sched: Simplify the idle scheduling class
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
18d95a28
PZ
1689#endif
1690
74f5187a 1691static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1692static void update_sysctl(void);
acb4a848 1693static int get_update_sysctl_factor(void);
fdf3e95d 1694static void update_cpu_load(struct rq *this_rq);
dce48a84 1695
cd29fe6f
PZ
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698 set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707#endif
1708}
dce48a84 1709
1e3c88bd 1710static const struct sched_class rt_sched_class;
dd41f596 1711
34f971f6 1712#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1713#define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
dd41f596 1715
1e3c88bd
PZ
1716#include "sched_stats.h"
1717
c09595f6 1718static void inc_nr_running(struct rq *rq)
9c217245
IM
1719{
1720 rq->nr_running++;
9c217245
IM
1721}
1722
c09595f6 1723static void dec_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running--;
9c217245
IM
1726}
1727
45bf76df
IM
1728static void set_load_weight(struct task_struct *p)
1729{
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
371fd7e7 1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1744{
a64692a3 1745 update_rq_clock(rq);
dd41f596 1746 sched_info_queued(p);
371fd7e7 1747 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1748 p->se.on_rq = 1;
71f8bd46
IM
1749}
1750
371fd7e7 1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1752{
a64692a3 1753 update_rq_clock(rq);
46ac22ba 1754 sched_info_dequeued(p);
371fd7e7 1755 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1756 p->se.on_rq = 0;
71f8bd46
IM
1757}
1758
1e3c88bd
PZ
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
371fd7e7 1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1763{
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
371fd7e7 1767 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1768 inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
371fd7e7 1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1775{
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
371fd7e7 1779 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1780 dec_nr_running(rq);
1781}
1782
b52bfee4
VP
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
305e6835
VP
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
305e6835 1795 */
b52bfee4
VP
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804 sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809 sched_clock_irqtime = 0;
1810}
1811
8e92c201
PZ
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
305e6835 1850{
305e6835
VP
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
8e92c201 1853#endif /* CONFIG_64BIT */
305e6835 1854
fe44d621
PZ
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
b52bfee4
VP
1859void account_system_vtime(struct task_struct *curr)
1860{
1861 unsigned long flags;
fe44d621 1862 s64 delta;
b52bfee4 1863 int cpu;
b52bfee4
VP
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
b52bfee4 1870 cpu = smp_processor_id();
fe44d621
PZ
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
8e92c201 1874 irq_time_write_begin();
b52bfee4
VP
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
fe44d621 1882 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1883 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1884 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1885
8e92c201 1886 irq_time_write_end();
b52bfee4
VP
1887 local_irq_restore(flags);
1888}
b7dadc38 1889EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1890
fe44d621 1891static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1892{
fe44d621
PZ
1893 s64 irq_delta;
1894
8e92c201 1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1921}
1922
abb74cef
VP
1923static int irqtime_account_hi_update(void)
1924{
1925 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1926 unsigned long flags;
1927 u64 latest_ns;
1928 int ret = 0;
1929
1930 local_irq_save(flags);
1931 latest_ns = this_cpu_read(cpu_hardirq_time);
1932 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1933 ret = 1;
1934 local_irq_restore(flags);
1935 return ret;
1936}
1937
1938static int irqtime_account_si_update(void)
1939{
1940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1941 unsigned long flags;
1942 u64 latest_ns;
1943 int ret = 0;
1944
1945 local_irq_save(flags);
1946 latest_ns = this_cpu_read(cpu_softirq_time);
1947 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1948 ret = 1;
1949 local_irq_restore(flags);
1950 return ret;
1951}
1952
fe44d621 1953#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1954
abb74cef
VP
1955#define sched_clock_irqtime (0)
1956
fe44d621 1957static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1958{
fe44d621 1959 rq->clock_task += delta;
305e6835
VP
1960}
1961
fe44d621 1962#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1963
1e3c88bd
PZ
1964#include "sched_idletask.c"
1965#include "sched_fair.c"
1966#include "sched_rt.c"
5091faa4 1967#include "sched_autogroup.c"
34f971f6 1968#include "sched_stoptask.c"
1e3c88bd
PZ
1969#ifdef CONFIG_SCHED_DEBUG
1970# include "sched_debug.c"
1971#endif
1972
34f971f6
PZ
1973void sched_set_stop_task(int cpu, struct task_struct *stop)
1974{
1975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1976 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1977
1978 if (stop) {
1979 /*
1980 * Make it appear like a SCHED_FIFO task, its something
1981 * userspace knows about and won't get confused about.
1982 *
1983 * Also, it will make PI more or less work without too
1984 * much confusion -- but then, stop work should not
1985 * rely on PI working anyway.
1986 */
1987 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1988
1989 stop->sched_class = &stop_sched_class;
1990 }
1991
1992 cpu_rq(cpu)->stop = stop;
1993
1994 if (old_stop) {
1995 /*
1996 * Reset it back to a normal scheduling class so that
1997 * it can die in pieces.
1998 */
1999 old_stop->sched_class = &rt_sched_class;
2000 }
2001}
2002
14531189 2003/*
dd41f596 2004 * __normal_prio - return the priority that is based on the static prio
14531189 2005 */
14531189
IM
2006static inline int __normal_prio(struct task_struct *p)
2007{
dd41f596 2008 return p->static_prio;
14531189
IM
2009}
2010
b29739f9
IM
2011/*
2012 * Calculate the expected normal priority: i.e. priority
2013 * without taking RT-inheritance into account. Might be
2014 * boosted by interactivity modifiers. Changes upon fork,
2015 * setprio syscalls, and whenever the interactivity
2016 * estimator recalculates.
2017 */
36c8b586 2018static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2019{
2020 int prio;
2021
e05606d3 2022 if (task_has_rt_policy(p))
b29739f9
IM
2023 prio = MAX_RT_PRIO-1 - p->rt_priority;
2024 else
2025 prio = __normal_prio(p);
2026 return prio;
2027}
2028
2029/*
2030 * Calculate the current priority, i.e. the priority
2031 * taken into account by the scheduler. This value might
2032 * be boosted by RT tasks, or might be boosted by
2033 * interactivity modifiers. Will be RT if the task got
2034 * RT-boosted. If not then it returns p->normal_prio.
2035 */
36c8b586 2036static int effective_prio(struct task_struct *p)
b29739f9
IM
2037{
2038 p->normal_prio = normal_prio(p);
2039 /*
2040 * If we are RT tasks or we were boosted to RT priority,
2041 * keep the priority unchanged. Otherwise, update priority
2042 * to the normal priority:
2043 */
2044 if (!rt_prio(p->prio))
2045 return p->normal_prio;
2046 return p->prio;
2047}
2048
1da177e4
LT
2049/**
2050 * task_curr - is this task currently executing on a CPU?
2051 * @p: the task in question.
2052 */
36c8b586 2053inline int task_curr(const struct task_struct *p)
1da177e4
LT
2054{
2055 return cpu_curr(task_cpu(p)) == p;
2056}
2057
cb469845
SR
2058static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2059 const struct sched_class *prev_class,
2060 int oldprio, int running)
2061{
2062 if (prev_class != p->sched_class) {
2063 if (prev_class->switched_from)
2064 prev_class->switched_from(rq, p, running);
2065 p->sched_class->switched_to(rq, p, running);
2066 } else
2067 p->sched_class->prio_changed(rq, p, oldprio, running);
2068}
2069
1e5a7405
PZ
2070static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2071{
2072 const struct sched_class *class;
2073
2074 if (p->sched_class == rq->curr->sched_class) {
2075 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2076 } else {
2077 for_each_class(class) {
2078 if (class == rq->curr->sched_class)
2079 break;
2080 if (class == p->sched_class) {
2081 resched_task(rq->curr);
2082 break;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * A queue event has occurred, and we're going to schedule. In
2089 * this case, we can save a useless back to back clock update.
2090 */
f26f9aff 2091 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2092 rq->skip_clock_update = 1;
2093}
2094
1da177e4 2095#ifdef CONFIG_SMP
cc367732
IM
2096/*
2097 * Is this task likely cache-hot:
2098 */
e7693a36 2099static int
cc367732
IM
2100task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2101{
2102 s64 delta;
2103
e6c8fba7
PZ
2104 if (p->sched_class != &fair_sched_class)
2105 return 0;
2106
ef8002f6
NR
2107 if (unlikely(p->policy == SCHED_IDLE))
2108 return 0;
2109
f540a608
IM
2110 /*
2111 * Buddy candidates are cache hot:
2112 */
f685ceac 2113 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2114 (&p->se == cfs_rq_of(&p->se)->next ||
2115 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2116 return 1;
2117
6bc1665b
IM
2118 if (sysctl_sched_migration_cost == -1)
2119 return 1;
2120 if (sysctl_sched_migration_cost == 0)
2121 return 0;
2122
cc367732
IM
2123 delta = now - p->se.exec_start;
2124
2125 return delta < (s64)sysctl_sched_migration_cost;
2126}
2127
dd41f596 2128void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2129{
e2912009
PZ
2130#ifdef CONFIG_SCHED_DEBUG
2131 /*
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2134 */
077614ee
PZ
2135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2136 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2137#endif
2138
de1d7286 2139 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2140
0c69774e
PZ
2141 if (task_cpu(p) != new_cpu) {
2142 p->se.nr_migrations++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2144 }
dd41f596
IM
2145
2146 __set_task_cpu(p, new_cpu);
c65cc870
IM
2147}
2148
969c7921 2149struct migration_arg {
36c8b586 2150 struct task_struct *task;
1da177e4 2151 int dest_cpu;
70b97a7f 2152};
1da177e4 2153
969c7921
TH
2154static int migration_cpu_stop(void *data);
2155
1da177e4
LT
2156/*
2157 * The task's runqueue lock must be held.
2158 * Returns true if you have to wait for migration thread.
2159 */
b7a2b39d 2160static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2161{
1da177e4
LT
2162 /*
2163 * If the task is not on a runqueue (and not running), then
e2912009 2164 * the next wake-up will properly place the task.
1da177e4 2165 */
969c7921 2166 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2167}
2168
2169/*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
85ba2d86
RM
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
1da177e4
LT
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
85ba2d86 2185unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2186{
2187 unsigned long flags;
dd41f596 2188 int running, on_rq;
85ba2d86 2189 unsigned long ncsw;
70b97a7f 2190 struct rq *rq;
1da177e4 2191
3a5c359a
AK
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
fa490cfd 2200
3a5c359a
AK
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
85ba2d86
RM
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
3a5c359a 2215 cpu_relax();
85ba2d86 2216 }
fa490cfd 2217
3a5c359a
AK
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
27a9da65 2224 trace_sched_wait_task(p);
3a5c359a
AK
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
85ba2d86 2227 ncsw = 0;
f31e11d8 2228 if (!match_state || p->state == match_state)
93dcf55f 2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2230 task_rq_unlock(rq, &flags);
fa490cfd 2231
85ba2d86
RM
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
3a5c359a
AK
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
80dd99b3 2254 * So if it was still runnable (but just not actively
3a5c359a
AK
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
fa490cfd 2262
3a5c359a
AK
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
85ba2d86
RM
2270
2271 return ncsw;
1da177e4
LT
2272}
2273
2274/***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
36c8b586 2287void kick_process(struct task_struct *p)
1da177e4
LT
2288{
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296}
b43e3521 2297EXPORT_SYMBOL_GPL(kick_process);
476d139c 2298#endif /* CONFIG_SMP */
1da177e4 2299
0793a61d
TG
2300/**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311{
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319}
2320
970b13ba 2321#ifdef CONFIG_SMP
30da688e
ON
2322/*
2323 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2324 */
5da9a0fb
PZ
2325static int select_fallback_rq(int cpu, struct task_struct *p)
2326{
2327 int dest_cpu;
2328 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2329
2330 /* Look for allowed, online CPU in same node. */
2331 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2332 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2333 return dest_cpu;
2334
2335 /* Any allowed, online CPU? */
2336 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2337 if (dest_cpu < nr_cpu_ids)
2338 return dest_cpu;
2339
2340 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2341 dest_cpu = cpuset_cpus_allowed_fallback(p);
2342 /*
2343 * Don't tell them about moving exiting tasks or
2344 * kernel threads (both mm NULL), since they never
2345 * leave kernel.
2346 */
2347 if (p->mm && printk_ratelimit()) {
2348 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2349 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2350 }
2351
2352 return dest_cpu;
2353}
2354
e2912009 2355/*
30da688e 2356 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2357 */
970b13ba 2358static inline
0017d735 2359int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2360{
0017d735 2361 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2362
2363 /*
2364 * In order not to call set_task_cpu() on a blocking task we need
2365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2366 * cpu.
2367 *
2368 * Since this is common to all placement strategies, this lives here.
2369 *
2370 * [ this allows ->select_task() to simply return task_cpu(p) and
2371 * not worry about this generic constraint ]
2372 */
2373 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2374 !cpu_online(cpu)))
5da9a0fb 2375 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2376
2377 return cpu;
970b13ba 2378}
09a40af5
MG
2379
2380static void update_avg(u64 *avg, u64 sample)
2381{
2382 s64 diff = sample - *avg;
2383 *avg += diff >> 3;
2384}
970b13ba
PZ
2385#endif
2386
9ed3811a
TH
2387static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2388 bool is_sync, bool is_migrate, bool is_local,
2389 unsigned long en_flags)
2390{
2391 schedstat_inc(p, se.statistics.nr_wakeups);
2392 if (is_sync)
2393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2394 if (is_migrate)
2395 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2396 if (is_local)
2397 schedstat_inc(p, se.statistics.nr_wakeups_local);
2398 else
2399 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2400
2401 activate_task(rq, p, en_flags);
2402}
2403
2404static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2405 int wake_flags, bool success)
2406{
2407 trace_sched_wakeup(p, success);
2408 check_preempt_curr(rq, p, wake_flags);
2409
2410 p->state = TASK_RUNNING;
2411#ifdef CONFIG_SMP
2412 if (p->sched_class->task_woken)
2413 p->sched_class->task_woken(rq, p);
2414
2415 if (unlikely(rq->idle_stamp)) {
2416 u64 delta = rq->clock - rq->idle_stamp;
2417 u64 max = 2*sysctl_sched_migration_cost;
2418
2419 if (delta > max)
2420 rq->avg_idle = max;
2421 else
2422 update_avg(&rq->avg_idle, delta);
2423 rq->idle_stamp = 0;
2424 }
2425#endif
21aa9af0
TH
2426 /* if a worker is waking up, notify workqueue */
2427 if ((p->flags & PF_WQ_WORKER) && success)
2428 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2429}
2430
2431/**
1da177e4 2432 * try_to_wake_up - wake up a thread
9ed3811a 2433 * @p: the thread to be awakened
1da177e4 2434 * @state: the mask of task states that can be woken
9ed3811a 2435 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2436 *
2437 * Put it on the run-queue if it's not already there. The "current"
2438 * thread is always on the run-queue (except when the actual
2439 * re-schedule is in progress), and as such you're allowed to do
2440 * the simpler "current->state = TASK_RUNNING" to mark yourself
2441 * runnable without the overhead of this.
2442 *
9ed3811a
TH
2443 * Returns %true if @p was woken up, %false if it was already running
2444 * or @state didn't match @p's state.
1da177e4 2445 */
7d478721
PZ
2446static int try_to_wake_up(struct task_struct *p, unsigned int state,
2447 int wake_flags)
1da177e4 2448{
cc367732 2449 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2450 unsigned long flags;
371fd7e7 2451 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2452 struct rq *rq;
1da177e4 2453
e9c84311 2454 this_cpu = get_cpu();
2398f2c6 2455
04e2f174 2456 smp_wmb();
ab3b3aa5 2457 rq = task_rq_lock(p, &flags);
e9c84311 2458 if (!(p->state & state))
1da177e4
LT
2459 goto out;
2460
dd41f596 2461 if (p->se.on_rq)
1da177e4
LT
2462 goto out_running;
2463
2464 cpu = task_cpu(p);
cc367732 2465 orig_cpu = cpu;
1da177e4
LT
2466
2467#ifdef CONFIG_SMP
2468 if (unlikely(task_running(rq, p)))
2469 goto out_activate;
2470
e9c84311
PZ
2471 /*
2472 * In order to handle concurrent wakeups and release the rq->lock
2473 * we put the task in TASK_WAKING state.
eb24073b
IM
2474 *
2475 * First fix up the nr_uninterruptible count:
e9c84311 2476 */
cc87f76a
PZ
2477 if (task_contributes_to_load(p)) {
2478 if (likely(cpu_online(orig_cpu)))
2479 rq->nr_uninterruptible--;
2480 else
2481 this_rq()->nr_uninterruptible--;
2482 }
e9c84311 2483 p->state = TASK_WAKING;
efbbd05a 2484
371fd7e7 2485 if (p->sched_class->task_waking) {
efbbd05a 2486 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2487 en_flags |= ENQUEUE_WAKING;
2488 }
efbbd05a 2489
0017d735
PZ
2490 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2491 if (cpu != orig_cpu)
5d2f5a61 2492 set_task_cpu(p, cpu);
0017d735 2493 __task_rq_unlock(rq);
ab19cb23 2494
0970d299
PZ
2495 rq = cpu_rq(cpu);
2496 raw_spin_lock(&rq->lock);
f5dc3753 2497
0970d299
PZ
2498 /*
2499 * We migrated the task without holding either rq->lock, however
2500 * since the task is not on the task list itself, nobody else
2501 * will try and migrate the task, hence the rq should match the
2502 * cpu we just moved it to.
2503 */
2504 WARN_ON(task_cpu(p) != cpu);
e9c84311 2505 WARN_ON(p->state != TASK_WAKING);
1da177e4 2506
e7693a36
GH
2507#ifdef CONFIG_SCHEDSTATS
2508 schedstat_inc(rq, ttwu_count);
2509 if (cpu == this_cpu)
2510 schedstat_inc(rq, ttwu_local);
2511 else {
2512 struct sched_domain *sd;
2513 for_each_domain(this_cpu, sd) {
758b2cdc 2514 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2515 schedstat_inc(sd, ttwu_wake_remote);
2516 break;
2517 }
2518 }
2519 }
6d6bc0ad 2520#endif /* CONFIG_SCHEDSTATS */
e7693a36 2521
1da177e4
LT
2522out_activate:
2523#endif /* CONFIG_SMP */
9ed3811a
TH
2524 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2525 cpu == this_cpu, en_flags);
1da177e4 2526 success = 1;
1da177e4 2527out_running:
9ed3811a 2528 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2529out:
2530 task_rq_unlock(rq, &flags);
e9c84311 2531 put_cpu();
1da177e4
LT
2532
2533 return success;
2534}
2535
21aa9af0
TH
2536/**
2537 * try_to_wake_up_local - try to wake up a local task with rq lock held
2538 * @p: the thread to be awakened
2539 *
b595076a 2540 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2541 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2542 * the current task. this_rq() stays locked over invocation.
2543 */
2544static void try_to_wake_up_local(struct task_struct *p)
2545{
2546 struct rq *rq = task_rq(p);
2547 bool success = false;
2548
2549 BUG_ON(rq != this_rq());
2550 BUG_ON(p == current);
2551 lockdep_assert_held(&rq->lock);
2552
2553 if (!(p->state & TASK_NORMAL))
2554 return;
2555
2556 if (!p->se.on_rq) {
2557 if (likely(!task_running(rq, p))) {
2558 schedstat_inc(rq, ttwu_count);
2559 schedstat_inc(rq, ttwu_local);
2560 }
2561 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2562 success = true;
2563 }
2564 ttwu_post_activation(p, rq, 0, success);
2565}
2566
50fa610a
DH
2567/**
2568 * wake_up_process - Wake up a specific process
2569 * @p: The process to be woken up.
2570 *
2571 * Attempt to wake up the nominated process and move it to the set of runnable
2572 * processes. Returns 1 if the process was woken up, 0 if it was already
2573 * running.
2574 *
2575 * It may be assumed that this function implies a write memory barrier before
2576 * changing the task state if and only if any tasks are woken up.
2577 */
7ad5b3a5 2578int wake_up_process(struct task_struct *p)
1da177e4 2579{
d9514f6c 2580 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2581}
1da177e4
LT
2582EXPORT_SYMBOL(wake_up_process);
2583
7ad5b3a5 2584int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2585{
2586 return try_to_wake_up(p, state, 0);
2587}
2588
1da177e4
LT
2589/*
2590 * Perform scheduler related setup for a newly forked process p.
2591 * p is forked by current.
dd41f596
IM
2592 *
2593 * __sched_fork() is basic setup used by init_idle() too:
2594 */
2595static void __sched_fork(struct task_struct *p)
2596{
dd41f596
IM
2597 p->se.exec_start = 0;
2598 p->se.sum_exec_runtime = 0;
f6cf891c 2599 p->se.prev_sum_exec_runtime = 0;
6c594c21 2600 p->se.nr_migrations = 0;
6cfb0d5d
IM
2601
2602#ifdef CONFIG_SCHEDSTATS
41acab88 2603 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2604#endif
476d139c 2605
fa717060 2606 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2607 p->se.on_rq = 0;
4a55bd5e 2608 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2609
e107be36
AK
2610#ifdef CONFIG_PREEMPT_NOTIFIERS
2611 INIT_HLIST_HEAD(&p->preempt_notifiers);
2612#endif
dd41f596
IM
2613}
2614
2615/*
2616 * fork()/clone()-time setup:
2617 */
2618void sched_fork(struct task_struct *p, int clone_flags)
2619{
2620 int cpu = get_cpu();
2621
2622 __sched_fork(p);
06b83b5f 2623 /*
0017d735 2624 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2625 * nobody will actually run it, and a signal or other external
2626 * event cannot wake it up and insert it on the runqueue either.
2627 */
0017d735 2628 p->state = TASK_RUNNING;
dd41f596 2629
b9dc29e7
MG
2630 /*
2631 * Revert to default priority/policy on fork if requested.
2632 */
2633 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2634 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2635 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2636 p->normal_prio = p->static_prio;
2637 }
b9dc29e7 2638
6c697bdf
MG
2639 if (PRIO_TO_NICE(p->static_prio) < 0) {
2640 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2641 p->normal_prio = p->static_prio;
6c697bdf
MG
2642 set_load_weight(p);
2643 }
2644
b9dc29e7
MG
2645 /*
2646 * We don't need the reset flag anymore after the fork. It has
2647 * fulfilled its duty:
2648 */
2649 p->sched_reset_on_fork = 0;
2650 }
ca94c442 2651
f83f9ac2
PW
2652 /*
2653 * Make sure we do not leak PI boosting priority to the child.
2654 */
2655 p->prio = current->normal_prio;
2656
2ddbf952
HS
2657 if (!rt_prio(p->prio))
2658 p->sched_class = &fair_sched_class;
b29739f9 2659
cd29fe6f
PZ
2660 if (p->sched_class->task_fork)
2661 p->sched_class->task_fork(p);
2662
86951599
PZ
2663 /*
2664 * The child is not yet in the pid-hash so no cgroup attach races,
2665 * and the cgroup is pinned to this child due to cgroup_fork()
2666 * is ran before sched_fork().
2667 *
2668 * Silence PROVE_RCU.
2669 */
2670 rcu_read_lock();
5f3edc1b 2671 set_task_cpu(p, cpu);
86951599 2672 rcu_read_unlock();
5f3edc1b 2673
52f17b6c 2674#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2675 if (likely(sched_info_on()))
52f17b6c 2676 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2677#endif
d6077cb8 2678#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2679 p->oncpu = 0;
2680#endif
1da177e4 2681#ifdef CONFIG_PREEMPT
4866cde0 2682 /* Want to start with kernel preemption disabled. */
a1261f54 2683 task_thread_info(p)->preempt_count = 1;
1da177e4 2684#endif
806c09a7 2685#ifdef CONFIG_SMP
917b627d 2686 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2687#endif
917b627d 2688
476d139c 2689 put_cpu();
1da177e4
LT
2690}
2691
2692/*
2693 * wake_up_new_task - wake up a newly created task for the first time.
2694 *
2695 * This function will do some initial scheduler statistics housekeeping
2696 * that must be done for every newly created context, then puts the task
2697 * on the runqueue and wakes it.
2698 */
7ad5b3a5 2699void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2700{
2701 unsigned long flags;
dd41f596 2702 struct rq *rq;
c890692b 2703 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2704
2705#ifdef CONFIG_SMP
0017d735
PZ
2706 rq = task_rq_lock(p, &flags);
2707 p->state = TASK_WAKING;
2708
fabf318e
PZ
2709 /*
2710 * Fork balancing, do it here and not earlier because:
2711 * - cpus_allowed can change in the fork path
2712 * - any previously selected cpu might disappear through hotplug
2713 *
0017d735
PZ
2714 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2715 * without people poking at ->cpus_allowed.
fabf318e 2716 */
0017d735 2717 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2718 set_task_cpu(p, cpu);
1da177e4 2719
06b83b5f 2720 p->state = TASK_RUNNING;
0017d735
PZ
2721 task_rq_unlock(rq, &flags);
2722#endif
2723
2724 rq = task_rq_lock(p, &flags);
cd29fe6f 2725 activate_task(rq, p, 0);
27a9da65 2726 trace_sched_wakeup_new(p, 1);
a7558e01 2727 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2728#ifdef CONFIG_SMP
efbbd05a
PZ
2729 if (p->sched_class->task_woken)
2730 p->sched_class->task_woken(rq, p);
9a897c5a 2731#endif
dd41f596 2732 task_rq_unlock(rq, &flags);
fabf318e 2733 put_cpu();
1da177e4
LT
2734}
2735
e107be36
AK
2736#ifdef CONFIG_PREEMPT_NOTIFIERS
2737
2738/**
80dd99b3 2739 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2740 * @notifier: notifier struct to register
e107be36
AK
2741 */
2742void preempt_notifier_register(struct preempt_notifier *notifier)
2743{
2744 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2745}
2746EXPORT_SYMBOL_GPL(preempt_notifier_register);
2747
2748/**
2749 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2750 * @notifier: notifier struct to unregister
e107be36
AK
2751 *
2752 * This is safe to call from within a preemption notifier.
2753 */
2754void preempt_notifier_unregister(struct preempt_notifier *notifier)
2755{
2756 hlist_del(&notifier->link);
2757}
2758EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2759
2760static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2761{
2762 struct preempt_notifier *notifier;
2763 struct hlist_node *node;
2764
2765 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2766 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2767}
2768
2769static void
2770fire_sched_out_preempt_notifiers(struct task_struct *curr,
2771 struct task_struct *next)
2772{
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_out(notifier, next);
2778}
2779
6d6bc0ad 2780#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2781
2782static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2783{
2784}
2785
2786static void
2787fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2789{
2790}
2791
6d6bc0ad 2792#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2793
4866cde0
NP
2794/**
2795 * prepare_task_switch - prepare to switch tasks
2796 * @rq: the runqueue preparing to switch
421cee29 2797 * @prev: the current task that is being switched out
4866cde0
NP
2798 * @next: the task we are going to switch to.
2799 *
2800 * This is called with the rq lock held and interrupts off. It must
2801 * be paired with a subsequent finish_task_switch after the context
2802 * switch.
2803 *
2804 * prepare_task_switch sets up locking and calls architecture specific
2805 * hooks.
2806 */
e107be36
AK
2807static inline void
2808prepare_task_switch(struct rq *rq, struct task_struct *prev,
2809 struct task_struct *next)
4866cde0 2810{
e107be36 2811 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2812 prepare_lock_switch(rq, next);
2813 prepare_arch_switch(next);
2814}
2815
1da177e4
LT
2816/**
2817 * finish_task_switch - clean up after a task-switch
344babaa 2818 * @rq: runqueue associated with task-switch
1da177e4
LT
2819 * @prev: the thread we just switched away from.
2820 *
4866cde0
NP
2821 * finish_task_switch must be called after the context switch, paired
2822 * with a prepare_task_switch call before the context switch.
2823 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2824 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2825 *
2826 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2827 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2828 * with the lock held can cause deadlocks; see schedule() for
2829 * details.)
2830 */
a9957449 2831static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2832 __releases(rq->lock)
2833{
1da177e4 2834 struct mm_struct *mm = rq->prev_mm;
55a101f8 2835 long prev_state;
1da177e4
LT
2836
2837 rq->prev_mm = NULL;
2838
2839 /*
2840 * A task struct has one reference for the use as "current".
c394cc9f 2841 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2842 * schedule one last time. The schedule call will never return, and
2843 * the scheduled task must drop that reference.
c394cc9f 2844 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2845 * still held, otherwise prev could be scheduled on another cpu, die
2846 * there before we look at prev->state, and then the reference would
2847 * be dropped twice.
