sched: Export ns irqtimes through /proc/stat
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
18d95a28
PZ
1689#endif
1690
74f5187a 1691static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1692static void update_sysctl(void);
acb4a848 1693static int get_update_sysctl_factor(void);
fdf3e95d 1694static void update_cpu_load(struct rq *this_rq);
dce48a84 1695
cd29fe6f
PZ
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698 set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707#endif
1708}
dce48a84 1709
1e3c88bd 1710static const struct sched_class rt_sched_class;
dd41f596 1711
34f971f6 1712#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1713#define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
dd41f596 1715
1e3c88bd
PZ
1716#include "sched_stats.h"
1717
c09595f6 1718static void inc_nr_running(struct rq *rq)
9c217245
IM
1719{
1720 rq->nr_running++;
9c217245
IM
1721}
1722
c09595f6 1723static void dec_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running--;
9c217245
IM
1726}
1727
45bf76df
IM
1728static void set_load_weight(struct task_struct *p)
1729{
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
371fd7e7 1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1744{
a64692a3 1745 update_rq_clock(rq);
dd41f596 1746 sched_info_queued(p);
371fd7e7 1747 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1748 p->se.on_rq = 1;
71f8bd46
IM
1749}
1750
371fd7e7 1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1752{
a64692a3 1753 update_rq_clock(rq);
46ac22ba 1754 sched_info_dequeued(p);
371fd7e7 1755 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1756 p->se.on_rq = 0;
71f8bd46
IM
1757}
1758
1e3c88bd
PZ
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
371fd7e7 1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1763{
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
371fd7e7 1767 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1768 inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
371fd7e7 1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1775{
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
371fd7e7 1779 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1780 dec_nr_running(rq);
1781}
1782
b52bfee4
VP
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
305e6835
VP
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
305e6835 1795 */
b52bfee4
VP
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804 sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809 sched_clock_irqtime = 0;
1810}
1811
8e92c201
PZ
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
305e6835 1850{
305e6835
VP
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
8e92c201 1853#endif /* CONFIG_64BIT */
305e6835 1854
fe44d621
PZ
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
b52bfee4
VP
1859void account_system_vtime(struct task_struct *curr)
1860{
1861 unsigned long flags;
fe44d621 1862 s64 delta;
b52bfee4 1863 int cpu;
b52bfee4
VP
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
b52bfee4 1870 cpu = smp_processor_id();
fe44d621
PZ
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
8e92c201 1874 irq_time_write_begin();
b52bfee4
VP
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
fe44d621 1882 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1883 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1884 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1885
8e92c201 1886 irq_time_write_end();
b52bfee4
VP
1887 local_irq_restore(flags);
1888}
b7dadc38 1889EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1890
fe44d621 1891static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1892{
fe44d621
PZ
1893 s64 irq_delta;
1894
8e92c201 1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1921}
1922
abb74cef
VP
1923static int irqtime_account_hi_update(void)
1924{
1925 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1926 unsigned long flags;
1927 u64 latest_ns;
1928 int ret = 0;
1929
1930 local_irq_save(flags);
1931 latest_ns = this_cpu_read(cpu_hardirq_time);
1932 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1933 ret = 1;
1934 local_irq_restore(flags);
1935 return ret;
1936}
1937
1938static int irqtime_account_si_update(void)
1939{
1940 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1941 unsigned long flags;
1942 u64 latest_ns;
1943 int ret = 0;
1944
1945 local_irq_save(flags);
1946 latest_ns = this_cpu_read(cpu_softirq_time);
1947 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1948 ret = 1;
1949 local_irq_restore(flags);
1950 return ret;
1951}
1952
fe44d621 1953#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1954
abb74cef
VP
1955#define sched_clock_irqtime (0)
1956
fe44d621 1957static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1958{
fe44d621 1959 rq->clock_task += delta;
305e6835
VP
1960}
1961
fe44d621 1962#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1963
1e3c88bd
PZ
1964#include "sched_idletask.c"
1965#include "sched_fair.c"
1966#include "sched_rt.c"
5091faa4 1967#include "sched_autogroup.c"
34f971f6 1968#include "sched_stoptask.c"
1e3c88bd
PZ
1969#ifdef CONFIG_SCHED_DEBUG
1970# include "sched_debug.c"
1971#endif
1972
34f971f6
PZ
1973void sched_set_stop_task(int cpu, struct task_struct *stop)
1974{
1975 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1976 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1977
1978 if (stop) {
1979 /*
1980 * Make it appear like a SCHED_FIFO task, its something
1981 * userspace knows about and won't get confused about.
1982 *
1983 * Also, it will make PI more or less work without too
1984 * much confusion -- but then, stop work should not
1985 * rely on PI working anyway.
1986 */
1987 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1988
1989 stop->sched_class = &stop_sched_class;
1990 }
1991
1992 cpu_rq(cpu)->stop = stop;
1993
1994 if (old_stop) {
1995 /*
1996 * Reset it back to a normal scheduling class so that
1997 * it can die in pieces.
1998 */
1999 old_stop->sched_class = &rt_sched_class;
2000 }
2001}
2002
14531189 2003/*
dd41f596 2004 * __normal_prio - return the priority that is based on the static prio
14531189 2005 */
14531189
IM
2006static inline int __normal_prio(struct task_struct *p)
2007{
dd41f596 2008 return p->static_prio;
14531189
IM
2009}
2010
b29739f9
IM
2011/*
2012 * Calculate the expected normal priority: i.e. priority
2013 * without taking RT-inheritance into account. Might be
2014 * boosted by interactivity modifiers. Changes upon fork,
2015 * setprio syscalls, and whenever the interactivity
2016 * estimator recalculates.
2017 */
36c8b586 2018static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2019{
2020 int prio;
2021
e05606d3 2022 if (task_has_rt_policy(p))
b29739f9
IM
2023 prio = MAX_RT_PRIO-1 - p->rt_priority;
2024 else
2025 prio = __normal_prio(p);
2026 return prio;
2027}
2028
2029/*
2030 * Calculate the current priority, i.e. the priority
2031 * taken into account by the scheduler. This value might
2032 * be boosted by RT tasks, or might be boosted by
2033 * interactivity modifiers. Will be RT if the task got
2034 * RT-boosted. If not then it returns p->normal_prio.
2035 */
36c8b586 2036static int effective_prio(struct task_struct *p)
b29739f9
IM
2037{
2038 p->normal_prio = normal_prio(p);
2039 /*
2040 * If we are RT tasks or we were boosted to RT priority,
2041 * keep the priority unchanged. Otherwise, update priority
2042 * to the normal priority:
2043 */
2044 if (!rt_prio(p->prio))
2045 return p->normal_prio;
2046 return p->prio;
2047}
2048
1da177e4
LT
2049/**
2050 * task_curr - is this task currently executing on a CPU?
2051 * @p: the task in question.
2052 */
36c8b586 2053inline int task_curr(const struct task_struct *p)
1da177e4
LT
2054{
2055 return cpu_curr(task_cpu(p)) == p;
2056}
2057
cb469845
SR
2058static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2059 const struct sched_class *prev_class,
2060 int oldprio, int running)
2061{
2062 if (prev_class != p->sched_class) {
2063 if (prev_class->switched_from)
2064 prev_class->switched_from(rq, p, running);
2065 p->sched_class->switched_to(rq, p, running);
2066 } else
2067 p->sched_class->prio_changed(rq, p, oldprio, running);
2068}
2069
1e5a7405
PZ
2070static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2071{
2072 const struct sched_class *class;
2073
2074 if (p->sched_class == rq->curr->sched_class) {
2075 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2076 } else {
2077 for_each_class(class) {
2078 if (class == rq->curr->sched_class)
2079 break;
2080 if (class == p->sched_class) {
2081 resched_task(rq->curr);
2082 break;
2083 }
2084 }
2085 }
2086
2087 /*
2088 * A queue event has occurred, and we're going to schedule. In
2089 * this case, we can save a useless back to back clock update.
2090 */
f26f9aff 2091 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2092 rq->skip_clock_update = 1;
2093}
2094
1da177e4 2095#ifdef CONFIG_SMP
cc367732
IM
2096/*
2097 * Is this task likely cache-hot:
2098 */
e7693a36 2099static int
cc367732
IM
2100task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2101{
2102 s64 delta;
2103
e6c8fba7
PZ
2104 if (p->sched_class != &fair_sched_class)
2105 return 0;
2106
ef8002f6
NR
2107 if (unlikely(p->policy == SCHED_IDLE))
2108 return 0;
2109
f540a608
IM
2110 /*
2111 * Buddy candidates are cache hot:
2112 */
f685ceac 2113 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2114 (&p->se == cfs_rq_of(&p->se)->next ||
2115 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2116 return 1;
2117
6bc1665b
IM
2118 if (sysctl_sched_migration_cost == -1)
2119 return 1;
2120 if (sysctl_sched_migration_cost == 0)
2121 return 0;
2122
cc367732
IM
2123 delta = now - p->se.exec_start;
2124
2125 return delta < (s64)sysctl_sched_migration_cost;
2126}
2127
dd41f596 2128void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2129{
e2912009
PZ
2130#ifdef CONFIG_SCHED_DEBUG
2131 /*
2132 * We should never call set_task_cpu() on a blocked task,
2133 * ttwu() will sort out the placement.
2134 */
077614ee
PZ
2135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2136 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2137#endif
2138
de1d7286 2139 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2140
0c69774e
PZ
2141 if (task_cpu(p) != new_cpu) {
2142 p->se.nr_migrations++;
2143 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2144 }
dd41f596
IM
2145
2146 __set_task_cpu(p, new_cpu);
c65cc870
IM
2147}
2148
969c7921 2149struct migration_arg {
36c8b586 2150 struct task_struct *task;
1da177e4 2151 int dest_cpu;
70b97a7f 2152};
1da177e4 2153
969c7921
TH
2154static int migration_cpu_stop(void *data);
2155
1da177e4
LT
2156/*
2157 * The task's runqueue lock must be held.
2158 * Returns true if you have to wait for migration thread.
2159 */
b7a2b39d 2160static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2161{
1da177e4
LT
2162 /*
2163 * If the task is not on a runqueue (and not running), then
e2912009 2164 * the next wake-up will properly place the task.
1da177e4 2165 */
969c7921 2166 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2167}
2168
2169/*
2170 * wait_task_inactive - wait for a thread to unschedule.
2171 *
85ba2d86
RM
2172 * If @match_state is nonzero, it's the @p->state value just checked and
2173 * not expected to change. If it changes, i.e. @p might have woken up,
2174 * then return zero. When we succeed in waiting for @p to be off its CPU,
2175 * we return a positive number (its total switch count). If a second call
2176 * a short while later returns the same number, the caller can be sure that
2177 * @p has remained unscheduled the whole time.
2178 *
1da177e4
LT
2179 * The caller must ensure that the task *will* unschedule sometime soon,
2180 * else this function might spin for a *long* time. This function can't
2181 * be called with interrupts off, or it may introduce deadlock with
2182 * smp_call_function() if an IPI is sent by the same process we are
2183 * waiting to become inactive.
2184 */
85ba2d86 2185unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2186{
2187 unsigned long flags;
dd41f596 2188 int running, on_rq;
85ba2d86 2189 unsigned long ncsw;
70b97a7f 2190 struct rq *rq;
1da177e4 2191
3a5c359a
AK
2192 for (;;) {
2193 /*
2194 * We do the initial early heuristics without holding
2195 * any task-queue locks at all. We'll only try to get
2196 * the runqueue lock when things look like they will
2197 * work out!
2198 */
2199 rq = task_rq(p);
fa490cfd 2200
3a5c359a
AK
2201 /*
2202 * If the task is actively running on another CPU
2203 * still, just relax and busy-wait without holding
2204 * any locks.
2205 *
2206 * NOTE! Since we don't hold any locks, it's not
2207 * even sure that "rq" stays as the right runqueue!
2208 * But we don't care, since "task_running()" will
2209 * return false if the runqueue has changed and p
2210 * is actually now running somewhere else!
2211 */
85ba2d86
RM
2212 while (task_running(rq, p)) {
2213 if (match_state && unlikely(p->state != match_state))
2214 return 0;
3a5c359a 2215 cpu_relax();
85ba2d86 2216 }
fa490cfd 2217
3a5c359a
AK
2218 /*
2219 * Ok, time to look more closely! We need the rq
2220 * lock now, to be *sure*. If we're wrong, we'll
2221 * just go back and repeat.
2222 */
2223 rq = task_rq_lock(p, &flags);
27a9da65 2224 trace_sched_wait_task(p);
3a5c359a
AK
2225 running = task_running(rq, p);
2226 on_rq = p->se.on_rq;
85ba2d86 2227 ncsw = 0;
f31e11d8 2228 if (!match_state || p->state == match_state)
93dcf55f 2229 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2230 task_rq_unlock(rq, &flags);
fa490cfd 2231
85ba2d86
RM
2232 /*
2233 * If it changed from the expected state, bail out now.
2234 */
2235 if (unlikely(!ncsw))
2236 break;
2237
3a5c359a
AK
2238 /*
2239 * Was it really running after all now that we
2240 * checked with the proper locks actually held?
2241 *
2242 * Oops. Go back and try again..
2243 */
2244 if (unlikely(running)) {
2245 cpu_relax();
2246 continue;
2247 }
fa490cfd 2248
3a5c359a
AK
2249 /*
2250 * It's not enough that it's not actively running,
2251 * it must be off the runqueue _entirely_, and not
2252 * preempted!
2253 *
80dd99b3 2254 * So if it was still runnable (but just not actively
3a5c359a
AK
2255 * running right now), it's preempted, and we should
2256 * yield - it could be a while.
2257 */
2258 if (unlikely(on_rq)) {
2259 schedule_timeout_uninterruptible(1);
2260 continue;
2261 }
fa490cfd 2262
3a5c359a
AK
2263 /*
2264 * Ahh, all good. It wasn't running, and it wasn't
2265 * runnable, which means that it will never become
2266 * running in the future either. We're all done!
2267 */
2268 break;
2269 }
85ba2d86
RM
2270
2271 return ncsw;
1da177e4
LT
2272}
2273
2274/***
2275 * kick_process - kick a running thread to enter/exit the kernel
2276 * @p: the to-be-kicked thread
2277 *
2278 * Cause a process which is running on another CPU to enter
2279 * kernel-mode, without any delay. (to get signals handled.)
2280 *
2281 * NOTE: this function doesnt have to take the runqueue lock,
2282 * because all it wants to ensure is that the remote task enters
2283 * the kernel. If the IPI races and the task has been migrated
2284 * to another CPU then no harm is done and the purpose has been
2285 * achieved as well.
2286 */
36c8b586 2287void kick_process(struct task_struct *p)
1da177e4
LT
2288{
2289 int cpu;
2290
2291 preempt_disable();
2292 cpu = task_cpu(p);
2293 if ((cpu != smp_processor_id()) && task_curr(p))
2294 smp_send_reschedule(cpu);
2295 preempt_enable();
2296}
b43e3521 2297EXPORT_SYMBOL_GPL(kick_process);
476d139c 2298#endif /* CONFIG_SMP */
1da177e4 2299
0793a61d
TG
2300/**
2301 * task_oncpu_function_call - call a function on the cpu on which a task runs
2302 * @p: the task to evaluate
2303 * @func: the function to be called
2304 * @info: the function call argument
2305 *
2306 * Calls the function @func when the task is currently running. This might
2307 * be on the current CPU, which just calls the function directly
2308 */
2309void task_oncpu_function_call(struct task_struct *p,
2310 void (*func) (void *info), void *info)
2311{
2312 int cpu;
2313
2314 preempt_disable();
2315 cpu = task_cpu(p);
2316 if (task_curr(p))
2317 smp_call_function_single(cpu, func, info, 1);
2318 preempt_enable();
2319}
2320
970b13ba 2321#ifdef CONFIG_SMP
30da688e
ON
2322/*
2323 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2324 */
5da9a0fb
PZ
2325static int select_fallback_rq(int cpu, struct task_struct *p)
2326{
2327 int dest_cpu;
2328 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2329
2330 /* Look for allowed, online CPU in same node. */
2331 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2332 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2333 return dest_cpu;
2334
2335 /* Any allowed, online CPU? */
2336 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2337 if (dest_cpu < nr_cpu_ids)
2338 return dest_cpu;
2339
2340 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2341 dest_cpu = cpuset_cpus_allowed_fallback(p);
2342 /*
2343 * Don't tell them about moving exiting tasks or
2344 * kernel threads (both mm NULL), since they never
2345 * leave kernel.
2346 */
2347 if (p->mm && printk_ratelimit()) {
2348 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2349 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2350 }
2351
2352 return dest_cpu;
2353}
2354
e2912009 2355/*
30da688e 2356 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2357 */
970b13ba 2358static inline
0017d735 2359int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2360{
0017d735 2361 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2362
2363 /*
2364 * In order not to call set_task_cpu() on a blocking task we need
2365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2366 * cpu.
2367 *
2368 * Since this is common to all placement strategies, this lives here.
2369 *
2370 * [ this allows ->select_task() to simply return task_cpu(p) and
2371 * not worry about this generic constraint ]
2372 */
2373 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2374 !cpu_online(cpu)))
5da9a0fb 2375 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2376
2377 return cpu;
970b13ba 2378}
09a40af5
MG
2379
2380static void update_avg(u64 *avg, u64 sample)
2381{
2382 s64 diff = sample - *avg;
2383 *avg += diff >> 3;
2384}
970b13ba
PZ
2385#endif
2386
9ed3811a
TH
2387static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2388 bool is_sync, bool is_migrate, bool is_local,
2389 unsigned long en_flags)
2390{
2391 schedstat_inc(p, se.statistics.nr_wakeups);
2392 if (is_sync)
2393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2394 if (is_migrate)
2395 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2396 if (is_local)
2397 schedstat_inc(p, se.statistics.nr_wakeups_local);
2398 else
2399 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2400
2401 activate_task(rq, p, en_flags);
2402}
2403
2404static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2405 int wake_flags, bool success)
2406{
2407 trace_sched_wakeup(p, success);
2408 check_preempt_curr(rq, p, wake_flags);
2409
2410 p->state = TASK_RUNNING;
2411#ifdef CONFIG_SMP
2412 if (p->sched_class->task_woken)
2413 p->sched_class->task_woken(rq, p);
2414
2415 if (unlikely(rq->idle_stamp)) {
2416 u64 delta = rq->clock - rq->idle_stamp;
2417 u64 max = 2*sysctl_sched_migration_cost;
2418
2419 if (delta > max)
2420 rq->avg_idle = max;
2421 else
2422 update_avg(&rq->avg_idle, delta);
2423 rq->idle_stamp = 0;
2424 }
2425#endif
21aa9af0
TH
2426 /* if a worker is waking up, notify workqueue */
2427 if ((p->flags & PF_WQ_WORKER) && success)
2428 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2429}
2430
2431/**
1da177e4 2432 * try_to_wake_up - wake up a thread
9ed3811a 2433 * @p: the thread to be awakened
1da177e4 2434 * @state: the mask of task states that can be woken
9ed3811a 2435 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2436 *
2437 * Put it on the run-queue if it's not already there. The "current"
2438 * thread is always on the run-queue (except when the actual
2439 * re-schedule is in progress), and as such you're allowed to do
2440 * the simpler "current->state = TASK_RUNNING" to mark yourself
2441 * runnable without the overhead of this.
2442 *
9ed3811a
TH
2443 * Returns %true if @p was woken up, %false if it was already running
2444 * or @state didn't match @p's state.
1da177e4 2445 */
7d478721
PZ
2446static int try_to_wake_up(struct task_struct *p, unsigned int state,
2447 int wake_flags)
1da177e4 2448{
cc367732 2449 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2450 unsigned long flags;
371fd7e7 2451 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2452 struct rq *rq;
1da177e4 2453
e9c84311 2454 this_cpu = get_cpu();
2398f2c6 2455
04e2f174 2456 smp_wmb();
ab3b3aa5 2457 rq = task_rq_lock(p, &flags);
e9c84311 2458 if (!(p->state & state))
1da177e4
LT
2459 goto out;
2460
dd41f596 2461 if (p->se.on_rq)
1da177e4
LT
2462 goto out_running;
2463
2464 cpu = task_cpu(p);
cc367732 2465 orig_cpu = cpu;
1da177e4
LT
2466
2467#ifdef CONFIG_SMP
2468 if (unlikely(task_running(rq, p)))
2469 goto out_activate;
2470
e9c84311
PZ
2471 /*
2472 * In order to handle concurrent wakeups and release the rq->lock
2473 * we put the task in TASK_WAKING state.
eb24073b
IM
2474 *
2475 * First fix up the nr_uninterruptible count:
e9c84311 2476 */
cc87f76a
PZ
2477 if (task_contributes_to_load(p)) {
2478 if (likely(cpu_online(orig_cpu)))
2479 rq->nr_uninterruptible--;
2480 else
2481 this_rq()->nr_uninterruptible--;
2482 }
e9c84311 2483 p->state = TASK_WAKING;
efbbd05a 2484
371fd7e7 2485 if (p->sched_class->task_waking) {
efbbd05a 2486 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2487 en_flags |= ENQUEUE_WAKING;
2488 }
efbbd05a 2489
0017d735
PZ
2490 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2491 if (cpu != orig_cpu)
5d2f5a61 2492 set_task_cpu(p, cpu);
0017d735 2493 __task_rq_unlock(rq);
ab19cb23 2494
0970d299
PZ
2495 rq = cpu_rq(cpu);
2496 raw_spin_lock(&rq->lock);
f5dc3753 2497
0970d299
PZ
2498 /*
2499 * We migrated the task without holding either rq->lock, however
2500 * since the task is not on the task list itself, nobody else
2501 * will try and migrate the task, hence the rq should match the
2502 * cpu we just moved it to.
2503 */
2504 WARN_ON(task_cpu(p) != cpu);
e9c84311 2505 WARN_ON(p->state != TASK_WAKING);
1da177e4 2506
e7693a36
GH
2507#ifdef CONFIG_SCHEDSTATS
2508 schedstat_inc(rq, ttwu_count);
2509 if (cpu == this_cpu)
2510 schedstat_inc(rq, ttwu_local);
2511 else {
2512 struct sched_domain *sd;
2513 for_each_domain(this_cpu, sd) {
758b2cdc 2514 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2515 schedstat_inc(sd, ttwu_wake_remote);
2516 break;
2517 }
2518 }
2519 }
6d6bc0ad 2520#endif /* CONFIG_SCHEDSTATS */
e7693a36 2521
1da177e4
LT
2522out_activate:
2523#endif /* CONFIG_SMP */
9ed3811a
TH
2524 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2525 cpu == this_cpu, en_flags);
1da177e4 2526 success = 1;
1da177e4 2527out_running:
9ed3811a 2528 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2529out:
2530 task_rq_unlock(rq, &flags);
e9c84311 2531 put_cpu();
1da177e4
LT
2532
2533 return success;
2534}
2535
21aa9af0
TH
2536/**
2537 * try_to_wake_up_local - try to wake up a local task with rq lock held
2538 * @p: the thread to be awakened
2539 *
b595076a 2540 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2541 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2542 * the current task. this_rq() stays locked over invocation.
2543 */
2544static void try_to_wake_up_local(struct task_struct *p)
2545{
2546 struct rq *rq = task_rq(p);
2547 bool success = false;
2548
2549 BUG_ON(rq != this_rq());
2550 BUG_ON(p == current);
2551 lockdep_assert_held(&rq->lock);
2552
2553 if (!(p->state & TASK_NORMAL))
2554 return;
2555
2556 if (!p->se.on_rq) {
2557 if (likely(!task_running(rq, p))) {
2558 schedstat_inc(rq, ttwu_count);
2559 schedstat_inc(rq, ttwu_local);
2560 }
2561 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2562 success = true;
2563 }
2564 ttwu_post_activation(p, rq, 0, success);
2565}
2566
50fa610a
DH
2567/**
2568 * wake_up_process - Wake up a specific process
2569 * @p: The process to be woken up.
2570 *
2571 * Attempt to wake up the nominated process and move it to the set of runnable
2572 * processes. Returns 1 if the process was woken up, 0 if it was already
2573 * running.
2574 *
2575 * It may be assumed that this function implies a write memory barrier before
2576 * changing the task state if and only if any tasks are woken up.
2577 */
7ad5b3a5 2578int wake_up_process(struct task_struct *p)
1da177e4 2579{
d9514f6c 2580 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2581}
1da177e4
LT
2582EXPORT_SYMBOL(wake_up_process);
2583
7ad5b3a5 2584int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2585{
2586 return try_to_wake_up(p, state, 0);
2587}
2588
1da177e4
LT
2589/*
2590 * Perform scheduler related setup for a newly forked process p.
2591 * p is forked by current.
dd41f596
IM
2592 *
2593 * __sched_fork() is basic setup used by init_idle() too:
2594 */
2595static void __sched_fork(struct task_struct *p)
2596{
dd41f596
IM
2597 p->se.exec_start = 0;
2598 p->se.sum_exec_runtime = 0;
f6cf891c 2599 p->se.prev_sum_exec_runtime = 0;
6c594c21 2600 p->se.nr_migrations = 0;
6cfb0d5d
IM
2601
2602#ifdef CONFIG_SCHEDSTATS
41acab88 2603 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2604#endif
476d139c 2605
fa717060 2606 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2607 p->se.on_rq = 0;
4a55bd5e 2608 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2609
e107be36
AK
2610#ifdef CONFIG_PREEMPT_NOTIFIERS
2611 INIT_HLIST_HEAD(&p->preempt_notifiers);
2612#endif
dd41f596
IM
2613}
2614
2615/*
2616 * fork()/clone()-time setup:
2617 */
2618void sched_fork(struct task_struct *p, int clone_flags)
2619{
2620 int cpu = get_cpu();
2621
2622 __sched_fork(p);
06b83b5f 2623 /*
0017d735 2624 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2625 * nobody will actually run it, and a signal or other external
2626 * event cannot wake it up and insert it on the runqueue either.
2627 */
0017d735 2628 p->state = TASK_RUNNING;
dd41f596 2629
b9dc29e7
MG
2630 /*
2631 * Revert to default priority/policy on fork if requested.
2632 */
2633 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2634 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2635 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2636 p->normal_prio = p->static_prio;
2637 }
b9dc29e7 2638
6c697bdf
MG
2639 if (PRIO_TO_NICE(p->static_prio) < 0) {
2640 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2641 p->normal_prio = p->static_prio;
6c697bdf
MG
2642 set_load_weight(p);
2643 }
2644
b9dc29e7
MG
2645 /*
2646 * We don't need the reset flag anymore after the fork. It has
2647 * fulfilled its duty:
2648 */
2649 p->sched_reset_on_fork = 0;
2650 }
ca94c442 2651
f83f9ac2
PW
2652 /*
2653 * Make sure we do not leak PI boosting priority to the child.
2654 */
2655 p->prio = current->normal_prio;
2656
2ddbf952
HS
2657 if (!rt_prio(p->prio))
2658 p->sched_class = &fair_sched_class;
b29739f9 2659
cd29fe6f
PZ
2660 if (p->sched_class->task_fork)
2661 p->sched_class->task_fork(p);
2662
86951599
PZ
2663 /*
2664 * The child is not yet in the pid-hash so no cgroup attach races,
2665 * and the cgroup is pinned to this child due to cgroup_fork()
2666 * is ran before sched_fork().
2667 *
2668 * Silence PROVE_RCU.
2669 */
2670 rcu_read_lock();
5f3edc1b 2671 set_task_cpu(p, cpu);
86951599 2672 rcu_read_unlock();
5f3edc1b 2673
52f17b6c 2674#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2675 if (likely(sched_info_on()))
52f17b6c 2676 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2677#endif
d6077cb8 2678#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2679 p->oncpu = 0;
2680#endif
1da177e4 2681#ifdef CONFIG_PREEMPT
4866cde0 2682 /* Want to start with kernel preemption disabled. */
a1261f54 2683 task_thread_info(p)->preempt_count = 1;
1da177e4 2684#endif
806c09a7 2685#ifdef CONFIG_SMP
917b627d 2686 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2687#endif
917b627d 2688
476d139c 2689 put_cpu();
1da177e4
LT
2690}
2691
2692/*
2693 * wake_up_new_task - wake up a newly created task for the first time.
2694 *
2695 * This function will do some initial scheduler statistics housekeeping
2696 * that must be done for every newly created context, then puts the task
2697 * on the runqueue and wakes it.
