sched: Optimize the !power_savings_balance during fbg()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
2749 arch_enter_lazy_cpu_mode();
2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596 3191}
67bb6c03 3192/********** Helpers for find_busiest_group ************************/
222d656d
GS
3193/**
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3196 */
3197struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3203
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3208
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3213
3214 int group_imb; /* Is there imbalance in this sd */
3215#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3222#endif
3223};
67bb6c03 3224
381be78f
GS
3225/**
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3227 */
3228struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3235};
3236
67bb6c03
GS
3237/**
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3240 */
3241static inline unsigned int group_first_cpu(struct sched_group *group)
3242{
3243 return cpumask_first(sched_group_cpus(group));
3244}
3245
3246/**
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3250 */
3251static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3253{
3254 int load_idx;
3255
3256 switch (idle) {
3257 case CPU_NOT_IDLE:
3258 load_idx = sd->busy_idx;
3259 break;
3260
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3263 break;
3264 default:
3265 load_idx = sd->idle_idx;
3266 break;
3267 }
3268
3269 return load_idx;
3270}
1f8c553d
GS
3271
3272
3273/**
3274 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3275 * @group: sched_group whose statistics are to be updated.
3276 * @this_cpu: Cpu for which load balance is currently performed.
3277 * @idle: Idle status of this_cpu
3278 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3279 * @sd_idle: Idle status of the sched_domain containing group.
3280 * @local_group: Does group contain this_cpu.
3281 * @cpus: Set of cpus considered for load balancing.
3282 * @balance: Should we balance.
3283 * @sgs: variable to hold the statistics for this group.
3284 */
3285static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3286 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3287 int local_group, const struct cpumask *cpus,
3288 int *balance, struct sg_lb_stats *sgs)
3289{
3290 unsigned long load, max_cpu_load, min_cpu_load;
3291 int i;
3292 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3293 unsigned long sum_avg_load_per_task;
3294 unsigned long avg_load_per_task;
3295
3296 if (local_group)
3297 balance_cpu = group_first_cpu(group);
3298
3299 /* Tally up the load of all CPUs in the group */
3300 sum_avg_load_per_task = avg_load_per_task = 0;
3301 max_cpu_load = 0;
3302 min_cpu_load = ~0UL;
3303
3304 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3305 struct rq *rq = cpu_rq(i);
3306
3307 if (*sd_idle && rq->nr_running)
3308 *sd_idle = 0;
3309
3310 /* Bias balancing toward cpus of our domain */
3311 if (local_group) {
3312 if (idle_cpu(i) && !first_idle_cpu) {
3313 first_idle_cpu = 1;
3314 balance_cpu = i;
3315 }
3316
3317 load = target_load(i, load_idx);
3318 } else {
3319 load = source_load(i, load_idx);
3320 if (load > max_cpu_load)
3321 max_cpu_load = load;
3322 if (min_cpu_load > load)
3323 min_cpu_load = load;
3324 }
3325
3326 sgs->group_load += load;
3327 sgs->sum_nr_running += rq->nr_running;
3328 sgs->sum_weighted_load += weighted_cpuload(i);
3329
3330 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3331 }
3332
3333 /*
3334 * First idle cpu or the first cpu(busiest) in this sched group
3335 * is eligible for doing load balancing at this and above
3336 * domains. In the newly idle case, we will allow all the cpu's
3337 * to do the newly idle load balance.
3338 */
3339 if (idle != CPU_NEWLY_IDLE && local_group &&
3340 balance_cpu != this_cpu && balance) {
3341 *balance = 0;
3342 return;
3343 }
3344
3345 /* Adjust by relative CPU power of the group */
3346 sgs->avg_load = sg_div_cpu_power(group,
3347 sgs->group_load * SCHED_LOAD_SCALE);
3348
3349
3350 /*
3351 * Consider the group unbalanced when the imbalance is larger
3352 * than the average weight of two tasks.
3353 *
3354 * APZ: with cgroup the avg task weight can vary wildly and
3355 * might not be a suitable number - should we keep a
3356 * normalized nr_running number somewhere that negates
3357 * the hierarchy?
3358 */
3359 avg_load_per_task = sg_div_cpu_power(group,
3360 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3361
3362 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3363 sgs->group_imb = 1;
3364
3365 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3366
3367}
dd41f596 3368
37abe198
GS
3369/**
3370 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3371 * @sd: sched_domain whose statistics are to be updated.
3372 * @this_cpu: Cpu for which load balance is currently performed.
3373 * @idle: Idle status of this_cpu
3374 * @sd_idle: Idle status of the sched_domain containing group.
3375 * @cpus: Set of cpus considered for load balancing.
3376 * @balance: Should we balance.
3377 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3378 */
37abe198
GS
3379static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3380 enum cpu_idle_type idle, int *sd_idle,
3381 const struct cpumask *cpus, int *balance,
3382 struct sd_lb_stats *sds)
1da177e4 3383{
222d656d 3384 struct sched_group *group = sd->groups;
37abe198 3385 struct sg_lb_stats sgs;
222d656d
GS
3386 int load_idx;
3387
5c45bf27 3388#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
a021dc03
GS
3389 /*
3390 * Busy processors will not participate in power savings
3391 * balance.
3392 */
3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394 sds->power_savings_balance = 0;
3395 else {
3396 sds->power_savings_balance = 1;
3397 sds->min_nr_running = ULONG_MAX;
3398 sds->leader_nr_running = 0;
3399 }
5c45bf27 3400#endif
67bb6c03 3401 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3402
3403 do {
1da177e4 3404 int local_group;
1da177e4 3405
758b2cdc
RR
3406 local_group = cpumask_test_cpu(this_cpu,
3407 sched_group_cpus(group));
381be78f 3408 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3409 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3410 local_group, cpus, balance, &sgs);
1da177e4 3411
37abe198
GS
3412 if (local_group && balance && !(*balance))
3413 return;
783609c6 3414
37abe198
GS
3415 sds->total_load += sgs.group_load;
3416 sds->total_pwr += group->__cpu_power;
1da177e4 3417
1da177e4 3418 if (local_group) {
37abe198
GS
3419 sds->this_load = sgs.avg_load;
3420 sds->this = group;
3421 sds->this_nr_running = sgs.sum_nr_running;
3422 sds->this_load_per_task = sgs.sum_weighted_load;
3423 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3424 (sgs.sum_nr_running > sgs.group_capacity ||
3425 sgs.group_imb)) {
37abe198
GS
3426 sds->max_load = sgs.avg_load;
3427 sds->busiest = group;
3428 sds->busiest_nr_running = sgs.sum_nr_running;
3429 sds->busiest_load_per_task = sgs.sum_weighted_load;
3430 sds->group_imb = sgs.group_imb;
1da177e4 3431 }
5c45bf27
SS
3432
3433#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
a021dc03
GS
3434
3435 if (!sds->power_savings_balance)
dd41f596 3436 goto group_next;
5c45bf27
SS
3437
3438 /*
3439 * If the local group is idle or completely loaded
3440 * no need to do power savings balance at this domain
3441 */
222d656d 3442 if (local_group &&
37abe198
GS
3443 (sds->this_nr_running >= sgs.group_capacity ||
3444 !sds->this_nr_running))
3445 sds->power_savings_balance = 0;
5c45bf27 3446
dd41f596 3447 /*
5c45bf27
SS
3448 * If a group is already running at full capacity or idle,
3449 * don't include that group in power savings calculations
dd41f596 3450 */
37abe198 3451 if (!sds->power_savings_balance ||
381be78f
GS
3452 sgs.sum_nr_running >= sgs.group_capacity ||
3453 !sgs.sum_nr_running)
dd41f596 3454 goto group_next;
5c45bf27 3455
dd41f596 3456 /*
5c45bf27 3457 * Calculate the group which has the least non-idle load.
dd41f596
IM
3458 * This is the group from where we need to pick up the load
3459 * for saving power
3460 */
37abe198
GS
3461 if ((sgs.sum_nr_running < sds->min_nr_running) ||
3462 (sgs.sum_nr_running == sds->min_nr_running &&
222d656d 3463 group_first_cpu(group) >
37abe198
GS
3464 group_first_cpu(sds->group_min))) {
3465 sds->group_min = group;
3466 sds->min_nr_running = sgs.sum_nr_running;
3467 sds->min_load_per_task = sgs.sum_weighted_load /
381be78f 3468 sgs.sum_nr_running;
dd41f596 3469 }
5c45bf27 3470
dd41f596 3471 /*
5c45bf27 3472 * Calculate the group which is almost near its
dd41f596
IM
3473 * capacity but still has some space to pick up some load
3474 * from other group and save more power
3475 */
381be78f 3476 if (sgs.sum_nr_running > sgs.group_capacity - 1)
6dfdb062
GS
3477 goto group_next;
3478
37abe198
GS
3479 if (sgs.sum_nr_running > sds->leader_nr_running ||
3480 (sgs.sum_nr_running == sds->leader_nr_running &&
222d656d 3481 group_first_cpu(group) <
37abe198
GS
3482 group_first_cpu(sds->group_leader))) {
3483 sds->group_leader = group;
3484 sds->leader_nr_running = sgs.sum_nr_running;
48f24c4d 3485 }
5c45bf27
SS
3486group_next:
3487#endif
1da177e4
LT
3488 group = group->next;
3489 } while (group != sd->groups);
3490
37abe198 3491}
2e6f44ae
GS
3492
3493/**
3494 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3495 * amongst the groups of a sched_domain, during
3496 * load balancing.
2e6f44ae
GS
3497 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3498 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3499 * @imbalance: Variable to store the imbalance.
3500 */
3501static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3502 int this_cpu, unsigned long *imbalance)
3503{
3504 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3505 unsigned int imbn = 2;
3506
3507 if (sds->this_nr_running) {
3508 sds->this_load_per_task /= sds->this_nr_running;
3509 if (sds->busiest_load_per_task >
3510 sds->this_load_per_task)
3511 imbn = 1;
3512 } else
3513 sds->this_load_per_task =
3514 cpu_avg_load_per_task(this_cpu);
3515
3516 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3517 sds->busiest_load_per_task * imbn) {
3518 *imbalance = sds->busiest_load_per_task;
3519 return;
3520 }
3521
3522 /*
3523 * OK, we don't have enough imbalance to justify moving tasks,
3524 * however we may be able to increase total CPU power used by
3525 * moving them.
3526 */
3527
3528 pwr_now += sds->busiest->__cpu_power *
3529 min(sds->busiest_load_per_task, sds->max_load);
3530 pwr_now += sds->this->__cpu_power *
3531 min(sds->this_load_per_task, sds->this_load);
3532 pwr_now /= SCHED_LOAD_SCALE;
3533
3534 /* Amount of load we'd subtract */
3535 tmp = sg_div_cpu_power(sds->busiest,
3536 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3537 if (sds->max_load > tmp)
3538 pwr_move += sds->busiest->__cpu_power *
3539 min(sds->busiest_load_per_task, sds->max_load - tmp);
3540
3541 /* Amount of load we'd add */
3542 if (sds->max_load * sds->busiest->__cpu_power <
3543 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3544 tmp = sg_div_cpu_power(sds->this,
3545 sds->max_load * sds->busiest->__cpu_power);
3546 else
3547 tmp = sg_div_cpu_power(sds->this,
3548 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3549 pwr_move += sds->this->__cpu_power *
3550 min(sds->this_load_per_task, sds->this_load + tmp);
3551 pwr_move /= SCHED_LOAD_SCALE;
3552
3553 /* Move if we gain throughput */
3554 if (pwr_move > pwr_now)
3555 *imbalance = sds->busiest_load_per_task;
3556}
dbc523a3
GS
3557
3558/**
3559 * calculate_imbalance - Calculate the amount of imbalance present within the
3560 * groups of a given sched_domain during load balance.
3561 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3562 * @this_cpu: Cpu for which currently load balance is being performed.
3563 * @imbalance: The variable to store the imbalance.
3564 */
3565static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3566 unsigned long *imbalance)
3567{
3568 unsigned long max_pull;
3569 /*
3570 * In the presence of smp nice balancing, certain scenarios can have
3571 * max load less than avg load(as we skip the groups at or below
3572 * its cpu_power, while calculating max_load..)
3573 */
3574 if (sds->max_load < sds->avg_load) {
3575 *imbalance = 0;
3576 return fix_small_imbalance(sds, this_cpu, imbalance);
3577 }
3578
3579 /* Don't want to pull so many tasks that a group would go idle */
3580 max_pull = min(sds->max_load - sds->avg_load,
3581 sds->max_load - sds->busiest_load_per_task);
3582
3583 /* How much load to actually move to equalise the imbalance */
3584 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3585 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3586 / SCHED_LOAD_SCALE;
3587
3588 /*
3589 * if *imbalance is less than the average load per runnable task
3590 * there is no gaurantee that any tasks will be moved so we'll have
3591 * a think about bumping its value to force at least one task to be
3592 * moved
3593 */
3594 if (*imbalance < sds->busiest_load_per_task)
3595 return fix_small_imbalance(sds, this_cpu, imbalance);
3596
3597}
37abe198
GS
3598/******* find_busiest_group() helpers end here *********************/
3599
3600/*
3601 * find_busiest_group finds and returns the busiest CPU group within the
3602 * domain. It calculates and returns the amount of weighted load which
3603 * should be moved to restore balance via the imbalance parameter.
3604 */
3605static struct sched_group *
3606find_busiest_group(struct sched_domain *sd, int this_cpu,
3607 unsigned long *imbalance, enum cpu_idle_type idle,
3608 int *sd_idle, const struct cpumask *cpus, int *balance)
3609{
3610 struct sd_lb_stats sds;
37abe198
GS
3611
3612 memset(&sds, 0, sizeof(sds));
3613
3614 /*
3615 * Compute the various statistics relavent for load balancing at
3616 * this level.
3617 */
3618 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3619 balance, &sds);
3620
3621 if (balance && !(*balance))
3622 goto ret;
3623
222d656d
GS
3624 if (!sds.busiest || sds.this_load >= sds.max_load
3625 || sds.busiest_nr_running == 0)
1da177e4
LT
3626 goto out_balanced;
3627
222d656d 3628 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3629
222d656d
GS
3630 if (sds.this_load >= sds.avg_load ||
3631 100*sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3632 goto out_balanced;
3633
222d656d
GS
3634 sds.busiest_load_per_task /= sds.busiest_nr_running;
3635 if (sds.group_imb)
3636 sds.busiest_load_per_task =
3637 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3638
1da177e4
LT
3639 /*
3640 * We're trying to get all the cpus to the average_load, so we don't
3641 * want to push ourselves above the average load, nor do we wish to
3642 * reduce the max loaded cpu below the average load, as either of these
3643 * actions would just result in more rebalancing later, and ping-pong
3644 * tasks around. Thus we look for the minimum possible imbalance.
3645 * Negative imbalances (*we* are more loaded than anyone else) will
3646 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3647 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3648 * appear as very large values with unsigned longs.
3649 */
222d656d 3650 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3651 goto out_balanced;
3652
dbc523a3
GS
3653 /* Looks like there is an imbalance. Compute it */
3654 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3655 return sds.busiest;
1da177e4
LT
3656
3657out_balanced:
5c45bf27 3658#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
a021dc03 3659 if (!sds.power_savings_balance)
5c45bf27 3660 goto ret;
1da177e4 3661
222d656d 3662 if (sds.this != sds.group_leader || sds.group_leader == sds.group_min)
6dfdb062
GS
3663 goto ret;
3664
222d656d 3665 *imbalance = sds.min_load_per_task;
6dfdb062
GS
3666 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3667 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
222d656d 3668 group_first_cpu(sds.group_leader);
5c45bf27 3669 }
222d656d 3670 return sds.group_min;
6dfdb062 3671
5c45bf27 3672#endif
783609c6 3673ret:
1da177e4
LT
3674 *imbalance = 0;
3675 return NULL;
3676}
3677
3678/*
3679 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3680 */
70b97a7f 3681static struct rq *
d15bcfdb 3682find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3683 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3684{
70b97a7f 3685 struct rq *busiest = NULL, *rq;
2dd73a4f 3686 unsigned long max_load = 0;
1da177e4
LT
3687 int i;
3688
758b2cdc 3689 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3690 unsigned long wl;
0a2966b4 3691
96f874e2 3692 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3693 continue;
3694
48f24c4d 3695 rq = cpu_rq(i);
dd41f596 3696 wl = weighted_cpuload(i);
2dd73a4f 3697
dd41f596 3698 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3699 continue;
1da177e4 3700
dd41f596
IM
3701 if (wl > max_load) {
3702 max_load = wl;
48f24c4d 3703 busiest = rq;
1da177e4
LT
3704 }
3705 }
3706
3707 return busiest;
3708}
3709
77391d71
NP
3710/*
3711 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3712 * so long as it is large enough.
3713 */
3714#define MAX_PINNED_INTERVAL 512
3715
1da177e4
LT
3716/*
3717 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3718 * tasks if there is an imbalance.
1da177e4 3719 */
70b97a7f 3720static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3721 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3722 int *balance, struct cpumask *cpus)
1da177e4 3723{
43010659 3724 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3725 struct sched_group *group;
1da177e4 3726 unsigned long imbalance;
70b97a7f 3727 struct rq *busiest;
fe2eea3f 3728 unsigned long flags;
5969fe06 3729
96f874e2 3730 cpumask_setall(cpus);
7c16ec58 3731
89c4710e
SS
3732 /*
3733 * When power savings policy is enabled for the parent domain, idle
3734 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3735 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3736 * portraying it as CPU_NOT_IDLE.
89c4710e 3737 */
d15bcfdb 3738 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3739 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3740 sd_idle = 1;
1da177e4 3741
2d72376b 3742 schedstat_inc(sd, lb_count[idle]);
1da177e4 3743
0a2966b4 3744redo:
c8cba857 3745 update_shares(sd);
0a2966b4 3746 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3747 cpus, balance);
783609c6 3748
06066714 3749 if (*balance == 0)
783609c6 3750 goto out_balanced;
783609c6 3751
1da177e4
LT
3752 if (!group) {
3753 schedstat_inc(sd, lb_nobusyg[idle]);
3754 goto out_balanced;
3755 }
3756
7c16ec58 3757 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3758 if (!busiest) {
3759 schedstat_inc(sd, lb_nobusyq[idle]);
3760 goto out_balanced;
3761 }
3762
db935dbd 3763 BUG_ON(busiest == this_rq);
1da177e4
LT
3764
3765 schedstat_add(sd, lb_imbalance[idle], imbalance);
3766
43010659 3767 ld_moved = 0;
1da177e4
LT
3768 if (busiest->nr_running > 1) {
3769 /*
3770 * Attempt to move tasks. If find_busiest_group has found
3771 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3772 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3773 * correctly treated as an imbalance.
3774 */
fe2eea3f 3775 local_irq_save(flags);
e17224bf 3776 double_rq_lock(this_rq, busiest);
43010659 3777 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3778 imbalance, sd, idle, &all_pinned);
e17224bf 3779 double_rq_unlock(this_rq, busiest);
fe2eea3f 3780 local_irq_restore(flags);
81026794 3781
46cb4b7c
SS
3782 /*
3783 * some other cpu did the load balance for us.
3784 */
43010659 3785 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3786 resched_cpu(this_cpu);
3787
81026794 3788 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3789 if (unlikely(all_pinned)) {
96f874e2
RR
3790 cpumask_clear_cpu(cpu_of(busiest), cpus);
3791 if (!cpumask_empty(cpus))
0a2966b4 3792 goto redo;
81026794 3793 goto out_balanced;
0a2966b4 3794 }
1da177e4 3795 }
81026794 3796
43010659 3797 if (!ld_moved) {
1da177e4
LT
3798 schedstat_inc(sd, lb_failed[idle]);
3799 sd->nr_balance_failed++;
3800
3801 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3802
fe2eea3f 3803 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3804
3805 /* don't kick the migration_thread, if the curr
3806 * task on busiest cpu can't be moved to this_cpu
3807 */
96f874e2
RR
3808 if (!cpumask_test_cpu(this_cpu,
3809 &busiest->curr->cpus_allowed)) {
fe2eea3f 3810 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3811 all_pinned = 1;
3812 goto out_one_pinned;
3813 }
3814
1da177e4
LT
3815 if (!busiest->active_balance) {
3816 busiest->active_balance = 1;
3817 busiest->push_cpu = this_cpu;
81026794 3818 active_balance = 1;
1da177e4 3819 }
fe2eea3f 3820 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3821 if (active_balance)
1da177e4
LT
3822 wake_up_process(busiest->migration_thread);
3823
3824 /*
3825 * We've kicked active balancing, reset the failure
3826 * counter.
3827 */
39507451 3828 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3829 }
81026794 3830 } else
1da177e4
LT
3831 sd->nr_balance_failed = 0;
3832
81026794 3833 if (likely(!active_balance)) {
1da177e4
LT
3834 /* We were unbalanced, so reset the balancing interval */
3835 sd->balance_interval = sd->min_interval;
81026794
NP
3836 } else {
3837 /*
3838 * If we've begun active balancing, start to back off. This
3839 * case may not be covered by the all_pinned logic if there
3840 * is only 1 task on the busy runqueue (because we don't call
3841 * move_tasks).
3842 */
3843 if (sd->balance_interval < sd->max_interval)
3844 sd->balance_interval *= 2;
1da177e4
LT
3845 }
3846
43010659 3847 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3849 ld_moved = -1;
3850
3851 goto out;
1da177e4
LT
3852
3853out_balanced:
1da177e4
LT
3854 schedstat_inc(sd, lb_balanced[idle]);
3855
16cfb1c0 3856 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3857
3858out_one_pinned:
1da177e4 3859 /* tune up the balancing interval */
77391d71
NP
3860 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3861 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3862 sd->balance_interval *= 2;
3863
48f24c4d 3864 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3865 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3866 ld_moved = -1;
3867 else
3868 ld_moved = 0;
3869out:
c8cba857
PZ
3870 if (ld_moved)
3871 update_shares(sd);
c09595f6 3872 return ld_moved;
1da177e4
LT
3873}
3874
3875/*
3876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3877 * tasks if there is an imbalance.
3878 *
d15bcfdb 3879 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3880 * this_rq is locked.
3881 */
48f24c4d 3882static int
7c16ec58 3883load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3884 struct cpumask *cpus)
1da177e4
LT
3885{
3886 struct sched_group *group;
70b97a7f 3887 struct rq *busiest = NULL;
1da177e4 3888 unsigned long imbalance;
43010659 3889 int ld_moved = 0;
5969fe06 3890 int sd_idle = 0;
969bb4e4 3891 int all_pinned = 0;
7c16ec58 3892
96f874e2 3893 cpumask_setall(cpus);
5969fe06 3894
89c4710e
SS
3895 /*
3896 * When power savings policy is enabled for the parent domain, idle
3897 * sibling can pick up load irrespective of busy siblings. In this case,
3898 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3899 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3900 */
3901 if (sd->flags & SD_SHARE_CPUPOWER &&
3902 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3903 sd_idle = 1;
1da177e4 3904
2d72376b 3905 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3906redo:
3e5459b4 3907 update_shares_locked(this_rq, sd);
d15bcfdb 3908 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3909 &sd_idle, cpus, NULL);
1da177e4 3910 if (!group) {
d15bcfdb 3911 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3912 goto out_balanced;
1da177e4
LT
3913 }
3914
7c16ec58 3915 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3916 if (!busiest) {
d15bcfdb 3917 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3918 goto out_balanced;
1da177e4
LT
3919 }
3920
db935dbd
NP
3921 BUG_ON(busiest == this_rq);
3922
d15bcfdb 3923 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3924
43010659 3925 ld_moved = 0;
d6d5cfaf
NP
3926 if (busiest->nr_running > 1) {
3927 /* Attempt to move tasks */
3928 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3929 /* this_rq->clock is already updated */
3930 update_rq_clock(busiest);
43010659 3931 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3932 imbalance, sd, CPU_NEWLY_IDLE,
3933 &all_pinned);
1b12bbc7 3934 double_unlock_balance(this_rq, busiest);
0a2966b4 3935
969bb4e4 3936 if (unlikely(all_pinned)) {
96f874e2
RR
3937 cpumask_clear_cpu(cpu_of(busiest), cpus);
3938 if (!cpumask_empty(cpus))
0a2966b4
CL
3939 goto redo;
3940 }
d6d5cfaf
NP
3941 }
3942
43010659 3943 if (!ld_moved) {
36dffab6 3944 int active_balance = 0;
ad273b32 3945
d15bcfdb 3946 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3947 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3948 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3949 return -1;
ad273b32
VS
3950
3951 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3952 return -1;
3953
3954 if (sd->nr_balance_failed++ < 2)
3955 return -1;
3956
3957 /*
3958 * The only task running in a non-idle cpu can be moved to this
3959 * cpu in an attempt to completely freeup the other CPU
3960 * package. The same method used to move task in load_balance()
3961 * have been extended for load_balance_newidle() to speedup
3962 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3963 *
3964 * The package power saving logic comes from
3965 * find_busiest_group(). If there are no imbalance, then
3966 * f_b_g() will return NULL. However when sched_mc={1,2} then
3967 * f_b_g() will select a group from which a running task may be
3968 * pulled to this cpu in order to make the other package idle.
3969 * If there is no opportunity to make a package idle and if
3970 * there are no imbalance, then f_b_g() will return NULL and no
3971 * action will be taken in load_balance_newidle().
3972 *
3973 * Under normal task pull operation due to imbalance, there
3974 * will be more than one task in the source run queue and
3975 * move_tasks() will succeed. ld_moved will be true and this
3976 * active balance code will not be triggered.
