sched: convert remaining old-style cpumask operators
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7
PZ
269
270#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
271 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se;
273 /* runqueue "owned" by this group on each cpu */
274 struct cfs_rq **cfs_rq;
275 unsigned long shares;
052f1dc7
PZ
276#endif
277
278#ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
d0b27fa7 282 struct rt_bandwidth rt_bandwidth;
052f1dc7 283#endif
6b2d7700 284
ae8393e5 285 struct rcu_head rcu;
6f505b16 286 struct list_head list;
f473aa5e
PZ
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
29f59db3
SV
291};
292
354d60c2 293#ifdef CONFIG_USER_SCHED
eff766a6
PZ
294
295/*
296 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will
298 * be a child to this group.
299 */
300struct task_group root_task_group;
301
052f1dc7 302#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
303/* Default task group's sched entity on each cpu */
304static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
305/* Default task group's cfs_rq on each cpu */
306static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 307#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
308
309#ifdef CONFIG_RT_GROUP_SCHED
310static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
311static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 312#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 313#else /* !CONFIG_USER_SCHED */
eff766a6 314#define root_task_group init_task_group
9a7e0b18 315#endif /* CONFIG_USER_SCHED */
6f505b16 316
8ed36996 317/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
318 * a task group's cpu shares.
319 */
8ed36996 320static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
24e377a8 354 tg = p->user->tg;
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
456 int highest_prio; /* highest queued rt task prio */
457#endif
fa85ae24 458#ifdef CONFIG_SMP
73fe6aae 459 unsigned long rt_nr_migratory;
a22d7fc1 460 int overloaded;
fa85ae24 461#endif
6f505b16 462 int rt_throttled;
fa85ae24 463 u64 rt_time;
ac086bc2 464 u64 rt_runtime;
ea736ed5 465 /* Nests inside the rq lock: */
ac086bc2 466 spinlock_t rt_runtime_lock;
6f505b16 467
052f1dc7 468#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
469 unsigned long rt_nr_boosted;
470
6f505b16
PZ
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475#endif
6aa645ea
IM
476};
477
57d885fe
GH
478#ifdef CONFIG_SMP
479
480/*
481 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
57d885fe
GH
487 */
488struct root_domain {
489 atomic_t refcount;
c6c4927b
RR
490 cpumask_var_t span;
491 cpumask_var_t online;
637f5085 492
0eab9146 493 /*
637f5085
GH
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
c6c4927b 497 cpumask_var_t rto_mask;
0eab9146 498 atomic_t rto_count;
6e0534f2
GH
499#ifdef CONFIG_SMP
500 struct cpupri cpupri;
501#endif
57d885fe
GH
502};
503
dc938520
GH
504/*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
57d885fe
GH
508static struct root_domain def_root_domain;
509
510#endif
511
1da177e4
LT
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
70b97a7f 519struct rq {
d8016491
IM
520 /* runqueue lock: */
521 spinlock_t lock;
1da177e4
LT
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
6aa645ea
IM
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 530 unsigned char idle_at_tick;
46cb4b7c 531#ifdef CONFIG_NO_HZ
15934a37 532 unsigned long last_tick_seen;
46cb4b7c
SS
533 unsigned char in_nohz_recently;
534#endif
d8016491
IM
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
6aa645ea
IM
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
6f505b16 541 struct rt_rq rt;
6f505b16 542
6aa645ea 543#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
546#endif
547#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 548 struct list_head leaf_rt_rq_list;
1da177e4 549#endif
1da177e4
LT
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
36c8b586 559 struct task_struct *curr, *idle;
c9819f45 560 unsigned long next_balance;
1da177e4 561 struct mm_struct *prev_mm;
6aa645ea 562
3e51f33f 563 u64 clock;
6aa645ea 564
1da177e4
LT
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
0eab9146 568 struct root_domain *rd;
1da177e4
LT
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
d8016491
IM
574 /* cpu of this runqueue: */
575 int cpu;
1f11eb6a 576 int online;
1da177e4 577
a8a51d5e 578 unsigned long avg_load_per_task;
1da177e4 579
36c8b586 580 struct task_struct *migration_thread;
1da177e4
LT
581 struct list_head migration_queue;
582#endif
583
8f4d37ec 584#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
585#ifdef CONFIG_SMP
586 int hrtick_csd_pending;
587 struct call_single_data hrtick_csd;
588#endif
8f4d37ec
PZ
589 struct hrtimer hrtick_timer;
590#endif
591
1da177e4
LT
592#ifdef CONFIG_SCHEDSTATS
593 /* latency stats */
594 struct sched_info rq_sched_info;
595
596 /* sys_sched_yield() stats */
480b9434
KC
597 unsigned int yld_exp_empty;
598 unsigned int yld_act_empty;
599 unsigned int yld_both_empty;
600 unsigned int yld_count;
1da177e4
LT
601
602 /* schedule() stats */
480b9434
KC
603 unsigned int sched_switch;
604 unsigned int sched_count;
605 unsigned int sched_goidle;
1da177e4
LT
606
607 /* try_to_wake_up() stats */
480b9434
KC
608 unsigned int ttwu_count;
609 unsigned int ttwu_local;
b8efb561
IM
610
611 /* BKL stats */
480b9434 612 unsigned int bkl_count;
1da177e4
LT
613#endif
614};
615
f34e3b61 616static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 617
15afe09b 618static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 619{
15afe09b 620 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
621}
622
0a2966b4
CL
623static inline int cpu_of(struct rq *rq)
624{
625#ifdef CONFIG_SMP
626 return rq->cpu;
627#else
628 return 0;
629#endif
630}
631
674311d5
NP
632/*
633 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 634 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
635 *
636 * The domain tree of any CPU may only be accessed from within
637 * preempt-disabled sections.
638 */
48f24c4d
IM
639#define for_each_domain(cpu, __sd) \
640 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
641
642#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
643#define this_rq() (&__get_cpu_var(runqueues))
644#define task_rq(p) cpu_rq(task_cpu(p))
645#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
646
3e51f33f
PZ
647static inline void update_rq_clock(struct rq *rq)
648{
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668int runqueue_is_locked(void)
669{
670 int cpu = get_cpu();
671 struct rq *rq = cpu_rq(cpu);
672 int ret;
673
674 ret = spin_is_locked(&rq->lock);
675 put_cpu();
676 return ret;
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
731 char *cmp = buf;
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
742
c24b7c52 743 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
744 neg = 1;
745 cmp += 3;
746 }
747
748 for (i = 0; sched_feat_names[i]; i++) {
749 int len = strlen(sched_feat_names[i]);
750
751 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
752 if (neg)
753 sysctl_sched_features &= ~(1UL << i);
754 else
755 sysctl_sched_features |= (1UL << i);
756 break;
757 }
758 }
759
760 if (!sched_feat_names[i])
761 return -EINVAL;
762
763 filp->f_pos += cnt;
764
765 return cnt;
766}
767
34f3a814
LZ
768static int sched_feat_open(struct inode *inode, struct file *filp)
769{
770 return single_open(filp, sched_feat_show, NULL);
771}
772
f00b45c1 773static struct file_operations sched_feat_fops = {
34f3a814
LZ
774 .open = sched_feat_open,
775 .write = sched_feat_write,
776 .read = seq_read,
777 .llseek = seq_lseek,
778 .release = single_release,
f00b45c1
PZ
779};
780
781static __init int sched_init_debug(void)
782{
f00b45c1
PZ
783 debugfs_create_file("sched_features", 0644, NULL, NULL,
784 &sched_feat_fops);
785
786 return 0;
787}
788late_initcall(sched_init_debug);
789
790#endif
791
792#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 793
b82d9fdd
PZ
794/*
795 * Number of tasks to iterate in a single balance run.
796 * Limited because this is done with IRQs disabled.
797 */
798const_debug unsigned int sysctl_sched_nr_migrate = 32;
799
2398f2c6
PZ
800/*
801 * ratelimit for updating the group shares.
55cd5340 802 * default: 0.25ms
2398f2c6 803 */
55cd5340 804unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 805
ffda12a1
PZ
806/*
807 * Inject some fuzzyness into changing the per-cpu group shares
808 * this avoids remote rq-locks at the expense of fairness.
809 * default: 4
810 */
811unsigned int sysctl_sched_shares_thresh = 4;
812
fa85ae24 813/*
9f0c1e56 814 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
815 * default: 1s
816 */
9f0c1e56 817unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 818
6892b75e
IM
819static __read_mostly int scheduler_running;
820
9f0c1e56
PZ
821/*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825int sysctl_sched_rt_runtime = 950000;
fa85ae24 826
d0b27fa7
PZ
827static inline u64 global_rt_period(void)
828{
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830}
831
832static inline u64 global_rt_runtime(void)
833{
e26873bb 834 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838}
fa85ae24 839
1da177e4 840#ifndef prepare_arch_switch
4866cde0
NP
841# define prepare_arch_switch(next) do { } while (0)
842#endif
843#ifndef finish_arch_switch
844# define finish_arch_switch(prev) do { } while (0)
845#endif
846
051a1d1a
DA
847static inline int task_current(struct rq *rq, struct task_struct *p)
848{
849 return rq->curr == p;
850}
851
4866cde0 852#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 853static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 854{
051a1d1a 855 return task_current(rq, p);
4866cde0
NP
856}
857
70b97a7f 858static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
859{
860}
861
70b97a7f 862static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 863{
da04c035
IM
864#ifdef CONFIG_DEBUG_SPINLOCK
865 /* this is a valid case when another task releases the spinlock */
866 rq->lock.owner = current;
867#endif
8a25d5de
IM
868 /*
869 * If we are tracking spinlock dependencies then we have to
870 * fix up the runqueue lock - which gets 'carried over' from
871 * prev into current:
872 */
873 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
874
4866cde0
NP
875 spin_unlock_irq(&rq->lock);
876}
877
878#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 879static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
880{
881#ifdef CONFIG_SMP
882 return p->oncpu;
883#else
051a1d1a 884 return task_current(rq, p);
4866cde0
NP
885#endif
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890#ifdef CONFIG_SMP
891 /*
892 * We can optimise this out completely for !SMP, because the
893 * SMP rebalancing from interrupt is the only thing that cares
894 * here.
895 */
896 next->oncpu = 1;
897#endif
898#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 spin_unlock_irq(&rq->lock);
900#else
901 spin_unlock(&rq->lock);
902#endif
903}
904
70b97a7f 905static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
906{
907#ifdef CONFIG_SMP
908 /*
909 * After ->oncpu is cleared, the task can be moved to a different CPU.
910 * We must ensure this doesn't happen until the switch is completely
911 * finished.
912 */
913 smp_wmb();
914 prev->oncpu = 0;
915#endif
916#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 local_irq_enable();
1da177e4 918#endif
4866cde0
NP
919}
920#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 921
b29739f9
IM
922/*
923 * __task_rq_lock - lock the runqueue a given task resides on.
924 * Must be called interrupts disabled.
925 */
70b97a7f 926static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
927 __acquires(rq->lock)
928{
3a5c359a
AK
929 for (;;) {
930 struct rq *rq = task_rq(p);
931 spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p)))
933 return rq;
b29739f9 934 spin_unlock(&rq->lock);
b29739f9 935 }
b29739f9
IM
936}
937
1da177e4
LT
938/*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 940 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
941 * explicitly disabling preemption.
942 */
70b97a7f 943static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
944 __acquires(rq->lock)
945{
70b97a7f 946 struct rq *rq;
1da177e4 947
3a5c359a
AK
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
1da177e4 954 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 955 }
1da177e4
LT
956}
957
ad474cac
ON
958void task_rq_unlock_wait(struct task_struct *p)
959{
960 struct rq *rq = task_rq(p);
961
962 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
963 spin_unlock_wait(&rq->lock);
964}
965
a9957449 966static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
967 __releases(rq->lock)
968{
969 spin_unlock(&rq->lock);
970}
971
70b97a7f 972static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
973 __releases(rq->lock)
974{
975 spin_unlock_irqrestore(&rq->lock, *flags);
976}
977
1da177e4 978/*
cc2a73b5 979 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 980 */
a9957449 981static struct rq *this_rq_lock(void)
1da177e4
LT
982 __acquires(rq->lock)
983{
70b97a7f 984 struct rq *rq;
1da177e4
LT
985
986 local_irq_disable();
987 rq = this_rq();
988 spin_lock(&rq->lock);
989
990 return rq;
991}
992
8f4d37ec
PZ
993#ifdef CONFIG_SCHED_HRTICK
994/*
995 * Use HR-timers to deliver accurate preemption points.
996 *
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999 * reschedule event.
1000 *
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * rq->lock.
1003 */
8f4d37ec
PZ
1004
1005/*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010static inline int hrtick_enabled(struct rq *rq)
1011{
1012 if (!sched_feat(HRTICK))
1013 return 0;
ba42059f 1014 if (!cpu_active(cpu_of(rq)))
b328ca18 1015 return 0;
8f4d37ec
PZ
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019static void hrtick_clear(struct rq *rq)
1020{
1021 if (hrtimer_active(&rq->hrtick_timer))
1022 hrtimer_cancel(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025/*
1026 * High-resolution timer tick.
1027 * Runs from hardirq context with interrupts disabled.
1028 */
1029static enum hrtimer_restart hrtick(struct hrtimer *timer)
1030{
1031 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1032
1033 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1034
1035 spin_lock(&rq->lock);
3e51f33f 1036 update_rq_clock(rq);
8f4d37ec
PZ
1037 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1038 spin_unlock(&rq->lock);
1039
1040 return HRTIMER_NORESTART;
1041}
1042
95e904c7 1043#ifdef CONFIG_SMP
31656519
PZ
1044/*
1045 * called from hardirq (IPI) context
1046 */
1047static void __hrtick_start(void *arg)
b328ca18 1048{
31656519 1049 struct rq *rq = arg;
b328ca18 1050
31656519
PZ
1051 spin_lock(&rq->lock);
1052 hrtimer_restart(&rq->hrtick_timer);
1053 rq->hrtick_csd_pending = 0;
1054 spin_unlock(&rq->lock);
b328ca18
PZ
1055}
1056
31656519
PZ
1057/*
1058 * Called to set the hrtick timer state.
1059 *
1060 * called with rq->lock held and irqs disabled
1061 */
1062static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1063{
31656519
PZ
1064 struct hrtimer *timer = &rq->hrtick_timer;
1065 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1066
cc584b21 1067 hrtimer_set_expires(timer, time);
31656519
PZ
1068
1069 if (rq == this_rq()) {
1070 hrtimer_restart(timer);
1071 } else if (!rq->hrtick_csd_pending) {
1072 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1073 rq->hrtick_csd_pending = 1;
1074 }
b328ca18
PZ
1075}
1076
1077static int
1078hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1079{
1080 int cpu = (int)(long)hcpu;
1081
1082 switch (action) {
1083 case CPU_UP_CANCELED:
1084 case CPU_UP_CANCELED_FROZEN:
1085 case CPU_DOWN_PREPARE:
1086 case CPU_DOWN_PREPARE_FROZEN:
1087 case CPU_DEAD:
1088 case CPU_DEAD_FROZEN:
31656519 1089 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1090 return NOTIFY_OK;
1091 }
1092
1093 return NOTIFY_DONE;
1094}
1095
fa748203 1096static __init void init_hrtick(void)
b328ca18
PZ
1097{
1098 hotcpu_notifier(hotplug_hrtick, 0);
1099}
31656519
PZ
1100#else
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
1107{
1108 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1109}
b328ca18 1110
006c75f1 1111static inline void init_hrtick(void)
8f4d37ec 1112{
8f4d37ec 1113}
31656519 1114#endif /* CONFIG_SMP */
8f4d37ec 1115
31656519 1116static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1117{
31656519
PZ
1118#ifdef CONFIG_SMP
1119 rq->hrtick_csd_pending = 0;
8f4d37ec 1120
31656519
PZ
1121 rq->hrtick_csd.flags = 0;
1122 rq->hrtick_csd.func = __hrtick_start;
1123 rq->hrtick_csd.info = rq;
1124#endif
8f4d37ec 1125
31656519
PZ
1126 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1127 rq->hrtick_timer.function = hrtick;
ccc7dadf 1128 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1129}
006c75f1 1130#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1131static inline void hrtick_clear(struct rq *rq)
1132{
1133}
1134
8f4d37ec
PZ
1135static inline void init_rq_hrtick(struct rq *rq)
1136{
1137}
1138
b328ca18
PZ
1139static inline void init_hrtick(void)
1140{
1141}
006c75f1 1142#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1143
c24d20db
IM
1144/*
1145 * resched_task - mark a task 'to be rescheduled now'.
1146 *
1147 * On UP this means the setting of the need_resched flag, on SMP it
1148 * might also involve a cross-CPU call to trigger the scheduler on
1149 * the target CPU.
1150 */
1151#ifdef CONFIG_SMP
1152
1153#ifndef tsk_is_polling
1154#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1155#endif
1156
31656519 1157static void resched_task(struct task_struct *p)
c24d20db
IM
1158{
1159 int cpu;
1160
1161 assert_spin_locked(&task_rq(p)->lock);
1162
31656519 1163 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1164 return;
1165
31656519 1166 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1167
1168 cpu = task_cpu(p);
1169 if (cpu == smp_processor_id())
1170 return;
1171
1172 /* NEED_RESCHED must be visible before we test polling */
1173 smp_mb();
1174 if (!tsk_is_polling(p))
1175 smp_send_reschedule(cpu);
1176}
1177
1178static void resched_cpu(int cpu)
1179{
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long flags;
1182
1183 if (!spin_trylock_irqsave(&rq->lock, flags))
1184 return;
1185 resched_task(cpu_curr(cpu));
1186 spin_unlock_irqrestore(&rq->lock, flags);
1187}
06d8308c
TG
1188
1189#ifdef CONFIG_NO_HZ
1190/*
1191 * When add_timer_on() enqueues a timer into the timer wheel of an
1192 * idle CPU then this timer might expire before the next timer event
1193 * which is scheduled to wake up that CPU. In case of a completely
1194 * idle system the next event might even be infinite time into the
1195 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1196 * leaves the inner idle loop so the newly added timer is taken into
1197 * account when the CPU goes back to idle and evaluates the timer
1198 * wheel for the next timer event.
1199 */
1200void wake_up_idle_cpu(int cpu)
1201{
1202 struct rq *rq = cpu_rq(cpu);
1203
1204 if (cpu == smp_processor_id())
1205 return;
1206
1207 /*
1208 * This is safe, as this function is called with the timer
1209 * wheel base lock of (cpu) held. When the CPU is on the way
1210 * to idle and has not yet set rq->curr to idle then it will
1211 * be serialized on the timer wheel base lock and take the new
1212 * timer into account automatically.
1213 */
1214 if (rq->curr != rq->idle)
1215 return;
1216
1217 /*
1218 * We can set TIF_RESCHED on the idle task of the other CPU
1219 * lockless. The worst case is that the other CPU runs the
1220 * idle task through an additional NOOP schedule()
1221 */
1222 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(rq->idle))
1227 smp_send_reschedule(cpu);
1228}
6d6bc0ad 1229#endif /* CONFIG_NO_HZ */
06d8308c 1230
6d6bc0ad 1231#else /* !CONFIG_SMP */
31656519 1232static void resched_task(struct task_struct *p)
c24d20db
IM
1233{
1234 assert_spin_locked(&task_rq(p)->lock);
31656519 1235 set_tsk_need_resched(p);
c24d20db 1236}
6d6bc0ad 1237#endif /* CONFIG_SMP */
c24d20db 1238
45bf76df
IM
1239#if BITS_PER_LONG == 32
1240# define WMULT_CONST (~0UL)
1241#else
1242# define WMULT_CONST (1UL << 32)
1243#endif
1244
1245#define WMULT_SHIFT 32
1246
194081eb
IM
1247/*
1248 * Shift right and round:
1249 */
cf2ab469 1250#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1251
a7be37ac
PZ
1252/*
1253 * delta *= weight / lw
1254 */
cb1c4fc9 1255static unsigned long
45bf76df
IM
1256calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1257 struct load_weight *lw)
1258{
1259 u64 tmp;
1260
7a232e03
LJ
1261 if (!lw->inv_weight) {
1262 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1263 lw->inv_weight = 1;
1264 else
1265 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1266 / (lw->weight+1);
1267 }
45bf76df
IM
1268
1269 tmp = (u64)delta_exec * weight;
1270 /*
1271 * Check whether we'd overflow the 64-bit multiplication:
1272 */
194081eb 1273 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1274 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1275 WMULT_SHIFT/2);
1276 else
cf2ab469 1277 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1278
ecf691da 1279 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1283{
1284 lw->weight += inc;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
1091985b 1288static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1289{
1290 lw->weight -= dec;
e89996ae 1291 lw->inv_weight = 0;
45bf76df
IM
1292}
1293
2dd73a4f
PW
1294/*
1295 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1296 * of tasks with abnormal "nice" values across CPUs the contribution that
1297 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1298 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1299 * scaled version of the new time slice allocation that they receive on time
1300 * slice expiry etc.
1301 */
1302
dd41f596
IM
1303#define WEIGHT_IDLEPRIO 2
1304#define WMULT_IDLEPRIO (1 << 31)
1305
1306/*
1307 * Nice levels are multiplicative, with a gentle 10% change for every
1308 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1309 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1310 * that remained on nice 0.
1311 *
1312 * The "10% effect" is relative and cumulative: from _any_ nice level,
1313 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1314 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1315 * If a task goes up by ~10% and another task goes down by ~10% then
1316 * the relative distance between them is ~25%.)
dd41f596
IM
1317 */
1318static const int prio_to_weight[40] = {
254753dc
IM
1319 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1320 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1321 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1322 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1323 /* 0 */ 1024, 820, 655, 526, 423,
1324 /* 5 */ 335, 272, 215, 172, 137,
1325 /* 10 */ 110, 87, 70, 56, 45,
1326 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1327};
1328
5714d2de
IM
1329/*
1330 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1331 *
1332 * In cases where the weight does not change often, we can use the
1333 * precalculated inverse to speed up arithmetics by turning divisions
1334 * into multiplications:
1335 */
dd41f596 1336static const u32 prio_to_wmult[40] = {
254753dc
IM
1337 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1338 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1339 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1340 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1341 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1342 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1343 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1344 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1345};
2dd73a4f 1346
dd41f596
IM
1347static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1348
1349/*
1350 * runqueue iterator, to support SMP load-balancing between different
1351 * scheduling classes, without having to expose their internal data
1352 * structures to the load-balancing proper:
1353 */
1354struct rq_iterator {
1355 void *arg;
1356 struct task_struct *(*start)(void *);
1357 struct task_struct *(*next)(void *);
1358};
1359
e1d1484f
PW
1360#ifdef CONFIG_SMP
1361static unsigned long
1362balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 unsigned long max_load_move, struct sched_domain *sd,
1364 enum cpu_idle_type idle, int *all_pinned,
1365 int *this_best_prio, struct rq_iterator *iterator);
1366
1367static int
1368iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1369 struct sched_domain *sd, enum cpu_idle_type idle,
1370 struct rq_iterator *iterator);
e1d1484f 1371#endif
dd41f596 1372
d842de87
SV
1373#ifdef CONFIG_CGROUP_CPUACCT
1374static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1375#else
1376static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1377#endif
1378
18d95a28
PZ
1379static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1380{
1381 update_load_add(&rq->load, load);
1382}
1383
1384static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1385{
1386 update_load_sub(&rq->load, load);
1387}
1388
7940ca36 1389#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1390typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1391
1392/*
1393 * Iterate the full tree, calling @down when first entering a node and @up when
1394 * leaving it for the final time.
1395 */
eb755805 1396static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1397{
1398 struct task_group *parent, *child;
eb755805 1399 int ret;
c09595f6
PZ
1400
1401 rcu_read_lock();
1402 parent = &root_task_group;
1403down:
eb755805
PZ
1404 ret = (*down)(parent, data);
1405 if (ret)
1406 goto out_unlock;
c09595f6
PZ
1407 list_for_each_entry_rcu(child, &parent->children, siblings) {
1408 parent = child;
1409 goto down;
1410
1411up:
1412 continue;
1413 }
eb755805
PZ
1414 ret = (*up)(parent, data);
1415 if (ret)
1416 goto out_unlock;
c09595f6
PZ
1417
1418 child = parent;
1419 parent = parent->parent;
1420 if (parent)
1421 goto up;
eb755805 1422out_unlock:
c09595f6 1423 rcu_read_unlock();
eb755805
PZ
1424
1425 return ret;
c09595f6
PZ
1426}
1427
eb755805
PZ
1428static int tg_nop(struct task_group *tg, void *data)
1429{
1430 return 0;
c09595f6 1431}
eb755805
PZ
1432#endif
1433
1434#ifdef CONFIG_SMP
1435static unsigned long source_load(int cpu, int type);
1436static unsigned long target_load(int cpu, int type);
1437static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1438
1439static unsigned long cpu_avg_load_per_task(int cpu)
1440{
1441 struct rq *rq = cpu_rq(cpu);
1442
1443 if (rq->nr_running)
1444 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
a2d47777
BS
1445 else
1446 rq->avg_load_per_task = 0;
eb755805
PZ
1447
1448 return rq->avg_load_per_task;
1449}
1450
1451#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1452
c09595f6
PZ
1453static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1454
1455/*
1456 * Calculate and set the cpu's group shares.
1457 */
1458static void
ffda12a1
PZ
1459update_group_shares_cpu(struct task_group *tg, int cpu,
1460 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1461{
c09595f6
PZ
1462 unsigned long shares;
1463 unsigned long rq_weight;
1464
c8cba857 1465 if (!tg->se[cpu])
c09595f6
PZ
1466 return;
1467
ec4e0e2f 1468 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1469
c09595f6
PZ
1470 /*
1471 * \Sum shares * rq_weight
1472 * shares = -----------------------
1473 * \Sum rq_weight
1474 *
1475 */
ec4e0e2f 1476 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1477 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1478
ffda12a1
PZ
1479 if (abs(shares - tg->se[cpu]->load.weight) >
1480 sysctl_sched_shares_thresh) {
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long flags;
c09595f6 1483
ffda12a1 1484 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1485 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1486
ffda12a1
PZ
1487 __set_se_shares(tg->se[cpu], shares);
1488 spin_unlock_irqrestore(&rq->lock, flags);
1489 }
18d95a28 1490}
c09595f6
PZ
1491
1492/*
c8cba857
PZ
1493 * Re-compute the task group their per cpu shares over the given domain.
1494 * This needs to be done in a bottom-up fashion because the rq weight of a
1495 * parent group depends on the shares of its child groups.
c09595f6 1496 */
eb755805 1497static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1498{
ec4e0e2f 1499 unsigned long weight, rq_weight = 0;
c8cba857 1500 unsigned long shares = 0;
eb755805 1501 struct sched_domain *sd = data;
c8cba857 1502 int i;
c09595f6 1503
758b2cdc 1504 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1505 /*
1506 * If there are currently no tasks on the cpu pretend there
1507 * is one of average load so that when a new task gets to
1508 * run here it will not get delayed by group starvation.
1509 */
1510 weight = tg->cfs_rq[i]->load.weight;
1511 if (!weight)
1512 weight = NICE_0_LOAD;
1513
1514 tg->cfs_rq[i]->rq_weight = weight;
1515 rq_weight += weight;
c8cba857 1516 shares += tg->cfs_rq[i]->shares;
c09595f6 1517 }
c09595f6 1518
c8cba857
PZ
1519 if ((!shares && rq_weight) || shares > tg->shares)
1520 shares = tg->shares;
1521
1522 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1523 shares = tg->shares;
c09595f6 1524
758b2cdc 1525 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1526 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1527
1528 return 0;
c09595f6
PZ
1529}
1530
1531/*
c8cba857
PZ
1532 * Compute the cpu's hierarchical load factor for each task group.
1533 * This needs to be done in a top-down fashion because the load of a child
1534 * group is a fraction of its parents load.
c09595f6 1535 */
eb755805 1536static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1537{
c8cba857 1538 unsigned long load;
eb755805 1539 long cpu = (long)data;
c09595f6 1540
c8cba857
PZ
1541 if (!tg->parent) {
1542 load = cpu_rq(cpu)->load.weight;
1543 } else {
1544 load = tg->parent->cfs_rq[cpu]->h_load;
1545 load *= tg->cfs_rq[cpu]->shares;
1546 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1547 }
c09595f6 1548
c8cba857 1549 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1550
eb755805 1551 return 0;
c09595f6
PZ
1552}
1553
c8cba857 1554static void update_shares(struct sched_domain *sd)
4d8d595d 1555{
2398f2c6
PZ
1556 u64 now = cpu_clock(raw_smp_processor_id());
1557 s64 elapsed = now - sd->last_update;
1558
1559 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1560 sd->last_update = now;
eb755805 1561 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1562 }
4d8d595d
PZ
1563}
1564
3e5459b4
PZ
1565static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1566{
1567 spin_unlock(&rq->lock);
1568 update_shares(sd);
1569 spin_lock(&rq->lock);
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
c09595f6
PZ
1577#else
1578
c8cba857 1579static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1580{
1581}
1582
3e5459b4
PZ
1583static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1584{
1585}
1586
18d95a28
PZ
1587#endif
1588
18d95a28
PZ
1589#endif
1590
30432094 1591#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1592static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1593{
30432094 1594#ifdef CONFIG_SMP
34e83e85
IM
1595 cfs_rq->shares = shares;
1596#endif
1597}
30432094 1598#endif
e7693a36 1599
dd41f596 1600#include "sched_stats.h"
dd41f596 1601#include "sched_idletask.c"
5522d5d5
IM
1602#include "sched_fair.c"
1603#include "sched_rt.c"
dd41f596
IM
1604#ifdef CONFIG_SCHED_DEBUG
1605# include "sched_debug.c"
1606#endif
1607
1608#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1609#define for_each_class(class) \
1610 for (class = sched_class_highest; class; class = class->next)
dd41f596 1611
c09595f6 1612static void inc_nr_running(struct rq *rq)
9c217245
IM
1613{
1614 rq->nr_running++;
9c217245
IM
1615}
1616
c09595f6 1617static void dec_nr_running(struct rq *rq)
9c217245
IM
1618{
1619 rq->nr_running--;
9c217245
IM
1620}
1621
45bf76df
IM
1622static void set_load_weight(struct task_struct *p)
1623{
1624 if (task_has_rt_policy(p)) {
dd41f596
IM
1625 p->se.load.weight = prio_to_weight[0] * 2;
1626 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1627 return;
1628 }
45bf76df 1629
dd41f596
IM
1630 /*
1631 * SCHED_IDLE tasks get minimal weight:
1632 */
1633 if (p->policy == SCHED_IDLE) {
1634 p->se.load.weight = WEIGHT_IDLEPRIO;
1635 p->se.load.inv_weight = WMULT_IDLEPRIO;
1636 return;
1637 }
71f8bd46 1638
dd41f596
IM
1639 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1640 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1641}
1642
2087a1ad
GH
1643static void update_avg(u64 *avg, u64 sample)
1644{
1645 s64 diff = sample - *avg;
1646 *avg += diff >> 3;
1647}
1648
8159f87e 1649static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1650{
dd41f596 1651 sched_info_queued(p);
fd390f6a 1652 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1653 p->se.on_rq = 1;
71f8bd46
IM
1654}
1655
69be72c1 1656static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1657{
2087a1ad
GH
1658 if (sleep && p->se.last_wakeup) {
1659 update_avg(&p->se.avg_overlap,
1660 p->se.sum_exec_runtime - p->se.last_wakeup);
1661 p->se.last_wakeup = 0;
1662 }
1663
46ac22ba 1664 sched_info_dequeued(p);
f02231e5 1665 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1666 p->se.on_rq = 0;
71f8bd46
IM
1667}
1668
14531189 1669/*
dd41f596 1670 * __normal_prio - return the priority that is based on the static prio
14531189 1671 */
14531189
IM
1672static inline int __normal_prio(struct task_struct *p)
1673{
dd41f596 1674 return p->static_prio;
14531189
IM
1675}
1676
b29739f9
IM
1677/*
1678 * Calculate the expected normal priority: i.e. priority
1679 * without taking RT-inheritance into account. Might be
1680 * boosted by interactivity modifiers. Changes upon fork,
1681 * setprio syscalls, and whenever the interactivity
1682 * estimator recalculates.
1683 */
36c8b586 1684static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1685{
1686 int prio;
1687
e05606d3 1688 if (task_has_rt_policy(p))
b29739f9
IM
1689 prio = MAX_RT_PRIO-1 - p->rt_priority;
1690 else
1691 prio = __normal_prio(p);
1692 return prio;
1693}
1694
1695/*
1696 * Calculate the current priority, i.e. the priority
1697 * taken into account by the scheduler. This value might
1698 * be boosted by RT tasks, or might be boosted by
1699 * interactivity modifiers. Will be RT if the task got
1700 * RT-boosted. If not then it returns p->normal_prio.
1701 */
36c8b586 1702static int effective_prio(struct task_struct *p)
b29739f9
IM
1703{
1704 p->normal_prio = normal_prio(p);
1705 /*
1706 * If we are RT tasks or we were boosted to RT priority,
1707 * keep the priority unchanged. Otherwise, update priority
1708 * to the normal priority:
1709 */
1710 if (!rt_prio(p->prio))
1711 return p->normal_prio;
1712 return p->prio;
1713}
1714
1da177e4 1715/*
dd41f596 1716 * activate_task - move a task to the runqueue.
1da177e4 1717 */
dd41f596 1718static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1719{
d9514f6c 1720 if (task_contributes_to_load(p))
dd41f596 1721 rq->nr_uninterruptible--;
1da177e4 1722
8159f87e 1723 enqueue_task(rq, p, wakeup);
c09595f6 1724 inc_nr_running(rq);
1da177e4
LT
1725}
1726
1da177e4
LT
1727/*
1728 * deactivate_task - remove a task from the runqueue.
1729 */
2e1cb74a 1730static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1731{
d9514f6c 1732 if (task_contributes_to_load(p))
dd41f596
IM
1733 rq->nr_uninterruptible++;
1734
69be72c1 1735 dequeue_task(rq, p, sleep);
c09595f6 1736 dec_nr_running(rq);
1da177e4
LT
1737}
1738
1da177e4
LT
1739/**
1740 * task_curr - is this task currently executing on a CPU?
1741 * @p: the task in question.
1742 */
36c8b586 1743inline int task_curr(const struct task_struct *p)
1da177e4
LT
1744{
1745 return cpu_curr(task_cpu(p)) == p;
1746}
1747
dd41f596
IM
1748static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1749{
6f505b16 1750 set_task_rq(p, cpu);
dd41f596 1751#ifdef CONFIG_SMP
ce96b5ac
DA
1752 /*
1753 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1754 * successfuly executed on another CPU. We must ensure that updates of
1755 * per-task data have been completed by this moment.
