_online(cpu)))
5da9a0fb 2578 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2579
2580 return cpu;
970b13ba 2581}
09a40af5
MG
2582
2583static void update_avg(u64 *avg, u64 sample)
2584{
2585 s64 diff = sample - *avg;
2586 *avg += diff >> 3;
2587}
970b13ba
PZ
2588#endif
2589
d7c01d27 2590static void
b84cb5df 2591ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2592{
d7c01d27 2593#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2594 struct rq *rq = this_rq();
2595
d7c01d27
PZ
2596#ifdef CONFIG_SMP
2597 int this_cpu = smp_processor_id();
2598
2599 if (cpu == this_cpu) {
2600 schedstat_inc(rq, ttwu_local);
2601 schedstat_inc(p, se.statistics.nr_wakeups_local);
2602 } else {
2603 struct sched_domain *sd;
2604
2605 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2606 rcu_read_lock();
d7c01d27
PZ
2607 for_each_domain(this_cpu, sd) {
2608 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2609 schedstat_inc(sd, ttwu_wake_remote);
2610 break;
2611 }
2612 }
057f3fad 2613 rcu_read_unlock();
d7c01d27 2614 }
f339b9dc
PZ
2615
2616 if (wake_flags & WF_MIGRATED)
2617 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2618
d7c01d27
PZ
2619#endif /* CONFIG_SMP */
2620
2621 schedstat_inc(rq, ttwu_count);
9ed3811a 2622 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2623
2624 if (wake_flags & WF_SYNC)
9ed3811a 2625 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2626
d7c01d27
PZ
2627#endif /* CONFIG_SCHEDSTATS */
2628}
2629
2630static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2631{
9ed3811a 2632 activate_task(rq, p, en_flags);
fd2f4419 2633 p->on_rq = 1;
c2f7115e
PZ
2634
2635 /* if a worker is waking up, notify workqueue */
2636 if (p->flags & PF_WQ_WORKER)
2637 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2638}
2639
23f41eeb
PZ
2640/*
2641 * Mark the task runnable and perform wakeup-preemption.
2642 */
89363381 2643static void
23f41eeb 2644ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2645{
89363381 2646 trace_sched_wakeup(p, true);
9ed3811a
TH
2647 check_preempt_curr(rq, p, wake_flags);
2648
2649 p->state = TASK_RUNNING;
2650#ifdef CONFIG_SMP
2651 if (p->sched_class->task_woken)
2652 p->sched_class->task_woken(rq, p);
2653
e69c6341 2654 if (rq->idle_stamp) {
9ed3811a
TH
2655 u64 delta = rq->clock - rq->idle_stamp;
2656 u64 max = 2*sysctl_sched_migration_cost;
2657
2658 if (delta > max)
2659 rq->avg_idle = max;
2660 else
2661 update_avg(&rq->avg_idle, delta);
2662 rq->idle_stamp = 0;
2663 }
2664#endif
2665}
2666
c05fbafb
PZ
2667static void
2668ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2669{
2670#ifdef CONFIG_SMP
2671 if (p->sched_contributes_to_load)
2672 rq->nr_uninterruptible--;
2673#endif
2674
2675 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2676 ttwu_do_wakeup(rq, p, wake_flags);
2677}
2678
2679/*
2680 * Called in case the task @p isn't fully descheduled from its runqueue,
2681 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2682 * since all we need to do is flip p->state to TASK_RUNNING, since
2683 * the task is still ->on_rq.
2684 */
2685static int ttwu_remote(struct task_struct *p, int wake_flags)
2686{
2687 struct rq *rq;
2688 int ret = 0;
2689
2690 rq = __task_rq_lock(p);
2691 if (p->on_rq) {
2692 ttwu_do_wakeup(rq, p, wake_flags);
2693 ret = 1;
2694 }
2695 __task_rq_unlock(rq);
2696
2697 return ret;
2698}
2699
317f3941 2700#ifdef CONFIG_SMP
c5d753a5 2701static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2702{
2703 struct rq *rq = this_rq();
317f3941
PZ
2704
2705 raw_spin_lock(&rq->lock);
2706
2707 while (list) {
2708 struct task_struct *p = list;
2709 list = list->wake_entry;
2710 ttwu_do_activate(rq, p, 0);
2711 }
2712
2713 raw_spin_unlock(&rq->lock);
2714}
2715
c5d753a5
PZ
2716#ifdef CONFIG_HOTPLUG_CPU
2717
2718static void sched_ttwu_pending(void)
2719{
2720 struct rq *rq = this_rq();
2721 struct task_struct *list = xchg(&rq->wake_list, NULL);
2722
2723 if (!list)
2724 return;
2725
2726 sched_ttwu_do_pending(list);
2727}
2728
2729#endif /* CONFIG_HOTPLUG_CPU */
2730
317f3941
PZ
2731void scheduler_ipi(void)
2732{
c5d753a5
PZ
2733 struct rq *rq = this_rq();
2734 struct task_struct *list = xchg(&rq->wake_list, NULL);
2735
2736 if (!list)
2737 return;
2738
2739 /*
2740 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2741 * traditionally all their work was done from the interrupt return
2742 * path. Now that we actually do some work, we need to make sure
2743 * we do call them.
2744 *
2745 * Some archs already do call them, luckily irq_enter/exit nest
2746 * properly.
2747 *
2748 * Arguably we should visit all archs and update all handlers,
2749 * however a fair share of IPIs are still resched only so this would
2750 * somewhat pessimize the simple resched case.
2751 */
2752 irq_enter();
2753 sched_ttwu_do_pending(list);
2754 irq_exit();
317f3941
PZ
2755}
2756
2757static void ttwu_queue_remote(struct task_struct *p, int cpu)
2758{
2759 struct rq *rq = cpu_rq(cpu);
2760 struct task_struct *next = rq->wake_list;
2761
2762 for (;;) {
2763 struct task_struct *old = next;
2764
2765 p->wake_entry = next;
2766 next = cmpxchg(&rq->wake_list, old, p);
2767 if (next == old)
2768 break;
2769 }
2770
2771 if (!next)
2772 smp_send_reschedule(cpu);
2773}
d6aa8f85
PZ
2774
2775#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2776static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2777{
2778 struct rq *rq;
2779 int ret = 0;
2780
2781 rq = __task_rq_lock(p);
2782 if (p->on_cpu) {
2783 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2784 ttwu_do_wakeup(rq, p, wake_flags);
2785 ret = 1;
2786 }
2787 __task_rq_unlock(rq);
2788
2789 return ret;
2790
2791}
2792#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2793#endif /* CONFIG_SMP */
317f3941 2794
c05fbafb
PZ
2795static void ttwu_queue(struct task_struct *p, int cpu)
2796{
2797 struct rq *rq = cpu_rq(cpu);
2798
17d9f311 2799#if defined(CONFIG_SMP)
317f3941 2800 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2801 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2802 ttwu_queue_remote(p, cpu);
2803 return;
2804 }
2805#endif
2806
c05fbafb
PZ
2807 raw_spin_lock(&rq->lock);
2808 ttwu_do_activate(rq, p, 0);
2809 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2810}
2811
2812/**
1da177e4 2813 * try_to_wake_up - wake up a thread
9ed3811a 2814 * @p: the thread to be awakened
1da177e4 2815 * @state: the mask of task states that can be woken
9ed3811a 2816 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2817 *
2818 * Put it on the run-queue if it's not already there. The "current"
2819 * thread is always on the run-queue (except when the actual
2820 * re-schedule is in progress), and as such you're allowed to do
2821 * the simpler "current->state = TASK_RUNNING" to mark yourself
2822 * runnable without the overhead of this.
2823 *
9ed3811a
TH
2824 * Returns %true if @p was woken up, %false if it was already running
2825 * or @state didn't match @p's state.
1da177e4 2826 */
e4a52bcb
PZ
2827static int
2828try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2829{
1da177e4 2830 unsigned long flags;
c05fbafb 2831 int cpu, success = 0;
2398f2c6 2832
04e2f174 2833 smp_wmb();
013fdb80 2834 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2835 if (!(p->state & state))
1da177e4
LT
2836 goto out;
2837
c05fbafb 2838 success = 1; /* we're going to change ->state */
1da177e4 2839 cpu = task_cpu(p);
1da177e4 2840
c05fbafb
PZ
2841 if (p->on_rq && ttwu_remote(p, wake_flags))
2842 goto stat;
1da177e4 2843
1da177e4 2844#ifdef CONFIG_SMP
e9c84311 2845 /*
c05fbafb
PZ
2846 * If the owning (remote) cpu is still in the middle of schedule() with
2847 * this task as prev, wait until its done referencing the task.
e9c84311 2848 */
e4a52bcb
PZ
2849 while (p->on_cpu) {
2850#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2851 /*
d6aa8f85
PZ
2852 * In case the architecture enables interrupts in
2853 * context_switch(), we cannot busy wait, since that
2854 * would lead to deadlocks when an interrupt hits and
2855 * tries to wake up @prev. So bail and do a complete
2856 * remote wakeup.
e4a52bcb 2857 */
d6aa8f85 2858 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2859 goto stat;
d6aa8f85 2860#else
e4a52bcb 2861 cpu_relax();
d6aa8f85 2862#endif
371fd7e7 2863 }
0970d299 2864 /*
e4a52bcb 2865 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2866 */
e4a52bcb 2867 smp_rmb();
1da177e4 2868
a8e4f2ea 2869 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2870 p->state = TASK_WAKING;
e7693a36 2871
e4a52bcb 2872 if (p->sched_class->task_waking)
74f8e4b2 2873 p->sched_class->task_waking(p);
efbbd05a 2874
7608dec2 2875 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2876 if (task_cpu(p) != cpu) {
2877 wake_flags |= WF_MIGRATED;
e4a52bcb 2878 set_task_cpu(p, cpu);
f339b9dc 2879 }
1da177e4 2880#endif /* CONFIG_SMP */
1da177e4 2881
c05fbafb
PZ
2882 ttwu_queue(p, cpu);
2883stat:
b84cb5df 2884 ttwu_stat(p, cpu, wake_flags);
1da177e4 2885out:
013fdb80 2886 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2887
2888 return success;
2889}
2890
21aa9af0
TH
2891/**
2892 * try_to_wake_up_local - try to wake up a local task with rq lock held
2893 * @p: the thread to be awakened
2894 *
2acca55e 2895 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2896 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2897 * the current task.
21aa9af0
TH
2898 */
2899static void try_to_wake_up_local(struct task_struct *p)
2900{
2901 struct rq *rq = task_rq(p);
21aa9af0
TH
2902
2903 BUG_ON(rq != this_rq());
2904 BUG_ON(p == current);
2905 lockdep_assert_held(&rq->lock);
2906
2acca55e
PZ
2907 if (!raw_spin_trylock(&p->pi_lock)) {
2908 raw_spin_unlock(&rq->lock);
2909 raw_spin_lock(&p->pi_lock);
2910 raw_spin_lock(&rq->lock);
2911 }
2912
21aa9af0 2913 if (!(p->state & TASK_NORMAL))
2acca55e 2914 goto out;
21aa9af0 2915
fd2f4419 2916 if (!p->on_rq)
d7c01d27
PZ
2917 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2918
23f41eeb 2919 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2920 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2921out:
2922 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2923}
2924
50fa610a
DH
2925/**
2926 * wake_up_process - Wake up a specific process
2927 * @p: The process to be woken up.
2928 *
2929 * Attempt to wake up the nominated process and move it to the set of runnable
2930 * processes. Returns 1 if the process was woken up, 0 if it was already
2931 * running.
2932 *
2933 * It may be assumed that this function implies a write memory barrier before
2934 * changing the task state if and only if any tasks are woken up.
2935 */
7ad5b3a5 2936int wake_up_process(struct task_struct *p)
1da177e4 2937{
d9514f6c 2938 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2939}
1da177e4
LT
2940EXPORT_SYMBOL(wake_up_process);
2941
7ad5b3a5 2942int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2943{
2944 return try_to_wake_up(p, state, 0);
2945}
2946
1da177e4
LT
2947/*
2948 * Perform scheduler related setup for a newly forked process p.
2949 * p is forked by current.
dd41f596
IM
2950 *
2951 * __sched_fork() is basic setup used by init_idle() too:
2952 */
2953static void __sched_fork(struct task_struct *p)
2954{
fd2f4419
PZ
2955 p->on_rq = 0;
2956
2957 p->se.on_rq = 0;
dd41f596
IM
2958 p->se.exec_start = 0;
2959 p->se.sum_exec_runtime = 0;
f6cf891c 2960 p->se.prev_sum_exec_runtime = 0;
6c594c21 2961 p->se.nr_migrations = 0;
da7a735e 2962 p->se.vruntime = 0;
fd2f4419 2963 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2964
2965#ifdef CONFIG_SCHEDSTATS
41acab88 2966 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2967#endif
476d139c 2968
fa717060 2969 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2970
e107be36
AK
2971#ifdef CONFIG_PREEMPT_NOTIFIERS
2972 INIT_HLIST_HEAD(&p->preempt_notifiers);
2973#endif
dd41f596
IM
2974}
2975
2976/*
2977 * fork()/clone()-time setup:
2978 */
3e51e3ed 2979void sched_fork(struct task_struct *p)
dd41f596 2980{
0122ec5b 2981 unsigned long flags;
dd41f596
IM
2982 int cpu = get_cpu();
2983
2984 __sched_fork(p);
06b83b5f 2985 /*
0017d735 2986 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2987 * nobody will actually run it, and a signal or other external
2988 * event cannot wake it up and insert it on the runqueue either.
2989 */
0017d735 2990 p->state = TASK_RUNNING;
dd41f596 2991
c350a04e
MG
2992 /*
2993 * Make sure we do not leak PI boosting priority to the child.
2994 */
2995 p->prio = current->normal_prio;
2996
b9dc29e7
MG
2997 /*
2998 * Revert to default priority/policy on fork if requested.
2999 */
3000 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 3001 if (task_has_rt_policy(p)) {
b9dc29e7 3002 p->policy = SCHED_NORMAL;
6c697bdf 3003 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
3004 p->rt_priority = 0;
3005 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3006 p->static_prio = NICE_TO_PRIO(0);
3007
3008 p->prio = p->normal_prio = __normal_prio(p);
3009 set_load_weight(p);
6c697bdf 3010
b9dc29e7
MG
3011 /*
3012 * We don't need the reset flag anymore after the fork. It has
3013 * fulfilled its duty:
3014 */
3015 p->sched_reset_on_fork = 0;
3016 }
ca94c442 3017
2ddbf952
HS
3018 if (!rt_prio(p->prio))
3019 p->sched_class = &fair_sched_class;
b29739f9 3020
cd29fe6f
PZ
3021 if (p->sched_class->task_fork)
3022 p->sched_class->task_fork(p);
3023
86951599
PZ
3024 /*
3025 * The child is not yet in the pid-hash so no cgroup attach races,
3026 * and the cgroup is pinned to this child due to cgroup_fork()
3027 * is ran before sched_fork().
3028 *
3029 * Silence PROVE_RCU.
3030 */
0122ec5b 3031 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3032 set_task_cpu(p, cpu);
0122ec5b 3033 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3034
52f17b6c 3035#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3036 if (likely(sched_info_on()))
52f17b6c 3037 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3038#endif
3ca7a440
PZ
3039#if defined(CONFIG_SMP)
3040 p->on_cpu = 0;
4866cde0 3041#endif
bdd4e85d 3042#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3043 /* Want to start with kernel preemption disabled. */
a1261f54 3044 task_thread_info(p)->preempt_count = 1;
1da177e4 3045#endif
806c09a7 3046#ifdef CONFIG_SMP
917b627d 3047 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3048#endif
917b627d 3049
476d139c 3050 put_cpu();
1da177e4
LT
3051}
3052
3053/*
3054 * wake_up_new_task - wake up a newly created task for the first time.
3055 *
3056 * This function will do some initial scheduler statistics housekeeping
3057 * that must be done for every newly created context, then puts the task
3058 * on the runqueue and wakes it.
3059 */
3e51e3ed 3060void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3061{
3062 unsigned long flags;
dd41f596 3063 struct rq *rq;
fabf318e 3064
ab2515c4 3065 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3066#ifdef CONFIG_SMP
3067 /*
3068 * Fork balancing, do it here and not earlier because:
3069 * - cpus_allowed can change in the fork path
3070 * - any previously selected cpu might disappear through hotplug
fabf318e 3071 */
ab2515c4 3072 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3073#endif
3074
ab2515c4 3075 rq = __task_rq_lock(p);
cd29fe6f 3076 activate_task(rq, p, 0);
fd2f4419 3077 p->on_rq = 1;
89363381 3078 trace_sched_wakeup_new(p, true);
a7558e01 3079 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3080#ifdef CONFIG_SMP
efbbd05a
PZ
3081 if (p->sched_class->task_woken)
3082 p->sched_class->task_woken(rq, p);
9a897c5a 3083#endif
0122ec5b 3084 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3085}
3086
e107be36
AK
3087#ifdef CONFIG_PREEMPT_NOTIFIERS
3088
3089/**
80dd99b3 3090 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3091 * @notifier: notifier struct to register
e107be36
AK
3092 */
3093void preempt_notifier_register(struct preempt_notifier *notifier)
3094{
3095 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3096}
3097EXPORT_SYMBOL_GPL(preempt_notifier_register);
3098
3099/**
3100 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3101 * @notifier: notifier struct to unregister
e107be36
AK
3102 *
3103 * This is safe to call from within a preemption notifier.
3104 */
3105void preempt_notifier_unregister(struct preempt_notifier *notifier)
3106{
3107 hlist_del(&notifier->link);
3108}
3109EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3110
3111static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3112{
3113 struct preempt_notifier *notifier;
3114 struct hlist_node *node;
3115
3116 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3117 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3118}
3119
3120static void
3121fire_sched_out_preempt_notifiers(struct task_struct *curr,
3122 struct task_struct *next)
3123{
3124 struct preempt_notifier *notifier;
3125 struct hlist_node *node;
3126
3127 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3128 notifier->ops->sched_out(notifier, next);
3129}
3130
6d6bc0ad 3131#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3132
3133static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3134{
3135}
3136
3137static void
3138fire_sched_out_preempt_notifiers(struct task_struct *curr,
3139 struct task_struct *next)
3140{
3141}
3142
6d6bc0ad 3143#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3144
4866cde0
NP
3145/**
3146 * prepare_task_switch - prepare to switch tasks
3147 * @rq: the runqueue preparing to switch
421cee29 3148 * @prev: the current task that is being switched out
4866cde0
NP
3149 * @next: the task we are going to switch to.
3150 *
3151 * This is called with the rq lock held and interrupts off. It must
3152 * be paired with a subsequent finish_task_switch after the context
3153 * switch.
3154 *
3155 * prepare_task_switch sets up locking and calls architecture specific
3156 * hooks.
3157 */
e107be36
AK
3158static inline void
3159prepare_task_switch(struct rq *rq, struct task_struct *prev,
3160 struct task_struct *next)
4866cde0 3161{
fe4b04fa
PZ
3162 sched_info_switch(prev, next);
3163 perf_event_task_sched_out(prev, next);
e107be36 3164 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3165 prepare_lock_switch(rq, next);
3166 prepare_arch_switch(next);
fe4b04fa 3167 trace_sched_switch(prev, next);
4866cde0
NP
3168}
3169
1da177e4
LT
3170/**
3171 * finish_task_switch - clean up after a task-switch
344babaa 3172 * @rq: runqueue associated with task-switch
1da177e4
LT
3173 * @prev: the thread we just switched away from.
3174 *
4866cde0
NP
3175 * finish_task_switch must be called after the context switch, paired
3176 * with a prepare_task_switch call before the context switch.
3177 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3178 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3179 *
3180 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3181 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3182 * with the lock held can cause deadlocks; see schedule() for
3183 * details.)
3184 */
a9957449 3185static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3186 __releases(rq->lock)
3187{
1da177e4 3188 struct mm_struct *mm = rq->prev_mm;
55a101f8 3189 long prev_state;
1da177e4
LT
3190
3191 rq->prev_mm = NULL;
3192
3193 /*
3194 * A task struct has one reference for the use as "current".
c394cc9f 3195 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3196 * schedule one last time. The schedule call will never return, and
3197 * the scheduled task must drop that reference.
c394cc9f 3198 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3199 * still held, otherwise prev could be scheduled on another cpu, die
3200 * there before we look at prev->state, and then the reference would
3201 * be dropped twice.
3202 * Manfred Spraul <manfred@colorfullife.com>
3203 */
55a101f8 3204 prev_state = prev->state;
4866cde0 3205 finish_arch_switch(prev);
8381f65d
JI
3206#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3207 local_irq_disable();
3208#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 3209 perf_event_task_sched_in(prev, current);
8381f65d
JI
3210#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3211 local_irq_enable();
3212#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3213 finish_lock_switch(rq, prev);
e8fa1362 3214
e107be36 3215 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3216 if (mm)
3217 mmdrop(mm);
c394cc9f 3218 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3219 /*
3220 * Remove function-return probe instances associated with this
3221 * task and put them back on the free list.
9761eea8 3222 */
c6fd91f0 3223 kprobe_flush_task(prev);
1da177e4 3224 put_task_struct(prev);
c6fd91f0 3225 }
1da177e4
LT
3226}
3227
3f029d3c
GH
3228#ifdef CONFIG_SMP
3229
3230/* assumes rq->lock is held */
3231static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3232{
3233 if (prev->sched_class->pre_schedule)
3234 prev->sched_class->pre_schedule(rq, prev);
3235}
3236
3237/* rq->lock is NOT held, but preemption is disabled */
3238static inline void post_schedule(struct rq *rq)
3239{
3240 if (rq->post_schedule) {
3241 unsigned long flags;
3242
05fa785c 3243 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3244 if (rq->curr->sched_class->post_schedule)
3245 rq->curr->sched_class->post_schedule(rq);
05fa785c 3246 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3247
3248 rq->post_schedule = 0;
3249 }
3250}
3251
3252#else
da19ab51 3253
3f029d3c
GH
3254static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3255{
3256}
3257
3258static inline void post_schedule(struct rq *rq)
3259{
1da177e4
LT
3260}
3261
3f029d3c
GH
3262#endif
3263
1da177e4
LT
3264/**
3265 * schedule_tail - first thing a freshly forked thread must call.
3266 * @prev: the thread we just switched away from.
3267 */
36c8b586 3268asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3269 __releases(rq->lock)
3270{
70b97a7f
IM
3271 struct rq *rq = this_rq();
3272
4866cde0 3273 finish_task_switch(rq, prev);
da19ab51 3274
3f029d3c
GH
3275 /*
3276 * FIXME: do we need to worry about rq being invalidated by the
3277 * task_switch?
3278 */
3279 post_schedule(rq);
70b97a7f 3280
4866cde0
NP
3281#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3282 /* In this case, finish_task_switch does not reenable preemption */
3283 preempt_enable();
3284#endif
1da177e4 3285 if (current->set_child_tid)
b488893a 3286 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3287}
3288
3289/*
3290 * context_switch - switch to the new MM and the new
3291 * thread's register state.
3292 */
dd41f596 3293static inline void
70b97a7f 3294context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3295 struct task_struct *next)
1da177e4 3296{
dd41f596 3297 struct mm_struct *mm, *oldmm;
1da177e4 3298
e107be36 3299 prepare_task_switch(rq, prev, next);
fe4b04fa 3300
dd41f596
IM
3301 mm = next->mm;
3302 oldmm = prev->active_mm;
9226d125
ZA
3303 /*
3304 * For paravirt, this is coupled with an exit in switch_to to
3305 * combine the page table reload and the switch backend into
3306 * one hypercall.
3307 */
224101ed 3308 arch_start_context_switch(prev);
9226d125 3309
31915ab4 3310 if (!mm) {
1da177e4
LT
3311 next->active_mm = oldmm;
3312 atomic_inc(&oldmm->mm_count);
3313 enter_lazy_tlb(oldmm, next);
3314 } else
3315 switch_mm(oldmm, mm, next);
3316
31915ab4 3317 if (!prev->mm) {
1da177e4 3318 prev->active_mm = NULL;
1da177e4
LT
3319 rq->prev_mm = oldmm;
3320 }
3a5f5e48
IM
3321 /*
3322 * Since the runqueue lock will be released by the next
3323 * task (which is an invalid locking op but in the case
3324 * of the scheduler it's an obvious special-case), so we
3325 * do an early lockdep release here:
3326 */
3327#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3328 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3329#endif
1da177e4
LT
3330
3331 /* Here we just switch the register state and the stack. */
3332 switch_to(prev, next, prev);
3333
dd41f596
IM
3334 barrier();
3335 /*
3336 * this_rq must be evaluated again because prev may have moved
3337 * CPUs since it called schedule(), thus the 'rq' on its stack
3338 * frame will be invalid.
3339 */
3340 finish_task_switch(this_rq(), prev);
1da177e4
LT
3341}
3342
3343/*
3344 * nr_running, nr_uninterruptible and nr_context_switches:
3345 *
3346 * externally visible scheduler statistics: current number of runnable
3347 * threads, current number of uninterruptible-sleeping threads, total
3348 * number of context switches performed since bootup.
3349 */
3350unsigned long nr_running(void)
3351{
3352 unsigned long i, sum = 0;
3353
3354 for_each_online_cpu(i)
3355 sum += cpu_rq(i)->nr_running;
3356
3357 return sum;
f711f609 3358}
1da177e4
LT
3359
3360unsigned long nr_uninterruptible(void)
f711f609 3361{
1da177e4 3362 unsigned long i, sum = 0;
f711f609 3363
0a945022 3364 for_each_possible_cpu(i)
1da177e4 3365 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3366
3367 /*
1da177e4
LT
3368 * Since we read the counters lockless, it might be slightly
3369 * inaccurate. Do not allow it to go below zero though:
f711f609 3370 */
1da177e4
LT
3371 if (unlikely((long)sum < 0))
3372 sum = 0;
f711f609 3373
1da177e4 3374 return sum;
f711f609 3375}
f711f609 3376
1da177e4 3377unsigned long long nr_context_switches(void)
46cb4b7c 3378{
cc94abfc
SR
3379 int i;
3380 unsigned long long sum = 0;
46cb4b7c 3381
0a945022 3382 for_each_possible_cpu(i)
1da177e4 3383 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3384
1da177e4
LT
3385 return sum;
3386}
483b4ee6 3387
1da177e4
LT
3388unsigned long nr_iowait(void)
3389{
3390 unsigned long i, sum = 0;
483b4ee6 3391
0a945022 3392 for_each_possible_cpu(i)
1da177e4 3393 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3394
1da177e4
LT
3395 return sum;
3396}
483b4ee6 3397
8c215bd3 3398unsigned long nr_iowait_cpu(int cpu)
69d25870 3399{
8c215bd3 3400 struct rq *this = cpu_rq(cpu);
69d25870
AV
3401 return atomic_read(&this->nr_iowait);
3402}
46cb4b7c 3403
69d25870
AV
3404unsigned long this_cpu_load(void)
3405{
3406 struct rq *this = this_rq();
3407 return this->cpu_load[0];
3408}
e790fb0b 3409
46cb4b7c 3410
dce48a84
TG
3411/* Variables and functions for calc_load */
3412static atomic_long_t calc_load_tasks;
3413static unsigned long calc_load_update;
3414unsigned long avenrun[3];
3415EXPORT_SYMBOL(avenrun);
46cb4b7c 3416
74f5187a
PZ
3417static long calc_load_fold_active(struct rq *this_rq)
3418{
3419 long nr_active, delta = 0;
3420
3421 nr_active = this_rq->nr_running;
3422 nr_active += (long) this_rq->nr_uninterruptible;
3423
3424 if (nr_active != this_rq->calc_load_active) {
3425 delta = nr_active - this_rq->calc_load_active;
3426 this_rq->calc_load_active = nr_active;
3427 }
3428
3429 return delta;
3430}
3431
0f004f5a
PZ
3432static unsigned long
3433calc_load(unsigned long load, unsigned long exp, unsigned long active)
3434{
3435 load *= exp;
3436 load += active * (FIXED_1 - exp);
3437 load += 1UL << (FSHIFT - 1);
3438 return load >> FSHIFT;
3439}
3440
74f5187a
PZ
3441#ifdef CONFIG_NO_HZ
3442/*
3443 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3444 *
3445 * When making the ILB scale, we should try to pull this in as well.