3977 */
3978
3979 /* Lock busiest in correct order while this_rq is held */
3980 double_lock_balance(this_rq, busiest);
3981
3982 /*
3983 * don't kick the migration_thread, if the curr
3984 * task on busiest cpu can't be moved to this_cpu
3985 */
6ca09dfc 3986 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3987 double_unlock_balance(this_rq, busiest);
3988 all_pinned = 1;
3989 return ld_moved;
3990 }
3991
3992 if (!busiest->active_balance) {
3993 busiest->active_balance = 1;
3994 busiest->push_cpu = this_cpu;
3995 active_balance = 1;
3996 }
3997
3998 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3999 /*
4000 * Should not call ttwu while holding a rq->lock
4001 */
4002 spin_unlock(&this_rq->lock);
ad273b32
VS
4003 if (active_balance)
4004 wake_up_process(busiest->migration_thread);
da8d5089 4005 spin_lock(&this_rq->lock);
ad273b32 4006
5969fe06 4007 } else
16cfb1c0 4008 sd->nr_balance_failed = 0;
1da177e4 4009
3e5459b4 4010 update_shares_locked(this_rq, sd);
43010659 4011 return ld_moved;
16cfb1c0
NP
4012
4013out_balanced:
d15bcfdb 4014 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4015 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4016 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4017 return -1;
16cfb1c0 4018 sd->nr_balance_failed = 0;
48f24c4d 4019
16cfb1c0 4020 return 0;
1da177e4
LT
4021}
4022
4023/*
4024 * idle_balance is called by schedule() if this_cpu is about to become
4025 * idle. Attempts to pull tasks from other CPUs.
4026 */
70b97a7f 4027static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4028{
4029 struct sched_domain *sd;
efbe027e 4030 int pulled_task = 0;
dd41f596 4031 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
4032 cpumask_var_t tmpmask;
4033
4034 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4035 return;
1da177e4
LT
4036
4037 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4038 unsigned long interval;
4039
4040 if (!(sd->flags & SD_LOAD_BALANCE))
4041 continue;
4042
4043 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4044 /* If we've pulled tasks over stop searching: */
7c16ec58 4045 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 4046 sd, tmpmask);
92c4ca5c
CL
4047
4048 interval = msecs_to_jiffies(sd->balance_interval);
4049 if (time_after(next_balance, sd->last_balance + interval))
4050 next_balance = sd->last_balance + interval;
4051 if (pulled_task)
4052 break;
1da177e4 4053 }
dd41f596 4054 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4055 /*
4056 * We are going idle. next_balance may be set based on
4057 * a busy processor. So reset next_balance.
4058 */
4059 this_rq->next_balance = next_balance;
dd41f596 4060 }
4d2732c6 4061 free_cpumask_var(tmpmask);
1da177e4
LT
4062}
4063
4064/*
4065 * active_load_balance is run by migration threads. It pushes running tasks
4066 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4067 * running on each physical CPU where possible, and avoids physical /
4068 * logical imbalances.
4069 *
4070 * Called with busiest_rq locked.
4071 */
70b97a7f 4072static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4073{
39507451 4074 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4075 struct sched_domain *sd;
4076 struct rq *target_rq;
39507451 4077
48f24c4d 4078 /* Is there any task to move? */
39507451 4079 if (busiest_rq->nr_running <= 1)
39507451
NP
4080 return;
4081
4082 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4083
4084 /*
39507451 4085 * This condition is "impossible", if it occurs
41a2d6cf 4086 * we need to fix it. Originally reported by
39507451 4087 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4088 */
39507451 4089 BUG_ON(busiest_rq == target_rq);
1da177e4 4090
39507451
NP
4091 /* move a task from busiest_rq to target_rq */
4092 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4093 update_rq_clock(busiest_rq);
4094 update_rq_clock(target_rq);
39507451
NP
4095
4096 /* Search for an sd spanning us and the target CPU. */
c96d145e 4097 for_each_domain(target_cpu, sd) {
39507451 4098 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4099 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4100 break;
c96d145e 4101 }
39507451 4102
48f24c4d 4103 if (likely(sd)) {
2d72376b 4104 schedstat_inc(sd, alb_count);
39507451 4105
43010659
PW
4106 if (move_one_task(target_rq, target_cpu, busiest_rq,
4107 sd, CPU_IDLE))
48f24c4d
IM
4108 schedstat_inc(sd, alb_pushed);
4109 else
4110 schedstat_inc(sd, alb_failed);
4111 }
1b12bbc7 4112 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4113}
4114
46cb4b7c
SS
4115#ifdef CONFIG_NO_HZ
4116static struct {
4117 atomic_t load_balancer;
7d1e6a9b 4118 cpumask_var_t cpu_mask;
46cb4b7c
SS
4119} nohz ____cacheline_aligned = {
4120 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4121};
4122
7835b98b 4123/*
46cb4b7c
SS
4124 * This routine will try to nominate the ilb (idle load balancing)
4125 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4126 * load balancing on behalf of all those cpus. If all the cpus in the system
4127 * go into this tickless mode, then there will be no ilb owner (as there is
4128 * no need for one) and all the cpus will sleep till the next wakeup event
4129 * arrives...
4130 *
4131 * For the ilb owner, tick is not stopped. And this tick will be used
4132 * for idle load balancing. ilb owner will still be part of
4133 * nohz.cpu_mask..
7835b98b 4134 *
46cb4b7c
SS
4135 * While stopping the tick, this cpu will become the ilb owner if there
4136 * is no other owner. And will be the owner till that cpu becomes busy
4137 * or if all cpus in the system stop their ticks at which point
4138 * there is no need for ilb owner.
4139 *
4140 * When the ilb owner becomes busy, it nominates another owner, during the
4141 * next busy scheduler_tick()
4142 */
4143int select_nohz_load_balancer(int stop_tick)
4144{
4145 int cpu = smp_processor_id();
4146
4147 if (stop_tick) {
46cb4b7c
SS
4148 cpu_rq(cpu)->in_nohz_recently = 1;
4149
483b4ee6
SS
4150 if (!cpu_active(cpu)) {
4151 if (atomic_read(&nohz.load_balancer) != cpu)
4152 return 0;
4153
4154 /*
4155 * If we are going offline and still the leader,
4156 * give up!
4157 */
46cb4b7c
SS
4158 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4159 BUG();
483b4ee6 4160
46cb4b7c
SS
4161 return 0;
4162 }
4163
483b4ee6
SS
4164 cpumask_set_cpu(cpu, nohz.cpu_mask);
4165
46cb4b7c 4166 /* time for ilb owner also to sleep */
7d1e6a9b 4167 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4168 if (atomic_read(&nohz.load_balancer) == cpu)
4169 atomic_set(&nohz.load_balancer, -1);
4170 return 0;
4171 }
4172
4173 if (atomic_read(&nohz.load_balancer) == -1) {
4174 /* make me the ilb owner */
4175 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4176 return 1;
4177 } else if (atomic_read(&nohz.load_balancer) == cpu)
4178 return 1;
4179 } else {
7d1e6a9b 4180 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4181 return 0;
4182
7d1e6a9b 4183 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4184
4185 if (atomic_read(&nohz.load_balancer) == cpu)
4186 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4187 BUG();
4188 }
4189 return 0;
4190}
4191#endif
4192
4193static DEFINE_SPINLOCK(balancing);
4194
4195/*
7835b98b
CL
4196 * It checks each scheduling domain to see if it is due to be balanced,
4197 * and initiates a balancing operation if so.
4198 *
4199 * Balancing parameters are set up in arch_init_sched_domains.
4200 */
a9957449 4201static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4202{
46cb4b7c
SS
4203 int balance = 1;
4204 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4205 unsigned long interval;
4206 struct sched_domain *sd;
46cb4b7c 4207 /* Earliest time when we have to do rebalance again */
c9819f45 4208 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4209 int update_next_balance = 0;
d07355f5 4210 int need_serialize;
a0e90245
RR
4211 cpumask_var_t tmp;
4212
4213 /* Fails alloc? Rebalancing probably not a priority right now. */
4214 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4215 return;
1da177e4 4216
46cb4b7c 4217 for_each_domain(cpu, sd) {
1da177e4
LT
4218 if (!(sd->flags & SD_LOAD_BALANCE))
4219 continue;
4220
4221 interval = sd->balance_interval;
d15bcfdb 4222 if (idle != CPU_IDLE)
1da177e4
LT
4223 interval *= sd->busy_factor;
4224
4225 /* scale ms to jiffies */
4226 interval = msecs_to_jiffies(interval);
4227 if (unlikely(!interval))
4228 interval = 1;
dd41f596
IM
4229 if (interval > HZ*NR_CPUS/10)
4230 interval = HZ*NR_CPUS/10;
4231
d07355f5 4232 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4233
d07355f5 4234 if (need_serialize) {
08c183f3
CL
4235 if (!spin_trylock(&balancing))
4236 goto out;
4237 }
4238
c9819f45 4239 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4240 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4241 /*
4242 * We've pulled tasks over so either we're no
5969fe06
NP
4243 * longer idle, or one of our SMT siblings is
4244 * not idle.
4245 */
d15bcfdb 4246 idle = CPU_NOT_IDLE;
1da177e4 4247 }
1bd77f2d 4248 sd->last_balance = jiffies;
1da177e4 4249 }
d07355f5 4250 if (need_serialize)
08c183f3
CL
4251 spin_unlock(&balancing);
4252out:
f549da84 4253 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4254 next_balance = sd->last_balance + interval;
f549da84
SS
4255 update_next_balance = 1;
4256 }
783609c6
SS
4257
4258 /*
4259 * Stop the load balance at this level. There is another
4260 * CPU in our sched group which is doing load balancing more
4261 * actively.
4262 */
4263 if (!balance)
4264 break;
1da177e4 4265 }
f549da84
SS
4266
4267 /*
4268 * next_balance will be updated only when there is a need.
4269 * When the cpu is attached to null domain for ex, it will not be
4270 * updated.
4271 */
4272 if (likely(update_next_balance))
4273 rq->next_balance = next_balance;
a0e90245
RR
4274
4275 free_cpumask_var(tmp);
46cb4b7c
SS
4276}
4277
4278/*
4279 * run_rebalance_domains is triggered when needed from the scheduler tick.
4280 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4281 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4282 */
4283static void run_rebalance_domains(struct softirq_action *h)
4284{
dd41f596
IM
4285 int this_cpu = smp_processor_id();
4286 struct rq *this_rq = cpu_rq(this_cpu);
4287 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4288 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4289
dd41f596 4290 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4291
4292#ifdef CONFIG_NO_HZ
4293 /*
4294 * If this cpu is the owner for idle load balancing, then do the
4295 * balancing on behalf of the other idle cpus whose ticks are
4296 * stopped.
4297 */
dd41f596
IM
4298 if (this_rq->idle_at_tick &&
4299 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4300 struct rq *rq;
4301 int balance_cpu;
4302
7d1e6a9b
RR
4303 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4304 if (balance_cpu == this_cpu)
4305 continue;
4306
46cb4b7c
SS
4307 /*
4308 * If this cpu gets work to do, stop the load balancing
4309 * work being done for other cpus. Next load
4310 * balancing owner will pick it up.
4311 */
4312 if (need_resched())
4313 break;
4314
de0cf899 4315 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4316
4317 rq = cpu_rq(balance_cpu);
dd41f596
IM
4318 if (time_after(this_rq->next_balance, rq->next_balance))
4319 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4320 }
4321 }
4322#endif
4323}
4324
8a0be9ef
FW
4325static inline int on_null_domain(int cpu)
4326{
4327 return !rcu_dereference(cpu_rq(cpu)->sd);
4328}
4329
46cb4b7c
SS
4330/*
4331 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4332 *
4333 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4334 * idle load balancing owner or decide to stop the periodic load balancing,
4335 * if the whole system is idle.
4336 */
dd41f596 4337static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4338{
46cb4b7c
SS
4339#ifdef CONFIG_NO_HZ
4340 /*
4341 * If we were in the nohz mode recently and busy at the current
4342 * scheduler tick, then check if we need to nominate new idle
4343 * load balancer.
4344 */
4345 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4346 rq->in_nohz_recently = 0;
4347
4348 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4349 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4350 atomic_set(&nohz.load_balancer, -1);
4351 }
4352
4353 if (atomic_read(&nohz.load_balancer) == -1) {
4354 /*
4355 * simple selection for now: Nominate the
4356 * first cpu in the nohz list to be the next
4357 * ilb owner.
4358 *
4359 * TBD: Traverse the sched domains and nominate
4360 * the nearest cpu in the nohz.cpu_mask.
4361 */
7d1e6a9b 4362 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4363
434d53b0 4364 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4365 resched_cpu(ilb);
4366 }
4367 }
4368
4369 /*
4370 * If this cpu is idle and doing idle load balancing for all the
4371 * cpus with ticks stopped, is it time for that to stop?
4372 */
4373 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4374 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4375 resched_cpu(cpu);
4376 return;
4377 }
4378
4379 /*
4380 * If this cpu is idle and the idle load balancing is done by
4381 * someone else, then no need raise the SCHED_SOFTIRQ
4382 */
4383 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4384 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4385 return;
4386#endif
8a0be9ef
FW
4387 /* Don't need to rebalance while attached to NULL domain */
4388 if (time_after_eq(jiffies, rq->next_balance) &&
4389 likely(!on_null_domain(cpu)))
46cb4b7c 4390 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4391}
dd41f596
IM
4392
4393#else /* CONFIG_SMP */
4394
1da177e4
LT
4395/*
4396 * on UP we do not need to balance between CPUs:
4397 */
70b97a7f 4398static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4399{
4400}
dd41f596 4401
1da177e4
LT
4402#endif
4403
1da177e4
LT
4404DEFINE_PER_CPU(struct kernel_stat, kstat);
4405
4406EXPORT_PER_CPU_SYMBOL(kstat);
4407
4408/*
f06febc9
FM
4409 * Return any ns on the sched_clock that have not yet been banked in
4410 * @p in case that task is currently running.
1da177e4 4411 */
bb34d92f 4412unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4413{
1da177e4 4414 unsigned long flags;
41b86e9c 4415 struct rq *rq;
bb34d92f 4416 u64 ns = 0;
48f24c4d 4417
41b86e9c 4418 rq = task_rq_lock(p, &flags);
1508487e 4419
051a1d1a 4420 if (task_current(rq, p)) {
f06febc9
FM
4421 u64 delta_exec;
4422
a8e504d2
IM
4423 update_rq_clock(rq);
4424 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4425 if ((s64)delta_exec > 0)
bb34d92f 4426 ns = delta_exec;
41b86e9c 4427 }
48f24c4d 4428
41b86e9c 4429 task_rq_unlock(rq, &flags);
48f24c4d 4430
1da177e4
LT
4431 return ns;
4432}
4433
1da177e4
LT
4434/*
4435 * Account user cpu time to a process.
4436 * @p: the process that the cpu time gets accounted to
1da177e4 4437 * @cputime: the cpu time spent in user space since the last update
457533a7 4438 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4439 */
457533a7
MS
4440void account_user_time(struct task_struct *p, cputime_t cputime,
4441 cputime_t cputime_scaled)
1da177e4
LT
4442{
4443 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4444 cputime64_t tmp;
4445
457533a7 4446 /* Add user time to process. */
1da177e4 4447 p->utime = cputime_add(p->utime, cputime);
457533a7 4448 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4449 account_group_user_time(p, cputime);
1da177e4
LT
4450
4451 /* Add user time to cpustat. */
4452 tmp = cputime_to_cputime64(cputime);
4453 if (TASK_NICE(p) > 0)
4454 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4455 else
4456 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4457 /* Account for user time used */
4458 acct_update_integrals(p);
1da177e4
LT
4459}
4460
94886b84
LV
4461/*
4462 * Account guest cpu time to a process.
4463 * @p: the process that the cpu time gets accounted to
4464 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4465 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4466 */
457533a7
MS
4467static void account_guest_time(struct task_struct *p, cputime_t cputime,
4468 cputime_t cputime_scaled)
94886b84
LV
4469{
4470 cputime64_t tmp;
4471 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4472
4473 tmp = cputime_to_cputime64(cputime);
4474
457533a7 4475 /* Add guest time to process. */
94886b84 4476 p->utime = cputime_add(p->utime, cputime);
457533a7 4477 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4478 account_group_user_time(p, cputime);
94886b84
LV
4479 p->gtime = cputime_add(p->gtime, cputime);
4480
457533a7 4481 /* Add guest time to cpustat. */
94886b84
LV
4482 cpustat->user = cputime64_add(cpustat->user, tmp);
4483 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4484}
4485
1da177e4
LT
4486/*
4487 * Account system cpu time to a process.
4488 * @p: the process that the cpu time gets accounted to
4489 * @hardirq_offset: the offset to subtract from hardirq_count()
4490 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4491 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4492 */
4493void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4494 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4495{
4496 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4497 cputime64_t tmp;
4498
983ed7a6 4499 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4500 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4501 return;
4502 }
94886b84 4503
457533a7 4504 /* Add system time to process. */
1da177e4 4505 p->stime = cputime_add(p->stime, cputime);
457533a7 4506 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4507 account_group_system_time(p, cputime);
1da177e4
LT
4508
4509 /* Add system time to cpustat. */
4510 tmp = cputime_to_cputime64(cputime);
4511 if (hardirq_count() - hardirq_offset)
4512 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4513 else if (softirq_count())
4514 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4515 else
79741dd3
MS
4516 cpustat->system = cputime64_add(cpustat->system, tmp);
4517
1da177e4
LT
4518 /* Account for system time used */
4519 acct_update_integrals(p);
1da177e4
LT
4520}
4521
c66f08be 4522/*
1da177e4 4523 * Account for involuntary wait time.
1da177e4 4524 * @steal: the cpu time spent in involuntary wait
c66f08be 4525 */
79741dd3 4526void account_steal_time(cputime_t cputime)
c66f08be 4527{
79741dd3
MS
4528 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4529 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4530
4531 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4532}
4533
1da177e4 4534/*
79741dd3
MS
4535 * Account for idle time.
4536 * @cputime: the cpu time spent in idle wait
1da177e4 4537 */
79741dd3 4538void account_idle_time(cputime_t cputime)
1da177e4
LT
4539{
4540 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4541 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4542 struct rq *rq = this_rq();
1da177e4 4543
79741dd3
MS
4544 if (atomic_read(&rq->nr_iowait) > 0)
4545 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4546 else
4547 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4548}
4549
79741dd3
MS
4550#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4551
4552/*
4553 * Account a single tick of cpu time.
4554 * @p: the process that the cpu time gets accounted to
4555 * @user_tick: indicates if the tick is a user or a system tick
4556 */
4557void account_process_tick(struct task_struct *p, int user_tick)
4558{
4559 cputime_t one_jiffy = jiffies_to_cputime(1);
4560 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4561 struct rq *rq = this_rq();
4562
4563 if (user_tick)
4564 account_user_time(p, one_jiffy, one_jiffy_scaled);
4565 else if (p != rq->idle)
4566 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4567 one_jiffy_scaled);
4568 else
4569 account_idle_time(one_jiffy);
4570}
4571
4572/*
4573 * Account multiple ticks of steal time.
4574 * @p: the process from which the cpu time has been stolen
4575 * @ticks: number of stolen ticks
4576 */
4577void account_steal_ticks(unsigned long ticks)
4578{
4579 account_steal_time(jiffies_to_cputime(ticks));
4580}
4581
4582/*
4583 * Account multiple ticks of idle time.
4584 * @ticks: number of stolen ticks
4585 */
4586void account_idle_ticks(unsigned long ticks)
4587{
4588 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4589}
4590
79741dd3
MS
4591#endif
4592
49048622
BS
4593/*
4594 * Use precise platform statistics if available:
4595 */
4596#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4597cputime_t task_utime(struct task_struct *p)
4598{
4599 return p->utime;
4600}
4601
4602cputime_t task_stime(struct task_struct *p)
4603{
4604 return p->stime;
4605}
4606#else
4607cputime_t task_utime(struct task_struct *p)
4608{
4609 clock_t utime = cputime_to_clock_t(p->utime),
4610 total = utime + cputime_to_clock_t(p->stime);
4611 u64 temp;
4612
4613 /*
4614 * Use CFS's precise accounting:
4615 */
4616 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4617
4618 if (total) {
4619 temp *= utime;
4620 do_div(temp, total);
4621 }
4622 utime = (clock_t)temp;
4623
4624 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4625 return p->prev_utime;
4626}
4627
4628cputime_t task_stime(struct task_struct *p)
4629{
4630 clock_t stime;
4631
4632 /*
4633 * Use CFS's precise accounting. (we subtract utime from
4634 * the total, to make sure the total observed by userspace
4635 * grows monotonically - apps rely on that):
4636 */
4637 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4638 cputime_to_clock_t(task_utime(p));
4639
4640 if (stime >= 0)
4641 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4642
4643 return p->prev_stime;
4644}
4645#endif
4646
4647inline cputime_t task_gtime(struct task_struct *p)
4648{
4649 return p->gtime;
4650}
4651
7835b98b
CL
4652/*
4653 * This function gets called by the timer code, with HZ frequency.
4654 * We call it with interrupts disabled.
4655 *
4656 * It also gets called by the fork code, when changing the parent's
4657 * timeslices.
4658 */
4659void scheduler_tick(void)
4660{
7835b98b
CL
4661 int cpu = smp_processor_id();
4662 struct rq *rq = cpu_rq(cpu);
dd41f596 4663 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4664
4665 sched_clock_tick();
dd41f596
IM
4666
4667 spin_lock(&rq->lock);
3e51f33f 4668 update_rq_clock(rq);
f1a438d8 4669 update_cpu_load(rq);
fa85ae24 4670 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4671 spin_unlock(&rq->lock);
7835b98b 4672
e418e1c2 4673#ifdef CONFIG_SMP
dd41f596
IM
4674 rq->idle_at_tick = idle_cpu(cpu);
4675 trigger_load_balance(rq, cpu);
e418e1c2 4676#endif
1da177e4
LT
4677}
4678
6cd8a4bb
SR
4679#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4680 defined(CONFIG_PREEMPT_TRACER))
4681
4682static inline unsigned long get_parent_ip(unsigned long addr)
4683{
4684 if (in_lock_functions(addr)) {
4685 addr = CALLER_ADDR2;
4686 if (in_lock_functions(addr))
4687 addr = CALLER_ADDR3;
4688 }
4689 return addr;
4690}
1da177e4 4691
43627582 4692void __kprobes add_preempt_count(int val)
1da177e4 4693{
6cd8a4bb 4694#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4695 /*
4696 * Underflow?
4697 */
9a11b49a
IM
4698 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4699 return;
6cd8a4bb 4700#endif
1da177e4 4701 preempt_count() += val;
6cd8a4bb 4702#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4703 /*
4704 * Spinlock count overflowing soon?
4705 */
33859f7f
MOS
4706 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4707 PREEMPT_MASK - 10);
6cd8a4bb
SR
4708#endif
4709 if (preempt_count() == val)
4710 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4711}
4712EXPORT_SYMBOL(add_preempt_count);
4713
43627582 4714void __kprobes sub_preempt_count(int val)
1da177e4 4715{
6cd8a4bb 4716#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4717 /*
4718 * Underflow?
4719 */
01e3eb82 4720 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4721 return;
1da177e4
LT
4722 /*
4723 * Is the spinlock portion underflowing?
4724 */
9a11b49a
IM
4725 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4726 !(preempt_count() & PREEMPT_MASK)))
4727 return;
6cd8a4bb 4728#endif
9a11b49a 4729
6cd8a4bb
SR
4730 if (preempt_count() == val)
4731 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4732 preempt_count() -= val;
4733}
4734EXPORT_SYMBOL(sub_preempt_count);
4735
4736#endif
4737
4738/*
dd41f596 4739 * Print scheduling while atomic bug:
1da177e4 4740 */
dd41f596 4741static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4742{
838225b4
SS
4743 struct pt_regs *regs = get_irq_regs();
4744
4745 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4746 prev->comm, prev->pid, preempt_count());
4747
dd41f596 4748 debug_show_held_locks(prev);
e21f5b15 4749 print_modules();
dd41f596
IM
4750 if (irqs_disabled())
4751 print_irqtrace_events(prev);
838225b4
SS
4752
4753 if (regs)
4754 show_regs(regs);
4755 else
4756 dump_stack();
dd41f596 4757}
1da177e4 4758
dd41f596
IM
4759/*
4760 * Various schedule()-time debugging checks and statistics:
4761 */
4762static inline void schedule_debug(struct task_struct *prev)
4763{
1da177e4 4764 /*
41a2d6cf 4765 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4766 * schedule() atomically, we ignore that path for now.
4767 * Otherwise, whine if we are scheduling when we should not be.
4768 */
3f33a7ce 4769 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4770 __schedule_bug(prev);
4771
1da177e4
LT
4772 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4773
2d72376b 4774 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4775#ifdef CONFIG_SCHEDSTATS
4776 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4777 schedstat_inc(this_rq(), bkl_count);
4778 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4779 }
4780#endif
dd41f596
IM
4781}
4782
df1c99d4
MG
4783static void put_prev_task(struct rq *rq, struct task_struct *prev)
4784{
4785 if (prev->state == TASK_RUNNING) {
4786 u64 runtime = prev->se.sum_exec_runtime;
4787
4788 runtime -= prev->se.prev_sum_exec_runtime;
4789 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4790
4791 /*
4792 * In order to avoid avg_overlap growing stale when we are
4793 * indeed overlapping and hence not getting put to sleep, grow
4794 * the avg_overlap on preemption.
4795 *
4796 * We use the average preemption runtime because that
4797 * correlates to the amount of cache footprint a task can
4798 * build up.
4799 */
4800 update_avg(&prev->se.avg_overlap, runtime);
4801 }
4802 prev->sched_class->put_prev_task(rq, prev);
4803}
4804
dd41f596
IM
4805/*
4806 * Pick up the highest-prio task:
4807 */
4808static inline struct task_struct *
b67802ea 4809pick_next_task(struct rq *rq)
dd41f596 4810{
5522d5d5 4811 const struct sched_class *class;
dd41f596 4812 struct task_struct *p;
1da177e4
LT
4813
4814 /*
dd41f596
IM
4815 * Optimization: we know that if all tasks are in
4816 * the fair class we can call that function directly:
1da177e4 4817 */
dd41f596 4818 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4819 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4820 if (likely(p))
4821 return p;
1da177e4
LT
4822 }
4823
dd41f596
IM
4824 class = sched_class_highest;
4825 for ( ; ; ) {
fb8d4724 4826 p = class->pick_next_task(rq);
dd41f596
IM
4827 if (p)
4828 return p;
4829 /*
4830 * Will never be NULL as the idle class always
4831 * returns a non-NULL p:
4832 */
4833 class = class->next;
4834 }
4835}
1da177e4 4836
dd41f596
IM
4837/*
4838 * schedule() is the main scheduler function.