1756 */
1757 smp_wmb();
dd41f596 1758 task_thread_info(p)->cpu = cpu;
dd41f596 1759#endif
2dd73a4f
PW
1760}
1761
cb469845
SR
1762static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1763 const struct sched_class *prev_class,
1764 int oldprio, int running)
1765{
1766 if (prev_class != p->sched_class) {
1767 if (prev_class->switched_from)
1768 prev_class->switched_from(rq, p, running);
1769 p->sched_class->switched_to(rq, p, running);
1770 } else
1771 p->sched_class->prio_changed(rq, p, oldprio, running);
1772}
1773
1da177e4 1774#ifdef CONFIG_SMP
c65cc870 1775
e958b360
TG
1776/* Used instead of source_load when we know the type == 0 */
1777static unsigned long weighted_cpuload(const int cpu)
1778{
1779 return cpu_rq(cpu)->load.weight;
1780}
1781
cc367732
IM
1782/*
1783 * Is this task likely cache-hot:
1784 */
e7693a36 1785static int
cc367732
IM
1786task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1787{
1788 s64 delta;
1789
f540a608
IM
1790 /*
1791 * Buddy candidates are cache hot:
1792 */
4793241b
PZ
1793 if (sched_feat(CACHE_HOT_BUDDY) &&
1794 (&p->se == cfs_rq_of(&p->se)->next ||
1795 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1796 return 1;
1797
cc367732
IM
1798 if (p->sched_class != &fair_sched_class)
1799 return 0;
1800
6bc1665b
IM
1801 if (sysctl_sched_migration_cost == -1)
1802 return 1;
1803 if (sysctl_sched_migration_cost == 0)
1804 return 0;
1805
cc367732
IM
1806 delta = now - p->se.exec_start;
1807
1808 return delta < (s64)sysctl_sched_migration_cost;
1809}
1810
1811
dd41f596 1812void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1813{
dd41f596
IM
1814 int old_cpu = task_cpu(p);
1815 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1816 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1817 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1818 u64 clock_offset;
dd41f596
IM
1819
1820 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1821
1822#ifdef CONFIG_SCHEDSTATS
1823 if (p->se.wait_start)
1824 p->se.wait_start -= clock_offset;
dd41f596
IM
1825 if (p->se.sleep_start)
1826 p->se.sleep_start -= clock_offset;
1827 if (p->se.block_start)
1828 p->se.block_start -= clock_offset;
cc367732
IM
1829 if (old_cpu != new_cpu) {
1830 schedstat_inc(p, se.nr_migrations);
1831 if (task_hot(p, old_rq->clock, NULL))
1832 schedstat_inc(p, se.nr_forced2_migrations);
1833 }
6cfb0d5d 1834#endif
2830cf8c
SV
1835 p->se.vruntime -= old_cfsrq->min_vruntime -
1836 new_cfsrq->min_vruntime;
dd41f596
IM
1837
1838 __set_task_cpu(p, new_cpu);
c65cc870
IM
1839}
1840
70b97a7f 1841struct migration_req {
1da177e4 1842 struct list_head list;
1da177e4 1843
36c8b586 1844 struct task_struct *task;
1da177e4
LT
1845 int dest_cpu;
1846
1da177e4 1847 struct completion done;
70b97a7f 1848};
1da177e4
LT
1849
1850/*
1851 * The task's runqueue lock must be held.
1852 * Returns true if you have to wait for migration thread.
1853 */
36c8b586 1854static int
70b97a7f 1855migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1856{
70b97a7f 1857 struct rq *rq = task_rq(p);
1da177e4
LT
1858
1859 /*
1860 * If the task is not on a runqueue (and not running), then
1861 * it is sufficient to simply update the task's cpu field.
1862 */
dd41f596 1863 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1864 set_task_cpu(p, dest_cpu);
1865 return 0;
1866 }
1867
1868 init_completion(&req->done);
1da177e4
LT
1869 req->task = p;
1870 req->dest_cpu = dest_cpu;
1871 list_add(&req->list, &rq->migration_queue);
48f24c4d 1872
1da177e4
LT
1873 return 1;
1874}
1875
1876/*
1877 * wait_task_inactive - wait for a thread to unschedule.
1878 *
85ba2d86
RM
1879 * If @match_state is nonzero, it's the @p->state value just checked and
1880 * not expected to change. If it changes, i.e. @p might have woken up,
1881 * then return zero. When we succeed in waiting for @p to be off its CPU,
1882 * we return a positive number (its total switch count). If a second call
1883 * a short while later returns the same number, the caller can be sure that
1884 * @p has remained unscheduled the whole time.
1885 *
1da177e4
LT
1886 * The caller must ensure that the task *will* unschedule sometime soon,
1887 * else this function might spin for a *long* time. This function can't
1888 * be called with interrupts off, or it may introduce deadlock with
1889 * smp_call_function() if an IPI is sent by the same process we are
1890 * waiting to become inactive.
1891 */
85ba2d86 1892unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1893{
1894 unsigned long flags;
dd41f596 1895 int running, on_rq;
85ba2d86 1896 unsigned long ncsw;
70b97a7f 1897 struct rq *rq;
1da177e4 1898
3a5c359a
AK
1899 for (;;) {
1900 /*
1901 * We do the initial early heuristics without holding
1902 * any task-queue locks at all. We'll only try to get
1903 * the runqueue lock when things look like they will
1904 * work out!
1905 */
1906 rq = task_rq(p);
fa490cfd 1907
3a5c359a
AK
1908 /*
1909 * If the task is actively running on another CPU
1910 * still, just relax and busy-wait without holding
1911 * any locks.
1912 *
1913 * NOTE! Since we don't hold any locks, it's not
1914 * even sure that "rq" stays as the right runqueue!
1915 * But we don't care, since "task_running()" will
1916 * return false if the runqueue has changed and p
1917 * is actually now running somewhere else!
1918 */
85ba2d86
RM
1919 while (task_running(rq, p)) {
1920 if (match_state && unlikely(p->state != match_state))
1921 return 0;
3a5c359a 1922 cpu_relax();
85ba2d86 1923 }
fa490cfd 1924
3a5c359a
AK
1925 /*
1926 * Ok, time to look more closely! We need the rq
1927 * lock now, to be *sure*. If we're wrong, we'll
1928 * just go back and repeat.
1929 */
1930 rq = task_rq_lock(p, &flags);
0a16b607 1931 trace_sched_wait_task(rq, p);
3a5c359a
AK
1932 running = task_running(rq, p);
1933 on_rq = p->se.on_rq;
85ba2d86 1934 ncsw = 0;
f31e11d8 1935 if (!match_state || p->state == match_state)
93dcf55f 1936 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1937 task_rq_unlock(rq, &flags);
fa490cfd 1938
85ba2d86
RM
1939 /*
1940 * If it changed from the expected state, bail out now.
1941 */
1942 if (unlikely(!ncsw))
1943 break;
1944
3a5c359a
AK
1945 /*
1946 * Was it really running after all now that we
1947 * checked with the proper locks actually held?
1948 *
1949 * Oops. Go back and try again..
1950 */
1951 if (unlikely(running)) {
1952 cpu_relax();
1953 continue;
1954 }
fa490cfd 1955
3a5c359a
AK
1956 /*
1957 * It's not enough that it's not actively running,
1958 * it must be off the runqueue _entirely_, and not
1959 * preempted!
1960 *
1961 * So if it wa still runnable (but just not actively
1962 * running right now), it's preempted, and we should
1963 * yield - it could be a while.
1964 */
1965 if (unlikely(on_rq)) {
1966 schedule_timeout_uninterruptible(1);
1967 continue;
1968 }
fa490cfd 1969
3a5c359a
AK
1970 /*
1971 * Ahh, all good. It wasn't running, and it wasn't
1972 * runnable, which means that it will never become
1973 * running in the future either. We're all done!
1974 */
1975 break;
1976 }
85ba2d86
RM
1977
1978 return ncsw;
1da177e4
LT
1979}
1980
1981/***
1982 * kick_process - kick a running thread to enter/exit the kernel
1983 * @p: the to-be-kicked thread
1984 *
1985 * Cause a process which is running on another CPU to enter
1986 * kernel-mode, without any delay. (to get signals handled.)
1987 *
1988 * NOTE: this function doesnt have to take the runqueue lock,
1989 * because all it wants to ensure is that the remote task enters
1990 * the kernel. If the IPI races and the task has been migrated
1991 * to another CPU then no harm is done and the purpose has been
1992 * achieved as well.
1993 */
36c8b586 1994void kick_process(struct task_struct *p)
1da177e4
LT
1995{
1996 int cpu;
1997
1998 preempt_disable();
1999 cpu = task_cpu(p);
2000 if ((cpu != smp_processor_id()) && task_curr(p))
2001 smp_send_reschedule(cpu);
2002 preempt_enable();
2003}
2004
2005/*
2dd73a4f
PW
2006 * Return a low guess at the load of a migration-source cpu weighted
2007 * according to the scheduling class and "nice" value.
1da177e4
LT
2008 *
2009 * We want to under-estimate the load of migration sources, to
2010 * balance conservatively.
2011 */
a9957449 2012static unsigned long source_load(int cpu, int type)
1da177e4 2013{
70b97a7f 2014 struct rq *rq = cpu_rq(cpu);
dd41f596 2015 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2016
93b75217 2017 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2018 return total;
b910472d 2019
dd41f596 2020 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2021}
2022
2023/*
2dd73a4f
PW
2024 * Return a high guess at the load of a migration-target cpu weighted
2025 * according to the scheduling class and "nice" value.
1da177e4 2026 */
a9957449 2027static unsigned long target_load(int cpu, int type)
1da177e4 2028{
70b97a7f 2029 struct rq *rq = cpu_rq(cpu);
dd41f596 2030 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2031
93b75217 2032 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2033 return total;
3b0bd9bc 2034
dd41f596 2035 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2036}
2037
147cbb4b
NP
2038/*
2039 * find_idlest_group finds and returns the least busy CPU group within the
2040 * domain.
2041 */
2042static struct sched_group *
2043find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2044{
2045 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2046 unsigned long min_load = ULONG_MAX, this_load = 0;
2047 int load_idx = sd->forkexec_idx;
2048 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2049
2050 do {
2051 unsigned long load, avg_load;
2052 int local_group;
2053 int i;
2054
da5a5522 2055 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2056 if (!cpumask_intersects(sched_group_cpus(group),
2057 &p->cpus_allowed))
3a5c359a 2058 continue;
da5a5522 2059
758b2cdc
RR
2060 local_group = cpumask_test_cpu(this_cpu,
2061 sched_group_cpus(group));
147cbb4b
NP
2062
2063 /* Tally up the load of all CPUs in the group */
2064 avg_load = 0;
2065
758b2cdc 2066 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2067 /* Bias balancing toward cpus of our domain */
2068 if (local_group)
2069 load = source_load(i, load_idx);
2070 else
2071 load = target_load(i, load_idx);
2072
2073 avg_load += load;
2074 }
2075
2076 /* Adjust by relative CPU power of the group */
5517d86b
ED
2077 avg_load = sg_div_cpu_power(group,
2078 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2079
2080 if (local_group) {
2081 this_load = avg_load;
2082 this = group;
2083 } else if (avg_load < min_load) {
2084 min_load = avg_load;
2085 idlest = group;
2086 }
3a5c359a 2087 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2088
2089 if (!idlest || 100*this_load < imbalance*min_load)
2090 return NULL;
2091 return idlest;
2092}
2093
2094/*
0feaece9 2095 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2096 */
95cdf3b7 2097static int
758b2cdc 2098find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2099{
2100 unsigned long load, min_load = ULONG_MAX;
2101 int idlest = -1;
2102 int i;
2103
da5a5522 2104 /* Traverse only the allowed CPUs */
758b2cdc 2105 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2106 load = weighted_cpuload(i);
147cbb4b
NP
2107
2108 if (load < min_load || (load == min_load && i == this_cpu)) {
2109 min_load = load;
2110 idlest = i;
2111 }
2112 }
2113
2114 return idlest;
2115}
2116
476d139c
NP
2117/*
2118 * sched_balance_self: balance the current task (running on cpu) in domains
2119 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2120 * SD_BALANCE_EXEC.
2121 *
2122 * Balance, ie. select the least loaded group.
2123 *
2124 * Returns the target CPU number, or the same CPU if no balancing is needed.
2125 *
2126 * preempt must be disabled.
2127 */
2128static int sched_balance_self(int cpu, int flag)
2129{
2130 struct task_struct *t = current;
2131 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2132
c96d145e 2133 for_each_domain(cpu, tmp) {
9761eea8
IM
2134 /*
2135 * If power savings logic is enabled for a domain, stop there.
2136 */
5c45bf27
SS
2137 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2138 break;
476d139c
NP
2139 if (tmp->flags & flag)
2140 sd = tmp;
c96d145e 2141 }
476d139c 2142
039a1c41
PZ
2143 if (sd)
2144 update_shares(sd);
2145
476d139c 2146 while (sd) {
476d139c 2147 struct sched_group *group;
1a848870
SS
2148 int new_cpu, weight;
2149
2150 if (!(sd->flags & flag)) {
2151 sd = sd->child;
2152 continue;
2153 }
476d139c 2154
476d139c 2155 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2156 if (!group) {
2157 sd = sd->child;
2158 continue;
2159 }
476d139c 2160
758b2cdc 2161 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2162 if (new_cpu == -1 || new_cpu == cpu) {
2163 /* Now try balancing at a lower domain level of cpu */
2164 sd = sd->child;
2165 continue;
2166 }
476d139c 2167
1a848870 2168 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2169 cpu = new_cpu;
758b2cdc 2170 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2171 sd = NULL;
476d139c 2172 for_each_domain(cpu, tmp) {
758b2cdc 2173 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2174 break;
2175 if (tmp->flags & flag)
2176 sd = tmp;
2177 }
2178 /* while loop will break here if sd == NULL */
2179 }
2180
2181 return cpu;
2182}
2183
2184#endif /* CONFIG_SMP */
1da177e4 2185
1da177e4
LT
2186/***
2187 * try_to_wake_up - wake up a thread
2188 * @p: the to-be-woken-up thread
2189 * @state: the mask of task states that can be woken
2190 * @sync: do a synchronous wakeup?
2191 *
2192 * Put it on the run-queue if it's not already there. The "current"
2193 * thread is always on the run-queue (except when the actual
2194 * re-schedule is in progress), and as such you're allowed to do
2195 * the simpler "current->state = TASK_RUNNING" to mark yourself
2196 * runnable without the overhead of this.
2197 *
2198 * returns failure only if the task is already active.
2199 */
36c8b586 2200static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2201{
cc367732 2202 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2203 unsigned long flags;
2204 long old_state;
70b97a7f 2205 struct rq *rq;
1da177e4 2206
b85d0667
IM
2207 if (!sched_feat(SYNC_WAKEUPS))
2208 sync = 0;
2209
2398f2c6
PZ
2210#ifdef CONFIG_SMP
2211 if (sched_feat(LB_WAKEUP_UPDATE)) {
2212 struct sched_domain *sd;
2213
2214 this_cpu = raw_smp_processor_id();
2215 cpu = task_cpu(p);
2216
2217 for_each_domain(this_cpu, sd) {
758b2cdc 2218 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2219 update_shares(sd);
2220 break;
2221 }
2222 }
2223 }
2224#endif
2225
04e2f174 2226 smp_wmb();
1da177e4
LT
2227 rq = task_rq_lock(p, &flags);
2228 old_state = p->state;
2229 if (!(old_state & state))
2230 goto out;
2231
dd41f596 2232 if (p->se.on_rq)
1da177e4
LT
2233 goto out_running;
2234
2235 cpu = task_cpu(p);
cc367732 2236 orig_cpu = cpu;
1da177e4
LT
2237 this_cpu = smp_processor_id();
2238
2239#ifdef CONFIG_SMP
2240 if (unlikely(task_running(rq, p)))
2241 goto out_activate;
2242
5d2f5a61
DA
2243 cpu = p->sched_class->select_task_rq(p, sync);
2244 if (cpu != orig_cpu) {
2245 set_task_cpu(p, cpu);
1da177e4
LT
2246 task_rq_unlock(rq, &flags);
2247 /* might preempt at this point */
2248 rq = task_rq_lock(p, &flags);
2249 old_state = p->state;
2250 if (!(old_state & state))
2251 goto out;
dd41f596 2252 if (p->se.on_rq)
1da177e4
LT
2253 goto out_running;
2254
2255 this_cpu = smp_processor_id();
2256 cpu = task_cpu(p);
2257 }
2258
e7693a36
GH
2259#ifdef CONFIG_SCHEDSTATS
2260 schedstat_inc(rq, ttwu_count);
2261 if (cpu == this_cpu)
2262 schedstat_inc(rq, ttwu_local);
2263 else {
2264 struct sched_domain *sd;
2265 for_each_domain(this_cpu, sd) {
758b2cdc 2266 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2267 schedstat_inc(sd, ttwu_wake_remote);
2268 break;
2269 }
2270 }
2271 }
6d6bc0ad 2272#endif /* CONFIG_SCHEDSTATS */
e7693a36 2273
1da177e4
LT
2274out_activate:
2275#endif /* CONFIG_SMP */
cc367732
IM
2276 schedstat_inc(p, se.nr_wakeups);
2277 if (sync)
2278 schedstat_inc(p, se.nr_wakeups_sync);
2279 if (orig_cpu != cpu)
2280 schedstat_inc(p, se.nr_wakeups_migrate);
2281 if (cpu == this_cpu)
2282 schedstat_inc(p, se.nr_wakeups_local);
2283 else
2284 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2285 update_rq_clock(rq);
dd41f596 2286 activate_task(rq, p, 1);
1da177e4
LT
2287 success = 1;
2288
2289out_running:
0a16b607 2290 trace_sched_wakeup(rq, p);
15afe09b 2291 check_preempt_curr(rq, p, sync);
4ae7d5ce 2292
1da177e4 2293 p->state = TASK_RUNNING;
9a897c5a
SR
2294#ifdef CONFIG_SMP
2295 if (p->sched_class->task_wake_up)
2296 p->sched_class->task_wake_up(rq, p);
2297#endif
1da177e4 2298out:
2087a1ad
GH
2299 current->se.last_wakeup = current->se.sum_exec_runtime;
2300
1da177e4
LT
2301 task_rq_unlock(rq, &flags);
2302
2303 return success;
2304}
2305
7ad5b3a5 2306int wake_up_process(struct task_struct *p)
1da177e4 2307{
d9514f6c 2308 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2309}
1da177e4
LT
2310EXPORT_SYMBOL(wake_up_process);
2311
7ad5b3a5 2312int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2313{
2314 return try_to_wake_up(p, state, 0);
2315}
2316
1da177e4
LT
2317/*
2318 * Perform scheduler related setup for a newly forked process p.
2319 * p is forked by current.
dd41f596
IM
2320 *
2321 * __sched_fork() is basic setup used by init_idle() too:
2322 */
2323static void __sched_fork(struct task_struct *p)
2324{
dd41f596
IM
2325 p->se.exec_start = 0;
2326 p->se.sum_exec_runtime = 0;
f6cf891c 2327 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2328 p->se.last_wakeup = 0;
2329 p->se.avg_overlap = 0;
6cfb0d5d
IM
2330
2331#ifdef CONFIG_SCHEDSTATS
2332 p->se.wait_start = 0;
dd41f596
IM
2333 p->se.sum_sleep_runtime = 0;
2334 p->se.sleep_start = 0;
dd41f596
IM
2335 p->se.block_start = 0;
2336 p->se.sleep_max = 0;
2337 p->se.block_max = 0;
2338 p->se.exec_max = 0;
eba1ed4b 2339 p->se.slice_max = 0;
dd41f596 2340 p->se.wait_max = 0;
6cfb0d5d 2341#endif
476d139c 2342
fa717060 2343 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2344 p->se.on_rq = 0;
4a55bd5e 2345 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2346
e107be36
AK
2347#ifdef CONFIG_PREEMPT_NOTIFIERS
2348 INIT_HLIST_HEAD(&p->preempt_notifiers);
2349#endif
2350
1da177e4
LT
2351 /*
2352 * We mark the process as running here, but have not actually
2353 * inserted it onto the runqueue yet. This guarantees that
2354 * nobody will actually run it, and a signal or other external
2355 * event cannot wake it up and insert it on the runqueue either.
2356 */
2357 p->state = TASK_RUNNING;
dd41f596
IM
2358}
2359
2360/*
2361 * fork()/clone()-time setup:
2362 */
2363void sched_fork(struct task_struct *p, int clone_flags)
2364{
2365 int cpu = get_cpu();
2366
2367 __sched_fork(p);
2368
2369#ifdef CONFIG_SMP
2370 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2371#endif
02e4bac2 2372 set_task_cpu(p, cpu);
b29739f9
IM
2373
2374 /*
2375 * Make sure we do not leak PI boosting priority to the child:
2376 */
2377 p->prio = current->normal_prio;
2ddbf952
HS
2378 if (!rt_prio(p->prio))
2379 p->sched_class = &fair_sched_class;
b29739f9 2380
52f17b6c 2381#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2382 if (likely(sched_info_on()))
52f17b6c 2383 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2384#endif
d6077cb8 2385#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2386 p->oncpu = 0;
2387#endif
1da177e4 2388#ifdef CONFIG_PREEMPT
4866cde0 2389 /* Want to start with kernel preemption disabled. */
a1261f54 2390 task_thread_info(p)->preempt_count = 1;
1da177e4 2391#endif
476d139c 2392 put_cpu();
1da177e4
LT
2393}
2394
2395/*
2396 * wake_up_new_task - wake up a newly created task for the first time.
2397 *
2398 * This function will do some initial scheduler statistics housekeeping
2399 * that must be done for every newly created context, then puts the task
2400 * on the runqueue and wakes it.
2401 */
7ad5b3a5 2402void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2403{
2404 unsigned long flags;
dd41f596 2405 struct rq *rq;
1da177e4
LT
2406
2407 rq = task_rq_lock(p, &flags);
147cbb4b 2408 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2409 update_rq_clock(rq);
1da177e4
LT
2410
2411 p->prio = effective_prio(p);
2412
b9dca1e0 2413 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2414 activate_task(rq, p, 0);
1da177e4 2415 } else {
1da177e4 2416 /*
dd41f596
IM
2417 * Let the scheduling class do new task startup
2418 * management (if any):
1da177e4 2419 */
ee0827d8 2420 p->sched_class->task_new(rq, p);
c09595f6 2421 inc_nr_running(rq);
1da177e4 2422 }
0a16b607 2423 trace_sched_wakeup_new(rq, p);
15afe09b 2424 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2425#ifdef CONFIG_SMP
2426 if (p->sched_class->task_wake_up)
2427 p->sched_class->task_wake_up(rq, p);
2428#endif
dd41f596 2429 task_rq_unlock(rq, &flags);
1da177e4
LT
2430}
2431
e107be36
AK
2432#ifdef CONFIG_PREEMPT_NOTIFIERS
2433
2434/**
421cee29
RD
2435 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2436 * @notifier: notifier struct to register
e107be36
AK
2437 */
2438void preempt_notifier_register(struct preempt_notifier *notifier)
2439{
2440 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2441}
2442EXPORT_SYMBOL_GPL(preempt_notifier_register);
2443
2444/**
2445 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2446 * @notifier: notifier struct to unregister
e107be36
AK
2447 *
2448 * This is safe to call from within a preemption notifier.
2449 */
2450void preempt_notifier_unregister(struct preempt_notifier *notifier)
2451{
2452 hlist_del(&notifier->link);
2453}
2454EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2455
2456static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2457{
2458 struct preempt_notifier *notifier;
2459 struct hlist_node *node;
2460
2461 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2462 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2463}
2464
2465static void
2466fire_sched_out_preempt_notifiers(struct task_struct *curr,
2467 struct task_struct *next)
2468{
2469 struct preempt_notifier *notifier;
2470 struct hlist_node *node;
2471
2472 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2473 notifier->ops->sched_out(notifier, next);
2474}
2475
6d6bc0ad 2476#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2477
2478static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2479{
2480}
2481
2482static void
2483fire_sched_out_preempt_notifiers(struct task_struct *curr,
2484 struct task_struct *next)
2485{
2486}
2487
6d6bc0ad 2488#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2489
4866cde0
NP
2490/**
2491 * prepare_task_switch - prepare to switch tasks
2492 * @rq: the runqueue preparing to switch
421cee29 2493 * @prev: the current task that is being switched out
4866cde0
NP
2494 * @next: the task we are going to switch to.
2495 *
2496 * This is called with the rq lock held and interrupts off. It must
2497 * be paired with a subsequent finish_task_switch after the context
2498 * switch.
2499 *
2500 * prepare_task_switch sets up locking and calls architecture specific
2501 * hooks.
2502 */
e107be36
AK
2503static inline void
2504prepare_task_switch(struct rq *rq, struct task_struct *prev,
2505 struct task_struct *next)
4866cde0 2506{
e107be36 2507 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2508 prepare_lock_switch(rq, next);
2509 prepare_arch_switch(next);
2510}
2511
1da177e4
LT
2512/**
2513 * finish_task_switch - clean up after a task-switch
344babaa 2514 * @rq: runqueue associated with task-switch
1da177e4
LT
2515 * @prev: the thread we just switched away from.
2516 *
4866cde0
NP
2517 * finish_task_switch must be called after the context switch, paired
2518 * with a prepare_task_switch call before the context switch.
2519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2520 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2521 *
2522 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2523 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2524 * with the lock held can cause deadlocks; see schedule() for
2525 * details.)
2526 */
a9957449 2527static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2528 __releases(rq->lock)
2529{
1da177e4 2530 struct mm_struct *mm = rq->prev_mm;
55a101f8 2531 long prev_state;
1da177e4
LT
2532
2533 rq->prev_mm = NULL;
2534
2535 /*
2536 * A task struct has one reference for the use as "current".
c394cc9f 2537 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2538 * schedule one last time. The schedule call will never return, and
2539 * the scheduled task must drop that reference.
c394cc9f 2540 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2541 * still held, otherwise prev could be scheduled on another cpu, die
2542 * there before we look at prev->state, and then the reference would
2543 * be dropped twice.
2544 * Manfred Spraul <manfred@colorfullife.com>
2545 */
55a101f8 2546 prev_state = prev->state;
4866cde0
NP
2547 finish_arch_switch(prev);
2548 finish_lock_switch(rq, prev);
9a897c5a
SR
2549#ifdef CONFIG_SMP
2550 if (current->sched_class->post_schedule)
2551 current->sched_class->post_schedule(rq);
2552#endif
e8fa1362 2553
e107be36 2554 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2555 if (mm)
2556 mmdrop(mm);
c394cc9f 2557 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2558 /*
2559 * Remove function-return probe instances associated with this
2560 * task and put them back on the free list.
9761eea8 2561 */
c6fd91f0 2562 kprobe_flush_task(prev);
1da177e4 2563 put_task_struct(prev);
c6fd91f0 2564 }
1da177e4
LT
2565}
2566
2567/**
2568 * schedule_tail - first thing a freshly forked thread must call.
2569 * @prev: the thread we just switched away from.
2570 */
36c8b586 2571asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2572 __releases(rq->lock)
2573{
70b97a7f
IM
2574 struct rq *rq = this_rq();
2575
4866cde0
NP
2576 finish_task_switch(rq, prev);
2577#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2578 /* In this case, finish_task_switch does not reenable preemption */
2579 preempt_enable();
2580#endif
1da177e4 2581 if (current->set_child_tid)
b488893a 2582 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2583}
2584
2585/*
2586 * context_switch - switch to the new MM and the new
2587 * thread's register state.
2588 */
dd41f596 2589static inline void
70b97a7f 2590context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2591 struct task_struct *next)
1da177e4 2592{
dd41f596 2593 struct mm_struct *mm, *oldmm;
1da177e4 2594
e107be36 2595 prepare_task_switch(rq, prev, next);
0a16b607 2596 trace_sched_switch(rq, prev, next);
dd41f596
IM
2597 mm = next->mm;
2598 oldmm = prev->active_mm;
9226d125
ZA
2599 /*
2600 * For paravirt, this is coupled with an exit in switch_to to
2601 * combine the page table reload and the switch backend into
2602 * one hypercall.
2603 */
2604 arch_enter_lazy_cpu_mode();
2605
dd41f596 2606 if (unlikely(!mm)) {
1da177e4
LT
2607 next->active_mm = oldmm;
2608 atomic_inc(&oldmm->mm_count);
2609 enter_lazy_tlb(oldmm, next);
2610 } else
2611 switch_mm(oldmm, mm, next);
2612
dd41f596 2613 if (unlikely(!prev->mm)) {
1da177e4 2614 prev->active_mm = NULL;
1da177e4
LT
2615 rq->prev_mm = oldmm;
2616 }
3a5f5e48
IM
2617 /*
2618 * Since the runqueue lock will be released by the next
2619 * task (which is an invalid locking op but in the case
2620 * of the scheduler it's an obvious special-case), so we
2621 * do an early lockdep release here:
2622 */
2623#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2624 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2625#endif
1da177e4
LT
2626
2627 /* Here we just switch the register state and the stack. */
2628 switch_to(prev, next, prev);
2629
dd41f596
IM
2630 barrier();
2631 /*
2632 * this_rq must be evaluated again because prev may have moved
2633 * CPUs since it called schedule(), thus the 'rq' on its stack
2634 * frame will be invalid.
2635 */
2636 finish_task_switch(this_rq(), prev);
1da177e4
LT
2637}
2638
2639/*
2640 * nr_running, nr_uninterruptible and nr_context_switches:
2641 *
2642 * externally visible scheduler statistics: current number of runnable
2643 * threads, current number of uninterruptible-sleeping threads, total
2644 * number of context switches performed since bootup.
2645 */
2646unsigned long nr_running(void)
2647{
2648 unsigned long i, sum = 0;
2649
2650 for_each_online_cpu(i)
2651 sum += cpu_rq(i)->nr_running;
2652
2653 return sum;
2654}
2655
2656unsigned long nr_uninterruptible(void)
2657{
2658 unsigned long i, sum = 0;
2659
0a945022 2660 for_each_possible_cpu(i)
1da177e4
LT
2661 sum += cpu_rq(i)->nr_uninterruptible;
2662
2663 /*
2664 * Since we read the counters lockless, it might be slightly
2665 * inaccurate. Do not allow it to go below zero though:
2666 */
2667 if (unlikely((long)sum < 0))
2668 sum = 0;
2669
2670 return sum;
2671}
2672
2673unsigned long long nr_context_switches(void)
2674{
cc94abfc
SR
2675 int i;
2676 unsigned long long sum = 0;
1da177e4 2677
0a945022 2678 for_each_possible_cpu(i)
1da177e4
LT
2679 sum += cpu_rq(i)->nr_switches;
2680
2681 return sum;
2682}
2683
2684unsigned long nr_iowait(void)
2685{
2686 unsigned long i, sum = 0;
2687
0a945022 2688 for_each_possible_cpu(i)
1da177e4
LT
2689 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2690
2691 return sum;
2692}
2693
db1b1fef
JS
2694unsigned long nr_active(void)
2695{
2696 unsigned long i, running = 0, uninterruptible = 0;
2697
2698 for_each_online_cpu(i) {
2699 running += cpu_rq(i)->nr_running;
2700 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2701 }
2702
2703 if (unlikely((long)uninterruptible < 0))
2704 uninterruptible = 0;
2705
2706 return running + uninterruptible;
2707}
2708
48f24c4d 2709/*
dd41f596
IM
2710 * Update rq->cpu_load[] statistics. This function is usually called every
2711 * scheduler tick (TICK_NSEC).
48f24c4d 2712 */
dd41f596 2713static void update_cpu_load(struct rq *this_rq)
48f24c4d 2714{
495eca49 2715 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2716 int i, scale;
2717
2718 this_rq->nr_load_updates++;
dd41f596
IM
2719
2720 /* Update our load: */
2721 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2722 unsigned long old_load, new_load;
2723
2724 /* scale is effectively 1 << i now, and >> i divides by scale */
2725
2726 old_load = this_rq->cpu_load[i];
2727 new_load = this_load;
a25707f3
IM
2728 /*
2729 * Round up the averaging division if load is increasing. This
2730 * prevents us from getting stuck on 9 if the load is 10, for
2731 * example.
2732 */
2733 if (new_load > old_load)
2734 new_load += scale-1;
dd41f596
IM
2735 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2736 }
48f24c4d
IM
2737}
2738
dd41f596
IM
2739#ifdef CONFIG_SMP
2740
1da177e4
LT
2741/*
2742 * double_rq_lock - safely lock two runqueues
2743 *
2744 * Note this does not disable interrupts like task_rq_lock,
2745 * you need to do so manually before calling.
2746 */
70b97a7f 2747static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2748 __acquires(rq1->lock)
2749 __acquires(rq2->lock)
2750{
054b9108 2751 BUG_ON(!irqs_disabled());
1da177e4
LT
2752 if (rq1 == rq2) {
2753 spin_lock(&rq1->lock);
2754 __acquire(rq2->lock); /* Fake it out ;) */
2755 } else {
c96d145e 2756 if (rq1 < rq2) {
1da177e4 2757 spin_lock(&rq1->lock);
5e710e37 2758 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2759 } else {
2760 spin_lock(&rq2->lock);
5e710e37 2761 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2762 }
2763 }
6e82a3be
IM
2764 update_rq_clock(rq1);
2765 update_rq_clock(rq2);
1da177e4
LT
2766}
2767
2768/*
2769 * double_rq_unlock - safely unlock two runqueues
2770 *
2771 * Note this does not restore interrupts like task_rq_unlock,
2772 * you need to do so manually after calling.
2773 */
70b97a7f 2774static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2775 __releases(rq1->lock)
2776 __releases(rq2->lock)
2777{
2778 spin_unlock(&rq1->lock);
2779 if (rq1 != rq2)
2780 spin_unlock(&rq2->lock);
2781 else
2782 __release(rq2->lock);
2783}
2784
2785/*
2786 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2787 */
e8fa1362 2788static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2789 __releases(this_rq->lock)
2790 __acquires(busiest->lock)
2791 __acquires(this_rq->lock)
2792{
e8fa1362
SR
2793 int ret = 0;
2794
054b9108
KK
2795 if (unlikely(!irqs_disabled())) {
2796 /* printk() doesn't work good under rq->lock */
2797 spin_unlock(&this_rq->lock);
2798 BUG_ON(1);
2799 }
1da177e4 2800 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2801 if (busiest < this_rq) {
1da177e4
LT
2802 spin_unlock(&this_rq->lock);
2803 spin_lock(&busiest->lock);
5e710e37 2804 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2805 ret = 1;
1da177e4 2806 } else
5e710e37 2807 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2808 }
e8fa1362 2809 return ret;
1da177e4
LT
2810}
2811
cf7f8690 2812static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1b12bbc7
PZ
2813 __releases(busiest->lock)
2814{
2815 spin_unlock(&busiest->lock);
2816 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2817}
2818
1da177e4
LT
2819/*
2820 * If dest_cpu is allowed for this process, migrate the task to it.