2848 * Manfred Spraul <manfred@colorfullife.com>
2849 */
55a101f8 2850 prev_state = prev->state;
4866cde0 2851 finish_arch_switch(prev);
8381f65d
JI
2852#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2853 local_irq_disable();
2854#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2855 perf_event_task_sched_in(current);
8381f65d
JI
2856#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2857 local_irq_enable();
2858#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2859 finish_lock_switch(rq, prev);
e8fa1362 2860
e107be36 2861 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2862 if (mm)
2863 mmdrop(mm);
c394cc9f 2864 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2865 /*
2866 * Remove function-return probe instances associated with this
2867 * task and put them back on the free list.
9761eea8 2868 */
c6fd91f0 2869 kprobe_flush_task(prev);
1da177e4 2870 put_task_struct(prev);
c6fd91f0 2871 }
1da177e4
LT
2872}
2873
3f029d3c
GH
2874#ifdef CONFIG_SMP
2875
2876/* assumes rq->lock is held */
2877static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2878{
2879 if (prev->sched_class->pre_schedule)
2880 prev->sched_class->pre_schedule(rq, prev);
2881}
2882
2883/* rq->lock is NOT held, but preemption is disabled */
2884static inline void post_schedule(struct rq *rq)
2885{
2886 if (rq->post_schedule) {
2887 unsigned long flags;
2888
05fa785c 2889 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2890 if (rq->curr->sched_class->post_schedule)
2891 rq->curr->sched_class->post_schedule(rq);
05fa785c 2892 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2893
2894 rq->post_schedule = 0;
2895 }
2896}
2897
2898#else
da19ab51 2899
3f029d3c
GH
2900static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2901{
2902}
2903
2904static inline void post_schedule(struct rq *rq)
2905{
1da177e4
LT
2906}
2907
3f029d3c
GH
2908#endif
2909
1da177e4
LT
2910/**
2911 * schedule_tail - first thing a freshly forked thread must call.
2912 * @prev: the thread we just switched away from.
2913 */
36c8b586 2914asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2915 __releases(rq->lock)
2916{
70b97a7f
IM
2917 struct rq *rq = this_rq();
2918
4866cde0 2919 finish_task_switch(rq, prev);
da19ab51 2920
3f029d3c
GH
2921 /*
2922 * FIXME: do we need to worry about rq being invalidated by the
2923 * task_switch?
2924 */
2925 post_schedule(rq);
70b97a7f 2926
4866cde0
NP
2927#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2928 /* In this case, finish_task_switch does not reenable preemption */
2929 preempt_enable();
2930#endif
1da177e4 2931 if (current->set_child_tid)
b488893a 2932 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2933}
2934
2935/*
2936 * context_switch - switch to the new MM and the new
2937 * thread's register state.
2938 */
dd41f596 2939static inline void
70b97a7f 2940context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2941 struct task_struct *next)
1da177e4 2942{
dd41f596 2943 struct mm_struct *mm, *oldmm;
1da177e4 2944
e107be36 2945 prepare_task_switch(rq, prev, next);
27a9da65 2946 trace_sched_switch(prev, next);
dd41f596
IM
2947 mm = next->mm;
2948 oldmm = prev->active_mm;
9226d125
ZA
2949 /*
2950 * For paravirt, this is coupled with an exit in switch_to to
2951 * combine the page table reload and the switch backend into
2952 * one hypercall.
2953 */
224101ed 2954 arch_start_context_switch(prev);
9226d125 2955
31915ab4 2956 if (!mm) {
1da177e4
LT
2957 next->active_mm = oldmm;
2958 atomic_inc(&oldmm->mm_count);
2959 enter_lazy_tlb(oldmm, next);
2960 } else
2961 switch_mm(oldmm, mm, next);
2962
31915ab4 2963 if (!prev->mm) {
1da177e4 2964 prev->active_mm = NULL;
1da177e4
LT
2965 rq->prev_mm = oldmm;
2966 }
3a5f5e48
IM
2967 /*
2968 * Since the runqueue lock will be released by the next
2969 * task (which is an invalid locking op but in the case
2970 * of the scheduler it's an obvious special-case), so we
2971 * do an early lockdep release here:
2972 */
2973#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2974 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2975#endif
1da177e4
LT
2976
2977 /* Here we just switch the register state and the stack. */
2978 switch_to(prev, next, prev);
2979
dd41f596
IM
2980 barrier();
2981 /*
2982 * this_rq must be evaluated again because prev may have moved
2983 * CPUs since it called schedule(), thus the 'rq' on its stack
2984 * frame will be invalid.
2985 */
2986 finish_task_switch(this_rq(), prev);
1da177e4
LT
2987}
2988
2989/*
2990 * nr_running, nr_uninterruptible and nr_context_switches:
2991 *
2992 * externally visible scheduler statistics: current number of runnable
2993 * threads, current number of uninterruptible-sleeping threads, total
2994 * number of context switches performed since bootup.
2995 */
2996unsigned long nr_running(void)
2997{
2998 unsigned long i, sum = 0;
2999
3000 for_each_online_cpu(i)
3001 sum += cpu_rq(i)->nr_running;
3002
3003 return sum;
f711f609 3004}
1da177e4
LT
3005
3006unsigned long nr_uninterruptible(void)
f711f609 3007{
1da177e4 3008 unsigned long i, sum = 0;
f711f609 3009
0a945022 3010 for_each_possible_cpu(i)
1da177e4 3011 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3012
3013 /*
1da177e4
LT
3014 * Since we read the counters lockless, it might be slightly
3015 * inaccurate. Do not allow it to go below zero though:
f711f609 3016 */
1da177e4
LT
3017 if (unlikely((long)sum < 0))
3018 sum = 0;
f711f609 3019
1da177e4 3020 return sum;
f711f609 3021}
f711f609 3022
1da177e4 3023unsigned long long nr_context_switches(void)
46cb4b7c 3024{
cc94abfc
SR
3025 int i;
3026 unsigned long long sum = 0;
46cb4b7c 3027
0a945022 3028 for_each_possible_cpu(i)
1da177e4 3029 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3030
1da177e4
LT
3031 return sum;
3032}
483b4ee6 3033
1da177e4
LT
3034unsigned long nr_iowait(void)
3035{
3036 unsigned long i, sum = 0;
483b4ee6 3037
0a945022 3038 for_each_possible_cpu(i)
1da177e4 3039 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3040
1da177e4
LT
3041 return sum;
3042}
483b4ee6 3043
8c215bd3 3044unsigned long nr_iowait_cpu(int cpu)
69d25870 3045{
8c215bd3 3046 struct rq *this = cpu_rq(cpu);
69d25870
AV
3047 return atomic_read(&this->nr_iowait);
3048}
46cb4b7c 3049
69d25870
AV
3050unsigned long this_cpu_load(void)
3051{
3052 struct rq *this = this_rq();
3053 return this->cpu_load[0];
3054}
e790fb0b 3055
46cb4b7c 3056
dce48a84
TG
3057/* Variables and functions for calc_load */
3058static atomic_long_t calc_load_tasks;
3059static unsigned long calc_load_update;
3060unsigned long avenrun[3];
3061EXPORT_SYMBOL(avenrun);
46cb4b7c 3062
74f5187a
PZ
3063static long calc_load_fold_active(struct rq *this_rq)
3064{
3065 long nr_active, delta = 0;
3066
3067 nr_active = this_rq->nr_running;
3068 nr_active += (long) this_rq->nr_uninterruptible;
3069
3070 if (nr_active != this_rq->calc_load_active) {
3071 delta = nr_active - this_rq->calc_load_active;
3072 this_rq->calc_load_active = nr_active;
3073 }
3074
3075 return delta;
3076}
3077
0f004f5a
PZ
3078static unsigned long
3079calc_load(unsigned long load, unsigned long exp, unsigned long active)
3080{
3081 load *= exp;
3082 load += active * (FIXED_1 - exp);
3083 load += 1UL << (FSHIFT - 1);
3084 return load >> FSHIFT;
3085}
3086
74f5187a
PZ
3087#ifdef CONFIG_NO_HZ
3088/*
3089 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3090 *
3091 * When making the ILB scale, we should try to pull this in as well.
3092 */
3093static atomic_long_t calc_load_tasks_idle;
3094
3095static void calc_load_account_idle(struct rq *this_rq)
3096{
3097 long delta;
3098
3099 delta = calc_load_fold_active(this_rq);
3100 if (delta)
3101 atomic_long_add(delta, &calc_load_tasks_idle);
3102}
3103
3104static long calc_load_fold_idle(void)
3105{
3106 long delta = 0;
3107
3108 /*
3109 * Its got a race, we don't care...
3110 */
3111 if (atomic_long_read(&calc_load_tasks_idle))
3112 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3113
3114 return delta;
3115}
0f004f5a
PZ
3116
3117/**
3118 * fixed_power_int - compute: x^n, in O(log n) time
3119 *
3120 * @x: base of the power
3121 * @frac_bits: fractional bits of @x
3122 * @n: power to raise @x to.
3123 *
3124 * By exploiting the relation between the definition of the natural power
3125 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3126 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3127 * (where: n_i \elem {0, 1}, the binary vector representing n),
3128 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3129 * of course trivially computable in O(log_2 n), the length of our binary
3130 * vector.
3131 */
3132static unsigned long
3133fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3134{
3135 unsigned long result = 1UL << frac_bits;
3136
3137 if (n) for (;;) {
3138 if (n & 1) {
3139 result *= x;
3140 result += 1UL << (frac_bits - 1);
3141 result >>= frac_bits;
3142 }
3143 n >>= 1;
3144 if (!n)
3145 break;
3146 x *= x;
3147 x += 1UL << (frac_bits - 1);
3148 x >>= frac_bits;
3149 }
3150
3151 return result;
3152}
3153
3154/*
3155 * a1 = a0 * e + a * (1 - e)
3156 *
3157 * a2 = a1 * e + a * (1 - e)
3158 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3159 * = a0 * e^2 + a * (1 - e) * (1 + e)
3160 *
3161 * a3 = a2 * e + a * (1 - e)
3162 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3163 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3164 *
3165 * ...
3166 *
3167 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3168 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3169 * = a0 * e^n + a * (1 - e^n)
3170 *
3171 * [1] application of the geometric series:
3172 *
3173 * n 1 - x^(n+1)
3174 * S_n := \Sum x^i = -------------
3175 * i=0 1 - x
3176 */
3177static unsigned long
3178calc_load_n(unsigned long load, unsigned long exp,
3179 unsigned long active, unsigned int n)
3180{
3181
3182 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3183}
3184
3185/*
3186 * NO_HZ can leave us missing all per-cpu ticks calling
3187 * calc_load_account_active(), but since an idle CPU folds its delta into
3188 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3189 * in the pending idle delta if our idle period crossed a load cycle boundary.
3190 *
3191 * Once we've updated the global active value, we need to apply the exponential
3192 * weights adjusted to the number of cycles missed.
3193 */
3194static void calc_global_nohz(unsigned long ticks)
3195{
3196 long delta, active, n;
3197
3198 if (time_before(jiffies, calc_load_update))
3199 return;
3200
3201 /*
3202 * If we crossed a calc_load_update boundary, make sure to fold
3203 * any pending idle changes, the respective CPUs might have
3204 * missed the tick driven calc_load_account_active() update
3205 * due to NO_HZ.
3206 */
3207 delta = calc_load_fold_idle();
3208 if (delta)
3209 atomic_long_add(delta, &calc_load_tasks);
3210
3211 /*
3212 * If we were idle for multiple load cycles, apply them.
3213 */
3214 if (ticks >= LOAD_FREQ) {
3215 n = ticks / LOAD_FREQ;
3216
3217 active = atomic_long_read(&calc_load_tasks);
3218 active = active > 0 ? active * FIXED_1 : 0;
3219
3220 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3221 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3222 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3223
3224 calc_load_update += n * LOAD_FREQ;
3225 }
3226
3227 /*
3228 * Its possible the remainder of the above division also crosses
3229 * a LOAD_FREQ period, the regular check in calc_global_load()
3230 * which comes after this will take care of that.
3231 *
3232 * Consider us being 11 ticks before a cycle completion, and us
3233 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3234 * age us 4 cycles, and the test in calc_global_load() will
3235 * pick up the final one.
3236 */
3237}
74f5187a
PZ
3238#else
3239static void calc_load_account_idle(struct rq *this_rq)
3240{
3241}
3242
3243static inline long calc_load_fold_idle(void)
3244{
3245 return 0;
3246}
0f004f5a
PZ
3247
3248static void calc_global_nohz(unsigned long ticks)
3249{
3250}
74f5187a
PZ
3251#endif
3252
2d02494f
TG
3253/**
3254 * get_avenrun - get the load average array
3255 * @loads: pointer to dest load array
3256 * @offset: offset to add
3257 * @shift: shift count to shift the result left
3258 *
3259 * These values are estimates at best, so no need for locking.
3260 */
3261void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3262{
3263 loads[0] = (avenrun[0] + offset) << shift;
3264 loads[1] = (avenrun[1] + offset) << shift;
3265 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3266}
46cb4b7c 3267
46cb4b7c 3268/*
dce48a84
TG
3269 * calc_load - update the avenrun load estimates 10 ticks after the
3270 * CPUs have updated calc_load_tasks.
7835b98b 3271 */
0f004f5a 3272void calc_global_load(unsigned long ticks)
7835b98b 3273{
dce48a84 3274 long active;
1da177e4 3275
0f004f5a
PZ
3276 calc_global_nohz(ticks);
3277
3278 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3279 return;
1da177e4 3280
dce48a84
TG
3281 active = atomic_long_read(&calc_load_tasks);
3282 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3283
dce48a84
TG
3284 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3285 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3286 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3287
dce48a84
TG
3288 calc_load_update += LOAD_FREQ;
3289}
1da177e4 3290
dce48a84 3291/*
74f5187a
PZ
3292 * Called from update_cpu_load() to periodically update this CPU's
3293 * active count.
dce48a84
TG
3294 */
3295static void calc_load_account_active(struct rq *this_rq)
3296{
74f5187a 3297 long delta;
08c183f3 3298
74f5187a
PZ
3299 if (time_before(jiffies, this_rq->calc_load_update))
3300 return;
783609c6 3301
74f5187a
PZ
3302 delta = calc_load_fold_active(this_rq);
3303 delta += calc_load_fold_idle();
3304 if (delta)
dce48a84 3305 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3306
3307 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3308}
3309
fdf3e95d
VP
3310/*
3311 * The exact cpuload at various idx values, calculated at every tick would be
3312 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3313 *
3314 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3315 * on nth tick when cpu may be busy, then we have:
3316 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3317 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3318 *
3319 * decay_load_missed() below does efficient calculation of
3320 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3321 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3322 *
3323 * The calculation is approximated on a 128 point scale.
3324 * degrade_zero_ticks is the number of ticks after which load at any
3325 * particular idx is approximated to be zero.
3326 * degrade_factor is a precomputed table, a row for each load idx.
3327 * Each column corresponds to degradation factor for a power of two ticks,
3328 * based on 128 point scale.
3329 * Example:
3330 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3331 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3332 *
3333 * With this power of 2 load factors, we can degrade the load n times
3334 * by looking at 1 bits in n and doing as many mult/shift instead of
3335 * n mult/shifts needed by the exact degradation.
3336 */
3337#define DEGRADE_SHIFT 7
3338static const unsigned char
3339 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3340static const unsigned char
3341 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3342 {0, 0, 0, 0, 0, 0, 0, 0},
3343 {64, 32, 8, 0, 0, 0, 0, 0},
3344 {96, 72, 40, 12, 1, 0, 0},
3345 {112, 98, 75, 43, 15, 1, 0},
3346 {120, 112, 98, 76, 45, 16, 2} };
3347
3348/*
3349 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3350 * would be when CPU is idle and so we just decay the old load without
3351 * adding any new load.
3352 */
3353static unsigned long
3354decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3355{
3356 int j = 0;
3357
3358 if (!missed_updates)
3359 return load;
3360
3361 if (missed_updates >= degrade_zero_ticks[idx])
3362 return 0;
3363
3364 if (idx == 1)
3365 return load >> missed_updates;
3366
3367 while (missed_updates) {
3368 if (missed_updates % 2)
3369 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3370
3371 missed_updates >>= 1;
3372 j++;
3373 }
3374 return load;
3375}
3376
46cb4b7c 3377/*
dd41f596 3378 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3379 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3380 * every tick. We fix it up based on jiffies.
46cb4b7c 3381 */
dd41f596 3382static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3383{
495eca49 3384 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3385 unsigned long curr_jiffies = jiffies;
3386 unsigned long pending_updates;
dd41f596 3387 int i, scale;
46cb4b7c 3388
dd41f596 3389 this_rq->nr_load_updates++;
46cb4b7c 3390
fdf3e95d
VP
3391 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3392 if (curr_jiffies == this_rq->last_load_update_tick)
3393 return;
3394
3395 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3396 this_rq->last_load_update_tick = curr_jiffies;
3397
dd41f596 3398 /* Update our load: */
fdf3e95d
VP
3399 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3400 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3401 unsigned long old_load, new_load;
7d1e6a9b 3402
dd41f596 3403 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3404
dd41f596 3405 old_load = this_rq->cpu_load[i];
fdf3e95d 3406 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3407 new_load = this_load;
a25707f3
IM
3408 /*
3409 * Round up the averaging division if load is increasing. This
3410 * prevents us from getting stuck on 9 if the load is 10, for
3411 * example.
3412 */
3413 if (new_load > old_load)
fdf3e95d
VP
3414 new_load += scale - 1;
3415
3416 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3417 }
da2b71ed
SS
3418
3419 sched_avg_update(this_rq);
fdf3e95d
VP
3420}
3421
3422static void update_cpu_load_active(struct rq *this_rq)
3423{
3424 update_cpu_load(this_rq);
46cb4b7c 3425
74f5187a 3426 calc_load_account_active(this_rq);
46cb4b7c
SS
3427}
3428
dd41f596 3429#ifdef CONFIG_SMP
8a0be9ef 3430
46cb4b7c 3431/*
38022906
PZ
3432 * sched_exec - execve() is a valuable balancing opportunity, because at
3433 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3434 */
38022906 3435void sched_exec(void)
46cb4b7c 3436{
38022906 3437 struct task_struct *p = current;
1da177e4 3438 unsigned long flags;
70b97a7f 3439 struct rq *rq;
0017d735 3440 int dest_cpu;
46cb4b7c 3441
1da177e4 3442 rq = task_rq_lock(p, &flags);
0017d735
PZ
3443 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3444 if (dest_cpu == smp_processor_id())
3445 goto unlock;
38022906 3446
46cb4b7c 3447 /*
38022906 3448 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3449 */
30da688e 3450 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3451 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3452 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3453
1da177e4 3454 task_rq_unlock(rq, &flags);
969c7921 3455 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3456 return;
3457 }
0017d735 3458unlock:
1da177e4 3459 task_rq_unlock(rq, &flags);
1da177e4 3460}
dd41f596 3461
1da177e4
LT
3462#endif
3463
1da177e4
LT
3464DEFINE_PER_CPU(struct kernel_stat, kstat);
3465
3466EXPORT_PER_CPU_SYMBOL(kstat);
3467
3468/*
c5f8d995 3469 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3470 * @p in case that task is currently running.
c5f8d995
HS
3471 *
3472 * Called with task_rq_lock() held on @rq.
1da177e4 3473 */
c5f8d995
HS
3474static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3475{
3476 u64 ns = 0;
3477
3478 if (task_current(rq, p)) {
3479 update_rq_clock(rq);
305e6835 3480 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3481 if ((s64)ns < 0)
3482 ns = 0;
3483 }
3484
3485 return ns;
3486}
3487
bb34d92f 3488unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3489{
1da177e4 3490 unsigned long flags;
41b86e9c 3491 struct rq *rq;
bb34d92f 3492 u64 ns = 0;
48f24c4d 3493
41b86e9c 3494 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3495 ns = do_task_delta_exec(p, rq);
3496 task_rq_unlock(rq, &flags);
1508487e 3497
c5f8d995
HS
3498 return ns;
3499}
f06febc9 3500
c5f8d995
HS
3501/*
3502 * Return accounted runtime for the task.
3503 * In case the task is currently running, return the runtime plus current's
3504 * pending runtime that have not been accounted yet.
3505 */
3506unsigned long long task_sched_runtime(struct task_struct *p)
3507{
3508 unsigned long flags;
3509 struct rq *rq;
3510 u64 ns = 0;
3511
3512 rq = task_rq_lock(p, &flags);
3513 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3514 task_rq_unlock(rq, &flags);
3515
3516 return ns;
3517}
48f24c4d 3518
c5f8d995
HS
3519/*
3520 * Return sum_exec_runtime for the thread group.
3521 * In case the task is currently running, return the sum plus current's
3522 * pending runtime that have not been accounted yet.
3523 *
3524 * Note that the thread group might have other running tasks as well,
3525 * so the return value not includes other pending runtime that other
3526 * running tasks might have.
3527 */
3528unsigned long long thread_group_sched_runtime(struct task_struct *p)
3529{
3530 struct task_cputime totals;
3531 unsigned long flags;
3532 struct rq *rq;
3533 u64 ns;
3534
3535 rq = task_rq_lock(p, &flags);
3536 thread_group_cputime(p, &totals);
3537 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3538 task_rq_unlock(rq, &flags);
48f24c4d 3539
1da177e4
LT
3540 return ns;
3541}
3542
1da177e4
LT
3543/*
3544 * Account user cpu time to a process.
3545 * @p: the process that the cpu time gets accounted to
1da177e4 3546 * @cputime: the cpu time spent in user space since the last update
457533a7 3547 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3548 */
457533a7
MS
3549void account_user_time(struct task_struct *p, cputime_t cputime,
3550 cputime_t cputime_scaled)
1da177e4
LT
3551{
3552 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3553 cputime64_t tmp;
3554
457533a7 3555 /* Add user time to process. */
1da177e4 3556 p->utime = cputime_add(p->utime, cputime);
457533a7 3557 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3558 account_group_user_time(p, cputime);
1da177e4
LT
3559
3560 /* Add user time to cpustat. */
3561 tmp = cputime_to_cputime64(cputime);
3562 if (TASK_NICE(p) > 0)
3563 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3564 else
3565 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3566
3567 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3568 /* Account for user time used */
3569 acct_update_integrals(p);
1da177e4
LT
3570}
3571
94886b84
LV
3572/*
3573 * Account guest cpu time to a process.
3574 * @p: the process that the cpu time gets accounted to
3575 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3576 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3577 */
457533a7
MS
3578static void account_guest_time(struct task_struct *p, cputime_t cputime,
3579 cputime_t cputime_scaled)
94886b84
LV
3580{
3581 cputime64_t tmp;
3582 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3583
3584 tmp = cputime_to_cputime64(cputime);
3585
457533a7 3586 /* Add guest time to process. */
94886b84 3587 p->utime = cputime_add(p->utime, cputime);
457533a7 3588 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3589 account_group_user_time(p, cputime);
94886b84
LV
3590 p->gtime = cputime_add(p->gtime, cputime);
3591
457533a7 3592 /* Add guest time to cpustat. */
ce0e7b28
RO
3593 if (TASK_NICE(p) > 0) {
3594 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3595 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3596 } else {
3597 cpustat->user = cputime64_add(cpustat->user, tmp);
3598 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3599 }
94886b84
LV
3600}
3601
70a89a66
VP
3602/*
3603 * Account system cpu time to a process and desired cpustat field
3604 * @p: the process that the cpu time gets accounted to
3605 * @cputime: the cpu time spent in kernel space since the last update
3606 * @cputime_scaled: cputime scaled by cpu frequency
3607 * @target_cputime64: pointer to cpustat field that has to be updated
3608 */
3609static inline
3610void __account_system_time(struct task_struct *p, cputime_t cputime,
3611 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3612{
3613 cputime64_t tmp = cputime_to_cputime64(cputime);
3614
3615 /* Add system time to process. */
3616 p->stime = cputime_add(p->stime, cputime);
3617 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3618 account_group_system_time(p, cputime);
3619
3620 /* Add system time to cpustat. */
3621 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3622 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3623
3624 /* Account for system time used */
3625 acct_update_integrals(p);
3626}
3627
1da177e4
LT
3628/*
3629 * Account system cpu time to a process.
3630 * @p: the process that the cpu time gets accounted to
3631 * @hardirq_offset: the offset to subtract from hardirq_count()
3632 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3633 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3634 */
3635void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3636 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3637{
3638 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3639 cputime64_t *target_cputime64;
1da177e4 3640
983ed7a6 3641 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3642 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3643 return;
3644 }
94886b84 3645
1da177e4 3646 if (hardirq_count() - hardirq_offset)
70a89a66 3647 target_cputime64 = &cpustat->irq;
75e1056f 3648 else if (in_serving_softirq())
70a89a66 3649 target_cputime64 = &cpustat->softirq;
1da177e4 3650 else
70a89a66 3651 target_cputime64 = &cpustat->system;
79741dd3 3652
70a89a66 3653 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3654}
3655
abb74cef
VP
3656#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3657/*
3658 * Account a tick to a process and cpustat
3659 * @p: the process that the cpu time gets accounted to
3660 * @user_tick: is the tick from userspace
3661 * @rq: the pointer to rq
3662 *
3663 * Tick demultiplexing follows the order
3664 * - pending hardirq update
3665 * - pending softirq update
3666 * - user_time
3667 * - idle_time
3668 * - system time
3669 * - check for guest_time
3670 * - else account as system_time
3671 *
3672 * Check for hardirq is done both for system and user time as there is
3673 * no timer going off while we are on hardirq and hence we may never get an
3674 * opportunity to update it solely in system time.
3675 * p->stime and friends are only updated on system time and not on irq
3676 * softirq as those do not count in task exec_runtime any more.
3677 */
3678static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3679 struct rq *rq)
3680{
3681 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3682 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3684
3685 if (irqtime_account_hi_update()) {
3686 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3687 } else if (irqtime_account_si_update()) {
3688 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3689 } else if (this_cpu_ksoftirqd() == p) {
3690 /*
3691 * ksoftirqd time do not get accounted in cpu_softirq_time.
3692 * So, we have to handle it separately here.
3693 * Also, p->stime needs to be updated for ksoftirqd.
3694 */
3695 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3696 &cpustat->softirq);
abb74cef
VP
3697 } else if (user_tick) {
3698 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3699 } else if (p == rq->idle) {
3700 account_idle_time(cputime_one_jiffy);
3701 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3702 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3703 } else {
3704 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3705 &cpustat->system);
3706 }
3707}
3708
3709static void irqtime_account_idle_ticks(int ticks)
3710{
3711 int i;
3712 struct rq *rq = this_rq();
3713
3714 for (i = 0; i < ticks; i++)
3715 irqtime_account_process_tick(current, 0, rq);
3716}
3717#else
3718static void irqtime_account_idle_ticks(int ticks) {}
3719static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3720 struct rq *rq) {}
3721#endif
3722
c66f08be 3723/*
1da177e4 3724 * Account for involuntary wait time.
1da177e4 3725 * @steal: the cpu time spent in involuntary wait
c66f08be 3726 */
79741dd3 3727void account_steal_time(cputime_t cputime)
c66f08be 3728{
79741dd3
MS
3729 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3730 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3731
3732 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3733}
3734
1da177e4 3735/*
79741dd3
MS
3736 * Account for idle time.
3737 * @cputime: the cpu time spent in idle wait
1da177e4 3738 */
79741dd3 3739void account_idle_time(cputime_t cputime)
1da177e4
LT
3740{
3741 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3742 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3743 struct rq *rq = this_rq();
1da177e4 3744
79741dd3
MS
3745 if (atomic_read(&rq->nr_iowait) > 0)
3746 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3747 else
3748 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3749}
3750
79741dd3
MS
3751#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3752
3753/*
3754 * Account a single tick of cpu time.
3755 * @p: the process that the cpu time gets accounted to
3756 * @user_tick: indicates if the tick is a user or a system tick
3757 */
3758void account_process_tick(struct task_struct *p, int user_tick)
3759{
a42548a1 3760 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3761 struct rq *rq = this_rq();
3762
abb74cef
VP
3763 if (sched_clock_irqtime) {
3764 irqtime_account_process_tick(p, user_tick, rq);
3765 return;
3766 }
3767
79741dd3 3768 if (user_tick)
a42548a1 3769 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3770 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3771 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3772 one_jiffy_scaled);
3773 else
a42548a1 3774 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3775}
3776
3777/*
3778 * Account multiple ticks of steal time.
3779 * @p: the process from which the cpu time has been stolen
3780 * @ticks: number of stolen ticks
3781 */
3782void account_steal_ticks(unsigned long ticks)
3783{
3784 account_steal_time(jiffies_to_cputime(ticks));
3785}
3786
3787/*
3788 * Account multiple ticks of idle time.