3446 */
3447static atomic_long_t calc_load_tasks_idle;
3448
3449static void calc_load_account_idle(struct rq *this_rq)
3450{
3451 long delta;
3452
3453 delta = calc_load_fold_active(this_rq);
3454 if (delta)
3455 atomic_long_add(delta, &calc_load_tasks_idle);
3456}
3457
3458static long calc_load_fold_idle(void)
3459{
3460 long delta = 0;
3461
3462 /*
3463 * Its got a race, we don't care...
3464 */
3465 if (atomic_long_read(&calc_load_tasks_idle))
3466 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3467
3468 return delta;
3469}
0f004f5a
PZ
3470
3471/**
3472 * fixed_power_int - compute: x^n, in O(log n) time
3473 *
3474 * @x: base of the power
3475 * @frac_bits: fractional bits of @x
3476 * @n: power to raise @x to.
3477 *
3478 * By exploiting the relation between the definition of the natural power
3479 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3480 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3481 * (where: n_i \elem {0, 1}, the binary vector representing n),
3482 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3483 * of course trivially computable in O(log_2 n), the length of our binary
3484 * vector.
3485 */
3486static unsigned long
3487fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3488{
3489 unsigned long result = 1UL << frac_bits;
3490
3491 if (n) for (;;) {
3492 if (n & 1) {
3493 result *= x;
3494 result += 1UL << (frac_bits - 1);
3495 result >>= frac_bits;
3496 }
3497 n >>= 1;
3498 if (!n)
3499 break;
3500 x *= x;
3501 x += 1UL << (frac_bits - 1);
3502 x >>= frac_bits;
3503 }
3504
3505 return result;
3506}
3507
3508/*
3509 * a1 = a0 * e + a * (1 - e)
3510 *
3511 * a2 = a1 * e + a * (1 - e)
3512 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3513 * = a0 * e^2 + a * (1 - e) * (1 + e)
3514 *
3515 * a3 = a2 * e + a * (1 - e)
3516 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3517 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3518 *
3519 * ...
3520 *
3521 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3522 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3523 * = a0 * e^n + a * (1 - e^n)
3524 *
3525 * [1] application of the geometric series:
3526 *
3527 * n 1 - x^(n+1)
3528 * S_n := \Sum x^i = -------------
3529 * i=0 1 - x
3530 */
3531static unsigned long
3532calc_load_n(unsigned long load, unsigned long exp,
3533 unsigned long active, unsigned int n)
3534{
3535
3536 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3537}
3538
3539/*
3540 * NO_HZ can leave us missing all per-cpu ticks calling
3541 * calc_load_account_active(), but since an idle CPU folds its delta into
3542 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3543 * in the pending idle delta if our idle period crossed a load cycle boundary.
3544 *
3545 * Once we've updated the global active value, we need to apply the exponential
3546 * weights adjusted to the number of cycles missed.
3547 */
3548static void calc_global_nohz(unsigned long ticks)
3549{
3550 long delta, active, n;
3551
3552 if (time_before(jiffies, calc_load_update))
3553 return;
3554
3555 /*
3556 * If we crossed a calc_load_update boundary, make sure to fold
3557 * any pending idle changes, the respective CPUs might have
3558 * missed the tick driven calc_load_account_active() update
3559 * due to NO_HZ.
3560 */
3561 delta = calc_load_fold_idle();
3562 if (delta)
3563 atomic_long_add(delta, &calc_load_tasks);
3564
3565 /*
3566 * If we were idle for multiple load cycles, apply them.
3567 */
3568 if (ticks >= LOAD_FREQ) {
3569 n = ticks / LOAD_FREQ;
3570
3571 active = atomic_long_read(&calc_load_tasks);
3572 active = active > 0 ? active * FIXED_1 : 0;
3573
3574 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3575 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3576 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3577
3578 calc_load_update += n * LOAD_FREQ;
3579 }
3580
3581 /*
3582 * Its possible the remainder of the above division also crosses
3583 * a LOAD_FREQ period, the regular check in calc_global_load()
3584 * which comes after this will take care of that.
3585 *
3586 * Consider us being 11 ticks before a cycle completion, and us
3587 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3588 * age us 4 cycles, and the test in calc_global_load() will
3589 * pick up the final one.
3590 */
3591}
74f5187a
PZ
3592#else
3593static void calc_load_account_idle(struct rq *this_rq)
3594{
3595}
3596
3597static inline long calc_load_fold_idle(void)
3598{
3599 return 0;
3600}
0f004f5a
PZ
3601
3602static void calc_global_nohz(unsigned long ticks)
3603{
3604}
74f5187a
PZ
3605#endif
3606
2d02494f
TG
3607/**
3608 * get_avenrun - get the load average array
3609 * @loads: pointer to dest load array
3610 * @offset: offset to add
3611 * @shift: shift count to shift the result left
3612 *
3613 * These values are estimates at best, so no need for locking.
3614 */
3615void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3616{
3617 loads[0] = (avenrun[0] + offset) << shift;
3618 loads[1] = (avenrun[1] + offset) << shift;
3619 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3620}
46cb4b7c 3621
46cb4b7c 3622/*
dce48a84
TG
3623 * calc_load - update the avenrun load estimates 10 ticks after the
3624 * CPUs have updated calc_load_tasks.
7835b98b 3625 */
0f004f5a 3626void calc_global_load(unsigned long ticks)
7835b98b 3627{
dce48a84 3628 long active;
1da177e4 3629
0f004f5a
PZ
3630 calc_global_nohz(ticks);
3631
3632 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3633 return;
1da177e4 3634
dce48a84
TG
3635 active = atomic_long_read(&calc_load_tasks);
3636 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3637
dce48a84
TG
3638 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3639 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3640 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3641
dce48a84
TG
3642 calc_load_update += LOAD_FREQ;
3643}
1da177e4 3644
dce48a84 3645/*
74f5187a
PZ
3646 * Called from update_cpu_load() to periodically update this CPU's
3647 * active count.
dce48a84
TG
3648 */
3649static void calc_load_account_active(struct rq *this_rq)
3650{
74f5187a 3651 long delta;
08c183f3 3652
74f5187a
PZ
3653 if (time_before(jiffies, this_rq->calc_load_update))
3654 return;
783609c6 3655
74f5187a
PZ
3656 delta = calc_load_fold_active(this_rq);
3657 delta += calc_load_fold_idle();
3658 if (delta)
dce48a84 3659 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3660
3661 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3662}
3663
fdf3e95d
VP
3664/*
3665 * The exact cpuload at various idx values, calculated at every tick would be
3666 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3667 *
3668 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3669 * on nth tick when cpu may be busy, then we have:
3670 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3671 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3672 *
3673 * decay_load_missed() below does efficient calculation of
3674 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3675 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3676 *
3677 * The calculation is approximated on a 128 point scale.
3678 * degrade_zero_ticks is the number of ticks after which load at any
3679 * particular idx is approximated to be zero.
3680 * degrade_factor is a precomputed table, a row for each load idx.
3681 * Each column corresponds to degradation factor for a power of two ticks,
3682 * based on 128 point scale.
3683 * Example:
3684 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3685 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3686 *
3687 * With this power of 2 load factors, we can degrade the load n times
3688 * by looking at 1 bits in n and doing as many mult/shift instead of
3689 * n mult/shifts needed by the exact degradation.
3690 */
3691#define DEGRADE_SHIFT 7
3692static const unsigned char
3693 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3694static const unsigned char
3695 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3696 {0, 0, 0, 0, 0, 0, 0, 0},
3697 {64, 32, 8, 0, 0, 0, 0, 0},
3698 {96, 72, 40, 12, 1, 0, 0},
3699 {112, 98, 75, 43, 15, 1, 0},
3700 {120, 112, 98, 76, 45, 16, 2} };
3701
3702/*
3703 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3704 * would be when CPU is idle and so we just decay the old load without
3705 * adding any new load.
3706 */
3707static unsigned long
3708decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3709{
3710 int j = 0;
3711
3712 if (!missed_updates)
3713 return load;
3714
3715 if (missed_updates >= degrade_zero_ticks[idx])
3716 return 0;
3717
3718 if (idx == 1)
3719 return load >> missed_updates;
3720
3721 while (missed_updates) {
3722 if (missed_updates % 2)
3723 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3724
3725 missed_updates >>= 1;
3726 j++;
3727 }
3728 return load;
3729}
3730
46cb4b7c 3731/*
dd41f596 3732 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3733 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3734 * every tick. We fix it up based on jiffies.
46cb4b7c 3735 */
dd41f596 3736static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3737{
495eca49 3738 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3739 unsigned long curr_jiffies = jiffies;
3740 unsigned long pending_updates;
dd41f596 3741 int i, scale;
46cb4b7c 3742
dd41f596 3743 this_rq->nr_load_updates++;
46cb4b7c 3744
fdf3e95d
VP
3745 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3746 if (curr_jiffies == this_rq->last_load_update_tick)
3747 return;
3748
3749 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3750 this_rq->last_load_update_tick = curr_jiffies;
3751
dd41f596 3752 /* Update our load: */
fdf3e95d
VP
3753 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3754 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3755 unsigned long old_load, new_load;
7d1e6a9b 3756
dd41f596 3757 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3758
dd41f596 3759 old_load = this_rq->cpu_load[i];
fdf3e95d 3760 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3761 new_load = this_load;
a25707f3
IM
3762 /*
3763 * Round up the averaging division if load is increasing. This
3764 * prevents us from getting stuck on 9 if the load is 10, for
3765 * example.
3766 */
3767 if (new_load > old_load)
fdf3e95d
VP
3768 new_load += scale - 1;
3769
3770 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3771 }
da2b71ed
SS
3772
3773 sched_avg_update(this_rq);
fdf3e95d
VP
3774}
3775
3776static void update_cpu_load_active(struct rq *this_rq)
3777{
3778 update_cpu_load(this_rq);
46cb4b7c 3779
74f5187a 3780 calc_load_account_active(this_rq);
46cb4b7c
SS
3781}
3782
dd41f596 3783#ifdef CONFIG_SMP
8a0be9ef 3784
46cb4b7c 3785/*
38022906
PZ
3786 * sched_exec - execve() is a valuable balancing opportunity, because at
3787 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3788 */
38022906 3789void sched_exec(void)
46cb4b7c 3790{
38022906 3791 struct task_struct *p = current;
1da177e4 3792 unsigned long flags;
0017d735 3793 int dest_cpu;
46cb4b7c 3794
8f42ced9 3795 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3796 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3797 if (dest_cpu == smp_processor_id())
3798 goto unlock;
38022906 3799
8f42ced9 3800 if (likely(cpu_active(dest_cpu))) {
969c7921 3801 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3802
8f42ced9
PZ
3803 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3804 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3805 return;
3806 }
0017d735 3807unlock:
8f42ced9 3808 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3809}
dd41f596 3810
1da177e4
LT
3811#endif
3812
1da177e4
LT
3813DEFINE_PER_CPU(struct kernel_stat, kstat);
3814
3815EXPORT_PER_CPU_SYMBOL(kstat);
3816
3817/*
c5f8d995 3818 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3819 * @p in case that task is currently running.
c5f8d995
HS
3820 *
3821 * Called with task_rq_lock() held on @rq.
1da177e4 3822 */
c5f8d995
HS
3823static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3824{
3825 u64 ns = 0;
3826
3827 if (task_current(rq, p)) {
3828 update_rq_clock(rq);
305e6835 3829 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3830 if ((s64)ns < 0)
3831 ns = 0;
3832 }
3833
3834 return ns;
3835}
3836
bb34d92f 3837unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3838{
1da177e4 3839 unsigned long flags;
41b86e9c 3840 struct rq *rq;
bb34d92f 3841 u64 ns = 0;
48f24c4d 3842
41b86e9c 3843 rq = task_rq_lock(p, &flags);
c5f8d995 3844 ns = do_task_delta_exec(p, rq);
0122ec5b 3845 task_rq_unlock(rq, p, &flags);
1508487e 3846
c5f8d995
HS
3847 return ns;
3848}
f06febc9 3849
c5f8d995
HS
3850/*
3851 * Return accounted runtime for the task.
3852 * In case the task is currently running, return the runtime plus current's
3853 * pending runtime that have not been accounted yet.
3854 */
3855unsigned long long task_sched_runtime(struct task_struct *p)
3856{
3857 unsigned long flags;
3858 struct rq *rq;
3859 u64 ns = 0;
3860
3861 rq = task_rq_lock(p, &flags);
3862 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3863 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3864
3865 return ns;
3866}
48f24c4d 3867
1da177e4
LT
3868/*
3869 * Account user cpu time to a process.
3870 * @p: the process that the cpu time gets accounted to
1da177e4 3871 * @cputime: the cpu time spent in user space since the last update
457533a7 3872 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3873 */
457533a7
MS
3874void account_user_time(struct task_struct *p, cputime_t cputime,
3875 cputime_t cputime_scaled)
1da177e4
LT
3876{
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3878 cputime64_t tmp;
3879
457533a7 3880 /* Add user time to process. */
1da177e4 3881 p->utime = cputime_add(p->utime, cputime);
457533a7 3882 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3883 account_group_user_time(p, cputime);
1da177e4
LT
3884
3885 /* Add user time to cpustat. */
3886 tmp = cputime_to_cputime64(cputime);
3887 if (TASK_NICE(p) > 0)
3888 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3889 else
3890 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3891
3892 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3893 /* Account for user time used */
3894 acct_update_integrals(p);
1da177e4
LT
3895}
3896
94886b84
LV
3897/*
3898 * Account guest cpu time to a process.
3899 * @p: the process that the cpu time gets accounted to
3900 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3901 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3902 */
457533a7
MS
3903static void account_guest_time(struct task_struct *p, cputime_t cputime,
3904 cputime_t cputime_scaled)
94886b84
LV
3905{
3906 cputime64_t tmp;
3907 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3908
3909 tmp = cputime_to_cputime64(cputime);
3910
457533a7 3911 /* Add guest time to process. */
94886b84 3912 p->utime = cputime_add(p->utime, cputime);
457533a7 3913 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3914 account_group_user_time(p, cputime);
94886b84
LV
3915 p->gtime = cputime_add(p->gtime, cputime);
3916
457533a7 3917 /* Add guest time to cpustat. */
ce0e7b28
RO
3918 if (TASK_NICE(p) > 0) {
3919 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3920 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3921 } else {
3922 cpustat->user = cputime64_add(cpustat->user, tmp);
3923 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3924 }
94886b84
LV
3925}
3926
70a89a66
VP
3927/*
3928 * Account system cpu time to a process and desired cpustat field
3929 * @p: the process that the cpu time gets accounted to
3930 * @cputime: the cpu time spent in kernel space since the last update
3931 * @cputime_scaled: cputime scaled by cpu frequency
3932 * @target_cputime64: pointer to cpustat field that has to be updated
3933 */
3934static inline
3935void __account_system_time(struct task_struct *p, cputime_t cputime,
3936 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3937{
3938 cputime64_t tmp = cputime_to_cputime64(cputime);
3939
3940 /* Add system time to process. */
3941 p->stime = cputime_add(p->stime, cputime);
3942 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3943 account_group_system_time(p, cputime);
3944
3945 /* Add system time to cpustat. */
3946 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3947 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3948
3949 /* Account for system time used */
3950 acct_update_integrals(p);
3951}
3952
1da177e4
LT
3953/*
3954 * Account system cpu time to a process.
3955 * @p: the process that the cpu time gets accounted to
3956 * @hardirq_offset: the offset to subtract from hardirq_count()
3957 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3958 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3959 */
3960void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3961 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3962{
3963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3964 cputime64_t *target_cputime64;
1da177e4 3965
983ed7a6 3966 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3967 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3968 return;
3969 }
94886b84 3970
1da177e4 3971 if (hardirq_count() - hardirq_offset)
70a89a66 3972 target_cputime64 = &cpustat->irq;
75e1056f 3973 else if (in_serving_softirq())
70a89a66 3974 target_cputime64 = &cpustat->softirq;
1da177e4 3975 else
70a89a66 3976 target_cputime64 = &cpustat->system;
ef12fefa 3977
70a89a66 3978 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3979}
3980
c66f08be 3981/*
1da177e4 3982 * Account for involuntary wait time.
544b4a1f 3983 * @cputime: the cpu time spent in involuntary wait
c66f08be 3984 */
79741dd3 3985void account_steal_time(cputime_t cputime)
c66f08be 3986{
79741dd3
MS
3987 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3988 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3989
3990 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3991}
3992
1da177e4 3993/*
79741dd3
MS
3994 * Account for idle time.
3995 * @cputime: the cpu time spent in idle wait
1da177e4 3996 */
79741dd3 3997void account_idle_time(cputime_t cputime)
1da177e4
LT
3998{
3999 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4000 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4001 struct rq *rq = this_rq();
1da177e4 4002
79741dd3
MS
4003 if (atomic_read(&rq->nr_iowait) > 0)
4004 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4005 else
4006 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4007}
4008
e6e6685a
GC
4009static __always_inline bool steal_account_process_tick(void)
4010{
4011#ifdef CONFIG_PARAVIRT
4012 if (static_branch(&paravirt_steal_enabled)) {
4013 u64 steal, st = 0;
4014
4015 steal = paravirt_steal_clock(smp_processor_id());
4016 steal -= this_rq()->prev_steal_time;
4017
4018 st = steal_ticks(steal);
4019 this_rq()->prev_steal_time += st * TICK_NSEC;
4020
4021 account_steal_time(st);
4022 return st;
4023 }
4024#endif
4025 return false;
4026}
4027
79741dd3
MS
4028#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4029
abb74cef
VP
4030#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4031/*
4032 * Account a tick to a process and cpustat
4033 * @p: the process that the cpu time gets accounted to
4034 * @user_tick: is the tick from userspace
4035 * @rq: the pointer to rq
4036 *
4037 * Tick demultiplexing follows the order
4038 * - pending hardirq update
4039 * - pending softirq update
4040 * - user_time
4041 * - idle_time
4042 * - system time
4043 * - check for guest_time
4044 * - else account as system_time
4045 *
4046 * Check for hardirq is done both for system and user time as there is
4047 * no timer going off while we are on hardirq and hence we may never get an
4048 * opportunity to update it solely in system time.
4049 * p->stime and friends are only updated on system time and not on irq
4050 * softirq as those do not count in task exec_runtime any more.
4051 */
4052static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4053 struct rq *rq)
4054{
4055 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4056 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4057 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4058
e6e6685a
GC
4059 if (steal_account_process_tick())
4060 return;
4061
abb74cef
VP
4062 if (irqtime_account_hi_update()) {
4063 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4064 } else if (irqtime_account_si_update()) {
4065 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4066 } else if (this_cpu_ksoftirqd() == p) {
4067 /*
4068 * ksoftirqd time do not get accounted in cpu_softirq_time.
4069 * So, we have to handle it separately here.
4070 * Also, p->stime needs to be updated for ksoftirqd.
4071 */
4072 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4073 &cpustat->softirq);
abb74cef
VP
4074 } else if (user_tick) {
4075 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4076 } else if (p == rq->idle) {
4077 account_idle_time(cputime_one_jiffy);
4078 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4079 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4080 } else {
4081 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4082 &cpustat->system);
4083 }
4084}
4085
4086static void irqtime_account_idle_ticks(int ticks)
4087{
4088 int i;
4089 struct rq *rq = this_rq();
4090
4091 for (i = 0; i < ticks; i++)
4092 irqtime_account_process_tick(current, 0, rq);
4093}
544b4a1f 4094#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4095static void irqtime_account_idle_ticks(int ticks) {}
4096static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4097 struct rq *rq) {}
544b4a1f 4098#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4099
4100/*
4101 * Account a single tick of cpu time.
4102 * @p: the process that the cpu time gets accounted to
4103 * @user_tick: indicates if the tick is a user or a system tick
4104 */
4105void account_process_tick(struct task_struct *p, int user_tick)
4106{
a42548a1 4107 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4108 struct rq *rq = this_rq();
4109
abb74cef
VP
4110 if (sched_clock_irqtime) {
4111 irqtime_account_process_tick(p, user_tick, rq);
4112 return;
4113 }
4114
e6e6685a
GC
4115 if (steal_account_process_tick())
4116 return;
4117
79741dd3 4118 if (user_tick)
a42548a1 4119 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4120 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4121 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4122 one_jiffy_scaled);
4123 else
a42548a1 4124 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4125}
4126
4127/*
4128 * Account multiple ticks of steal time.
4129 * @p: the process from which the cpu time has been stolen
4130 * @ticks: number of stolen ticks
4131 */
4132void account_steal_ticks(unsigned long ticks)
4133{
4134 account_steal_time(jiffies_to_cputime(ticks));
4135}
4136
4137/*
4138 * Account multiple ticks of idle time.
4139 * @ticks: number of stolen ticks
4140 */
4141void account_idle_ticks(unsigned long ticks)
4142{
abb74cef
VP
4143
4144 if (sched_clock_irqtime) {
4145 irqtime_account_idle_ticks(ticks);
4146 return;
4147 }
4148
79741dd3 4149 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4150}
4151
79741dd3
MS
4152#endif
4153
49048622
BS
4154/*
4155 * Use precise platform statistics if available:
4156 */
4157#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4158void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4159{
d99ca3b9
HS
4160 *ut = p->utime;
4161 *st = p->stime;
49048622
BS
4162}
4163
0cf55e1e 4164void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4165{
0cf55e1e
HS
4166 struct task_cputime cputime;
4167
4168 thread_group_cputime(p, &cputime);
4169
4170 *ut = cputime.utime;
4171 *st = cputime.stime;
49048622
BS
4172}
4173#else
761b1d26
HS
4174
4175#ifndef nsecs_to_cputime
b7b20df9 4176# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4177#endif
4178
d180c5bc 4179void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4180{
d99ca3b9 4181 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4182
4183 /*
4184 * Use CFS's precise accounting:
4185 */
d180c5bc 4186 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4187
4188 if (total) {
e75e863d 4189 u64 temp = rtime;
d180c5bc 4190
e75e863d 4191 temp *= utime;
49048622 4192 do_div(temp, total);
d180c5bc
HS
4193 utime = (cputime_t)temp;
4194 } else
4195 utime = rtime;
49048622 4196
d180c5bc
HS
4197 /*
4198 * Compare with previous values, to keep monotonicity:
4199 */
761b1d26 4200 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4201 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4202
d99ca3b9
HS
4203 *ut = p->prev_utime;
4204 *st = p->prev_stime;
49048622
BS
4205}
4206
0cf55e1e
HS
4207/*
4208 * Must be called with siglock held.
4209 */
4210void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4211{
0cf55e1e
HS
4212 struct signal_struct *sig = p->signal;
4213 struct task_cputime cputime;
4214 cputime_t rtime, utime, total;
49048622 4215
0cf55e1e 4216 thread_group_cputime(p, &cputime);
49048622 4217
0cf55e1e
HS
4218 total = cputime_add(cputime.utime, cputime.stime);
4219 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4220
0cf55e1e 4221 if (total) {
e75e863d 4222 u64 temp = rtime;
49048622 4223
e75e863d 4224 temp *= cputime.utime;
0cf55e1e
HS
4225 do_div(temp, total);
4226 utime = (cputime_t)temp;
4227 } else
4228 utime = rtime;
4229
4230 sig->prev_utime = max(sig->prev_utime, utime);
4231 sig->prev_stime = max(sig->prev_stime,
4232 cputime_sub(rtime, sig->prev_utime));
4233
4234 *ut = sig->prev_utime;
4235 *st = sig->prev_stime;
49048622 4236}
49048622 4237#endif
49048622 4238
7835b98b
CL
4239/*
4240 * This function gets called by the timer code, with HZ frequency.
4241 * We call it with interrupts disabled.
7835b98b
CL
4242 */
4243void scheduler_tick(void)
4244{
7835b98b
CL
4245 int cpu = smp_processor_id();
4246 struct rq *rq = cpu_rq(cpu);
dd41f596 4247 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4248
4249 sched_clock_tick();
dd41f596 4250
05fa785c 4251 raw_spin_lock(&rq->lock);
3e51f33f 4252 update_rq_clock(rq);
fdf3e95d 4253 update_cpu_load_active(rq);
fa85ae24 4254 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4255 raw_spin_unlock(&rq->lock);
7835b98b 4256
e9d2b064 4257 perf_event_task_tick();
e220d2dc 4258
e418e1c2 4259#ifdef CONFIG_SMP
dd41f596
IM
4260 rq->idle_at_tick = idle_cpu(cpu);
4261 trigger_load_balance(rq, cpu);
e418e1c2 4262#endif
1da177e4
LT
4263}
4264
132380a0 4265notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4266{
4267 if (in_lock_functions(addr)) {
4268 addr = CALLER_ADDR2;
4269 if (in_lock_functions(addr))
4270 addr = CALLER_ADDR3;
4271 }
4272 return addr;
4273}
1da177e4 4274
7e49fcce
SR
4275#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4276 defined(CONFIG_PREEMPT_TRACER))
4277
43627582 4278void __kprobes add_preempt_count(int val)
1da177e4 4279{
6cd8a4bb 4280#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4281 /*
4282 * Underflow?
4283 */
9a11b49a
IM
4284 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4285 return;
6cd8a4bb 4286#endif
1da177e4 4287 preempt_count() += val;
6cd8a4bb 4288#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4289 /*
4290 * Spinlock count overflowing soon?
4291 */
33859f7f
MOS
4292 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4293 PREEMPT_MASK - 10);
6cd8a4bb
SR
4294#endif
4295 if (preempt_count() == val)
4296 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4297}
4298EXPORT_SYMBOL(add_preempt_count);
4299
43627582 4300void __kprobes sub_preempt_count(int val)
1da177e4 4301{
6cd8a4bb 4302#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4303 /*
4304 * Underflow?
4305 */
01e3eb82 4306 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4307 return;
1da177e4
LT
4308 /*
4309 * Is the spinlock portion underflowing?
4310 */
9a11b49a
IM
4311 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4312 !(preempt_count() & PREEMPT_MASK)))
4313 return;
6cd8a4bb 4314#endif
9a11b49a 4315
6cd8a4bb
SR
4316 if (preempt_count() == val)
4317 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4318 preempt_count() -= val;
4319}
4320EXPORT_SYMBOL(sub_preempt_count);
4321
4322#endif
4323
4324/*
dd41f596 4325 * Print scheduling while atomic bug:
1da177e4 4326 */
dd41f596 4327static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4328{
838225b4
SS
4329 struct pt_regs *regs = get_irq_regs();
4330
3df0fc5b
PZ
4331 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4332 prev->comm, prev->pid, preempt_count());
838225b4 4333
dd41f596 4334 debug_show_held_locks(prev);
e21f5b15 4335 print_modules();
dd41f596
IM
4336 if (irqs_disabled())
4337 print_irqtrace_events(prev);
838225b4
SS
4338
4339 if (regs)
4340 show_regs(regs);
4341 else
4342 dump_stack();
dd41f596 4343}
1da177e4 4344
dd41f596
IM
4345/*
4346 * Various schedule()-time debugging checks and statistics:
4347 */
4348static inline void schedule_debug(struct task_struct *prev)
4349{
1da177e4 4350 /*
41a2d6cf 4351 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4352 * schedule() atomically, we ignore that path for now.