4839 */
4840asmlinkage void __sched schedule(void)
4841{
4842 struct task_struct *prev, *next;
67ca7bde 4843 unsigned long *switch_count;
dd41f596 4844 struct rq *rq;
31656519 4845 int cpu;
dd41f596
IM
4846
4847need_resched:
4848 preempt_disable();
4849 cpu = smp_processor_id();
4850 rq = cpu_rq(cpu);
4851 rcu_qsctr_inc(cpu);
4852 prev = rq->curr;
4853 switch_count = &prev->nivcsw;
4854
4855 release_kernel_lock(prev);
4856need_resched_nonpreemptible:
4857
4858 schedule_debug(prev);
1da177e4 4859
31656519 4860 if (sched_feat(HRTICK))
f333fdc9 4861 hrtick_clear(rq);
8f4d37ec 4862
8cd162ce 4863 spin_lock_irq(&rq->lock);
3e51f33f 4864 update_rq_clock(rq);
1e819950 4865 clear_tsk_need_resched(prev);
1da177e4 4866
1da177e4 4867 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4868 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4869 prev->state = TASK_RUNNING;
16882c1e 4870 else
2e1cb74a 4871 deactivate_task(rq, prev, 1);
dd41f596 4872 switch_count = &prev->nvcsw;
1da177e4
LT
4873 }
4874
9a897c5a
SR
4875#ifdef CONFIG_SMP
4876 if (prev->sched_class->pre_schedule)
4877 prev->sched_class->pre_schedule(rq, prev);
4878#endif
f65eda4f 4879
dd41f596 4880 if (unlikely(!rq->nr_running))
1da177e4 4881 idle_balance(cpu, rq);
1da177e4 4882
df1c99d4 4883 put_prev_task(rq, prev);
b67802ea 4884 next = pick_next_task(rq);
1da177e4 4885
1da177e4 4886 if (likely(prev != next)) {
673a90a1
DS
4887 sched_info_switch(prev, next);
4888
1da177e4
LT
4889 rq->nr_switches++;
4890 rq->curr = next;
4891 ++*switch_count;
4892
dd41f596 4893 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4894 /*
4895 * the context switch might have flipped the stack from under
4896 * us, hence refresh the local variables.
4897 */
4898 cpu = smp_processor_id();
4899 rq = cpu_rq(cpu);
1da177e4
LT
4900 } else
4901 spin_unlock_irq(&rq->lock);
4902
8f4d37ec 4903 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4904 goto need_resched_nonpreemptible;
8f4d37ec 4905
1da177e4
LT
4906 preempt_enable_no_resched();
4907 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4908 goto need_resched;
4909}
1da177e4
LT
4910EXPORT_SYMBOL(schedule);
4911
4912#ifdef CONFIG_PREEMPT
4913/*
2ed6e34f 4914 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4915 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4916 * occur there and call schedule directly.
4917 */
4918asmlinkage void __sched preempt_schedule(void)
4919{
4920 struct thread_info *ti = current_thread_info();
6478d880 4921
1da177e4
LT
4922 /*
4923 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4924 * we do not want to preempt the current task. Just return..
1da177e4 4925 */
beed33a8 4926 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4927 return;
4928
3a5c359a
AK
4929 do {
4930 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4931 schedule();
3a5c359a 4932 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4933
3a5c359a
AK
4934 /*
4935 * Check again in case we missed a preemption opportunity
4936 * between schedule and now.
4937 */
4938 barrier();
5ed0cec0 4939 } while (need_resched());
1da177e4 4940}
1da177e4
LT
4941EXPORT_SYMBOL(preempt_schedule);
4942
4943/*
2ed6e34f 4944 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4945 * off of irq context.
4946 * Note, that this is called and return with irqs disabled. This will
4947 * protect us against recursive calling from irq.
4948 */
4949asmlinkage void __sched preempt_schedule_irq(void)
4950{
4951 struct thread_info *ti = current_thread_info();
6478d880 4952
2ed6e34f 4953 /* Catch callers which need to be fixed */
1da177e4
LT
4954 BUG_ON(ti->preempt_count || !irqs_disabled());
4955
3a5c359a
AK
4956 do {
4957 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4958 local_irq_enable();
4959 schedule();
4960 local_irq_disable();
3a5c359a 4961 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4962
3a5c359a
AK
4963 /*
4964 * Check again in case we missed a preemption opportunity
4965 * between schedule and now.
4966 */
4967 barrier();
5ed0cec0 4968 } while (need_resched());
1da177e4
LT
4969}
4970
4971#endif /* CONFIG_PREEMPT */
4972
95cdf3b7
IM
4973int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4974 void *key)
1da177e4 4975{
48f24c4d 4976 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4977}
1da177e4
LT
4978EXPORT_SYMBOL(default_wake_function);
4979
4980/*
41a2d6cf
IM
4981 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4982 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4983 * number) then we wake all the non-exclusive tasks and one exclusive task.
4984 *
4985 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4986 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4987 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4988 */
777c6c5f
JW
4989void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4990 int nr_exclusive, int sync, void *key)
1da177e4 4991{
2e45874c 4992 wait_queue_t *curr, *next;
1da177e4 4993
2e45874c 4994 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4995 unsigned flags = curr->flags;
4996
1da177e4 4997 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4998 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4999 break;
5000 }
5001}
5002
5003/**
5004 * __wake_up - wake up threads blocked on a waitqueue.
5005 * @q: the waitqueue
5006 * @mode: which threads
5007 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5008 * @key: is directly passed to the wakeup function
1da177e4 5009 */
7ad5b3a5 5010void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5011 int nr_exclusive, void *key)
1da177e4
LT
5012{
5013 unsigned long flags;
5014
5015 spin_lock_irqsave(&q->lock, flags);
5016 __wake_up_common(q, mode, nr_exclusive, 0, key);
5017 spin_unlock_irqrestore(&q->lock, flags);
5018}
1da177e4
LT
5019EXPORT_SYMBOL(__wake_up);
5020
5021/*
5022 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5023 */
7ad5b3a5 5024void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5025{
5026 __wake_up_common(q, mode, 1, 0, NULL);
5027}
5028
5029/**
67be2dd1 5030 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
5031 * @q: the waitqueue
5032 * @mode: which threads
5033 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5034 *
5035 * The sync wakeup differs that the waker knows that it will schedule
5036 * away soon, so while the target thread will be woken up, it will not
5037 * be migrated to another CPU - ie. the two threads are 'synchronized'
5038 * with each other. This can prevent needless bouncing between CPUs.
5039 *
5040 * On UP it can prevent extra preemption.
5041 */
7ad5b3a5 5042void
95cdf3b7 5043__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
5044{
5045 unsigned long flags;
5046 int sync = 1;
5047
5048 if (unlikely(!q))
5049 return;
5050
5051 if (unlikely(!nr_exclusive))
5052 sync = 0;
5053
5054 spin_lock_irqsave(&q->lock, flags);
5055 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5056 spin_unlock_irqrestore(&q->lock, flags);
5057}
5058EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5059
65eb3dc6
KD
5060/**
5061 * complete: - signals a single thread waiting on this completion
5062 * @x: holds the state of this particular completion
5063 *
5064 * This will wake up a single thread waiting on this completion. Threads will be
5065 * awakened in the same order in which they were queued.
5066 *
5067 * See also complete_all(), wait_for_completion() and related routines.
5068 */
b15136e9 5069void complete(struct completion *x)
1da177e4
LT
5070{
5071 unsigned long flags;
5072
5073 spin_lock_irqsave(&x->wait.lock, flags);
5074 x->done++;
d9514f6c 5075 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5076 spin_unlock_irqrestore(&x->wait.lock, flags);
5077}
5078EXPORT_SYMBOL(complete);
5079
65eb3dc6
KD
5080/**
5081 * complete_all: - signals all threads waiting on this completion
5082 * @x: holds the state of this particular completion
5083 *
5084 * This will wake up all threads waiting on this particular completion event.
5085 */
b15136e9 5086void complete_all(struct completion *x)
1da177e4
LT
5087{
5088 unsigned long flags;
5089
5090 spin_lock_irqsave(&x->wait.lock, flags);
5091 x->done += UINT_MAX/2;
d9514f6c 5092 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5093 spin_unlock_irqrestore(&x->wait.lock, flags);
5094}
5095EXPORT_SYMBOL(complete_all);
5096
8cbbe86d
AK
5097static inline long __sched
5098do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5099{
1da177e4
LT
5100 if (!x->done) {
5101 DECLARE_WAITQUEUE(wait, current);
5102
5103 wait.flags |= WQ_FLAG_EXCLUSIVE;
5104 __add_wait_queue_tail(&x->wait, &wait);
5105 do {
94d3d824 5106 if (signal_pending_state(state, current)) {
ea71a546
ON
5107 timeout = -ERESTARTSYS;
5108 break;
8cbbe86d
AK
5109 }
5110 __set_current_state(state);
1da177e4
LT
5111 spin_unlock_irq(&x->wait.lock);
5112 timeout = schedule_timeout(timeout);
5113 spin_lock_irq(&x->wait.lock);
ea71a546 5114 } while (!x->done && timeout);
1da177e4 5115 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5116 if (!x->done)
5117 return timeout;
1da177e4
LT
5118 }
5119 x->done--;
ea71a546 5120 return timeout ?: 1;
1da177e4 5121}
1da177e4 5122
8cbbe86d
AK
5123static long __sched
5124wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5125{
1da177e4
LT
5126 might_sleep();
5127
5128 spin_lock_irq(&x->wait.lock);
8cbbe86d 5129 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5130 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5131 return timeout;
5132}
1da177e4 5133
65eb3dc6
KD
5134/**
5135 * wait_for_completion: - waits for completion of a task
5136 * @x: holds the state of this particular completion
5137 *
5138 * This waits to be signaled for completion of a specific task. It is NOT
5139 * interruptible and there is no timeout.
5140 *
5141 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5142 * and interrupt capability. Also see complete().
5143 */
b15136e9 5144void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5145{
5146 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5147}
8cbbe86d 5148EXPORT_SYMBOL(wait_for_completion);
1da177e4 5149
65eb3dc6
KD
5150/**
5151 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5152 * @x: holds the state of this particular completion
5153 * @timeout: timeout value in jiffies
5154 *
5155 * This waits for either a completion of a specific task to be signaled or for a
5156 * specified timeout to expire. The timeout is in jiffies. It is not
5157 * interruptible.
5158 */
b15136e9 5159unsigned long __sched
8cbbe86d 5160wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5161{
8cbbe86d 5162 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5163}
8cbbe86d 5164EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5165
65eb3dc6
KD
5166/**
5167 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5168 * @x: holds the state of this particular completion
5169 *
5170 * This waits for completion of a specific task to be signaled. It is
5171 * interruptible.
5172 */
8cbbe86d 5173int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5174{
51e97990
AK
5175 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5176 if (t == -ERESTARTSYS)
5177 return t;
5178 return 0;
0fec171c 5179}
8cbbe86d 5180EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5181
65eb3dc6
KD
5182/**
5183 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5184 * @x: holds the state of this particular completion
5185 * @timeout: timeout value in jiffies
5186 *
5187 * This waits for either a completion of a specific task to be signaled or for a
5188 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5189 */
b15136e9 5190unsigned long __sched
8cbbe86d
AK
5191wait_for_completion_interruptible_timeout(struct completion *x,
5192 unsigned long timeout)
0fec171c 5193{
8cbbe86d 5194 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5195}
8cbbe86d 5196EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5197
65eb3dc6
KD
5198/**
5199 * wait_for_completion_killable: - waits for completion of a task (killable)
5200 * @x: holds the state of this particular completion
5201 *
5202 * This waits to be signaled for completion of a specific task. It can be
5203 * interrupted by a kill signal.
5204 */
009e577e
MW
5205int __sched wait_for_completion_killable(struct completion *x)
5206{
5207 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5208 if (t == -ERESTARTSYS)
5209 return t;
5210 return 0;
5211}
5212EXPORT_SYMBOL(wait_for_completion_killable);
5213
be4de352
DC
5214/**
5215 * try_wait_for_completion - try to decrement a completion without blocking
5216 * @x: completion structure
5217 *
5218 * Returns: 0 if a decrement cannot be done without blocking
5219 * 1 if a decrement succeeded.
5220 *
5221 * If a completion is being used as a counting completion,
5222 * attempt to decrement the counter without blocking. This
5223 * enables us to avoid waiting if the resource the completion
5224 * is protecting is not available.
5225 */
5226bool try_wait_for_completion(struct completion *x)
5227{
5228 int ret = 1;
5229
5230 spin_lock_irq(&x->wait.lock);
5231 if (!x->done)
5232 ret = 0;
5233 else
5234 x->done--;
5235 spin_unlock_irq(&x->wait.lock);
5236 return ret;
5237}
5238EXPORT_SYMBOL(try_wait_for_completion);
5239
5240/**
5241 * completion_done - Test to see if a completion has any waiters
5242 * @x: completion structure
5243 *
5244 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5245 * 1 if there are no waiters.
5246 *
5247 */
5248bool completion_done(struct completion *x)
5249{
5250 int ret = 1;
5251
5252 spin_lock_irq(&x->wait.lock);
5253 if (!x->done)
5254 ret = 0;
5255 spin_unlock_irq(&x->wait.lock);
5256 return ret;
5257}
5258EXPORT_SYMBOL(completion_done);
5259
8cbbe86d
AK
5260static long __sched
5261sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5262{
0fec171c
IM
5263 unsigned long flags;
5264 wait_queue_t wait;
5265
5266 init_waitqueue_entry(&wait, current);
1da177e4 5267
8cbbe86d 5268 __set_current_state(state);
1da177e4 5269
8cbbe86d
AK
5270 spin_lock_irqsave(&q->lock, flags);
5271 __add_wait_queue(q, &wait);
5272 spin_unlock(&q->lock);
5273 timeout = schedule_timeout(timeout);
5274 spin_lock_irq(&q->lock);
5275 __remove_wait_queue(q, &wait);
5276 spin_unlock_irqrestore(&q->lock, flags);
5277
5278 return timeout;
5279}
5280
5281void __sched interruptible_sleep_on(wait_queue_head_t *q)
5282{
5283 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5284}
1da177e4
LT
5285EXPORT_SYMBOL(interruptible_sleep_on);
5286
0fec171c 5287long __sched
95cdf3b7 5288interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5289{
8cbbe86d 5290 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5291}
1da177e4
LT
5292EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5293
0fec171c 5294void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5295{
8cbbe86d 5296 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5297}
1da177e4
LT
5298EXPORT_SYMBOL(sleep_on);
5299
0fec171c 5300long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5301{
8cbbe86d 5302 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5303}
1da177e4
LT
5304EXPORT_SYMBOL(sleep_on_timeout);
5305
b29739f9
IM
5306#ifdef CONFIG_RT_MUTEXES
5307
5308/*
5309 * rt_mutex_setprio - set the current priority of a task
5310 * @p: task
5311 * @prio: prio value (kernel-internal form)
5312 *
5313 * This function changes the 'effective' priority of a task. It does
5314 * not touch ->normal_prio like __setscheduler().
5315 *
5316 * Used by the rt_mutex code to implement priority inheritance logic.
5317 */
36c8b586 5318void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5319{
5320 unsigned long flags;
83b699ed 5321 int oldprio, on_rq, running;
70b97a7f 5322 struct rq *rq;
cb469845 5323 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5324
5325 BUG_ON(prio < 0 || prio > MAX_PRIO);
5326
5327 rq = task_rq_lock(p, &flags);
a8e504d2 5328 update_rq_clock(rq);
b29739f9 5329
d5f9f942 5330 oldprio = p->prio;
dd41f596 5331 on_rq = p->se.on_rq;
051a1d1a 5332 running = task_current(rq, p);
0e1f3483 5333 if (on_rq)
69be72c1 5334 dequeue_task(rq, p, 0);
0e1f3483
HS
5335 if (running)
5336 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5337
5338 if (rt_prio(prio))
5339 p->sched_class = &rt_sched_class;
5340 else
5341 p->sched_class = &fair_sched_class;
5342
b29739f9
IM
5343 p->prio = prio;
5344
0e1f3483
HS
5345 if (running)
5346 p->sched_class->set_curr_task(rq);
dd41f596 5347 if (on_rq) {
8159f87e 5348 enqueue_task(rq, p, 0);
cb469845
SR
5349
5350 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5351 }
5352 task_rq_unlock(rq, &flags);
5353}
5354
5355#endif
5356
36c8b586 5357void set_user_nice(struct task_struct *p, long nice)
1da177e4 5358{
dd41f596 5359 int old_prio, delta, on_rq;
1da177e4 5360 unsigned long flags;
70b97a7f 5361 struct rq *rq;
1da177e4
LT
5362
5363 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5364 return;
5365 /*
5366 * We have to be careful, if called from sys_setpriority(),
5367 * the task might be in the middle of scheduling on another CPU.
5368 */
5369 rq = task_rq_lock(p, &flags);
a8e504d2 5370 update_rq_clock(rq);
1da177e4
LT
5371 /*
5372 * The RT priorities are set via sched_setscheduler(), but we still
5373 * allow the 'normal' nice value to be set - but as expected
5374 * it wont have any effect on scheduling until the task is
dd41f596 5375 * SCHED_FIFO/SCHED_RR:
1da177e4 5376 */
e05606d3 5377 if (task_has_rt_policy(p)) {
1da177e4
LT
5378 p->static_prio = NICE_TO_PRIO(nice);
5379 goto out_unlock;
5380 }
dd41f596 5381 on_rq = p->se.on_rq;
c09595f6 5382 if (on_rq)
69be72c1 5383 dequeue_task(rq, p, 0);
1da177e4 5384
1da177e4 5385 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5386 set_load_weight(p);
b29739f9
IM
5387 old_prio = p->prio;
5388 p->prio = effective_prio(p);
5389 delta = p->prio - old_prio;
1da177e4 5390
dd41f596 5391 if (on_rq) {
8159f87e 5392 enqueue_task(rq, p, 0);
1da177e4 5393 /*
d5f9f942
AM
5394 * If the task increased its priority or is running and
5395 * lowered its priority, then reschedule its CPU:
1da177e4 5396 */
d5f9f942 5397 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5398 resched_task(rq->curr);
5399 }
5400out_unlock:
5401 task_rq_unlock(rq, &flags);
5402}
1da177e4
LT
5403EXPORT_SYMBOL(set_user_nice);
5404
e43379f1
MM
5405/*
5406 * can_nice - check if a task can reduce its nice value
5407 * @p: task
5408 * @nice: nice value
5409 */
36c8b586 5410int can_nice(const struct task_struct *p, const int nice)
e43379f1 5411{
024f4747
MM
5412 /* convert nice value [19,-20] to rlimit style value [1,40] */
5413 int nice_rlim = 20 - nice;
48f24c4d 5414
e43379f1
MM
5415 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5416 capable(CAP_SYS_NICE));
5417}
5418
1da177e4
LT
5419#ifdef __ARCH_WANT_SYS_NICE
5420
5421/*
5422 * sys_nice - change the priority of the current process.
5423 * @increment: priority increment
5424 *
5425 * sys_setpriority is a more generic, but much slower function that
5426 * does similar things.
5427 */
5add95d4 5428SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5429{
48f24c4d 5430 long nice, retval;
1da177e4
LT
5431
5432 /*
5433 * Setpriority might change our priority at the same moment.
5434 * We don't have to worry. Conceptually one call occurs first
5435 * and we have a single winner.
5436 */
e43379f1
MM
5437 if (increment < -40)
5438 increment = -40;
1da177e4
LT
5439 if (increment > 40)
5440 increment = 40;
5441
2b8f836f 5442 nice = TASK_NICE(current) + increment;
1da177e4
LT
5443 if (nice < -20)
5444 nice = -20;
5445 if (nice > 19)
5446 nice = 19;
5447
e43379f1
MM
5448 if (increment < 0 && !can_nice(current, nice))
5449 return -EPERM;
5450
1da177e4
LT
5451 retval = security_task_setnice(current, nice);
5452 if (retval)
5453 return retval;
5454
5455 set_user_nice(current, nice);
5456 return 0;
5457}
5458
5459#endif
5460
5461/**
5462 * task_prio - return the priority value of a given task.
5463 * @p: the task in question.
5464 *
5465 * This is the priority value as seen by users in /proc.
5466 * RT tasks are offset by -200. Normal tasks are centered
5467 * around 0, value goes from -16 to +15.
5468 */
36c8b586 5469int task_prio(const struct task_struct *p)
1da177e4
LT
5470{
5471 return p->prio - MAX_RT_PRIO;
5472}
5473
5474/**
5475 * task_nice - return the nice value of a given task.
5476 * @p: the task in question.
5477 */
36c8b586 5478int task_nice(const struct task_struct *p)
1da177e4
LT
5479{
5480 return TASK_NICE(p);
5481}
150d8bed 5482EXPORT_SYMBOL(task_nice);
1da177e4
LT
5483
5484/**
5485 * idle_cpu - is a given cpu idle currently?
5486 * @cpu: the processor in question.
5487 */
5488int idle_cpu(int cpu)
5489{
5490 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5491}
5492
1da177e4
LT
5493/**
5494 * idle_task - return the idle task for a given cpu.
5495 * @cpu: the processor in question.
5496 */
36c8b586 5497struct task_struct *idle_task(int cpu)
1da177e4
LT
5498{
5499 return cpu_rq(cpu)->idle;
5500}
5501
5502/**
5503 * find_process_by_pid - find a process with a matching PID value.
5504 * @pid: the pid in question.
5505 */
a9957449 5506static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5507{
228ebcbe 5508 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5509}
5510
5511/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5512static void
5513__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5514{
dd41f596 5515 BUG_ON(p->se.on_rq);
48f24c4d 5516
1da177e4 5517 p->policy = policy;
dd41f596
IM
5518 switch (p->policy) {
5519 case SCHED_NORMAL:
5520 case SCHED_BATCH:
5521 case SCHED_IDLE:
5522 p->sched_class = &fair_sched_class;
5523 break;
5524 case SCHED_FIFO:
5525 case SCHED_RR:
5526 p->sched_class = &rt_sched_class;
5527 break;
5528 }
5529
1da177e4 5530 p->rt_priority = prio;
b29739f9
IM
5531 p->normal_prio = normal_prio(p);
5532 /* we are holding p->pi_lock already */
5533 p->prio = rt_mutex_getprio(p);
2dd73a4f 5534 set_load_weight(p);
1da177e4
LT
5535}
5536
c69e8d9c
DH
5537/*
5538 * check the target process has a UID that matches the current process's
5539 */
5540static bool check_same_owner(struct task_struct *p)
5541{
5542 const struct cred *cred = current_cred(), *pcred;
5543 bool match;
5544
5545 rcu_read_lock();
5546 pcred = __task_cred(p);
5547 match = (cred->euid == pcred->euid ||
5548 cred->euid == pcred->uid);
5549 rcu_read_unlock();
5550 return match;
5551}
5552
961ccddd
RR
5553static int __sched_setscheduler(struct task_struct *p, int policy,
5554 struct sched_param *param, bool user)
1da177e4 5555{
83b699ed 5556 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5557 unsigned long flags;
cb469845 5558 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5559 struct rq *rq;
1da177e4 5560
66e5393a
SR
5561 /* may grab non-irq protected spin_locks */
5562 BUG_ON(in_interrupt());
1da177e4
LT
5563recheck:
5564 /* double check policy once rq lock held */
5565 if (policy < 0)
5566 policy = oldpolicy = p->policy;
5567 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5568 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5569 policy != SCHED_IDLE)
b0a9499c 5570 return -EINVAL;
1da177e4
LT
5571 /*
5572 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5573 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5574 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5575 */
5576 if (param->sched_priority < 0 ||
95cdf3b7 5577 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5578 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5579 return -EINVAL;
e05606d3 5580 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5581 return -EINVAL;
5582
37e4ab3f
OC
5583 /*
5584 * Allow unprivileged RT tasks to decrease priority:
5585 */
961ccddd 5586 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5587 if (rt_policy(policy)) {
8dc3e909 5588 unsigned long rlim_rtprio;
8dc3e909
ON
5589
5590 if (!lock_task_sighand(p, &flags))
5591 return -ESRCH;
5592 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5593 unlock_task_sighand(p, &flags);
5594
5595 /* can't set/change the rt policy */
5596 if (policy != p->policy && !rlim_rtprio)
5597 return -EPERM;
5598
5599 /* can't increase priority */
5600 if (param->sched_priority > p->rt_priority &&
5601 param->sched_priority > rlim_rtprio)
5602 return -EPERM;
5603 }
dd41f596
IM
5604 /*
5605 * Like positive nice levels, dont allow tasks to
5606 * move out of SCHED_IDLE either:
5607 */
5608 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5609 return -EPERM;
5fe1d75f 5610
37e4ab3f 5611 /* can't change other user's priorities */
c69e8d9c 5612 if (!check_same_owner(p))
37e4ab3f
OC
5613 return -EPERM;
5614 }
1da177e4 5615
725aad24 5616 if (user) {
b68aa230 5617#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5618 /*
5619 * Do not allow realtime tasks into groups that have no runtime
5620 * assigned.
5621 */
9a7e0b18
PZ
5622 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5623 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5624 return -EPERM;
b68aa230
PZ
5625#endif
5626
725aad24
JF
5627 retval = security_task_setscheduler(p, policy, param);
5628 if (retval)
5629 return retval;
5630 }
5631
b29739f9
IM
5632 /*
5633 * make sure no PI-waiters arrive (or leave) while we are
5634 * changing the priority of the task:
5635 */
5636 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5637 /*
5638 * To be able to change p->policy safely, the apropriate
5639 * runqueue lock must be held.
5640 */
b29739f9 5641 rq = __task_rq_lock(p);
1da177e4
LT
5642 /* recheck policy now with rq lock held */
5643 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5644 policy = oldpolicy = -1;
b29739f9
IM
5645 __task_rq_unlock(rq);
5646 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5647 goto recheck;
5648 }
2daa3577 5649 update_rq_clock(rq);
dd41f596 5650 on_rq = p->se.on_rq;
051a1d1a 5651 running = task_current(rq, p);
0e1f3483 5652 if (on_rq)
2e1cb74a 5653 deactivate_task(rq, p, 0);
0e1f3483
HS
5654 if (running)
5655 p->sched_class->put_prev_task(rq, p);
f6b53205 5656
1da177e4 5657 oldprio = p->prio;
dd41f596 5658 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5659
0e1f3483
HS
5660 if (running)
5661 p->sched_class->set_curr_task(rq);
dd41f596
IM
5662 if (on_rq) {
5663 activate_task(rq, p, 0);
cb469845
SR
5664
5665 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5666 }
b29739f9
IM
5667 __task_rq_unlock(rq);
5668 spin_unlock_irqrestore(&p->pi_lock, flags);
5669
95e02ca9
TG
5670 rt_mutex_adjust_pi(p);
5671
1da177e4
LT
5672 return 0;
5673}
961ccddd
RR
5674
5675/**
5676 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5677 * @p: the task in question.