3789 * @ticks: number of stolen ticks
3790 */
3791void account_idle_ticks(unsigned long ticks)
3792{
abb74cef
VP
3793
3794 if (sched_clock_irqtime) {
3795 irqtime_account_idle_ticks(ticks);
3796 return;
3797 }
3798
79741dd3 3799 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3800}
3801
79741dd3
MS
3802#endif
3803
49048622
BS
3804/*
3805 * Use precise platform statistics if available:
3806 */
3807#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3808void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3809{
d99ca3b9
HS
3810 *ut = p->utime;
3811 *st = p->stime;
49048622
BS
3812}
3813
0cf55e1e 3814void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3815{
0cf55e1e
HS
3816 struct task_cputime cputime;
3817
3818 thread_group_cputime(p, &cputime);
3819
3820 *ut = cputime.utime;
3821 *st = cputime.stime;
49048622
BS
3822}
3823#else
761b1d26
HS
3824
3825#ifndef nsecs_to_cputime
b7b20df9 3826# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3827#endif
3828
d180c5bc 3829void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3830{
d99ca3b9 3831 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3832
3833 /*
3834 * Use CFS's precise accounting:
3835 */
d180c5bc 3836 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3837
3838 if (total) {
e75e863d 3839 u64 temp = rtime;
d180c5bc 3840
e75e863d 3841 temp *= utime;
49048622 3842 do_div(temp, total);
d180c5bc
HS
3843 utime = (cputime_t)temp;
3844 } else
3845 utime = rtime;
49048622 3846
d180c5bc
HS
3847 /*
3848 * Compare with previous values, to keep monotonicity:
3849 */
761b1d26 3850 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3851 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3852
d99ca3b9
HS
3853 *ut = p->prev_utime;
3854 *st = p->prev_stime;
49048622
BS
3855}
3856
0cf55e1e
HS
3857/*
3858 * Must be called with siglock held.
3859 */
3860void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3861{
0cf55e1e
HS
3862 struct signal_struct *sig = p->signal;
3863 struct task_cputime cputime;
3864 cputime_t rtime, utime, total;
49048622 3865
0cf55e1e 3866 thread_group_cputime(p, &cputime);
49048622 3867
0cf55e1e
HS
3868 total = cputime_add(cputime.utime, cputime.stime);
3869 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3870
0cf55e1e 3871 if (total) {
e75e863d 3872 u64 temp = rtime;
49048622 3873
e75e863d 3874 temp *= cputime.utime;
0cf55e1e
HS
3875 do_div(temp, total);
3876 utime = (cputime_t)temp;
3877 } else
3878 utime = rtime;
3879
3880 sig->prev_utime = max(sig->prev_utime, utime);
3881 sig->prev_stime = max(sig->prev_stime,
3882 cputime_sub(rtime, sig->prev_utime));
3883
3884 *ut = sig->prev_utime;
3885 *st = sig->prev_stime;
49048622 3886}
49048622 3887#endif
49048622 3888
7835b98b
CL
3889/*
3890 * This function gets called by the timer code, with HZ frequency.
3891 * We call it with interrupts disabled.
3892 *
3893 * It also gets called by the fork code, when changing the parent's
3894 * timeslices.
3895 */
3896void scheduler_tick(void)
3897{
7835b98b
CL
3898 int cpu = smp_processor_id();
3899 struct rq *rq = cpu_rq(cpu);
dd41f596 3900 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3901
3902 sched_clock_tick();
dd41f596 3903
05fa785c 3904 raw_spin_lock(&rq->lock);
3e51f33f 3905 update_rq_clock(rq);
fdf3e95d 3906 update_cpu_load_active(rq);
fa85ae24 3907 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3908 raw_spin_unlock(&rq->lock);
7835b98b 3909
e9d2b064 3910 perf_event_task_tick();
e220d2dc 3911
e418e1c2 3912#ifdef CONFIG_SMP
dd41f596
IM
3913 rq->idle_at_tick = idle_cpu(cpu);
3914 trigger_load_balance(rq, cpu);
e418e1c2 3915#endif
1da177e4
LT
3916}
3917
132380a0 3918notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3919{
3920 if (in_lock_functions(addr)) {
3921 addr = CALLER_ADDR2;
3922 if (in_lock_functions(addr))
3923 addr = CALLER_ADDR3;
3924 }
3925 return addr;
3926}
1da177e4 3927
7e49fcce
SR
3928#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3929 defined(CONFIG_PREEMPT_TRACER))
3930
43627582 3931void __kprobes add_preempt_count(int val)
1da177e4 3932{
6cd8a4bb 3933#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3934 /*
3935 * Underflow?
3936 */
9a11b49a
IM
3937 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3938 return;
6cd8a4bb 3939#endif
1da177e4 3940 preempt_count() += val;
6cd8a4bb 3941#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3942 /*
3943 * Spinlock count overflowing soon?
3944 */
33859f7f
MOS
3945 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3946 PREEMPT_MASK - 10);
6cd8a4bb
SR
3947#endif
3948 if (preempt_count() == val)
3949 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3950}
3951EXPORT_SYMBOL(add_preempt_count);
3952
43627582 3953void __kprobes sub_preempt_count(int val)
1da177e4 3954{
6cd8a4bb 3955#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3956 /*
3957 * Underflow?
3958 */
01e3eb82 3959 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3960 return;
1da177e4
LT
3961 /*
3962 * Is the spinlock portion underflowing?
3963 */
9a11b49a
IM
3964 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3965 !(preempt_count() & PREEMPT_MASK)))
3966 return;
6cd8a4bb 3967#endif
9a11b49a 3968
6cd8a4bb
SR
3969 if (preempt_count() == val)
3970 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3971 preempt_count() -= val;
3972}
3973EXPORT_SYMBOL(sub_preempt_count);
3974
3975#endif
3976
3977/*
dd41f596 3978 * Print scheduling while atomic bug:
1da177e4 3979 */
dd41f596 3980static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3981{
838225b4
SS
3982 struct pt_regs *regs = get_irq_regs();
3983
3df0fc5b
PZ
3984 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3985 prev->comm, prev->pid, preempt_count());
838225b4 3986
dd41f596 3987 debug_show_held_locks(prev);
e21f5b15 3988 print_modules();
dd41f596
IM
3989 if (irqs_disabled())
3990 print_irqtrace_events(prev);
838225b4
SS
3991
3992 if (regs)
3993 show_regs(regs);
3994 else
3995 dump_stack();
dd41f596 3996}
1da177e4 3997
dd41f596
IM
3998/*
3999 * Various schedule()-time debugging checks and statistics:
4000 */
4001static inline void schedule_debug(struct task_struct *prev)
4002{
1da177e4 4003 /*
41a2d6cf 4004 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4005 * schedule() atomically, we ignore that path for now.
4006 * Otherwise, whine if we are scheduling when we should not be.
4007 */
3f33a7ce 4008 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4009 __schedule_bug(prev);
4010
1da177e4
LT
4011 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4012
2d72376b 4013 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4014#ifdef CONFIG_SCHEDSTATS
4015 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4016 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4017 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4018 }
4019#endif
dd41f596
IM
4020}
4021
6cecd084 4022static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4023{
a64692a3
MG
4024 if (prev->se.on_rq)
4025 update_rq_clock(rq);
6cecd084 4026 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4027}
4028
dd41f596
IM
4029/*
4030 * Pick up the highest-prio task:
4031 */
4032static inline struct task_struct *
b67802ea 4033pick_next_task(struct rq *rq)
dd41f596 4034{
5522d5d5 4035 const struct sched_class *class;
dd41f596 4036 struct task_struct *p;
1da177e4
LT
4037
4038 /*
dd41f596
IM
4039 * Optimization: we know that if all tasks are in
4040 * the fair class we can call that function directly:
1da177e4 4041 */
dd41f596 4042 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4043 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4044 if (likely(p))
4045 return p;
1da177e4
LT
4046 }
4047
34f971f6 4048 for_each_class(class) {
fb8d4724 4049 p = class->pick_next_task(rq);
dd41f596
IM
4050 if (p)
4051 return p;
dd41f596 4052 }
34f971f6
PZ
4053
4054 BUG(); /* the idle class will always have a runnable task */
dd41f596 4055}
1da177e4 4056
dd41f596
IM
4057/*
4058 * schedule() is the main scheduler function.
4059 */
ff743345 4060asmlinkage void __sched schedule(void)
dd41f596
IM
4061{
4062 struct task_struct *prev, *next;
67ca7bde 4063 unsigned long *switch_count;
dd41f596 4064 struct rq *rq;
31656519 4065 int cpu;
dd41f596 4066
ff743345
PZ
4067need_resched:
4068 preempt_disable();
dd41f596
IM
4069 cpu = smp_processor_id();
4070 rq = cpu_rq(cpu);
25502a6c 4071 rcu_note_context_switch(cpu);
dd41f596 4072 prev = rq->curr;
dd41f596
IM
4073
4074 release_kernel_lock(prev);
4075need_resched_nonpreemptible:
4076
4077 schedule_debug(prev);
1da177e4 4078
31656519 4079 if (sched_feat(HRTICK))
f333fdc9 4080 hrtick_clear(rq);
8f4d37ec 4081
05fa785c 4082 raw_spin_lock_irq(&rq->lock);
1da177e4 4083
246d86b5 4084 switch_count = &prev->nivcsw;
1da177e4 4085 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4086 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4087 prev->state = TASK_RUNNING;
21aa9af0
TH
4088 } else {
4089 /*
4090 * If a worker is going to sleep, notify and
4091 * ask workqueue whether it wants to wake up a
4092 * task to maintain concurrency. If so, wake
4093 * up the task.
4094 */
4095 if (prev->flags & PF_WQ_WORKER) {
4096 struct task_struct *to_wakeup;
4097
4098 to_wakeup = wq_worker_sleeping(prev, cpu);
4099 if (to_wakeup)
4100 try_to_wake_up_local(to_wakeup);
4101 }
371fd7e7 4102 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4103 }
dd41f596 4104 switch_count = &prev->nvcsw;
1da177e4
LT
4105 }
4106
3f029d3c 4107 pre_schedule(rq, prev);
f65eda4f 4108
dd41f596 4109 if (unlikely(!rq->nr_running))
1da177e4 4110 idle_balance(cpu, rq);
1da177e4 4111
df1c99d4 4112 put_prev_task(rq, prev);
b67802ea 4113 next = pick_next_task(rq);
f26f9aff
MG
4114 clear_tsk_need_resched(prev);
4115 rq->skip_clock_update = 0;
1da177e4 4116
1da177e4 4117 if (likely(prev != next)) {
673a90a1 4118 sched_info_switch(prev, next);
49f47433 4119 perf_event_task_sched_out(prev, next);
673a90a1 4120
1da177e4
LT
4121 rq->nr_switches++;
4122 rq->curr = next;
4123 ++*switch_count;
4124
dd41f596 4125 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4126 /*
246d86b5
ON
4127 * The context switch have flipped the stack from under us
4128 * and restored the local variables which were saved when
4129 * this task called schedule() in the past. prev == current
4130 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4131 */
4132 cpu = smp_processor_id();
4133 rq = cpu_rq(cpu);
1da177e4 4134 } else
05fa785c 4135 raw_spin_unlock_irq(&rq->lock);
1da177e4 4136
3f029d3c 4137 post_schedule(rq);
1da177e4 4138
246d86b5 4139 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4140 goto need_resched_nonpreemptible;
8f4d37ec 4141
1da177e4 4142 preempt_enable_no_resched();
ff743345 4143 if (need_resched())
1da177e4
LT
4144 goto need_resched;
4145}
1da177e4
LT
4146EXPORT_SYMBOL(schedule);
4147
c08f7829 4148#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4149/*
4150 * Look out! "owner" is an entirely speculative pointer
4151 * access and not reliable.
4152 */
4153int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4154{
4155 unsigned int cpu;
4156 struct rq *rq;
4157
4158 if (!sched_feat(OWNER_SPIN))
4159 return 0;
4160
4161#ifdef CONFIG_DEBUG_PAGEALLOC
4162 /*
4163 * Need to access the cpu field knowing that
4164 * DEBUG_PAGEALLOC could have unmapped it if
4165 * the mutex owner just released it and exited.
4166 */
4167 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4168 return 0;
0d66bf6d
PZ
4169#else
4170 cpu = owner->cpu;
4171#endif
4172
4173 /*
4174 * Even if the access succeeded (likely case),
4175 * the cpu field may no longer be valid.
4176 */
4177 if (cpu >= nr_cpumask_bits)
4b402210 4178 return 0;
0d66bf6d
PZ
4179
4180 /*
4181 * We need to validate that we can do a
4182 * get_cpu() and that we have the percpu area.
4183 */
4184 if (!cpu_online(cpu))
4b402210 4185 return 0;
0d66bf6d
PZ
4186
4187 rq = cpu_rq(cpu);
4188
4189 for (;;) {
4190 /*
4191 * Owner changed, break to re-assess state.
4192 */
9d0f4dcc
TC
4193 if (lock->owner != owner) {
4194 /*
4195 * If the lock has switched to a different owner,
4196 * we likely have heavy contention. Return 0 to quit
4197 * optimistic spinning and not contend further:
4198 */
4199 if (lock->owner)
4200 return 0;
0d66bf6d 4201 break;
9d0f4dcc 4202 }
0d66bf6d
PZ
4203
4204 /*
4205 * Is that owner really running on that cpu?
4206 */
4207 if (task_thread_info(rq->curr) != owner || need_resched())
4208 return 0;
4209
335d7afb 4210 arch_mutex_cpu_relax();
0d66bf6d 4211 }
4b402210 4212
0d66bf6d
PZ
4213 return 1;
4214}
4215#endif
4216
1da177e4
LT
4217#ifdef CONFIG_PREEMPT
4218/*
2ed6e34f 4219 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4220 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4221 * occur there and call schedule directly.
4222 */
d1f74e20 4223asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4224{
4225 struct thread_info *ti = current_thread_info();
6478d880 4226
1da177e4
LT
4227 /*
4228 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4229 * we do not want to preempt the current task. Just return..
1da177e4 4230 */
beed33a8 4231 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4232 return;
4233
3a5c359a 4234 do {
d1f74e20 4235 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4236 schedule();
d1f74e20 4237 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4238
3a5c359a
AK
4239 /*
4240 * Check again in case we missed a preemption opportunity
4241 * between schedule and now.
4242 */
4243 barrier();
5ed0cec0 4244 } while (need_resched());
1da177e4 4245}
1da177e4
LT
4246EXPORT_SYMBOL(preempt_schedule);
4247
4248/*
2ed6e34f 4249 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4250 * off of irq context.
4251 * Note, that this is called and return with irqs disabled. This will
4252 * protect us against recursive calling from irq.
4253 */
4254asmlinkage void __sched preempt_schedule_irq(void)
4255{
4256 struct thread_info *ti = current_thread_info();
6478d880 4257
2ed6e34f 4258 /* Catch callers which need to be fixed */
1da177e4
LT
4259 BUG_ON(ti->preempt_count || !irqs_disabled());
4260
3a5c359a
AK
4261 do {
4262 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4263 local_irq_enable();
4264 schedule();
4265 local_irq_disable();
3a5c359a 4266 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4267
3a5c359a
AK
4268 /*
4269 * Check again in case we missed a preemption opportunity
4270 * between schedule and now.
4271 */
4272 barrier();
5ed0cec0 4273 } while (need_resched());
1da177e4
LT
4274}
4275
4276#endif /* CONFIG_PREEMPT */
4277
63859d4f 4278int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4279 void *key)
1da177e4 4280{
63859d4f 4281 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4282}
1da177e4
LT
4283EXPORT_SYMBOL(default_wake_function);
4284
4285/*
41a2d6cf
IM
4286 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4287 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4288 * number) then we wake all the non-exclusive tasks and one exclusive task.
4289 *
4290 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4291 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4292 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4293 */
78ddb08f 4294static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4295 int nr_exclusive, int wake_flags, void *key)
1da177e4 4296{
2e45874c 4297 wait_queue_t *curr, *next;
1da177e4 4298
2e45874c 4299 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4300 unsigned flags = curr->flags;
4301
63859d4f 4302 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4303 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4304 break;
4305 }
4306}
4307
4308/**
4309 * __wake_up - wake up threads blocked on a waitqueue.
4310 * @q: the waitqueue
4311 * @mode: which threads
4312 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4313 * @key: is directly passed to the wakeup function
50fa610a
DH
4314 *
4315 * It may be assumed that this function implies a write memory barrier before
4316 * changing the task state if and only if any tasks are woken up.
1da177e4 4317 */
7ad5b3a5 4318void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4319 int nr_exclusive, void *key)
1da177e4
LT
4320{
4321 unsigned long flags;
4322
4323 spin_lock_irqsave(&q->lock, flags);
4324 __wake_up_common(q, mode, nr_exclusive, 0, key);
4325 spin_unlock_irqrestore(&q->lock, flags);
4326}
1da177e4
LT
4327EXPORT_SYMBOL(__wake_up);
4328
4329/*
4330 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4331 */
7ad5b3a5 4332void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4333{
4334 __wake_up_common(q, mode, 1, 0, NULL);
4335}
22c43c81 4336EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4337
4ede816a
DL
4338void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4339{
4340 __wake_up_common(q, mode, 1, 0, key);
4341}
4342
1da177e4 4343/**
4ede816a 4344 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4345 * @q: the waitqueue
4346 * @mode: which threads
4347 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4348 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4349 *
4350 * The sync wakeup differs that the waker knows that it will schedule
4351 * away soon, so while the target thread will be woken up, it will not
4352 * be migrated to another CPU - ie. the two threads are 'synchronized'
4353 * with each other. This can prevent needless bouncing between CPUs.
4354 *
4355 * On UP it can prevent extra preemption.
50fa610a
DH
4356 *
4357 * It may be assumed that this function implies a write memory barrier before
4358 * changing the task state if and only if any tasks are woken up.
1da177e4 4359 */
4ede816a
DL
4360void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4361 int nr_exclusive, void *key)
1da177e4
LT
4362{
4363 unsigned long flags;
7d478721 4364 int wake_flags = WF_SYNC;
1da177e4
LT
4365
4366 if (unlikely(!q))
4367 return;
4368
4369 if (unlikely(!nr_exclusive))
7d478721 4370 wake_flags = 0;
1da177e4
LT
4371
4372 spin_lock_irqsave(&q->lock, flags);
7d478721 4373 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4374 spin_unlock_irqrestore(&q->lock, flags);
4375}
4ede816a
DL
4376EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4377
4378/*
4379 * __wake_up_sync - see __wake_up_sync_key()
4380 */
4381void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4382{
4383 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4384}
1da177e4
LT
4385EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4386
65eb3dc6
KD
4387/**
4388 * complete: - signals a single thread waiting on this completion
4389 * @x: holds the state of this particular completion
4390 *
4391 * This will wake up a single thread waiting on this completion. Threads will be
4392 * awakened in the same order in which they were queued.
4393 *
4394 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4395 *
4396 * It may be assumed that this function implies a write memory barrier before
4397 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4398 */
b15136e9 4399void complete(struct completion *x)
1da177e4
LT
4400{
4401 unsigned long flags;
4402
4403 spin_lock_irqsave(&x->wait.lock, flags);
4404 x->done++;
d9514f6c 4405 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4406 spin_unlock_irqrestore(&x->wait.lock, flags);
4407}
4408EXPORT_SYMBOL(complete);
4409
65eb3dc6
KD
4410/**
4411 * complete_all: - signals all threads waiting on this completion
4412 * @x: holds the state of this particular completion
4413 *
4414 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4415 *
4416 * It may be assumed that this function implies a write memory barrier before
4417 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4418 */
b15136e9 4419void complete_all(struct completion *x)
1da177e4
LT
4420{
4421 unsigned long flags;
4422
4423 spin_lock_irqsave(&x->wait.lock, flags);
4424 x->done += UINT_MAX/2;
d9514f6c 4425 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4426 spin_unlock_irqrestore(&x->wait.lock, flags);
4427}
4428EXPORT_SYMBOL(complete_all);
4429
8cbbe86d
AK
4430static inline long __sched
4431do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4432{
1da177e4
LT
4433 if (!x->done) {
4434 DECLARE_WAITQUEUE(wait, current);
4435
a93d2f17 4436 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4437 do {
94d3d824 4438 if (signal_pending_state(state, current)) {
ea71a546
ON
4439 timeout = -ERESTARTSYS;
4440 break;
8cbbe86d
AK
4441 }
4442 __set_current_state(state);
1da177e4
LT
4443 spin_unlock_irq(&x->wait.lock);
4444 timeout = schedule_timeout(timeout);
4445 spin_lock_irq(&x->wait.lock);
ea71a546 4446 } while (!x->done && timeout);
1da177e4 4447 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4448 if (!x->done)
4449 return timeout;
1da177e4
LT
4450 }
4451 x->done--;
ea71a546 4452 return timeout ?: 1;
1da177e4 4453}
1da177e4 4454
8cbbe86d
AK
4455static long __sched
4456wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4457{
1da177e4
LT
4458 might_sleep();
4459
4460 spin_lock_irq(&x->wait.lock);
8cbbe86d 4461 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4462 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4463 return timeout;
4464}
1da177e4 4465
65eb3dc6
KD
4466/**
4467 * wait_for_completion: - waits for completion of a task
4468 * @x: holds the state of this particular completion
4469 *
4470 * This waits to be signaled for completion of a specific task. It is NOT
4471 * interruptible and there is no timeout.
4472 *
4473 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4474 * and interrupt capability. Also see complete().
4475 */
b15136e9 4476void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4477{
4478 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4479}
8cbbe86d 4480EXPORT_SYMBOL(wait_for_completion);
1da177e4 4481
65eb3dc6
KD
4482/**
4483 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4484 * @x: holds the state of this particular completion
4485 * @timeout: timeout value in jiffies
4486 *
4487 * This waits for either a completion of a specific task to be signaled or for a
4488 * specified timeout to expire. The timeout is in jiffies. It is not
4489 * interruptible.
4490 */
b15136e9 4491unsigned long __sched
8cbbe86d 4492wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4493{
8cbbe86d 4494 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4495}
8cbbe86d 4496EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4497
65eb3dc6
KD
4498/**
4499 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4500 * @x: holds the state of this particular completion
4501 *
4502 * This waits for completion of a specific task to be signaled. It is
4503 * interruptible.
4504 */
8cbbe86d 4505int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4506{
51e97990
AK
4507 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4508 if (t == -ERESTARTSYS)
4509 return t;
4510 return 0;
0fec171c 4511}
8cbbe86d 4512EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4513
65eb3dc6
KD
4514/**
4515 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4516 * @x: holds the state of this particular completion
4517 * @timeout: timeout value in jiffies
4518 *
4519 * This waits for either a completion of a specific task to be signaled or for a
4520 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4521 */
6bf41237 4522long __sched
8cbbe86d
AK
4523wait_for_completion_interruptible_timeout(struct completion *x,
4524 unsigned long timeout)
0fec171c 4525{
8cbbe86d 4526 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4527}
8cbbe86d 4528EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4529
65eb3dc6
KD
4530/**
4531 * wait_for_completion_killable: - waits for completion of a task (killable)
4532 * @x: holds the state of this particular completion
4533 *
4534 * This waits to be signaled for completion of a specific task. It can be
4535 * interrupted by a kill signal.
4536 */
009e577e
MW
4537int __sched wait_for_completion_killable(struct completion *x)
4538{
4539 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4540 if (t == -ERESTARTSYS)
4541 return t;
4542 return 0;
4543}
4544EXPORT_SYMBOL(wait_for_completion_killable);
4545
0aa12fb4
SW
4546/**
4547 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4548 * @x: holds the state of this particular completion
4549 * @timeout: timeout value in jiffies
4550 *
4551 * This waits for either a completion of a specific task to be
4552 * signaled or for a specified timeout to expire. It can be
4553 * interrupted by a kill signal. The timeout is in jiffies.
4554 */
6bf41237 4555long __sched
0aa12fb4
SW
4556wait_for_completion_killable_timeout(struct completion *x,
4557 unsigned long timeout)
4558{
4559 return wait_for_common(x, timeout, TASK_KILLABLE);
4560}
4561EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4562
be4de352
DC
4563/**
4564 * try_wait_for_completion - try to decrement a completion without blocking
4565 * @x: completion structure
4566 *
4567 * Returns: 0 if a decrement cannot be done without blocking
4568 * 1 if a decrement succeeded.
4569 *
4570 * If a completion is being used as a counting completion,
4571 * attempt to decrement the counter without blocking. This
4572 * enables us to avoid waiting if the resource the completion
4573 * is protecting is not available.
4574 */
4575bool try_wait_for_completion(struct completion *x)
4576{
7539a3b3 4577 unsigned long flags;
be4de352
DC
4578 int ret = 1;
4579
7539a3b3 4580 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4581 if (!x->done)
4582 ret = 0;
4583 else
4584 x->done--;
7539a3b3 4585 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4586 return ret;
4587}
4588EXPORT_SYMBOL(try_wait_for_completion);
4589
4590/**
4591 * completion_done - Test to see if a completion has any waiters
4592 * @x: completion structure
4593 *
4594 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4595 * 1 if there are no waiters.
4596 *
4597 */
4598bool completion_done(struct completion *x)
4599{
7539a3b3 4600 unsigned long flags;
be4de352
DC
4601 int ret = 1;
4602
7539a3b3 4603 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4604 if (!x->done)
4605 ret = 0;
7539a3b3 4606 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4607 return ret;
4608}
4609EXPORT_SYMBOL(completion_done);
4610
8cbbe86d
AK
4611static long __sched
4612sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4613{
0fec171c
IM
4614 unsigned long flags;
4615 wait_queue_t wait;
4616
4617 init_waitqueue_entry(&wait, current);
1da177e4 4618
8cbbe86d 4619 __set_current_state(state);
1da177e4 4620
8cbbe86d
AK
4621 spin_lock_irqsave(&q->lock, flags);
4622 __add_wait_queue(q, &wait);
4623 spin_unlock(&q->lock);
4624 timeout = schedule_timeout(timeout);
4625 spin_lock_irq(&q->lock);
4626 __remove_wait_queue(q, &wait);
4627 spin_unlock_irqrestore(&q->lock, flags);
4628
4629 return timeout;
4630}
4631
4632void __sched interruptible_sleep_on(wait_queue_head_t *q)
4633{
4634 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4635}
1da177e4
LT
4636EXPORT_SYMBOL(interruptible_sleep_on);
4637
0fec171c 4638long __sched
95cdf3b7 4639interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4640{
8cbbe86d 4641 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4642}
1da177e4
LT
4643EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4644
0fec171c 4645void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4646{
8cbbe86d 4647 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4648}
1da177e4
LT
4649EXPORT_SYMBOL(sleep_on);
4650
0fec171c 4651long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4652{
8cbbe86d 4653 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4654}
1da177e4
LT
4655EXPORT_SYMBOL(sleep_on_timeout);
4656
b29739f9
IM
4657#ifdef CONFIG_RT_MUTEXES
4658
4659/*
4660 * rt_mutex_setprio - set the current priority of a task
4661 * @p: task
4662 * @prio: prio value (kernel-internal form)
4663 *
4664 * This function changes the 'effective' priority of a task. It does
4665 * not touch ->normal_prio like __setscheduler().
4666 *
4667 * Used by the rt_mutex code to implement priority inheritance logic.
4668 */
36c8b586 4669void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4670{
4671 unsigned long flags;
83b699ed 4672 int oldprio, on_rq, running;
70b97a7f 4673 struct rq *rq;
83ab0aa0 4674 const struct sched_class *prev_class;
b29739f9
IM
4675
4676 BUG_ON(prio < 0 || prio > MAX_PRIO);
4677
4678 rq = task_rq_lock(p, &flags);
4679
a8027073 4680 trace_sched_pi_setprio(p, prio);
d5f9f942 4681 oldprio = p->prio;
83ab0aa0 4682 prev_class = p->sched_class;
dd41f596 4683 on_rq = p->se.on_rq;
051a1d1a 4684 running = task_current(rq, p);
0e1f3483 4685 if (on_rq)
69be72c1 4686 dequeue_task(rq, p, 0);
0e1f3483
HS
4687 if (running)
4688 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4689
4690 if (rt_prio(prio))
4691 p->sched_class = &rt_sched_class;
4692 else
4693 p->sched_class = &fair_sched_class;
4694
b29739f9
IM
4695 p->prio = prio;
4696
0e1f3483
HS
4697 if (running)
4698 p->sched_class->set_curr_task(rq);
dd41f596 4699 if (on_rq) {
371fd7e7 4700 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4701
4702 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4703 }
4704 task_rq_unlock(rq, &flags);
4705}
4706
4707#endif
4708
36c8b586 4709void set_user_nice(struct task_struct *p, long nice)
1da177e4 4710{
dd41f596 4711 int old_prio, delta, on_rq;
1da177e4 4712 unsigned long flags;
70b97a7f 4713 struct rq *rq;
1da177e4
LT
4714
4715 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4716 return;
4717 /*
4718 * We have to be careful, if called from sys_setpriority(),
4719 * the task might be in the middle of scheduling on another CPU.