4353 * Otherwise, whine if we are scheduling when we should not be.
4354 */
3f33a7ce 4355 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4356 __schedule_bug(prev);
4357
1da177e4
LT
4358 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4359
2d72376b 4360 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4361}
4362
6cecd084 4363static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4364{
61eadef6 4365 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4366 update_rq_clock(rq);
6cecd084 4367 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4368}
4369
dd41f596
IM
4370/*
4371 * Pick up the highest-prio task:
4372 */
4373static inline struct task_struct *
b67802ea 4374pick_next_task(struct rq *rq)
dd41f596 4375{
5522d5d5 4376 const struct sched_class *class;
dd41f596 4377 struct task_struct *p;
1da177e4
LT
4378
4379 /*
dd41f596
IM
4380 * Optimization: we know that if all tasks are in
4381 * the fair class we can call that function directly:
1da177e4 4382 */
953bfcd1 4383 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4384 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4385 if (likely(p))
4386 return p;
1da177e4
LT
4387 }
4388
34f971f6 4389 for_each_class(class) {
fb8d4724 4390 p = class->pick_next_task(rq);
dd41f596
IM
4391 if (p)
4392 return p;
dd41f596 4393 }
34f971f6
PZ
4394
4395 BUG(); /* the idle class will always have a runnable task */
dd41f596 4396}
1da177e4 4397
dd41f596 4398/*
c259e01a 4399 * __schedule() is the main scheduler function.
dd41f596 4400 */
c259e01a 4401static void __sched __schedule(void)
dd41f596
IM
4402{
4403 struct task_struct *prev, *next;
67ca7bde 4404 unsigned long *switch_count;
dd41f596 4405 struct rq *rq;
31656519 4406 int cpu;
dd41f596 4407
ff743345
PZ
4408need_resched:
4409 preempt_disable();
dd41f596
IM
4410 cpu = smp_processor_id();
4411 rq = cpu_rq(cpu);
25502a6c 4412 rcu_note_context_switch(cpu);
dd41f596 4413 prev = rq->curr;
dd41f596 4414
dd41f596 4415 schedule_debug(prev);
1da177e4 4416
31656519 4417 if (sched_feat(HRTICK))
f333fdc9 4418 hrtick_clear(rq);
8f4d37ec 4419
05fa785c 4420 raw_spin_lock_irq(&rq->lock);
1da177e4 4421
246d86b5 4422 switch_count = &prev->nivcsw;
1da177e4 4423 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4424 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4425 prev->state = TASK_RUNNING;
21aa9af0 4426 } else {
2acca55e
PZ
4427 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4428 prev->on_rq = 0;
4429
21aa9af0 4430 /*
2acca55e
PZ
4431 * If a worker went to sleep, notify and ask workqueue
4432 * whether it wants to wake up a task to maintain
4433 * concurrency.
21aa9af0
TH
4434 */
4435 if (prev->flags & PF_WQ_WORKER) {
4436 struct task_struct *to_wakeup;
4437
4438 to_wakeup = wq_worker_sleeping(prev, cpu);
4439 if (to_wakeup)
4440 try_to_wake_up_local(to_wakeup);
4441 }
21aa9af0 4442 }
dd41f596 4443 switch_count = &prev->nvcsw;
1da177e4
LT
4444 }
4445
3f029d3c 4446 pre_schedule(rq, prev);
f65eda4f 4447
dd41f596 4448 if (unlikely(!rq->nr_running))
1da177e4 4449 idle_balance(cpu, rq);
1da177e4 4450
df1c99d4 4451 put_prev_task(rq, prev);
b67802ea 4452 next = pick_next_task(rq);
f26f9aff
MG
4453 clear_tsk_need_resched(prev);
4454 rq->skip_clock_update = 0;
1da177e4 4455
1da177e4 4456 if (likely(prev != next)) {
1da177e4
LT
4457 rq->nr_switches++;
4458 rq->curr = next;
4459 ++*switch_count;
4460
dd41f596 4461 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4462 /*
246d86b5
ON
4463 * The context switch have flipped the stack from under us
4464 * and restored the local variables which were saved when
4465 * this task called schedule() in the past. prev == current
4466 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4467 */
4468 cpu = smp_processor_id();
4469 rq = cpu_rq(cpu);
1da177e4 4470 } else
05fa785c 4471 raw_spin_unlock_irq(&rq->lock);
1da177e4 4472
3f029d3c 4473 post_schedule(rq);
1da177e4 4474
1da177e4 4475 preempt_enable_no_resched();
ff743345 4476 if (need_resched())
1da177e4
LT
4477 goto need_resched;
4478}
c259e01a 4479
9c40cef2
TG
4480static inline void sched_submit_work(struct task_struct *tsk)
4481{
4482 if (!tsk->state)
4483 return;
4484 /*
4485 * If we are going to sleep and we have plugged IO queued,
4486 * make sure to submit it to avoid deadlocks.
4487 */
4488 if (blk_needs_flush_plug(tsk))
4489 blk_schedule_flush_plug(tsk);
4490}
4491
6ebbe7a0 4492asmlinkage void __sched schedule(void)
c259e01a 4493{
9c40cef2
TG
4494 struct task_struct *tsk = current;
4495
4496 sched_submit_work(tsk);
c259e01a
TG
4497 __schedule();
4498}
1da177e4
LT
4499EXPORT_SYMBOL(schedule);
4500
c08f7829 4501#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4502
c6eb3dda
PZ
4503static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4504{
c6eb3dda 4505 if (lock->owner != owner)
307bf980 4506 return false;
0d66bf6d
PZ
4507
4508 /*
c6eb3dda
PZ
4509 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4510 * lock->owner still matches owner, if that fails, owner might
4511 * point to free()d memory, if it still matches, the rcu_read_lock()
4512 * ensures the memory stays valid.
0d66bf6d 4513 */
c6eb3dda 4514 barrier();
0d66bf6d 4515
307bf980 4516 return owner->on_cpu;
c6eb3dda 4517}
0d66bf6d 4518
c6eb3dda
PZ
4519/*
4520 * Look out! "owner" is an entirely speculative pointer
4521 * access and not reliable.
4522 */
4523int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4524{
4525 if (!sched_feat(OWNER_SPIN))
4526 return 0;
0d66bf6d 4527
307bf980 4528 rcu_read_lock();
c6eb3dda
PZ
4529 while (owner_running(lock, owner)) {
4530 if (need_resched())
307bf980 4531 break;
0d66bf6d 4532
335d7afb 4533 arch_mutex_cpu_relax();
0d66bf6d 4534 }
307bf980 4535 rcu_read_unlock();
4b402210 4536
c6eb3dda 4537 /*
307bf980
TG
4538 * We break out the loop above on need_resched() and when the
4539 * owner changed, which is a sign for heavy contention. Return
4540 * success only when lock->owner is NULL.
c6eb3dda 4541 */
307bf980 4542 return lock->owner == NULL;
0d66bf6d
PZ
4543}
4544#endif
4545
1da177e4
LT
4546#ifdef CONFIG_PREEMPT
4547/*
2ed6e34f 4548 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4549 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4550 * occur there and call schedule directly.
4551 */
d1f74e20 4552asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4553{
4554 struct thread_info *ti = current_thread_info();
6478d880 4555
1da177e4
LT
4556 /*
4557 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4558 * we do not want to preempt the current task. Just return..
1da177e4 4559 */
beed33a8 4560 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4561 return;
4562
3a5c359a 4563 do {
d1f74e20 4564 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 4565 __schedule();
d1f74e20 4566 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4567
3a5c359a
AK
4568 /*
4569 * Check again in case we missed a preemption opportunity
4570 * between schedule and now.
4571 */
4572 barrier();
5ed0cec0 4573 } while (need_resched());
1da177e4 4574}
1da177e4
LT
4575EXPORT_SYMBOL(preempt_schedule);
4576
4577/*
2ed6e34f 4578 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4579 * off of irq context.
4580 * Note, that this is called and return with irqs disabled. This will
4581 * protect us against recursive calling from irq.
4582 */
4583asmlinkage void __sched preempt_schedule_irq(void)
4584{
4585 struct thread_info *ti = current_thread_info();
6478d880 4586
2ed6e34f 4587 /* Catch callers which need to be fixed */
1da177e4
LT
4588 BUG_ON(ti->preempt_count || !irqs_disabled());
4589
3a5c359a
AK
4590 do {
4591 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4592 local_irq_enable();
c259e01a 4593 __schedule();
3a5c359a 4594 local_irq_disable();
3a5c359a 4595 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4596
3a5c359a
AK
4597 /*
4598 * Check again in case we missed a preemption opportunity
4599 * between schedule and now.
4600 */
4601 barrier();
5ed0cec0 4602 } while (need_resched());
1da177e4
LT
4603}
4604
4605#endif /* CONFIG_PREEMPT */
4606
63859d4f 4607int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4608 void *key)
1da177e4 4609{
63859d4f 4610 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4611}
1da177e4
LT
4612EXPORT_SYMBOL(default_wake_function);
4613
4614/*
41a2d6cf
IM
4615 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4616 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4617 * number) then we wake all the non-exclusive tasks and one exclusive task.
4618 *
4619 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4620 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4621 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4622 */
78ddb08f 4623static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4624 int nr_exclusive, int wake_flags, void *key)
1da177e4 4625{
2e45874c 4626 wait_queue_t *curr, *next;
1da177e4 4627
2e45874c 4628 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4629 unsigned flags = curr->flags;
4630
63859d4f 4631 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4632 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4633 break;
4634 }
4635}
4636
4637/**
4638 * __wake_up - wake up threads blocked on a waitqueue.
4639 * @q: the waitqueue
4640 * @mode: which threads
4641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4642 * @key: is directly passed to the wakeup function
50fa610a
DH
4643 *
4644 * It may be assumed that this function implies a write memory barrier before
4645 * changing the task state if and only if any tasks are woken up.
1da177e4 4646 */
7ad5b3a5 4647void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4648 int nr_exclusive, void *key)
1da177e4
LT
4649{
4650 unsigned long flags;
4651
4652 spin_lock_irqsave(&q->lock, flags);
4653 __wake_up_common(q, mode, nr_exclusive, 0, key);
4654 spin_unlock_irqrestore(&q->lock, flags);
4655}
1da177e4
LT
4656EXPORT_SYMBOL(__wake_up);
4657
4658/*
4659 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4660 */
7ad5b3a5 4661void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4662{
4663 __wake_up_common(q, mode, 1, 0, NULL);
4664}
22c43c81 4665EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4666
4ede816a
DL
4667void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4668{
4669 __wake_up_common(q, mode, 1, 0, key);
4670}
bf294b41 4671EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4672
1da177e4 4673/**
4ede816a 4674 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4675 * @q: the waitqueue
4676 * @mode: which threads
4677 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4678 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4679 *
4680 * The sync wakeup differs that the waker knows that it will schedule
4681 * away soon, so while the target thread will be woken up, it will not
4682 * be migrated to another CPU - ie. the two threads are 'synchronized'
4683 * with each other. This can prevent needless bouncing between CPUs.
4684 *
4685 * On UP it can prevent extra preemption.
50fa610a
DH
4686 *
4687 * It may be assumed that this function implies a write memory barrier before
4688 * changing the task state if and only if any tasks are woken up.
1da177e4 4689 */
4ede816a
DL
4690void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4691 int nr_exclusive, void *key)
1da177e4
LT
4692{
4693 unsigned long flags;
7d478721 4694 int wake_flags = WF_SYNC;
1da177e4
LT
4695
4696 if (unlikely(!q))
4697 return;
4698
4699 if (unlikely(!nr_exclusive))
7d478721 4700 wake_flags = 0;
1da177e4
LT
4701
4702 spin_lock_irqsave(&q->lock, flags);
7d478721 4703 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4704 spin_unlock_irqrestore(&q->lock, flags);
4705}
4ede816a
DL
4706EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4707
4708/*
4709 * __wake_up_sync - see __wake_up_sync_key()
4710 */
4711void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4712{
4713 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4714}
1da177e4
LT
4715EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4716
65eb3dc6
KD
4717/**
4718 * complete: - signals a single thread waiting on this completion
4719 * @x: holds the state of this particular completion
4720 *
4721 * This will wake up a single thread waiting on this completion. Threads will be
4722 * awakened in the same order in which they were queued.
4723 *
4724 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4725 *
4726 * It may be assumed that this function implies a write memory barrier before
4727 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4728 */
b15136e9 4729void complete(struct completion *x)
1da177e4
LT
4730{
4731 unsigned long flags;
4732
4733 spin_lock_irqsave(&x->wait.lock, flags);
4734 x->done++;
d9514f6c 4735 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4736 spin_unlock_irqrestore(&x->wait.lock, flags);
4737}
4738EXPORT_SYMBOL(complete);
4739
65eb3dc6
KD
4740/**
4741 * complete_all: - signals all threads waiting on this completion
4742 * @x: holds the state of this particular completion
4743 *
4744 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4745 *
4746 * It may be assumed that this function implies a write memory barrier before
4747 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4748 */
b15136e9 4749void complete_all(struct completion *x)
1da177e4
LT
4750{
4751 unsigned long flags;
4752
4753 spin_lock_irqsave(&x->wait.lock, flags);
4754 x->done += UINT_MAX/2;
d9514f6c 4755 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4756 spin_unlock_irqrestore(&x->wait.lock, flags);
4757}
4758EXPORT_SYMBOL(complete_all);
4759
8cbbe86d
AK
4760static inline long __sched
4761do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4762{
1da177e4
LT
4763 if (!x->done) {
4764 DECLARE_WAITQUEUE(wait, current);
4765
a93d2f17 4766 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4767 do {
94d3d824 4768 if (signal_pending_state(state, current)) {
ea71a546
ON
4769 timeout = -ERESTARTSYS;
4770 break;
8cbbe86d
AK
4771 }
4772 __set_current_state(state);
1da177e4
LT
4773 spin_unlock_irq(&x->wait.lock);
4774 timeout = schedule_timeout(timeout);
4775 spin_lock_irq(&x->wait.lock);
ea71a546 4776 } while (!x->done && timeout);
1da177e4 4777 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4778 if (!x->done)
4779 return timeout;
1da177e4
LT
4780 }
4781 x->done--;
ea71a546 4782 return timeout ?: 1;
1da177e4 4783}
1da177e4 4784
8cbbe86d
AK
4785static long __sched
4786wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4787{
1da177e4
LT
4788 might_sleep();
4789
4790 spin_lock_irq(&x->wait.lock);
8cbbe86d 4791 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4792 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4793 return timeout;
4794}
1da177e4 4795
65eb3dc6
KD
4796/**
4797 * wait_for_completion: - waits for completion of a task
4798 * @x: holds the state of this particular completion
4799 *
4800 * This waits to be signaled for completion of a specific task. It is NOT
4801 * interruptible and there is no timeout.
4802 *
4803 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4804 * and interrupt capability. Also see complete().
4805 */
b15136e9 4806void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4807{
4808 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4809}
8cbbe86d 4810EXPORT_SYMBOL(wait_for_completion);
1da177e4 4811
65eb3dc6
KD
4812/**
4813 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4814 * @x: holds the state of this particular completion
4815 * @timeout: timeout value in jiffies
4816 *
4817 * This waits for either a completion of a specific task to be signaled or for a
4818 * specified timeout to expire. The timeout is in jiffies. It is not
4819 * interruptible.
4820 */
b15136e9 4821unsigned long __sched
8cbbe86d 4822wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4823{
8cbbe86d 4824 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4825}
8cbbe86d 4826EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4827
65eb3dc6
KD
4828/**
4829 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4830 * @x: holds the state of this particular completion
4831 *
4832 * This waits for completion of a specific task to be signaled. It is
4833 * interruptible.
4834 */
8cbbe86d 4835int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4836{
51e97990
AK
4837 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4838 if (t == -ERESTARTSYS)
4839 return t;
4840 return 0;
0fec171c 4841}
8cbbe86d 4842EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4843
65eb3dc6
KD
4844/**
4845 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4846 * @x: holds the state of this particular completion
4847 * @timeout: timeout value in jiffies
4848 *
4849 * This waits for either a completion of a specific task to be signaled or for a
4850 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4851 */
6bf41237 4852long __sched
8cbbe86d
AK
4853wait_for_completion_interruptible_timeout(struct completion *x,
4854 unsigned long timeout)
0fec171c 4855{
8cbbe86d 4856 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4857}
8cbbe86d 4858EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4859
65eb3dc6
KD
4860/**
4861 * wait_for_completion_killable: - waits for completion of a task (killable)
4862 * @x: holds the state of this particular completion
4863 *
4864 * This waits to be signaled for completion of a specific task. It can be
4865 * interrupted by a kill signal.
4866 */
009e577e
MW
4867int __sched wait_for_completion_killable(struct completion *x)
4868{
4869 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4870 if (t == -ERESTARTSYS)
4871 return t;
4872 return 0;
4873}
4874EXPORT_SYMBOL(wait_for_completion_killable);
4875
0aa12fb4
SW
4876/**
4877 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4878 * @x: holds the state of this particular completion
4879 * @timeout: timeout value in jiffies
4880 *
4881 * This waits for either a completion of a specific task to be
4882 * signaled or for a specified timeout to expire. It can be
4883 * interrupted by a kill signal. The timeout is in jiffies.
4884 */
6bf41237 4885long __sched
0aa12fb4
SW
4886wait_for_completion_killable_timeout(struct completion *x,
4887 unsigned long timeout)
4888{
4889 return wait_for_common(x, timeout, TASK_KILLABLE);
4890}
4891EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4892
be4de352
DC
4893/**
4894 * try_wait_for_completion - try to decrement a completion without blocking
4895 * @x: completion structure
4896 *
4897 * Returns: 0 if a decrement cannot be done without blocking
4898 * 1 if a decrement succeeded.
4899 *
4900 * If a completion is being used as a counting completion,
4901 * attempt to decrement the counter without blocking. This
4902 * enables us to avoid waiting if the resource the completion
4903 * is protecting is not available.
4904 */
4905bool try_wait_for_completion(struct completion *x)
4906{
7539a3b3 4907 unsigned long flags;
be4de352
DC
4908 int ret = 1;
4909
7539a3b3 4910 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4911 if (!x->done)
4912 ret = 0;
4913 else
4914 x->done--;
7539a3b3 4915 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4916 return ret;
4917}
4918EXPORT_SYMBOL(try_wait_for_completion);
4919
4920/**
4921 * completion_done - Test to see if a completion has any waiters
4922 * @x: completion structure
4923 *
4924 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4925 * 1 if there are no waiters.
4926 *
4927 */
4928bool completion_done(struct completion *x)
4929{
7539a3b3 4930 unsigned long flags;
be4de352
DC
4931 int ret = 1;
4932
7539a3b3 4933 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4934 if (!x->done)
4935 ret = 0;
7539a3b3 4936 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4937 return ret;
4938}
4939EXPORT_SYMBOL(completion_done);
4940
8cbbe86d
AK
4941static long __sched
4942sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4943{
0fec171c
IM
4944 unsigned long flags;
4945 wait_queue_t wait;
4946
4947 init_waitqueue_entry(&wait, current);
1da177e4 4948
8cbbe86d 4949 __set_current_state(state);
1da177e4 4950
8cbbe86d
AK
4951 spin_lock_irqsave(&q->lock, flags);
4952 __add_wait_queue(q, &wait);
4953 spin_unlock(&q->lock);
4954 timeout = schedule_timeout(timeout);
4955 spin_lock_irq(&q->lock);
4956 __remove_wait_queue(q, &wait);
4957 spin_unlock_irqrestore(&q->lock, flags);
4958
4959 return timeout;
4960}
4961
4962void __sched interruptible_sleep_on(wait_queue_head_t *q)
4963{
4964 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4965}
1da177e4
LT
4966EXPORT_SYMBOL(interruptible_sleep_on);
4967
0fec171c 4968long __sched
95cdf3b7 4969interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4970{
8cbbe86d 4971 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4972}
1da177e4
LT
4973EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4974
0fec171c 4975void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4976{
8cbbe86d 4977 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4978}
1da177e4
LT
4979EXPORT_SYMBOL(sleep_on);
4980
0fec171c 4981long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4982{
8cbbe86d 4983 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4984}
1da177e4
LT
4985EXPORT_SYMBOL(sleep_on_timeout);
4986
b29739f9
IM
4987#ifdef CONFIG_RT_MUTEXES
4988
4989/*
4990 * rt_mutex_setprio - set the current priority of a task
4991 * @p: task
4992 * @prio: prio value (kernel-internal form)
4993 *
4994 * This function changes the 'effective' priority of a task. It does
4995 * not touch ->normal_prio like __setscheduler().
4996 *
4997 * Used by the rt_mutex code to implement priority inheritance logic.
4998 */
36c8b586 4999void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 5000{
83b699ed 5001 int oldprio, on_rq, running;
70b97a7f 5002 struct rq *rq;
83ab0aa0 5003 const struct sched_class *prev_class;
b29739f9
IM
5004
5005 BUG_ON(prio < 0 || prio > MAX_PRIO);
5006
0122ec5b 5007 rq = __task_rq_lock(p);
b29739f9 5008
a8027073 5009 trace_sched_pi_setprio(p, prio);
d5f9f942 5010 oldprio = p->prio;
83ab0aa0 5011 prev_class = p->sched_class;
fd2f4419 5012 on_rq = p->on_rq;
051a1d1a 5013 running = task_current(rq, p);
0e1f3483 5014 if (on_rq)
69be72c1 5015 dequeue_task(rq, p, 0);
0e1f3483
HS
5016 if (running)
5017 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5018
5019 if (rt_prio(prio))
5020 p->sched_class = &rt_sched_class;
5021 else
5022 p->sched_class = &fair_sched_class;
5023
b29739f9
IM
5024 p->prio = prio;
5025
0e1f3483
HS
5026 if (running)
5027 p->sched_class->set_curr_task(rq);
da7a735e 5028 if (on_rq)
371fd7e7 5029 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5030
da7a735e 5031 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5032 __task_rq_unlock(rq);
b29739f9
IM
5033}
5034
5035#endif
5036
36c8b586 5037void set_user_nice(struct task_struct *p, long nice)
1da177e4 5038{
dd41f596 5039 int old_prio, delta, on_rq;
1da177e4 5040 unsigned long flags;
70b97a7f 5041 struct rq *rq;
1da177e4
LT
5042
5043 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5044 return;
5045 /*
5046 * We have to be careful, if called from sys_setpriority(),
5047 * the task might be in the middle of scheduling on another CPU.
5048 */
5049 rq = task_rq_lock(p, &flags);
5050 /*
5051 * The RT priorities are set via sched_setscheduler(), but we still
5052 * allow the 'normal' nice value to be set - but as expected
5053 * it wont have any effect on scheduling until the task is
dd41f596 5054 * SCHED_FIFO/SCHED_RR:
1da177e4 5055 */
e05606d3 5056 if (task_has_rt_policy(p)) {
1da177e4
LT
5057 p->static_prio = NICE_TO_PRIO(nice);
5058 goto out_unlock;
5059 }
fd2f4419 5060 on_rq = p->on_rq;
c09595f6 5061 if (on_rq)
69be72c1 5062 dequeue_task(rq, p, 0);
1da177e4 5063
1da177e4 5064 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5065 set_load_weight(p);
b29739f9
IM
5066 old_prio = p->prio;
5067 p->prio = effective_prio(p);
5068 delta = p->prio - old_prio;
1da177e4 5069
dd41f596 5070 if (on_rq) {
371fd7e7 5071 enqueue_task(rq, p, 0);
1da177e4 5072 /*
d5f9f942
AM
5073 * If the task increased its priority or is running and
5074 * lowered its priority, then reschedule its CPU:
1da177e4 5075 */
d5f9f942 5076 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5077 resched_task(rq->curr);
5078 }
5079out_unlock:
0122ec5b 5080 task_rq_unlock(rq, p, &flags);
1da177e4 5081}
1da177e4
LT
5082EXPORT_SYMBOL(set_user_nice);
5083
e43379f1
MM
5084/*
5085 * can_nice - check if a task can reduce its nice value
5086 * @p: task
5087 * @nice: nice value
5088 */
36c8b586 5089int can_nice(const struct task_struct *p, const int nice)
e43379f1 5090{
024f4747
MM
5091 /* convert nice value [19,-20] to rlimit style value [1,40] */
5092 int nice_rlim = 20 - nice;
48f24c4d 5093
78d7d407 5094 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5095 capable(CAP_SYS_NICE));
5096}
5097
1da177e4
LT
5098#ifdef __ARCH_WANT_SYS_NICE
5099
5100/*
5101 * sys_nice - change the priority of the current process.
5102 * @increment: priority increment
5103 *
5104 * sys_setpriority is a more generic, but much slower function that
5105 * does similar things.
5106 */
5add95d4 5107SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5108{
48f24c4d 5109 long nice, retval;
1da177e4
LT
5110
5111 /*
5112 * Setpriority might change our priority at the same moment.
5113 * We don't have to worry. Conceptually one call occurs first
5114 * and we have a single winner.
5115 */
e43379f1
MM
5116 if (increment < -40)
5117 increment = -40;
1da177e4
LT
5118 if (increment > 40)
5119 increment = 40;
5120
2b8f836f 5121 nice = TASK_NICE(current) + increment;
1da177e4
LT
5122 if (nice < -20)
5123 nice = -20;
5124 if (nice > 19)
5125 nice = 19;
5126
e43379f1
MM
5127 if (increment < 0 && !can_nice(current, nice))
5128 return -EPERM;
5129
1da177e4
LT
5130 retval = security_task_setnice(current, nice);
5131 if (retval)
5132 return retval;
5133
5134 set_user_nice(current, nice);
5135 return 0;
5136}
5137
5138#endif
5139
5140/**
5141 * task_prio - return the priority value of a given task.
5142 * @p: the task in question.
5143 *
5144 * This is the priority value as seen by users in /proc.
5145 * RT tasks are offset by -200. Normal tasks are centered
5146 * around 0, value goes from -16 to +15.
5147 */
36c8b586 5148int task_prio(const struct task_struct *p)
1da177e4
LT
5149{
5150 return p->prio - MAX_RT_PRIO;
5151}
5152
5153/**
5154 * task_nice - return the nice value of a given task.
5155 * @p: the task in question.
5156 */
36c8b586 5157int task_nice(const struct task_struct *p)
1da177e4
LT
5158{
5159 return TASK_NICE(p);
5160}
150d8bed 5161EXPORT_SYMBOL(task_nice);
1da177e4
LT
5162
5163/**
5164 * idle_cpu - is a given cpu idle currently?
5165 * @cpu: the processor in question.
5166 */
5167int idle_cpu(int cpu)
5168{
5169 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5170}
5171
1da177e4
LT
5172/**
5173 * idle_task - return the idle task for a given cpu.
5174 * @cpu: the processor in question.
5175 */
36c8b586 5176struct task_struct *idle_task(int cpu)
1da177e4
LT
5177{
5178 return cpu_rq(cpu)->idle;
5179}
5180
5181/**
5182 * find_process_by_pid - find a process with a matching PID value.
5183 * @pid: the pid in question.