2698 */
7ad5b3a5 2699void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2700{
2701 unsigned long flags;
dd41f596 2702 struct rq *rq;
c890692b 2703 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2704
2705#ifdef CONFIG_SMP
0017d735
PZ
2706 rq = task_rq_lock(p, &flags);
2707 p->state = TASK_WAKING;
2708
fabf318e
PZ
2709 /*
2710 * Fork balancing, do it here and not earlier because:
2711 * - cpus_allowed can change in the fork path
2712 * - any previously selected cpu might disappear through hotplug
2713 *
0017d735
PZ
2714 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2715 * without people poking at ->cpus_allowed.
fabf318e 2716 */
0017d735 2717 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2718 set_task_cpu(p, cpu);
1da177e4 2719
06b83b5f 2720 p->state = TASK_RUNNING;
0017d735
PZ
2721 task_rq_unlock(rq, &flags);
2722#endif
2723
2724 rq = task_rq_lock(p, &flags);
cd29fe6f 2725 activate_task(rq, p, 0);
27a9da65 2726 trace_sched_wakeup_new(p, 1);
a7558e01 2727 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2728#ifdef CONFIG_SMP
efbbd05a
PZ
2729 if (p->sched_class->task_woken)
2730 p->sched_class->task_woken(rq, p);
9a897c5a 2731#endif
dd41f596 2732 task_rq_unlock(rq, &flags);
fabf318e 2733 put_cpu();
1da177e4
LT
2734}
2735
e107be36
AK
2736#ifdef CONFIG_PREEMPT_NOTIFIERS
2737
2738/**
80dd99b3 2739 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2740 * @notifier: notifier struct to register
e107be36
AK
2741 */
2742void preempt_notifier_register(struct preempt_notifier *notifier)
2743{
2744 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2745}
2746EXPORT_SYMBOL_GPL(preempt_notifier_register);
2747
2748/**
2749 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2750 * @notifier: notifier struct to unregister
e107be36
AK
2751 *
2752 * This is safe to call from within a preemption notifier.
2753 */
2754void preempt_notifier_unregister(struct preempt_notifier *notifier)
2755{
2756 hlist_del(&notifier->link);
2757}
2758EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2759
2760static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2761{
2762 struct preempt_notifier *notifier;
2763 struct hlist_node *node;
2764
2765 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2766 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2767}
2768
2769static void
2770fire_sched_out_preempt_notifiers(struct task_struct *curr,
2771 struct task_struct *next)
2772{
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_out(notifier, next);
2778}
2779
6d6bc0ad 2780#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2781
2782static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2783{
2784}
2785
2786static void
2787fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2789{
2790}
2791
6d6bc0ad 2792#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2793
4866cde0
NP
2794/**
2795 * prepare_task_switch - prepare to switch tasks
2796 * @rq: the runqueue preparing to switch
421cee29 2797 * @prev: the current task that is being switched out
4866cde0
NP
2798 * @next: the task we are going to switch to.
2799 *
2800 * This is called with the rq lock held and interrupts off. It must
2801 * be paired with a subsequent finish_task_switch after the context
2802 * switch.
2803 *
2804 * prepare_task_switch sets up locking and calls architecture specific
2805 * hooks.
2806 */
e107be36
AK
2807static inline void
2808prepare_task_switch(struct rq *rq, struct task_struct *prev,
2809 struct task_struct *next)
4866cde0 2810{
e107be36 2811 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2812 prepare_lock_switch(rq, next);
2813 prepare_arch_switch(next);
2814}
2815
1da177e4
LT
2816/**
2817 * finish_task_switch - clean up after a task-switch
344babaa 2818 * @rq: runqueue associated with task-switch
1da177e4
LT
2819 * @prev: the thread we just switched away from.
2820 *
4866cde0
NP
2821 * finish_task_switch must be called after the context switch, paired
2822 * with a prepare_task_switch call before the context switch.
2823 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2824 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2825 *
2826 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2827 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2828 * with the lock held can cause deadlocks; see schedule() for
2829 * details.)
2830 */
a9957449 2831static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2832 __releases(rq->lock)
2833{
1da177e4 2834 struct mm_struct *mm = rq->prev_mm;
55a101f8 2835 long prev_state;
1da177e4
LT
2836
2837 rq->prev_mm = NULL;
2838
2839 /*
2840 * A task struct has one reference for the use as "current".
c394cc9f 2841 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2842 * schedule one last time. The schedule call will never return, and
2843 * the scheduled task must drop that reference.
c394cc9f 2844 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2845 * still held, otherwise prev could be scheduled on another cpu, die
2846 * there before we look at prev->state, and then the reference would
2847 * be dropped twice.
2848 * Manfred Spraul <manfred@colorfullife.com>
2849 */
55a101f8 2850 prev_state = prev->state;
4866cde0 2851 finish_arch_switch(prev);
8381f65d
JI
2852#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2853 local_irq_disable();
2854#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2855 perf_event_task_sched_in(current);
8381f65d
JI
2856#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2857 local_irq_enable();
2858#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2859 finish_lock_switch(rq, prev);
e8fa1362 2860
e107be36 2861 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2862 if (mm)
2863 mmdrop(mm);
c394cc9f 2864 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2865 /*
2866 * Remove function-return probe instances associated with this
2867 * task and put them back on the free list.
9761eea8 2868 */
c6fd91f0 2869 kprobe_flush_task(prev);
1da177e4 2870 put_task_struct(prev);
c6fd91f0 2871 }
1da177e4
LT
2872}
2873
3f029d3c
GH
2874#ifdef CONFIG_SMP
2875
2876/* assumes rq->lock is held */
2877static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2878{
2879 if (prev->sched_class->pre_schedule)
2880 prev->sched_class->pre_schedule(rq, prev);
2881}
2882
2883/* rq->lock is NOT held, but preemption is disabled */
2884static inline void post_schedule(struct rq *rq)
2885{
2886 if (rq->post_schedule) {
2887 unsigned long flags;
2888
05fa785c 2889 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2890 if (rq->curr->sched_class->post_schedule)
2891 rq->curr->sched_class->post_schedule(rq);
05fa785c 2892 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2893
2894 rq->post_schedule = 0;
2895 }
2896}
2897
2898#else
da19ab51 2899
3f029d3c
GH
2900static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2901{
2902}
2903
2904static inline void post_schedule(struct rq *rq)
2905{
1da177e4
LT
2906}
2907
3f029d3c
GH
2908#endif
2909
1da177e4
LT
2910/**
2911 * schedule_tail - first thing a freshly forked thread must call.
2912 * @prev: the thread we just switched away from.
2913 */
36c8b586 2914asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2915 __releases(rq->lock)
2916{
70b97a7f
IM
2917 struct rq *rq = this_rq();
2918
4866cde0 2919 finish_task_switch(rq, prev);
da19ab51 2920
3f029d3c
GH
2921 /*
2922 * FIXME: do we need to worry about rq being invalidated by the
2923 * task_switch?
2924 */
2925 post_schedule(rq);
70b97a7f 2926
4866cde0
NP
2927#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2928 /* In this case, finish_task_switch does not reenable preemption */
2929 preempt_enable();
2930#endif
1da177e4 2931 if (current->set_child_tid)
b488893a 2932 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2933}
2934
2935/*
2936 * context_switch - switch to the new MM and the new
2937 * thread's register state.
2938 */
dd41f596 2939static inline void
70b97a7f 2940context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2941 struct task_struct *next)
1da177e4 2942{
dd41f596 2943 struct mm_struct *mm, *oldmm;
1da177e4 2944
e107be36 2945 prepare_task_switch(rq, prev, next);
27a9da65 2946 trace_sched_switch(prev, next);
dd41f596
IM
2947 mm = next->mm;
2948 oldmm = prev->active_mm;
9226d125
ZA
2949 /*
2950 * For paravirt, this is coupled with an exit in switch_to to
2951 * combine the page table reload and the switch backend into
2952 * one hypercall.
2953 */
224101ed 2954 arch_start_context_switch(prev);
9226d125 2955
31915ab4 2956 if (!mm) {
1da177e4
LT
2957 next->active_mm = oldmm;
2958 atomic_inc(&oldmm->mm_count);
2959 enter_lazy_tlb(oldmm, next);
2960 } else
2961 switch_mm(oldmm, mm, next);
2962
31915ab4 2963 if (!prev->mm) {
1da177e4 2964 prev->active_mm = NULL;
1da177e4
LT
2965 rq->prev_mm = oldmm;
2966 }
3a5f5e48
IM
2967 /*
2968 * Since the runqueue lock will be released by the next
2969 * task (which is an invalid locking op but in the case
2970 * of the scheduler it's an obvious special-case), so we
2971 * do an early lockdep release here:
2972 */
2973#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2974 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2975#endif
1da177e4
LT
2976
2977 /* Here we just switch the register state and the stack. */
2978 switch_to(prev, next, prev);
2979
dd41f596
IM
2980 barrier();
2981 /*
2982 * this_rq must be evaluated again because prev may have moved
2983 * CPUs since it called schedule(), thus the 'rq' on its stack
2984 * frame will be invalid.
2985 */
2986 finish_task_switch(this_rq(), prev);
1da177e4
LT
2987}
2988
2989/*
2990 * nr_running, nr_uninterruptible and nr_context_switches:
2991 *
2992 * externally visible scheduler statistics: current number of runnable
2993 * threads, current number of uninterruptible-sleeping threads, total
2994 * number of context switches performed since bootup.
2995 */
2996unsigned long nr_running(void)
2997{
2998 unsigned long i, sum = 0;
2999
3000 for_each_online_cpu(i)
3001 sum += cpu_rq(i)->nr_running;
3002
3003 return sum;
f711f609 3004}
1da177e4
LT
3005
3006unsigned long nr_uninterruptible(void)
f711f609 3007{
1da177e4 3008 unsigned long i, sum = 0;
f711f609 3009
0a945022 3010 for_each_possible_cpu(i)
1da177e4 3011 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3012
3013 /*
1da177e4
LT
3014 * Since we read the counters lockless, it might be slightly
3015 * inaccurate. Do not allow it to go below zero though:
f711f609 3016 */
1da177e4
LT
3017 if (unlikely((long)sum < 0))
3018 sum = 0;
f711f609 3019
1da177e4 3020 return sum;
f711f609 3021}
f711f609 3022
1da177e4 3023unsigned long long nr_context_switches(void)
46cb4b7c 3024{
cc94abfc
SR
3025 int i;
3026 unsigned long long sum = 0;
46cb4b7c 3027
0a945022 3028 for_each_possible_cpu(i)
1da177e4 3029 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3030
1da177e4
LT
3031 return sum;
3032}
483b4ee6 3033
1da177e4
LT
3034unsigned long nr_iowait(void)
3035{
3036 unsigned long i, sum = 0;
483b4ee6 3037
0a945022 3038 for_each_possible_cpu(i)
1da177e4 3039 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3040
1da177e4
LT
3041 return sum;
3042}
483b4ee6 3043
8c215bd3 3044unsigned long nr_iowait_cpu(int cpu)
69d25870 3045{
8c215bd3 3046 struct rq *this = cpu_rq(cpu);
69d25870
AV
3047 return atomic_read(&this->nr_iowait);
3048}
46cb4b7c 3049
69d25870
AV
3050unsigned long this_cpu_load(void)
3051{
3052 struct rq *this = this_rq();
3053 return this->cpu_load[0];
3054}
e790fb0b 3055
46cb4b7c 3056
dce48a84
TG
3057/* Variables and functions for calc_load */
3058static atomic_long_t calc_load_tasks;
3059static unsigned long calc_load_update;
3060unsigned long avenrun[3];
3061EXPORT_SYMBOL(avenrun);
46cb4b7c 3062
74f5187a
PZ
3063static long calc_load_fold_active(struct rq *this_rq)
3064{
3065 long nr_active, delta = 0;
3066
3067 nr_active = this_rq->nr_running;
3068 nr_active += (long) this_rq->nr_uninterruptible;
3069
3070 if (nr_active != this_rq->calc_load_active) {
3071 delta = nr_active - this_rq->calc_load_active;
3072 this_rq->calc_load_active = nr_active;
3073 }
3074
3075 return delta;
3076}
3077
0f004f5a
PZ
3078static unsigned long
3079calc_load(unsigned long load, unsigned long exp, unsigned long active)
3080{
3081 load *= exp;
3082 load += active * (FIXED_1 - exp);
3083 load += 1UL << (FSHIFT - 1);
3084 return load >> FSHIFT;
3085}
3086
74f5187a
PZ
3087#ifdef CONFIG_NO_HZ
3088/*
3089 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3090 *
3091 * When making the ILB scale, we should try to pull this in as well.
3092 */
3093static atomic_long_t calc_load_tasks_idle;
3094
3095static void calc_load_account_idle(struct rq *this_rq)
3096{
3097 long delta;
3098
3099 delta = calc_load_fold_active(this_rq);
3100 if (delta)
3101 atomic_long_add(delta, &calc_load_tasks_idle);
3102}
3103
3104static long calc_load_fold_idle(void)
3105{
3106 long delta = 0;
3107
3108 /*
3109 * Its got a race, we don't care...
3110 */
3111 if (atomic_long_read(&calc_load_tasks_idle))
3112 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3113
3114 return delta;
3115}
0f004f5a
PZ
3116
3117/**
3118 * fixed_power_int - compute: x^n, in O(log n) time
3119 *
3120 * @x: base of the power
3121 * @frac_bits: fractional bits of @x
3122 * @n: power to raise @x to.
3123 *
3124 * By exploiting the relation between the definition of the natural power
3125 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3126 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3127 * (where: n_i \elem {0, 1}, the binary vector representing n),
3128 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3129 * of course trivially computable in O(log_2 n), the length of our binary
3130 * vector.
3131 */
3132static unsigned long
3133fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3134{
3135 unsigned long result = 1UL << frac_bits;
3136
3137 if (n) for (;;) {
3138 if (n & 1) {
3139 result *= x;
3140 result += 1UL << (frac_bits - 1);
3141 result >>= frac_bits;
3142 }
3143 n >>= 1;
3144 if (!n)
3145 break;
3146 x *= x;
3147 x += 1UL << (frac_bits - 1);
3148 x >>= frac_bits;
3149 }
3150
3151 return result;
3152}
3153
3154/*
3155 * a1 = a0 * e + a * (1 - e)
3156 *
3157 * a2 = a1 * e + a * (1 - e)
3158 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3159 * = a0 * e^2 + a * (1 - e) * (1 + e)
3160 *
3161 * a3 = a2 * e + a * (1 - e)
3162 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3163 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3164 *
3165 * ...
3166 *
3167 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3168 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3169 * = a0 * e^n + a * (1 - e^n)
3170 *
3171 * [1] application of the geometric series:
3172 *
3173 * n 1 - x^(n+1)
3174 * S_n := \Sum x^i = -------------
3175 * i=0 1 - x
3176 */
3177static unsigned long
3178calc_load_n(unsigned long load, unsigned long exp,
3179 unsigned long active, unsigned int n)
3180{
3181
3182 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3183}
3184
3185/*
3186 * NO_HZ can leave us missing all per-cpu ticks calling
3187 * calc_load_account_active(), but since an idle CPU folds its delta into
3188 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3189 * in the pending idle delta if our idle period crossed a load cycle boundary.
3190 *
3191 * Once we've updated the global active value, we need to apply the exponential
3192 * weights adjusted to the number of cycles missed.
3193 */
3194static void calc_global_nohz(unsigned long ticks)
3195{
3196 long delta, active, n;
3197
3198 if (time_before(jiffies, calc_load_update))
3199 return;
3200
3201 /*
3202 * If we crossed a calc_load_update boundary, make sure to fold
3203 * any pending idle changes, the respective CPUs might have
3204 * missed the tick driven calc_load_account_active() update
3205 * due to NO_HZ.
3206 */
3207 delta = calc_load_fold_idle();
3208 if (delta)
3209 atomic_long_add(delta, &calc_load_tasks);
3210
3211 /*
3212 * If we were idle for multiple load cycles, apply them.
3213 */
3214 if (ticks >= LOAD_FREQ) {
3215 n = ticks / LOAD_FREQ;
3216
3217 active = atomic_long_read(&calc_load_tasks);
3218 active = active > 0 ? active * FIXED_1 : 0;
3219
3220 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3221 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3222 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3223
3224 calc_load_update += n * LOAD_FREQ;
3225 }
3226
3227 /*
3228 * Its possible the remainder of the above division also crosses
3229 * a LOAD_FREQ period, the regular check in calc_global_load()
3230 * which comes after this will take care of that.
3231 *
3232 * Consider us being 11 ticks before a cycle completion, and us
3233 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3234 * age us 4 cycles, and the test in calc_global_load() will
3235 * pick up the final one.
3236 */
3237}
74f5187a
PZ
3238#else
3239static void calc_load_account_idle(struct rq *this_rq)
3240{
3241}
3242
3243static inline long calc_load_fold_idle(void)
3244{
3245 return 0;
3246}
0f004f5a
PZ
3247
3248static void calc_global_nohz(unsigned long ticks)
3249{
3250}
74f5187a
PZ
3251#endif
3252
2d02494f
TG
3253/**
3254 * get_avenrun - get the load average array
3255 * @loads: pointer to dest load array
3256 * @offset: offset to add
3257 * @shift: shift count to shift the result left
3258 *
3259 * These values are estimates at best, so no need for locking.
3260 */
3261void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3262{
3263 loads[0] = (avenrun[0] + offset) << shift;
3264 loads[1] = (avenrun[1] + offset) << shift;
3265 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3266}
46cb4b7c 3267
46cb4b7c 3268/*
dce48a84
TG
3269 * calc_load - update the avenrun load estimates 10 ticks after the
3270 * CPUs have updated calc_load_tasks.
7835b98b 3271 */
0f004f5a 3272void calc_global_load(unsigned long ticks)
7835b98b 3273{
dce48a84 3274 long active;
1da177e4 3275
0f004f5a
PZ
3276 calc_global_nohz(ticks);
3277
3278 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3279 return;
1da177e4 3280
dce48a84
TG
3281 active = atomic_long_read(&calc_load_tasks);
3282 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3283
dce48a84
TG
3284 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3285 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3286 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3287
dce48a84
TG
3288 calc_load_update += LOAD_FREQ;
3289}
1da177e4 3290
dce48a84 3291/*
74f5187a
PZ
3292 * Called from update_cpu_load() to periodically update this CPU's
3293 * active count.
dce48a84
TG
3294 */
3295static void calc_load_account_active(struct rq *this_rq)
3296{
74f5187a 3297 long delta;
08c183f3 3298
74f5187a
PZ
3299 if (time_before(jiffies, this_rq->calc_load_update))
3300 return;
783609c6 3301
74f5187a
PZ
3302 delta = calc_load_fold_active(this_rq);
3303 delta += calc_load_fold_idle();
3304 if (delta)
dce48a84 3305 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3306
3307 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3308}
3309
fdf3e95d
VP
3310/*
3311 * The exact cpuload at various idx values, calculated at every tick would be
3312 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3313 *
3314 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3315 * on nth tick when cpu may be busy, then we have:
3316 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3317 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3318 *
3319 * decay_load_missed() below does efficient calculation of
3320 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3321 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3322 *
3323 * The calculation is approximated on a 128 point scale.
3324 * degrade_zero_ticks is the number of ticks after which load at any
3325 * particular idx is approximated to be zero.
3326 * degrade_factor is a precomputed table, a row for each load idx.
3327 * Each column corresponds to degradation factor for a power of two ticks,
3328 * based on 128 point scale.
3329 * Example:
3330 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3331 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3332 *
3333 * With this power of 2 load factors, we can degrade the load n times
3334 * by looking at 1 bits in n and doing as many mult/shift instead of
3335 * n mult/shifts needed by the exact degradation.
3336 */
3337#define DEGRADE_SHIFT 7
3338static const unsigned char
3339 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3340static const unsigned char
3341 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3342 {0, 0, 0, 0, 0, 0, 0, 0},
3343 {64, 32, 8, 0, 0, 0, 0, 0},
3344 {96, 72, 40, 12, 1, 0, 0},
3345 {112, 98, 75, 43, 15, 1, 0},
3346 {120, 112, 98, 76, 45, 16, 2} };
3347
3348/*
3349 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3350 * would be when CPU is idle and so we just decay the old load without
3351 * adding any new load.
3352 */
3353static unsigned long
3354decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3355{
3356 int j = 0;
3357
3358 if (!missed_updates)
3359 return load;
3360
3361 if (missed_updates >= degrade_zero_ticks[idx])
3362 return 0;
3363
3364 if (idx == 1)
3365 return load >> missed_updates;
3366
3367 while (missed_updates) {
3368 if (missed_updates % 2)
3369 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3370
3371 missed_updates >>= 1;
3372 j++;
3373 }
3374 return load;
3375}
3376
46cb4b7c 3377/*
dd41f596 3378 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3379 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3380 * every tick. We fix it up based on jiffies.
46cb4b7c 3381 */
dd41f596 3382static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3383{
495eca49 3384 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3385 unsigned long curr_jiffies = jiffies;
3386 unsigned long pending_updates;
dd41f596 3387 int i, scale;
46cb4b7c 3388
dd41f596 3389 this_rq->nr_load_updates++;
46cb4b7c 3390
fdf3e95d
VP
3391 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3392 if (curr_jiffies == this_rq->last_load_update_tick)
3393 return;
3394
3395 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3396 this_rq->last_load_update_tick = curr_jiffies;
3397
dd41f596 3398 /* Update our load: */
fdf3e95d
VP
3399 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3400 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3401 unsigned long old_load, new_load;
7d1e6a9b 3402
dd41f596 3403 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3404
dd41f596 3405 old_load = this_rq->cpu_load[i];
fdf3e95d 3406 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3407 new_load = this_load;
a25707f3
IM
3408 /*
3409 * Round up the averaging division if load is increasing. This
3410 * prevents us from getting stuck on 9 if the load is 10, for
3411 * example.
3412 */
3413 if (new_load > old_load)
fdf3e95d
VP
3414 new_load += scale - 1;
3415
3416 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3417 }
da2b71ed
SS
3418
3419 sched_avg_update(this_rq);
fdf3e95d
VP
3420}
3421
3422static void update_cpu_load_active(struct rq *this_rq)
3423{
3424 update_cpu_load(this_rq);
46cb4b7c 3425
74f5187a 3426 calc_load_account_active(this_rq);
46cb4b7c
SS
3427}
3428
dd41f596 3429#ifdef CONFIG_SMP
8a0be9ef 3430
46cb4b7c 3431/*
38022906
PZ
3432 * sched_exec - execve() is a valuable balancing opportunity, because at
3433 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3434 */
38022906 3435void sched_exec(void)
46cb4b7c 3436{
38022906 3437 struct task_struct *p = current;
1da177e4 3438 unsigned long flags;
70b97a7f 3439 struct rq *rq;
0017d735 3440 int dest_cpu;
46cb4b7c 3441
1da177e4 3442 rq = task_rq_lock(p, &flags);
0017d735
PZ
3443 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3444 if (dest_cpu == smp_processor_id())
3445 goto unlock;
38022906 3446
46cb4b7c 3447 /*
38022906 3448 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3449 */
30da688e 3450 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3451 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3452 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3453
1da177e4 3454 task_rq_unlock(rq, &flags);
969c7921 3455 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3456 return;
3457 }
0017d735 3458unlock:
1da177e4 3459 task_rq_unlock(rq, &flags);
1da177e4 3460}
dd41f596 3461
1da177e4
LT
3462#endif
3463
1da177e4
LT
3464DEFINE_PER_CPU(struct kernel_stat, kstat);
3465
3466EXPORT_PER_CPU_SYMBOL(kstat);
3467
3468/*
c5f8d995 3469 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3470 * @p in case that task is currently running.
c5f8d995
HS
3471 *
3472 * Called with task_rq_lock() held on @rq.
1da177e4 3473 */
c5f8d995
HS
3474static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3475{
3476 u64 ns = 0;
3477
3478 if (task_current(rq, p)) {
3479 update_rq_clock(rq);
305e6835 3480 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3481 if ((s64)ns < 0)
3482 ns = 0;
3483 }
3484
3485 return ns;
3486}
3487
bb34d92f 3488unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3489{
1da177e4 3490 unsigned long flags;
41b86e9c 3491 struct rq *rq;
bb34d92f 3492 u64 ns = 0;
48f24c4d 3493
41b86e9c 3494 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3495 ns = do_task_delta_exec(p, rq);
3496 task_rq_unlock(rq, &flags);
1508487e 3497
c5f8d995
HS
3498 return ns;
3499}
f06febc9 3500
c5f8d995
HS
3501/*
3502 * Return accounted runtime for the task.
3503 * In case the task is currently running, return the runtime plus current's
3504 * pending runtime that have not been accounted yet.
3505 */
3506unsigned long long task_sched_runtime(struct task_struct *p)
3507{
3508 unsigned long flags;
3509 struct rq *rq;
3510 u64 ns = 0;
3511
3512 rq = task_rq_lock(p, &flags);
3513 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3514 task_rq_unlock(rq, &flags);
3515
3516 return ns;
3517}
48f24c4d 3518
c5f8d995
HS
3519/*
3520 * Return sum_exec_runtime for the thread group.
3521 * In case the task is currently running, return the sum plus current's
3522 * pending runtime that have not been accounted yet.
3523 *
3524 * Note that the thread group might have other running tasks as well,
3525 * so the return value not includes other pending runtime that other
3526 * running tasks might have.
3527 */
3528unsigned long long thread_group_sched_runtime(struct task_struct *p)
3529{
3530 struct task_cputime totals;
3531 unsigned long flags;
3532 struct rq *rq;
3533 u64 ns;
3534
3535 rq = task_rq_lock(p, &flags);
3536 thread_group_cputime(p, &totals);
3537 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3538 task_rq_unlock(rq, &flags);
48f24c4d 3539
1da177e4
LT
3540 return ns;
3541}
3542
1da177e4
LT
3543/*
3544 * Account user cpu time to a process.
3545 * @p: the process that the cpu time gets accounted to
1da177e4 3546 * @cputime: the cpu time spent in user space since the last update
457533a7 3547 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3548 */
457533a7
MS
3549void account_user_time(struct task_struct *p, cputime_t cputime,
3550 cputime_t cputime_scaled)
1da177e4
LT
3551{
3552 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3553 cputime64_t tmp;
3554
457533a7 3555 /* Add user time to process. */
1da177e4 3556 p->utime = cputime_add(p->utime, cputime);
457533a7 3557 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3558 account_group_user_time(p, cputime);
1da177e4
LT
3559
3560 /* Add user time to cpustat. */
3561 tmp = cputime_to_cputime64(cputime);
3562 if (TASK_NICE(p) > 0)
3563 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3564 else
3565 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3566
3567 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3568 /* Account for user time used */
3569 acct_update_integrals(p);
1da177e4
LT
3570}
3571
94886b84
LV
3572/*
3573 * Account guest cpu time to a process.
3574 * @p: the process that the cpu time gets accounted to
3575 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3576 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3577 */
457533a7
MS
3578static void account_guest_time(struct task_struct *p, cputime_t cputime,
3579 cputime_t cputime_scaled)
94886b84
LV
3580{
3581 cputime64_t tmp;
3582 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3583
3584 tmp = cputime_to_cputime64(cputime);
3585
457533a7 3586 /* Add guest time to process. */
94886b84 3587 p->utime = cputime_add(p->utime, cputime);
457533a7 3588 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3589 account_group_user_time(p, cputime);
94886b84
LV
3590 p->gtime = cputime_add(p->gtime, cputime);
3591
457533a7 3592 /* Add guest time to cpustat. */
ce0e7b28
RO
3593 if (TASK_NICE(p) > 0) {
3594 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3595 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3596 } else {
3597 cpustat->user = cputime64_add(cpustat->user, tmp);
3598 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3599 }
94886b84
LV
3600}
3601
70a89a66
VP
3602/*
3603 * Account system cpu time to a process and desired cpustat field
3604 * @p: the process that the cpu time gets accounted to
3605 * @cputime: the cpu time spent in kernel space since the last update
3606 * @cputime_scaled: cputime scaled by cpu frequency
3607 * @target_cputime64: pointer to cpustat field that has to be updated
3608 */
3609static inline
3610void __account_system_time(struct task_struct *p, cputime_t cputime,
3611 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3612{
3613 cputime64_t tmp = cputime_to_cputime64(cputime);
3614
3615 /* Add system time to process. */
3616 p->stime = cputime_add(p->stime, cputime);
3617 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3618 account_group_system_time(p, cputime);
3619
3620 /* Add system time to cpustat. */
3621 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3622 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3623
3624 /* Account for system time used */
3625 acct_update_integrals(p);
3626}
3627
1da177e4
LT
3628/*
3629 * Account system cpu time to a process.
3630 * @p: the process that the cpu time gets accounted to
3631 * @hardirq_offset: the offset to subtract from hardirq_count()
3632 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3633 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3634 */
3635void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3636 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3637{
3638 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3639 cputime64_t *target_cputime64;
1da177e4 3640
983ed7a6 3641 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3642 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3643 return;
3644 }
94886b84 3645
1da177e4 3646 if (hardirq_count() - hardirq_offset)
70a89a66 3647 target_cputime64 = &cpustat->irq;
75e1056f 3648 else if (in_serving_softirq())
70a89a66 3649 target_cputime64 = &cpustat->softirq;
1da177e4 3650 else
70a89a66 3651 target_cputime64 = &cpustat->system;
79741dd3 3652
70a89a66 3653 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3654}
3655
abb74cef
VP
3656#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3657/*
3658 * Account a tick to a process and cpustat
3659 * @p: the process that the cpu time gets accounted to
3660 * @user_tick: is the tick from userspace
3661 * @rq: the pointer to rq
3662 *
3663 * Tick demultiplexing follows the order
3664 * - pending hardirq update
3665 * - pending softirq update
3666 * - user_time
3667 * - idle_time
3668 * - system time
3669 * - check for guest_time
3670 * - else account as system_time
3671 *
3672 * Check for hardirq is done both for system and user time as there is
3673 * no timer going off while we are on hardirq and hence we may never get an
3674 * opportunity to update it solely in system time.
3675 * p->stime and friends are only updated on system time and not on irq
3676 * softirq as those do not count in task exec_runtime any more.