4720 */
4721 rq = task_rq_lock(p, &flags);
4722 /*
4723 * The RT priorities are set via sched_setscheduler(), but we still
4724 * allow the 'normal' nice value to be set - but as expected
4725 * it wont have any effect on scheduling until the task is
dd41f596 4726 * SCHED_FIFO/SCHED_RR:
1da177e4 4727 */
e05606d3 4728 if (task_has_rt_policy(p)) {
1da177e4
LT
4729 p->static_prio = NICE_TO_PRIO(nice);
4730 goto out_unlock;
4731 }
dd41f596 4732 on_rq = p->se.on_rq;
c09595f6 4733 if (on_rq)
69be72c1 4734 dequeue_task(rq, p, 0);
1da177e4 4735
1da177e4 4736 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4737 set_load_weight(p);
b29739f9
IM
4738 old_prio = p->prio;
4739 p->prio = effective_prio(p);
4740 delta = p->prio - old_prio;
1da177e4 4741
dd41f596 4742 if (on_rq) {
371fd7e7 4743 enqueue_task(rq, p, 0);
1da177e4 4744 /*
d5f9f942
AM
4745 * If the task increased its priority or is running and
4746 * lowered its priority, then reschedule its CPU:
1da177e4 4747 */
d5f9f942 4748 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4749 resched_task(rq->curr);
4750 }
4751out_unlock:
4752 task_rq_unlock(rq, &flags);
4753}
1da177e4
LT
4754EXPORT_SYMBOL(set_user_nice);
4755
e43379f1
MM
4756/*
4757 * can_nice - check if a task can reduce its nice value
4758 * @p: task
4759 * @nice: nice value
4760 */
36c8b586 4761int can_nice(const struct task_struct *p, const int nice)
e43379f1 4762{
024f4747
MM
4763 /* convert nice value [19,-20] to rlimit style value [1,40] */
4764 int nice_rlim = 20 - nice;
48f24c4d 4765
78d7d407 4766 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4767 capable(CAP_SYS_NICE));
4768}
4769
1da177e4
LT
4770#ifdef __ARCH_WANT_SYS_NICE
4771
4772/*
4773 * sys_nice - change the priority of the current process.
4774 * @increment: priority increment
4775 *
4776 * sys_setpriority is a more generic, but much slower function that
4777 * does similar things.
4778 */
5add95d4 4779SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4780{
48f24c4d 4781 long nice, retval;
1da177e4
LT
4782
4783 /*
4784 * Setpriority might change our priority at the same moment.
4785 * We don't have to worry. Conceptually one call occurs first
4786 * and we have a single winner.
4787 */
e43379f1
MM
4788 if (increment < -40)
4789 increment = -40;
1da177e4
LT
4790 if (increment > 40)
4791 increment = 40;
4792
2b8f836f 4793 nice = TASK_NICE(current) + increment;
1da177e4
LT
4794 if (nice < -20)
4795 nice = -20;
4796 if (nice > 19)
4797 nice = 19;
4798
e43379f1
MM
4799 if (increment < 0 && !can_nice(current, nice))
4800 return -EPERM;
4801
1da177e4
LT
4802 retval = security_task_setnice(current, nice);
4803 if (retval)
4804 return retval;
4805
4806 set_user_nice(current, nice);
4807 return 0;
4808}
4809
4810#endif
4811
4812/**
4813 * task_prio - return the priority value of a given task.
4814 * @p: the task in question.
4815 *
4816 * This is the priority value as seen by users in /proc.
4817 * RT tasks are offset by -200. Normal tasks are centered
4818 * around 0, value goes from -16 to +15.
4819 */
36c8b586 4820int task_prio(const struct task_struct *p)
1da177e4
LT
4821{
4822 return p->prio - MAX_RT_PRIO;
4823}
4824
4825/**
4826 * task_nice - return the nice value of a given task.
4827 * @p: the task in question.
4828 */
36c8b586 4829int task_nice(const struct task_struct *p)
1da177e4
LT
4830{
4831 return TASK_NICE(p);
4832}
150d8bed 4833EXPORT_SYMBOL(task_nice);
1da177e4
LT
4834
4835/**
4836 * idle_cpu - is a given cpu idle currently?
4837 * @cpu: the processor in question.
4838 */
4839int idle_cpu(int cpu)
4840{
4841 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4842}
4843
1da177e4
LT
4844/**
4845 * idle_task - return the idle task for a given cpu.
4846 * @cpu: the processor in question.
4847 */
36c8b586 4848struct task_struct *idle_task(int cpu)
1da177e4
LT
4849{
4850 return cpu_rq(cpu)->idle;
4851}
4852
4853/**
4854 * find_process_by_pid - find a process with a matching PID value.
4855 * @pid: the pid in question.
4856 */
a9957449 4857static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4858{
228ebcbe 4859 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4860}
4861
4862/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4863static void
4864__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4865{
dd41f596 4866 BUG_ON(p->se.on_rq);
48f24c4d 4867
1da177e4
LT
4868 p->policy = policy;
4869 p->rt_priority = prio;
b29739f9
IM
4870 p->normal_prio = normal_prio(p);
4871 /* we are holding p->pi_lock already */
4872 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4873 if (rt_prio(p->prio))
4874 p->sched_class = &rt_sched_class;
4875 else
4876 p->sched_class = &fair_sched_class;
2dd73a4f 4877 set_load_weight(p);
1da177e4
LT
4878}
4879
c69e8d9c
DH
4880/*
4881 * check the target process has a UID that matches the current process's
4882 */
4883static bool check_same_owner(struct task_struct *p)
4884{
4885 const struct cred *cred = current_cred(), *pcred;
4886 bool match;
4887
4888 rcu_read_lock();
4889 pcred = __task_cred(p);
4890 match = (cred->euid == pcred->euid ||
4891 cred->euid == pcred->uid);
4892 rcu_read_unlock();
4893 return match;
4894}
4895
961ccddd 4896static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4897 const struct sched_param *param, bool user)
1da177e4 4898{
83b699ed 4899 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4900 unsigned long flags;
83ab0aa0 4901 const struct sched_class *prev_class;
70b97a7f 4902 struct rq *rq;
ca94c442 4903 int reset_on_fork;
1da177e4 4904
66e5393a
SR
4905 /* may grab non-irq protected spin_locks */
4906 BUG_ON(in_interrupt());
1da177e4
LT
4907recheck:
4908 /* double check policy once rq lock held */
ca94c442
LP
4909 if (policy < 0) {
4910 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4911 policy = oldpolicy = p->policy;
ca94c442
LP
4912 } else {
4913 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4914 policy &= ~SCHED_RESET_ON_FORK;
4915
4916 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4917 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4918 policy != SCHED_IDLE)
4919 return -EINVAL;
4920 }
4921
1da177e4
LT
4922 /*
4923 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4924 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4925 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4926 */
4927 if (param->sched_priority < 0 ||
95cdf3b7 4928 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4929 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4930 return -EINVAL;
e05606d3 4931 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4932 return -EINVAL;
4933
37e4ab3f
OC
4934 /*
4935 * Allow unprivileged RT tasks to decrease priority:
4936 */
961ccddd 4937 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4938 if (rt_policy(policy)) {
a44702e8
ON
4939 unsigned long rlim_rtprio =
4940 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4941
4942 /* can't set/change the rt policy */
4943 if (policy != p->policy && !rlim_rtprio)
4944 return -EPERM;
4945
4946 /* can't increase priority */
4947 if (param->sched_priority > p->rt_priority &&
4948 param->sched_priority > rlim_rtprio)
4949 return -EPERM;
4950 }
dd41f596
IM
4951 /*
4952 * Like positive nice levels, dont allow tasks to
4953 * move out of SCHED_IDLE either:
4954 */
4955 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4956 return -EPERM;
5fe1d75f 4957
37e4ab3f 4958 /* can't change other user's priorities */
c69e8d9c 4959 if (!check_same_owner(p))
37e4ab3f 4960 return -EPERM;
ca94c442
LP
4961
4962 /* Normal users shall not reset the sched_reset_on_fork flag */
4963 if (p->sched_reset_on_fork && !reset_on_fork)
4964 return -EPERM;
37e4ab3f 4965 }
1da177e4 4966
725aad24 4967 if (user) {
b0ae1981 4968 retval = security_task_setscheduler(p);
725aad24
JF
4969 if (retval)
4970 return retval;
4971 }
4972
b29739f9
IM
4973 /*
4974 * make sure no PI-waiters arrive (or leave) while we are
4975 * changing the priority of the task:
4976 */
1d615482 4977 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4978 /*
4979 * To be able to change p->policy safely, the apropriate
4980 * runqueue lock must be held.
4981 */
b29739f9 4982 rq = __task_rq_lock(p);
dc61b1d6 4983
34f971f6
PZ
4984 /*
4985 * Changing the policy of the stop threads its a very bad idea
4986 */
4987 if (p == rq->stop) {
4988 __task_rq_unlock(rq);
4989 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4990 return -EINVAL;
4991 }
4992
dc61b1d6
PZ
4993#ifdef CONFIG_RT_GROUP_SCHED
4994 if (user) {
4995 /*
4996 * Do not allow realtime tasks into groups that have no runtime
4997 * assigned.
4998 */
4999 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5000 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5001 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5002 __task_rq_unlock(rq);
5003 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5004 return -EPERM;
5005 }
5006 }
5007#endif
5008
1da177e4
LT
5009 /* recheck policy now with rq lock held */
5010 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5011 policy = oldpolicy = -1;
b29739f9 5012 __task_rq_unlock(rq);
1d615482 5013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5014 goto recheck;
5015 }
dd41f596 5016 on_rq = p->se.on_rq;
051a1d1a 5017 running = task_current(rq, p);
0e1f3483 5018 if (on_rq)
2e1cb74a 5019 deactivate_task(rq, p, 0);
0e1f3483
HS
5020 if (running)
5021 p->sched_class->put_prev_task(rq, p);
f6b53205 5022
ca94c442
LP
5023 p->sched_reset_on_fork = reset_on_fork;
5024
1da177e4 5025 oldprio = p->prio;
83ab0aa0 5026 prev_class = p->sched_class;
dd41f596 5027 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5028
0e1f3483
HS
5029 if (running)
5030 p->sched_class->set_curr_task(rq);
dd41f596
IM
5031 if (on_rq) {
5032 activate_task(rq, p, 0);
cb469845
SR
5033
5034 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5035 }
b29739f9 5036 __task_rq_unlock(rq);
1d615482 5037 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5038
95e02ca9
TG
5039 rt_mutex_adjust_pi(p);
5040
1da177e4
LT
5041 return 0;
5042}
961ccddd
RR
5043
5044/**
5045 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5046 * @p: the task in question.
5047 * @policy: new policy.
5048 * @param: structure containing the new RT priority.
5049 *
5050 * NOTE that the task may be already dead.
5051 */
5052int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5053 const struct sched_param *param)
961ccddd
RR
5054{
5055 return __sched_setscheduler(p, policy, param, true);
5056}
1da177e4
LT
5057EXPORT_SYMBOL_GPL(sched_setscheduler);
5058
961ccddd
RR
5059/**
5060 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5061 * @p: the task in question.
5062 * @policy: new policy.
5063 * @param: structure containing the new RT priority.
5064 *
5065 * Just like sched_setscheduler, only don't bother checking if the
5066 * current context has permission. For example, this is needed in
5067 * stop_machine(): we create temporary high priority worker threads,
5068 * but our caller might not have that capability.
5069 */
5070int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5071 const struct sched_param *param)
961ccddd
RR
5072{
5073 return __sched_setscheduler(p, policy, param, false);
5074}
5075
95cdf3b7
IM
5076static int
5077do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5078{
1da177e4
LT
5079 struct sched_param lparam;
5080 struct task_struct *p;
36c8b586 5081 int retval;
1da177e4
LT
5082
5083 if (!param || pid < 0)
5084 return -EINVAL;
5085 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5086 return -EFAULT;
5fe1d75f
ON
5087
5088 rcu_read_lock();
5089 retval = -ESRCH;
1da177e4 5090 p = find_process_by_pid(pid);
5fe1d75f
ON
5091 if (p != NULL)
5092 retval = sched_setscheduler(p, policy, &lparam);
5093 rcu_read_unlock();
36c8b586 5094
1da177e4
LT
5095 return retval;
5096}
5097
5098/**
5099 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5100 * @pid: the pid in question.
5101 * @policy: new policy.
5102 * @param: structure containing the new RT priority.
5103 */
5add95d4
HC
5104SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5105 struct sched_param __user *, param)
1da177e4 5106{
c21761f1
JB
5107 /* negative values for policy are not valid */
5108 if (policy < 0)
5109 return -EINVAL;
5110
1da177e4
LT
5111 return do_sched_setscheduler(pid, policy, param);
5112}
5113
5114/**
5115 * sys_sched_setparam - set/change the RT priority of a thread
5116 * @pid: the pid in question.
5117 * @param: structure containing the new RT priority.
5118 */
5add95d4 5119SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5120{
5121 return do_sched_setscheduler(pid, -1, param);
5122}
5123
5124/**
5125 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5126 * @pid: the pid in question.
5127 */
5add95d4 5128SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5129{
36c8b586 5130 struct task_struct *p;
3a5c359a 5131 int retval;
1da177e4
LT
5132
5133 if (pid < 0)
3a5c359a 5134 return -EINVAL;
1da177e4
LT
5135
5136 retval = -ESRCH;
5fe85be0 5137 rcu_read_lock();
1da177e4
LT
5138 p = find_process_by_pid(pid);
5139 if (p) {
5140 retval = security_task_getscheduler(p);
5141 if (!retval)
ca94c442
LP
5142 retval = p->policy
5143 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5144 }
5fe85be0 5145 rcu_read_unlock();
1da177e4
LT
5146 return retval;
5147}
5148
5149/**
ca94c442 5150 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5151 * @pid: the pid in question.
5152 * @param: structure containing the RT priority.
5153 */
5add95d4 5154SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5155{
5156 struct sched_param lp;
36c8b586 5157 struct task_struct *p;
3a5c359a 5158 int retval;
1da177e4
LT
5159
5160 if (!param || pid < 0)
3a5c359a 5161 return -EINVAL;
1da177e4 5162
5fe85be0 5163 rcu_read_lock();
1da177e4
LT
5164 p = find_process_by_pid(pid);
5165 retval = -ESRCH;
5166 if (!p)
5167 goto out_unlock;
5168
5169 retval = security_task_getscheduler(p);
5170 if (retval)
5171 goto out_unlock;
5172
5173 lp.sched_priority = p->rt_priority;
5fe85be0 5174 rcu_read_unlock();
1da177e4
LT
5175
5176 /*
5177 * This one might sleep, we cannot do it with a spinlock held ...
5178 */
5179 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5180
1da177e4
LT
5181 return retval;
5182
5183out_unlock:
5fe85be0 5184 rcu_read_unlock();
1da177e4
LT
5185 return retval;
5186}
5187
96f874e2 5188long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5189{
5a16f3d3 5190 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5191 struct task_struct *p;
5192 int retval;
1da177e4 5193
95402b38 5194 get_online_cpus();
23f5d142 5195 rcu_read_lock();
1da177e4
LT
5196
5197 p = find_process_by_pid(pid);
5198 if (!p) {
23f5d142 5199 rcu_read_unlock();
95402b38 5200 put_online_cpus();
1da177e4
LT
5201 return -ESRCH;
5202 }
5203
23f5d142 5204 /* Prevent p going away */
1da177e4 5205 get_task_struct(p);
23f5d142 5206 rcu_read_unlock();
1da177e4 5207
5a16f3d3
RR
5208 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5209 retval = -ENOMEM;
5210 goto out_put_task;
5211 }
5212 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5213 retval = -ENOMEM;
5214 goto out_free_cpus_allowed;
5215 }
1da177e4 5216 retval = -EPERM;
c69e8d9c 5217 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5218 goto out_unlock;
5219
b0ae1981 5220 retval = security_task_setscheduler(p);
e7834f8f
DQ
5221 if (retval)
5222 goto out_unlock;
5223
5a16f3d3
RR
5224 cpuset_cpus_allowed(p, cpus_allowed);
5225 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5226again:
5a16f3d3 5227 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5228
8707d8b8 5229 if (!retval) {
5a16f3d3
RR
5230 cpuset_cpus_allowed(p, cpus_allowed);
5231 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5232 /*
5233 * We must have raced with a concurrent cpuset
5234 * update. Just reset the cpus_allowed to the
5235 * cpuset's cpus_allowed
5236 */
5a16f3d3 5237 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5238 goto again;
5239 }
5240 }
1da177e4 5241out_unlock:
5a16f3d3
RR
5242 free_cpumask_var(new_mask);
5243out_free_cpus_allowed:
5244 free_cpumask_var(cpus_allowed);
5245out_put_task:
1da177e4 5246 put_task_struct(p);
95402b38 5247 put_online_cpus();
1da177e4
LT
5248 return retval;
5249}
5250
5251static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5252 struct cpumask *new_mask)
1da177e4 5253{
96f874e2
RR
5254 if (len < cpumask_size())
5255 cpumask_clear(new_mask);
5256 else if (len > cpumask_size())
5257 len = cpumask_size();
5258
1da177e4
LT
5259 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5260}
5261
5262/**
5263 * sys_sched_setaffinity - set the cpu affinity of a process
5264 * @pid: pid of the process
5265 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5266 * @user_mask_ptr: user-space pointer to the new cpu mask
5267 */
5add95d4
HC
5268SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5269 unsigned long __user *, user_mask_ptr)
1da177e4 5270{
5a16f3d3 5271 cpumask_var_t new_mask;
1da177e4
LT
5272 int retval;
5273
5a16f3d3
RR
5274 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5275 return -ENOMEM;
1da177e4 5276
5a16f3d3
RR
5277 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5278 if (retval == 0)
5279 retval = sched_setaffinity(pid, new_mask);
5280 free_cpumask_var(new_mask);
5281 return retval;
1da177e4
LT
5282}
5283
96f874e2 5284long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5285{
36c8b586 5286 struct task_struct *p;
31605683
TG
5287 unsigned long flags;
5288 struct rq *rq;
1da177e4 5289 int retval;
1da177e4 5290
95402b38 5291 get_online_cpus();
23f5d142 5292 rcu_read_lock();
1da177e4
LT
5293
5294 retval = -ESRCH;
5295 p = find_process_by_pid(pid);
5296 if (!p)
5297 goto out_unlock;
5298
e7834f8f
DQ
5299 retval = security_task_getscheduler(p);
5300 if (retval)
5301 goto out_unlock;
5302
31605683 5303 rq = task_rq_lock(p, &flags);
96f874e2 5304 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5305 task_rq_unlock(rq, &flags);
1da177e4
LT
5306
5307out_unlock:
23f5d142 5308 rcu_read_unlock();
95402b38 5309 put_online_cpus();
1da177e4 5310
9531b62f 5311 return retval;
1da177e4
LT
5312}
5313
5314/**
5315 * sys_sched_getaffinity - get the cpu affinity of a process
5316 * @pid: pid of the process
5317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5318 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5319 */
5add95d4
HC
5320SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5321 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5322{
5323 int ret;
f17c8607 5324 cpumask_var_t mask;
1da177e4 5325
84fba5ec 5326 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5327 return -EINVAL;
5328 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5329 return -EINVAL;
5330
f17c8607
RR
5331 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5332 return -ENOMEM;
1da177e4 5333
f17c8607
RR
5334 ret = sched_getaffinity(pid, mask);
5335 if (ret == 0) {
8bc037fb 5336 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5337
5338 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5339 ret = -EFAULT;
5340 else
cd3d8031 5341 ret = retlen;
f17c8607
RR
5342 }
5343 free_cpumask_var(mask);
1da177e4 5344
f17c8607 5345 return ret;
1da177e4
LT
5346}
5347
5348/**
5349 * sys_sched_yield - yield the current processor to other threads.
5350 *
dd41f596
IM
5351 * This function yields the current CPU to other tasks. If there are no
5352 * other threads running on this CPU then this function will return.
1da177e4 5353 */
5add95d4 5354SYSCALL_DEFINE0(sched_yield)
1da177e4 5355{
70b97a7f 5356 struct rq *rq = this_rq_lock();
1da177e4 5357
2d72376b 5358 schedstat_inc(rq, yld_count);
4530d7ab 5359 current->sched_class->yield_task(rq);
1da177e4
LT
5360
5361 /*
5362 * Since we are going to call schedule() anyway, there's
5363 * no need to preempt or enable interrupts:
5364 */
5365 __release(rq->lock);
8a25d5de 5366 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5367 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5368 preempt_enable_no_resched();
5369
5370 schedule();
5371
5372 return 0;
5373}
5374
d86ee480
PZ
5375static inline int should_resched(void)
5376{
5377 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5378}
5379
e7b38404 5380static void __cond_resched(void)
1da177e4 5381{
e7aaaa69
FW
5382 add_preempt_count(PREEMPT_ACTIVE);
5383 schedule();
5384 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5385}
5386
02b67cc3 5387int __sched _cond_resched(void)
1da177e4 5388{
d86ee480 5389 if (should_resched()) {
1da177e4
LT
5390 __cond_resched();
5391 return 1;
5392 }
5393 return 0;
5394}
02b67cc3 5395EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5396
5397/*
613afbf8 5398 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5399 * call schedule, and on return reacquire the lock.
5400 *
41a2d6cf 5401 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5402 * operations here to prevent schedule() from being called twice (once via
5403 * spin_unlock(), once by hand).
5404 */
613afbf8 5405int __cond_resched_lock(spinlock_t *lock)
1da177e4 5406{
d86ee480 5407 int resched = should_resched();
6df3cecb
JK
5408 int ret = 0;
5409
f607c668
PZ
5410 lockdep_assert_held(lock);
5411
95c354fe 5412 if (spin_needbreak(lock) || resched) {
1da177e4 5413 spin_unlock(lock);
d86ee480 5414 if (resched)
95c354fe
NP
5415 __cond_resched();
5416 else
5417 cpu_relax();
6df3cecb 5418 ret = 1;
1da177e4 5419 spin_lock(lock);
1da177e4 5420 }
6df3cecb 5421 return ret;
1da177e4 5422}
613afbf8 5423EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5424
613afbf8 5425int __sched __cond_resched_softirq(void)
1da177e4
LT
5426{
5427 BUG_ON(!in_softirq());
5428
d86ee480 5429 if (should_resched()) {
98d82567 5430 local_bh_enable();
1da177e4
LT
5431 __cond_resched();
5432 local_bh_disable();
5433 return 1;
5434 }
5435 return 0;
5436}
613afbf8 5437EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5438
1da177e4
LT
5439/**
5440 * yield - yield the current processor to other threads.
5441 *
72fd4a35 5442 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5443 * thread runnable and calls sys_sched_yield().
5444 */
5445void __sched yield(void)
5446{
5447 set_current_state(TASK_RUNNING);
5448 sys_sched_yield();
5449}
1da177e4
LT
5450EXPORT_SYMBOL(yield);
5451
5452/*
41a2d6cf 5453 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5454 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5455 */
5456void __sched io_schedule(void)
5457{
54d35f29 5458 struct rq *rq = raw_rq();
1da177e4 5459
0ff92245 5460 delayacct_blkio_start();
1da177e4 5461 atomic_inc(&rq->nr_iowait);
8f0dfc34 5462 current->in_iowait = 1;
1da177e4 5463 schedule();
8f0dfc34 5464 current->in_iowait = 0;
1da177e4 5465 atomic_dec(&rq->nr_iowait);
0ff92245 5466 delayacct_blkio_end();
1da177e4 5467}
1da177e4
LT
5468EXPORT_SYMBOL(io_schedule);
5469
5470long __sched io_schedule_timeout(long timeout)
5471{
54d35f29 5472 struct rq *rq = raw_rq();
1da177e4
LT
5473 long ret;
5474
0ff92245 5475 delayacct_blkio_start();
1da177e4 5476 atomic_inc(&rq->nr_iowait);
8f0dfc34 5477 current->in_iowait = 1;
1da177e4 5478 ret = schedule_timeout(timeout);
8f0dfc34 5479 current->in_iowait = 0;
1da177e4 5480 atomic_dec(&rq->nr_iowait);
0ff92245 5481 delayacct_blkio_end();
1da177e4
LT
5482 return ret;
5483}
5484
5485/**
5486 * sys_sched_get_priority_max - return maximum RT priority.
5487 * @policy: scheduling class.
5488 *
5489 * this syscall returns the maximum rt_priority that can be used
5490 * by a given scheduling class.
5491 */
5add95d4 5492SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5493{
5494 int ret = -EINVAL;
5495
5496 switch (policy) {
5497 case SCHED_FIFO:
5498 case SCHED_RR:
5499 ret = MAX_USER_RT_PRIO-1;
5500 break;
5501 case SCHED_NORMAL:
b0a9499c 5502 case SCHED_BATCH:
dd41f596 5503 case SCHED_IDLE:
1da177e4
LT
5504 ret = 0;
5505 break;
5506 }
5507 return ret;
5508}
5509
5510/**
5511 * sys_sched_get_priority_min - return minimum RT priority.
5512 * @policy: scheduling class.
5513 *
5514 * this syscall returns the minimum rt_priority that can be used
5515 * by a given scheduling class.
5516 */
5add95d4 5517SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5518{
5519 int ret = -EINVAL;
5520
5521 switch (policy) {
5522 case SCHED_FIFO:
5523 case SCHED_RR:
5524 ret = 1;
5525 break;
5526 case SCHED_NORMAL:
b0a9499c 5527 case SCHED_BATCH:
dd41f596 5528 case SCHED_IDLE:
1da177e4
LT
5529 ret = 0;
5530 }
5531 return ret;
5532}
5533
5534/**
5535 * sys_sched_rr_get_interval - return the default timeslice of a process.
5536 * @pid: pid of the process.
5537 * @interval: userspace pointer to the timeslice value.
5538 *
5539 * this syscall writes the default timeslice value of a given process
5540 * into the user-space timespec buffer. A value of '0' means infinity.
5541 */
17da2bd9 5542SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5543 struct timespec __user *, interval)
1da177e4 5544{
36c8b586 5545 struct task_struct *p;
a4ec24b4 5546 unsigned int time_slice;
dba091b9
TG
5547 unsigned long flags;
5548 struct rq *rq;
3a5c359a 5549 int retval;
1da177e4 5550 struct timespec t;
1da177e4
LT
5551
5552 if (pid < 0)
3a5c359a 5553 return -EINVAL;
1da177e4
LT
5554
5555 retval = -ESRCH;
1a551ae7 5556 rcu_read_lock();
1da177e4
LT
5557 p = find_process_by_pid(pid);
5558 if (!p)
5559 goto out_unlock;
5560
5561 retval = security_task_getscheduler(p);
5562 if (retval)
5563 goto out_unlock;
5564
dba091b9
TG
5565 rq = task_rq_lock(p, &flags);
5566 time_slice = p->sched_class->get_rr_interval(rq, p);
5567 task_rq_unlock(rq, &flags);
a4ec24b4 5568
1a551ae7 5569 rcu_read_unlock();
a4ec24b4 5570 jiffies_to_timespec(time_slice, &t);
1da177e4 5571 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5572 return retval;
3a5c359a 5573
1da177e4 5574out_unlock:
1a551ae7 5575 rcu_read_unlock();
1da177e4
LT
5576 return retval;
5577}
5578
7c731e0a 5579static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5580
82a1fcb9 5581void sched_show_task(struct task_struct *p)
1da177e4 5582{
1da177e4 5583 unsigned long free = 0;
36c8b586 5584 unsigned state;
1da177e4 5585
1da177e4 5586 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5587 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5588 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5589#if BITS_PER_LONG == 32
1da177e4 5590 if (state == TASK_RUNNING)
3df0fc5b 5591 printk(KERN_CONT " running ");
1da177e4 5592 else
3df0fc5b 5593 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5594#else
5595 if (state == TASK_RUNNING)
3df0fc5b 5596 printk(KERN_CONT " running task ");
1da177e4 5597 else
3df0fc5b 5598 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5599#endif
5600#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5601 free = stack_not_used(p);
1da177e4 5602#endif
3df0fc5b 5603 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5604 task_pid_nr(p), task_pid_nr(p->real_parent),
5605 (unsigned long)task_thread_info(p)->flags);
1da177e4 5606
5fb5e6de 5607 show_stack(p, NULL);
1da177e4
LT
5608}
5609
e59e2ae2 5610void show_state_filter(unsigned long state_filter)
1da177e4 5611{
36c8b586 5612 struct task_struct *g, *p;
1da177e4 5613
4bd77321 5614#if BITS_PER_LONG == 32
3df0fc5b
PZ
5615 printk(KERN_INFO
5616 " task PC stack pid father\n");
1da177e4 5617#else
3df0fc5b
PZ
5618 printk(KERN_INFO
5619 " task PC stack pid father\n");
1da177e4
LT
5620#endif
5621 read_lock(&tasklist_lock);
5622 do_each_thread(g, p) {
5623 /*
5624 * reset the NMI-timeout, listing all files on a slow
5625 * console might take alot of time:
5626 */
5627 touch_nmi_watchdog();
39bc89fd 5628 if (!state_filter || (p->state & state_filter))
82a1fcb9 5629 sched_show_task(p);
1da177e4
LT
5630 } while_each_thread(g, p);
5631
04c9167f
JF
5632 touch_all_softlockup_watchdogs();
5633
dd41f596
IM
5634#ifdef CONFIG_SCHED_DEBUG
5635 sysrq_sched_debug_show();
5636#endif
1da177e4 5637 read_unlock(&tasklist_lock);
e59e2ae2
IM
5638 /*
5639 * Only show locks if all tasks are dumped:
5640 */
93335a21 5641 if (!state_filter)
e59e2ae2 5642 debug_show_all_locks();
1da177e4
LT
5643}
5644
1df21055
IM
5645void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5646{
dd41f596 5647 idle->sched_class = &idle_sched_class;
1df21055
IM
5648}
5649
f340c0d1
IM
5650/**
5651 * init_idle - set up an idle thread for a given CPU
5652 * @idle: task in question
5653 * @cpu: cpu the idle task belongs to
5654 *
5655 * NOTE: this function does not set the idle thread's NEED_RESCHED
5656 * flag, to make booting more robust.