5184 */
a9957449 5185static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5186{
228ebcbe 5187 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5188}
5189
5190/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5191static void
5192__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5193{
1da177e4
LT
5194 p->policy = policy;
5195 p->rt_priority = prio;
b29739f9
IM
5196 p->normal_prio = normal_prio(p);
5197 /* we are holding p->pi_lock already */
5198 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5199 if (rt_prio(p->prio))
5200 p->sched_class = &rt_sched_class;
5201 else
5202 p->sched_class = &fair_sched_class;
2dd73a4f 5203 set_load_weight(p);
1da177e4
LT
5204}
5205
c69e8d9c
DH
5206/*
5207 * check the target process has a UID that matches the current process's
5208 */
5209static bool check_same_owner(struct task_struct *p)
5210{
5211 const struct cred *cred = current_cred(), *pcred;
5212 bool match;
5213
5214 rcu_read_lock();
5215 pcred = __task_cred(p);
b0e77598
SH
5216 if (cred->user->user_ns == pcred->user->user_ns)
5217 match = (cred->euid == pcred->euid ||
5218 cred->euid == pcred->uid);
5219 else
5220 match = false;
c69e8d9c
DH
5221 rcu_read_unlock();
5222 return match;
5223}
5224
961ccddd 5225static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5226 const struct sched_param *param, bool user)
1da177e4 5227{
83b699ed 5228 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5229 unsigned long flags;
83ab0aa0 5230 const struct sched_class *prev_class;
70b97a7f 5231 struct rq *rq;
ca94c442 5232 int reset_on_fork;
1da177e4 5233
66e5393a
SR
5234 /* may grab non-irq protected spin_locks */
5235 BUG_ON(in_interrupt());
1da177e4
LT
5236recheck:
5237 /* double check policy once rq lock held */
ca94c442
LP
5238 if (policy < 0) {
5239 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5240 policy = oldpolicy = p->policy;
ca94c442
LP
5241 } else {
5242 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5243 policy &= ~SCHED_RESET_ON_FORK;
5244
5245 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5246 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5247 policy != SCHED_IDLE)
5248 return -EINVAL;
5249 }
5250
1da177e4
LT
5251 /*
5252 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5253 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5254 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5255 */
5256 if (param->sched_priority < 0 ||
95cdf3b7 5257 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5258 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5259 return -EINVAL;
e05606d3 5260 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5261 return -EINVAL;
5262
37e4ab3f
OC
5263 /*
5264 * Allow unprivileged RT tasks to decrease priority:
5265 */
961ccddd 5266 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5267 if (rt_policy(policy)) {
a44702e8
ON
5268 unsigned long rlim_rtprio =
5269 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5270
5271 /* can't set/change the rt policy */
5272 if (policy != p->policy && !rlim_rtprio)
5273 return -EPERM;
5274
5275 /* can't increase priority */
5276 if (param->sched_priority > p->rt_priority &&
5277 param->sched_priority > rlim_rtprio)
5278 return -EPERM;
5279 }
c02aa73b 5280
dd41f596 5281 /*
c02aa73b
DH
5282 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5283 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5284 */
c02aa73b
DH
5285 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5286 if (!can_nice(p, TASK_NICE(p)))
5287 return -EPERM;
5288 }
5fe1d75f 5289
37e4ab3f 5290 /* can't change other user's priorities */
c69e8d9c 5291 if (!check_same_owner(p))
37e4ab3f 5292 return -EPERM;
ca94c442
LP
5293
5294 /* Normal users shall not reset the sched_reset_on_fork flag */
5295 if (p->sched_reset_on_fork && !reset_on_fork)
5296 return -EPERM;
37e4ab3f 5297 }
1da177e4 5298
725aad24 5299 if (user) {
b0ae1981 5300 retval = security_task_setscheduler(p);
725aad24
JF
5301 if (retval)
5302 return retval;
5303 }
5304
b29739f9
IM
5305 /*
5306 * make sure no PI-waiters arrive (or leave) while we are
5307 * changing the priority of the task:
0122ec5b 5308 *
25985edc 5309 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5310 * runqueue lock must be held.
5311 */
0122ec5b 5312 rq = task_rq_lock(p, &flags);
dc61b1d6 5313
34f971f6
PZ
5314 /*
5315 * Changing the policy of the stop threads its a very bad idea
5316 */
5317 if (p == rq->stop) {
0122ec5b 5318 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5319 return -EINVAL;
5320 }
5321
a51e9198
DF
5322 /*
5323 * If not changing anything there's no need to proceed further:
5324 */
5325 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5326 param->sched_priority == p->rt_priority))) {
5327
5328 __task_rq_unlock(rq);
5329 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5330 return 0;
5331 }
5332
dc61b1d6
PZ
5333#ifdef CONFIG_RT_GROUP_SCHED
5334 if (user) {
5335 /*
5336 * Do not allow realtime tasks into groups that have no runtime
5337 * assigned.
5338 */
5339 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5340 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5341 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5342 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5343 return -EPERM;
5344 }
5345 }
5346#endif
5347
1da177e4
LT
5348 /* recheck policy now with rq lock held */
5349 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5350 policy = oldpolicy = -1;
0122ec5b 5351 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5352 goto recheck;
5353 }
fd2f4419 5354 on_rq = p->on_rq;
051a1d1a 5355 running = task_current(rq, p);
0e1f3483 5356 if (on_rq)
2e1cb74a 5357 deactivate_task(rq, p, 0);
0e1f3483
HS
5358 if (running)
5359 p->sched_class->put_prev_task(rq, p);
f6b53205 5360
ca94c442
LP
5361 p->sched_reset_on_fork = reset_on_fork;
5362
1da177e4 5363 oldprio = p->prio;
83ab0aa0 5364 prev_class = p->sched_class;
dd41f596 5365 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5366
0e1f3483
HS
5367 if (running)
5368 p->sched_class->set_curr_task(rq);
da7a735e 5369 if (on_rq)
dd41f596 5370 activate_task(rq, p, 0);
cb469845 5371
da7a735e 5372 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5373 task_rq_unlock(rq, p, &flags);
b29739f9 5374
95e02ca9
TG
5375 rt_mutex_adjust_pi(p);
5376
1da177e4
LT
5377 return 0;
5378}
961ccddd
RR
5379
5380/**
5381 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5382 * @p: the task in question.
5383 * @policy: new policy.
5384 * @param: structure containing the new RT priority.
5385 *
5386 * NOTE that the task may be already dead.
5387 */
5388int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5389 const struct sched_param *param)
961ccddd
RR
5390{
5391 return __sched_setscheduler(p, policy, param, true);
5392}
1da177e4
LT
5393EXPORT_SYMBOL_GPL(sched_setscheduler);
5394
961ccddd
RR
5395/**
5396 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5397 * @p: the task in question.
5398 * @policy: new policy.
5399 * @param: structure containing the new RT priority.
5400 *
5401 * Just like sched_setscheduler, only don't bother checking if the
5402 * current context has permission. For example, this is needed in
5403 * stop_machine(): we create temporary high priority worker threads,
5404 * but our caller might not have that capability.
5405 */
5406int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5407 const struct sched_param *param)
961ccddd
RR
5408{
5409 return __sched_setscheduler(p, policy, param, false);
5410}
5411
95cdf3b7
IM
5412static int
5413do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5414{
1da177e4
LT
5415 struct sched_param lparam;
5416 struct task_struct *p;
36c8b586 5417 int retval;
1da177e4
LT
5418
5419 if (!param || pid < 0)
5420 return -EINVAL;
5421 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5422 return -EFAULT;
5fe1d75f
ON
5423
5424 rcu_read_lock();
5425 retval = -ESRCH;
1da177e4 5426 p = find_process_by_pid(pid);
5fe1d75f
ON
5427 if (p != NULL)
5428 retval = sched_setscheduler(p, policy, &lparam);
5429 rcu_read_unlock();
36c8b586 5430
1da177e4
LT
5431 return retval;
5432}
5433
5434/**
5435 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5436 * @pid: the pid in question.
5437 * @policy: new policy.
5438 * @param: structure containing the new RT priority.
5439 */
5add95d4
HC
5440SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5441 struct sched_param __user *, param)
1da177e4 5442{
c21761f1
JB
5443 /* negative values for policy are not valid */
5444 if (policy < 0)
5445 return -EINVAL;
5446
1da177e4
LT
5447 return do_sched_setscheduler(pid, policy, param);
5448}
5449
5450/**
5451 * sys_sched_setparam - set/change the RT priority of a thread
5452 * @pid: the pid in question.
5453 * @param: structure containing the new RT priority.
5454 */
5add95d4 5455SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5456{
5457 return do_sched_setscheduler(pid, -1, param);
5458}
5459
5460/**
5461 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5462 * @pid: the pid in question.
5463 */
5add95d4 5464SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5465{
36c8b586 5466 struct task_struct *p;
3a5c359a 5467 int retval;
1da177e4
LT
5468
5469 if (pid < 0)
3a5c359a 5470 return -EINVAL;
1da177e4
LT
5471
5472 retval = -ESRCH;
5fe85be0 5473 rcu_read_lock();
1da177e4
LT
5474 p = find_process_by_pid(pid);
5475 if (p) {
5476 retval = security_task_getscheduler(p);
5477 if (!retval)
ca94c442
LP
5478 retval = p->policy
5479 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5480 }
5fe85be0 5481 rcu_read_unlock();
1da177e4
LT
5482 return retval;
5483}
5484
5485/**
ca94c442 5486 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5487 * @pid: the pid in question.
5488 * @param: structure containing the RT priority.
5489 */
5add95d4 5490SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5491{
5492 struct sched_param lp;
36c8b586 5493 struct task_struct *p;
3a5c359a 5494 int retval;
1da177e4
LT
5495
5496 if (!param || pid < 0)
3a5c359a 5497 return -EINVAL;
1da177e4 5498
5fe85be0 5499 rcu_read_lock();
1da177e4
LT
5500 p = find_process_by_pid(pid);
5501 retval = -ESRCH;
5502 if (!p)
5503 goto out_unlock;
5504
5505 retval = security_task_getscheduler(p);
5506 if (retval)
5507 goto out_unlock;
5508
5509 lp.sched_priority = p->rt_priority;
5fe85be0 5510 rcu_read_unlock();
1da177e4
LT
5511
5512 /*
5513 * This one might sleep, we cannot do it with a spinlock held ...
5514 */
5515 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5516
1da177e4
LT
5517 return retval;
5518
5519out_unlock:
5fe85be0 5520 rcu_read_unlock();
1da177e4
LT
5521 return retval;
5522}
5523
96f874e2 5524long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5525{
5a16f3d3 5526 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5527 struct task_struct *p;
5528 int retval;
1da177e4 5529
95402b38 5530 get_online_cpus();
23f5d142 5531 rcu_read_lock();
1da177e4
LT
5532
5533 p = find_process_by_pid(pid);
5534 if (!p) {
23f5d142 5535 rcu_read_unlock();
95402b38 5536 put_online_cpus();
1da177e4
LT
5537 return -ESRCH;
5538 }
5539
23f5d142 5540 /* Prevent p going away */
1da177e4 5541 get_task_struct(p);
23f5d142 5542 rcu_read_unlock();
1da177e4 5543
5a16f3d3
RR
5544 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5545 retval = -ENOMEM;
5546 goto out_put_task;
5547 }
5548 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5549 retval = -ENOMEM;
5550 goto out_free_cpus_allowed;
5551 }
1da177e4 5552 retval = -EPERM;
b0e77598 5553 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5554 goto out_unlock;
5555
b0ae1981 5556 retval = security_task_setscheduler(p);
e7834f8f
DQ
5557 if (retval)
5558 goto out_unlock;
5559
5a16f3d3
RR
5560 cpuset_cpus_allowed(p, cpus_allowed);
5561 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5562again:
5a16f3d3 5563 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5564
8707d8b8 5565 if (!retval) {
5a16f3d3
RR
5566 cpuset_cpus_allowed(p, cpus_allowed);
5567 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5568 /*
5569 * We must have raced with a concurrent cpuset
5570 * update. Just reset the cpus_allowed to the
5571 * cpuset's cpus_allowed
5572 */
5a16f3d3 5573 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5574 goto again;
5575 }
5576 }
1da177e4 5577out_unlock:
5a16f3d3
RR
5578 free_cpumask_var(new_mask);
5579out_free_cpus_allowed:
5580 free_cpumask_var(cpus_allowed);
5581out_put_task:
1da177e4 5582 put_task_struct(p);
95402b38 5583 put_online_cpus();
1da177e4
LT
5584 return retval;
5585}
5586
5587static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5588 struct cpumask *new_mask)
1da177e4 5589{
96f874e2
RR
5590 if (len < cpumask_size())
5591 cpumask_clear(new_mask);
5592 else if (len > cpumask_size())
5593 len = cpumask_size();
5594
1da177e4
LT
5595 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5596}
5597
5598/**
5599 * sys_sched_setaffinity - set the cpu affinity of a process
5600 * @pid: pid of the process
5601 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5602 * @user_mask_ptr: user-space pointer to the new cpu mask
5603 */
5add95d4
HC
5604SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5605 unsigned long __user *, user_mask_ptr)
1da177e4 5606{
5a16f3d3 5607 cpumask_var_t new_mask;
1da177e4
LT
5608 int retval;
5609
5a16f3d3
RR
5610 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5611 return -ENOMEM;
1da177e4 5612
5a16f3d3
RR
5613 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5614 if (retval == 0)
5615 retval = sched_setaffinity(pid, new_mask);
5616 free_cpumask_var(new_mask);
5617 return retval;
1da177e4
LT
5618}
5619
96f874e2 5620long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5621{
36c8b586 5622 struct task_struct *p;
31605683 5623 unsigned long flags;
1da177e4 5624 int retval;
1da177e4 5625
95402b38 5626 get_online_cpus();
23f5d142 5627 rcu_read_lock();
1da177e4
LT
5628
5629 retval = -ESRCH;
5630 p = find_process_by_pid(pid);
5631 if (!p)
5632 goto out_unlock;
5633
e7834f8f
DQ
5634 retval = security_task_getscheduler(p);
5635 if (retval)
5636 goto out_unlock;
5637
013fdb80 5638 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5639 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5640 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5641
5642out_unlock:
23f5d142 5643 rcu_read_unlock();
95402b38 5644 put_online_cpus();
1da177e4 5645
9531b62f 5646 return retval;
1da177e4
LT
5647}
5648
5649/**
5650 * sys_sched_getaffinity - get the cpu affinity of a process
5651 * @pid: pid of the process
5652 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5653 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5654 */
5add95d4
HC
5655SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5656 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5657{
5658 int ret;
f17c8607 5659 cpumask_var_t mask;
1da177e4 5660
84fba5ec 5661 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5662 return -EINVAL;
5663 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5664 return -EINVAL;
5665
f17c8607
RR
5666 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5667 return -ENOMEM;
1da177e4 5668
f17c8607
RR
5669 ret = sched_getaffinity(pid, mask);
5670 if (ret == 0) {
8bc037fb 5671 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5672
5673 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5674 ret = -EFAULT;
5675 else
cd3d8031 5676 ret = retlen;
f17c8607
RR
5677 }
5678 free_cpumask_var(mask);
1da177e4 5679
f17c8607 5680 return ret;
1da177e4
LT
5681}
5682
5683/**
5684 * sys_sched_yield - yield the current processor to other threads.
5685 *
dd41f596
IM
5686 * This function yields the current CPU to other tasks. If there are no
5687 * other threads running on this CPU then this function will return.
1da177e4 5688 */
5add95d4 5689SYSCALL_DEFINE0(sched_yield)
1da177e4 5690{
70b97a7f 5691 struct rq *rq = this_rq_lock();
1da177e4 5692
2d72376b 5693 schedstat_inc(rq, yld_count);
4530d7ab 5694 current->sched_class->yield_task(rq);
1da177e4
LT
5695
5696 /*
5697 * Since we are going to call schedule() anyway, there's
5698 * no need to preempt or enable interrupts:
5699 */
5700 __release(rq->lock);
8a25d5de 5701 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5702 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5703 preempt_enable_no_resched();
5704
5705 schedule();
5706
5707 return 0;
5708}
5709
d86ee480
PZ
5710static inline int should_resched(void)
5711{
5712 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5713}
5714
e7b38404 5715static void __cond_resched(void)
1da177e4 5716{
e7aaaa69 5717 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 5718 __schedule();
e7aaaa69 5719 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5720}
5721
02b67cc3 5722int __sched _cond_resched(void)
1da177e4 5723{
d86ee480 5724 if (should_resched()) {
1da177e4
LT
5725 __cond_resched();
5726 return 1;
5727 }
5728 return 0;
5729}
02b67cc3 5730EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5731
5732/*
613afbf8 5733 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5734 * call schedule, and on return reacquire the lock.
5735 *
41a2d6cf 5736 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5737 * operations here to prevent schedule() from being called twice (once via
5738 * spin_unlock(), once by hand).
5739 */
613afbf8 5740int __cond_resched_lock(spinlock_t *lock)
1da177e4 5741{
d86ee480 5742 int resched = should_resched();
6df3cecb
JK
5743 int ret = 0;
5744
f607c668
PZ
5745 lockdep_assert_held(lock);
5746
95c354fe 5747 if (spin_needbreak(lock) || resched) {
1da177e4 5748 spin_unlock(lock);
d86ee480 5749 if (resched)
95c354fe
NP
5750 __cond_resched();
5751 else
5752 cpu_relax();
6df3cecb 5753 ret = 1;
1da177e4 5754 spin_lock(lock);
1da177e4 5755 }
6df3cecb 5756 return ret;
1da177e4 5757}
613afbf8 5758EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5759
613afbf8 5760int __sched __cond_resched_softirq(void)
1da177e4
LT
5761{
5762 BUG_ON(!in_softirq());
5763
d86ee480 5764 if (should_resched()) {
98d82567 5765 local_bh_enable();
1da177e4
LT
5766 __cond_resched();
5767 local_bh_disable();
5768 return 1;
5769 }
5770 return 0;
5771}
613afbf8 5772EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5773
1da177e4
LT
5774/**
5775 * yield - yield the current processor to other threads.
5776 *
72fd4a35 5777 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5778 * thread runnable and calls sys_sched_yield().
5779 */
5780void __sched yield(void)
5781{
5782 set_current_state(TASK_RUNNING);
5783 sys_sched_yield();
5784}
1da177e4
LT
5785EXPORT_SYMBOL(yield);
5786
d95f4122
MG
5787/**
5788 * yield_to - yield the current processor to another thread in
5789 * your thread group, or accelerate that thread toward the
5790 * processor it's on.
16addf95
RD
5791 * @p: target task
5792 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5793 *
5794 * It's the caller's job to ensure that the target task struct
5795 * can't go away on us before we can do any checks.
5796 *
5797 * Returns true if we indeed boosted the target task.
5798 */
5799bool __sched yield_to(struct task_struct *p, bool preempt)
5800{
5801 struct task_struct *curr = current;
5802 struct rq *rq, *p_rq;
5803 unsigned long flags;
5804 bool yielded = 0;
5805
5806 local_irq_save(flags);
5807 rq = this_rq();
5808
5809again:
5810 p_rq = task_rq(p);
5811 double_rq_lock(rq, p_rq);
5812 while (task_rq(p) != p_rq) {
5813 double_rq_unlock(rq, p_rq);
5814 goto again;
5815 }
5816
5817 if (!curr->sched_class->yield_to_task)
5818 goto out;
5819
5820 if (curr->sched_class != p->sched_class)
5821 goto out;
5822
5823 if (task_running(p_rq, p) || p->state)
5824 goto out;
5825
5826 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5827 if (yielded) {
d95f4122 5828 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5829 /*
5830 * Make p's CPU reschedule; pick_next_entity takes care of
5831 * fairness.
5832 */
5833 if (preempt && rq != p_rq)
5834 resched_task(p_rq->curr);
5835 }
d95f4122
MG
5836
5837out:
5838 double_rq_unlock(rq, p_rq);
5839 local_irq_restore(flags);
5840
5841 if (yielded)
5842 schedule();
5843
5844 return yielded;
5845}
5846EXPORT_SYMBOL_GPL(yield_to);
5847
1da177e4 5848/*
41a2d6cf 5849 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5850 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5851 */
5852void __sched io_schedule(void)
5853{
54d35f29 5854 struct rq *rq = raw_rq();
1da177e4 5855
0ff92245 5856 delayacct_blkio_start();
1da177e4 5857 atomic_inc(&rq->nr_iowait);
73c10101 5858 blk_flush_plug(current);
8f0dfc34 5859 current->in_iowait = 1;
1da177e4 5860 schedule();
8f0dfc34 5861 current->in_iowait = 0;
1da177e4 5862 atomic_dec(&rq->nr_iowait);
0ff92245 5863 delayacct_blkio_end();
1da177e4 5864}
1da177e4
LT
5865EXPORT_SYMBOL(io_schedule);
5866
5867long __sched io_schedule_timeout(long timeout)
5868{
54d35f29 5869 struct rq *rq = raw_rq();
1da177e4
LT
5870 long ret;
5871
0ff92245 5872 delayacct_blkio_start();
1da177e4 5873 atomic_inc(&rq->nr_iowait);
73c10101 5874 blk_flush_plug(current);
8f0dfc34 5875 current->in_iowait = 1;
1da177e4 5876 ret = schedule_timeout(timeout);
8f0dfc34 5877 current->in_iowait = 0;
1da177e4 5878 atomic_dec(&rq->nr_iowait);
0ff92245 5879 delayacct_blkio_end();
1da177e4
LT
5880 return ret;
5881}
5882
5883/**
5884 * sys_sched_get_priority_max - return maximum RT priority.
5885 * @policy: scheduling class.
5886 *
5887 * this syscall returns the maximum rt_priority that can be used
5888 * by a given scheduling class.
5889 */
5add95d4 5890SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5891{
5892 int ret = -EINVAL;
5893
5894 switch (policy) {
5895 case SCHED_FIFO:
5896 case SCHED_RR:
5897 ret = MAX_USER_RT_PRIO-1;
5898 break;
5899 case SCHED_NORMAL:
b0a9499c 5900 case SCHED_BATCH:
dd41f596 5901 case SCHED_IDLE:
1da177e4
LT
5902 ret = 0;
5903 break;
5904 }
5905 return ret;
5906}
5907
5908/**
5909 * sys_sched_get_priority_min - return minimum RT priority.
5910 * @policy: scheduling class.
5911 *
5912 * this syscall returns the minimum rt_priority that can be used
5913 * by a given scheduling class.
5914 */
5add95d4 5915SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5916{
5917 int ret = -EINVAL;
5918
5919 switch (policy) {
5920 case SCHED_FIFO:
5921 case SCHED_RR:
5922 ret = 1;
5923 break;
5924 case SCHED_NORMAL:
b0a9499c 5925 case SCHED_BATCH:
dd41f596 5926 case SCHED_IDLE:
1da177e4
LT
5927 ret = 0;
5928 }
5929 return ret;
5930}
5931
5932/**
5933 * sys_sched_rr_get_interval - return the default timeslice of a process.
5934 * @pid: pid of the process.
5935 * @interval: userspace pointer to the timeslice value.
5936 *
5937 * this syscall writes the default timeslice value of a given process
5938 * into the user-space timespec buffer. A value of '0' means infinity.
5939 */
17da2bd9 5940SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5941 struct timespec __user *, interval)
1da177e4 5942{
36c8b586 5943 struct task_struct *p;
a4ec24b4 5944 unsigned int time_slice;
dba091b9
TG
5945 unsigned long flags;
5946 struct rq *rq;
3a5c359a 5947 int retval;
1da177e4 5948 struct timespec t;
1da177e4
LT
5949
5950 if (pid < 0)
3a5c359a 5951 return -EINVAL;
1da177e4
LT
5952
5953 retval = -ESRCH;
1a551ae7 5954 rcu_read_lock();
1da177e4
LT
5955 p = find_process_by_pid(pid);
5956 if (!p)
5957 goto out_unlock;
5958
5959 retval = security_task_getscheduler(p);
5960 if (retval)
5961 goto out_unlock;
5962
dba091b9
TG
5963 rq = task_rq_lock(p, &flags);
5964 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5965 task_rq_unlock(rq, p, &flags);
a4ec24b4 5966
1a551ae7 5967 rcu_read_unlock();
a4ec24b4 5968 jiffies_to_timespec(time_slice, &t);
1da177e4 5969 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5970 return retval;
3a5c359a 5971
1da177e4 5972out_unlock:
1a551ae7 5973 rcu_read_unlock();
1da177e4
LT
5974 return retval;
5975}
5976
7c731e0a 5977static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5978
82a1fcb9 5979void sched_show_task(struct task_struct *p)
1da177e4 5980{
1da177e4 5981 unsigned long free = 0;
36c8b586 5982 unsigned state;
1da177e4 5983
1da177e4 5984 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5985 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5986 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5987#if BITS_PER_LONG == 32
1da177e4 5988 if (state == TASK_RUNNING)
3df0fc5b 5989 printk(KERN_CONT " running ");
1da177e4 5990 else
3df0fc5b 5991 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5992#else
5993 if (state == TASK_RUNNING)
3df0fc5b 5994 printk(KERN_CONT " running task ");
1da177e4 5995 else
3df0fc5b 5996 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5997#endif
5998#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5999 free = stack_not_used(p);
1da177e4 6000#endif
3df0fc5b 6001 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6002 task_pid_nr(p), task_pid_nr(p->real_parent),
6003 (unsigned long)task_thread_info(p)->flags);
1da177e4 6004
5fb5e6de 6005 show_stack(p, NULL);
1da177e4
LT
6006}
6007
e59e2ae2 6008void show_state_filter(unsigned long state_filter)
1da177e4 6009{
36c8b586 6010 struct task_struct *g, *p;
1da177e4 6011
4bd77321 6012#if BITS_PER_LONG == 32
3df0fc5b
PZ
6013 printk(KERN_INFO
6014 " task PC stack pid father\n");
1da177e4 6015#else
3df0fc5b
PZ
6016 printk(KERN_INFO
6017 " task PC stack pid father\n");
1da177e4
LT
6018#endif
6019 read_lock(&tasklist_lock);
6020 do_each_thread(g, p) {
6021 /*
6022 * reset the NMI-timeout, listing all files on a slow
25985edc 6023 * console might take a lot of time:
1da177e4
LT
6024 */
6025 touch_nmi_watchdog();
39bc89fd 6026 if (!state_filter || (p->state & state_filter))
82a1fcb9 6027 sched_show_task(p);
1da177e4
LT
6028 } while_each_thread(g, p);
6029
04c9167f
JF
6030 touch_all_softlockup_watchdogs();
6031
dd41f596
IM
6032#ifdef CONFIG_SCHED_DEBUG
6033 sysrq_sched_debug_show();
6034#endif
1da177e4 6035 read_unlock(&tasklist_lock);
e59e2ae2
IM
6036 /*
6037 * Only show locks if all tasks are dumped:
6038 */
93335a21 6039 if (!state_filter)
e59e2ae2 6040 debug_show_all_locks();
1da177e4
LT
6041}
6042
1df21055
IM
6043void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6044{
dd41f596 6045 idle->sched_class = &idle_sched_class;
1df21055
IM
6046}
6047
f340c0d1
IM
6048/**
6049 * init_idle - set up an idle thread for a given CPU
6050 * @idle: task in question
6051 * @cpu: cpu the idle task belongs to
6052 *
6053 * NOTE: this function does not set the idle thread's NEED_RESCHED
6054 * flag, to make booting more robust.
6055 */
5c1e1767 6056void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6057{
70b97a7f 6058 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6059 unsigned long flags;
6060
05fa785c 6061 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6062
dd41f596 6063 __sched_fork(idle);
06b83b5f 6064 idle->state = TASK_RUNNING;
dd41f596
IM
6065 idle->se.exec_start = sched_clock();
6066
1e1b6c51 6067 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6068 /*
6069 * We're having a chicken and egg problem, even though we are
6070 * holding rq->lock, the cpu isn't yet set to this cpu so the
6071 * lockdep check in task_group() will fail.
6072 *
6073 * Similar case to sched_fork(). / Alternatively we could
6074 * use task_rq_lock() here and obtain the other rq->lock.
