Merge branch 'perf/urgent' into perf/core
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
4793241b 327 struct sched_entity *curr, *next, *last;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
068c5cc5
PZ
609 if (p->flags & PF_EXITING)
610 return &root_task_group;
611
dc61b1d6
PZ
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
dc61b1d6
PZ
617}
618
619/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621{
622#ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625#endif
626
627#ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630#endif
631}
632
633#else /* CONFIG_CGROUP_SCHED */
634
635static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636static inline struct task_group *task_group(struct task_struct *p)
637{
638 return NULL;
639}
640
641#endif /* CONFIG_CGROUP_SCHED */
642
fe44d621 643static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 644
fe44d621 645static void update_rq_clock(struct rq *rq)
3e51f33f 646{
fe44d621 647 s64 delta;
305e6835 648
f26f9aff
MG
649 if (rq->skip_clock_update)
650 return;
aa483808 651
fe44d621
PZ
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
3e51f33f
PZ
655}
656
bf5c91ba
IM
657/*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660#ifdef CONFIG_SCHED_DEBUG
661# define const_debug __read_mostly
662#else
663# define const_debug static const
664#endif
665
017730c1
IM
666/**
667 * runqueue_is_locked
e17b38bf 668 * @cpu: the processor in question.
017730c1
IM
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
89f19f04 674int runqueue_is_locked(int cpu)
017730c1 675{
05fa785c 676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
34f3a814 712static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 713{
f00b45c1
PZ
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 720 }
34f3a814 721 seq_puts(m, "\n");
f00b45c1 722
34f3a814 723 return 0;
f00b45c1
PZ
724}
725
726static ssize_t
727sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729{
730 char buf[64];
7740191c 731 char *cmp;
f00b45c1
PZ
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
7740191c 742 cmp = strstrip(buf);
f00b45c1 743
524429c3 744 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
7740191c 750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
42994724 762 *ppos += cnt;
f00b45c1
PZ
763
764 return cnt;
765}
766
34f3a814
LZ
767static int sched_feat_open(struct inode *inode, struct file *filp)
768{
769 return single_open(filp, sched_feat_show, NULL);
770}
771
828c0950 772static const struct file_operations sched_feat_fops = {
34f3a814
LZ
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
f00b45c1
PZ
778};
779
780static __init int sched_init_debug(void)
781{
f00b45c1
PZ
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786}
787late_initcall(sched_init_debug);
788
789#endif
790
791#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 792
b82d9fdd
PZ
793/*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299 916/*
65cc8e48
PZ
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299 935 rq = task_rq(p);
05fa785c 936 raw_spin_lock(&rq->lock);
65cc8e48 937 if (likely(rq == task_rq(p)))
3a5c359a 938 return rq;
05fa785c 939 raw_spin_unlock(&rq->lock);
b29739f9 940 }
b29739f9
IM
941}
942
1da177e4
LT
943/*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 945 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
946 * explicitly disabling preemption.
947 */
70b97a7f 948static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
949 __acquires(rq->lock)
950{
70b97a7f 951 struct rq *rq;
1da177e4 952
3a5c359a
AK
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
05fa785c 956 raw_spin_lock(&rq->lock);
65cc8e48 957 if (likely(rq == task_rq(p)))
3a5c359a 958 return rq;
05fa785c 959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 960 }
1da177e4
LT
961}
962
a9957449 963static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
964 __releases(rq->lock)
965{
05fa785c 966 raw_spin_unlock(&rq->lock);
b29739f9
IM
967}
968
70b97a7f 969static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
970 __releases(rq->lock)
971{
05fa785c 972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
973}
974
1da177e4 975/*
cc2a73b5 976 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 977 */
a9957449 978static struct rq *this_rq_lock(void)
1da177e4
LT
979 __acquires(rq->lock)
980{
70b97a7f 981 struct rq *rq;
1da177e4
LT
982
983 local_irq_disable();
984 rq = this_rq();
05fa785c 985 raw_spin_lock(&rq->lock);
1da177e4
LT
986
987 return rq;
988}
989
8f4d37ec
PZ
990#ifdef CONFIG_SCHED_HRTICK
991/*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
8f4d37ec
PZ
1001
1002/*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007static inline int hrtick_enabled(struct rq *rq)
1008{
1009 if (!sched_feat(HRTICK))
1010 return 0;
ba42059f 1011 if (!cpu_active(cpu_of(rq)))
b328ca18 1012 return 0;
8f4d37ec
PZ
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014}
1015
8f4d37ec
PZ
1016static void hrtick_clear(struct rq *rq)
1017{
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020}
1021
8f4d37ec
PZ
1022/*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027{
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
05fa785c 1032 raw_spin_lock(&rq->lock);
3e51f33f 1033 update_rq_clock(rq);
8f4d37ec 1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1035 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1036
1037 return HRTIMER_NORESTART;
1038}
1039
95e904c7 1040#ifdef CONFIG_SMP
31656519
PZ
1041/*
1042 * called from hardirq (IPI) context
1043 */
1044static void __hrtick_start(void *arg)
b328ca18 1045{
31656519 1046 struct rq *rq = arg;
b328ca18 1047
05fa785c 1048 raw_spin_lock(&rq->lock);
31656519
PZ
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
05fa785c 1051 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1052}
1053
31656519
PZ
1054/*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1060{
31656519
PZ
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1063
cc584b21 1064 hrtimer_set_expires(timer, time);
31656519
PZ
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
6e275637 1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1070 rq->hrtick_csd_pending = 1;
1071 }
b328ca18
PZ
1072}
1073
1074static int
1075hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076{
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
31656519 1086 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091}
1092
fa748203 1093static __init void init_hrtick(void)
b328ca18
PZ
1094{
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096}
31656519
PZ
1097#else
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
1104{
7f1e2ca9 1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1106 HRTIMER_MODE_REL_PINNED, 0);
31656519 1107}
b328ca18 1108
006c75f1 1109static inline void init_hrtick(void)
8f4d37ec 1110{
8f4d37ec 1111}
31656519 1112#endif /* CONFIG_SMP */
8f4d37ec 1113
31656519 1114static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1115{
31656519
PZ
1116#ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
8f4d37ec 1118
31656519
PZ
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122#endif
8f4d37ec 1123
31656519
PZ
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
8f4d37ec 1126}
006c75f1 1127#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1128static inline void hrtick_clear(struct rq *rq)
1129{
1130}
1131
8f4d37ec
PZ
1132static inline void init_rq_hrtick(struct rq *rq)
1133{
1134}
1135
b328ca18
PZ
1136static inline void init_hrtick(void)
1137{
1138}
006c75f1 1139#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1140
c24d20db
IM
1141/*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148#ifdef CONFIG_SMP
1149
1150#ifndef tsk_is_polling
1151#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152#endif
1153
31656519 1154static void resched_task(struct task_struct *p)
c24d20db
IM
1155{
1156 int cpu;
1157
05fa785c 1158 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1159
5ed0cec0 1160 if (test_tsk_need_resched(p))
c24d20db
IM
1161 return;
1162
5ed0cec0 1163 set_tsk_need_resched(p);
c24d20db
IM
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173}
1174
1175static void resched_cpu(int cpu)
1176{
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
05fa785c 1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1181 return;
1182 resched_task(cpu_curr(cpu));
05fa785c 1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1184}
06d8308c
TG
1185
1186#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1187/*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195int get_nohz_timer_target(void)
1196{
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207}
06d8308c
TG
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
39c0cbe2 1247
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269}
1270
1271static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272{
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275}
1276
6d6bc0ad 1277#else /* !CONFIG_SMP */
31656519 1278static void resched_task(struct task_struct *p)
c24d20db 1279{
05fa785c 1280 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1281 set_tsk_need_resched(p);
c24d20db 1282}
e9e9250b
PZ
1283
1284static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285{
1286}
da2b71ed
SS
1287
1288static void sched_avg_update(struct rq *rq)
1289{
1290}
6d6bc0ad 1291#endif /* CONFIG_SMP */
c24d20db 1292
45bf76df
IM
1293#if BITS_PER_LONG == 32
1294# define WMULT_CONST (~0UL)
1295#else
1296# define WMULT_CONST (1UL << 32)
1297#endif
1298
1299#define WMULT_SHIFT 32
1300
194081eb
IM
1301/*
1302 * Shift right and round:
1303 */
cf2ab469 1304#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1305
a7be37ac
PZ
1306/*
1307 * delta *= weight / lw
1308 */
cb1c4fc9 1309static unsigned long
45bf76df
IM
1310calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312{
1313 u64 tmp;
1314
7a232e03
LJ
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
45bf76df
IM
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
194081eb 1327 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1329 WMULT_SHIFT/2);
1330 else
cf2ab469 1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1332
ecf691da 1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1337{
1338 lw->weight += inc;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
1091985b 1342static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1343{
1344 lw->weight -= dec;
e89996ae 1345 lw->inv_weight = 0;
45bf76df
IM
1346}
1347
2069dd75
PZ
1348static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349{
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352}
1353
2dd73a4f
PW
1354/*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
cce7ade8
PZ
1363#define WEIGHT_IDLEPRIO 3
1364#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1365
1366/*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
dd41f596
IM
1377 */
1378static const int prio_to_weight[40] = {
254753dc
IM
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1387};
1388
5714d2de
IM
1389/*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
dd41f596 1396static const u32 prio_to_wmult[40] = {
254753dc
IM
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1405};
2dd73a4f 1406
ef12fefa
BR
1407/* Time spent by the tasks of the cpu accounting group executing in ... */
1408enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413};
1414
d842de87
SV
1415#ifdef CONFIG_CGROUP_CPUACCT
1416static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1417static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1419#else
1420static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1421static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1423#endif
1424
18d95a28
PZ
1425static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426{
1427 update_load_add(&rq->load, load);
1428}
1429
1430static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431{
1432 update_load_sub(&rq->load, load);
1433}
1434
7940ca36 1435#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1436typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1437
1438/*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
eb755805 1442static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
eb755805 1445 int ret;
c09595f6
PZ
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449down:
eb755805
PZ
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
c09595f6
PZ
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457up:
1458 continue;
1459 }
eb755805
PZ
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
eb755805 1468out_unlock:
c09595f6 1469 rcu_read_unlock();
eb755805
PZ
1470
1471 return ret;
c09595f6
PZ
1472}
1473
eb755805
PZ
1474static int tg_nop(struct task_group *tg, void *data)
1475{
1476 return 0;
c09595f6 1477}
eb755805
PZ
1478#endif
1479
1480#ifdef CONFIG_SMP
f5f08f39
PZ
1481/* Used instead of source_load when we know the type == 0 */
1482static unsigned long weighted_cpuload(const int cpu)
1483{
1484 return cpu_rq(cpu)->load.weight;
1485}
1486
1487/*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494static unsigned long source_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503}
1504
1505/*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509static unsigned long target_load(int cpu, int type)
1510{
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518}
1519
ae154be1
PZ
1520static unsigned long power_of(int cpu)
1521{
e51fd5e2 1522 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
c09595f6 1542/*
c8cba857
PZ
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
c09595f6 1546 */
eb755805 1547static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1548{
c8cba857 1549 unsigned long load;
eb755805 1550 long cpu = (long)data;
c09595f6 1551
c8cba857
PZ
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1556 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
c09595f6 1559
c8cba857 1560 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1561
eb755805 1562 return 0;
c09595f6
PZ
1563}
1564
eb755805 1565static void update_h_load(long cpu)
c09595f6 1566{
eb755805 1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1568}
1569
18d95a28
PZ
1570#endif
1571
8f45e2b5
GH
1572#ifdef CONFIG_PREEMPT
1573
b78bb868
PZ
1574static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
70574a99 1576/*
8f45e2b5
GH
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
70574a99 1583 */
8f45e2b5
GH
1584static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588{
05fa785c 1589 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593}
1594
1595#else
1596/*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607{
1608 int ret = 0;
1609
05fa785c 1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1611 if (busiest < this_rq) {
05fa785c
TG
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 ret = 1;
1617 } else
05fa785c
TG
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
70574a99
AD
1620 }
1621 return ret;
1622}
1623
8f45e2b5
GH
1624#endif /* CONFIG_PREEMPT */
1625
1626/*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630{
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
05fa785c 1633 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638}
1639
70574a99
AD
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
05fa785c 1643 raw_spin_unlock(&busiest->lock);
70574a99
AD
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
1e3c88bd
PZ
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1e3c88bd
PZ
1670}
1671
1672/*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681{
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687}
1688
18d95a28
PZ
1689#endif
1690
74f5187a 1691static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1692static void update_sysctl(void);
acb4a848 1693static int get_update_sysctl_factor(void);
fdf3e95d 1694static void update_cpu_load(struct rq *this_rq);
dce48a84 1695
cd29fe6f
PZ
1696static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697{
1698 set_task_rq(p, cpu);
1699#ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707#endif
1708}
dce48a84 1709
1e3c88bd 1710static const struct sched_class rt_sched_class;
dd41f596 1711
34f971f6 1712#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1713#define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
dd41f596 1715
1e3c88bd
PZ
1716#include "sched_stats.h"
1717
c09595f6 1718static void inc_nr_running(struct rq *rq)
9c217245
IM
1719{
1720 rq->nr_running++;
9c217245
IM
1721}
1722
c09595f6 1723static void dec_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running--;
9c217245
IM
1726}
1727
45bf76df
IM
1728static void set_load_weight(struct task_struct *p)
1729{
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
371fd7e7 1743static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1744{
a64692a3 1745 update_rq_clock(rq);
dd41f596 1746 sched_info_queued(p);
371fd7e7 1747 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1748 p->se.on_rq = 1;
71f8bd46
IM
1749}
1750
371fd7e7 1751static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1752{
a64692a3 1753 update_rq_clock(rq);
46ac22ba 1754 sched_info_dequeued(p);
371fd7e7 1755 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1756 p->se.on_rq = 0;
71f8bd46
IM
1757}
1758
1e3c88bd
PZ
1759/*
1760 * activate_task - move a task to the runqueue.
1761 */
371fd7e7 1762static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1763{
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
371fd7e7 1767 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1768 inc_nr_running(rq);
1769}
1770
1771/*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
371fd7e7 1774static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1775{
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
371fd7e7 1779 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1780 dec_nr_running(rq);
1781}
1782
b52bfee4
VP
1783#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
305e6835
VP
1785/*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
305e6835 1795 */
b52bfee4
VP
1796static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799static DEFINE_PER_CPU(u64, irq_start_time);
1800static int sched_clock_irqtime;
1801
1802void enable_sched_clock_irqtime(void)
1803{
1804 sched_clock_irqtime = 1;
1805}
1806
1807void disable_sched_clock_irqtime(void)
1808{
1809 sched_clock_irqtime = 0;
1810}
1811
8e92c201
PZ
1812#ifndef CONFIG_64BIT
1813static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815static inline void irq_time_write_begin(void)
1816{
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819}
1820
1821static inline void irq_time_write_end(void)
1822{
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825}
1826
1827static inline u64 irq_time_read(int cpu)
1828{
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839}
1840#else /* CONFIG_64BIT */
1841static inline void irq_time_write_begin(void)
1842{
1843}
1844
1845static inline void irq_time_write_end(void)
1846{
1847}
1848
1849static inline u64 irq_time_read(int cpu)
305e6835 1850{
305e6835
VP
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852}
8e92c201 1853#endif /* CONFIG_64BIT */
305e6835 1854
fe44d621
PZ
1855/*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
b52bfee4
VP
1859void account_system_vtime(struct task_struct *curr)
1860{
1861 unsigned long flags;
fe44d621 1862 s64 delta;
b52bfee4 1863 int cpu;
b52bfee4
VP
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
b52bfee4 1870 cpu = smp_processor_id();
fe44d621
PZ
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
8e92c201 1874 irq_time_write_begin();
b52bfee4
VP
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
fe44d621 1882 __this_cpu_add(cpu_hardirq_time, delta);
b52bfee4 1883 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
fe44d621 1884 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1885
8e92c201 1886 irq_time_write_end();
b52bfee4
VP
1887 local_irq_restore(flags);
1888}
b7dadc38 1889EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1890
fe44d621 1891static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1892{
fe44d621
PZ
1893 s64 irq_delta;
1894
8e92c201 1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1921}
1922
fe44d621 1923#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1924
fe44d621 1925static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1926{
fe44d621 1927 rq->clock_task += delta;
305e6835
VP
1928}
1929
fe44d621 1930#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1931
1e3c88bd
PZ
1932#include "sched_idletask.c"
1933#include "sched_fair.c"
1934#include "sched_rt.c"
5091faa4 1935#include "sched_autogroup.c"
34f971f6 1936#include "sched_stoptask.c"
1e3c88bd
PZ
1937#ifdef CONFIG_SCHED_DEBUG
1938# include "sched_debug.c"
1939#endif
1940
34f971f6
PZ
1941void sched_set_stop_task(int cpu, struct task_struct *stop)
1942{
1943 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1944 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1945
1946 if (stop) {
1947 /*
1948 * Make it appear like a SCHED_FIFO task, its something
1949 * userspace knows about and won't get confused about.
1950 *
1951 * Also, it will make PI more or less work without too
1952 * much confusion -- but then, stop work should not
1953 * rely on PI working anyway.
1954 */
1955 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1956
1957 stop->sched_class = &stop_sched_class;
1958 }
1959
1960 cpu_rq(cpu)->stop = stop;
1961
1962 if (old_stop) {
1963 /*
1964 * Reset it back to a normal scheduling class so that
1965 * it can die in pieces.
1966 */
1967 old_stop->sched_class = &rt_sched_class;
1968 }
1969}
1970
14531189 1971/*
dd41f596 1972 * __normal_prio - return the priority that is based on the static prio
14531189 1973 */
14531189
IM
1974static inline int __normal_prio(struct task_struct *p)
1975{
dd41f596 1976 return p->static_prio;
14531189
IM
1977}
1978
b29739f9
IM
1979/*
1980 * Calculate the expected normal priority: i.e. priority
1981 * without taking RT-inheritance into account. Might be
1982 * boosted by interactivity modifiers. Changes upon fork,
1983 * setprio syscalls, and whenever the interactivity
1984 * estimator recalculates.
1985 */
36c8b586 1986static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1987{
1988 int prio;
1989
e05606d3 1990 if (task_has_rt_policy(p))
b29739f9
IM
1991 prio = MAX_RT_PRIO-1 - p->rt_priority;
1992 else
1993 prio = __normal_prio(p);
1994 return prio;
1995}
1996
1997/*
1998 * Calculate the current priority, i.e. the priority
1999 * taken into account by the scheduler. This value might
2000 * be boosted by RT tasks, or might be boosted by
2001 * interactivity modifiers. Will be RT if the task got
2002 * RT-boosted. If not then it returns p->normal_prio.
2003 */
36c8b586 2004static int effective_prio(struct task_struct *p)
b29739f9
IM
2005{
2006 p->normal_prio = normal_prio(p);
2007 /*
2008 * If we are RT tasks or we were boosted to RT priority,
2009 * keep the priority unchanged. Otherwise, update priority
2010 * to the normal priority:
2011 */
2012 if (!rt_prio(p->prio))
2013 return p->normal_prio;
2014 return p->prio;
2015}
2016
1da177e4
LT
2017/**
2018 * task_curr - is this task currently executing on a CPU?
2019 * @p: the task in question.
2020 */
36c8b586 2021inline int task_curr(const struct task_struct *p)
1da177e4
LT
2022{
2023 return cpu_curr(task_cpu(p)) == p;
2024}
2025
cb469845
SR
2026static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2027 const struct sched_class *prev_class,
2028 int oldprio, int running)
2029{
2030 if (prev_class != p->sched_class) {
2031 if (prev_class->switched_from)
2032 prev_class->switched_from(rq, p, running);
2033 p->sched_class->switched_to(rq, p, running);
2034 } else
2035 p->sched_class->prio_changed(rq, p, oldprio, running);
2036}
2037
1e5a7405
PZ
2038static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2039{
2040 const struct sched_class *class;
2041
2042 if (p->sched_class == rq->curr->sched_class) {
2043 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2044 } else {
2045 for_each_class(class) {
2046 if (class == rq->curr->sched_class)
2047 break;
2048 if (class == p->sched_class) {
2049 resched_task(rq->curr);
2050 break;
2051 }
2052 }
2053 }
2054
2055 /*
2056 * A queue event has occurred, and we're going to schedule. In
2057 * this case, we can save a useless back to back clock update.
2058 */
f26f9aff 2059 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2060 rq->skip_clock_update = 1;
2061}
2062
1da177e4 2063#ifdef CONFIG_SMP
cc367732
IM
2064/*
2065 * Is this task likely cache-hot:
2066 */
e7693a36 2067static int
cc367732
IM
2068task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2069{
2070 s64 delta;
2071
e6c8fba7
PZ
2072 if (p->sched_class != &fair_sched_class)
2073 return 0;
2074
ef8002f6
NR
2075 if (unlikely(p->policy == SCHED_IDLE))
2076 return 0;
2077
f540a608
IM
2078 /*
2079 * Buddy candidates are cache hot:
2080 */
f685ceac 2081 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2082 (&p->se == cfs_rq_of(&p->se)->next ||
2083 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2084 return 1;
2085
6bc1665b
IM
2086 if (sysctl_sched_migration_cost == -1)
2087 return 1;
2088 if (sysctl_sched_migration_cost == 0)
2089 return 0;
2090
cc367732
IM
2091 delta = now - p->se.exec_start;
2092
2093 return delta < (s64)sysctl_sched_migration_cost;
2094}
2095
dd41f596 2096void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2097{
e2912009
PZ
2098#ifdef CONFIG_SCHED_DEBUG
2099 /*
2100 * We should never call set_task_cpu() on a blocked task,
2101 * ttwu() will sort out the placement.
2102 */
077614ee
PZ
2103 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2104 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2105#endif
2106
de1d7286 2107 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2108
0c69774e
PZ
2109 if (task_cpu(p) != new_cpu) {
2110 p->se.nr_migrations++;
2111 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2112 }
dd41f596
IM
2113
2114 __set_task_cpu(p, new_cpu);
c65cc870
IM
2115}
2116
969c7921 2117struct migration_arg {
36c8b586 2118 struct task_struct *task;
1da177e4 2119 int dest_cpu;
70b97a7f 2120};
1da177e4 2121
969c7921
TH
2122static int migration_cpu_stop(void *data);
2123
1da177e4
LT
2124/*
2125 * The task's runqueue lock must be held.
2126 * Returns true if you have to wait for migration thread.
2127 */
b7a2b39d 2128static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2129{
1da177e4
LT
2130 /*
2131 * If the task is not on a runqueue (and not running), then
e2912009 2132 * the next wake-up will properly place the task.
1da177e4 2133 */
969c7921 2134 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2135}
2136
2137/*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
85ba2d86
RM
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
1da177e4
LT
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
85ba2d86 2153unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2154{
2155 unsigned long flags;
dd41f596 2156 int running, on_rq;
85ba2d86 2157 unsigned long ncsw;
70b97a7f 2158 struct rq *rq;
1da177e4 2159
3a5c359a
AK
2160 for (;;) {
2161 /*
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2165 * work out!
2166 */
2167 rq = task_rq(p);
fa490cfd 2168
3a5c359a
AK
2169 /*
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2172 * any locks.
2173 *
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2179 */
85ba2d86
RM
2180 while (task_running(rq, p)) {
2181 if (match_state && unlikely(p->state != match_state))
2182 return 0;
3a5c359a 2183 cpu_relax();
85ba2d86 2184 }
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2190 */
2191 rq = task_rq_lock(p, &flags);
27a9da65 2192 trace_sched_wait_task(p);
3a5c359a
AK
2193 running = task_running(rq, p);
2194 on_rq = p->se.on_rq;
85ba2d86 2195 ncsw = 0;
f31e11d8 2196 if (!match_state || p->state == match_state)
93dcf55f 2197 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2198 task_rq_unlock(rq, &flags);
fa490cfd 2199
85ba2d86
RM
2200 /*
2201 * If it changed from the expected state, bail out now.
2202 */
2203 if (unlikely(!ncsw))
2204 break;
2205
3a5c359a
AK
2206 /*
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2209 *
2210 * Oops. Go back and try again..
2211 */
2212 if (unlikely(running)) {
2213 cpu_relax();
2214 continue;
2215 }
fa490cfd 2216
3a5c359a
AK
2217 /*
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2220 * preempted!
2221 *
80dd99b3 2222 * So if it was still runnable (but just not actively
3a5c359a
AK
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2225 */
2226 if (unlikely(on_rq)) {
2227 schedule_timeout_uninterruptible(1);
2228 continue;
2229 }
fa490cfd 2230
3a5c359a
AK
2231 /*
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2235 */
2236 break;
2237 }
85ba2d86
RM
2238
2239 return ncsw;
1da177e4
LT
2240}
2241
2242/***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
36c8b586 2255void kick_process(struct task_struct *p)
1da177e4
LT
2256{
2257 int cpu;
2258
2259 preempt_disable();
2260 cpu = task_cpu(p);
2261 if ((cpu != smp_processor_id()) && task_curr(p))
2262 smp_send_reschedule(cpu);
2263 preempt_enable();
2264}
b43e3521 2265EXPORT_SYMBOL_GPL(kick_process);
476d139c 2266#endif /* CONFIG_SMP */
1da177e4 2267
970b13ba 2268#ifdef CONFIG_SMP
30da688e
ON
2269/*
2270 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2271 */
5da9a0fb
PZ
2272static int select_fallback_rq(int cpu, struct task_struct *p)
2273{
2274 int dest_cpu;
2275 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2276
2277 /* Look for allowed, online CPU in same node. */
2278 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2279 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2280 return dest_cpu;
2281
2282 /* Any allowed, online CPU? */
2283 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2284 if (dest_cpu < nr_cpu_ids)
2285 return dest_cpu;
2286
2287 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2288 dest_cpu = cpuset_cpus_allowed_fallback(p);
2289 /*
2290 * Don't tell them about moving exiting tasks or
2291 * kernel threads (both mm NULL), since they never
2292 * leave kernel.
2293 */
2294 if (p->mm && printk_ratelimit()) {
2295 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2296 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2297 }
2298
2299 return dest_cpu;
2300}
2301
e2912009 2302/*
30da688e 2303 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2304 */
970b13ba 2305static inline
0017d735 2306int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2307{
0017d735 2308 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2309
2310 /*
2311 * In order not to call set_task_cpu() on a blocking task we need
2312 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2313 * cpu.
2314 *
2315 * Since this is common to all placement strategies, this lives here.
2316 *
2317 * [ this allows ->select_task() to simply return task_cpu(p) and
2318 * not worry about this generic constraint ]
2319 */
2320 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2321 !cpu_online(cpu)))
5da9a0fb 2322 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2323
2324 return cpu;
970b13ba 2325}
09a40af5
MG
2326
2327static void update_avg(u64 *avg, u64 sample)
2328{
2329 s64 diff = sample - *avg;
2330 *avg += diff >> 3;
2331}
970b13ba
PZ
2332#endif
2333
9ed3811a
TH
2334static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2335 bool is_sync, bool is_migrate, bool is_local,
2336 unsigned long en_flags)
2337{
2338 schedstat_inc(p, se.statistics.nr_wakeups);
2339 if (is_sync)
2340 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2341 if (is_migrate)
2342 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2343 if (is_local)
2344 schedstat_inc(p, se.statistics.nr_wakeups_local);
2345 else
2346 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2347
2348 activate_task(rq, p, en_flags);
2349}
2350
2351static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2352 int wake_flags, bool success)
2353{
2354 trace_sched_wakeup(p, success);
2355 check_preempt_curr(rq, p, wake_flags);
2356
2357 p->state = TASK_RUNNING;
2358#ifdef CONFIG_SMP
2359 if (p->sched_class->task_woken)
2360 p->sched_class->task_woken(rq, p);
2361
2362 if (unlikely(rq->idle_stamp)) {
2363 u64 delta = rq->clock - rq->idle_stamp;
2364 u64 max = 2*sysctl_sched_migration_cost;
2365
2366 if (delta > max)
2367 rq->avg_idle = max;
2368 else
2369 update_avg(&rq->avg_idle, delta);
2370 rq->idle_stamp = 0;
2371 }
2372#endif
21aa9af0
TH
2373 /* if a worker is waking up, notify workqueue */
2374 if ((p->flags & PF_WQ_WORKER) && success)
2375 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2376}
2377
2378/**
1da177e4 2379 * try_to_wake_up - wake up a thread
9ed3811a 2380 * @p: the thread to be awakened
1da177e4 2381 * @state: the mask of task states that can be woken
9ed3811a 2382 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2383 *
2384 * Put it on the run-queue if it's not already there. The "current"
2385 * thread is always on the run-queue (except when the actual
2386 * re-schedule is in progress), and as such you're allowed to do
2387 * the simpler "current->state = TASK_RUNNING" to mark yourself
2388 * runnable without the overhead of this.