5657 */
5c1e1767 5658void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5659{
70b97a7f 5660 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5661 unsigned long flags;
5662
05fa785c 5663 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5664
dd41f596 5665 __sched_fork(idle);
06b83b5f 5666 idle->state = TASK_RUNNING;
dd41f596
IM
5667 idle->se.exec_start = sched_clock();
5668
96f874e2 5669 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5670 /*
5671 * We're having a chicken and egg problem, even though we are
5672 * holding rq->lock, the cpu isn't yet set to this cpu so the
5673 * lockdep check in task_group() will fail.
5674 *
5675 * Similar case to sched_fork(). / Alternatively we could
5676 * use task_rq_lock() here and obtain the other rq->lock.
5677 *
5678 * Silence PROVE_RCU
5679 */
5680 rcu_read_lock();
dd41f596 5681 __set_task_cpu(idle, cpu);
6506cf6c 5682 rcu_read_unlock();
1da177e4 5683
1da177e4 5684 rq->curr = rq->idle = idle;
4866cde0
NP
5685#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5686 idle->oncpu = 1;
5687#endif
05fa785c 5688 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5689
5690 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5691#if defined(CONFIG_PREEMPT)
5692 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5693#else
a1261f54 5694 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5695#endif
dd41f596
IM
5696 /*
5697 * The idle tasks have their own, simple scheduling class:
5698 */
5699 idle->sched_class = &idle_sched_class;
fb52607a 5700 ftrace_graph_init_task(idle);
1da177e4
LT
5701}
5702
5703/*
5704 * In a system that switches off the HZ timer nohz_cpu_mask
5705 * indicates which cpus entered this state. This is used
5706 * in the rcu update to wait only for active cpus. For system
5707 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5708 * always be CPU_BITS_NONE.
1da177e4 5709 */
6a7b3dc3 5710cpumask_var_t nohz_cpu_mask;
1da177e4 5711
19978ca6
IM
5712/*
5713 * Increase the granularity value when there are more CPUs,
5714 * because with more CPUs the 'effective latency' as visible
5715 * to users decreases. But the relationship is not linear,
5716 * so pick a second-best guess by going with the log2 of the
5717 * number of CPUs.
5718 *
5719 * This idea comes from the SD scheduler of Con Kolivas:
5720 */
acb4a848 5721static int get_update_sysctl_factor(void)
19978ca6 5722{
4ca3ef71 5723 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5724 unsigned int factor;
5725
5726 switch (sysctl_sched_tunable_scaling) {
5727 case SCHED_TUNABLESCALING_NONE:
5728 factor = 1;
5729 break;
5730 case SCHED_TUNABLESCALING_LINEAR:
5731 factor = cpus;
5732 break;
5733 case SCHED_TUNABLESCALING_LOG:
5734 default:
5735 factor = 1 + ilog2(cpus);
5736 break;
5737 }
19978ca6 5738
acb4a848
CE
5739 return factor;
5740}
19978ca6 5741
acb4a848
CE
5742static void update_sysctl(void)
5743{
5744 unsigned int factor = get_update_sysctl_factor();
19978ca6 5745
0bcdcf28
CE
5746#define SET_SYSCTL(name) \
5747 (sysctl_##name = (factor) * normalized_sysctl_##name)
5748 SET_SYSCTL(sched_min_granularity);
5749 SET_SYSCTL(sched_latency);
5750 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5751#undef SET_SYSCTL
5752}
55cd5340 5753
0bcdcf28
CE
5754static inline void sched_init_granularity(void)
5755{
5756 update_sysctl();
19978ca6
IM
5757}
5758
1da177e4
LT
5759#ifdef CONFIG_SMP
5760/*
5761 * This is how migration works:
5762 *
969c7921
TH
5763 * 1) we invoke migration_cpu_stop() on the target CPU using
5764 * stop_one_cpu().
5765 * 2) stopper starts to run (implicitly forcing the migrated thread
5766 * off the CPU)
5767 * 3) it checks whether the migrated task is still in the wrong runqueue.
5768 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5769 * it and puts it into the right queue.
969c7921
TH
5770 * 5) stopper completes and stop_one_cpu() returns and the migration
5771 * is done.
1da177e4
LT
5772 */
5773
5774/*
5775 * Change a given task's CPU affinity. Migrate the thread to a
5776 * proper CPU and schedule it away if the CPU it's executing on
5777 * is removed from the allowed bitmask.
5778 *
5779 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5780 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5781 * call is not atomic; no spinlocks may be held.
5782 */
96f874e2 5783int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5784{
5785 unsigned long flags;
70b97a7f 5786 struct rq *rq;
969c7921 5787 unsigned int dest_cpu;
48f24c4d 5788 int ret = 0;
1da177e4 5789
65cc8e48
PZ
5790 /*
5791 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5792 * drop the rq->lock and still rely on ->cpus_allowed.
5793 */
5794again:
5795 while (task_is_waking(p))
5796 cpu_relax();
1da177e4 5797 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5798 if (task_is_waking(p)) {
5799 task_rq_unlock(rq, &flags);
5800 goto again;
5801 }
e2912009 5802
6ad4c188 5803 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5804 ret = -EINVAL;
5805 goto out;
5806 }
5807
9985b0ba 5808 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5809 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5810 ret = -EINVAL;
5811 goto out;
5812 }
5813
73fe6aae 5814 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5815 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5816 else {
96f874e2
RR
5817 cpumask_copy(&p->cpus_allowed, new_mask);
5818 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5819 }
5820
1da177e4 5821 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5822 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5823 goto out;
5824
969c7921 5825 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5826 if (migrate_task(p, rq)) {
969c7921 5827 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5828 /* Need help from migration thread: drop lock and wait. */
5829 task_rq_unlock(rq, &flags);
969c7921 5830 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5831 tlb_migrate_finish(p->mm);
5832 return 0;
5833 }
5834out:
5835 task_rq_unlock(rq, &flags);
48f24c4d 5836
1da177e4
LT
5837 return ret;
5838}
cd8ba7cd 5839EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5840
5841/*
41a2d6cf 5842 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5843 * this because either it can't run here any more (set_cpus_allowed()
5844 * away from this CPU, or CPU going down), or because we're
5845 * attempting to rebalance this task on exec (sched_exec).
5846 *
5847 * So we race with normal scheduler movements, but that's OK, as long
5848 * as the task is no longer on this CPU.
efc30814
KK
5849 *
5850 * Returns non-zero if task was successfully migrated.
1da177e4 5851 */
efc30814 5852static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5853{
70b97a7f 5854 struct rq *rq_dest, *rq_src;
e2912009 5855 int ret = 0;
1da177e4 5856
e761b772 5857 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5858 return ret;
1da177e4
LT
5859
5860 rq_src = cpu_rq(src_cpu);
5861 rq_dest = cpu_rq(dest_cpu);
5862
5863 double_rq_lock(rq_src, rq_dest);
5864 /* Already moved. */
5865 if (task_cpu(p) != src_cpu)
b1e38734 5866 goto done;
1da177e4 5867 /* Affinity changed (again). */
96f874e2 5868 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5869 goto fail;
1da177e4 5870
e2912009
PZ
5871 /*
5872 * If we're not on a rq, the next wake-up will ensure we're
5873 * placed properly.
5874 */
5875 if (p->se.on_rq) {
2e1cb74a 5876 deactivate_task(rq_src, p, 0);
e2912009 5877 set_task_cpu(p, dest_cpu);
dd41f596 5878 activate_task(rq_dest, p, 0);
15afe09b 5879 check_preempt_curr(rq_dest, p, 0);
1da177e4 5880 }
b1e38734 5881done:
efc30814 5882 ret = 1;
b1e38734 5883fail:
1da177e4 5884 double_rq_unlock(rq_src, rq_dest);
efc30814 5885 return ret;
1da177e4
LT
5886}
5887
5888/*
969c7921
TH
5889 * migration_cpu_stop - this will be executed by a highprio stopper thread
5890 * and performs thread migration by bumping thread off CPU then
5891 * 'pushing' onto another runqueue.
1da177e4 5892 */
969c7921 5893static int migration_cpu_stop(void *data)
1da177e4 5894{
969c7921 5895 struct migration_arg *arg = data;
f7b4cddc 5896
969c7921
TH
5897 /*
5898 * The original target cpu might have gone down and we might
5899 * be on another cpu but it doesn't matter.
5900 */
f7b4cddc 5901 local_irq_disable();
969c7921 5902 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5903 local_irq_enable();
1da177e4 5904 return 0;
f7b4cddc
ON
5905}
5906
1da177e4 5907#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5908
054b9108 5909/*
48c5ccae
PZ
5910 * Ensures that the idle task is using init_mm right before its cpu goes
5911 * offline.
054b9108 5912 */
48c5ccae 5913void idle_task_exit(void)
1da177e4 5914{
48c5ccae 5915 struct mm_struct *mm = current->active_mm;
e76bd8d9 5916
48c5ccae 5917 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5918
48c5ccae
PZ
5919 if (mm != &init_mm)
5920 switch_mm(mm, &init_mm, current);
5921 mmdrop(mm);
1da177e4
LT
5922}
5923
5924/*
5925 * While a dead CPU has no uninterruptible tasks queued at this point,
5926 * it might still have a nonzero ->nr_uninterruptible counter, because
5927 * for performance reasons the counter is not stricly tracking tasks to
5928 * their home CPUs. So we just add the counter to another CPU's counter,
5929 * to keep the global sum constant after CPU-down:
5930 */
70b97a7f 5931static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5932{
6ad4c188 5933 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5934
1da177e4
LT
5935 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5936 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5937}
5938
dd41f596 5939/*
48c5ccae 5940 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5941 */
48c5ccae 5942static void calc_global_load_remove(struct rq *rq)
1da177e4 5943{
48c5ccae
PZ
5944 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5945 rq->calc_load_active = 0;
1da177e4
LT
5946}
5947
48f24c4d 5948/*
48c5ccae
PZ
5949 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5950 * try_to_wake_up()->select_task_rq().
5951 *
5952 * Called with rq->lock held even though we'er in stop_machine() and
5953 * there's no concurrency possible, we hold the required locks anyway
5954 * because of lock validation efforts.
1da177e4 5955 */
48c5ccae 5956static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5957{
70b97a7f 5958 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5959 struct task_struct *next, *stop = rq->stop;
5960 int dest_cpu;
1da177e4
LT
5961
5962 /*
48c5ccae
PZ
5963 * Fudge the rq selection such that the below task selection loop
5964 * doesn't get stuck on the currently eligible stop task.
5965 *
5966 * We're currently inside stop_machine() and the rq is either stuck
5967 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5968 * either way we should never end up calling schedule() until we're
5969 * done here.
1da177e4 5970 */
48c5ccae 5971 rq->stop = NULL;
48f24c4d 5972
dd41f596 5973 for ( ; ; ) {
48c5ccae
PZ
5974 /*
5975 * There's this thread running, bail when that's the only
5976 * remaining thread.
5977 */
5978 if (rq->nr_running == 1)
dd41f596 5979 break;
48c5ccae 5980
b67802ea 5981 next = pick_next_task(rq);
48c5ccae 5982 BUG_ON(!next);
79c53799 5983 next->sched_class->put_prev_task(rq, next);
e692ab53 5984
48c5ccae
PZ
5985 /* Find suitable destination for @next, with force if needed. */
5986 dest_cpu = select_fallback_rq(dead_cpu, next);
5987 raw_spin_unlock(&rq->lock);
5988
5989 __migrate_task(next, dead_cpu, dest_cpu);
5990
5991 raw_spin_lock(&rq->lock);
1da177e4 5992 }
dce48a84 5993
48c5ccae 5994 rq->stop = stop;
dce48a84 5995}
48c5ccae 5996
1da177e4
LT
5997#endif /* CONFIG_HOTPLUG_CPU */
5998
e692ab53
NP
5999#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6000
6001static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6002 {
6003 .procname = "sched_domain",
c57baf1e 6004 .mode = 0555,
e0361851 6005 },
56992309 6006 {}
e692ab53
NP
6007};
6008
6009static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6010 {
6011 .procname = "kernel",
c57baf1e 6012 .mode = 0555,
e0361851
AD
6013 .child = sd_ctl_dir,
6014 },
56992309 6015 {}
e692ab53
NP
6016};
6017
6018static struct ctl_table *sd_alloc_ctl_entry(int n)
6019{
6020 struct ctl_table *entry =
5cf9f062 6021 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6022
e692ab53
NP
6023 return entry;
6024}
6025
6382bc90
MM
6026static void sd_free_ctl_entry(struct ctl_table **tablep)
6027{
cd790076 6028 struct ctl_table *entry;
6382bc90 6029
cd790076
MM
6030 /*
6031 * In the intermediate directories, both the child directory and
6032 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6033 * will always be set. In the lowest directory the names are
cd790076
MM
6034 * static strings and all have proc handlers.
6035 */
6036 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6037 if (entry->child)
6038 sd_free_ctl_entry(&entry->child);
cd790076
MM
6039 if (entry->proc_handler == NULL)
6040 kfree(entry->procname);
6041 }
6382bc90
MM
6042
6043 kfree(*tablep);
6044 *tablep = NULL;
6045}
6046
e692ab53 6047static void
e0361851 6048set_table_entry(struct ctl_table *entry,
e692ab53
NP
6049 const char *procname, void *data, int maxlen,
6050 mode_t mode, proc_handler *proc_handler)
6051{
e692ab53
NP
6052 entry->procname = procname;
6053 entry->data = data;
6054 entry->maxlen = maxlen;
6055 entry->mode = mode;
6056 entry->proc_handler = proc_handler;
6057}
6058
6059static struct ctl_table *
6060sd_alloc_ctl_domain_table(struct sched_domain *sd)
6061{
a5d8c348 6062 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6063
ad1cdc1d
MM
6064 if (table == NULL)
6065 return NULL;
6066
e0361851 6067 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6068 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6069 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6070 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6071 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6072 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6073 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6074 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6075 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6076 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6077 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6078 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6079 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6080 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6081 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6082 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6083 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6084 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6085 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6086 &sd->cache_nice_tries,
6087 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6088 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6089 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6090 set_table_entry(&table[11], "name", sd->name,
6091 CORENAME_MAX_SIZE, 0444, proc_dostring);
6092 /* &table[12] is terminator */
e692ab53
NP
6093
6094 return table;
6095}
6096
9a4e7159 6097static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6098{
6099 struct ctl_table *entry, *table;
6100 struct sched_domain *sd;
6101 int domain_num = 0, i;
6102 char buf[32];
6103
6104 for_each_domain(cpu, sd)
6105 domain_num++;
6106 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6107 if (table == NULL)
6108 return NULL;
e692ab53
NP
6109
6110 i = 0;
6111 for_each_domain(cpu, sd) {
6112 snprintf(buf, 32, "domain%d", i);
e692ab53 6113 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6114 entry->mode = 0555;
e692ab53
NP
6115 entry->child = sd_alloc_ctl_domain_table(sd);
6116 entry++;
6117 i++;
6118 }
6119 return table;
6120}
6121
6122static struct ctl_table_header *sd_sysctl_header;
6382bc90 6123static void register_sched_domain_sysctl(void)
e692ab53 6124{
6ad4c188 6125 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6126 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6127 char buf[32];
6128
7378547f
MM
6129 WARN_ON(sd_ctl_dir[0].child);
6130 sd_ctl_dir[0].child = entry;
6131
ad1cdc1d
MM
6132 if (entry == NULL)
6133 return;
6134
6ad4c188 6135 for_each_possible_cpu(i) {
e692ab53 6136 snprintf(buf, 32, "cpu%d", i);
e692ab53 6137 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6138 entry->mode = 0555;
e692ab53 6139 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6140 entry++;
e692ab53 6141 }
7378547f
MM
6142
6143 WARN_ON(sd_sysctl_header);
e692ab53
NP
6144 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6145}
6382bc90 6146
7378547f 6147/* may be called multiple times per register */
6382bc90
MM
6148static void unregister_sched_domain_sysctl(void)
6149{
7378547f
MM
6150 if (sd_sysctl_header)
6151 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6152 sd_sysctl_header = NULL;
7378547f
MM
6153 if (sd_ctl_dir[0].child)
6154 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6155}
e692ab53 6156#else
6382bc90
MM
6157static void register_sched_domain_sysctl(void)
6158{
6159}
6160static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6161{
6162}
6163#endif
6164
1f11eb6a
GH
6165static void set_rq_online(struct rq *rq)
6166{
6167 if (!rq->online) {
6168 const struct sched_class *class;
6169
c6c4927b 6170 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6171 rq->online = 1;
6172
6173 for_each_class(class) {
6174 if (class->rq_online)
6175 class->rq_online(rq);
6176 }
6177 }
6178}
6179
6180static void set_rq_offline(struct rq *rq)
6181{
6182 if (rq->online) {
6183 const struct sched_class *class;
6184
6185 for_each_class(class) {
6186 if (class->rq_offline)
6187 class->rq_offline(rq);
6188 }
6189
c6c4927b 6190 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6191 rq->online = 0;
6192 }
6193}
6194
1da177e4
LT
6195/*
6196 * migration_call - callback that gets triggered when a CPU is added.
6197 * Here we can start up the necessary migration thread for the new CPU.
6198 */
48f24c4d
IM
6199static int __cpuinit
6200migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6201{
48f24c4d 6202 int cpu = (long)hcpu;
1da177e4 6203 unsigned long flags;
969c7921 6204 struct rq *rq = cpu_rq(cpu);
1da177e4 6205
48c5ccae 6206 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6207
1da177e4 6208 case CPU_UP_PREPARE:
a468d389 6209 rq->calc_load_update = calc_load_update;
1da177e4 6210 break;
48f24c4d 6211
1da177e4 6212 case CPU_ONLINE:
1f94ef59 6213 /* Update our root-domain */
05fa785c 6214 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6215 if (rq->rd) {
c6c4927b 6216 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6217
6218 set_rq_online(rq);
1f94ef59 6219 }
05fa785c 6220 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6221 break;
48f24c4d 6222
1da177e4 6223#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6224 case CPU_DYING:
57d885fe 6225 /* Update our root-domain */
05fa785c 6226 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6227 if (rq->rd) {
c6c4927b 6228 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6229 set_rq_offline(rq);
57d885fe 6230 }
48c5ccae
PZ
6231 migrate_tasks(cpu);
6232 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6233 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6234
6235 migrate_nr_uninterruptible(rq);
6236 calc_global_load_remove(rq);
57d885fe 6237 break;
1da177e4
LT
6238#endif
6239 }
6240 return NOTIFY_OK;
6241}
6242
f38b0820
PM
6243/*
6244 * Register at high priority so that task migration (migrate_all_tasks)
6245 * happens before everything else. This has to be lower priority than
cdd6c482 6246 * the notifier in the perf_event subsystem, though.
1da177e4 6247 */
26c2143b 6248static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6249 .notifier_call = migration_call,
50a323b7 6250 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6251};
6252
3a101d05
TH
6253static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6254 unsigned long action, void *hcpu)
6255{
6256 switch (action & ~CPU_TASKS_FROZEN) {
6257 case CPU_ONLINE:
6258 case CPU_DOWN_FAILED:
6259 set_cpu_active((long)hcpu, true);
6260 return NOTIFY_OK;
6261 default:
6262 return NOTIFY_DONE;
6263 }
6264}
6265
6266static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6267 unsigned long action, void *hcpu)
6268{
6269 switch (action & ~CPU_TASKS_FROZEN) {
6270 case CPU_DOWN_PREPARE:
6271 set_cpu_active((long)hcpu, false);
6272 return NOTIFY_OK;
6273 default:
6274 return NOTIFY_DONE;
6275 }
6276}
6277
7babe8db 6278static int __init migration_init(void)
1da177e4
LT
6279{
6280 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6281 int err;
48f24c4d 6282
3a101d05 6283 /* Initialize migration for the boot CPU */
07dccf33
AM
6284 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6285 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6286 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6287 register_cpu_notifier(&migration_notifier);
7babe8db 6288
3a101d05
TH
6289 /* Register cpu active notifiers */
6290 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6291 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6292
a004cd42 6293 return 0;
1da177e4 6294}
7babe8db 6295early_initcall(migration_init);
1da177e4
LT
6296#endif
6297
6298#ifdef CONFIG_SMP
476f3534 6299
3e9830dc 6300#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6301
f6630114
MT
6302static __read_mostly int sched_domain_debug_enabled;
6303
6304static int __init sched_domain_debug_setup(char *str)
6305{
6306 sched_domain_debug_enabled = 1;
6307
6308 return 0;
6309}
6310early_param("sched_debug", sched_domain_debug_setup);
6311
7c16ec58 6312static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6313 struct cpumask *groupmask)
1da177e4 6314{
4dcf6aff 6315 struct sched_group *group = sd->groups;
434d53b0 6316 char str[256];
1da177e4 6317
968ea6d8 6318 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6319 cpumask_clear(groupmask);
4dcf6aff
IM
6320
6321 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6322
6323 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6324 printk("does not load-balance\n");
4dcf6aff 6325 if (sd->parent)
3df0fc5b
PZ
6326 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6327 " has parent");
4dcf6aff 6328 return -1;
41c7ce9a
NP
6329 }
6330
3df0fc5b 6331 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6332
758b2cdc 6333 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6334 printk(KERN_ERR "ERROR: domain->span does not contain "
6335 "CPU%d\n", cpu);
4dcf6aff 6336 }
758b2cdc 6337 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6338 printk(KERN_ERR "ERROR: domain->groups does not contain"
6339 " CPU%d\n", cpu);
4dcf6aff 6340 }
1da177e4 6341
4dcf6aff 6342 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6343 do {
4dcf6aff 6344 if (!group) {
3df0fc5b
PZ
6345 printk("\n");
6346 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6347 break;
6348 }
6349
18a3885f 6350 if (!group->cpu_power) {
3df0fc5b
PZ
6351 printk(KERN_CONT "\n");
6352 printk(KERN_ERR "ERROR: domain->cpu_power not "
6353 "set\n");
4dcf6aff
IM
6354 break;
6355 }
1da177e4 6356
758b2cdc 6357 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6358 printk(KERN_CONT "\n");
6359 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6360 break;
6361 }
1da177e4 6362
758b2cdc 6363 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6364 printk(KERN_CONT "\n");
6365 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6366 break;
6367 }
1da177e4 6368
758b2cdc 6369 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6370
968ea6d8 6371 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6372
3df0fc5b 6373 printk(KERN_CONT " %s", str);
18a3885f 6374 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6375 printk(KERN_CONT " (cpu_power = %d)",
6376 group->cpu_power);
381512cf 6377 }
1da177e4 6378
4dcf6aff
IM
6379 group = group->next;
6380 } while (group != sd->groups);
3df0fc5b 6381 printk(KERN_CONT "\n");
1da177e4 6382
758b2cdc 6383 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6384 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6385
758b2cdc
RR
6386 if (sd->parent &&
6387 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6388 printk(KERN_ERR "ERROR: parent span is not a superset "
6389 "of domain->span\n");
4dcf6aff
IM
6390 return 0;
6391}
1da177e4 6392
4dcf6aff
IM
6393static void sched_domain_debug(struct sched_domain *sd, int cpu)
6394{
d5dd3db1 6395 cpumask_var_t groupmask;
4dcf6aff 6396 int level = 0;
1da177e4 6397
f6630114
MT
6398 if (!sched_domain_debug_enabled)
6399 return;
6400
4dcf6aff
IM
6401 if (!sd) {
6402 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6403 return;
6404 }
1da177e4 6405
4dcf6aff
IM
6406 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6407
d5dd3db1 6408 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6409 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6410 return;
6411 }
6412
4dcf6aff 6413 for (;;) {
7c16ec58 6414 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6415 break;
1da177e4
LT
6416 level++;
6417 sd = sd->parent;
33859f7f 6418 if (!sd)
4dcf6aff
IM
6419 break;
6420 }
d5dd3db1 6421 free_cpumask_var(groupmask);
1da177e4 6422}
6d6bc0ad 6423#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6424# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6425#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6426
1a20ff27 6427static int sd_degenerate(struct sched_domain *sd)
245af2c7 6428{
758b2cdc 6429 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6430 return 1;
6431
6432 /* Following flags need at least 2 groups */
6433 if (sd->flags & (SD_LOAD_BALANCE |
6434 SD_BALANCE_NEWIDLE |
6435 SD_BALANCE_FORK |
89c4710e
SS
6436 SD_BALANCE_EXEC |
6437 SD_SHARE_CPUPOWER |
6438 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6439 if (sd->groups != sd->groups->next)
6440 return 0;
6441 }
6442
6443 /* Following flags don't use groups */
c88d5910 6444 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6445 return 0;
6446
6447 return 1;
6448}
6449
48f24c4d
IM
6450static int
6451sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6452{
6453 unsigned long cflags = sd->flags, pflags = parent->flags;
6454
6455 if (sd_degenerate(parent))
6456 return 1;
6457
758b2cdc 6458 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6459 return 0;
6460
245af2c7
SS
6461 /* Flags needing groups don't count if only 1 group in parent */
6462 if (parent->groups == parent->groups->next) {
6463 pflags &= ~(SD_LOAD_BALANCE |
6464 SD_BALANCE_NEWIDLE |
6465 SD_BALANCE_FORK |
89c4710e
SS
6466 SD_BALANCE_EXEC |
6467 SD_SHARE_CPUPOWER |
6468 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6469 if (nr_node_ids == 1)
6470 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6471 }
6472 if (~cflags & pflags)
6473 return 0;
6474
6475 return 1;
6476}
6477
c6c4927b
RR
6478static void free_rootdomain(struct root_domain *rd)
6479{
047106ad
PZ
6480 synchronize_sched();
6481
68e74568
RR
6482 cpupri_cleanup(&rd->cpupri);
6483
c6c4927b
RR
6484 free_cpumask_var(rd->rto_mask);
6485 free_cpumask_var(rd->online);
6486 free_cpumask_var(rd->span);
6487 kfree(rd);
6488}
6489
57d885fe
GH
6490static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6491{
a0490fa3 6492 struct root_domain *old_rd = NULL;
57d885fe 6493 unsigned long flags;
57d885fe 6494
05fa785c 6495 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6496
6497 if (rq->rd) {
a0490fa3 6498 old_rd = rq->rd;
57d885fe 6499
c6c4927b 6500 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6501 set_rq_offline(rq);
57d885fe 6502
c6c4927b 6503 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6504
a0490fa3
IM
6505 /*
6506 * If we dont want to free the old_rt yet then
6507 * set old_rd to NULL to skip the freeing later
6508 * in this function:
6509 */
6510 if (!atomic_dec_and_test(&old_rd->refcount))
6511 old_rd = NULL;
57d885fe
GH
6512 }
6513
6514 atomic_inc(&rd->refcount);
6515 rq->rd = rd;
6516
c6c4927b 6517 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6518 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6519 set_rq_online(rq);
57d885fe 6520
05fa785c 6521 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6522
6523 if (old_rd)
6524 free_rootdomain(old_rd);
57d885fe
GH
6525}
6526
68c38fc3 6527static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6528{
6529 memset(rd, 0, sizeof(*rd));
6530
68c38fc3 6531 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6532 goto out;
68c38fc3 6533 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6534 goto free_span;
68c38fc3 6535 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6536 goto free_online;
6e0534f2 6537
68c38fc3 6538 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6539 goto free_rto_mask;
c6c4927b 6540 return 0;
6e0534f2 6541
68e74568
RR
6542free_rto_mask:
6543 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6544free_online:
6545 free_cpumask_var(rd->online);
6546free_span:
6547 free_cpumask_var(rd->span);
0c910d28 6548out:
c6c4927b 6549 return -ENOMEM;
57d885fe
GH
6550}
6551
6552static void init_defrootdomain(void)
6553{
68c38fc3 6554 init_rootdomain(&def_root_domain);
c6c4927b 6555
57d885fe
GH
6556 atomic_set(&def_root_domain.refcount, 1);
6557}
6558
dc938520 6559static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6560{
6561 struct root_domain *rd;
6562
6563 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6564 if (!rd)
6565 return NULL;
6566
68c38fc3 6567 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6568 kfree(rd);
6569 return NULL;
6570 }
57d885fe
GH
6571
6572 return rd;
6573}
6574
1da177e4 6575/*
0eab9146 6576 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6577 * hold the hotplug lock.