2821 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2822 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2823 * the cpu_allowed mask is restored.
2824 */
36c8b586 2825static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2826{
70b97a7f 2827 struct migration_req req;
1da177e4 2828 unsigned long flags;
70b97a7f 2829 struct rq *rq;
1da177e4
LT
2830
2831 rq = task_rq_lock(p, &flags);
96f874e2 2832 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2833 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2834 goto out;
2835
0a16b607 2836 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2837 /* force the process onto the specified CPU */
2838 if (migrate_task(p, dest_cpu, &req)) {
2839 /* Need to wait for migration thread (might exit: take ref). */
2840 struct task_struct *mt = rq->migration_thread;
36c8b586 2841
1da177e4
LT
2842 get_task_struct(mt);
2843 task_rq_unlock(rq, &flags);
2844 wake_up_process(mt);
2845 put_task_struct(mt);
2846 wait_for_completion(&req.done);
36c8b586 2847
1da177e4
LT
2848 return;
2849 }
2850out:
2851 task_rq_unlock(rq, &flags);
2852}
2853
2854/*
476d139c
NP
2855 * sched_exec - execve() is a valuable balancing opportunity, because at
2856 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2857 */
2858void sched_exec(void)
2859{
1da177e4 2860 int new_cpu, this_cpu = get_cpu();
476d139c 2861 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2862 put_cpu();
476d139c
NP
2863 if (new_cpu != this_cpu)
2864 sched_migrate_task(current, new_cpu);
1da177e4
LT
2865}
2866
2867/*
2868 * pull_task - move a task from a remote runqueue to the local runqueue.
2869 * Both runqueues must be locked.
2870 */
dd41f596
IM
2871static void pull_task(struct rq *src_rq, struct task_struct *p,
2872 struct rq *this_rq, int this_cpu)
1da177e4 2873{
2e1cb74a 2874 deactivate_task(src_rq, p, 0);
1da177e4 2875 set_task_cpu(p, this_cpu);
dd41f596 2876 activate_task(this_rq, p, 0);
1da177e4
LT
2877 /*
2878 * Note that idle threads have a prio of MAX_PRIO, for this test
2879 * to be always true for them.
2880 */
15afe09b 2881 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2882}
2883
2884/*
2885 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2886 */
858119e1 2887static
70b97a7f 2888int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2889 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2890 int *all_pinned)
1da177e4
LT
2891{
2892 /*
2893 * We do not migrate tasks that are:
2894 * 1) running (obviously), or
2895 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2896 * 3) are cache-hot on their current CPU.
2897 */
96f874e2 2898 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2899 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2900 return 0;
cc367732 2901 }
81026794
NP
2902 *all_pinned = 0;
2903
cc367732
IM
2904 if (task_running(rq, p)) {
2905 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2906 return 0;
cc367732 2907 }
1da177e4 2908
da84d961
IM
2909 /*
2910 * Aggressive migration if:
2911 * 1) task is cache cold, or
2912 * 2) too many balance attempts have failed.
2913 */
2914
6bc1665b
IM
2915 if (!task_hot(p, rq->clock, sd) ||
2916 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2917#ifdef CONFIG_SCHEDSTATS
cc367732 2918 if (task_hot(p, rq->clock, sd)) {
da84d961 2919 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2920 schedstat_inc(p, se.nr_forced_migrations);
2921 }
da84d961
IM
2922#endif
2923 return 1;
2924 }
2925
cc367732
IM
2926 if (task_hot(p, rq->clock, sd)) {
2927 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2928 return 0;
cc367732 2929 }
1da177e4
LT
2930 return 1;
2931}
2932
e1d1484f
PW
2933static unsigned long
2934balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2935 unsigned long max_load_move, struct sched_domain *sd,
2936 enum cpu_idle_type idle, int *all_pinned,
2937 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2938{
051c6764 2939 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2940 struct task_struct *p;
2941 long rem_load_move = max_load_move;
1da177e4 2942
e1d1484f 2943 if (max_load_move == 0)
1da177e4
LT
2944 goto out;
2945
81026794
NP
2946 pinned = 1;
2947
1da177e4 2948 /*
dd41f596 2949 * Start the load-balancing iterator:
1da177e4 2950 */
dd41f596
IM
2951 p = iterator->start(iterator->arg);
2952next:
b82d9fdd 2953 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2954 goto out;
051c6764
PZ
2955
2956 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2957 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2958 p = iterator->next(iterator->arg);
2959 goto next;
1da177e4
LT
2960 }
2961
dd41f596 2962 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2963 pulled++;
dd41f596 2964 rem_load_move -= p->se.load.weight;
1da177e4 2965
2dd73a4f 2966 /*
b82d9fdd 2967 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2968 */
e1d1484f 2969 if (rem_load_move > 0) {
a4ac01c3
PW
2970 if (p->prio < *this_best_prio)
2971 *this_best_prio = p->prio;
dd41f596
IM
2972 p = iterator->next(iterator->arg);
2973 goto next;
1da177e4
LT
2974 }
2975out:
2976 /*
e1d1484f 2977 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2978 * so we can safely collect pull_task() stats here rather than
2979 * inside pull_task().
2980 */
2981 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2982
2983 if (all_pinned)
2984 *all_pinned = pinned;
e1d1484f
PW
2985
2986 return max_load_move - rem_load_move;
1da177e4
LT
2987}
2988
dd41f596 2989/*
43010659
PW
2990 * move_tasks tries to move up to max_load_move weighted load from busiest to
2991 * this_rq, as part of a balancing operation within domain "sd".
2992 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2993 *
2994 * Called with both runqueues locked.
2995 */
2996static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2997 unsigned long max_load_move,
dd41f596
IM
2998 struct sched_domain *sd, enum cpu_idle_type idle,
2999 int *all_pinned)
3000{
5522d5d5 3001 const struct sched_class *class = sched_class_highest;
43010659 3002 unsigned long total_load_moved = 0;
a4ac01c3 3003 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3004
3005 do {
43010659
PW
3006 total_load_moved +=
3007 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3008 max_load_move - total_load_moved,
a4ac01c3 3009 sd, idle, all_pinned, &this_best_prio);
dd41f596 3010 class = class->next;
c4acb2c0
GH
3011
3012 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3013 break;
3014
43010659 3015 } while (class && max_load_move > total_load_moved);
dd41f596 3016
43010659
PW
3017 return total_load_moved > 0;
3018}
3019
e1d1484f
PW
3020static int
3021iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 struct rq_iterator *iterator)
3024{
3025 struct task_struct *p = iterator->start(iterator->arg);
3026 int pinned = 0;
3027
3028 while (p) {
3029 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3030 pull_task(busiest, p, this_rq, this_cpu);
3031 /*
3032 * Right now, this is only the second place pull_task()
3033 * is called, so we can safely collect pull_task()
3034 * stats here rather than inside pull_task().
3035 */
3036 schedstat_inc(sd, lb_gained[idle]);
3037
3038 return 1;
3039 }
3040 p = iterator->next(iterator->arg);
3041 }
3042
3043 return 0;
3044}
3045
43010659
PW
3046/*
3047 * move_one_task tries to move exactly one task from busiest to this_rq, as
3048 * part of active balancing operations within "domain".
3049 * Returns 1 if successful and 0 otherwise.
3050 *
3051 * Called with both runqueues locked.
3052 */
3053static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3054 struct sched_domain *sd, enum cpu_idle_type idle)
3055{
5522d5d5 3056 const struct sched_class *class;
43010659
PW
3057
3058 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3059 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3060 return 1;
3061
3062 return 0;
dd41f596
IM
3063}
3064
1da177e4
LT
3065/*
3066 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3067 * domain. It calculates and returns the amount of weighted load which
3068 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3069 */
3070static struct sched_group *
3071find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3072 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3073 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3074{
3075 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3076 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3077 unsigned long max_pull;
2dd73a4f
PW
3078 unsigned long busiest_load_per_task, busiest_nr_running;
3079 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3080 int load_idx, group_imb = 0;
5c45bf27
SS
3081#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3082 int power_savings_balance = 1;
3083 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3084 unsigned long min_nr_running = ULONG_MAX;
3085 struct sched_group *group_min = NULL, *group_leader = NULL;
3086#endif
1da177e4
LT
3087
3088 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3089 busiest_load_per_task = busiest_nr_running = 0;
3090 this_load_per_task = this_nr_running = 0;
408ed066 3091
d15bcfdb 3092 if (idle == CPU_NOT_IDLE)
7897986b 3093 load_idx = sd->busy_idx;
d15bcfdb 3094 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3095 load_idx = sd->newidle_idx;
3096 else
3097 load_idx = sd->idle_idx;
1da177e4
LT
3098
3099 do {
908a7c1b 3100 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3101 int local_group;
3102 int i;
908a7c1b 3103 int __group_imb = 0;
783609c6 3104 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3105 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3106 unsigned long sum_avg_load_per_task;
3107 unsigned long avg_load_per_task;
1da177e4 3108
758b2cdc
RR
3109 local_group = cpumask_test_cpu(this_cpu,
3110 sched_group_cpus(group));
1da177e4 3111
783609c6 3112 if (local_group)
758b2cdc 3113 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3114
1da177e4 3115 /* Tally up the load of all CPUs in the group */
2dd73a4f 3116 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3117 sum_avg_load_per_task = avg_load_per_task = 0;
3118
908a7c1b
KC
3119 max_cpu_load = 0;
3120 min_cpu_load = ~0UL;
1da177e4 3121
758b2cdc
RR
3122 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3123 struct rq *rq = cpu_rq(i);
2dd73a4f 3124
9439aab8 3125 if (*sd_idle && rq->nr_running)
5969fe06
NP
3126 *sd_idle = 0;
3127
1da177e4 3128 /* Bias balancing toward cpus of our domain */
783609c6
SS
3129 if (local_group) {
3130 if (idle_cpu(i) && !first_idle_cpu) {
3131 first_idle_cpu = 1;
3132 balance_cpu = i;
3133 }
3134
a2000572 3135 load = target_load(i, load_idx);
908a7c1b 3136 } else {
a2000572 3137 load = source_load(i, load_idx);
908a7c1b
KC
3138 if (load > max_cpu_load)
3139 max_cpu_load = load;
3140 if (min_cpu_load > load)
3141 min_cpu_load = load;
3142 }
1da177e4
LT
3143
3144 avg_load += load;
2dd73a4f 3145 sum_nr_running += rq->nr_running;
dd41f596 3146 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3147
3148 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3149 }
3150
783609c6
SS
3151 /*
3152 * First idle cpu or the first cpu(busiest) in this sched group
3153 * is eligible for doing load balancing at this and above
9439aab8
SS
3154 * domains. In the newly idle case, we will allow all the cpu's
3155 * to do the newly idle load balance.
783609c6 3156 */
9439aab8
SS
3157 if (idle != CPU_NEWLY_IDLE && local_group &&
3158 balance_cpu != this_cpu && balance) {
783609c6
SS
3159 *balance = 0;
3160 goto ret;
3161 }
3162
1da177e4 3163 total_load += avg_load;
5517d86b 3164 total_pwr += group->__cpu_power;
1da177e4
LT
3165
3166 /* Adjust by relative CPU power of the group */
5517d86b
ED
3167 avg_load = sg_div_cpu_power(group,
3168 avg_load * SCHED_LOAD_SCALE);
1da177e4 3169
408ed066
PZ
3170
3171 /*
3172 * Consider the group unbalanced when the imbalance is larger
3173 * than the average weight of two tasks.
3174 *
3175 * APZ: with cgroup the avg task weight can vary wildly and
3176 * might not be a suitable number - should we keep a
3177 * normalized nr_running number somewhere that negates
3178 * the hierarchy?
3179 */
3180 avg_load_per_task = sg_div_cpu_power(group,
3181 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3182
3183 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3184 __group_imb = 1;
3185
5517d86b 3186 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3187
1da177e4
LT
3188 if (local_group) {
3189 this_load = avg_load;
3190 this = group;
2dd73a4f
PW
3191 this_nr_running = sum_nr_running;
3192 this_load_per_task = sum_weighted_load;
3193 } else if (avg_load > max_load &&
908a7c1b 3194 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3195 max_load = avg_load;
3196 busiest = group;
2dd73a4f
PW
3197 busiest_nr_running = sum_nr_running;
3198 busiest_load_per_task = sum_weighted_load;
908a7c1b 3199 group_imb = __group_imb;
1da177e4 3200 }
5c45bf27
SS
3201
3202#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3203 /*
3204 * Busy processors will not participate in power savings
3205 * balance.
3206 */
dd41f596
IM
3207 if (idle == CPU_NOT_IDLE ||
3208 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3209 goto group_next;
5c45bf27
SS
3210
3211 /*
3212 * If the local group is idle or completely loaded
3213 * no need to do power savings balance at this domain
3214 */
3215 if (local_group && (this_nr_running >= group_capacity ||
3216 !this_nr_running))
3217 power_savings_balance = 0;
3218
dd41f596 3219 /*
5c45bf27
SS
3220 * If a group is already running at full capacity or idle,
3221 * don't include that group in power savings calculations
dd41f596
IM
3222 */
3223 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3224 || !sum_nr_running)
dd41f596 3225 goto group_next;
5c45bf27 3226
dd41f596 3227 /*
5c45bf27 3228 * Calculate the group which has the least non-idle load.
dd41f596
IM
3229 * This is the group from where we need to pick up the load
3230 * for saving power
3231 */
3232 if ((sum_nr_running < min_nr_running) ||
3233 (sum_nr_running == min_nr_running &&
758b2cdc
RR
3234 cpumask_first(sched_group_cpus(group)) <
3235 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3236 group_min = group;
3237 min_nr_running = sum_nr_running;
5c45bf27
SS
3238 min_load_per_task = sum_weighted_load /
3239 sum_nr_running;
dd41f596 3240 }
5c45bf27 3241
dd41f596 3242 /*
5c45bf27 3243 * Calculate the group which is almost near its
dd41f596
IM
3244 * capacity but still has some space to pick up some load
3245 * from other group and save more power
3246 */
3247 if (sum_nr_running <= group_capacity - 1) {
3248 if (sum_nr_running > leader_nr_running ||
3249 (sum_nr_running == leader_nr_running &&
758b2cdc
RR
3250 cpumask_first(sched_group_cpus(group)) >
3251 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3252 group_leader = group;
3253 leader_nr_running = sum_nr_running;
3254 }
48f24c4d 3255 }
5c45bf27
SS
3256group_next:
3257#endif
1da177e4
LT
3258 group = group->next;
3259 } while (group != sd->groups);
3260
2dd73a4f 3261 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3262 goto out_balanced;
3263
3264 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3265
3266 if (this_load >= avg_load ||
3267 100*max_load <= sd->imbalance_pct*this_load)
3268 goto out_balanced;
3269
2dd73a4f 3270 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3271 if (group_imb)
3272 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3273
1da177e4
LT
3274 /*
3275 * We're trying to get all the cpus to the average_load, so we don't
3276 * want to push ourselves above the average load, nor do we wish to
3277 * reduce the max loaded cpu below the average load, as either of these
3278 * actions would just result in more rebalancing later, and ping-pong
3279 * tasks around. Thus we look for the minimum possible imbalance.
3280 * Negative imbalances (*we* are more loaded than anyone else) will
3281 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3282 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3283 * appear as very large values with unsigned longs.
3284 */
2dd73a4f
PW
3285 if (max_load <= busiest_load_per_task)
3286 goto out_balanced;
3287
3288 /*
3289 * In the presence of smp nice balancing, certain scenarios can have
3290 * max load less than avg load(as we skip the groups at or below
3291 * its cpu_power, while calculating max_load..)
3292 */
3293 if (max_load < avg_load) {
3294 *imbalance = 0;
3295 goto small_imbalance;
3296 }
0c117f1b
SS
3297
3298 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3299 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3300
1da177e4 3301 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3302 *imbalance = min(max_pull * busiest->__cpu_power,
3303 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3304 / SCHED_LOAD_SCALE;
3305
2dd73a4f
PW
3306 /*
3307 * if *imbalance is less than the average load per runnable task
3308 * there is no gaurantee that any tasks will be moved so we'll have
3309 * a think about bumping its value to force at least one task to be
3310 * moved
3311 */
7fd0d2dd 3312 if (*imbalance < busiest_load_per_task) {
48f24c4d 3313 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3314 unsigned int imbn;
3315
3316small_imbalance:
3317 pwr_move = pwr_now = 0;
3318 imbn = 2;
3319 if (this_nr_running) {
3320 this_load_per_task /= this_nr_running;
3321 if (busiest_load_per_task > this_load_per_task)
3322 imbn = 1;
3323 } else
408ed066 3324 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3325
01c8c57d 3326 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3327 busiest_load_per_task * imbn) {
2dd73a4f 3328 *imbalance = busiest_load_per_task;
1da177e4
LT
3329 return busiest;
3330 }
3331
3332 /*
3333 * OK, we don't have enough imbalance to justify moving tasks,
3334 * however we may be able to increase total CPU power used by
3335 * moving them.
3336 */
3337
5517d86b
ED
3338 pwr_now += busiest->__cpu_power *
3339 min(busiest_load_per_task, max_load);
3340 pwr_now += this->__cpu_power *
3341 min(this_load_per_task, this_load);
1da177e4
LT
3342 pwr_now /= SCHED_LOAD_SCALE;
3343
3344 /* Amount of load we'd subtract */
5517d86b
ED
3345 tmp = sg_div_cpu_power(busiest,
3346 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3347 if (max_load > tmp)
5517d86b 3348 pwr_move += busiest->__cpu_power *
2dd73a4f 3349 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3350
3351 /* Amount of load we'd add */
5517d86b 3352 if (max_load * busiest->__cpu_power <
33859f7f 3353 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3354 tmp = sg_div_cpu_power(this,
3355 max_load * busiest->__cpu_power);
1da177e4 3356 else
5517d86b
ED
3357 tmp = sg_div_cpu_power(this,
3358 busiest_load_per_task * SCHED_LOAD_SCALE);
3359 pwr_move += this->__cpu_power *
3360 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3361 pwr_move /= SCHED_LOAD_SCALE;
3362
3363 /* Move if we gain throughput */
7fd0d2dd
SS
3364 if (pwr_move > pwr_now)
3365 *imbalance = busiest_load_per_task;
1da177e4
LT
3366 }
3367
1da177e4
LT
3368 return busiest;
3369
3370out_balanced:
5c45bf27 3371#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3372 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3373 goto ret;
1da177e4 3374
5c45bf27
SS
3375 if (this == group_leader && group_leader != group_min) {
3376 *imbalance = min_load_per_task;
3377 return group_min;
3378 }
5c45bf27 3379#endif
783609c6 3380ret:
1da177e4
LT
3381 *imbalance = 0;
3382 return NULL;
3383}
3384
3385/*
3386 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3387 */
70b97a7f 3388static struct rq *
d15bcfdb 3389find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3390 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3391{
70b97a7f 3392 struct rq *busiest = NULL, *rq;
2dd73a4f 3393 unsigned long max_load = 0;
1da177e4
LT
3394 int i;
3395
758b2cdc 3396 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3397 unsigned long wl;
0a2966b4 3398
96f874e2 3399 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3400 continue;
3401
48f24c4d 3402 rq = cpu_rq(i);
dd41f596 3403 wl = weighted_cpuload(i);
2dd73a4f 3404
dd41f596 3405 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3406 continue;
1da177e4 3407
dd41f596
IM
3408 if (wl > max_load) {
3409 max_load = wl;
48f24c4d 3410 busiest = rq;
1da177e4
LT
3411 }
3412 }
3413
3414 return busiest;
3415}
3416
77391d71
NP
3417/*
3418 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3419 * so long as it is large enough.
3420 */
3421#define MAX_PINNED_INTERVAL 512
3422
1da177e4
LT
3423/*
3424 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3425 * tasks if there is an imbalance.
1da177e4 3426 */
70b97a7f 3427static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3428 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3429 int *balance, struct cpumask *cpus)
1da177e4 3430{
43010659 3431 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3432 struct sched_group *group;
1da177e4 3433 unsigned long imbalance;
70b97a7f 3434 struct rq *busiest;
fe2eea3f 3435 unsigned long flags;
5969fe06 3436
96f874e2 3437 cpumask_setall(cpus);
7c16ec58 3438
89c4710e
SS
3439 /*
3440 * When power savings policy is enabled for the parent domain, idle
3441 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3442 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3443 * portraying it as CPU_NOT_IDLE.
89c4710e 3444 */
d15bcfdb 3445 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3447 sd_idle = 1;
1da177e4 3448
2d72376b 3449 schedstat_inc(sd, lb_count[idle]);
1da177e4 3450
0a2966b4 3451redo:
c8cba857 3452 update_shares(sd);
0a2966b4 3453 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3454 cpus, balance);
783609c6 3455
06066714 3456 if (*balance == 0)
783609c6 3457 goto out_balanced;
783609c6 3458
1da177e4
LT
3459 if (!group) {
3460 schedstat_inc(sd, lb_nobusyg[idle]);
3461 goto out_balanced;
3462 }
3463
7c16ec58 3464 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3465 if (!busiest) {
3466 schedstat_inc(sd, lb_nobusyq[idle]);
3467 goto out_balanced;
3468 }
3469
db935dbd 3470 BUG_ON(busiest == this_rq);
1da177e4
LT
3471
3472 schedstat_add(sd, lb_imbalance[idle], imbalance);
3473
43010659 3474 ld_moved = 0;
1da177e4
LT
3475 if (busiest->nr_running > 1) {
3476 /*
3477 * Attempt to move tasks. If find_busiest_group has found
3478 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3479 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3480 * correctly treated as an imbalance.
3481 */
fe2eea3f 3482 local_irq_save(flags);
e17224bf 3483 double_rq_lock(this_rq, busiest);
43010659 3484 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3485 imbalance, sd, idle, &all_pinned);
e17224bf 3486 double_rq_unlock(this_rq, busiest);
fe2eea3f 3487 local_irq_restore(flags);
81026794 3488
46cb4b7c
SS
3489 /*
3490 * some other cpu did the load balance for us.
3491 */
43010659 3492 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3493 resched_cpu(this_cpu);
3494
81026794 3495 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3496 if (unlikely(all_pinned)) {
96f874e2
RR
3497 cpumask_clear_cpu(cpu_of(busiest), cpus);
3498 if (!cpumask_empty(cpus))
0a2966b4 3499 goto redo;
81026794 3500 goto out_balanced;
0a2966b4 3501 }
1da177e4 3502 }
81026794 3503
43010659 3504 if (!ld_moved) {
1da177e4
LT
3505 schedstat_inc(sd, lb_failed[idle]);
3506 sd->nr_balance_failed++;
3507
3508 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3509
fe2eea3f 3510 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3511
3512 /* don't kick the migration_thread, if the curr
3513 * task on busiest cpu can't be moved to this_cpu
3514 */
96f874e2
RR
3515 if (!cpumask_test_cpu(this_cpu,
3516 &busiest->curr->cpus_allowed)) {
fe2eea3f 3517 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3518 all_pinned = 1;
3519 goto out_one_pinned;
3520 }
3521
1da177e4
LT
3522 if (!busiest->active_balance) {
3523 busiest->active_balance = 1;
3524 busiest->push_cpu = this_cpu;
81026794 3525 active_balance = 1;
1da177e4 3526 }
fe2eea3f 3527 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3528 if (active_balance)
1da177e4
LT
3529 wake_up_process(busiest->migration_thread);
3530
3531 /*
3532 * We've kicked active balancing, reset the failure
3533 * counter.
3534 */
39507451 3535 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3536 }
81026794 3537 } else
1da177e4
LT
3538 sd->nr_balance_failed = 0;
3539
81026794 3540 if (likely(!active_balance)) {
1da177e4
LT
3541 /* We were unbalanced, so reset the balancing interval */
3542 sd->balance_interval = sd->min_interval;
81026794
NP
3543 } else {
3544 /*
3545 * If we've begun active balancing, start to back off. This
3546 * case may not be covered by the all_pinned logic if there
3547 * is only 1 task on the busy runqueue (because we don't call
3548 * move_tasks).
3549 */
3550 if (sd->balance_interval < sd->max_interval)
3551 sd->balance_interval *= 2;
1da177e4
LT
3552 }
3553
43010659 3554 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3555 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3556 ld_moved = -1;
3557
3558 goto out;
1da177e4
LT
3559
3560out_balanced:
1da177e4
LT
3561 schedstat_inc(sd, lb_balanced[idle]);
3562
16cfb1c0 3563 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3564
3565out_one_pinned:
1da177e4 3566 /* tune up the balancing interval */
77391d71
NP
3567 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3568 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3569 sd->balance_interval *= 2;
3570
48f24c4d 3571 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3572 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3573 ld_moved = -1;
3574 else
3575 ld_moved = 0;
3576out:
c8cba857
PZ
3577 if (ld_moved)
3578 update_shares(sd);
c09595f6 3579 return ld_moved;
1da177e4
LT
3580}
3581
3582/*
3583 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3584 * tasks if there is an imbalance.
3585 *
d15bcfdb 3586 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3587 * this_rq is locked.
3588 */
48f24c4d 3589static int
7c16ec58 3590load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3591 struct cpumask *cpus)
1da177e4
LT
3592{
3593 struct sched_group *group;
70b97a7f 3594 struct rq *busiest = NULL;
1da177e4 3595 unsigned long imbalance;
43010659 3596 int ld_moved = 0;
5969fe06 3597 int sd_idle = 0;
969bb4e4 3598 int all_pinned = 0;
7c16ec58 3599
96f874e2 3600 cpumask_setall(cpus);
5969fe06 3601
89c4710e
SS
3602 /*
3603 * When power savings policy is enabled for the parent domain, idle
3604 * sibling can pick up load irrespective of busy siblings. In this case,
3605 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3606 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3607 */
3608 if (sd->flags & SD_SHARE_CPUPOWER &&
3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3610 sd_idle = 1;
1da177e4 3611
2d72376b 3612 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3613redo:
3e5459b4 3614 update_shares_locked(this_rq, sd);
d15bcfdb 3615 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3616 &sd_idle, cpus, NULL);
1da177e4 3617 if (!group) {
d15bcfdb 3618 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3619 goto out_balanced;
1da177e4
LT
3620 }
3621
7c16ec58 3622 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3623 if (!busiest) {
d15bcfdb 3624 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3625 goto out_balanced;
1da177e4
LT
3626 }
3627
db935dbd
NP
3628 BUG_ON(busiest == this_rq);
3629
d15bcfdb 3630 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3631
43010659 3632 ld_moved = 0;
d6d5cfaf
NP
3633 if (busiest->nr_running > 1) {
3634 /* Attempt to move tasks */
3635 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3636 /* this_rq->clock is already updated */
3637 update_rq_clock(busiest);
43010659 3638 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3639 imbalance, sd, CPU_NEWLY_IDLE,
3640 &all_pinned);
1b12bbc7 3641 double_unlock_balance(this_rq, busiest);
0a2966b4 3642
969bb4e4 3643 if (unlikely(all_pinned)) {
96f874e2
RR
3644 cpumask_clear_cpu(cpu_of(busiest), cpus);
3645 if (!cpumask_empty(cpus))
0a2966b4
CL
3646 goto redo;
3647 }
d6d5cfaf
NP
3648 }
3649
43010659 3650 if (!ld_moved) {
d15bcfdb 3651 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3652 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3653 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3654 return -1;
3655 } else
16cfb1c0 3656 sd->nr_balance_failed = 0;
1da177e4 3657
3e5459b4 3658 update_shares_locked(this_rq, sd);
43010659 3659 return ld_moved;
16cfb1c0
NP
3660
3661out_balanced:
d15bcfdb 3662 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3663 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3664 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3665 return -1;
16cfb1c0 3666 sd->nr_balance_failed = 0;
48f24c4d 3667
16cfb1c0 3668 return 0;
1da177e4
LT
3669}
3670
3671/*
3672 * idle_balance is called by schedule() if this_cpu is about to become
3673 * idle. Attempts to pull tasks from other CPUs.
3674 */
70b97a7f 3675static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3676{
3677 struct sched_domain *sd;
dd41f596
IM
3678 int pulled_task = -1;
3679 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3680 cpumask_var_t tmpmask;
3681
3682 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3683 return;
1da177e4
LT
3684
3685 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3686 unsigned long interval;
3687
3688 if (!(sd->flags & SD_LOAD_BALANCE))
3689 continue;
3690
3691 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3692 /* If we've pulled tasks over stop searching: */
7c16ec58 3693 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3694 sd, tmpmask);
92c4ca5c
CL
3695
3696 interval = msecs_to_jiffies(sd->balance_interval);
3697 if (time_after(next_balance, sd->last_balance + interval))
3698 next_balance = sd->last_balance + interval;
3699 if (pulled_task)
3700 break;
1da177e4 3701 }
dd41f596 3702 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3703 /*
3704 * We are going idle. next_balance may be set based on
3705 * a busy processor. So reset next_balance.
3706 */
3707 this_rq->next_balance = next_balance;
dd41f596 3708 }
4d2732c6 3709 free_cpumask_var(tmpmask);
1da177e4
LT
3710}
3711
3712/*
3713 * active_load_balance is run by migration threads. It pushes running tasks
3714 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3715 * running on each physical CPU where possible, and avoids physical /
3716 * logical imbalances.
3717 *
3718 * Called with busiest_rq locked.
3719 */
70b97a7f 3720static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3721{
39507451 3722 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3723 struct sched_domain *sd;
3724 struct rq *target_rq;
39507451 3725
48f24c4d 3726 /* Is there any task to move? */
39507451 3727 if (busiest_rq->nr_running <= 1)
39507451
NP
3728 return;
3729
3730 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3731
3732 /*
39507451 3733 * This condition is "impossible", if it occurs
41a2d6cf 3734 * we need to fix it. Originally reported by
39507451 3735 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3736 */
39507451 3737 BUG_ON(busiest_rq == target_rq);
1da177e4 3738
39507451
NP
3739 /* move a task from busiest_rq to target_rq */
3740 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3741 update_rq_clock(busiest_rq);
3742 update_rq_clock(target_rq);
39507451
NP
3743
3744 /* Search for an sd spanning us and the target CPU. */
c96d145e 3745 for_each_domain(target_cpu, sd) {
39507451 3746 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3747 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3748 break;
c96d145e 3749 }
39507451 3750
48f24c4d 3751 if (likely(sd)) {
2d72376b 3752 schedstat_inc(sd, alb_count);
39507451 3753
43010659
PW
3754 if (move_one_task(target_rq, target_cpu, busiest_rq,
3755 sd, CPU_IDLE))
48f24c4d
IM
3756 schedstat_inc(sd, alb_pushed);
3757 else
3758 schedstat_inc(sd, alb_failed);
3759 }
1b12bbc7 3760 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3761}
3762
46cb4b7c
SS
3763#ifdef CONFIG_NO_HZ
3764static struct {
3765 atomic_t load_balancer;
7d1e6a9b 3766 cpumask_var_t cpu_mask;
46cb4b7c
SS
3767} nohz ____cacheline_aligned = {
3768 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3769};
3770
7835b98b 3771/*
46cb4b7c
SS
3772 * This routine will try to nominate the ilb (idle load balancing)
3773 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3774 * load balancing on behalf of all those cpus. If all the cpus in the system
3775 * go into this tickless mode, then there will be no ilb owner (as there is
3776 * no need for one) and all the cpus will sleep till the next wakeup event
3777 * arrives...
3778 *
3779 * For the ilb owner, tick is not stopped. And this tick will be used
3780 * for idle load balancing. ilb owner will still be part of
3781 * nohz.cpu_mask..
7835b98b 3782 *
46cb4b7c
SS
3783 * While stopping the tick, this cpu will become the ilb owner if there
3784 * is no other owner. And will be the owner till that cpu becomes busy
3785 * or if all cpus in the system stop their ticks at which point
3786 * there is no need for ilb owner.
3787 *
3788 * When the ilb owner becomes busy, it nominates another owner, during the
3789 * next busy scheduler_tick()
3790 */
3791int select_nohz_load_balancer(int stop_tick)
3792{
3793 int cpu = smp_processor_id();
3794
3795 if (stop_tick) {
7d1e6a9b 3796 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3797 cpu_rq(cpu)->in_nohz_recently = 1;
3798
3799 /*
3800 * If we are going offline and still the leader, give up!
3801 */
e761b772 3802 if (!cpu_active(cpu) &&
46cb4b7c
SS
3803 atomic_read(&nohz.load_balancer) == cpu) {
3804 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3805 BUG();
3806 return 0;
3807 }
3808
3809 /* time for ilb owner also to sleep */
7d1e6a9b 3810 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3811 if (atomic_read(&nohz.load_balancer) == cpu)
3812 atomic_set(&nohz.load_balancer, -1);
3813 return 0;
3814 }
3815
3816 if (atomic_read(&nohz.load_balancer) == -1) {
3817 /* make me the ilb owner */
3818 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3819 return 1;
3820 } else if (atomic_read(&nohz.load_balancer) == cpu)
3821 return 1;
3822 } else {
7d1e6a9b 3823 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3824 return 0;
3825
7d1e6a9b 3826 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3827
3828 if (atomic_read(&nohz.load_balancer) == cpu)
3829 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3830 BUG();
3831 }
3832 return 0;
3833}
3834#endif
3835
3836static DEFINE_SPINLOCK(balancing);
3837
3838/*
7835b98b
CL
3839 * It checks each scheduling domain to see if it is due to be balanced,
3840 * and initiates a balancing operation if so.
3841 *
3842 * Balancing parameters are set up in arch_init_sched_domains.
3843 */
a9957449 3844static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3845{
46cb4b7c
SS
3846 int balance = 1;
3847 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3848 unsigned long interval;
3849 struct sched_domain *sd;
46cb4b7c 3850 /* Earliest time when we have to do rebalance again */
c9819f45 3851 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3852 int update_next_balance = 0;
d07355f5 3853 int need_serialize;
a0e90245
RR
3854 cpumask_var_t tmp;
3855
3856 /* Fails alloc? Rebalancing probably not a priority right now. */
3857 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3858 return;
1da177e4 3859
46cb4b7c 3860 for_each_domain(cpu, sd) {
1da177e4
LT
3861 if (!(sd->flags & SD_LOAD_BALANCE))
3862 continue;
3863
3864 interval = sd->balance_interval;
d15bcfdb 3865 if (idle != CPU_IDLE)
1da177e4
LT
3866 interval *= sd->busy_factor;
3867
3868 /* scale ms to jiffies */
3869 interval = msecs_to_jiffies(interval);
3870 if (unlikely(!interval))
3871 interval = 1;
dd41f596
IM
3872 if (interval > HZ*NR_CPUS/10)
3873 interval = HZ*NR_CPUS/10;
3874
d07355f5 3875 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3876
d07355f5 3877 if (need_serialize) {
08c183f3
CL
3878 if (!spin_trylock(&balancing))
3879 goto out;
3880 }
3881
c9819f45 3882 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3883 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3884 /*
3885 * We've pulled tasks over so either we're no
5969fe06
NP
3886 * longer idle, or one of our SMT siblings is
3887 * not idle.