2389 *
9ed3811a
TH
2390 * Returns %true if @p was woken up, %false if it was already running
2391 * or @state didn't match @p's state.
1da177e4 2392 */
7d478721
PZ
2393static int try_to_wake_up(struct task_struct *p, unsigned int state,
2394 int wake_flags)
1da177e4 2395{
cc367732 2396 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2397 unsigned long flags;
371fd7e7 2398 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2399 struct rq *rq;
1da177e4 2400
e9c84311 2401 this_cpu = get_cpu();
2398f2c6 2402
04e2f174 2403 smp_wmb();
ab3b3aa5 2404 rq = task_rq_lock(p, &flags);
e9c84311 2405 if (!(p->state & state))
1da177e4
LT
2406 goto out;
2407
dd41f596 2408 if (p->se.on_rq)
1da177e4
LT
2409 goto out_running;
2410
2411 cpu = task_cpu(p);
cc367732 2412 orig_cpu = cpu;
1da177e4
LT
2413
2414#ifdef CONFIG_SMP
2415 if (unlikely(task_running(rq, p)))
2416 goto out_activate;
2417
e9c84311
PZ
2418 /*
2419 * In order to handle concurrent wakeups and release the rq->lock
2420 * we put the task in TASK_WAKING state.
eb24073b
IM
2421 *
2422 * First fix up the nr_uninterruptible count:
e9c84311 2423 */
cc87f76a
PZ
2424 if (task_contributes_to_load(p)) {
2425 if (likely(cpu_online(orig_cpu)))
2426 rq->nr_uninterruptible--;
2427 else
2428 this_rq()->nr_uninterruptible--;
2429 }
e9c84311 2430 p->state = TASK_WAKING;
efbbd05a 2431
371fd7e7 2432 if (p->sched_class->task_waking) {
efbbd05a 2433 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2434 en_flags |= ENQUEUE_WAKING;
2435 }
efbbd05a 2436
0017d735
PZ
2437 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2438 if (cpu != orig_cpu)
5d2f5a61 2439 set_task_cpu(p, cpu);
0017d735 2440 __task_rq_unlock(rq);
ab19cb23 2441
0970d299
PZ
2442 rq = cpu_rq(cpu);
2443 raw_spin_lock(&rq->lock);
f5dc3753 2444
0970d299
PZ
2445 /*
2446 * We migrated the task without holding either rq->lock, however
2447 * since the task is not on the task list itself, nobody else
2448 * will try and migrate the task, hence the rq should match the
2449 * cpu we just moved it to.
2450 */
2451 WARN_ON(task_cpu(p) != cpu);
e9c84311 2452 WARN_ON(p->state != TASK_WAKING);
1da177e4 2453
e7693a36
GH
2454#ifdef CONFIG_SCHEDSTATS
2455 schedstat_inc(rq, ttwu_count);
2456 if (cpu == this_cpu)
2457 schedstat_inc(rq, ttwu_local);
2458 else {
2459 struct sched_domain *sd;
2460 for_each_domain(this_cpu, sd) {
758b2cdc 2461 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2462 schedstat_inc(sd, ttwu_wake_remote);
2463 break;
2464 }
2465 }
2466 }
6d6bc0ad 2467#endif /* CONFIG_SCHEDSTATS */
e7693a36 2468
1da177e4
LT
2469out_activate:
2470#endif /* CONFIG_SMP */
9ed3811a
TH
2471 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2472 cpu == this_cpu, en_flags);
1da177e4 2473 success = 1;
1da177e4 2474out_running:
9ed3811a 2475 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2476out:
2477 task_rq_unlock(rq, &flags);
e9c84311 2478 put_cpu();
1da177e4
LT
2479
2480 return success;
2481}
2482
21aa9af0
TH
2483/**
2484 * try_to_wake_up_local - try to wake up a local task with rq lock held
2485 * @p: the thread to be awakened
2486 *
b595076a 2487 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2488 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2489 * the current task. this_rq() stays locked over invocation.
2490 */
2491static void try_to_wake_up_local(struct task_struct *p)
2492{
2493 struct rq *rq = task_rq(p);
2494 bool success = false;
2495
2496 BUG_ON(rq != this_rq());
2497 BUG_ON(p == current);
2498 lockdep_assert_held(&rq->lock);
2499
2500 if (!(p->state & TASK_NORMAL))
2501 return;
2502
2503 if (!p->se.on_rq) {
2504 if (likely(!task_running(rq, p))) {
2505 schedstat_inc(rq, ttwu_count);
2506 schedstat_inc(rq, ttwu_local);
2507 }
2508 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2509 success = true;
2510 }
2511 ttwu_post_activation(p, rq, 0, success);
2512}
2513
50fa610a
DH
2514/**
2515 * wake_up_process - Wake up a specific process
2516 * @p: The process to be woken up.
2517 *
2518 * Attempt to wake up the nominated process and move it to the set of runnable
2519 * processes. Returns 1 if the process was woken up, 0 if it was already
2520 * running.
2521 *
2522 * It may be assumed that this function implies a write memory barrier before
2523 * changing the task state if and only if any tasks are woken up.
2524 */
7ad5b3a5 2525int wake_up_process(struct task_struct *p)
1da177e4 2526{
d9514f6c 2527 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2528}
1da177e4
LT
2529EXPORT_SYMBOL(wake_up_process);
2530
7ad5b3a5 2531int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2532{
2533 return try_to_wake_up(p, state, 0);
2534}
2535
1da177e4
LT
2536/*
2537 * Perform scheduler related setup for a newly forked process p.
2538 * p is forked by current.
dd41f596
IM
2539 *
2540 * __sched_fork() is basic setup used by init_idle() too:
2541 */
2542static void __sched_fork(struct task_struct *p)
2543{
dd41f596
IM
2544 p->se.exec_start = 0;
2545 p->se.sum_exec_runtime = 0;
f6cf891c 2546 p->se.prev_sum_exec_runtime = 0;
6c594c21 2547 p->se.nr_migrations = 0;
6cfb0d5d
IM
2548
2549#ifdef CONFIG_SCHEDSTATS
41acab88 2550 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2551#endif
476d139c 2552
fa717060 2553 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2554 p->se.on_rq = 0;
4a55bd5e 2555 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2556
e107be36
AK
2557#ifdef CONFIG_PREEMPT_NOTIFIERS
2558 INIT_HLIST_HEAD(&p->preempt_notifiers);
2559#endif
dd41f596
IM
2560}
2561
2562/*
2563 * fork()/clone()-time setup:
2564 */
2565void sched_fork(struct task_struct *p, int clone_flags)
2566{
2567 int cpu = get_cpu();
2568
2569 __sched_fork(p);
06b83b5f 2570 /*
0017d735 2571 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2572 * nobody will actually run it, and a signal or other external
2573 * event cannot wake it up and insert it on the runqueue either.
2574 */
0017d735 2575 p->state = TASK_RUNNING;
dd41f596 2576
b9dc29e7
MG
2577 /*
2578 * Revert to default priority/policy on fork if requested.
2579 */
2580 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2581 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2582 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2583 p->normal_prio = p->static_prio;
2584 }
b9dc29e7 2585
6c697bdf
MG
2586 if (PRIO_TO_NICE(p->static_prio) < 0) {
2587 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2588 p->normal_prio = p->static_prio;
6c697bdf
MG
2589 set_load_weight(p);
2590 }
2591
b9dc29e7
MG
2592 /*
2593 * We don't need the reset flag anymore after the fork. It has
2594 * fulfilled its duty:
2595 */
2596 p->sched_reset_on_fork = 0;
2597 }
ca94c442 2598
f83f9ac2
PW
2599 /*
2600 * Make sure we do not leak PI boosting priority to the child.
2601 */
2602 p->prio = current->normal_prio;
2603
2ddbf952
HS
2604 if (!rt_prio(p->prio))
2605 p->sched_class = &fair_sched_class;
b29739f9 2606
cd29fe6f
PZ
2607 if (p->sched_class->task_fork)
2608 p->sched_class->task_fork(p);
2609
86951599
PZ
2610 /*
2611 * The child is not yet in the pid-hash so no cgroup attach races,
2612 * and the cgroup is pinned to this child due to cgroup_fork()
2613 * is ran before sched_fork().
2614 *
2615 * Silence PROVE_RCU.
2616 */
2617 rcu_read_lock();
5f3edc1b 2618 set_task_cpu(p, cpu);
86951599 2619 rcu_read_unlock();
5f3edc1b 2620
52f17b6c 2621#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2622 if (likely(sched_info_on()))
52f17b6c 2623 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2624#endif
d6077cb8 2625#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2626 p->oncpu = 0;
2627#endif
1da177e4 2628#ifdef CONFIG_PREEMPT
4866cde0 2629 /* Want to start with kernel preemption disabled. */
a1261f54 2630 task_thread_info(p)->preempt_count = 1;
1da177e4 2631#endif
806c09a7 2632#ifdef CONFIG_SMP
917b627d 2633 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2634#endif
917b627d 2635
476d139c 2636 put_cpu();
1da177e4
LT
2637}
2638
2639/*
2640 * wake_up_new_task - wake up a newly created task for the first time.
2641 *
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2645 */
7ad5b3a5 2646void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2647{
2648 unsigned long flags;
dd41f596 2649 struct rq *rq;
c890692b 2650 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2651
2652#ifdef CONFIG_SMP
0017d735
PZ
2653 rq = task_rq_lock(p, &flags);
2654 p->state = TASK_WAKING;
2655
fabf318e
PZ
2656 /*
2657 * Fork balancing, do it here and not earlier because:
2658 * - cpus_allowed can change in the fork path
2659 * - any previously selected cpu might disappear through hotplug
2660 *
0017d735
PZ
2661 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2662 * without people poking at ->cpus_allowed.
fabf318e 2663 */
0017d735 2664 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2665 set_task_cpu(p, cpu);
1da177e4 2666
06b83b5f 2667 p->state = TASK_RUNNING;
0017d735
PZ
2668 task_rq_unlock(rq, &flags);
2669#endif
2670
2671 rq = task_rq_lock(p, &flags);
cd29fe6f 2672 activate_task(rq, p, 0);
27a9da65 2673 trace_sched_wakeup_new(p, 1);
a7558e01 2674 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2675#ifdef CONFIG_SMP
efbbd05a
PZ
2676 if (p->sched_class->task_woken)
2677 p->sched_class->task_woken(rq, p);
9a897c5a 2678#endif
dd41f596 2679 task_rq_unlock(rq, &flags);
fabf318e 2680 put_cpu();
1da177e4
LT
2681}
2682
e107be36
AK
2683#ifdef CONFIG_PREEMPT_NOTIFIERS
2684
2685/**
80dd99b3 2686 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2687 * @notifier: notifier struct to register
e107be36
AK
2688 */
2689void preempt_notifier_register(struct preempt_notifier *notifier)
2690{
2691 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2692}
2693EXPORT_SYMBOL_GPL(preempt_notifier_register);
2694
2695/**
2696 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2697 * @notifier: notifier struct to unregister
e107be36
AK
2698 *
2699 * This is safe to call from within a preemption notifier.
2700 */
2701void preempt_notifier_unregister(struct preempt_notifier *notifier)
2702{
2703 hlist_del(&notifier->link);
2704}
2705EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2706
2707static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2708{
2709 struct preempt_notifier *notifier;
2710 struct hlist_node *node;
2711
2712 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2713 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2714}
2715
2716static void
2717fire_sched_out_preempt_notifiers(struct task_struct *curr,
2718 struct task_struct *next)
2719{
2720 struct preempt_notifier *notifier;
2721 struct hlist_node *node;
2722
2723 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2724 notifier->ops->sched_out(notifier, next);
2725}
2726
6d6bc0ad 2727#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2728
2729static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2730{
2731}
2732
2733static void
2734fire_sched_out_preempt_notifiers(struct task_struct *curr,
2735 struct task_struct *next)
2736{
2737}
2738
6d6bc0ad 2739#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2740
4866cde0
NP
2741/**
2742 * prepare_task_switch - prepare to switch tasks
2743 * @rq: the runqueue preparing to switch
421cee29 2744 * @prev: the current task that is being switched out
4866cde0
NP
2745 * @next: the task we are going to switch to.
2746 *
2747 * This is called with the rq lock held and interrupts off. It must
2748 * be paired with a subsequent finish_task_switch after the context
2749 * switch.
2750 *
2751 * prepare_task_switch sets up locking and calls architecture specific
2752 * hooks.
2753 */
e107be36
AK
2754static inline void
2755prepare_task_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
4866cde0 2757{
fe4b04fa
PZ
2758 sched_info_switch(prev, next);
2759 perf_event_task_sched_out(prev, next);
e107be36 2760 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2761 prepare_lock_switch(rq, next);
2762 prepare_arch_switch(next);
fe4b04fa 2763 trace_sched_switch(prev, next);
4866cde0
NP
2764}
2765
1da177e4
LT
2766/**
2767 * finish_task_switch - clean up after a task-switch
344babaa 2768 * @rq: runqueue associated with task-switch
1da177e4
LT
2769 * @prev: the thread we just switched away from.
2770 *
4866cde0
NP
2771 * finish_task_switch must be called after the context switch, paired
2772 * with a prepare_task_switch call before the context switch.
2773 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2774 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2775 *
2776 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2777 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2778 * with the lock held can cause deadlocks; see schedule() for
2779 * details.)
2780 */
a9957449 2781static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2782 __releases(rq->lock)
2783{
1da177e4 2784 struct mm_struct *mm = rq->prev_mm;
55a101f8 2785 long prev_state;
1da177e4
LT
2786
2787 rq->prev_mm = NULL;
2788
2789 /*
2790 * A task struct has one reference for the use as "current".
c394cc9f 2791 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2792 * schedule one last time. The schedule call will never return, and
2793 * the scheduled task must drop that reference.
c394cc9f 2794 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2795 * still held, otherwise prev could be scheduled on another cpu, die
2796 * there before we look at prev->state, and then the reference would
2797 * be dropped twice.
2798 * Manfred Spraul <manfred@colorfullife.com>
2799 */
55a101f8 2800 prev_state = prev->state;
4866cde0 2801 finish_arch_switch(prev);
8381f65d
JI
2802#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2803 local_irq_disable();
2804#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2805 perf_event_task_sched_in(current);
8381f65d
JI
2806#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2807 local_irq_enable();
2808#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2809 finish_lock_switch(rq, prev);
e8fa1362 2810
e107be36 2811 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2812 if (mm)
2813 mmdrop(mm);
c394cc9f 2814 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2815 /*
2816 * Remove function-return probe instances associated with this
2817 * task and put them back on the free list.
9761eea8 2818 */
c6fd91f0 2819 kprobe_flush_task(prev);
1da177e4 2820 put_task_struct(prev);
c6fd91f0 2821 }
1da177e4
LT
2822}
2823
3f029d3c
GH
2824#ifdef CONFIG_SMP
2825
2826/* assumes rq->lock is held */
2827static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2828{
2829 if (prev->sched_class->pre_schedule)
2830 prev->sched_class->pre_schedule(rq, prev);
2831}
2832
2833/* rq->lock is NOT held, but preemption is disabled */
2834static inline void post_schedule(struct rq *rq)
2835{
2836 if (rq->post_schedule) {
2837 unsigned long flags;
2838
05fa785c 2839 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2840 if (rq->curr->sched_class->post_schedule)
2841 rq->curr->sched_class->post_schedule(rq);
05fa785c 2842 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2843
2844 rq->post_schedule = 0;
2845 }
2846}
2847
2848#else
da19ab51 2849
3f029d3c
GH
2850static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2851{
2852}
2853
2854static inline void post_schedule(struct rq *rq)
2855{
1da177e4
LT
2856}
2857
3f029d3c
GH
2858#endif
2859
1da177e4
LT
2860/**
2861 * schedule_tail - first thing a freshly forked thread must call.
2862 * @prev: the thread we just switched away from.
2863 */
36c8b586 2864asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2865 __releases(rq->lock)
2866{
70b97a7f
IM
2867 struct rq *rq = this_rq();
2868
4866cde0 2869 finish_task_switch(rq, prev);
da19ab51 2870
3f029d3c
GH
2871 /*
2872 * FIXME: do we need to worry about rq being invalidated by the
2873 * task_switch?
2874 */
2875 post_schedule(rq);
70b97a7f 2876
4866cde0
NP
2877#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2878 /* In this case, finish_task_switch does not reenable preemption */
2879 preempt_enable();
2880#endif
1da177e4 2881 if (current->set_child_tid)
b488893a 2882 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2883}
2884
2885/*
2886 * context_switch - switch to the new MM and the new
2887 * thread's register state.
2888 */
dd41f596 2889static inline void
70b97a7f 2890context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2891 struct task_struct *next)
1da177e4 2892{
dd41f596 2893 struct mm_struct *mm, *oldmm;
1da177e4 2894
e107be36 2895 prepare_task_switch(rq, prev, next);
fe4b04fa 2896
dd41f596
IM
2897 mm = next->mm;
2898 oldmm = prev->active_mm;
9226d125
ZA
2899 /*
2900 * For paravirt, this is coupled with an exit in switch_to to
2901 * combine the page table reload and the switch backend into
2902 * one hypercall.
2903 */
224101ed 2904 arch_start_context_switch(prev);
9226d125 2905
31915ab4 2906 if (!mm) {
1da177e4
LT
2907 next->active_mm = oldmm;
2908 atomic_inc(&oldmm->mm_count);
2909 enter_lazy_tlb(oldmm, next);
2910 } else
2911 switch_mm(oldmm, mm, next);
2912
31915ab4 2913 if (!prev->mm) {
1da177e4 2914 prev->active_mm = NULL;
1da177e4
LT
2915 rq->prev_mm = oldmm;
2916 }
3a5f5e48
IM
2917 /*
2918 * Since the runqueue lock will be released by the next
2919 * task (which is an invalid locking op but in the case
2920 * of the scheduler it's an obvious special-case), so we
2921 * do an early lockdep release here:
2922 */
2923#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2924 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2925#endif
1da177e4
LT
2926
2927 /* Here we just switch the register state and the stack. */
2928 switch_to(prev, next, prev);
2929
dd41f596
IM
2930 barrier();
2931 /*
2932 * this_rq must be evaluated again because prev may have moved
2933 * CPUs since it called schedule(), thus the 'rq' on its stack
2934 * frame will be invalid.
2935 */
2936 finish_task_switch(this_rq(), prev);
1da177e4
LT
2937}
2938
2939/*
2940 * nr_running, nr_uninterruptible and nr_context_switches:
2941 *
2942 * externally visible scheduler statistics: current number of runnable
2943 * threads, current number of uninterruptible-sleeping threads, total
2944 * number of context switches performed since bootup.
2945 */
2946unsigned long nr_running(void)
2947{
2948 unsigned long i, sum = 0;
2949
2950 for_each_online_cpu(i)
2951 sum += cpu_rq(i)->nr_running;
2952
2953 return sum;
f711f609 2954}
1da177e4
LT
2955
2956unsigned long nr_uninterruptible(void)
f711f609 2957{
1da177e4 2958 unsigned long i, sum = 0;
f711f609 2959
0a945022 2960 for_each_possible_cpu(i)
1da177e4 2961 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2962
2963 /*
1da177e4
LT
2964 * Since we read the counters lockless, it might be slightly
2965 * inaccurate. Do not allow it to go below zero though:
f711f609 2966 */
1da177e4
LT
2967 if (unlikely((long)sum < 0))
2968 sum = 0;
f711f609 2969
1da177e4 2970 return sum;
f711f609 2971}
f711f609 2972
1da177e4 2973unsigned long long nr_context_switches(void)
46cb4b7c 2974{
cc94abfc
SR
2975 int i;
2976 unsigned long long sum = 0;
46cb4b7c 2977
0a945022 2978 for_each_possible_cpu(i)
1da177e4 2979 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2980
1da177e4
LT
2981 return sum;
2982}
483b4ee6 2983
1da177e4
LT
2984unsigned long nr_iowait(void)
2985{
2986 unsigned long i, sum = 0;
483b4ee6 2987
0a945022 2988 for_each_possible_cpu(i)
1da177e4 2989 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2990
1da177e4
LT
2991 return sum;
2992}
483b4ee6 2993
8c215bd3 2994unsigned long nr_iowait_cpu(int cpu)
69d25870 2995{
8c215bd3 2996 struct rq *this = cpu_rq(cpu);
69d25870
AV
2997 return atomic_read(&this->nr_iowait);
2998}
46cb4b7c 2999
69d25870
AV
3000unsigned long this_cpu_load(void)
3001{
3002 struct rq *this = this_rq();
3003 return this->cpu_load[0];
3004}
e790fb0b 3005
46cb4b7c 3006
dce48a84
TG
3007/* Variables and functions for calc_load */
3008static atomic_long_t calc_load_tasks;
3009static unsigned long calc_load_update;
3010unsigned long avenrun[3];
3011EXPORT_SYMBOL(avenrun);
46cb4b7c 3012
74f5187a
PZ
3013static long calc_load_fold_active(struct rq *this_rq)
3014{
3015 long nr_active, delta = 0;
3016
3017 nr_active = this_rq->nr_running;
3018 nr_active += (long) this_rq->nr_uninterruptible;
3019
3020 if (nr_active != this_rq->calc_load_active) {
3021 delta = nr_active - this_rq->calc_load_active;
3022 this_rq->calc_load_active = nr_active;
3023 }
3024
3025 return delta;
3026}
3027
0f004f5a
PZ
3028static unsigned long
3029calc_load(unsigned long load, unsigned long exp, unsigned long active)
3030{
3031 load *= exp;
3032 load += active * (FIXED_1 - exp);
3033 load += 1UL << (FSHIFT - 1);
3034 return load >> FSHIFT;
3035}
3036
74f5187a
PZ
3037#ifdef CONFIG_NO_HZ
3038/*
3039 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3040 *
3041 * When making the ILB scale, we should try to pull this in as well.
3042 */
3043static atomic_long_t calc_load_tasks_idle;
3044
3045static void calc_load_account_idle(struct rq *this_rq)
3046{
3047 long delta;
3048
3049 delta = calc_load_fold_active(this_rq);
3050 if (delta)
3051 atomic_long_add(delta, &calc_load_tasks_idle);
3052}
3053
3054static long calc_load_fold_idle(void)
3055{
3056 long delta = 0;
3057
3058 /*
3059 * Its got a race, we don't care...
3060 */
3061 if (atomic_long_read(&calc_load_tasks_idle))
3062 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3063
3064 return delta;
3065}
0f004f5a
PZ
3066
3067/**
3068 * fixed_power_int - compute: x^n, in O(log n) time
3069 *
3070 * @x: base of the power
3071 * @frac_bits: fractional bits of @x
3072 * @n: power to raise @x to.
3073 *
3074 * By exploiting the relation between the definition of the natural power
3075 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3076 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3077 * (where: n_i \elem {0, 1}, the binary vector representing n),
3078 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3079 * of course trivially computable in O(log_2 n), the length of our binary
3080 * vector.
3081 */
3082static unsigned long
3083fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3084{
3085 unsigned long result = 1UL << frac_bits;
3086
3087 if (n) for (;;) {
3088 if (n & 1) {
3089 result *= x;
3090 result += 1UL << (frac_bits - 1);
3091 result >>= frac_bits;
3092 }
3093 n >>= 1;
3094 if (!n)
3095 break;
3096 x *= x;
3097 x += 1UL << (frac_bits - 1);
3098 x >>= frac_bits;
3099 }
3100
3101 return result;
3102}
3103
3104/*
3105 * a1 = a0 * e + a * (1 - e)
3106 *
3107 * a2 = a1 * e + a * (1 - e)
3108 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3109 * = a0 * e^2 + a * (1 - e) * (1 + e)
3110 *
3111 * a3 = a2 * e + a * (1 - e)
3112 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3113 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3114 *
3115 * ...
3116 *
3117 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3118 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3119 * = a0 * e^n + a * (1 - e^n)
3120 *
3121 * [1] application of the geometric series:
3122 *
3123 * n 1 - x^(n+1)
3124 * S_n := \Sum x^i = -------------
3125 * i=0 1 - x
3126 */
3127static unsigned long
3128calc_load_n(unsigned long load, unsigned long exp,
3129 unsigned long active, unsigned int n)
3130{
3131
3132 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3133}
3134
3135/*
3136 * NO_HZ can leave us missing all per-cpu ticks calling
3137 * calc_load_account_active(), but since an idle CPU folds its delta into
3138 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3139 * in the pending idle delta if our idle period crossed a load cycle boundary.
3140 *
3141 * Once we've updated the global active value, we need to apply the exponential
3142 * weights adjusted to the number of cycles missed.
3143 */
3144static void calc_global_nohz(unsigned long ticks)
3145{
3146 long delta, active, n;
3147
3148 if (time_before(jiffies, calc_load_update))
3149 return;
3150
3151 /*
3152 * If we crossed a calc_load_update boundary, make sure to fold
3153 * any pending idle changes, the respective CPUs might have
3154 * missed the tick driven calc_load_account_active() update
3155 * due to NO_HZ.
3156 */
3157 delta = calc_load_fold_idle();
3158 if (delta)
3159 atomic_long_add(delta, &calc_load_tasks);
3160
3161 /*
3162 * If we were idle for multiple load cycles, apply them.
3163 */
3164 if (ticks >= LOAD_FREQ) {
3165 n = ticks / LOAD_FREQ;
3166
3167 active = atomic_long_read(&calc_load_tasks);
3168 active = active > 0 ? active * FIXED_1 : 0;
3169
3170 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3171 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3172 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3173
3174 calc_load_update += n * LOAD_FREQ;
3175 }
3176
3177 /*
3178 * Its possible the remainder of the above division also crosses
3179 * a LOAD_FREQ period, the regular check in calc_global_load()
3180 * which comes after this will take care of that.
3181 *
3182 * Consider us being 11 ticks before a cycle completion, and us
3183 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3184 * age us 4 cycles, and the test in calc_global_load() will
3185 * pick up the final one.
3186 */
3187}
74f5187a
PZ
3188#else
3189static void calc_load_account_idle(struct rq *this_rq)
3190{
3191}
3192
3193static inline long calc_load_fold_idle(void)
3194{
3195 return 0;
3196}
0f004f5a
PZ
3197
3198static void calc_global_nohz(unsigned long ticks)
3199{
3200}
74f5187a
PZ
3201#endif
3202
2d02494f
TG
3203/**
3204 * get_avenrun - get the load average array
3205 * @loads: pointer to dest load array
3206 * @offset: offset to add
3207 * @shift: shift count to shift the result left
3208 *
3209 * These values are estimates at best, so no need for locking.
3210 */
3211void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3212{
3213 loads[0] = (avenrun[0] + offset) << shift;
3214 loads[1] = (avenrun[1] + offset) << shift;
3215 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3216}
46cb4b7c 3217
46cb4b7c 3218/*
dce48a84
TG
3219 * calc_load - update the avenrun load estimates 10 ticks after the
3220 * CPUs have updated calc_load_tasks.