6578 */
0eab9146
IM
6579static void
6580cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6581{
70b97a7f 6582 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6583 struct sched_domain *tmp;
6584
669c55e9
PZ
6585 for (tmp = sd; tmp; tmp = tmp->parent)
6586 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6587
245af2c7 6588 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6589 for (tmp = sd; tmp; ) {
245af2c7
SS
6590 struct sched_domain *parent = tmp->parent;
6591 if (!parent)
6592 break;
f29c9b1c 6593
1a848870 6594 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6595 tmp->parent = parent->parent;
1a848870
SS
6596 if (parent->parent)
6597 parent->parent->child = tmp;
f29c9b1c
LZ
6598 } else
6599 tmp = tmp->parent;
245af2c7
SS
6600 }
6601
1a848870 6602 if (sd && sd_degenerate(sd)) {
245af2c7 6603 sd = sd->parent;
1a848870
SS
6604 if (sd)
6605 sd->child = NULL;
6606 }
1da177e4
LT
6607
6608 sched_domain_debug(sd, cpu);
6609
57d885fe 6610 rq_attach_root(rq, rd);
674311d5 6611 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6612}
6613
6614/* cpus with isolated domains */
dcc30a35 6615static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6616
6617/* Setup the mask of cpus configured for isolated domains */
6618static int __init isolated_cpu_setup(char *str)
6619{
bdddd296 6620 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6621 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6622 return 1;
6623}
6624
8927f494 6625__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6626
6627/*
6711cab4
SS
6628 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6629 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6630 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6631 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6632 *
6633 * init_sched_build_groups will build a circular linked list of the groups
6634 * covered by the given span, and will set each group's ->cpumask correctly,
6635 * and ->cpu_power to 0.
6636 */
a616058b 6637static void
96f874e2
RR
6638init_sched_build_groups(const struct cpumask *span,
6639 const struct cpumask *cpu_map,
6640 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6641 struct sched_group **sg,
96f874e2
RR
6642 struct cpumask *tmpmask),
6643 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6644{
6645 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6646 int i;
6647
96f874e2 6648 cpumask_clear(covered);
7c16ec58 6649
abcd083a 6650 for_each_cpu(i, span) {
6711cab4 6651 struct sched_group *sg;
7c16ec58 6652 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6653 int j;
6654
758b2cdc 6655 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6656 continue;
6657
758b2cdc 6658 cpumask_clear(sched_group_cpus(sg));
18a3885f 6659 sg->cpu_power = 0;
1da177e4 6660
abcd083a 6661 for_each_cpu(j, span) {
7c16ec58 6662 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6663 continue;
6664
96f874e2 6665 cpumask_set_cpu(j, covered);
758b2cdc 6666 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6667 }
6668 if (!first)
6669 first = sg;
6670 if (last)
6671 last->next = sg;
6672 last = sg;
6673 }
6674 last->next = first;
6675}
6676
9c1cfda2 6677#define SD_NODES_PER_DOMAIN 16
1da177e4 6678
9c1cfda2 6679#ifdef CONFIG_NUMA
198e2f18 6680
9c1cfda2
JH
6681/**
6682 * find_next_best_node - find the next node to include in a sched_domain
6683 * @node: node whose sched_domain we're building
6684 * @used_nodes: nodes already in the sched_domain
6685 *
41a2d6cf 6686 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6687 * finds the closest node not already in the @used_nodes map.
6688 *
6689 * Should use nodemask_t.
6690 */
c5f59f08 6691static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6692{
6693 int i, n, val, min_val, best_node = 0;
6694
6695 min_val = INT_MAX;
6696
076ac2af 6697 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6698 /* Start at @node */
076ac2af 6699 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6700
6701 if (!nr_cpus_node(n))
6702 continue;
6703
6704 /* Skip already used nodes */
c5f59f08 6705 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6706 continue;
6707
6708 /* Simple min distance search */
6709 val = node_distance(node, n);
6710
6711 if (val < min_val) {
6712 min_val = val;
6713 best_node = n;
6714 }
6715 }
6716
c5f59f08 6717 node_set(best_node, *used_nodes);
9c1cfda2
JH
6718 return best_node;
6719}
6720
6721/**
6722 * sched_domain_node_span - get a cpumask for a node's sched_domain
6723 * @node: node whose cpumask we're constructing
73486722 6724 * @span: resulting cpumask
9c1cfda2 6725 *
41a2d6cf 6726 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6727 * should be one that prevents unnecessary balancing, but also spreads tasks
6728 * out optimally.
6729 */
96f874e2 6730static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6731{
c5f59f08 6732 nodemask_t used_nodes;
48f24c4d 6733 int i;
9c1cfda2 6734
6ca09dfc 6735 cpumask_clear(span);
c5f59f08 6736 nodes_clear(used_nodes);
9c1cfda2 6737
6ca09dfc 6738 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6739 node_set(node, used_nodes);
9c1cfda2
JH
6740
6741 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6742 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6743
6ca09dfc 6744 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6745 }
9c1cfda2 6746}
6d6bc0ad 6747#endif /* CONFIG_NUMA */
9c1cfda2 6748
5c45bf27 6749int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6750
6c99e9ad
RR
6751/*
6752 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6753 *
6754 * ( See the the comments in include/linux/sched.h:struct sched_group
6755 * and struct sched_domain. )
6c99e9ad
RR
6756 */
6757struct static_sched_group {
6758 struct sched_group sg;
6759 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6760};
6761
6762struct static_sched_domain {
6763 struct sched_domain sd;
6764 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6765};
6766
49a02c51
AH
6767struct s_data {
6768#ifdef CONFIG_NUMA
6769 int sd_allnodes;
6770 cpumask_var_t domainspan;
6771 cpumask_var_t covered;
6772 cpumask_var_t notcovered;
6773#endif
6774 cpumask_var_t nodemask;
6775 cpumask_var_t this_sibling_map;
6776 cpumask_var_t this_core_map;
01a08546 6777 cpumask_var_t this_book_map;
49a02c51
AH
6778 cpumask_var_t send_covered;
6779 cpumask_var_t tmpmask;
6780 struct sched_group **sched_group_nodes;
6781 struct root_domain *rd;
6782};
6783
2109b99e
AH
6784enum s_alloc {
6785 sa_sched_groups = 0,
6786 sa_rootdomain,
6787 sa_tmpmask,
6788 sa_send_covered,
01a08546 6789 sa_this_book_map,
2109b99e
AH
6790 sa_this_core_map,
6791 sa_this_sibling_map,
6792 sa_nodemask,
6793 sa_sched_group_nodes,
6794#ifdef CONFIG_NUMA
6795 sa_notcovered,
6796 sa_covered,
6797 sa_domainspan,
6798#endif
6799 sa_none,
6800};
6801
9c1cfda2 6802/*
48f24c4d 6803 * SMT sched-domains:
9c1cfda2 6804 */
1da177e4 6805#ifdef CONFIG_SCHED_SMT
6c99e9ad 6806static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6807static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6808
41a2d6cf 6809static int
96f874e2
RR
6810cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6811 struct sched_group **sg, struct cpumask *unused)
1da177e4 6812{
6711cab4 6813 if (sg)
1871e52c 6814 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6815 return cpu;
6816}
6d6bc0ad 6817#endif /* CONFIG_SCHED_SMT */
1da177e4 6818
48f24c4d
IM
6819/*
6820 * multi-core sched-domains:
6821 */
1e9f28fa 6822#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6823static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6824static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6825
41a2d6cf 6826static int
96f874e2
RR
6827cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6828 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6829{
6711cab4 6830 int group;
f269893c 6831#ifdef CONFIG_SCHED_SMT
c69fc56d 6832 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6833 group = cpumask_first(mask);
f269893c
HC
6834#else
6835 group = cpu;
6836#endif
6711cab4 6837 if (sg)
6c99e9ad 6838 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6839 return group;
1e9f28fa 6840}
f269893c 6841#endif /* CONFIG_SCHED_MC */
1e9f28fa 6842
01a08546
HC
6843/*
6844 * book sched-domains:
6845 */
6846#ifdef CONFIG_SCHED_BOOK
6847static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6848static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6849
41a2d6cf 6850static int
01a08546
HC
6851cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6852 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6853{
01a08546
HC
6854 int group = cpu;
6855#ifdef CONFIG_SCHED_MC
6856 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6857 group = cpumask_first(mask);
6858#elif defined(CONFIG_SCHED_SMT)
6859 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6860 group = cpumask_first(mask);
6861#endif
6711cab4 6862 if (sg)
01a08546
HC
6863 *sg = &per_cpu(sched_group_book, group).sg;
6864 return group;
1e9f28fa 6865}
01a08546 6866#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6867
6c99e9ad
RR
6868static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6869static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6870
41a2d6cf 6871static int
96f874e2
RR
6872cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6873 struct sched_group **sg, struct cpumask *mask)
1da177e4 6874{
6711cab4 6875 int group;
01a08546
HC
6876#ifdef CONFIG_SCHED_BOOK
6877 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6878 group = cpumask_first(mask);
6879#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6880 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6881 group = cpumask_first(mask);
1e9f28fa 6882#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6883 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6884 group = cpumask_first(mask);
1da177e4 6885#else
6711cab4 6886 group = cpu;
1da177e4 6887#endif
6711cab4 6888 if (sg)
6c99e9ad 6889 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6890 return group;
1da177e4
LT
6891}
6892
6893#ifdef CONFIG_NUMA
1da177e4 6894/*
9c1cfda2
JH
6895 * The init_sched_build_groups can't handle what we want to do with node
6896 * groups, so roll our own. Now each node has its own list of groups which
6897 * gets dynamically allocated.
1da177e4 6898 */
62ea9ceb 6899static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6900static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6901
62ea9ceb 6902static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6903static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6904
96f874e2
RR
6905static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6906 struct sched_group **sg,
6907 struct cpumask *nodemask)
9c1cfda2 6908{
6711cab4
SS
6909 int group;
6910
6ca09dfc 6911 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6912 group = cpumask_first(nodemask);
6711cab4
SS
6913
6914 if (sg)
6c99e9ad 6915 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6916 return group;
1da177e4 6917}
6711cab4 6918
08069033
SS
6919static void init_numa_sched_groups_power(struct sched_group *group_head)
6920{
6921 struct sched_group *sg = group_head;
6922 int j;
6923
6924 if (!sg)
6925 return;
3a5c359a 6926 do {
758b2cdc 6927 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6928 struct sched_domain *sd;
08069033 6929
6c99e9ad 6930 sd = &per_cpu(phys_domains, j).sd;
13318a71 6931 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6932 /*
6933 * Only add "power" once for each
6934 * physical package.
6935 */
6936 continue;
6937 }
08069033 6938
18a3885f 6939 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6940 }
6941 sg = sg->next;
6942 } while (sg != group_head);
08069033 6943}
0601a88d
AH
6944
6945static int build_numa_sched_groups(struct s_data *d,
6946 const struct cpumask *cpu_map, int num)
6947{
6948 struct sched_domain *sd;
6949 struct sched_group *sg, *prev;
6950 int n, j;
6951
6952 cpumask_clear(d->covered);
6953 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6954 if (cpumask_empty(d->nodemask)) {
6955 d->sched_group_nodes[num] = NULL;
6956 goto out;
6957 }
6958
6959 sched_domain_node_span(num, d->domainspan);
6960 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6961
6962 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6963 GFP_KERNEL, num);
6964 if (!sg) {
3df0fc5b
PZ
6965 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6966 num);
0601a88d
AH
6967 return -ENOMEM;
6968 }
6969 d->sched_group_nodes[num] = sg;
6970
6971 for_each_cpu(j, d->nodemask) {
6972 sd = &per_cpu(node_domains, j).sd;
6973 sd->groups = sg;
6974 }
6975
18a3885f 6976 sg->cpu_power = 0;
0601a88d
AH
6977 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6978 sg->next = sg;
6979 cpumask_or(d->covered, d->covered, d->nodemask);
6980
6981 prev = sg;
6982 for (j = 0; j < nr_node_ids; j++) {
6983 n = (num + j) % nr_node_ids;
6984 cpumask_complement(d->notcovered, d->covered);
6985 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6986 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6987 if (cpumask_empty(d->tmpmask))
6988 break;
6989 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6990 if (cpumask_empty(d->tmpmask))
6991 continue;
6992 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6993 GFP_KERNEL, num);
6994 if (!sg) {
3df0fc5b
PZ
6995 printk(KERN_WARNING
6996 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6997 return -ENOMEM;
6998 }
18a3885f 6999 sg->cpu_power = 0;
0601a88d
AH
7000 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7001 sg->next = prev->next;
7002 cpumask_or(d->covered, d->covered, d->tmpmask);
7003 prev->next = sg;
7004 prev = sg;
7005 }
7006out:
7007 return 0;
7008}
6d6bc0ad 7009#endif /* CONFIG_NUMA */
1da177e4 7010
a616058b 7011#ifdef CONFIG_NUMA
51888ca2 7012/* Free memory allocated for various sched_group structures */
96f874e2
RR
7013static void free_sched_groups(const struct cpumask *cpu_map,
7014 struct cpumask *nodemask)
51888ca2 7015{
a616058b 7016 int cpu, i;
51888ca2 7017
abcd083a 7018 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7019 struct sched_group **sched_group_nodes
7020 = sched_group_nodes_bycpu[cpu];
7021
51888ca2
SV
7022 if (!sched_group_nodes)
7023 continue;
7024
076ac2af 7025 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7026 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7027
6ca09dfc 7028 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7029 if (cpumask_empty(nodemask))
51888ca2
SV
7030 continue;
7031
7032 if (sg == NULL)
7033 continue;
7034 sg = sg->next;
7035next_sg:
7036 oldsg = sg;
7037 sg = sg->next;
7038 kfree(oldsg);
7039 if (oldsg != sched_group_nodes[i])
7040 goto next_sg;
7041 }
7042 kfree(sched_group_nodes);
7043 sched_group_nodes_bycpu[cpu] = NULL;
7044 }
51888ca2 7045}
6d6bc0ad 7046#else /* !CONFIG_NUMA */
96f874e2
RR
7047static void free_sched_groups(const struct cpumask *cpu_map,
7048 struct cpumask *nodemask)
a616058b
SS
7049{
7050}
6d6bc0ad 7051#endif /* CONFIG_NUMA */
51888ca2 7052
89c4710e
SS
7053/*
7054 * Initialize sched groups cpu_power.
7055 *
7056 * cpu_power indicates the capacity of sched group, which is used while
7057 * distributing the load between different sched groups in a sched domain.
7058 * Typically cpu_power for all the groups in a sched domain will be same unless
7059 * there are asymmetries in the topology. If there are asymmetries, group
7060 * having more cpu_power will pickup more load compared to the group having
7061 * less cpu_power.
89c4710e
SS
7062 */
7063static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7064{
7065 struct sched_domain *child;
7066 struct sched_group *group;
f93e65c1
PZ
7067 long power;
7068 int weight;
89c4710e
SS
7069
7070 WARN_ON(!sd || !sd->groups);
7071
13318a71 7072 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7073 return;
7074
aae6d3dd
SS
7075 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7076
89c4710e
SS
7077 child = sd->child;
7078
18a3885f 7079 sd->groups->cpu_power = 0;
5517d86b 7080
f93e65c1
PZ
7081 if (!child) {
7082 power = SCHED_LOAD_SCALE;
7083 weight = cpumask_weight(sched_domain_span(sd));
7084 /*
7085 * SMT siblings share the power of a single core.
a52bfd73
PZ
7086 * Usually multiple threads get a better yield out of
7087 * that one core than a single thread would have,
7088 * reflect that in sd->smt_gain.
f93e65c1 7089 */
a52bfd73
PZ
7090 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7091 power *= sd->smt_gain;
f93e65c1 7092 power /= weight;
a52bfd73
PZ
7093 power >>= SCHED_LOAD_SHIFT;
7094 }
18a3885f 7095 sd->groups->cpu_power += power;
89c4710e
SS
7096 return;
7097 }
7098
89c4710e 7099 /*
f93e65c1 7100 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7101 */
7102 group = child->groups;
7103 do {
18a3885f 7104 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7105 group = group->next;
7106 } while (group != child->groups);
7107}
7108
7c16ec58
MT
7109/*
7110 * Initializers for schedule domains
7111 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7112 */
7113
a5d8c348
IM
7114#ifdef CONFIG_SCHED_DEBUG
7115# define SD_INIT_NAME(sd, type) sd->name = #type
7116#else
7117# define SD_INIT_NAME(sd, type) do { } while (0)
7118#endif
7119
7c16ec58 7120#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7121
7c16ec58
MT
7122#define SD_INIT_FUNC(type) \
7123static noinline void sd_init_##type(struct sched_domain *sd) \
7124{ \
7125 memset(sd, 0, sizeof(*sd)); \
7126 *sd = SD_##type##_INIT; \
1d3504fc 7127 sd->level = SD_LV_##type; \
a5d8c348 7128 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7129}
7130
7131SD_INIT_FUNC(CPU)
7132#ifdef CONFIG_NUMA
7133 SD_INIT_FUNC(ALLNODES)
7134 SD_INIT_FUNC(NODE)
7135#endif
7136#ifdef CONFIG_SCHED_SMT
7137 SD_INIT_FUNC(SIBLING)
7138#endif
7139#ifdef CONFIG_SCHED_MC
7140 SD_INIT_FUNC(MC)
7141#endif
01a08546
HC
7142#ifdef CONFIG_SCHED_BOOK
7143 SD_INIT_FUNC(BOOK)
7144#endif
7c16ec58 7145
1d3504fc
HS
7146static int default_relax_domain_level = -1;
7147
7148static int __init setup_relax_domain_level(char *str)
7149{
30e0e178
LZ
7150 unsigned long val;
7151
7152 val = simple_strtoul(str, NULL, 0);
7153 if (val < SD_LV_MAX)
7154 default_relax_domain_level = val;
7155
1d3504fc
HS
7156 return 1;
7157}
7158__setup("relax_domain_level=", setup_relax_domain_level);
7159
7160static void set_domain_attribute(struct sched_domain *sd,
7161 struct sched_domain_attr *attr)
7162{
7163 int request;
7164
7165 if (!attr || attr->relax_domain_level < 0) {
7166 if (default_relax_domain_level < 0)
7167 return;
7168 else
7169 request = default_relax_domain_level;
7170 } else
7171 request = attr->relax_domain_level;
7172 if (request < sd->level) {
7173 /* turn off idle balance on this domain */
c88d5910 7174 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7175 } else {
7176 /* turn on idle balance on this domain */
c88d5910 7177 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7178 }
7179}
7180
2109b99e
AH
7181static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7182 const struct cpumask *cpu_map)
7183{
7184 switch (what) {
7185 case sa_sched_groups:
7186 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7187 d->sched_group_nodes = NULL;
7188 case sa_rootdomain:
7189 free_rootdomain(d->rd); /* fall through */
7190 case sa_tmpmask:
7191 free_cpumask_var(d->tmpmask); /* fall through */
7192 case sa_send_covered:
7193 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7194 case sa_this_book_map:
7195 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7196 case sa_this_core_map:
7197 free_cpumask_var(d->this_core_map); /* fall through */
7198 case sa_this_sibling_map:
7199 free_cpumask_var(d->this_sibling_map); /* fall through */
7200 case sa_nodemask:
7201 free_cpumask_var(d->nodemask); /* fall through */
7202 case sa_sched_group_nodes:
d1b55138 7203#ifdef CONFIG_NUMA
2109b99e
AH
7204 kfree(d->sched_group_nodes); /* fall through */
7205 case sa_notcovered:
7206 free_cpumask_var(d->notcovered); /* fall through */
7207 case sa_covered:
7208 free_cpumask_var(d->covered); /* fall through */
7209 case sa_domainspan:
7210 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7211#endif
2109b99e
AH
7212 case sa_none:
7213 break;
7214 }
7215}
3404c8d9 7216
2109b99e
AH
7217static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7218 const struct cpumask *cpu_map)
7219{
3404c8d9 7220#ifdef CONFIG_NUMA
2109b99e
AH
7221 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7222 return sa_none;
7223 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7224 return sa_domainspan;
7225 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7226 return sa_covered;
7227 /* Allocate the per-node list of sched groups */
7228 d->sched_group_nodes = kcalloc(nr_node_ids,
7229 sizeof(struct sched_group *), GFP_KERNEL);
7230 if (!d->sched_group_nodes) {
3df0fc5b 7231 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7232 return sa_notcovered;
d1b55138 7233 }
2109b99e 7234 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7235#endif
2109b99e
AH
7236 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7237 return sa_sched_group_nodes;
7238 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7239 return sa_nodemask;
7240 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7241 return sa_this_sibling_map;
01a08546 7242 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7243 return sa_this_core_map;
01a08546
HC
7244 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7245 return sa_this_book_map;
2109b99e
AH
7246 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7247 return sa_send_covered;
7248 d->rd = alloc_rootdomain();
7249 if (!d->rd) {
3df0fc5b 7250 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7251 return sa_tmpmask;
57d885fe 7252 }
2109b99e
AH
7253 return sa_rootdomain;
7254}
57d885fe 7255
7f4588f3
AH
7256static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7257 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7258{
7259 struct sched_domain *sd = NULL;
7c16ec58 7260#ifdef CONFIG_NUMA
7f4588f3 7261 struct sched_domain *parent;
1da177e4 7262
7f4588f3
AH
7263 d->sd_allnodes = 0;
7264 if (cpumask_weight(cpu_map) >
7265 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7266 sd = &per_cpu(allnodes_domains, i).sd;
7267 SD_INIT(sd, ALLNODES);
1d3504fc 7268 set_domain_attribute(sd, attr);
7f4588f3
AH
7269 cpumask_copy(sched_domain_span(sd), cpu_map);
7270 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7271 d->sd_allnodes = 1;
7272 }
7273 parent = sd;
7274
7275 sd = &per_cpu(node_domains, i).sd;
7276 SD_INIT(sd, NODE);
7277 set_domain_attribute(sd, attr);
7278 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7279 sd->parent = parent;
7280 if (parent)
7281 parent->child = sd;
7282 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7283#endif
7f4588f3
AH
7284 return sd;
7285}
1da177e4 7286
87cce662
AH
7287static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7288 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7289 struct sched_domain *parent, int i)
7290{
7291 struct sched_domain *sd;
7292 sd = &per_cpu(phys_domains, i).sd;
7293 SD_INIT(sd, CPU);
7294 set_domain_attribute(sd, attr);
7295 cpumask_copy(sched_domain_span(sd), d->nodemask);
7296 sd->parent = parent;
7297 if (parent)
7298 parent->child = sd;
7299 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7300 return sd;
7301}
1da177e4 7302
01a08546
HC
7303static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7304 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7305 struct sched_domain *parent, int i)
7306{
7307 struct sched_domain *sd = parent;
7308#ifdef CONFIG_SCHED_BOOK
7309 sd = &per_cpu(book_domains, i).sd;
7310 SD_INIT(sd, BOOK);
7311 set_domain_attribute(sd, attr);
7312 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7313 sd->parent = parent;
7314 parent->child = sd;
7315 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7316#endif
7317 return sd;
7318}
7319
410c4081
AH
7320static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7321 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7322 struct sched_domain *parent, int i)
7323{
7324 struct sched_domain *sd = parent;
1e9f28fa 7325#ifdef CONFIG_SCHED_MC
410c4081
AH
7326 sd = &per_cpu(core_domains, i).sd;
7327 SD_INIT(sd, MC);
7328 set_domain_attribute(sd, attr);
7329 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7330 sd->parent = parent;
7331 parent->child = sd;
7332 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7333#endif
410c4081
AH
7334 return sd;
7335}
1e9f28fa 7336
d8173535
AH
7337static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7338 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7339 struct sched_domain *parent, int i)
7340{
7341 struct sched_domain *sd = parent;
1da177e4 7342#ifdef CONFIG_SCHED_SMT
d8173535
AH
7343 sd = &per_cpu(cpu_domains, i).sd;
7344 SD_INIT(sd, SIBLING);
7345 set_domain_attribute(sd, attr);
7346 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7347 sd->parent = parent;
7348 parent->child = sd;
7349 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7350#endif
d8173535
AH
7351 return sd;
7352}
1da177e4 7353
0e8e85c9
AH
7354static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7355 const struct cpumask *cpu_map, int cpu)
7356{
7357 switch (l) {
1da177e4 7358#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7359 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7360 cpumask_and(d->this_sibling_map, cpu_map,
7361 topology_thread_cpumask(cpu));
7362 if (cpu == cpumask_first(d->this_sibling_map))
7363 init_sched_build_groups(d->this_sibling_map, cpu_map,
7364 &cpu_to_cpu_group,
7365 d->send_covered, d->tmpmask);
7366 break;
1da177e4 7367#endif
1e9f28fa 7368#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7369 case SD_LV_MC: /* set up multi-core groups */
7370 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7371 if (cpu == cpumask_first(d->this_core_map))
7372 init_sched_build_groups(d->this_core_map, cpu_map,
7373 &cpu_to_core_group,
7374 d->send_covered, d->tmpmask);
7375 break;
01a08546
HC
7376#endif
7377#ifdef CONFIG_SCHED_BOOK
7378 case SD_LV_BOOK: /* set up book groups */
7379 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7380 if (cpu == cpumask_first(d->this_book_map))
7381 init_sched_build_groups(d->this_book_map, cpu_map,
7382 &cpu_to_book_group,
7383 d->send_covered, d->tmpmask);
7384 break;
1e9f28fa 7385#endif
86548096
AH
7386 case SD_LV_CPU: /* set up physical groups */
7387 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7388 if (!cpumask_empty(d->nodemask))
7389 init_sched_build_groups(d->nodemask, cpu_map,
7390 &cpu_to_phys_group,
7391 d->send_covered, d->tmpmask);
7392 break;
1da177e4 7393#ifdef CONFIG_NUMA
de616e36
AH
7394 case SD_LV_ALLNODES:
7395 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7396 d->send_covered, d->tmpmask);
7397 break;
7398#endif
0e8e85c9
AH
7399 default:
7400 break;
7c16ec58 7401 }
0e8e85c9 7402}
9c1cfda2 7403
2109b99e
AH
7404/*
7405 * Build sched domains for a given set of cpus and attach the sched domains
7406 * to the individual cpus
7407 */
7408static int __build_sched_domains(const struct cpumask *cpu_map,
7409 struct sched_domain_attr *attr)
7410{
7411 enum s_alloc alloc_state = sa_none;
7412 struct s_data d;
294b0c96 7413 struct sched_domain *sd;
2109b99e 7414 int i;
7c16ec58 7415#ifdef CONFIG_NUMA
2109b99e 7416 d.sd_allnodes = 0;
7c16ec58 7417#endif
9c1cfda2 7418
2109b99e
AH
7419 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7420 if (alloc_state != sa_rootdomain)
7421 goto error;
7422 alloc_state = sa_sched_groups;
9c1cfda2 7423
1da177e4 7424 /*
1a20ff27 7425 * Set up domains for cpus specified by the cpu_map.