3888 */
d15bcfdb 3889 idle = CPU_NOT_IDLE;
1da177e4 3890 }
1bd77f2d 3891 sd->last_balance = jiffies;
1da177e4 3892 }
d07355f5 3893 if (need_serialize)
08c183f3
CL
3894 spin_unlock(&balancing);
3895out:
f549da84 3896 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3897 next_balance = sd->last_balance + interval;
f549da84
SS
3898 update_next_balance = 1;
3899 }
783609c6
SS
3900
3901 /*
3902 * Stop the load balance at this level. There is another
3903 * CPU in our sched group which is doing load balancing more
3904 * actively.
3905 */
3906 if (!balance)
3907 break;
1da177e4 3908 }
f549da84
SS
3909
3910 /*
3911 * next_balance will be updated only when there is a need.
3912 * When the cpu is attached to null domain for ex, it will not be
3913 * updated.
3914 */
3915 if (likely(update_next_balance))
3916 rq->next_balance = next_balance;
a0e90245
RR
3917
3918 free_cpumask_var(tmp);
46cb4b7c
SS
3919}
3920
3921/*
3922 * run_rebalance_domains is triggered when needed from the scheduler tick.
3923 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3924 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3925 */
3926static void run_rebalance_domains(struct softirq_action *h)
3927{
dd41f596
IM
3928 int this_cpu = smp_processor_id();
3929 struct rq *this_rq = cpu_rq(this_cpu);
3930 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3931 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3932
dd41f596 3933 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3934
3935#ifdef CONFIG_NO_HZ
3936 /*
3937 * If this cpu is the owner for idle load balancing, then do the
3938 * balancing on behalf of the other idle cpus whose ticks are
3939 * stopped.
3940 */
dd41f596
IM
3941 if (this_rq->idle_at_tick &&
3942 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3943 struct rq *rq;
3944 int balance_cpu;
3945
7d1e6a9b
RR
3946 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3947 if (balance_cpu == this_cpu)
3948 continue;
3949
46cb4b7c
SS
3950 /*
3951 * If this cpu gets work to do, stop the load balancing
3952 * work being done for other cpus. Next load
3953 * balancing owner will pick it up.
3954 */
3955 if (need_resched())
3956 break;
3957
de0cf899 3958 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3959
3960 rq = cpu_rq(balance_cpu);
dd41f596
IM
3961 if (time_after(this_rq->next_balance, rq->next_balance))
3962 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3963 }
3964 }
3965#endif
3966}
3967
3968/*
3969 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3970 *
3971 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3972 * idle load balancing owner or decide to stop the periodic load balancing,
3973 * if the whole system is idle.
3974 */
dd41f596 3975static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3976{
46cb4b7c
SS
3977#ifdef CONFIG_NO_HZ
3978 /*
3979 * If we were in the nohz mode recently and busy at the current
3980 * scheduler tick, then check if we need to nominate new idle
3981 * load balancer.
3982 */
3983 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3984 rq->in_nohz_recently = 0;
3985
3986 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 3987 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3988 atomic_set(&nohz.load_balancer, -1);
3989 }
3990
3991 if (atomic_read(&nohz.load_balancer) == -1) {
3992 /*
3993 * simple selection for now: Nominate the
3994 * first cpu in the nohz list to be the next
3995 * ilb owner.
3996 *
3997 * TBD: Traverse the sched domains and nominate
3998 * the nearest cpu in the nohz.cpu_mask.
3999 */
7d1e6a9b 4000 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4001
434d53b0 4002 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4003 resched_cpu(ilb);
4004 }
4005 }
4006
4007 /*
4008 * If this cpu is idle and doing idle load balancing for all the
4009 * cpus with ticks stopped, is it time for that to stop?
4010 */
4011 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4012 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4013 resched_cpu(cpu);
4014 return;
4015 }
4016
4017 /*
4018 * If this cpu is idle and the idle load balancing is done by
4019 * someone else, then no need raise the SCHED_SOFTIRQ
4020 */
4021 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4022 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4023 return;
4024#endif
4025 if (time_after_eq(jiffies, rq->next_balance))
4026 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4027}
dd41f596
IM
4028
4029#else /* CONFIG_SMP */
4030
1da177e4
LT
4031/*
4032 * on UP we do not need to balance between CPUs:
4033 */
70b97a7f 4034static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4035{
4036}
dd41f596 4037
1da177e4
LT
4038#endif
4039
1da177e4
LT
4040DEFINE_PER_CPU(struct kernel_stat, kstat);
4041
4042EXPORT_PER_CPU_SYMBOL(kstat);
4043
4044/*
f06febc9
FM
4045 * Return any ns on the sched_clock that have not yet been banked in
4046 * @p in case that task is currently running.
1da177e4 4047 */
bb34d92f 4048unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4049{
1da177e4 4050 unsigned long flags;
41b86e9c 4051 struct rq *rq;
bb34d92f 4052 u64 ns = 0;
48f24c4d 4053
41b86e9c 4054 rq = task_rq_lock(p, &flags);
1508487e 4055
051a1d1a 4056 if (task_current(rq, p)) {
f06febc9
FM
4057 u64 delta_exec;
4058
a8e504d2
IM
4059 update_rq_clock(rq);
4060 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4061 if ((s64)delta_exec > 0)
bb34d92f 4062 ns = delta_exec;
41b86e9c 4063 }
48f24c4d 4064
41b86e9c 4065 task_rq_unlock(rq, &flags);
48f24c4d 4066
1da177e4
LT
4067 return ns;
4068}
4069
1da177e4
LT
4070/*
4071 * Account user cpu time to a process.
4072 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4073 * @cputime: the cpu time spent in user space since the last update
4074 */
4075void account_user_time(struct task_struct *p, cputime_t cputime)
4076{
4077 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4078 cputime64_t tmp;
4079
4080 p->utime = cputime_add(p->utime, cputime);
f06febc9 4081 account_group_user_time(p, cputime);
1da177e4
LT
4082
4083 /* Add user time to cpustat. */
4084 tmp = cputime_to_cputime64(cputime);
4085 if (TASK_NICE(p) > 0)
4086 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4087 else
4088 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4089 /* Account for user time used */
4090 acct_update_integrals(p);
1da177e4
LT
4091}
4092
94886b84
LV
4093/*
4094 * Account guest cpu time to a process.
4095 * @p: the process that the cpu time gets accounted to
4096 * @cputime: the cpu time spent in virtual machine since the last update
4097 */
f7402e03 4098static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4099{
4100 cputime64_t tmp;
4101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4102
4103 tmp = cputime_to_cputime64(cputime);
4104
4105 p->utime = cputime_add(p->utime, cputime);
f06febc9 4106 account_group_user_time(p, cputime);
94886b84
LV
4107 p->gtime = cputime_add(p->gtime, cputime);
4108
4109 cpustat->user = cputime64_add(cpustat->user, tmp);
4110 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4111}
4112
c66f08be
MN
4113/*
4114 * Account scaled user cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @cputime: the cpu time spent in user space since the last update
4117 */
4118void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4119{
4120 p->utimescaled = cputime_add(p->utimescaled, cputime);
4121}
4122
1da177e4
LT
4123/*
4124 * Account system cpu time to a process.
4125 * @p: the process that the cpu time gets accounted to
4126 * @hardirq_offset: the offset to subtract from hardirq_count()
4127 * @cputime: the cpu time spent in kernel space since the last update
4128 */
4129void account_system_time(struct task_struct *p, int hardirq_offset,
4130 cputime_t cputime)
4131{
4132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4133 struct rq *rq = this_rq();
1da177e4
LT
4134 cputime64_t tmp;
4135
983ed7a6
HH
4136 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4137 account_guest_time(p, cputime);
4138 return;
4139 }
94886b84 4140
1da177e4 4141 p->stime = cputime_add(p->stime, cputime);
f06febc9 4142 account_group_system_time(p, cputime);
1da177e4
LT
4143
4144 /* Add system time to cpustat. */
4145 tmp = cputime_to_cputime64(cputime);
4146 if (hardirq_count() - hardirq_offset)
4147 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4148 else if (softirq_count())
4149 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4150 else if (p != rq->idle)
1da177e4 4151 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4152 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4153 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4154 else
4155 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4156 /* Account for system time used */
4157 acct_update_integrals(p);
1da177e4
LT
4158}
4159
c66f08be
MN
4160/*
4161 * Account scaled system cpu time to a process.
4162 * @p: the process that the cpu time gets accounted to
4163 * @hardirq_offset: the offset to subtract from hardirq_count()
4164 * @cputime: the cpu time spent in kernel space since the last update
4165 */
4166void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4167{
4168 p->stimescaled = cputime_add(p->stimescaled, cputime);
4169}
4170
1da177e4
LT
4171/*
4172 * Account for involuntary wait time.
4173 * @p: the process from which the cpu time has been stolen
4174 * @steal: the cpu time spent in involuntary wait
4175 */
4176void account_steal_time(struct task_struct *p, cputime_t steal)
4177{
4178 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4179 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4180 struct rq *rq = this_rq();
1da177e4
LT
4181
4182 if (p == rq->idle) {
4183 p->stime = cputime_add(p->stime, steal);
4184 if (atomic_read(&rq->nr_iowait) > 0)
4185 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4186 else
4187 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4188 } else
1da177e4
LT
4189 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4190}
4191
49048622
BS
4192/*
4193 * Use precise platform statistics if available:
4194 */
4195#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4196cputime_t task_utime(struct task_struct *p)
4197{
4198 return p->utime;
4199}
4200
4201cputime_t task_stime(struct task_struct *p)
4202{
4203 return p->stime;
4204}
4205#else
4206cputime_t task_utime(struct task_struct *p)
4207{
4208 clock_t utime = cputime_to_clock_t(p->utime),
4209 total = utime + cputime_to_clock_t(p->stime);
4210 u64 temp;
4211
4212 /*
4213 * Use CFS's precise accounting:
4214 */
4215 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4216
4217 if (total) {
4218 temp *= utime;
4219 do_div(temp, total);
4220 }
4221 utime = (clock_t)temp;
4222
4223 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4224 return p->prev_utime;
4225}
4226
4227cputime_t task_stime(struct task_struct *p)
4228{
4229 clock_t stime;
4230
4231 /*
4232 * Use CFS's precise accounting. (we subtract utime from
4233 * the total, to make sure the total observed by userspace
4234 * grows monotonically - apps rely on that):
4235 */
4236 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4237 cputime_to_clock_t(task_utime(p));
4238
4239 if (stime >= 0)
4240 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4241
4242 return p->prev_stime;
4243}
4244#endif
4245
4246inline cputime_t task_gtime(struct task_struct *p)
4247{
4248 return p->gtime;
4249}
4250
7835b98b
CL
4251/*
4252 * This function gets called by the timer code, with HZ frequency.
4253 * We call it with interrupts disabled.
4254 *
4255 * It also gets called by the fork code, when changing the parent's
4256 * timeslices.
4257 */
4258void scheduler_tick(void)
4259{
7835b98b
CL
4260 int cpu = smp_processor_id();
4261 struct rq *rq = cpu_rq(cpu);
dd41f596 4262 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4263
4264 sched_clock_tick();
dd41f596
IM
4265
4266 spin_lock(&rq->lock);
3e51f33f 4267 update_rq_clock(rq);
f1a438d8 4268 update_cpu_load(rq);
fa85ae24 4269 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4270 spin_unlock(&rq->lock);
7835b98b 4271
e418e1c2 4272#ifdef CONFIG_SMP
dd41f596
IM
4273 rq->idle_at_tick = idle_cpu(cpu);
4274 trigger_load_balance(rq, cpu);
e418e1c2 4275#endif
1da177e4
LT
4276}
4277
6cd8a4bb
SR
4278#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4279 defined(CONFIG_PREEMPT_TRACER))
4280
4281static inline unsigned long get_parent_ip(unsigned long addr)
4282{
4283 if (in_lock_functions(addr)) {
4284 addr = CALLER_ADDR2;
4285 if (in_lock_functions(addr))
4286 addr = CALLER_ADDR3;
4287 }
4288 return addr;
4289}
1da177e4 4290
43627582 4291void __kprobes add_preempt_count(int val)
1da177e4 4292{
6cd8a4bb 4293#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4294 /*
4295 * Underflow?
4296 */
9a11b49a
IM
4297 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4298 return;
6cd8a4bb 4299#endif
1da177e4 4300 preempt_count() += val;
6cd8a4bb 4301#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4302 /*
4303 * Spinlock count overflowing soon?
4304 */
33859f7f
MOS
4305 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4306 PREEMPT_MASK - 10);
6cd8a4bb
SR
4307#endif
4308 if (preempt_count() == val)
4309 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4310}
4311EXPORT_SYMBOL(add_preempt_count);
4312
43627582 4313void __kprobes sub_preempt_count(int val)
1da177e4 4314{
6cd8a4bb 4315#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4316 /*
4317 * Underflow?
4318 */
7317d7b8 4319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4320 return;
1da177e4
LT
4321 /*
4322 * Is the spinlock portion underflowing?
4323 */
9a11b49a
IM
4324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4325 !(preempt_count() & PREEMPT_MASK)))
4326 return;
6cd8a4bb 4327#endif
9a11b49a 4328
6cd8a4bb
SR
4329 if (preempt_count() == val)
4330 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4331 preempt_count() -= val;
4332}
4333EXPORT_SYMBOL(sub_preempt_count);
4334
4335#endif
4336
4337/*
dd41f596 4338 * Print scheduling while atomic bug:
1da177e4 4339 */
dd41f596 4340static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4341{
838225b4
SS
4342 struct pt_regs *regs = get_irq_regs();
4343
4344 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4345 prev->comm, prev->pid, preempt_count());
4346
dd41f596 4347 debug_show_held_locks(prev);
e21f5b15 4348 print_modules();
dd41f596
IM
4349 if (irqs_disabled())
4350 print_irqtrace_events(prev);
838225b4
SS
4351
4352 if (regs)
4353 show_regs(regs);
4354 else
4355 dump_stack();
dd41f596 4356}
1da177e4 4357
dd41f596
IM
4358/*
4359 * Various schedule()-time debugging checks and statistics:
4360 */
4361static inline void schedule_debug(struct task_struct *prev)
4362{
1da177e4 4363 /*
41a2d6cf 4364 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4365 * schedule() atomically, we ignore that path for now.
4366 * Otherwise, whine if we are scheduling when we should not be.
4367 */
3f33a7ce 4368 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4369 __schedule_bug(prev);
4370
1da177e4
LT
4371 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4372
2d72376b 4373 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4374#ifdef CONFIG_SCHEDSTATS
4375 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4376 schedstat_inc(this_rq(), bkl_count);
4377 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4378 }
4379#endif
dd41f596
IM
4380}
4381
4382/*
4383 * Pick up the highest-prio task:
4384 */
4385static inline struct task_struct *
ff95f3df 4386pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4387{
5522d5d5 4388 const struct sched_class *class;
dd41f596 4389 struct task_struct *p;
1da177e4
LT
4390
4391 /*
dd41f596
IM
4392 * Optimization: we know that if all tasks are in
4393 * the fair class we can call that function directly:
1da177e4 4394 */
dd41f596 4395 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4396 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4397 if (likely(p))
4398 return p;
1da177e4
LT
4399 }
4400
dd41f596
IM
4401 class = sched_class_highest;
4402 for ( ; ; ) {
fb8d4724 4403 p = class->pick_next_task(rq);
dd41f596
IM
4404 if (p)
4405 return p;
4406 /*
4407 * Will never be NULL as the idle class always
4408 * returns a non-NULL p:
4409 */
4410 class = class->next;
4411 }
4412}
1da177e4 4413
dd41f596
IM
4414/*
4415 * schedule() is the main scheduler function.
4416 */
4417asmlinkage void __sched schedule(void)
4418{
4419 struct task_struct *prev, *next;
67ca7bde 4420 unsigned long *switch_count;
dd41f596 4421 struct rq *rq;
31656519 4422 int cpu;
dd41f596
IM
4423
4424need_resched:
4425 preempt_disable();
4426 cpu = smp_processor_id();
4427 rq = cpu_rq(cpu);
4428 rcu_qsctr_inc(cpu);
4429 prev = rq->curr;
4430 switch_count = &prev->nivcsw;
4431
4432 release_kernel_lock(prev);
4433need_resched_nonpreemptible:
4434
4435 schedule_debug(prev);
1da177e4 4436
31656519 4437 if (sched_feat(HRTICK))
f333fdc9 4438 hrtick_clear(rq);
8f4d37ec 4439
8cd162ce 4440 spin_lock_irq(&rq->lock);
3e51f33f 4441 update_rq_clock(rq);
1e819950 4442 clear_tsk_need_resched(prev);
1da177e4 4443
1da177e4 4444 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4445 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4446 prev->state = TASK_RUNNING;
16882c1e 4447 else
2e1cb74a 4448 deactivate_task(rq, prev, 1);
dd41f596 4449 switch_count = &prev->nvcsw;
1da177e4
LT
4450 }
4451
9a897c5a
SR
4452#ifdef CONFIG_SMP
4453 if (prev->sched_class->pre_schedule)
4454 prev->sched_class->pre_schedule(rq, prev);
4455#endif
f65eda4f 4456
dd41f596 4457 if (unlikely(!rq->nr_running))
1da177e4 4458 idle_balance(cpu, rq);
1da177e4 4459
31ee529c 4460 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4461 next = pick_next_task(rq, prev);
1da177e4 4462
1da177e4 4463 if (likely(prev != next)) {
673a90a1
DS
4464 sched_info_switch(prev, next);
4465
1da177e4
LT
4466 rq->nr_switches++;
4467 rq->curr = next;
4468 ++*switch_count;
4469
dd41f596 4470 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4471 /*
4472 * the context switch might have flipped the stack from under
4473 * us, hence refresh the local variables.
4474 */
4475 cpu = smp_processor_id();
4476 rq = cpu_rq(cpu);
1da177e4
LT
4477 } else
4478 spin_unlock_irq(&rq->lock);
4479
8f4d37ec 4480 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4481 goto need_resched_nonpreemptible;
8f4d37ec 4482
1da177e4
LT
4483 preempt_enable_no_resched();
4484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4485 goto need_resched;
4486}
1da177e4
LT
4487EXPORT_SYMBOL(schedule);
4488
4489#ifdef CONFIG_PREEMPT
4490/*
2ed6e34f 4491 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4492 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4493 * occur there and call schedule directly.
4494 */
4495asmlinkage void __sched preempt_schedule(void)
4496{
4497 struct thread_info *ti = current_thread_info();
6478d880 4498
1da177e4
LT
4499 /*
4500 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4501 * we do not want to preempt the current task. Just return..
1da177e4 4502 */
beed33a8 4503 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4504 return;
4505
3a5c359a
AK
4506 do {
4507 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4508 schedule();
3a5c359a 4509 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4510
3a5c359a
AK
4511 /*
4512 * Check again in case we missed a preemption opportunity
4513 * between schedule and now.
4514 */
4515 barrier();
4516 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4517}
1da177e4
LT
4518EXPORT_SYMBOL(preempt_schedule);
4519
4520/*
2ed6e34f 4521 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4522 * off of irq context.
4523 * Note, that this is called and return with irqs disabled. This will
4524 * protect us against recursive calling from irq.
4525 */
4526asmlinkage void __sched preempt_schedule_irq(void)
4527{
4528 struct thread_info *ti = current_thread_info();
6478d880 4529
2ed6e34f 4530 /* Catch callers which need to be fixed */
1da177e4
LT
4531 BUG_ON(ti->preempt_count || !irqs_disabled());
4532
3a5c359a
AK
4533 do {
4534 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4535 local_irq_enable();
4536 schedule();
4537 local_irq_disable();
3a5c359a 4538 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4539
3a5c359a
AK
4540 /*
4541 * Check again in case we missed a preemption opportunity
4542 * between schedule and now.
4543 */
4544 barrier();
4545 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4546}
4547
4548#endif /* CONFIG_PREEMPT */
4549
95cdf3b7
IM
4550int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4551 void *key)
1da177e4 4552{
48f24c4d 4553 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4554}
1da177e4
LT
4555EXPORT_SYMBOL(default_wake_function);
4556
4557/*
41a2d6cf
IM
4558 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4559 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4560 * number) then we wake all the non-exclusive tasks and one exclusive task.
4561 *
4562 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4563 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4564 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4565 */
4566static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4567 int nr_exclusive, int sync, void *key)
4568{
2e45874c 4569 wait_queue_t *curr, *next;
1da177e4 4570
2e45874c 4571 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4572 unsigned flags = curr->flags;
4573
1da177e4 4574 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4575 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4576 break;
4577 }
4578}
4579
4580/**
4581 * __wake_up - wake up threads blocked on a waitqueue.
4582 * @q: the waitqueue
4583 * @mode: which threads
4584 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4585 * @key: is directly passed to the wakeup function
1da177e4 4586 */
7ad5b3a5 4587void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4588 int nr_exclusive, void *key)
1da177e4
LT
4589{
4590 unsigned long flags;
4591
4592 spin_lock_irqsave(&q->lock, flags);
4593 __wake_up_common(q, mode, nr_exclusive, 0, key);
4594 spin_unlock_irqrestore(&q->lock, flags);
4595}
1da177e4
LT
4596EXPORT_SYMBOL(__wake_up);
4597
4598/*
4599 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4600 */
7ad5b3a5 4601void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4602{
4603 __wake_up_common(q, mode, 1, 0, NULL);
4604}
4605
4606/**
67be2dd1 4607 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4608 * @q: the waitqueue
4609 * @mode: which threads
4610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4611 *
4612 * The sync wakeup differs that the waker knows that it will schedule
4613 * away soon, so while the target thread will be woken up, it will not
4614 * be migrated to another CPU - ie. the two threads are 'synchronized'
4615 * with each other. This can prevent needless bouncing between CPUs.
4616 *
4617 * On UP it can prevent extra preemption.
4618 */
7ad5b3a5 4619void
95cdf3b7 4620__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4621{
4622 unsigned long flags;
4623 int sync = 1;
4624
4625 if (unlikely(!q))
4626 return;
4627
4628 if (unlikely(!nr_exclusive))
4629 sync = 0;
4630
4631 spin_lock_irqsave(&q->lock, flags);
4632 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4633 spin_unlock_irqrestore(&q->lock, flags);
4634}
4635EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4636
65eb3dc6
KD
4637/**
4638 * complete: - signals a single thread waiting on this completion
4639 * @x: holds the state of this particular completion
4640 *
4641 * This will wake up a single thread waiting on this completion. Threads will be
4642 * awakened in the same order in which they were queued.
4643 *
4644 * See also complete_all(), wait_for_completion() and related routines.
4645 */
b15136e9 4646void complete(struct completion *x)
1da177e4
LT
4647{
4648 unsigned long flags;
4649
4650 spin_lock_irqsave(&x->wait.lock, flags);
4651 x->done++;
d9514f6c 4652 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4653 spin_unlock_irqrestore(&x->wait.lock, flags);
4654}
4655EXPORT_SYMBOL(complete);
4656
65eb3dc6
KD
4657/**
4658 * complete_all: - signals all threads waiting on this completion
4659 * @x: holds the state of this particular completion
4660 *
4661 * This will wake up all threads waiting on this particular completion event.
4662 */
b15136e9 4663void complete_all(struct completion *x)
1da177e4
LT
4664{
4665 unsigned long flags;
4666
4667 spin_lock_irqsave(&x->wait.lock, flags);
4668 x->done += UINT_MAX/2;
d9514f6c 4669 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4670 spin_unlock_irqrestore(&x->wait.lock, flags);
4671}
4672EXPORT_SYMBOL(complete_all);
4673
8cbbe86d
AK
4674static inline long __sched
4675do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4676{
1da177e4
LT
4677 if (!x->done) {
4678 DECLARE_WAITQUEUE(wait, current);
4679
4680 wait.flags |= WQ_FLAG_EXCLUSIVE;
4681 __add_wait_queue_tail(&x->wait, &wait);
4682 do {
94d3d824 4683 if (signal_pending_state(state, current)) {
ea71a546
ON
4684 timeout = -ERESTARTSYS;
4685 break;
8cbbe86d
AK
4686 }
4687 __set_current_state(state);
1da177e4
LT
4688 spin_unlock_irq(&x->wait.lock);
4689 timeout = schedule_timeout(timeout);
4690 spin_lock_irq(&x->wait.lock);
ea71a546 4691 } while (!x->done && timeout);
1da177e4 4692 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4693 if (!x->done)
4694 return timeout;
1da177e4
LT
4695 }
4696 x->done--;
ea71a546 4697 return timeout ?: 1;
1da177e4 4698}
1da177e4 4699
8cbbe86d
AK
4700static long __sched
4701wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4702{
1da177e4
LT
4703 might_sleep();
4704
4705 spin_lock_irq(&x->wait.lock);
8cbbe86d 4706 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4707 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4708 return timeout;
4709}
1da177e4 4710
65eb3dc6
KD
4711/**
4712 * wait_for_completion: - waits for completion of a task
4713 * @x: holds the state of this particular completion
4714 *
4715 * This waits to be signaled for completion of a specific task. It is NOT
4716 * interruptible and there is no timeout.
4717 *
4718 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4719 * and interrupt capability. Also see complete().
4720 */
b15136e9 4721void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4722{
4723 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4724}
8cbbe86d 4725EXPORT_SYMBOL(wait_for_completion);
1da177e4 4726
65eb3dc6
KD
4727/**
4728 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4729 * @x: holds the state of this particular completion
4730 * @timeout: timeout value in jiffies
4731 *
4732 * This waits for either a completion of a specific task to be signaled or for a
4733 * specified timeout to expire. The timeout is in jiffies. It is not
4734 * interruptible.
4735 */
b15136e9 4736unsigned long __sched
8cbbe86d 4737wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4738{
8cbbe86d 4739 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4740}
8cbbe86d 4741EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4742
65eb3dc6
KD
4743/**
4744 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4745 * @x: holds the state of this particular completion
4746 *
4747 * This waits for completion of a specific task to be signaled. It is
4748 * interruptible.
4749 */
8cbbe86d 4750int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4751{
51e97990
AK
4752 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4753 if (t == -ERESTARTSYS)
4754 return t;
4755 return 0;
0fec171c 4756}
8cbbe86d 4757EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4758
65eb3dc6
KD
4759/**
4760 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4761 * @x: holds the state of this particular completion
4762 * @timeout: timeout value in jiffies
4763 *
4764 * This waits for either a completion of a specific task to be signaled or for a
4765 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4766 */
b15136e9 4767unsigned long __sched
8cbbe86d
AK
4768wait_for_completion_interruptible_timeout(struct completion *x,
4769 unsigned long timeout)
0fec171c 4770{
8cbbe86d 4771 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4772}
8cbbe86d 4773EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4774
65eb3dc6
KD
4775/**
4776 * wait_for_completion_killable: - waits for completion of a task (killable)
4777 * @x: holds the state of this particular completion
4778 *
4779 * This waits to be signaled for completion of a specific task. It can be
4780 * interrupted by a kill signal.
4781 */
009e577e
MW
4782int __sched wait_for_completion_killable(struct completion *x)
4783{
4784 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4785 if (t == -ERESTARTSYS)
4786 return t;
4787 return 0;
4788}
4789EXPORT_SYMBOL(wait_for_completion_killable);
4790
be4de352
DC
4791/**
4792 * try_wait_for_completion - try to decrement a completion without blocking
4793 * @x: completion structure
4794 *
4795 * Returns: 0 if a decrement cannot be done without blocking
4796 * 1 if a decrement succeeded.
4797 *
4798 * If a completion is being used as a counting completion,
4799 * attempt to decrement the counter without blocking. This
4800 * enables us to avoid waiting if the resource the completion
4801 * is protecting is not available.
4802 */
4803bool try_wait_for_completion(struct completion *x)
4804{
4805 int ret = 1;
4806
4807 spin_lock_irq(&x->wait.lock);
4808 if (!x->done)
4809 ret = 0;
4810 else
4811 x->done--;
4812 spin_unlock_irq(&x->wait.lock);
4813 return ret;
4814}
4815EXPORT_SYMBOL(try_wait_for_completion);
4816
4817/**
4818 * completion_done - Test to see if a completion has any waiters
4819 * @x: completion structure
4820 *
4821 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4822 * 1 if there are no waiters.
4823 *
4824 */
4825bool completion_done(struct completion *x)
4826{
4827 int ret = 1;
4828
4829 spin_lock_irq(&x->wait.lock);
4830 if (!x->done)
4831 ret = 0;
4832 spin_unlock_irq(&x->wait.lock);
4833 return ret;
4834}
4835EXPORT_SYMBOL(completion_done);
4836
8cbbe86d
AK
4837static long __sched
4838sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4839{
0fec171c
IM
4840 unsigned long flags;
4841 wait_queue_t wait;
4842
4843 init_waitqueue_entry(&wait, current);
1da177e4 4844
8cbbe86d 4845 __set_current_state(state);
1da177e4 4846
8cbbe86d
AK
4847 spin_lock_irqsave(&q->lock, flags);
4848 __add_wait_queue(q, &wait);
4849 spin_unlock(&q->lock);
4850 timeout = schedule_timeout(timeout);
4851 spin_lock_irq(&q->lock);
4852 __remove_wait_queue(q, &wait);
4853 spin_unlock_irqrestore(&q->lock, flags);
4854
4855 return timeout;
4856}
4857
4858void __sched interruptible_sleep_on(wait_queue_head_t *q)
4859{
4860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4861}
1da177e4
LT
4862EXPORT_SYMBOL(interruptible_sleep_on);
4863
0fec171c 4864long __sched
95cdf3b7 4865interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4866{
8cbbe86d 4867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4868}
1da177e4
LT
4869EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4870
0fec171c 4871void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4872{
8cbbe86d 4873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4874}
1da177e4
LT
4875EXPORT_SYMBOL(sleep_on);
4876
0fec171c 4877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4878{
8cbbe86d 4879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4880}
1da177e4
LT
4881EXPORT_SYMBOL(sleep_on_timeout);
4882
b29739f9
IM
4883#ifdef CONFIG_RT_MUTEXES
4884
4885/*
4886 * rt_mutex_setprio - set the current priority of a task
4887 * @p: task
4888 * @prio: prio value (kernel-internal form)
4889 *
4890 * This function changes the 'effective' priority of a task. It does
4891 * not touch ->normal_prio like __setscheduler().
4892 *
4893 * Used by the rt_mutex code to implement priority inheritance logic.
4894 */
36c8b586 4895void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4896{
4897 unsigned long flags;
83b699ed 4898 int oldprio, on_rq, running;
70b97a7f 4899 struct rq *rq;
cb469845 4900 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4901
4902 BUG_ON(prio < 0 || prio > MAX_PRIO);
4903
4904 rq = task_rq_lock(p, &flags);
a8e504d2 4905 update_rq_clock(rq);
b29739f9 4906
d5f9f942 4907 oldprio = p->prio;
dd41f596 4908 on_rq = p->se.on_rq;
051a1d1a 4909 running = task_current(rq, p);
0e1f3483 4910 if (on_rq)
69be72c1 4911 dequeue_task(rq, p, 0);
0e1f3483
HS
4912 if (running)
4913 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4914
4915 if (rt_prio(prio))
4916 p->sched_class = &rt_sched_class;
4917 else
4918 p->sched_class = &fair_sched_class;
4919
b29739f9
IM
4920 p->prio = prio;
4921
0e1f3483
HS
4922 if (running)
4923 p->sched_class->set_curr_task(rq);
dd41f596 4924 if (on_rq) {
8159f87e 4925 enqueue_task(rq, p, 0);
cb469845
SR
4926
4927 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4928 }
4929 task_rq_unlock(rq, &flags);
4930}
4931
4932#endif
4933
36c8b586 4934void set_user_nice(struct task_struct *p, long nice)
1da177e4 4935{
dd41f596 4936 int old_prio, delta, on_rq;
1da177e4 4937 unsigned long flags;
70b97a7f 4938 struct rq *rq;
1da177e4
LT
4939
4940 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4941 return;
4942 /*
4943 * We have to be careful, if called from sys_setpriority(),
4944 * the task might be in the middle of scheduling on another CPU.
4945 */
4946 rq = task_rq_lock(p, &flags);
a8e504d2 4947 update_rq_clock(rq);
1da177e4
LT
4948 /*
4949 * The RT priorities are set via sched_setscheduler(), but we still
4950 * allow the 'normal' nice value to be set - but as expected
4951 * it wont have any effect on scheduling until the task is
dd41f596 4952 * SCHED_FIFO/SCHED_RR:
1da177e4 4953 */
e05606d3 4954 if (task_has_rt_policy(p)) {
1da177e4
LT
4955 p->static_prio = NICE_TO_PRIO(nice);
4956 goto out_unlock;
4957 }
dd41f596 4958 on_rq = p->se.on_rq;
c09595f6 4959 if (on_rq)
69be72c1 4960 dequeue_task(rq, p, 0);
1da177e4 4961
1da177e4 4962 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4963 set_load_weight(p);
b29739f9
IM
4964 old_prio = p->prio;
4965 p->prio = effective_prio(p);
4966 delta = p->prio - old_prio;
1da177e4 4967
dd41f596 4968 if (on_rq) {
8159f87e 4969 enqueue_task(rq, p, 0);
1da177e4 4970 /*
d5f9f942
AM
4971 * If the task increased its priority or is running and
4972 * lowered its priority, then reschedule its CPU:
1da177e4 4973 */
d5f9f942 4974 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4975 resched_task(rq->curr);
4976 }
4977out_unlock:
4978 task_rq_unlock(rq, &flags);
4979}
1da177e4
LT
4980EXPORT_SYMBOL(set_user_nice);
4981
e43379f1
MM
4982/*
4983 * can_nice - check if a task can reduce its nice value
4984 * @p: task
4985 * @nice: nice value
4986 */
36c8b586 4987int can_nice(const struct task_struct *p, const int nice)
e43379f1 4988{
024f4747
MM
4989 /* convert nice value [19,-20] to rlimit style value [1,40] */
4990 int nice_rlim = 20 - nice;
48f24c4d 4991
e43379f1
MM
4992 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4993 capable(CAP_SYS_NICE));
4994}
4995
1da177e4
LT
4996#ifdef __ARCH_WANT_SYS_NICE
4997
4998/*
4999 * sys_nice - change the priority of the current process.