3677 */
3678static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3679 struct rq *rq)
3680{
3681 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3682 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3683 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3684
3685 if (irqtime_account_hi_update()) {
3686 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3687 } else if (irqtime_account_si_update()) {
3688 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3689 } else if (user_tick) {
3690 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3691 } else if (p == rq->idle) {
3692 account_idle_time(cputime_one_jiffy);
3693 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3694 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3695 } else {
3696 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3697 &cpustat->system);
3698 }
3699}
3700
3701static void irqtime_account_idle_ticks(int ticks)
3702{
3703 int i;
3704 struct rq *rq = this_rq();
3705
3706 for (i = 0; i < ticks; i++)
3707 irqtime_account_process_tick(current, 0, rq);
3708}
3709#else
3710static void irqtime_account_idle_ticks(int ticks) {}
3711static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3712 struct rq *rq) {}
3713#endif
3714
c66f08be 3715/*
1da177e4 3716 * Account for involuntary wait time.
1da177e4 3717 * @steal: the cpu time spent in involuntary wait
c66f08be 3718 */
79741dd3 3719void account_steal_time(cputime_t cputime)
c66f08be 3720{
79741dd3
MS
3721 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3722 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3723
3724 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3725}
3726
1da177e4 3727/*
79741dd3
MS
3728 * Account for idle time.
3729 * @cputime: the cpu time spent in idle wait
1da177e4 3730 */
79741dd3 3731void account_idle_time(cputime_t cputime)
1da177e4
LT
3732{
3733 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3734 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3735 struct rq *rq = this_rq();
1da177e4 3736
79741dd3
MS
3737 if (atomic_read(&rq->nr_iowait) > 0)
3738 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3739 else
3740 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3741}
3742
79741dd3
MS
3743#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3744
3745/*
3746 * Account a single tick of cpu time.
3747 * @p: the process that the cpu time gets accounted to
3748 * @user_tick: indicates if the tick is a user or a system tick
3749 */
3750void account_process_tick(struct task_struct *p, int user_tick)
3751{
a42548a1 3752 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3753 struct rq *rq = this_rq();
3754
abb74cef
VP
3755 if (sched_clock_irqtime) {
3756 irqtime_account_process_tick(p, user_tick, rq);
3757 return;
3758 }
3759
79741dd3 3760 if (user_tick)
a42548a1 3761 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3762 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3763 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3764 one_jiffy_scaled);
3765 else
a42548a1 3766 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3767}
3768
3769/*
3770 * Account multiple ticks of steal time.
3771 * @p: the process from which the cpu time has been stolen
3772 * @ticks: number of stolen ticks
3773 */
3774void account_steal_ticks(unsigned long ticks)
3775{
3776 account_steal_time(jiffies_to_cputime(ticks));
3777}
3778
3779/*
3780 * Account multiple ticks of idle time.
3781 * @ticks: number of stolen ticks
3782 */
3783void account_idle_ticks(unsigned long ticks)
3784{
abb74cef
VP
3785
3786 if (sched_clock_irqtime) {
3787 irqtime_account_idle_ticks(ticks);
3788 return;
3789 }
3790
79741dd3 3791 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3792}
3793
79741dd3
MS
3794#endif
3795
49048622
BS
3796/*
3797 * Use precise platform statistics if available:
3798 */
3799#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3800void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3801{
d99ca3b9
HS
3802 *ut = p->utime;
3803 *st = p->stime;
49048622
BS
3804}
3805
0cf55e1e 3806void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3807{
0cf55e1e
HS
3808 struct task_cputime cputime;
3809
3810 thread_group_cputime(p, &cputime);
3811
3812 *ut = cputime.utime;
3813 *st = cputime.stime;
49048622
BS
3814}
3815#else
761b1d26
HS
3816
3817#ifndef nsecs_to_cputime
b7b20df9 3818# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3819#endif
3820
d180c5bc 3821void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3822{
d99ca3b9 3823 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3824
3825 /*
3826 * Use CFS's precise accounting:
3827 */
d180c5bc 3828 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3829
3830 if (total) {
e75e863d 3831 u64 temp = rtime;
d180c5bc 3832
e75e863d 3833 temp *= utime;
49048622 3834 do_div(temp, total);
d180c5bc
HS
3835 utime = (cputime_t)temp;
3836 } else
3837 utime = rtime;
49048622 3838
d180c5bc
HS
3839 /*
3840 * Compare with previous values, to keep monotonicity:
3841 */
761b1d26 3842 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3843 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3844
d99ca3b9
HS
3845 *ut = p->prev_utime;
3846 *st = p->prev_stime;
49048622
BS
3847}
3848
0cf55e1e
HS
3849/*
3850 * Must be called with siglock held.
3851 */
3852void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3853{
0cf55e1e
HS
3854 struct signal_struct *sig = p->signal;
3855 struct task_cputime cputime;
3856 cputime_t rtime, utime, total;
49048622 3857
0cf55e1e 3858 thread_group_cputime(p, &cputime);
49048622 3859
0cf55e1e
HS
3860 total = cputime_add(cputime.utime, cputime.stime);
3861 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3862
0cf55e1e 3863 if (total) {
e75e863d 3864 u64 temp = rtime;
49048622 3865
e75e863d 3866 temp *= cputime.utime;
0cf55e1e
HS
3867 do_div(temp, total);
3868 utime = (cputime_t)temp;
3869 } else
3870 utime = rtime;
3871
3872 sig->prev_utime = max(sig->prev_utime, utime);
3873 sig->prev_stime = max(sig->prev_stime,
3874 cputime_sub(rtime, sig->prev_utime));
3875
3876 *ut = sig->prev_utime;
3877 *st = sig->prev_stime;
49048622 3878}
49048622 3879#endif
49048622 3880
7835b98b
CL
3881/*
3882 * This function gets called by the timer code, with HZ frequency.
3883 * We call it with interrupts disabled.
3884 *
3885 * It also gets called by the fork code, when changing the parent's
3886 * timeslices.
3887 */
3888void scheduler_tick(void)
3889{
7835b98b
CL
3890 int cpu = smp_processor_id();
3891 struct rq *rq = cpu_rq(cpu);
dd41f596 3892 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3893
3894 sched_clock_tick();
dd41f596 3895
05fa785c 3896 raw_spin_lock(&rq->lock);
3e51f33f 3897 update_rq_clock(rq);
fdf3e95d 3898 update_cpu_load_active(rq);
fa85ae24 3899 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3900 raw_spin_unlock(&rq->lock);
7835b98b 3901
e9d2b064 3902 perf_event_task_tick();
e220d2dc 3903
e418e1c2 3904#ifdef CONFIG_SMP
dd41f596
IM
3905 rq->idle_at_tick = idle_cpu(cpu);
3906 trigger_load_balance(rq, cpu);
e418e1c2 3907#endif
1da177e4
LT
3908}
3909
132380a0 3910notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3911{
3912 if (in_lock_functions(addr)) {
3913 addr = CALLER_ADDR2;
3914 if (in_lock_functions(addr))
3915 addr = CALLER_ADDR3;
3916 }
3917 return addr;
3918}
1da177e4 3919
7e49fcce
SR
3920#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3921 defined(CONFIG_PREEMPT_TRACER))
3922
43627582 3923void __kprobes add_preempt_count(int val)
1da177e4 3924{
6cd8a4bb 3925#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3926 /*
3927 * Underflow?
3928 */
9a11b49a
IM
3929 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3930 return;
6cd8a4bb 3931#endif
1da177e4 3932 preempt_count() += val;
6cd8a4bb 3933#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3934 /*
3935 * Spinlock count overflowing soon?
3936 */
33859f7f
MOS
3937 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3938 PREEMPT_MASK - 10);
6cd8a4bb
SR
3939#endif
3940 if (preempt_count() == val)
3941 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3942}
3943EXPORT_SYMBOL(add_preempt_count);
3944
43627582 3945void __kprobes sub_preempt_count(int val)
1da177e4 3946{
6cd8a4bb 3947#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3948 /*
3949 * Underflow?
3950 */
01e3eb82 3951 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3952 return;
1da177e4
LT
3953 /*
3954 * Is the spinlock portion underflowing?
3955 */
9a11b49a
IM
3956 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3957 !(preempt_count() & PREEMPT_MASK)))
3958 return;
6cd8a4bb 3959#endif
9a11b49a 3960
6cd8a4bb
SR
3961 if (preempt_count() == val)
3962 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3963 preempt_count() -= val;
3964}
3965EXPORT_SYMBOL(sub_preempt_count);
3966
3967#endif
3968
3969/*
dd41f596 3970 * Print scheduling while atomic bug:
1da177e4 3971 */
dd41f596 3972static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3973{
838225b4
SS
3974 struct pt_regs *regs = get_irq_regs();
3975
3df0fc5b
PZ
3976 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3977 prev->comm, prev->pid, preempt_count());
838225b4 3978
dd41f596 3979 debug_show_held_locks(prev);
e21f5b15 3980 print_modules();
dd41f596
IM
3981 if (irqs_disabled())
3982 print_irqtrace_events(prev);
838225b4
SS
3983
3984 if (regs)
3985 show_regs(regs);
3986 else
3987 dump_stack();
dd41f596 3988}
1da177e4 3989
dd41f596
IM
3990/*
3991 * Various schedule()-time debugging checks and statistics:
3992 */
3993static inline void schedule_debug(struct task_struct *prev)
3994{
1da177e4 3995 /*
41a2d6cf 3996 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3997 * schedule() atomically, we ignore that path for now.
3998 * Otherwise, whine if we are scheduling when we should not be.
3999 */
3f33a7ce 4000 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4001 __schedule_bug(prev);
4002
1da177e4
LT
4003 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4004
2d72376b 4005 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4006#ifdef CONFIG_SCHEDSTATS
4007 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4008 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4009 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4010 }
4011#endif
dd41f596
IM
4012}
4013
6cecd084 4014static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4015{
a64692a3
MG
4016 if (prev->se.on_rq)
4017 update_rq_clock(rq);
6cecd084 4018 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4019}
4020
dd41f596
IM
4021/*
4022 * Pick up the highest-prio task:
4023 */
4024static inline struct task_struct *
b67802ea 4025pick_next_task(struct rq *rq)
dd41f596 4026{
5522d5d5 4027 const struct sched_class *class;
dd41f596 4028 struct task_struct *p;
1da177e4
LT
4029
4030 /*
dd41f596
IM
4031 * Optimization: we know that if all tasks are in
4032 * the fair class we can call that function directly:
1da177e4 4033 */
dd41f596 4034 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4035 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4036 if (likely(p))
4037 return p;
1da177e4
LT
4038 }
4039
34f971f6 4040 for_each_class(class) {
fb8d4724 4041 p = class->pick_next_task(rq);
dd41f596
IM
4042 if (p)
4043 return p;
dd41f596 4044 }
34f971f6
PZ
4045
4046 BUG(); /* the idle class will always have a runnable task */
dd41f596 4047}
1da177e4 4048
dd41f596
IM
4049/*
4050 * schedule() is the main scheduler function.
4051 */
ff743345 4052asmlinkage void __sched schedule(void)
dd41f596
IM
4053{
4054 struct task_struct *prev, *next;
67ca7bde 4055 unsigned long *switch_count;
dd41f596 4056 struct rq *rq;
31656519 4057 int cpu;
dd41f596 4058
ff743345
PZ
4059need_resched:
4060 preempt_disable();
dd41f596
IM
4061 cpu = smp_processor_id();
4062 rq = cpu_rq(cpu);
25502a6c 4063 rcu_note_context_switch(cpu);
dd41f596 4064 prev = rq->curr;
dd41f596
IM
4065
4066 release_kernel_lock(prev);
4067need_resched_nonpreemptible:
4068
4069 schedule_debug(prev);
1da177e4 4070
31656519 4071 if (sched_feat(HRTICK))
f333fdc9 4072 hrtick_clear(rq);
8f4d37ec 4073
05fa785c 4074 raw_spin_lock_irq(&rq->lock);
1da177e4 4075
246d86b5 4076 switch_count = &prev->nivcsw;
1da177e4 4077 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4078 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4079 prev->state = TASK_RUNNING;
21aa9af0
TH
4080 } else {
4081 /*
4082 * If a worker is going to sleep, notify and
4083 * ask workqueue whether it wants to wake up a
4084 * task to maintain concurrency. If so, wake
4085 * up the task.
4086 */
4087 if (prev->flags & PF_WQ_WORKER) {
4088 struct task_struct *to_wakeup;
4089
4090 to_wakeup = wq_worker_sleeping(prev, cpu);
4091 if (to_wakeup)
4092 try_to_wake_up_local(to_wakeup);
4093 }
371fd7e7 4094 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4095 }
dd41f596 4096 switch_count = &prev->nvcsw;
1da177e4
LT
4097 }
4098
3f029d3c 4099 pre_schedule(rq, prev);
f65eda4f 4100
dd41f596 4101 if (unlikely(!rq->nr_running))
1da177e4 4102 idle_balance(cpu, rq);
1da177e4 4103
df1c99d4 4104 put_prev_task(rq, prev);
b67802ea 4105 next = pick_next_task(rq);
f26f9aff
MG
4106 clear_tsk_need_resched(prev);
4107 rq->skip_clock_update = 0;
1da177e4 4108
1da177e4 4109 if (likely(prev != next)) {
673a90a1 4110 sched_info_switch(prev, next);
49f47433 4111 perf_event_task_sched_out(prev, next);
673a90a1 4112
1da177e4
LT
4113 rq->nr_switches++;
4114 rq->curr = next;
4115 ++*switch_count;
4116
dd41f596 4117 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4118 /*
246d86b5
ON
4119 * The context switch have flipped the stack from under us
4120 * and restored the local variables which were saved when
4121 * this task called schedule() in the past. prev == current
4122 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4123 */
4124 cpu = smp_processor_id();
4125 rq = cpu_rq(cpu);
1da177e4 4126 } else
05fa785c 4127 raw_spin_unlock_irq(&rq->lock);
1da177e4 4128
3f029d3c 4129 post_schedule(rq);
1da177e4 4130
246d86b5 4131 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4132 goto need_resched_nonpreemptible;
8f4d37ec 4133
1da177e4 4134 preempt_enable_no_resched();
ff743345 4135 if (need_resched())
1da177e4
LT
4136 goto need_resched;
4137}
1da177e4
LT
4138EXPORT_SYMBOL(schedule);
4139
c08f7829 4140#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4141/*
4142 * Look out! "owner" is an entirely speculative pointer
4143 * access and not reliable.
4144 */
4145int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4146{
4147 unsigned int cpu;
4148 struct rq *rq;
4149
4150 if (!sched_feat(OWNER_SPIN))
4151 return 0;
4152
4153#ifdef CONFIG_DEBUG_PAGEALLOC
4154 /*
4155 * Need to access the cpu field knowing that
4156 * DEBUG_PAGEALLOC could have unmapped it if
4157 * the mutex owner just released it and exited.
4158 */
4159 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4160 return 0;
0d66bf6d
PZ
4161#else
4162 cpu = owner->cpu;
4163#endif
4164
4165 /*
4166 * Even if the access succeeded (likely case),
4167 * the cpu field may no longer be valid.
4168 */
4169 if (cpu >= nr_cpumask_bits)
4b402210 4170 return 0;
0d66bf6d
PZ
4171
4172 /*
4173 * We need to validate that we can do a
4174 * get_cpu() and that we have the percpu area.
4175 */
4176 if (!cpu_online(cpu))
4b402210 4177 return 0;
0d66bf6d
PZ
4178
4179 rq = cpu_rq(cpu);
4180
4181 for (;;) {
4182 /*
4183 * Owner changed, break to re-assess state.
4184 */
9d0f4dcc
TC
4185 if (lock->owner != owner) {
4186 /*
4187 * If the lock has switched to a different owner,
4188 * we likely have heavy contention. Return 0 to quit
4189 * optimistic spinning and not contend further:
4190 */
4191 if (lock->owner)
4192 return 0;
0d66bf6d 4193 break;
9d0f4dcc 4194 }
0d66bf6d
PZ
4195
4196 /*
4197 * Is that owner really running on that cpu?
4198 */
4199 if (task_thread_info(rq->curr) != owner || need_resched())
4200 return 0;
4201
335d7afb 4202 arch_mutex_cpu_relax();
0d66bf6d 4203 }
4b402210 4204
0d66bf6d
PZ
4205 return 1;
4206}
4207#endif
4208
1da177e4
LT
4209#ifdef CONFIG_PREEMPT
4210/*
2ed6e34f 4211 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4212 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4213 * occur there and call schedule directly.
4214 */
d1f74e20 4215asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4216{
4217 struct thread_info *ti = current_thread_info();
6478d880 4218
1da177e4
LT
4219 /*
4220 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4221 * we do not want to preempt the current task. Just return..
1da177e4 4222 */
beed33a8 4223 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4224 return;
4225
3a5c359a 4226 do {
d1f74e20 4227 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4228 schedule();
d1f74e20 4229 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4230
3a5c359a
AK
4231 /*
4232 * Check again in case we missed a preemption opportunity
4233 * between schedule and now.
4234 */
4235 barrier();
5ed0cec0 4236 } while (need_resched());
1da177e4 4237}
1da177e4
LT
4238EXPORT_SYMBOL(preempt_schedule);
4239
4240/*
2ed6e34f 4241 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4242 * off of irq context.
4243 * Note, that this is called and return with irqs disabled. This will
4244 * protect us against recursive calling from irq.
4245 */
4246asmlinkage void __sched preempt_schedule_irq(void)
4247{
4248 struct thread_info *ti = current_thread_info();
6478d880 4249
2ed6e34f 4250 /* Catch callers which need to be fixed */
1da177e4
LT
4251 BUG_ON(ti->preempt_count || !irqs_disabled());
4252
3a5c359a
AK
4253 do {
4254 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4255 local_irq_enable();
4256 schedule();
4257 local_irq_disable();
3a5c359a 4258 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4259
3a5c359a
AK
4260 /*
4261 * Check again in case we missed a preemption opportunity
4262 * between schedule and now.
4263 */
4264 barrier();
5ed0cec0 4265 } while (need_resched());
1da177e4
LT
4266}
4267
4268#endif /* CONFIG_PREEMPT */
4269
63859d4f 4270int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4271 void *key)
1da177e4 4272{
63859d4f 4273 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4274}
1da177e4
LT
4275EXPORT_SYMBOL(default_wake_function);
4276
4277/*
41a2d6cf
IM
4278 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4279 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4280 * number) then we wake all the non-exclusive tasks and one exclusive task.
4281 *
4282 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4283 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4284 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4285 */
78ddb08f 4286static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4287 int nr_exclusive, int wake_flags, void *key)
1da177e4 4288{
2e45874c 4289 wait_queue_t *curr, *next;
1da177e4 4290
2e45874c 4291 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4292 unsigned flags = curr->flags;
4293
63859d4f 4294 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4295 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4296 break;
4297 }
4298}
4299
4300/**
4301 * __wake_up - wake up threads blocked on a waitqueue.
4302 * @q: the waitqueue
4303 * @mode: which threads
4304 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4305 * @key: is directly passed to the wakeup function
50fa610a
DH
4306 *
4307 * It may be assumed that this function implies a write memory barrier before
4308 * changing the task state if and only if any tasks are woken up.
1da177e4 4309 */
7ad5b3a5 4310void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4311 int nr_exclusive, void *key)
1da177e4
LT
4312{
4313 unsigned long flags;
4314
4315 spin_lock_irqsave(&q->lock, flags);
4316 __wake_up_common(q, mode, nr_exclusive, 0, key);
4317 spin_unlock_irqrestore(&q->lock, flags);
4318}
1da177e4
LT
4319EXPORT_SYMBOL(__wake_up);
4320
4321/*
4322 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4323 */
7ad5b3a5 4324void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4325{
4326 __wake_up_common(q, mode, 1, 0, NULL);
4327}
22c43c81 4328EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4329
4ede816a
DL
4330void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4331{
4332 __wake_up_common(q, mode, 1, 0, key);
4333}
4334
1da177e4 4335/**
4ede816a 4336 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4337 * @q: the waitqueue
4338 * @mode: which threads
4339 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4340 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4341 *
4342 * The sync wakeup differs that the waker knows that it will schedule
4343 * away soon, so while the target thread will be woken up, it will not
4344 * be migrated to another CPU - ie. the two threads are 'synchronized'
4345 * with each other. This can prevent needless bouncing between CPUs.
4346 *
4347 * On UP it can prevent extra preemption.
50fa610a
DH
4348 *
4349 * It may be assumed that this function implies a write memory barrier before
4350 * changing the task state if and only if any tasks are woken up.
1da177e4 4351 */
4ede816a
DL
4352void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4353 int nr_exclusive, void *key)
1da177e4
LT
4354{
4355 unsigned long flags;
7d478721 4356 int wake_flags = WF_SYNC;
1da177e4
LT
4357
4358 if (unlikely(!q))
4359 return;
4360
4361 if (unlikely(!nr_exclusive))
7d478721 4362 wake_flags = 0;
1da177e4
LT
4363
4364 spin_lock_irqsave(&q->lock, flags);
7d478721 4365 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4366 spin_unlock_irqrestore(&q->lock, flags);
4367}
4ede816a
DL
4368EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4369
4370/*
4371 * __wake_up_sync - see __wake_up_sync_key()
4372 */
4373void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4374{
4375 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4376}
1da177e4
LT
4377EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4378
65eb3dc6
KD
4379/**
4380 * complete: - signals a single thread waiting on this completion
4381 * @x: holds the state of this particular completion
4382 *
4383 * This will wake up a single thread waiting on this completion. Threads will be
4384 * awakened in the same order in which they were queued.
4385 *
4386 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4387 *
4388 * It may be assumed that this function implies a write memory barrier before
4389 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4390 */
b15136e9 4391void complete(struct completion *x)
1da177e4
LT
4392{
4393 unsigned long flags;
4394
4395 spin_lock_irqsave(&x->wait.lock, flags);
4396 x->done++;
d9514f6c 4397 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4398 spin_unlock_irqrestore(&x->wait.lock, flags);
4399}
4400EXPORT_SYMBOL(complete);
4401
65eb3dc6
KD
4402/**
4403 * complete_all: - signals all threads waiting on this completion
4404 * @x: holds the state of this particular completion
4405 *
4406 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4407 *
4408 * It may be assumed that this function implies a write memory barrier before
4409 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4410 */
b15136e9 4411void complete_all(struct completion *x)
1da177e4
LT
4412{
4413 unsigned long flags;
4414
4415 spin_lock_irqsave(&x->wait.lock, flags);
4416 x->done += UINT_MAX/2;
d9514f6c 4417 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4418 spin_unlock_irqrestore(&x->wait.lock, flags);
4419}
4420EXPORT_SYMBOL(complete_all);
4421
8cbbe86d
AK
4422static inline long __sched
4423do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4424{
1da177e4
LT
4425 if (!x->done) {
4426 DECLARE_WAITQUEUE(wait, current);
4427
a93d2f17 4428 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4429 do {
94d3d824 4430 if (signal_pending_state(state, current)) {
ea71a546
ON
4431 timeout = -ERESTARTSYS;
4432 break;
8cbbe86d
AK
4433 }
4434 __set_current_state(state);
1da177e4
LT
4435 spin_unlock_irq(&x->wait.lock);
4436 timeout = schedule_timeout(timeout);
4437 spin_lock_irq(&x->wait.lock);
ea71a546 4438 } while (!x->done && timeout);
1da177e4 4439 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4440 if (!x->done)
4441 return timeout;
1da177e4
LT
4442 }
4443 x->done--;
ea71a546 4444 return timeout ?: 1;
1da177e4 4445}
1da177e4 4446
8cbbe86d
AK
4447static long __sched
4448wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4449{
1da177e4
LT
4450 might_sleep();
4451
4452 spin_lock_irq(&x->wait.lock);
8cbbe86d 4453 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4454 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4455 return timeout;
4456}
1da177e4 4457
65eb3dc6
KD
4458/**
4459 * wait_for_completion: - waits for completion of a task
4460 * @x: holds the state of this particular completion
4461 *
4462 * This waits to be signaled for completion of a specific task. It is NOT
4463 * interruptible and there is no timeout.
4464 *
4465 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4466 * and interrupt capability. Also see complete().
4467 */
b15136e9 4468void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4469{
4470 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4471}
8cbbe86d 4472EXPORT_SYMBOL(wait_for_completion);
1da177e4 4473
65eb3dc6
KD
4474/**
4475 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4476 * @x: holds the state of this particular completion
4477 * @timeout: timeout value in jiffies
4478 *
4479 * This waits for either a completion of a specific task to be signaled or for a
4480 * specified timeout to expire. The timeout is in jiffies. It is not
4481 * interruptible.
4482 */
b15136e9 4483unsigned long __sched
8cbbe86d 4484wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4485{
8cbbe86d 4486 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4487}
8cbbe86d 4488EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4489
65eb3dc6
KD
4490/**
4491 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4492 * @x: holds the state of this particular completion
4493 *
4494 * This waits for completion of a specific task to be signaled. It is
4495 * interruptible.
4496 */
8cbbe86d 4497int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4498{
51e97990
AK
4499 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4500 if (t == -ERESTARTSYS)
4501 return t;
4502 return 0;
0fec171c 4503}
8cbbe86d 4504EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4505
65eb3dc6
KD
4506/**
4507 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4508 * @x: holds the state of this particular completion
4509 * @timeout: timeout value in jiffies
4510 *
4511 * This waits for either a completion of a specific task to be signaled or for a
4512 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4513 */
6bf41237 4514long __sched
8cbbe86d
AK
4515wait_for_completion_interruptible_timeout(struct completion *x,
4516 unsigned long timeout)
0fec171c 4517{
8cbbe86d 4518 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4519}
8cbbe86d 4520EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4521
65eb3dc6
KD
4522/**
4523 * wait_for_completion_killable: - waits for completion of a task (killable)
4524 * @x: holds the state of this particular completion
4525 *
4526 * This waits to be signaled for completion of a specific task. It can be
4527 * interrupted by a kill signal.
4528 */
009e577e
MW
4529int __sched wait_for_completion_killable(struct completion *x)
4530{
4531 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4532 if (t == -ERESTARTSYS)
4533 return t;
4534 return 0;
4535}
4536EXPORT_SYMBOL(wait_for_completion_killable);
4537
0aa12fb4
SW
4538/**
4539 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4540 * @x: holds the state of this particular completion
4541 * @timeout: timeout value in jiffies
4542 *
4543 * This waits for either a completion of a specific task to be
4544 * signaled or for a specified timeout to expire. It can be
4545 * interrupted by a kill signal. The timeout is in jiffies.
4546 */
6bf41237 4547long __sched
0aa12fb4
SW
4548wait_for_completion_killable_timeout(struct completion *x,
4549 unsigned long timeout)
4550{
4551 return wait_for_common(x, timeout, TASK_KILLABLE);
4552}
4553EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4554
be4de352
DC
4555/**
4556 * try_wait_for_completion - try to decrement a completion without blocking
4557 * @x: completion structure
4558 *
4559 * Returns: 0 if a decrement cannot be done without blocking
4560 * 1 if a decrement succeeded.
4561 *
4562 * If a completion is being used as a counting completion,
4563 * attempt to decrement the counter without blocking. This
4564 * enables us to avoid waiting if the resource the completion
4565 * is protecting is not available.
4566 */
4567bool try_wait_for_completion(struct completion *x)
4568{
7539a3b3 4569 unsigned long flags;
be4de352
DC
4570 int ret = 1;
4571
7539a3b3 4572 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4573 if (!x->done)
4574 ret = 0;
4575 else
4576 x->done--;
7539a3b3 4577 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4578 return ret;
4579}
4580EXPORT_SYMBOL(try_wait_for_completion);
4581
4582/**
4583 * completion_done - Test to see if a completion has any waiters
4584 * @x: completion structure
4585 *
4586 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4587 * 1 if there are no waiters.
4588 *
4589 */
4590bool completion_done(struct completion *x)
4591{
7539a3b3 4592 unsigned long flags;
be4de352
DC
4593 int ret = 1;
4594
7539a3b3 4595 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4596 if (!x->done)
4597 ret = 0;
7539a3b3 4598 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4599 return ret;
4600}
4601EXPORT_SYMBOL(completion_done);
4602
8cbbe86d
AK
4603static long __sched
4604sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4605{
0fec171c
IM
4606 unsigned long flags;
4607 wait_queue_t wait;
4608
4609 init_waitqueue_entry(&wait, current);
1da177e4 4610
8cbbe86d 4611 __set_current_state(state);
1da177e4 4612
8cbbe86d
AK
4613 spin_lock_irqsave(&q->lock, flags);
4614 __add_wait_queue(q, &wait);
4615 spin_unlock(&q->lock);
4616 timeout = schedule_timeout(timeout);
4617 spin_lock_irq(&q->lock);
4618 __remove_wait_queue(q, &wait);
4619 spin_unlock_irqrestore(&q->lock, flags);
4620
4621 return timeout;
4622}
4623
4624void __sched interruptible_sleep_on(wait_queue_head_t *q)
4625{
4626 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4627}
1da177e4
LT
4628EXPORT_SYMBOL(interruptible_sleep_on);
4629
0fec171c 4630long __sched
95cdf3b7 4631interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4632{
8cbbe86d 4633 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4634}
1da177e4
LT
4635EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4636
0fec171c 4637void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4638{
8cbbe86d 4639 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4640}
1da177e4
LT
4641EXPORT_SYMBOL(sleep_on);
4642
0fec171c 4643long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4644{
8cbbe86d 4645 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4646}
1da177e4
LT
4647EXPORT_SYMBOL(sleep_on_timeout);
4648
b29739f9
IM
4649#ifdef CONFIG_RT_MUTEXES
4650
4651/*
4652 * rt_mutex_setprio - set the current priority of a task
4653 * @p: task
4654 * @prio: prio value (kernel-internal form)
4655 *
4656 * This function changes the 'effective' priority of a task. It does
4657 * not touch ->normal_prio like __setscheduler().