7835b98b 3221 */
0f004f5a 3222void calc_global_load(unsigned long ticks)
7835b98b 3223{
dce48a84 3224 long active;
1da177e4 3225
0f004f5a
PZ
3226 calc_global_nohz(ticks);
3227
3228 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3229 return;
1da177e4 3230
dce48a84
TG
3231 active = atomic_long_read(&calc_load_tasks);
3232 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3233
dce48a84
TG
3234 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3235 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3236 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3237
dce48a84
TG
3238 calc_load_update += LOAD_FREQ;
3239}
1da177e4 3240
dce48a84 3241/*
74f5187a
PZ
3242 * Called from update_cpu_load() to periodically update this CPU's
3243 * active count.
dce48a84
TG
3244 */
3245static void calc_load_account_active(struct rq *this_rq)
3246{
74f5187a 3247 long delta;
08c183f3 3248
74f5187a
PZ
3249 if (time_before(jiffies, this_rq->calc_load_update))
3250 return;
783609c6 3251
74f5187a
PZ
3252 delta = calc_load_fold_active(this_rq);
3253 delta += calc_load_fold_idle();
3254 if (delta)
dce48a84 3255 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3256
3257 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3258}
3259
fdf3e95d
VP
3260/*
3261 * The exact cpuload at various idx values, calculated at every tick would be
3262 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3263 *
3264 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3265 * on nth tick when cpu may be busy, then we have:
3266 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3267 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3268 *
3269 * decay_load_missed() below does efficient calculation of
3270 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3271 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3272 *
3273 * The calculation is approximated on a 128 point scale.
3274 * degrade_zero_ticks is the number of ticks after which load at any
3275 * particular idx is approximated to be zero.
3276 * degrade_factor is a precomputed table, a row for each load idx.
3277 * Each column corresponds to degradation factor for a power of two ticks,
3278 * based on 128 point scale.
3279 * Example:
3280 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3281 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3282 *
3283 * With this power of 2 load factors, we can degrade the load n times
3284 * by looking at 1 bits in n and doing as many mult/shift instead of
3285 * n mult/shifts needed by the exact degradation.
3286 */
3287#define DEGRADE_SHIFT 7
3288static const unsigned char
3289 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3290static const unsigned char
3291 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3292 {0, 0, 0, 0, 0, 0, 0, 0},
3293 {64, 32, 8, 0, 0, 0, 0, 0},
3294 {96, 72, 40, 12, 1, 0, 0},
3295 {112, 98, 75, 43, 15, 1, 0},
3296 {120, 112, 98, 76, 45, 16, 2} };
3297
3298/*
3299 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3300 * would be when CPU is idle and so we just decay the old load without
3301 * adding any new load.
3302 */
3303static unsigned long
3304decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3305{
3306 int j = 0;
3307
3308 if (!missed_updates)
3309 return load;
3310
3311 if (missed_updates >= degrade_zero_ticks[idx])
3312 return 0;
3313
3314 if (idx == 1)
3315 return load >> missed_updates;
3316
3317 while (missed_updates) {
3318 if (missed_updates % 2)
3319 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3320
3321 missed_updates >>= 1;
3322 j++;
3323 }
3324 return load;
3325}
3326
46cb4b7c 3327/*
dd41f596 3328 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3329 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3330 * every tick. We fix it up based on jiffies.
46cb4b7c 3331 */
dd41f596 3332static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3333{
495eca49 3334 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3335 unsigned long curr_jiffies = jiffies;
3336 unsigned long pending_updates;
dd41f596 3337 int i, scale;
46cb4b7c 3338
dd41f596 3339 this_rq->nr_load_updates++;
46cb4b7c 3340
fdf3e95d
VP
3341 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3342 if (curr_jiffies == this_rq->last_load_update_tick)
3343 return;
3344
3345 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3346 this_rq->last_load_update_tick = curr_jiffies;
3347
dd41f596 3348 /* Update our load: */
fdf3e95d
VP
3349 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3350 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3351 unsigned long old_load, new_load;
7d1e6a9b 3352
dd41f596 3353 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3354
dd41f596 3355 old_load = this_rq->cpu_load[i];
fdf3e95d 3356 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3357 new_load = this_load;
a25707f3
IM
3358 /*
3359 * Round up the averaging division if load is increasing. This
3360 * prevents us from getting stuck on 9 if the load is 10, for
3361 * example.
3362 */
3363 if (new_load > old_load)
fdf3e95d
VP
3364 new_load += scale - 1;
3365
3366 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3367 }
da2b71ed
SS
3368
3369 sched_avg_update(this_rq);
fdf3e95d
VP
3370}
3371
3372static void update_cpu_load_active(struct rq *this_rq)
3373{
3374 update_cpu_load(this_rq);
46cb4b7c 3375
74f5187a 3376 calc_load_account_active(this_rq);
46cb4b7c
SS
3377}
3378
dd41f596 3379#ifdef CONFIG_SMP
8a0be9ef 3380
46cb4b7c 3381/*
38022906
PZ
3382 * sched_exec - execve() is a valuable balancing opportunity, because at
3383 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3384 */
38022906 3385void sched_exec(void)
46cb4b7c 3386{
38022906 3387 struct task_struct *p = current;
1da177e4 3388 unsigned long flags;
70b97a7f 3389 struct rq *rq;
0017d735 3390 int dest_cpu;
46cb4b7c 3391
1da177e4 3392 rq = task_rq_lock(p, &flags);
0017d735
PZ
3393 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3394 if (dest_cpu == smp_processor_id())
3395 goto unlock;
38022906 3396
46cb4b7c 3397 /*
38022906 3398 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3399 */
30da688e 3400 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3401 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3402 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3403
1da177e4 3404 task_rq_unlock(rq, &flags);
969c7921 3405 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3406 return;
3407 }
0017d735 3408unlock:
1da177e4 3409 task_rq_unlock(rq, &flags);
1da177e4 3410}
dd41f596 3411
1da177e4
LT
3412#endif
3413
1da177e4
LT
3414DEFINE_PER_CPU(struct kernel_stat, kstat);
3415
3416EXPORT_PER_CPU_SYMBOL(kstat);
3417
3418/*
c5f8d995 3419 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3420 * @p in case that task is currently running.
c5f8d995
HS
3421 *
3422 * Called with task_rq_lock() held on @rq.
1da177e4 3423 */
c5f8d995
HS
3424static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3425{
3426 u64 ns = 0;
3427
3428 if (task_current(rq, p)) {
3429 update_rq_clock(rq);
305e6835 3430 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3431 if ((s64)ns < 0)
3432 ns = 0;
3433 }
3434
3435 return ns;
3436}
3437
bb34d92f 3438unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3439{
1da177e4 3440 unsigned long flags;
41b86e9c 3441 struct rq *rq;
bb34d92f 3442 u64 ns = 0;
48f24c4d 3443
41b86e9c 3444 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3445 ns = do_task_delta_exec(p, rq);
3446 task_rq_unlock(rq, &flags);
1508487e 3447
c5f8d995
HS
3448 return ns;
3449}
f06febc9 3450
c5f8d995
HS
3451/*
3452 * Return accounted runtime for the task.
3453 * In case the task is currently running, return the runtime plus current's
3454 * pending runtime that have not been accounted yet.
3455 */
3456unsigned long long task_sched_runtime(struct task_struct *p)
3457{
3458 unsigned long flags;
3459 struct rq *rq;
3460 u64 ns = 0;
3461
3462 rq = task_rq_lock(p, &flags);
3463 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3464 task_rq_unlock(rq, &flags);
3465
3466 return ns;
3467}
48f24c4d 3468
c5f8d995
HS
3469/*
3470 * Return sum_exec_runtime for the thread group.
3471 * In case the task is currently running, return the sum plus current's
3472 * pending runtime that have not been accounted yet.
3473 *
3474 * Note that the thread group might have other running tasks as well,
3475 * so the return value not includes other pending runtime that other
3476 * running tasks might have.
3477 */
3478unsigned long long thread_group_sched_runtime(struct task_struct *p)
3479{
3480 struct task_cputime totals;
3481 unsigned long flags;
3482 struct rq *rq;
3483 u64 ns;
3484
3485 rq = task_rq_lock(p, &flags);
3486 thread_group_cputime(p, &totals);
3487 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3488 task_rq_unlock(rq, &flags);
48f24c4d 3489
1da177e4
LT
3490 return ns;
3491}
3492
1da177e4
LT
3493/*
3494 * Account user cpu time to a process.
3495 * @p: the process that the cpu time gets accounted to
1da177e4 3496 * @cputime: the cpu time spent in user space since the last update
457533a7 3497 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3498 */
457533a7
MS
3499void account_user_time(struct task_struct *p, cputime_t cputime,
3500 cputime_t cputime_scaled)
1da177e4
LT
3501{
3502 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3503 cputime64_t tmp;
3504
457533a7 3505 /* Add user time to process. */
1da177e4 3506 p->utime = cputime_add(p->utime, cputime);
457533a7 3507 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3508 account_group_user_time(p, cputime);
1da177e4
LT
3509
3510 /* Add user time to cpustat. */
3511 tmp = cputime_to_cputime64(cputime);
3512 if (TASK_NICE(p) > 0)
3513 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3514 else
3515 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3516
3517 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3518 /* Account for user time used */
3519 acct_update_integrals(p);
1da177e4
LT
3520}
3521
94886b84
LV
3522/*
3523 * Account guest cpu time to a process.
3524 * @p: the process that the cpu time gets accounted to
3525 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3526 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3527 */
457533a7
MS
3528static void account_guest_time(struct task_struct *p, cputime_t cputime,
3529 cputime_t cputime_scaled)
94886b84
LV
3530{
3531 cputime64_t tmp;
3532 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3533
3534 tmp = cputime_to_cputime64(cputime);
3535
457533a7 3536 /* Add guest time to process. */
94886b84 3537 p->utime = cputime_add(p->utime, cputime);
457533a7 3538 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3539 account_group_user_time(p, cputime);
94886b84
LV
3540 p->gtime = cputime_add(p->gtime, cputime);
3541
457533a7 3542 /* Add guest time to cpustat. */
ce0e7b28
RO
3543 if (TASK_NICE(p) > 0) {
3544 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3545 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3546 } else {
3547 cpustat->user = cputime64_add(cpustat->user, tmp);
3548 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3549 }
94886b84
LV
3550}
3551
1da177e4
LT
3552/*
3553 * Account system cpu time to a process.
3554 * @p: the process that the cpu time gets accounted to
3555 * @hardirq_offset: the offset to subtract from hardirq_count()
3556 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3557 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3558 */
3559void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3560 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3561{
3562 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3563 cputime64_t tmp;
3564
983ed7a6 3565 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3566 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3567 return;
3568 }
94886b84 3569
457533a7 3570 /* Add system time to process. */
1da177e4 3571 p->stime = cputime_add(p->stime, cputime);
457533a7 3572 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3573 account_group_system_time(p, cputime);
1da177e4
LT
3574
3575 /* Add system time to cpustat. */
3576 tmp = cputime_to_cputime64(cputime);
3577 if (hardirq_count() - hardirq_offset)
3578 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3579 else if (in_serving_softirq())
1da177e4 3580 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3581 else
79741dd3
MS
3582 cpustat->system = cputime64_add(cpustat->system, tmp);
3583
ef12fefa
BR
3584 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3585
1da177e4
LT
3586 /* Account for system time used */
3587 acct_update_integrals(p);
1da177e4
LT
3588}
3589
c66f08be 3590/*
1da177e4 3591 * Account for involuntary wait time.
1da177e4 3592 * @steal: the cpu time spent in involuntary wait
c66f08be 3593 */
79741dd3 3594void account_steal_time(cputime_t cputime)
c66f08be 3595{
79741dd3
MS
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3598
3599 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3600}
3601
1da177e4 3602/*
79741dd3
MS
3603 * Account for idle time.
3604 * @cputime: the cpu time spent in idle wait
1da177e4 3605 */
79741dd3 3606void account_idle_time(cputime_t cputime)
1da177e4
LT
3607{
3608 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3609 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3610 struct rq *rq = this_rq();
1da177e4 3611
79741dd3
MS
3612 if (atomic_read(&rq->nr_iowait) > 0)
3613 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3614 else
3615 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3616}
3617
79741dd3
MS
3618#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3619
3620/*
3621 * Account a single tick of cpu time.
3622 * @p: the process that the cpu time gets accounted to
3623 * @user_tick: indicates if the tick is a user or a system tick
3624 */
3625void account_process_tick(struct task_struct *p, int user_tick)
3626{
a42548a1 3627 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3628 struct rq *rq = this_rq();
3629
3630 if (user_tick)
a42548a1 3631 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3632 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3633 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3634 one_jiffy_scaled);
3635 else
a42548a1 3636 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3637}
3638
3639/*
3640 * Account multiple ticks of steal time.
3641 * @p: the process from which the cpu time has been stolen
3642 * @ticks: number of stolen ticks
3643 */
3644void account_steal_ticks(unsigned long ticks)
3645{
3646 account_steal_time(jiffies_to_cputime(ticks));
3647}
3648
3649/*
3650 * Account multiple ticks of idle time.
3651 * @ticks: number of stolen ticks
3652 */
3653void account_idle_ticks(unsigned long ticks)
3654{
3655 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3656}
3657
79741dd3
MS
3658#endif
3659
49048622
BS
3660/*
3661 * Use precise platform statistics if available:
3662 */
3663#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3664void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3665{
d99ca3b9
HS
3666 *ut = p->utime;
3667 *st = p->stime;
49048622
BS
3668}
3669
0cf55e1e 3670void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3671{
0cf55e1e
HS
3672 struct task_cputime cputime;
3673
3674 thread_group_cputime(p, &cputime);
3675
3676 *ut = cputime.utime;
3677 *st = cputime.stime;
49048622
BS
3678}
3679#else
761b1d26
HS
3680
3681#ifndef nsecs_to_cputime
b7b20df9 3682# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3683#endif
3684
d180c5bc 3685void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3686{
d99ca3b9 3687 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3688
3689 /*
3690 * Use CFS's precise accounting:
3691 */
d180c5bc 3692 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3693
3694 if (total) {
e75e863d 3695 u64 temp = rtime;
d180c5bc 3696
e75e863d 3697 temp *= utime;
49048622 3698 do_div(temp, total);
d180c5bc
HS
3699 utime = (cputime_t)temp;
3700 } else
3701 utime = rtime;
49048622 3702
d180c5bc
HS
3703 /*
3704 * Compare with previous values, to keep monotonicity:
3705 */
761b1d26 3706 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3707 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3708
d99ca3b9
HS
3709 *ut = p->prev_utime;
3710 *st = p->prev_stime;
49048622
BS
3711}
3712
0cf55e1e
HS
3713/*
3714 * Must be called with siglock held.
3715 */
3716void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3717{
0cf55e1e
HS
3718 struct signal_struct *sig = p->signal;
3719 struct task_cputime cputime;
3720 cputime_t rtime, utime, total;
49048622 3721
0cf55e1e 3722 thread_group_cputime(p, &cputime);
49048622 3723
0cf55e1e
HS
3724 total = cputime_add(cputime.utime, cputime.stime);
3725 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3726
0cf55e1e 3727 if (total) {
e75e863d 3728 u64 temp = rtime;
49048622 3729
e75e863d 3730 temp *= cputime.utime;
0cf55e1e
HS
3731 do_div(temp, total);
3732 utime = (cputime_t)temp;
3733 } else
3734 utime = rtime;
3735
3736 sig->prev_utime = max(sig->prev_utime, utime);
3737 sig->prev_stime = max(sig->prev_stime,
3738 cputime_sub(rtime, sig->prev_utime));
3739
3740 *ut = sig->prev_utime;
3741 *st = sig->prev_stime;
49048622 3742}
49048622 3743#endif
49048622 3744
7835b98b
CL
3745/*
3746 * This function gets called by the timer code, with HZ frequency.
3747 * We call it with interrupts disabled.
3748 *
3749 * It also gets called by the fork code, when changing the parent's
3750 * timeslices.
3751 */
3752void scheduler_tick(void)
3753{
7835b98b
CL
3754 int cpu = smp_processor_id();
3755 struct rq *rq = cpu_rq(cpu);
dd41f596 3756 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3757
3758 sched_clock_tick();
dd41f596 3759
05fa785c 3760 raw_spin_lock(&rq->lock);
3e51f33f 3761 update_rq_clock(rq);
fdf3e95d 3762 update_cpu_load_active(rq);
fa85ae24 3763 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3764 raw_spin_unlock(&rq->lock);
7835b98b 3765
e9d2b064 3766 perf_event_task_tick();
e220d2dc 3767
e418e1c2 3768#ifdef CONFIG_SMP
dd41f596
IM
3769 rq->idle_at_tick = idle_cpu(cpu);
3770 trigger_load_balance(rq, cpu);
e418e1c2 3771#endif
1da177e4
LT
3772}
3773
132380a0 3774notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3775{
3776 if (in_lock_functions(addr)) {
3777 addr = CALLER_ADDR2;
3778 if (in_lock_functions(addr))
3779 addr = CALLER_ADDR3;
3780 }
3781 return addr;
3782}
1da177e4 3783
7e49fcce
SR
3784#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3785 defined(CONFIG_PREEMPT_TRACER))
3786
43627582 3787void __kprobes add_preempt_count(int val)
1da177e4 3788{
6cd8a4bb 3789#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3790 /*
3791 * Underflow?
3792 */
9a11b49a
IM
3793 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3794 return;
6cd8a4bb 3795#endif
1da177e4 3796 preempt_count() += val;
6cd8a4bb 3797#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3798 /*
3799 * Spinlock count overflowing soon?
3800 */
33859f7f
MOS
3801 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3802 PREEMPT_MASK - 10);
6cd8a4bb
SR
3803#endif
3804 if (preempt_count() == val)
3805 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3806}
3807EXPORT_SYMBOL(add_preempt_count);
3808
43627582 3809void __kprobes sub_preempt_count(int val)
1da177e4 3810{
6cd8a4bb 3811#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3812 /*
3813 * Underflow?
3814 */
01e3eb82 3815 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3816 return;
1da177e4
LT
3817 /*
3818 * Is the spinlock portion underflowing?
3819 */
9a11b49a
IM
3820 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3821 !(preempt_count() & PREEMPT_MASK)))
3822 return;
6cd8a4bb 3823#endif
9a11b49a 3824
6cd8a4bb
SR
3825 if (preempt_count() == val)
3826 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3827 preempt_count() -= val;
3828}
3829EXPORT_SYMBOL(sub_preempt_count);
3830
3831#endif
3832
3833/*
dd41f596 3834 * Print scheduling while atomic bug:
1da177e4 3835 */
dd41f596 3836static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3837{
838225b4
SS
3838 struct pt_regs *regs = get_irq_regs();
3839
3df0fc5b
PZ
3840 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3841 prev->comm, prev->pid, preempt_count());
838225b4 3842
dd41f596 3843 debug_show_held_locks(prev);
e21f5b15 3844 print_modules();
dd41f596
IM
3845 if (irqs_disabled())
3846 print_irqtrace_events(prev);
838225b4
SS
3847
3848 if (regs)
3849 show_regs(regs);
3850 else
3851 dump_stack();
dd41f596 3852}
1da177e4 3853
dd41f596
IM
3854/*
3855 * Various schedule()-time debugging checks and statistics:
3856 */
3857static inline void schedule_debug(struct task_struct *prev)
3858{
1da177e4 3859 /*
41a2d6cf 3860 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3861 * schedule() atomically, we ignore that path for now.
3862 * Otherwise, whine if we are scheduling when we should not be.
3863 */
3f33a7ce 3864 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3865 __schedule_bug(prev);
3866
1da177e4
LT
3867 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3868
2d72376b 3869 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3870#ifdef CONFIG_SCHEDSTATS
3871 if (unlikely(prev->lock_depth >= 0)) {
fce20979 3872 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 3873 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3874 }
3875#endif
dd41f596
IM
3876}
3877
6cecd084 3878static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3879{
a64692a3
MG
3880 if (prev->se.on_rq)
3881 update_rq_clock(rq);
6cecd084 3882 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3883}
3884
dd41f596
IM
3885/*
3886 * Pick up the highest-prio task:
3887 */
3888static inline struct task_struct *
b67802ea 3889pick_next_task(struct rq *rq)
dd41f596 3890{
5522d5d5 3891 const struct sched_class *class;
dd41f596 3892 struct task_struct *p;
1da177e4
LT
3893
3894 /*
dd41f596
IM
3895 * Optimization: we know that if all tasks are in
3896 * the fair class we can call that function directly:
1da177e4 3897 */
dd41f596 3898 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3899 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3900 if (likely(p))
3901 return p;
1da177e4
LT
3902 }
3903
34f971f6 3904 for_each_class(class) {
fb8d4724 3905 p = class->pick_next_task(rq);
dd41f596
IM
3906 if (p)
3907 return p;
dd41f596 3908 }
34f971f6
PZ
3909
3910 BUG(); /* the idle class will always have a runnable task */
dd41f596 3911}
1da177e4 3912
dd41f596
IM
3913/*
3914 * schedule() is the main scheduler function.
3915 */
ff743345 3916asmlinkage void __sched schedule(void)
dd41f596
IM
3917{
3918 struct task_struct *prev, *next;
67ca7bde 3919 unsigned long *switch_count;
dd41f596 3920 struct rq *rq;
31656519 3921 int cpu;
dd41f596 3922
ff743345
PZ
3923need_resched:
3924 preempt_disable();
dd41f596
IM
3925 cpu = smp_processor_id();
3926 rq = cpu_rq(cpu);
25502a6c 3927 rcu_note_context_switch(cpu);
dd41f596 3928 prev = rq->curr;
dd41f596
IM
3929
3930 release_kernel_lock(prev);
3931need_resched_nonpreemptible:
3932
3933 schedule_debug(prev);
1da177e4 3934
31656519 3935 if (sched_feat(HRTICK))
f333fdc9 3936 hrtick_clear(rq);
8f4d37ec 3937
05fa785c 3938 raw_spin_lock_irq(&rq->lock);
1da177e4 3939
246d86b5 3940 switch_count = &prev->nivcsw;
1da177e4 3941 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3942 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3943 prev->state = TASK_RUNNING;
21aa9af0
TH
3944 } else {
3945 /*
3946 * If a worker is going to sleep, notify and
3947 * ask workqueue whether it wants to wake up a
3948 * task to maintain concurrency. If so, wake
3949 * up the task.
3950 */
3951 if (prev->flags & PF_WQ_WORKER) {
3952 struct task_struct *to_wakeup;
3953
3954 to_wakeup = wq_worker_sleeping(prev, cpu);
3955 if (to_wakeup)
3956 try_to_wake_up_local(to_wakeup);
3957 }
371fd7e7 3958 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3959 }
dd41f596 3960 switch_count = &prev->nvcsw;
1da177e4
LT
3961 }
3962
3f029d3c 3963 pre_schedule(rq, prev);
f65eda4f 3964
dd41f596 3965 if (unlikely(!rq->nr_running))
1da177e4 3966 idle_balance(cpu, rq);
1da177e4 3967
df1c99d4 3968 put_prev_task(rq, prev);
b67802ea 3969 next = pick_next_task(rq);
f26f9aff
MG
3970 clear_tsk_need_resched(prev);
3971 rq->skip_clock_update = 0;
1da177e4 3972
1da177e4 3973 if (likely(prev != next)) {
1da177e4
LT
3974 rq->nr_switches++;
3975 rq->curr = next;
3976 ++*switch_count;
3977
dd41f596 3978 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3979 /*
246d86b5
ON
3980 * The context switch have flipped the stack from under us
3981 * and restored the local variables which were saved when
3982 * this task called schedule() in the past. prev == current
3983 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3984 */
3985 cpu = smp_processor_id();
3986 rq = cpu_rq(cpu);
1da177e4 3987 } else
05fa785c 3988 raw_spin_unlock_irq(&rq->lock);
1da177e4 3989
3f029d3c 3990 post_schedule(rq);
1da177e4 3991
246d86b5 3992 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3993 goto need_resched_nonpreemptible;
8f4d37ec 3994
1da177e4 3995 preempt_enable_no_resched();
ff743345 3996 if (need_resched())
1da177e4
LT
3997 goto need_resched;
3998}
1da177e4
LT
3999EXPORT_SYMBOL(schedule);
4000
c08f7829 4001#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4002/*
4003 * Look out! "owner" is an entirely speculative pointer
4004 * access and not reliable.
4005 */
4006int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4007{
4008 unsigned int cpu;
4009 struct rq *rq;
4010
4011 if (!sched_feat(OWNER_SPIN))
4012 return 0;
4013
4014#ifdef CONFIG_DEBUG_PAGEALLOC
4015 /*
4016 * Need to access the cpu field knowing that
4017 * DEBUG_PAGEALLOC could have unmapped it if
4018 * the mutex owner just released it and exited.
4019 */
4020 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4021 return 0;
0d66bf6d
PZ
4022#else
4023 cpu = owner->cpu;
4024#endif
4025
4026 /*
4027 * Even if the access succeeded (likely case),
4028 * the cpu field may no longer be valid.
4029 */
4030 if (cpu >= nr_cpumask_bits)
4b402210 4031 return 0;
0d66bf6d
PZ
4032
4033 /*
4034 * We need to validate that we can do a
4035 * get_cpu() and that we have the percpu area.
4036 */
4037 if (!cpu_online(cpu))
4b402210 4038 return 0;
0d66bf6d
PZ
4039
4040 rq = cpu_rq(cpu);
4041
4042 for (;;) {
4043 /*
4044 * Owner changed, break to re-assess state.
4045 */
9d0f4dcc
TC
4046 if (lock->owner != owner) {
4047 /*
4048 * If the lock has switched to a different owner,
4049 * we likely have heavy contention. Return 0 to quit
4050 * optimistic spinning and not contend further:
4051 */
4052 if (lock->owner)
4053 return 0;
0d66bf6d 4054 break;
9d0f4dcc 4055 }
0d66bf6d
PZ
4056
4057 /*
4058 * Is that owner really running on that cpu?
4059 */
4060 if (task_thread_info(rq->curr) != owner || need_resched())
4061 return 0;
4062
335d7afb 4063 arch_mutex_cpu_relax();
0d66bf6d 4064 }
4b402210 4065
0d66bf6d
PZ
4066 return 1;
4067}
4068#endif
4069
1da177e4
LT
4070#ifdef CONFIG_PREEMPT
4071/*
2ed6e34f 4072 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4073 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4074 * occur there and call schedule directly.
4075 */
d1f74e20 4076asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4077{
4078 struct thread_info *ti = current_thread_info();
6478d880 4079
1da177e4
LT
4080 /*
4081 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4082 * we do not want to preempt the current task. Just return..
1da177e4 4083 */
beed33a8 4084 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4085 return;
4086
3a5c359a 4087 do {
d1f74e20 4088 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4089 schedule();
d1f74e20 4090 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4091
3a5c359a
AK
4092 /*
4093 * Check again in case we missed a preemption opportunity
4094 * between schedule and now.
4095 */
4096 barrier();
5ed0cec0 4097 } while (need_resched());
1da177e4 4098}
1da177e4
LT
4099EXPORT_SYMBOL(preempt_schedule);
4100
4101/*
2ed6e34f 4102 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4103 * off of irq context.
4104 * Note, that this is called and return with irqs disabled. This will
4105 * protect us against recursive calling from irq.
4106 */
4107asmlinkage void __sched preempt_schedule_irq(void)
4108{
4109 struct thread_info *ti = current_thread_info();
6478d880 4110
2ed6e34f 4111 /* Catch callers which need to be fixed */
1da177e4
LT
4112 BUG_ON(ti->preempt_count || !irqs_disabled());
4113
3a5c359a
AK
4114 do {
4115 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4116 local_irq_enable();
4117 schedule();
4118 local_irq_disable();
3a5c359a 4119 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4120
3a5c359a
AK
4121 /*
4122 * Check again in case we missed a preemption opportunity
4123 * between schedule and now.
4124 */
4125 barrier();
5ed0cec0 4126 } while (need_resched());
1da177e4
LT
4127}
4128
4129#endif /* CONFIG_PREEMPT */
4130
63859d4f 4131int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4132 void *key)
1da177e4 4133{
63859d4f 4134 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4135}
1da177e4
LT
4136EXPORT_SYMBOL(default_wake_function);
4137
4138/*
41a2d6cf
IM
4139 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4140 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4141 * number) then we wake all the non-exclusive tasks and one exclusive task.