5000 * @increment: priority increment
5001 *
5002 * sys_setpriority is a more generic, but much slower function that
5003 * does similar things.
5004 */
5005asmlinkage long sys_nice(int increment)
5006{
48f24c4d 5007 long nice, retval;
1da177e4
LT
5008
5009 /*
5010 * Setpriority might change our priority at the same moment.
5011 * We don't have to worry. Conceptually one call occurs first
5012 * and we have a single winner.
5013 */
e43379f1
MM
5014 if (increment < -40)
5015 increment = -40;
1da177e4
LT
5016 if (increment > 40)
5017 increment = 40;
5018
5019 nice = PRIO_TO_NICE(current->static_prio) + increment;
5020 if (nice < -20)
5021 nice = -20;
5022 if (nice > 19)
5023 nice = 19;
5024
e43379f1
MM
5025 if (increment < 0 && !can_nice(current, nice))
5026 return -EPERM;
5027
1da177e4
LT
5028 retval = security_task_setnice(current, nice);
5029 if (retval)
5030 return retval;
5031
5032 set_user_nice(current, nice);
5033 return 0;
5034}
5035
5036#endif
5037
5038/**
5039 * task_prio - return the priority value of a given task.
5040 * @p: the task in question.
5041 *
5042 * This is the priority value as seen by users in /proc.
5043 * RT tasks are offset by -200. Normal tasks are centered
5044 * around 0, value goes from -16 to +15.
5045 */
36c8b586 5046int task_prio(const struct task_struct *p)
1da177e4
LT
5047{
5048 return p->prio - MAX_RT_PRIO;
5049}
5050
5051/**
5052 * task_nice - return the nice value of a given task.
5053 * @p: the task in question.
5054 */
36c8b586 5055int task_nice(const struct task_struct *p)
1da177e4
LT
5056{
5057 return TASK_NICE(p);
5058}
150d8bed 5059EXPORT_SYMBOL(task_nice);
1da177e4
LT
5060
5061/**
5062 * idle_cpu - is a given cpu idle currently?
5063 * @cpu: the processor in question.
5064 */
5065int idle_cpu(int cpu)
5066{
5067 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5068}
5069
1da177e4
LT
5070/**
5071 * idle_task - return the idle task for a given cpu.
5072 * @cpu: the processor in question.
5073 */
36c8b586 5074struct task_struct *idle_task(int cpu)
1da177e4
LT
5075{
5076 return cpu_rq(cpu)->idle;
5077}
5078
5079/**
5080 * find_process_by_pid - find a process with a matching PID value.
5081 * @pid: the pid in question.
5082 */
a9957449 5083static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5084{
228ebcbe 5085 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5086}
5087
5088/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5089static void
5090__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5091{
dd41f596 5092 BUG_ON(p->se.on_rq);
48f24c4d 5093
1da177e4 5094 p->policy = policy;
dd41f596
IM
5095 switch (p->policy) {
5096 case SCHED_NORMAL:
5097 case SCHED_BATCH:
5098 case SCHED_IDLE:
5099 p->sched_class = &fair_sched_class;
5100 break;
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 p->sched_class = &rt_sched_class;
5104 break;
5105 }
5106
1da177e4 5107 p->rt_priority = prio;
b29739f9
IM
5108 p->normal_prio = normal_prio(p);
5109 /* we are holding p->pi_lock already */
5110 p->prio = rt_mutex_getprio(p);
2dd73a4f 5111 set_load_weight(p);
1da177e4
LT
5112}
5113
961ccddd
RR
5114static int __sched_setscheduler(struct task_struct *p, int policy,
5115 struct sched_param *param, bool user)
1da177e4 5116{
83b699ed 5117 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5118 unsigned long flags;
cb469845 5119 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5120 struct rq *rq;
1da177e4 5121
66e5393a
SR
5122 /* may grab non-irq protected spin_locks */
5123 BUG_ON(in_interrupt());
1da177e4
LT
5124recheck:
5125 /* double check policy once rq lock held */
5126 if (policy < 0)
5127 policy = oldpolicy = p->policy;
5128 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5129 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5130 policy != SCHED_IDLE)
b0a9499c 5131 return -EINVAL;
1da177e4
LT
5132 /*
5133 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5134 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5135 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5136 */
5137 if (param->sched_priority < 0 ||
95cdf3b7 5138 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5139 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5140 return -EINVAL;
e05606d3 5141 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5142 return -EINVAL;
5143
37e4ab3f
OC
5144 /*
5145 * Allow unprivileged RT tasks to decrease priority:
5146 */
961ccddd 5147 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5148 if (rt_policy(policy)) {
8dc3e909 5149 unsigned long rlim_rtprio;
8dc3e909
ON
5150
5151 if (!lock_task_sighand(p, &flags))
5152 return -ESRCH;
5153 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5154 unlock_task_sighand(p, &flags);
5155
5156 /* can't set/change the rt policy */
5157 if (policy != p->policy && !rlim_rtprio)
5158 return -EPERM;
5159
5160 /* can't increase priority */
5161 if (param->sched_priority > p->rt_priority &&
5162 param->sched_priority > rlim_rtprio)
5163 return -EPERM;
5164 }
dd41f596
IM
5165 /*
5166 * Like positive nice levels, dont allow tasks to
5167 * move out of SCHED_IDLE either:
5168 */
5169 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5170 return -EPERM;
5fe1d75f 5171
37e4ab3f
OC
5172 /* can't change other user's priorities */
5173 if ((current->euid != p->euid) &&
5174 (current->euid != p->uid))
5175 return -EPERM;
5176 }
1da177e4 5177
725aad24 5178 if (user) {
b68aa230 5179#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5180 /*
5181 * Do not allow realtime tasks into groups that have no runtime
5182 * assigned.
5183 */
9a7e0b18
PZ
5184 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5185 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5186 return -EPERM;
b68aa230
PZ
5187#endif
5188
725aad24
JF
5189 retval = security_task_setscheduler(p, policy, param);
5190 if (retval)
5191 return retval;
5192 }
5193
b29739f9
IM
5194 /*
5195 * make sure no PI-waiters arrive (or leave) while we are
5196 * changing the priority of the task:
5197 */
5198 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5199 /*
5200 * To be able to change p->policy safely, the apropriate
5201 * runqueue lock must be held.
5202 */
b29739f9 5203 rq = __task_rq_lock(p);
1da177e4
LT
5204 /* recheck policy now with rq lock held */
5205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5206 policy = oldpolicy = -1;
b29739f9
IM
5207 __task_rq_unlock(rq);
5208 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5209 goto recheck;
5210 }
2daa3577 5211 update_rq_clock(rq);
dd41f596 5212 on_rq = p->se.on_rq;
051a1d1a 5213 running = task_current(rq, p);
0e1f3483 5214 if (on_rq)
2e1cb74a 5215 deactivate_task(rq, p, 0);
0e1f3483
HS
5216 if (running)
5217 p->sched_class->put_prev_task(rq, p);
f6b53205 5218
1da177e4 5219 oldprio = p->prio;
dd41f596 5220 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5221
0e1f3483
HS
5222 if (running)
5223 p->sched_class->set_curr_task(rq);
dd41f596
IM
5224 if (on_rq) {
5225 activate_task(rq, p, 0);
cb469845
SR
5226
5227 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5228 }
b29739f9
IM
5229 __task_rq_unlock(rq);
5230 spin_unlock_irqrestore(&p->pi_lock, flags);
5231
95e02ca9
TG
5232 rt_mutex_adjust_pi(p);
5233
1da177e4
LT
5234 return 0;
5235}
961ccddd
RR
5236
5237/**
5238 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5239 * @p: the task in question.
5240 * @policy: new policy.
5241 * @param: structure containing the new RT priority.
5242 *
5243 * NOTE that the task may be already dead.
5244 */
5245int sched_setscheduler(struct task_struct *p, int policy,
5246 struct sched_param *param)
5247{
5248 return __sched_setscheduler(p, policy, param, true);
5249}
1da177e4
LT
5250EXPORT_SYMBOL_GPL(sched_setscheduler);
5251
961ccddd
RR
5252/**
5253 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5254 * @p: the task in question.
5255 * @policy: new policy.
5256 * @param: structure containing the new RT priority.
5257 *
5258 * Just like sched_setscheduler, only don't bother checking if the
5259 * current context has permission. For example, this is needed in
5260 * stop_machine(): we create temporary high priority worker threads,
5261 * but our caller might not have that capability.
5262 */
5263int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5264 struct sched_param *param)
5265{
5266 return __sched_setscheduler(p, policy, param, false);
5267}
5268
95cdf3b7
IM
5269static int
5270do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5271{
1da177e4
LT
5272 struct sched_param lparam;
5273 struct task_struct *p;
36c8b586 5274 int retval;
1da177e4
LT
5275
5276 if (!param || pid < 0)
5277 return -EINVAL;
5278 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5279 return -EFAULT;
5fe1d75f
ON
5280
5281 rcu_read_lock();
5282 retval = -ESRCH;
1da177e4 5283 p = find_process_by_pid(pid);
5fe1d75f
ON
5284 if (p != NULL)
5285 retval = sched_setscheduler(p, policy, &lparam);
5286 rcu_read_unlock();
36c8b586 5287
1da177e4
LT
5288 return retval;
5289}
5290
5291/**
5292 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5293 * @pid: the pid in question.
5294 * @policy: new policy.
5295 * @param: structure containing the new RT priority.
5296 */
41a2d6cf
IM
5297asmlinkage long
5298sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5299{
c21761f1
JB
5300 /* negative values for policy are not valid */
5301 if (policy < 0)
5302 return -EINVAL;
5303
1da177e4
LT
5304 return do_sched_setscheduler(pid, policy, param);
5305}
5306
5307/**
5308 * sys_sched_setparam - set/change the RT priority of a thread
5309 * @pid: the pid in question.
5310 * @param: structure containing the new RT priority.
5311 */
5312asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5313{
5314 return do_sched_setscheduler(pid, -1, param);
5315}
5316
5317/**
5318 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5319 * @pid: the pid in question.
5320 */
5321asmlinkage long sys_sched_getscheduler(pid_t pid)
5322{
36c8b586 5323 struct task_struct *p;
3a5c359a 5324 int retval;
1da177e4
LT
5325
5326 if (pid < 0)
3a5c359a 5327 return -EINVAL;
1da177e4
LT
5328
5329 retval = -ESRCH;
5330 read_lock(&tasklist_lock);
5331 p = find_process_by_pid(pid);
5332 if (p) {
5333 retval = security_task_getscheduler(p);
5334 if (!retval)
5335 retval = p->policy;
5336 }
5337 read_unlock(&tasklist_lock);
1da177e4
LT
5338 return retval;
5339}
5340
5341/**
5342 * sys_sched_getscheduler - get the RT priority of a thread
5343 * @pid: the pid in question.
5344 * @param: structure containing the RT priority.
5345 */
5346asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5347{
5348 struct sched_param lp;
36c8b586 5349 struct task_struct *p;
3a5c359a 5350 int retval;
1da177e4
LT
5351
5352 if (!param || pid < 0)
3a5c359a 5353 return -EINVAL;
1da177e4
LT
5354
5355 read_lock(&tasklist_lock);
5356 p = find_process_by_pid(pid);
5357 retval = -ESRCH;
5358 if (!p)
5359 goto out_unlock;
5360
5361 retval = security_task_getscheduler(p);
5362 if (retval)
5363 goto out_unlock;
5364
5365 lp.sched_priority = p->rt_priority;
5366 read_unlock(&tasklist_lock);
5367
5368 /*
5369 * This one might sleep, we cannot do it with a spinlock held ...
5370 */
5371 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5372
1da177e4
LT
5373 return retval;
5374
5375out_unlock:
5376 read_unlock(&tasklist_lock);
5377 return retval;
5378}
5379
96f874e2 5380long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5381{
5a16f3d3 5382 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5383 struct task_struct *p;
5384 int retval;
1da177e4 5385
95402b38 5386 get_online_cpus();
1da177e4
LT
5387 read_lock(&tasklist_lock);
5388
5389 p = find_process_by_pid(pid);
5390 if (!p) {
5391 read_unlock(&tasklist_lock);
95402b38 5392 put_online_cpus();
1da177e4
LT
5393 return -ESRCH;
5394 }
5395
5396 /*
5397 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5398 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5399 * usage count and then drop tasklist_lock.
5400 */
5401 get_task_struct(p);
5402 read_unlock(&tasklist_lock);
5403
5a16f3d3
RR
5404 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5405 retval = -ENOMEM;
5406 goto out_put_task;
5407 }
5408 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5409 retval = -ENOMEM;
5410 goto out_free_cpus_allowed;
5411 }
1da177e4
LT
5412 retval = -EPERM;
5413 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5414 !capable(CAP_SYS_NICE))
5415 goto out_unlock;
5416
e7834f8f
DQ
5417 retval = security_task_setscheduler(p, 0, NULL);
5418 if (retval)
5419 goto out_unlock;
5420
5a16f3d3
RR
5421 cpuset_cpus_allowed(p, cpus_allowed);
5422 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5423 again:
5a16f3d3 5424 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5425
8707d8b8 5426 if (!retval) {
5a16f3d3
RR
5427 cpuset_cpus_allowed(p, cpus_allowed);
5428 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5429 /*
5430 * We must have raced with a concurrent cpuset
5431 * update. Just reset the cpus_allowed to the
5432 * cpuset's cpus_allowed
5433 */
5a16f3d3 5434 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5435 goto again;
5436 }
5437 }
1da177e4 5438out_unlock:
5a16f3d3
RR
5439 free_cpumask_var(new_mask);
5440out_free_cpus_allowed:
5441 free_cpumask_var(cpus_allowed);
5442out_put_task:
1da177e4 5443 put_task_struct(p);
95402b38 5444 put_online_cpus();
1da177e4
LT
5445 return retval;
5446}
5447
5448static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5449 struct cpumask *new_mask)
1da177e4 5450{
96f874e2
RR
5451 if (len < cpumask_size())
5452 cpumask_clear(new_mask);
5453 else if (len > cpumask_size())
5454 len = cpumask_size();
5455
1da177e4
LT
5456 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5457}
5458
5459/**
5460 * sys_sched_setaffinity - set the cpu affinity of a process
5461 * @pid: pid of the process
5462 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5463 * @user_mask_ptr: user-space pointer to the new cpu mask
5464 */
5465asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5466 unsigned long __user *user_mask_ptr)
5467{
5a16f3d3 5468 cpumask_var_t new_mask;
1da177e4
LT
5469 int retval;
5470
5a16f3d3
RR
5471 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5472 return -ENOMEM;
1da177e4 5473
5a16f3d3
RR
5474 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5475 if (retval == 0)
5476 retval = sched_setaffinity(pid, new_mask);
5477 free_cpumask_var(new_mask);
5478 return retval;
1da177e4
LT
5479}
5480
96f874e2 5481long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5482{
36c8b586 5483 struct task_struct *p;
1da177e4 5484 int retval;
1da177e4 5485
95402b38 5486 get_online_cpus();
1da177e4
LT
5487 read_lock(&tasklist_lock);
5488
5489 retval = -ESRCH;
5490 p = find_process_by_pid(pid);
5491 if (!p)
5492 goto out_unlock;
5493
e7834f8f
DQ
5494 retval = security_task_getscheduler(p);
5495 if (retval)
5496 goto out_unlock;
5497
96f874e2 5498 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5499
5500out_unlock:
5501 read_unlock(&tasklist_lock);
95402b38 5502 put_online_cpus();
1da177e4 5503
9531b62f 5504 return retval;
1da177e4
LT
5505}
5506
5507/**
5508 * sys_sched_getaffinity - get the cpu affinity of a process
5509 * @pid: pid of the process
5510 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5511 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5512 */
5513asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5514 unsigned long __user *user_mask_ptr)
5515{
5516 int ret;
f17c8607 5517 cpumask_var_t mask;
1da177e4 5518
f17c8607 5519 if (len < cpumask_size())
1da177e4
LT
5520 return -EINVAL;
5521
f17c8607
RR
5522 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5523 return -ENOMEM;
1da177e4 5524
f17c8607
RR
5525 ret = sched_getaffinity(pid, mask);
5526 if (ret == 0) {
5527 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5528 ret = -EFAULT;
5529 else
5530 ret = cpumask_size();
5531 }
5532 free_cpumask_var(mask);
1da177e4 5533
f17c8607 5534 return ret;
1da177e4
LT
5535}
5536
5537/**
5538 * sys_sched_yield - yield the current processor to other threads.
5539 *
dd41f596
IM
5540 * This function yields the current CPU to other tasks. If there are no
5541 * other threads running on this CPU then this function will return.
1da177e4
LT
5542 */
5543asmlinkage long sys_sched_yield(void)
5544{
70b97a7f 5545 struct rq *rq = this_rq_lock();
1da177e4 5546
2d72376b 5547 schedstat_inc(rq, yld_count);
4530d7ab 5548 current->sched_class->yield_task(rq);
1da177e4
LT
5549
5550 /*
5551 * Since we are going to call schedule() anyway, there's
5552 * no need to preempt or enable interrupts:
5553 */
5554 __release(rq->lock);
8a25d5de 5555 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5556 _raw_spin_unlock(&rq->lock);
5557 preempt_enable_no_resched();
5558
5559 schedule();
5560
5561 return 0;
5562}
5563
e7b38404 5564static void __cond_resched(void)
1da177e4 5565{
8e0a43d8
IM
5566#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5567 __might_sleep(__FILE__, __LINE__);
5568#endif
5bbcfd90
IM
5569 /*
5570 * The BKS might be reacquired before we have dropped
5571 * PREEMPT_ACTIVE, which could trigger a second
5572 * cond_resched() call.
5573 */
1da177e4
LT
5574 do {
5575 add_preempt_count(PREEMPT_ACTIVE);
5576 schedule();
5577 sub_preempt_count(PREEMPT_ACTIVE);
5578 } while (need_resched());
5579}
5580
02b67cc3 5581int __sched _cond_resched(void)
1da177e4 5582{
9414232f
IM
5583 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5584 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5585 __cond_resched();
5586 return 1;
5587 }
5588 return 0;
5589}
02b67cc3 5590EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5591
5592/*
5593 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5594 * call schedule, and on return reacquire the lock.
5595 *
41a2d6cf 5596 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5597 * operations here to prevent schedule() from being called twice (once via
5598 * spin_unlock(), once by hand).
5599 */
95cdf3b7 5600int cond_resched_lock(spinlock_t *lock)
1da177e4 5601{
95c354fe 5602 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5603 int ret = 0;
5604
95c354fe 5605 if (spin_needbreak(lock) || resched) {
1da177e4 5606 spin_unlock(lock);
95c354fe
NP
5607 if (resched && need_resched())
5608 __cond_resched();
5609 else
5610 cpu_relax();
6df3cecb 5611 ret = 1;
1da177e4 5612 spin_lock(lock);
1da177e4 5613 }
6df3cecb 5614 return ret;
1da177e4 5615}
1da177e4
LT
5616EXPORT_SYMBOL(cond_resched_lock);
5617
5618int __sched cond_resched_softirq(void)
5619{
5620 BUG_ON(!in_softirq());
5621
9414232f 5622 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5623 local_bh_enable();
1da177e4
LT
5624 __cond_resched();
5625 local_bh_disable();
5626 return 1;
5627 }
5628 return 0;
5629}
1da177e4
LT
5630EXPORT_SYMBOL(cond_resched_softirq);
5631
1da177e4
LT
5632/**
5633 * yield - yield the current processor to other threads.
5634 *
72fd4a35 5635 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5636 * thread runnable and calls sys_sched_yield().
5637 */
5638void __sched yield(void)
5639{
5640 set_current_state(TASK_RUNNING);
5641 sys_sched_yield();
5642}
1da177e4
LT
5643EXPORT_SYMBOL(yield);
5644
5645/*
41a2d6cf 5646 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5647 * that process accounting knows that this is a task in IO wait state.
5648 *
5649 * But don't do that if it is a deliberate, throttling IO wait (this task
5650 * has set its backing_dev_info: the queue against which it should throttle)
5651 */
5652void __sched io_schedule(void)
5653{
70b97a7f 5654 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5655
0ff92245 5656 delayacct_blkio_start();
1da177e4
LT
5657 atomic_inc(&rq->nr_iowait);
5658 schedule();
5659 atomic_dec(&rq->nr_iowait);
0ff92245 5660 delayacct_blkio_end();
1da177e4 5661}
1da177e4
LT
5662EXPORT_SYMBOL(io_schedule);
5663
5664long __sched io_schedule_timeout(long timeout)
5665{
70b97a7f 5666 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5667 long ret;
5668
0ff92245 5669 delayacct_blkio_start();
1da177e4
LT
5670 atomic_inc(&rq->nr_iowait);
5671 ret = schedule_timeout(timeout);
5672 atomic_dec(&rq->nr_iowait);
0ff92245 5673 delayacct_blkio_end();
1da177e4
LT
5674 return ret;
5675}
5676
5677/**
5678 * sys_sched_get_priority_max - return maximum RT priority.
5679 * @policy: scheduling class.
5680 *
5681 * this syscall returns the maximum rt_priority that can be used
5682 * by a given scheduling class.
5683 */
5684asmlinkage long sys_sched_get_priority_max(int policy)
5685{
5686 int ret = -EINVAL;
5687
5688 switch (policy) {
5689 case SCHED_FIFO:
5690 case SCHED_RR:
5691 ret = MAX_USER_RT_PRIO-1;
5692 break;
5693 case SCHED_NORMAL:
b0a9499c 5694 case SCHED_BATCH:
dd41f596 5695 case SCHED_IDLE:
1da177e4
LT
5696 ret = 0;
5697 break;
5698 }
5699 return ret;
5700}
5701
5702/**
5703 * sys_sched_get_priority_min - return minimum RT priority.
5704 * @policy: scheduling class.
5705 *
5706 * this syscall returns the minimum rt_priority that can be used
5707 * by a given scheduling class.
5708 */
5709asmlinkage long sys_sched_get_priority_min(int policy)
5710{
5711 int ret = -EINVAL;
5712
5713 switch (policy) {
5714 case SCHED_FIFO:
5715 case SCHED_RR:
5716 ret = 1;
5717 break;
5718 case SCHED_NORMAL:
b0a9499c 5719 case SCHED_BATCH:
dd41f596 5720 case SCHED_IDLE:
1da177e4
LT
5721 ret = 0;
5722 }
5723 return ret;
5724}
5725
5726/**
5727 * sys_sched_rr_get_interval - return the default timeslice of a process.
5728 * @pid: pid of the process.
5729 * @interval: userspace pointer to the timeslice value.
5730 *
5731 * this syscall writes the default timeslice value of a given process
5732 * into the user-space timespec buffer. A value of '0' means infinity.
5733 */
5734asmlinkage
5735long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5736{
36c8b586 5737 struct task_struct *p;
a4ec24b4 5738 unsigned int time_slice;
3a5c359a 5739 int retval;
1da177e4 5740 struct timespec t;
1da177e4
LT
5741
5742 if (pid < 0)
3a5c359a 5743 return -EINVAL;
1da177e4
LT
5744
5745 retval = -ESRCH;
5746 read_lock(&tasklist_lock);
5747 p = find_process_by_pid(pid);
5748 if (!p)
5749 goto out_unlock;
5750
5751 retval = security_task_getscheduler(p);
5752 if (retval)
5753 goto out_unlock;
5754
77034937
IM
5755 /*
5756 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5757 * tasks that are on an otherwise idle runqueue:
5758 */
5759 time_slice = 0;
5760 if (p->policy == SCHED_RR) {
a4ec24b4 5761 time_slice = DEF_TIMESLICE;
1868f958 5762 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5763 struct sched_entity *se = &p->se;
5764 unsigned long flags;
5765 struct rq *rq;
5766
5767 rq = task_rq_lock(p, &flags);
77034937
IM
5768 if (rq->cfs.load.weight)
5769 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5770 task_rq_unlock(rq, &flags);
5771 }
1da177e4 5772 read_unlock(&tasklist_lock);
a4ec24b4 5773 jiffies_to_timespec(time_slice, &t);
1da177e4 5774 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5775 return retval;
3a5c359a 5776
1da177e4
LT
5777out_unlock:
5778 read_unlock(&tasklist_lock);
5779 return retval;
5780}
5781
7c731e0a 5782static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5783
82a1fcb9 5784void sched_show_task(struct task_struct *p)
1da177e4 5785{
1da177e4 5786 unsigned long free = 0;
36c8b586 5787 unsigned state;
1da177e4 5788
1da177e4 5789 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5790 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5791 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5792#if BITS_PER_LONG == 32
1da177e4 5793 if (state == TASK_RUNNING)
cc4ea795 5794 printk(KERN_CONT " running ");
1da177e4 5795 else
cc4ea795 5796 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5797#else
5798 if (state == TASK_RUNNING)
cc4ea795 5799 printk(KERN_CONT " running task ");
1da177e4 5800 else
cc4ea795 5801 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5802#endif
5803#ifdef CONFIG_DEBUG_STACK_USAGE
5804 {
10ebffde 5805 unsigned long *n = end_of_stack(p);
1da177e4
LT
5806 while (!*n)
5807 n++;
10ebffde 5808 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5809 }
5810#endif
ba25f9dc 5811 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5812 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5813
5fb5e6de 5814 show_stack(p, NULL);
1da177e4
LT
5815}
5816
e59e2ae2 5817void show_state_filter(unsigned long state_filter)
1da177e4 5818{
36c8b586 5819 struct task_struct *g, *p;
1da177e4 5820
4bd77321
IM
5821#if BITS_PER_LONG == 32
5822 printk(KERN_INFO
5823 " task PC stack pid father\n");
1da177e4 5824#else
4bd77321
IM
5825 printk(KERN_INFO
5826 " task PC stack pid father\n");
1da177e4
LT
5827#endif
5828 read_lock(&tasklist_lock);
5829 do_each_thread(g, p) {
5830 /*
5831 * reset the NMI-timeout, listing all files on a slow
5832 * console might take alot of time:
5833 */
5834 touch_nmi_watchdog();
39bc89fd 5835 if (!state_filter || (p->state & state_filter))
82a1fcb9 5836 sched_show_task(p);
1da177e4
LT
5837 } while_each_thread(g, p);
5838
04c9167f
JF
5839 touch_all_softlockup_watchdogs();
5840
dd41f596
IM
5841#ifdef CONFIG_SCHED_DEBUG
5842 sysrq_sched_debug_show();
5843#endif
1da177e4 5844 read_unlock(&tasklist_lock);
e59e2ae2
IM
5845 /*
5846 * Only show locks if all tasks are dumped:
5847 */
5848 if (state_filter == -1)
5849 debug_show_all_locks();
1da177e4
LT
5850}
5851
1df21055
IM
5852void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5853{
dd41f596 5854 idle->sched_class = &idle_sched_class;
1df21055
IM
5855}
5856
f340c0d1
IM
5857/**
5858 * init_idle - set up an idle thread for a given CPU
5859 * @idle: task in question
5860 * @cpu: cpu the idle task belongs to
5861 *
5862 * NOTE: this function does not set the idle thread's NEED_RESCHED
5863 * flag, to make booting more robust.
5864 */
5c1e1767 5865void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5866{
70b97a7f 5867 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5868 unsigned long flags;
5869
5cbd54ef
IM
5870 spin_lock_irqsave(&rq->lock, flags);
5871
dd41f596
IM
5872 __sched_fork(idle);
5873 idle->se.exec_start = sched_clock();
5874
b29739f9 5875 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 5876 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5877 __set_task_cpu(idle, cpu);
1da177e4 5878
1da177e4 5879 rq->curr = rq->idle = idle;
4866cde0
NP
5880#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5881 idle->oncpu = 1;
5882#endif
1da177e4
LT
5883 spin_unlock_irqrestore(&rq->lock, flags);
5884
5885 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5886#if defined(CONFIG_PREEMPT)
5887 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5888#else
a1261f54 5889 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5890#endif
dd41f596
IM
5891 /*
5892 * The idle tasks have their own, simple scheduling class:
5893 */
5894 idle->sched_class = &idle_sched_class;
f201ae23 5895 ftrace_retfunc_init_task(idle);
1da177e4
LT
5896}
5897
5898/*
5899 * In a system that switches off the HZ timer nohz_cpu_mask
5900 * indicates which cpus entered this state. This is used
5901 * in the rcu update to wait only for active cpus. For system
5902 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5903 * always be CPU_BITS_NONE.
1da177e4 5904 */
6a7b3dc3 5905cpumask_var_t nohz_cpu_mask;
1da177e4 5906
19978ca6
IM
5907/*
5908 * Increase the granularity value when there are more CPUs,
5909 * because with more CPUs the 'effective latency' as visible
5910 * to users decreases. But the relationship is not linear,
5911 * so pick a second-best guess by going with the log2 of the
5912 * number of CPUs.
5913 *
5914 * This idea comes from the SD scheduler of Con Kolivas:
5915 */
5916static inline void sched_init_granularity(void)
5917{
5918 unsigned int factor = 1 + ilog2(num_online_cpus());
5919 const unsigned long limit = 200000000;
5920
5921 sysctl_sched_min_granularity *= factor;
5922 if (sysctl_sched_min_granularity > limit)
5923 sysctl_sched_min_granularity = limit;
5924
5925 sysctl_sched_latency *= factor;
5926 if (sysctl_sched_latency > limit)
5927 sysctl_sched_latency = limit;
5928
5929 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5930
5931 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5932}
5933
1da177e4
LT
5934#ifdef CONFIG_SMP
5935/*
5936 * This is how migration works:
5937 *
70b97a7f 5938 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5939 * runqueue and wake up that CPU's migration thread.
5940 * 2) we down() the locked semaphore => thread blocks.
5941 * 3) migration thread wakes up (implicitly it forces the migrated
5942 * thread off the CPU)
5943 * 4) it gets the migration request and checks whether the migrated
5944 * task is still in the wrong runqueue.
5945 * 5) if it's in the wrong runqueue then the migration thread removes
5946 * it and puts it into the right queue.
5947 * 6) migration thread up()s the semaphore.
5948 * 7) we wake up and the migration is done.
5949 */
5950
5951/*
5952 * Change a given task's CPU affinity. Migrate the thread to a
5953 * proper CPU and schedule it away if the CPU it's executing on
5954 * is removed from the allowed bitmask.
5955 *
5956 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5957 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5958 * call is not atomic; no spinlocks may be held.
5959 */
96f874e2 5960int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5961{
70b97a7f 5962 struct migration_req req;
1da177e4 5963 unsigned long flags;
70b97a7f 5964 struct rq *rq;
48f24c4d 5965 int ret = 0;
1da177e4
LT
5966
5967 rq = task_rq_lock(p, &flags);
96f874e2 5968 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
5969 ret = -EINVAL;
5970 goto out;
5971 }
5972
9985b0ba 5973 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5974 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5975 ret = -EINVAL;
5976 goto out;
5977 }
5978
73fe6aae 5979 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5980 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5981 else {
96f874e2
RR
5982 cpumask_copy(&p->cpus_allowed, new_mask);
5983 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5984 }
5985
1da177e4 5986 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5987 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5988 goto out;
5989
1e5ce4f4 5990 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
5991 /* Need help from migration thread: drop lock and wait. */
5992 task_rq_unlock(rq, &flags);
5993 wake_up_process(rq->migration_thread);
5994 wait_for_completion(&req.done);
5995 tlb_migrate_finish(p->mm);
5996 return 0;
5997 }
5998out:
5999 task_rq_unlock(rq, &flags);
48f24c4d 6000
1da177e4
LT
6001 return ret;
6002}
cd8ba7cd 6003EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6004
6005/*
41a2d6cf 6006 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6007 * this because either it can't run here any more (set_cpus_allowed()
6008 * away from this CPU, or CPU going down), or because we're
6009 * attempting to rebalance this task on exec (sched_exec).
6010 *
6011 * So we race with normal scheduler movements, but that's OK, as long
6012 * as the task is no longer on this CPU.
efc30814
KK
6013 *
6014 * Returns non-zero if task was successfully migrated.
1da177e4 6015 */
efc30814 6016static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6017{
70b97a7f 6018 struct rq *rq_dest, *rq_src;
dd41f596 6019 int ret = 0, on_rq;
1da177e4 6020
e761b772 6021 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6022 return ret;
1da177e4
LT
6023
6024 rq_src = cpu_rq(src_cpu);
6025 rq_dest = cpu_rq(dest_cpu);
6026
6027 double_rq_lock(rq_src, rq_dest);
6028 /* Already moved. */
6029 if (task_cpu(p) != src_cpu)
b1e38734 6030 goto done;
1da177e4 6031 /* Affinity changed (again). */
96f874e2 6032 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6033 goto fail;
1da177e4 6034
dd41f596 6035 on_rq = p->se.on_rq;
6e82a3be 6036 if (on_rq)
2e1cb74a 6037 deactivate_task(rq_src, p, 0);
6e82a3be 6038
1da177e4 6039 set_task_cpu(p, dest_cpu);
dd41f596
IM
6040 if (on_rq) {
6041 activate_task(rq_dest, p, 0);
15afe09b 6042 check_preempt_curr(rq_dest, p, 0);
1da177e4 6043 }
b1e38734 6044done:
efc30814 6045 ret = 1;
b1e38734 6046fail:
1da177e4 6047 double_rq_unlock(rq_src, rq_dest);
efc30814 6048 return ret;
1da177e4
LT
6049}
6050
6051/*
6052 * migration_thread - this is a highprio system thread that performs
6053 * thread migration by bumping thread off CPU then 'pushing' onto
6054 * another runqueue.