6075 *
6076 * Silence PROVE_RCU
6077 */
6078 rcu_read_lock();
dd41f596 6079 __set_task_cpu(idle, cpu);
6506cf6c 6080 rcu_read_unlock();
1da177e4 6081
1da177e4 6082 rq->curr = rq->idle = idle;
3ca7a440
PZ
6083#if defined(CONFIG_SMP)
6084 idle->on_cpu = 1;
4866cde0 6085#endif
05fa785c 6086 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6087
6088 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6089 task_thread_info(idle)->preempt_count = 0;
625f2a37 6090
dd41f596
IM
6091 /*
6092 * The idle tasks have their own, simple scheduling class:
6093 */
6094 idle->sched_class = &idle_sched_class;
868baf07 6095 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6096}
6097
6098/*
6099 * In a system that switches off the HZ timer nohz_cpu_mask
6100 * indicates which cpus entered this state. This is used
6101 * in the rcu update to wait only for active cpus. For system
6102 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6103 * always be CPU_BITS_NONE.
1da177e4 6104 */
6a7b3dc3 6105cpumask_var_t nohz_cpu_mask;
1da177e4 6106
19978ca6
IM
6107/*
6108 * Increase the granularity value when there are more CPUs,
6109 * because with more CPUs the 'effective latency' as visible
6110 * to users decreases. But the relationship is not linear,
6111 * so pick a second-best guess by going with the log2 of the
6112 * number of CPUs.
6113 *
6114 * This idea comes from the SD scheduler of Con Kolivas:
6115 */
acb4a848 6116static int get_update_sysctl_factor(void)
19978ca6 6117{
4ca3ef71 6118 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6119 unsigned int factor;
6120
6121 switch (sysctl_sched_tunable_scaling) {
6122 case SCHED_TUNABLESCALING_NONE:
6123 factor = 1;
6124 break;
6125 case SCHED_TUNABLESCALING_LINEAR:
6126 factor = cpus;
6127 break;
6128 case SCHED_TUNABLESCALING_LOG:
6129 default:
6130 factor = 1 + ilog2(cpus);
6131 break;
6132 }
19978ca6 6133
acb4a848
CE
6134 return factor;
6135}
19978ca6 6136
acb4a848
CE
6137static void update_sysctl(void)
6138{
6139 unsigned int factor = get_update_sysctl_factor();
19978ca6 6140
0bcdcf28
CE
6141#define SET_SYSCTL(name) \
6142 (sysctl_##name = (factor) * normalized_sysctl_##name)
6143 SET_SYSCTL(sched_min_granularity);
6144 SET_SYSCTL(sched_latency);
6145 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6146#undef SET_SYSCTL
6147}
55cd5340 6148
0bcdcf28
CE
6149static inline void sched_init_granularity(void)
6150{
6151 update_sysctl();
19978ca6
IM
6152}
6153
1da177e4 6154#ifdef CONFIG_SMP
1e1b6c51
KM
6155void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6156{
6157 if (p->sched_class && p->sched_class->set_cpus_allowed)
6158 p->sched_class->set_cpus_allowed(p, new_mask);
6159 else {
6160 cpumask_copy(&p->cpus_allowed, new_mask);
6161 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6162 }
6163}
6164
1da177e4
LT
6165/*
6166 * This is how migration works:
6167 *
969c7921
TH
6168 * 1) we invoke migration_cpu_stop() on the target CPU using
6169 * stop_one_cpu().
6170 * 2) stopper starts to run (implicitly forcing the migrated thread
6171 * off the CPU)
6172 * 3) it checks whether the migrated task is still in the wrong runqueue.
6173 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6174 * it and puts it into the right queue.
969c7921
TH
6175 * 5) stopper completes and stop_one_cpu() returns and the migration
6176 * is done.
1da177e4
LT
6177 */
6178
6179/*
6180 * Change a given task's CPU affinity. Migrate the thread to a
6181 * proper CPU and schedule it away if the CPU it's executing on
6182 * is removed from the allowed bitmask.
6183 *
6184 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6185 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6186 * call is not atomic; no spinlocks may be held.
6187 */
96f874e2 6188int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6189{
6190 unsigned long flags;
70b97a7f 6191 struct rq *rq;
969c7921 6192 unsigned int dest_cpu;
48f24c4d 6193 int ret = 0;
1da177e4
LT
6194
6195 rq = task_rq_lock(p, &flags);
e2912009 6196
db44fc01
YZ
6197 if (cpumask_equal(&p->cpus_allowed, new_mask))
6198 goto out;
6199
6ad4c188 6200 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6201 ret = -EINVAL;
6202 goto out;
6203 }
6204
db44fc01 6205 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6206 ret = -EINVAL;
6207 goto out;
6208 }
6209
1e1b6c51 6210 do_set_cpus_allowed(p, new_mask);
73fe6aae 6211
1da177e4 6212 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6213 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6214 goto out;
6215
969c7921 6216 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6217 if (p->on_rq) {
969c7921 6218 struct migration_arg arg = { p, dest_cpu };
1da177e4 6219 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6220 task_rq_unlock(rq, p, &flags);
969c7921 6221 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6222 tlb_migrate_finish(p->mm);
6223 return 0;
6224 }
6225out:
0122ec5b 6226 task_rq_unlock(rq, p, &flags);
48f24c4d 6227
1da177e4
LT
6228 return ret;
6229}
cd8ba7cd 6230EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6231
6232/*
41a2d6cf 6233 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6234 * this because either it can't run here any more (set_cpus_allowed()
6235 * away from this CPU, or CPU going down), or because we're
6236 * attempting to rebalance this task on exec (sched_exec).
6237 *
6238 * So we race with normal scheduler movements, but that's OK, as long
6239 * as the task is no longer on this CPU.
efc30814
KK
6240 *
6241 * Returns non-zero if task was successfully migrated.
1da177e4 6242 */
efc30814 6243static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6244{
70b97a7f 6245 struct rq *rq_dest, *rq_src;
e2912009 6246 int ret = 0;
1da177e4 6247
e761b772 6248 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6249 return ret;
1da177e4
LT
6250
6251 rq_src = cpu_rq(src_cpu);
6252 rq_dest = cpu_rq(dest_cpu);
6253
0122ec5b 6254 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6255 double_rq_lock(rq_src, rq_dest);
6256 /* Already moved. */
6257 if (task_cpu(p) != src_cpu)
b1e38734 6258 goto done;
1da177e4 6259 /* Affinity changed (again). */
96f874e2 6260 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6261 goto fail;
1da177e4 6262
e2912009
PZ
6263 /*
6264 * If we're not on a rq, the next wake-up will ensure we're
6265 * placed properly.
6266 */
fd2f4419 6267 if (p->on_rq) {
2e1cb74a 6268 deactivate_task(rq_src, p, 0);
e2912009 6269 set_task_cpu(p, dest_cpu);
dd41f596 6270 activate_task(rq_dest, p, 0);
15afe09b 6271 check_preempt_curr(rq_dest, p, 0);
1da177e4 6272 }
b1e38734 6273done:
efc30814 6274 ret = 1;
b1e38734 6275fail:
1da177e4 6276 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6277 raw_spin_unlock(&p->pi_lock);
efc30814 6278 return ret;
1da177e4
LT
6279}
6280
6281/*
969c7921
TH
6282 * migration_cpu_stop - this will be executed by a highprio stopper thread
6283 * and performs thread migration by bumping thread off CPU then
6284 * 'pushing' onto another runqueue.
1da177e4 6285 */
969c7921 6286static int migration_cpu_stop(void *data)
1da177e4 6287{
969c7921 6288 struct migration_arg *arg = data;
f7b4cddc 6289
969c7921
TH
6290 /*
6291 * The original target cpu might have gone down and we might
6292 * be on another cpu but it doesn't matter.
6293 */
f7b4cddc 6294 local_irq_disable();
969c7921 6295 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6296 local_irq_enable();
1da177e4 6297 return 0;
f7b4cddc
ON
6298}
6299
1da177e4 6300#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6301
054b9108 6302/*
48c5ccae
PZ
6303 * Ensures that the idle task is using init_mm right before its cpu goes
6304 * offline.
054b9108 6305 */
48c5ccae 6306void idle_task_exit(void)
1da177e4 6307{
48c5ccae 6308 struct mm_struct *mm = current->active_mm;
e76bd8d9 6309
48c5ccae 6310 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6311
48c5ccae
PZ
6312 if (mm != &init_mm)
6313 switch_mm(mm, &init_mm, current);
6314 mmdrop(mm);
1da177e4
LT
6315}
6316
6317/*
6318 * While a dead CPU has no uninterruptible tasks queued at this point,
6319 * it might still have a nonzero ->nr_uninterruptible counter, because
6320 * for performance reasons the counter is not stricly tracking tasks to
6321 * their home CPUs. So we just add the counter to another CPU's counter,
6322 * to keep the global sum constant after CPU-down:
6323 */
70b97a7f 6324static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6325{
6ad4c188 6326 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6327
1da177e4
LT
6328 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6329 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6330}
6331
dd41f596 6332/*
48c5ccae 6333 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6334 */
48c5ccae 6335static void calc_global_load_remove(struct rq *rq)
1da177e4 6336{
48c5ccae
PZ
6337 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6338 rq->calc_load_active = 0;
1da177e4
LT
6339}
6340
8cb120d3
PT
6341#ifdef CONFIG_CFS_BANDWIDTH
6342static void unthrottle_offline_cfs_rqs(struct rq *rq)
6343{
6344 struct cfs_rq *cfs_rq;
6345
6346 for_each_leaf_cfs_rq(rq, cfs_rq) {
6347 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6348
6349 if (!cfs_rq->runtime_enabled)
6350 continue;
6351
6352 /*
6353 * clock_task is not advancing so we just need to make sure
6354 * there's some valid quota amount
6355 */
6356 cfs_rq->runtime_remaining = cfs_b->quota;
6357 if (cfs_rq_throttled(cfs_rq))
6358 unthrottle_cfs_rq(cfs_rq);
6359 }
6360}
6361#else
6362static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6363#endif
6364
48f24c4d 6365/*
48c5ccae
PZ
6366 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6367 * try_to_wake_up()->select_task_rq().
6368 *
6369 * Called with rq->lock held even though we'er in stop_machine() and
6370 * there's no concurrency possible, we hold the required locks anyway
6371 * because of lock validation efforts.
1da177e4 6372 */
48c5ccae 6373static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6374{
70b97a7f 6375 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6376 struct task_struct *next, *stop = rq->stop;
6377 int dest_cpu;
1da177e4
LT
6378
6379 /*
48c5ccae
PZ
6380 * Fudge the rq selection such that the below task selection loop
6381 * doesn't get stuck on the currently eligible stop task.
6382 *
6383 * We're currently inside stop_machine() and the rq is either stuck
6384 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6385 * either way we should never end up calling schedule() until we're
6386 * done here.
1da177e4 6387 */
48c5ccae 6388 rq->stop = NULL;
48f24c4d 6389
8cb120d3
PT
6390 /* Ensure any throttled groups are reachable by pick_next_task */
6391 unthrottle_offline_cfs_rqs(rq);
6392
dd41f596 6393 for ( ; ; ) {
48c5ccae
PZ
6394 /*
6395 * There's this thread running, bail when that's the only
6396 * remaining thread.
6397 */
6398 if (rq->nr_running == 1)
dd41f596 6399 break;
48c5ccae 6400
b67802ea 6401 next = pick_next_task(rq);
48c5ccae 6402 BUG_ON(!next);
79c53799 6403 next->sched_class->put_prev_task(rq, next);
e692ab53 6404
48c5ccae
PZ
6405 /* Find suitable destination for @next, with force if needed. */
6406 dest_cpu = select_fallback_rq(dead_cpu, next);
6407 raw_spin_unlock(&rq->lock);
6408
6409 __migrate_task(next, dead_cpu, dest_cpu);
6410
6411 raw_spin_lock(&rq->lock);
1da177e4 6412 }
dce48a84 6413
48c5ccae 6414 rq->stop = stop;
dce48a84 6415}
48c5ccae 6416
1da177e4
LT
6417#endif /* CONFIG_HOTPLUG_CPU */
6418
e692ab53
NP
6419#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6420
6421static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6422 {
6423 .procname = "sched_domain",
c57baf1e 6424 .mode = 0555,
e0361851 6425 },
56992309 6426 {}
e692ab53
NP
6427};
6428
6429static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6430 {
6431 .procname = "kernel",
c57baf1e 6432 .mode = 0555,
e0361851
AD
6433 .child = sd_ctl_dir,
6434 },
56992309 6435 {}
e692ab53
NP
6436};
6437
6438static struct ctl_table *sd_alloc_ctl_entry(int n)
6439{
6440 struct ctl_table *entry =
5cf9f062 6441 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6442
e692ab53
NP
6443 return entry;
6444}
6445
6382bc90
MM
6446static void sd_free_ctl_entry(struct ctl_table **tablep)
6447{
cd790076 6448 struct ctl_table *entry;
6382bc90 6449
cd790076
MM
6450 /*
6451 * In the intermediate directories, both the child directory and
6452 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6453 * will always be set. In the lowest directory the names are
cd790076
MM
6454 * static strings and all have proc handlers.
6455 */
6456 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6457 if (entry->child)
6458 sd_free_ctl_entry(&entry->child);
cd790076
MM
6459 if (entry->proc_handler == NULL)
6460 kfree(entry->procname);
6461 }
6382bc90
MM
6462
6463 kfree(*tablep);
6464 *tablep = NULL;
6465}
6466
e692ab53 6467static void
e0361851 6468set_table_entry(struct ctl_table *entry,
e692ab53
NP
6469 const char *procname, void *data, int maxlen,
6470 mode_t mode, proc_handler *proc_handler)
6471{
e692ab53
NP
6472 entry->procname = procname;
6473 entry->data = data;
6474 entry->maxlen = maxlen;
6475 entry->mode = mode;
6476 entry->proc_handler = proc_handler;
6477}
6478
6479static struct ctl_table *
6480sd_alloc_ctl_domain_table(struct sched_domain *sd)
6481{
a5d8c348 6482 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6483
ad1cdc1d
MM
6484 if (table == NULL)
6485 return NULL;
6486
e0361851 6487 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6488 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6489 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6490 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6491 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6492 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6493 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6494 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6495 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6496 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6497 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6498 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6499 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6500 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6501 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6502 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6503 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6504 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6505 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6506 &sd->cache_nice_tries,
6507 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6508 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6510 set_table_entry(&table[11], "name", sd->name,
6511 CORENAME_MAX_SIZE, 0444, proc_dostring);
6512 /* &table[12] is terminator */
e692ab53
NP
6513
6514 return table;
6515}
6516
9a4e7159 6517static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6518{
6519 struct ctl_table *entry, *table;
6520 struct sched_domain *sd;
6521 int domain_num = 0, i;
6522 char buf[32];
6523
6524 for_each_domain(cpu, sd)
6525 domain_num++;
6526 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6527 if (table == NULL)
6528 return NULL;
e692ab53
NP
6529
6530 i = 0;
6531 for_each_domain(cpu, sd) {
6532 snprintf(buf, 32, "domain%d", i);
e692ab53 6533 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6534 entry->mode = 0555;
e692ab53
NP
6535 entry->child = sd_alloc_ctl_domain_table(sd);
6536 entry++;
6537 i++;
6538 }
6539 return table;
6540}
6541
6542static struct ctl_table_header *sd_sysctl_header;
6382bc90 6543static void register_sched_domain_sysctl(void)
e692ab53 6544{
6ad4c188 6545 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6546 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6547 char buf[32];
6548
7378547f
MM
6549 WARN_ON(sd_ctl_dir[0].child);
6550 sd_ctl_dir[0].child = entry;
6551
ad1cdc1d
MM
6552 if (entry == NULL)
6553 return;
6554
6ad4c188 6555 for_each_possible_cpu(i) {
e692ab53 6556 snprintf(buf, 32, "cpu%d", i);
e692ab53 6557 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6558 entry->mode = 0555;
e692ab53 6559 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6560 entry++;
e692ab53 6561 }
7378547f
MM
6562
6563 WARN_ON(sd_sysctl_header);
e692ab53
NP
6564 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6565}
6382bc90 6566
7378547f 6567/* may be called multiple times per register */
6382bc90
MM
6568static void unregister_sched_domain_sysctl(void)
6569{
7378547f
MM
6570 if (sd_sysctl_header)
6571 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6572 sd_sysctl_header = NULL;
7378547f
MM
6573 if (sd_ctl_dir[0].child)
6574 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6575}
e692ab53 6576#else
6382bc90
MM
6577static void register_sched_domain_sysctl(void)
6578{
6579}
6580static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6581{
6582}
6583#endif
6584
1f11eb6a
GH
6585static void set_rq_online(struct rq *rq)
6586{
6587 if (!rq->online) {
6588 const struct sched_class *class;
6589
c6c4927b 6590 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6591 rq->online = 1;
6592
6593 for_each_class(class) {
6594 if (class->rq_online)
6595 class->rq_online(rq);
6596 }
6597 }
6598}
6599
6600static void set_rq_offline(struct rq *rq)
6601{
6602 if (rq->online) {
6603 const struct sched_class *class;
6604
6605 for_each_class(class) {
6606 if (class->rq_offline)
6607 class->rq_offline(rq);
6608 }
6609
c6c4927b 6610 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6611 rq->online = 0;
6612 }
6613}
6614
1da177e4
LT
6615/*
6616 * migration_call - callback that gets triggered when a CPU is added.
6617 * Here we can start up the necessary migration thread for the new CPU.
6618 */
48f24c4d
IM
6619static int __cpuinit
6620migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6621{
48f24c4d 6622 int cpu = (long)hcpu;
1da177e4 6623 unsigned long flags;
969c7921 6624 struct rq *rq = cpu_rq(cpu);
1da177e4 6625
48c5ccae 6626 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6627
1da177e4 6628 case CPU_UP_PREPARE:
a468d389 6629 rq->calc_load_update = calc_load_update;
1da177e4 6630 break;
48f24c4d 6631
1da177e4 6632 case CPU_ONLINE:
1f94ef59 6633 /* Update our root-domain */
05fa785c 6634 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6635 if (rq->rd) {
c6c4927b 6636 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6637
6638 set_rq_online(rq);
1f94ef59 6639 }
05fa785c 6640 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6641 break;
48f24c4d 6642
1da177e4 6643#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6644 case CPU_DYING:
317f3941 6645 sched_ttwu_pending();
57d885fe 6646 /* Update our root-domain */
05fa785c 6647 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6648 if (rq->rd) {
c6c4927b 6649 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6650 set_rq_offline(rq);
57d885fe 6651 }
48c5ccae
PZ
6652 migrate_tasks(cpu);
6653 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6654 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6655
6656 migrate_nr_uninterruptible(rq);
6657 calc_global_load_remove(rq);
57d885fe 6658 break;
1da177e4
LT
6659#endif
6660 }
49c022e6
PZ
6661
6662 update_max_interval();
6663
1da177e4
LT
6664 return NOTIFY_OK;
6665}
6666
f38b0820
PM
6667/*
6668 * Register at high priority so that task migration (migrate_all_tasks)
6669 * happens before everything else. This has to be lower priority than
cdd6c482 6670 * the notifier in the perf_event subsystem, though.
1da177e4 6671 */
26c2143b 6672static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6673 .notifier_call = migration_call,
50a323b7 6674 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6675};
6676
3a101d05
TH
6677static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6678 unsigned long action, void *hcpu)
6679{
6680 switch (action & ~CPU_TASKS_FROZEN) {
6681 case CPU_ONLINE:
6682 case CPU_DOWN_FAILED:
6683 set_cpu_active((long)hcpu, true);
6684 return NOTIFY_OK;
6685 default:
6686 return NOTIFY_DONE;
6687 }
6688}
6689
6690static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6691 unsigned long action, void *hcpu)
6692{
6693 switch (action & ~CPU_TASKS_FROZEN) {
6694 case CPU_DOWN_PREPARE:
6695 set_cpu_active((long)hcpu, false);
6696 return NOTIFY_OK;
6697 default:
6698 return NOTIFY_DONE;
6699 }
6700}
6701
7babe8db 6702static int __init migration_init(void)
1da177e4
LT
6703{
6704 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6705 int err;
48f24c4d 6706
3a101d05 6707 /* Initialize migration for the boot CPU */
07dccf33
AM
6708 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6709 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6710 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6711 register_cpu_notifier(&migration_notifier);
7babe8db 6712
3a101d05
TH
6713 /* Register cpu active notifiers */
6714 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6715 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6716
a004cd42 6717 return 0;
1da177e4 6718}
7babe8db 6719early_initcall(migration_init);
1da177e4
LT
6720#endif
6721
6722#ifdef CONFIG_SMP
476f3534 6723
4cb98839
PZ
6724static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6725
3e9830dc 6726#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6727
f6630114
MT
6728static __read_mostly int sched_domain_debug_enabled;
6729
6730static int __init sched_domain_debug_setup(char *str)
6731{
6732 sched_domain_debug_enabled = 1;
6733
6734 return 0;
6735}
6736early_param("sched_debug", sched_domain_debug_setup);
6737
7c16ec58 6738static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6739 struct cpumask *groupmask)
1da177e4 6740{
4dcf6aff 6741 struct sched_group *group = sd->groups;
434d53b0 6742 char str[256];
1da177e4 6743
968ea6d8 6744 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6745 cpumask_clear(groupmask);
4dcf6aff
IM
6746
6747 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6748
6749 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6750 printk("does not load-balance\n");
4dcf6aff 6751 if (sd->parent)
3df0fc5b
PZ
6752 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6753 " has parent");
4dcf6aff 6754 return -1;
41c7ce9a
NP
6755 }
6756
3df0fc5b 6757 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6758
758b2cdc 6759 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6760 printk(KERN_ERR "ERROR: domain->span does not contain "
6761 "CPU%d\n", cpu);
4dcf6aff 6762 }
758b2cdc 6763 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6764 printk(KERN_ERR "ERROR: domain->groups does not contain"
6765 " CPU%d\n", cpu);
4dcf6aff 6766 }
1da177e4 6767
4dcf6aff 6768 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6769 do {
4dcf6aff 6770 if (!group) {
3df0fc5b
PZ
6771 printk("\n");
6772 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6773 break;
6774 }
6775
9c3f75cb 6776 if (!group->sgp->power) {
3df0fc5b
PZ
6777 printk(KERN_CONT "\n");
6778 printk(KERN_ERR "ERROR: domain->cpu_power not "
6779 "set\n");
4dcf6aff
IM
6780 break;
6781 }
1da177e4 6782
758b2cdc 6783 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6784 printk(KERN_CONT "\n");
6785 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6786 break;
6787 }
1da177e4 6788
758b2cdc 6789 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6790 printk(KERN_CONT "\n");
6791 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6792 break;
6793 }
1da177e4 6794
758b2cdc 6795 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6796
968ea6d8 6797 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6798
3df0fc5b 6799 printk(KERN_CONT " %s", str);
9c3f75cb 6800 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6801 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6802 group->sgp->power);
381512cf 6803 }
1da177e4 6804
4dcf6aff
IM
6805 group = group->next;
6806 } while (group != sd->groups);
3df0fc5b 6807 printk(KERN_CONT "\n");
1da177e4 6808
758b2cdc 6809 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6810 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6811
758b2cdc
RR
6812 if (sd->parent &&
6813 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6814 printk(KERN_ERR "ERROR: parent span is not a superset "
6815 "of domain->span\n");
4dcf6aff
IM
6816 return 0;
6817}
1da177e4 6818
4dcf6aff
IM
6819static void sched_domain_debug(struct sched_domain *sd, int cpu)
6820{
6821 int level = 0;
1da177e4 6822
f6630114
MT
6823 if (!sched_domain_debug_enabled)
6824 return;
6825
4dcf6aff
IM
6826 if (!sd) {
6827 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6828 return;
6829 }
1da177e4 6830
4dcf6aff
IM
6831 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6832
6833 for (;;) {
4cb98839 6834 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6835 break;
1da177e4
LT
6836 level++;
6837 sd = sd->parent;
33859f7f 6838 if (!sd)
4dcf6aff
IM
6839 break;
6840 }
1da177e4 6841}
6d6bc0ad 6842#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6843# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6844#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6845
1a20ff27 6846static int sd_degenerate(struct sched_domain *sd)
245af2c7 6847{
758b2cdc 6848 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6849 return 1;
6850
6851 /* Following flags need at least 2 groups */
6852 if (sd->flags & (SD_LOAD_BALANCE |
6853 SD_BALANCE_NEWIDLE |
6854 SD_BALANCE_FORK |
89c4710e
SS
6855 SD_BALANCE_EXEC |
6856 SD_SHARE_CPUPOWER |
6857 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6858 if (sd->groups != sd->groups->next)
6859 return 0;
6860 }
6861
6862 /* Following flags don't use groups */
c88d5910 6863 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6864 return 0;
6865
6866 return 1;
6867}
6868
48f24c4d
IM
6869static int
6870sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6871{
6872 unsigned long cflags = sd->flags, pflags = parent->flags;
6873
6874 if (sd_degenerate(parent))
6875 return 1;
6876
758b2cdc 6877 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6878 return 0;
6879
245af2c7
SS
6880 /* Flags needing groups don't count if only 1 group in parent */
6881 if (parent->groups == parent->groups->next) {
6882 pflags &= ~(SD_LOAD_BALANCE |
6883 SD_BALANCE_NEWIDLE |
6884 SD_BALANCE_FORK |
89c4710e
SS
6885 SD_BALANCE_EXEC |
6886 SD_SHARE_CPUPOWER |
6887 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6888 if (nr_node_ids == 1)
6889 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6890 }
6891 if (~cflags & pflags)
6892 return 0;
6893
6894 return 1;
6895}
6896
dce840a0 6897static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6898{
dce840a0 6899 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6900
68e74568 6901 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6902 free_cpumask_var(rd->rto_mask);
6903 free_cpumask_var(rd->online);
6904 free_cpumask_var(rd->span);
6905 kfree(rd);
6906}
6907
57d885fe
GH
6908static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6909{
a0490fa3 6910 struct root_domain *old_rd = NULL;
57d885fe 6911 unsigned long flags;
57d885fe 6912
05fa785c 6913 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6914
6915 if (rq->rd) {
a0490fa3 6916 old_rd = rq->rd;
57d885fe 6917
c6c4927b 6918 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6919 set_rq_offline(rq);
57d885fe 6920
c6c4927b 6921 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6922
a0490fa3
IM
6923 /*
6924 * If we dont want to free the old_rt yet then
6925 * set old_rd to NULL to skip the freeing later
6926 * in this function:
6927 */
6928 if (!atomic_dec_and_test(&old_rd->refcount))
6929 old_rd = NULL;
57d885fe
GH
6930 }
6931
6932 atomic_inc(&rd->refcount);
6933 rq->rd = rd;
6934
c6c4927b 6935 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6936 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6937 set_rq_online(rq);
57d885fe 6938
05fa785c 6939 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6940
6941 if (old_rd)
dce840a0 6942 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6943}
6944
68c38fc3 6945static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6946{
6947 memset(rd, 0, sizeof(*rd));
6948
68c38fc3 6949 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6950 goto out;
68c38fc3 6951 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6952 goto free_span;
68c38fc3 6953 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6954 goto free_online;
6e0534f2 6955
68c38fc3 6956 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6957 goto free_rto_mask;
c6c4927b 6958 return 0;
6e0534f2 6959
68e74568
RR
6960free_rto_mask:
6961 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6962free_online:
6963 free_cpumask_var(rd->online);
6964free_span:
6965 free_cpumask_var(rd->span);
0c910d28 6966out:
c6c4927b 6967 return -ENOMEM;
57d885fe
GH
6968}
6969
6970static void init_defrootdomain(void)
6971{
68c38fc3 6972 init_rootdomain(&def_root_domain);
c6c4927b 6973
57d885fe
GH
6974 atomic_set(&def_root_domain.refcount, 1);
6975}
6976
dc938520 6977static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6978{
6979 struct root_domain *rd;
6980
6981 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6982 if (!rd)
6983 return NULL;
6984
68c38fc3 6985 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6986 kfree(rd);
6987 return NULL;
6988 }
57d885fe
GH
6989
6990 return rd;
6991}
6992
e3589f6c
PZ
6993static void free_sched_groups(struct sched_group *sg, int free_sgp)
6994{
6995 struct sched_group *tmp, *first;
6996
6997 if (!sg)
6998 return;
6999
7000 first = sg;
7001 do {
7002 tmp = sg->next;
7003
7004 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7005 kfree(sg->sgp);
7006
7007 kfree(sg);
7008 sg = tmp;
7009 } while (sg != first);
7010}
7011
dce840a0
PZ
7012static void free_sched_domain(struct rcu_head *rcu)
7013{
7014 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
7015
7016 /*
7017 * If its an overlapping domain it has private groups, iterate and
7018 * nuke them all.