1da177e4 7426 */
abcd083a 7427 for_each_cpu(i, cpu_map) {
49a02c51
AH
7428 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7429 cpu_map);
9761eea8 7430
7f4588f3 7431 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7432 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7433 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7434 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7435 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7436 }
9c1cfda2 7437
abcd083a 7438 for_each_cpu(i, cpu_map) {
0e8e85c9 7439 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7440 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7441 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7442 }
9c1cfda2 7443
1da177e4 7444 /* Set up physical groups */
86548096
AH
7445 for (i = 0; i < nr_node_ids; i++)
7446 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7447
1da177e4
LT
7448#ifdef CONFIG_NUMA
7449 /* Set up node groups */
de616e36
AH
7450 if (d.sd_allnodes)
7451 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7452
0601a88d
AH
7453 for (i = 0; i < nr_node_ids; i++)
7454 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7455 goto error;
1da177e4
LT
7456#endif
7457
7458 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7459#ifdef CONFIG_SCHED_SMT
abcd083a 7460 for_each_cpu(i, cpu_map) {
294b0c96 7461 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7462 init_sched_groups_power(i, sd);
5c45bf27 7463 }
1da177e4 7464#endif
1e9f28fa 7465#ifdef CONFIG_SCHED_MC
abcd083a 7466 for_each_cpu(i, cpu_map) {
294b0c96 7467 sd = &per_cpu(core_domains, i).sd;
89c4710e 7468 init_sched_groups_power(i, sd);
5c45bf27
SS
7469 }
7470#endif
01a08546
HC
7471#ifdef CONFIG_SCHED_BOOK
7472 for_each_cpu(i, cpu_map) {
7473 sd = &per_cpu(book_domains, i).sd;
7474 init_sched_groups_power(i, sd);
7475 }
7476#endif
1e9f28fa 7477
abcd083a 7478 for_each_cpu(i, cpu_map) {
294b0c96 7479 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7480 init_sched_groups_power(i, sd);
1da177e4
LT
7481 }
7482
9c1cfda2 7483#ifdef CONFIG_NUMA
076ac2af 7484 for (i = 0; i < nr_node_ids; i++)
49a02c51 7485 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7486
49a02c51 7487 if (d.sd_allnodes) {
6711cab4 7488 struct sched_group *sg;
f712c0c7 7489
96f874e2 7490 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7491 d.tmpmask);
f712c0c7
SS
7492 init_numa_sched_groups_power(sg);
7493 }
9c1cfda2
JH
7494#endif
7495
1da177e4 7496 /* Attach the domains */
abcd083a 7497 for_each_cpu(i, cpu_map) {
1da177e4 7498#ifdef CONFIG_SCHED_SMT
6c99e9ad 7499 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7500#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7501 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7502#elif defined(CONFIG_SCHED_BOOK)
7503 sd = &per_cpu(book_domains, i).sd;
1da177e4 7504#else
6c99e9ad 7505 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7506#endif
49a02c51 7507 cpu_attach_domain(sd, d.rd, i);
1da177e4 7508 }
51888ca2 7509
2109b99e
AH
7510 d.sched_group_nodes = NULL; /* don't free this we still need it */
7511 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7512 return 0;
51888ca2 7513
51888ca2 7514error:
2109b99e
AH
7515 __free_domain_allocs(&d, alloc_state, cpu_map);
7516 return -ENOMEM;
1da177e4 7517}
029190c5 7518
96f874e2 7519static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7520{
7521 return __build_sched_domains(cpu_map, NULL);
7522}
7523
acc3f5d7 7524static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7525static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7526static struct sched_domain_attr *dattr_cur;
7527 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7528
7529/*
7530 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7531 * cpumask) fails, then fallback to a single sched domain,
7532 * as determined by the single cpumask fallback_doms.
029190c5 7533 */
4212823f 7534static cpumask_var_t fallback_doms;
029190c5 7535
ee79d1bd
HC
7536/*
7537 * arch_update_cpu_topology lets virtualized architectures update the
7538 * cpu core maps. It is supposed to return 1 if the topology changed
7539 * or 0 if it stayed the same.
7540 */
7541int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7542{
ee79d1bd 7543 return 0;
22e52b07
HC
7544}
7545
acc3f5d7
RR
7546cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7547{
7548 int i;
7549 cpumask_var_t *doms;
7550
7551 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7552 if (!doms)
7553 return NULL;
7554 for (i = 0; i < ndoms; i++) {
7555 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7556 free_sched_domains(doms, i);
7557 return NULL;
7558 }
7559 }
7560 return doms;
7561}
7562
7563void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7564{
7565 unsigned int i;
7566 for (i = 0; i < ndoms; i++)
7567 free_cpumask_var(doms[i]);
7568 kfree(doms);
7569}
7570
1a20ff27 7571/*
41a2d6cf 7572 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7573 * For now this just excludes isolated cpus, but could be used to
7574 * exclude other special cases in the future.
1a20ff27 7575 */
96f874e2 7576static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7577{
7378547f
MM
7578 int err;
7579
22e52b07 7580 arch_update_cpu_topology();
029190c5 7581 ndoms_cur = 1;
acc3f5d7 7582 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7583 if (!doms_cur)
acc3f5d7
RR
7584 doms_cur = &fallback_doms;
7585 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7586 dattr_cur = NULL;
acc3f5d7 7587 err = build_sched_domains(doms_cur[0]);
6382bc90 7588 register_sched_domain_sysctl();
7378547f
MM
7589
7590 return err;
1a20ff27
DG
7591}
7592
96f874e2
RR
7593static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7594 struct cpumask *tmpmask)
1da177e4 7595{
7c16ec58 7596 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7597}
1da177e4 7598
1a20ff27
DG
7599/*
7600 * Detach sched domains from a group of cpus specified in cpu_map
7601 * These cpus will now be attached to the NULL domain
7602 */
96f874e2 7603static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7604{
96f874e2
RR
7605 /* Save because hotplug lock held. */
7606 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7607 int i;
7608
abcd083a 7609 for_each_cpu(i, cpu_map)
57d885fe 7610 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7611 synchronize_sched();
96f874e2 7612 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7613}
7614
1d3504fc
HS
7615/* handle null as "default" */
7616static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7617 struct sched_domain_attr *new, int idx_new)
7618{
7619 struct sched_domain_attr tmp;
7620
7621 /* fast path */
7622 if (!new && !cur)
7623 return 1;
7624
7625 tmp = SD_ATTR_INIT;
7626 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7627 new ? (new + idx_new) : &tmp,
7628 sizeof(struct sched_domain_attr));
7629}
7630
029190c5
PJ
7631/*
7632 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7633 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7634 * doms_new[] to the current sched domain partitioning, doms_cur[].
7635 * It destroys each deleted domain and builds each new domain.
7636 *
acc3f5d7 7637 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7638 * The masks don't intersect (don't overlap.) We should setup one
7639 * sched domain for each mask. CPUs not in any of the cpumasks will
7640 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7641 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7642 * it as it is.
7643 *
acc3f5d7
RR
7644 * The passed in 'doms_new' should be allocated using
7645 * alloc_sched_domains. This routine takes ownership of it and will
7646 * free_sched_domains it when done with it. If the caller failed the
7647 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7648 * and partition_sched_domains() will fallback to the single partition
7649 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7650 *
96f874e2 7651 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7652 * ndoms_new == 0 is a special case for destroying existing domains,
7653 * and it will not create the default domain.
dfb512ec 7654 *
029190c5
PJ
7655 * Call with hotplug lock held
7656 */
acc3f5d7 7657void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7658 struct sched_domain_attr *dattr_new)
029190c5 7659{
dfb512ec 7660 int i, j, n;
d65bd5ec 7661 int new_topology;
029190c5 7662
712555ee 7663 mutex_lock(&sched_domains_mutex);
a1835615 7664
7378547f
MM
7665 /* always unregister in case we don't destroy any domains */
7666 unregister_sched_domain_sysctl();
7667
d65bd5ec
HC
7668 /* Let architecture update cpu core mappings. */
7669 new_topology = arch_update_cpu_topology();
7670
dfb512ec 7671 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7672
7673 /* Destroy deleted domains */
7674 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7675 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7676 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7677 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7678 goto match1;
7679 }
7680 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7681 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7682match1:
7683 ;
7684 }
7685
e761b772
MK
7686 if (doms_new == NULL) {
7687 ndoms_cur = 0;
acc3f5d7 7688 doms_new = &fallback_doms;
6ad4c188 7689 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7690 WARN_ON_ONCE(dattr_new);
e761b772
MK
7691 }
7692
029190c5
PJ
7693 /* Build new domains */
7694 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7695 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7696 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7697 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7698 goto match2;
7699 }
7700 /* no match - add a new doms_new */
acc3f5d7 7701 __build_sched_domains(doms_new[i],
1d3504fc 7702 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7703match2:
7704 ;
7705 }
7706
7707 /* Remember the new sched domains */
acc3f5d7
RR
7708 if (doms_cur != &fallback_doms)
7709 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7710 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7711 doms_cur = doms_new;
1d3504fc 7712 dattr_cur = dattr_new;
029190c5 7713 ndoms_cur = ndoms_new;
7378547f
MM
7714
7715 register_sched_domain_sysctl();
a1835615 7716
712555ee 7717 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7718}
7719
5c45bf27 7720#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7721static void arch_reinit_sched_domains(void)
5c45bf27 7722{
95402b38 7723 get_online_cpus();
dfb512ec
MK
7724
7725 /* Destroy domains first to force the rebuild */
7726 partition_sched_domains(0, NULL, NULL);
7727
e761b772 7728 rebuild_sched_domains();
95402b38 7729 put_online_cpus();
5c45bf27
SS
7730}
7731
7732static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7733{
afb8a9b7 7734 unsigned int level = 0;
5c45bf27 7735
afb8a9b7
GS
7736 if (sscanf(buf, "%u", &level) != 1)
7737 return -EINVAL;
7738
7739 /*
7740 * level is always be positive so don't check for
7741 * level < POWERSAVINGS_BALANCE_NONE which is 0
7742 * What happens on 0 or 1 byte write,
7743 * need to check for count as well?
7744 */
7745
7746 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7747 return -EINVAL;
7748
7749 if (smt)
afb8a9b7 7750 sched_smt_power_savings = level;
5c45bf27 7751 else
afb8a9b7 7752 sched_mc_power_savings = level;
5c45bf27 7753
c70f22d2 7754 arch_reinit_sched_domains();
5c45bf27 7755
c70f22d2 7756 return count;
5c45bf27
SS
7757}
7758
5c45bf27 7759#ifdef CONFIG_SCHED_MC
f718cd4a 7760static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7761 struct sysdev_class_attribute *attr,
f718cd4a 7762 char *page)
5c45bf27
SS
7763{
7764 return sprintf(page, "%u\n", sched_mc_power_savings);
7765}
f718cd4a 7766static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7767 struct sysdev_class_attribute *attr,
48f24c4d 7768 const char *buf, size_t count)
5c45bf27
SS
7769{
7770 return sched_power_savings_store(buf, count, 0);
7771}
f718cd4a
AK
7772static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7773 sched_mc_power_savings_show,
7774 sched_mc_power_savings_store);
5c45bf27
SS
7775#endif
7776
7777#ifdef CONFIG_SCHED_SMT
f718cd4a 7778static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7779 struct sysdev_class_attribute *attr,
f718cd4a 7780 char *page)
5c45bf27
SS
7781{
7782 return sprintf(page, "%u\n", sched_smt_power_savings);
7783}
f718cd4a 7784static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7785 struct sysdev_class_attribute *attr,
48f24c4d 7786 const char *buf, size_t count)
5c45bf27
SS
7787{
7788 return sched_power_savings_store(buf, count, 1);
7789}
f718cd4a
AK
7790static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7791 sched_smt_power_savings_show,
6707de00
AB
7792 sched_smt_power_savings_store);
7793#endif
7794
39aac648 7795int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7796{
7797 int err = 0;
7798
7799#ifdef CONFIG_SCHED_SMT
7800 if (smt_capable())
7801 err = sysfs_create_file(&cls->kset.kobj,
7802 &attr_sched_smt_power_savings.attr);
7803#endif
7804#ifdef CONFIG_SCHED_MC
7805 if (!err && mc_capable())
7806 err = sysfs_create_file(&cls->kset.kobj,
7807 &attr_sched_mc_power_savings.attr);
7808#endif
7809 return err;
7810}
6d6bc0ad 7811#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7812
1da177e4 7813/*
3a101d05
TH
7814 * Update cpusets according to cpu_active mask. If cpusets are
7815 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7816 * around partition_sched_domains().
1da177e4 7817 */
0b2e918a
TH
7818static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7819 void *hcpu)
e761b772 7820{
3a101d05 7821 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7822 case CPU_ONLINE:
6ad4c188 7823 case CPU_DOWN_FAILED:
3a101d05 7824 cpuset_update_active_cpus();
e761b772 7825 return NOTIFY_OK;
3a101d05
TH
7826 default:
7827 return NOTIFY_DONE;
7828 }
7829}
e761b772 7830
0b2e918a
TH
7831static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7832 void *hcpu)
3a101d05
TH
7833{
7834 switch (action & ~CPU_TASKS_FROZEN) {
7835 case CPU_DOWN_PREPARE:
7836 cpuset_update_active_cpus();
7837 return NOTIFY_OK;
e761b772
MK
7838 default:
7839 return NOTIFY_DONE;
7840 }
7841}
e761b772
MK
7842
7843static int update_runtime(struct notifier_block *nfb,
7844 unsigned long action, void *hcpu)
1da177e4 7845{
7def2be1
PZ
7846 int cpu = (int)(long)hcpu;
7847
1da177e4 7848 switch (action) {
1da177e4 7849 case CPU_DOWN_PREPARE:
8bb78442 7850 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7851 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7852 return NOTIFY_OK;
7853
1da177e4 7854 case CPU_DOWN_FAILED:
8bb78442 7855 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7856 case CPU_ONLINE:
8bb78442 7857 case CPU_ONLINE_FROZEN:
7def2be1 7858 enable_runtime(cpu_rq(cpu));
e761b772
MK
7859 return NOTIFY_OK;
7860
1da177e4
LT
7861 default:
7862 return NOTIFY_DONE;
7863 }
1da177e4 7864}
1da177e4
LT
7865
7866void __init sched_init_smp(void)
7867{
dcc30a35
RR
7868 cpumask_var_t non_isolated_cpus;
7869
7870 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7871 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7872
434d53b0
MT
7873#if defined(CONFIG_NUMA)
7874 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7875 GFP_KERNEL);
7876 BUG_ON(sched_group_nodes_bycpu == NULL);
7877#endif
95402b38 7878 get_online_cpus();
712555ee 7879 mutex_lock(&sched_domains_mutex);
6ad4c188 7880 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7881 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7882 if (cpumask_empty(non_isolated_cpus))
7883 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7884 mutex_unlock(&sched_domains_mutex);
95402b38 7885 put_online_cpus();
e761b772 7886
3a101d05
TH
7887 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7888 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7889
7890 /* RT runtime code needs to handle some hotplug events */
7891 hotcpu_notifier(update_runtime, 0);
7892
b328ca18 7893 init_hrtick();
5c1e1767
NP
7894
7895 /* Move init over to a non-isolated CPU */
dcc30a35 7896 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7897 BUG();
19978ca6 7898 sched_init_granularity();
dcc30a35 7899 free_cpumask_var(non_isolated_cpus);
4212823f 7900
0e3900e6 7901 init_sched_rt_class();
1da177e4
LT
7902}
7903#else
7904void __init sched_init_smp(void)
7905{
19978ca6 7906 sched_init_granularity();
1da177e4
LT
7907}
7908#endif /* CONFIG_SMP */
7909
cd1bb94b
AB
7910const_debug unsigned int sysctl_timer_migration = 1;
7911
1da177e4
LT
7912int in_sched_functions(unsigned long addr)
7913{
1da177e4
LT
7914 return in_lock_functions(addr) ||
7915 (addr >= (unsigned long)__sched_text_start
7916 && addr < (unsigned long)__sched_text_end);
7917}
7918
a9957449 7919static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7920{
7921 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7922 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7923#ifdef CONFIG_FAIR_GROUP_SCHED
7924 cfs_rq->rq = rq;
f07333bf
PT
7925 /* allow initial update_cfs_load() to truncate */
7926 cfs_rq->load_stamp = 1;
dd41f596 7927#endif
67e9fb2a 7928 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7929}
7930
fa85ae24
PZ
7931static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7932{
7933 struct rt_prio_array *array;
7934 int i;
7935
7936 array = &rt_rq->active;
7937 for (i = 0; i < MAX_RT_PRIO; i++) {
7938 INIT_LIST_HEAD(array->queue + i);
7939 __clear_bit(i, array->bitmap);
7940 }
7941 /* delimiter for bitsearch: */
7942 __set_bit(MAX_RT_PRIO, array->bitmap);
7943
052f1dc7 7944#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7945 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7946#ifdef CONFIG_SMP
e864c499 7947 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7948#endif
48d5e258 7949#endif
fa85ae24
PZ
7950#ifdef CONFIG_SMP
7951 rt_rq->rt_nr_migratory = 0;
fa85ae24 7952 rt_rq->overloaded = 0;
05fa785c 7953 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7954#endif
7955
7956 rt_rq->rt_time = 0;
7957 rt_rq->rt_throttled = 0;
ac086bc2 7958 rt_rq->rt_runtime = 0;
0986b11b 7959 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7960
052f1dc7 7961#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7962 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7963 rt_rq->rq = rq;
7964#endif
fa85ae24
PZ
7965}
7966
6f505b16 7967#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7968static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7969 struct sched_entity *se, int cpu,
ec7dc8ac 7970 struct sched_entity *parent)
6f505b16 7971{
ec7dc8ac 7972 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7973 tg->cfs_rq[cpu] = cfs_rq;
7974 init_cfs_rq(cfs_rq, rq);
7975 cfs_rq->tg = tg;
6f505b16
PZ
7976
7977 tg->se[cpu] = se;
07e06b01 7978 /* se could be NULL for root_task_group */
354d60c2
DG
7979 if (!se)
7980 return;
7981
ec7dc8ac
DG
7982 if (!parent)
7983 se->cfs_rq = &rq->cfs;
7984 else
7985 se->cfs_rq = parent->my_q;
7986
6f505b16 7987 se->my_q = cfs_rq;
9437178f 7988 update_load_set(&se->load, 0);
ec7dc8ac 7989 se->parent = parent;
6f505b16 7990}
052f1dc7 7991#endif
6f505b16 7992
052f1dc7 7993#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7994static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7995 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7996 struct sched_rt_entity *parent)
6f505b16 7997{
ec7dc8ac
DG
7998 struct rq *rq = cpu_rq(cpu);
7999
6f505b16
PZ
8000 tg->rt_rq[cpu] = rt_rq;
8001 init_rt_rq(rt_rq, rq);
8002 rt_rq->tg = tg;
ac086bc2 8003 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8004
8005 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8006 if (!rt_se)
8007 return;
8008
ec7dc8ac
DG
8009 if (!parent)
8010 rt_se->rt_rq = &rq->rt;
8011 else
8012 rt_se->rt_rq = parent->my_q;
8013
6f505b16 8014 rt_se->my_q = rt_rq;
ec7dc8ac 8015 rt_se->parent = parent;
6f505b16
PZ
8016 INIT_LIST_HEAD(&rt_se->run_list);
8017}
8018#endif
8019
1da177e4
LT
8020void __init sched_init(void)
8021{
dd41f596 8022 int i, j;
434d53b0
MT
8023 unsigned long alloc_size = 0, ptr;
8024
8025#ifdef CONFIG_FAIR_GROUP_SCHED
8026 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8027#endif
8028#ifdef CONFIG_RT_GROUP_SCHED
8029 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8030#endif
df7c8e84 8031#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8032 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8033#endif
434d53b0 8034 if (alloc_size) {
36b7b6d4 8035 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8036
8037#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8038 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8039 ptr += nr_cpu_ids * sizeof(void **);
8040
07e06b01 8041 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8042 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8043
6d6bc0ad 8044#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8045#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8046 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8047 ptr += nr_cpu_ids * sizeof(void **);
8048
07e06b01 8049 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8050 ptr += nr_cpu_ids * sizeof(void **);
8051
6d6bc0ad 8052#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8053#ifdef CONFIG_CPUMASK_OFFSTACK
8054 for_each_possible_cpu(i) {
8055 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8056 ptr += cpumask_size();
8057 }
8058#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8059 }
dd41f596 8060
57d885fe
GH
8061#ifdef CONFIG_SMP
8062 init_defrootdomain();
8063#endif
8064
d0b27fa7
PZ
8065 init_rt_bandwidth(&def_rt_bandwidth,
8066 global_rt_period(), global_rt_runtime());
8067
8068#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8069 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8070 global_rt_period(), global_rt_runtime());
6d6bc0ad 8071#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8072
7c941438 8073#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8074 list_add(&root_task_group.list, &task_groups);
8075 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8076 autogroup_init(&init_task);
7c941438 8077#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8078
0a945022 8079 for_each_possible_cpu(i) {
70b97a7f 8080 struct rq *rq;
1da177e4
LT
8081
8082 rq = cpu_rq(i);
05fa785c 8083 raw_spin_lock_init(&rq->lock);
7897986b 8084 rq->nr_running = 0;
dce48a84
TG
8085 rq->calc_load_active = 0;
8086 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8087 init_cfs_rq(&rq->cfs, rq);
6f505b16 8088 init_rt_rq(&rq->rt, rq);
dd41f596 8089#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8090 root_task_group.shares = root_task_group_load;
6f505b16 8091 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8092 /*
07e06b01 8093 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8094 *
8095 * In case of task-groups formed thr' the cgroup filesystem, it
8096 * gets 100% of the cpu resources in the system. This overall
8097 * system cpu resource is divided among the tasks of
07e06b01 8098 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8099 * based on each entity's (task or task-group's) weight
8100 * (se->load.weight).
8101 *
07e06b01 8102 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8103 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8104 * then A0's share of the cpu resource is:
8105 *
0d905bca 8106 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8107 *
07e06b01
YZ
8108 * We achieve this by letting root_task_group's tasks sit
8109 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8110 */
07e06b01 8111 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8112#endif /* CONFIG_FAIR_GROUP_SCHED */
8113
8114 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8115#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8116 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8117 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8118#endif
1da177e4 8119
dd41f596
IM
8120 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8121 rq->cpu_load[j] = 0;
fdf3e95d
VP
8122
8123 rq->last_load_update_tick = jiffies;
8124
1da177e4 8125#ifdef CONFIG_SMP
41c7ce9a 8126 rq->sd = NULL;
57d885fe 8127 rq->rd = NULL;
e51fd5e2 8128 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8129 rq->post_schedule = 0;
1da177e4 8130 rq->active_balance = 0;
dd41f596 8131 rq->next_balance = jiffies;
1da177e4 8132 rq->push_cpu = 0;
0a2966b4 8133 rq->cpu = i;
1f11eb6a 8134 rq->online = 0;
eae0c9df
MG
8135 rq->idle_stamp = 0;
8136 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8137 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8138#ifdef CONFIG_NO_HZ
8139 rq->nohz_balance_kick = 0;
8140 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8141#endif
1da177e4 8142#endif
8f4d37ec 8143 init_rq_hrtick(rq);
1da177e4 8144 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8145 }
8146
2dd73a4f 8147 set_load_weight(&init_task);
b50f60ce 8148
e107be36
AK
8149#ifdef CONFIG_PREEMPT_NOTIFIERS
8150 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8151#endif
8152
c9819f45 8153#ifdef CONFIG_SMP
962cf36c 8154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8155#endif
8156
b50f60ce 8157#ifdef CONFIG_RT_MUTEXES
1d615482 8158 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8159#endif
8160
1da177e4
LT
8161 /*
8162 * The boot idle thread does lazy MMU switching as well:
8163 */
8164 atomic_inc(&init_mm.mm_count);
8165 enter_lazy_tlb(&init_mm, current);
8166
8167 /*
8168 * Make us the idle thread. Technically, schedule() should not be
8169 * called from this thread, however somewhere below it might be,
8170 * but because we are the idle thread, we just pick up running again
8171 * when this runqueue becomes "idle".
8172 */
8173 init_idle(current, smp_processor_id());
dce48a84
TG
8174
8175 calc_load_update = jiffies + LOAD_FREQ;
8176
dd41f596
IM
8177 /*
8178 * During early bootup we pretend to be a normal task:
8179 */
8180 current->sched_class = &fair_sched_class;
6892b75e 8181
6a7b3dc3 8182 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8183 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8184#ifdef CONFIG_SMP
7d1e6a9b 8185#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8186 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8187 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8188 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8189 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8190 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8191#endif
bdddd296
RR
8192 /* May be allocated at isolcpus cmdline parse time */
8193 if (cpu_isolated_map == NULL)
8194 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8195#endif /* SMP */
6a7b3dc3 8196
6892b75e 8197 scheduler_running = 1;
1da177e4
LT
8198}
8199
8200#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8201static inline int preempt_count_equals(int preempt_offset)
8202{
234da7bc 8203 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8204
8205 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8206}
8207
d894837f 8208void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8209{
48f24c4d 8210#ifdef in_atomic
1da177e4
LT
8211 static unsigned long prev_jiffy; /* ratelimiting */
8212
e4aafea2
FW
8213 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8214 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8215 return;
8216 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8217 return;
8218 prev_jiffy = jiffies;
8219
3df0fc5b
PZ
8220 printk(KERN_ERR
8221 "BUG: sleeping function called from invalid context at %s:%d\n",
8222 file, line);
8223 printk(KERN_ERR
8224 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8225 in_atomic(), irqs_disabled(),
8226 current->pid, current->comm);
aef745fc
IM
8227
8228 debug_show_held_locks(current);
8229 if (irqs_disabled())
8230 print_irqtrace_events(current);
8231 dump_stack();
1da177e4
LT
8232#endif
8233}
8234EXPORT_SYMBOL(__might_sleep);
8235#endif
8236
8237#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8238static void normalize_task(struct rq *rq, struct task_struct *p)
8239{
8240 int on_rq;
3e51f33f 8241
3a5e4dc1
AK
8242 on_rq = p->se.on_rq;
8243 if (on_rq)
8244 deactivate_task(rq, p, 0);
8245 __setscheduler(rq, p, SCHED_NORMAL, 0);
8246 if (on_rq) {
8247 activate_task(rq, p, 0);
8248 resched_task(rq->curr);
8249 }
8250}
8251
1da177e4
LT
8252void normalize_rt_tasks(void)
8253{
a0f98a1c 8254 struct task_struct *g, *p;
1da177e4 8255 unsigned long flags;
70b97a7f 8256 struct rq *rq;
1da177e4 8257
4cf5d77a 8258 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8259 do_each_thread(g, p) {
178be793
IM
8260 /*
8261 * Only normalize user tasks:
8262 */
8263 if (!p->mm)
8264 continue;
8265
6cfb0d5d 8266 p->se.exec_start = 0;
6cfb0d5d 8267#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8268 p->se.statistics.wait_start = 0;
8269 p->se.statistics.sleep_start = 0;
8270 p->se.statistics.block_start = 0;
6cfb0d5d 8271#endif
dd41f596
IM
8272
8273 if (!rt_task(p)) {
8274 /*
8275 * Renice negative nice level userspace
8276 * tasks back to 0:
8277 */
8278 if (TASK_NICE(p) < 0 && p->mm)
8279 set_user_nice(p, 0);
1da177e4 8280 continue;
dd41f596 8281 }
1da177e4 8282
1d615482 8283 raw_spin_lock(&p->pi_lock);
b29739f9 8284 rq = __task_rq_lock(p);
1da177e4 8285
178be793 8286 normalize_task(rq, p);
3a5e4dc1 8287
b29739f9 8288 __task_rq_unlock(rq);
1d615482 8289 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8290 } while_each_thread(g, p);
8291
4cf5d77a 8292 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8293}
8294
8295#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8296
67fc4e0c 8297#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8298/*
67fc4e0c 8299 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8300 *
8301 * They can only be called when the whole system has been
8302 * stopped - every CPU needs to be quiescent, and no scheduling
8303 * activity can take place. Using them for anything else would
8304 * be a serious bug, and as a result, they aren't even visible
8305 * under any other configuration.
8306 */
8307
8308/**
8309 * curr_task - return the current task for a given cpu.
8310 * @cpu: the processor in question.
8311 *
8312 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8313 */
36c8b586 8314struct task_struct *curr_task(int cpu)
1df5c10a
LT
8315{
8316 return cpu_curr(cpu);
8317}
8318
67fc4e0c
JW
8319#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8320
8321#ifdef CONFIG_IA64
1df5c10a
LT
8322/**
8323 * set_curr_task - set the current task for a given cpu.
8324 * @cpu: the processor in question.
8325 * @p: the task pointer to set.
8326 *
8327 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8328 * are serviced on a separate stack. It allows the architecture to switch the
8329 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8330 * must be called with all CPU's synchronized, and interrupts disabled, the
8331 * and caller must save the original value of the current task (see
8332 * curr_task() above) and restore that value before reenabling interrupts and
8333 * re-starting the system.