6055 */
95cdf3b7 6056static int migration_thread(void *data)
1da177e4 6057{
1da177e4 6058 int cpu = (long)data;
70b97a7f 6059 struct rq *rq;
1da177e4
LT
6060
6061 rq = cpu_rq(cpu);
6062 BUG_ON(rq->migration_thread != current);
6063
6064 set_current_state(TASK_INTERRUPTIBLE);
6065 while (!kthread_should_stop()) {
70b97a7f 6066 struct migration_req *req;
1da177e4 6067 struct list_head *head;
1da177e4 6068
1da177e4
LT
6069 spin_lock_irq(&rq->lock);
6070
6071 if (cpu_is_offline(cpu)) {
6072 spin_unlock_irq(&rq->lock);
6073 goto wait_to_die;
6074 }
6075
6076 if (rq->active_balance) {
6077 active_load_balance(rq, cpu);
6078 rq->active_balance = 0;
6079 }
6080
6081 head = &rq->migration_queue;
6082
6083 if (list_empty(head)) {
6084 spin_unlock_irq(&rq->lock);
6085 schedule();
6086 set_current_state(TASK_INTERRUPTIBLE);
6087 continue;
6088 }
70b97a7f 6089 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6090 list_del_init(head->next);
6091
674311d5
NP
6092 spin_unlock(&rq->lock);
6093 __migrate_task(req->task, cpu, req->dest_cpu);
6094 local_irq_enable();
1da177e4
LT
6095
6096 complete(&req->done);
6097 }
6098 __set_current_state(TASK_RUNNING);
6099 return 0;
6100
6101wait_to_die:
6102 /* Wait for kthread_stop */
6103 set_current_state(TASK_INTERRUPTIBLE);
6104 while (!kthread_should_stop()) {
6105 schedule();
6106 set_current_state(TASK_INTERRUPTIBLE);
6107 }
6108 __set_current_state(TASK_RUNNING);
6109 return 0;
6110}
6111
6112#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6113
6114static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6115{
6116 int ret;
6117
6118 local_irq_disable();
6119 ret = __migrate_task(p, src_cpu, dest_cpu);
6120 local_irq_enable();
6121 return ret;
6122}
6123
054b9108 6124/*
3a4fa0a2 6125 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6126 */
48f24c4d 6127static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6128{
efc30814 6129 unsigned long flags;
70b97a7f
IM
6130 struct rq *rq;
6131 int dest_cpu;
e76bd8d9
RR
6132 /* FIXME: Use cpumask_of_node here. */
6133 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6134 const struct cpumask *nodemask = &_nodemask;
6135
6136again:
6137 /* Look for allowed, online CPU in same node. */
6138 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6139 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6140 goto move;
6141
6142 /* Any allowed, online CPU? */
6143 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6144 if (dest_cpu < nr_cpu_ids)
6145 goto move;
6146
6147 /* No more Mr. Nice Guy. */
6148 if (dest_cpu >= nr_cpu_ids) {
6149 rq = task_rq_lock(p, &flags);
6150 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6151 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6152 task_rq_unlock(rq, &flags);
1da177e4 6153
e76bd8d9
RR
6154 /*
6155 * Don't tell them about moving exiting tasks or
6156 * kernel threads (both mm NULL), since they never
6157 * leave kernel.
6158 */
6159 if (p->mm && printk_ratelimit()) {
6160 printk(KERN_INFO "process %d (%s) no "
6161 "longer affine to cpu%d\n",
6162 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6163 }
e76bd8d9
RR
6164 }
6165
6166move:
6167 /* It can have affinity changed while we were choosing. */
6168 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6169 goto again;
1da177e4
LT
6170}
6171
6172/*
6173 * While a dead CPU has no uninterruptible tasks queued at this point,
6174 * it might still have a nonzero ->nr_uninterruptible counter, because
6175 * for performance reasons the counter is not stricly tracking tasks to
6176 * their home CPUs. So we just add the counter to another CPU's counter,
6177 * to keep the global sum constant after CPU-down:
6178 */
70b97a7f 6179static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6180{
1e5ce4f4 6181 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6182 unsigned long flags;
6183
6184 local_irq_save(flags);
6185 double_rq_lock(rq_src, rq_dest);
6186 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6187 rq_src->nr_uninterruptible = 0;
6188 double_rq_unlock(rq_src, rq_dest);
6189 local_irq_restore(flags);
6190}
6191
6192/* Run through task list and migrate tasks from the dead cpu. */
6193static void migrate_live_tasks(int src_cpu)
6194{
48f24c4d 6195 struct task_struct *p, *t;
1da177e4 6196
f7b4cddc 6197 read_lock(&tasklist_lock);
1da177e4 6198
48f24c4d
IM
6199 do_each_thread(t, p) {
6200 if (p == current)
1da177e4
LT
6201 continue;
6202
48f24c4d
IM
6203 if (task_cpu(p) == src_cpu)
6204 move_task_off_dead_cpu(src_cpu, p);
6205 } while_each_thread(t, p);
1da177e4 6206
f7b4cddc 6207 read_unlock(&tasklist_lock);
1da177e4
LT
6208}
6209
dd41f596
IM
6210/*
6211 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6212 * It does so by boosting its priority to highest possible.
6213 * Used by CPU offline code.
1da177e4
LT
6214 */
6215void sched_idle_next(void)
6216{
48f24c4d 6217 int this_cpu = smp_processor_id();
70b97a7f 6218 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6219 struct task_struct *p = rq->idle;
6220 unsigned long flags;
6221
6222 /* cpu has to be offline */
48f24c4d 6223 BUG_ON(cpu_online(this_cpu));
1da177e4 6224
48f24c4d
IM
6225 /*
6226 * Strictly not necessary since rest of the CPUs are stopped by now
6227 * and interrupts disabled on the current cpu.
1da177e4
LT
6228 */
6229 spin_lock_irqsave(&rq->lock, flags);
6230
dd41f596 6231 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6232
94bc9a7b
DA
6233 update_rq_clock(rq);
6234 activate_task(rq, p, 0);
1da177e4
LT
6235
6236 spin_unlock_irqrestore(&rq->lock, flags);
6237}
6238
48f24c4d
IM
6239/*
6240 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6241 * offline.
6242 */
6243void idle_task_exit(void)
6244{
6245 struct mm_struct *mm = current->active_mm;
6246
6247 BUG_ON(cpu_online(smp_processor_id()));
6248
6249 if (mm != &init_mm)
6250 switch_mm(mm, &init_mm, current);
6251 mmdrop(mm);
6252}
6253
054b9108 6254/* called under rq->lock with disabled interrupts */
36c8b586 6255static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6256{
70b97a7f 6257 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6258
6259 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6260 BUG_ON(!p->exit_state);
1da177e4
LT
6261
6262 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6263 BUG_ON(p->state == TASK_DEAD);
1da177e4 6264
48f24c4d 6265 get_task_struct(p);
1da177e4
LT
6266
6267 /*
6268 * Drop lock around migration; if someone else moves it,
41a2d6cf 6269 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6270 * fine.
6271 */
f7b4cddc 6272 spin_unlock_irq(&rq->lock);
48f24c4d 6273 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6274 spin_lock_irq(&rq->lock);
1da177e4 6275
48f24c4d 6276 put_task_struct(p);
1da177e4
LT
6277}
6278
6279/* release_task() removes task from tasklist, so we won't find dead tasks. */
6280static void migrate_dead_tasks(unsigned int dead_cpu)
6281{
70b97a7f 6282 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6283 struct task_struct *next;
48f24c4d 6284
dd41f596
IM
6285 for ( ; ; ) {
6286 if (!rq->nr_running)
6287 break;
a8e504d2 6288 update_rq_clock(rq);
ff95f3df 6289 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6290 if (!next)
6291 break;
79c53799 6292 next->sched_class->put_prev_task(rq, next);
dd41f596 6293 migrate_dead(dead_cpu, next);
e692ab53 6294
1da177e4
LT
6295 }
6296}
6297#endif /* CONFIG_HOTPLUG_CPU */
6298
e692ab53
NP
6299#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6300
6301static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6302 {
6303 .procname = "sched_domain",
c57baf1e 6304 .mode = 0555,
e0361851 6305 },
38605cae 6306 {0, },
e692ab53
NP
6307};
6308
6309static struct ctl_table sd_ctl_root[] = {
e0361851 6310 {
c57baf1e 6311 .ctl_name = CTL_KERN,
e0361851 6312 .procname = "kernel",
c57baf1e 6313 .mode = 0555,
e0361851
AD
6314 .child = sd_ctl_dir,
6315 },
38605cae 6316 {0, },
e692ab53
NP
6317};
6318
6319static struct ctl_table *sd_alloc_ctl_entry(int n)
6320{
6321 struct ctl_table *entry =
5cf9f062 6322 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6323
e692ab53
NP
6324 return entry;
6325}
6326
6382bc90
MM
6327static void sd_free_ctl_entry(struct ctl_table **tablep)
6328{
cd790076 6329 struct ctl_table *entry;
6382bc90 6330
cd790076
MM
6331 /*
6332 * In the intermediate directories, both the child directory and
6333 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6334 * will always be set. In the lowest directory the names are
cd790076
MM
6335 * static strings and all have proc handlers.
6336 */
6337 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6338 if (entry->child)
6339 sd_free_ctl_entry(&entry->child);
cd790076
MM
6340 if (entry->proc_handler == NULL)
6341 kfree(entry->procname);
6342 }
6382bc90
MM
6343
6344 kfree(*tablep);
6345 *tablep = NULL;
6346}
6347
e692ab53 6348static void
e0361851 6349set_table_entry(struct ctl_table *entry,
e692ab53
NP
6350 const char *procname, void *data, int maxlen,
6351 mode_t mode, proc_handler *proc_handler)
6352{
e692ab53
NP
6353 entry->procname = procname;
6354 entry->data = data;
6355 entry->maxlen = maxlen;
6356 entry->mode = mode;
6357 entry->proc_handler = proc_handler;
6358}
6359
6360static struct ctl_table *
6361sd_alloc_ctl_domain_table(struct sched_domain *sd)
6362{
a5d8c348 6363 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6364
ad1cdc1d
MM
6365 if (table == NULL)
6366 return NULL;
6367
e0361851 6368 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6369 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6370 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6371 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6372 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6373 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6374 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6375 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6376 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6377 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6378 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6379 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6380 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6381 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6382 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6383 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6384 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6385 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6386 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6387 &sd->cache_nice_tries,
6388 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6389 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6390 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6391 set_table_entry(&table[11], "name", sd->name,
6392 CORENAME_MAX_SIZE, 0444, proc_dostring);
6393 /* &table[12] is terminator */
e692ab53
NP
6394
6395 return table;
6396}
6397
9a4e7159 6398static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6399{
6400 struct ctl_table *entry, *table;
6401 struct sched_domain *sd;
6402 int domain_num = 0, i;
6403 char buf[32];
6404
6405 for_each_domain(cpu, sd)
6406 domain_num++;
6407 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6408 if (table == NULL)
6409 return NULL;
e692ab53
NP
6410
6411 i = 0;
6412 for_each_domain(cpu, sd) {
6413 snprintf(buf, 32, "domain%d", i);
e692ab53 6414 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6415 entry->mode = 0555;
e692ab53
NP
6416 entry->child = sd_alloc_ctl_domain_table(sd);
6417 entry++;
6418 i++;
6419 }
6420 return table;
6421}
6422
6423static struct ctl_table_header *sd_sysctl_header;
6382bc90 6424static void register_sched_domain_sysctl(void)
e692ab53
NP
6425{
6426 int i, cpu_num = num_online_cpus();
6427 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6428 char buf[32];
6429
7378547f
MM
6430 WARN_ON(sd_ctl_dir[0].child);
6431 sd_ctl_dir[0].child = entry;
6432
ad1cdc1d
MM
6433 if (entry == NULL)
6434 return;
6435
97b6ea7b 6436 for_each_online_cpu(i) {
e692ab53 6437 snprintf(buf, 32, "cpu%d", i);
e692ab53 6438 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6439 entry->mode = 0555;
e692ab53 6440 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6441 entry++;
e692ab53 6442 }
7378547f
MM
6443
6444 WARN_ON(sd_sysctl_header);
e692ab53
NP
6445 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6446}
6382bc90 6447
7378547f 6448/* may be called multiple times per register */
6382bc90
MM
6449static void unregister_sched_domain_sysctl(void)
6450{
7378547f
MM
6451 if (sd_sysctl_header)
6452 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6453 sd_sysctl_header = NULL;
7378547f
MM
6454 if (sd_ctl_dir[0].child)
6455 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6456}
e692ab53 6457#else
6382bc90
MM
6458static void register_sched_domain_sysctl(void)
6459{
6460}
6461static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6462{
6463}
6464#endif
6465
1f11eb6a
GH
6466static void set_rq_online(struct rq *rq)
6467{
6468 if (!rq->online) {
6469 const struct sched_class *class;
6470
c6c4927b 6471 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6472 rq->online = 1;
6473
6474 for_each_class(class) {
6475 if (class->rq_online)
6476 class->rq_online(rq);
6477 }
6478 }
6479}
6480
6481static void set_rq_offline(struct rq *rq)
6482{
6483 if (rq->online) {
6484 const struct sched_class *class;
6485
6486 for_each_class(class) {
6487 if (class->rq_offline)
6488 class->rq_offline(rq);
6489 }
6490
c6c4927b 6491 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6492 rq->online = 0;
6493 }
6494}
6495
1da177e4
LT
6496/*
6497 * migration_call - callback that gets triggered when a CPU is added.
6498 * Here we can start up the necessary migration thread for the new CPU.
6499 */
48f24c4d
IM
6500static int __cpuinit
6501migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6502{
1da177e4 6503 struct task_struct *p;
48f24c4d 6504 int cpu = (long)hcpu;
1da177e4 6505 unsigned long flags;
70b97a7f 6506 struct rq *rq;
1da177e4
LT
6507
6508 switch (action) {
5be9361c 6509
1da177e4 6510 case CPU_UP_PREPARE:
8bb78442 6511 case CPU_UP_PREPARE_FROZEN:
dd41f596 6512 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6513 if (IS_ERR(p))
6514 return NOTIFY_BAD;
1da177e4
LT
6515 kthread_bind(p, cpu);
6516 /* Must be high prio: stop_machine expects to yield to it. */
6517 rq = task_rq_lock(p, &flags);
dd41f596 6518 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6519 task_rq_unlock(rq, &flags);
6520 cpu_rq(cpu)->migration_thread = p;
6521 break;
48f24c4d 6522
1da177e4 6523 case CPU_ONLINE:
8bb78442 6524 case CPU_ONLINE_FROZEN:
3a4fa0a2 6525 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6526 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6527
6528 /* Update our root-domain */
6529 rq = cpu_rq(cpu);
6530 spin_lock_irqsave(&rq->lock, flags);
6531 if (rq->rd) {
c6c4927b 6532 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6533
6534 set_rq_online(rq);
1f94ef59
GH
6535 }
6536 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6537 break;
48f24c4d 6538
1da177e4
LT
6539#ifdef CONFIG_HOTPLUG_CPU
6540 case CPU_UP_CANCELED:
8bb78442 6541 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6542 if (!cpu_rq(cpu)->migration_thread)
6543 break;
41a2d6cf 6544 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6545 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6546 cpumask_any(cpu_online_mask));
1da177e4
LT
6547 kthread_stop(cpu_rq(cpu)->migration_thread);
6548 cpu_rq(cpu)->migration_thread = NULL;
6549 break;
48f24c4d 6550
1da177e4 6551 case CPU_DEAD:
8bb78442 6552 case CPU_DEAD_FROZEN:
470fd646 6553 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6554 migrate_live_tasks(cpu);
6555 rq = cpu_rq(cpu);
6556 kthread_stop(rq->migration_thread);
6557 rq->migration_thread = NULL;
6558 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6559 spin_lock_irq(&rq->lock);
a8e504d2 6560 update_rq_clock(rq);
2e1cb74a 6561 deactivate_task(rq, rq->idle, 0);
1da177e4 6562 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6563 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6564 rq->idle->sched_class = &idle_sched_class;
1da177e4 6565 migrate_dead_tasks(cpu);
d2da272a 6566 spin_unlock_irq(&rq->lock);
470fd646 6567 cpuset_unlock();
1da177e4
LT
6568 migrate_nr_uninterruptible(rq);
6569 BUG_ON(rq->nr_running != 0);
6570
41a2d6cf
IM
6571 /*
6572 * No need to migrate the tasks: it was best-effort if
6573 * they didn't take sched_hotcpu_mutex. Just wake up
6574 * the requestors.
6575 */
1da177e4
LT
6576 spin_lock_irq(&rq->lock);
6577 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6578 struct migration_req *req;
6579
1da177e4 6580 req = list_entry(rq->migration_queue.next,
70b97a7f 6581 struct migration_req, list);
1da177e4
LT
6582 list_del_init(&req->list);
6583 complete(&req->done);
6584 }
6585 spin_unlock_irq(&rq->lock);
6586 break;
57d885fe 6587
08f503b0
GH
6588 case CPU_DYING:
6589 case CPU_DYING_FROZEN:
57d885fe
GH
6590 /* Update our root-domain */
6591 rq = cpu_rq(cpu);
6592 spin_lock_irqsave(&rq->lock, flags);
6593 if (rq->rd) {
c6c4927b 6594 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6595 set_rq_offline(rq);
57d885fe
GH
6596 }
6597 spin_unlock_irqrestore(&rq->lock, flags);
6598 break;
1da177e4
LT
6599#endif
6600 }
6601 return NOTIFY_OK;
6602}
6603
6604/* Register at highest priority so that task migration (migrate_all_tasks)
6605 * happens before everything else.
6606 */
26c2143b 6607static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6608 .notifier_call = migration_call,
6609 .priority = 10
6610};
6611
7babe8db 6612static int __init migration_init(void)
1da177e4
LT
6613{
6614 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6615 int err;
48f24c4d
IM
6616
6617 /* Start one for the boot CPU: */
07dccf33
AM
6618 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6619 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6620 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6621 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6622
6623 return err;
1da177e4 6624}
7babe8db 6625early_initcall(migration_init);
1da177e4
LT
6626#endif
6627
6628#ifdef CONFIG_SMP
476f3534 6629
3e9830dc 6630#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6631
7c16ec58 6632static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6633 struct cpumask *groupmask)
1da177e4 6634{
4dcf6aff 6635 struct sched_group *group = sd->groups;
434d53b0 6636 char str[256];
1da177e4 6637
758b2cdc 6638 cpulist_scnprintf(str, sizeof(str), *sched_domain_span(sd));
96f874e2 6639 cpumask_clear(groupmask);
4dcf6aff
IM
6640
6641 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6642
6643 if (!(sd->flags & SD_LOAD_BALANCE)) {
6644 printk("does not load-balance\n");
6645 if (sd->parent)
6646 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6647 " has parent");
6648 return -1;
41c7ce9a
NP
6649 }
6650
eefd796a 6651 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6652
758b2cdc 6653 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6654 printk(KERN_ERR "ERROR: domain->span does not contain "
6655 "CPU%d\n", cpu);
6656 }
758b2cdc 6657 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6658 printk(KERN_ERR "ERROR: domain->groups does not contain"
6659 " CPU%d\n", cpu);
6660 }
1da177e4 6661
4dcf6aff 6662 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6663 do {
4dcf6aff
IM
6664 if (!group) {
6665 printk("\n");
6666 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6667 break;
6668 }
6669
4dcf6aff
IM
6670 if (!group->__cpu_power) {
6671 printk(KERN_CONT "\n");
6672 printk(KERN_ERR "ERROR: domain->cpu_power not "
6673 "set\n");
6674 break;
6675 }
1da177e4 6676
758b2cdc 6677 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6678 printk(KERN_CONT "\n");
6679 printk(KERN_ERR "ERROR: empty group\n");
6680 break;
6681 }
1da177e4 6682
758b2cdc 6683 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6684 printk(KERN_CONT "\n");
6685 printk(KERN_ERR "ERROR: repeated CPUs\n");
6686 break;
6687 }
1da177e4 6688
758b2cdc 6689 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6690
758b2cdc 6691 cpulist_scnprintf(str, sizeof(str), *sched_group_cpus(group));
4dcf6aff 6692 printk(KERN_CONT " %s", str);
1da177e4 6693
4dcf6aff
IM
6694 group = group->next;
6695 } while (group != sd->groups);
6696 printk(KERN_CONT "\n");
1da177e4 6697
758b2cdc 6698 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6699 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6700
758b2cdc
RR
6701 if (sd->parent &&
6702 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6703 printk(KERN_ERR "ERROR: parent span is not a superset "
6704 "of domain->span\n");
6705 return 0;
6706}
1da177e4 6707
4dcf6aff
IM
6708static void sched_domain_debug(struct sched_domain *sd, int cpu)
6709{
d5dd3db1 6710 cpumask_var_t groupmask;
4dcf6aff 6711 int level = 0;
1da177e4 6712
4dcf6aff
IM
6713 if (!sd) {
6714 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6715 return;
6716 }
1da177e4 6717
4dcf6aff
IM
6718 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6719
d5dd3db1 6720 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6721 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6722 return;
6723 }
6724
4dcf6aff 6725 for (;;) {
7c16ec58 6726 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6727 break;
1da177e4
LT
6728 level++;
6729 sd = sd->parent;
33859f7f 6730 if (!sd)
4dcf6aff
IM
6731 break;
6732 }
d5dd3db1 6733 free_cpumask_var(groupmask);
1da177e4 6734}
6d6bc0ad 6735#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6736# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6737#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6738
1a20ff27 6739static int sd_degenerate(struct sched_domain *sd)
245af2c7 6740{
758b2cdc 6741 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6742 return 1;
6743
6744 /* Following flags need at least 2 groups */
6745 if (sd->flags & (SD_LOAD_BALANCE |
6746 SD_BALANCE_NEWIDLE |
6747 SD_BALANCE_FORK |
89c4710e
SS
6748 SD_BALANCE_EXEC |
6749 SD_SHARE_CPUPOWER |
6750 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6751 if (sd->groups != sd->groups->next)
6752 return 0;
6753 }
6754
6755 /* Following flags don't use groups */
6756 if (sd->flags & (SD_WAKE_IDLE |
6757 SD_WAKE_AFFINE |
6758 SD_WAKE_BALANCE))
6759 return 0;
6760
6761 return 1;
6762}
6763
48f24c4d
IM
6764static int
6765sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6766{
6767 unsigned long cflags = sd->flags, pflags = parent->flags;
6768
6769 if (sd_degenerate(parent))
6770 return 1;
6771
758b2cdc 6772 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6773 return 0;
6774
6775 /* Does parent contain flags not in child? */
6776 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6777 if (cflags & SD_WAKE_AFFINE)
6778 pflags &= ~SD_WAKE_BALANCE;
6779 /* Flags needing groups don't count if only 1 group in parent */
6780 if (parent->groups == parent->groups->next) {
6781 pflags &= ~(SD_LOAD_BALANCE |
6782 SD_BALANCE_NEWIDLE |
6783 SD_BALANCE_FORK |
89c4710e
SS
6784 SD_BALANCE_EXEC |
6785 SD_SHARE_CPUPOWER |
6786 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6787 }
6788 if (~cflags & pflags)
6789 return 0;
6790
6791 return 1;
6792}
6793
c6c4927b
RR
6794static void free_rootdomain(struct root_domain *rd)
6795{
68e74568
RR
6796 cpupri_cleanup(&rd->cpupri);
6797
c6c4927b
RR
6798 free_cpumask_var(rd->rto_mask);
6799 free_cpumask_var(rd->online);
6800 free_cpumask_var(rd->span);
6801 kfree(rd);
6802}
6803
57d885fe
GH
6804static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6805{
6806 unsigned long flags;
57d885fe
GH
6807
6808 spin_lock_irqsave(&rq->lock, flags);
6809
6810 if (rq->rd) {
6811 struct root_domain *old_rd = rq->rd;
6812
c6c4927b 6813 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6814 set_rq_offline(rq);
57d885fe 6815
c6c4927b 6816 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6817
57d885fe 6818 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6819 free_rootdomain(old_rd);
57d885fe
GH
6820 }
6821
6822 atomic_inc(&rd->refcount);
6823 rq->rd = rd;
6824
c6c4927b
RR
6825 cpumask_set_cpu(rq->cpu, rd->span);
6826 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6827 set_rq_online(rq);
57d885fe
GH
6828
6829 spin_unlock_irqrestore(&rq->lock, flags);
6830}
6831
c6c4927b 6832static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6833{
6834 memset(rd, 0, sizeof(*rd));
6835
c6c4927b
RR
6836 if (bootmem) {
6837 alloc_bootmem_cpumask_var(&def_root_domain.span);
6838 alloc_bootmem_cpumask_var(&def_root_domain.online);
6839 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6840 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6841 return 0;
6842 }
6843
6844 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6845 goto free_rd;
6846 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6847 goto free_span;
6848 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6849 goto free_online;
6e0534f2 6850
68e74568
RR
6851 if (cpupri_init(&rd->cpupri, false) != 0)
6852 goto free_rto_mask;
c6c4927b
RR
6853 return 0;
6854
68e74568
RR
6855free_rto_mask:
6856 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6857free_online:
6858 free_cpumask_var(rd->online);
6859free_span:
6860 free_cpumask_var(rd->span);
6861free_rd:
6862 kfree(rd);
6863 return -ENOMEM;
57d885fe
GH
6864}
6865
6866static void init_defrootdomain(void)
6867{
c6c4927b
RR
6868 init_rootdomain(&def_root_domain, true);
6869
57d885fe
GH
6870 atomic_set(&def_root_domain.refcount, 1);
6871}
6872
dc938520 6873static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6874{
6875 struct root_domain *rd;
6876
6877 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6878 if (!rd)
6879 return NULL;
6880
c6c4927b
RR
6881 if (init_rootdomain(rd, false) != 0) {
6882 kfree(rd);
6883 return NULL;
6884 }
57d885fe
GH
6885
6886 return rd;
6887}
6888
1da177e4 6889/*
0eab9146 6890 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6891 * hold the hotplug lock.
6892 */
0eab9146
IM
6893static void
6894cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6895{
70b97a7f 6896 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6897 struct sched_domain *tmp;
6898
6899 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6900 for (tmp = sd; tmp; ) {
245af2c7
SS
6901 struct sched_domain *parent = tmp->parent;
6902 if (!parent)
6903 break;
f29c9b1c 6904
1a848870 6905 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6906 tmp->parent = parent->parent;
1a848870
SS
6907 if (parent->parent)
6908 parent->parent->child = tmp;
f29c9b1c
LZ
6909 } else
6910 tmp = tmp->parent;
245af2c7
SS
6911 }
6912
1a848870 6913 if (sd && sd_degenerate(sd)) {
245af2c7 6914 sd = sd->parent;
1a848870
SS
6915 if (sd)
6916 sd->child = NULL;
6917 }
1da177e4
LT
6918
6919 sched_domain_debug(sd, cpu);
6920
57d885fe 6921 rq_attach_root(rq, rd);
674311d5 6922 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6923}
6924
6925/* cpus with isolated domains */
dcc30a35 6926static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6927
6928/* Setup the mask of cpus configured for isolated domains */
6929static int __init isolated_cpu_setup(char *str)
6930{
dcc30a35 6931 cpulist_parse(str, *cpu_isolated_map);
1da177e4
LT
6932 return 1;
6933}
6934
8927f494 6935__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6936
6937/*
6711cab4
SS
6938 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6939 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6940 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6941 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6942 *
6943 * init_sched_build_groups will build a circular linked list of the groups
6944 * covered by the given span, and will set each group's ->cpumask correctly,
6945 * and ->cpu_power to 0.
6946 */
a616058b 6947static void
96f874e2
RR
6948init_sched_build_groups(const struct cpumask *span,
6949 const struct cpumask *cpu_map,
6950 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6951 struct sched_group **sg,
96f874e2
RR
6952 struct cpumask *tmpmask),
6953 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6954{
6955 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6956 int i;
6957
96f874e2 6958 cpumask_clear(covered);
7c16ec58 6959
abcd083a 6960 for_each_cpu(i, span) {
6711cab4 6961 struct sched_group *sg;
7c16ec58 6962 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6963 int j;
6964
758b2cdc 6965 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6966 continue;
6967
758b2cdc 6968 cpumask_clear(sched_group_cpus(sg));
5517d86b 6969 sg->__cpu_power = 0;
1da177e4 6970
abcd083a 6971 for_each_cpu(j, span) {
7c16ec58 6972 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6973 continue;
6974
96f874e2 6975 cpumask_set_cpu(j, covered);
758b2cdc 6976 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6977 }
6978 if (!first)
6979 first = sg;
6980 if (last)
6981 last->next = sg;
6982 last = sg;
6983 }
6984 last->next = first;
6985}
6986
9c1cfda2 6987#define SD_NODES_PER_DOMAIN 16
1da177e4 6988
9c1cfda2 6989#ifdef CONFIG_NUMA
198e2f18 6990
9c1cfda2
JH
6991/**
6992 * find_next_best_node - find the next node to include in a sched_domain
6993 * @node: node whose sched_domain we're building
6994 * @used_nodes: nodes already in the sched_domain
6995 *
41a2d6cf 6996 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6997 * finds the closest node not already in the @used_nodes map.
6998 *
6999 * Should use nodemask_t.
7000 */
c5f59f08 7001static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7002{
7003 int i, n, val, min_val, best_node = 0;
7004
7005 min_val = INT_MAX;
7006
076ac2af 7007 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7008 /* Start at @node */
076ac2af 7009 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7010
7011 if (!nr_cpus_node(n))
7012 continue;
7013
7014 /* Skip already used nodes */
c5f59f08 7015 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7016 continue;
7017
7018 /* Simple min distance search */
7019 val = node_distance(node, n);
7020
7021 if (val < min_val) {
7022 min_val = val;
7023 best_node = n;
7024 }
7025 }
7026
c5f59f08 7027 node_set(best_node, *used_nodes);
9c1cfda2
JH
7028 return best_node;
7029}
7030
7031/**
7032 * sched_domain_node_span - get a cpumask for a node's sched_domain
7033 * @node: node whose cpumask we're constructing
73486722 7034 * @span: resulting cpumask
9c1cfda2 7035 *
41a2d6cf 7036 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7037 * should be one that prevents unnecessary balancing, but also spreads tasks
7038 * out optimally.
7039 */
96f874e2 7040static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7041{
c5f59f08 7042 nodemask_t used_nodes;
96f874e2 7043 /* FIXME: use cpumask_of_node() */
c5f59f08 7044 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7045 int i;
9c1cfda2 7046
4bdbaad3 7047 cpus_clear(*span);
c5f59f08 7048 nodes_clear(used_nodes);
9c1cfda2 7049
4bdbaad3 7050 cpus_or(*span, *span, *nodemask);
c5f59f08 7051 node_set(node, used_nodes);
9c1cfda2
JH
7052
7053 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7054 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7055
c5f59f08 7056 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7057 cpus_or(*span, *span, *nodemask);
9c1cfda2 7058 }
9c1cfda2 7059}
6d6bc0ad 7060#endif /* CONFIG_NUMA */
9c1cfda2 7061
5c45bf27 7062int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7063
6c99e9ad
RR
7064/*
7065 * The cpus mask in sched_group and sched_domain hangs off the end.
7066 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7067 * for nr_cpu_ids < CONFIG_NR_CPUS.
7068 */
7069struct static_sched_group {
7070 struct sched_group sg;
7071 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7072};
7073
7074struct static_sched_domain {
7075 struct sched_domain sd;
7076 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7077};
7078
9c1cfda2 7079/*
48f24c4d 7080 * SMT sched-domains:
9c1cfda2 7081 */
1da177e4 7082#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7083static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7084static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7085
41a2d6cf 7086static int
96f874e2
RR
7087cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7088 struct sched_group **sg, struct cpumask *unused)
1da177e4 7089{
6711cab4 7090 if (sg)
6c99e9ad 7091 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7092 return cpu;
7093}
6d6bc0ad 7094#endif /* CONFIG_SCHED_SMT */
1da177e4 7095
48f24c4d
IM
7096/*
7097 * multi-core sched-domains:
7098 */
1e9f28fa 7099#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7100static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7101static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7102#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7103
7104#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7105static int
96f874e2
RR
7106cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7107 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7108{
6711cab4 7109 int group;
7c16ec58 7110
96f874e2
RR
7111 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7112 group = cpumask_first(mask);
6711cab4 7113 if (sg)
6c99e9ad 7114 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7115 return group;
1e9f28fa
SS
7116}
7117#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7118static int
96f874e2
RR
7119cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7120 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7121{
6711cab4 7122 if (sg)
6c99e9ad 7123 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7124 return cpu;
7125}
7126#endif
7127
6c99e9ad
RR
7128static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7129static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7130
41a2d6cf 7131static int
96f874e2
RR
7132cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7133 struct sched_group **sg, struct cpumask *mask)
1da177e4 7134{
6711cab4 7135 int group;
48f24c4d 7136#ifdef CONFIG_SCHED_MC
96f874e2 7137 /* FIXME: Use cpu_coregroup_mask. */
7c16ec58
MT
7138 *mask = cpu_coregroup_map(cpu);
7139 cpus_and(*mask, *mask, *cpu_map);
96f874e2 7140 group = cpumask_first(mask);
1e9f28fa 7141#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7142 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7143 group = cpumask_first(mask);
1da177e4 7144#else
6711cab4 7145 group = cpu;
1da177e4 7146#endif
6711cab4 7147 if (sg)
6c99e9ad 7148 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7149 return group;
1da177e4
LT
7150}
7151
7152#ifdef CONFIG_NUMA
1da177e4 7153/*
9c1cfda2
JH
7154 * The init_sched_build_groups can't handle what we want to do with node
7155 * groups, so roll our own. Now each node has its own list of groups which
7156 * gets dynamically allocated.
1da177e4 7157 */
9c1cfda2 7158static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7159static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7160
9c1cfda2 7161static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7162static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7163
96f874e2
RR
7164static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7165 struct sched_group **sg,
7166 struct cpumask *nodemask)
9c1cfda2 7167{
6711cab4 7168 int group;
96f874e2 7169 /* FIXME: use cpumask_of_node */
ea6f18ed 7170 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
6711cab4 7171
96f874e2
RR
7172 cpumask_and(nodemask, pnodemask, cpu_map);
7173 group = cpumask_first(nodemask);
6711cab4
SS
7174
7175 if (sg)
6c99e9ad 7176 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7177 return group;
1da177e4 7178}
6711cab4 7179
08069033
SS
7180static void init_numa_sched_groups_power(struct sched_group *group_head)
7181{
7182 struct sched_group *sg = group_head;
7183 int j;
7184
7185 if (!sg)
7186 return;
3a5c359a 7187 do {
758b2cdc 7188 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7189 struct sched_domain *sd;
08069033 7190
6c99e9ad 7191 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7192 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7193 /*
7194 * Only add "power" once for each
7195 * physical package.