7019 */
7020 if (sd->flags & SD_OVERLAP) {
7021 free_sched_groups(sd->groups, 1);
7022 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 7023 kfree(sd->groups->sgp);
dce840a0 7024 kfree(sd->groups);
9c3f75cb 7025 }
dce840a0
PZ
7026 kfree(sd);
7027}
7028
7029static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7030{
7031 call_rcu(&sd->rcu, free_sched_domain);
7032}
7033
7034static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7035{
7036 for (; sd; sd = sd->parent)
7037 destroy_sched_domain(sd, cpu);
7038}
7039
1da177e4 7040/*
0eab9146 7041 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7042 * hold the hotplug lock.
7043 */
0eab9146
IM
7044static void
7045cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7046{
70b97a7f 7047 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7048 struct sched_domain *tmp;
7049
7050 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7051 for (tmp = sd; tmp; ) {
245af2c7
SS
7052 struct sched_domain *parent = tmp->parent;
7053 if (!parent)
7054 break;
f29c9b1c 7055
1a848870 7056 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7057 tmp->parent = parent->parent;
1a848870
SS
7058 if (parent->parent)
7059 parent->parent->child = tmp;
dce840a0 7060 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7061 } else
7062 tmp = tmp->parent;
245af2c7
SS
7063 }
7064
1a848870 7065 if (sd && sd_degenerate(sd)) {
dce840a0 7066 tmp = sd;
245af2c7 7067 sd = sd->parent;
dce840a0 7068 destroy_sched_domain(tmp, cpu);
1a848870
SS
7069 if (sd)
7070 sd->child = NULL;
7071 }
1da177e4 7072
4cb98839 7073 sched_domain_debug(sd, cpu);
1da177e4 7074
57d885fe 7075 rq_attach_root(rq, rd);
dce840a0 7076 tmp = rq->sd;
674311d5 7077 rcu_assign_pointer(rq->sd, sd);
dce840a0 7078 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7079}
7080
7081/* cpus with isolated domains */
dcc30a35 7082static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7083
7084/* Setup the mask of cpus configured for isolated domains */
7085static int __init isolated_cpu_setup(char *str)
7086{
bdddd296 7087 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7088 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7089 return 1;
7090}
7091
8927f494 7092__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7093
9c1cfda2 7094#define SD_NODES_PER_DOMAIN 16
1da177e4 7095
9c1cfda2 7096#ifdef CONFIG_NUMA
198e2f18 7097
9c1cfda2
JH
7098/**
7099 * find_next_best_node - find the next node to include in a sched_domain
7100 * @node: node whose sched_domain we're building
7101 * @used_nodes: nodes already in the sched_domain
7102 *
41a2d6cf 7103 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7104 * finds the closest node not already in the @used_nodes map.
7105 *
7106 * Should use nodemask_t.
7107 */
c5f59f08 7108static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7109{
7142d17e 7110 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7111
7112 min_val = INT_MAX;
7113
076ac2af 7114 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7115 /* Start at @node */
076ac2af 7116 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7117
7118 if (!nr_cpus_node(n))
7119 continue;
7120
7121 /* Skip already used nodes */
c5f59f08 7122 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7123 continue;
7124
7125 /* Simple min distance search */
7126 val = node_distance(node, n);
7127
7128 if (val < min_val) {
7129 min_val = val;
7130 best_node = n;
7131 }
7132 }
7133
7142d17e
HD
7134 if (best_node != -1)
7135 node_set(best_node, *used_nodes);
9c1cfda2
JH
7136 return best_node;
7137}
7138
7139/**
7140 * sched_domain_node_span - get a cpumask for a node's sched_domain
7141 * @node: node whose cpumask we're constructing
73486722 7142 * @span: resulting cpumask
9c1cfda2 7143 *
41a2d6cf 7144 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7145 * should be one that prevents unnecessary balancing, but also spreads tasks
7146 * out optimally.
7147 */
96f874e2 7148static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7149{
c5f59f08 7150 nodemask_t used_nodes;
48f24c4d 7151 int i;
9c1cfda2 7152
6ca09dfc 7153 cpumask_clear(span);
c5f59f08 7154 nodes_clear(used_nodes);
9c1cfda2 7155
6ca09dfc 7156 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7157 node_set(node, used_nodes);
9c1cfda2
JH
7158
7159 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7160 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7161 if (next_node < 0)
7162 break;
6ca09dfc 7163 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7164 }
9c1cfda2 7165}
d3081f52
PZ
7166
7167static const struct cpumask *cpu_node_mask(int cpu)
7168{
7169 lockdep_assert_held(&sched_domains_mutex);
7170
7171 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7172
7173 return sched_domains_tmpmask;
7174}
2c402dc3
PZ
7175
7176static const struct cpumask *cpu_allnodes_mask(int cpu)
7177{
7178 return cpu_possible_mask;
7179}
6d6bc0ad 7180#endif /* CONFIG_NUMA */
9c1cfda2 7181
d3081f52
PZ
7182static const struct cpumask *cpu_cpu_mask(int cpu)
7183{
7184 return cpumask_of_node(cpu_to_node(cpu));
7185}
7186
5c45bf27 7187int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7188
dce840a0
PZ
7189struct sd_data {
7190 struct sched_domain **__percpu sd;
7191 struct sched_group **__percpu sg;
9c3f75cb 7192 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7193};
7194
49a02c51 7195struct s_data {
21d42ccf 7196 struct sched_domain ** __percpu sd;
49a02c51
AH
7197 struct root_domain *rd;
7198};
7199
2109b99e 7200enum s_alloc {
2109b99e 7201 sa_rootdomain,
21d42ccf 7202 sa_sd,
dce840a0 7203 sa_sd_storage,
2109b99e
AH
7204 sa_none,
7205};
7206
54ab4ff4
PZ
7207struct sched_domain_topology_level;
7208
7209typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7210typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7211
e3589f6c
PZ
7212#define SDTL_OVERLAP 0x01
7213
eb7a74e6 7214struct sched_domain_topology_level {
2c402dc3
PZ
7215 sched_domain_init_f init;
7216 sched_domain_mask_f mask;
e3589f6c 7217 int flags;
54ab4ff4 7218 struct sd_data data;
eb7a74e6
PZ
7219};
7220
e3589f6c
PZ
7221static int
7222build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7223{
7224 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7225 const struct cpumask *span = sched_domain_span(sd);
7226 struct cpumask *covered = sched_domains_tmpmask;
7227 struct sd_data *sdd = sd->private;
7228 struct sched_domain *child;
7229 int i;
7230
7231 cpumask_clear(covered);
7232
7233 for_each_cpu(i, span) {
7234 struct cpumask *sg_span;
7235
7236 if (cpumask_test_cpu(i, covered))
7237 continue;
7238
7239 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7240 GFP_KERNEL, cpu_to_node(i));
7241
7242 if (!sg)
7243 goto fail;
7244
7245 sg_span = sched_group_cpus(sg);
7246
7247 child = *per_cpu_ptr(sdd->sd, i);
7248 if (child->child) {
7249 child = child->child;
7250 cpumask_copy(sg_span, sched_domain_span(child));
7251 } else
7252 cpumask_set_cpu(i, sg_span);
7253
7254 cpumask_or(covered, covered, sg_span);
7255
7256 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7257 atomic_inc(&sg->sgp->ref);
7258
7259 if (cpumask_test_cpu(cpu, sg_span))
7260 groups = sg;
7261
7262 if (!first)
7263 first = sg;
7264 if (last)
7265 last->next = sg;
7266 last = sg;
7267 last->next = first;
7268 }
7269 sd->groups = groups;
7270
7271 return 0;
7272
7273fail:
7274 free_sched_groups(first, 0);
7275
7276 return -ENOMEM;
7277}
7278
dce840a0 7279static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7280{
dce840a0
PZ
7281 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7282 struct sched_domain *child = sd->child;
1da177e4 7283
dce840a0
PZ
7284 if (child)
7285 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7286
9c3f75cb 7287 if (sg) {
dce840a0 7288 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7289 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7290 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7291 }
dce840a0
PZ
7292
7293 return cpu;
1e9f28fa 7294}
1e9f28fa 7295
01a08546 7296/*
dce840a0
PZ
7297 * build_sched_groups will build a circular linked list of the groups
7298 * covered by the given span, and will set each group's ->cpumask correctly,
7299 * and ->cpu_power to 0.
e3589f6c
PZ
7300 *
7301 * Assumes the sched_domain tree is fully constructed
01a08546 7302 */
e3589f6c
PZ
7303static int
7304build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7305{
dce840a0
PZ
7306 struct sched_group *first = NULL, *last = NULL;
7307 struct sd_data *sdd = sd->private;
7308 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7309 struct cpumask *covered;
dce840a0 7310 int i;
9c1cfda2 7311
e3589f6c
PZ
7312 get_group(cpu, sdd, &sd->groups);
7313 atomic_inc(&sd->groups->ref);
7314
7315 if (cpu != cpumask_first(sched_domain_span(sd)))
7316 return 0;
7317
f96225fd
PZ
7318 lockdep_assert_held(&sched_domains_mutex);
7319 covered = sched_domains_tmpmask;
7320
dce840a0 7321 cpumask_clear(covered);
6711cab4 7322
dce840a0
PZ
7323 for_each_cpu(i, span) {
7324 struct sched_group *sg;
7325 int group = get_group(i, sdd, &sg);
7326 int j;
6711cab4 7327
dce840a0
PZ
7328 if (cpumask_test_cpu(i, covered))
7329 continue;
6711cab4 7330
dce840a0 7331 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7332 sg->sgp->power = 0;
0601a88d 7333
dce840a0
PZ
7334 for_each_cpu(j, span) {
7335 if (get_group(j, sdd, NULL) != group)
7336 continue;
0601a88d 7337
dce840a0
PZ
7338 cpumask_set_cpu(j, covered);
7339 cpumask_set_cpu(j, sched_group_cpus(sg));
7340 }
0601a88d 7341
dce840a0
PZ
7342 if (!first)
7343 first = sg;
7344 if (last)
7345 last->next = sg;
7346 last = sg;
7347 }
7348 last->next = first;
e3589f6c
PZ
7349
7350 return 0;
0601a88d 7351}
51888ca2 7352
89c4710e
SS
7353/*
7354 * Initialize sched groups cpu_power.
7355 *
7356 * cpu_power indicates the capacity of sched group, which is used while
7357 * distributing the load between different sched groups in a sched domain.
7358 * Typically cpu_power for all the groups in a sched domain will be same unless
7359 * there are asymmetries in the topology. If there are asymmetries, group
7360 * having more cpu_power will pickup more load compared to the group having
7361 * less cpu_power.
89c4710e
SS
7362 */
7363static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7364{
e3589f6c 7365 struct sched_group *sg = sd->groups;
89c4710e 7366
e3589f6c
PZ
7367 WARN_ON(!sd || !sg);
7368
7369 do {
7370 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7371 sg = sg->next;
7372 } while (sg != sd->groups);
89c4710e 7373
e3589f6c
PZ
7374 if (cpu != group_first_cpu(sg))
7375 return;
aae6d3dd 7376
d274cb30 7377 update_group_power(sd, cpu);
89c4710e
SS
7378}
7379
7c16ec58
MT
7380/*
7381 * Initializers for schedule domains
7382 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7383 */
7384
a5d8c348
IM
7385#ifdef CONFIG_SCHED_DEBUG
7386# define SD_INIT_NAME(sd, type) sd->name = #type
7387#else
7388# define SD_INIT_NAME(sd, type) do { } while (0)
7389#endif
7390
54ab4ff4
PZ
7391#define SD_INIT_FUNC(type) \
7392static noinline struct sched_domain * \
7393sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7394{ \
7395 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7396 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7397 SD_INIT_NAME(sd, type); \
7398 sd->private = &tl->data; \
7399 return sd; \
7c16ec58
MT
7400}
7401
7402SD_INIT_FUNC(CPU)
7403#ifdef CONFIG_NUMA
7404 SD_INIT_FUNC(ALLNODES)
7405 SD_INIT_FUNC(NODE)
7406#endif
7407#ifdef CONFIG_SCHED_SMT
7408 SD_INIT_FUNC(SIBLING)
7409#endif
7410#ifdef CONFIG_SCHED_MC
7411 SD_INIT_FUNC(MC)
7412#endif
01a08546
HC
7413#ifdef CONFIG_SCHED_BOOK
7414 SD_INIT_FUNC(BOOK)
7415#endif
7c16ec58 7416
1d3504fc 7417static int default_relax_domain_level = -1;
60495e77 7418int sched_domain_level_max;
1d3504fc
HS
7419
7420static int __init setup_relax_domain_level(char *str)
7421{
30e0e178
LZ
7422 unsigned long val;
7423
7424 val = simple_strtoul(str, NULL, 0);
60495e77 7425 if (val < sched_domain_level_max)
30e0e178
LZ
7426 default_relax_domain_level = val;
7427
1d3504fc
HS
7428 return 1;
7429}
7430__setup("relax_domain_level=", setup_relax_domain_level);
7431
7432static void set_domain_attribute(struct sched_domain *sd,
7433 struct sched_domain_attr *attr)
7434{
7435 int request;
7436
7437 if (!attr || attr->relax_domain_level < 0) {
7438 if (default_relax_domain_level < 0)
7439 return;
7440 else
7441 request = default_relax_domain_level;
7442 } else
7443 request = attr->relax_domain_level;
7444 if (request < sd->level) {
7445 /* turn off idle balance on this domain */
c88d5910 7446 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7447 } else {
7448 /* turn on idle balance on this domain */
c88d5910 7449 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7450 }
7451}
7452
54ab4ff4
PZ
7453static void __sdt_free(const struct cpumask *cpu_map);
7454static int __sdt_alloc(const struct cpumask *cpu_map);
7455
2109b99e
AH
7456static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7457 const struct cpumask *cpu_map)
7458{
7459 switch (what) {
2109b99e 7460 case sa_rootdomain:
822ff793
PZ
7461 if (!atomic_read(&d->rd->refcount))
7462 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7463 case sa_sd:
7464 free_percpu(d->sd); /* fall through */
dce840a0 7465 case sa_sd_storage:
54ab4ff4 7466 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7467 case sa_none:
7468 break;
7469 }
7470}
3404c8d9 7471
2109b99e
AH
7472static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7473 const struct cpumask *cpu_map)
7474{
dce840a0
PZ
7475 memset(d, 0, sizeof(*d));
7476
54ab4ff4
PZ
7477 if (__sdt_alloc(cpu_map))
7478 return sa_sd_storage;
dce840a0
PZ
7479 d->sd = alloc_percpu(struct sched_domain *);
7480 if (!d->sd)
7481 return sa_sd_storage;
2109b99e 7482 d->rd = alloc_rootdomain();
dce840a0 7483 if (!d->rd)
21d42ccf 7484 return sa_sd;
2109b99e
AH
7485 return sa_rootdomain;
7486}
57d885fe 7487
dce840a0
PZ
7488/*
7489 * NULL the sd_data elements we've used to build the sched_domain and
7490 * sched_group structure so that the subsequent __free_domain_allocs()
7491 * will not free the data we're using.
7492 */
7493static void claim_allocations(int cpu, struct sched_domain *sd)
7494{
7495 struct sd_data *sdd = sd->private;
dce840a0
PZ
7496
7497 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7498 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7499
e3589f6c 7500 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7501 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7502
7503 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7504 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7505}
7506
2c402dc3
PZ
7507#ifdef CONFIG_SCHED_SMT
7508static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7509{
2c402dc3 7510 return topology_thread_cpumask(cpu);
3bd65a80 7511}
2c402dc3 7512#endif
7f4588f3 7513
d069b916
PZ
7514/*
7515 * Topology list, bottom-up.
7516 */
2c402dc3 7517static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7518#ifdef CONFIG_SCHED_SMT
7519 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7520#endif
1e9f28fa 7521#ifdef CONFIG_SCHED_MC
2c402dc3 7522 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7523#endif
d069b916
PZ
7524#ifdef CONFIG_SCHED_BOOK
7525 { sd_init_BOOK, cpu_book_mask, },
7526#endif
7527 { sd_init_CPU, cpu_cpu_mask, },
7528#ifdef CONFIG_NUMA
e3589f6c 7529 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7530 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7531#endif
eb7a74e6
PZ
7532 { NULL, },
7533};
7534
7535static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7536
54ab4ff4
PZ
7537static int __sdt_alloc(const struct cpumask *cpu_map)
7538{
7539 struct sched_domain_topology_level *tl;
7540 int j;
7541
7542 for (tl = sched_domain_topology; tl->init; tl++) {
7543 struct sd_data *sdd = &tl->data;
7544
7545 sdd->sd = alloc_percpu(struct sched_domain *);
7546 if (!sdd->sd)
7547 return -ENOMEM;
7548
7549 sdd->sg = alloc_percpu(struct sched_group *);
7550 if (!sdd->sg)
7551 return -ENOMEM;
7552
9c3f75cb
PZ
7553 sdd->sgp = alloc_percpu(struct sched_group_power *);
7554 if (!sdd->sgp)
7555 return -ENOMEM;
7556
54ab4ff4
PZ
7557 for_each_cpu(j, cpu_map) {
7558 struct sched_domain *sd;
7559 struct sched_group *sg;
9c3f75cb 7560 struct sched_group_power *sgp;
54ab4ff4
PZ
7561
7562 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7563 GFP_KERNEL, cpu_to_node(j));
7564 if (!sd)
7565 return -ENOMEM;
7566
7567 *per_cpu_ptr(sdd->sd, j) = sd;
7568
7569 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7570 GFP_KERNEL, cpu_to_node(j));
7571 if (!sg)
7572 return -ENOMEM;
7573
7574 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7575
7576 sgp = kzalloc_node(sizeof(struct sched_group_power),
7577 GFP_KERNEL, cpu_to_node(j));
7578 if (!sgp)
7579 return -ENOMEM;
7580
7581 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7582 }
7583 }
7584
7585 return 0;
7586}
7587
7588static void __sdt_free(const struct cpumask *cpu_map)
7589{
7590 struct sched_domain_topology_level *tl;
7591 int j;
7592
7593 for (tl = sched_domain_topology; tl->init; tl++) {
7594 struct sd_data *sdd = &tl->data;
7595
7596 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7597 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7598 if (sd && (sd->flags & SD_OVERLAP))
7599 free_sched_groups(sd->groups, 0);
feff8fa0 7600 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 7601 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7602 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7603 }
7604 free_percpu(sdd->sd);
7605 free_percpu(sdd->sg);
9c3f75cb 7606 free_percpu(sdd->sgp);
54ab4ff4
PZ
7607 }
7608}
7609
2c402dc3
PZ
7610struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7611 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7612 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7613 int cpu)
7614{
54ab4ff4 7615 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7616 if (!sd)
d069b916 7617 return child;
2c402dc3
PZ
7618
7619 set_domain_attribute(sd, attr);
7620 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7621 if (child) {
7622 sd->level = child->level + 1;
7623 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7624 child->parent = sd;
60495e77 7625 }
d069b916 7626 sd->child = child;
2c402dc3
PZ
7627
7628 return sd;
7629}
7630
2109b99e
AH
7631/*
7632 * Build sched domains for a given set of cpus and attach the sched domains
7633 * to the individual cpus
7634 */
dce840a0
PZ
7635static int build_sched_domains(const struct cpumask *cpu_map,
7636 struct sched_domain_attr *attr)
2109b99e
AH
7637{
7638 enum s_alloc alloc_state = sa_none;
dce840a0 7639 struct sched_domain *sd;
2109b99e 7640 struct s_data d;
822ff793 7641 int i, ret = -ENOMEM;
9c1cfda2 7642
2109b99e
AH
7643 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7644 if (alloc_state != sa_rootdomain)
7645 goto error;
9c1cfda2 7646
dce840a0 7647 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7648 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7649 struct sched_domain_topology_level *tl;
7650
3bd65a80 7651 sd = NULL;
e3589f6c 7652 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7653 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7654 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7655 sd->flags |= SD_OVERLAP;
d110235d
PZ
7656 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7657 break;
e3589f6c 7658 }
d274cb30 7659
d069b916
PZ
7660 while (sd->child)
7661 sd = sd->child;
7662
21d42ccf 7663 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7664 }
7665
7666 /* Build the groups for the domains */
7667 for_each_cpu(i, cpu_map) {
7668 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7669 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7670 if (sd->flags & SD_OVERLAP) {
7671 if (build_overlap_sched_groups(sd, i))
7672 goto error;
7673 } else {
7674 if (build_sched_groups(sd, i))
7675 goto error;
7676 }
1cf51902 7677 }
a06dadbe 7678 }
9c1cfda2 7679
1da177e4 7680 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7681 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7682 if (!cpumask_test_cpu(i, cpu_map))
7683 continue;
9c1cfda2 7684
dce840a0
PZ
7685 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7686 claim_allocations(i, sd);
cd4ea6ae 7687 init_sched_groups_power(i, sd);
dce840a0 7688 }
f712c0c7 7689 }
9c1cfda2 7690
1da177e4 7691 /* Attach the domains */
dce840a0 7692 rcu_read_lock();
abcd083a 7693 for_each_cpu(i, cpu_map) {
21d42ccf 7694 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7695 cpu_attach_domain(sd, d.rd, i);
1da177e4 7696 }
dce840a0 7697 rcu_read_unlock();
51888ca2 7698
822ff793 7699 ret = 0;
51888ca2 7700error:
2109b99e 7701 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7702 return ret;
1da177e4 7703}
029190c5 7704
acc3f5d7 7705static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7706static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7707static struct sched_domain_attr *dattr_cur;
7708 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7709
7710/*
7711 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7712 * cpumask) fails, then fallback to a single sched domain,
7713 * as determined by the single cpumask fallback_doms.
029190c5 7714 */
4212823f 7715static cpumask_var_t fallback_doms;
029190c5 7716
ee79d1bd
HC
7717/*
7718 * arch_update_cpu_topology lets virtualized architectures update the
7719 * cpu core maps. It is supposed to return 1 if the topology changed
7720 * or 0 if it stayed the same.
7721 */
7722int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7723{
ee79d1bd 7724 return 0;
22e52b07
HC
7725}
7726
acc3f5d7
RR
7727cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7728{
7729 int i;
7730 cpumask_var_t *doms;
7731
7732 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7733 if (!doms)
7734 return NULL;
7735 for (i = 0; i < ndoms; i++) {
7736 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7737 free_sched_domains(doms, i);
7738 return NULL;
7739 }
7740 }
7741 return doms;
7742}
7743
7744void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7745{
7746 unsigned int i;
7747 for (i = 0; i < ndoms; i++)
7748 free_cpumask_var(doms[i]);
7749 kfree(doms);
7750}
7751
1a20ff27 7752/*
41a2d6cf 7753 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7754 * For now this just excludes isolated cpus, but could be used to
7755 * exclude other special cases in the future.
1a20ff27 7756 */
c4a8849a 7757static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7758{
7378547f
MM
7759 int err;
7760
22e52b07 7761 arch_update_cpu_topology();
029190c5 7762 ndoms_cur = 1;
acc3f5d7 7763 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7764 if (!doms_cur)
acc3f5d7
RR
7765 doms_cur = &fallback_doms;
7766 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7767 dattr_cur = NULL;
dce840a0 7768 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7769 register_sched_domain_sysctl();
7378547f
MM
7770
7771 return err;
1a20ff27
DG
7772}
7773
1a20ff27
DG
7774/*
7775 * Detach sched domains from a group of cpus specified in cpu_map
7776 * These cpus will now be attached to the NULL domain
7777 */
96f874e2 7778static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7779{
7780 int i;
7781
dce840a0 7782 rcu_read_lock();
abcd083a 7783 for_each_cpu(i, cpu_map)
57d885fe 7784 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7785 rcu_read_unlock();
1a20ff27
DG
7786}
7787
1d3504fc
HS
7788/* handle null as "default" */
7789static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7790 struct sched_domain_attr *new, int idx_new)
7791{
7792 struct sched_domain_attr tmp;
7793
7794 /* fast path */
7795 if (!new && !cur)
7796 return 1;
7797
7798 tmp = SD_ATTR_INIT;
7799 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7800 new ? (new + idx_new) : &tmp,
7801 sizeof(struct sched_domain_attr));
7802}
7803
029190c5
PJ
7804/*
7805 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7806 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7807 * doms_new[] to the current sched domain partitioning, doms_cur[].
7808 * It destroys each deleted domain and builds each new domain.
7809 *
acc3f5d7 7810 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7811 * The masks don't intersect (don't overlap.) We should setup one
7812 * sched domain for each mask. CPUs not in any of the cpumasks will
7813 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7814 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7815 * it as it is.
7816 *
acc3f5d7
RR
7817 * The passed in 'doms_new' should be allocated using
7818 * alloc_sched_domains. This routine takes ownership of it and will
7819 * free_sched_domains it when done with it. If the caller failed the
7820 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7821 * and partition_sched_domains() will fallback to the single partition
7822 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7823 *
96f874e2 7824 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7825 * ndoms_new == 0 is a special case for destroying existing domains,
7826 * and it will not create the default domain.
dfb512ec 7827 *
029190c5
PJ
7828 * Call with hotplug lock held
7829 */
acc3f5d7 7830void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7831 struct sched_domain_attr *dattr_new)
029190c5 7832{
dfb512ec 7833 int i, j, n;
d65bd5ec 7834 int new_topology;
029190c5 7835
712555ee 7836 mutex_lock(&sched_domains_mutex);
a1835615 7837
7378547f
MM
7838 /* always unregister in case we don't destroy any domains */
7839 unregister_sched_domain_sysctl();
7840
d65bd5ec
HC
7841 /* Let architecture update cpu core mappings. */
7842 new_topology = arch_update_cpu_topology();
7843
dfb512ec 7844 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7845
7846 /* Destroy deleted domains */
7847 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7848 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7849 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7850 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7851 goto match1;
7852 }
7853 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7854 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7855match1:
7856 ;
7857 }
7858
e761b772
MK
7859 if (doms_new == NULL) {
7860 ndoms_cur = 0;
acc3f5d7 7861 doms_new = &fallback_doms;
6ad4c188 7862 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7863 WARN_ON_ONCE(dattr_new);
e761b772
MK
7864 }
7865
029190c5
PJ
7866 /* Build new domains */
7867 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7868 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7869 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7870 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7871 goto match2;
7872 }
7873 /* no match - add a new doms_new */
dce840a0 7874 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7875match2:
7876 ;
7877 }
7878
7879 /* Remember the new sched domains */
acc3f5d7
RR
7880 if (doms_cur != &fallback_doms)
7881 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7882 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7883 doms_cur = doms_new;
1d3504fc 7884 dattr_cur = dattr_new;
029190c5 7885 ndoms_cur = ndoms_new;
7378547f
MM
7886
7887 register_sched_domain_sysctl();
a1835615 7888
712555ee 7889 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7890}
7891
5c45bf27 7892#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7893static void reinit_sched_domains(void)
5c45bf27 7894{
95402b38 7895 get_online_cpus();
dfb512ec
MK
7896
7897 /* Destroy domains first to force the rebuild */
7898 partition_sched_domains(0, NULL, NULL);
7899
e761b772 7900 rebuild_sched_domains();
95402b38 7901 put_online_cpus();
5c45bf27
SS
7902}
7903
7904static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7905{
afb8a9b7 7906 unsigned int level = 0;
5c45bf27 7907
afb8a9b7
GS
7908 if (sscanf(buf, "%u", &level) != 1)
7909 return -EINVAL;
7910
7911 /*
7912 * level is always be positive so don't check for
7913 * level < POWERSAVINGS_BALANCE_NONE which is 0
7914 * What happens on 0 or 1 byte write,
7915 * need to check for count as well?