4658 *
4659 * Used by the rt_mutex code to implement priority inheritance logic.
4660 */
36c8b586 4661void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4662{
4663 unsigned long flags;
83b699ed 4664 int oldprio, on_rq, running;
70b97a7f 4665 struct rq *rq;
83ab0aa0 4666 const struct sched_class *prev_class;
b29739f9
IM
4667
4668 BUG_ON(prio < 0 || prio > MAX_PRIO);
4669
4670 rq = task_rq_lock(p, &flags);
4671
a8027073 4672 trace_sched_pi_setprio(p, prio);
d5f9f942 4673 oldprio = p->prio;
83ab0aa0 4674 prev_class = p->sched_class;
dd41f596 4675 on_rq = p->se.on_rq;
051a1d1a 4676 running = task_current(rq, p);
0e1f3483 4677 if (on_rq)
69be72c1 4678 dequeue_task(rq, p, 0);
0e1f3483
HS
4679 if (running)
4680 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4681
4682 if (rt_prio(prio))
4683 p->sched_class = &rt_sched_class;
4684 else
4685 p->sched_class = &fair_sched_class;
4686
b29739f9
IM
4687 p->prio = prio;
4688
0e1f3483
HS
4689 if (running)
4690 p->sched_class->set_curr_task(rq);
dd41f596 4691 if (on_rq) {
371fd7e7 4692 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4693
4694 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4695 }
4696 task_rq_unlock(rq, &flags);
4697}
4698
4699#endif
4700
36c8b586 4701void set_user_nice(struct task_struct *p, long nice)
1da177e4 4702{
dd41f596 4703 int old_prio, delta, on_rq;
1da177e4 4704 unsigned long flags;
70b97a7f 4705 struct rq *rq;
1da177e4
LT
4706
4707 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4708 return;
4709 /*
4710 * We have to be careful, if called from sys_setpriority(),
4711 * the task might be in the middle of scheduling on another CPU.
4712 */
4713 rq = task_rq_lock(p, &flags);
4714 /*
4715 * The RT priorities are set via sched_setscheduler(), but we still
4716 * allow the 'normal' nice value to be set - but as expected
4717 * it wont have any effect on scheduling until the task is
dd41f596 4718 * SCHED_FIFO/SCHED_RR:
1da177e4 4719 */
e05606d3 4720 if (task_has_rt_policy(p)) {
1da177e4
LT
4721 p->static_prio = NICE_TO_PRIO(nice);
4722 goto out_unlock;
4723 }
dd41f596 4724 on_rq = p->se.on_rq;
c09595f6 4725 if (on_rq)
69be72c1 4726 dequeue_task(rq, p, 0);
1da177e4 4727
1da177e4 4728 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4729 set_load_weight(p);
b29739f9
IM
4730 old_prio = p->prio;
4731 p->prio = effective_prio(p);
4732 delta = p->prio - old_prio;
1da177e4 4733
dd41f596 4734 if (on_rq) {
371fd7e7 4735 enqueue_task(rq, p, 0);
1da177e4 4736 /*
d5f9f942
AM
4737 * If the task increased its priority or is running and
4738 * lowered its priority, then reschedule its CPU:
1da177e4 4739 */
d5f9f942 4740 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4741 resched_task(rq->curr);
4742 }
4743out_unlock:
4744 task_rq_unlock(rq, &flags);
4745}
1da177e4
LT
4746EXPORT_SYMBOL(set_user_nice);
4747
e43379f1
MM
4748/*
4749 * can_nice - check if a task can reduce its nice value
4750 * @p: task
4751 * @nice: nice value
4752 */
36c8b586 4753int can_nice(const struct task_struct *p, const int nice)
e43379f1 4754{
024f4747
MM
4755 /* convert nice value [19,-20] to rlimit style value [1,40] */
4756 int nice_rlim = 20 - nice;
48f24c4d 4757
78d7d407 4758 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4759 capable(CAP_SYS_NICE));
4760}
4761
1da177e4
LT
4762#ifdef __ARCH_WANT_SYS_NICE
4763
4764/*
4765 * sys_nice - change the priority of the current process.
4766 * @increment: priority increment
4767 *
4768 * sys_setpriority is a more generic, but much slower function that
4769 * does similar things.
4770 */
5add95d4 4771SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4772{
48f24c4d 4773 long nice, retval;
1da177e4
LT
4774
4775 /*
4776 * Setpriority might change our priority at the same moment.
4777 * We don't have to worry. Conceptually one call occurs first
4778 * and we have a single winner.
4779 */
e43379f1
MM
4780 if (increment < -40)
4781 increment = -40;
1da177e4
LT
4782 if (increment > 40)
4783 increment = 40;
4784
2b8f836f 4785 nice = TASK_NICE(current) + increment;
1da177e4
LT
4786 if (nice < -20)
4787 nice = -20;
4788 if (nice > 19)
4789 nice = 19;
4790
e43379f1
MM
4791 if (increment < 0 && !can_nice(current, nice))
4792 return -EPERM;
4793
1da177e4
LT
4794 retval = security_task_setnice(current, nice);
4795 if (retval)
4796 return retval;
4797
4798 set_user_nice(current, nice);
4799 return 0;
4800}
4801
4802#endif
4803
4804/**
4805 * task_prio - return the priority value of a given task.
4806 * @p: the task in question.
4807 *
4808 * This is the priority value as seen by users in /proc.
4809 * RT tasks are offset by -200. Normal tasks are centered
4810 * around 0, value goes from -16 to +15.
4811 */
36c8b586 4812int task_prio(const struct task_struct *p)
1da177e4
LT
4813{
4814 return p->prio - MAX_RT_PRIO;
4815}
4816
4817/**
4818 * task_nice - return the nice value of a given task.
4819 * @p: the task in question.
4820 */
36c8b586 4821int task_nice(const struct task_struct *p)
1da177e4
LT
4822{
4823 return TASK_NICE(p);
4824}
150d8bed 4825EXPORT_SYMBOL(task_nice);
1da177e4
LT
4826
4827/**
4828 * idle_cpu - is a given cpu idle currently?
4829 * @cpu: the processor in question.
4830 */
4831int idle_cpu(int cpu)
4832{
4833 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4834}
4835
1da177e4
LT
4836/**
4837 * idle_task - return the idle task for a given cpu.
4838 * @cpu: the processor in question.
4839 */
36c8b586 4840struct task_struct *idle_task(int cpu)
1da177e4
LT
4841{
4842 return cpu_rq(cpu)->idle;
4843}
4844
4845/**
4846 * find_process_by_pid - find a process with a matching PID value.
4847 * @pid: the pid in question.
4848 */
a9957449 4849static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4850{
228ebcbe 4851 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4852}
4853
4854/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4855static void
4856__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4857{
dd41f596 4858 BUG_ON(p->se.on_rq);
48f24c4d 4859
1da177e4
LT
4860 p->policy = policy;
4861 p->rt_priority = prio;
b29739f9
IM
4862 p->normal_prio = normal_prio(p);
4863 /* we are holding p->pi_lock already */
4864 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4865 if (rt_prio(p->prio))
4866 p->sched_class = &rt_sched_class;
4867 else
4868 p->sched_class = &fair_sched_class;
2dd73a4f 4869 set_load_weight(p);
1da177e4
LT
4870}
4871
c69e8d9c
DH
4872/*
4873 * check the target process has a UID that matches the current process's
4874 */
4875static bool check_same_owner(struct task_struct *p)
4876{
4877 const struct cred *cred = current_cred(), *pcred;
4878 bool match;
4879
4880 rcu_read_lock();
4881 pcred = __task_cred(p);
4882 match = (cred->euid == pcred->euid ||
4883 cred->euid == pcred->uid);
4884 rcu_read_unlock();
4885 return match;
4886}
4887
961ccddd 4888static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4889 const struct sched_param *param, bool user)
1da177e4 4890{
83b699ed 4891 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4892 unsigned long flags;
83ab0aa0 4893 const struct sched_class *prev_class;
70b97a7f 4894 struct rq *rq;
ca94c442 4895 int reset_on_fork;
1da177e4 4896
66e5393a
SR
4897 /* may grab non-irq protected spin_locks */
4898 BUG_ON(in_interrupt());
1da177e4
LT
4899recheck:
4900 /* double check policy once rq lock held */
ca94c442
LP
4901 if (policy < 0) {
4902 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4903 policy = oldpolicy = p->policy;
ca94c442
LP
4904 } else {
4905 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4906 policy &= ~SCHED_RESET_ON_FORK;
4907
4908 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4909 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4910 policy != SCHED_IDLE)
4911 return -EINVAL;
4912 }
4913
1da177e4
LT
4914 /*
4915 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4916 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4917 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4918 */
4919 if (param->sched_priority < 0 ||
95cdf3b7 4920 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4921 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4922 return -EINVAL;
e05606d3 4923 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4924 return -EINVAL;
4925
37e4ab3f
OC
4926 /*
4927 * Allow unprivileged RT tasks to decrease priority:
4928 */
961ccddd 4929 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4930 if (rt_policy(policy)) {
a44702e8
ON
4931 unsigned long rlim_rtprio =
4932 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4933
4934 /* can't set/change the rt policy */
4935 if (policy != p->policy && !rlim_rtprio)
4936 return -EPERM;
4937
4938 /* can't increase priority */
4939 if (param->sched_priority > p->rt_priority &&
4940 param->sched_priority > rlim_rtprio)
4941 return -EPERM;
4942 }
dd41f596
IM
4943 /*
4944 * Like positive nice levels, dont allow tasks to
4945 * move out of SCHED_IDLE either:
4946 */
4947 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4948 return -EPERM;
5fe1d75f 4949
37e4ab3f 4950 /* can't change other user's priorities */
c69e8d9c 4951 if (!check_same_owner(p))
37e4ab3f 4952 return -EPERM;
ca94c442
LP
4953
4954 /* Normal users shall not reset the sched_reset_on_fork flag */
4955 if (p->sched_reset_on_fork && !reset_on_fork)
4956 return -EPERM;
37e4ab3f 4957 }
1da177e4 4958
725aad24 4959 if (user) {
b0ae1981 4960 retval = security_task_setscheduler(p);
725aad24
JF
4961 if (retval)
4962 return retval;
4963 }
4964
b29739f9
IM
4965 /*
4966 * make sure no PI-waiters arrive (or leave) while we are
4967 * changing the priority of the task:
4968 */
1d615482 4969 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4970 /*
4971 * To be able to change p->policy safely, the apropriate
4972 * runqueue lock must be held.
4973 */
b29739f9 4974 rq = __task_rq_lock(p);
dc61b1d6 4975
34f971f6
PZ
4976 /*
4977 * Changing the policy of the stop threads its a very bad idea
4978 */
4979 if (p == rq->stop) {
4980 __task_rq_unlock(rq);
4981 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4982 return -EINVAL;
4983 }
4984
dc61b1d6
PZ
4985#ifdef CONFIG_RT_GROUP_SCHED
4986 if (user) {
4987 /*
4988 * Do not allow realtime tasks into groups that have no runtime
4989 * assigned.
4990 */
4991 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4992 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4993 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
4994 __task_rq_unlock(rq);
4995 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4996 return -EPERM;
4997 }
4998 }
4999#endif
5000
1da177e4
LT
5001 /* recheck policy now with rq lock held */
5002 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5003 policy = oldpolicy = -1;
b29739f9 5004 __task_rq_unlock(rq);
1d615482 5005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5006 goto recheck;
5007 }
dd41f596 5008 on_rq = p->se.on_rq;
051a1d1a 5009 running = task_current(rq, p);
0e1f3483 5010 if (on_rq)
2e1cb74a 5011 deactivate_task(rq, p, 0);
0e1f3483
HS
5012 if (running)
5013 p->sched_class->put_prev_task(rq, p);
f6b53205 5014
ca94c442
LP
5015 p->sched_reset_on_fork = reset_on_fork;
5016
1da177e4 5017 oldprio = p->prio;
83ab0aa0 5018 prev_class = p->sched_class;
dd41f596 5019 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5020
0e1f3483
HS
5021 if (running)
5022 p->sched_class->set_curr_task(rq);
dd41f596
IM
5023 if (on_rq) {
5024 activate_task(rq, p, 0);
cb469845
SR
5025
5026 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5027 }
b29739f9 5028 __task_rq_unlock(rq);
1d615482 5029 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5030
95e02ca9
TG
5031 rt_mutex_adjust_pi(p);
5032
1da177e4
LT
5033 return 0;
5034}
961ccddd
RR
5035
5036/**
5037 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5038 * @p: the task in question.
5039 * @policy: new policy.
5040 * @param: structure containing the new RT priority.
5041 *
5042 * NOTE that the task may be already dead.
5043 */
5044int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5045 const struct sched_param *param)
961ccddd
RR
5046{
5047 return __sched_setscheduler(p, policy, param, true);
5048}
1da177e4
LT
5049EXPORT_SYMBOL_GPL(sched_setscheduler);
5050
961ccddd
RR
5051/**
5052 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5053 * @p: the task in question.
5054 * @policy: new policy.
5055 * @param: structure containing the new RT priority.
5056 *
5057 * Just like sched_setscheduler, only don't bother checking if the
5058 * current context has permission. For example, this is needed in
5059 * stop_machine(): we create temporary high priority worker threads,
5060 * but our caller might not have that capability.
5061 */
5062int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5063 const struct sched_param *param)
961ccddd
RR
5064{
5065 return __sched_setscheduler(p, policy, param, false);
5066}
5067
95cdf3b7
IM
5068static int
5069do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5070{
1da177e4
LT
5071 struct sched_param lparam;
5072 struct task_struct *p;
36c8b586 5073 int retval;
1da177e4
LT
5074
5075 if (!param || pid < 0)
5076 return -EINVAL;
5077 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5078 return -EFAULT;
5fe1d75f
ON
5079
5080 rcu_read_lock();
5081 retval = -ESRCH;
1da177e4 5082 p = find_process_by_pid(pid);
5fe1d75f
ON
5083 if (p != NULL)
5084 retval = sched_setscheduler(p, policy, &lparam);
5085 rcu_read_unlock();
36c8b586 5086
1da177e4
LT
5087 return retval;
5088}
5089
5090/**
5091 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5092 * @pid: the pid in question.
5093 * @policy: new policy.
5094 * @param: structure containing the new RT priority.
5095 */
5add95d4
HC
5096SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5097 struct sched_param __user *, param)
1da177e4 5098{
c21761f1
JB
5099 /* negative values for policy are not valid */
5100 if (policy < 0)
5101 return -EINVAL;
5102
1da177e4
LT
5103 return do_sched_setscheduler(pid, policy, param);
5104}
5105
5106/**
5107 * sys_sched_setparam - set/change the RT priority of a thread
5108 * @pid: the pid in question.
5109 * @param: structure containing the new RT priority.
5110 */
5add95d4 5111SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5112{
5113 return do_sched_setscheduler(pid, -1, param);
5114}
5115
5116/**
5117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5118 * @pid: the pid in question.
5119 */
5add95d4 5120SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5121{
36c8b586 5122 struct task_struct *p;
3a5c359a 5123 int retval;
1da177e4
LT
5124
5125 if (pid < 0)
3a5c359a 5126 return -EINVAL;
1da177e4
LT
5127
5128 retval = -ESRCH;
5fe85be0 5129 rcu_read_lock();
1da177e4
LT
5130 p = find_process_by_pid(pid);
5131 if (p) {
5132 retval = security_task_getscheduler(p);
5133 if (!retval)
ca94c442
LP
5134 retval = p->policy
5135 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5136 }
5fe85be0 5137 rcu_read_unlock();
1da177e4
LT
5138 return retval;
5139}
5140
5141/**
ca94c442 5142 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5143 * @pid: the pid in question.
5144 * @param: structure containing the RT priority.
5145 */
5add95d4 5146SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5147{
5148 struct sched_param lp;
36c8b586 5149 struct task_struct *p;
3a5c359a 5150 int retval;
1da177e4
LT
5151
5152 if (!param || pid < 0)
3a5c359a 5153 return -EINVAL;
1da177e4 5154
5fe85be0 5155 rcu_read_lock();
1da177e4
LT
5156 p = find_process_by_pid(pid);
5157 retval = -ESRCH;
5158 if (!p)
5159 goto out_unlock;
5160
5161 retval = security_task_getscheduler(p);
5162 if (retval)
5163 goto out_unlock;
5164
5165 lp.sched_priority = p->rt_priority;
5fe85be0 5166 rcu_read_unlock();
1da177e4
LT
5167
5168 /*
5169 * This one might sleep, we cannot do it with a spinlock held ...
5170 */
5171 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5172
1da177e4
LT
5173 return retval;
5174
5175out_unlock:
5fe85be0 5176 rcu_read_unlock();
1da177e4
LT
5177 return retval;
5178}
5179
96f874e2 5180long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5181{
5a16f3d3 5182 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5183 struct task_struct *p;
5184 int retval;
1da177e4 5185
95402b38 5186 get_online_cpus();
23f5d142 5187 rcu_read_lock();
1da177e4
LT
5188
5189 p = find_process_by_pid(pid);
5190 if (!p) {
23f5d142 5191 rcu_read_unlock();
95402b38 5192 put_online_cpus();
1da177e4
LT
5193 return -ESRCH;
5194 }
5195
23f5d142 5196 /* Prevent p going away */
1da177e4 5197 get_task_struct(p);
23f5d142 5198 rcu_read_unlock();
1da177e4 5199
5a16f3d3
RR
5200 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5201 retval = -ENOMEM;
5202 goto out_put_task;
5203 }
5204 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5205 retval = -ENOMEM;
5206 goto out_free_cpus_allowed;
5207 }
1da177e4 5208 retval = -EPERM;
c69e8d9c 5209 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5210 goto out_unlock;
5211
b0ae1981 5212 retval = security_task_setscheduler(p);
e7834f8f
DQ
5213 if (retval)
5214 goto out_unlock;
5215
5a16f3d3
RR
5216 cpuset_cpus_allowed(p, cpus_allowed);
5217 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5218again:
5a16f3d3 5219 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5220
8707d8b8 5221 if (!retval) {
5a16f3d3
RR
5222 cpuset_cpus_allowed(p, cpus_allowed);
5223 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5224 /*
5225 * We must have raced with a concurrent cpuset
5226 * update. Just reset the cpus_allowed to the
5227 * cpuset's cpus_allowed
5228 */
5a16f3d3 5229 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5230 goto again;
5231 }
5232 }
1da177e4 5233out_unlock:
5a16f3d3
RR
5234 free_cpumask_var(new_mask);
5235out_free_cpus_allowed:
5236 free_cpumask_var(cpus_allowed);
5237out_put_task:
1da177e4 5238 put_task_struct(p);
95402b38 5239 put_online_cpus();
1da177e4
LT
5240 return retval;
5241}
5242
5243static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5244 struct cpumask *new_mask)
1da177e4 5245{
96f874e2
RR
5246 if (len < cpumask_size())
5247 cpumask_clear(new_mask);
5248 else if (len > cpumask_size())
5249 len = cpumask_size();
5250
1da177e4
LT
5251 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5252}
5253
5254/**
5255 * sys_sched_setaffinity - set the cpu affinity of a process
5256 * @pid: pid of the process
5257 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5258 * @user_mask_ptr: user-space pointer to the new cpu mask
5259 */
5add95d4
HC
5260SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5261 unsigned long __user *, user_mask_ptr)
1da177e4 5262{
5a16f3d3 5263 cpumask_var_t new_mask;
1da177e4
LT
5264 int retval;
5265
5a16f3d3
RR
5266 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5267 return -ENOMEM;
1da177e4 5268
5a16f3d3
RR
5269 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5270 if (retval == 0)
5271 retval = sched_setaffinity(pid, new_mask);
5272 free_cpumask_var(new_mask);
5273 return retval;
1da177e4
LT
5274}
5275
96f874e2 5276long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5277{
36c8b586 5278 struct task_struct *p;
31605683
TG
5279 unsigned long flags;
5280 struct rq *rq;
1da177e4 5281 int retval;
1da177e4 5282
95402b38 5283 get_online_cpus();
23f5d142 5284 rcu_read_lock();
1da177e4
LT
5285
5286 retval = -ESRCH;
5287 p = find_process_by_pid(pid);
5288 if (!p)
5289 goto out_unlock;
5290
e7834f8f
DQ
5291 retval = security_task_getscheduler(p);
5292 if (retval)
5293 goto out_unlock;
5294
31605683 5295 rq = task_rq_lock(p, &flags);
96f874e2 5296 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5297 task_rq_unlock(rq, &flags);
1da177e4
LT
5298
5299out_unlock:
23f5d142 5300 rcu_read_unlock();
95402b38 5301 put_online_cpus();
1da177e4 5302
9531b62f 5303 return retval;
1da177e4
LT
5304}
5305
5306/**
5307 * sys_sched_getaffinity - get the cpu affinity of a process
5308 * @pid: pid of the process
5309 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5310 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5311 */
5add95d4
HC
5312SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5313 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5314{
5315 int ret;
f17c8607 5316 cpumask_var_t mask;
1da177e4 5317
84fba5ec 5318 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5319 return -EINVAL;
5320 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5321 return -EINVAL;
5322
f17c8607
RR
5323 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5324 return -ENOMEM;
1da177e4 5325
f17c8607
RR
5326 ret = sched_getaffinity(pid, mask);
5327 if (ret == 0) {
8bc037fb 5328 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5329
5330 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5331 ret = -EFAULT;
5332 else
cd3d8031 5333 ret = retlen;
f17c8607
RR
5334 }
5335 free_cpumask_var(mask);
1da177e4 5336
f17c8607 5337 return ret;
1da177e4
LT
5338}
5339
5340/**
5341 * sys_sched_yield - yield the current processor to other threads.
5342 *
dd41f596
IM
5343 * This function yields the current CPU to other tasks. If there are no
5344 * other threads running on this CPU then this function will return.
1da177e4 5345 */
5add95d4 5346SYSCALL_DEFINE0(sched_yield)
1da177e4 5347{
70b97a7f 5348 struct rq *rq = this_rq_lock();
1da177e4 5349
2d72376b 5350 schedstat_inc(rq, yld_count);
4530d7ab 5351 current->sched_class->yield_task(rq);
1da177e4
LT
5352
5353 /*
5354 * Since we are going to call schedule() anyway, there's
5355 * no need to preempt or enable interrupts:
5356 */
5357 __release(rq->lock);
8a25d5de 5358 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5359 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5360 preempt_enable_no_resched();
5361
5362 schedule();
5363
5364 return 0;
5365}
5366
d86ee480
PZ
5367static inline int should_resched(void)
5368{
5369 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5370}
5371
e7b38404 5372static void __cond_resched(void)
1da177e4 5373{
e7aaaa69
FW
5374 add_preempt_count(PREEMPT_ACTIVE);
5375 schedule();
5376 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5377}
5378
02b67cc3 5379int __sched _cond_resched(void)
1da177e4 5380{
d86ee480 5381 if (should_resched()) {
1da177e4
LT
5382 __cond_resched();
5383 return 1;
5384 }
5385 return 0;
5386}
02b67cc3 5387EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5388
5389/*
613afbf8 5390 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5391 * call schedule, and on return reacquire the lock.
5392 *
41a2d6cf 5393 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5394 * operations here to prevent schedule() from being called twice (once via
5395 * spin_unlock(), once by hand).
5396 */
613afbf8 5397int __cond_resched_lock(spinlock_t *lock)
1da177e4 5398{
d86ee480 5399 int resched = should_resched();
6df3cecb
JK
5400 int ret = 0;
5401
f607c668
PZ
5402 lockdep_assert_held(lock);
5403
95c354fe 5404 if (spin_needbreak(lock) || resched) {
1da177e4 5405 spin_unlock(lock);
d86ee480 5406 if (resched)
95c354fe
NP
5407 __cond_resched();
5408 else
5409 cpu_relax();
6df3cecb 5410 ret = 1;
1da177e4 5411 spin_lock(lock);
1da177e4 5412 }
6df3cecb 5413 return ret;
1da177e4 5414}
613afbf8 5415EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5416
613afbf8 5417int __sched __cond_resched_softirq(void)
1da177e4
LT
5418{
5419 BUG_ON(!in_softirq());
5420
d86ee480 5421 if (should_resched()) {
98d82567 5422 local_bh_enable();
1da177e4
LT
5423 __cond_resched();
5424 local_bh_disable();
5425 return 1;
5426 }
5427 return 0;
5428}
613afbf8 5429EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5430
1da177e4
LT
5431/**
5432 * yield - yield the current processor to other threads.
5433 *
72fd4a35 5434 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5435 * thread runnable and calls sys_sched_yield().
5436 */
5437void __sched yield(void)
5438{
5439 set_current_state(TASK_RUNNING);
5440 sys_sched_yield();
5441}
1da177e4
LT
5442EXPORT_SYMBOL(yield);
5443
5444/*
41a2d6cf 5445 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5446 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5447 */
5448void __sched io_schedule(void)
5449{
54d35f29 5450 struct rq *rq = raw_rq();
1da177e4 5451
0ff92245 5452 delayacct_blkio_start();
1da177e4 5453 atomic_inc(&rq->nr_iowait);
8f0dfc34 5454 current->in_iowait = 1;
1da177e4 5455 schedule();
8f0dfc34 5456 current->in_iowait = 0;
1da177e4 5457 atomic_dec(&rq->nr_iowait);
0ff92245 5458 delayacct_blkio_end();
1da177e4 5459}
1da177e4
LT
5460EXPORT_SYMBOL(io_schedule);
5461
5462long __sched io_schedule_timeout(long timeout)
5463{
54d35f29 5464 struct rq *rq = raw_rq();
1da177e4
LT
5465 long ret;
5466
0ff92245 5467 delayacct_blkio_start();
1da177e4 5468 atomic_inc(&rq->nr_iowait);
8f0dfc34 5469 current->in_iowait = 1;
1da177e4 5470 ret = schedule_timeout(timeout);
8f0dfc34 5471 current->in_iowait = 0;
1da177e4 5472 atomic_dec(&rq->nr_iowait);
0ff92245 5473 delayacct_blkio_end();
1da177e4
LT
5474 return ret;
5475}
5476
5477/**
5478 * sys_sched_get_priority_max - return maximum RT priority.
5479 * @policy: scheduling class.
5480 *
5481 * this syscall returns the maximum rt_priority that can be used
5482 * by a given scheduling class.
5483 */
5add95d4 5484SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5485{
5486 int ret = -EINVAL;
5487
5488 switch (policy) {
5489 case SCHED_FIFO:
5490 case SCHED_RR:
5491 ret = MAX_USER_RT_PRIO-1;
5492 break;
5493 case SCHED_NORMAL:
b0a9499c 5494 case SCHED_BATCH:
dd41f596 5495 case SCHED_IDLE:
1da177e4
LT
5496 ret = 0;
5497 break;
5498 }
5499 return ret;
5500}
5501
5502/**
5503 * sys_sched_get_priority_min - return minimum RT priority.
5504 * @policy: scheduling class.
5505 *
5506 * this syscall returns the minimum rt_priority that can be used
5507 * by a given scheduling class.
5508 */
5add95d4 5509SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5510{
5511 int ret = -EINVAL;
5512
5513 switch (policy) {
5514 case SCHED_FIFO:
5515 case SCHED_RR:
5516 ret = 1;
5517 break;
5518 case SCHED_NORMAL:
b0a9499c 5519 case SCHED_BATCH:
dd41f596 5520 case SCHED_IDLE:
1da177e4
LT
5521 ret = 0;
5522 }
5523 return ret;
5524}
5525
5526/**
5527 * sys_sched_rr_get_interval - return the default timeslice of a process.
5528 * @pid: pid of the process.
5529 * @interval: userspace pointer to the timeslice value.
5530 *
5531 * this syscall writes the default timeslice value of a given process
5532 * into the user-space timespec buffer. A value of '0' means infinity.