7196 */
7197 continue;
7198 }
08069033 7199
3a5c359a
AK
7200 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7201 }
7202 sg = sg->next;
7203 } while (sg != group_head);
08069033 7204}
6d6bc0ad 7205#endif /* CONFIG_NUMA */
1da177e4 7206
a616058b 7207#ifdef CONFIG_NUMA
51888ca2 7208/* Free memory allocated for various sched_group structures */
96f874e2
RR
7209static void free_sched_groups(const struct cpumask *cpu_map,
7210 struct cpumask *nodemask)
51888ca2 7211{
a616058b 7212 int cpu, i;
51888ca2 7213
abcd083a 7214 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7215 struct sched_group **sched_group_nodes
7216 = sched_group_nodes_bycpu[cpu];
7217
51888ca2
SV
7218 if (!sched_group_nodes)
7219 continue;
7220
076ac2af 7221 for (i = 0; i < nr_node_ids; i++) {
51888ca2 7222 struct sched_group *oldsg, *sg = sched_group_nodes[i];
96f874e2 7223 /* FIXME: Use cpumask_of_node */
ea6f18ed 7224 node_to_cpumask_ptr(pnodemask, i);
51888ca2 7225
ea6f18ed 7226 cpus_and(*nodemask, *pnodemask, *cpu_map);
96f874e2 7227 if (cpumask_empty(nodemask))
51888ca2
SV
7228 continue;
7229
7230 if (sg == NULL)
7231 continue;
7232 sg = sg->next;
7233next_sg:
7234 oldsg = sg;
7235 sg = sg->next;
7236 kfree(oldsg);
7237 if (oldsg != sched_group_nodes[i])
7238 goto next_sg;
7239 }
7240 kfree(sched_group_nodes);
7241 sched_group_nodes_bycpu[cpu] = NULL;
7242 }
51888ca2 7243}
6d6bc0ad 7244#else /* !CONFIG_NUMA */
96f874e2
RR
7245static void free_sched_groups(const struct cpumask *cpu_map,
7246 struct cpumask *nodemask)
a616058b
SS
7247{
7248}
6d6bc0ad 7249#endif /* CONFIG_NUMA */
51888ca2 7250
89c4710e
SS
7251/*
7252 * Initialize sched groups cpu_power.
7253 *
7254 * cpu_power indicates the capacity of sched group, which is used while
7255 * distributing the load between different sched groups in a sched domain.
7256 * Typically cpu_power for all the groups in a sched domain will be same unless
7257 * there are asymmetries in the topology. If there are asymmetries, group
7258 * having more cpu_power will pickup more load compared to the group having
7259 * less cpu_power.
7260 *
7261 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7262 * the maximum number of tasks a group can handle in the presence of other idle
7263 * or lightly loaded groups in the same sched domain.
7264 */
7265static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7266{
7267 struct sched_domain *child;
7268 struct sched_group *group;
7269
7270 WARN_ON(!sd || !sd->groups);
7271
758b2cdc 7272 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7273 return;
7274
7275 child = sd->child;
7276
5517d86b
ED
7277 sd->groups->__cpu_power = 0;
7278
89c4710e
SS
7279 /*
7280 * For perf policy, if the groups in child domain share resources
7281 * (for example cores sharing some portions of the cache hierarchy
7282 * or SMT), then set this domain groups cpu_power such that each group
7283 * can handle only one task, when there are other idle groups in the
7284 * same sched domain.
7285 */
7286 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7287 (child->flags &
7288 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7289 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7290 return;
7291 }
7292
89c4710e
SS
7293 /*
7294 * add cpu_power of each child group to this groups cpu_power
7295 */
7296 group = child->groups;
7297 do {
5517d86b 7298 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7299 group = group->next;
7300 } while (group != child->groups);
7301}
7302
7c16ec58
MT
7303/*
7304 * Initializers for schedule domains
7305 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7306 */
7307
a5d8c348
IM
7308#ifdef CONFIG_SCHED_DEBUG
7309# define SD_INIT_NAME(sd, type) sd->name = #type
7310#else
7311# define SD_INIT_NAME(sd, type) do { } while (0)
7312#endif
7313
7c16ec58 7314#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7315
7c16ec58
MT
7316#define SD_INIT_FUNC(type) \
7317static noinline void sd_init_##type(struct sched_domain *sd) \
7318{ \
7319 memset(sd, 0, sizeof(*sd)); \
7320 *sd = SD_##type##_INIT; \
1d3504fc 7321 sd->level = SD_LV_##type; \
a5d8c348 7322 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7323}
7324
7325SD_INIT_FUNC(CPU)
7326#ifdef CONFIG_NUMA
7327 SD_INIT_FUNC(ALLNODES)
7328 SD_INIT_FUNC(NODE)
7329#endif
7330#ifdef CONFIG_SCHED_SMT
7331 SD_INIT_FUNC(SIBLING)
7332#endif
7333#ifdef CONFIG_SCHED_MC
7334 SD_INIT_FUNC(MC)
7335#endif
7336
1d3504fc
HS
7337static int default_relax_domain_level = -1;
7338
7339static int __init setup_relax_domain_level(char *str)
7340{
30e0e178
LZ
7341 unsigned long val;
7342
7343 val = simple_strtoul(str, NULL, 0);
7344 if (val < SD_LV_MAX)
7345 default_relax_domain_level = val;
7346
1d3504fc
HS
7347 return 1;
7348}
7349__setup("relax_domain_level=", setup_relax_domain_level);
7350
7351static void set_domain_attribute(struct sched_domain *sd,
7352 struct sched_domain_attr *attr)
7353{
7354 int request;
7355
7356 if (!attr || attr->relax_domain_level < 0) {
7357 if (default_relax_domain_level < 0)
7358 return;
7359 else
7360 request = default_relax_domain_level;
7361 } else
7362 request = attr->relax_domain_level;
7363 if (request < sd->level) {
7364 /* turn off idle balance on this domain */
7365 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7366 } else {
7367 /* turn on idle balance on this domain */
7368 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7369 }
7370}
7371
1da177e4 7372/*
1a20ff27
DG
7373 * Build sched domains for a given set of cpus and attach the sched domains
7374 * to the individual cpus
1da177e4 7375 */
96f874e2 7376static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7377 struct sched_domain_attr *attr)
1da177e4 7378{
3404c8d9 7379 int i, err = -ENOMEM;
57d885fe 7380 struct root_domain *rd;
3404c8d9
RR
7381 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7382 tmpmask;
d1b55138 7383#ifdef CONFIG_NUMA
3404c8d9 7384 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7385 struct sched_group **sched_group_nodes = NULL;
6711cab4 7386 int sd_allnodes = 0;
d1b55138 7387
3404c8d9
RR
7388 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7389 goto out;
7390 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7391 goto free_domainspan;
7392 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7393 goto free_covered;
7394#endif
7395
7396 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7397 goto free_notcovered;
7398 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7399 goto free_nodemask;
7400 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7401 goto free_this_sibling_map;
7402 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7403 goto free_this_core_map;
7404 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7405 goto free_send_covered;
7406
7407#ifdef CONFIG_NUMA
d1b55138
JH
7408 /*
7409 * Allocate the per-node list of sched groups
7410 */
076ac2af 7411 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7412 GFP_KERNEL);
d1b55138
JH
7413 if (!sched_group_nodes) {
7414 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7415 goto free_tmpmask;
d1b55138 7416 }
d1b55138 7417#endif
1da177e4 7418
dc938520 7419 rd = alloc_rootdomain();
57d885fe
GH
7420 if (!rd) {
7421 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7422 goto free_sched_groups;
57d885fe
GH
7423 }
7424
7c16ec58 7425#ifdef CONFIG_NUMA
96f874e2 7426 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7427#endif
7428
1da177e4 7429 /*
1a20ff27 7430 * Set up domains for cpus specified by the cpu_map.
1da177e4 7431 */
abcd083a 7432 for_each_cpu(i, cpu_map) {
1da177e4 7433 struct sched_domain *sd = NULL, *p;
1da177e4 7434
96f874e2 7435 /* FIXME: use cpumask_of_node */
7c16ec58
MT
7436 *nodemask = node_to_cpumask(cpu_to_node(i));
7437 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7438
7439#ifdef CONFIG_NUMA
96f874e2
RR
7440 if (cpumask_weight(cpu_map) >
7441 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
9c1cfda2 7442 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7443 SD_INIT(sd, ALLNODES);
1d3504fc 7444 set_domain_attribute(sd, attr);
758b2cdc 7445 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7446 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7447 p = sd;
6711cab4 7448 sd_allnodes = 1;
9c1cfda2
JH
7449 } else
7450 p = NULL;
7451
1da177e4 7452 sd = &per_cpu(node_domains, i);
7c16ec58 7453 SD_INIT(sd, NODE);
1d3504fc 7454 set_domain_attribute(sd, attr);
758b2cdc 7455 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7456 sd->parent = p;
1a848870
SS
7457 if (p)
7458 p->child = sd;
758b2cdc
RR
7459 cpumask_and(sched_domain_span(sd),
7460 sched_domain_span(sd), cpu_map);
1da177e4
LT
7461#endif
7462
7463 p = sd;
6c99e9ad 7464 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7465 SD_INIT(sd, CPU);
1d3504fc 7466 set_domain_attribute(sd, attr);
758b2cdc 7467 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7468 sd->parent = p;
1a848870
SS
7469 if (p)
7470 p->child = sd;
7c16ec58 7471 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7472
1e9f28fa
SS
7473#ifdef CONFIG_SCHED_MC
7474 p = sd;
6c99e9ad 7475 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7476 SD_INIT(sd, MC);
1d3504fc 7477 set_domain_attribute(sd, attr);
758b2cdc
RR
7478 *sched_domain_span(sd) = cpu_coregroup_map(i);
7479 cpumask_and(sched_domain_span(sd),
7480 sched_domain_span(sd), cpu_map);
1e9f28fa 7481 sd->parent = p;
1a848870 7482 p->child = sd;
7c16ec58 7483 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7484#endif
7485
1da177e4
LT
7486#ifdef CONFIG_SCHED_SMT
7487 p = sd;
6c99e9ad 7488 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7489 SD_INIT(sd, SIBLING);
1d3504fc 7490 set_domain_attribute(sd, attr);
758b2cdc
RR
7491 cpumask_and(sched_domain_span(sd),
7492 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7493 sd->parent = p;
1a848870 7494 p->child = sd;
7c16ec58 7495 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7496#endif
7497 }
7498
7499#ifdef CONFIG_SCHED_SMT
7500 /* Set up CPU (sibling) groups */
abcd083a 7501 for_each_cpu(i, cpu_map) {
96f874e2
RR
7502 cpumask_and(this_sibling_map,
7503 &per_cpu(cpu_sibling_map, i), cpu_map);
7504 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7505 continue;
7506
dd41f596 7507 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7508 &cpu_to_cpu_group,
7509 send_covered, tmpmask);
1da177e4
LT
7510 }
7511#endif
7512
1e9f28fa
SS
7513#ifdef CONFIG_SCHED_MC
7514 /* Set up multi-core groups */
abcd083a 7515 for_each_cpu(i, cpu_map) {
96f874e2 7516 /* FIXME: Use cpu_coregroup_mask */
7c16ec58
MT
7517 *this_core_map = cpu_coregroup_map(i);
7518 cpus_and(*this_core_map, *this_core_map, *cpu_map);
96f874e2 7519 if (i != cpumask_first(this_core_map))
1e9f28fa 7520 continue;
7c16ec58 7521
dd41f596 7522 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7523 &cpu_to_core_group,
7524 send_covered, tmpmask);
1e9f28fa
SS
7525 }
7526#endif
7527
1da177e4 7528 /* Set up physical groups */
076ac2af 7529 for (i = 0; i < nr_node_ids; i++) {
96f874e2 7530 /* FIXME: Use cpumask_of_node */
7c16ec58
MT
7531 *nodemask = node_to_cpumask(i);
7532 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7533 if (cpumask_empty(nodemask))
1da177e4
LT
7534 continue;
7535
7c16ec58
MT
7536 init_sched_build_groups(nodemask, cpu_map,
7537 &cpu_to_phys_group,
7538 send_covered, tmpmask);
1da177e4
LT
7539 }
7540
7541#ifdef CONFIG_NUMA
7542 /* Set up node groups */
7c16ec58 7543 if (sd_allnodes) {
7c16ec58
MT
7544 init_sched_build_groups(cpu_map, cpu_map,
7545 &cpu_to_allnodes_group,
7546 send_covered, tmpmask);
7547 }
9c1cfda2 7548
076ac2af 7549 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7550 /* Set up node groups */
7551 struct sched_group *sg, *prev;
9c1cfda2
JH
7552 int j;
7553
96f874e2 7554 /* FIXME: Use cpumask_of_node */
7c16ec58 7555 *nodemask = node_to_cpumask(i);
96f874e2 7556 cpumask_clear(covered);
7c16ec58
MT
7557
7558 cpus_and(*nodemask, *nodemask, *cpu_map);
96f874e2 7559 if (cpumask_empty(nodemask)) {
d1b55138 7560 sched_group_nodes[i] = NULL;
9c1cfda2 7561 continue;
d1b55138 7562 }
9c1cfda2 7563
4bdbaad3 7564 sched_domain_node_span(i, domainspan);
96f874e2 7565 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7566
6c99e9ad
RR
7567 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7568 GFP_KERNEL, i);
51888ca2
SV
7569 if (!sg) {
7570 printk(KERN_WARNING "Can not alloc domain group for "
7571 "node %d\n", i);
7572 goto error;
7573 }
9c1cfda2 7574 sched_group_nodes[i] = sg;
abcd083a 7575 for_each_cpu(j, nodemask) {
9c1cfda2 7576 struct sched_domain *sd;
9761eea8 7577
9c1cfda2
JH
7578 sd = &per_cpu(node_domains, j);
7579 sd->groups = sg;
9c1cfda2 7580 }
5517d86b 7581 sg->__cpu_power = 0;
758b2cdc 7582 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7583 sg->next = sg;
96f874e2 7584 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7585 prev = sg;
7586
076ac2af 7587 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7588 int n = (i + j) % nr_node_ids;
96f874e2 7589 /* FIXME: Use cpumask_of_node */
c5f59f08 7590 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7591
96f874e2
RR
7592 cpumask_complement(notcovered, covered);
7593 cpumask_and(tmpmask, notcovered, cpu_map);
7594 cpumask_and(tmpmask, tmpmask, domainspan);
7595 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7596 break;
7597
96f874e2
RR
7598 cpumask_and(tmpmask, tmpmask, pnodemask);
7599 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7600 continue;
7601
6c99e9ad
RR
7602 sg = kmalloc_node(sizeof(struct sched_group) +
7603 cpumask_size(),
15f0b676 7604 GFP_KERNEL, i);
9c1cfda2
JH
7605 if (!sg) {
7606 printk(KERN_WARNING
7607 "Can not alloc domain group for node %d\n", j);
51888ca2 7608 goto error;
9c1cfda2 7609 }
5517d86b 7610 sg->__cpu_power = 0;
758b2cdc 7611 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7612 sg->next = prev->next;
96f874e2 7613 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7614 prev->next = sg;
7615 prev = sg;
7616 }
9c1cfda2 7617 }
1da177e4
LT
7618#endif
7619
7620 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7621#ifdef CONFIG_SCHED_SMT
abcd083a 7622 for_each_cpu(i, cpu_map) {
6c99e9ad 7623 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7624
89c4710e 7625 init_sched_groups_power(i, sd);
5c45bf27 7626 }
1da177e4 7627#endif
1e9f28fa 7628#ifdef CONFIG_SCHED_MC
abcd083a 7629 for_each_cpu(i, cpu_map) {
6c99e9ad 7630 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7631
89c4710e 7632 init_sched_groups_power(i, sd);
5c45bf27
SS
7633 }
7634#endif
1e9f28fa 7635
abcd083a 7636 for_each_cpu(i, cpu_map) {
6c99e9ad 7637 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7638
89c4710e 7639 init_sched_groups_power(i, sd);
1da177e4
LT
7640 }
7641
9c1cfda2 7642#ifdef CONFIG_NUMA
076ac2af 7643 for (i = 0; i < nr_node_ids; i++)
08069033 7644 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7645
6711cab4
SS
7646 if (sd_allnodes) {
7647 struct sched_group *sg;
f712c0c7 7648
96f874e2 7649 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7650 tmpmask);
f712c0c7
SS
7651 init_numa_sched_groups_power(sg);
7652 }
9c1cfda2
JH
7653#endif
7654
1da177e4 7655 /* Attach the domains */
abcd083a 7656 for_each_cpu(i, cpu_map) {
1da177e4
LT
7657 struct sched_domain *sd;
7658#ifdef CONFIG_SCHED_SMT
6c99e9ad 7659 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7660#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7661 sd = &per_cpu(core_domains, i).sd;
1da177e4 7662#else
6c99e9ad 7663 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7664#endif
57d885fe 7665 cpu_attach_domain(sd, rd, i);
1da177e4 7666 }
51888ca2 7667
3404c8d9
RR
7668 err = 0;
7669
7670free_tmpmask:
7671 free_cpumask_var(tmpmask);
7672free_send_covered:
7673 free_cpumask_var(send_covered);
7674free_this_core_map:
7675 free_cpumask_var(this_core_map);
7676free_this_sibling_map:
7677 free_cpumask_var(this_sibling_map);
7678free_nodemask:
7679 free_cpumask_var(nodemask);
7680free_notcovered:
7681#ifdef CONFIG_NUMA
7682 free_cpumask_var(notcovered);
7683free_covered:
7684 free_cpumask_var(covered);
7685free_domainspan:
7686 free_cpumask_var(domainspan);
7687out:
7688#endif
7689 return err;
7690
7691free_sched_groups:
7692#ifdef CONFIG_NUMA
7693 kfree(sched_group_nodes);
7694#endif
7695 goto free_tmpmask;
51888ca2 7696
a616058b 7697#ifdef CONFIG_NUMA
51888ca2 7698error:
7c16ec58 7699 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7700 free_rootdomain(rd);
3404c8d9 7701 goto free_tmpmask;
a616058b 7702#endif
1da177e4 7703}
029190c5 7704
96f874e2 7705static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7706{
7707 return __build_sched_domains(cpu_map, NULL);
7708}
7709
96f874e2 7710static struct cpumask *doms_cur; /* current sched domains */
029190c5 7711static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7712static struct sched_domain_attr *dattr_cur;
7713 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7714
7715/*
7716 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7717 * cpumask) fails, then fallback to a single sched domain,
7718 * as determined by the single cpumask fallback_doms.
029190c5 7719 */
4212823f 7720static cpumask_var_t fallback_doms;
029190c5 7721
22e52b07
HC
7722void __attribute__((weak)) arch_update_cpu_topology(void)
7723{
7724}
7725
1a20ff27 7726/*
41a2d6cf 7727 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7728 * For now this just excludes isolated cpus, but could be used to
7729 * exclude other special cases in the future.
1a20ff27 7730 */
96f874e2 7731static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7732{
7378547f
MM
7733 int err;
7734
22e52b07 7735 arch_update_cpu_topology();
029190c5 7736 ndoms_cur = 1;
96f874e2 7737 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7738 if (!doms_cur)
4212823f 7739 doms_cur = fallback_doms;
dcc30a35 7740 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7741 dattr_cur = NULL;
7378547f 7742 err = build_sched_domains(doms_cur);
6382bc90 7743 register_sched_domain_sysctl();
7378547f
MM
7744
7745 return err;
1a20ff27
DG
7746}
7747
96f874e2
RR
7748static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7749 struct cpumask *tmpmask)
1da177e4 7750{
7c16ec58 7751 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7752}
1da177e4 7753
1a20ff27
DG
7754/*
7755 * Detach sched domains from a group of cpus specified in cpu_map
7756 * These cpus will now be attached to the NULL domain
7757 */
96f874e2 7758static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7759{
96f874e2
RR
7760 /* Save because hotplug lock held. */
7761 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7762 int i;
7763
abcd083a 7764 for_each_cpu(i, cpu_map)
57d885fe 7765 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7766 synchronize_sched();
96f874e2 7767 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7768}
7769
1d3504fc
HS
7770/* handle null as "default" */
7771static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7772 struct sched_domain_attr *new, int idx_new)
7773{
7774 struct sched_domain_attr tmp;
7775
7776 /* fast path */
7777 if (!new && !cur)
7778 return 1;
7779
7780 tmp = SD_ATTR_INIT;
7781 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7782 new ? (new + idx_new) : &tmp,
7783 sizeof(struct sched_domain_attr));
7784}
7785
029190c5
PJ
7786/*
7787 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7788 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7789 * doms_new[] to the current sched domain partitioning, doms_cur[].
7790 * It destroys each deleted domain and builds each new domain.
7791 *
96f874e2 7792 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7793 * The masks don't intersect (don't overlap.) We should setup one
7794 * sched domain for each mask. CPUs not in any of the cpumasks will
7795 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7796 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7797 * it as it is.
7798 *
41a2d6cf
IM
7799 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7800 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7801 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7802 * ndoms_new == 1, and partition_sched_domains() will fallback to
7803 * the single partition 'fallback_doms', it also forces the domains
7804 * to be rebuilt.
029190c5 7805 *
96f874e2 7806 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7807 * ndoms_new == 0 is a special case for destroying existing domains,
7808 * and it will not create the default domain.
dfb512ec 7809 *
029190c5
PJ
7810 * Call with hotplug lock held
7811 */
96f874e2
RR
7812/* FIXME: Change to struct cpumask *doms_new[] */
7813void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7814 struct sched_domain_attr *dattr_new)
029190c5 7815{
dfb512ec 7816 int i, j, n;
029190c5 7817
712555ee 7818 mutex_lock(&sched_domains_mutex);
a1835615 7819
7378547f
MM
7820 /* always unregister in case we don't destroy any domains */
7821 unregister_sched_domain_sysctl();
7822
dfb512ec 7823 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7824
7825 /* Destroy deleted domains */
7826 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7827 for (j = 0; j < n; j++) {
96f874e2 7828 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7829 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7830 goto match1;
7831 }
7832 /* no match - a current sched domain not in new doms_new[] */
7833 detach_destroy_domains(doms_cur + i);
7834match1:
7835 ;
7836 }
7837
e761b772
MK
7838 if (doms_new == NULL) {
7839 ndoms_cur = 0;
4212823f 7840 doms_new = fallback_doms;
dcc30a35 7841 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7842 WARN_ON_ONCE(dattr_new);
e761b772
MK
7843 }
7844
029190c5
PJ
7845 /* Build new domains */
7846 for (i = 0; i < ndoms_new; i++) {
7847 for (j = 0; j < ndoms_cur; j++) {
96f874e2 7848 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7849 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7850 goto match2;
7851 }
7852 /* no match - add a new doms_new */
1d3504fc
HS
7853 __build_sched_domains(doms_new + i,
7854 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7855match2:
7856 ;
7857 }
7858
7859 /* Remember the new sched domains */
4212823f 7860 if (doms_cur != fallback_doms)
029190c5 7861 kfree(doms_cur);
1d3504fc 7862 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7863 doms_cur = doms_new;
1d3504fc 7864 dattr_cur = dattr_new;
029190c5 7865 ndoms_cur = ndoms_new;
7378547f
MM
7866
7867 register_sched_domain_sysctl();
a1835615 7868
712555ee 7869 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7870}
7871
5c45bf27 7872#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7873int arch_reinit_sched_domains(void)
5c45bf27 7874{
95402b38 7875 get_online_cpus();
dfb512ec
MK
7876
7877 /* Destroy domains first to force the rebuild */
7878 partition_sched_domains(0, NULL, NULL);
7879
e761b772 7880 rebuild_sched_domains();
95402b38 7881 put_online_cpus();
dfb512ec 7882
e761b772 7883 return 0;
5c45bf27
SS
7884}
7885
7886static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7887{
7888 int ret;
7889
7890 if (buf[0] != '0' && buf[0] != '1')
7891 return -EINVAL;
7892
7893 if (smt)
7894 sched_smt_power_savings = (buf[0] == '1');
7895 else
7896 sched_mc_power_savings = (buf[0] == '1');
7897
7898 ret = arch_reinit_sched_domains();
7899
7900 return ret ? ret : count;
7901}
7902
5c45bf27 7903#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7904static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7905 char *page)
5c45bf27
SS
7906{
7907 return sprintf(page, "%u\n", sched_mc_power_savings);
7908}
f718cd4a 7909static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7910 const char *buf, size_t count)
5c45bf27
SS
7911{
7912 return sched_power_savings_store(buf, count, 0);
7913}
f718cd4a
AK
7914static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7915 sched_mc_power_savings_show,
7916 sched_mc_power_savings_store);
5c45bf27
SS
7917#endif
7918
7919#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7920static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7921 char *page)
5c45bf27
SS
7922{
7923 return sprintf(page, "%u\n", sched_smt_power_savings);
7924}
f718cd4a 7925static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7926 const char *buf, size_t count)
5c45bf27
SS
7927{
7928 return sched_power_savings_store(buf, count, 1);
7929}
f718cd4a
AK
7930static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7931 sched_smt_power_savings_show,
6707de00
AB
7932 sched_smt_power_savings_store);
7933#endif
7934
7935int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7936{
7937 int err = 0;
7938
7939#ifdef CONFIG_SCHED_SMT
7940 if (smt_capable())
7941 err = sysfs_create_file(&cls->kset.kobj,
7942 &attr_sched_smt_power_savings.attr);
7943#endif
7944#ifdef CONFIG_SCHED_MC
7945 if (!err && mc_capable())
7946 err = sysfs_create_file(&cls->kset.kobj,
7947 &attr_sched_mc_power_savings.attr);
7948#endif
7949 return err;
7950}
6d6bc0ad 7951#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7952
e761b772 7953#ifndef CONFIG_CPUSETS
1da177e4 7954/*
e761b772
MK
7955 * Add online and remove offline CPUs from the scheduler domains.
7956 * When cpusets are enabled they take over this function.
1da177e4
LT
7957 */
7958static int update_sched_domains(struct notifier_block *nfb,
7959 unsigned long action, void *hcpu)
e761b772
MK
7960{
7961 switch (action) {
7962 case CPU_ONLINE:
7963 case CPU_ONLINE_FROZEN:
7964 case CPU_DEAD:
7965 case CPU_DEAD_FROZEN:
dfb512ec 7966 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7967 return NOTIFY_OK;
7968
7969 default:
7970 return NOTIFY_DONE;
7971 }
7972}
7973#endif
7974
7975static int update_runtime(struct notifier_block *nfb,
7976 unsigned long action, void *hcpu)
1da177e4 7977{
7def2be1
PZ
7978 int cpu = (int)(long)hcpu;
7979
1da177e4 7980 switch (action) {
1da177e4 7981 case CPU_DOWN_PREPARE:
8bb78442 7982 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7983 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7984 return NOTIFY_OK;
7985
1da177e4 7986 case CPU_DOWN_FAILED:
8bb78442 7987 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7988 case CPU_ONLINE:
8bb78442 7989 case CPU_ONLINE_FROZEN:
7def2be1 7990 enable_runtime(cpu_rq(cpu));
e761b772
MK
7991 return NOTIFY_OK;
7992
1da177e4
LT
7993 default:
7994 return NOTIFY_DONE;
7995 }
1da177e4 7996}
1da177e4
LT
7997
7998void __init sched_init_smp(void)
7999{
dcc30a35
RR
8000 cpumask_var_t non_isolated_cpus;
8001
8002 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8003
434d53b0
MT
8004#if defined(CONFIG_NUMA)
8005 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8006 GFP_KERNEL);
8007 BUG_ON(sched_group_nodes_bycpu == NULL);
8008#endif
95402b38 8009 get_online_cpus();
712555ee 8010 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8011 arch_init_sched_domains(cpu_online_mask);
8012 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8013 if (cpumask_empty(non_isolated_cpus))
8014 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8015 mutex_unlock(&sched_domains_mutex);
95402b38 8016 put_online_cpus();
e761b772
MK
8017
8018#ifndef CONFIG_CPUSETS
1da177e4
LT
8019 /* XXX: Theoretical race here - CPU may be hotplugged now */
8020 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8021#endif
8022
8023 /* RT runtime code needs to handle some hotplug events */
8024 hotcpu_notifier(update_runtime, 0);
8025
b328ca18 8026 init_hrtick();
5c1e1767
NP
8027
8028 /* Move init over to a non-isolated CPU */
dcc30a35 8029 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8030 BUG();
19978ca6 8031 sched_init_granularity();
dcc30a35 8032 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8033
8034 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8035 init_sched_rt_class();
1da177e4
LT
8036}
8037#else
8038void __init sched_init_smp(void)
8039{
19978ca6 8040 sched_init_granularity();
1da177e4
LT
8041}
8042#endif /* CONFIG_SMP */
8043
8044int in_sched_functions(unsigned long addr)
8045{
1da177e4
LT
8046 return in_lock_functions(addr) ||
8047 (addr >= (unsigned long)__sched_text_start
8048 && addr < (unsigned long)__sched_text_end);
8049}
8050
a9957449 8051static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8052{
8053 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8054 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8055#ifdef CONFIG_FAIR_GROUP_SCHED
8056 cfs_rq->rq = rq;
8057#endif
67e9fb2a 8058 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8059}
8060
fa85ae24
PZ
8061static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8062{
8063 struct rt_prio_array *array;
8064 int i;
8065
8066 array = &rt_rq->active;
8067 for (i = 0; i < MAX_RT_PRIO; i++) {
8068 INIT_LIST_HEAD(array->queue + i);
8069 __clear_bit(i, array->bitmap);
8070 }
8071 /* delimiter for bitsearch: */
8072 __set_bit(MAX_RT_PRIO, array->bitmap);
8073
052f1dc7 8074#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8075 rt_rq->highest_prio = MAX_RT_PRIO;
8076#endif
fa85ae24
PZ
8077#ifdef CONFIG_SMP
8078 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8079 rt_rq->overloaded = 0;
8080#endif
8081
8082 rt_rq->rt_time = 0;
8083 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8084 rt_rq->rt_runtime = 0;
8085 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8086
052f1dc7 8087#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8088 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8089 rt_rq->rq = rq;
8090#endif
fa85ae24
PZ
8091}
8092
6f505b16 8093#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8094static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8095 struct sched_entity *se, int cpu, int add,
8096 struct sched_entity *parent)
6f505b16 8097{
ec7dc8ac 8098 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8099 tg->cfs_rq[cpu] = cfs_rq;
8100 init_cfs_rq(cfs_rq, rq);
8101 cfs_rq->tg = tg;
8102 if (add)
8103 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8104
8105 tg->se[cpu] = se;
354d60c2
DG
8106 /* se could be NULL for init_task_group */
8107 if (!se)
8108 return;
8109
ec7dc8ac
DG
8110 if (!parent)
8111 se->cfs_rq = &rq->cfs;
8112 else
8113 se->cfs_rq = parent->my_q;
8114
6f505b16
PZ
8115 se->my_q = cfs_rq;
8116 se->load.weight = tg->shares;
e05510d0 8117 se->load.inv_weight = 0;
ec7dc8ac 8118 se->parent = parent;
6f505b16 8119}
052f1dc7 8120#endif
6f505b16 8121
052f1dc7 8122#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8123static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8124 struct sched_rt_entity *rt_se, int cpu, int add,
8125 struct sched_rt_entity *parent)
6f505b16 8126{
ec7dc8ac
DG
8127 struct rq *rq = cpu_rq(cpu);
8128
6f505b16
PZ
8129 tg->rt_rq[cpu] = rt_rq;
8130 init_rt_rq(rt_rq, rq);
8131 rt_rq->tg = tg;
8132 rt_rq->rt_se = rt_se;
ac086bc2 8133 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8134 if (add)
8135 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8136
8137 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8138 if (!rt_se)
8139 return;
8140
ec7dc8ac
DG
8141 if (!parent)
8142 rt_se->rt_rq = &rq->rt;
8143 else
8144 rt_se->rt_rq = parent->my_q;
8145
6f505b16 8146 rt_se->my_q = rt_rq;
ec7dc8ac 8147 rt_se->parent = parent;
6f505b16
PZ
8148 INIT_LIST_HEAD(&rt_se->run_list);
8149}
8150#endif
8151
1da177e4
LT
8152void __init sched_init(void)
8153{
dd41f596 8154 int i, j;
434d53b0
MT
8155 unsigned long alloc_size = 0, ptr;
8156
8157#ifdef CONFIG_FAIR_GROUP_SCHED
8158 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8159#endif
8160#ifdef CONFIG_RT_GROUP_SCHED
8161 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8162#endif
8163#ifdef CONFIG_USER_SCHED
8164 alloc_size *= 2;
434d53b0
MT
8165#endif
8166 /*
8167 * As sched_init() is called before page_alloc is setup,
8168 * we use alloc_bootmem().
8169 */
8170 if (alloc_size) {
5a9d3225 8171 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8172
8173#ifdef CONFIG_FAIR_GROUP_SCHED
8174 init_task_group.se = (struct sched_entity **)ptr;
8175 ptr += nr_cpu_ids * sizeof(void **);
8176
8177 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8178 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8179
8180#ifdef CONFIG_USER_SCHED
8181 root_task_group.se = (struct sched_entity **)ptr;
8182 ptr += nr_cpu_ids * sizeof(void **);
8183
8184 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8185 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8186#endif /* CONFIG_USER_SCHED */
8187#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8188#ifdef CONFIG_RT_GROUP_SCHED
8189 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8190 ptr += nr_cpu_ids * sizeof(void **);
8191
8192 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8193 ptr += nr_cpu_ids * sizeof(void **);
8194
8195#ifdef CONFIG_USER_SCHED
8196 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8197 ptr += nr_cpu_ids * sizeof(void **);
8198
8199 root_task_group.rt_rq = (struct rt_rq **)ptr;
8200 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8201#endif /* CONFIG_USER_SCHED */
8202#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8203 }
dd41f596 8204
57d885fe
GH
8205#ifdef CONFIG_SMP
8206 init_defrootdomain();
8207#endif
8208
d0b27fa7
PZ
8209 init_rt_bandwidth(&def_rt_bandwidth,
8210 global_rt_period(), global_rt_runtime());
8211
8212#ifdef CONFIG_RT_GROUP_SCHED
8213 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8214 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8215#ifdef CONFIG_USER_SCHED
8216 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8217 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8218#endif /* CONFIG_USER_SCHED */
8219#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8220
052f1dc7 8221#ifdef CONFIG_GROUP_SCHED
6f505b16 8222 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8223 INIT_LIST_HEAD(&init_task_group.children);
8224
8225#ifdef CONFIG_USER_SCHED
8226 INIT_LIST_HEAD(&root_task_group.children);
8227 init_task_group.parent = &root_task_group;
8228 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8229#endif /* CONFIG_USER_SCHED */
8230#endif /* CONFIG_GROUP_SCHED */
6f505b16 8231
0a945022 8232 for_each_possible_cpu(i) {
70b97a7f 8233 struct rq *rq;
1da177e4
LT
8234
8235 rq = cpu_rq(i);
8236 spin_lock_init(&rq->lock);
7897986b 8237 rq->nr_running = 0;
dd41f596 8238 init_cfs_rq(&rq->cfs, rq);
6f505b16 8239 init_rt_rq(&rq->rt, rq);
dd41f596 8240#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8241 init_task_group.shares = init_task_group_load;
6f505b16 8242 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8243#ifdef CONFIG_CGROUP_SCHED
8244 /*
8245 * How much cpu bandwidth does init_task_group get?