7916 */
7917
7918 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7919 return -EINVAL;
7920
7921 if (smt)
afb8a9b7 7922 sched_smt_power_savings = level;
5c45bf27 7923 else
afb8a9b7 7924 sched_mc_power_savings = level;
5c45bf27 7925
c4a8849a 7926 reinit_sched_domains();
5c45bf27 7927
c70f22d2 7928 return count;
5c45bf27
SS
7929}
7930
5c45bf27 7931#ifdef CONFIG_SCHED_MC
f718cd4a 7932static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7933 struct sysdev_class_attribute *attr,
f718cd4a 7934 char *page)
5c45bf27
SS
7935{
7936 return sprintf(page, "%u\n", sched_mc_power_savings);
7937}
f718cd4a 7938static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7939 struct sysdev_class_attribute *attr,
48f24c4d 7940 const char *buf, size_t count)
5c45bf27
SS
7941{
7942 return sched_power_savings_store(buf, count, 0);
7943}
f718cd4a
AK
7944static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7945 sched_mc_power_savings_show,
7946 sched_mc_power_savings_store);
5c45bf27
SS
7947#endif
7948
7949#ifdef CONFIG_SCHED_SMT
f718cd4a 7950static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7951 struct sysdev_class_attribute *attr,
f718cd4a 7952 char *page)
5c45bf27
SS
7953{
7954 return sprintf(page, "%u\n", sched_smt_power_savings);
7955}
f718cd4a 7956static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7957 struct sysdev_class_attribute *attr,
48f24c4d 7958 const char *buf, size_t count)
5c45bf27
SS
7959{
7960 return sched_power_savings_store(buf, count, 1);
7961}
f718cd4a
AK
7962static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7963 sched_smt_power_savings_show,
6707de00
AB
7964 sched_smt_power_savings_store);
7965#endif
7966
39aac648 7967int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7968{
7969 int err = 0;
7970
7971#ifdef CONFIG_SCHED_SMT
7972 if (smt_capable())
7973 err = sysfs_create_file(&cls->kset.kobj,
7974 &attr_sched_smt_power_savings.attr);
7975#endif
7976#ifdef CONFIG_SCHED_MC
7977 if (!err && mc_capable())
7978 err = sysfs_create_file(&cls->kset.kobj,
7979 &attr_sched_mc_power_savings.attr);
7980#endif
7981 return err;
7982}
6d6bc0ad 7983#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7984
1da177e4 7985/*
3a101d05
TH
7986 * Update cpusets according to cpu_active mask. If cpusets are
7987 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7988 * around partition_sched_domains().
1da177e4 7989 */
0b2e918a
TH
7990static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7991 void *hcpu)
e761b772 7992{
3a101d05 7993 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7994 case CPU_ONLINE:
6ad4c188 7995 case CPU_DOWN_FAILED:
3a101d05 7996 cpuset_update_active_cpus();
e761b772 7997 return NOTIFY_OK;
3a101d05
TH
7998 default:
7999 return NOTIFY_DONE;
8000 }
8001}
e761b772 8002
0b2e918a
TH
8003static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8004 void *hcpu)
3a101d05
TH
8005{
8006 switch (action & ~CPU_TASKS_FROZEN) {
8007 case CPU_DOWN_PREPARE:
8008 cpuset_update_active_cpus();
8009 return NOTIFY_OK;
e761b772
MK
8010 default:
8011 return NOTIFY_DONE;
8012 }
8013}
e761b772
MK
8014
8015static int update_runtime(struct notifier_block *nfb,
8016 unsigned long action, void *hcpu)
1da177e4 8017{
7def2be1
PZ
8018 int cpu = (int)(long)hcpu;
8019
1da177e4 8020 switch (action) {
1da177e4 8021 case CPU_DOWN_PREPARE:
8bb78442 8022 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8023 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8024 return NOTIFY_OK;
8025
1da177e4 8026 case CPU_DOWN_FAILED:
8bb78442 8027 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8028 case CPU_ONLINE:
8bb78442 8029 case CPU_ONLINE_FROZEN:
7def2be1 8030 enable_runtime(cpu_rq(cpu));
e761b772
MK
8031 return NOTIFY_OK;
8032
1da177e4
LT
8033 default:
8034 return NOTIFY_DONE;
8035 }
1da177e4 8036}
1da177e4
LT
8037
8038void __init sched_init_smp(void)
8039{
dcc30a35
RR
8040 cpumask_var_t non_isolated_cpus;
8041
8042 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8043 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8044
95402b38 8045 get_online_cpus();
712555ee 8046 mutex_lock(&sched_domains_mutex);
c4a8849a 8047 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8048 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8049 if (cpumask_empty(non_isolated_cpus))
8050 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8051 mutex_unlock(&sched_domains_mutex);
95402b38 8052 put_online_cpus();
e761b772 8053
3a101d05
TH
8054 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8055 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8056
8057 /* RT runtime code needs to handle some hotplug events */
8058 hotcpu_notifier(update_runtime, 0);
8059
b328ca18 8060 init_hrtick();
5c1e1767
NP
8061
8062 /* Move init over to a non-isolated CPU */
dcc30a35 8063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8064 BUG();
19978ca6 8065 sched_init_granularity();
dcc30a35 8066 free_cpumask_var(non_isolated_cpus);
4212823f 8067
0e3900e6 8068 init_sched_rt_class();
1da177e4
LT
8069}
8070#else
8071void __init sched_init_smp(void)
8072{
19978ca6 8073 sched_init_granularity();
1da177e4
LT
8074}
8075#endif /* CONFIG_SMP */
8076
cd1bb94b
AB
8077const_debug unsigned int sysctl_timer_migration = 1;
8078
1da177e4
LT
8079int in_sched_functions(unsigned long addr)
8080{
1da177e4
LT
8081 return in_lock_functions(addr) ||
8082 (addr >= (unsigned long)__sched_text_start
8083 && addr < (unsigned long)__sched_text_end);
8084}
8085
acb5a9ba 8086static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8087{
8088 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8089 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8090 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8091#ifndef CONFIG_64BIT
8092 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8093#endif
dd41f596
IM
8094}
8095
fa85ae24
PZ
8096static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8097{
8098 struct rt_prio_array *array;
8099 int i;
8100
8101 array = &rt_rq->active;
8102 for (i = 0; i < MAX_RT_PRIO; i++) {
8103 INIT_LIST_HEAD(array->queue + i);
8104 __clear_bit(i, array->bitmap);
8105 }
8106 /* delimiter for bitsearch: */
8107 __set_bit(MAX_RT_PRIO, array->bitmap);
8108
acb5a9ba 8109#if defined CONFIG_SMP
e864c499
GH
8110 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8111 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8112 rt_rq->rt_nr_migratory = 0;
fa85ae24 8113 rt_rq->overloaded = 0;
732375c6 8114 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8115#endif
8116
8117 rt_rq->rt_time = 0;
8118 rt_rq->rt_throttled = 0;
ac086bc2 8119 rt_rq->rt_runtime = 0;
0986b11b 8120 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8121}
8122
6f505b16 8123#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8124static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8125 struct sched_entity *se, int cpu,
ec7dc8ac 8126 struct sched_entity *parent)
6f505b16 8127{
ec7dc8ac 8128 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8129
6f505b16 8130 cfs_rq->tg = tg;
acb5a9ba
JS
8131 cfs_rq->rq = rq;
8132#ifdef CONFIG_SMP
8133 /* allow initial update_cfs_load() to truncate */
8134 cfs_rq->load_stamp = 1;
8135#endif
ab84d31e 8136 init_cfs_rq_runtime(cfs_rq);
6f505b16 8137
acb5a9ba 8138 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8139 tg->se[cpu] = se;
acb5a9ba 8140
07e06b01 8141 /* se could be NULL for root_task_group */
354d60c2
DG
8142 if (!se)
8143 return;
8144
ec7dc8ac
DG
8145 if (!parent)
8146 se->cfs_rq = &rq->cfs;
8147 else
8148 se->cfs_rq = parent->my_q;
8149
6f505b16 8150 se->my_q = cfs_rq;
9437178f 8151 update_load_set(&se->load, 0);
ec7dc8ac 8152 se->parent = parent;
6f505b16 8153}
052f1dc7 8154#endif
6f505b16 8155
052f1dc7 8156#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8157static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8158 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8159 struct sched_rt_entity *parent)
6f505b16 8160{
ec7dc8ac
DG
8161 struct rq *rq = cpu_rq(cpu);
8162
acb5a9ba
JS
8163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8164 rt_rq->rt_nr_boosted = 0;
8165 rt_rq->rq = rq;
6f505b16 8166 rt_rq->tg = tg;
6f505b16 8167
acb5a9ba 8168 tg->rt_rq[cpu] = rt_rq;
6f505b16 8169 tg->rt_se[cpu] = rt_se;
acb5a9ba 8170
354d60c2
DG
8171 if (!rt_se)
8172 return;
8173
ec7dc8ac
DG
8174 if (!parent)
8175 rt_se->rt_rq = &rq->rt;
8176 else
8177 rt_se->rt_rq = parent->my_q;
8178
6f505b16 8179 rt_se->my_q = rt_rq;
ec7dc8ac 8180 rt_se->parent = parent;
6f505b16
PZ
8181 INIT_LIST_HEAD(&rt_se->run_list);
8182}
8183#endif
8184
1da177e4
LT
8185void __init sched_init(void)
8186{
dd41f596 8187 int i, j;
434d53b0
MT
8188 unsigned long alloc_size = 0, ptr;
8189
8190#ifdef CONFIG_FAIR_GROUP_SCHED
8191 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8192#endif
8193#ifdef CONFIG_RT_GROUP_SCHED
8194 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8195#endif
df7c8e84 8196#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8197 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8198#endif
434d53b0 8199 if (alloc_size) {
36b7b6d4 8200 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8201
8202#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8203 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8204 ptr += nr_cpu_ids * sizeof(void **);
8205
07e06b01 8206 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8207 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8208
6d6bc0ad 8209#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8210#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8211 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8212 ptr += nr_cpu_ids * sizeof(void **);
8213
07e06b01 8214 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8215 ptr += nr_cpu_ids * sizeof(void **);
8216
6d6bc0ad 8217#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8218#ifdef CONFIG_CPUMASK_OFFSTACK
8219 for_each_possible_cpu(i) {
8220 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8221 ptr += cpumask_size();
8222 }
8223#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8224 }
dd41f596 8225
57d885fe
GH
8226#ifdef CONFIG_SMP
8227 init_defrootdomain();
8228#endif
8229
d0b27fa7
PZ
8230 init_rt_bandwidth(&def_rt_bandwidth,
8231 global_rt_period(), global_rt_runtime());
8232
8233#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8234 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8235 global_rt_period(), global_rt_runtime());
6d6bc0ad 8236#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8237
7c941438 8238#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8239 list_add(&root_task_group.list, &task_groups);
8240 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8241 autogroup_init(&init_task);
7c941438 8242#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8243
0a945022 8244 for_each_possible_cpu(i) {
70b97a7f 8245 struct rq *rq;
1da177e4
LT
8246
8247 rq = cpu_rq(i);
05fa785c 8248 raw_spin_lock_init(&rq->lock);
7897986b 8249 rq->nr_running = 0;
dce48a84
TG
8250 rq->calc_load_active = 0;
8251 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8252 init_cfs_rq(&rq->cfs);
6f505b16 8253 init_rt_rq(&rq->rt, rq);
dd41f596 8254#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8255 root_task_group.shares = root_task_group_load;
6f505b16 8256 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8257 /*
07e06b01 8258 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8259 *
8260 * In case of task-groups formed thr' the cgroup filesystem, it
8261 * gets 100% of the cpu resources in the system. This overall
8262 * system cpu resource is divided among the tasks of
07e06b01 8263 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8264 * based on each entity's (task or task-group's) weight
8265 * (se->load.weight).
8266 *
07e06b01 8267 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8268 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8269 * then A0's share of the cpu resource is:
8270 *
0d905bca 8271 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8272 *
07e06b01
YZ
8273 * We achieve this by letting root_task_group's tasks sit
8274 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8275 */
ab84d31e 8276 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8277 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8278#endif /* CONFIG_FAIR_GROUP_SCHED */
8279
8280 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8281#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8282 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8283 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8284#endif
1da177e4 8285
dd41f596
IM
8286 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8287 rq->cpu_load[j] = 0;
fdf3e95d
VP
8288
8289 rq->last_load_update_tick = jiffies;
8290
1da177e4 8291#ifdef CONFIG_SMP
41c7ce9a 8292 rq->sd = NULL;
57d885fe 8293 rq->rd = NULL;
1399fa78 8294 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8295 rq->post_schedule = 0;
1da177e4 8296 rq->active_balance = 0;
dd41f596 8297 rq->next_balance = jiffies;
1da177e4 8298 rq->push_cpu = 0;
0a2966b4 8299 rq->cpu = i;
1f11eb6a 8300 rq->online = 0;
eae0c9df
MG
8301 rq->idle_stamp = 0;
8302 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8303 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8304#ifdef CONFIG_NO_HZ
8305 rq->nohz_balance_kick = 0;
8306 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8307#endif
1da177e4 8308#endif
8f4d37ec 8309 init_rq_hrtick(rq);
1da177e4 8310 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8311 }
8312
2dd73a4f 8313 set_load_weight(&init_task);
b50f60ce 8314
e107be36
AK
8315#ifdef CONFIG_PREEMPT_NOTIFIERS
8316 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8317#endif
8318
c9819f45 8319#ifdef CONFIG_SMP
962cf36c 8320 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8321#endif
8322
b50f60ce 8323#ifdef CONFIG_RT_MUTEXES
732375c6 8324 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8325#endif
8326
1da177e4
LT
8327 /*
8328 * The boot idle thread does lazy MMU switching as well:
8329 */
8330 atomic_inc(&init_mm.mm_count);
8331 enter_lazy_tlb(&init_mm, current);
8332
8333 /*
8334 * Make us the idle thread. Technically, schedule() should not be
8335 * called from this thread, however somewhere below it might be,
8336 * but because we are the idle thread, we just pick up running again
8337 * when this runqueue becomes "idle".
8338 */
8339 init_idle(current, smp_processor_id());
dce48a84
TG
8340
8341 calc_load_update = jiffies + LOAD_FREQ;
8342
dd41f596
IM
8343 /*
8344 * During early bootup we pretend to be a normal task:
8345 */
8346 current->sched_class = &fair_sched_class;
6892b75e 8347
6a7b3dc3 8348 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8349 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8350#ifdef CONFIG_SMP
4cb98839 8351 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8352#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8353 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8354 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8355 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8356 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8357 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8358#endif
bdddd296
RR
8359 /* May be allocated at isolcpus cmdline parse time */
8360 if (cpu_isolated_map == NULL)
8361 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8362#endif /* SMP */
6a7b3dc3 8363
6892b75e 8364 scheduler_running = 1;
1da177e4
LT
8365}
8366
d902db1e 8367#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8368static inline int preempt_count_equals(int preempt_offset)
8369{
234da7bc 8370 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8371
4ba8216c 8372 return (nested == preempt_offset);
e4aafea2
FW
8373}
8374
d894837f 8375void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8376{
1da177e4
LT
8377 static unsigned long prev_jiffy; /* ratelimiting */
8378
e4aafea2
FW
8379 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8380 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8381 return;
8382 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8383 return;
8384 prev_jiffy = jiffies;
8385
3df0fc5b
PZ
8386 printk(KERN_ERR
8387 "BUG: sleeping function called from invalid context at %s:%d\n",
8388 file, line);
8389 printk(KERN_ERR
8390 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8391 in_atomic(), irqs_disabled(),
8392 current->pid, current->comm);
aef745fc
IM
8393
8394 debug_show_held_locks(current);
8395 if (irqs_disabled())
8396 print_irqtrace_events(current);
8397 dump_stack();
1da177e4
LT
8398}
8399EXPORT_SYMBOL(__might_sleep);
8400#endif
8401
8402#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8403static void normalize_task(struct rq *rq, struct task_struct *p)
8404{
da7a735e
PZ
8405 const struct sched_class *prev_class = p->sched_class;
8406 int old_prio = p->prio;
3a5e4dc1 8407 int on_rq;
3e51f33f 8408
fd2f4419 8409 on_rq = p->on_rq;
3a5e4dc1
AK
8410 if (on_rq)
8411 deactivate_task(rq, p, 0);
8412 __setscheduler(rq, p, SCHED_NORMAL, 0);
8413 if (on_rq) {
8414 activate_task(rq, p, 0);
8415 resched_task(rq->curr);
8416 }
da7a735e
PZ
8417
8418 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8419}
8420
1da177e4
LT
8421void normalize_rt_tasks(void)
8422{
a0f98a1c 8423 struct task_struct *g, *p;
1da177e4 8424 unsigned long flags;
70b97a7f 8425 struct rq *rq;
1da177e4 8426
4cf5d77a 8427 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8428 do_each_thread(g, p) {
178be793
IM
8429 /*
8430 * Only normalize user tasks:
8431 */
8432 if (!p->mm)
8433 continue;
8434
6cfb0d5d 8435 p->se.exec_start = 0;
6cfb0d5d 8436#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8437 p->se.statistics.wait_start = 0;
8438 p->se.statistics.sleep_start = 0;
8439 p->se.statistics.block_start = 0;
6cfb0d5d 8440#endif
dd41f596
IM
8441
8442 if (!rt_task(p)) {
8443 /*
8444 * Renice negative nice level userspace
8445 * tasks back to 0:
8446 */
8447 if (TASK_NICE(p) < 0 && p->mm)
8448 set_user_nice(p, 0);
1da177e4 8449 continue;
dd41f596 8450 }
1da177e4 8451
1d615482 8452 raw_spin_lock(&p->pi_lock);
b29739f9 8453 rq = __task_rq_lock(p);
1da177e4 8454
178be793 8455 normalize_task(rq, p);
3a5e4dc1 8456
b29739f9 8457 __task_rq_unlock(rq);
1d615482 8458 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8459 } while_each_thread(g, p);
8460
4cf5d77a 8461 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8462}
8463
8464#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8465
67fc4e0c 8466#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8467/*
67fc4e0c 8468 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8469 *
8470 * They can only be called when the whole system has been
8471 * stopped - every CPU needs to be quiescent, and no scheduling
8472 * activity can take place. Using them for anything else would
8473 * be a serious bug, and as a result, they aren't even visible
8474 * under any other configuration.
8475 */
8476
8477/**
8478 * curr_task - return the current task for a given cpu.
8479 * @cpu: the processor in question.
8480 *
8481 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8482 */
36c8b586 8483struct task_struct *curr_task(int cpu)
1df5c10a
LT
8484{
8485 return cpu_curr(cpu);
8486}
8487
67fc4e0c
JW
8488#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8489
8490#ifdef CONFIG_IA64
1df5c10a
LT
8491/**
8492 * set_curr_task - set the current task for a given cpu.
8493 * @cpu: the processor in question.
8494 * @p: the task pointer to set.
8495 *
8496 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8497 * are serviced on a separate stack. It allows the architecture to switch the
8498 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8499 * must be called with all CPU's synchronized, and interrupts disabled, the
8500 * and caller must save the original value of the current task (see
8501 * curr_task() above) and restore that value before reenabling interrupts and
8502 * re-starting the system.
8503 *
8504 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8505 */
36c8b586 8506void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8507{
8508 cpu_curr(cpu) = p;
8509}
8510
8511#endif
29f59db3 8512
bccbe08a
PZ
8513#ifdef CONFIG_FAIR_GROUP_SCHED
8514static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8515{
8516 int i;
8517
ab84d31e
PT
8518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8519
6f505b16
PZ
8520 for_each_possible_cpu(i) {
8521 if (tg->cfs_rq)
8522 kfree(tg->cfs_rq[i]);
8523 if (tg->se)
8524 kfree(tg->se[i]);
6f505b16
PZ
8525 }
8526
8527 kfree(tg->cfs_rq);
8528 kfree(tg->se);
6f505b16
PZ
8529}
8530
ec7dc8ac
DG
8531static
8532int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8533{
29f59db3 8534 struct cfs_rq *cfs_rq;
eab17229 8535 struct sched_entity *se;
29f59db3
SV
8536 int i;
8537
434d53b0 8538 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8539 if (!tg->cfs_rq)
8540 goto err;
434d53b0 8541 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8542 if (!tg->se)
8543 goto err;
052f1dc7
PZ
8544
8545 tg->shares = NICE_0_LOAD;
29f59db3 8546
ab84d31e
PT
8547 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8548
29f59db3 8549 for_each_possible_cpu(i) {
eab17229
LZ
8550 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8551 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8552 if (!cfs_rq)
8553 goto err;
8554
eab17229
LZ
8555 se = kzalloc_node(sizeof(struct sched_entity),
8556 GFP_KERNEL, cpu_to_node(i));
29f59db3 8557 if (!se)
dfc12eb2 8558 goto err_free_rq;
29f59db3 8559
acb5a9ba 8560 init_cfs_rq(cfs_rq);
3d4b47b4 8561 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8562 }
8563
8564 return 1;
8565
49246274 8566err_free_rq:
dfc12eb2 8567 kfree(cfs_rq);
49246274 8568err:
bccbe08a
PZ
8569 return 0;
8570}
8571
bccbe08a
PZ
8572static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8573{
3d4b47b4
PZ
8574 struct rq *rq = cpu_rq(cpu);
8575 unsigned long flags;
3d4b47b4
PZ
8576
8577 /*
8578 * Only empty task groups can be destroyed; so we can speculatively
8579 * check on_list without danger of it being re-added.
8580 */
8581 if (!tg->cfs_rq[cpu]->on_list)
8582 return;
8583
8584 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8585 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8586 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8587}
5f817d67 8588#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8589static inline void free_fair_sched_group(struct task_group *tg)
8590{
8591}
8592
ec7dc8ac
DG
8593static inline
8594int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8595{
8596 return 1;
8597}
8598
bccbe08a
PZ
8599static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8600{
8601}
6d6bc0ad 8602#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8603
8604#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8605static void free_rt_sched_group(struct task_group *tg)
8606{
8607 int i;
8608
99bc5242
BL
8609 if (tg->rt_se)
8610 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8611
bccbe08a
PZ
8612 for_each_possible_cpu(i) {
8613 if (tg->rt_rq)
8614 kfree(tg->rt_rq[i]);
8615 if (tg->rt_se)
8616 kfree(tg->rt_se[i]);
8617 }
8618
8619 kfree(tg->rt_rq);
8620 kfree(tg->rt_se);
8621}
8622
ec7dc8ac
DG
8623static
8624int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8625{
8626 struct rt_rq *rt_rq;
eab17229 8627 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8628 int i;
8629
434d53b0 8630 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8631 if (!tg->rt_rq)
8632 goto err;
434d53b0 8633 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8634 if (!tg->rt_se)
8635 goto err;
8636
d0b27fa7
PZ
8637 init_rt_bandwidth(&tg->rt_bandwidth,
8638 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8639
8640 for_each_possible_cpu(i) {
eab17229
LZ
8641 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8642 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8643 if (!rt_rq)
8644 goto err;
29f59db3 8645
eab17229
LZ
8646 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8647 GFP_KERNEL, cpu_to_node(i));
6f505b16 8648 if (!rt_se)
dfc12eb2 8649 goto err_free_rq;
29f59db3 8650
acb5a9ba
JS
8651 init_rt_rq(rt_rq, cpu_rq(i));
8652 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8653 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8654 }
8655
bccbe08a
PZ
8656 return 1;
8657
49246274 8658err_free_rq:
dfc12eb2 8659 kfree(rt_rq);
49246274 8660err:
bccbe08a
PZ
8661 return 0;
8662}
6d6bc0ad 8663#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8664static inline void free_rt_sched_group(struct task_group *tg)
8665{
8666}
8667
ec7dc8ac
DG
8668static inline
8669int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8670{
8671 return 1;
8672}
6d6bc0ad 8673#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8674
7c941438 8675#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8676static void free_sched_group(struct task_group *tg)
8677{
8678 free_fair_sched_group(tg);
8679 free_rt_sched_group(tg);
e9aa1dd1 8680 autogroup_free(tg);
bccbe08a
PZ
8681 kfree(tg);
8682}
8683
8684/* allocate runqueue etc for a new task group */
ec7dc8ac 8685struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8686{
8687 struct task_group *tg;
8688 unsigned long flags;
bccbe08a
PZ
8689
8690 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8691 if (!tg)
8692 return ERR_PTR(-ENOMEM);
8693
ec7dc8ac 8694 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8695 goto err;
8696
ec7dc8ac 8697 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8698 goto err;
8699
8ed36996 8700 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8701 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8702
8703 WARN_ON(!parent); /* root should already exist */
8704
8705 tg->parent = parent;
f473aa5e 8706 INIT_LIST_HEAD(&tg->children);
09f2724a 8707 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8708 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8709
9b5b7751 8710 return tg;
29f59db3
SV
8711
8712err:
6f505b16 8713 free_sched_group(tg);
29f59db3
SV
8714 return ERR_PTR(-ENOMEM);
8715}
8716
9b5b7751 8717/* rcu callback to free various structures associated with a task group */
6f505b16 8718static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8719{
29f59db3 8720 /* now it should be safe to free those cfs_rqs */
6f505b16 8721 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8722}
8723
9b5b7751 8724/* Destroy runqueue etc associated with a task group */
4cf86d77 8725void sched_destroy_group(struct task_group *tg)
29f59db3 8726{
8ed36996 8727 unsigned long flags;
9b5b7751 8728 int i;
29f59db3 8729
3d4b47b4
PZ
8730 /* end participation in shares distribution */
8731 for_each_possible_cpu(i)
bccbe08a 8732 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8733
8734 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8735 list_del_rcu(&tg->list);
f473aa5e 8736 list_del_rcu(&tg->siblings);
8ed36996 8737 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8738
9b5b7751 8739 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8740 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8741}
8742
9b5b7751 8743/* change task's runqueue when it moves between groups.
3a252015
IM
8744 * The caller of this function should have put the task in its new group
8745 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8746 * reflect its new group.
9b5b7751
SV
8747 */
8748void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8749{
8750 int on_rq, running;
8751 unsigned long flags;
8752 struct rq *rq;
8753
8754 rq = task_rq_lock(tsk, &flags);
8755
051a1d1a 8756 running = task_current(rq, tsk);
fd2f4419 8757 on_rq = tsk->on_rq;
29f59db3 8758
0e1f3483 8759 if (on_rq)
29f59db3 8760 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8761 if (unlikely(running))
8762 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8763
810b3817 8764#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8765 if (tsk->sched_class->task_move_group)
8766 tsk->sched_class->task_move_group(tsk, on_rq);
8767 else
810b3817 8768#endif
b2b5ce02 8769 set_task_rq(tsk, task_cpu(tsk));
810b3817 8770
0e1f3483
HS
8771 if (unlikely(running))
8772 tsk->sched_class->set_curr_task(rq);
8773 if (on_rq)
371fd7e7 8774 enqueue_task(rq, tsk, 0);
29f59db3 8775
0122ec5b 8776 task_rq_unlock(rq, tsk, &flags);
29f59db3 8777}
7c941438 8778#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8779
052f1dc7 8780#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8781static DEFINE_MUTEX(shares_mutex);
8782
4cf86d77 8783int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8784{
8785 int i;
8ed36996 8786 unsigned long flags;
c61935fd 8787
ec7dc8ac
DG
8788 /*
8789 * We can't change the weight of the root cgroup.