5533 */
17da2bd9 5534SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5535 struct timespec __user *, interval)
1da177e4 5536{
36c8b586 5537 struct task_struct *p;
a4ec24b4 5538 unsigned int time_slice;
dba091b9
TG
5539 unsigned long flags;
5540 struct rq *rq;
3a5c359a 5541 int retval;
1da177e4 5542 struct timespec t;
1da177e4
LT
5543
5544 if (pid < 0)
3a5c359a 5545 return -EINVAL;
1da177e4
LT
5546
5547 retval = -ESRCH;
1a551ae7 5548 rcu_read_lock();
1da177e4
LT
5549 p = find_process_by_pid(pid);
5550 if (!p)
5551 goto out_unlock;
5552
5553 retval = security_task_getscheduler(p);
5554 if (retval)
5555 goto out_unlock;
5556
dba091b9
TG
5557 rq = task_rq_lock(p, &flags);
5558 time_slice = p->sched_class->get_rr_interval(rq, p);
5559 task_rq_unlock(rq, &flags);
a4ec24b4 5560
1a551ae7 5561 rcu_read_unlock();
a4ec24b4 5562 jiffies_to_timespec(time_slice, &t);
1da177e4 5563 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5564 return retval;
3a5c359a 5565
1da177e4 5566out_unlock:
1a551ae7 5567 rcu_read_unlock();
1da177e4
LT
5568 return retval;
5569}
5570
7c731e0a 5571static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5572
82a1fcb9 5573void sched_show_task(struct task_struct *p)
1da177e4 5574{
1da177e4 5575 unsigned long free = 0;
36c8b586 5576 unsigned state;
1da177e4 5577
1da177e4 5578 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5579 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5580 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5581#if BITS_PER_LONG == 32
1da177e4 5582 if (state == TASK_RUNNING)
3df0fc5b 5583 printk(KERN_CONT " running ");
1da177e4 5584 else
3df0fc5b 5585 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5586#else
5587 if (state == TASK_RUNNING)
3df0fc5b 5588 printk(KERN_CONT " running task ");
1da177e4 5589 else
3df0fc5b 5590 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5591#endif
5592#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5593 free = stack_not_used(p);
1da177e4 5594#endif
3df0fc5b 5595 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5596 task_pid_nr(p), task_pid_nr(p->real_parent),
5597 (unsigned long)task_thread_info(p)->flags);
1da177e4 5598
5fb5e6de 5599 show_stack(p, NULL);
1da177e4
LT
5600}
5601
e59e2ae2 5602void show_state_filter(unsigned long state_filter)
1da177e4 5603{
36c8b586 5604 struct task_struct *g, *p;
1da177e4 5605
4bd77321 5606#if BITS_PER_LONG == 32
3df0fc5b
PZ
5607 printk(KERN_INFO
5608 " task PC stack pid father\n");
1da177e4 5609#else
3df0fc5b
PZ
5610 printk(KERN_INFO
5611 " task PC stack pid father\n");
1da177e4
LT
5612#endif
5613 read_lock(&tasklist_lock);
5614 do_each_thread(g, p) {
5615 /*
5616 * reset the NMI-timeout, listing all files on a slow
5617 * console might take alot of time:
5618 */
5619 touch_nmi_watchdog();
39bc89fd 5620 if (!state_filter || (p->state & state_filter))
82a1fcb9 5621 sched_show_task(p);
1da177e4
LT
5622 } while_each_thread(g, p);
5623
04c9167f
JF
5624 touch_all_softlockup_watchdogs();
5625
dd41f596
IM
5626#ifdef CONFIG_SCHED_DEBUG
5627 sysrq_sched_debug_show();
5628#endif
1da177e4 5629 read_unlock(&tasklist_lock);
e59e2ae2
IM
5630 /*
5631 * Only show locks if all tasks are dumped:
5632 */
93335a21 5633 if (!state_filter)
e59e2ae2 5634 debug_show_all_locks();
1da177e4
LT
5635}
5636
1df21055
IM
5637void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5638{
dd41f596 5639 idle->sched_class = &idle_sched_class;
1df21055
IM
5640}
5641
f340c0d1
IM
5642/**
5643 * init_idle - set up an idle thread for a given CPU
5644 * @idle: task in question
5645 * @cpu: cpu the idle task belongs to
5646 *
5647 * NOTE: this function does not set the idle thread's NEED_RESCHED
5648 * flag, to make booting more robust.
5649 */
5c1e1767 5650void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5651{
70b97a7f 5652 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5653 unsigned long flags;
5654
05fa785c 5655 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5656
dd41f596 5657 __sched_fork(idle);
06b83b5f 5658 idle->state = TASK_RUNNING;
dd41f596
IM
5659 idle->se.exec_start = sched_clock();
5660
96f874e2 5661 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5662 /*
5663 * We're having a chicken and egg problem, even though we are
5664 * holding rq->lock, the cpu isn't yet set to this cpu so the
5665 * lockdep check in task_group() will fail.
5666 *
5667 * Similar case to sched_fork(). / Alternatively we could
5668 * use task_rq_lock() here and obtain the other rq->lock.
5669 *
5670 * Silence PROVE_RCU
5671 */
5672 rcu_read_lock();
dd41f596 5673 __set_task_cpu(idle, cpu);
6506cf6c 5674 rcu_read_unlock();
1da177e4 5675
1da177e4 5676 rq->curr = rq->idle = idle;
4866cde0
NP
5677#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5678 idle->oncpu = 1;
5679#endif
05fa785c 5680 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5681
5682 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5683#if defined(CONFIG_PREEMPT)
5684 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5685#else
a1261f54 5686 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5687#endif
dd41f596
IM
5688 /*
5689 * The idle tasks have their own, simple scheduling class:
5690 */
5691 idle->sched_class = &idle_sched_class;
fb52607a 5692 ftrace_graph_init_task(idle);
1da177e4
LT
5693}
5694
5695/*
5696 * In a system that switches off the HZ timer nohz_cpu_mask
5697 * indicates which cpus entered this state. This is used
5698 * in the rcu update to wait only for active cpus. For system
5699 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5700 * always be CPU_BITS_NONE.
1da177e4 5701 */
6a7b3dc3 5702cpumask_var_t nohz_cpu_mask;
1da177e4 5703
19978ca6
IM
5704/*
5705 * Increase the granularity value when there are more CPUs,
5706 * because with more CPUs the 'effective latency' as visible
5707 * to users decreases. But the relationship is not linear,
5708 * so pick a second-best guess by going with the log2 of the
5709 * number of CPUs.
5710 *
5711 * This idea comes from the SD scheduler of Con Kolivas:
5712 */
acb4a848 5713static int get_update_sysctl_factor(void)
19978ca6 5714{
4ca3ef71 5715 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5716 unsigned int factor;
5717
5718 switch (sysctl_sched_tunable_scaling) {
5719 case SCHED_TUNABLESCALING_NONE:
5720 factor = 1;
5721 break;
5722 case SCHED_TUNABLESCALING_LINEAR:
5723 factor = cpus;
5724 break;
5725 case SCHED_TUNABLESCALING_LOG:
5726 default:
5727 factor = 1 + ilog2(cpus);
5728 break;
5729 }
19978ca6 5730
acb4a848
CE
5731 return factor;
5732}
19978ca6 5733
acb4a848
CE
5734static void update_sysctl(void)
5735{
5736 unsigned int factor = get_update_sysctl_factor();
19978ca6 5737
0bcdcf28
CE
5738#define SET_SYSCTL(name) \
5739 (sysctl_##name = (factor) * normalized_sysctl_##name)
5740 SET_SYSCTL(sched_min_granularity);
5741 SET_SYSCTL(sched_latency);
5742 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5743#undef SET_SYSCTL
5744}
55cd5340 5745
0bcdcf28
CE
5746static inline void sched_init_granularity(void)
5747{
5748 update_sysctl();
19978ca6
IM
5749}
5750
1da177e4
LT
5751#ifdef CONFIG_SMP
5752/*
5753 * This is how migration works:
5754 *
969c7921
TH
5755 * 1) we invoke migration_cpu_stop() on the target CPU using
5756 * stop_one_cpu().
5757 * 2) stopper starts to run (implicitly forcing the migrated thread
5758 * off the CPU)
5759 * 3) it checks whether the migrated task is still in the wrong runqueue.
5760 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5761 * it and puts it into the right queue.
969c7921
TH
5762 * 5) stopper completes and stop_one_cpu() returns and the migration
5763 * is done.
1da177e4
LT
5764 */
5765
5766/*
5767 * Change a given task's CPU affinity. Migrate the thread to a
5768 * proper CPU and schedule it away if the CPU it's executing on
5769 * is removed from the allowed bitmask.
5770 *
5771 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5772 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5773 * call is not atomic; no spinlocks may be held.
5774 */
96f874e2 5775int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5776{
5777 unsigned long flags;
70b97a7f 5778 struct rq *rq;
969c7921 5779 unsigned int dest_cpu;
48f24c4d 5780 int ret = 0;
1da177e4 5781
65cc8e48
PZ
5782 /*
5783 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5784 * drop the rq->lock and still rely on ->cpus_allowed.
5785 */
5786again:
5787 while (task_is_waking(p))
5788 cpu_relax();
1da177e4 5789 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5790 if (task_is_waking(p)) {
5791 task_rq_unlock(rq, &flags);
5792 goto again;
5793 }
e2912009 5794
6ad4c188 5795 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5796 ret = -EINVAL;
5797 goto out;
5798 }
5799
9985b0ba 5800 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5801 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5802 ret = -EINVAL;
5803 goto out;
5804 }
5805
73fe6aae 5806 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5807 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5808 else {
96f874e2
RR
5809 cpumask_copy(&p->cpus_allowed, new_mask);
5810 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5811 }
5812
1da177e4 5813 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5814 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5815 goto out;
5816
969c7921 5817 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5818 if (migrate_task(p, rq)) {
969c7921 5819 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5820 /* Need help from migration thread: drop lock and wait. */
5821 task_rq_unlock(rq, &flags);
969c7921 5822 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5823 tlb_migrate_finish(p->mm);
5824 return 0;
5825 }
5826out:
5827 task_rq_unlock(rq, &flags);
48f24c4d 5828
1da177e4
LT
5829 return ret;
5830}
cd8ba7cd 5831EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5832
5833/*
41a2d6cf 5834 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5835 * this because either it can't run here any more (set_cpus_allowed()
5836 * away from this CPU, or CPU going down), or because we're
5837 * attempting to rebalance this task on exec (sched_exec).
5838 *
5839 * So we race with normal scheduler movements, but that's OK, as long
5840 * as the task is no longer on this CPU.
efc30814
KK
5841 *
5842 * Returns non-zero if task was successfully migrated.
1da177e4 5843 */
efc30814 5844static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5845{
70b97a7f 5846 struct rq *rq_dest, *rq_src;
e2912009 5847 int ret = 0;
1da177e4 5848
e761b772 5849 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5850 return ret;
1da177e4
LT
5851
5852 rq_src = cpu_rq(src_cpu);
5853 rq_dest = cpu_rq(dest_cpu);
5854
5855 double_rq_lock(rq_src, rq_dest);
5856 /* Already moved. */
5857 if (task_cpu(p) != src_cpu)
b1e38734 5858 goto done;
1da177e4 5859 /* Affinity changed (again). */
96f874e2 5860 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5861 goto fail;
1da177e4 5862
e2912009
PZ
5863 /*
5864 * If we're not on a rq, the next wake-up will ensure we're
5865 * placed properly.
5866 */
5867 if (p->se.on_rq) {
2e1cb74a 5868 deactivate_task(rq_src, p, 0);
e2912009 5869 set_task_cpu(p, dest_cpu);
dd41f596 5870 activate_task(rq_dest, p, 0);
15afe09b 5871 check_preempt_curr(rq_dest, p, 0);
1da177e4 5872 }
b1e38734 5873done:
efc30814 5874 ret = 1;
b1e38734 5875fail:
1da177e4 5876 double_rq_unlock(rq_src, rq_dest);
efc30814 5877 return ret;
1da177e4
LT
5878}
5879
5880/*
969c7921
TH
5881 * migration_cpu_stop - this will be executed by a highprio stopper thread
5882 * and performs thread migration by bumping thread off CPU then
5883 * 'pushing' onto another runqueue.
1da177e4 5884 */
969c7921 5885static int migration_cpu_stop(void *data)
1da177e4 5886{
969c7921 5887 struct migration_arg *arg = data;
f7b4cddc 5888
969c7921
TH
5889 /*
5890 * The original target cpu might have gone down and we might
5891 * be on another cpu but it doesn't matter.
5892 */
f7b4cddc 5893 local_irq_disable();
969c7921 5894 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5895 local_irq_enable();
1da177e4 5896 return 0;
f7b4cddc
ON
5897}
5898
1da177e4 5899#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5900
054b9108 5901/*
48c5ccae
PZ
5902 * Ensures that the idle task is using init_mm right before its cpu goes
5903 * offline.
054b9108 5904 */
48c5ccae 5905void idle_task_exit(void)
1da177e4 5906{
48c5ccae 5907 struct mm_struct *mm = current->active_mm;
e76bd8d9 5908
48c5ccae 5909 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5910
48c5ccae
PZ
5911 if (mm != &init_mm)
5912 switch_mm(mm, &init_mm, current);
5913 mmdrop(mm);
1da177e4
LT
5914}
5915
5916/*
5917 * While a dead CPU has no uninterruptible tasks queued at this point,
5918 * it might still have a nonzero ->nr_uninterruptible counter, because
5919 * for performance reasons the counter is not stricly tracking tasks to
5920 * their home CPUs. So we just add the counter to another CPU's counter,
5921 * to keep the global sum constant after CPU-down:
5922 */
70b97a7f 5923static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5924{
6ad4c188 5925 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5926
1da177e4
LT
5927 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5928 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5929}
5930
dd41f596 5931/*
48c5ccae 5932 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5933 */
48c5ccae 5934static void calc_global_load_remove(struct rq *rq)
1da177e4 5935{
48c5ccae
PZ
5936 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5937 rq->calc_load_active = 0;
1da177e4
LT
5938}
5939
48f24c4d 5940/*
48c5ccae
PZ
5941 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5942 * try_to_wake_up()->select_task_rq().
5943 *
5944 * Called with rq->lock held even though we'er in stop_machine() and
5945 * there's no concurrency possible, we hold the required locks anyway
5946 * because of lock validation efforts.
1da177e4 5947 */
48c5ccae 5948static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5949{
70b97a7f 5950 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5951 struct task_struct *next, *stop = rq->stop;
5952 int dest_cpu;
1da177e4
LT
5953
5954 /*
48c5ccae
PZ
5955 * Fudge the rq selection such that the below task selection loop
5956 * doesn't get stuck on the currently eligible stop task.
5957 *
5958 * We're currently inside stop_machine() and the rq is either stuck
5959 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5960 * either way we should never end up calling schedule() until we're
5961 * done here.
1da177e4 5962 */
48c5ccae 5963 rq->stop = NULL;
48f24c4d 5964
dd41f596 5965 for ( ; ; ) {
48c5ccae
PZ
5966 /*
5967 * There's this thread running, bail when that's the only
5968 * remaining thread.
5969 */
5970 if (rq->nr_running == 1)
dd41f596 5971 break;
48c5ccae 5972
b67802ea 5973 next = pick_next_task(rq);
48c5ccae 5974 BUG_ON(!next);
79c53799 5975 next->sched_class->put_prev_task(rq, next);
e692ab53 5976
48c5ccae
PZ
5977 /* Find suitable destination for @next, with force if needed. */
5978 dest_cpu = select_fallback_rq(dead_cpu, next);
5979 raw_spin_unlock(&rq->lock);
5980
5981 __migrate_task(next, dead_cpu, dest_cpu);
5982
5983 raw_spin_lock(&rq->lock);
1da177e4 5984 }
dce48a84 5985
48c5ccae 5986 rq->stop = stop;
dce48a84 5987}
48c5ccae 5988
1da177e4
LT
5989#endif /* CONFIG_HOTPLUG_CPU */
5990
e692ab53
NP
5991#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5992
5993static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5994 {
5995 .procname = "sched_domain",
c57baf1e 5996 .mode = 0555,
e0361851 5997 },
56992309 5998 {}
e692ab53
NP
5999};
6000
6001static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6002 {
6003 .procname = "kernel",
c57baf1e 6004 .mode = 0555,
e0361851
AD
6005 .child = sd_ctl_dir,
6006 },
56992309 6007 {}
e692ab53
NP
6008};
6009
6010static struct ctl_table *sd_alloc_ctl_entry(int n)
6011{
6012 struct ctl_table *entry =
5cf9f062 6013 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6014
e692ab53
NP
6015 return entry;
6016}
6017
6382bc90
MM
6018static void sd_free_ctl_entry(struct ctl_table **tablep)
6019{
cd790076 6020 struct ctl_table *entry;
6382bc90 6021
cd790076
MM
6022 /*
6023 * In the intermediate directories, both the child directory and
6024 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6025 * will always be set. In the lowest directory the names are
cd790076
MM
6026 * static strings and all have proc handlers.
6027 */
6028 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6029 if (entry->child)
6030 sd_free_ctl_entry(&entry->child);
cd790076
MM
6031 if (entry->proc_handler == NULL)
6032 kfree(entry->procname);
6033 }
6382bc90
MM
6034
6035 kfree(*tablep);
6036 *tablep = NULL;
6037}
6038
e692ab53 6039static void
e0361851 6040set_table_entry(struct ctl_table *entry,
e692ab53
NP
6041 const char *procname, void *data, int maxlen,
6042 mode_t mode, proc_handler *proc_handler)
6043{
e692ab53
NP
6044 entry->procname = procname;
6045 entry->data = data;
6046 entry->maxlen = maxlen;
6047 entry->mode = mode;
6048 entry->proc_handler = proc_handler;
6049}
6050
6051static struct ctl_table *
6052sd_alloc_ctl_domain_table(struct sched_domain *sd)
6053{
a5d8c348 6054 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6055
ad1cdc1d
MM
6056 if (table == NULL)
6057 return NULL;
6058
e0361851 6059 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6060 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6061 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6062 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6063 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6064 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6065 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6066 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6067 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6068 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6069 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6070 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6071 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6072 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6073 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6074 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6075 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6076 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6077 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6078 &sd->cache_nice_tries,
6079 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6080 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6081 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6082 set_table_entry(&table[11], "name", sd->name,
6083 CORENAME_MAX_SIZE, 0444, proc_dostring);
6084 /* &table[12] is terminator */
e692ab53
NP
6085
6086 return table;
6087}
6088
9a4e7159 6089static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6090{
6091 struct ctl_table *entry, *table;
6092 struct sched_domain *sd;
6093 int domain_num = 0, i;
6094 char buf[32];
6095
6096 for_each_domain(cpu, sd)
6097 domain_num++;
6098 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6099 if (table == NULL)
6100 return NULL;
e692ab53
NP
6101
6102 i = 0;
6103 for_each_domain(cpu, sd) {
6104 snprintf(buf, 32, "domain%d", i);
e692ab53 6105 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6106 entry->mode = 0555;
e692ab53
NP
6107 entry->child = sd_alloc_ctl_domain_table(sd);
6108 entry++;
6109 i++;
6110 }
6111 return table;
6112}
6113
6114static struct ctl_table_header *sd_sysctl_header;
6382bc90 6115static void register_sched_domain_sysctl(void)
e692ab53 6116{
6ad4c188 6117 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6118 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6119 char buf[32];
6120
7378547f
MM
6121 WARN_ON(sd_ctl_dir[0].child);
6122 sd_ctl_dir[0].child = entry;
6123
ad1cdc1d
MM
6124 if (entry == NULL)
6125 return;
6126
6ad4c188 6127 for_each_possible_cpu(i) {
e692ab53 6128 snprintf(buf, 32, "cpu%d", i);
e692ab53 6129 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6130 entry->mode = 0555;
e692ab53 6131 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6132 entry++;
e692ab53 6133 }
7378547f
MM
6134
6135 WARN_ON(sd_sysctl_header);
e692ab53
NP
6136 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6137}
6382bc90 6138
7378547f 6139/* may be called multiple times per register */
6382bc90
MM
6140static void unregister_sched_domain_sysctl(void)
6141{
7378547f
MM
6142 if (sd_sysctl_header)
6143 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6144 sd_sysctl_header = NULL;
7378547f
MM
6145 if (sd_ctl_dir[0].child)
6146 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6147}
e692ab53 6148#else
6382bc90
MM
6149static void register_sched_domain_sysctl(void)
6150{
6151}
6152static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6153{
6154}
6155#endif
6156
1f11eb6a
GH
6157static void set_rq_online(struct rq *rq)
6158{
6159 if (!rq->online) {
6160 const struct sched_class *class;
6161
c6c4927b 6162 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6163 rq->online = 1;
6164
6165 for_each_class(class) {
6166 if (class->rq_online)
6167 class->rq_online(rq);
6168 }
6169 }
6170}
6171
6172static void set_rq_offline(struct rq *rq)
6173{
6174 if (rq->online) {
6175 const struct sched_class *class;
6176
6177 for_each_class(class) {
6178 if (class->rq_offline)
6179 class->rq_offline(rq);
6180 }
6181
c6c4927b 6182 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6183 rq->online = 0;
6184 }
6185}
6186
1da177e4
LT
6187/*
6188 * migration_call - callback that gets triggered when a CPU is added.
6189 * Here we can start up the necessary migration thread for the new CPU.
6190 */
48f24c4d
IM
6191static int __cpuinit
6192migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6193{
48f24c4d 6194 int cpu = (long)hcpu;
1da177e4 6195 unsigned long flags;
969c7921 6196 struct rq *rq = cpu_rq(cpu);
1da177e4 6197
48c5ccae 6198 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6199
1da177e4 6200 case CPU_UP_PREPARE:
a468d389 6201 rq->calc_load_update = calc_load_update;
1da177e4 6202 break;
48f24c4d 6203
1da177e4 6204 case CPU_ONLINE:
1f94ef59 6205 /* Update our root-domain */
05fa785c 6206 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6207 if (rq->rd) {
c6c4927b 6208 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6209
6210 set_rq_online(rq);
1f94ef59 6211 }
05fa785c 6212 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6213 break;
48f24c4d 6214
1da177e4 6215#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6216 case CPU_DYING:
57d885fe 6217 /* Update our root-domain */
05fa785c 6218 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6219 if (rq->rd) {
c6c4927b 6220 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6221 set_rq_offline(rq);
57d885fe 6222 }
48c5ccae
PZ
6223 migrate_tasks(cpu);
6224 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6225 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6226
6227 migrate_nr_uninterruptible(rq);
6228 calc_global_load_remove(rq);
57d885fe 6229 break;
1da177e4
LT
6230#endif
6231 }
6232 return NOTIFY_OK;
6233}
6234
f38b0820
PM
6235/*
6236 * Register at high priority so that task migration (migrate_all_tasks)
6237 * happens before everything else. This has to be lower priority than
cdd6c482 6238 * the notifier in the perf_event subsystem, though.
1da177e4 6239 */
26c2143b 6240static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6241 .notifier_call = migration_call,
50a323b7 6242 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6243};
6244
3a101d05
TH
6245static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6246 unsigned long action, void *hcpu)
6247{
6248 switch (action & ~CPU_TASKS_FROZEN) {
6249 case CPU_ONLINE:
6250 case CPU_DOWN_FAILED:
6251 set_cpu_active((long)hcpu, true);
6252 return NOTIFY_OK;
6253 default:
6254 return NOTIFY_DONE;
6255 }
6256}
6257
6258static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6259 unsigned long action, void *hcpu)
6260{
6261 switch (action & ~CPU_TASKS_FROZEN) {
6262 case CPU_DOWN_PREPARE:
6263 set_cpu_active((long)hcpu, false);
6264 return NOTIFY_OK;
6265 default:
6266 return NOTIFY_DONE;
6267 }
6268}
6269
7babe8db 6270static int __init migration_init(void)
1da177e4
LT
6271{
6272 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6273 int err;
48f24c4d 6274
3a101d05 6275 /* Initialize migration for the boot CPU */
07dccf33
AM
6276 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6277 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6278 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6279 register_cpu_notifier(&migration_notifier);
7babe8db 6280
3a101d05
TH
6281 /* Register cpu active notifiers */
6282 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6283 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6284
a004cd42 6285 return 0;
1da177e4 6286}
7babe8db 6287early_initcall(migration_init);
1da177e4
LT
6288#endif
6289
6290#ifdef CONFIG_SMP
476f3534 6291
3e9830dc 6292#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6293
f6630114
MT
6294static __read_mostly int sched_domain_debug_enabled;
6295
6296static int __init sched_domain_debug_setup(char *str)
6297{
6298 sched_domain_debug_enabled = 1;
6299
6300 return 0;
6301}
6302early_param("sched_debug", sched_domain_debug_setup);
6303
7c16ec58 6304static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6305 struct cpumask *groupmask)
1da177e4 6306{
4dcf6aff 6307 struct sched_group *group = sd->groups;
434d53b0 6308 char str[256];
1da177e4 6309
968ea6d8 6310 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6311 cpumask_clear(groupmask);
4dcf6aff
IM
6312
6313 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6314
6315 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6316 printk("does not load-balance\n");
4dcf6aff 6317 if (sd->parent)
3df0fc5b
PZ
6318 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6319 " has parent");
4dcf6aff 6320 return -1;
41c7ce9a
NP
6321 }
6322
3df0fc5b 6323 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6324
758b2cdc 6325 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6326 printk(KERN_ERR "ERROR: domain->span does not contain "
6327 "CPU%d\n", cpu);
4dcf6aff 6328 }
758b2cdc 6329 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6330 printk(KERN_ERR "ERROR: domain->groups does not contain"
6331 " CPU%d\n", cpu);
4dcf6aff 6332 }
1da177e4 6333
4dcf6aff 6334 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6335 do {
4dcf6aff 6336 if (!group) {
3df0fc5b
PZ
6337 printk("\n");
6338 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6339 break;
6340 }
6341
18a3885f 6342 if (!group->cpu_power) {
3df0fc5b
PZ
6343 printk(KERN_CONT "\n");
6344 printk(KERN_ERR "ERROR: domain->cpu_power not "
6345 "set\n");
4dcf6aff
IM
6346 break;
6347 }
1da177e4 6348
758b2cdc 6349 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6350 printk(KERN_CONT "\n");
6351 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6352 break;
6353 }
1da177e4 6354
758b2cdc 6355 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6356 printk(KERN_CONT "\n");
6357 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6358 break;
6359 }
1da177e4 6360
758b2cdc 6361 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6362
968ea6d8 6363 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6364
3df0fc5b 6365 printk(KERN_CONT " %s", str);
18a3885f 6366 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6367 printk(KERN_CONT " (cpu_power = %d)",
6368 group->cpu_power);
381512cf 6369 }
1da177e4 6370
4dcf6aff
IM
6371 group = group->next;
6372 } while (group != sd->groups);
3df0fc5b 6373 printk(KERN_CONT "\n");
1da177e4 6374
758b2cdc 6375 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6376 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6377
758b2cdc
RR
6378 if (sd->parent &&
6379 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6380 printk(KERN_ERR "ERROR: parent span is not a superset "
6381 "of domain->span\n");
4dcf6aff
IM
6382 return 0;
6383}
1da177e4 6384
4dcf6aff
IM
6385static void sched_domain_debug(struct sched_domain *sd, int cpu)
6386{
d5dd3db1 6387 cpumask_var_t groupmask;
4dcf6aff 6388 int level = 0;
1da177e4 6389
f6630114
MT
6390 if (!sched_domain_debug_enabled)
6391 return;
6392
4dcf6aff
IM
6393 if (!sd) {
6394 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6395 return;
6396 }
1da177e4 6397
4dcf6aff
IM
6398 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6399
d5dd3db1 6400 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6401 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6402 return;
6403 }
6404
4dcf6aff 6405 for (;;) {
7c16ec58 6406 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6407 break;
1da177e4
LT
6408 level++;
6409 sd = sd->parent;
33859f7f 6410 if (!sd)
4dcf6aff
IM
6411 break;
6412 }
d5dd3db1 6413 free_cpumask_var(groupmask);
1da177e4 6414}
6d6bc0ad 6415#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6416# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6417#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6418
1a20ff27 6419static int sd_degenerate(struct sched_domain *sd)
245af2c7 6420{
758b2cdc 6421 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6422 return 1;
6423
6424 /* Following flags need at least 2 groups */
6425 if (sd->flags & (SD_LOAD_BALANCE |
6426 SD_BALANCE_NEWIDLE |
6427 SD_BALANCE_FORK |
89c4710e
SS
6428 SD_BALANCE_EXEC |
6429 SD_SHARE_CPUPOWER |
6430 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6431 if (sd->groups != sd->groups->next)
6432 return 0;
6433 }
6434
6435 /* Following flags don't use groups */
c88d5910 6436 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6437 return 0;
6438
6439 return 1;
6440}
6441
48f24c4d
IM
6442static int
6443sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6444{
6445 unsigned long cflags = sd->flags, pflags = parent->flags;
6446
6447 if (sd_degenerate(parent))
6448 return 1;
6449
758b2cdc 6450 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6451 return 0;
6452
245af2c7
SS
6453 /* Flags needing groups don't count if only 1 group in parent */
6454 if (parent->groups == parent->groups->next) {
6455 pflags &= ~(SD_LOAD_BALANCE |
6456 SD_BALANCE_NEWIDLE |
6457 SD_BALANCE_FORK |
89c4710e
SS
6458 SD_BALANCE_EXEC |
6459 SD_SHARE_CPUPOWER |
6460 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6461 if (nr_node_ids == 1)
6462 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6463 }
6464 if (~cflags & pflags)
6465 return 0;
6466
6467 return 1;
6468}
6469
c6c4927b
RR
6470static void free_rootdomain(struct root_domain *rd)
6471{
047106ad
PZ
6472 synchronize_sched();
6473
68e74568
RR
6474 cpupri_cleanup(&rd->cpupri);
6475
c6c4927b
RR
6476 free_cpumask_var(rd->rto_mask);
6477 free_cpumask_var(rd->online);
6478 free_cpumask_var(rd->span);
6479 kfree(rd);
6480}
6481
57d885fe
GH
6482static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6483{
a0490fa3 6484 struct root_domain *old_rd = NULL;
57d885fe 6485 unsigned long flags;
57d885fe 6486
05fa785c 6487 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6488
6489 if (rq->rd) {
a0490fa3 6490 old_rd = rq->rd;
57d885fe 6491
c6c4927b 6492 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6493 set_rq_offline(rq);
57d885fe 6494
c6c4927b 6495 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6496
a0490fa3
IM
6497 /*
6498 * If we dont want to free the old_rt yet then
6499 * set old_rd to NULL to skip the freeing later
6500 * in this function:
6501 */
6502 if (!atomic_dec_and_test(&old_rd->refcount))
6503 old_rd = NULL;
57d885fe
GH
6504 }
6505
6506 atomic_inc(&rd->refcount);
6507 rq->rd = rd;
6508
c6c4927b 6509 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6510 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6511 set_rq_online(rq);
57d885fe 6512
05fa785c 6513 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6514
6515 if (old_rd)
6516 free_rootdomain(old_rd);
57d885fe
GH
6517}
6518
68c38fc3 6519static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6520{
6521 memset(rd, 0, sizeof(*rd));
6522
68c38fc3 6523 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6524 goto out;
68c38fc3 6525 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6526 goto free_span;
68c38fc3 6527 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6528 goto free_online;
6e0534f2 6529
68c38fc3 6530 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6531 goto free_rto_mask;
c6c4927b 6532 return 0;
6e0534f2 6533
68e74568
RR
6534free_rto_mask:
6535 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6536free_online:
6537 free_cpumask_var(rd->online);
6538free_span:
6539 free_cpumask_var(rd->span);
0c910d28 6540out:
c6c4927b 6541 return -ENOMEM;
57d885fe
GH
6542}
6543
6544static void init_defrootdomain(void)
6545{
68c38fc3 6546 init_rootdomain(&def_root_domain);
c6c4927b 6547
57d885fe
GH
6548 atomic_set(&def_root_domain.refcount, 1);
6549}
6550
dc938520 6551static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6552{
6553 struct root_domain *rd;
6554
6555 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6556 if (!rd)
6557 return NULL;
6558
68c38fc3 6559 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6560 kfree(rd);
6561 return NULL;
6562 }
57d885fe
GH
6563
6564 return rd;
6565}
6566
1da177e4 6567/*
0eab9146 6568 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6569 * hold the hotplug lock.