4142 *
4143 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4144 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4145 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4146 */
78ddb08f 4147static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4148 int nr_exclusive, int wake_flags, void *key)
1da177e4 4149{
2e45874c 4150 wait_queue_t *curr, *next;
1da177e4 4151
2e45874c 4152 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4153 unsigned flags = curr->flags;
4154
63859d4f 4155 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4156 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4157 break;
4158 }
4159}
4160
4161/**
4162 * __wake_up - wake up threads blocked on a waitqueue.
4163 * @q: the waitqueue
4164 * @mode: which threads
4165 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4166 * @key: is directly passed to the wakeup function
50fa610a
DH
4167 *
4168 * It may be assumed that this function implies a write memory barrier before
4169 * changing the task state if and only if any tasks are woken up.
1da177e4 4170 */
7ad5b3a5 4171void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4172 int nr_exclusive, void *key)
1da177e4
LT
4173{
4174 unsigned long flags;
4175
4176 spin_lock_irqsave(&q->lock, flags);
4177 __wake_up_common(q, mode, nr_exclusive, 0, key);
4178 spin_unlock_irqrestore(&q->lock, flags);
4179}
1da177e4
LT
4180EXPORT_SYMBOL(__wake_up);
4181
4182/*
4183 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4184 */
7ad5b3a5 4185void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4186{
4187 __wake_up_common(q, mode, 1, 0, NULL);
4188}
22c43c81 4189EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4190
4ede816a
DL
4191void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4192{
4193 __wake_up_common(q, mode, 1, 0, key);
4194}
4195
1da177e4 4196/**
4ede816a 4197 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4198 * @q: the waitqueue
4199 * @mode: which threads
4200 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4201 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4202 *
4203 * The sync wakeup differs that the waker knows that it will schedule
4204 * away soon, so while the target thread will be woken up, it will not
4205 * be migrated to another CPU - ie. the two threads are 'synchronized'
4206 * with each other. This can prevent needless bouncing between CPUs.
4207 *
4208 * On UP it can prevent extra preemption.
50fa610a
DH
4209 *
4210 * It may be assumed that this function implies a write memory barrier before
4211 * changing the task state if and only if any tasks are woken up.
1da177e4 4212 */
4ede816a
DL
4213void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4214 int nr_exclusive, void *key)
1da177e4
LT
4215{
4216 unsigned long flags;
7d478721 4217 int wake_flags = WF_SYNC;
1da177e4
LT
4218
4219 if (unlikely(!q))
4220 return;
4221
4222 if (unlikely(!nr_exclusive))
7d478721 4223 wake_flags = 0;
1da177e4
LT
4224
4225 spin_lock_irqsave(&q->lock, flags);
7d478721 4226 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4227 spin_unlock_irqrestore(&q->lock, flags);
4228}
4ede816a
DL
4229EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4230
4231/*
4232 * __wake_up_sync - see __wake_up_sync_key()
4233 */
4234void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4235{
4236 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4237}
1da177e4
LT
4238EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4239
65eb3dc6
KD
4240/**
4241 * complete: - signals a single thread waiting on this completion
4242 * @x: holds the state of this particular completion
4243 *
4244 * This will wake up a single thread waiting on this completion. Threads will be
4245 * awakened in the same order in which they were queued.
4246 *
4247 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4248 *
4249 * It may be assumed that this function implies a write memory barrier before
4250 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4251 */
b15136e9 4252void complete(struct completion *x)
1da177e4
LT
4253{
4254 unsigned long flags;
4255
4256 spin_lock_irqsave(&x->wait.lock, flags);
4257 x->done++;
d9514f6c 4258 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4259 spin_unlock_irqrestore(&x->wait.lock, flags);
4260}
4261EXPORT_SYMBOL(complete);
4262
65eb3dc6
KD
4263/**
4264 * complete_all: - signals all threads waiting on this completion
4265 * @x: holds the state of this particular completion
4266 *
4267 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4268 *
4269 * It may be assumed that this function implies a write memory barrier before
4270 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4271 */
b15136e9 4272void complete_all(struct completion *x)
1da177e4
LT
4273{
4274 unsigned long flags;
4275
4276 spin_lock_irqsave(&x->wait.lock, flags);
4277 x->done += UINT_MAX/2;
d9514f6c 4278 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4279 spin_unlock_irqrestore(&x->wait.lock, flags);
4280}
4281EXPORT_SYMBOL(complete_all);
4282
8cbbe86d
AK
4283static inline long __sched
4284do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4285{
1da177e4
LT
4286 if (!x->done) {
4287 DECLARE_WAITQUEUE(wait, current);
4288
a93d2f17 4289 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4290 do {
94d3d824 4291 if (signal_pending_state(state, current)) {
ea71a546
ON
4292 timeout = -ERESTARTSYS;
4293 break;
8cbbe86d
AK
4294 }
4295 __set_current_state(state);
1da177e4
LT
4296 spin_unlock_irq(&x->wait.lock);
4297 timeout = schedule_timeout(timeout);
4298 spin_lock_irq(&x->wait.lock);
ea71a546 4299 } while (!x->done && timeout);
1da177e4 4300 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4301 if (!x->done)
4302 return timeout;
1da177e4
LT
4303 }
4304 x->done--;
ea71a546 4305 return timeout ?: 1;
1da177e4 4306}
1da177e4 4307
8cbbe86d
AK
4308static long __sched
4309wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4310{
1da177e4
LT
4311 might_sleep();
4312
4313 spin_lock_irq(&x->wait.lock);
8cbbe86d 4314 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4315 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4316 return timeout;
4317}
1da177e4 4318
65eb3dc6
KD
4319/**
4320 * wait_for_completion: - waits for completion of a task
4321 * @x: holds the state of this particular completion
4322 *
4323 * This waits to be signaled for completion of a specific task. It is NOT
4324 * interruptible and there is no timeout.
4325 *
4326 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4327 * and interrupt capability. Also see complete().
4328 */
b15136e9 4329void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4330{
4331 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4332}
8cbbe86d 4333EXPORT_SYMBOL(wait_for_completion);
1da177e4 4334
65eb3dc6
KD
4335/**
4336 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4337 * @x: holds the state of this particular completion
4338 * @timeout: timeout value in jiffies
4339 *
4340 * This waits for either a completion of a specific task to be signaled or for a
4341 * specified timeout to expire. The timeout is in jiffies. It is not
4342 * interruptible.
4343 */
b15136e9 4344unsigned long __sched
8cbbe86d 4345wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4346{
8cbbe86d 4347 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4348}
8cbbe86d 4349EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4350
65eb3dc6
KD
4351/**
4352 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4353 * @x: holds the state of this particular completion
4354 *
4355 * This waits for completion of a specific task to be signaled. It is
4356 * interruptible.
4357 */
8cbbe86d 4358int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4359{
51e97990
AK
4360 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4361 if (t == -ERESTARTSYS)
4362 return t;
4363 return 0;
0fec171c 4364}
8cbbe86d 4365EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4366
65eb3dc6
KD
4367/**
4368 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4369 * @x: holds the state of this particular completion
4370 * @timeout: timeout value in jiffies
4371 *
4372 * This waits for either a completion of a specific task to be signaled or for a
4373 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4374 */
6bf41237 4375long __sched
8cbbe86d
AK
4376wait_for_completion_interruptible_timeout(struct completion *x,
4377 unsigned long timeout)
0fec171c 4378{
8cbbe86d 4379 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4380}
8cbbe86d 4381EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4382
65eb3dc6
KD
4383/**
4384 * wait_for_completion_killable: - waits for completion of a task (killable)
4385 * @x: holds the state of this particular completion
4386 *
4387 * This waits to be signaled for completion of a specific task. It can be
4388 * interrupted by a kill signal.
4389 */
009e577e
MW
4390int __sched wait_for_completion_killable(struct completion *x)
4391{
4392 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4393 if (t == -ERESTARTSYS)
4394 return t;
4395 return 0;
4396}
4397EXPORT_SYMBOL(wait_for_completion_killable);
4398
0aa12fb4
SW
4399/**
4400 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4401 * @x: holds the state of this particular completion
4402 * @timeout: timeout value in jiffies
4403 *
4404 * This waits for either a completion of a specific task to be
4405 * signaled or for a specified timeout to expire. It can be
4406 * interrupted by a kill signal. The timeout is in jiffies.
4407 */
6bf41237 4408long __sched
0aa12fb4
SW
4409wait_for_completion_killable_timeout(struct completion *x,
4410 unsigned long timeout)
4411{
4412 return wait_for_common(x, timeout, TASK_KILLABLE);
4413}
4414EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4415
be4de352
DC
4416/**
4417 * try_wait_for_completion - try to decrement a completion without blocking
4418 * @x: completion structure
4419 *
4420 * Returns: 0 if a decrement cannot be done without blocking
4421 * 1 if a decrement succeeded.
4422 *
4423 * If a completion is being used as a counting completion,
4424 * attempt to decrement the counter without blocking. This
4425 * enables us to avoid waiting if the resource the completion
4426 * is protecting is not available.
4427 */
4428bool try_wait_for_completion(struct completion *x)
4429{
7539a3b3 4430 unsigned long flags;
be4de352
DC
4431 int ret = 1;
4432
7539a3b3 4433 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4434 if (!x->done)
4435 ret = 0;
4436 else
4437 x->done--;
7539a3b3 4438 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4439 return ret;
4440}
4441EXPORT_SYMBOL(try_wait_for_completion);
4442
4443/**
4444 * completion_done - Test to see if a completion has any waiters
4445 * @x: completion structure
4446 *
4447 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4448 * 1 if there are no waiters.
4449 *
4450 */
4451bool completion_done(struct completion *x)
4452{
7539a3b3 4453 unsigned long flags;
be4de352
DC
4454 int ret = 1;
4455
7539a3b3 4456 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4457 if (!x->done)
4458 ret = 0;
7539a3b3 4459 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4460 return ret;
4461}
4462EXPORT_SYMBOL(completion_done);
4463
8cbbe86d
AK
4464static long __sched
4465sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4466{
0fec171c
IM
4467 unsigned long flags;
4468 wait_queue_t wait;
4469
4470 init_waitqueue_entry(&wait, current);
1da177e4 4471
8cbbe86d 4472 __set_current_state(state);
1da177e4 4473
8cbbe86d
AK
4474 spin_lock_irqsave(&q->lock, flags);
4475 __add_wait_queue(q, &wait);
4476 spin_unlock(&q->lock);
4477 timeout = schedule_timeout(timeout);
4478 spin_lock_irq(&q->lock);
4479 __remove_wait_queue(q, &wait);
4480 spin_unlock_irqrestore(&q->lock, flags);
4481
4482 return timeout;
4483}
4484
4485void __sched interruptible_sleep_on(wait_queue_head_t *q)
4486{
4487 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4488}
1da177e4
LT
4489EXPORT_SYMBOL(interruptible_sleep_on);
4490
0fec171c 4491long __sched
95cdf3b7 4492interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4493{
8cbbe86d 4494 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4495}
1da177e4
LT
4496EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4497
0fec171c 4498void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4499{
8cbbe86d 4500 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4501}
1da177e4
LT
4502EXPORT_SYMBOL(sleep_on);
4503
0fec171c 4504long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4505{
8cbbe86d 4506 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4507}
1da177e4
LT
4508EXPORT_SYMBOL(sleep_on_timeout);
4509
b29739f9
IM
4510#ifdef CONFIG_RT_MUTEXES
4511
4512/*
4513 * rt_mutex_setprio - set the current priority of a task
4514 * @p: task
4515 * @prio: prio value (kernel-internal form)
4516 *
4517 * This function changes the 'effective' priority of a task. It does
4518 * not touch ->normal_prio like __setscheduler().
4519 *
4520 * Used by the rt_mutex code to implement priority inheritance logic.
4521 */
36c8b586 4522void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4523{
4524 unsigned long flags;
83b699ed 4525 int oldprio, on_rq, running;
70b97a7f 4526 struct rq *rq;
83ab0aa0 4527 const struct sched_class *prev_class;
b29739f9
IM
4528
4529 BUG_ON(prio < 0 || prio > MAX_PRIO);
4530
4531 rq = task_rq_lock(p, &flags);
4532
a8027073 4533 trace_sched_pi_setprio(p, prio);
d5f9f942 4534 oldprio = p->prio;
83ab0aa0 4535 prev_class = p->sched_class;
dd41f596 4536 on_rq = p->se.on_rq;
051a1d1a 4537 running = task_current(rq, p);
0e1f3483 4538 if (on_rq)
69be72c1 4539 dequeue_task(rq, p, 0);
0e1f3483
HS
4540 if (running)
4541 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4542
4543 if (rt_prio(prio))
4544 p->sched_class = &rt_sched_class;
4545 else
4546 p->sched_class = &fair_sched_class;
4547
b29739f9
IM
4548 p->prio = prio;
4549
0e1f3483
HS
4550 if (running)
4551 p->sched_class->set_curr_task(rq);
dd41f596 4552 if (on_rq) {
371fd7e7 4553 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4554
4555 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4556 }
4557 task_rq_unlock(rq, &flags);
4558}
4559
4560#endif
4561
36c8b586 4562void set_user_nice(struct task_struct *p, long nice)
1da177e4 4563{
dd41f596 4564 int old_prio, delta, on_rq;
1da177e4 4565 unsigned long flags;
70b97a7f 4566 struct rq *rq;
1da177e4
LT
4567
4568 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4569 return;
4570 /*
4571 * We have to be careful, if called from sys_setpriority(),
4572 * the task might be in the middle of scheduling on another CPU.
4573 */
4574 rq = task_rq_lock(p, &flags);
4575 /*
4576 * The RT priorities are set via sched_setscheduler(), but we still
4577 * allow the 'normal' nice value to be set - but as expected
4578 * it wont have any effect on scheduling until the task is
dd41f596 4579 * SCHED_FIFO/SCHED_RR:
1da177e4 4580 */
e05606d3 4581 if (task_has_rt_policy(p)) {
1da177e4
LT
4582 p->static_prio = NICE_TO_PRIO(nice);
4583 goto out_unlock;
4584 }
dd41f596 4585 on_rq = p->se.on_rq;
c09595f6 4586 if (on_rq)
69be72c1 4587 dequeue_task(rq, p, 0);
1da177e4 4588
1da177e4 4589 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4590 set_load_weight(p);
b29739f9
IM
4591 old_prio = p->prio;
4592 p->prio = effective_prio(p);
4593 delta = p->prio - old_prio;
1da177e4 4594
dd41f596 4595 if (on_rq) {
371fd7e7 4596 enqueue_task(rq, p, 0);
1da177e4 4597 /*
d5f9f942
AM
4598 * If the task increased its priority or is running and
4599 * lowered its priority, then reschedule its CPU:
1da177e4 4600 */
d5f9f942 4601 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4602 resched_task(rq->curr);
4603 }
4604out_unlock:
4605 task_rq_unlock(rq, &flags);
4606}
1da177e4
LT
4607EXPORT_SYMBOL(set_user_nice);
4608
e43379f1
MM
4609/*
4610 * can_nice - check if a task can reduce its nice value
4611 * @p: task
4612 * @nice: nice value
4613 */
36c8b586 4614int can_nice(const struct task_struct *p, const int nice)
e43379f1 4615{
024f4747
MM
4616 /* convert nice value [19,-20] to rlimit style value [1,40] */
4617 int nice_rlim = 20 - nice;
48f24c4d 4618
78d7d407 4619 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4620 capable(CAP_SYS_NICE));
4621}
4622
1da177e4
LT
4623#ifdef __ARCH_WANT_SYS_NICE
4624
4625/*
4626 * sys_nice - change the priority of the current process.
4627 * @increment: priority increment
4628 *
4629 * sys_setpriority is a more generic, but much slower function that
4630 * does similar things.
4631 */
5add95d4 4632SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4633{
48f24c4d 4634 long nice, retval;
1da177e4
LT
4635
4636 /*
4637 * Setpriority might change our priority at the same moment.
4638 * We don't have to worry. Conceptually one call occurs first
4639 * and we have a single winner.
4640 */
e43379f1
MM
4641 if (increment < -40)
4642 increment = -40;
1da177e4
LT
4643 if (increment > 40)
4644 increment = 40;
4645
2b8f836f 4646 nice = TASK_NICE(current) + increment;
1da177e4
LT
4647 if (nice < -20)
4648 nice = -20;
4649 if (nice > 19)
4650 nice = 19;
4651
e43379f1
MM
4652 if (increment < 0 && !can_nice(current, nice))
4653 return -EPERM;
4654
1da177e4
LT
4655 retval = security_task_setnice(current, nice);
4656 if (retval)
4657 return retval;
4658
4659 set_user_nice(current, nice);
4660 return 0;
4661}
4662
4663#endif
4664
4665/**
4666 * task_prio - return the priority value of a given task.
4667 * @p: the task in question.
4668 *
4669 * This is the priority value as seen by users in /proc.
4670 * RT tasks are offset by -200. Normal tasks are centered
4671 * around 0, value goes from -16 to +15.
4672 */
36c8b586 4673int task_prio(const struct task_struct *p)
1da177e4
LT
4674{
4675 return p->prio - MAX_RT_PRIO;
4676}
4677
4678/**
4679 * task_nice - return the nice value of a given task.
4680 * @p: the task in question.
4681 */
36c8b586 4682int task_nice(const struct task_struct *p)
1da177e4
LT
4683{
4684 return TASK_NICE(p);
4685}
150d8bed 4686EXPORT_SYMBOL(task_nice);
1da177e4
LT
4687
4688/**
4689 * idle_cpu - is a given cpu idle currently?
4690 * @cpu: the processor in question.
4691 */
4692int idle_cpu(int cpu)
4693{
4694 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4695}
4696
1da177e4
LT
4697/**
4698 * idle_task - return the idle task for a given cpu.
4699 * @cpu: the processor in question.
4700 */
36c8b586 4701struct task_struct *idle_task(int cpu)
1da177e4
LT
4702{
4703 return cpu_rq(cpu)->idle;
4704}
4705
4706/**
4707 * find_process_by_pid - find a process with a matching PID value.
4708 * @pid: the pid in question.
4709 */
a9957449 4710static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4711{
228ebcbe 4712 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4713}
4714
4715/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4716static void
4717__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4718{
dd41f596 4719 BUG_ON(p->se.on_rq);
48f24c4d 4720
1da177e4
LT
4721 p->policy = policy;
4722 p->rt_priority = prio;
b29739f9
IM
4723 p->normal_prio = normal_prio(p);
4724 /* we are holding p->pi_lock already */
4725 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4726 if (rt_prio(p->prio))
4727 p->sched_class = &rt_sched_class;
4728 else
4729 p->sched_class = &fair_sched_class;
2dd73a4f 4730 set_load_weight(p);
1da177e4
LT
4731}
4732
c69e8d9c
DH
4733/*
4734 * check the target process has a UID that matches the current process's
4735 */
4736static bool check_same_owner(struct task_struct *p)
4737{
4738 const struct cred *cred = current_cred(), *pcred;
4739 bool match;
4740
4741 rcu_read_lock();
4742 pcred = __task_cred(p);
4743 match = (cred->euid == pcred->euid ||
4744 cred->euid == pcred->uid);
4745 rcu_read_unlock();
4746 return match;
4747}
4748
961ccddd 4749static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4750 const struct sched_param *param, bool user)
1da177e4 4751{
83b699ed 4752 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4753 unsigned long flags;
83ab0aa0 4754 const struct sched_class *prev_class;
70b97a7f 4755 struct rq *rq;
ca94c442 4756 int reset_on_fork;
1da177e4 4757
66e5393a
SR
4758 /* may grab non-irq protected spin_locks */
4759 BUG_ON(in_interrupt());
1da177e4
LT
4760recheck:
4761 /* double check policy once rq lock held */
ca94c442
LP
4762 if (policy < 0) {
4763 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4764 policy = oldpolicy = p->policy;
ca94c442
LP
4765 } else {
4766 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4767 policy &= ~SCHED_RESET_ON_FORK;
4768
4769 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4770 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4771 policy != SCHED_IDLE)
4772 return -EINVAL;
4773 }
4774
1da177e4
LT
4775 /*
4776 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4777 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4778 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4779 */
4780 if (param->sched_priority < 0 ||
95cdf3b7 4781 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4782 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4783 return -EINVAL;
e05606d3 4784 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4785 return -EINVAL;
4786
37e4ab3f
OC
4787 /*
4788 * Allow unprivileged RT tasks to decrease priority:
4789 */
961ccddd 4790 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4791 if (rt_policy(policy)) {
a44702e8
ON
4792 unsigned long rlim_rtprio =
4793 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4794
4795 /* can't set/change the rt policy */
4796 if (policy != p->policy && !rlim_rtprio)
4797 return -EPERM;
4798
4799 /* can't increase priority */
4800 if (param->sched_priority > p->rt_priority &&
4801 param->sched_priority > rlim_rtprio)
4802 return -EPERM;
4803 }
dd41f596
IM
4804 /*
4805 * Like positive nice levels, dont allow tasks to
4806 * move out of SCHED_IDLE either:
4807 */
4808 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4809 return -EPERM;
5fe1d75f 4810
37e4ab3f 4811 /* can't change other user's priorities */
c69e8d9c 4812 if (!check_same_owner(p))
37e4ab3f 4813 return -EPERM;
ca94c442
LP
4814
4815 /* Normal users shall not reset the sched_reset_on_fork flag */
4816 if (p->sched_reset_on_fork && !reset_on_fork)
4817 return -EPERM;
37e4ab3f 4818 }
1da177e4 4819
725aad24 4820 if (user) {
b0ae1981 4821 retval = security_task_setscheduler(p);
725aad24
JF
4822 if (retval)
4823 return retval;
4824 }
4825
b29739f9
IM
4826 /*
4827 * make sure no PI-waiters arrive (or leave) while we are
4828 * changing the priority of the task:
4829 */
1d615482 4830 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4831 /*
4832 * To be able to change p->policy safely, the apropriate
4833 * runqueue lock must be held.
4834 */
b29739f9 4835 rq = __task_rq_lock(p);
dc61b1d6 4836
34f971f6
PZ
4837 /*
4838 * Changing the policy of the stop threads its a very bad idea
4839 */
4840 if (p == rq->stop) {
4841 __task_rq_unlock(rq);
4842 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4843 return -EINVAL;
4844 }
4845
dc61b1d6
PZ
4846#ifdef CONFIG_RT_GROUP_SCHED
4847 if (user) {
4848 /*
4849 * Do not allow realtime tasks into groups that have no runtime
4850 * assigned.
4851 */
4852 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4853 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4854 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
4855 __task_rq_unlock(rq);
4856 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4857 return -EPERM;
4858 }
4859 }
4860#endif
4861
1da177e4
LT
4862 /* recheck policy now with rq lock held */
4863 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4864 policy = oldpolicy = -1;
b29739f9 4865 __task_rq_unlock(rq);
1d615482 4866 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4867 goto recheck;
4868 }
dd41f596 4869 on_rq = p->se.on_rq;
051a1d1a 4870 running = task_current(rq, p);
0e1f3483 4871 if (on_rq)
2e1cb74a 4872 deactivate_task(rq, p, 0);
0e1f3483
HS
4873 if (running)
4874 p->sched_class->put_prev_task(rq, p);
f6b53205 4875
ca94c442
LP
4876 p->sched_reset_on_fork = reset_on_fork;
4877
1da177e4 4878 oldprio = p->prio;
83ab0aa0 4879 prev_class = p->sched_class;
dd41f596 4880 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4881
0e1f3483
HS
4882 if (running)
4883 p->sched_class->set_curr_task(rq);
dd41f596
IM
4884 if (on_rq) {
4885 activate_task(rq, p, 0);
cb469845
SR
4886
4887 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4888 }
b29739f9 4889 __task_rq_unlock(rq);
1d615482 4890 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4891
95e02ca9
TG
4892 rt_mutex_adjust_pi(p);
4893
1da177e4
LT
4894 return 0;
4895}
961ccddd
RR
4896
4897/**
4898 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4899 * @p: the task in question.
4900 * @policy: new policy.
4901 * @param: structure containing the new RT priority.
4902 *
4903 * NOTE that the task may be already dead.
4904 */
4905int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4906 const struct sched_param *param)
961ccddd
RR
4907{
4908 return __sched_setscheduler(p, policy, param, true);
4909}
1da177e4
LT
4910EXPORT_SYMBOL_GPL(sched_setscheduler);
4911
961ccddd
RR
4912/**
4913 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4914 * @p: the task in question.
4915 * @policy: new policy.
4916 * @param: structure containing the new RT priority.
4917 *
4918 * Just like sched_setscheduler, only don't bother checking if the
4919 * current context has permission. For example, this is needed in
4920 * stop_machine(): we create temporary high priority worker threads,
4921 * but our caller might not have that capability.
4922 */
4923int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4924 const struct sched_param *param)
961ccddd
RR
4925{
4926 return __sched_setscheduler(p, policy, param, false);
4927}
4928
95cdf3b7
IM
4929static int
4930do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4931{
1da177e4
LT
4932 struct sched_param lparam;
4933 struct task_struct *p;
36c8b586 4934 int retval;
1da177e4
LT
4935
4936 if (!param || pid < 0)
4937 return -EINVAL;
4938 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4939 return -EFAULT;
5fe1d75f
ON
4940
4941 rcu_read_lock();
4942 retval = -ESRCH;
1da177e4 4943 p = find_process_by_pid(pid);
5fe1d75f
ON
4944 if (p != NULL)
4945 retval = sched_setscheduler(p, policy, &lparam);
4946 rcu_read_unlock();
36c8b586 4947
1da177e4
LT
4948 return retval;
4949}
4950
4951/**
4952 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4953 * @pid: the pid in question.
4954 * @policy: new policy.
4955 * @param: structure containing the new RT priority.
4956 */
5add95d4
HC
4957SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4958 struct sched_param __user *, param)
1da177e4 4959{
c21761f1
JB
4960 /* negative values for policy are not valid */
4961 if (policy < 0)
4962 return -EINVAL;
4963
1da177e4
LT
4964 return do_sched_setscheduler(pid, policy, param);
4965}
4966
4967/**
4968 * sys_sched_setparam - set/change the RT priority of a thread
4969 * @pid: the pid in question.
4970 * @param: structure containing the new RT priority.
4971 */
5add95d4 4972SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4973{
4974 return do_sched_setscheduler(pid, -1, param);
4975}
4976
4977/**
4978 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4979 * @pid: the pid in question.
4980 */
5add95d4 4981SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4982{
36c8b586 4983 struct task_struct *p;
3a5c359a 4984 int retval;
1da177e4
LT
4985
4986 if (pid < 0)
3a5c359a 4987 return -EINVAL;
1da177e4
LT
4988
4989 retval = -ESRCH;
5fe85be0 4990 rcu_read_lock();
1da177e4
LT
4991 p = find_process_by_pid(pid);
4992 if (p) {
4993 retval = security_task_getscheduler(p);
4994 if (!retval)
ca94c442
LP
4995 retval = p->policy
4996 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4997 }
5fe85be0 4998 rcu_read_unlock();
1da177e4
LT
4999 return retval;
5000}
5001
5002/**
ca94c442 5003 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5004 * @pid: the pid in question.
5005 * @param: structure containing the RT priority.
5006 */
5add95d4 5007SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5008{
5009 struct sched_param lp;
36c8b586 5010 struct task_struct *p;
3a5c359a 5011 int retval;
1da177e4
LT
5012
5013 if (!param || pid < 0)
3a5c359a 5014 return -EINVAL;
1da177e4 5015
5fe85be0 5016 rcu_read_lock();
1da177e4
LT
5017 p = find_process_by_pid(pid);
5018 retval = -ESRCH;
5019 if (!p)
5020 goto out_unlock;
5021
5022 retval = security_task_getscheduler(p);
5023 if (retval)
5024 goto out_unlock;
5025
5026 lp.sched_priority = p->rt_priority;
5fe85be0 5027 rcu_read_unlock();
1da177e4
LT
5028
5029 /*
5030 * This one might sleep, we cannot do it with a spinlock held ...