5678 * @policy: new policy.
5679 * @param: structure containing the new RT priority.
5680 *
5681 * NOTE that the task may be already dead.
5682 */
5683int sched_setscheduler(struct task_struct *p, int policy,
5684 struct sched_param *param)
5685{
5686 return __sched_setscheduler(p, policy, param, true);
5687}
1da177e4
LT
5688EXPORT_SYMBOL_GPL(sched_setscheduler);
5689
961ccddd
RR
5690/**
5691 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5692 * @p: the task in question.
5693 * @policy: new policy.
5694 * @param: structure containing the new RT priority.
5695 *
5696 * Just like sched_setscheduler, only don't bother checking if the
5697 * current context has permission. For example, this is needed in
5698 * stop_machine(): we create temporary high priority worker threads,
5699 * but our caller might not have that capability.
5700 */
5701int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5702 struct sched_param *param)
5703{
5704 return __sched_setscheduler(p, policy, param, false);
5705}
5706
95cdf3b7
IM
5707static int
5708do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5709{
1da177e4
LT
5710 struct sched_param lparam;
5711 struct task_struct *p;
36c8b586 5712 int retval;
1da177e4
LT
5713
5714 if (!param || pid < 0)
5715 return -EINVAL;
5716 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5717 return -EFAULT;
5fe1d75f
ON
5718
5719 rcu_read_lock();
5720 retval = -ESRCH;
1da177e4 5721 p = find_process_by_pid(pid);
5fe1d75f
ON
5722 if (p != NULL)
5723 retval = sched_setscheduler(p, policy, &lparam);
5724 rcu_read_unlock();
36c8b586 5725
1da177e4
LT
5726 return retval;
5727}
5728
5729/**
5730 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5731 * @pid: the pid in question.
5732 * @policy: new policy.
5733 * @param: structure containing the new RT priority.
5734 */
5add95d4
HC
5735SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5736 struct sched_param __user *, param)
1da177e4 5737{
c21761f1
JB
5738 /* negative values for policy are not valid */
5739 if (policy < 0)
5740 return -EINVAL;
5741
1da177e4
LT
5742 return do_sched_setscheduler(pid, policy, param);
5743}
5744
5745/**
5746 * sys_sched_setparam - set/change the RT priority of a thread
5747 * @pid: the pid in question.
5748 * @param: structure containing the new RT priority.
5749 */
5add95d4 5750SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5751{
5752 return do_sched_setscheduler(pid, -1, param);
5753}
5754
5755/**
5756 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5757 * @pid: the pid in question.
5758 */
5add95d4 5759SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5760{
36c8b586 5761 struct task_struct *p;
3a5c359a 5762 int retval;
1da177e4
LT
5763
5764 if (pid < 0)
3a5c359a 5765 return -EINVAL;
1da177e4
LT
5766
5767 retval = -ESRCH;
5768 read_lock(&tasklist_lock);
5769 p = find_process_by_pid(pid);
5770 if (p) {
5771 retval = security_task_getscheduler(p);
5772 if (!retval)
5773 retval = p->policy;
5774 }
5775 read_unlock(&tasklist_lock);
1da177e4
LT
5776 return retval;
5777}
5778
5779/**
5780 * sys_sched_getscheduler - get the RT priority of a thread
5781 * @pid: the pid in question.
5782 * @param: structure containing the RT priority.
5783 */
5add95d4 5784SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5785{
5786 struct sched_param lp;
36c8b586 5787 struct task_struct *p;
3a5c359a 5788 int retval;
1da177e4
LT
5789
5790 if (!param || pid < 0)
3a5c359a 5791 return -EINVAL;
1da177e4
LT
5792
5793 read_lock(&tasklist_lock);
5794 p = find_process_by_pid(pid);
5795 retval = -ESRCH;
5796 if (!p)
5797 goto out_unlock;
5798
5799 retval = security_task_getscheduler(p);
5800 if (retval)
5801 goto out_unlock;
5802
5803 lp.sched_priority = p->rt_priority;
5804 read_unlock(&tasklist_lock);
5805
5806 /*
5807 * This one might sleep, we cannot do it with a spinlock held ...
5808 */
5809 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5810
1da177e4
LT
5811 return retval;
5812
5813out_unlock:
5814 read_unlock(&tasklist_lock);
5815 return retval;
5816}
5817
96f874e2 5818long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5819{
5a16f3d3 5820 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5821 struct task_struct *p;
5822 int retval;
1da177e4 5823
95402b38 5824 get_online_cpus();
1da177e4
LT
5825 read_lock(&tasklist_lock);
5826
5827 p = find_process_by_pid(pid);
5828 if (!p) {
5829 read_unlock(&tasklist_lock);
95402b38 5830 put_online_cpus();
1da177e4
LT
5831 return -ESRCH;
5832 }
5833
5834 /*
5835 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5836 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5837 * usage count and then drop tasklist_lock.
5838 */
5839 get_task_struct(p);
5840 read_unlock(&tasklist_lock);
5841
5a16f3d3
RR
5842 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5843 retval = -ENOMEM;
5844 goto out_put_task;
5845 }
5846 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5847 retval = -ENOMEM;
5848 goto out_free_cpus_allowed;
5849 }
1da177e4 5850 retval = -EPERM;
c69e8d9c 5851 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5852 goto out_unlock;
5853
e7834f8f
DQ
5854 retval = security_task_setscheduler(p, 0, NULL);
5855 if (retval)
5856 goto out_unlock;
5857
5a16f3d3
RR
5858 cpuset_cpus_allowed(p, cpus_allowed);
5859 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5860 again:
5a16f3d3 5861 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5862
8707d8b8 5863 if (!retval) {
5a16f3d3
RR
5864 cpuset_cpus_allowed(p, cpus_allowed);
5865 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5866 /*
5867 * We must have raced with a concurrent cpuset
5868 * update. Just reset the cpus_allowed to the
5869 * cpuset's cpus_allowed
5870 */
5a16f3d3 5871 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5872 goto again;
5873 }
5874 }
1da177e4 5875out_unlock:
5a16f3d3
RR
5876 free_cpumask_var(new_mask);
5877out_free_cpus_allowed:
5878 free_cpumask_var(cpus_allowed);
5879out_put_task:
1da177e4 5880 put_task_struct(p);
95402b38 5881 put_online_cpus();
1da177e4
LT
5882 return retval;
5883}
5884
5885static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5886 struct cpumask *new_mask)
1da177e4 5887{
96f874e2
RR
5888 if (len < cpumask_size())
5889 cpumask_clear(new_mask);
5890 else if (len > cpumask_size())
5891 len = cpumask_size();
5892
1da177e4
LT
5893 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5894}
5895
5896/**
5897 * sys_sched_setaffinity - set the cpu affinity of a process
5898 * @pid: pid of the process
5899 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5900 * @user_mask_ptr: user-space pointer to the new cpu mask
5901 */
5add95d4
HC
5902SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5903 unsigned long __user *, user_mask_ptr)
1da177e4 5904{
5a16f3d3 5905 cpumask_var_t new_mask;
1da177e4
LT
5906 int retval;
5907
5a16f3d3
RR
5908 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5909 return -ENOMEM;
1da177e4 5910
5a16f3d3
RR
5911 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5912 if (retval == 0)
5913 retval = sched_setaffinity(pid, new_mask);
5914 free_cpumask_var(new_mask);
5915 return retval;
1da177e4
LT
5916}
5917
96f874e2 5918long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5919{
36c8b586 5920 struct task_struct *p;
1da177e4 5921 int retval;
1da177e4 5922
95402b38 5923 get_online_cpus();
1da177e4
LT
5924 read_lock(&tasklist_lock);
5925
5926 retval = -ESRCH;
5927 p = find_process_by_pid(pid);
5928 if (!p)
5929 goto out_unlock;
5930
e7834f8f
DQ
5931 retval = security_task_getscheduler(p);
5932 if (retval)
5933 goto out_unlock;
5934
96f874e2 5935 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5936
5937out_unlock:
5938 read_unlock(&tasklist_lock);
95402b38 5939 put_online_cpus();
1da177e4 5940
9531b62f 5941 return retval;
1da177e4
LT
5942}
5943
5944/**
5945 * sys_sched_getaffinity - get the cpu affinity of a process
5946 * @pid: pid of the process
5947 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5948 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5949 */
5add95d4
HC
5950SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5951 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5952{
5953 int ret;
f17c8607 5954 cpumask_var_t mask;
1da177e4 5955
f17c8607 5956 if (len < cpumask_size())
1da177e4
LT
5957 return -EINVAL;
5958
f17c8607
RR
5959 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5960 return -ENOMEM;
1da177e4 5961
f17c8607
RR
5962 ret = sched_getaffinity(pid, mask);
5963 if (ret == 0) {
5964 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5965 ret = -EFAULT;
5966 else
5967 ret = cpumask_size();
5968 }
5969 free_cpumask_var(mask);
1da177e4 5970
f17c8607 5971 return ret;
1da177e4
LT
5972}
5973
5974/**
5975 * sys_sched_yield - yield the current processor to other threads.
5976 *
dd41f596
IM
5977 * This function yields the current CPU to other tasks. If there are no
5978 * other threads running on this CPU then this function will return.
1da177e4 5979 */
5add95d4 5980SYSCALL_DEFINE0(sched_yield)
1da177e4 5981{
70b97a7f 5982 struct rq *rq = this_rq_lock();
1da177e4 5983
2d72376b 5984 schedstat_inc(rq, yld_count);
4530d7ab 5985 current->sched_class->yield_task(rq);
1da177e4
LT
5986
5987 /*
5988 * Since we are going to call schedule() anyway, there's
5989 * no need to preempt or enable interrupts:
5990 */
5991 __release(rq->lock);
8a25d5de 5992 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5993 _raw_spin_unlock(&rq->lock);
5994 preempt_enable_no_resched();
5995
5996 schedule();
5997
5998 return 0;
5999}
6000
e7b38404 6001static void __cond_resched(void)
1da177e4 6002{
8e0a43d8
IM
6003#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6004 __might_sleep(__FILE__, __LINE__);
6005#endif
5bbcfd90
IM
6006 /*
6007 * The BKS might be reacquired before we have dropped
6008 * PREEMPT_ACTIVE, which could trigger a second
6009 * cond_resched() call.
6010 */
1da177e4
LT
6011 do {
6012 add_preempt_count(PREEMPT_ACTIVE);
6013 schedule();
6014 sub_preempt_count(PREEMPT_ACTIVE);
6015 } while (need_resched());
6016}
6017
02b67cc3 6018int __sched _cond_resched(void)
1da177e4 6019{
9414232f
IM
6020 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6021 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6022 __cond_resched();
6023 return 1;
6024 }
6025 return 0;
6026}
02b67cc3 6027EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6028
6029/*
6030 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6031 * call schedule, and on return reacquire the lock.
6032 *
41a2d6cf 6033 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6034 * operations here to prevent schedule() from being called twice (once via
6035 * spin_unlock(), once by hand).
6036 */
95cdf3b7 6037int cond_resched_lock(spinlock_t *lock)
1da177e4 6038{
95c354fe 6039 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6040 int ret = 0;
6041
95c354fe 6042 if (spin_needbreak(lock) || resched) {
1da177e4 6043 spin_unlock(lock);
95c354fe
NP
6044 if (resched && need_resched())
6045 __cond_resched();
6046 else
6047 cpu_relax();
6df3cecb 6048 ret = 1;
1da177e4 6049 spin_lock(lock);
1da177e4 6050 }
6df3cecb 6051 return ret;
1da177e4 6052}
1da177e4
LT
6053EXPORT_SYMBOL(cond_resched_lock);
6054
6055int __sched cond_resched_softirq(void)
6056{
6057 BUG_ON(!in_softirq());
6058
9414232f 6059 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6060 local_bh_enable();
1da177e4
LT
6061 __cond_resched();
6062 local_bh_disable();
6063 return 1;
6064 }
6065 return 0;
6066}
1da177e4
LT
6067EXPORT_SYMBOL(cond_resched_softirq);
6068
1da177e4
LT
6069/**
6070 * yield - yield the current processor to other threads.
6071 *
72fd4a35 6072 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6073 * thread runnable and calls sys_sched_yield().
6074 */
6075void __sched yield(void)
6076{
6077 set_current_state(TASK_RUNNING);
6078 sys_sched_yield();
6079}
1da177e4
LT
6080EXPORT_SYMBOL(yield);
6081
6082/*
41a2d6cf 6083 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6084 * that process accounting knows that this is a task in IO wait state.
6085 *
6086 * But don't do that if it is a deliberate, throttling IO wait (this task
6087 * has set its backing_dev_info: the queue against which it should throttle)
6088 */
6089void __sched io_schedule(void)
6090{
70b97a7f 6091 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6092
0ff92245 6093 delayacct_blkio_start();
1da177e4
LT
6094 atomic_inc(&rq->nr_iowait);
6095 schedule();
6096 atomic_dec(&rq->nr_iowait);
0ff92245 6097 delayacct_blkio_end();
1da177e4 6098}
1da177e4
LT
6099EXPORT_SYMBOL(io_schedule);
6100
6101long __sched io_schedule_timeout(long timeout)
6102{
70b97a7f 6103 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6104 long ret;
6105
0ff92245 6106 delayacct_blkio_start();
1da177e4
LT
6107 atomic_inc(&rq->nr_iowait);
6108 ret = schedule_timeout(timeout);
6109 atomic_dec(&rq->nr_iowait);
0ff92245 6110 delayacct_blkio_end();
1da177e4
LT
6111 return ret;
6112}
6113
6114/**
6115 * sys_sched_get_priority_max - return maximum RT priority.
6116 * @policy: scheduling class.
6117 *
6118 * this syscall returns the maximum rt_priority that can be used
6119 * by a given scheduling class.
6120 */
5add95d4 6121SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6122{
6123 int ret = -EINVAL;
6124
6125 switch (policy) {
6126 case SCHED_FIFO:
6127 case SCHED_RR:
6128 ret = MAX_USER_RT_PRIO-1;
6129 break;
6130 case SCHED_NORMAL:
b0a9499c 6131 case SCHED_BATCH:
dd41f596 6132 case SCHED_IDLE:
1da177e4
LT
6133 ret = 0;
6134 break;
6135 }
6136 return ret;
6137}
6138
6139/**
6140 * sys_sched_get_priority_min - return minimum RT priority.
6141 * @policy: scheduling class.
6142 *
6143 * this syscall returns the minimum rt_priority that can be used
6144 * by a given scheduling class.
6145 */
5add95d4 6146SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6147{
6148 int ret = -EINVAL;
6149
6150 switch (policy) {
6151 case SCHED_FIFO:
6152 case SCHED_RR:
6153 ret = 1;
6154 break;
6155 case SCHED_NORMAL:
b0a9499c 6156 case SCHED_BATCH:
dd41f596 6157 case SCHED_IDLE:
1da177e4
LT
6158 ret = 0;
6159 }
6160 return ret;
6161}
6162
6163/**
6164 * sys_sched_rr_get_interval - return the default timeslice of a process.
6165 * @pid: pid of the process.
6166 * @interval: userspace pointer to the timeslice value.
6167 *
6168 * this syscall writes the default timeslice value of a given process
6169 * into the user-space timespec buffer. A value of '0' means infinity.
6170 */
17da2bd9 6171SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6172 struct timespec __user *, interval)
1da177e4 6173{
36c8b586 6174 struct task_struct *p;
a4ec24b4 6175 unsigned int time_slice;
3a5c359a 6176 int retval;
1da177e4 6177 struct timespec t;
1da177e4
LT
6178
6179 if (pid < 0)
3a5c359a 6180 return -EINVAL;
1da177e4
LT
6181
6182 retval = -ESRCH;
6183 read_lock(&tasklist_lock);
6184 p = find_process_by_pid(pid);
6185 if (!p)
6186 goto out_unlock;
6187
6188 retval = security_task_getscheduler(p);
6189 if (retval)
6190 goto out_unlock;
6191
77034937
IM
6192 /*
6193 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6194 * tasks that are on an otherwise idle runqueue:
6195 */
6196 time_slice = 0;
6197 if (p->policy == SCHED_RR) {
a4ec24b4 6198 time_slice = DEF_TIMESLICE;
1868f958 6199 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6200 struct sched_entity *se = &p->se;
6201 unsigned long flags;
6202 struct rq *rq;
6203
6204 rq = task_rq_lock(p, &flags);
77034937
IM
6205 if (rq->cfs.load.weight)
6206 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6207 task_rq_unlock(rq, &flags);
6208 }
1da177e4 6209 read_unlock(&tasklist_lock);
a4ec24b4 6210 jiffies_to_timespec(time_slice, &t);
1da177e4 6211 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6212 return retval;
3a5c359a 6213
1da177e4
LT
6214out_unlock:
6215 read_unlock(&tasklist_lock);
6216 return retval;
6217}
6218
7c731e0a 6219static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6220
82a1fcb9 6221void sched_show_task(struct task_struct *p)
1da177e4 6222{
1da177e4 6223 unsigned long free = 0;
36c8b586 6224 unsigned state;
1da177e4 6225
1da177e4 6226 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6227 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6228 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6229#if BITS_PER_LONG == 32
1da177e4 6230 if (state == TASK_RUNNING)
cc4ea795 6231 printk(KERN_CONT " running ");
1da177e4 6232 else
cc4ea795 6233 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6234#else
6235 if (state == TASK_RUNNING)
cc4ea795 6236 printk(KERN_CONT " running task ");
1da177e4 6237 else
cc4ea795 6238 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6239#endif
6240#ifdef CONFIG_DEBUG_STACK_USAGE
6241 {
10ebffde 6242 unsigned long *n = end_of_stack(p);
1da177e4
LT
6243 while (!*n)
6244 n++;
10ebffde 6245 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6246 }
6247#endif
ba25f9dc 6248 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6249 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6250
5fb5e6de 6251 show_stack(p, NULL);
1da177e4
LT
6252}
6253
e59e2ae2 6254void show_state_filter(unsigned long state_filter)
1da177e4 6255{
36c8b586 6256 struct task_struct *g, *p;
1da177e4 6257
4bd77321
IM
6258#if BITS_PER_LONG == 32
6259 printk(KERN_INFO
6260 " task PC stack pid father\n");
1da177e4 6261#else
4bd77321
IM
6262 printk(KERN_INFO
6263 " task PC stack pid father\n");
1da177e4
LT
6264#endif
6265 read_lock(&tasklist_lock);
6266 do_each_thread(g, p) {
6267 /*
6268 * reset the NMI-timeout, listing all files on a slow
6269 * console might take alot of time:
6270 */
6271 touch_nmi_watchdog();
39bc89fd 6272 if (!state_filter || (p->state & state_filter))
82a1fcb9 6273 sched_show_task(p);
1da177e4
LT
6274 } while_each_thread(g, p);
6275
04c9167f
JF
6276 touch_all_softlockup_watchdogs();
6277
dd41f596
IM
6278#ifdef CONFIG_SCHED_DEBUG
6279 sysrq_sched_debug_show();
6280#endif
1da177e4 6281 read_unlock(&tasklist_lock);
e59e2ae2
IM
6282 /*
6283 * Only show locks if all tasks are dumped:
6284 */
6285 if (state_filter == -1)
6286 debug_show_all_locks();
1da177e4
LT
6287}
6288
1df21055
IM
6289void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6290{
dd41f596 6291 idle->sched_class = &idle_sched_class;
1df21055
IM
6292}
6293
f340c0d1
IM
6294/**
6295 * init_idle - set up an idle thread for a given CPU
6296 * @idle: task in question
6297 * @cpu: cpu the idle task belongs to
6298 *
6299 * NOTE: this function does not set the idle thread's NEED_RESCHED
6300 * flag, to make booting more robust.
6301 */
5c1e1767 6302void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6303{
70b97a7f 6304 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6305 unsigned long flags;
6306
5cbd54ef
IM
6307 spin_lock_irqsave(&rq->lock, flags);
6308
dd41f596
IM
6309 __sched_fork(idle);
6310 idle->se.exec_start = sched_clock();
6311
b29739f9 6312 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6313 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6314 __set_task_cpu(idle, cpu);
1da177e4 6315
1da177e4 6316 rq->curr = rq->idle = idle;
4866cde0
NP
6317#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6318 idle->oncpu = 1;
6319#endif
1da177e4
LT
6320 spin_unlock_irqrestore(&rq->lock, flags);
6321
6322 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6323#if defined(CONFIG_PREEMPT)
6324 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6325#else
a1261f54 6326 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6327#endif
dd41f596
IM
6328 /*
6329 * The idle tasks have their own, simple scheduling class:
6330 */
6331 idle->sched_class = &idle_sched_class;
fb52607a 6332 ftrace_graph_init_task(idle);
1da177e4
LT
6333}
6334
6335/*
6336 * In a system that switches off the HZ timer nohz_cpu_mask
6337 * indicates which cpus entered this state. This is used
6338 * in the rcu update to wait only for active cpus. For system
6339 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6340 * always be CPU_BITS_NONE.
1da177e4 6341 */
6a7b3dc3 6342cpumask_var_t nohz_cpu_mask;
1da177e4 6343
19978ca6
IM
6344/*
6345 * Increase the granularity value when there are more CPUs,
6346 * because with more CPUs the 'effective latency' as visible
6347 * to users decreases. But the relationship is not linear,
6348 * so pick a second-best guess by going with the log2 of the
6349 * number of CPUs.
6350 *
6351 * This idea comes from the SD scheduler of Con Kolivas:
6352 */
6353static inline void sched_init_granularity(void)
6354{
6355 unsigned int factor = 1 + ilog2(num_online_cpus());
6356 const unsigned long limit = 200000000;
6357
6358 sysctl_sched_min_granularity *= factor;
6359 if (sysctl_sched_min_granularity > limit)
6360 sysctl_sched_min_granularity = limit;
6361
6362 sysctl_sched_latency *= factor;
6363 if (sysctl_sched_latency > limit)
6364 sysctl_sched_latency = limit;
6365
6366 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6367
6368 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6369}
6370
1da177e4
LT
6371#ifdef CONFIG_SMP
6372/*
6373 * This is how migration works:
6374 *
70b97a7f 6375 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6376 * runqueue and wake up that CPU's migration thread.
6377 * 2) we down() the locked semaphore => thread blocks.
6378 * 3) migration thread wakes up (implicitly it forces the migrated
6379 * thread off the CPU)
6380 * 4) it gets the migration request and checks whether the migrated
6381 * task is still in the wrong runqueue.
6382 * 5) if it's in the wrong runqueue then the migration thread removes
6383 * it and puts it into the right queue.
6384 * 6) migration thread up()s the semaphore.
6385 * 7) we wake up and the migration is done.
6386 */
6387
6388/*
6389 * Change a given task's CPU affinity. Migrate the thread to a
6390 * proper CPU and schedule it away if the CPU it's executing on
6391 * is removed from the allowed bitmask.
6392 *
6393 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6394 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6395 * call is not atomic; no spinlocks may be held.
6396 */
96f874e2 6397int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6398{
70b97a7f 6399 struct migration_req req;
1da177e4 6400 unsigned long flags;
70b97a7f 6401 struct rq *rq;
48f24c4d 6402 int ret = 0;
1da177e4
LT
6403
6404 rq = task_rq_lock(p, &flags);
96f874e2 6405 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6406 ret = -EINVAL;
6407 goto out;
6408 }
6409
9985b0ba 6410 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6411 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6412 ret = -EINVAL;
6413 goto out;
6414 }
6415
73fe6aae 6416 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6417 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6418 else {
96f874e2
RR
6419 cpumask_copy(&p->cpus_allowed, new_mask);
6420 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6421 }
6422
1da177e4 6423 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6424 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6425 goto out;
6426
1e5ce4f4 6427 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6428 /* Need help from migration thread: drop lock and wait. */
6429 task_rq_unlock(rq, &flags);
6430 wake_up_process(rq->migration_thread);
6431 wait_for_completion(&req.done);
6432 tlb_migrate_finish(p->mm);
6433 return 0;
6434 }
6435out:
6436 task_rq_unlock(rq, &flags);
48f24c4d 6437
1da177e4
LT
6438 return ret;
6439}
cd8ba7cd 6440EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6441
6442/*
41a2d6cf 6443 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6444 * this because either it can't run here any more (set_cpus_allowed()
6445 * away from this CPU, or CPU going down), or because we're
6446 * attempting to rebalance this task on exec (sched_exec).
6447 *
6448 * So we race with normal scheduler movements, but that's OK, as long
6449 * as the task is no longer on this CPU.
efc30814
KK
6450 *
6451 * Returns non-zero if task was successfully migrated.
1da177e4 6452 */
efc30814 6453static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6454{
70b97a7f 6455 struct rq *rq_dest, *rq_src;
dd41f596 6456 int ret = 0, on_rq;
1da177e4 6457
e761b772 6458 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6459 return ret;
1da177e4
LT
6460
6461 rq_src = cpu_rq(src_cpu);
6462 rq_dest = cpu_rq(dest_cpu);
6463
6464 double_rq_lock(rq_src, rq_dest);
6465 /* Already moved. */
6466 if (task_cpu(p) != src_cpu)
b1e38734 6467 goto done;
1da177e4 6468 /* Affinity changed (again). */
96f874e2 6469 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6470 goto fail;
1da177e4 6471
dd41f596 6472 on_rq = p->se.on_rq;
6e82a3be 6473 if (on_rq)
2e1cb74a 6474 deactivate_task(rq_src, p, 0);
6e82a3be 6475
1da177e4 6476 set_task_cpu(p, dest_cpu);
dd41f596
IM
6477 if (on_rq) {
6478 activate_task(rq_dest, p, 0);
15afe09b 6479 check_preempt_curr(rq_dest, p, 0);
1da177e4 6480 }
b1e38734 6481done:
efc30814 6482 ret = 1;
b1e38734 6483fail:
1da177e4 6484 double_rq_unlock(rq_src, rq_dest);
efc30814 6485 return ret;
1da177e4
LT
6486}
6487
6488/*
6489 * migration_thread - this is a highprio system thread that performs
6490 * thread migration by bumping thread off CPU then 'pushing' onto
6491 * another runqueue.