8790 */
8791 if (!tg->se[0])
8792 return -EINVAL;
8793
cd62287e 8794 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8795
8ed36996 8796 mutex_lock(&shares_mutex);
9b5b7751 8797 if (tg->shares == shares)
5cb350ba 8798 goto done;
29f59db3 8799
9b5b7751 8800 tg->shares = shares;
c09595f6 8801 for_each_possible_cpu(i) {
9437178f
PT
8802 struct rq *rq = cpu_rq(i);
8803 struct sched_entity *se;
8804
8805 se = tg->se[i];
8806 /* Propagate contribution to hierarchy */
8807 raw_spin_lock_irqsave(&rq->lock, flags);
8808 for_each_sched_entity(se)
6d5ab293 8809 update_cfs_shares(group_cfs_rq(se));
9437178f 8810 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8811 }
29f59db3 8812
5cb350ba 8813done:
8ed36996 8814 mutex_unlock(&shares_mutex);
9b5b7751 8815 return 0;
29f59db3
SV
8816}
8817
5cb350ba
DG
8818unsigned long sched_group_shares(struct task_group *tg)
8819{
8820 return tg->shares;
8821}
052f1dc7 8822#endif
5cb350ba 8823
a790de99 8824#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8825static unsigned long to_ratio(u64 period, u64 runtime)
8826{
8827 if (runtime == RUNTIME_INF)
9a7e0b18 8828 return 1ULL << 20;
9f0c1e56 8829
9a7e0b18 8830 return div64_u64(runtime << 20, period);
9f0c1e56 8831}
a790de99
PT
8832#endif
8833
8834#ifdef CONFIG_RT_GROUP_SCHED
8835/*
8836 * Ensure that the real time constraints are schedulable.
8837 */
8838static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8839
9a7e0b18
PZ
8840/* Must be called with tasklist_lock held */
8841static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8842{
9a7e0b18 8843 struct task_struct *g, *p;
b40b2e8e 8844
9a7e0b18
PZ
8845 do_each_thread(g, p) {
8846 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8847 return 1;
8848 } while_each_thread(g, p);
b40b2e8e 8849
9a7e0b18
PZ
8850 return 0;
8851}
b40b2e8e 8852
9a7e0b18
PZ
8853struct rt_schedulable_data {
8854 struct task_group *tg;
8855 u64 rt_period;
8856 u64 rt_runtime;
8857};
b40b2e8e 8858
a790de99 8859static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8860{
8861 struct rt_schedulable_data *d = data;
8862 struct task_group *child;
8863 unsigned long total, sum = 0;
8864 u64 period, runtime;
b40b2e8e 8865
9a7e0b18
PZ
8866 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8867 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8868
9a7e0b18
PZ
8869 if (tg == d->tg) {
8870 period = d->rt_period;
8871 runtime = d->rt_runtime;
b40b2e8e 8872 }
b40b2e8e 8873
4653f803
PZ
8874 /*
8875 * Cannot have more runtime than the period.
8876 */
8877 if (runtime > period && runtime != RUNTIME_INF)
8878 return -EINVAL;
6f505b16 8879
4653f803
PZ
8880 /*
8881 * Ensure we don't starve existing RT tasks.
8882 */
9a7e0b18
PZ
8883 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8884 return -EBUSY;
6f505b16 8885
9a7e0b18 8886 total = to_ratio(period, runtime);
6f505b16 8887
4653f803
PZ
8888 /*
8889 * Nobody can have more than the global setting allows.
8890 */
8891 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8892 return -EINVAL;
6f505b16 8893
4653f803
PZ
8894 /*
8895 * The sum of our children's runtime should not exceed our own.
8896 */
9a7e0b18
PZ
8897 list_for_each_entry_rcu(child, &tg->children, siblings) {
8898 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8899 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8900
9a7e0b18
PZ
8901 if (child == d->tg) {
8902 period = d->rt_period;
8903 runtime = d->rt_runtime;
8904 }
6f505b16 8905
9a7e0b18 8906 sum += to_ratio(period, runtime);
9f0c1e56 8907 }
6f505b16 8908
9a7e0b18
PZ
8909 if (sum > total)
8910 return -EINVAL;
8911
8912 return 0;
6f505b16
PZ
8913}
8914
9a7e0b18 8915static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8916{
8277434e
PT
8917 int ret;
8918
9a7e0b18
PZ
8919 struct rt_schedulable_data data = {
8920 .tg = tg,
8921 .rt_period = period,
8922 .rt_runtime = runtime,
8923 };
8924
8277434e
PT
8925 rcu_read_lock();
8926 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8927 rcu_read_unlock();
8928
8929 return ret;
521f1a24
DG
8930}
8931
ab84d31e 8932static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8933 u64 rt_period, u64 rt_runtime)
6f505b16 8934{
ac086bc2 8935 int i, err = 0;
9f0c1e56 8936
9f0c1e56 8937 mutex_lock(&rt_constraints_mutex);
521f1a24 8938 read_lock(&tasklist_lock);
9a7e0b18
PZ
8939 err = __rt_schedulable(tg, rt_period, rt_runtime);
8940 if (err)
9f0c1e56 8941 goto unlock;
ac086bc2 8942
0986b11b 8943 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8944 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8945 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8946
8947 for_each_possible_cpu(i) {
8948 struct rt_rq *rt_rq = tg->rt_rq[i];
8949
0986b11b 8950 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8951 rt_rq->rt_runtime = rt_runtime;
0986b11b 8952 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8953 }
0986b11b 8954 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8955unlock:
521f1a24 8956 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8957 mutex_unlock(&rt_constraints_mutex);
8958
8959 return err;
6f505b16
PZ
8960}
8961
d0b27fa7
PZ
8962int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8963{
8964 u64 rt_runtime, rt_period;
8965
8966 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8967 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8968 if (rt_runtime_us < 0)
8969 rt_runtime = RUNTIME_INF;
8970
ab84d31e 8971 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8972}
8973
9f0c1e56
PZ
8974long sched_group_rt_runtime(struct task_group *tg)
8975{
8976 u64 rt_runtime_us;
8977
d0b27fa7 8978 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8979 return -1;
8980
d0b27fa7 8981 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8982 do_div(rt_runtime_us, NSEC_PER_USEC);
8983 return rt_runtime_us;
8984}
d0b27fa7
PZ
8985
8986int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8987{
8988 u64 rt_runtime, rt_period;
8989
8990 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8991 rt_runtime = tg->rt_bandwidth.rt_runtime;
8992
619b0488
R
8993 if (rt_period == 0)
8994 return -EINVAL;
8995
ab84d31e 8996 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8997}
8998
8999long sched_group_rt_period(struct task_group *tg)
9000{
9001 u64 rt_period_us;
9002
9003 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9004 do_div(rt_period_us, NSEC_PER_USEC);
9005 return rt_period_us;
9006}
9007
9008static int sched_rt_global_constraints(void)
9009{
4653f803 9010 u64 runtime, period;
d0b27fa7
PZ
9011 int ret = 0;
9012
ec5d4989
HS
9013 if (sysctl_sched_rt_period <= 0)
9014 return -EINVAL;
9015
4653f803
PZ
9016 runtime = global_rt_runtime();
9017 period = global_rt_period();
9018
9019 /*
9020 * Sanity check on the sysctl variables.
9021 */
9022 if (runtime > period && runtime != RUNTIME_INF)
9023 return -EINVAL;
10b612f4 9024
d0b27fa7 9025 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9026 read_lock(&tasklist_lock);
4653f803 9027 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9028 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9029 mutex_unlock(&rt_constraints_mutex);
9030
9031 return ret;
9032}
54e99124
DG
9033
9034int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9035{
9036 /* Don't accept realtime tasks when there is no way for them to run */
9037 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9038 return 0;
9039
9040 return 1;
9041}
9042
6d6bc0ad 9043#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9044static int sched_rt_global_constraints(void)
9045{
ac086bc2
PZ
9046 unsigned long flags;
9047 int i;
9048
ec5d4989
HS
9049 if (sysctl_sched_rt_period <= 0)
9050 return -EINVAL;
9051
60aa605d
PZ
9052 /*
9053 * There's always some RT tasks in the root group
9054 * -- migration, kstopmachine etc..
9055 */
9056 if (sysctl_sched_rt_runtime == 0)
9057 return -EBUSY;
9058
0986b11b 9059 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9060 for_each_possible_cpu(i) {
9061 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9062
0986b11b 9063 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9064 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9065 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9066 }
0986b11b 9067 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9068
d0b27fa7
PZ
9069 return 0;
9070}
6d6bc0ad 9071#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9072
9073int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9074 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9075 loff_t *ppos)
9076{
9077 int ret;
9078 int old_period, old_runtime;
9079 static DEFINE_MUTEX(mutex);
9080
9081 mutex_lock(&mutex);
9082 old_period = sysctl_sched_rt_period;
9083 old_runtime = sysctl_sched_rt_runtime;
9084
8d65af78 9085 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9086
9087 if (!ret && write) {
9088 ret = sched_rt_global_constraints();
9089 if (ret) {
9090 sysctl_sched_rt_period = old_period;
9091 sysctl_sched_rt_runtime = old_runtime;
9092 } else {
9093 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9094 def_rt_bandwidth.rt_period =
9095 ns_to_ktime(global_rt_period());
9096 }
9097 }
9098 mutex_unlock(&mutex);
9099
9100 return ret;
9101}
68318b8e 9102
052f1dc7 9103#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9104
9105/* return corresponding task_group object of a cgroup */
2b01dfe3 9106static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9107{
2b01dfe3
PM
9108 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9109 struct task_group, css);
68318b8e
SV
9110}
9111
9112static struct cgroup_subsys_state *
2b01dfe3 9113cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9114{
ec7dc8ac 9115 struct task_group *tg, *parent;
68318b8e 9116
2b01dfe3 9117 if (!cgrp->parent) {
68318b8e 9118 /* This is early initialization for the top cgroup */
07e06b01 9119 return &root_task_group.css;
68318b8e
SV
9120 }
9121
ec7dc8ac
DG
9122 parent = cgroup_tg(cgrp->parent);
9123 tg = sched_create_group(parent);
68318b8e
SV
9124 if (IS_ERR(tg))
9125 return ERR_PTR(-ENOMEM);
9126
68318b8e
SV
9127 return &tg->css;
9128}
9129
41a2d6cf
IM
9130static void
9131cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9132{
2b01dfe3 9133 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9134
9135 sched_destroy_group(tg);
9136}
9137
41a2d6cf 9138static int
be367d09 9139cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9140{
b68aa230 9141#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9142 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9143 return -EINVAL;
9144#else
68318b8e
SV
9145 /* We don't support RT-tasks being in separate groups */
9146 if (tsk->sched_class != &fair_sched_class)
9147 return -EINVAL;
b68aa230 9148#endif
be367d09
BB
9149 return 0;
9150}
68318b8e 9151
68318b8e 9152static void
f780bdb7 9153cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9154{
9155 sched_move_task(tsk);
9156}
9157
068c5cc5 9158static void
d41d5a01
PZ
9159cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9160 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9161{
9162 /*
9163 * cgroup_exit() is called in the copy_process() failure path.
9164 * Ignore this case since the task hasn't ran yet, this avoids
9165 * trying to poke a half freed task state from generic code.
9166 */
9167 if (!(task->flags & PF_EXITING))
9168 return;
9169
9170 sched_move_task(task);
9171}
9172
052f1dc7 9173#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9174static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9175 u64 shareval)
68318b8e 9176{
c8b28116 9177 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9178}
9179
f4c753b7 9180static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9181{
2b01dfe3 9182 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9183
c8b28116 9184 return (u64) scale_load_down(tg->shares);
68318b8e 9185}
ab84d31e
PT
9186
9187#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9188static DEFINE_MUTEX(cfs_constraints_mutex);
9189
ab84d31e
PT
9190const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9191const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9192
a790de99
PT
9193static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9194
ab84d31e
PT
9195static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9196{
58088ad0 9197 int i, ret = 0, runtime_enabled;
ab84d31e 9198 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9199
9200 if (tg == &root_task_group)
9201 return -EINVAL;
9202
9203 /*
9204 * Ensure we have at some amount of bandwidth every period. This is
9205 * to prevent reaching a state of large arrears when throttled via
9206 * entity_tick() resulting in prolonged exit starvation.
9207 */
9208 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9209 return -EINVAL;
9210
9211 /*
9212 * Likewise, bound things on the otherside by preventing insane quota
9213 * periods. This also allows us to normalize in computing quota
9214 * feasibility.
9215 */
9216 if (period > max_cfs_quota_period)
9217 return -EINVAL;
9218
a790de99
PT
9219 mutex_lock(&cfs_constraints_mutex);
9220 ret = __cfs_schedulable(tg, period, quota);
9221 if (ret)
9222 goto out_unlock;
9223
58088ad0 9224 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9225 raw_spin_lock_irq(&cfs_b->lock);
9226 cfs_b->period = ns_to_ktime(period);
9227 cfs_b->quota = quota;
58088ad0 9228
a9cf55b2 9229 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9230 /* restart the period timer (if active) to handle new period expiry */
9231 if (runtime_enabled && cfs_b->timer_active) {
9232 /* force a reprogram */
9233 cfs_b->timer_active = 0;
9234 __start_cfs_bandwidth(cfs_b);
9235 }
ab84d31e
PT
9236 raw_spin_unlock_irq(&cfs_b->lock);
9237
9238 for_each_possible_cpu(i) {
9239 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9240 struct rq *rq = rq_of(cfs_rq);
9241
9242 raw_spin_lock_irq(&rq->lock);
58088ad0 9243 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9244 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9245
9246 if (cfs_rq_throttled(cfs_rq))
9247 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9248 raw_spin_unlock_irq(&rq->lock);
9249 }
a790de99
PT
9250out_unlock:
9251 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9252
a790de99 9253 return ret;
ab84d31e
PT
9254}
9255
9256int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9257{
9258 u64 quota, period;
9259
9260 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9261 if (cfs_quota_us < 0)
9262 quota = RUNTIME_INF;
9263 else
9264 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9265
9266 return tg_set_cfs_bandwidth(tg, period, quota);
9267}
9268
9269long tg_get_cfs_quota(struct task_group *tg)
9270{
9271 u64 quota_us;
9272
9273 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9274 return -1;
9275
9276 quota_us = tg_cfs_bandwidth(tg)->quota;
9277 do_div(quota_us, NSEC_PER_USEC);
9278
9279 return quota_us;
9280}
9281
9282int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9283{
9284 u64 quota, period;
9285
9286 period = (u64)cfs_period_us * NSEC_PER_USEC;
9287 quota = tg_cfs_bandwidth(tg)->quota;
9288
9289 if (period <= 0)
9290 return -EINVAL;
9291
9292 return tg_set_cfs_bandwidth(tg, period, quota);
9293}
9294
9295long tg_get_cfs_period(struct task_group *tg)
9296{
9297 u64 cfs_period_us;
9298
9299 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9300 do_div(cfs_period_us, NSEC_PER_USEC);
9301
9302 return cfs_period_us;
9303}
9304
9305static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9306{
9307 return tg_get_cfs_quota(cgroup_tg(cgrp));
9308}
9309
9310static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9311 s64 cfs_quota_us)
9312{
9313 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9314}
9315
9316static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9317{
9318 return tg_get_cfs_period(cgroup_tg(cgrp));
9319}
9320
9321static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9322 u64 cfs_period_us)
9323{
9324 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9325}
9326
a790de99
PT
9327struct cfs_schedulable_data {
9328 struct task_group *tg;
9329 u64 period, quota;
9330};
9331
9332/*
9333 * normalize group quota/period to be quota/max_period
9334 * note: units are usecs
9335 */
9336static u64 normalize_cfs_quota(struct task_group *tg,
9337 struct cfs_schedulable_data *d)
9338{
9339 u64 quota, period;
9340
9341 if (tg == d->tg) {
9342 period = d->period;
9343 quota = d->quota;
9344 } else {
9345 period = tg_get_cfs_period(tg);
9346 quota = tg_get_cfs_quota(tg);
9347 }
9348
9349 /* note: these should typically be equivalent */
9350 if (quota == RUNTIME_INF || quota == -1)
9351 return RUNTIME_INF;
9352
9353 return to_ratio(period, quota);
9354}
9355
9356static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9357{
9358 struct cfs_schedulable_data *d = data;
9359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9360 s64 quota = 0, parent_quota = -1;
9361
9362 if (!tg->parent) {
9363 quota = RUNTIME_INF;
9364 } else {
9365 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9366
9367 quota = normalize_cfs_quota(tg, d);
9368 parent_quota = parent_b->hierarchal_quota;
9369
9370 /*
9371 * ensure max(child_quota) <= parent_quota, inherit when no
9372 * limit is set
9373 */
9374 if (quota == RUNTIME_INF)
9375 quota = parent_quota;
9376 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9377 return -EINVAL;
9378 }
9379 cfs_b->hierarchal_quota = quota;
9380
9381 return 0;
9382}
9383
9384static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9385{
8277434e 9386 int ret;
a790de99
PT
9387 struct cfs_schedulable_data data = {
9388 .tg = tg,
9389 .period = period,
9390 .quota = quota,
9391 };
9392
9393 if (quota != RUNTIME_INF) {
9394 do_div(data.period, NSEC_PER_USEC);
9395 do_div(data.quota, NSEC_PER_USEC);
9396 }
9397
8277434e
PT
9398 rcu_read_lock();
9399 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9400 rcu_read_unlock();
9401
9402 return ret;
a790de99 9403}
e8da1b18
NR
9404
9405static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9406 struct cgroup_map_cb *cb)
9407{
9408 struct task_group *tg = cgroup_tg(cgrp);
9409 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9410
9411 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9412 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9413 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9414
9415 return 0;
9416}
ab84d31e 9417#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9418#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9419
052f1dc7 9420#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9421static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9422 s64 val)
6f505b16 9423{
06ecb27c 9424 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9425}
9426
06ecb27c 9427static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9428{
06ecb27c 9429 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9430}
d0b27fa7
PZ
9431
9432static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9433 u64 rt_period_us)
9434{
9435 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9436}
9437
9438static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9439{
9440 return sched_group_rt_period(cgroup_tg(cgrp));
9441}
6d6bc0ad 9442#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9443
fe5c7cc2 9444static struct cftype cpu_files[] = {
052f1dc7 9445#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9446 {
9447 .name = "shares",
f4c753b7
PM
9448 .read_u64 = cpu_shares_read_u64,
9449 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9450 },
052f1dc7 9451#endif
ab84d31e
PT
9452#ifdef CONFIG_CFS_BANDWIDTH
9453 {
9454 .name = "cfs_quota_us",
9455 .read_s64 = cpu_cfs_quota_read_s64,
9456 .write_s64 = cpu_cfs_quota_write_s64,
9457 },
9458 {
9459 .name = "cfs_period_us",
9460 .read_u64 = cpu_cfs_period_read_u64,
9461 .write_u64 = cpu_cfs_period_write_u64,
9462 },
e8da1b18
NR
9463 {
9464 .name = "stat",
9465 .read_map = cpu_stats_show,
9466 },
ab84d31e 9467#endif
052f1dc7 9468#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9469 {
9f0c1e56 9470 .name = "rt_runtime_us",
06ecb27c
PM
9471 .read_s64 = cpu_rt_runtime_read,
9472 .write_s64 = cpu_rt_runtime_write,
6f505b16 9473 },
d0b27fa7
PZ
9474 {
9475 .name = "rt_period_us",
f4c753b7
PM
9476 .read_u64 = cpu_rt_period_read_uint,
9477 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9478 },
052f1dc7 9479#endif
68318b8e
SV
9480};
9481
9482static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9483{
fe5c7cc2 9484 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9485}
9486
9487struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9488 .name = "cpu",
9489 .create = cpu_cgroup_create,
9490 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9491 .can_attach_task = cpu_cgroup_can_attach_task,
9492 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9493 .exit = cpu_cgroup_exit,
38605cae
IM
9494 .populate = cpu_cgroup_populate,
9495 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9496 .early_init = 1,
9497};
9498
052f1dc7 9499#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9500
9501#ifdef CONFIG_CGROUP_CPUACCT
9502
9503/*
9504 * CPU accounting code for task groups.
9505 *
9506 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9507 * (balbir@in.ibm.com).
9508 */
9509
934352f2 9510/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9511struct cpuacct {
9512 struct cgroup_subsys_state css;
9513 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9514 u64 __percpu *cpuusage;
ef12fefa 9515 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9516 struct cpuacct *parent;
d842de87
SV
9517};
9518
9519struct cgroup_subsys cpuacct_subsys;
9520
9521/* return cpu accounting group corresponding to this container */
32cd756a 9522static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9523{
32cd756a 9524 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9525 struct cpuacct, css);
9526}
9527
9528/* return cpu accounting group to which this task belongs */
9529static inline struct cpuacct *task_ca(struct task_struct *tsk)
9530{
9531 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9532 struct cpuacct, css);
9533}
9534
9535/* create a new cpu accounting group */
9536static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9537 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9538{
9539 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9540 int i;
d842de87
SV
9541
9542 if (!ca)
ef12fefa 9543 goto out;
d842de87
SV
9544
9545 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9546 if (!ca->cpuusage)
9547 goto out_free_ca;
9548
9549 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9550 if (percpu_counter_init(&ca->cpustat[i], 0))
9551 goto out_free_counters;
d842de87 9552
934352f2
BR
9553 if (cgrp->parent)
9554 ca->parent = cgroup_ca(cgrp->parent);
9555
d842de87 9556 return &ca->css;
ef12fefa
BR
9557
9558out_free_counters:
9559 while (--i >= 0)
9560 percpu_counter_destroy(&ca->cpustat[i]);
9561 free_percpu(ca->cpuusage);
9562out_free_ca:
9563 kfree(ca);
9564out:
9565 return ERR_PTR(-ENOMEM);
d842de87
SV
9566}
9567
9568/* destroy an existing cpu accounting group */
41a2d6cf 9569static void
32cd756a 9570cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9571{
32cd756a 9572 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9573 int i;
d842de87 9574
ef12fefa
BR
9575 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9576 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9577 free_percpu(ca->cpuusage);
9578 kfree(ca);
9579}
9580
720f5498
KC
9581static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9582{
b36128c8 9583 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9584 u64 data;
9585
9586#ifndef CONFIG_64BIT
9587 /*
9588 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9589 */
05fa785c 9590 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9591 data = *cpuusage;
05fa785c 9592 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9593#else
9594 data = *cpuusage;
9595#endif
9596
9597 return data;
9598}
9599
9600static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9601{
b36128c8 9602 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9603
9604#ifndef CONFIG_64BIT
9605 /*
9606 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9607 */
05fa785c 9608 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9609 *cpuusage = val;
05fa785c 9610 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9611#else
9612 *cpuusage = val;
9613#endif
9614}
9615
d842de87 9616/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9617static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9618{
32cd756a 9619 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9620 u64 totalcpuusage = 0;
9621 int i;
9622
720f5498
KC
9623 for_each_present_cpu(i)
9624 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9625
9626 return totalcpuusage;
9627}
9628
0297b803
DG
9629static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9630 u64 reset)
9631{
9632 struct cpuacct *ca = cgroup_ca(cgrp);
9633 int err = 0;
9634 int i;
9635
9636 if (reset) {
9637 err = -EINVAL;
9638 goto out;
9639 }
9640
720f5498
KC
9641 for_each_present_cpu(i)
9642 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9643
0297b803
DG
9644out:
9645 return err;
9646}
9647
e9515c3c
KC
9648static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9649 struct seq_file *m)
9650{
9651 struct cpuacct *ca = cgroup_ca(cgroup);
9652 u64 percpu;
9653 int i;
9654
9655 for_each_present_cpu(i) {
9656 percpu = cpuacct_cpuusage_read(ca, i);
9657 seq_printf(m, "%llu ", (unsigned long long) percpu);
9658 }
9659 seq_printf(m, "\n");
9660 return 0;
9661}
9662
ef12fefa
BR
9663static const char *cpuacct_stat_desc[] = {
9664 [CPUACCT_STAT_USER] = "user",
9665 [CPUACCT_STAT_SYSTEM] = "system",
9666};
9667
9668static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9669 struct cgroup_map_cb *cb)
9670{
9671 struct cpuacct *ca = cgroup_ca(cgrp);
9672 int i;
9673
9674 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9675 s64 val = percpu_counter_read(&ca->cpustat[i]);
9676 val = cputime64_to_clock_t(val);
9677 cb->fill(cb, cpuacct_stat_desc[i], val);
9678 }
9679 return 0;
9680}
9681
d842de87
SV
9682static struct cftype files[] = {
9683 {
9684 .name = "usage",
f4c753b7
PM
9685 .read_u64 = cpuusage_read,
9686 .write_u64 = cpuusage_write,
d842de87 9687 },
e9515c3c
KC
9688 {
9689 .name = "usage_percpu",
9690 .read_seq_string = cpuacct_percpu_seq_read,
9691 },
ef12fefa
BR
9692 {
9693 .name = "stat",
9694 .read_map = cpuacct_stats_show,
9695 },
d842de87
SV
9696};
9697
32cd756a 9698static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9699{
32cd756a 9700 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9701}
9702
9703/*
9704 * charge this task's execution time to its accounting group.
9705 *
9706 * called with rq->lock held.
9707 */
9708static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9709{
9710 struct cpuacct *ca;
934352f2 9711 int cpu;
d842de87 9712
c40c6f85 9713 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9714 return;
9715
934352f2 9716 cpu = task_cpu(tsk);
a18b83b7
BR
9717
9718 rcu_read_lock();
9719
d842de87 9720 ca = task_ca(tsk);
d842de87 9721
934352f2 9722 for (; ca; ca = ca->parent) {
b36128c8 9723 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9724 *cpuusage += cputime;
9725 }
a18b83b7
BR
9726
9727 rcu_read_unlock();
d842de87
SV
9728}
9729
fa535a77
AB
9730/*
9731 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9732 * in cputime_t units. As a result, cpuacct_update_stats calls
9733 * percpu_counter_add with values large enough to always overflow the
9734 * per cpu batch limit causing bad SMP scalability.
9735 *
9736 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9737 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9738 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9739 */
9740#ifdef CONFIG_SMP
9741#define CPUACCT_BATCH \
9742 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9743#else
9744#define CPUACCT_BATCH 0
9745#endif
9746
ef12fefa
BR
9747/*
9748 * Charge the system/user time to the task's accounting group.
9749 */
9750static void cpuacct_update_stats(struct task_struct *tsk,
9751 enum cpuacct_stat_index idx, cputime_t val)
9752{
9753 struct cpuacct *ca;
fa535a77 9754 int batch = CPUACCT_BATCH;
ef12fefa
BR
9755
9756 if (unlikely(!cpuacct_subsys.active))
9757 return;
9758
9759 rcu_read_lock();
9760 ca = task_ca(tsk);
9761
9762 do {
fa535a77 9763 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9764 ca = ca->parent;
9765 } while (ca);
9766 rcu_read_unlock();
9767}
9768
d842de87
SV
9769struct cgroup_subsys cpuacct_subsys = {
9770 .name = "cpuacct",
9771 .create = cpuacct_create,
9772 .destroy = cpuacct_destroy,
9773 .populate = cpuacct_populate,
9774 .subsys_id = cpuacct_subsys_id,
9775};
9776#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.23023 seconds and 5 git commands to generate.