5031 */
5032 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5033
1da177e4
LT
5034 return retval;
5035
5036out_unlock:
5fe85be0 5037 rcu_read_unlock();
1da177e4
LT
5038 return retval;
5039}
5040
96f874e2 5041long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5042{
5a16f3d3 5043 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5044 struct task_struct *p;
5045 int retval;
1da177e4 5046
95402b38 5047 get_online_cpus();
23f5d142 5048 rcu_read_lock();
1da177e4
LT
5049
5050 p = find_process_by_pid(pid);
5051 if (!p) {
23f5d142 5052 rcu_read_unlock();
95402b38 5053 put_online_cpus();
1da177e4
LT
5054 return -ESRCH;
5055 }
5056
23f5d142 5057 /* Prevent p going away */
1da177e4 5058 get_task_struct(p);
23f5d142 5059 rcu_read_unlock();
1da177e4 5060
5a16f3d3
RR
5061 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5062 retval = -ENOMEM;
5063 goto out_put_task;
5064 }
5065 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5066 retval = -ENOMEM;
5067 goto out_free_cpus_allowed;
5068 }
1da177e4 5069 retval = -EPERM;
c69e8d9c 5070 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5071 goto out_unlock;
5072
b0ae1981 5073 retval = security_task_setscheduler(p);
e7834f8f
DQ
5074 if (retval)
5075 goto out_unlock;
5076
5a16f3d3
RR
5077 cpuset_cpus_allowed(p, cpus_allowed);
5078 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5079again:
5a16f3d3 5080 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5081
8707d8b8 5082 if (!retval) {
5a16f3d3
RR
5083 cpuset_cpus_allowed(p, cpus_allowed);
5084 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5085 /*
5086 * We must have raced with a concurrent cpuset
5087 * update. Just reset the cpus_allowed to the
5088 * cpuset's cpus_allowed
5089 */
5a16f3d3 5090 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5091 goto again;
5092 }
5093 }
1da177e4 5094out_unlock:
5a16f3d3
RR
5095 free_cpumask_var(new_mask);
5096out_free_cpus_allowed:
5097 free_cpumask_var(cpus_allowed);
5098out_put_task:
1da177e4 5099 put_task_struct(p);
95402b38 5100 put_online_cpus();
1da177e4
LT
5101 return retval;
5102}
5103
5104static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5105 struct cpumask *new_mask)
1da177e4 5106{
96f874e2
RR
5107 if (len < cpumask_size())
5108 cpumask_clear(new_mask);
5109 else if (len > cpumask_size())
5110 len = cpumask_size();
5111
1da177e4
LT
5112 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5113}
5114
5115/**
5116 * sys_sched_setaffinity - set the cpu affinity of a process
5117 * @pid: pid of the process
5118 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5119 * @user_mask_ptr: user-space pointer to the new cpu mask
5120 */
5add95d4
HC
5121SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5122 unsigned long __user *, user_mask_ptr)
1da177e4 5123{
5a16f3d3 5124 cpumask_var_t new_mask;
1da177e4
LT
5125 int retval;
5126
5a16f3d3
RR
5127 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5128 return -ENOMEM;
1da177e4 5129
5a16f3d3
RR
5130 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5131 if (retval == 0)
5132 retval = sched_setaffinity(pid, new_mask);
5133 free_cpumask_var(new_mask);
5134 return retval;
1da177e4
LT
5135}
5136
96f874e2 5137long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5138{
36c8b586 5139 struct task_struct *p;
31605683
TG
5140 unsigned long flags;
5141 struct rq *rq;
1da177e4 5142 int retval;
1da177e4 5143
95402b38 5144 get_online_cpus();
23f5d142 5145 rcu_read_lock();
1da177e4
LT
5146
5147 retval = -ESRCH;
5148 p = find_process_by_pid(pid);
5149 if (!p)
5150 goto out_unlock;
5151
e7834f8f
DQ
5152 retval = security_task_getscheduler(p);
5153 if (retval)
5154 goto out_unlock;
5155
31605683 5156 rq = task_rq_lock(p, &flags);
96f874e2 5157 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5158 task_rq_unlock(rq, &flags);
1da177e4
LT
5159
5160out_unlock:
23f5d142 5161 rcu_read_unlock();
95402b38 5162 put_online_cpus();
1da177e4 5163
9531b62f 5164 return retval;
1da177e4
LT
5165}
5166
5167/**
5168 * sys_sched_getaffinity - get the cpu affinity of a process
5169 * @pid: pid of the process
5170 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5171 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5172 */
5add95d4
HC
5173SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5174 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5175{
5176 int ret;
f17c8607 5177 cpumask_var_t mask;
1da177e4 5178
84fba5ec 5179 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5180 return -EINVAL;
5181 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5182 return -EINVAL;
5183
f17c8607
RR
5184 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5185 return -ENOMEM;
1da177e4 5186
f17c8607
RR
5187 ret = sched_getaffinity(pid, mask);
5188 if (ret == 0) {
8bc037fb 5189 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5190
5191 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5192 ret = -EFAULT;
5193 else
cd3d8031 5194 ret = retlen;
f17c8607
RR
5195 }
5196 free_cpumask_var(mask);
1da177e4 5197
f17c8607 5198 return ret;
1da177e4
LT
5199}
5200
5201/**
5202 * sys_sched_yield - yield the current processor to other threads.
5203 *
dd41f596
IM
5204 * This function yields the current CPU to other tasks. If there are no
5205 * other threads running on this CPU then this function will return.
1da177e4 5206 */
5add95d4 5207SYSCALL_DEFINE0(sched_yield)
1da177e4 5208{
70b97a7f 5209 struct rq *rq = this_rq_lock();
1da177e4 5210
2d72376b 5211 schedstat_inc(rq, yld_count);
4530d7ab 5212 current->sched_class->yield_task(rq);
1da177e4
LT
5213
5214 /*
5215 * Since we are going to call schedule() anyway, there's
5216 * no need to preempt or enable interrupts:
5217 */
5218 __release(rq->lock);
8a25d5de 5219 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5220 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5221 preempt_enable_no_resched();
5222
5223 schedule();
5224
5225 return 0;
5226}
5227
d86ee480
PZ
5228static inline int should_resched(void)
5229{
5230 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5231}
5232
e7b38404 5233static void __cond_resched(void)
1da177e4 5234{
e7aaaa69
FW
5235 add_preempt_count(PREEMPT_ACTIVE);
5236 schedule();
5237 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5238}
5239
02b67cc3 5240int __sched _cond_resched(void)
1da177e4 5241{
d86ee480 5242 if (should_resched()) {
1da177e4
LT
5243 __cond_resched();
5244 return 1;
5245 }
5246 return 0;
5247}
02b67cc3 5248EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5249
5250/*
613afbf8 5251 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5252 * call schedule, and on return reacquire the lock.
5253 *
41a2d6cf 5254 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5255 * operations here to prevent schedule() from being called twice (once via
5256 * spin_unlock(), once by hand).
5257 */
613afbf8 5258int __cond_resched_lock(spinlock_t *lock)
1da177e4 5259{
d86ee480 5260 int resched = should_resched();
6df3cecb
JK
5261 int ret = 0;
5262
f607c668
PZ
5263 lockdep_assert_held(lock);
5264
95c354fe 5265 if (spin_needbreak(lock) || resched) {
1da177e4 5266 spin_unlock(lock);
d86ee480 5267 if (resched)
95c354fe
NP
5268 __cond_resched();
5269 else
5270 cpu_relax();
6df3cecb 5271 ret = 1;
1da177e4 5272 spin_lock(lock);
1da177e4 5273 }
6df3cecb 5274 return ret;
1da177e4 5275}
613afbf8 5276EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5277
613afbf8 5278int __sched __cond_resched_softirq(void)
1da177e4
LT
5279{
5280 BUG_ON(!in_softirq());
5281
d86ee480 5282 if (should_resched()) {
98d82567 5283 local_bh_enable();
1da177e4
LT
5284 __cond_resched();
5285 local_bh_disable();
5286 return 1;
5287 }
5288 return 0;
5289}
613afbf8 5290EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5291
1da177e4
LT
5292/**
5293 * yield - yield the current processor to other threads.
5294 *
72fd4a35 5295 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5296 * thread runnable and calls sys_sched_yield().
5297 */
5298void __sched yield(void)
5299{
5300 set_current_state(TASK_RUNNING);
5301 sys_sched_yield();
5302}
1da177e4
LT
5303EXPORT_SYMBOL(yield);
5304
5305/*
41a2d6cf 5306 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5307 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5308 */
5309void __sched io_schedule(void)
5310{
54d35f29 5311 struct rq *rq = raw_rq();
1da177e4 5312
0ff92245 5313 delayacct_blkio_start();
1da177e4 5314 atomic_inc(&rq->nr_iowait);
8f0dfc34 5315 current->in_iowait = 1;
1da177e4 5316 schedule();
8f0dfc34 5317 current->in_iowait = 0;
1da177e4 5318 atomic_dec(&rq->nr_iowait);
0ff92245 5319 delayacct_blkio_end();
1da177e4 5320}
1da177e4
LT
5321EXPORT_SYMBOL(io_schedule);
5322
5323long __sched io_schedule_timeout(long timeout)
5324{
54d35f29 5325 struct rq *rq = raw_rq();
1da177e4
LT
5326 long ret;
5327
0ff92245 5328 delayacct_blkio_start();
1da177e4 5329 atomic_inc(&rq->nr_iowait);
8f0dfc34 5330 current->in_iowait = 1;
1da177e4 5331 ret = schedule_timeout(timeout);
8f0dfc34 5332 current->in_iowait = 0;
1da177e4 5333 atomic_dec(&rq->nr_iowait);
0ff92245 5334 delayacct_blkio_end();
1da177e4
LT
5335 return ret;
5336}
5337
5338/**
5339 * sys_sched_get_priority_max - return maximum RT priority.
5340 * @policy: scheduling class.
5341 *
5342 * this syscall returns the maximum rt_priority that can be used
5343 * by a given scheduling class.
5344 */
5add95d4 5345SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5346{
5347 int ret = -EINVAL;
5348
5349 switch (policy) {
5350 case SCHED_FIFO:
5351 case SCHED_RR:
5352 ret = MAX_USER_RT_PRIO-1;
5353 break;
5354 case SCHED_NORMAL:
b0a9499c 5355 case SCHED_BATCH:
dd41f596 5356 case SCHED_IDLE:
1da177e4
LT
5357 ret = 0;
5358 break;
5359 }
5360 return ret;
5361}
5362
5363/**
5364 * sys_sched_get_priority_min - return minimum RT priority.
5365 * @policy: scheduling class.
5366 *
5367 * this syscall returns the minimum rt_priority that can be used
5368 * by a given scheduling class.
5369 */
5add95d4 5370SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5371{
5372 int ret = -EINVAL;
5373
5374 switch (policy) {
5375 case SCHED_FIFO:
5376 case SCHED_RR:
5377 ret = 1;
5378 break;
5379 case SCHED_NORMAL:
b0a9499c 5380 case SCHED_BATCH:
dd41f596 5381 case SCHED_IDLE:
1da177e4
LT
5382 ret = 0;
5383 }
5384 return ret;
5385}
5386
5387/**
5388 * sys_sched_rr_get_interval - return the default timeslice of a process.
5389 * @pid: pid of the process.
5390 * @interval: userspace pointer to the timeslice value.
5391 *
5392 * this syscall writes the default timeslice value of a given process
5393 * into the user-space timespec buffer. A value of '0' means infinity.
5394 */
17da2bd9 5395SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5396 struct timespec __user *, interval)
1da177e4 5397{
36c8b586 5398 struct task_struct *p;
a4ec24b4 5399 unsigned int time_slice;
dba091b9
TG
5400 unsigned long flags;
5401 struct rq *rq;
3a5c359a 5402 int retval;
1da177e4 5403 struct timespec t;
1da177e4
LT
5404
5405 if (pid < 0)
3a5c359a 5406 return -EINVAL;
1da177e4
LT
5407
5408 retval = -ESRCH;
1a551ae7 5409 rcu_read_lock();
1da177e4
LT
5410 p = find_process_by_pid(pid);
5411 if (!p)
5412 goto out_unlock;
5413
5414 retval = security_task_getscheduler(p);
5415 if (retval)
5416 goto out_unlock;
5417
dba091b9
TG
5418 rq = task_rq_lock(p, &flags);
5419 time_slice = p->sched_class->get_rr_interval(rq, p);
5420 task_rq_unlock(rq, &flags);
a4ec24b4 5421
1a551ae7 5422 rcu_read_unlock();
a4ec24b4 5423 jiffies_to_timespec(time_slice, &t);
1da177e4 5424 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5425 return retval;
3a5c359a 5426
1da177e4 5427out_unlock:
1a551ae7 5428 rcu_read_unlock();
1da177e4
LT
5429 return retval;
5430}
5431
7c731e0a 5432static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5433
82a1fcb9 5434void sched_show_task(struct task_struct *p)
1da177e4 5435{
1da177e4 5436 unsigned long free = 0;
36c8b586 5437 unsigned state;
1da177e4 5438
1da177e4 5439 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5440 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5441 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5442#if BITS_PER_LONG == 32
1da177e4 5443 if (state == TASK_RUNNING)
3df0fc5b 5444 printk(KERN_CONT " running ");
1da177e4 5445 else
3df0fc5b 5446 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5447#else
5448 if (state == TASK_RUNNING)
3df0fc5b 5449 printk(KERN_CONT " running task ");
1da177e4 5450 else
3df0fc5b 5451 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5452#endif
5453#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5454 free = stack_not_used(p);
1da177e4 5455#endif
3df0fc5b 5456 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5457 task_pid_nr(p), task_pid_nr(p->real_parent),
5458 (unsigned long)task_thread_info(p)->flags);
1da177e4 5459
5fb5e6de 5460 show_stack(p, NULL);
1da177e4
LT
5461}
5462
e59e2ae2 5463void show_state_filter(unsigned long state_filter)
1da177e4 5464{
36c8b586 5465 struct task_struct *g, *p;
1da177e4 5466
4bd77321 5467#if BITS_PER_LONG == 32
3df0fc5b
PZ
5468 printk(KERN_INFO
5469 " task PC stack pid father\n");
1da177e4 5470#else
3df0fc5b
PZ
5471 printk(KERN_INFO
5472 " task PC stack pid father\n");
1da177e4
LT
5473#endif
5474 read_lock(&tasklist_lock);
5475 do_each_thread(g, p) {
5476 /*
5477 * reset the NMI-timeout, listing all files on a slow
5478 * console might take alot of time:
5479 */
5480 touch_nmi_watchdog();
39bc89fd 5481 if (!state_filter || (p->state & state_filter))
82a1fcb9 5482 sched_show_task(p);
1da177e4
LT
5483 } while_each_thread(g, p);
5484
04c9167f
JF
5485 touch_all_softlockup_watchdogs();
5486
dd41f596
IM
5487#ifdef CONFIG_SCHED_DEBUG
5488 sysrq_sched_debug_show();
5489#endif
1da177e4 5490 read_unlock(&tasklist_lock);
e59e2ae2
IM
5491 /*
5492 * Only show locks if all tasks are dumped:
5493 */
93335a21 5494 if (!state_filter)
e59e2ae2 5495 debug_show_all_locks();
1da177e4
LT
5496}
5497
1df21055
IM
5498void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5499{
dd41f596 5500 idle->sched_class = &idle_sched_class;
1df21055
IM
5501}
5502
f340c0d1
IM
5503/**
5504 * init_idle - set up an idle thread for a given CPU
5505 * @idle: task in question
5506 * @cpu: cpu the idle task belongs to
5507 *
5508 * NOTE: this function does not set the idle thread's NEED_RESCHED
5509 * flag, to make booting more robust.
5510 */
5c1e1767 5511void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5512{
70b97a7f 5513 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5514 unsigned long flags;
5515
05fa785c 5516 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5517
dd41f596 5518 __sched_fork(idle);
06b83b5f 5519 idle->state = TASK_RUNNING;
dd41f596
IM
5520 idle->se.exec_start = sched_clock();
5521
96f874e2 5522 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5523 /*
5524 * We're having a chicken and egg problem, even though we are
5525 * holding rq->lock, the cpu isn't yet set to this cpu so the
5526 * lockdep check in task_group() will fail.
5527 *
5528 * Similar case to sched_fork(). / Alternatively we could
5529 * use task_rq_lock() here and obtain the other rq->lock.
5530 *
5531 * Silence PROVE_RCU
5532 */
5533 rcu_read_lock();
dd41f596 5534 __set_task_cpu(idle, cpu);
6506cf6c 5535 rcu_read_unlock();
1da177e4 5536
1da177e4 5537 rq->curr = rq->idle = idle;
4866cde0
NP
5538#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5539 idle->oncpu = 1;
5540#endif
05fa785c 5541 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5542
5543 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5544#if defined(CONFIG_PREEMPT)
5545 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5546#else
a1261f54 5547 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5548#endif
dd41f596
IM
5549 /*
5550 * The idle tasks have their own, simple scheduling class:
5551 */
5552 idle->sched_class = &idle_sched_class;
868baf07 5553 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5554}
5555
5556/*
5557 * In a system that switches off the HZ timer nohz_cpu_mask
5558 * indicates which cpus entered this state. This is used
5559 * in the rcu update to wait only for active cpus. For system
5560 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5561 * always be CPU_BITS_NONE.
1da177e4 5562 */
6a7b3dc3 5563cpumask_var_t nohz_cpu_mask;
1da177e4 5564
19978ca6
IM
5565/*
5566 * Increase the granularity value when there are more CPUs,
5567 * because with more CPUs the 'effective latency' as visible
5568 * to users decreases. But the relationship is not linear,
5569 * so pick a second-best guess by going with the log2 of the
5570 * number of CPUs.
5571 *
5572 * This idea comes from the SD scheduler of Con Kolivas:
5573 */
acb4a848 5574static int get_update_sysctl_factor(void)
19978ca6 5575{
4ca3ef71 5576 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5577 unsigned int factor;
5578
5579 switch (sysctl_sched_tunable_scaling) {
5580 case SCHED_TUNABLESCALING_NONE:
5581 factor = 1;
5582 break;
5583 case SCHED_TUNABLESCALING_LINEAR:
5584 factor = cpus;
5585 break;
5586 case SCHED_TUNABLESCALING_LOG:
5587 default:
5588 factor = 1 + ilog2(cpus);
5589 break;
5590 }
19978ca6 5591
acb4a848
CE
5592 return factor;
5593}
19978ca6 5594
acb4a848
CE
5595static void update_sysctl(void)
5596{
5597 unsigned int factor = get_update_sysctl_factor();
19978ca6 5598
0bcdcf28
CE
5599#define SET_SYSCTL(name) \
5600 (sysctl_##name = (factor) * normalized_sysctl_##name)
5601 SET_SYSCTL(sched_min_granularity);
5602 SET_SYSCTL(sched_latency);
5603 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5604#undef SET_SYSCTL
5605}
55cd5340 5606
0bcdcf28
CE
5607static inline void sched_init_granularity(void)
5608{
5609 update_sysctl();
19978ca6
IM
5610}
5611
1da177e4
LT
5612#ifdef CONFIG_SMP
5613/*
5614 * This is how migration works:
5615 *
969c7921
TH
5616 * 1) we invoke migration_cpu_stop() on the target CPU using
5617 * stop_one_cpu().
5618 * 2) stopper starts to run (implicitly forcing the migrated thread
5619 * off the CPU)
5620 * 3) it checks whether the migrated task is still in the wrong runqueue.
5621 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5622 * it and puts it into the right queue.
969c7921
TH
5623 * 5) stopper completes and stop_one_cpu() returns and the migration
5624 * is done.
1da177e4
LT
5625 */
5626
5627/*
5628 * Change a given task's CPU affinity. Migrate the thread to a
5629 * proper CPU and schedule it away if the CPU it's executing on
5630 * is removed from the allowed bitmask.
5631 *
5632 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5633 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5634 * call is not atomic; no spinlocks may be held.
5635 */
96f874e2 5636int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5637{
5638 unsigned long flags;
70b97a7f 5639 struct rq *rq;
969c7921 5640 unsigned int dest_cpu;
48f24c4d 5641 int ret = 0;
1da177e4 5642
65cc8e48
PZ
5643 /*
5644 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5645 * drop the rq->lock and still rely on ->cpus_allowed.
5646 */
5647again:
5648 while (task_is_waking(p))
5649 cpu_relax();
1da177e4 5650 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5651 if (task_is_waking(p)) {
5652 task_rq_unlock(rq, &flags);
5653 goto again;
5654 }
e2912009 5655
6ad4c188 5656 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5657 ret = -EINVAL;
5658 goto out;
5659 }
5660
9985b0ba 5661 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5662 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5663 ret = -EINVAL;
5664 goto out;
5665 }
5666
73fe6aae 5667 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5668 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5669 else {
96f874e2
RR
5670 cpumask_copy(&p->cpus_allowed, new_mask);
5671 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5672 }
5673
1da177e4 5674 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5675 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5676 goto out;
5677
969c7921 5678 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5679 if (migrate_task(p, rq)) {
969c7921 5680 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5681 /* Need help from migration thread: drop lock and wait. */
5682 task_rq_unlock(rq, &flags);
969c7921 5683 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5684 tlb_migrate_finish(p->mm);
5685 return 0;
5686 }
5687out:
5688 task_rq_unlock(rq, &flags);
48f24c4d 5689
1da177e4
LT
5690 return ret;
5691}
cd8ba7cd 5692EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5693
5694/*
41a2d6cf 5695 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5696 * this because either it can't run here any more (set_cpus_allowed()
5697 * away from this CPU, or CPU going down), or because we're
5698 * attempting to rebalance this task on exec (sched_exec).
5699 *
5700 * So we race with normal scheduler movements, but that's OK, as long
5701 * as the task is no longer on this CPU.
efc30814
KK
5702 *
5703 * Returns non-zero if task was successfully migrated.
1da177e4 5704 */
efc30814 5705static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5706{
70b97a7f 5707 struct rq *rq_dest, *rq_src;
e2912009 5708 int ret = 0;
1da177e4 5709
e761b772 5710 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5711 return ret;
1da177e4
LT
5712
5713 rq_src = cpu_rq(src_cpu);
5714 rq_dest = cpu_rq(dest_cpu);
5715
5716 double_rq_lock(rq_src, rq_dest);
5717 /* Already moved. */
5718 if (task_cpu(p) != src_cpu)
b1e38734 5719 goto done;
1da177e4 5720 /* Affinity changed (again). */
96f874e2 5721 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5722 goto fail;
1da177e4 5723
e2912009
PZ
5724 /*
5725 * If we're not on a rq, the next wake-up will ensure we're
5726 * placed properly.
5727 */
5728 if (p->se.on_rq) {
2e1cb74a 5729 deactivate_task(rq_src, p, 0);
e2912009 5730 set_task_cpu(p, dest_cpu);
dd41f596 5731 activate_task(rq_dest, p, 0);
15afe09b 5732 check_preempt_curr(rq_dest, p, 0);
1da177e4 5733 }
b1e38734 5734done:
efc30814 5735 ret = 1;
b1e38734 5736fail:
1da177e4 5737 double_rq_unlock(rq_src, rq_dest);
efc30814 5738 return ret;
1da177e4
LT
5739}
5740
5741/*
969c7921
TH
5742 * migration_cpu_stop - this will be executed by a highprio stopper thread
5743 * and performs thread migration by bumping thread off CPU then
5744 * 'pushing' onto another runqueue.
1da177e4 5745 */
969c7921 5746static int migration_cpu_stop(void *data)
1da177e4 5747{
969c7921 5748 struct migration_arg *arg = data;
f7b4cddc 5749
969c7921
TH
5750 /*
5751 * The original target cpu might have gone down and we might
5752 * be on another cpu but it doesn't matter.
5753 */
f7b4cddc 5754 local_irq_disable();
969c7921 5755 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5756 local_irq_enable();
1da177e4 5757 return 0;
f7b4cddc
ON
5758}
5759
1da177e4 5760#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5761
054b9108 5762/*
48c5ccae
PZ
5763 * Ensures that the idle task is using init_mm right before its cpu goes
5764 * offline.
054b9108 5765 */
48c5ccae 5766void idle_task_exit(void)
1da177e4 5767{
48c5ccae 5768 struct mm_struct *mm = current->active_mm;
e76bd8d9 5769
48c5ccae 5770 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5771
48c5ccae
PZ
5772 if (mm != &init_mm)
5773 switch_mm(mm, &init_mm, current);
5774 mmdrop(mm);
1da177e4
LT
5775}
5776
5777/*
5778 * While a dead CPU has no uninterruptible tasks queued at this point,
5779 * it might still have a nonzero ->nr_uninterruptible counter, because
5780 * for performance reasons the counter is not stricly tracking tasks to
5781 * their home CPUs. So we just add the counter to another CPU's counter,
5782 * to keep the global sum constant after CPU-down:
5783 */
70b97a7f 5784static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5785{
6ad4c188 5786 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5787
1da177e4
LT
5788 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5789 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5790}
5791
dd41f596 5792/*
48c5ccae 5793 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5794 */
48c5ccae 5795static void calc_global_load_remove(struct rq *rq)
1da177e4 5796{
48c5ccae
PZ
5797 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5798 rq->calc_load_active = 0;
1da177e4
LT
5799}
5800
48f24c4d 5801/*
48c5ccae
PZ
5802 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5803 * try_to_wake_up()->select_task_rq().
5804 *
5805 * Called with rq->lock held even though we'er in stop_machine() and
5806 * there's no concurrency possible, we hold the required locks anyway
5807 * because of lock validation efforts.
1da177e4 5808 */
48c5ccae 5809static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5810{
70b97a7f 5811 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5812 struct task_struct *next, *stop = rq->stop;
5813 int dest_cpu;
1da177e4
LT
5814
5815 /*
48c5ccae
PZ
5816 * Fudge the rq selection such that the below task selection loop
5817 * doesn't get stuck on the currently eligible stop task.
5818 *
5819 * We're currently inside stop_machine() and the rq is either stuck
5820 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5821 * either way we should never end up calling schedule() until we're
5822 * done here.
1da177e4 5823 */
48c5ccae 5824 rq->stop = NULL;
48f24c4d 5825
dd41f596 5826 for ( ; ; ) {
48c5ccae
PZ
5827 /*
5828 * There's this thread running, bail when that's the only
5829 * remaining thread.
5830 */
5831 if (rq->nr_running == 1)
dd41f596 5832 break;
48c5ccae 5833
b67802ea 5834 next = pick_next_task(rq);
48c5ccae 5835 BUG_ON(!next);
79c53799 5836 next->sched_class->put_prev_task(rq, next);
e692ab53 5837
48c5ccae
PZ
5838 /* Find suitable destination for @next, with force if needed. */
5839 dest_cpu = select_fallback_rq(dead_cpu, next);
5840 raw_spin_unlock(&rq->lock);
5841
5842 __migrate_task(next, dead_cpu, dest_cpu);
5843
5844 raw_spin_lock(&rq->lock);
1da177e4 5845 }
dce48a84 5846
48c5ccae 5847 rq->stop = stop;
dce48a84 5848}
48c5ccae 5849
1da177e4
LT
5850#endif /* CONFIG_HOTPLUG_CPU */
5851
e692ab53
NP
5852#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5853
5854static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5855 {
5856 .procname = "sched_domain",
c57baf1e 5857 .mode = 0555,
e0361851 5858 },
56992309 5859 {}
e692ab53
NP
5860};
5861
5862static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5863 {
5864 .procname = "kernel",
c57baf1e 5865 .mode = 0555,
e0361851
AD
5866 .child = sd_ctl_dir,
5867 },
56992309 5868 {}
e692ab53
NP
5869};
5870
5871static struct ctl_table *sd_alloc_ctl_entry(int n)
5872{
5873 struct ctl_table *entry =
5cf9f062 5874 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5875
e692ab53
NP
5876 return entry;
5877}
5878
6382bc90
MM
5879static void sd_free_ctl_entry(struct ctl_table **tablep)
5880{
cd790076 5881 struct ctl_table *entry;
6382bc90 5882
cd790076
MM
5883 /*
5884 * In the intermediate directories, both the child directory and
5885 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5886 * will always be set. In the lowest directory the names are
cd790076
MM
5887 * static strings and all have proc handlers.