8246 *
8247 * In case of task-groups formed thr' the cgroup filesystem, it
8248 * gets 100% of the cpu resources in the system. This overall
8249 * system cpu resource is divided among the tasks of
8250 * init_task_group and its child task-groups in a fair manner,
8251 * based on each entity's (task or task-group's) weight
8252 * (se->load.weight).
8253 *
8254 * In other words, if init_task_group has 10 tasks of weight
8255 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8256 * then A0's share of the cpu resource is:
8257 *
8258 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8259 *
8260 * We achieve this by letting init_task_group's tasks sit
8261 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8262 */
ec7dc8ac 8263 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8264#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8265 root_task_group.shares = NICE_0_LOAD;
8266 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8267 /*
8268 * In case of task-groups formed thr' the user id of tasks,
8269 * init_task_group represents tasks belonging to root user.
8270 * Hence it forms a sibling of all subsequent groups formed.
8271 * In this case, init_task_group gets only a fraction of overall
8272 * system cpu resource, based on the weight assigned to root
8273 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8274 * by letting tasks of init_task_group sit in a separate cfs_rq
8275 * (init_cfs_rq) and having one entity represent this group of
8276 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8277 */
ec7dc8ac 8278 init_tg_cfs_entry(&init_task_group,
6f505b16 8279 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8280 &per_cpu(init_sched_entity, i), i, 1,
8281 root_task_group.se[i]);
6f505b16 8282
052f1dc7 8283#endif
354d60c2
DG
8284#endif /* CONFIG_FAIR_GROUP_SCHED */
8285
8286 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8287#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8288 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8289#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8290 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8291#elif defined CONFIG_USER_SCHED
eff766a6 8292 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8293 init_tg_rt_entry(&init_task_group,
6f505b16 8294 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8295 &per_cpu(init_sched_rt_entity, i), i, 1,
8296 root_task_group.rt_se[i]);
354d60c2 8297#endif
dd41f596 8298#endif
1da177e4 8299
dd41f596
IM
8300 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8301 rq->cpu_load[j] = 0;
1da177e4 8302#ifdef CONFIG_SMP
41c7ce9a 8303 rq->sd = NULL;
57d885fe 8304 rq->rd = NULL;
1da177e4 8305 rq->active_balance = 0;
dd41f596 8306 rq->next_balance = jiffies;
1da177e4 8307 rq->push_cpu = 0;
0a2966b4 8308 rq->cpu = i;
1f11eb6a 8309 rq->online = 0;
1da177e4
LT
8310 rq->migration_thread = NULL;
8311 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8312 rq_attach_root(rq, &def_root_domain);
1da177e4 8313#endif
8f4d37ec 8314 init_rq_hrtick(rq);
1da177e4 8315 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8316 }
8317
2dd73a4f 8318 set_load_weight(&init_task);
b50f60ce 8319
e107be36
AK
8320#ifdef CONFIG_PREEMPT_NOTIFIERS
8321 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8322#endif
8323
c9819f45 8324#ifdef CONFIG_SMP
962cf36c 8325 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8326#endif
8327
b50f60ce
HC
8328#ifdef CONFIG_RT_MUTEXES
8329 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8330#endif
8331
1da177e4
LT
8332 /*
8333 * The boot idle thread does lazy MMU switching as well:
8334 */
8335 atomic_inc(&init_mm.mm_count);
8336 enter_lazy_tlb(&init_mm, current);
8337
8338 /*
8339 * Make us the idle thread. Technically, schedule() should not be
8340 * called from this thread, however somewhere below it might be,
8341 * but because we are the idle thread, we just pick up running again
8342 * when this runqueue becomes "idle".
8343 */
8344 init_idle(current, smp_processor_id());
dd41f596
IM
8345 /*
8346 * During early bootup we pretend to be a normal task:
8347 */
8348 current->sched_class = &fair_sched_class;
6892b75e 8349
6a7b3dc3
RR
8350 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8351 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
7d1e6a9b
RR
8352#ifdef CONFIG_NO_HZ
8353 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8354#endif
dcc30a35 8355 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6a7b3dc3 8356
6892b75e 8357 scheduler_running = 1;
1da177e4
LT
8358}
8359
8360#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8361void __might_sleep(char *file, int line)
8362{
48f24c4d 8363#ifdef in_atomic
1da177e4
LT
8364 static unsigned long prev_jiffy; /* ratelimiting */
8365
aef745fc
IM
8366 if ((!in_atomic() && !irqs_disabled()) ||
8367 system_state != SYSTEM_RUNNING || oops_in_progress)
8368 return;
8369 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8370 return;
8371 prev_jiffy = jiffies;
8372
8373 printk(KERN_ERR
8374 "BUG: sleeping function called from invalid context at %s:%d\n",
8375 file, line);
8376 printk(KERN_ERR
8377 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8378 in_atomic(), irqs_disabled(),
8379 current->pid, current->comm);
8380
8381 debug_show_held_locks(current);
8382 if (irqs_disabled())
8383 print_irqtrace_events(current);
8384 dump_stack();
1da177e4
LT
8385#endif
8386}
8387EXPORT_SYMBOL(__might_sleep);
8388#endif
8389
8390#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8391static void normalize_task(struct rq *rq, struct task_struct *p)
8392{
8393 int on_rq;
3e51f33f 8394
3a5e4dc1
AK
8395 update_rq_clock(rq);
8396 on_rq = p->se.on_rq;
8397 if (on_rq)
8398 deactivate_task(rq, p, 0);
8399 __setscheduler(rq, p, SCHED_NORMAL, 0);
8400 if (on_rq) {
8401 activate_task(rq, p, 0);
8402 resched_task(rq->curr);
8403 }
8404}
8405
1da177e4
LT
8406void normalize_rt_tasks(void)
8407{
a0f98a1c 8408 struct task_struct *g, *p;
1da177e4 8409 unsigned long flags;
70b97a7f 8410 struct rq *rq;
1da177e4 8411
4cf5d77a 8412 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8413 do_each_thread(g, p) {
178be793
IM
8414 /*
8415 * Only normalize user tasks:
8416 */
8417 if (!p->mm)
8418 continue;
8419
6cfb0d5d 8420 p->se.exec_start = 0;
6cfb0d5d 8421#ifdef CONFIG_SCHEDSTATS
dd41f596 8422 p->se.wait_start = 0;
dd41f596 8423 p->se.sleep_start = 0;
dd41f596 8424 p->se.block_start = 0;
6cfb0d5d 8425#endif
dd41f596
IM
8426
8427 if (!rt_task(p)) {
8428 /*
8429 * Renice negative nice level userspace
8430 * tasks back to 0:
8431 */
8432 if (TASK_NICE(p) < 0 && p->mm)
8433 set_user_nice(p, 0);
1da177e4 8434 continue;
dd41f596 8435 }
1da177e4 8436
4cf5d77a 8437 spin_lock(&p->pi_lock);
b29739f9 8438 rq = __task_rq_lock(p);
1da177e4 8439
178be793 8440 normalize_task(rq, p);
3a5e4dc1 8441
b29739f9 8442 __task_rq_unlock(rq);
4cf5d77a 8443 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8444 } while_each_thread(g, p);
8445
4cf5d77a 8446 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8447}
8448
8449#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8450
8451#ifdef CONFIG_IA64
8452/*
8453 * These functions are only useful for the IA64 MCA handling.
8454 *
8455 * They can only be called when the whole system has been
8456 * stopped - every CPU needs to be quiescent, and no scheduling
8457 * activity can take place. Using them for anything else would
8458 * be a serious bug, and as a result, they aren't even visible
8459 * under any other configuration.
8460 */
8461
8462/**
8463 * curr_task - return the current task for a given cpu.
8464 * @cpu: the processor in question.
8465 *
8466 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8467 */
36c8b586 8468struct task_struct *curr_task(int cpu)
1df5c10a
LT
8469{
8470 return cpu_curr(cpu);
8471}
8472
8473/**
8474 * set_curr_task - set the current task for a given cpu.
8475 * @cpu: the processor in question.
8476 * @p: the task pointer to set.
8477 *
8478 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8479 * are serviced on a separate stack. It allows the architecture to switch the
8480 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8481 * must be called with all CPU's synchronized, and interrupts disabled, the
8482 * and caller must save the original value of the current task (see
8483 * curr_task() above) and restore that value before reenabling interrupts and
8484 * re-starting the system.
8485 *
8486 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8487 */
36c8b586 8488void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8489{
8490 cpu_curr(cpu) = p;
8491}
8492
8493#endif
29f59db3 8494
bccbe08a
PZ
8495#ifdef CONFIG_FAIR_GROUP_SCHED
8496static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8497{
8498 int i;
8499
8500 for_each_possible_cpu(i) {
8501 if (tg->cfs_rq)
8502 kfree(tg->cfs_rq[i]);
8503 if (tg->se)
8504 kfree(tg->se[i]);
6f505b16
PZ
8505 }
8506
8507 kfree(tg->cfs_rq);
8508 kfree(tg->se);
6f505b16
PZ
8509}
8510
ec7dc8ac
DG
8511static
8512int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8513{
29f59db3 8514 struct cfs_rq *cfs_rq;
eab17229 8515 struct sched_entity *se;
9b5b7751 8516 struct rq *rq;
29f59db3
SV
8517 int i;
8518
434d53b0 8519 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8520 if (!tg->cfs_rq)
8521 goto err;
434d53b0 8522 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8523 if (!tg->se)
8524 goto err;
052f1dc7
PZ
8525
8526 tg->shares = NICE_0_LOAD;
29f59db3
SV
8527
8528 for_each_possible_cpu(i) {
9b5b7751 8529 rq = cpu_rq(i);
29f59db3 8530
eab17229
LZ
8531 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8532 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8533 if (!cfs_rq)
8534 goto err;
8535
eab17229
LZ
8536 se = kzalloc_node(sizeof(struct sched_entity),
8537 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8538 if (!se)
8539 goto err;
8540
eab17229 8541 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8542 }
8543
8544 return 1;
8545
8546 err:
8547 return 0;
8548}
8549
8550static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8551{
8552 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8553 &cpu_rq(cpu)->leaf_cfs_rq_list);
8554}
8555
8556static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8557{
8558 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8559}
6d6bc0ad 8560#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8561static inline void free_fair_sched_group(struct task_group *tg)
8562{
8563}
8564
ec7dc8ac
DG
8565static inline
8566int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8567{
8568 return 1;
8569}
8570
8571static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8572{
8573}
8574
8575static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8576{
8577}
6d6bc0ad 8578#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8579
8580#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8581static void free_rt_sched_group(struct task_group *tg)
8582{
8583 int i;
8584
d0b27fa7
PZ
8585 destroy_rt_bandwidth(&tg->rt_bandwidth);
8586
bccbe08a
PZ
8587 for_each_possible_cpu(i) {
8588 if (tg->rt_rq)
8589 kfree(tg->rt_rq[i]);
8590 if (tg->rt_se)
8591 kfree(tg->rt_se[i]);
8592 }
8593
8594 kfree(tg->rt_rq);
8595 kfree(tg->rt_se);
8596}
8597
ec7dc8ac
DG
8598static
8599int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8600{
8601 struct rt_rq *rt_rq;
eab17229 8602 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8603 struct rq *rq;
8604 int i;
8605
434d53b0 8606 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8607 if (!tg->rt_rq)
8608 goto err;
434d53b0 8609 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8610 if (!tg->rt_se)
8611 goto err;
8612
d0b27fa7
PZ
8613 init_rt_bandwidth(&tg->rt_bandwidth,
8614 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8615
8616 for_each_possible_cpu(i) {
8617 rq = cpu_rq(i);
8618
eab17229
LZ
8619 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8620 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8621 if (!rt_rq)
8622 goto err;
29f59db3 8623
eab17229
LZ
8624 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8625 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8626 if (!rt_se)
8627 goto err;
29f59db3 8628
eab17229 8629 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8630 }
8631
bccbe08a
PZ
8632 return 1;
8633
8634 err:
8635 return 0;
8636}
8637
8638static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8639{
8640 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8641 &cpu_rq(cpu)->leaf_rt_rq_list);
8642}
8643
8644static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8645{
8646 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8647}
6d6bc0ad 8648#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8649static inline void free_rt_sched_group(struct task_group *tg)
8650{
8651}
8652
ec7dc8ac
DG
8653static inline
8654int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8655{
8656 return 1;
8657}
8658
8659static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8660{
8661}
8662
8663static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8664{
8665}
6d6bc0ad 8666#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8667
d0b27fa7 8668#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8669static void free_sched_group(struct task_group *tg)
8670{
8671 free_fair_sched_group(tg);
8672 free_rt_sched_group(tg);
8673 kfree(tg);
8674}
8675
8676/* allocate runqueue etc for a new task group */
ec7dc8ac 8677struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8678{
8679 struct task_group *tg;
8680 unsigned long flags;
8681 int i;
8682
8683 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8684 if (!tg)
8685 return ERR_PTR(-ENOMEM);
8686
ec7dc8ac 8687 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8688 goto err;
8689
ec7dc8ac 8690 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8691 goto err;
8692
8ed36996 8693 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8694 for_each_possible_cpu(i) {
bccbe08a
PZ
8695 register_fair_sched_group(tg, i);
8696 register_rt_sched_group(tg, i);
9b5b7751 8697 }
6f505b16 8698 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8699
8700 WARN_ON(!parent); /* root should already exist */
8701
8702 tg->parent = parent;
f473aa5e 8703 INIT_LIST_HEAD(&tg->children);
09f2724a 8704 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8705 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8706
9b5b7751 8707 return tg;
29f59db3
SV
8708
8709err:
6f505b16 8710 free_sched_group(tg);
29f59db3
SV
8711 return ERR_PTR(-ENOMEM);
8712}
8713
9b5b7751 8714/* rcu callback to free various structures associated with a task group */
6f505b16 8715static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8716{
29f59db3 8717 /* now it should be safe to free those cfs_rqs */
6f505b16 8718 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8719}
8720
9b5b7751 8721/* Destroy runqueue etc associated with a task group */
4cf86d77 8722void sched_destroy_group(struct task_group *tg)
29f59db3 8723{
8ed36996 8724 unsigned long flags;
9b5b7751 8725 int i;
29f59db3 8726
8ed36996 8727 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8728 for_each_possible_cpu(i) {
bccbe08a
PZ
8729 unregister_fair_sched_group(tg, i);
8730 unregister_rt_sched_group(tg, i);
9b5b7751 8731 }
6f505b16 8732 list_del_rcu(&tg->list);
f473aa5e 8733 list_del_rcu(&tg->siblings);
8ed36996 8734 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8735
9b5b7751 8736 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8737 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8738}
8739
9b5b7751 8740/* change task's runqueue when it moves between groups.
3a252015
IM
8741 * The caller of this function should have put the task in its new group
8742 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8743 * reflect its new group.
9b5b7751
SV
8744 */
8745void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8746{
8747 int on_rq, running;
8748 unsigned long flags;
8749 struct rq *rq;
8750
8751 rq = task_rq_lock(tsk, &flags);
8752
29f59db3
SV
8753 update_rq_clock(rq);
8754
051a1d1a 8755 running = task_current(rq, tsk);
29f59db3
SV
8756 on_rq = tsk->se.on_rq;
8757
0e1f3483 8758 if (on_rq)
29f59db3 8759 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8760 if (unlikely(running))
8761 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8762
6f505b16 8763 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8764
810b3817
PZ
8765#ifdef CONFIG_FAIR_GROUP_SCHED
8766 if (tsk->sched_class->moved_group)
8767 tsk->sched_class->moved_group(tsk);
8768#endif
8769
0e1f3483
HS
8770 if (unlikely(running))
8771 tsk->sched_class->set_curr_task(rq);
8772 if (on_rq)
7074badb 8773 enqueue_task(rq, tsk, 0);
29f59db3 8774
29f59db3
SV
8775 task_rq_unlock(rq, &flags);
8776}
6d6bc0ad 8777#endif /* CONFIG_GROUP_SCHED */
29f59db3 8778
052f1dc7 8779#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8780static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8781{
8782 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8783 int on_rq;
8784
29f59db3 8785 on_rq = se->on_rq;
62fb1851 8786 if (on_rq)
29f59db3
SV
8787 dequeue_entity(cfs_rq, se, 0);
8788
8789 se->load.weight = shares;
e05510d0 8790 se->load.inv_weight = 0;
29f59db3 8791
62fb1851 8792 if (on_rq)
29f59db3 8793 enqueue_entity(cfs_rq, se, 0);
c09595f6 8794}
62fb1851 8795
c09595f6
PZ
8796static void set_se_shares(struct sched_entity *se, unsigned long shares)
8797{
8798 struct cfs_rq *cfs_rq = se->cfs_rq;
8799 struct rq *rq = cfs_rq->rq;
8800 unsigned long flags;
8801
8802 spin_lock_irqsave(&rq->lock, flags);
8803 __set_se_shares(se, shares);
8804 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8805}
8806
8ed36996
PZ
8807static DEFINE_MUTEX(shares_mutex);
8808
4cf86d77 8809int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8810{
8811 int i;
8ed36996 8812 unsigned long flags;
c61935fd 8813
ec7dc8ac
DG
8814 /*
8815 * We can't change the weight of the root cgroup.
8816 */
8817 if (!tg->se[0])
8818 return -EINVAL;
8819
18d95a28
PZ
8820 if (shares < MIN_SHARES)
8821 shares = MIN_SHARES;
cb4ad1ff
MX
8822 else if (shares > MAX_SHARES)
8823 shares = MAX_SHARES;
62fb1851 8824
8ed36996 8825 mutex_lock(&shares_mutex);
9b5b7751 8826 if (tg->shares == shares)
5cb350ba 8827 goto done;
29f59db3 8828
8ed36996 8829 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8830 for_each_possible_cpu(i)
8831 unregister_fair_sched_group(tg, i);
f473aa5e 8832 list_del_rcu(&tg->siblings);
8ed36996 8833 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8834
8835 /* wait for any ongoing reference to this group to finish */
8836 synchronize_sched();
8837
8838 /*
8839 * Now we are free to modify the group's share on each cpu
8840 * w/o tripping rebalance_share or load_balance_fair.
8841 */
9b5b7751 8842 tg->shares = shares;
c09595f6
PZ
8843 for_each_possible_cpu(i) {
8844 /*
8845 * force a rebalance
8846 */
8847 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8848 set_se_shares(tg->se[i], shares);
c09595f6 8849 }
29f59db3 8850
6b2d7700
SV
8851 /*
8852 * Enable load balance activity on this group, by inserting it back on
8853 * each cpu's rq->leaf_cfs_rq_list.
8854 */
8ed36996 8855 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8856 for_each_possible_cpu(i)
8857 register_fair_sched_group(tg, i);
f473aa5e 8858 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8859 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8860done:
8ed36996 8861 mutex_unlock(&shares_mutex);
9b5b7751 8862 return 0;
29f59db3
SV
8863}
8864
5cb350ba
DG
8865unsigned long sched_group_shares(struct task_group *tg)
8866{
8867 return tg->shares;
8868}
052f1dc7 8869#endif
5cb350ba 8870
052f1dc7 8871#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8872/*
9f0c1e56 8873 * Ensure that the real time constraints are schedulable.
6f505b16 8874 */
9f0c1e56
PZ
8875static DEFINE_MUTEX(rt_constraints_mutex);
8876
8877static unsigned long to_ratio(u64 period, u64 runtime)
8878{
8879 if (runtime == RUNTIME_INF)
9a7e0b18 8880 return 1ULL << 20;
9f0c1e56 8881
9a7e0b18 8882 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8883}
8884
9a7e0b18
PZ
8885/* Must be called with tasklist_lock held */
8886static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8887{
9a7e0b18 8888 struct task_struct *g, *p;
b40b2e8e 8889
9a7e0b18
PZ
8890 do_each_thread(g, p) {
8891 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8892 return 1;
8893 } while_each_thread(g, p);
b40b2e8e 8894
9a7e0b18
PZ
8895 return 0;
8896}
b40b2e8e 8897
9a7e0b18
PZ
8898struct rt_schedulable_data {
8899 struct task_group *tg;
8900 u64 rt_period;
8901 u64 rt_runtime;
8902};
b40b2e8e 8903
9a7e0b18
PZ
8904static int tg_schedulable(struct task_group *tg, void *data)
8905{
8906 struct rt_schedulable_data *d = data;
8907 struct task_group *child;
8908 unsigned long total, sum = 0;
8909 u64 period, runtime;
b40b2e8e 8910
9a7e0b18
PZ
8911 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8912 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8913
9a7e0b18
PZ
8914 if (tg == d->tg) {
8915 period = d->rt_period;
8916 runtime = d->rt_runtime;
b40b2e8e 8917 }
b40b2e8e 8918
4653f803
PZ
8919 /*
8920 * Cannot have more runtime than the period.
8921 */
8922 if (runtime > period && runtime != RUNTIME_INF)
8923 return -EINVAL;
6f505b16 8924
4653f803
PZ
8925 /*
8926 * Ensure we don't starve existing RT tasks.
8927 */
9a7e0b18
PZ
8928 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8929 return -EBUSY;
6f505b16 8930
9a7e0b18 8931 total = to_ratio(period, runtime);
6f505b16 8932
4653f803
PZ
8933 /*
8934 * Nobody can have more than the global setting allows.
8935 */
8936 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8937 return -EINVAL;
6f505b16 8938
4653f803
PZ
8939 /*
8940 * The sum of our children's runtime should not exceed our own.
8941 */
9a7e0b18
PZ
8942 list_for_each_entry_rcu(child, &tg->children, siblings) {
8943 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8944 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8945
9a7e0b18
PZ
8946 if (child == d->tg) {
8947 period = d->rt_period;
8948 runtime = d->rt_runtime;
8949 }
6f505b16 8950
9a7e0b18 8951 sum += to_ratio(period, runtime);
9f0c1e56 8952 }
6f505b16 8953
9a7e0b18
PZ
8954 if (sum > total)
8955 return -EINVAL;
8956
8957 return 0;
6f505b16
PZ
8958}
8959
9a7e0b18 8960static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8961{
9a7e0b18
PZ
8962 struct rt_schedulable_data data = {
8963 .tg = tg,
8964 .rt_period = period,
8965 .rt_runtime = runtime,
8966 };
8967
8968 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8969}
8970
d0b27fa7
PZ
8971static int tg_set_bandwidth(struct task_group *tg,
8972 u64 rt_period, u64 rt_runtime)
6f505b16 8973{
ac086bc2 8974 int i, err = 0;
9f0c1e56 8975
9f0c1e56 8976 mutex_lock(&rt_constraints_mutex);
521f1a24 8977 read_lock(&tasklist_lock);
9a7e0b18
PZ
8978 err = __rt_schedulable(tg, rt_period, rt_runtime);
8979 if (err)
9f0c1e56 8980 goto unlock;
ac086bc2
PZ
8981
8982 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8983 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8984 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8985
8986 for_each_possible_cpu(i) {
8987 struct rt_rq *rt_rq = tg->rt_rq[i];
8988
8989 spin_lock(&rt_rq->rt_runtime_lock);
8990 rt_rq->rt_runtime = rt_runtime;
8991 spin_unlock(&rt_rq->rt_runtime_lock);
8992 }
8993 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8994 unlock:
521f1a24 8995 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8996 mutex_unlock(&rt_constraints_mutex);
8997
8998 return err;
6f505b16
PZ
8999}
9000
d0b27fa7
PZ
9001int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9002{
9003 u64 rt_runtime, rt_period;
9004
9005 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9006 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9007 if (rt_runtime_us < 0)
9008 rt_runtime = RUNTIME_INF;
9009
9010 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9011}
9012
9f0c1e56
PZ
9013long sched_group_rt_runtime(struct task_group *tg)
9014{
9015 u64 rt_runtime_us;
9016
d0b27fa7 9017 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9018 return -1;
9019
d0b27fa7 9020 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9021 do_div(rt_runtime_us, NSEC_PER_USEC);
9022 return rt_runtime_us;
9023}
d0b27fa7
PZ
9024
9025int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9026{
9027 u64 rt_runtime, rt_period;
9028
9029 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9030 rt_runtime = tg->rt_bandwidth.rt_runtime;
9031
619b0488
R
9032 if (rt_period == 0)
9033 return -EINVAL;
9034
d0b27fa7
PZ
9035 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9036}
9037
9038long sched_group_rt_period(struct task_group *tg)
9039{
9040 u64 rt_period_us;
9041
9042 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9043 do_div(rt_period_us, NSEC_PER_USEC);
9044 return rt_period_us;
9045}
9046
9047static int sched_rt_global_constraints(void)
9048{
4653f803 9049 u64 runtime, period;
d0b27fa7
PZ
9050 int ret = 0;
9051
ec5d4989
HS
9052 if (sysctl_sched_rt_period <= 0)
9053 return -EINVAL;
9054
4653f803
PZ
9055 runtime = global_rt_runtime();
9056 period = global_rt_period();
9057
9058 /*
9059 * Sanity check on the sysctl variables.
9060 */
9061 if (runtime > period && runtime != RUNTIME_INF)
9062 return -EINVAL;
10b612f4 9063
d0b27fa7 9064 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9065 read_lock(&tasklist_lock);
4653f803 9066 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9067 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9068 mutex_unlock(&rt_constraints_mutex);
9069
9070 return ret;
9071}
6d6bc0ad 9072#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9073static int sched_rt_global_constraints(void)
9074{
ac086bc2
PZ
9075 unsigned long flags;
9076 int i;
9077
ec5d4989
HS
9078 if (sysctl_sched_rt_period <= 0)
9079 return -EINVAL;
9080
ac086bc2
PZ
9081 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9082 for_each_possible_cpu(i) {
9083 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9084
9085 spin_lock(&rt_rq->rt_runtime_lock);
9086 rt_rq->rt_runtime = global_rt_runtime();
9087 spin_unlock(&rt_rq->rt_runtime_lock);
9088 }
9089 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9090
d0b27fa7
PZ
9091 return 0;
9092}
6d6bc0ad 9093#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9094
9095int sched_rt_handler(struct ctl_table *table, int write,
9096 struct file *filp, void __user *buffer, size_t *lenp,
9097 loff_t *ppos)
9098{
9099 int ret;
9100 int old_period, old_runtime;
9101 static DEFINE_MUTEX(mutex);
9102
9103 mutex_lock(&mutex);
9104 old_period = sysctl_sched_rt_period;
9105 old_runtime = sysctl_sched_rt_runtime;
9106
9107 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9108
9109 if (!ret && write) {
9110 ret = sched_rt_global_constraints();
9111 if (ret) {
9112 sysctl_sched_rt_period = old_period;
9113 sysctl_sched_rt_runtime = old_runtime;
9114 } else {
9115 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9116 def_rt_bandwidth.rt_period =
9117 ns_to_ktime(global_rt_period());
9118 }
9119 }
9120 mutex_unlock(&mutex);
9121
9122 return ret;
9123}
68318b8e 9124
052f1dc7 9125#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9126
9127/* return corresponding task_group object of a cgroup */
2b01dfe3 9128static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9129{
2b01dfe3
PM
9130 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9131 struct task_group, css);
68318b8e
SV
9132}
9133
9134static struct cgroup_subsys_state *
2b01dfe3 9135cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9136{
ec7dc8ac 9137 struct task_group *tg, *parent;
68318b8e 9138
2b01dfe3 9139 if (!cgrp->parent) {
68318b8e 9140 /* This is early initialization for the top cgroup */
68318b8e
SV
9141 return &init_task_group.css;
9142 }
9143
ec7dc8ac
DG
9144 parent = cgroup_tg(cgrp->parent);
9145 tg = sched_create_group(parent);
68318b8e
SV
9146 if (IS_ERR(tg))
9147 return ERR_PTR(-ENOMEM);
9148
68318b8e
SV
9149 return &tg->css;
9150}
9151
41a2d6cf
IM
9152static void
9153cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9154{
2b01dfe3 9155 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9156
9157 sched_destroy_group(tg);
9158}
9159
41a2d6cf
IM
9160static int
9161cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9162 struct task_struct *tsk)
68318b8e 9163{
b68aa230
PZ
9164#ifdef CONFIG_RT_GROUP_SCHED
9165 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9166 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9167 return -EINVAL;
9168#else
68318b8e
SV
9169 /* We don't support RT-tasks being in separate groups */
9170 if (tsk->sched_class != &fair_sched_class)
9171 return -EINVAL;
b68aa230 9172#endif
68318b8e
SV
9173
9174 return 0;
9175}
9176
9177static void
2b01dfe3 9178cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9179 struct cgroup *old_cont, struct task_struct *tsk)
9180{
9181 sched_move_task(tsk);
9182}
9183
052f1dc7 9184#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9185static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9186 u64 shareval)
68318b8e 9187{
2b01dfe3 9188 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9189}
9190
f4c753b7 9191static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9192{
2b01dfe3 9193 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9194
9195 return (u64) tg->shares;
9196}
6d6bc0ad 9197#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9198
052f1dc7 9199#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9200static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9201 s64 val)
6f505b16 9202{
06ecb27c 9203 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9204}
9205
06ecb27c 9206static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9207{
06ecb27c 9208 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9209}
d0b27fa7
PZ
9210
9211static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9212 u64 rt_period_us)
9213{
9214 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9215}
9216
9217static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9218{
9219 return sched_group_rt_period(cgroup_tg(cgrp));
9220}
6d6bc0ad 9221#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9222
fe5c7cc2 9223static struct cftype cpu_files[] = {
052f1dc7 9224#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9225 {
9226 .name = "shares",
f4c753b7
PM
9227 .read_u64 = cpu_shares_read_u64,
9228 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9229 },
052f1dc7
PZ
9230#endif
9231#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9232 {
9f0c1e56 9233 .name = "rt_runtime_us",
06ecb27c
PM
9234 .read_s64 = cpu_rt_runtime_read,
9235 .write_s64 = cpu_rt_runtime_write,
6f505b16 9236 },
d0b27fa7
PZ
9237 {
9238 .name = "rt_period_us",
f4c753b7
PM
9239 .read_u64 = cpu_rt_period_read_uint,
9240 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9241 },
052f1dc7 9242#endif
68318b8e
SV
9243};
9244
9245static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9246{
fe5c7cc2 9247 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9248}
9249
9250struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9251 .name = "cpu",
9252 .create = cpu_cgroup_create,
9253 .destroy = cpu_cgroup_destroy,
9254 .can_attach = cpu_cgroup_can_attach,
9255 .attach = cpu_cgroup_attach,
9256 .populate = cpu_cgroup_populate,
9257 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9258 .early_init = 1,
9259};
9260
052f1dc7 9261#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9262
9263#ifdef CONFIG_CGROUP_CPUACCT
9264
9265/*
9266 * CPU accounting code for task groups.
9267 *
9268 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9269 * (balbir@in.ibm.com).
9270 */
9271
934352f2 9272/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9273struct cpuacct {
9274 struct cgroup_subsys_state css;
9275 /* cpuusage holds pointer to a u64-type object on every cpu */
9276 u64 *cpuusage;
934352f2 9277 struct cpuacct *parent;
d842de87
SV
9278};
9279
9280struct cgroup_subsys cpuacct_subsys;
9281
9282/* return cpu accounting group corresponding to this container */
32cd756a 9283static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9284{
32cd756a 9285 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9286 struct cpuacct, css);
9287}
9288
9289/* return cpu accounting group to which this task belongs */
9290static inline struct cpuacct *task_ca(struct task_struct *tsk)
9291{
9292 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9293 struct cpuacct, css);
9294}
9295
9296/* create a new cpu accounting group */
9297static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9298 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9299{
9300 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9301
9302 if (!ca)
9303 return ERR_PTR(-ENOMEM);
9304
9305 ca->cpuusage = alloc_percpu(u64);
9306 if (!ca->cpuusage) {
9307 kfree(ca);
9308 return ERR_PTR(-ENOMEM);
9309 }
9310
934352f2
BR
9311 if (cgrp->parent)
9312 ca->parent = cgroup_ca(cgrp->parent);
9313
d842de87
SV
9314 return &ca->css;
9315}
9316
9317/* destroy an existing cpu accounting group */
41a2d6cf 9318static void
32cd756a 9319cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9320{
32cd756a 9321 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9322
9323 free_percpu(ca->cpuusage);
9324 kfree(ca);
9325}
9326
9327/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9328static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9329{
32cd756a 9330 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9331 u64 totalcpuusage = 0;
9332 int i;
9333
9334 for_each_possible_cpu(i) {
9335 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9336
9337 /*
9338 * Take rq->lock to make 64-bit addition safe on 32-bit
9339 * platforms.
9340 */
9341 spin_lock_irq(&cpu_rq(i)->lock);
9342 totalcpuusage += *cpuusage;
9343 spin_unlock_irq(&cpu_rq(i)->lock);
9344 }
9345
9346 return totalcpuusage;
9347}
9348
0297b803
DG
9349static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9350 u64 reset)
9351{
9352 struct cpuacct *ca = cgroup_ca(cgrp);
9353 int err = 0;
9354 int i;
9355
9356 if (reset) {
9357 err = -EINVAL;
9358 goto out;
9359 }
9360
9361 for_each_possible_cpu(i) {
9362 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9363
9364 spin_lock_irq(&cpu_rq(i)->lock);
9365 *cpuusage = 0;
9366 spin_unlock_irq(&cpu_rq(i)->lock);
9367 }
9368out:
9369 return err;
9370}
9371
d842de87
SV
9372static struct cftype files[] = {
9373 {
9374 .name = "usage",
f4c753b7
PM
9375 .read_u64 = cpuusage_read,
9376 .write_u64 = cpuusage_write,
d842de87
SV
9377 },
9378};
9379
32cd756a 9380static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9381{
32cd756a 9382 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9383}
9384
9385/*
9386 * charge this task's execution time to its accounting group.
9387 *
9388 * called with rq->lock held.
9389 */
9390static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9391{
9392 struct cpuacct *ca;
934352f2 9393 int cpu;
d842de87
SV
9394
9395 if (!cpuacct_subsys.active)
9396 return;
9397
934352f2 9398 cpu = task_cpu(tsk);
d842de87 9399 ca = task_ca(tsk);
d842de87 9400
934352f2
BR
9401 for (; ca; ca = ca->parent) {
9402 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9403 *cpuusage += cputime;
9404 }
9405}
9406
9407struct cgroup_subsys cpuacct_subsys = {
9408 .name = "cpuacct",
9409 .create = cpuacct_create,
9410 .destroy = cpuacct_destroy,
9411 .populate = cpuacct_populate,
9412 .subsys_id = cpuacct_subsys_id,
9413};
9414#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.456692 seconds and 5 git commands to generate.