6492 */
95cdf3b7 6493static int migration_thread(void *data)
1da177e4 6494{
1da177e4 6495 int cpu = (long)data;
70b97a7f 6496 struct rq *rq;
1da177e4
LT
6497
6498 rq = cpu_rq(cpu);
6499 BUG_ON(rq->migration_thread != current);
6500
6501 set_current_state(TASK_INTERRUPTIBLE);
6502 while (!kthread_should_stop()) {
70b97a7f 6503 struct migration_req *req;
1da177e4 6504 struct list_head *head;
1da177e4 6505
1da177e4
LT
6506 spin_lock_irq(&rq->lock);
6507
6508 if (cpu_is_offline(cpu)) {
6509 spin_unlock_irq(&rq->lock);
6510 goto wait_to_die;
6511 }
6512
6513 if (rq->active_balance) {
6514 active_load_balance(rq, cpu);
6515 rq->active_balance = 0;
6516 }
6517
6518 head = &rq->migration_queue;
6519
6520 if (list_empty(head)) {
6521 spin_unlock_irq(&rq->lock);
6522 schedule();
6523 set_current_state(TASK_INTERRUPTIBLE);
6524 continue;
6525 }
70b97a7f 6526 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6527 list_del_init(head->next);
6528
674311d5
NP
6529 spin_unlock(&rq->lock);
6530 __migrate_task(req->task, cpu, req->dest_cpu);
6531 local_irq_enable();
1da177e4
LT
6532
6533 complete(&req->done);
6534 }
6535 __set_current_state(TASK_RUNNING);
6536 return 0;
6537
6538wait_to_die:
6539 /* Wait for kthread_stop */
6540 set_current_state(TASK_INTERRUPTIBLE);
6541 while (!kthread_should_stop()) {
6542 schedule();
6543 set_current_state(TASK_INTERRUPTIBLE);
6544 }
6545 __set_current_state(TASK_RUNNING);
6546 return 0;
6547}
6548
6549#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6550
6551static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6552{
6553 int ret;
6554
6555 local_irq_disable();
6556 ret = __migrate_task(p, src_cpu, dest_cpu);
6557 local_irq_enable();
6558 return ret;
6559}
6560
054b9108 6561/*
3a4fa0a2 6562 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6563 */
48f24c4d 6564static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6565{
70b97a7f 6566 int dest_cpu;
6ca09dfc 6567 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6568
6569again:
6570 /* Look for allowed, online CPU in same node. */
6571 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6572 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6573 goto move;
6574
6575 /* Any allowed, online CPU? */
6576 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6577 if (dest_cpu < nr_cpu_ids)
6578 goto move;
6579
6580 /* No more Mr. Nice Guy. */
6581 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6582 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6583 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6584
e76bd8d9
RR
6585 /*
6586 * Don't tell them about moving exiting tasks or
6587 * kernel threads (both mm NULL), since they never
6588 * leave kernel.
6589 */
6590 if (p->mm && printk_ratelimit()) {
6591 printk(KERN_INFO "process %d (%s) no "
6592 "longer affine to cpu%d\n",
6593 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6594 }
e76bd8d9
RR
6595 }
6596
6597move:
6598 /* It can have affinity changed while we were choosing. */
6599 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6600 goto again;
1da177e4
LT
6601}
6602
6603/*
6604 * While a dead CPU has no uninterruptible tasks queued at this point,
6605 * it might still have a nonzero ->nr_uninterruptible counter, because
6606 * for performance reasons the counter is not stricly tracking tasks to
6607 * their home CPUs. So we just add the counter to another CPU's counter,
6608 * to keep the global sum constant after CPU-down:
6609 */
70b97a7f 6610static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6611{
1e5ce4f4 6612 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6613 unsigned long flags;
6614
6615 local_irq_save(flags);
6616 double_rq_lock(rq_src, rq_dest);
6617 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6618 rq_src->nr_uninterruptible = 0;
6619 double_rq_unlock(rq_src, rq_dest);
6620 local_irq_restore(flags);
6621}
6622
6623/* Run through task list and migrate tasks from the dead cpu. */
6624static void migrate_live_tasks(int src_cpu)
6625{
48f24c4d 6626 struct task_struct *p, *t;
1da177e4 6627
f7b4cddc 6628 read_lock(&tasklist_lock);
1da177e4 6629
48f24c4d
IM
6630 do_each_thread(t, p) {
6631 if (p == current)
1da177e4
LT
6632 continue;
6633
48f24c4d
IM
6634 if (task_cpu(p) == src_cpu)
6635 move_task_off_dead_cpu(src_cpu, p);
6636 } while_each_thread(t, p);
1da177e4 6637
f7b4cddc 6638 read_unlock(&tasklist_lock);
1da177e4
LT
6639}
6640
dd41f596
IM
6641/*
6642 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6643 * It does so by boosting its priority to highest possible.
6644 * Used by CPU offline code.
1da177e4
LT
6645 */
6646void sched_idle_next(void)
6647{
48f24c4d 6648 int this_cpu = smp_processor_id();
70b97a7f 6649 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6650 struct task_struct *p = rq->idle;
6651 unsigned long flags;
6652
6653 /* cpu has to be offline */
48f24c4d 6654 BUG_ON(cpu_online(this_cpu));
1da177e4 6655
48f24c4d
IM
6656 /*
6657 * Strictly not necessary since rest of the CPUs are stopped by now
6658 * and interrupts disabled on the current cpu.
1da177e4
LT
6659 */
6660 spin_lock_irqsave(&rq->lock, flags);
6661
dd41f596 6662 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6663
94bc9a7b
DA
6664 update_rq_clock(rq);
6665 activate_task(rq, p, 0);
1da177e4
LT
6666
6667 spin_unlock_irqrestore(&rq->lock, flags);
6668}
6669
48f24c4d
IM
6670/*
6671 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6672 * offline.
6673 */
6674void idle_task_exit(void)
6675{
6676 struct mm_struct *mm = current->active_mm;
6677
6678 BUG_ON(cpu_online(smp_processor_id()));
6679
6680 if (mm != &init_mm)
6681 switch_mm(mm, &init_mm, current);
6682 mmdrop(mm);
6683}
6684
054b9108 6685/* called under rq->lock with disabled interrupts */
36c8b586 6686static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6687{
70b97a7f 6688 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6689
6690 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6691 BUG_ON(!p->exit_state);
1da177e4
LT
6692
6693 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6694 BUG_ON(p->state == TASK_DEAD);
1da177e4 6695
48f24c4d 6696 get_task_struct(p);
1da177e4
LT
6697
6698 /*
6699 * Drop lock around migration; if someone else moves it,
41a2d6cf 6700 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6701 * fine.
6702 */
f7b4cddc 6703 spin_unlock_irq(&rq->lock);
48f24c4d 6704 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6705 spin_lock_irq(&rq->lock);
1da177e4 6706
48f24c4d 6707 put_task_struct(p);
1da177e4
LT
6708}
6709
6710/* release_task() removes task from tasklist, so we won't find dead tasks. */
6711static void migrate_dead_tasks(unsigned int dead_cpu)
6712{
70b97a7f 6713 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6714 struct task_struct *next;
48f24c4d 6715
dd41f596
IM
6716 for ( ; ; ) {
6717 if (!rq->nr_running)
6718 break;
a8e504d2 6719 update_rq_clock(rq);
b67802ea 6720 next = pick_next_task(rq);
dd41f596
IM
6721 if (!next)
6722 break;
79c53799 6723 next->sched_class->put_prev_task(rq, next);
dd41f596 6724 migrate_dead(dead_cpu, next);
e692ab53 6725
1da177e4
LT
6726 }
6727}
6728#endif /* CONFIG_HOTPLUG_CPU */
6729
e692ab53
NP
6730#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6731
6732static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6733 {
6734 .procname = "sched_domain",
c57baf1e 6735 .mode = 0555,
e0361851 6736 },
38605cae 6737 {0, },
e692ab53
NP
6738};
6739
6740static struct ctl_table sd_ctl_root[] = {
e0361851 6741 {
c57baf1e 6742 .ctl_name = CTL_KERN,
e0361851 6743 .procname = "kernel",
c57baf1e 6744 .mode = 0555,
e0361851
AD
6745 .child = sd_ctl_dir,
6746 },
38605cae 6747 {0, },
e692ab53
NP
6748};
6749
6750static struct ctl_table *sd_alloc_ctl_entry(int n)
6751{
6752 struct ctl_table *entry =
5cf9f062 6753 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6754
e692ab53
NP
6755 return entry;
6756}
6757
6382bc90
MM
6758static void sd_free_ctl_entry(struct ctl_table **tablep)
6759{
cd790076 6760 struct ctl_table *entry;
6382bc90 6761
cd790076
MM
6762 /*
6763 * In the intermediate directories, both the child directory and
6764 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6765 * will always be set. In the lowest directory the names are
cd790076
MM
6766 * static strings and all have proc handlers.
6767 */
6768 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6769 if (entry->child)
6770 sd_free_ctl_entry(&entry->child);
cd790076
MM
6771 if (entry->proc_handler == NULL)
6772 kfree(entry->procname);
6773 }
6382bc90
MM
6774
6775 kfree(*tablep);
6776 *tablep = NULL;
6777}
6778
e692ab53 6779static void
e0361851 6780set_table_entry(struct ctl_table *entry,
e692ab53
NP
6781 const char *procname, void *data, int maxlen,
6782 mode_t mode, proc_handler *proc_handler)
6783{
e692ab53
NP
6784 entry->procname = procname;
6785 entry->data = data;
6786 entry->maxlen = maxlen;
6787 entry->mode = mode;
6788 entry->proc_handler = proc_handler;
6789}
6790
6791static struct ctl_table *
6792sd_alloc_ctl_domain_table(struct sched_domain *sd)
6793{
a5d8c348 6794 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6795
ad1cdc1d
MM
6796 if (table == NULL)
6797 return NULL;
6798
e0361851 6799 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6800 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6801 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6802 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6803 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6804 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6805 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6806 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6807 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6808 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6809 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6810 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6811 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6812 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6813 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6814 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6815 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6816 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6817 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6818 &sd->cache_nice_tries,
6819 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6820 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6821 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6822 set_table_entry(&table[11], "name", sd->name,
6823 CORENAME_MAX_SIZE, 0444, proc_dostring);
6824 /* &table[12] is terminator */
e692ab53
NP
6825
6826 return table;
6827}
6828
9a4e7159 6829static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6830{
6831 struct ctl_table *entry, *table;
6832 struct sched_domain *sd;
6833 int domain_num = 0, i;
6834 char buf[32];
6835
6836 for_each_domain(cpu, sd)
6837 domain_num++;
6838 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6839 if (table == NULL)
6840 return NULL;
e692ab53
NP
6841
6842 i = 0;
6843 for_each_domain(cpu, sd) {
6844 snprintf(buf, 32, "domain%d", i);
e692ab53 6845 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6846 entry->mode = 0555;
e692ab53
NP
6847 entry->child = sd_alloc_ctl_domain_table(sd);
6848 entry++;
6849 i++;
6850 }
6851 return table;
6852}
6853
6854static struct ctl_table_header *sd_sysctl_header;
6382bc90 6855static void register_sched_domain_sysctl(void)
e692ab53
NP
6856{
6857 int i, cpu_num = num_online_cpus();
6858 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6859 char buf[32];
6860
7378547f
MM
6861 WARN_ON(sd_ctl_dir[0].child);
6862 sd_ctl_dir[0].child = entry;
6863
ad1cdc1d
MM
6864 if (entry == NULL)
6865 return;
6866
97b6ea7b 6867 for_each_online_cpu(i) {
e692ab53 6868 snprintf(buf, 32, "cpu%d", i);
e692ab53 6869 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6870 entry->mode = 0555;
e692ab53 6871 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6872 entry++;
e692ab53 6873 }
7378547f
MM
6874
6875 WARN_ON(sd_sysctl_header);
e692ab53
NP
6876 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6877}
6382bc90 6878
7378547f 6879/* may be called multiple times per register */
6382bc90
MM
6880static void unregister_sched_domain_sysctl(void)
6881{
7378547f
MM
6882 if (sd_sysctl_header)
6883 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6884 sd_sysctl_header = NULL;
7378547f
MM
6885 if (sd_ctl_dir[0].child)
6886 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6887}
e692ab53 6888#else
6382bc90
MM
6889static void register_sched_domain_sysctl(void)
6890{
6891}
6892static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6893{
6894}
6895#endif
6896
1f11eb6a
GH
6897static void set_rq_online(struct rq *rq)
6898{
6899 if (!rq->online) {
6900 const struct sched_class *class;
6901
c6c4927b 6902 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6903 rq->online = 1;
6904
6905 for_each_class(class) {
6906 if (class->rq_online)
6907 class->rq_online(rq);
6908 }
6909 }
6910}
6911
6912static void set_rq_offline(struct rq *rq)
6913{
6914 if (rq->online) {
6915 const struct sched_class *class;
6916
6917 for_each_class(class) {
6918 if (class->rq_offline)
6919 class->rq_offline(rq);
6920 }
6921
c6c4927b 6922 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6923 rq->online = 0;
6924 }
6925}
6926
1da177e4
LT
6927/*
6928 * migration_call - callback that gets triggered when a CPU is added.
6929 * Here we can start up the necessary migration thread for the new CPU.
6930 */
48f24c4d
IM
6931static int __cpuinit
6932migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6933{
1da177e4 6934 struct task_struct *p;
48f24c4d 6935 int cpu = (long)hcpu;
1da177e4 6936 unsigned long flags;
70b97a7f 6937 struct rq *rq;
1da177e4
LT
6938
6939 switch (action) {
5be9361c 6940
1da177e4 6941 case CPU_UP_PREPARE:
8bb78442 6942 case CPU_UP_PREPARE_FROZEN:
dd41f596 6943 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6944 if (IS_ERR(p))
6945 return NOTIFY_BAD;
1da177e4
LT
6946 kthread_bind(p, cpu);
6947 /* Must be high prio: stop_machine expects to yield to it. */
6948 rq = task_rq_lock(p, &flags);
dd41f596 6949 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6950 task_rq_unlock(rq, &flags);
6951 cpu_rq(cpu)->migration_thread = p;
6952 break;
48f24c4d 6953
1da177e4 6954 case CPU_ONLINE:
8bb78442 6955 case CPU_ONLINE_FROZEN:
3a4fa0a2 6956 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6957 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6958
6959 /* Update our root-domain */
6960 rq = cpu_rq(cpu);
6961 spin_lock_irqsave(&rq->lock, flags);
6962 if (rq->rd) {
c6c4927b 6963 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6964
6965 set_rq_online(rq);
1f94ef59
GH
6966 }
6967 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6968 break;
48f24c4d 6969
1da177e4
LT
6970#ifdef CONFIG_HOTPLUG_CPU
6971 case CPU_UP_CANCELED:
8bb78442 6972 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6973 if (!cpu_rq(cpu)->migration_thread)
6974 break;
41a2d6cf 6975 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6976 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6977 cpumask_any(cpu_online_mask));
1da177e4
LT
6978 kthread_stop(cpu_rq(cpu)->migration_thread);
6979 cpu_rq(cpu)->migration_thread = NULL;
6980 break;
48f24c4d 6981
1da177e4 6982 case CPU_DEAD:
8bb78442 6983 case CPU_DEAD_FROZEN:
470fd646 6984 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6985 migrate_live_tasks(cpu);
6986 rq = cpu_rq(cpu);
6987 kthread_stop(rq->migration_thread);
6988 rq->migration_thread = NULL;
6989 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6990 spin_lock_irq(&rq->lock);
a8e504d2 6991 update_rq_clock(rq);
2e1cb74a 6992 deactivate_task(rq, rq->idle, 0);
1da177e4 6993 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6994 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6995 rq->idle->sched_class = &idle_sched_class;
1da177e4 6996 migrate_dead_tasks(cpu);
d2da272a 6997 spin_unlock_irq(&rq->lock);
470fd646 6998 cpuset_unlock();
1da177e4
LT
6999 migrate_nr_uninterruptible(rq);
7000 BUG_ON(rq->nr_running != 0);
7001
41a2d6cf
IM
7002 /*
7003 * No need to migrate the tasks: it was best-effort if
7004 * they didn't take sched_hotcpu_mutex. Just wake up
7005 * the requestors.
7006 */
1da177e4
LT
7007 spin_lock_irq(&rq->lock);
7008 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7009 struct migration_req *req;
7010
1da177e4 7011 req = list_entry(rq->migration_queue.next,
70b97a7f 7012 struct migration_req, list);
1da177e4 7013 list_del_init(&req->list);
9a2bd244 7014 spin_unlock_irq(&rq->lock);
1da177e4 7015 complete(&req->done);
9a2bd244 7016 spin_lock_irq(&rq->lock);
1da177e4
LT
7017 }
7018 spin_unlock_irq(&rq->lock);
7019 break;
57d885fe 7020
08f503b0
GH
7021 case CPU_DYING:
7022 case CPU_DYING_FROZEN:
57d885fe
GH
7023 /* Update our root-domain */
7024 rq = cpu_rq(cpu);
7025 spin_lock_irqsave(&rq->lock, flags);
7026 if (rq->rd) {
c6c4927b 7027 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7028 set_rq_offline(rq);
57d885fe
GH
7029 }
7030 spin_unlock_irqrestore(&rq->lock, flags);
7031 break;
1da177e4
LT
7032#endif
7033 }
7034 return NOTIFY_OK;
7035}
7036
7037/* Register at highest priority so that task migration (migrate_all_tasks)
7038 * happens before everything else.
7039 */
26c2143b 7040static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7041 .notifier_call = migration_call,
7042 .priority = 10
7043};
7044
7babe8db 7045static int __init migration_init(void)
1da177e4
LT
7046{
7047 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7048 int err;
48f24c4d
IM
7049
7050 /* Start one for the boot CPU: */
07dccf33
AM
7051 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7052 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7053 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7054 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7055
7056 return err;
1da177e4 7057}
7babe8db 7058early_initcall(migration_init);
1da177e4
LT
7059#endif
7060
7061#ifdef CONFIG_SMP
476f3534 7062
3e9830dc 7063#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7064
7c16ec58 7065static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7066 struct cpumask *groupmask)
1da177e4 7067{
4dcf6aff 7068 struct sched_group *group = sd->groups;
434d53b0 7069 char str[256];
1da177e4 7070
968ea6d8 7071 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7072 cpumask_clear(groupmask);
4dcf6aff
IM
7073
7074 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7075
7076 if (!(sd->flags & SD_LOAD_BALANCE)) {
7077 printk("does not load-balance\n");
7078 if (sd->parent)
7079 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7080 " has parent");
7081 return -1;
41c7ce9a
NP
7082 }
7083
eefd796a 7084 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7085
758b2cdc 7086 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7087 printk(KERN_ERR "ERROR: domain->span does not contain "
7088 "CPU%d\n", cpu);
7089 }
758b2cdc 7090 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7091 printk(KERN_ERR "ERROR: domain->groups does not contain"
7092 " CPU%d\n", cpu);
7093 }
1da177e4 7094
4dcf6aff 7095 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7096 do {
4dcf6aff
IM
7097 if (!group) {
7098 printk("\n");
7099 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7100 break;
7101 }
7102
4dcf6aff
IM
7103 if (!group->__cpu_power) {
7104 printk(KERN_CONT "\n");
7105 printk(KERN_ERR "ERROR: domain->cpu_power not "
7106 "set\n");
7107 break;
7108 }
1da177e4 7109
758b2cdc 7110 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7111 printk(KERN_CONT "\n");
7112 printk(KERN_ERR "ERROR: empty group\n");
7113 break;
7114 }
1da177e4 7115
758b2cdc 7116 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7117 printk(KERN_CONT "\n");
7118 printk(KERN_ERR "ERROR: repeated CPUs\n");
7119 break;
7120 }
1da177e4 7121
758b2cdc 7122 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7123
968ea6d8 7124 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 7125 printk(KERN_CONT " %s", str);
1da177e4 7126
4dcf6aff
IM
7127 group = group->next;
7128 } while (group != sd->groups);
7129 printk(KERN_CONT "\n");
1da177e4 7130
758b2cdc 7131 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7132 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7133
758b2cdc
RR
7134 if (sd->parent &&
7135 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7136 printk(KERN_ERR "ERROR: parent span is not a superset "
7137 "of domain->span\n");
7138 return 0;
7139}
1da177e4 7140
4dcf6aff
IM
7141static void sched_domain_debug(struct sched_domain *sd, int cpu)
7142{
d5dd3db1 7143 cpumask_var_t groupmask;
4dcf6aff 7144 int level = 0;
1da177e4 7145
4dcf6aff
IM
7146 if (!sd) {
7147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7148 return;
7149 }
1da177e4 7150
4dcf6aff
IM
7151 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7152
d5dd3db1 7153 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7154 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7155 return;
7156 }
7157
4dcf6aff 7158 for (;;) {
7c16ec58 7159 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7160 break;
1da177e4
LT
7161 level++;
7162 sd = sd->parent;
33859f7f 7163 if (!sd)
4dcf6aff
IM
7164 break;
7165 }
d5dd3db1 7166 free_cpumask_var(groupmask);
1da177e4 7167}
6d6bc0ad 7168#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7169# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7170#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7171
1a20ff27 7172static int sd_degenerate(struct sched_domain *sd)
245af2c7 7173{
758b2cdc 7174 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7175 return 1;
7176
7177 /* Following flags need at least 2 groups */
7178 if (sd->flags & (SD_LOAD_BALANCE |
7179 SD_BALANCE_NEWIDLE |
7180 SD_BALANCE_FORK |
89c4710e
SS
7181 SD_BALANCE_EXEC |
7182 SD_SHARE_CPUPOWER |
7183 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7184 if (sd->groups != sd->groups->next)
7185 return 0;
7186 }
7187
7188 /* Following flags don't use groups */
7189 if (sd->flags & (SD_WAKE_IDLE |
7190 SD_WAKE_AFFINE |
7191 SD_WAKE_BALANCE))
7192 return 0;
7193
7194 return 1;
7195}
7196
48f24c4d
IM
7197static int
7198sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7199{
7200 unsigned long cflags = sd->flags, pflags = parent->flags;
7201
7202 if (sd_degenerate(parent))
7203 return 1;
7204
758b2cdc 7205 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7206 return 0;
7207
7208 /* Does parent contain flags not in child? */
7209 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7210 if (cflags & SD_WAKE_AFFINE)
7211 pflags &= ~SD_WAKE_BALANCE;
7212 /* Flags needing groups don't count if only 1 group in parent */
7213 if (parent->groups == parent->groups->next) {
7214 pflags &= ~(SD_LOAD_BALANCE |
7215 SD_BALANCE_NEWIDLE |
7216 SD_BALANCE_FORK |
89c4710e
SS
7217 SD_BALANCE_EXEC |
7218 SD_SHARE_CPUPOWER |
7219 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7220 if (nr_node_ids == 1)
7221 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7222 }
7223 if (~cflags & pflags)
7224 return 0;
7225
7226 return 1;
7227}
7228
c6c4927b
RR
7229static void free_rootdomain(struct root_domain *rd)
7230{
68e74568
RR
7231 cpupri_cleanup(&rd->cpupri);
7232
c6c4927b
RR
7233 free_cpumask_var(rd->rto_mask);
7234 free_cpumask_var(rd->online);
7235 free_cpumask_var(rd->span);
7236 kfree(rd);
7237}
7238
57d885fe
GH
7239static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7240{
a0490fa3 7241 struct root_domain *old_rd = NULL;
57d885fe 7242 unsigned long flags;
57d885fe
GH
7243
7244 spin_lock_irqsave(&rq->lock, flags);
7245
7246 if (rq->rd) {
a0490fa3 7247 old_rd = rq->rd;
57d885fe 7248
c6c4927b 7249 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7250 set_rq_offline(rq);
57d885fe 7251
c6c4927b 7252 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7253
a0490fa3
IM
7254 /*
7255 * If we dont want to free the old_rt yet then
7256 * set old_rd to NULL to skip the freeing later
7257 * in this function:
7258 */
7259 if (!atomic_dec_and_test(&old_rd->refcount))
7260 old_rd = NULL;
57d885fe
GH
7261 }
7262
7263 atomic_inc(&rd->refcount);
7264 rq->rd = rd;
7265
c6c4927b
RR
7266 cpumask_set_cpu(rq->cpu, rd->span);
7267 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7268 set_rq_online(rq);
57d885fe
GH
7269
7270 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7271
7272 if (old_rd)
7273 free_rootdomain(old_rd);
57d885fe
GH
7274}
7275
db2f59c8 7276static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7277{
7278 memset(rd, 0, sizeof(*rd));
7279
c6c4927b
RR
7280 if (bootmem) {
7281 alloc_bootmem_cpumask_var(&def_root_domain.span);
7282 alloc_bootmem_cpumask_var(&def_root_domain.online);
7283 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7284 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7285 return 0;
7286 }
7287
7288 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7289 goto out;
c6c4927b
RR
7290 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7291 goto free_span;
7292 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7293 goto free_online;
6e0534f2 7294
68e74568
RR
7295 if (cpupri_init(&rd->cpupri, false) != 0)
7296 goto free_rto_mask;
c6c4927b 7297 return 0;
6e0534f2 7298
68e74568
RR
7299free_rto_mask:
7300 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7301free_online:
7302 free_cpumask_var(rd->online);
7303free_span:
7304 free_cpumask_var(rd->span);
0c910d28 7305out:
c6c4927b 7306 return -ENOMEM;
57d885fe
GH
7307}
7308
7309static void init_defrootdomain(void)
7310{
c6c4927b
RR
7311 init_rootdomain(&def_root_domain, true);
7312
57d885fe
GH
7313 atomic_set(&def_root_domain.refcount, 1);
7314}
7315
dc938520 7316static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7317{
7318 struct root_domain *rd;
7319
7320 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7321 if (!rd)
7322 return NULL;
7323
c6c4927b
RR
7324 if (init_rootdomain(rd, false) != 0) {
7325 kfree(rd);
7326 return NULL;
7327 }
57d885fe
GH
7328
7329 return rd;
7330}
7331
1da177e4 7332/*
0eab9146 7333 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7334 * hold the hotplug lock.