5888 */
5889 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5890 if (entry->child)
5891 sd_free_ctl_entry(&entry->child);
cd790076
MM
5892 if (entry->proc_handler == NULL)
5893 kfree(entry->procname);
5894 }
6382bc90
MM
5895
5896 kfree(*tablep);
5897 *tablep = NULL;
5898}
5899
e692ab53 5900static void
e0361851 5901set_table_entry(struct ctl_table *entry,
e692ab53
NP
5902 const char *procname, void *data, int maxlen,
5903 mode_t mode, proc_handler *proc_handler)
5904{
e692ab53
NP
5905 entry->procname = procname;
5906 entry->data = data;
5907 entry->maxlen = maxlen;
5908 entry->mode = mode;
5909 entry->proc_handler = proc_handler;
5910}
5911
5912static struct ctl_table *
5913sd_alloc_ctl_domain_table(struct sched_domain *sd)
5914{
a5d8c348 5915 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5916
ad1cdc1d
MM
5917 if (table == NULL)
5918 return NULL;
5919
e0361851 5920 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5921 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5922 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5923 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5924 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5925 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5926 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5927 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5928 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5929 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5930 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5931 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5932 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5933 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5934 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5935 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5936 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5937 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5938 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5939 &sd->cache_nice_tries,
5940 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5941 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5942 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5943 set_table_entry(&table[11], "name", sd->name,
5944 CORENAME_MAX_SIZE, 0444, proc_dostring);
5945 /* &table[12] is terminator */
e692ab53
NP
5946
5947 return table;
5948}
5949
9a4e7159 5950static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5951{
5952 struct ctl_table *entry, *table;
5953 struct sched_domain *sd;
5954 int domain_num = 0, i;
5955 char buf[32];
5956
5957 for_each_domain(cpu, sd)
5958 domain_num++;
5959 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5960 if (table == NULL)
5961 return NULL;
e692ab53
NP
5962
5963 i = 0;
5964 for_each_domain(cpu, sd) {
5965 snprintf(buf, 32, "domain%d", i);
e692ab53 5966 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5967 entry->mode = 0555;
e692ab53
NP
5968 entry->child = sd_alloc_ctl_domain_table(sd);
5969 entry++;
5970 i++;
5971 }
5972 return table;
5973}
5974
5975static struct ctl_table_header *sd_sysctl_header;
6382bc90 5976static void register_sched_domain_sysctl(void)
e692ab53 5977{
6ad4c188 5978 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5979 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5980 char buf[32];
5981
7378547f
MM
5982 WARN_ON(sd_ctl_dir[0].child);
5983 sd_ctl_dir[0].child = entry;
5984
ad1cdc1d
MM
5985 if (entry == NULL)
5986 return;
5987
6ad4c188 5988 for_each_possible_cpu(i) {
e692ab53 5989 snprintf(buf, 32, "cpu%d", i);
e692ab53 5990 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5991 entry->mode = 0555;
e692ab53 5992 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5993 entry++;
e692ab53 5994 }
7378547f
MM
5995
5996 WARN_ON(sd_sysctl_header);
e692ab53
NP
5997 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5998}
6382bc90 5999
7378547f 6000/* may be called multiple times per register */
6382bc90
MM
6001static void unregister_sched_domain_sysctl(void)
6002{
7378547f
MM
6003 if (sd_sysctl_header)
6004 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6005 sd_sysctl_header = NULL;
7378547f
MM
6006 if (sd_ctl_dir[0].child)
6007 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6008}
e692ab53 6009#else
6382bc90
MM
6010static void register_sched_domain_sysctl(void)
6011{
6012}
6013static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6014{
6015}
6016#endif
6017
1f11eb6a
GH
6018static void set_rq_online(struct rq *rq)
6019{
6020 if (!rq->online) {
6021 const struct sched_class *class;
6022
c6c4927b 6023 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6024 rq->online = 1;
6025
6026 for_each_class(class) {
6027 if (class->rq_online)
6028 class->rq_online(rq);
6029 }
6030 }
6031}
6032
6033static void set_rq_offline(struct rq *rq)
6034{
6035 if (rq->online) {
6036 const struct sched_class *class;
6037
6038 for_each_class(class) {
6039 if (class->rq_offline)
6040 class->rq_offline(rq);
6041 }
6042
c6c4927b 6043 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6044 rq->online = 0;
6045 }
6046}
6047
1da177e4
LT
6048/*
6049 * migration_call - callback that gets triggered when a CPU is added.
6050 * Here we can start up the necessary migration thread for the new CPU.
6051 */
48f24c4d
IM
6052static int __cpuinit
6053migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6054{
48f24c4d 6055 int cpu = (long)hcpu;
1da177e4 6056 unsigned long flags;
969c7921 6057 struct rq *rq = cpu_rq(cpu);
1da177e4 6058
48c5ccae 6059 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6060
1da177e4 6061 case CPU_UP_PREPARE:
a468d389 6062 rq->calc_load_update = calc_load_update;
1da177e4 6063 break;
48f24c4d 6064
1da177e4 6065 case CPU_ONLINE:
1f94ef59 6066 /* Update our root-domain */
05fa785c 6067 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6068 if (rq->rd) {
c6c4927b 6069 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6070
6071 set_rq_online(rq);
1f94ef59 6072 }
05fa785c 6073 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6074 break;
48f24c4d 6075
1da177e4 6076#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6077 case CPU_DYING:
57d885fe 6078 /* Update our root-domain */
05fa785c 6079 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6080 if (rq->rd) {
c6c4927b 6081 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6082 set_rq_offline(rq);
57d885fe 6083 }
48c5ccae
PZ
6084 migrate_tasks(cpu);
6085 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6086 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6087
6088 migrate_nr_uninterruptible(rq);
6089 calc_global_load_remove(rq);
57d885fe 6090 break;
1da177e4
LT
6091#endif
6092 }
6093 return NOTIFY_OK;
6094}
6095
f38b0820
PM
6096/*
6097 * Register at high priority so that task migration (migrate_all_tasks)
6098 * happens before everything else. This has to be lower priority than
cdd6c482 6099 * the notifier in the perf_event subsystem, though.
1da177e4 6100 */
26c2143b 6101static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6102 .notifier_call = migration_call,
50a323b7 6103 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6104};
6105
3a101d05
TH
6106static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6107 unsigned long action, void *hcpu)
6108{
6109 switch (action & ~CPU_TASKS_FROZEN) {
6110 case CPU_ONLINE:
6111 case CPU_DOWN_FAILED:
6112 set_cpu_active((long)hcpu, true);
6113 return NOTIFY_OK;
6114 default:
6115 return NOTIFY_DONE;
6116 }
6117}
6118
6119static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6120 unsigned long action, void *hcpu)
6121{
6122 switch (action & ~CPU_TASKS_FROZEN) {
6123 case CPU_DOWN_PREPARE:
6124 set_cpu_active((long)hcpu, false);
6125 return NOTIFY_OK;
6126 default:
6127 return NOTIFY_DONE;
6128 }
6129}
6130
7babe8db 6131static int __init migration_init(void)
1da177e4
LT
6132{
6133 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6134 int err;
48f24c4d 6135
3a101d05 6136 /* Initialize migration for the boot CPU */
07dccf33
AM
6137 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6138 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6139 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6140 register_cpu_notifier(&migration_notifier);
7babe8db 6141
3a101d05
TH
6142 /* Register cpu active notifiers */
6143 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6144 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6145
a004cd42 6146 return 0;
1da177e4 6147}
7babe8db 6148early_initcall(migration_init);
1da177e4
LT
6149#endif
6150
6151#ifdef CONFIG_SMP
476f3534 6152
3e9830dc 6153#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6154
f6630114
MT
6155static __read_mostly int sched_domain_debug_enabled;
6156
6157static int __init sched_domain_debug_setup(char *str)
6158{
6159 sched_domain_debug_enabled = 1;
6160
6161 return 0;
6162}
6163early_param("sched_debug", sched_domain_debug_setup);
6164
7c16ec58 6165static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6166 struct cpumask *groupmask)
1da177e4 6167{
4dcf6aff 6168 struct sched_group *group = sd->groups;
434d53b0 6169 char str[256];
1da177e4 6170
968ea6d8 6171 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6172 cpumask_clear(groupmask);
4dcf6aff
IM
6173
6174 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6175
6176 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6177 printk("does not load-balance\n");
4dcf6aff 6178 if (sd->parent)
3df0fc5b
PZ
6179 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6180 " has parent");
4dcf6aff 6181 return -1;
41c7ce9a
NP
6182 }
6183
3df0fc5b 6184 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6185
758b2cdc 6186 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6187 printk(KERN_ERR "ERROR: domain->span does not contain "
6188 "CPU%d\n", cpu);
4dcf6aff 6189 }
758b2cdc 6190 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6191 printk(KERN_ERR "ERROR: domain->groups does not contain"
6192 " CPU%d\n", cpu);
4dcf6aff 6193 }
1da177e4 6194
4dcf6aff 6195 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6196 do {
4dcf6aff 6197 if (!group) {
3df0fc5b
PZ
6198 printk("\n");
6199 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6200 break;
6201 }
6202
18a3885f 6203 if (!group->cpu_power) {
3df0fc5b
PZ
6204 printk(KERN_CONT "\n");
6205 printk(KERN_ERR "ERROR: domain->cpu_power not "
6206 "set\n");
4dcf6aff
IM
6207 break;
6208 }
1da177e4 6209
758b2cdc 6210 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6211 printk(KERN_CONT "\n");
6212 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6213 break;
6214 }
1da177e4 6215
758b2cdc 6216 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6217 printk(KERN_CONT "\n");
6218 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6219 break;
6220 }
1da177e4 6221
758b2cdc 6222 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6223
968ea6d8 6224 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6225
3df0fc5b 6226 printk(KERN_CONT " %s", str);
18a3885f 6227 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6228 printk(KERN_CONT " (cpu_power = %d)",
6229 group->cpu_power);
381512cf 6230 }
1da177e4 6231
4dcf6aff
IM
6232 group = group->next;
6233 } while (group != sd->groups);
3df0fc5b 6234 printk(KERN_CONT "\n");
1da177e4 6235
758b2cdc 6236 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6237 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6238
758b2cdc
RR
6239 if (sd->parent &&
6240 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6241 printk(KERN_ERR "ERROR: parent span is not a superset "
6242 "of domain->span\n");
4dcf6aff
IM
6243 return 0;
6244}
1da177e4 6245
4dcf6aff
IM
6246static void sched_domain_debug(struct sched_domain *sd, int cpu)
6247{
d5dd3db1 6248 cpumask_var_t groupmask;
4dcf6aff 6249 int level = 0;
1da177e4 6250
f6630114
MT
6251 if (!sched_domain_debug_enabled)
6252 return;
6253
4dcf6aff
IM
6254 if (!sd) {
6255 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6256 return;
6257 }
1da177e4 6258
4dcf6aff
IM
6259 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6260
d5dd3db1 6261 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6262 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6263 return;
6264 }
6265
4dcf6aff 6266 for (;;) {
7c16ec58 6267 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6268 break;
1da177e4
LT
6269 level++;
6270 sd = sd->parent;
33859f7f 6271 if (!sd)
4dcf6aff
IM
6272 break;
6273 }
d5dd3db1 6274 free_cpumask_var(groupmask);
1da177e4 6275}
6d6bc0ad 6276#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6277# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6278#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6279
1a20ff27 6280static int sd_degenerate(struct sched_domain *sd)
245af2c7 6281{
758b2cdc 6282 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6283 return 1;
6284
6285 /* Following flags need at least 2 groups */
6286 if (sd->flags & (SD_LOAD_BALANCE |
6287 SD_BALANCE_NEWIDLE |
6288 SD_BALANCE_FORK |
89c4710e
SS
6289 SD_BALANCE_EXEC |
6290 SD_SHARE_CPUPOWER |
6291 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6292 if (sd->groups != sd->groups->next)
6293 return 0;
6294 }
6295
6296 /* Following flags don't use groups */
c88d5910 6297 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6298 return 0;
6299
6300 return 1;
6301}
6302
48f24c4d
IM
6303static int
6304sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6305{
6306 unsigned long cflags = sd->flags, pflags = parent->flags;
6307
6308 if (sd_degenerate(parent))
6309 return 1;
6310
758b2cdc 6311 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6312 return 0;
6313
245af2c7
SS
6314 /* Flags needing groups don't count if only 1 group in parent */
6315 if (parent->groups == parent->groups->next) {
6316 pflags &= ~(SD_LOAD_BALANCE |
6317 SD_BALANCE_NEWIDLE |
6318 SD_BALANCE_FORK |
89c4710e
SS
6319 SD_BALANCE_EXEC |
6320 SD_SHARE_CPUPOWER |
6321 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6322 if (nr_node_ids == 1)
6323 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6324 }
6325 if (~cflags & pflags)
6326 return 0;
6327
6328 return 1;
6329}
6330
c6c4927b
RR
6331static void free_rootdomain(struct root_domain *rd)
6332{
047106ad
PZ
6333 synchronize_sched();
6334
68e74568
RR
6335 cpupri_cleanup(&rd->cpupri);
6336
c6c4927b
RR
6337 free_cpumask_var(rd->rto_mask);
6338 free_cpumask_var(rd->online);
6339 free_cpumask_var(rd->span);
6340 kfree(rd);
6341}
6342
57d885fe
GH
6343static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6344{
a0490fa3 6345 struct root_domain *old_rd = NULL;
57d885fe 6346 unsigned long flags;
57d885fe 6347
05fa785c 6348 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6349
6350 if (rq->rd) {
a0490fa3 6351 old_rd = rq->rd;
57d885fe 6352
c6c4927b 6353 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6354 set_rq_offline(rq);
57d885fe 6355
c6c4927b 6356 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6357
a0490fa3
IM
6358 /*
6359 * If we dont want to free the old_rt yet then
6360 * set old_rd to NULL to skip the freeing later
6361 * in this function:
6362 */
6363 if (!atomic_dec_and_test(&old_rd->refcount))
6364 old_rd = NULL;
57d885fe
GH
6365 }
6366
6367 atomic_inc(&rd->refcount);
6368 rq->rd = rd;
6369
c6c4927b 6370 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6371 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6372 set_rq_online(rq);
57d885fe 6373
05fa785c 6374 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6375
6376 if (old_rd)
6377 free_rootdomain(old_rd);
57d885fe
GH
6378}
6379
68c38fc3 6380static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6381{
6382 memset(rd, 0, sizeof(*rd));
6383
68c38fc3 6384 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6385 goto out;
68c38fc3 6386 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6387 goto free_span;
68c38fc3 6388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6389 goto free_online;
6e0534f2 6390
68c38fc3 6391 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6392 goto free_rto_mask;
c6c4927b 6393 return 0;
6e0534f2 6394
68e74568
RR
6395free_rto_mask:
6396 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6397free_online:
6398 free_cpumask_var(rd->online);
6399free_span:
6400 free_cpumask_var(rd->span);
0c910d28 6401out:
c6c4927b 6402 return -ENOMEM;
57d885fe
GH
6403}
6404
6405static void init_defrootdomain(void)
6406{
68c38fc3 6407 init_rootdomain(&def_root_domain);
c6c4927b 6408
57d885fe
GH
6409 atomic_set(&def_root_domain.refcount, 1);
6410}
6411
dc938520 6412static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6413{
6414 struct root_domain *rd;
6415
6416 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6417 if (!rd)
6418 return NULL;
6419
68c38fc3 6420 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6421 kfree(rd);
6422 return NULL;
6423 }
57d885fe
GH
6424
6425 return rd;
6426}
6427
1da177e4 6428/*
0eab9146 6429 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6430 * hold the hotplug lock.
6431 */
0eab9146
IM
6432static void
6433cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6434{
70b97a7f 6435 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6436 struct sched_domain *tmp;
6437
669c55e9
PZ
6438 for (tmp = sd; tmp; tmp = tmp->parent)
6439 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6440
245af2c7 6441 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6442 for (tmp = sd; tmp; ) {
245af2c7
SS
6443 struct sched_domain *parent = tmp->parent;
6444 if (!parent)
6445 break;
f29c9b1c 6446
1a848870 6447 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6448 tmp->parent = parent->parent;
1a848870
SS
6449 if (parent->parent)
6450 parent->parent->child = tmp;
f29c9b1c
LZ
6451 } else
6452 tmp = tmp->parent;
245af2c7
SS
6453 }
6454
1a848870 6455 if (sd && sd_degenerate(sd)) {
245af2c7 6456 sd = sd->parent;
1a848870
SS
6457 if (sd)
6458 sd->child = NULL;
6459 }
1da177e4
LT
6460
6461 sched_domain_debug(sd, cpu);
6462
57d885fe 6463 rq_attach_root(rq, rd);
674311d5 6464 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6465}
6466
6467/* cpus with isolated domains */
dcc30a35 6468static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6469
6470/* Setup the mask of cpus configured for isolated domains */
6471static int __init isolated_cpu_setup(char *str)
6472{
bdddd296 6473 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6474 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6475 return 1;
6476}
6477
8927f494 6478__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6479
6480/*
6711cab4
SS
6481 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6482 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6483 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6484 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6485 *
6486 * init_sched_build_groups will build a circular linked list of the groups
6487 * covered by the given span, and will set each group's ->cpumask correctly,
6488 * and ->cpu_power to 0.
6489 */
a616058b 6490static void
96f874e2
RR
6491init_sched_build_groups(const struct cpumask *span,
6492 const struct cpumask *cpu_map,
6493 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6494 struct sched_group **sg,
96f874e2
RR
6495 struct cpumask *tmpmask),
6496 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6497{
6498 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6499 int i;
6500
96f874e2 6501 cpumask_clear(covered);
7c16ec58 6502
abcd083a 6503 for_each_cpu(i, span) {
6711cab4 6504 struct sched_group *sg;
7c16ec58 6505 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6506 int j;
6507
758b2cdc 6508 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6509 continue;
6510
758b2cdc 6511 cpumask_clear(sched_group_cpus(sg));
18a3885f 6512 sg->cpu_power = 0;
1da177e4 6513
abcd083a 6514 for_each_cpu(j, span) {
7c16ec58 6515 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6516 continue;
6517
96f874e2 6518 cpumask_set_cpu(j, covered);
758b2cdc 6519 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6520 }
6521 if (!first)
6522 first = sg;
6523 if (last)
6524 last->next = sg;
6525 last = sg;
6526 }
6527 last->next = first;
6528}
6529
9c1cfda2 6530#define SD_NODES_PER_DOMAIN 16
1da177e4 6531
9c1cfda2 6532#ifdef CONFIG_NUMA
198e2f18 6533
9c1cfda2
JH
6534/**
6535 * find_next_best_node - find the next node to include in a sched_domain
6536 * @node: node whose sched_domain we're building
6537 * @used_nodes: nodes already in the sched_domain
6538 *
41a2d6cf 6539 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6540 * finds the closest node not already in the @used_nodes map.
6541 *
6542 * Should use nodemask_t.
6543 */
c5f59f08 6544static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6545{
6546 int i, n, val, min_val, best_node = 0;
6547
6548 min_val = INT_MAX;
6549
076ac2af 6550 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6551 /* Start at @node */
076ac2af 6552 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6553
6554 if (!nr_cpus_node(n))
6555 continue;
6556
6557 /* Skip already used nodes */
c5f59f08 6558 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6559 continue;
6560
6561 /* Simple min distance search */
6562 val = node_distance(node, n);
6563
6564 if (val < min_val) {
6565 min_val = val;
6566 best_node = n;
6567 }
6568 }
6569
c5f59f08 6570 node_set(best_node, *used_nodes);
9c1cfda2
JH
6571 return best_node;
6572}
6573
6574/**
6575 * sched_domain_node_span - get a cpumask for a node's sched_domain
6576 * @node: node whose cpumask we're constructing
73486722 6577 * @span: resulting cpumask
9c1cfda2 6578 *
41a2d6cf 6579 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6580 * should be one that prevents unnecessary balancing, but also spreads tasks
6581 * out optimally.
6582 */
96f874e2 6583static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6584{
c5f59f08 6585 nodemask_t used_nodes;
48f24c4d 6586 int i;
9c1cfda2 6587
6ca09dfc 6588 cpumask_clear(span);
c5f59f08 6589 nodes_clear(used_nodes);
9c1cfda2 6590
6ca09dfc 6591 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6592 node_set(node, used_nodes);
9c1cfda2
JH
6593
6594 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6595 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6596
6ca09dfc 6597 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6598 }
9c1cfda2 6599}
6d6bc0ad 6600#endif /* CONFIG_NUMA */
9c1cfda2 6601
5c45bf27 6602int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6603
6c99e9ad
RR
6604/*
6605 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6606 *
6607 * ( See the the comments in include/linux/sched.h:struct sched_group
6608 * and struct sched_domain. )
6c99e9ad
RR
6609 */
6610struct static_sched_group {
6611 struct sched_group sg;
6612 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6613};
6614
6615struct static_sched_domain {
6616 struct sched_domain sd;
6617 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6618};
6619
49a02c51
AH
6620struct s_data {
6621#ifdef CONFIG_NUMA
6622 int sd_allnodes;
6623 cpumask_var_t domainspan;
6624 cpumask_var_t covered;
6625 cpumask_var_t notcovered;
6626#endif
6627 cpumask_var_t nodemask;
6628 cpumask_var_t this_sibling_map;
6629 cpumask_var_t this_core_map;
01a08546 6630 cpumask_var_t this_book_map;
49a02c51
AH
6631 cpumask_var_t send_covered;
6632 cpumask_var_t tmpmask;
6633 struct sched_group **sched_group_nodes;
6634 struct root_domain *rd;
6635};
6636
2109b99e
AH
6637enum s_alloc {
6638 sa_sched_groups = 0,
6639 sa_rootdomain,
6640 sa_tmpmask,
6641 sa_send_covered,
01a08546 6642 sa_this_book_map,
2109b99e
AH
6643 sa_this_core_map,
6644 sa_this_sibling_map,
6645 sa_nodemask,
6646 sa_sched_group_nodes,
6647#ifdef CONFIG_NUMA
6648 sa_notcovered,
6649 sa_covered,
6650 sa_domainspan,
6651#endif
6652 sa_none,
6653};
6654
9c1cfda2 6655/*
48f24c4d 6656 * SMT sched-domains:
9c1cfda2 6657 */
1da177e4 6658#ifdef CONFIG_SCHED_SMT
6c99e9ad 6659static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6660static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6661
41a2d6cf 6662static int
96f874e2
RR
6663cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6664 struct sched_group **sg, struct cpumask *unused)
1da177e4 6665{
6711cab4 6666 if (sg)
1871e52c 6667 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6668 return cpu;
6669}
6d6bc0ad 6670#endif /* CONFIG_SCHED_SMT */
1da177e4 6671
48f24c4d
IM
6672/*
6673 * multi-core sched-domains:
6674 */
1e9f28fa 6675#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6676static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6677static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6678
41a2d6cf 6679static int
96f874e2
RR
6680cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6681 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6682{
6711cab4 6683 int group;
f269893c 6684#ifdef CONFIG_SCHED_SMT
c69fc56d 6685 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6686 group = cpumask_first(mask);
f269893c
HC
6687#else
6688 group = cpu;
6689#endif
6711cab4 6690 if (sg)
6c99e9ad 6691 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6692 return group;
1e9f28fa 6693}
f269893c 6694#endif /* CONFIG_SCHED_MC */
1e9f28fa 6695
01a08546
HC
6696/*
6697 * book sched-domains:
6698 */
6699#ifdef CONFIG_SCHED_BOOK
6700static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6701static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6702
41a2d6cf 6703static int
01a08546
HC
6704cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6705 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6706{
01a08546
HC
6707 int group = cpu;
6708#ifdef CONFIG_SCHED_MC
6709 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6710 group = cpumask_first(mask);
6711#elif defined(CONFIG_SCHED_SMT)
6712 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6713 group = cpumask_first(mask);
6714#endif
6711cab4 6715 if (sg)
01a08546
HC
6716 *sg = &per_cpu(sched_group_book, group).sg;
6717 return group;
1e9f28fa 6718}
01a08546 6719#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6720
6c99e9ad
RR
6721static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6722static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6723
41a2d6cf 6724static int
96f874e2
RR
6725cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6726 struct sched_group **sg, struct cpumask *mask)
1da177e4 6727{
6711cab4 6728 int group;
01a08546
HC
6729#ifdef CONFIG_SCHED_BOOK
6730 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6731 group = cpumask_first(mask);
6732#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6733 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6734 group = cpumask_first(mask);
1e9f28fa 6735#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6736 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6737 group = cpumask_first(mask);
1da177e4 6738#else
6711cab4 6739 group = cpu;
1da177e4 6740#endif
6711cab4 6741 if (sg)
6c99e9ad 6742 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6743 return group;
1da177e4
LT
6744}
6745
6746#ifdef CONFIG_NUMA
1da177e4 6747/*
9c1cfda2
JH
6748 * The init_sched_build_groups can't handle what we want to do with node
6749 * groups, so roll our own. Now each node has its own list of groups which
6750 * gets dynamically allocated.
1da177e4 6751 */
62ea9ceb 6752static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6753static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6754
62ea9ceb 6755static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6756static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6757
96f874e2
RR
6758static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6759 struct sched_group **sg,
6760 struct cpumask *nodemask)
9c1cfda2 6761{
6711cab4
SS
6762 int group;
6763
6ca09dfc 6764 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6765 group = cpumask_first(nodemask);
6711cab4
SS
6766
6767 if (sg)
6c99e9ad 6768 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6769 return group;
1da177e4 6770}
6711cab4 6771
08069033
SS
6772static void init_numa_sched_groups_power(struct sched_group *group_head)
6773{
6774 struct sched_group *sg = group_head;
6775 int j;
6776
6777 if (!sg)
6778 return;
3a5c359a 6779 do {
758b2cdc 6780 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6781 struct sched_domain *sd;
08069033 6782
6c99e9ad 6783 sd = &per_cpu(phys_domains, j).sd;
13318a71 6784 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6785 /*
6786 * Only add "power" once for each
6787 * physical package.