8334 *
8335 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8336 */
36c8b586 8337void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8338{
8339 cpu_curr(cpu) = p;
8340}
8341
8342#endif
29f59db3 8343
bccbe08a
PZ
8344#ifdef CONFIG_FAIR_GROUP_SCHED
8345static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8346{
8347 int i;
8348
8349 for_each_possible_cpu(i) {
8350 if (tg->cfs_rq)
8351 kfree(tg->cfs_rq[i]);
8352 if (tg->se)
8353 kfree(tg->se[i]);
6f505b16
PZ
8354 }
8355
8356 kfree(tg->cfs_rq);
8357 kfree(tg->se);
6f505b16
PZ
8358}
8359
ec7dc8ac
DG
8360static
8361int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8362{
29f59db3 8363 struct cfs_rq *cfs_rq;
eab17229 8364 struct sched_entity *se;
9b5b7751 8365 struct rq *rq;
29f59db3
SV
8366 int i;
8367
434d53b0 8368 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8369 if (!tg->cfs_rq)
8370 goto err;
434d53b0 8371 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8372 if (!tg->se)
8373 goto err;
052f1dc7
PZ
8374
8375 tg->shares = NICE_0_LOAD;
29f59db3
SV
8376
8377 for_each_possible_cpu(i) {
9b5b7751 8378 rq = cpu_rq(i);
29f59db3 8379
eab17229
LZ
8380 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8381 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8382 if (!cfs_rq)
8383 goto err;
8384
eab17229
LZ
8385 se = kzalloc_node(sizeof(struct sched_entity),
8386 GFP_KERNEL, cpu_to_node(i));
29f59db3 8387 if (!se)
dfc12eb2 8388 goto err_free_rq;
29f59db3 8389
3d4b47b4 8390 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8391 }
8392
8393 return 1;
8394
49246274 8395err_free_rq:
dfc12eb2 8396 kfree(cfs_rq);
49246274 8397err:
bccbe08a
PZ
8398 return 0;
8399}
8400
bccbe08a
PZ
8401static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8402{
3d4b47b4
PZ
8403 struct rq *rq = cpu_rq(cpu);
8404 unsigned long flags;
3d4b47b4
PZ
8405
8406 /*
8407 * Only empty task groups can be destroyed; so we can speculatively
8408 * check on_list without danger of it being re-added.
8409 */
8410 if (!tg->cfs_rq[cpu]->on_list)
8411 return;
8412
8413 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8414 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8415 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8416}
6d6bc0ad 8417#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8418static inline void free_fair_sched_group(struct task_group *tg)
8419{
8420}
8421
ec7dc8ac
DG
8422static inline
8423int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8424{
8425 return 1;
8426}
8427
bccbe08a
PZ
8428static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8429{
8430}
6d6bc0ad 8431#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8432
8433#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8434static void free_rt_sched_group(struct task_group *tg)
8435{
8436 int i;
8437
d0b27fa7
PZ
8438 destroy_rt_bandwidth(&tg->rt_bandwidth);
8439
bccbe08a
PZ
8440 for_each_possible_cpu(i) {
8441 if (tg->rt_rq)
8442 kfree(tg->rt_rq[i]);
8443 if (tg->rt_se)
8444 kfree(tg->rt_se[i]);
8445 }
8446
8447 kfree(tg->rt_rq);
8448 kfree(tg->rt_se);
8449}
8450
ec7dc8ac
DG
8451static
8452int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8453{
8454 struct rt_rq *rt_rq;
eab17229 8455 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8456 struct rq *rq;
8457 int i;
8458
434d53b0 8459 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8460 if (!tg->rt_rq)
8461 goto err;
434d53b0 8462 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8463 if (!tg->rt_se)
8464 goto err;
8465
d0b27fa7
PZ
8466 init_rt_bandwidth(&tg->rt_bandwidth,
8467 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8468
8469 for_each_possible_cpu(i) {
8470 rq = cpu_rq(i);
8471
eab17229
LZ
8472 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8473 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8474 if (!rt_rq)
8475 goto err;
29f59db3 8476
eab17229
LZ
8477 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8478 GFP_KERNEL, cpu_to_node(i));
6f505b16 8479 if (!rt_se)
dfc12eb2 8480 goto err_free_rq;
29f59db3 8481
3d4b47b4 8482 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8483 }
8484
bccbe08a
PZ
8485 return 1;
8486
49246274 8487err_free_rq:
dfc12eb2 8488 kfree(rt_rq);
49246274 8489err:
bccbe08a
PZ
8490 return 0;
8491}
6d6bc0ad 8492#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8493static inline void free_rt_sched_group(struct task_group *tg)
8494{
8495}
8496
ec7dc8ac
DG
8497static inline
8498int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8499{
8500 return 1;
8501}
6d6bc0ad 8502#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8503
7c941438 8504#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8505static void free_sched_group(struct task_group *tg)
8506{
8507 free_fair_sched_group(tg);
8508 free_rt_sched_group(tg);
e9aa1dd1 8509 autogroup_free(tg);
bccbe08a
PZ
8510 kfree(tg);
8511}
8512
8513/* allocate runqueue etc for a new task group */
ec7dc8ac 8514struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8515{
8516 struct task_group *tg;
8517 unsigned long flags;
bccbe08a
PZ
8518
8519 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8520 if (!tg)
8521 return ERR_PTR(-ENOMEM);
8522
ec7dc8ac 8523 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8524 goto err;
8525
ec7dc8ac 8526 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8527 goto err;
8528
8ed36996 8529 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8530 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8531
8532 WARN_ON(!parent); /* root should already exist */
8533
8534 tg->parent = parent;
f473aa5e 8535 INIT_LIST_HEAD(&tg->children);
09f2724a 8536 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8537 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8538
9b5b7751 8539 return tg;
29f59db3
SV
8540
8541err:
6f505b16 8542 free_sched_group(tg);
29f59db3
SV
8543 return ERR_PTR(-ENOMEM);
8544}
8545
9b5b7751 8546/* rcu callback to free various structures associated with a task group */
6f505b16 8547static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8548{
29f59db3 8549 /* now it should be safe to free those cfs_rqs */
6f505b16 8550 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8551}
8552
9b5b7751 8553/* Destroy runqueue etc associated with a task group */
4cf86d77 8554void sched_destroy_group(struct task_group *tg)
29f59db3 8555{
8ed36996 8556 unsigned long flags;
9b5b7751 8557 int i;
29f59db3 8558
3d4b47b4
PZ
8559 /* end participation in shares distribution */
8560 for_each_possible_cpu(i)
bccbe08a 8561 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8562
8563 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8564 list_del_rcu(&tg->list);
f473aa5e 8565 list_del_rcu(&tg->siblings);
8ed36996 8566 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8567
9b5b7751 8568 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8569 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8570}
8571
9b5b7751 8572/* change task's runqueue when it moves between groups.
3a252015
IM
8573 * The caller of this function should have put the task in its new group
8574 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8575 * reflect its new group.
9b5b7751
SV
8576 */
8577void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8578{
8579 int on_rq, running;
8580 unsigned long flags;
8581 struct rq *rq;
8582
8583 rq = task_rq_lock(tsk, &flags);
8584
051a1d1a 8585 running = task_current(rq, tsk);
29f59db3
SV
8586 on_rq = tsk->se.on_rq;
8587
0e1f3483 8588 if (on_rq)
29f59db3 8589 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8590 if (unlikely(running))
8591 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8592
810b3817 8593#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8594 if (tsk->sched_class->task_move_group)
8595 tsk->sched_class->task_move_group(tsk, on_rq);
8596 else
810b3817 8597#endif
b2b5ce02 8598 set_task_rq(tsk, task_cpu(tsk));
810b3817 8599
0e1f3483
HS
8600 if (unlikely(running))
8601 tsk->sched_class->set_curr_task(rq);
8602 if (on_rq)
371fd7e7 8603 enqueue_task(rq, tsk, 0);
29f59db3 8604
29f59db3
SV
8605 task_rq_unlock(rq, &flags);
8606}
7c941438 8607#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8608
052f1dc7 8609#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8610static DEFINE_MUTEX(shares_mutex);
8611
4cf86d77 8612int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8613{
8614 int i;
8ed36996 8615 unsigned long flags;
c61935fd 8616
ec7dc8ac
DG
8617 /*
8618 * We can't change the weight of the root cgroup.
8619 */
8620 if (!tg->se[0])
8621 return -EINVAL;
8622
18d95a28
PZ
8623 if (shares < MIN_SHARES)
8624 shares = MIN_SHARES;
cb4ad1ff
MX
8625 else if (shares > MAX_SHARES)
8626 shares = MAX_SHARES;
62fb1851 8627
8ed36996 8628 mutex_lock(&shares_mutex);
9b5b7751 8629 if (tg->shares == shares)
5cb350ba 8630 goto done;
29f59db3 8631
9b5b7751 8632 tg->shares = shares;
c09595f6 8633 for_each_possible_cpu(i) {
9437178f
PT
8634 struct rq *rq = cpu_rq(i);
8635 struct sched_entity *se;
8636
8637 se = tg->se[i];
8638 /* Propagate contribution to hierarchy */
8639 raw_spin_lock_irqsave(&rq->lock, flags);
8640 for_each_sched_entity(se)
6d5ab293 8641 update_cfs_shares(group_cfs_rq(se));
9437178f 8642 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8643 }
29f59db3 8644
5cb350ba 8645done:
8ed36996 8646 mutex_unlock(&shares_mutex);
9b5b7751 8647 return 0;
29f59db3
SV
8648}
8649
5cb350ba
DG
8650unsigned long sched_group_shares(struct task_group *tg)
8651{
8652 return tg->shares;
8653}
052f1dc7 8654#endif
5cb350ba 8655
052f1dc7 8656#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8657/*
9f0c1e56 8658 * Ensure that the real time constraints are schedulable.
6f505b16 8659 */
9f0c1e56
PZ
8660static DEFINE_MUTEX(rt_constraints_mutex);
8661
8662static unsigned long to_ratio(u64 period, u64 runtime)
8663{
8664 if (runtime == RUNTIME_INF)
9a7e0b18 8665 return 1ULL << 20;
9f0c1e56 8666
9a7e0b18 8667 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8668}
8669
9a7e0b18
PZ
8670/* Must be called with tasklist_lock held */
8671static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8672{
9a7e0b18 8673 struct task_struct *g, *p;
b40b2e8e 8674
9a7e0b18
PZ
8675 do_each_thread(g, p) {
8676 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8677 return 1;
8678 } while_each_thread(g, p);
b40b2e8e 8679
9a7e0b18
PZ
8680 return 0;
8681}
b40b2e8e 8682
9a7e0b18
PZ
8683struct rt_schedulable_data {
8684 struct task_group *tg;
8685 u64 rt_period;
8686 u64 rt_runtime;
8687};
b40b2e8e 8688
9a7e0b18
PZ
8689static int tg_schedulable(struct task_group *tg, void *data)
8690{
8691 struct rt_schedulable_data *d = data;
8692 struct task_group *child;
8693 unsigned long total, sum = 0;
8694 u64 period, runtime;
b40b2e8e 8695
9a7e0b18
PZ
8696 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8697 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8698
9a7e0b18
PZ
8699 if (tg == d->tg) {
8700 period = d->rt_period;
8701 runtime = d->rt_runtime;
b40b2e8e 8702 }
b40b2e8e 8703
4653f803
PZ
8704 /*
8705 * Cannot have more runtime than the period.
8706 */
8707 if (runtime > period && runtime != RUNTIME_INF)
8708 return -EINVAL;
6f505b16 8709
4653f803
PZ
8710 /*
8711 * Ensure we don't starve existing RT tasks.
8712 */
9a7e0b18
PZ
8713 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8714 return -EBUSY;
6f505b16 8715
9a7e0b18 8716 total = to_ratio(period, runtime);
6f505b16 8717
4653f803
PZ
8718 /*
8719 * Nobody can have more than the global setting allows.
8720 */
8721 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8722 return -EINVAL;
6f505b16 8723
4653f803
PZ
8724 /*
8725 * The sum of our children's runtime should not exceed our own.
8726 */
9a7e0b18
PZ
8727 list_for_each_entry_rcu(child, &tg->children, siblings) {
8728 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8729 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8730
9a7e0b18
PZ
8731 if (child == d->tg) {
8732 period = d->rt_period;
8733 runtime = d->rt_runtime;
8734 }
6f505b16 8735
9a7e0b18 8736 sum += to_ratio(period, runtime);
9f0c1e56 8737 }
6f505b16 8738
9a7e0b18
PZ
8739 if (sum > total)
8740 return -EINVAL;
8741
8742 return 0;
6f505b16
PZ
8743}
8744
9a7e0b18 8745static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8746{
9a7e0b18
PZ
8747 struct rt_schedulable_data data = {
8748 .tg = tg,
8749 .rt_period = period,
8750 .rt_runtime = runtime,
8751 };
8752
8753 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8754}
8755
d0b27fa7
PZ
8756static int tg_set_bandwidth(struct task_group *tg,
8757 u64 rt_period, u64 rt_runtime)
6f505b16 8758{
ac086bc2 8759 int i, err = 0;
9f0c1e56 8760
9f0c1e56 8761 mutex_lock(&rt_constraints_mutex);
521f1a24 8762 read_lock(&tasklist_lock);
9a7e0b18
PZ
8763 err = __rt_schedulable(tg, rt_period, rt_runtime);
8764 if (err)
9f0c1e56 8765 goto unlock;
ac086bc2 8766
0986b11b 8767 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8768 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8769 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8770
8771 for_each_possible_cpu(i) {
8772 struct rt_rq *rt_rq = tg->rt_rq[i];
8773
0986b11b 8774 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8775 rt_rq->rt_runtime = rt_runtime;
0986b11b 8776 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8777 }
0986b11b 8778 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8779unlock:
521f1a24 8780 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8781 mutex_unlock(&rt_constraints_mutex);
8782
8783 return err;
6f505b16
PZ
8784}
8785
d0b27fa7
PZ
8786int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8787{
8788 u64 rt_runtime, rt_period;
8789
8790 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8791 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8792 if (rt_runtime_us < 0)
8793 rt_runtime = RUNTIME_INF;
8794
8795 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8796}
8797
9f0c1e56
PZ
8798long sched_group_rt_runtime(struct task_group *tg)
8799{
8800 u64 rt_runtime_us;
8801
d0b27fa7 8802 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8803 return -1;
8804
d0b27fa7 8805 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8806 do_div(rt_runtime_us, NSEC_PER_USEC);
8807 return rt_runtime_us;
8808}
d0b27fa7
PZ
8809
8810int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8811{
8812 u64 rt_runtime, rt_period;
8813
8814 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8815 rt_runtime = tg->rt_bandwidth.rt_runtime;
8816
619b0488
R
8817 if (rt_period == 0)
8818 return -EINVAL;
8819
d0b27fa7
PZ
8820 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8821}
8822
8823long sched_group_rt_period(struct task_group *tg)
8824{
8825 u64 rt_period_us;
8826
8827 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8828 do_div(rt_period_us, NSEC_PER_USEC);
8829 return rt_period_us;
8830}
8831
8832static int sched_rt_global_constraints(void)
8833{
4653f803 8834 u64 runtime, period;
d0b27fa7
PZ
8835 int ret = 0;
8836
ec5d4989
HS
8837 if (sysctl_sched_rt_period <= 0)
8838 return -EINVAL;
8839
4653f803
PZ
8840 runtime = global_rt_runtime();
8841 period = global_rt_period();
8842
8843 /*
8844 * Sanity check on the sysctl variables.
8845 */
8846 if (runtime > period && runtime != RUNTIME_INF)
8847 return -EINVAL;
10b612f4 8848
d0b27fa7 8849 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8850 read_lock(&tasklist_lock);
4653f803 8851 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8852 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8853 mutex_unlock(&rt_constraints_mutex);
8854
8855 return ret;
8856}
54e99124
DG
8857
8858int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8859{
8860 /* Don't accept realtime tasks when there is no way for them to run */
8861 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8862 return 0;
8863
8864 return 1;
8865}
8866
6d6bc0ad 8867#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8868static int sched_rt_global_constraints(void)
8869{
ac086bc2
PZ
8870 unsigned long flags;
8871 int i;
8872
ec5d4989
HS
8873 if (sysctl_sched_rt_period <= 0)
8874 return -EINVAL;
8875
60aa605d
PZ
8876 /*
8877 * There's always some RT tasks in the root group
8878 * -- migration, kstopmachine etc..
8879 */
8880 if (sysctl_sched_rt_runtime == 0)
8881 return -EBUSY;
8882
0986b11b 8883 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8884 for_each_possible_cpu(i) {
8885 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8886
0986b11b 8887 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8888 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8889 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8890 }
0986b11b 8891 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8892
d0b27fa7
PZ
8893 return 0;
8894}
6d6bc0ad 8895#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8896
8897int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8898 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8899 loff_t *ppos)
8900{
8901 int ret;
8902 int old_period, old_runtime;
8903 static DEFINE_MUTEX(mutex);
8904
8905 mutex_lock(&mutex);
8906 old_period = sysctl_sched_rt_period;
8907 old_runtime = sysctl_sched_rt_runtime;
8908
8d65af78 8909 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8910
8911 if (!ret && write) {
8912 ret = sched_rt_global_constraints();
8913 if (ret) {
8914 sysctl_sched_rt_period = old_period;
8915 sysctl_sched_rt_runtime = old_runtime;
8916 } else {
8917 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8918 def_rt_bandwidth.rt_period =
8919 ns_to_ktime(global_rt_period());
8920 }
8921 }
8922 mutex_unlock(&mutex);
8923
8924 return ret;
8925}
68318b8e 8926
052f1dc7 8927#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8928
8929/* return corresponding task_group object of a cgroup */
2b01dfe3 8930static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8931{
2b01dfe3
PM
8932 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8933 struct task_group, css);
68318b8e
SV
8934}
8935
8936static struct cgroup_subsys_state *
2b01dfe3 8937cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8938{
ec7dc8ac 8939 struct task_group *tg, *parent;
68318b8e 8940
2b01dfe3 8941 if (!cgrp->parent) {
68318b8e 8942 /* This is early initialization for the top cgroup */
07e06b01 8943 return &root_task_group.css;
68318b8e
SV
8944 }
8945
ec7dc8ac
DG
8946 parent = cgroup_tg(cgrp->parent);
8947 tg = sched_create_group(parent);
68318b8e
SV
8948 if (IS_ERR(tg))
8949 return ERR_PTR(-ENOMEM);
8950
68318b8e
SV
8951 return &tg->css;
8952}
8953
41a2d6cf
IM
8954static void
8955cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8956{
2b01dfe3 8957 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8958
8959 sched_destroy_group(tg);
8960}
8961
41a2d6cf 8962static int
be367d09 8963cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8964{
b68aa230 8965#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8966 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8967 return -EINVAL;
8968#else
68318b8e
SV
8969 /* We don't support RT-tasks being in separate groups */
8970 if (tsk->sched_class != &fair_sched_class)
8971 return -EINVAL;
b68aa230 8972#endif
be367d09
BB
8973 return 0;
8974}
68318b8e 8975
be367d09
BB
8976static int
8977cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8978 struct task_struct *tsk, bool threadgroup)
8979{
8980 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8981 if (retval)
8982 return retval;
8983 if (threadgroup) {
8984 struct task_struct *c;
8985 rcu_read_lock();
8986 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8987 retval = cpu_cgroup_can_attach_task(cgrp, c);
8988 if (retval) {
8989 rcu_read_unlock();
8990 return retval;
8991 }
8992 }
8993 rcu_read_unlock();
8994 }
68318b8e
SV
8995 return 0;
8996}
8997
8998static void
2b01dfe3 8999cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9000 struct cgroup *old_cont, struct task_struct *tsk,
9001 bool threadgroup)
68318b8e
SV
9002{
9003 sched_move_task(tsk);
be367d09
BB
9004 if (threadgroup) {
9005 struct task_struct *c;
9006 rcu_read_lock();
9007 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9008 sched_move_task(c);
9009 }
9010 rcu_read_unlock();
9011 }
68318b8e
SV
9012}
9013
068c5cc5
PZ
9014static void
9015cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9016{
9017 /*
9018 * cgroup_exit() is called in the copy_process() failure path.
9019 * Ignore this case since the task hasn't ran yet, this avoids
9020 * trying to poke a half freed task state from generic code.
9021 */
9022 if (!(task->flags & PF_EXITING))
9023 return;
9024
9025 sched_move_task(task);
9026}
9027
052f1dc7 9028#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9029static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9030 u64 shareval)
68318b8e 9031{
2b01dfe3 9032 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9033}
9034
f4c753b7 9035static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9036{
2b01dfe3 9037 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9038
9039 return (u64) tg->shares;
9040}
6d6bc0ad 9041#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9042
052f1dc7 9043#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9044static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9045 s64 val)
6f505b16 9046{
06ecb27c 9047 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9048}
9049
06ecb27c 9050static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9051{
06ecb27c 9052 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9053}
d0b27fa7
PZ
9054
9055static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9056 u64 rt_period_us)
9057{
9058 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9059}
9060
9061static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9062{
9063 return sched_group_rt_period(cgroup_tg(cgrp));
9064}
6d6bc0ad 9065#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9066
fe5c7cc2 9067static struct cftype cpu_files[] = {
052f1dc7 9068#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9069 {
9070 .name = "shares",
f4c753b7
PM
9071 .read_u64 = cpu_shares_read_u64,
9072 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9073 },
052f1dc7
PZ
9074#endif
9075#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9076 {
9f0c1e56 9077 .name = "rt_runtime_us",
06ecb27c
PM
9078 .read_s64 = cpu_rt_runtime_read,
9079 .write_s64 = cpu_rt_runtime_write,
6f505b16 9080 },
d0b27fa7
PZ
9081 {
9082 .name = "rt_period_us",
f4c753b7
PM
9083 .read_u64 = cpu_rt_period_read_uint,
9084 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9085 },
052f1dc7 9086#endif
68318b8e
SV
9087};
9088
9089static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9090{
fe5c7cc2 9091 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9092}
9093
9094struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9095 .name = "cpu",
9096 .create = cpu_cgroup_create,
9097 .destroy = cpu_cgroup_destroy,
9098 .can_attach = cpu_cgroup_can_attach,
9099 .attach = cpu_cgroup_attach,
068c5cc5 9100 .exit = cpu_cgroup_exit,
38605cae
IM
9101 .populate = cpu_cgroup_populate,
9102 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9103 .early_init = 1,
9104};
9105
052f1dc7 9106#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9107
9108#ifdef CONFIG_CGROUP_CPUACCT
9109
9110/*
9111 * CPU accounting code for task groups.
9112 *
9113 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9114 * (balbir@in.ibm.com).
9115 */
9116
934352f2 9117/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9118struct cpuacct {
9119 struct cgroup_subsys_state css;
9120 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9121 u64 __percpu *cpuusage;
ef12fefa 9122 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9123 struct cpuacct *parent;
d842de87
SV
9124};
9125
9126struct cgroup_subsys cpuacct_subsys;
9127
9128/* return cpu accounting group corresponding to this container */
32cd756a 9129static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9130{
32cd756a 9131 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9132 struct cpuacct, css);
9133}
9134
9135/* return cpu accounting group to which this task belongs */
9136static inline struct cpuacct *task_ca(struct task_struct *tsk)
9137{
9138 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9139 struct cpuacct, css);
9140}
9141
9142/* create a new cpu accounting group */
9143static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9144 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9145{
9146 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9147 int i;
d842de87
SV
9148
9149 if (!ca)
ef12fefa 9150 goto out;
d842de87
SV
9151
9152 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9153 if (!ca->cpuusage)
9154 goto out_free_ca;
9155
9156 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9157 if (percpu_counter_init(&ca->cpustat[i], 0))
9158 goto out_free_counters;
d842de87 9159
934352f2
BR
9160 if (cgrp->parent)
9161 ca->parent = cgroup_ca(cgrp->parent);
9162
d842de87 9163 return &ca->css;
ef12fefa
BR
9164
9165out_free_counters:
9166 while (--i >= 0)
9167 percpu_counter_destroy(&ca->cpustat[i]);
9168 free_percpu(ca->cpuusage);
9169out_free_ca:
9170 kfree(ca);
9171out:
9172 return ERR_PTR(-ENOMEM);
d842de87
SV
9173}
9174
9175/* destroy an existing cpu accounting group */
41a2d6cf 9176static void
32cd756a 9177cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9178{
32cd756a 9179 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9180 int i;
d842de87 9181
ef12fefa
BR
9182 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9183 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9184 free_percpu(ca->cpuusage);
9185 kfree(ca);
9186}
9187
720f5498
KC
9188static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9189{
b36128c8 9190 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9191 u64 data;
9192
9193#ifndef CONFIG_64BIT
9194 /*
9195 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9196 */
05fa785c 9197 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9198 data = *cpuusage;
05fa785c 9199 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9200#else
9201 data = *cpuusage;
9202#endif
9203
9204 return data;
9205}
9206
9207static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9208{
b36128c8 9209 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9210
9211#ifndef CONFIG_64BIT
9212 /*
9213 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9214 */
05fa785c 9215 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9216 *cpuusage = val;
05fa785c 9217 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9218#else
9219 *cpuusage = val;
9220#endif
9221}
9222
d842de87 9223/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9224static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9225{
32cd756a 9226 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9227 u64 totalcpuusage = 0;
9228 int i;
9229
720f5498
KC
9230 for_each_present_cpu(i)
9231 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9232
9233 return totalcpuusage;
9234}
9235
0297b803
DG
9236static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9237 u64 reset)
9238{
9239 struct cpuacct *ca = cgroup_ca(cgrp);
9240 int err = 0;
9241 int i;
9242
9243 if (reset) {
9244 err = -EINVAL;
9245 goto out;
9246 }
9247
720f5498
KC
9248 for_each_present_cpu(i)
9249 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9250
0297b803
DG
9251out:
9252 return err;
9253}
9254
e9515c3c
KC
9255static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9256 struct seq_file *m)
9257{
9258 struct cpuacct *ca = cgroup_ca(cgroup);
9259 u64 percpu;
9260 int i;
9261
9262 for_each_present_cpu(i) {
9263 percpu = cpuacct_cpuusage_read(ca, i);
9264 seq_printf(m, "%llu ", (unsigned long long) percpu);
9265 }
9266 seq_printf(m, "\n");
9267 return 0;
9268}
9269
ef12fefa
BR
9270static const char *cpuacct_stat_desc[] = {
9271 [CPUACCT_STAT_USER] = "user",
9272 [CPUACCT_STAT_SYSTEM] = "system",
9273};
9274
9275static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9276 struct cgroup_map_cb *cb)
9277{
9278 struct cpuacct *ca = cgroup_ca(cgrp);
9279 int i;
9280
9281 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9282 s64 val = percpu_counter_read(&ca->cpustat[i]);
9283 val = cputime64_to_clock_t(val);
9284 cb->fill(cb, cpuacct_stat_desc[i], val);
9285 }
9286 return 0;
9287}
9288
d842de87
SV
9289static struct cftype files[] = {
9290 {
9291 .name = "usage",
f4c753b7
PM
9292 .read_u64 = cpuusage_read,
9293 .write_u64 = cpuusage_write,
d842de87 9294 },
e9515c3c
KC
9295 {
9296 .name = "usage_percpu",
9297 .read_seq_string = cpuacct_percpu_seq_read,
9298 },
ef12fefa
BR
9299 {
9300 .name = "stat",
9301 .read_map = cpuacct_stats_show,
9302 },
d842de87
SV
9303};
9304
32cd756a 9305static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9306{
32cd756a 9307 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9308}
9309
9310/*
9311 * charge this task's execution time to its accounting group.
9312 *
9313 * called with rq->lock held.
9314 */
9315static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9316{
9317 struct cpuacct *ca;
934352f2 9318 int cpu;
d842de87 9319
c40c6f85 9320 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9321 return;
9322
934352f2 9323 cpu = task_cpu(tsk);
a18b83b7
BR
9324
9325 rcu_read_lock();
9326
d842de87 9327 ca = task_ca(tsk);
d842de87 9328
934352f2 9329 for (; ca; ca = ca->parent) {
b36128c8 9330 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9331 *cpuusage += cputime;
9332 }
a18b83b7
BR
9333
9334 rcu_read_unlock();
d842de87
SV
9335}
9336
fa535a77
AB
9337/*
9338 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9339 * in cputime_t units. As a result, cpuacct_update_stats calls
9340 * percpu_counter_add with values large enough to always overflow the
9341 * per cpu batch limit causing bad SMP scalability.
9342 *
9343 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9344 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9345 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9346 */
9347#ifdef CONFIG_SMP
9348#define CPUACCT_BATCH \
9349 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9350#else
9351#define CPUACCT_BATCH 0
9352#endif
9353
ef12fefa
BR
9354/*
9355 * Charge the system/user time to the task's accounting group.
9356 */
9357static void cpuacct_update_stats(struct task_struct *tsk,
9358 enum cpuacct_stat_index idx, cputime_t val)
9359{
9360 struct cpuacct *ca;
fa535a77 9361 int batch = CPUACCT_BATCH;
ef12fefa
BR
9362
9363 if (unlikely(!cpuacct_subsys.active))
9364 return;
9365
9366 rcu_read_lock();
9367 ca = task_ca(tsk);
9368
9369 do {
fa535a77 9370 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9371 ca = ca->parent;
9372 } while (ca);
9373 rcu_read_unlock();
9374}
9375
d842de87
SV
9376struct cgroup_subsys cpuacct_subsys = {
9377 .name = "cpuacct",
9378 .create = cpuacct_create,
9379 .destroy = cpuacct_destroy,
9380 .populate = cpuacct_populate,
9381 .subsys_id = cpuacct_subsys_id,
9382};
9383#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9384
This page took 2.042731 seconds and 5 git commands to generate.