7335 */
0eab9146
IM
7336static void
7337cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7338{
70b97a7f 7339 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7340 struct sched_domain *tmp;
7341
7342 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7343 for (tmp = sd; tmp; ) {
245af2c7
SS
7344 struct sched_domain *parent = tmp->parent;
7345 if (!parent)
7346 break;
f29c9b1c 7347
1a848870 7348 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7349 tmp->parent = parent->parent;
1a848870
SS
7350 if (parent->parent)
7351 parent->parent->child = tmp;
f29c9b1c
LZ
7352 } else
7353 tmp = tmp->parent;
245af2c7
SS
7354 }
7355
1a848870 7356 if (sd && sd_degenerate(sd)) {
245af2c7 7357 sd = sd->parent;
1a848870
SS
7358 if (sd)
7359 sd->child = NULL;
7360 }
1da177e4
LT
7361
7362 sched_domain_debug(sd, cpu);
7363
57d885fe 7364 rq_attach_root(rq, rd);
674311d5 7365 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7366}
7367
7368/* cpus with isolated domains */
dcc30a35 7369static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7370
7371/* Setup the mask of cpus configured for isolated domains */
7372static int __init isolated_cpu_setup(char *str)
7373{
968ea6d8 7374 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7375 return 1;
7376}
7377
8927f494 7378__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7379
7380/*
6711cab4
SS
7381 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7382 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7383 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7384 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7385 *
7386 * init_sched_build_groups will build a circular linked list of the groups
7387 * covered by the given span, and will set each group's ->cpumask correctly,
7388 * and ->cpu_power to 0.
7389 */
a616058b 7390static void
96f874e2
RR
7391init_sched_build_groups(const struct cpumask *span,
7392 const struct cpumask *cpu_map,
7393 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7394 struct sched_group **sg,
96f874e2
RR
7395 struct cpumask *tmpmask),
7396 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7397{
7398 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7399 int i;
7400
96f874e2 7401 cpumask_clear(covered);
7c16ec58 7402
abcd083a 7403 for_each_cpu(i, span) {
6711cab4 7404 struct sched_group *sg;
7c16ec58 7405 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7406 int j;
7407
758b2cdc 7408 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7409 continue;
7410
758b2cdc 7411 cpumask_clear(sched_group_cpus(sg));
5517d86b 7412 sg->__cpu_power = 0;
1da177e4 7413
abcd083a 7414 for_each_cpu(j, span) {
7c16ec58 7415 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7416 continue;
7417
96f874e2 7418 cpumask_set_cpu(j, covered);
758b2cdc 7419 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7420 }
7421 if (!first)
7422 first = sg;
7423 if (last)
7424 last->next = sg;
7425 last = sg;
7426 }
7427 last->next = first;
7428}
7429
9c1cfda2 7430#define SD_NODES_PER_DOMAIN 16
1da177e4 7431
9c1cfda2 7432#ifdef CONFIG_NUMA
198e2f18 7433
9c1cfda2
JH
7434/**
7435 * find_next_best_node - find the next node to include in a sched_domain
7436 * @node: node whose sched_domain we're building
7437 * @used_nodes: nodes already in the sched_domain
7438 *
41a2d6cf 7439 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7440 * finds the closest node not already in the @used_nodes map.
7441 *
7442 * Should use nodemask_t.
7443 */
c5f59f08 7444static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7445{
7446 int i, n, val, min_val, best_node = 0;
7447
7448 min_val = INT_MAX;
7449
076ac2af 7450 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7451 /* Start at @node */
076ac2af 7452 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7453
7454 if (!nr_cpus_node(n))
7455 continue;
7456
7457 /* Skip already used nodes */
c5f59f08 7458 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7459 continue;
7460
7461 /* Simple min distance search */
7462 val = node_distance(node, n);
7463
7464 if (val < min_val) {
7465 min_val = val;
7466 best_node = n;
7467 }
7468 }
7469
c5f59f08 7470 node_set(best_node, *used_nodes);
9c1cfda2
JH
7471 return best_node;
7472}
7473
7474/**
7475 * sched_domain_node_span - get a cpumask for a node's sched_domain
7476 * @node: node whose cpumask we're constructing
73486722 7477 * @span: resulting cpumask
9c1cfda2 7478 *
41a2d6cf 7479 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7480 * should be one that prevents unnecessary balancing, but also spreads tasks
7481 * out optimally.
7482 */
96f874e2 7483static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7484{
c5f59f08 7485 nodemask_t used_nodes;
48f24c4d 7486 int i;
9c1cfda2 7487
6ca09dfc 7488 cpumask_clear(span);
c5f59f08 7489 nodes_clear(used_nodes);
9c1cfda2 7490
6ca09dfc 7491 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7492 node_set(node, used_nodes);
9c1cfda2
JH
7493
7494 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7495 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7496
6ca09dfc 7497 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7498 }
9c1cfda2 7499}
6d6bc0ad 7500#endif /* CONFIG_NUMA */
9c1cfda2 7501
5c45bf27 7502int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7503
6c99e9ad
RR
7504/*
7505 * The cpus mask in sched_group and sched_domain hangs off the end.
7506 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7507 * for nr_cpu_ids < CONFIG_NR_CPUS.
7508 */
7509struct static_sched_group {
7510 struct sched_group sg;
7511 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7512};
7513
7514struct static_sched_domain {
7515 struct sched_domain sd;
7516 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7517};
7518
9c1cfda2 7519/*
48f24c4d 7520 * SMT sched-domains:
9c1cfda2 7521 */
1da177e4 7522#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7523static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7524static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7525
41a2d6cf 7526static int
96f874e2
RR
7527cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7528 struct sched_group **sg, struct cpumask *unused)
1da177e4 7529{
6711cab4 7530 if (sg)
6c99e9ad 7531 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7532 return cpu;
7533}
6d6bc0ad 7534#endif /* CONFIG_SCHED_SMT */
1da177e4 7535
48f24c4d
IM
7536/*
7537 * multi-core sched-domains:
7538 */
1e9f28fa 7539#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7540static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7541static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7542#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7543
7544#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7545static int
96f874e2
RR
7546cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7547 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7548{
6711cab4 7549 int group;
7c16ec58 7550
96f874e2
RR
7551 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7552 group = cpumask_first(mask);
6711cab4 7553 if (sg)
6c99e9ad 7554 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7555 return group;
1e9f28fa
SS
7556}
7557#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7558static int
96f874e2
RR
7559cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7560 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7561{
6711cab4 7562 if (sg)
6c99e9ad 7563 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7564 return cpu;
7565}
7566#endif
7567
6c99e9ad
RR
7568static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7569static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7570
41a2d6cf 7571static int
96f874e2
RR
7572cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7573 struct sched_group **sg, struct cpumask *mask)
1da177e4 7574{
6711cab4 7575 int group;
48f24c4d 7576#ifdef CONFIG_SCHED_MC
6ca09dfc 7577 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7578 group = cpumask_first(mask);
1e9f28fa 7579#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7580 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7581 group = cpumask_first(mask);
1da177e4 7582#else
6711cab4 7583 group = cpu;
1da177e4 7584#endif
6711cab4 7585 if (sg)
6c99e9ad 7586 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7587 return group;
1da177e4
LT
7588}
7589
7590#ifdef CONFIG_NUMA
1da177e4 7591/*
9c1cfda2
JH
7592 * The init_sched_build_groups can't handle what we want to do with node
7593 * groups, so roll our own. Now each node has its own list of groups which
7594 * gets dynamically allocated.
1da177e4 7595 */
62ea9ceb 7596static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7597static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7598
62ea9ceb 7599static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7600static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7601
96f874e2
RR
7602static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7603 struct sched_group **sg,
7604 struct cpumask *nodemask)
9c1cfda2 7605{
6711cab4
SS
7606 int group;
7607
6ca09dfc 7608 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7609 group = cpumask_first(nodemask);
6711cab4
SS
7610
7611 if (sg)
6c99e9ad 7612 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7613 return group;
1da177e4 7614}
6711cab4 7615
08069033
SS
7616static void init_numa_sched_groups_power(struct sched_group *group_head)
7617{
7618 struct sched_group *sg = group_head;
7619 int j;
7620
7621 if (!sg)
7622 return;
3a5c359a 7623 do {
758b2cdc 7624 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7625 struct sched_domain *sd;
08069033 7626
6c99e9ad 7627 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7628 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7629 /*
7630 * Only add "power" once for each
7631 * physical package.
7632 */
7633 continue;
7634 }
08069033 7635
3a5c359a
AK
7636 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7637 }
7638 sg = sg->next;
7639 } while (sg != group_head);
08069033 7640}
6d6bc0ad 7641#endif /* CONFIG_NUMA */
1da177e4 7642
a616058b 7643#ifdef CONFIG_NUMA
51888ca2 7644/* Free memory allocated for various sched_group structures */
96f874e2
RR
7645static void free_sched_groups(const struct cpumask *cpu_map,
7646 struct cpumask *nodemask)
51888ca2 7647{
a616058b 7648 int cpu, i;
51888ca2 7649
abcd083a 7650 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7651 struct sched_group **sched_group_nodes
7652 = sched_group_nodes_bycpu[cpu];
7653
51888ca2
SV
7654 if (!sched_group_nodes)
7655 continue;
7656
076ac2af 7657 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7658 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7659
6ca09dfc 7660 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7661 if (cpumask_empty(nodemask))
51888ca2
SV
7662 continue;
7663
7664 if (sg == NULL)
7665 continue;
7666 sg = sg->next;
7667next_sg:
7668 oldsg = sg;
7669 sg = sg->next;
7670 kfree(oldsg);
7671 if (oldsg != sched_group_nodes[i])
7672 goto next_sg;
7673 }
7674 kfree(sched_group_nodes);
7675 sched_group_nodes_bycpu[cpu] = NULL;
7676 }
51888ca2 7677}
6d6bc0ad 7678#else /* !CONFIG_NUMA */
96f874e2
RR
7679static void free_sched_groups(const struct cpumask *cpu_map,
7680 struct cpumask *nodemask)
a616058b
SS
7681{
7682}
6d6bc0ad 7683#endif /* CONFIG_NUMA */
51888ca2 7684
89c4710e
SS
7685/*
7686 * Initialize sched groups cpu_power.
7687 *
7688 * cpu_power indicates the capacity of sched group, which is used while
7689 * distributing the load between different sched groups in a sched domain.
7690 * Typically cpu_power for all the groups in a sched domain will be same unless
7691 * there are asymmetries in the topology. If there are asymmetries, group
7692 * having more cpu_power will pickup more load compared to the group having
7693 * less cpu_power.
7694 *
7695 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7696 * the maximum number of tasks a group can handle in the presence of other idle
7697 * or lightly loaded groups in the same sched domain.
7698 */
7699static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7700{
7701 struct sched_domain *child;
7702 struct sched_group *group;
7703
7704 WARN_ON(!sd || !sd->groups);
7705
758b2cdc 7706 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7707 return;
7708
7709 child = sd->child;
7710
5517d86b
ED
7711 sd->groups->__cpu_power = 0;
7712
89c4710e
SS
7713 /*
7714 * For perf policy, if the groups in child domain share resources
7715 * (for example cores sharing some portions of the cache hierarchy
7716 * or SMT), then set this domain groups cpu_power such that each group
7717 * can handle only one task, when there are other idle groups in the
7718 * same sched domain.
7719 */
7720 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7721 (child->flags &
7722 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7723 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7724 return;
7725 }
7726
89c4710e
SS
7727 /*
7728 * add cpu_power of each child group to this groups cpu_power
7729 */
7730 group = child->groups;
7731 do {
5517d86b 7732 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7733 group = group->next;
7734 } while (group != child->groups);
7735}
7736
7c16ec58
MT
7737/*
7738 * Initializers for schedule domains
7739 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7740 */
7741
a5d8c348
IM
7742#ifdef CONFIG_SCHED_DEBUG
7743# define SD_INIT_NAME(sd, type) sd->name = #type
7744#else
7745# define SD_INIT_NAME(sd, type) do { } while (0)
7746#endif
7747
7c16ec58 7748#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7749
7c16ec58
MT
7750#define SD_INIT_FUNC(type) \
7751static noinline void sd_init_##type(struct sched_domain *sd) \
7752{ \
7753 memset(sd, 0, sizeof(*sd)); \
7754 *sd = SD_##type##_INIT; \
1d3504fc 7755 sd->level = SD_LV_##type; \
a5d8c348 7756 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7757}
7758
7759SD_INIT_FUNC(CPU)
7760#ifdef CONFIG_NUMA
7761 SD_INIT_FUNC(ALLNODES)
7762 SD_INIT_FUNC(NODE)
7763#endif
7764#ifdef CONFIG_SCHED_SMT
7765 SD_INIT_FUNC(SIBLING)
7766#endif
7767#ifdef CONFIG_SCHED_MC
7768 SD_INIT_FUNC(MC)
7769#endif
7770
1d3504fc
HS
7771static int default_relax_domain_level = -1;
7772
7773static int __init setup_relax_domain_level(char *str)
7774{
30e0e178
LZ
7775 unsigned long val;
7776
7777 val = simple_strtoul(str, NULL, 0);
7778 if (val < SD_LV_MAX)
7779 default_relax_domain_level = val;
7780
1d3504fc
HS
7781 return 1;
7782}
7783__setup("relax_domain_level=", setup_relax_domain_level);
7784
7785static void set_domain_attribute(struct sched_domain *sd,
7786 struct sched_domain_attr *attr)
7787{
7788 int request;
7789
7790 if (!attr || attr->relax_domain_level < 0) {
7791 if (default_relax_domain_level < 0)
7792 return;
7793 else
7794 request = default_relax_domain_level;
7795 } else
7796 request = attr->relax_domain_level;
7797 if (request < sd->level) {
7798 /* turn off idle balance on this domain */
7799 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7800 } else {
7801 /* turn on idle balance on this domain */
7802 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7803 }
7804}
7805
1da177e4 7806/*
1a20ff27
DG
7807 * Build sched domains for a given set of cpus and attach the sched domains
7808 * to the individual cpus
1da177e4 7809 */
96f874e2 7810static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7811 struct sched_domain_attr *attr)
1da177e4 7812{
3404c8d9 7813 int i, err = -ENOMEM;
57d885fe 7814 struct root_domain *rd;
3404c8d9
RR
7815 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7816 tmpmask;
d1b55138 7817#ifdef CONFIG_NUMA
3404c8d9 7818 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7819 struct sched_group **sched_group_nodes = NULL;
6711cab4 7820 int sd_allnodes = 0;
d1b55138 7821
3404c8d9
RR
7822 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7823 goto out;
7824 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7825 goto free_domainspan;
7826 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7827 goto free_covered;
7828#endif
7829
7830 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7831 goto free_notcovered;
7832 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7833 goto free_nodemask;
7834 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7835 goto free_this_sibling_map;
7836 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7837 goto free_this_core_map;
7838 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7839 goto free_send_covered;
7840
7841#ifdef CONFIG_NUMA
d1b55138
JH
7842 /*
7843 * Allocate the per-node list of sched groups
7844 */
076ac2af 7845 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7846 GFP_KERNEL);
d1b55138
JH
7847 if (!sched_group_nodes) {
7848 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7849 goto free_tmpmask;
d1b55138 7850 }
d1b55138 7851#endif
1da177e4 7852
dc938520 7853 rd = alloc_rootdomain();
57d885fe
GH
7854 if (!rd) {
7855 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7856 goto free_sched_groups;
57d885fe
GH
7857 }
7858
7c16ec58 7859#ifdef CONFIG_NUMA
96f874e2 7860 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7861#endif
7862
1da177e4 7863 /*
1a20ff27 7864 * Set up domains for cpus specified by the cpu_map.
1da177e4 7865 */
abcd083a 7866 for_each_cpu(i, cpu_map) {
1da177e4 7867 struct sched_domain *sd = NULL, *p;
1da177e4 7868
6ca09dfc 7869 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7870
7871#ifdef CONFIG_NUMA
96f874e2
RR
7872 if (cpumask_weight(cpu_map) >
7873 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7874 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7875 SD_INIT(sd, ALLNODES);
1d3504fc 7876 set_domain_attribute(sd, attr);
758b2cdc 7877 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7878 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7879 p = sd;
6711cab4 7880 sd_allnodes = 1;
9c1cfda2
JH
7881 } else
7882 p = NULL;
7883
62ea9ceb 7884 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7885 SD_INIT(sd, NODE);
1d3504fc 7886 set_domain_attribute(sd, attr);
758b2cdc 7887 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7888 sd->parent = p;
1a848870
SS
7889 if (p)
7890 p->child = sd;
758b2cdc
RR
7891 cpumask_and(sched_domain_span(sd),
7892 sched_domain_span(sd), cpu_map);
1da177e4
LT
7893#endif
7894
7895 p = sd;
6c99e9ad 7896 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7897 SD_INIT(sd, CPU);
1d3504fc 7898 set_domain_attribute(sd, attr);
758b2cdc 7899 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7900 sd->parent = p;
1a848870
SS
7901 if (p)
7902 p->child = sd;
7c16ec58 7903 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7904
1e9f28fa
SS
7905#ifdef CONFIG_SCHED_MC
7906 p = sd;
6c99e9ad 7907 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7908 SD_INIT(sd, MC);
1d3504fc 7909 set_domain_attribute(sd, attr);
6ca09dfc
MT
7910 cpumask_and(sched_domain_span(sd), cpu_map,
7911 cpu_coregroup_mask(i));
1e9f28fa 7912 sd->parent = p;
1a848870 7913 p->child = sd;
7c16ec58 7914 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7915#endif
7916
1da177e4
LT
7917#ifdef CONFIG_SCHED_SMT
7918 p = sd;
6c99e9ad 7919 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7920 SD_INIT(sd, SIBLING);
1d3504fc 7921 set_domain_attribute(sd, attr);
758b2cdc
RR
7922 cpumask_and(sched_domain_span(sd),
7923 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7924 sd->parent = p;
1a848870 7925 p->child = sd;
7c16ec58 7926 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7927#endif
7928 }
7929
7930#ifdef CONFIG_SCHED_SMT
7931 /* Set up CPU (sibling) groups */
abcd083a 7932 for_each_cpu(i, cpu_map) {
96f874e2
RR
7933 cpumask_and(this_sibling_map,
7934 &per_cpu(cpu_sibling_map, i), cpu_map);
7935 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7936 continue;
7937
dd41f596 7938 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7939 &cpu_to_cpu_group,
7940 send_covered, tmpmask);
1da177e4
LT
7941 }
7942#endif
7943
1e9f28fa
SS
7944#ifdef CONFIG_SCHED_MC
7945 /* Set up multi-core groups */
abcd083a 7946 for_each_cpu(i, cpu_map) {
6ca09dfc 7947 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7948 if (i != cpumask_first(this_core_map))
1e9f28fa 7949 continue;
7c16ec58 7950
dd41f596 7951 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7952 &cpu_to_core_group,
7953 send_covered, tmpmask);
1e9f28fa
SS
7954 }
7955#endif
7956
1da177e4 7957 /* Set up physical groups */
076ac2af 7958 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7959 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7960 if (cpumask_empty(nodemask))
1da177e4
LT
7961 continue;
7962
7c16ec58
MT
7963 init_sched_build_groups(nodemask, cpu_map,
7964 &cpu_to_phys_group,
7965 send_covered, tmpmask);
1da177e4
LT
7966 }
7967
7968#ifdef CONFIG_NUMA
7969 /* Set up node groups */
7c16ec58 7970 if (sd_allnodes) {
7c16ec58
MT
7971 init_sched_build_groups(cpu_map, cpu_map,
7972 &cpu_to_allnodes_group,
7973 send_covered, tmpmask);
7974 }
9c1cfda2 7975
076ac2af 7976 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7977 /* Set up node groups */
7978 struct sched_group *sg, *prev;
9c1cfda2
JH
7979 int j;
7980
96f874e2 7981 cpumask_clear(covered);
6ca09dfc 7982 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7983 if (cpumask_empty(nodemask)) {
d1b55138 7984 sched_group_nodes[i] = NULL;
9c1cfda2 7985 continue;
d1b55138 7986 }
9c1cfda2 7987
4bdbaad3 7988 sched_domain_node_span(i, domainspan);
96f874e2 7989 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7990
6c99e9ad
RR
7991 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7992 GFP_KERNEL, i);
51888ca2
SV
7993 if (!sg) {
7994 printk(KERN_WARNING "Can not alloc domain group for "
7995 "node %d\n", i);
7996 goto error;
7997 }
9c1cfda2 7998 sched_group_nodes[i] = sg;
abcd083a 7999 for_each_cpu(j, nodemask) {
9c1cfda2 8000 struct sched_domain *sd;
9761eea8 8001
62ea9ceb 8002 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8003 sd->groups = sg;
9c1cfda2 8004 }
5517d86b 8005 sg->__cpu_power = 0;
758b2cdc 8006 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8007 sg->next = sg;
96f874e2 8008 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8009 prev = sg;
8010
076ac2af 8011 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8012 int n = (i + j) % nr_node_ids;
9c1cfda2 8013
96f874e2
RR
8014 cpumask_complement(notcovered, covered);
8015 cpumask_and(tmpmask, notcovered, cpu_map);
8016 cpumask_and(tmpmask, tmpmask, domainspan);
8017 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8018 break;
8019
6ca09dfc 8020 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8021 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8022 continue;
8023
6c99e9ad
RR
8024 sg = kmalloc_node(sizeof(struct sched_group) +
8025 cpumask_size(),
15f0b676 8026 GFP_KERNEL, i);
9c1cfda2
JH
8027 if (!sg) {
8028 printk(KERN_WARNING
8029 "Can not alloc domain group for node %d\n", j);
51888ca2 8030 goto error;
9c1cfda2 8031 }
5517d86b 8032 sg->__cpu_power = 0;
758b2cdc 8033 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8034 sg->next = prev->next;
96f874e2 8035 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8036 prev->next = sg;
8037 prev = sg;
8038 }
9c1cfda2 8039 }
1da177e4
LT
8040#endif
8041
8042 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8043#ifdef CONFIG_SCHED_SMT
abcd083a 8044 for_each_cpu(i, cpu_map) {
6c99e9ad 8045 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8046
89c4710e 8047 init_sched_groups_power(i, sd);
5c45bf27 8048 }
1da177e4 8049#endif
1e9f28fa 8050#ifdef CONFIG_SCHED_MC
abcd083a 8051 for_each_cpu(i, cpu_map) {
6c99e9ad 8052 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8053
89c4710e 8054 init_sched_groups_power(i, sd);
5c45bf27
SS
8055 }
8056#endif
1e9f28fa 8057
abcd083a 8058 for_each_cpu(i, cpu_map) {
6c99e9ad 8059 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8060
89c4710e 8061 init_sched_groups_power(i, sd);
1da177e4
LT
8062 }
8063
9c1cfda2 8064#ifdef CONFIG_NUMA
076ac2af 8065 for (i = 0; i < nr_node_ids; i++)
08069033 8066 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8067
6711cab4
SS
8068 if (sd_allnodes) {
8069 struct sched_group *sg;
f712c0c7 8070
96f874e2 8071 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8072 tmpmask);
f712c0c7
SS
8073 init_numa_sched_groups_power(sg);
8074 }
9c1cfda2
JH
8075#endif
8076
1da177e4 8077 /* Attach the domains */
abcd083a 8078 for_each_cpu(i, cpu_map) {
1da177e4
LT
8079 struct sched_domain *sd;
8080#ifdef CONFIG_SCHED_SMT
6c99e9ad 8081 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8082#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8083 sd = &per_cpu(core_domains, i).sd;
1da177e4 8084#else
6c99e9ad 8085 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8086#endif
57d885fe 8087 cpu_attach_domain(sd, rd, i);
1da177e4 8088 }
51888ca2 8089
3404c8d9
RR
8090 err = 0;
8091
8092free_tmpmask:
8093 free_cpumask_var(tmpmask);
8094free_send_covered:
8095 free_cpumask_var(send_covered);
8096free_this_core_map:
8097 free_cpumask_var(this_core_map);
8098free_this_sibling_map:
8099 free_cpumask_var(this_sibling_map);
8100free_nodemask:
8101 free_cpumask_var(nodemask);
8102free_notcovered:
8103#ifdef CONFIG_NUMA
8104 free_cpumask_var(notcovered);
8105free_covered:
8106 free_cpumask_var(covered);
8107free_domainspan:
8108 free_cpumask_var(domainspan);
8109out:
8110#endif
8111 return err;
8112
8113free_sched_groups:
8114#ifdef CONFIG_NUMA
8115 kfree(sched_group_nodes);
8116#endif
8117 goto free_tmpmask;
51888ca2 8118
a616058b 8119#ifdef CONFIG_NUMA
51888ca2 8120error:
7c16ec58 8121 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8122 free_rootdomain(rd);
3404c8d9 8123 goto free_tmpmask;
a616058b 8124#endif
1da177e4 8125}
029190c5 8126
96f874e2 8127static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8128{
8129 return __build_sched_domains(cpu_map, NULL);
8130}
8131
96f874e2 8132static struct cpumask *doms_cur; /* current sched domains */
029190c5 8133static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8134static struct sched_domain_attr *dattr_cur;
8135 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8136
8137/*
8138 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8139 * cpumask) fails, then fallback to a single sched domain,
8140 * as determined by the single cpumask fallback_doms.
029190c5 8141 */
4212823f 8142static cpumask_var_t fallback_doms;
029190c5 8143
ee79d1bd
HC
8144/*
8145 * arch_update_cpu_topology lets virtualized architectures update the
8146 * cpu core maps. It is supposed to return 1 if the topology changed
8147 * or 0 if it stayed the same.
8148 */
8149int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8150{
ee79d1bd 8151 return 0;
22e52b07
HC
8152}
8153
1a20ff27 8154/*
41a2d6cf 8155 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8156 * For now this just excludes isolated cpus, but could be used to
8157 * exclude other special cases in the future.