6788 */
6789 continue;
6790 }
08069033 6791
18a3885f 6792 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6793 }
6794 sg = sg->next;
6795 } while (sg != group_head);
08069033 6796}
0601a88d
AH
6797
6798static int build_numa_sched_groups(struct s_data *d,
6799 const struct cpumask *cpu_map, int num)
6800{
6801 struct sched_domain *sd;
6802 struct sched_group *sg, *prev;
6803 int n, j;
6804
6805 cpumask_clear(d->covered);
6806 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6807 if (cpumask_empty(d->nodemask)) {
6808 d->sched_group_nodes[num] = NULL;
6809 goto out;
6810 }
6811
6812 sched_domain_node_span(num, d->domainspan);
6813 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6814
6815 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6816 GFP_KERNEL, num);
6817 if (!sg) {
3df0fc5b
PZ
6818 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6819 num);
0601a88d
AH
6820 return -ENOMEM;
6821 }
6822 d->sched_group_nodes[num] = sg;
6823
6824 for_each_cpu(j, d->nodemask) {
6825 sd = &per_cpu(node_domains, j).sd;
6826 sd->groups = sg;
6827 }
6828
18a3885f 6829 sg->cpu_power = 0;
0601a88d
AH
6830 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6831 sg->next = sg;
6832 cpumask_or(d->covered, d->covered, d->nodemask);
6833
6834 prev = sg;
6835 for (j = 0; j < nr_node_ids; j++) {
6836 n = (num + j) % nr_node_ids;
6837 cpumask_complement(d->notcovered, d->covered);
6838 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6839 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6840 if (cpumask_empty(d->tmpmask))
6841 break;
6842 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6843 if (cpumask_empty(d->tmpmask))
6844 continue;
6845 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6846 GFP_KERNEL, num);
6847 if (!sg) {
3df0fc5b
PZ
6848 printk(KERN_WARNING
6849 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6850 return -ENOMEM;
6851 }
18a3885f 6852 sg->cpu_power = 0;
0601a88d
AH
6853 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6854 sg->next = prev->next;
6855 cpumask_or(d->covered, d->covered, d->tmpmask);
6856 prev->next = sg;
6857 prev = sg;
6858 }
6859out:
6860 return 0;
6861}
6d6bc0ad 6862#endif /* CONFIG_NUMA */
1da177e4 6863
a616058b 6864#ifdef CONFIG_NUMA
51888ca2 6865/* Free memory allocated for various sched_group structures */
96f874e2
RR
6866static void free_sched_groups(const struct cpumask *cpu_map,
6867 struct cpumask *nodemask)
51888ca2 6868{
a616058b 6869 int cpu, i;
51888ca2 6870
abcd083a 6871 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6872 struct sched_group **sched_group_nodes
6873 = sched_group_nodes_bycpu[cpu];
6874
51888ca2
SV
6875 if (!sched_group_nodes)
6876 continue;
6877
076ac2af 6878 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6879 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6880
6ca09dfc 6881 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6882 if (cpumask_empty(nodemask))
51888ca2
SV
6883 continue;
6884
6885 if (sg == NULL)
6886 continue;
6887 sg = sg->next;
6888next_sg:
6889 oldsg = sg;
6890 sg = sg->next;
6891 kfree(oldsg);
6892 if (oldsg != sched_group_nodes[i])
6893 goto next_sg;
6894 }
6895 kfree(sched_group_nodes);
6896 sched_group_nodes_bycpu[cpu] = NULL;
6897 }
51888ca2 6898}
6d6bc0ad 6899#else /* !CONFIG_NUMA */
96f874e2
RR
6900static void free_sched_groups(const struct cpumask *cpu_map,
6901 struct cpumask *nodemask)
a616058b
SS
6902{
6903}
6d6bc0ad 6904#endif /* CONFIG_NUMA */
51888ca2 6905
89c4710e
SS
6906/*
6907 * Initialize sched groups cpu_power.
6908 *
6909 * cpu_power indicates the capacity of sched group, which is used while
6910 * distributing the load between different sched groups in a sched domain.
6911 * Typically cpu_power for all the groups in a sched domain will be same unless
6912 * there are asymmetries in the topology. If there are asymmetries, group
6913 * having more cpu_power will pickup more load compared to the group having
6914 * less cpu_power.
89c4710e
SS
6915 */
6916static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6917{
6918 struct sched_domain *child;
6919 struct sched_group *group;
f93e65c1
PZ
6920 long power;
6921 int weight;
89c4710e
SS
6922
6923 WARN_ON(!sd || !sd->groups);
6924
13318a71 6925 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6926 return;
6927
aae6d3dd
SS
6928 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6929
89c4710e
SS
6930 child = sd->child;
6931
18a3885f 6932 sd->groups->cpu_power = 0;
5517d86b 6933
f93e65c1
PZ
6934 if (!child) {
6935 power = SCHED_LOAD_SCALE;
6936 weight = cpumask_weight(sched_domain_span(sd));
6937 /*
6938 * SMT siblings share the power of a single core.
a52bfd73
PZ
6939 * Usually multiple threads get a better yield out of
6940 * that one core than a single thread would have,
6941 * reflect that in sd->smt_gain.
f93e65c1 6942 */
a52bfd73
PZ
6943 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6944 power *= sd->smt_gain;
f93e65c1 6945 power /= weight;
a52bfd73
PZ
6946 power >>= SCHED_LOAD_SHIFT;
6947 }
18a3885f 6948 sd->groups->cpu_power += power;
89c4710e
SS
6949 return;
6950 }
6951
89c4710e 6952 /*
f93e65c1 6953 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6954 */
6955 group = child->groups;
6956 do {
18a3885f 6957 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6958 group = group->next;
6959 } while (group != child->groups);
6960}
6961
7c16ec58
MT
6962/*
6963 * Initializers for schedule domains
6964 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6965 */
6966
a5d8c348
IM
6967#ifdef CONFIG_SCHED_DEBUG
6968# define SD_INIT_NAME(sd, type) sd->name = #type
6969#else
6970# define SD_INIT_NAME(sd, type) do { } while (0)
6971#endif
6972
7c16ec58 6973#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6974
7c16ec58
MT
6975#define SD_INIT_FUNC(type) \
6976static noinline void sd_init_##type(struct sched_domain *sd) \
6977{ \
6978 memset(sd, 0, sizeof(*sd)); \
6979 *sd = SD_##type##_INIT; \
1d3504fc 6980 sd->level = SD_LV_##type; \
a5d8c348 6981 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6982}
6983
6984SD_INIT_FUNC(CPU)
6985#ifdef CONFIG_NUMA
6986 SD_INIT_FUNC(ALLNODES)
6987 SD_INIT_FUNC(NODE)
6988#endif
6989#ifdef CONFIG_SCHED_SMT
6990 SD_INIT_FUNC(SIBLING)
6991#endif
6992#ifdef CONFIG_SCHED_MC
6993 SD_INIT_FUNC(MC)
6994#endif
01a08546
HC
6995#ifdef CONFIG_SCHED_BOOK
6996 SD_INIT_FUNC(BOOK)
6997#endif
7c16ec58 6998
1d3504fc
HS
6999static int default_relax_domain_level = -1;
7000
7001static int __init setup_relax_domain_level(char *str)
7002{
30e0e178
LZ
7003 unsigned long val;
7004
7005 val = simple_strtoul(str, NULL, 0);
7006 if (val < SD_LV_MAX)
7007 default_relax_domain_level = val;
7008
1d3504fc
HS
7009 return 1;
7010}
7011__setup("relax_domain_level=", setup_relax_domain_level);
7012
7013static void set_domain_attribute(struct sched_domain *sd,
7014 struct sched_domain_attr *attr)
7015{
7016 int request;
7017
7018 if (!attr || attr->relax_domain_level < 0) {
7019 if (default_relax_domain_level < 0)
7020 return;
7021 else
7022 request = default_relax_domain_level;
7023 } else
7024 request = attr->relax_domain_level;
7025 if (request < sd->level) {
7026 /* turn off idle balance on this domain */
c88d5910 7027 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7028 } else {
7029 /* turn on idle balance on this domain */
c88d5910 7030 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7031 }
7032}
7033
2109b99e
AH
7034static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7035 const struct cpumask *cpu_map)
7036{
7037 switch (what) {
7038 case sa_sched_groups:
7039 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7040 d->sched_group_nodes = NULL;
7041 case sa_rootdomain:
7042 free_rootdomain(d->rd); /* fall through */
7043 case sa_tmpmask:
7044 free_cpumask_var(d->tmpmask); /* fall through */
7045 case sa_send_covered:
7046 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7047 case sa_this_book_map:
7048 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7049 case sa_this_core_map:
7050 free_cpumask_var(d->this_core_map); /* fall through */
7051 case sa_this_sibling_map:
7052 free_cpumask_var(d->this_sibling_map); /* fall through */
7053 case sa_nodemask:
7054 free_cpumask_var(d->nodemask); /* fall through */
7055 case sa_sched_group_nodes:
d1b55138 7056#ifdef CONFIG_NUMA
2109b99e
AH
7057 kfree(d->sched_group_nodes); /* fall through */
7058 case sa_notcovered:
7059 free_cpumask_var(d->notcovered); /* fall through */
7060 case sa_covered:
7061 free_cpumask_var(d->covered); /* fall through */
7062 case sa_domainspan:
7063 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7064#endif
2109b99e
AH
7065 case sa_none:
7066 break;
7067 }
7068}
3404c8d9 7069
2109b99e
AH
7070static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7071 const struct cpumask *cpu_map)
7072{
3404c8d9 7073#ifdef CONFIG_NUMA
2109b99e
AH
7074 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7075 return sa_none;
7076 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7077 return sa_domainspan;
7078 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7079 return sa_covered;
7080 /* Allocate the per-node list of sched groups */
7081 d->sched_group_nodes = kcalloc(nr_node_ids,
7082 sizeof(struct sched_group *), GFP_KERNEL);
7083 if (!d->sched_group_nodes) {
3df0fc5b 7084 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7085 return sa_notcovered;
d1b55138 7086 }
2109b99e 7087 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7088#endif
2109b99e
AH
7089 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7090 return sa_sched_group_nodes;
7091 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7092 return sa_nodemask;
7093 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7094 return sa_this_sibling_map;
01a08546 7095 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7096 return sa_this_core_map;
01a08546
HC
7097 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7098 return sa_this_book_map;
2109b99e
AH
7099 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7100 return sa_send_covered;
7101 d->rd = alloc_rootdomain();
7102 if (!d->rd) {
3df0fc5b 7103 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7104 return sa_tmpmask;
57d885fe 7105 }
2109b99e
AH
7106 return sa_rootdomain;
7107}
57d885fe 7108
7f4588f3
AH
7109static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7110 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7111{
7112 struct sched_domain *sd = NULL;
7c16ec58 7113#ifdef CONFIG_NUMA
7f4588f3 7114 struct sched_domain *parent;
1da177e4 7115
7f4588f3
AH
7116 d->sd_allnodes = 0;
7117 if (cpumask_weight(cpu_map) >
7118 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7119 sd = &per_cpu(allnodes_domains, i).sd;
7120 SD_INIT(sd, ALLNODES);
1d3504fc 7121 set_domain_attribute(sd, attr);
7f4588f3
AH
7122 cpumask_copy(sched_domain_span(sd), cpu_map);
7123 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7124 d->sd_allnodes = 1;
7125 }
7126 parent = sd;
7127
7128 sd = &per_cpu(node_domains, i).sd;
7129 SD_INIT(sd, NODE);
7130 set_domain_attribute(sd, attr);
7131 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7132 sd->parent = parent;
7133 if (parent)
7134 parent->child = sd;
7135 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7136#endif
7f4588f3
AH
7137 return sd;
7138}
1da177e4 7139
87cce662
AH
7140static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7141 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7142 struct sched_domain *parent, int i)
7143{
7144 struct sched_domain *sd;
7145 sd = &per_cpu(phys_domains, i).sd;
7146 SD_INIT(sd, CPU);
7147 set_domain_attribute(sd, attr);
7148 cpumask_copy(sched_domain_span(sd), d->nodemask);
7149 sd->parent = parent;
7150 if (parent)
7151 parent->child = sd;
7152 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7153 return sd;
7154}
1da177e4 7155
01a08546
HC
7156static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7157 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7158 struct sched_domain *parent, int i)
7159{
7160 struct sched_domain *sd = parent;
7161#ifdef CONFIG_SCHED_BOOK
7162 sd = &per_cpu(book_domains, i).sd;
7163 SD_INIT(sd, BOOK);
7164 set_domain_attribute(sd, attr);
7165 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7166 sd->parent = parent;
7167 parent->child = sd;
7168 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7169#endif
7170 return sd;
7171}
7172
410c4081
AH
7173static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7174 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7175 struct sched_domain *parent, int i)
7176{
7177 struct sched_domain *sd = parent;
1e9f28fa 7178#ifdef CONFIG_SCHED_MC
410c4081
AH
7179 sd = &per_cpu(core_domains, i).sd;
7180 SD_INIT(sd, MC);
7181 set_domain_attribute(sd, attr);
7182 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7183 sd->parent = parent;
7184 parent->child = sd;
7185 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7186#endif
410c4081
AH
7187 return sd;
7188}
1e9f28fa 7189
d8173535
AH
7190static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7191 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7192 struct sched_domain *parent, int i)
7193{
7194 struct sched_domain *sd = parent;
1da177e4 7195#ifdef CONFIG_SCHED_SMT
d8173535
AH
7196 sd = &per_cpu(cpu_domains, i).sd;
7197 SD_INIT(sd, SIBLING);
7198 set_domain_attribute(sd, attr);
7199 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7200 sd->parent = parent;
7201 parent->child = sd;
7202 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7203#endif
d8173535
AH
7204 return sd;
7205}
1da177e4 7206
0e8e85c9
AH
7207static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7208 const struct cpumask *cpu_map, int cpu)
7209{
7210 switch (l) {
1da177e4 7211#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7212 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7213 cpumask_and(d->this_sibling_map, cpu_map,
7214 topology_thread_cpumask(cpu));
7215 if (cpu == cpumask_first(d->this_sibling_map))
7216 init_sched_build_groups(d->this_sibling_map, cpu_map,
7217 &cpu_to_cpu_group,
7218 d->send_covered, d->tmpmask);
7219 break;
1da177e4 7220#endif
1e9f28fa 7221#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7222 case SD_LV_MC: /* set up multi-core groups */
7223 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7224 if (cpu == cpumask_first(d->this_core_map))
7225 init_sched_build_groups(d->this_core_map, cpu_map,
7226 &cpu_to_core_group,
7227 d->send_covered, d->tmpmask);
7228 break;
01a08546
HC
7229#endif
7230#ifdef CONFIG_SCHED_BOOK
7231 case SD_LV_BOOK: /* set up book groups */
7232 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7233 if (cpu == cpumask_first(d->this_book_map))
7234 init_sched_build_groups(d->this_book_map, cpu_map,
7235 &cpu_to_book_group,
7236 d->send_covered, d->tmpmask);
7237 break;
1e9f28fa 7238#endif
86548096
AH
7239 case SD_LV_CPU: /* set up physical groups */
7240 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7241 if (!cpumask_empty(d->nodemask))
7242 init_sched_build_groups(d->nodemask, cpu_map,
7243 &cpu_to_phys_group,
7244 d->send_covered, d->tmpmask);
7245 break;
1da177e4 7246#ifdef CONFIG_NUMA
de616e36
AH
7247 case SD_LV_ALLNODES:
7248 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7249 d->send_covered, d->tmpmask);
7250 break;
7251#endif
0e8e85c9
AH
7252 default:
7253 break;
7c16ec58 7254 }
0e8e85c9 7255}
9c1cfda2 7256
2109b99e
AH
7257/*
7258 * Build sched domains for a given set of cpus and attach the sched domains
7259 * to the individual cpus
7260 */
7261static int __build_sched_domains(const struct cpumask *cpu_map,
7262 struct sched_domain_attr *attr)
7263{
7264 enum s_alloc alloc_state = sa_none;
7265 struct s_data d;
294b0c96 7266 struct sched_domain *sd;
2109b99e 7267 int i;
7c16ec58 7268#ifdef CONFIG_NUMA
2109b99e 7269 d.sd_allnodes = 0;
7c16ec58 7270#endif
9c1cfda2 7271
2109b99e
AH
7272 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7273 if (alloc_state != sa_rootdomain)
7274 goto error;
7275 alloc_state = sa_sched_groups;
9c1cfda2 7276
1da177e4 7277 /*
1a20ff27 7278 * Set up domains for cpus specified by the cpu_map.
1da177e4 7279 */
abcd083a 7280 for_each_cpu(i, cpu_map) {
49a02c51
AH
7281 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7282 cpu_map);
9761eea8 7283
7f4588f3 7284 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7285 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7286 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7287 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7288 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7289 }
9c1cfda2 7290
abcd083a 7291 for_each_cpu(i, cpu_map) {
0e8e85c9 7292 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7293 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7294 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7295 }
9c1cfda2 7296
1da177e4 7297 /* Set up physical groups */
86548096
AH
7298 for (i = 0; i < nr_node_ids; i++)
7299 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7300
1da177e4
LT
7301#ifdef CONFIG_NUMA
7302 /* Set up node groups */
de616e36
AH
7303 if (d.sd_allnodes)
7304 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7305
0601a88d
AH
7306 for (i = 0; i < nr_node_ids; i++)
7307 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7308 goto error;
1da177e4
LT
7309#endif
7310
7311 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7312#ifdef CONFIG_SCHED_SMT
abcd083a 7313 for_each_cpu(i, cpu_map) {
294b0c96 7314 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7315 init_sched_groups_power(i, sd);
5c45bf27 7316 }
1da177e4 7317#endif
1e9f28fa 7318#ifdef CONFIG_SCHED_MC
abcd083a 7319 for_each_cpu(i, cpu_map) {
294b0c96 7320 sd = &per_cpu(core_domains, i).sd;
89c4710e 7321 init_sched_groups_power(i, sd);
5c45bf27
SS
7322 }
7323#endif
01a08546
HC
7324#ifdef CONFIG_SCHED_BOOK
7325 for_each_cpu(i, cpu_map) {
7326 sd = &per_cpu(book_domains, i).sd;
7327 init_sched_groups_power(i, sd);
7328 }
7329#endif
1e9f28fa 7330
abcd083a 7331 for_each_cpu(i, cpu_map) {
294b0c96 7332 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7333 init_sched_groups_power(i, sd);
1da177e4
LT
7334 }
7335
9c1cfda2 7336#ifdef CONFIG_NUMA
076ac2af 7337 for (i = 0; i < nr_node_ids; i++)
49a02c51 7338 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7339
49a02c51 7340 if (d.sd_allnodes) {
6711cab4 7341 struct sched_group *sg;
f712c0c7 7342
96f874e2 7343 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7344 d.tmpmask);
f712c0c7
SS
7345 init_numa_sched_groups_power(sg);
7346 }
9c1cfda2
JH
7347#endif
7348
1da177e4 7349 /* Attach the domains */
abcd083a 7350 for_each_cpu(i, cpu_map) {
1da177e4 7351#ifdef CONFIG_SCHED_SMT
6c99e9ad 7352 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7353#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7354 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7355#elif defined(CONFIG_SCHED_BOOK)
7356 sd = &per_cpu(book_domains, i).sd;
1da177e4 7357#else
6c99e9ad 7358 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7359#endif
49a02c51 7360 cpu_attach_domain(sd, d.rd, i);
1da177e4 7361 }
51888ca2 7362
2109b99e
AH
7363 d.sched_group_nodes = NULL; /* don't free this we still need it */
7364 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7365 return 0;
51888ca2 7366
51888ca2 7367error:
2109b99e
AH
7368 __free_domain_allocs(&d, alloc_state, cpu_map);
7369 return -ENOMEM;
1da177e4 7370}
029190c5 7371
96f874e2 7372static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7373{
7374 return __build_sched_domains(cpu_map, NULL);
7375}
7376
acc3f5d7 7377static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7378static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7379static struct sched_domain_attr *dattr_cur;
7380 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7381
7382/*
7383 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7384 * cpumask) fails, then fallback to a single sched domain,
7385 * as determined by the single cpumask fallback_doms.
029190c5 7386 */
4212823f 7387static cpumask_var_t fallback_doms;
029190c5 7388
ee79d1bd
HC
7389/*
7390 * arch_update_cpu_topology lets virtualized architectures update the
7391 * cpu core maps. It is supposed to return 1 if the topology changed
7392 * or 0 if it stayed the same.
7393 */
7394int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7395{
ee79d1bd 7396 return 0;
22e52b07
HC
7397}
7398
acc3f5d7
RR
7399cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7400{
7401 int i;
7402 cpumask_var_t *doms;
7403
7404 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7405 if (!doms)
7406 return NULL;
7407 for (i = 0; i < ndoms; i++) {
7408 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7409 free_sched_domains(doms, i);
7410 return NULL;
7411 }
7412 }
7413 return doms;
7414}
7415
7416void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7417{
7418 unsigned int i;
7419 for (i = 0; i < ndoms; i++)
7420 free_cpumask_var(doms[i]);
7421 kfree(doms);
7422}
7423
1a20ff27 7424/*
41a2d6cf 7425 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7426 * For now this just excludes isolated cpus, but could be used to
7427 * exclude other special cases in the future.
1a20ff27 7428 */
96f874e2 7429static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7430{
7378547f
MM
7431 int err;
7432
22e52b07 7433 arch_update_cpu_topology();
029190c5 7434 ndoms_cur = 1;
acc3f5d7 7435 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7436 if (!doms_cur)
acc3f5d7
RR
7437 doms_cur = &fallback_doms;
7438 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7439 dattr_cur = NULL;
acc3f5d7 7440 err = build_sched_domains(doms_cur[0]);
6382bc90 7441 register_sched_domain_sysctl();
7378547f
MM
7442
7443 return err;
1a20ff27
DG
7444}
7445
96f874e2
RR
7446static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7447 struct cpumask *tmpmask)
1da177e4 7448{
7c16ec58 7449 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7450}
1da177e4 7451
1a20ff27
DG
7452/*
7453 * Detach sched domains from a group of cpus specified in cpu_map
7454 * These cpus will now be attached to the NULL domain
7455 */
96f874e2 7456static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7457{
96f874e2
RR
7458 /* Save because hotplug lock held. */
7459 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7460 int i;
7461
abcd083a 7462 for_each_cpu(i, cpu_map)
57d885fe 7463 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7464 synchronize_sched();
96f874e2 7465 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7466}
7467
1d3504fc
HS
7468/* handle null as "default" */
7469static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7470 struct sched_domain_attr *new, int idx_new)
7471{
7472 struct sched_domain_attr tmp;
7473
7474 /* fast path */
7475 if (!new && !cur)
7476 return 1;
7477
7478 tmp = SD_ATTR_INIT;
7479 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7480 new ? (new + idx_new) : &tmp,
7481 sizeof(struct sched_domain_attr));
7482}
7483
029190c5
PJ
7484/*
7485 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7486 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7487 * doms_new[] to the current sched domain partitioning, doms_cur[].
7488 * It destroys each deleted domain and builds each new domain.
7489 *
acc3f5d7 7490 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7491 * The masks don't intersect (don't overlap.) We should setup one
7492 * sched domain for each mask. CPUs not in any of the cpumasks will
7493 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7494 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7495 * it as it is.
7496 *
acc3f5d7
RR
7497 * The passed in 'doms_new' should be allocated using
7498 * alloc_sched_domains. This routine takes ownership of it and will
7499 * free_sched_domains it when done with it. If the caller failed the
7500 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7501 * and partition_sched_domains() will fallback to the single partition
7502 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7503 *
96f874e2 7504 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7505 * ndoms_new == 0 is a special case for destroying existing domains,
7506 * and it will not create the default domain.
dfb512ec 7507 *
029190c5
PJ
7508 * Call with hotplug lock held
7509 */
acc3f5d7 7510void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7511 struct sched_domain_attr *dattr_new)
029190c5 7512{
dfb512ec 7513 int i, j, n;
d65bd5ec 7514 int new_topology;
029190c5 7515
712555ee 7516 mutex_lock(&sched_domains_mutex);
a1835615 7517
7378547f
MM
7518 /* always unregister in case we don't destroy any domains */
7519 unregister_sched_domain_sysctl();
7520
d65bd5ec
HC
7521 /* Let architecture update cpu core mappings. */
7522 new_topology = arch_update_cpu_topology();
7523
dfb512ec 7524 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7525
7526 /* Destroy deleted domains */
7527 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7528 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7529 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7530 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7531 goto match1;
7532 }
7533 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7534 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7535match1:
7536 ;
7537 }
7538
e761b772
MK
7539 if (doms_new == NULL) {
7540 ndoms_cur = 0;
acc3f5d7 7541 doms_new = &fallback_doms;
6ad4c188 7542 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7543 WARN_ON_ONCE(dattr_new);
e761b772
MK
7544 }
7545
029190c5
PJ
7546 /* Build new domains */
7547 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7548 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7549 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7550 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7551 goto match2;
7552 }
7553 /* no match - add a new doms_new */
acc3f5d7 7554 __build_sched_domains(doms_new[i],
1d3504fc 7555 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7556match2:
7557 ;
7558 }
7559
7560 /* Remember the new sched domains */
acc3f5d7
RR
7561 if (doms_cur != &fallback_doms)
7562 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7563 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7564 doms_cur = doms_new;
1d3504fc 7565 dattr_cur = dattr_new;
029190c5 7566 ndoms_cur = ndoms_new;
7378547f
MM
7567
7568 register_sched_domain_sysctl();
a1835615 7569
712555ee 7570 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7571}
7572
5c45bf27 7573#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7574static void arch_reinit_sched_domains(void)
5c45bf27 7575{
95402b38 7576 get_online_cpus();
dfb512ec
MK
7577
7578 /* Destroy domains first to force the rebuild */
7579 partition_sched_domains(0, NULL, NULL);
7580
e761b772 7581 rebuild_sched_domains();
95402b38 7582 put_online_cpus();
5c45bf27
SS
7583}
7584
7585static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7586{
afb8a9b7 7587 unsigned int level = 0;
5c45bf27 7588
afb8a9b7
GS
7589 if (sscanf(buf, "%u", &level) != 1)
7590 return -EINVAL;
7591
7592 /*
7593 * level is always be positive so don't check for
7594 * level < POWERSAVINGS_BALANCE_NONE which is 0
7595 * What happens on 0 or 1 byte write,
7596 * need to check for count as well?
7597 */
7598
7599 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7600 return -EINVAL;
7601
7602 if (smt)
afb8a9b7 7603 sched_smt_power_savings = level;
5c45bf27 7604 else
afb8a9b7 7605 sched_mc_power_savings = level;
5c45bf27 7606
c70f22d2 7607 arch_reinit_sched_domains();
5c45bf27 7608
c70f22d2 7609 return count;
5c45bf27
SS
7610}
7611
5c45bf27 7612#ifdef CONFIG_SCHED_MC
f718cd4a 7613static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7614 struct sysdev_class_attribute *attr,
f718cd4a 7615 char *page)
5c45bf27
SS
7616{
7617 return sprintf(page, "%u\n", sched_mc_power_savings);
7618}
f718cd4a 7619static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7620 struct sysdev_class_attribute *attr,
48f24c4d 7621 const char *buf, size_t count)
5c45bf27
SS
7622{
7623 return sched_power_savings_store(buf, count, 0);
7624}
f718cd4a
AK
7625static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7626 sched_mc_power_savings_show,
7627 sched_mc_power_savings_store);
5c45bf27
SS
7628#endif
7629
7630#ifdef CONFIG_SCHED_SMT
f718cd4a 7631static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7632 struct sysdev_class_attribute *attr,
f718cd4a 7633 char *page)
5c45bf27
SS
7634{
7635 return sprintf(page, "%u\n", sched_smt_power_savings);
7636}
f718cd4a 7637static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7638 struct sysdev_class_attribute *attr,
48f24c4d 7639 const char *buf, size_t count)
5c45bf27
SS
7640{
7641 return sched_power_savings_store(buf, count, 1);
7642}
f718cd4a
AK
7643static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7644 sched_smt_power_savings_show,
6707de00
AB
7645 sched_smt_power_savings_store);
7646#endif
7647
39aac648 7648int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7649{
7650 int err = 0;
7651
7652#ifdef CONFIG_SCHED_SMT
7653 if (smt_capable())
7654 err = sysfs_create_file(&cls->kset.kobj,
7655 &attr_sched_smt_power_savings.attr);
7656#endif
7657#ifdef CONFIG_SCHED_MC
7658 if (!err && mc_capable())
7659 err = sysfs_create_file(&cls->kset.kobj,
7660 &attr_sched_mc_power_savings.attr);
7661#endif
7662 return err;
7663}
6d6bc0ad 7664#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7665
1da177e4 7666/*
3a101d05
TH
7667 * Update cpusets according to cpu_active mask. If cpusets are
7668 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7669 * around partition_sched_domains().