6570 */
0eab9146
IM
6571static void
6572cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6573{
70b97a7f 6574 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6575 struct sched_domain *tmp;
6576
669c55e9
PZ
6577 for (tmp = sd; tmp; tmp = tmp->parent)
6578 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6579
245af2c7 6580 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6581 for (tmp = sd; tmp; ) {
245af2c7
SS
6582 struct sched_domain *parent = tmp->parent;
6583 if (!parent)
6584 break;
f29c9b1c 6585
1a848870 6586 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6587 tmp->parent = parent->parent;
1a848870
SS
6588 if (parent->parent)
6589 parent->parent->child = tmp;
f29c9b1c
LZ
6590 } else
6591 tmp = tmp->parent;
245af2c7
SS
6592 }
6593
1a848870 6594 if (sd && sd_degenerate(sd)) {
245af2c7 6595 sd = sd->parent;
1a848870
SS
6596 if (sd)
6597 sd->child = NULL;
6598 }
1da177e4
LT
6599
6600 sched_domain_debug(sd, cpu);
6601
57d885fe 6602 rq_attach_root(rq, rd);
674311d5 6603 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6604}
6605
6606/* cpus with isolated domains */
dcc30a35 6607static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6608
6609/* Setup the mask of cpus configured for isolated domains */
6610static int __init isolated_cpu_setup(char *str)
6611{
bdddd296 6612 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6613 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6614 return 1;
6615}
6616
8927f494 6617__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6618
6619/*
6711cab4
SS
6620 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6621 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6622 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6623 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6624 *
6625 * init_sched_build_groups will build a circular linked list of the groups
6626 * covered by the given span, and will set each group's ->cpumask correctly,
6627 * and ->cpu_power to 0.
6628 */
a616058b 6629static void
96f874e2
RR
6630init_sched_build_groups(const struct cpumask *span,
6631 const struct cpumask *cpu_map,
6632 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6633 struct sched_group **sg,
96f874e2
RR
6634 struct cpumask *tmpmask),
6635 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6636{
6637 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6638 int i;
6639
96f874e2 6640 cpumask_clear(covered);
7c16ec58 6641
abcd083a 6642 for_each_cpu(i, span) {
6711cab4 6643 struct sched_group *sg;
7c16ec58 6644 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6645 int j;
6646
758b2cdc 6647 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6648 continue;
6649
758b2cdc 6650 cpumask_clear(sched_group_cpus(sg));
18a3885f 6651 sg->cpu_power = 0;
1da177e4 6652
abcd083a 6653 for_each_cpu(j, span) {
7c16ec58 6654 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6655 continue;
6656
96f874e2 6657 cpumask_set_cpu(j, covered);
758b2cdc 6658 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6659 }
6660 if (!first)
6661 first = sg;
6662 if (last)
6663 last->next = sg;
6664 last = sg;
6665 }
6666 last->next = first;
6667}
6668
9c1cfda2 6669#define SD_NODES_PER_DOMAIN 16
1da177e4 6670
9c1cfda2 6671#ifdef CONFIG_NUMA
198e2f18 6672
9c1cfda2
JH
6673/**
6674 * find_next_best_node - find the next node to include in a sched_domain
6675 * @node: node whose sched_domain we're building
6676 * @used_nodes: nodes already in the sched_domain
6677 *
41a2d6cf 6678 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6679 * finds the closest node not already in the @used_nodes map.
6680 *
6681 * Should use nodemask_t.
6682 */
c5f59f08 6683static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6684{
6685 int i, n, val, min_val, best_node = 0;
6686
6687 min_val = INT_MAX;
6688
076ac2af 6689 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6690 /* Start at @node */
076ac2af 6691 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6692
6693 if (!nr_cpus_node(n))
6694 continue;
6695
6696 /* Skip already used nodes */
c5f59f08 6697 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6698 continue;
6699
6700 /* Simple min distance search */
6701 val = node_distance(node, n);
6702
6703 if (val < min_val) {
6704 min_val = val;
6705 best_node = n;
6706 }
6707 }
6708
c5f59f08 6709 node_set(best_node, *used_nodes);
9c1cfda2
JH
6710 return best_node;
6711}
6712
6713/**
6714 * sched_domain_node_span - get a cpumask for a node's sched_domain
6715 * @node: node whose cpumask we're constructing
73486722 6716 * @span: resulting cpumask
9c1cfda2 6717 *
41a2d6cf 6718 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6719 * should be one that prevents unnecessary balancing, but also spreads tasks
6720 * out optimally.
6721 */
96f874e2 6722static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6723{
c5f59f08 6724 nodemask_t used_nodes;
48f24c4d 6725 int i;
9c1cfda2 6726
6ca09dfc 6727 cpumask_clear(span);
c5f59f08 6728 nodes_clear(used_nodes);
9c1cfda2 6729
6ca09dfc 6730 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6731 node_set(node, used_nodes);
9c1cfda2
JH
6732
6733 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6734 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6735
6ca09dfc 6736 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6737 }
9c1cfda2 6738}
6d6bc0ad 6739#endif /* CONFIG_NUMA */
9c1cfda2 6740
5c45bf27 6741int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6742
6c99e9ad
RR
6743/*
6744 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6745 *
6746 * ( See the the comments in include/linux/sched.h:struct sched_group
6747 * and struct sched_domain. )
6c99e9ad
RR
6748 */
6749struct static_sched_group {
6750 struct sched_group sg;
6751 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6752};
6753
6754struct static_sched_domain {
6755 struct sched_domain sd;
6756 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6757};
6758
49a02c51
AH
6759struct s_data {
6760#ifdef CONFIG_NUMA
6761 int sd_allnodes;
6762 cpumask_var_t domainspan;
6763 cpumask_var_t covered;
6764 cpumask_var_t notcovered;
6765#endif
6766 cpumask_var_t nodemask;
6767 cpumask_var_t this_sibling_map;
6768 cpumask_var_t this_core_map;
01a08546 6769 cpumask_var_t this_book_map;
49a02c51
AH
6770 cpumask_var_t send_covered;
6771 cpumask_var_t tmpmask;
6772 struct sched_group **sched_group_nodes;
6773 struct root_domain *rd;
6774};
6775
2109b99e
AH
6776enum s_alloc {
6777 sa_sched_groups = 0,
6778 sa_rootdomain,
6779 sa_tmpmask,
6780 sa_send_covered,
01a08546 6781 sa_this_book_map,
2109b99e
AH
6782 sa_this_core_map,
6783 sa_this_sibling_map,
6784 sa_nodemask,
6785 sa_sched_group_nodes,
6786#ifdef CONFIG_NUMA
6787 sa_notcovered,
6788 sa_covered,
6789 sa_domainspan,
6790#endif
6791 sa_none,
6792};
6793
9c1cfda2 6794/*
48f24c4d 6795 * SMT sched-domains:
9c1cfda2 6796 */
1da177e4 6797#ifdef CONFIG_SCHED_SMT
6c99e9ad 6798static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6799static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6800
41a2d6cf 6801static int
96f874e2
RR
6802cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6803 struct sched_group **sg, struct cpumask *unused)
1da177e4 6804{
6711cab4 6805 if (sg)
1871e52c 6806 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6807 return cpu;
6808}
6d6bc0ad 6809#endif /* CONFIG_SCHED_SMT */
1da177e4 6810
48f24c4d
IM
6811/*
6812 * multi-core sched-domains:
6813 */
1e9f28fa 6814#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6815static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6816static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6817
41a2d6cf 6818static int
96f874e2
RR
6819cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6820 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6821{
6711cab4 6822 int group;
f269893c 6823#ifdef CONFIG_SCHED_SMT
c69fc56d 6824 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6825 group = cpumask_first(mask);
f269893c
HC
6826#else
6827 group = cpu;
6828#endif
6711cab4 6829 if (sg)
6c99e9ad 6830 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6831 return group;
1e9f28fa 6832}
f269893c 6833#endif /* CONFIG_SCHED_MC */
1e9f28fa 6834
01a08546
HC
6835/*
6836 * book sched-domains:
6837 */
6838#ifdef CONFIG_SCHED_BOOK
6839static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6840static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6841
41a2d6cf 6842static int
01a08546
HC
6843cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6844 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6845{
01a08546
HC
6846 int group = cpu;
6847#ifdef CONFIG_SCHED_MC
6848 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6849 group = cpumask_first(mask);
6850#elif defined(CONFIG_SCHED_SMT)
6851 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6852 group = cpumask_first(mask);
6853#endif
6711cab4 6854 if (sg)
01a08546
HC
6855 *sg = &per_cpu(sched_group_book, group).sg;
6856 return group;
1e9f28fa 6857}
01a08546 6858#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6859
6c99e9ad
RR
6860static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6861static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6862
41a2d6cf 6863static int
96f874e2
RR
6864cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6865 struct sched_group **sg, struct cpumask *mask)
1da177e4 6866{
6711cab4 6867 int group;
01a08546
HC
6868#ifdef CONFIG_SCHED_BOOK
6869 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6870 group = cpumask_first(mask);
6871#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6872 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6873 group = cpumask_first(mask);
1e9f28fa 6874#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6875 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6876 group = cpumask_first(mask);
1da177e4 6877#else
6711cab4 6878 group = cpu;
1da177e4 6879#endif
6711cab4 6880 if (sg)
6c99e9ad 6881 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6882 return group;
1da177e4
LT
6883}
6884
6885#ifdef CONFIG_NUMA
1da177e4 6886/*
9c1cfda2
JH
6887 * The init_sched_build_groups can't handle what we want to do with node
6888 * groups, so roll our own. Now each node has its own list of groups which
6889 * gets dynamically allocated.
1da177e4 6890 */
62ea9ceb 6891static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6892static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6893
62ea9ceb 6894static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6895static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6896
96f874e2
RR
6897static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6898 struct sched_group **sg,
6899 struct cpumask *nodemask)
9c1cfda2 6900{
6711cab4
SS
6901 int group;
6902
6ca09dfc 6903 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6904 group = cpumask_first(nodemask);
6711cab4
SS
6905
6906 if (sg)
6c99e9ad 6907 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6908 return group;
1da177e4 6909}
6711cab4 6910
08069033
SS
6911static void init_numa_sched_groups_power(struct sched_group *group_head)
6912{
6913 struct sched_group *sg = group_head;
6914 int j;
6915
6916 if (!sg)
6917 return;
3a5c359a 6918 do {
758b2cdc 6919 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6920 struct sched_domain *sd;
08069033 6921
6c99e9ad 6922 sd = &per_cpu(phys_domains, j).sd;
13318a71 6923 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6924 /*
6925 * Only add "power" once for each
6926 * physical package.
6927 */
6928 continue;
6929 }
08069033 6930
18a3885f 6931 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6932 }
6933 sg = sg->next;
6934 } while (sg != group_head);
08069033 6935}
0601a88d
AH
6936
6937static int build_numa_sched_groups(struct s_data *d,
6938 const struct cpumask *cpu_map, int num)
6939{
6940 struct sched_domain *sd;
6941 struct sched_group *sg, *prev;
6942 int n, j;
6943
6944 cpumask_clear(d->covered);
6945 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6946 if (cpumask_empty(d->nodemask)) {
6947 d->sched_group_nodes[num] = NULL;
6948 goto out;
6949 }
6950
6951 sched_domain_node_span(num, d->domainspan);
6952 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6953
6954 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6955 GFP_KERNEL, num);
6956 if (!sg) {
3df0fc5b
PZ
6957 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6958 num);
0601a88d
AH
6959 return -ENOMEM;
6960 }
6961 d->sched_group_nodes[num] = sg;
6962
6963 for_each_cpu(j, d->nodemask) {
6964 sd = &per_cpu(node_domains, j).sd;
6965 sd->groups = sg;
6966 }
6967
18a3885f 6968 sg->cpu_power = 0;
0601a88d
AH
6969 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6970 sg->next = sg;
6971 cpumask_or(d->covered, d->covered, d->nodemask);
6972
6973 prev = sg;
6974 for (j = 0; j < nr_node_ids; j++) {
6975 n = (num + j) % nr_node_ids;
6976 cpumask_complement(d->notcovered, d->covered);
6977 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6978 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6979 if (cpumask_empty(d->tmpmask))
6980 break;
6981 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6982 if (cpumask_empty(d->tmpmask))
6983 continue;
6984 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6985 GFP_KERNEL, num);
6986 if (!sg) {
3df0fc5b
PZ
6987 printk(KERN_WARNING
6988 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6989 return -ENOMEM;
6990 }
18a3885f 6991 sg->cpu_power = 0;
0601a88d
AH
6992 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6993 sg->next = prev->next;
6994 cpumask_or(d->covered, d->covered, d->tmpmask);
6995 prev->next = sg;
6996 prev = sg;
6997 }
6998out:
6999 return 0;
7000}
6d6bc0ad 7001#endif /* CONFIG_NUMA */
1da177e4 7002
a616058b 7003#ifdef CONFIG_NUMA
51888ca2 7004/* Free memory allocated for various sched_group structures */
96f874e2
RR
7005static void free_sched_groups(const struct cpumask *cpu_map,
7006 struct cpumask *nodemask)
51888ca2 7007{
a616058b 7008 int cpu, i;
51888ca2 7009
abcd083a 7010 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7011 struct sched_group **sched_group_nodes
7012 = sched_group_nodes_bycpu[cpu];
7013
51888ca2
SV
7014 if (!sched_group_nodes)
7015 continue;
7016
076ac2af 7017 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7018 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7019
6ca09dfc 7020 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7021 if (cpumask_empty(nodemask))
51888ca2
SV
7022 continue;
7023
7024 if (sg == NULL)
7025 continue;
7026 sg = sg->next;
7027next_sg:
7028 oldsg = sg;
7029 sg = sg->next;
7030 kfree(oldsg);
7031 if (oldsg != sched_group_nodes[i])
7032 goto next_sg;
7033 }
7034 kfree(sched_group_nodes);
7035 sched_group_nodes_bycpu[cpu] = NULL;
7036 }
51888ca2 7037}
6d6bc0ad 7038#else /* !CONFIG_NUMA */
96f874e2
RR
7039static void free_sched_groups(const struct cpumask *cpu_map,
7040 struct cpumask *nodemask)
a616058b
SS
7041{
7042}
6d6bc0ad 7043#endif /* CONFIG_NUMA */
51888ca2 7044
89c4710e
SS
7045/*
7046 * Initialize sched groups cpu_power.
7047 *
7048 * cpu_power indicates the capacity of sched group, which is used while
7049 * distributing the load between different sched groups in a sched domain.
7050 * Typically cpu_power for all the groups in a sched domain will be same unless
7051 * there are asymmetries in the topology. If there are asymmetries, group
7052 * having more cpu_power will pickup more load compared to the group having
7053 * less cpu_power.
89c4710e
SS
7054 */
7055static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7056{
7057 struct sched_domain *child;
7058 struct sched_group *group;
f93e65c1
PZ
7059 long power;
7060 int weight;
89c4710e
SS
7061
7062 WARN_ON(!sd || !sd->groups);
7063
13318a71 7064 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7065 return;
7066
aae6d3dd
SS
7067 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7068
89c4710e
SS
7069 child = sd->child;
7070
18a3885f 7071 sd->groups->cpu_power = 0;
5517d86b 7072
f93e65c1
PZ
7073 if (!child) {
7074 power = SCHED_LOAD_SCALE;
7075 weight = cpumask_weight(sched_domain_span(sd));
7076 /*
7077 * SMT siblings share the power of a single core.
a52bfd73
PZ
7078 * Usually multiple threads get a better yield out of
7079 * that one core than a single thread would have,
7080 * reflect that in sd->smt_gain.
f93e65c1 7081 */
a52bfd73
PZ
7082 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7083 power *= sd->smt_gain;
f93e65c1 7084 power /= weight;
a52bfd73
PZ
7085 power >>= SCHED_LOAD_SHIFT;
7086 }
18a3885f 7087 sd->groups->cpu_power += power;
89c4710e
SS
7088 return;
7089 }
7090
89c4710e 7091 /*
f93e65c1 7092 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7093 */
7094 group = child->groups;
7095 do {
18a3885f 7096 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7097 group = group->next;
7098 } while (group != child->groups);
7099}
7100
7c16ec58
MT
7101/*
7102 * Initializers for schedule domains
7103 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7104 */
7105
a5d8c348
IM
7106#ifdef CONFIG_SCHED_DEBUG
7107# define SD_INIT_NAME(sd, type) sd->name = #type
7108#else
7109# define SD_INIT_NAME(sd, type) do { } while (0)
7110#endif
7111
7c16ec58 7112#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7113
7c16ec58
MT
7114#define SD_INIT_FUNC(type) \
7115static noinline void sd_init_##type(struct sched_domain *sd) \
7116{ \
7117 memset(sd, 0, sizeof(*sd)); \
7118 *sd = SD_##type##_INIT; \
1d3504fc 7119 sd->level = SD_LV_##type; \
a5d8c348 7120 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7121}
7122
7123SD_INIT_FUNC(CPU)
7124#ifdef CONFIG_NUMA
7125 SD_INIT_FUNC(ALLNODES)
7126 SD_INIT_FUNC(NODE)
7127#endif
7128#ifdef CONFIG_SCHED_SMT
7129 SD_INIT_FUNC(SIBLING)
7130#endif
7131#ifdef CONFIG_SCHED_MC
7132 SD_INIT_FUNC(MC)
7133#endif
01a08546
HC
7134#ifdef CONFIG_SCHED_BOOK
7135 SD_INIT_FUNC(BOOK)
7136#endif
7c16ec58 7137
1d3504fc
HS
7138static int default_relax_domain_level = -1;
7139
7140static int __init setup_relax_domain_level(char *str)
7141{
30e0e178
LZ
7142 unsigned long val;
7143
7144 val = simple_strtoul(str, NULL, 0);
7145 if (val < SD_LV_MAX)
7146 default_relax_domain_level = val;
7147
1d3504fc
HS
7148 return 1;
7149}
7150__setup("relax_domain_level=", setup_relax_domain_level);
7151
7152static void set_domain_attribute(struct sched_domain *sd,
7153 struct sched_domain_attr *attr)
7154{
7155 int request;
7156
7157 if (!attr || attr->relax_domain_level < 0) {
7158 if (default_relax_domain_level < 0)
7159 return;
7160 else
7161 request = default_relax_domain_level;
7162 } else
7163 request = attr->relax_domain_level;
7164 if (request < sd->level) {
7165 /* turn off idle balance on this domain */
c88d5910 7166 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7167 } else {
7168 /* turn on idle balance on this domain */
c88d5910 7169 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7170 }
7171}
7172
2109b99e
AH
7173static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7174 const struct cpumask *cpu_map)
7175{
7176 switch (what) {
7177 case sa_sched_groups:
7178 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7179 d->sched_group_nodes = NULL;
7180 case sa_rootdomain:
7181 free_rootdomain(d->rd); /* fall through */
7182 case sa_tmpmask:
7183 free_cpumask_var(d->tmpmask); /* fall through */
7184 case sa_send_covered:
7185 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7186 case sa_this_book_map:
7187 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7188 case sa_this_core_map:
7189 free_cpumask_var(d->this_core_map); /* fall through */
7190 case sa_this_sibling_map:
7191 free_cpumask_var(d->this_sibling_map); /* fall through */
7192 case sa_nodemask:
7193 free_cpumask_var(d->nodemask); /* fall through */
7194 case sa_sched_group_nodes:
d1b55138 7195#ifdef CONFIG_NUMA
2109b99e
AH
7196 kfree(d->sched_group_nodes); /* fall through */
7197 case sa_notcovered:
7198 free_cpumask_var(d->notcovered); /* fall through */
7199 case sa_covered:
7200 free_cpumask_var(d->covered); /* fall through */
7201 case sa_domainspan:
7202 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7203#endif
2109b99e
AH
7204 case sa_none:
7205 break;
7206 }
7207}
3404c8d9 7208
2109b99e
AH
7209static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7210 const struct cpumask *cpu_map)
7211{
3404c8d9 7212#ifdef CONFIG_NUMA
2109b99e
AH
7213 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7214 return sa_none;
7215 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7216 return sa_domainspan;
7217 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7218 return sa_covered;
7219 /* Allocate the per-node list of sched groups */
7220 d->sched_group_nodes = kcalloc(nr_node_ids,
7221 sizeof(struct sched_group *), GFP_KERNEL);
7222 if (!d->sched_group_nodes) {
3df0fc5b 7223 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7224 return sa_notcovered;
d1b55138 7225 }
2109b99e 7226 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7227#endif
2109b99e
AH
7228 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7229 return sa_sched_group_nodes;
7230 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7231 return sa_nodemask;
7232 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7233 return sa_this_sibling_map;
01a08546 7234 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7235 return sa_this_core_map;
01a08546
HC
7236 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7237 return sa_this_book_map;
2109b99e
AH
7238 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7239 return sa_send_covered;
7240 d->rd = alloc_rootdomain();
7241 if (!d->rd) {
3df0fc5b 7242 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7243 return sa_tmpmask;
57d885fe 7244 }
2109b99e
AH
7245 return sa_rootdomain;
7246}
57d885fe 7247
7f4588f3
AH
7248static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7249 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7250{
7251 struct sched_domain *sd = NULL;
7c16ec58 7252#ifdef CONFIG_NUMA
7f4588f3 7253 struct sched_domain *parent;
1da177e4 7254
7f4588f3
AH
7255 d->sd_allnodes = 0;
7256 if (cpumask_weight(cpu_map) >
7257 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7258 sd = &per_cpu(allnodes_domains, i).sd;
7259 SD_INIT(sd, ALLNODES);
1d3504fc 7260 set_domain_attribute(sd, attr);
7f4588f3
AH
7261 cpumask_copy(sched_domain_span(sd), cpu_map);
7262 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7263 d->sd_allnodes = 1;
7264 }
7265 parent = sd;
7266
7267 sd = &per_cpu(node_domains, i).sd;
7268 SD_INIT(sd, NODE);
7269 set_domain_attribute(sd, attr);
7270 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7271 sd->parent = parent;
7272 if (parent)
7273 parent->child = sd;
7274 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7275#endif
7f4588f3
AH
7276 return sd;
7277}
1da177e4 7278
87cce662
AH
7279static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7280 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7281 struct sched_domain *parent, int i)
7282{
7283 struct sched_domain *sd;
7284 sd = &per_cpu(phys_domains, i).sd;
7285 SD_INIT(sd, CPU);
7286 set_domain_attribute(sd, attr);
7287 cpumask_copy(sched_domain_span(sd), d->nodemask);
7288 sd->parent = parent;
7289 if (parent)
7290 parent->child = sd;
7291 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7292 return sd;
7293}
1da177e4 7294
01a08546
HC
7295static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7296 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7297 struct sched_domain *parent, int i)
7298{
7299 struct sched_domain *sd = parent;
7300#ifdef CONFIG_SCHED_BOOK
7301 sd = &per_cpu(book_domains, i).sd;
7302 SD_INIT(sd, BOOK);
7303 set_domain_attribute(sd, attr);
7304 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7305 sd->parent = parent;
7306 parent->child = sd;
7307 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7308#endif
7309 return sd;
7310}
7311
410c4081
AH
7312static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7313 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7314 struct sched_domain *parent, int i)
7315{
7316 struct sched_domain *sd = parent;
1e9f28fa 7317#ifdef CONFIG_SCHED_MC
410c4081
AH
7318 sd = &per_cpu(core_domains, i).sd;
7319 SD_INIT(sd, MC);
7320 set_domain_attribute(sd, attr);
7321 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7322 sd->parent = parent;
7323 parent->child = sd;
7324 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7325#endif
410c4081
AH
7326 return sd;
7327}
1e9f28fa 7328
d8173535
AH
7329static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7330 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7331 struct sched_domain *parent, int i)
7332{
7333 struct sched_domain *sd = parent;
1da177e4 7334#ifdef CONFIG_SCHED_SMT
d8173535
AH
7335 sd = &per_cpu(cpu_domains, i).sd;
7336 SD_INIT(sd, SIBLING);
7337 set_domain_attribute(sd, attr);
7338 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7339 sd->parent = parent;
7340 parent->child = sd;
7341 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7342#endif
d8173535
AH
7343 return sd;
7344}
1da177e4 7345
0e8e85c9
AH
7346static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7347 const struct cpumask *cpu_map, int cpu)
7348{
7349 switch (l) {
1da177e4 7350#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7351 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7352 cpumask_and(d->this_sibling_map, cpu_map,
7353 topology_thread_cpumask(cpu));
7354 if (cpu == cpumask_first(d->this_sibling_map))
7355 init_sched_build_groups(d->this_sibling_map, cpu_map,
7356 &cpu_to_cpu_group,
7357 d->send_covered, d->tmpmask);
7358 break;
1da177e4 7359#endif
1e9f28fa 7360#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7361 case SD_LV_MC: /* set up multi-core groups */
7362 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7363 if (cpu == cpumask_first(d->this_core_map))
7364 init_sched_build_groups(d->this_core_map, cpu_map,
7365 &cpu_to_core_group,
7366 d->send_covered, d->tmpmask);
7367 break;
01a08546
HC
7368#endif
7369#ifdef CONFIG_SCHED_BOOK
7370 case SD_LV_BOOK: /* set up book groups */
7371 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7372 if (cpu == cpumask_first(d->this_book_map))
7373 init_sched_build_groups(d->this_book_map, cpu_map,
7374 &cpu_to_book_group,
7375 d->send_covered, d->tmpmask);
7376 break;
1e9f28fa 7377#endif
86548096
AH
7378 case SD_LV_CPU: /* set up physical groups */
7379 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7380 if (!cpumask_empty(d->nodemask))
7381 init_sched_build_groups(d->nodemask, cpu_map,
7382 &cpu_to_phys_group,
7383 d->send_covered, d->tmpmask);
7384 break;
1da177e4 7385#ifdef CONFIG_NUMA
de616e36
AH
7386 case SD_LV_ALLNODES:
7387 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7388 d->send_covered, d->tmpmask);
7389 break;
7390#endif
0e8e85c9
AH
7391 default:
7392 break;
7c16ec58 7393 }
0e8e85c9 7394}
9c1cfda2 7395
2109b99e
AH
7396/*
7397 * Build sched domains for a given set of cpus and attach the sched domains
7398 * to the individual cpus
7399 */
7400static int __build_sched_domains(const struct cpumask *cpu_map,
7401 struct sched_domain_attr *attr)
7402{
7403 enum s_alloc alloc_state = sa_none;
7404 struct s_data d;
294b0c96 7405 struct sched_domain *sd;
2109b99e 7406 int i;
7c16ec58 7407#ifdef CONFIG_NUMA
2109b99e 7408 d.sd_allnodes = 0;
7c16ec58 7409#endif
9c1cfda2 7410
2109b99e
AH
7411 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7412 if (alloc_state != sa_rootdomain)
7413 goto error;
7414 alloc_state = sa_sched_groups;
9c1cfda2 7415
1da177e4 7416 /*
1a20ff27 7417 * Set up domains for cpus specified by the cpu_map.