1a20ff27 8158 */
96f874e2 8159static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8160{
7378547f
MM
8161 int err;
8162
22e52b07 8163 arch_update_cpu_topology();
029190c5 8164 ndoms_cur = 1;
96f874e2 8165 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8166 if (!doms_cur)
4212823f 8167 doms_cur = fallback_doms;
dcc30a35 8168 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8169 dattr_cur = NULL;
7378547f 8170 err = build_sched_domains(doms_cur);
6382bc90 8171 register_sched_domain_sysctl();
7378547f
MM
8172
8173 return err;
1a20ff27
DG
8174}
8175
96f874e2
RR
8176static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8177 struct cpumask *tmpmask)
1da177e4 8178{
7c16ec58 8179 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8180}
1da177e4 8181
1a20ff27
DG
8182/*
8183 * Detach sched domains from a group of cpus specified in cpu_map
8184 * These cpus will now be attached to the NULL domain
8185 */
96f874e2 8186static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8187{
96f874e2
RR
8188 /* Save because hotplug lock held. */
8189 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8190 int i;
8191
abcd083a 8192 for_each_cpu(i, cpu_map)
57d885fe 8193 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8194 synchronize_sched();
96f874e2 8195 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8196}
8197
1d3504fc
HS
8198/* handle null as "default" */
8199static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8200 struct sched_domain_attr *new, int idx_new)
8201{
8202 struct sched_domain_attr tmp;
8203
8204 /* fast path */
8205 if (!new && !cur)
8206 return 1;
8207
8208 tmp = SD_ATTR_INIT;
8209 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8210 new ? (new + idx_new) : &tmp,
8211 sizeof(struct sched_domain_attr));
8212}
8213
029190c5
PJ
8214/*
8215 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8216 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8217 * doms_new[] to the current sched domain partitioning, doms_cur[].
8218 * It destroys each deleted domain and builds each new domain.
8219 *
96f874e2 8220 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8221 * The masks don't intersect (don't overlap.) We should setup one
8222 * sched domain for each mask. CPUs not in any of the cpumasks will
8223 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8224 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8225 * it as it is.
8226 *
41a2d6cf
IM
8227 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8228 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8229 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8230 * ndoms_new == 1, and partition_sched_domains() will fallback to
8231 * the single partition 'fallback_doms', it also forces the domains
8232 * to be rebuilt.
029190c5 8233 *
96f874e2 8234 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8235 * ndoms_new == 0 is a special case for destroying existing domains,
8236 * and it will not create the default domain.
dfb512ec 8237 *
029190c5
PJ
8238 * Call with hotplug lock held
8239 */
96f874e2
RR
8240/* FIXME: Change to struct cpumask *doms_new[] */
8241void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8242 struct sched_domain_attr *dattr_new)
029190c5 8243{
dfb512ec 8244 int i, j, n;
d65bd5ec 8245 int new_topology;
029190c5 8246
712555ee 8247 mutex_lock(&sched_domains_mutex);
a1835615 8248
7378547f
MM
8249 /* always unregister in case we don't destroy any domains */
8250 unregister_sched_domain_sysctl();
8251
d65bd5ec
HC
8252 /* Let architecture update cpu core mappings. */
8253 new_topology = arch_update_cpu_topology();
8254
dfb512ec 8255 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8256
8257 /* Destroy deleted domains */
8258 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8259 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8260 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8261 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8262 goto match1;
8263 }
8264 /* no match - a current sched domain not in new doms_new[] */
8265 detach_destroy_domains(doms_cur + i);
8266match1:
8267 ;
8268 }
8269
e761b772
MK
8270 if (doms_new == NULL) {
8271 ndoms_cur = 0;
4212823f 8272 doms_new = fallback_doms;
dcc30a35 8273 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8274 WARN_ON_ONCE(dattr_new);
e761b772
MK
8275 }
8276
029190c5
PJ
8277 /* Build new domains */
8278 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8279 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8280 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8281 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8282 goto match2;
8283 }
8284 /* no match - add a new doms_new */
1d3504fc
HS
8285 __build_sched_domains(doms_new + i,
8286 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8287match2:
8288 ;
8289 }
8290
8291 /* Remember the new sched domains */
4212823f 8292 if (doms_cur != fallback_doms)
029190c5 8293 kfree(doms_cur);
1d3504fc 8294 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8295 doms_cur = doms_new;
1d3504fc 8296 dattr_cur = dattr_new;
029190c5 8297 ndoms_cur = ndoms_new;
7378547f
MM
8298
8299 register_sched_domain_sysctl();
a1835615 8300
712555ee 8301 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8302}
8303
5c45bf27 8304#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8305static void arch_reinit_sched_domains(void)
5c45bf27 8306{
95402b38 8307 get_online_cpus();
dfb512ec
MK
8308
8309 /* Destroy domains first to force the rebuild */
8310 partition_sched_domains(0, NULL, NULL);
8311
e761b772 8312 rebuild_sched_domains();
95402b38 8313 put_online_cpus();
5c45bf27
SS
8314}
8315
8316static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8317{
afb8a9b7 8318 unsigned int level = 0;
5c45bf27 8319
afb8a9b7
GS
8320 if (sscanf(buf, "%u", &level) != 1)
8321 return -EINVAL;
8322
8323 /*
8324 * level is always be positive so don't check for
8325 * level < POWERSAVINGS_BALANCE_NONE which is 0
8326 * What happens on 0 or 1 byte write,
8327 * need to check for count as well?
8328 */
8329
8330 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8331 return -EINVAL;
8332
8333 if (smt)
afb8a9b7 8334 sched_smt_power_savings = level;
5c45bf27 8335 else
afb8a9b7 8336 sched_mc_power_savings = level;
5c45bf27 8337
c70f22d2 8338 arch_reinit_sched_domains();
5c45bf27 8339
c70f22d2 8340 return count;
5c45bf27
SS
8341}
8342
5c45bf27 8343#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8344static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8345 char *page)
5c45bf27
SS
8346{
8347 return sprintf(page, "%u\n", sched_mc_power_savings);
8348}
f718cd4a 8349static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8350 const char *buf, size_t count)
5c45bf27
SS
8351{
8352 return sched_power_savings_store(buf, count, 0);
8353}
f718cd4a
AK
8354static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8355 sched_mc_power_savings_show,
8356 sched_mc_power_savings_store);
5c45bf27
SS
8357#endif
8358
8359#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8360static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8361 char *page)
5c45bf27
SS
8362{
8363 return sprintf(page, "%u\n", sched_smt_power_savings);
8364}
f718cd4a 8365static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8366 const char *buf, size_t count)
5c45bf27
SS
8367{
8368 return sched_power_savings_store(buf, count, 1);
8369}
f718cd4a
AK
8370static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8371 sched_smt_power_savings_show,
6707de00
AB
8372 sched_smt_power_savings_store);
8373#endif
8374
39aac648 8375int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8376{
8377 int err = 0;
8378
8379#ifdef CONFIG_SCHED_SMT
8380 if (smt_capable())
8381 err = sysfs_create_file(&cls->kset.kobj,
8382 &attr_sched_smt_power_savings.attr);
8383#endif
8384#ifdef CONFIG_SCHED_MC
8385 if (!err && mc_capable())
8386 err = sysfs_create_file(&cls->kset.kobj,
8387 &attr_sched_mc_power_savings.attr);
8388#endif
8389 return err;
8390}
6d6bc0ad 8391#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8392
e761b772 8393#ifndef CONFIG_CPUSETS
1da177e4 8394/*
e761b772
MK
8395 * Add online and remove offline CPUs from the scheduler domains.
8396 * When cpusets are enabled they take over this function.
1da177e4
LT
8397 */
8398static int update_sched_domains(struct notifier_block *nfb,
8399 unsigned long action, void *hcpu)
e761b772
MK
8400{
8401 switch (action) {
8402 case CPU_ONLINE:
8403 case CPU_ONLINE_FROZEN:
8404 case CPU_DEAD:
8405 case CPU_DEAD_FROZEN:
dfb512ec 8406 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8407 return NOTIFY_OK;
8408
8409 default:
8410 return NOTIFY_DONE;
8411 }
8412}
8413#endif
8414
8415static int update_runtime(struct notifier_block *nfb,
8416 unsigned long action, void *hcpu)
1da177e4 8417{
7def2be1
PZ
8418 int cpu = (int)(long)hcpu;
8419
1da177e4 8420 switch (action) {
1da177e4 8421 case CPU_DOWN_PREPARE:
8bb78442 8422 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8423 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8424 return NOTIFY_OK;
8425
1da177e4 8426 case CPU_DOWN_FAILED:
8bb78442 8427 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8428 case CPU_ONLINE:
8bb78442 8429 case CPU_ONLINE_FROZEN:
7def2be1 8430 enable_runtime(cpu_rq(cpu));
e761b772
MK
8431 return NOTIFY_OK;
8432
1da177e4
LT
8433 default:
8434 return NOTIFY_DONE;
8435 }
1da177e4 8436}
1da177e4
LT
8437
8438void __init sched_init_smp(void)
8439{
dcc30a35
RR
8440 cpumask_var_t non_isolated_cpus;
8441
8442 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8443
434d53b0
MT
8444#if defined(CONFIG_NUMA)
8445 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8446 GFP_KERNEL);
8447 BUG_ON(sched_group_nodes_bycpu == NULL);
8448#endif
95402b38 8449 get_online_cpus();
712555ee 8450 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8451 arch_init_sched_domains(cpu_online_mask);
8452 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8453 if (cpumask_empty(non_isolated_cpus))
8454 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8455 mutex_unlock(&sched_domains_mutex);
95402b38 8456 put_online_cpus();
e761b772
MK
8457
8458#ifndef CONFIG_CPUSETS
1da177e4
LT
8459 /* XXX: Theoretical race here - CPU may be hotplugged now */
8460 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8461#endif
8462
8463 /* RT runtime code needs to handle some hotplug events */
8464 hotcpu_notifier(update_runtime, 0);
8465
b328ca18 8466 init_hrtick();
5c1e1767
NP
8467
8468 /* Move init over to a non-isolated CPU */
dcc30a35 8469 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8470 BUG();
19978ca6 8471 sched_init_granularity();
dcc30a35 8472 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8473
8474 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8475 init_sched_rt_class();
1da177e4
LT
8476}
8477#else
8478void __init sched_init_smp(void)
8479{
19978ca6 8480 sched_init_granularity();
1da177e4
LT
8481}
8482#endif /* CONFIG_SMP */
8483
8484int in_sched_functions(unsigned long addr)
8485{
1da177e4
LT
8486 return in_lock_functions(addr) ||
8487 (addr >= (unsigned long)__sched_text_start
8488 && addr < (unsigned long)__sched_text_end);
8489}
8490
a9957449 8491static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8492{
8493 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8494 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8495#ifdef CONFIG_FAIR_GROUP_SCHED
8496 cfs_rq->rq = rq;
8497#endif
67e9fb2a 8498 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8499}
8500
fa85ae24
PZ
8501static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8502{
8503 struct rt_prio_array *array;
8504 int i;
8505
8506 array = &rt_rq->active;
8507 for (i = 0; i < MAX_RT_PRIO; i++) {
8508 INIT_LIST_HEAD(array->queue + i);
8509 __clear_bit(i, array->bitmap);
8510 }
8511 /* delimiter for bitsearch: */
8512 __set_bit(MAX_RT_PRIO, array->bitmap);
8513
052f1dc7 8514#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8515 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8516#ifdef CONFIG_SMP
e864c499 8517 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8518#endif
48d5e258 8519#endif
fa85ae24
PZ
8520#ifdef CONFIG_SMP
8521 rt_rq->rt_nr_migratory = 0;
fa85ae24 8522 rt_rq->overloaded = 0;
917b627d 8523 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8524#endif
8525
8526 rt_rq->rt_time = 0;
8527 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8528 rt_rq->rt_runtime = 0;
8529 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8530
052f1dc7 8531#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8532 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8533 rt_rq->rq = rq;
8534#endif
fa85ae24
PZ
8535}
8536
6f505b16 8537#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8538static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8539 struct sched_entity *se, int cpu, int add,
8540 struct sched_entity *parent)
6f505b16 8541{
ec7dc8ac 8542 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8543 tg->cfs_rq[cpu] = cfs_rq;
8544 init_cfs_rq(cfs_rq, rq);
8545 cfs_rq->tg = tg;
8546 if (add)
8547 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8548
8549 tg->se[cpu] = se;
354d60c2
DG
8550 /* se could be NULL for init_task_group */
8551 if (!se)
8552 return;
8553
ec7dc8ac
DG
8554 if (!parent)
8555 se->cfs_rq = &rq->cfs;
8556 else
8557 se->cfs_rq = parent->my_q;
8558
6f505b16
PZ
8559 se->my_q = cfs_rq;
8560 se->load.weight = tg->shares;
e05510d0 8561 se->load.inv_weight = 0;
ec7dc8ac 8562 se->parent = parent;
6f505b16 8563}
052f1dc7 8564#endif
6f505b16 8565
052f1dc7 8566#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8567static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8568 struct sched_rt_entity *rt_se, int cpu, int add,
8569 struct sched_rt_entity *parent)
6f505b16 8570{
ec7dc8ac
DG
8571 struct rq *rq = cpu_rq(cpu);
8572
6f505b16
PZ
8573 tg->rt_rq[cpu] = rt_rq;
8574 init_rt_rq(rt_rq, rq);
8575 rt_rq->tg = tg;
8576 rt_rq->rt_se = rt_se;
ac086bc2 8577 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8578 if (add)
8579 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8580
8581 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8582 if (!rt_se)
8583 return;
8584
ec7dc8ac
DG
8585 if (!parent)
8586 rt_se->rt_rq = &rq->rt;
8587 else
8588 rt_se->rt_rq = parent->my_q;
8589
6f505b16 8590 rt_se->my_q = rt_rq;
ec7dc8ac 8591 rt_se->parent = parent;
6f505b16
PZ
8592 INIT_LIST_HEAD(&rt_se->run_list);
8593}
8594#endif
8595
1da177e4
LT
8596void __init sched_init(void)
8597{
dd41f596 8598 int i, j;
434d53b0
MT
8599 unsigned long alloc_size = 0, ptr;
8600
8601#ifdef CONFIG_FAIR_GROUP_SCHED
8602 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8603#endif
8604#ifdef CONFIG_RT_GROUP_SCHED
8605 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8606#endif
8607#ifdef CONFIG_USER_SCHED
8608 alloc_size *= 2;
434d53b0
MT
8609#endif
8610 /*
8611 * As sched_init() is called before page_alloc is setup,
8612 * we use alloc_bootmem().
8613 */
8614 if (alloc_size) {
5a9d3225 8615 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8616
8617#ifdef CONFIG_FAIR_GROUP_SCHED
8618 init_task_group.se = (struct sched_entity **)ptr;
8619 ptr += nr_cpu_ids * sizeof(void **);
8620
8621 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8622 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8623
8624#ifdef CONFIG_USER_SCHED
8625 root_task_group.se = (struct sched_entity **)ptr;
8626 ptr += nr_cpu_ids * sizeof(void **);
8627
8628 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8629 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8630#endif /* CONFIG_USER_SCHED */
8631#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8632#ifdef CONFIG_RT_GROUP_SCHED
8633 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8634 ptr += nr_cpu_ids * sizeof(void **);
8635
8636 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8637 ptr += nr_cpu_ids * sizeof(void **);
8638
8639#ifdef CONFIG_USER_SCHED
8640 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8641 ptr += nr_cpu_ids * sizeof(void **);
8642
8643 root_task_group.rt_rq = (struct rt_rq **)ptr;
8644 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8645#endif /* CONFIG_USER_SCHED */
8646#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8647 }
dd41f596 8648
57d885fe
GH
8649#ifdef CONFIG_SMP
8650 init_defrootdomain();
8651#endif
8652
d0b27fa7
PZ
8653 init_rt_bandwidth(&def_rt_bandwidth,
8654 global_rt_period(), global_rt_runtime());
8655
8656#ifdef CONFIG_RT_GROUP_SCHED
8657 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8658 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8659#ifdef CONFIG_USER_SCHED
8660 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8661 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8662#endif /* CONFIG_USER_SCHED */
8663#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8664
052f1dc7 8665#ifdef CONFIG_GROUP_SCHED
6f505b16 8666 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8667 INIT_LIST_HEAD(&init_task_group.children);
8668
8669#ifdef CONFIG_USER_SCHED
8670 INIT_LIST_HEAD(&root_task_group.children);
8671 init_task_group.parent = &root_task_group;
8672 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8673#endif /* CONFIG_USER_SCHED */
8674#endif /* CONFIG_GROUP_SCHED */
6f505b16 8675
0a945022 8676 for_each_possible_cpu(i) {
70b97a7f 8677 struct rq *rq;
1da177e4
LT
8678
8679 rq = cpu_rq(i);
8680 spin_lock_init(&rq->lock);
7897986b 8681 rq->nr_running = 0;
dd41f596 8682 init_cfs_rq(&rq->cfs, rq);
6f505b16 8683 init_rt_rq(&rq->rt, rq);
dd41f596 8684#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8685 init_task_group.shares = init_task_group_load;
6f505b16 8686 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8687#ifdef CONFIG_CGROUP_SCHED
8688 /*
8689 * How much cpu bandwidth does init_task_group get?
8690 *
8691 * In case of task-groups formed thr' the cgroup filesystem, it
8692 * gets 100% of the cpu resources in the system. This overall
8693 * system cpu resource is divided among the tasks of
8694 * init_task_group and its child task-groups in a fair manner,
8695 * based on each entity's (task or task-group's) weight
8696 * (se->load.weight).
8697 *
8698 * In other words, if init_task_group has 10 tasks of weight
8699 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8700 * then A0's share of the cpu resource is:
8701 *
8702 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8703 *
8704 * We achieve this by letting init_task_group's tasks sit
8705 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8706 */
ec7dc8ac 8707 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8708#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8709 root_task_group.shares = NICE_0_LOAD;
8710 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8711 /*
8712 * In case of task-groups formed thr' the user id of tasks,
8713 * init_task_group represents tasks belonging to root user.
8714 * Hence it forms a sibling of all subsequent groups formed.
8715 * In this case, init_task_group gets only a fraction of overall
8716 * system cpu resource, based on the weight assigned to root
8717 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8718 * by letting tasks of init_task_group sit in a separate cfs_rq
8719 * (init_cfs_rq) and having one entity represent this group of
8720 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8721 */
ec7dc8ac 8722 init_tg_cfs_entry(&init_task_group,
6f505b16 8723 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8724 &per_cpu(init_sched_entity, i), i, 1,
8725 root_task_group.se[i]);
6f505b16 8726
052f1dc7 8727#endif
354d60c2
DG
8728#endif /* CONFIG_FAIR_GROUP_SCHED */
8729
8730 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8731#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8732 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8733#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8734 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8735#elif defined CONFIG_USER_SCHED
eff766a6 8736 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8737 init_tg_rt_entry(&init_task_group,
6f505b16 8738 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8739 &per_cpu(init_sched_rt_entity, i), i, 1,
8740 root_task_group.rt_se[i]);
354d60c2 8741#endif
dd41f596 8742#endif
1da177e4 8743
dd41f596
IM
8744 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8745 rq->cpu_load[j] = 0;
1da177e4 8746#ifdef CONFIG_SMP
41c7ce9a 8747 rq->sd = NULL;
57d885fe 8748 rq->rd = NULL;
1da177e4 8749 rq->active_balance = 0;
dd41f596 8750 rq->next_balance = jiffies;
1da177e4 8751 rq->push_cpu = 0;
0a2966b4 8752 rq->cpu = i;
1f11eb6a 8753 rq->online = 0;
1da177e4
LT
8754 rq->migration_thread = NULL;
8755 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8756 rq_attach_root(rq, &def_root_domain);
1da177e4 8757#endif
8f4d37ec 8758 init_rq_hrtick(rq);
1da177e4 8759 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8760 }
8761
2dd73a4f 8762 set_load_weight(&init_task);
b50f60ce 8763
e107be36
AK
8764#ifdef CONFIG_PREEMPT_NOTIFIERS
8765 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8766#endif
8767
c9819f45 8768#ifdef CONFIG_SMP
962cf36c 8769 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8770#endif
8771
b50f60ce
HC
8772#ifdef CONFIG_RT_MUTEXES
8773 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8774#endif
8775
1da177e4
LT
8776 /*
8777 * The boot idle thread does lazy MMU switching as well:
8778 */
8779 atomic_inc(&init_mm.mm_count);
8780 enter_lazy_tlb(&init_mm, current);
8781
8782 /*
8783 * Make us the idle thread. Technically, schedule() should not be
8784 * called from this thread, however somewhere below it might be,
8785 * but because we are the idle thread, we just pick up running again
8786 * when this runqueue becomes "idle".
8787 */
8788 init_idle(current, smp_processor_id());
dd41f596
IM
8789 /*
8790 * During early bootup we pretend to be a normal task:
8791 */
8792 current->sched_class = &fair_sched_class;
6892b75e 8793
6a7b3dc3
RR
8794 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8795 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8796#ifdef CONFIG_SMP
7d1e6a9b
RR
8797#ifdef CONFIG_NO_HZ
8798 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8799#endif
dcc30a35 8800 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8801#endif /* SMP */
6a7b3dc3 8802
6892b75e 8803 scheduler_running = 1;
1da177e4
LT
8804}
8805
8806#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8807void __might_sleep(char *file, int line)
8808{
48f24c4d 8809#ifdef in_atomic
1da177e4
LT
8810 static unsigned long prev_jiffy; /* ratelimiting */
8811
aef745fc
IM
8812 if ((!in_atomic() && !irqs_disabled()) ||
8813 system_state != SYSTEM_RUNNING || oops_in_progress)
8814 return;
8815 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8816 return;
8817 prev_jiffy = jiffies;
8818
8819 printk(KERN_ERR
8820 "BUG: sleeping function called from invalid context at %s:%d\n",
8821 file, line);
8822 printk(KERN_ERR
8823 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8824 in_atomic(), irqs_disabled(),
8825 current->pid, current->comm);
8826
8827 debug_show_held_locks(current);
8828 if (irqs_disabled())
8829 print_irqtrace_events(current);
8830 dump_stack();
1da177e4
LT
8831#endif
8832}
8833EXPORT_SYMBOL(__might_sleep);
8834#endif
8835
8836#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8837static void normalize_task(struct rq *rq, struct task_struct *p)
8838{
8839 int on_rq;
3e51f33f 8840
3a5e4dc1
AK
8841 update_rq_clock(rq);
8842 on_rq = p->se.on_rq;
8843 if (on_rq)
8844 deactivate_task(rq, p, 0);
8845 __setscheduler(rq, p, SCHED_NORMAL, 0);
8846 if (on_rq) {
8847 activate_task(rq, p, 0);
8848 resched_task(rq->curr);
8849 }
8850}
8851
1da177e4
LT
8852void normalize_rt_tasks(void)
8853{
a0f98a1c 8854 struct task_struct *g, *p;
1da177e4 8855 unsigned long flags;
70b97a7f 8856 struct rq *rq;
1da177e4 8857
4cf5d77a 8858 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8859 do_each_thread(g, p) {
178be793
IM
8860 /*
8861 * Only normalize user tasks:
8862 */
8863 if (!p->mm)
8864 continue;
8865
6cfb0d5d 8866 p->se.exec_start = 0;
6cfb0d5d 8867#ifdef CONFIG_SCHEDSTATS
dd41f596 8868 p->se.wait_start = 0;
dd41f596 8869 p->se.sleep_start = 0;
dd41f596 8870 p->se.block_start = 0;
6cfb0d5d 8871#endif
dd41f596
IM
8872
8873 if (!rt_task(p)) {
8874 /*
8875 * Renice negative nice level userspace
8876 * tasks back to 0:
8877 */
8878 if (TASK_NICE(p) < 0 && p->mm)
8879 set_user_nice(p, 0);
1da177e4 8880 continue;
dd41f596 8881 }
1da177e4 8882
4cf5d77a 8883 spin_lock(&p->pi_lock);
b29739f9 8884 rq = __task_rq_lock(p);
1da177e4 8885
178be793 8886 normalize_task(rq, p);
3a5e4dc1 8887
b29739f9 8888 __task_rq_unlock(rq);
4cf5d77a 8889 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8890 } while_each_thread(g, p);
8891
4cf5d77a 8892 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8893}
8894
8895#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8896
8897#ifdef CONFIG_IA64
8898/*
8899 * These functions are only useful for the IA64 MCA handling.
8900 *
8901 * They can only be called when the whole system has been
8902 * stopped - every CPU needs to be quiescent, and no scheduling
8903 * activity can take place. Using them for anything else would
8904 * be a serious bug, and as a result, they aren't even visible
8905 * under any other configuration.
8906 */
8907
8908/**
8909 * curr_task - return the current task for a given cpu.
8910 * @cpu: the processor in question.
8911 *
8912 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8913 */
36c8b586 8914struct task_struct *curr_task(int cpu)
1df5c10a
LT
8915{
8916 return cpu_curr(cpu);
8917}
8918
8919/**
8920 * set_curr_task - set the current task for a given cpu.
8921 * @cpu: the processor in question.
8922 * @p: the task pointer to set.
8923 *
8924 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8925 * are serviced on a separate stack. It allows the architecture to switch the
8926 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8927 * must be called with all CPU's synchronized, and interrupts disabled, the
8928 * and caller must save the original value of the current task (see
8929 * curr_task() above) and restore that value before reenabling interrupts and
8930 * re-starting the system.