1da177e4 7418 */
abcd083a 7419 for_each_cpu(i, cpu_map) {
49a02c51
AH
7420 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7421 cpu_map);
9761eea8 7422
7f4588f3 7423 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7424 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7425 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7426 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7427 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7428 }
9c1cfda2 7429
abcd083a 7430 for_each_cpu(i, cpu_map) {
0e8e85c9 7431 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7432 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7433 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7434 }
9c1cfda2 7435
1da177e4 7436 /* Set up physical groups */
86548096
AH
7437 for (i = 0; i < nr_node_ids; i++)
7438 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7439
1da177e4
LT
7440#ifdef CONFIG_NUMA
7441 /* Set up node groups */
de616e36
AH
7442 if (d.sd_allnodes)
7443 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7444
0601a88d
AH
7445 for (i = 0; i < nr_node_ids; i++)
7446 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7447 goto error;
1da177e4
LT
7448#endif
7449
7450 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7451#ifdef CONFIG_SCHED_SMT
abcd083a 7452 for_each_cpu(i, cpu_map) {
294b0c96 7453 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7454 init_sched_groups_power(i, sd);
5c45bf27 7455 }
1da177e4 7456#endif
1e9f28fa 7457#ifdef CONFIG_SCHED_MC
abcd083a 7458 for_each_cpu(i, cpu_map) {
294b0c96 7459 sd = &per_cpu(core_domains, i).sd;
89c4710e 7460 init_sched_groups_power(i, sd);
5c45bf27
SS
7461 }
7462#endif
01a08546
HC
7463#ifdef CONFIG_SCHED_BOOK
7464 for_each_cpu(i, cpu_map) {
7465 sd = &per_cpu(book_domains, i).sd;
7466 init_sched_groups_power(i, sd);
7467 }
7468#endif
1e9f28fa 7469
abcd083a 7470 for_each_cpu(i, cpu_map) {
294b0c96 7471 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7472 init_sched_groups_power(i, sd);
1da177e4
LT
7473 }
7474
9c1cfda2 7475#ifdef CONFIG_NUMA
076ac2af 7476 for (i = 0; i < nr_node_ids; i++)
49a02c51 7477 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7478
49a02c51 7479 if (d.sd_allnodes) {
6711cab4 7480 struct sched_group *sg;
f712c0c7 7481
96f874e2 7482 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7483 d.tmpmask);
f712c0c7
SS
7484 init_numa_sched_groups_power(sg);
7485 }
9c1cfda2
JH
7486#endif
7487
1da177e4 7488 /* Attach the domains */
abcd083a 7489 for_each_cpu(i, cpu_map) {
1da177e4 7490#ifdef CONFIG_SCHED_SMT
6c99e9ad 7491 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7492#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7493 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7494#elif defined(CONFIG_SCHED_BOOK)
7495 sd = &per_cpu(book_domains, i).sd;
1da177e4 7496#else
6c99e9ad 7497 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7498#endif
49a02c51 7499 cpu_attach_domain(sd, d.rd, i);
1da177e4 7500 }
51888ca2 7501
2109b99e
AH
7502 d.sched_group_nodes = NULL; /* don't free this we still need it */
7503 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7504 return 0;
51888ca2 7505
51888ca2 7506error:
2109b99e
AH
7507 __free_domain_allocs(&d, alloc_state, cpu_map);
7508 return -ENOMEM;
1da177e4 7509}
029190c5 7510
96f874e2 7511static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7512{
7513 return __build_sched_domains(cpu_map, NULL);
7514}
7515
acc3f5d7 7516static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7517static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7518static struct sched_domain_attr *dattr_cur;
7519 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7520
7521/*
7522 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7523 * cpumask) fails, then fallback to a single sched domain,
7524 * as determined by the single cpumask fallback_doms.
029190c5 7525 */
4212823f 7526static cpumask_var_t fallback_doms;
029190c5 7527
ee79d1bd
HC
7528/*
7529 * arch_update_cpu_topology lets virtualized architectures update the
7530 * cpu core maps. It is supposed to return 1 if the topology changed
7531 * or 0 if it stayed the same.
7532 */
7533int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7534{
ee79d1bd 7535 return 0;
22e52b07
HC
7536}
7537
acc3f5d7
RR
7538cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7539{
7540 int i;
7541 cpumask_var_t *doms;
7542
7543 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7544 if (!doms)
7545 return NULL;
7546 for (i = 0; i < ndoms; i++) {
7547 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7548 free_sched_domains(doms, i);
7549 return NULL;
7550 }
7551 }
7552 return doms;
7553}
7554
7555void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7556{
7557 unsigned int i;
7558 for (i = 0; i < ndoms; i++)
7559 free_cpumask_var(doms[i]);
7560 kfree(doms);
7561}
7562
1a20ff27 7563/*
41a2d6cf 7564 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7565 * For now this just excludes isolated cpus, but could be used to
7566 * exclude other special cases in the future.
1a20ff27 7567 */
96f874e2 7568static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7569{
7378547f
MM
7570 int err;
7571
22e52b07 7572 arch_update_cpu_topology();
029190c5 7573 ndoms_cur = 1;
acc3f5d7 7574 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7575 if (!doms_cur)
acc3f5d7
RR
7576 doms_cur = &fallback_doms;
7577 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7578 dattr_cur = NULL;
acc3f5d7 7579 err = build_sched_domains(doms_cur[0]);
6382bc90 7580 register_sched_domain_sysctl();
7378547f
MM
7581
7582 return err;
1a20ff27
DG
7583}
7584
96f874e2
RR
7585static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7586 struct cpumask *tmpmask)
1da177e4 7587{
7c16ec58 7588 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7589}
1da177e4 7590
1a20ff27
DG
7591/*
7592 * Detach sched domains from a group of cpus specified in cpu_map
7593 * These cpus will now be attached to the NULL domain
7594 */
96f874e2 7595static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7596{
96f874e2
RR
7597 /* Save because hotplug lock held. */
7598 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7599 int i;
7600
abcd083a 7601 for_each_cpu(i, cpu_map)
57d885fe 7602 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7603 synchronize_sched();
96f874e2 7604 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7605}
7606
1d3504fc
HS
7607/* handle null as "default" */
7608static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7609 struct sched_domain_attr *new, int idx_new)
7610{
7611 struct sched_domain_attr tmp;
7612
7613 /* fast path */
7614 if (!new && !cur)
7615 return 1;
7616
7617 tmp = SD_ATTR_INIT;
7618 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7619 new ? (new + idx_new) : &tmp,
7620 sizeof(struct sched_domain_attr));
7621}
7622
029190c5
PJ
7623/*
7624 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7625 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7626 * doms_new[] to the current sched domain partitioning, doms_cur[].
7627 * It destroys each deleted domain and builds each new domain.
7628 *
acc3f5d7 7629 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7630 * The masks don't intersect (don't overlap.) We should setup one
7631 * sched domain for each mask. CPUs not in any of the cpumasks will
7632 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7633 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7634 * it as it is.
7635 *
acc3f5d7
RR
7636 * The passed in 'doms_new' should be allocated using
7637 * alloc_sched_domains. This routine takes ownership of it and will
7638 * free_sched_domains it when done with it. If the caller failed the
7639 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7640 * and partition_sched_domains() will fallback to the single partition
7641 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7642 *
96f874e2 7643 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7644 * ndoms_new == 0 is a special case for destroying existing domains,
7645 * and it will not create the default domain.
dfb512ec 7646 *
029190c5
PJ
7647 * Call with hotplug lock held
7648 */
acc3f5d7 7649void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7650 struct sched_domain_attr *dattr_new)
029190c5 7651{
dfb512ec 7652 int i, j, n;
d65bd5ec 7653 int new_topology;
029190c5 7654
712555ee 7655 mutex_lock(&sched_domains_mutex);
a1835615 7656
7378547f
MM
7657 /* always unregister in case we don't destroy any domains */
7658 unregister_sched_domain_sysctl();
7659
d65bd5ec
HC
7660 /* Let architecture update cpu core mappings. */
7661 new_topology = arch_update_cpu_topology();
7662
dfb512ec 7663 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7664
7665 /* Destroy deleted domains */
7666 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7667 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7668 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7669 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7670 goto match1;
7671 }
7672 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7673 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7674match1:
7675 ;
7676 }
7677
e761b772
MK
7678 if (doms_new == NULL) {
7679 ndoms_cur = 0;
acc3f5d7 7680 doms_new = &fallback_doms;
6ad4c188 7681 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7682 WARN_ON_ONCE(dattr_new);
e761b772
MK
7683 }
7684
029190c5
PJ
7685 /* Build new domains */
7686 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7687 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7688 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7689 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7690 goto match2;
7691 }
7692 /* no match - add a new doms_new */
acc3f5d7 7693 __build_sched_domains(doms_new[i],
1d3504fc 7694 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7695match2:
7696 ;
7697 }
7698
7699 /* Remember the new sched domains */
acc3f5d7
RR
7700 if (doms_cur != &fallback_doms)
7701 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7702 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7703 doms_cur = doms_new;
1d3504fc 7704 dattr_cur = dattr_new;
029190c5 7705 ndoms_cur = ndoms_new;
7378547f
MM
7706
7707 register_sched_domain_sysctl();
a1835615 7708
712555ee 7709 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7710}
7711
5c45bf27 7712#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7713static void arch_reinit_sched_domains(void)
5c45bf27 7714{
95402b38 7715 get_online_cpus();
dfb512ec
MK
7716
7717 /* Destroy domains first to force the rebuild */
7718 partition_sched_domains(0, NULL, NULL);
7719
e761b772 7720 rebuild_sched_domains();
95402b38 7721 put_online_cpus();
5c45bf27
SS
7722}
7723
7724static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7725{
afb8a9b7 7726 unsigned int level = 0;
5c45bf27 7727
afb8a9b7
GS
7728 if (sscanf(buf, "%u", &level) != 1)
7729 return -EINVAL;
7730
7731 /*
7732 * level is always be positive so don't check for
7733 * level < POWERSAVINGS_BALANCE_NONE which is 0
7734 * What happens on 0 or 1 byte write,
7735 * need to check for count as well?
7736 */
7737
7738 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7739 return -EINVAL;
7740
7741 if (smt)
afb8a9b7 7742 sched_smt_power_savings = level;
5c45bf27 7743 else
afb8a9b7 7744 sched_mc_power_savings = level;
5c45bf27 7745
c70f22d2 7746 arch_reinit_sched_domains();
5c45bf27 7747
c70f22d2 7748 return count;
5c45bf27
SS
7749}
7750
5c45bf27 7751#ifdef CONFIG_SCHED_MC
f718cd4a 7752static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7753 struct sysdev_class_attribute *attr,
f718cd4a 7754 char *page)
5c45bf27
SS
7755{
7756 return sprintf(page, "%u\n", sched_mc_power_savings);
7757}
f718cd4a 7758static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7759 struct sysdev_class_attribute *attr,
48f24c4d 7760 const char *buf, size_t count)
5c45bf27
SS
7761{
7762 return sched_power_savings_store(buf, count, 0);
7763}
f718cd4a
AK
7764static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7765 sched_mc_power_savings_show,
7766 sched_mc_power_savings_store);
5c45bf27
SS
7767#endif
7768
7769#ifdef CONFIG_SCHED_SMT
f718cd4a 7770static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7771 struct sysdev_class_attribute *attr,
f718cd4a 7772 char *page)
5c45bf27
SS
7773{
7774 return sprintf(page, "%u\n", sched_smt_power_savings);
7775}
f718cd4a 7776static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7777 struct sysdev_class_attribute *attr,
48f24c4d 7778 const char *buf, size_t count)
5c45bf27
SS
7779{
7780 return sched_power_savings_store(buf, count, 1);
7781}
f718cd4a
AK
7782static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7783 sched_smt_power_savings_show,
6707de00
AB
7784 sched_smt_power_savings_store);
7785#endif
7786
39aac648 7787int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7788{
7789 int err = 0;
7790
7791#ifdef CONFIG_SCHED_SMT
7792 if (smt_capable())
7793 err = sysfs_create_file(&cls->kset.kobj,
7794 &attr_sched_smt_power_savings.attr);
7795#endif
7796#ifdef CONFIG_SCHED_MC
7797 if (!err && mc_capable())
7798 err = sysfs_create_file(&cls->kset.kobj,
7799 &attr_sched_mc_power_savings.attr);
7800#endif
7801 return err;
7802}
6d6bc0ad 7803#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7804
1da177e4 7805/*
3a101d05
TH
7806 * Update cpusets according to cpu_active mask. If cpusets are
7807 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7808 * around partition_sched_domains().
1da177e4 7809 */
0b2e918a
TH
7810static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7811 void *hcpu)
e761b772 7812{
3a101d05 7813 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7814 case CPU_ONLINE:
6ad4c188 7815 case CPU_DOWN_FAILED:
3a101d05 7816 cpuset_update_active_cpus();
e761b772 7817 return NOTIFY_OK;
3a101d05
TH
7818 default:
7819 return NOTIFY_DONE;
7820 }
7821}
e761b772 7822
0b2e918a
TH
7823static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7824 void *hcpu)
3a101d05
TH
7825{
7826 switch (action & ~CPU_TASKS_FROZEN) {
7827 case CPU_DOWN_PREPARE:
7828 cpuset_update_active_cpus();
7829 return NOTIFY_OK;
e761b772
MK
7830 default:
7831 return NOTIFY_DONE;
7832 }
7833}
e761b772
MK
7834
7835static int update_runtime(struct notifier_block *nfb,
7836 unsigned long action, void *hcpu)
1da177e4 7837{
7def2be1
PZ
7838 int cpu = (int)(long)hcpu;
7839
1da177e4 7840 switch (action) {
1da177e4 7841 case CPU_DOWN_PREPARE:
8bb78442 7842 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7843 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7844 return NOTIFY_OK;
7845
1da177e4 7846 case CPU_DOWN_FAILED:
8bb78442 7847 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7848 case CPU_ONLINE:
8bb78442 7849 case CPU_ONLINE_FROZEN:
7def2be1 7850 enable_runtime(cpu_rq(cpu));
e761b772
MK
7851 return NOTIFY_OK;
7852
1da177e4
LT
7853 default:
7854 return NOTIFY_DONE;
7855 }
1da177e4 7856}
1da177e4
LT
7857
7858void __init sched_init_smp(void)
7859{
dcc30a35
RR
7860 cpumask_var_t non_isolated_cpus;
7861
7862 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7863 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7864
434d53b0
MT
7865#if defined(CONFIG_NUMA)
7866 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7867 GFP_KERNEL);
7868 BUG_ON(sched_group_nodes_bycpu == NULL);
7869#endif
95402b38 7870 get_online_cpus();
712555ee 7871 mutex_lock(&sched_domains_mutex);
6ad4c188 7872 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7873 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7874 if (cpumask_empty(non_isolated_cpus))
7875 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7876 mutex_unlock(&sched_domains_mutex);
95402b38 7877 put_online_cpus();
e761b772 7878
3a101d05
TH
7879 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7880 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7881
7882 /* RT runtime code needs to handle some hotplug events */
7883 hotcpu_notifier(update_runtime, 0);
7884
b328ca18 7885 init_hrtick();
5c1e1767
NP
7886
7887 /* Move init over to a non-isolated CPU */
dcc30a35 7888 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7889 BUG();
19978ca6 7890 sched_init_granularity();
dcc30a35 7891 free_cpumask_var(non_isolated_cpus);
4212823f 7892
0e3900e6 7893 init_sched_rt_class();
1da177e4
LT
7894}
7895#else
7896void __init sched_init_smp(void)
7897{
19978ca6 7898 sched_init_granularity();
1da177e4
LT
7899}
7900#endif /* CONFIG_SMP */
7901
cd1bb94b
AB
7902const_debug unsigned int sysctl_timer_migration = 1;
7903
1da177e4
LT
7904int in_sched_functions(unsigned long addr)
7905{
1da177e4
LT
7906 return in_lock_functions(addr) ||
7907 (addr >= (unsigned long)__sched_text_start
7908 && addr < (unsigned long)__sched_text_end);
7909}
7910
a9957449 7911static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7912{
7913 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7914 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7915#ifdef CONFIG_FAIR_GROUP_SCHED
7916 cfs_rq->rq = rq;
f07333bf
PT
7917 /* allow initial update_cfs_load() to truncate */
7918 cfs_rq->load_stamp = 1;
dd41f596 7919#endif
67e9fb2a 7920 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7921}
7922
fa85ae24
PZ
7923static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7924{
7925 struct rt_prio_array *array;
7926 int i;
7927
7928 array = &rt_rq->active;
7929 for (i = 0; i < MAX_RT_PRIO; i++) {
7930 INIT_LIST_HEAD(array->queue + i);
7931 __clear_bit(i, array->bitmap);
7932 }
7933 /* delimiter for bitsearch: */
7934 __set_bit(MAX_RT_PRIO, array->bitmap);
7935
052f1dc7 7936#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7937 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7938#ifdef CONFIG_SMP
e864c499 7939 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7940#endif
48d5e258 7941#endif
fa85ae24
PZ
7942#ifdef CONFIG_SMP
7943 rt_rq->rt_nr_migratory = 0;
fa85ae24 7944 rt_rq->overloaded = 0;
05fa785c 7945 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7946#endif
7947
7948 rt_rq->rt_time = 0;
7949 rt_rq->rt_throttled = 0;
ac086bc2 7950 rt_rq->rt_runtime = 0;
0986b11b 7951 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7952
052f1dc7 7953#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7954 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7955 rt_rq->rq = rq;
7956#endif
fa85ae24
PZ
7957}
7958
6f505b16 7959#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7960static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7961 struct sched_entity *se, int cpu,
ec7dc8ac 7962 struct sched_entity *parent)
6f505b16 7963{
ec7dc8ac 7964 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7965 tg->cfs_rq[cpu] = cfs_rq;
7966 init_cfs_rq(cfs_rq, rq);
7967 cfs_rq->tg = tg;
6f505b16
PZ
7968
7969 tg->se[cpu] = se;
07e06b01 7970 /* se could be NULL for root_task_group */
354d60c2
DG
7971 if (!se)
7972 return;
7973
ec7dc8ac
DG
7974 if (!parent)
7975 se->cfs_rq = &rq->cfs;
7976 else
7977 se->cfs_rq = parent->my_q;
7978
6f505b16 7979 se->my_q = cfs_rq;
9437178f 7980 update_load_set(&se->load, 0);
ec7dc8ac 7981 se->parent = parent;
6f505b16 7982}
052f1dc7 7983#endif
6f505b16 7984
052f1dc7 7985#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7986static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7987 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7988 struct sched_rt_entity *parent)
6f505b16 7989{
ec7dc8ac
DG
7990 struct rq *rq = cpu_rq(cpu);
7991
6f505b16
PZ
7992 tg->rt_rq[cpu] = rt_rq;
7993 init_rt_rq(rt_rq, rq);
7994 rt_rq->tg = tg;
ac086bc2 7995 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7996
7997 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7998 if (!rt_se)
7999 return;
8000
ec7dc8ac
DG
8001 if (!parent)
8002 rt_se->rt_rq = &rq->rt;
8003 else
8004 rt_se->rt_rq = parent->my_q;
8005
6f505b16 8006 rt_se->my_q = rt_rq;
ec7dc8ac 8007 rt_se->parent = parent;
6f505b16
PZ
8008 INIT_LIST_HEAD(&rt_se->run_list);
8009}
8010#endif
8011
1da177e4
LT
8012void __init sched_init(void)
8013{
dd41f596 8014 int i, j;
434d53b0
MT
8015 unsigned long alloc_size = 0, ptr;
8016
8017#ifdef CONFIG_FAIR_GROUP_SCHED
8018 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8019#endif
8020#ifdef CONFIG_RT_GROUP_SCHED
8021 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8022#endif
df7c8e84 8023#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8024 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8025#endif
434d53b0 8026 if (alloc_size) {
36b7b6d4 8027 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8028
8029#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8030 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8031 ptr += nr_cpu_ids * sizeof(void **);
8032
07e06b01 8033 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8034 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8035
6d6bc0ad 8036#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8037#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8038 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8039 ptr += nr_cpu_ids * sizeof(void **);
8040
07e06b01 8041 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8042 ptr += nr_cpu_ids * sizeof(void **);
8043
6d6bc0ad 8044#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8045#ifdef CONFIG_CPUMASK_OFFSTACK
8046 for_each_possible_cpu(i) {
8047 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8048 ptr += cpumask_size();
8049 }
8050#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8051 }
dd41f596 8052
57d885fe
GH
8053#ifdef CONFIG_SMP
8054 init_defrootdomain();
8055#endif
8056
d0b27fa7
PZ
8057 init_rt_bandwidth(&def_rt_bandwidth,
8058 global_rt_period(), global_rt_runtime());
8059
8060#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8061 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8062 global_rt_period(), global_rt_runtime());
6d6bc0ad 8063#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8064
7c941438 8065#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8066 list_add(&root_task_group.list, &task_groups);
8067 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8068 autogroup_init(&init_task);
7c941438 8069#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8070
0a945022 8071 for_each_possible_cpu(i) {
70b97a7f 8072 struct rq *rq;
1da177e4
LT
8073
8074 rq = cpu_rq(i);
05fa785c 8075 raw_spin_lock_init(&rq->lock);
7897986b 8076 rq->nr_running = 0;
dce48a84
TG
8077 rq->calc_load_active = 0;
8078 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8079 init_cfs_rq(&rq->cfs, rq);
6f505b16 8080 init_rt_rq(&rq->rt, rq);
dd41f596 8081#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8082 root_task_group.shares = root_task_group_load;
6f505b16 8083 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8084 /*
07e06b01 8085 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8086 *
8087 * In case of task-groups formed thr' the cgroup filesystem, it
8088 * gets 100% of the cpu resources in the system. This overall
8089 * system cpu resource is divided among the tasks of
07e06b01 8090 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8091 * based on each entity's (task or task-group's) weight
8092 * (se->load.weight).
8093 *
07e06b01 8094 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8095 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8096 * then A0's share of the cpu resource is:
8097 *
0d905bca 8098 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8099 *
07e06b01
YZ
8100 * We achieve this by letting root_task_group's tasks sit
8101 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8102 */
07e06b01 8103 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8104#endif /* CONFIG_FAIR_GROUP_SCHED */
8105
8106 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8107#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8108 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8109 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8110#endif
1da177e4 8111
dd41f596
IM
8112 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8113 rq->cpu_load[j] = 0;
fdf3e95d
VP
8114
8115 rq->last_load_update_tick = jiffies;
8116
1da177e4 8117#ifdef CONFIG_SMP
41c7ce9a 8118 rq->sd = NULL;
57d885fe 8119 rq->rd = NULL;
e51fd5e2 8120 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8121 rq->post_schedule = 0;
1da177e4 8122 rq->active_balance = 0;
dd41f596 8123 rq->next_balance = jiffies;
1da177e4 8124 rq->push_cpu = 0;
0a2966b4 8125 rq->cpu = i;
1f11eb6a 8126 rq->online = 0;
eae0c9df
MG
8127 rq->idle_stamp = 0;
8128 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8129 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8130#ifdef CONFIG_NO_HZ
8131 rq->nohz_balance_kick = 0;
8132 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8133#endif
1da177e4 8134#endif
8f4d37ec 8135 init_rq_hrtick(rq);
1da177e4 8136 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8137 }
8138
2dd73a4f 8139 set_load_weight(&init_task);
b50f60ce 8140
e107be36
AK
8141#ifdef CONFIG_PREEMPT_NOTIFIERS
8142 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8143#endif
8144
c9819f45 8145#ifdef CONFIG_SMP
962cf36c 8146 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8147#endif
8148
b50f60ce 8149#ifdef CONFIG_RT_MUTEXES
1d615482 8150 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8151#endif
8152
1da177e4
LT
8153 /*
8154 * The boot idle thread does lazy MMU switching as well:
8155 */
8156 atomic_inc(&init_mm.mm_count);
8157 enter_lazy_tlb(&init_mm, current);
8158
8159 /*
8160 * Make us the idle thread. Technically, schedule() should not be
8161 * called from this thread, however somewhere below it might be,
8162 * but because we are the idle thread, we just pick up running again
8163 * when this runqueue becomes "idle".
8164 */
8165 init_idle(current, smp_processor_id());
dce48a84
TG
8166
8167 calc_load_update = jiffies + LOAD_FREQ;
8168
dd41f596
IM
8169 /*
8170 * During early bootup we pretend to be a normal task:
8171 */
8172 current->sched_class = &fair_sched_class;
6892b75e 8173
6a7b3dc3 8174 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8175 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8176#ifdef CONFIG_SMP
7d1e6a9b 8177#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8178 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8179 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8180 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8181 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8182 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8183#endif
bdddd296
RR
8184 /* May be allocated at isolcpus cmdline parse time */
8185 if (cpu_isolated_map == NULL)
8186 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8187#endif /* SMP */
6a7b3dc3 8188
6892b75e 8189 scheduler_running = 1;
1da177e4
LT
8190}
8191
8192#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8193static inline int preempt_count_equals(int preempt_offset)
8194{
234da7bc 8195 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8196
8197 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8198}
8199
d894837f 8200void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8201{
48f24c4d 8202#ifdef in_atomic
1da177e4
LT
8203 static unsigned long prev_jiffy; /* ratelimiting */
8204
e4aafea2
FW
8205 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8206 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8207 return;
8208 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8209 return;
8210 prev_jiffy = jiffies;
8211
3df0fc5b
PZ
8212 printk(KERN_ERR
8213 "BUG: sleeping function called from invalid context at %s:%d\n",
8214 file, line);
8215 printk(KERN_ERR
8216 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8217 in_atomic(), irqs_disabled(),
8218 current->pid, current->comm);
aef745fc
IM
8219
8220 debug_show_held_locks(current);
8221 if (irqs_disabled())
8222 print_irqtrace_events(current);
8223 dump_stack();
1da177e4
LT
8224#endif
8225}
8226EXPORT_SYMBOL(__might_sleep);
8227#endif
8228
8229#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8230static void normalize_task(struct rq *rq, struct task_struct *p)
8231{
8232 int on_rq;
3e51f33f 8233
3a5e4dc1
AK
8234 on_rq = p->se.on_rq;
8235 if (on_rq)
8236 deactivate_task(rq, p, 0);
8237 __setscheduler(rq, p, SCHED_NORMAL, 0);
8238 if (on_rq) {
8239 activate_task(rq, p, 0);
8240 resched_task(rq->curr);
8241 }
8242}
8243
1da177e4
LT
8244void normalize_rt_tasks(void)
8245{
a0f98a1c 8246 struct task_struct *g, *p;
1da177e4 8247 unsigned long flags;
70b97a7f 8248 struct rq *rq;
1da177e4 8249
4cf5d77a 8250 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8251 do_each_thread(g, p) {
178be793
IM
8252 /*
8253 * Only normalize user tasks:
8254 */
8255 if (!p->mm)
8256 continue;
8257
6cfb0d5d 8258 p->se.exec_start = 0;
6cfb0d5d 8259#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8260 p->se.statistics.wait_start = 0;
8261 p->se.statistics.sleep_start = 0;
8262 p->se.statistics.block_start = 0;
6cfb0d5d 8263#endif
dd41f596
IM
8264
8265 if (!rt_task(p)) {
8266 /*
8267 * Renice negative nice level userspace
8268 * tasks back to 0:
8269 */
8270 if (TASK_NICE(p) < 0 && p->mm)
8271 set_user_nice(p, 0);
1da177e4 8272 continue;
dd41f596 8273 }
1da177e4 8274
1d615482 8275 raw_spin_lock(&p->pi_lock);
b29739f9 8276 rq = __task_rq_lock(p);
1da177e4 8277
178be793 8278 normalize_task(rq, p);
3a5e4dc1 8279
b29739f9 8280 __task_rq_unlock(rq);
1d615482 8281 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8282 } while_each_thread(g, p);
8283
4cf5d77a 8284 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8285}
8286
8287#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8288
67fc4e0c 8289#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8290/*
67fc4e0c 8291 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8292 *
8293 * They can only be called when the whole system has been
8294 * stopped - every CPU needs to be quiescent, and no scheduling
8295 * activity can take place. Using them for anything else would
8296 * be a serious bug, and as a result, they aren't even visible
8297 * under any other configuration.
8298 */
8299
8300/**
8301 * curr_task - return the current task for a given cpu.
8302 * @cpu: the processor in question.
8303 *
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8305 */
36c8b586 8306struct task_struct *curr_task(int cpu)
1df5c10a
LT
8307{
8308 return cpu_curr(cpu);
8309}
8310
67fc4e0c
JW
8311#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8312
8313#ifdef CONFIG_IA64
1df5c10a
LT
8314/**
8315 * set_curr_task - set the current task for a given cpu.
8316 * @cpu: the processor in question.
8317 * @p: the task pointer to set.
8318 *
8319 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8320 * are serviced on a separate stack. It allows the architecture to switch the
8321 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8322 * must be called with all CPU's synchronized, and interrupts disabled, the
8323 * and caller must save the original value of the current task (see
8324 * curr_task() above) and restore that value before reenabling interrupts and
8325 * re-starting the system.
8326 *
8327 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8328 */
36c8b586 8329void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8330{
8331 cpu_curr(cpu) = p;
8332}
8333
8334#endif
29f59db3 8335
bccbe08a
PZ
8336#ifdef CONFIG_FAIR_GROUP_SCHED
8337static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8338{
8339 int i;
8340
8341 for_each_possible_cpu(i) {
8342 if (tg->cfs_rq)
8343 kfree(tg->cfs_rq[i]);
8344 if (tg->se)
8345 kfree(tg->se[i]);
6f505b16
PZ
8346 }
8347
8348 kfree(tg->cfs_rq);
8349 kfree(tg->se);
6f505b16
PZ
8350}
8351
ec7dc8ac
DG
8352static
8353int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8354{
29f59db3 8355 struct cfs_rq *cfs_rq;
eab17229 8356 struct sched_entity *se;
9b5b7751 8357 struct rq *rq;
29f59db3
SV
8358 int i;
8359
434d53b0 8360 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8361 if (!tg->cfs_rq)
8362 goto err;
434d53b0 8363 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8364 if (!tg->se)
8365 goto err;
052f1dc7
PZ
8366
8367 tg->shares = NICE_0_LOAD;
29f59db3
SV
8368
8369 for_each_possible_cpu(i) {
9b5b7751 8370 rq = cpu_rq(i);
29f59db3 8371
eab17229
LZ
8372 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8373 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8374 if (!cfs_rq)
8375 goto err;
8376
eab17229
LZ
8377 se = kzalloc_node(sizeof(struct sched_entity),
8378 GFP_KERNEL, cpu_to_node(i));
29f59db3 8379 if (!se)
dfc12eb2 8380 goto err_free_rq;
29f59db3 8381
3d4b47b4 8382 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8383 }
8384
8385 return 1;
8386
49246274 8387err_free_rq:
dfc12eb2 8388 kfree(cfs_rq);
49246274 8389err:
bccbe08a
PZ
8390 return 0;
8391}
8392
bccbe08a
PZ
8393static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8394{
3d4b47b4
PZ
8395 struct rq *rq = cpu_rq(cpu);
8396 unsigned long flags;
3d4b47b4
PZ
8397
8398 /*
8399 * Only empty task groups can be destroyed; so we can speculatively
8400 * check on_list without danger of it being re-added.
8401 */
8402 if (!tg->cfs_rq[cpu]->on_list)
8403 return;
8404
8405 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8406 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8407 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8408}
6d6bc0ad 8409#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8410static inline void free_fair_sched_group(struct task_group *tg)
8411{
8412}
8413
ec7dc8ac
DG
8414static inline
8415int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8416{
8417 return 1;
8418}
8419
bccbe08a
PZ
8420static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8421{
8422}
6d6bc0ad 8423#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8424
8425#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8426static void free_rt_sched_group(struct task_group *tg)
8427{
8428 int i;
8429
d0b27fa7
PZ
8430 destroy_rt_bandwidth(&tg->rt_bandwidth);
8431
bccbe08a
PZ
8432 for_each_possible_cpu(i) {
8433 if (tg->rt_rq)
8434 kfree(tg->rt_rq[i]);
8435 if (tg->rt_se)
8436 kfree(tg->rt_se[i]);
8437 }
8438
8439 kfree(tg->rt_rq);
8440 kfree(tg->rt_se);
8441}
8442
ec7dc8ac
DG
8443static
8444int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8445{
8446 struct rt_rq *rt_rq;
eab17229 8447 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8448 struct rq *rq;
8449 int i;
8450
434d53b0 8451 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8452 if (!tg->rt_rq)
8453 goto err;
434d53b0 8454 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8455 if (!tg->rt_se)
8456 goto err;
8457
d0b27fa7
PZ
8458 init_rt_bandwidth(&tg->rt_bandwidth,
8459 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8460
8461 for_each_possible_cpu(i) {
8462 rq = cpu_rq(i);
8463
eab17229
LZ
8464 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8465 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8466 if (!rt_rq)
8467 goto err;
29f59db3 8468
eab17229
LZ
8469 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8470 GFP_KERNEL, cpu_to_node(i));
6f505b16 8471 if (!rt_se)
dfc12eb2 8472 goto err_free_rq;
29f59db3 8473
3d4b47b4 8474 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8475 }
8476
bccbe08a
PZ
8477 return 1;
8478
49246274 8479err_free_rq:
dfc12eb2 8480 kfree(rt_rq);
49246274 8481err:
bccbe08a
PZ
8482 return 0;
8483}
6d6bc0ad 8484#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8485static inline void free_rt_sched_group(struct task_group *tg)
8486{
8487}
8488
ec7dc8ac
DG
8489static inline
8490int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8491{
8492 return 1;
8493}
6d6bc0ad 8494#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8495
7c941438 8496#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8497static void free_sched_group(struct task_group *tg)
8498{
8499 free_fair_sched_group(tg);
8500 free_rt_sched_group(tg);
e9aa1dd1 8501 autogroup_free(tg);
bccbe08a
PZ
8502 kfree(tg);
8503}
8504
8505/* allocate runqueue etc for a new task group */
ec7dc8ac 8506struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8507{
8508 struct task_group *tg;
8509 unsigned long flags;
bccbe08a
PZ
8510
8511 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8512 if (!tg)
8513 return ERR_PTR(-ENOMEM);
8514
ec7dc8ac 8515 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8516 goto err;
8517
ec7dc8ac 8518 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8519 goto err;
8520
8ed36996 8521 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8522 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8523
8524 WARN_ON(!parent); /* root should already exist */
8525
8526 tg->parent = parent;
f473aa5e 8527 INIT_LIST_HEAD(&tg->children);
09f2724a 8528 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8529 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8530
9b5b7751 8531 return tg;
29f59db3
SV
8532
8533err:
6f505b16 8534 free_sched_group(tg);
29f59db3
SV
8535 return ERR_PTR(-ENOMEM);
8536}
8537
9b5b7751 8538/* rcu callback to free various structures associated with a task group */
6f505b16 8539static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8540{
29f59db3 8541 /* now it should be safe to free those cfs_rqs */
6f505b16 8542 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8543}
8544
9b5b7751 8545/* Destroy runqueue etc associated with a task group */
4cf86d77 8546void sched_destroy_group(struct task_group *tg)
29f59db3 8547{
8ed36996 8548 unsigned long flags;
9b5b7751 8549 int i;
29f59db3 8550
3d4b47b4
PZ
8551 /* end participation in shares distribution */
8552 for_each_possible_cpu(i)
bccbe08a 8553 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8554
8555 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8556 list_del_rcu(&tg->list);
f473aa5e 8557 list_del_rcu(&tg->siblings);
8ed36996 8558 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8559
9b5b7751 8560 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8561 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8562}
8563
9b5b7751 8564/* change task's runqueue when it moves between groups.
3a252015
IM
8565 * The caller of this function should have put the task in its new group
8566 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8567 * reflect its new group.
9b5b7751
SV
8568 */
8569void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8570{
8571 int on_rq, running;
8572 unsigned long flags;
8573 struct rq *rq;
8574
8575 rq = task_rq_lock(tsk, &flags);
8576
051a1d1a 8577 running = task_current(rq, tsk);
29f59db3
SV
8578 on_rq = tsk->se.on_rq;
8579
0e1f3483 8580 if (on_rq)
29f59db3 8581 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8582 if (unlikely(running))
8583 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8584
810b3817 8585#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8586 if (tsk->sched_class->task_move_group)
8587 tsk->sched_class->task_move_group(tsk, on_rq);
8588 else
810b3817 8589#endif
b2b5ce02 8590 set_task_rq(tsk, task_cpu(tsk));
810b3817 8591
0e1f3483
HS
8592 if (unlikely(running))
8593 tsk->sched_class->set_curr_task(rq);
8594 if (on_rq)
371fd7e7 8595 enqueue_task(rq, tsk, 0);
29f59db3 8596
29f59db3
SV
8597 task_rq_unlock(rq, &flags);
8598}
7c941438 8599#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8600
052f1dc7 8601#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8602static DEFINE_MUTEX(shares_mutex);
8603
4cf86d77 8604int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8605{
8606 int i;
8ed36996 8607 unsigned long flags;
c61935fd 8608
ec7dc8ac
DG
8609 /*
8610 * We can't change the weight of the root cgroup.
8611 */
8612 if (!tg->se[0])
8613 return -EINVAL;
8614
18d95a28
PZ
8615 if (shares < MIN_SHARES)
8616 shares = MIN_SHARES;
cb4ad1ff
MX
8617 else if (shares > MAX_SHARES)
8618 shares = MAX_SHARES;
62fb1851 8619
8ed36996 8620 mutex_lock(&shares_mutex);
9b5b7751 8621 if (tg->shares == shares)
5cb350ba 8622 goto done;
29f59db3 8623
9b5b7751 8624 tg->shares = shares;
c09595f6 8625 for_each_possible_cpu(i) {
9437178f
PT
8626 struct rq *rq = cpu_rq(i);
8627 struct sched_entity *se;
8628
8629 se = tg->se[i];
8630 /* Propagate contribution to hierarchy */
8631 raw_spin_lock_irqsave(&rq->lock, flags);
8632 for_each_sched_entity(se)
6d5ab293 8633 update_cfs_shares(group_cfs_rq(se));
9437178f 8634 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8635 }
29f59db3 8636
5cb350ba 8637done:
8ed36996 8638 mutex_unlock(&shares_mutex);
9b5b7751 8639 return 0;
29f59db3
SV
8640}
8641
5cb350ba
DG
8642unsigned long sched_group_shares(struct task_group *tg)
8643{
8644 return tg->shares;
8645}
052f1dc7 8646#endif
5cb350ba 8647
052f1dc7 8648#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8649/*
9f0c1e56 8650 * Ensure that the real time constraints are schedulable.
6f505b16 8651 */
9f0c1e56
PZ
8652static DEFINE_MUTEX(rt_constraints_mutex);
8653
8654static unsigned long to_ratio(u64 period, u64 runtime)
8655{
8656 if (runtime == RUNTIME_INF)
9a7e0b18 8657 return 1ULL << 20;
9f0c1e56 8658
9a7e0b18 8659 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8660}
8661
9a7e0b18
PZ
8662/* Must be called with tasklist_lock held */
8663static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8664{
9a7e0b18 8665 struct task_struct *g, *p;
b40b2e8e 8666
9a7e0b18
PZ
8667 do_each_thread(g, p) {
8668 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8669 return 1;
8670 } while_each_thread(g, p);
b40b2e8e 8671
9a7e0b18
PZ
8672 return 0;
8673}
b40b2e8e 8674
9a7e0b18
PZ
8675struct rt_schedulable_data {
8676 struct task_group *tg;
8677 u64 rt_period;
8678 u64 rt_runtime;
8679};
b40b2e8e 8680
9a7e0b18
PZ
8681static int tg_schedulable(struct task_group *tg, void *data)
8682{
8683 struct rt_schedulable_data *d = data;
8684 struct task_group *child;
8685 unsigned long total, sum = 0;
8686 u64 period, runtime;
b40b2e8e 8687
9a7e0b18
PZ
8688 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8689 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8690
9a7e0b18
PZ
8691 if (tg == d->tg) {
8692 period = d->rt_period;
8693 runtime = d->rt_runtime;
b40b2e8e 8694 }
b40b2e8e 8695
4653f803
PZ
8696 /*
8697 * Cannot have more runtime than the period.
8698 */
8699 if (runtime > period && runtime != RUNTIME_INF)
8700 return -EINVAL;
6f505b16 8701
4653f803
PZ
8702 /*
8703 * Ensure we don't starve existing RT tasks.
8704 */
9a7e0b18
PZ
8705 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8706 return -EBUSY;
6f505b16 8707
9a7e0b18 8708 total = to_ratio(period, runtime);
6f505b16 8709
4653f803
PZ
8710 /*
8711 * Nobody can have more than the global setting allows.
8712 */
8713 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8714 return -EINVAL;
6f505b16 8715
4653f803
PZ
8716 /*
8717 * The sum of our children's runtime should not exceed our own.
8718 */
9a7e0b18
PZ
8719 list_for_each_entry_rcu(child, &tg->children, siblings) {
8720 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8721 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8722
9a7e0b18
PZ
8723 if (child == d->tg) {
8724 period = d->rt_period;
8725 runtime = d->rt_runtime;
8726 }
6f505b16 8727
9a7e0b18 8728 sum += to_ratio(period, runtime);
9f0c1e56 8729 }
6f505b16 8730
9a7e0b18
PZ
8731 if (sum > total)
8732 return -EINVAL;
8733
8734 return 0;
6f505b16
PZ
8735}
8736
9a7e0b18 8737static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8738{
9a7e0b18
PZ
8739 struct rt_schedulable_data data = {
8740 .tg = tg,
8741 .rt_period = period,
8742 .rt_runtime = runtime,
8743 };
8744
8745 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8746}
8747
d0b27fa7
PZ
8748static int tg_set_bandwidth(struct task_group *tg,
8749 u64 rt_period, u64 rt_runtime)
6f505b16 8750{
ac086bc2 8751 int i, err = 0;
9f0c1e56 8752
9f0c1e56 8753 mutex_lock(&rt_constraints_mutex);
521f1a24 8754 read_lock(&tasklist_lock);
9a7e0b18
PZ
8755 err = __rt_schedulable(tg, rt_period, rt_runtime);
8756 if (err)
9f0c1e56 8757 goto unlock;
ac086bc2 8758
0986b11b 8759 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8760 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8761 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8762
8763 for_each_possible_cpu(i) {
8764 struct rt_rq *rt_rq = tg->rt_rq[i];
8765
0986b11b 8766 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8767 rt_rq->rt_runtime = rt_runtime;
0986b11b 8768 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8769 }
0986b11b 8770 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8771unlock:
521f1a24 8772 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8773 mutex_unlock(&rt_constraints_mutex);
8774
8775 return err;
6f505b16
PZ
8776}
8777
d0b27fa7
PZ
8778int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8779{
8780 u64 rt_runtime, rt_period;
8781
8782 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8783 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8784 if (rt_runtime_us < 0)
8785 rt_runtime = RUNTIME_INF;
8786
8787 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8788}
8789
9f0c1e56
PZ
8790long sched_group_rt_runtime(struct task_group *tg)
8791{
8792 u64 rt_runtime_us;
8793
d0b27fa7 8794 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8795 return -1;
8796
d0b27fa7 8797 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8798 do_div(rt_runtime_us, NSEC_PER_USEC);
8799 return rt_runtime_us;
8800}
d0b27fa7
PZ
8801
8802int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8803{
8804 u64 rt_runtime, rt_period;
8805
8806 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8807 rt_runtime = tg->rt_bandwidth.rt_runtime;
8808
619b0488
R
8809 if (rt_period == 0)
8810 return -EINVAL;
8811
d0b27fa7
PZ
8812 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8813}
8814
8815long sched_group_rt_period(struct task_group *tg)
8816{
8817 u64 rt_period_us;
8818
8819 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8820 do_div(rt_period_us, NSEC_PER_USEC);
8821 return rt_period_us;
8822}
8823
8824static int sched_rt_global_constraints(void)
8825{
4653f803 8826 u64 runtime, period;
d0b27fa7
PZ
8827 int ret = 0;
8828
ec5d4989
HS
8829 if (sysctl_sched_rt_period <= 0)
8830 return -EINVAL;
8831
4653f803
PZ
8832 runtime = global_rt_runtime();
8833 period = global_rt_period();
8834
8835 /*
8836 * Sanity check on the sysctl variables.
8837 */
8838 if (runtime > period && runtime != RUNTIME_INF)
8839 return -EINVAL;
10b612f4 8840
d0b27fa7 8841 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8842 read_lock(&tasklist_lock);
4653f803 8843 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8844 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8845 mutex_unlock(&rt_constraints_mutex);
8846
8847 return ret;
8848}
54e99124
DG
8849
8850int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8851{
8852 /* Don't accept realtime tasks when there is no way for them to run */
8853 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8854 return 0;
8855
8856 return 1;
8857}
8858
6d6bc0ad 8859#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8860static int sched_rt_global_constraints(void)
8861{
ac086bc2
PZ
8862 unsigned long flags;
8863 int i;
8864
ec5d4989
HS
8865 if (sysctl_sched_rt_period <= 0)
8866 return -EINVAL;
8867
60aa605d
PZ
8868 /*
8869 * There's always some RT tasks in the root group
8870 * -- migration, kstopmachine etc..
8871 */
8872 if (sysctl_sched_rt_runtime == 0)
8873 return -EBUSY;
8874
0986b11b 8875 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8876 for_each_possible_cpu(i) {
8877 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8878
0986b11b 8879 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8880 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8881 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8882 }
0986b11b 8883 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8884
d0b27fa7
PZ
8885 return 0;
8886}
6d6bc0ad 8887#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8888
8889int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8890 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8891 loff_t *ppos)
8892{
8893 int ret;
8894 int old_period, old_runtime;
8895 static DEFINE_MUTEX(mutex);
8896
8897 mutex_lock(&mutex);
8898 old_period = sysctl_sched_rt_period;
8899 old_runtime = sysctl_sched_rt_runtime;
8900
8d65af78 8901 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8902
8903 if (!ret && write) {
8904 ret = sched_rt_global_constraints();
8905 if (ret) {
8906 sysctl_sched_rt_period = old_period;
8907 sysctl_sched_rt_runtime = old_runtime;
8908 } else {
8909 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8910 def_rt_bandwidth.rt_period =
8911 ns_to_ktime(global_rt_period());
8912 }
8913 }
8914 mutex_unlock(&mutex);
8915
8916 return ret;
8917}
68318b8e 8918
052f1dc7 8919#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8920
8921/* return corresponding task_group object of a cgroup */
2b01dfe3 8922static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8923{
2b01dfe3
PM
8924 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8925 struct task_group, css);
68318b8e
SV
8926}
8927
8928static struct cgroup_subsys_state *
2b01dfe3 8929cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8930{
ec7dc8ac 8931 struct task_group *tg, *parent;
68318b8e 8932
2b01dfe3 8933 if (!cgrp->parent) {
68318b8e 8934 /* This is early initialization for the top cgroup */
07e06b01 8935 return &root_task_group.css;
68318b8e
SV
8936 }
8937
ec7dc8ac
DG
8938 parent = cgroup_tg(cgrp->parent);
8939 tg = sched_create_group(parent);
68318b8e
SV
8940 if (IS_ERR(tg))
8941 return ERR_PTR(-ENOMEM);
8942
68318b8e
SV
8943 return &tg->css;
8944}
8945
41a2d6cf
IM
8946static void
8947cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8948{
2b01dfe3 8949 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8950
8951 sched_destroy_group(tg);
8952}
8953
41a2d6cf 8954static int
be367d09 8955cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8956{
b68aa230 8957#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8958 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8959 return -EINVAL;
8960#else
68318b8e
SV
8961 /* We don't support RT-tasks being in separate groups */
8962 if (tsk->sched_class != &fair_sched_class)
8963 return -EINVAL;
b68aa230 8964#endif
be367d09
BB
8965 return 0;
8966}
68318b8e 8967
be367d09
BB
8968static int
8969cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8970 struct task_struct *tsk, bool threadgroup)
8971{
8972 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8973 if (retval)
8974 return retval;
8975 if (threadgroup) {
8976 struct task_struct *c;
8977 rcu_read_lock();
8978 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8979 retval = cpu_cgroup_can_attach_task(cgrp, c);
8980 if (retval) {
8981 rcu_read_unlock();
8982 return retval;
8983 }
8984 }
8985 rcu_read_unlock();
8986 }
68318b8e
SV
8987 return 0;
8988}
8989
8990static void
2b01dfe3 8991cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8992 struct cgroup *old_cont, struct task_struct *tsk,
8993 bool threadgroup)
68318b8e
SV
8994{
8995 sched_move_task(tsk);
be367d09
BB
8996 if (threadgroup) {
8997 struct task_struct *c;
8998 rcu_read_lock();
8999 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9000 sched_move_task(c);
9001 }
9002 rcu_read_unlock();
9003 }
68318b8e
SV
9004}
9005
068c5cc5
PZ
9006static void
9007cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9008{
9009 /*
9010 * cgroup_exit() is called in the copy_process() failure path.
9011 * Ignore this case since the task hasn't ran yet, this avoids
9012 * trying to poke a half freed task state from generic code.
9013 */
9014 if (!(task->flags & PF_EXITING))
9015 return;
9016
9017 sched_move_task(task);
9018}
9019
052f1dc7 9020#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9021static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9022 u64 shareval)
68318b8e 9023{
2b01dfe3 9024 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9025}
9026
f4c753b7 9027static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9028{
2b01dfe3 9029 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9030
9031 return (u64) tg->shares;
9032}
6d6bc0ad 9033#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9034
052f1dc7 9035#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9036static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9037 s64 val)
6f505b16 9038{
06ecb27c 9039 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9040}
9041
06ecb27c 9042static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9043{
06ecb27c 9044 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9045}
d0b27fa7
PZ
9046
9047static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9048 u64 rt_period_us)
9049{
9050 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9051}
9052
9053static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9054{
9055 return sched_group_rt_period(cgroup_tg(cgrp));
9056}
6d6bc0ad 9057#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9058
fe5c7cc2 9059static struct cftype cpu_files[] = {
052f1dc7 9060#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9061 {
9062 .name = "shares",
f4c753b7
PM
9063 .read_u64 = cpu_shares_read_u64,
9064 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9065 },
052f1dc7
PZ
9066#endif
9067#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9068 {
9f0c1e56 9069 .name = "rt_runtime_us",
06ecb27c
PM
9070 .read_s64 = cpu_rt_runtime_read,
9071 .write_s64 = cpu_rt_runtime_write,
6f505b16 9072 },
d0b27fa7
PZ
9073 {
9074 .name = "rt_period_us",
f4c753b7
PM
9075 .read_u64 = cpu_rt_period_read_uint,
9076 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9077 },
052f1dc7 9078#endif
68318b8e
SV
9079};
9080
9081static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9082{
fe5c7cc2 9083 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9084}
9085
9086struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9087 .name = "cpu",
9088 .create = cpu_cgroup_create,
9089 .destroy = cpu_cgroup_destroy,
9090 .can_attach = cpu_cgroup_can_attach,
9091 .attach = cpu_cgroup_attach,
068c5cc5 9092 .exit = cpu_cgroup_exit,
38605cae
IM
9093 .populate = cpu_cgroup_populate,
9094 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9095 .early_init = 1,
9096};
9097
052f1dc7 9098#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9099
9100#ifdef CONFIG_CGROUP_CPUACCT
9101
9102/*
9103 * CPU accounting code for task groups.
9104 *
9105 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9106 * (balbir@in.ibm.com).
9107 */
9108
934352f2 9109/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9110struct cpuacct {
9111 struct cgroup_subsys_state css;
9112 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9113 u64 __percpu *cpuusage;
ef12fefa 9114 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9115 struct cpuacct *parent;
d842de87
SV
9116};
9117
9118struct cgroup_subsys cpuacct_subsys;
9119
9120/* return cpu accounting group corresponding to this container */
32cd756a 9121static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9122{
32cd756a 9123 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9124 struct cpuacct, css);
9125}
9126
9127/* return cpu accounting group to which this task belongs */
9128static inline struct cpuacct *task_ca(struct task_struct *tsk)
9129{
9130 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9131 struct cpuacct, css);
9132}
9133
9134/* create a new cpu accounting group */
9135static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9136 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9137{
9138 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9139 int i;
d842de87
SV
9140
9141 if (!ca)
ef12fefa 9142 goto out;
d842de87
SV
9143
9144 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9145 if (!ca->cpuusage)
9146 goto out_free_ca;
9147
9148 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9149 if (percpu_counter_init(&ca->cpustat[i], 0))
9150 goto out_free_counters;
d842de87 9151
934352f2
BR
9152 if (cgrp->parent)
9153 ca->parent = cgroup_ca(cgrp->parent);
9154
d842de87 9155 return &ca->css;
ef12fefa
BR
9156
9157out_free_counters:
9158 while (--i >= 0)
9159 percpu_counter_destroy(&ca->cpustat[i]);
9160 free_percpu(ca->cpuusage);
9161out_free_ca:
9162 kfree(ca);
9163out:
9164 return ERR_PTR(-ENOMEM);
d842de87
SV
9165}
9166
9167/* destroy an existing cpu accounting group */
41a2d6cf 9168static void
32cd756a 9169cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9170{
32cd756a 9171 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9172 int i;
d842de87 9173
ef12fefa
BR
9174 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9175 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9176 free_percpu(ca->cpuusage);
9177 kfree(ca);
9178}
9179
720f5498
KC
9180static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9181{
b36128c8 9182 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9183 u64 data;
9184
9185#ifndef CONFIG_64BIT
9186 /*
9187 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9188 */
05fa785c 9189 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9190 data = *cpuusage;
05fa785c 9191 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9192#else
9193 data = *cpuusage;
9194#endif
9195
9196 return data;
9197}
9198
9199static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9200{
b36128c8 9201 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9202
9203#ifndef CONFIG_64BIT
9204 /*
9205 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9206 */
05fa785c 9207 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9208 *cpuusage = val;
05fa785c 9209 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9210#else
9211 *cpuusage = val;
9212#endif
9213}
9214
d842de87 9215/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9216static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9217{
32cd756a 9218 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9219 u64 totalcpuusage = 0;
9220 int i;
9221
720f5498
KC
9222 for_each_present_cpu(i)
9223 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9224
9225 return totalcpuusage;
9226}
9227
0297b803
DG
9228static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9229 u64 reset)
9230{
9231 struct cpuacct *ca = cgroup_ca(cgrp);
9232 int err = 0;
9233 int i;
9234
9235 if (reset) {
9236 err = -EINVAL;
9237 goto out;
9238 }
9239
720f5498
KC
9240 for_each_present_cpu(i)
9241 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9242
0297b803
DG
9243out:
9244 return err;
9245}
9246
e9515c3c
KC
9247static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9248 struct seq_file *m)
9249{
9250 struct cpuacct *ca = cgroup_ca(cgroup);
9251 u64 percpu;
9252 int i;
9253
9254 for_each_present_cpu(i) {
9255 percpu = cpuacct_cpuusage_read(ca, i);
9256 seq_printf(m, "%llu ", (unsigned long long) percpu);
9257 }
9258 seq_printf(m, "\n");
9259 return 0;
9260}
9261
ef12fefa
BR
9262static const char *cpuacct_stat_desc[] = {
9263 [CPUACCT_STAT_USER] = "user",
9264 [CPUACCT_STAT_SYSTEM] = "system",
9265};
9266
9267static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9268 struct cgroup_map_cb *cb)
9269{
9270 struct cpuacct *ca = cgroup_ca(cgrp);
9271 int i;
9272
9273 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9274 s64 val = percpu_counter_read(&ca->cpustat[i]);
9275 val = cputime64_to_clock_t(val);
9276 cb->fill(cb, cpuacct_stat_desc[i], val);
9277 }
9278 return 0;
9279}
9280
d842de87
SV
9281static struct cftype files[] = {
9282 {
9283 .name = "usage",
f4c753b7
PM
9284 .read_u64 = cpuusage_read,
9285 .write_u64 = cpuusage_write,
d842de87 9286 },
e9515c3c
KC
9287 {
9288 .name = "usage_percpu",
9289 .read_seq_string = cpuacct_percpu_seq_read,
9290 },
ef12fefa
BR
9291 {
9292 .name = "stat",
9293 .read_map = cpuacct_stats_show,
9294 },
d842de87
SV
9295};
9296
32cd756a 9297static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9298{
32cd756a 9299 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9300}
9301
9302/*
9303 * charge this task's execution time to its accounting group.
9304 *
9305 * called with rq->lock held.
9306 */
9307static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9308{
9309 struct cpuacct *ca;
934352f2 9310 int cpu;
d842de87 9311
c40c6f85 9312 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9313 return;
9314
934352f2 9315 cpu = task_cpu(tsk);
a18b83b7
BR
9316
9317 rcu_read_lock();
9318
d842de87 9319 ca = task_ca(tsk);
d842de87 9320
934352f2 9321 for (; ca; ca = ca->parent) {
b36128c8 9322 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9323 *cpuusage += cputime;
9324 }
a18b83b7
BR
9325
9326 rcu_read_unlock();
d842de87
SV
9327}
9328
fa535a77
AB
9329/*
9330 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9331 * in cputime_t units. As a result, cpuacct_update_stats calls
9332 * percpu_counter_add with values large enough to always overflow the
9333 * per cpu batch limit causing bad SMP scalability.
9334 *
9335 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9336 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9337 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9338 */
9339#ifdef CONFIG_SMP
9340#define CPUACCT_BATCH \
9341 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9342#else
9343#define CPUACCT_BATCH 0
9344#endif
9345
ef12fefa
BR
9346/*
9347 * Charge the system/user time to the task's accounting group.
9348 */
9349static void cpuacct_update_stats(struct task_struct *tsk,
9350 enum cpuacct_stat_index idx, cputime_t val)
9351{
9352 struct cpuacct *ca;
fa535a77 9353 int batch = CPUACCT_BATCH;
ef12fefa
BR
9354
9355 if (unlikely(!cpuacct_subsys.active))
9356 return;
9357
9358 rcu_read_lock();
9359 ca = task_ca(tsk);
9360
9361 do {
fa535a77 9362 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9363 ca = ca->parent;
9364 } while (ca);
9365 rcu_read_unlock();
9366}
9367
d842de87
SV
9368struct cgroup_subsys cpuacct_subsys = {
9369 .name = "cpuacct",
9370 .create = cpuacct_create,
9371 .destroy = cpuacct_destroy,
9372 .populate = cpuacct_populate,
9373 .subsys_id = cpuacct_subsys_id,
9374};
9375#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9376
This page took 2.159013 seconds and 5 git commands to generate.