8931 *
8932 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8933 */
36c8b586 8934void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8935{
8936 cpu_curr(cpu) = p;
8937}
8938
8939#endif
29f59db3 8940
bccbe08a
PZ
8941#ifdef CONFIG_FAIR_GROUP_SCHED
8942static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8943{
8944 int i;
8945
8946 for_each_possible_cpu(i) {
8947 if (tg->cfs_rq)
8948 kfree(tg->cfs_rq[i]);
8949 if (tg->se)
8950 kfree(tg->se[i]);
6f505b16
PZ
8951 }
8952
8953 kfree(tg->cfs_rq);
8954 kfree(tg->se);
6f505b16
PZ
8955}
8956
ec7dc8ac
DG
8957static
8958int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8959{
29f59db3 8960 struct cfs_rq *cfs_rq;
eab17229 8961 struct sched_entity *se;
9b5b7751 8962 struct rq *rq;
29f59db3
SV
8963 int i;
8964
434d53b0 8965 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8966 if (!tg->cfs_rq)
8967 goto err;
434d53b0 8968 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8969 if (!tg->se)
8970 goto err;
052f1dc7
PZ
8971
8972 tg->shares = NICE_0_LOAD;
29f59db3
SV
8973
8974 for_each_possible_cpu(i) {
9b5b7751 8975 rq = cpu_rq(i);
29f59db3 8976
eab17229
LZ
8977 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8978 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8979 if (!cfs_rq)
8980 goto err;
8981
eab17229
LZ
8982 se = kzalloc_node(sizeof(struct sched_entity),
8983 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8984 if (!se)
8985 goto err;
8986
eab17229 8987 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8988 }
8989
8990 return 1;
8991
8992 err:
8993 return 0;
8994}
8995
8996static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8997{
8998 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8999 &cpu_rq(cpu)->leaf_cfs_rq_list);
9000}
9001
9002static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9003{
9004 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9005}
6d6bc0ad 9006#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9007static inline void free_fair_sched_group(struct task_group *tg)
9008{
9009}
9010
ec7dc8ac
DG
9011static inline
9012int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9013{
9014 return 1;
9015}
9016
9017static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9018{
9019}
9020
9021static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9022{
9023}
6d6bc0ad 9024#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9025
9026#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9027static void free_rt_sched_group(struct task_group *tg)
9028{
9029 int i;
9030
d0b27fa7
PZ
9031 destroy_rt_bandwidth(&tg->rt_bandwidth);
9032
bccbe08a
PZ
9033 for_each_possible_cpu(i) {
9034 if (tg->rt_rq)
9035 kfree(tg->rt_rq[i]);
9036 if (tg->rt_se)
9037 kfree(tg->rt_se[i]);
9038 }
9039
9040 kfree(tg->rt_rq);
9041 kfree(tg->rt_se);
9042}
9043
ec7dc8ac
DG
9044static
9045int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9046{
9047 struct rt_rq *rt_rq;
eab17229 9048 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9049 struct rq *rq;
9050 int i;
9051
434d53b0 9052 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9053 if (!tg->rt_rq)
9054 goto err;
434d53b0 9055 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9056 if (!tg->rt_se)
9057 goto err;
9058
d0b27fa7
PZ
9059 init_rt_bandwidth(&tg->rt_bandwidth,
9060 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9061
9062 for_each_possible_cpu(i) {
9063 rq = cpu_rq(i);
9064
eab17229
LZ
9065 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9066 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9067 if (!rt_rq)
9068 goto err;
29f59db3 9069
eab17229
LZ
9070 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9071 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9072 if (!rt_se)
9073 goto err;
29f59db3 9074
eab17229 9075 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9076 }
9077
bccbe08a
PZ
9078 return 1;
9079
9080 err:
9081 return 0;
9082}
9083
9084static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9085{
9086 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9087 &cpu_rq(cpu)->leaf_rt_rq_list);
9088}
9089
9090static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9091{
9092 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9093}
6d6bc0ad 9094#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9095static inline void free_rt_sched_group(struct task_group *tg)
9096{
9097}
9098
ec7dc8ac
DG
9099static inline
9100int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9101{
9102 return 1;
9103}
9104
9105static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9106{
9107}
9108
9109static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9110{
9111}
6d6bc0ad 9112#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9113
d0b27fa7 9114#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9115static void free_sched_group(struct task_group *tg)
9116{
9117 free_fair_sched_group(tg);
9118 free_rt_sched_group(tg);
9119 kfree(tg);
9120}
9121
9122/* allocate runqueue etc for a new task group */
ec7dc8ac 9123struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9124{
9125 struct task_group *tg;
9126 unsigned long flags;
9127 int i;
9128
9129 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9130 if (!tg)
9131 return ERR_PTR(-ENOMEM);
9132
ec7dc8ac 9133 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9134 goto err;
9135
ec7dc8ac 9136 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9137 goto err;
9138
8ed36996 9139 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9140 for_each_possible_cpu(i) {
bccbe08a
PZ
9141 register_fair_sched_group(tg, i);
9142 register_rt_sched_group(tg, i);
9b5b7751 9143 }
6f505b16 9144 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9145
9146 WARN_ON(!parent); /* root should already exist */
9147
9148 tg->parent = parent;
f473aa5e 9149 INIT_LIST_HEAD(&tg->children);
09f2724a 9150 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9151 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9152
9b5b7751 9153 return tg;
29f59db3
SV
9154
9155err:
6f505b16 9156 free_sched_group(tg);
29f59db3
SV
9157 return ERR_PTR(-ENOMEM);
9158}
9159
9b5b7751 9160/* rcu callback to free various structures associated with a task group */
6f505b16 9161static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9162{
29f59db3 9163 /* now it should be safe to free those cfs_rqs */
6f505b16 9164 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9165}
9166
9b5b7751 9167/* Destroy runqueue etc associated with a task group */
4cf86d77 9168void sched_destroy_group(struct task_group *tg)
29f59db3 9169{
8ed36996 9170 unsigned long flags;
9b5b7751 9171 int i;
29f59db3 9172
8ed36996 9173 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9174 for_each_possible_cpu(i) {
bccbe08a
PZ
9175 unregister_fair_sched_group(tg, i);
9176 unregister_rt_sched_group(tg, i);
9b5b7751 9177 }
6f505b16 9178 list_del_rcu(&tg->list);
f473aa5e 9179 list_del_rcu(&tg->siblings);
8ed36996 9180 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9181
9b5b7751 9182 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9183 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9184}
9185
9b5b7751 9186/* change task's runqueue when it moves between groups.
3a252015
IM
9187 * The caller of this function should have put the task in its new group
9188 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9189 * reflect its new group.
9b5b7751
SV
9190 */
9191void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9192{
9193 int on_rq, running;
9194 unsigned long flags;
9195 struct rq *rq;
9196
9197 rq = task_rq_lock(tsk, &flags);
9198
29f59db3
SV
9199 update_rq_clock(rq);
9200
051a1d1a 9201 running = task_current(rq, tsk);
29f59db3
SV
9202 on_rq = tsk->se.on_rq;
9203
0e1f3483 9204 if (on_rq)
29f59db3 9205 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9206 if (unlikely(running))
9207 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9208
6f505b16 9209 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9210
810b3817
PZ
9211#ifdef CONFIG_FAIR_GROUP_SCHED
9212 if (tsk->sched_class->moved_group)
9213 tsk->sched_class->moved_group(tsk);
9214#endif
9215
0e1f3483
HS
9216 if (unlikely(running))
9217 tsk->sched_class->set_curr_task(rq);
9218 if (on_rq)
7074badb 9219 enqueue_task(rq, tsk, 0);
29f59db3 9220
29f59db3
SV
9221 task_rq_unlock(rq, &flags);
9222}
6d6bc0ad 9223#endif /* CONFIG_GROUP_SCHED */
29f59db3 9224
052f1dc7 9225#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9226static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9227{
9228 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9229 int on_rq;
9230
29f59db3 9231 on_rq = se->on_rq;
62fb1851 9232 if (on_rq)
29f59db3
SV
9233 dequeue_entity(cfs_rq, se, 0);
9234
9235 se->load.weight = shares;
e05510d0 9236 se->load.inv_weight = 0;
29f59db3 9237
62fb1851 9238 if (on_rq)
29f59db3 9239 enqueue_entity(cfs_rq, se, 0);
c09595f6 9240}
62fb1851 9241
c09595f6
PZ
9242static void set_se_shares(struct sched_entity *se, unsigned long shares)
9243{
9244 struct cfs_rq *cfs_rq = se->cfs_rq;
9245 struct rq *rq = cfs_rq->rq;
9246 unsigned long flags;
9247
9248 spin_lock_irqsave(&rq->lock, flags);
9249 __set_se_shares(se, shares);
9250 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9251}
9252
8ed36996
PZ
9253static DEFINE_MUTEX(shares_mutex);
9254
4cf86d77 9255int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9256{
9257 int i;
8ed36996 9258 unsigned long flags;
c61935fd 9259
ec7dc8ac
DG
9260 /*
9261 * We can't change the weight of the root cgroup.
9262 */
9263 if (!tg->se[0])
9264 return -EINVAL;
9265
18d95a28
PZ
9266 if (shares < MIN_SHARES)
9267 shares = MIN_SHARES;
cb4ad1ff
MX
9268 else if (shares > MAX_SHARES)
9269 shares = MAX_SHARES;
62fb1851 9270
8ed36996 9271 mutex_lock(&shares_mutex);
9b5b7751 9272 if (tg->shares == shares)
5cb350ba 9273 goto done;
29f59db3 9274
8ed36996 9275 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9276 for_each_possible_cpu(i)
9277 unregister_fair_sched_group(tg, i);
f473aa5e 9278 list_del_rcu(&tg->siblings);
8ed36996 9279 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9280
9281 /* wait for any ongoing reference to this group to finish */
9282 synchronize_sched();
9283
9284 /*
9285 * Now we are free to modify the group's share on each cpu
9286 * w/o tripping rebalance_share or load_balance_fair.
9287 */
9b5b7751 9288 tg->shares = shares;
c09595f6
PZ
9289 for_each_possible_cpu(i) {
9290 /*
9291 * force a rebalance
9292 */
9293 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9294 set_se_shares(tg->se[i], shares);
c09595f6 9295 }
29f59db3 9296
6b2d7700
SV
9297 /*
9298 * Enable load balance activity on this group, by inserting it back on
9299 * each cpu's rq->leaf_cfs_rq_list.
9300 */
8ed36996 9301 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9302 for_each_possible_cpu(i)
9303 register_fair_sched_group(tg, i);
f473aa5e 9304 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9305 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9306done:
8ed36996 9307 mutex_unlock(&shares_mutex);
9b5b7751 9308 return 0;
29f59db3
SV
9309}
9310
5cb350ba
DG
9311unsigned long sched_group_shares(struct task_group *tg)
9312{
9313 return tg->shares;
9314}
052f1dc7 9315#endif
5cb350ba 9316
052f1dc7 9317#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9318/*
9f0c1e56 9319 * Ensure that the real time constraints are schedulable.
6f505b16 9320 */
9f0c1e56
PZ
9321static DEFINE_MUTEX(rt_constraints_mutex);
9322
9323static unsigned long to_ratio(u64 period, u64 runtime)
9324{
9325 if (runtime == RUNTIME_INF)
9a7e0b18 9326 return 1ULL << 20;
9f0c1e56 9327
9a7e0b18 9328 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9329}
9330
9a7e0b18
PZ
9331/* Must be called with tasklist_lock held */
9332static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9333{
9a7e0b18 9334 struct task_struct *g, *p;
b40b2e8e 9335
9a7e0b18
PZ
9336 do_each_thread(g, p) {
9337 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9338 return 1;
9339 } while_each_thread(g, p);
b40b2e8e 9340
9a7e0b18
PZ
9341 return 0;
9342}
b40b2e8e 9343
9a7e0b18
PZ
9344struct rt_schedulable_data {
9345 struct task_group *tg;
9346 u64 rt_period;
9347 u64 rt_runtime;
9348};
b40b2e8e 9349
9a7e0b18
PZ
9350static int tg_schedulable(struct task_group *tg, void *data)
9351{
9352 struct rt_schedulable_data *d = data;
9353 struct task_group *child;
9354 unsigned long total, sum = 0;
9355 u64 period, runtime;
b40b2e8e 9356
9a7e0b18
PZ
9357 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9358 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9359
9a7e0b18
PZ
9360 if (tg == d->tg) {
9361 period = d->rt_period;
9362 runtime = d->rt_runtime;
b40b2e8e 9363 }
b40b2e8e 9364
98a4826b
PZ
9365#ifdef CONFIG_USER_SCHED
9366 if (tg == &root_task_group) {
9367 period = global_rt_period();
9368 runtime = global_rt_runtime();
9369 }
9370#endif
9371
4653f803
PZ
9372 /*
9373 * Cannot have more runtime than the period.
9374 */
9375 if (runtime > period && runtime != RUNTIME_INF)
9376 return -EINVAL;
6f505b16 9377
4653f803
PZ
9378 /*
9379 * Ensure we don't starve existing RT tasks.
9380 */
9a7e0b18
PZ
9381 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9382 return -EBUSY;
6f505b16 9383
9a7e0b18 9384 total = to_ratio(period, runtime);
6f505b16 9385
4653f803
PZ
9386 /*
9387 * Nobody can have more than the global setting allows.
9388 */
9389 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9390 return -EINVAL;
6f505b16 9391
4653f803
PZ
9392 /*
9393 * The sum of our children's runtime should not exceed our own.
9394 */
9a7e0b18
PZ
9395 list_for_each_entry_rcu(child, &tg->children, siblings) {
9396 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9397 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9398
9a7e0b18
PZ
9399 if (child == d->tg) {
9400 period = d->rt_period;
9401 runtime = d->rt_runtime;
9402 }
6f505b16 9403
9a7e0b18 9404 sum += to_ratio(period, runtime);
9f0c1e56 9405 }
6f505b16 9406
9a7e0b18
PZ
9407 if (sum > total)
9408 return -EINVAL;
9409
9410 return 0;
6f505b16
PZ
9411}
9412
9a7e0b18 9413static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9414{
9a7e0b18
PZ
9415 struct rt_schedulable_data data = {
9416 .tg = tg,
9417 .rt_period = period,
9418 .rt_runtime = runtime,
9419 };
9420
9421 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9422}
9423
d0b27fa7
PZ
9424static int tg_set_bandwidth(struct task_group *tg,
9425 u64 rt_period, u64 rt_runtime)
6f505b16 9426{
ac086bc2 9427 int i, err = 0;
9f0c1e56 9428
9f0c1e56 9429 mutex_lock(&rt_constraints_mutex);
521f1a24 9430 read_lock(&tasklist_lock);
9a7e0b18
PZ
9431 err = __rt_schedulable(tg, rt_period, rt_runtime);
9432 if (err)
9f0c1e56 9433 goto unlock;
ac086bc2
PZ
9434
9435 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9436 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9437 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9438
9439 for_each_possible_cpu(i) {
9440 struct rt_rq *rt_rq = tg->rt_rq[i];
9441
9442 spin_lock(&rt_rq->rt_runtime_lock);
9443 rt_rq->rt_runtime = rt_runtime;
9444 spin_unlock(&rt_rq->rt_runtime_lock);
9445 }
9446 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9447 unlock:
521f1a24 9448 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9449 mutex_unlock(&rt_constraints_mutex);
9450
9451 return err;
6f505b16
PZ
9452}
9453
d0b27fa7
PZ
9454int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9455{
9456 u64 rt_runtime, rt_period;
9457
9458 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9459 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9460 if (rt_runtime_us < 0)
9461 rt_runtime = RUNTIME_INF;
9462
9463 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9464}
9465
9f0c1e56
PZ
9466long sched_group_rt_runtime(struct task_group *tg)
9467{
9468 u64 rt_runtime_us;
9469
d0b27fa7 9470 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9471 return -1;
9472
d0b27fa7 9473 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9474 do_div(rt_runtime_us, NSEC_PER_USEC);
9475 return rt_runtime_us;
9476}
d0b27fa7
PZ
9477
9478int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9479{
9480 u64 rt_runtime, rt_period;
9481
9482 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9483 rt_runtime = tg->rt_bandwidth.rt_runtime;
9484
619b0488
R
9485 if (rt_period == 0)
9486 return -EINVAL;
9487
d0b27fa7
PZ
9488 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9489}
9490
9491long sched_group_rt_period(struct task_group *tg)
9492{
9493 u64 rt_period_us;
9494
9495 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9496 do_div(rt_period_us, NSEC_PER_USEC);
9497 return rt_period_us;
9498}
9499
9500static int sched_rt_global_constraints(void)
9501{
4653f803 9502 u64 runtime, period;
d0b27fa7
PZ
9503 int ret = 0;
9504
ec5d4989
HS
9505 if (sysctl_sched_rt_period <= 0)
9506 return -EINVAL;
9507
4653f803
PZ
9508 runtime = global_rt_runtime();
9509 period = global_rt_period();
9510
9511 /*
9512 * Sanity check on the sysctl variables.
9513 */
9514 if (runtime > period && runtime != RUNTIME_INF)
9515 return -EINVAL;
10b612f4 9516
d0b27fa7 9517 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9518 read_lock(&tasklist_lock);
4653f803 9519 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9520 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9521 mutex_unlock(&rt_constraints_mutex);
9522
9523 return ret;
9524}
54e99124
DG
9525
9526int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9527{
9528 /* Don't accept realtime tasks when there is no way for them to run */
9529 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9530 return 0;
9531
9532 return 1;
9533}
9534
6d6bc0ad 9535#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9536static int sched_rt_global_constraints(void)
9537{
ac086bc2
PZ
9538 unsigned long flags;
9539 int i;
9540
ec5d4989
HS
9541 if (sysctl_sched_rt_period <= 0)
9542 return -EINVAL;
9543
ac086bc2
PZ
9544 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9545 for_each_possible_cpu(i) {
9546 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9547
9548 spin_lock(&rt_rq->rt_runtime_lock);
9549 rt_rq->rt_runtime = global_rt_runtime();
9550 spin_unlock(&rt_rq->rt_runtime_lock);
9551 }
9552 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9553
d0b27fa7
PZ
9554 return 0;
9555}
6d6bc0ad 9556#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9557
9558int sched_rt_handler(struct ctl_table *table, int write,
9559 struct file *filp, void __user *buffer, size_t *lenp,
9560 loff_t *ppos)
9561{
9562 int ret;
9563 int old_period, old_runtime;
9564 static DEFINE_MUTEX(mutex);
9565
9566 mutex_lock(&mutex);
9567 old_period = sysctl_sched_rt_period;
9568 old_runtime = sysctl_sched_rt_runtime;
9569
9570 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9571
9572 if (!ret && write) {
9573 ret = sched_rt_global_constraints();
9574 if (ret) {
9575 sysctl_sched_rt_period = old_period;
9576 sysctl_sched_rt_runtime = old_runtime;
9577 } else {
9578 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9579 def_rt_bandwidth.rt_period =
9580 ns_to_ktime(global_rt_period());
9581 }
9582 }
9583 mutex_unlock(&mutex);
9584
9585 return ret;
9586}
68318b8e 9587
052f1dc7 9588#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9589
9590/* return corresponding task_group object of a cgroup */
2b01dfe3 9591static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9592{
2b01dfe3
PM
9593 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9594 struct task_group, css);
68318b8e
SV
9595}
9596
9597static struct cgroup_subsys_state *
2b01dfe3 9598cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9599{
ec7dc8ac 9600 struct task_group *tg, *parent;
68318b8e 9601
2b01dfe3 9602 if (!cgrp->parent) {
68318b8e 9603 /* This is early initialization for the top cgroup */
68318b8e
SV
9604 return &init_task_group.css;
9605 }
9606
ec7dc8ac
DG
9607 parent = cgroup_tg(cgrp->parent);
9608 tg = sched_create_group(parent);
68318b8e
SV
9609 if (IS_ERR(tg))
9610 return ERR_PTR(-ENOMEM);
9611
68318b8e
SV
9612 return &tg->css;
9613}
9614
41a2d6cf
IM
9615static void
9616cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9617{
2b01dfe3 9618 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9619
9620 sched_destroy_group(tg);
9621}
9622
41a2d6cf
IM
9623static int
9624cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9625 struct task_struct *tsk)
68318b8e 9626{
b68aa230 9627#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9628 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9629 return -EINVAL;
9630#else
68318b8e
SV
9631 /* We don't support RT-tasks being in separate groups */
9632 if (tsk->sched_class != &fair_sched_class)
9633 return -EINVAL;
b68aa230 9634#endif
68318b8e
SV
9635
9636 return 0;
9637}
9638
9639static void
2b01dfe3 9640cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9641 struct cgroup *old_cont, struct task_struct *tsk)
9642{
9643 sched_move_task(tsk);
9644}
9645
052f1dc7 9646#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9647static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9648 u64 shareval)
68318b8e 9649{
2b01dfe3 9650 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9651}
9652
f4c753b7 9653static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9654{
2b01dfe3 9655 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9656
9657 return (u64) tg->shares;
9658}
6d6bc0ad 9659#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9660
052f1dc7 9661#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9662static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9663 s64 val)
6f505b16 9664{
06ecb27c 9665 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9666}
9667
06ecb27c 9668static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9669{
06ecb27c 9670 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9671}
d0b27fa7
PZ
9672
9673static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9674 u64 rt_period_us)
9675{
9676 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9677}
9678
9679static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9680{
9681 return sched_group_rt_period(cgroup_tg(cgrp));
9682}
6d6bc0ad 9683#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9684
fe5c7cc2 9685static struct cftype cpu_files[] = {
052f1dc7 9686#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9687 {
9688 .name = "shares",
f4c753b7
PM
9689 .read_u64 = cpu_shares_read_u64,
9690 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9691 },
052f1dc7
PZ
9692#endif
9693#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9694 {
9f0c1e56 9695 .name = "rt_runtime_us",
06ecb27c
PM
9696 .read_s64 = cpu_rt_runtime_read,
9697 .write_s64 = cpu_rt_runtime_write,
6f505b16 9698 },
d0b27fa7
PZ
9699 {
9700 .name = "rt_period_us",
f4c753b7
PM
9701 .read_u64 = cpu_rt_period_read_uint,
9702 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9703 },
052f1dc7 9704#endif
68318b8e
SV
9705};
9706
9707static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9708{
fe5c7cc2 9709 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9710}
9711
9712struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9713 .name = "cpu",
9714 .create = cpu_cgroup_create,
9715 .destroy = cpu_cgroup_destroy,
9716 .can_attach = cpu_cgroup_can_attach,
9717 .attach = cpu_cgroup_attach,
9718 .populate = cpu_cgroup_populate,
9719 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9720 .early_init = 1,
9721};
9722
052f1dc7 9723#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9724
9725#ifdef CONFIG_CGROUP_CPUACCT
9726
9727/*
9728 * CPU accounting code for task groups.
9729 *
9730 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9731 * (balbir@in.ibm.com).
9732 */
9733
934352f2 9734/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9735struct cpuacct {
9736 struct cgroup_subsys_state css;
9737 /* cpuusage holds pointer to a u64-type object on every cpu */
9738 u64 *cpuusage;
934352f2 9739 struct cpuacct *parent;
d842de87
SV
9740};
9741
9742struct cgroup_subsys cpuacct_subsys;
9743
9744/* return cpu accounting group corresponding to this container */
32cd756a 9745static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9746{
32cd756a 9747 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9748 struct cpuacct, css);
9749}
9750
9751/* return cpu accounting group to which this task belongs */
9752static inline struct cpuacct *task_ca(struct task_struct *tsk)
9753{
9754 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9755 struct cpuacct, css);
9756}
9757
9758/* create a new cpu accounting group */
9759static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9760 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9761{
9762 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9763
9764 if (!ca)
9765 return ERR_PTR(-ENOMEM);
9766
9767 ca->cpuusage = alloc_percpu(u64);
9768 if (!ca->cpuusage) {
9769 kfree(ca);
9770 return ERR_PTR(-ENOMEM);
9771 }
9772
934352f2
BR
9773 if (cgrp->parent)
9774 ca->parent = cgroup_ca(cgrp->parent);
9775
d842de87
SV
9776 return &ca->css;
9777}
9778
9779/* destroy an existing cpu accounting group */
41a2d6cf 9780static void
32cd756a 9781cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9782{
32cd756a 9783 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9784
9785 free_percpu(ca->cpuusage);
9786 kfree(ca);
9787}
9788
720f5498
KC
9789static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9790{
9791 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9792 u64 data;
9793
9794#ifndef CONFIG_64BIT
9795 /*
9796 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9797 */
9798 spin_lock_irq(&cpu_rq(cpu)->lock);
9799 data = *cpuusage;
9800 spin_unlock_irq(&cpu_rq(cpu)->lock);
9801#else
9802 data = *cpuusage;
9803#endif
9804
9805 return data;
9806}
9807
9808static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9809{
9810 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9811
9812#ifndef CONFIG_64BIT
9813 /*
9814 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9815 */
9816 spin_lock_irq(&cpu_rq(cpu)->lock);
9817 *cpuusage = val;
9818 spin_unlock_irq(&cpu_rq(cpu)->lock);
9819#else
9820 *cpuusage = val;
9821#endif
9822}
9823
d842de87 9824/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9825static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9826{
32cd756a 9827 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9828 u64 totalcpuusage = 0;
9829 int i;
9830
720f5498
KC
9831 for_each_present_cpu(i)
9832 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9833
9834 return totalcpuusage;
9835}
9836
0297b803
DG
9837static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9838 u64 reset)
9839{
9840 struct cpuacct *ca = cgroup_ca(cgrp);
9841 int err = 0;
9842 int i;
9843
9844 if (reset) {
9845 err = -EINVAL;
9846 goto out;
9847 }
9848
720f5498
KC
9849 for_each_present_cpu(i)
9850 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9851
0297b803
DG
9852out:
9853 return err;
9854}
9855
e9515c3c
KC
9856static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9857 struct seq_file *m)
9858{
9859 struct cpuacct *ca = cgroup_ca(cgroup);
9860 u64 percpu;
9861 int i;
9862
9863 for_each_present_cpu(i) {
9864 percpu = cpuacct_cpuusage_read(ca, i);
9865 seq_printf(m, "%llu ", (unsigned long long) percpu);
9866 }
9867 seq_printf(m, "\n");
9868 return 0;
9869}
9870
d842de87
SV
9871static struct cftype files[] = {
9872 {
9873 .name = "usage",
f4c753b7
PM
9874 .read_u64 = cpuusage_read,
9875 .write_u64 = cpuusage_write,
d842de87 9876 },
e9515c3c
KC
9877 {
9878 .name = "usage_percpu",
9879 .read_seq_string = cpuacct_percpu_seq_read,
9880 },
9881
d842de87
SV
9882};
9883
32cd756a 9884static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9885{
32cd756a 9886 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9887}
9888
9889/*
9890 * charge this task's execution time to its accounting group.
9891 *
9892 * called with rq->lock held.
9893 */
9894static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9895{
9896 struct cpuacct *ca;
934352f2 9897 int cpu;
d842de87 9898
c40c6f85 9899 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9900 return;
9901
934352f2 9902 cpu = task_cpu(tsk);
d842de87 9903 ca = task_ca(tsk);
d842de87 9904
934352f2
BR
9905 for (; ca; ca = ca->parent) {
9906 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9907 *cpuusage += cputime;
9908 }
9909}
9910
9911struct cgroup_subsys cpuacct_subsys = {
9912 .name = "cpuacct",
9913 .create = cpuacct_create,
9914 .destroy = cpuacct_destroy,
9915 .populate = cpuacct_populate,
9916 .subsys_id = cpuacct_subsys_id,
9917};
9918#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.707926 seconds and 5 git commands to generate.