1da177e4 7670 */
0b2e918a
TH
7671static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7672 void *hcpu)
e761b772 7673{
3a101d05 7674 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7675 case CPU_ONLINE:
6ad4c188 7676 case CPU_DOWN_FAILED:
3a101d05 7677 cpuset_update_active_cpus();
e761b772 7678 return NOTIFY_OK;
3a101d05
TH
7679 default:
7680 return NOTIFY_DONE;
7681 }
7682}
e761b772 7683
0b2e918a
TH
7684static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7685 void *hcpu)
3a101d05
TH
7686{
7687 switch (action & ~CPU_TASKS_FROZEN) {
7688 case CPU_DOWN_PREPARE:
7689 cpuset_update_active_cpus();
7690 return NOTIFY_OK;
e761b772
MK
7691 default:
7692 return NOTIFY_DONE;
7693 }
7694}
e761b772
MK
7695
7696static int update_runtime(struct notifier_block *nfb,
7697 unsigned long action, void *hcpu)
1da177e4 7698{
7def2be1
PZ
7699 int cpu = (int)(long)hcpu;
7700
1da177e4 7701 switch (action) {
1da177e4 7702 case CPU_DOWN_PREPARE:
8bb78442 7703 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7704 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7705 return NOTIFY_OK;
7706
1da177e4 7707 case CPU_DOWN_FAILED:
8bb78442 7708 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7709 case CPU_ONLINE:
8bb78442 7710 case CPU_ONLINE_FROZEN:
7def2be1 7711 enable_runtime(cpu_rq(cpu));
e761b772
MK
7712 return NOTIFY_OK;
7713
1da177e4
LT
7714 default:
7715 return NOTIFY_DONE;
7716 }
1da177e4 7717}
1da177e4
LT
7718
7719void __init sched_init_smp(void)
7720{
dcc30a35
RR
7721 cpumask_var_t non_isolated_cpus;
7722
7723 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7724 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7725
434d53b0
MT
7726#if defined(CONFIG_NUMA)
7727 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7728 GFP_KERNEL);
7729 BUG_ON(sched_group_nodes_bycpu == NULL);
7730#endif
95402b38 7731 get_online_cpus();
712555ee 7732 mutex_lock(&sched_domains_mutex);
6ad4c188 7733 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7734 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7735 if (cpumask_empty(non_isolated_cpus))
7736 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7737 mutex_unlock(&sched_domains_mutex);
95402b38 7738 put_online_cpus();
e761b772 7739
3a101d05
TH
7740 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7741 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7742
7743 /* RT runtime code needs to handle some hotplug events */
7744 hotcpu_notifier(update_runtime, 0);
7745
b328ca18 7746 init_hrtick();
5c1e1767
NP
7747
7748 /* Move init over to a non-isolated CPU */
dcc30a35 7749 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7750 BUG();
19978ca6 7751 sched_init_granularity();
dcc30a35 7752 free_cpumask_var(non_isolated_cpus);
4212823f 7753
0e3900e6 7754 init_sched_rt_class();
1da177e4
LT
7755}
7756#else
7757void __init sched_init_smp(void)
7758{
19978ca6 7759 sched_init_granularity();
1da177e4
LT
7760}
7761#endif /* CONFIG_SMP */
7762
cd1bb94b
AB
7763const_debug unsigned int sysctl_timer_migration = 1;
7764
1da177e4
LT
7765int in_sched_functions(unsigned long addr)
7766{
1da177e4
LT
7767 return in_lock_functions(addr) ||
7768 (addr >= (unsigned long)__sched_text_start
7769 && addr < (unsigned long)__sched_text_end);
7770}
7771
a9957449 7772static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7773{
7774 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7775 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7776#ifdef CONFIG_FAIR_GROUP_SCHED
7777 cfs_rq->rq = rq;
7778#endif
67e9fb2a 7779 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7780}
7781
fa85ae24
PZ
7782static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7783{
7784 struct rt_prio_array *array;
7785 int i;
7786
7787 array = &rt_rq->active;
7788 for (i = 0; i < MAX_RT_PRIO; i++) {
7789 INIT_LIST_HEAD(array->queue + i);
7790 __clear_bit(i, array->bitmap);
7791 }
7792 /* delimiter for bitsearch: */
7793 __set_bit(MAX_RT_PRIO, array->bitmap);
7794
052f1dc7 7795#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7796 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7797#ifdef CONFIG_SMP
e864c499 7798 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7799#endif
48d5e258 7800#endif
fa85ae24
PZ
7801#ifdef CONFIG_SMP
7802 rt_rq->rt_nr_migratory = 0;
fa85ae24 7803 rt_rq->overloaded = 0;
05fa785c 7804 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7805#endif
7806
7807 rt_rq->rt_time = 0;
7808 rt_rq->rt_throttled = 0;
ac086bc2 7809 rt_rq->rt_runtime = 0;
0986b11b 7810 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7811
052f1dc7 7812#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7813 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7814 rt_rq->rq = rq;
7815#endif
fa85ae24
PZ
7816}
7817
6f505b16 7818#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7819static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7820 struct sched_entity *se, int cpu,
ec7dc8ac 7821 struct sched_entity *parent)
6f505b16 7822{
ec7dc8ac 7823 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7824 tg->cfs_rq[cpu] = cfs_rq;
7825 init_cfs_rq(cfs_rq, rq);
7826 cfs_rq->tg = tg;
6f505b16
PZ
7827
7828 tg->se[cpu] = se;
07e06b01 7829 /* se could be NULL for root_task_group */
354d60c2
DG
7830 if (!se)
7831 return;
7832
ec7dc8ac
DG
7833 if (!parent)
7834 se->cfs_rq = &rq->cfs;
7835 else
7836 se->cfs_rq = parent->my_q;
7837
6f505b16 7838 se->my_q = cfs_rq;
9437178f 7839 update_load_set(&se->load, 0);
ec7dc8ac 7840 se->parent = parent;
6f505b16 7841}
052f1dc7 7842#endif
6f505b16 7843
052f1dc7 7844#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7845static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7846 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7847 struct sched_rt_entity *parent)
6f505b16 7848{
ec7dc8ac
DG
7849 struct rq *rq = cpu_rq(cpu);
7850
6f505b16
PZ
7851 tg->rt_rq[cpu] = rt_rq;
7852 init_rt_rq(rt_rq, rq);
7853 rt_rq->tg = tg;
ac086bc2 7854 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7855
7856 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7857 if (!rt_se)
7858 return;
7859
ec7dc8ac
DG
7860 if (!parent)
7861 rt_se->rt_rq = &rq->rt;
7862 else
7863 rt_se->rt_rq = parent->my_q;
7864
6f505b16 7865 rt_se->my_q = rt_rq;
ec7dc8ac 7866 rt_se->parent = parent;
6f505b16
PZ
7867 INIT_LIST_HEAD(&rt_se->run_list);
7868}
7869#endif
7870
1da177e4
LT
7871void __init sched_init(void)
7872{
dd41f596 7873 int i, j;
434d53b0
MT
7874 unsigned long alloc_size = 0, ptr;
7875
7876#ifdef CONFIG_FAIR_GROUP_SCHED
7877 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7878#endif
7879#ifdef CONFIG_RT_GROUP_SCHED
7880 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7881#endif
df7c8e84 7882#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7883 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7884#endif
434d53b0 7885 if (alloc_size) {
36b7b6d4 7886 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7887
7888#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7889 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7890 ptr += nr_cpu_ids * sizeof(void **);
7891
07e06b01 7892 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7893 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7894
6d6bc0ad 7895#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7896#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7897 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7898 ptr += nr_cpu_ids * sizeof(void **);
7899
07e06b01 7900 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7901 ptr += nr_cpu_ids * sizeof(void **);
7902
6d6bc0ad 7903#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7904#ifdef CONFIG_CPUMASK_OFFSTACK
7905 for_each_possible_cpu(i) {
7906 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7907 ptr += cpumask_size();
7908 }
7909#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7910 }
dd41f596 7911
57d885fe
GH
7912#ifdef CONFIG_SMP
7913 init_defrootdomain();
7914#endif
7915
d0b27fa7
PZ
7916 init_rt_bandwidth(&def_rt_bandwidth,
7917 global_rt_period(), global_rt_runtime());
7918
7919#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7920 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7921 global_rt_period(), global_rt_runtime());
6d6bc0ad 7922#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7923
7c941438 7924#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7925 list_add(&root_task_group.list, &task_groups);
7926 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7927 autogroup_init(&init_task);
7c941438 7928#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7929
0a945022 7930 for_each_possible_cpu(i) {
70b97a7f 7931 struct rq *rq;
1da177e4
LT
7932
7933 rq = cpu_rq(i);
05fa785c 7934 raw_spin_lock_init(&rq->lock);
7897986b 7935 rq->nr_running = 0;
dce48a84
TG
7936 rq->calc_load_active = 0;
7937 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7938 init_cfs_rq(&rq->cfs, rq);
6f505b16 7939 init_rt_rq(&rq->rt, rq);
dd41f596 7940#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7941 root_task_group.shares = root_task_group_load;
6f505b16 7942 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7943 /*
07e06b01 7944 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7945 *
7946 * In case of task-groups formed thr' the cgroup filesystem, it
7947 * gets 100% of the cpu resources in the system. This overall
7948 * system cpu resource is divided among the tasks of
07e06b01 7949 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7950 * based on each entity's (task or task-group's) weight
7951 * (se->load.weight).
7952 *
07e06b01 7953 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7954 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7955 * then A0's share of the cpu resource is:
7956 *
0d905bca 7957 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7958 *
07e06b01
YZ
7959 * We achieve this by letting root_task_group's tasks sit
7960 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7961 */
07e06b01 7962 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7963#endif /* CONFIG_FAIR_GROUP_SCHED */
7964
7965 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7966#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7967 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7968 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7969#endif
1da177e4 7970
dd41f596
IM
7971 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7972 rq->cpu_load[j] = 0;
fdf3e95d
VP
7973
7974 rq->last_load_update_tick = jiffies;
7975
1da177e4 7976#ifdef CONFIG_SMP
41c7ce9a 7977 rq->sd = NULL;
57d885fe 7978 rq->rd = NULL;
e51fd5e2 7979 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7980 rq->post_schedule = 0;
1da177e4 7981 rq->active_balance = 0;
dd41f596 7982 rq->next_balance = jiffies;
1da177e4 7983 rq->push_cpu = 0;
0a2966b4 7984 rq->cpu = i;
1f11eb6a 7985 rq->online = 0;
eae0c9df
MG
7986 rq->idle_stamp = 0;
7987 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7988 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7989#ifdef CONFIG_NO_HZ
7990 rq->nohz_balance_kick = 0;
7991 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7992#endif
1da177e4 7993#endif
8f4d37ec 7994 init_rq_hrtick(rq);
1da177e4 7995 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7996 }
7997
2dd73a4f 7998 set_load_weight(&init_task);
b50f60ce 7999
e107be36
AK
8000#ifdef CONFIG_PREEMPT_NOTIFIERS
8001 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8002#endif
8003
c9819f45 8004#ifdef CONFIG_SMP
962cf36c 8005 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8006#endif
8007
b50f60ce 8008#ifdef CONFIG_RT_MUTEXES
1d615482 8009 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8010#endif
8011
1da177e4
LT
8012 /*
8013 * The boot idle thread does lazy MMU switching as well:
8014 */
8015 atomic_inc(&init_mm.mm_count);
8016 enter_lazy_tlb(&init_mm, current);
8017
8018 /*
8019 * Make us the idle thread. Technically, schedule() should not be
8020 * called from this thread, however somewhere below it might be,
8021 * but because we are the idle thread, we just pick up running again
8022 * when this runqueue becomes "idle".
8023 */
8024 init_idle(current, smp_processor_id());
dce48a84
TG
8025
8026 calc_load_update = jiffies + LOAD_FREQ;
8027
dd41f596
IM
8028 /*
8029 * During early bootup we pretend to be a normal task:
8030 */
8031 current->sched_class = &fair_sched_class;
6892b75e 8032
6a7b3dc3 8033 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8034 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8035#ifdef CONFIG_SMP
7d1e6a9b 8036#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8037 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8038 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8039 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8040 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8041 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8042#endif
bdddd296
RR
8043 /* May be allocated at isolcpus cmdline parse time */
8044 if (cpu_isolated_map == NULL)
8045 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8046#endif /* SMP */
6a7b3dc3 8047
6892b75e 8048 scheduler_running = 1;
1da177e4
LT
8049}
8050
8051#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8052static inline int preempt_count_equals(int preempt_offset)
8053{
234da7bc 8054 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8055
8056 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8057}
8058
d894837f 8059void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8060{
48f24c4d 8061#ifdef in_atomic
1da177e4
LT
8062 static unsigned long prev_jiffy; /* ratelimiting */
8063
e4aafea2
FW
8064 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8065 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8066 return;
8067 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8068 return;
8069 prev_jiffy = jiffies;
8070
3df0fc5b
PZ
8071 printk(KERN_ERR
8072 "BUG: sleeping function called from invalid context at %s:%d\n",
8073 file, line);
8074 printk(KERN_ERR
8075 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8076 in_atomic(), irqs_disabled(),
8077 current->pid, current->comm);
aef745fc
IM
8078
8079 debug_show_held_locks(current);
8080 if (irqs_disabled())
8081 print_irqtrace_events(current);
8082 dump_stack();
1da177e4
LT
8083#endif
8084}
8085EXPORT_SYMBOL(__might_sleep);
8086#endif
8087
8088#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8089static void normalize_task(struct rq *rq, struct task_struct *p)
8090{
8091 int on_rq;
3e51f33f 8092
3a5e4dc1
AK
8093 on_rq = p->se.on_rq;
8094 if (on_rq)
8095 deactivate_task(rq, p, 0);
8096 __setscheduler(rq, p, SCHED_NORMAL, 0);
8097 if (on_rq) {
8098 activate_task(rq, p, 0);
8099 resched_task(rq->curr);
8100 }
8101}
8102
1da177e4
LT
8103void normalize_rt_tasks(void)
8104{
a0f98a1c 8105 struct task_struct *g, *p;
1da177e4 8106 unsigned long flags;
70b97a7f 8107 struct rq *rq;
1da177e4 8108
4cf5d77a 8109 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8110 do_each_thread(g, p) {
178be793
IM
8111 /*
8112 * Only normalize user tasks:
8113 */
8114 if (!p->mm)
8115 continue;
8116
6cfb0d5d 8117 p->se.exec_start = 0;
6cfb0d5d 8118#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8119 p->se.statistics.wait_start = 0;
8120 p->se.statistics.sleep_start = 0;
8121 p->se.statistics.block_start = 0;
6cfb0d5d 8122#endif
dd41f596
IM
8123
8124 if (!rt_task(p)) {
8125 /*
8126 * Renice negative nice level userspace
8127 * tasks back to 0:
8128 */
8129 if (TASK_NICE(p) < 0 && p->mm)
8130 set_user_nice(p, 0);
1da177e4 8131 continue;
dd41f596 8132 }
1da177e4 8133
1d615482 8134 raw_spin_lock(&p->pi_lock);
b29739f9 8135 rq = __task_rq_lock(p);
1da177e4 8136
178be793 8137 normalize_task(rq, p);
3a5e4dc1 8138
b29739f9 8139 __task_rq_unlock(rq);
1d615482 8140 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8141 } while_each_thread(g, p);
8142
4cf5d77a 8143 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8144}
8145
8146#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8147
67fc4e0c 8148#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8149/*
67fc4e0c 8150 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8151 *
8152 * They can only be called when the whole system has been
8153 * stopped - every CPU needs to be quiescent, and no scheduling
8154 * activity can take place. Using them for anything else would
8155 * be a serious bug, and as a result, they aren't even visible
8156 * under any other configuration.
8157 */
8158
8159/**
8160 * curr_task - return the current task for a given cpu.
8161 * @cpu: the processor in question.
8162 *
8163 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8164 */
36c8b586 8165struct task_struct *curr_task(int cpu)
1df5c10a
LT
8166{
8167 return cpu_curr(cpu);
8168}
8169
67fc4e0c
JW
8170#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8171
8172#ifdef CONFIG_IA64
1df5c10a
LT
8173/**
8174 * set_curr_task - set the current task for a given cpu.
8175 * @cpu: the processor in question.
8176 * @p: the task pointer to set.
8177 *
8178 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8179 * are serviced on a separate stack. It allows the architecture to switch the
8180 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8181 * must be called with all CPU's synchronized, and interrupts disabled, the
8182 * and caller must save the original value of the current task (see
8183 * curr_task() above) and restore that value before reenabling interrupts and
8184 * re-starting the system.
8185 *
8186 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8187 */
36c8b586 8188void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8189{
8190 cpu_curr(cpu) = p;
8191}
8192
8193#endif
29f59db3 8194
bccbe08a
PZ
8195#ifdef CONFIG_FAIR_GROUP_SCHED
8196static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8197{
8198 int i;
8199
8200 for_each_possible_cpu(i) {
8201 if (tg->cfs_rq)
8202 kfree(tg->cfs_rq[i]);
8203 if (tg->se)
8204 kfree(tg->se[i]);
6f505b16
PZ
8205 }
8206
8207 kfree(tg->cfs_rq);
8208 kfree(tg->se);
6f505b16
PZ
8209}
8210
ec7dc8ac
DG
8211static
8212int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8213{
29f59db3 8214 struct cfs_rq *cfs_rq;
eab17229 8215 struct sched_entity *se;
9b5b7751 8216 struct rq *rq;
29f59db3
SV
8217 int i;
8218
434d53b0 8219 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8220 if (!tg->cfs_rq)
8221 goto err;
434d53b0 8222 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8223 if (!tg->se)
8224 goto err;
052f1dc7
PZ
8225
8226 tg->shares = NICE_0_LOAD;
29f59db3
SV
8227
8228 for_each_possible_cpu(i) {
9b5b7751 8229 rq = cpu_rq(i);
29f59db3 8230
eab17229
LZ
8231 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8232 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8233 if (!cfs_rq)
8234 goto err;
8235
eab17229
LZ
8236 se = kzalloc_node(sizeof(struct sched_entity),
8237 GFP_KERNEL, cpu_to_node(i));
29f59db3 8238 if (!se)
dfc12eb2 8239 goto err_free_rq;
29f59db3 8240
3d4b47b4 8241 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8242 }
8243
8244 return 1;
8245
49246274 8246err_free_rq:
dfc12eb2 8247 kfree(cfs_rq);
49246274 8248err:
bccbe08a
PZ
8249 return 0;
8250}
8251
bccbe08a
PZ
8252static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8253{
3d4b47b4
PZ
8254 struct rq *rq = cpu_rq(cpu);
8255 unsigned long flags;
3d4b47b4
PZ
8256
8257 /*
8258 * Only empty task groups can be destroyed; so we can speculatively
8259 * check on_list without danger of it being re-added.
8260 */
8261 if (!tg->cfs_rq[cpu]->on_list)
8262 return;
8263
8264 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8265 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8266 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8267}
6d6bc0ad 8268#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8269static inline void free_fair_sched_group(struct task_group *tg)
8270{
8271}
8272
ec7dc8ac
DG
8273static inline
8274int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8275{
8276 return 1;
8277}
8278
bccbe08a
PZ
8279static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8280{
8281}
6d6bc0ad 8282#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8283
8284#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8285static void free_rt_sched_group(struct task_group *tg)
8286{
8287 int i;
8288
d0b27fa7
PZ
8289 destroy_rt_bandwidth(&tg->rt_bandwidth);
8290
bccbe08a
PZ
8291 for_each_possible_cpu(i) {
8292 if (tg->rt_rq)
8293 kfree(tg->rt_rq[i]);
8294 if (tg->rt_se)
8295 kfree(tg->rt_se[i]);
8296 }
8297
8298 kfree(tg->rt_rq);
8299 kfree(tg->rt_se);
8300}
8301
ec7dc8ac
DG
8302static
8303int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8304{
8305 struct rt_rq *rt_rq;
eab17229 8306 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8307 struct rq *rq;
8308 int i;
8309
434d53b0 8310 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8311 if (!tg->rt_rq)
8312 goto err;
434d53b0 8313 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8314 if (!tg->rt_se)
8315 goto err;
8316
d0b27fa7
PZ
8317 init_rt_bandwidth(&tg->rt_bandwidth,
8318 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8319
8320 for_each_possible_cpu(i) {
8321 rq = cpu_rq(i);
8322
eab17229
LZ
8323 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8324 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8325 if (!rt_rq)
8326 goto err;
29f59db3 8327
eab17229
LZ
8328 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8329 GFP_KERNEL, cpu_to_node(i));
6f505b16 8330 if (!rt_se)
dfc12eb2 8331 goto err_free_rq;
29f59db3 8332
3d4b47b4 8333 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8334 }
8335
bccbe08a
PZ
8336 return 1;
8337
49246274 8338err_free_rq:
dfc12eb2 8339 kfree(rt_rq);
49246274 8340err:
bccbe08a
PZ
8341 return 0;
8342}
6d6bc0ad 8343#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8344static inline void free_rt_sched_group(struct task_group *tg)
8345{
8346}
8347
ec7dc8ac
DG
8348static inline
8349int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8350{
8351 return 1;
8352}
6d6bc0ad 8353#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8354
7c941438 8355#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8356static void free_sched_group(struct task_group *tg)
8357{
8358 free_fair_sched_group(tg);
8359 free_rt_sched_group(tg);
e9aa1dd1 8360 autogroup_free(tg);
bccbe08a
PZ
8361 kfree(tg);
8362}
8363
8364/* allocate runqueue etc for a new task group */
ec7dc8ac 8365struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8366{
8367 struct task_group *tg;
8368 unsigned long flags;
bccbe08a
PZ
8369
8370 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8371 if (!tg)
8372 return ERR_PTR(-ENOMEM);
8373
ec7dc8ac 8374 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8375 goto err;
8376
ec7dc8ac 8377 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8378 goto err;
8379
8ed36996 8380 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8381 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8382
8383 WARN_ON(!parent); /* root should already exist */
8384
8385 tg->parent = parent;
f473aa5e 8386 INIT_LIST_HEAD(&tg->children);
09f2724a 8387 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8388 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8389
9b5b7751 8390 return tg;
29f59db3
SV
8391
8392err:
6f505b16 8393 free_sched_group(tg);
29f59db3
SV
8394 return ERR_PTR(-ENOMEM);
8395}
8396
9b5b7751 8397/* rcu callback to free various structures associated with a task group */
6f505b16 8398static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8399{
29f59db3 8400 /* now it should be safe to free those cfs_rqs */
6f505b16 8401 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8402}
8403
9b5b7751 8404/* Destroy runqueue etc associated with a task group */
4cf86d77 8405void sched_destroy_group(struct task_group *tg)
29f59db3 8406{
8ed36996 8407 unsigned long flags;
9b5b7751 8408 int i;
29f59db3 8409
3d4b47b4
PZ
8410 /* end participation in shares distribution */
8411 for_each_possible_cpu(i)
bccbe08a 8412 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8413
8414 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8415 list_del_rcu(&tg->list);
f473aa5e 8416 list_del_rcu(&tg->siblings);
8ed36996 8417 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8418
9b5b7751 8419 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8420 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8421}
8422
9b5b7751 8423/* change task's runqueue when it moves between groups.
3a252015
IM
8424 * The caller of this function should have put the task in its new group
8425 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8426 * reflect its new group.
9b5b7751
SV
8427 */
8428void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8429{
8430 int on_rq, running;
8431 unsigned long flags;
8432 struct rq *rq;
8433
8434 rq = task_rq_lock(tsk, &flags);
8435
051a1d1a 8436 running = task_current(rq, tsk);
29f59db3
SV
8437 on_rq = tsk->se.on_rq;
8438
0e1f3483 8439 if (on_rq)
29f59db3 8440 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8441 if (unlikely(running))
8442 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8443
810b3817 8444#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8445 if (tsk->sched_class->task_move_group)
8446 tsk->sched_class->task_move_group(tsk, on_rq);
8447 else
810b3817 8448#endif
b2b5ce02 8449 set_task_rq(tsk, task_cpu(tsk));
810b3817 8450
0e1f3483
HS
8451 if (unlikely(running))
8452 tsk->sched_class->set_curr_task(rq);
8453 if (on_rq)
371fd7e7 8454 enqueue_task(rq, tsk, 0);
29f59db3 8455
29f59db3
SV
8456 task_rq_unlock(rq, &flags);
8457}
7c941438 8458#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8459
052f1dc7 8460#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8461static DEFINE_MUTEX(shares_mutex);
8462
4cf86d77 8463int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8464{
8465 int i;
8ed36996 8466 unsigned long flags;
c61935fd 8467
ec7dc8ac
DG
8468 /*
8469 * We can't change the weight of the root cgroup.
8470 */
8471 if (!tg->se[0])
8472 return -EINVAL;
8473
18d95a28
PZ
8474 if (shares < MIN_SHARES)
8475 shares = MIN_SHARES;
cb4ad1ff
MX
8476 else if (shares > MAX_SHARES)
8477 shares = MAX_SHARES;
62fb1851 8478
8ed36996 8479 mutex_lock(&shares_mutex);
9b5b7751 8480 if (tg->shares == shares)
5cb350ba 8481 goto done;
29f59db3 8482
9b5b7751 8483 tg->shares = shares;
c09595f6 8484 for_each_possible_cpu(i) {
9437178f
PT
8485 struct rq *rq = cpu_rq(i);
8486 struct sched_entity *se;
8487
8488 se = tg->se[i];
8489 /* Propagate contribution to hierarchy */
8490 raw_spin_lock_irqsave(&rq->lock, flags);
8491 for_each_sched_entity(se)
8492 update_cfs_shares(group_cfs_rq(se), 0);
8493 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8494 }
29f59db3 8495
5cb350ba 8496done:
8ed36996 8497 mutex_unlock(&shares_mutex);
9b5b7751 8498 return 0;
29f59db3
SV
8499}
8500
5cb350ba
DG
8501unsigned long sched_group_shares(struct task_group *tg)
8502{
8503 return tg->shares;
8504}
052f1dc7 8505#endif
5cb350ba 8506
052f1dc7 8507#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8508/*
9f0c1e56 8509 * Ensure that the real time constraints are schedulable.
6f505b16 8510 */
9f0c1e56
PZ
8511static DEFINE_MUTEX(rt_constraints_mutex);
8512
8513static unsigned long to_ratio(u64 period, u64 runtime)
8514{
8515 if (runtime == RUNTIME_INF)
9a7e0b18 8516 return 1ULL << 20;
9f0c1e56 8517
9a7e0b18 8518 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8519}
8520
9a7e0b18
PZ
8521/* Must be called with tasklist_lock held */
8522static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8523{
9a7e0b18 8524 struct task_struct *g, *p;
b40b2e8e 8525
9a7e0b18
PZ
8526 do_each_thread(g, p) {
8527 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8528 return 1;
8529 } while_each_thread(g, p);
b40b2e8e 8530
9a7e0b18
PZ
8531 return 0;
8532}
b40b2e8e 8533
9a7e0b18
PZ
8534struct rt_schedulable_data {
8535 struct task_group *tg;
8536 u64 rt_period;
8537 u64 rt_runtime;
8538};
b40b2e8e 8539
9a7e0b18
PZ
8540static int tg_schedulable(struct task_group *tg, void *data)
8541{
8542 struct rt_schedulable_data *d = data;
8543 struct task_group *child;
8544 unsigned long total, sum = 0;
8545 u64 period, runtime;
b40b2e8e 8546
9a7e0b18
PZ
8547 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8548 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8549
9a7e0b18
PZ
8550 if (tg == d->tg) {
8551 period = d->rt_period;
8552 runtime = d->rt_runtime;
b40b2e8e 8553 }
b40b2e8e 8554
4653f803
PZ
8555 /*
8556 * Cannot have more runtime than the period.
8557 */
8558 if (runtime > period && runtime != RUNTIME_INF)
8559 return -EINVAL;
6f505b16 8560
4653f803
PZ
8561 /*
8562 * Ensure we don't starve existing RT tasks.
8563 */
9a7e0b18
PZ
8564 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8565 return -EBUSY;
6f505b16 8566
9a7e0b18 8567 total = to_ratio(period, runtime);
6f505b16 8568
4653f803
PZ
8569 /*
8570 * Nobody can have more than the global setting allows.
8571 */
8572 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8573 return -EINVAL;
6f505b16 8574
4653f803
PZ
8575 /*
8576 * The sum of our children's runtime should not exceed our own.
8577 */
9a7e0b18
PZ
8578 list_for_each_entry_rcu(child, &tg->children, siblings) {
8579 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8580 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8581
9a7e0b18
PZ
8582 if (child == d->tg) {
8583 period = d->rt_period;
8584 runtime = d->rt_runtime;
8585 }
6f505b16 8586
9a7e0b18 8587 sum += to_ratio(period, runtime);
9f0c1e56 8588 }
6f505b16 8589
9a7e0b18
PZ
8590 if (sum > total)
8591 return -EINVAL;
8592
8593 return 0;
6f505b16
PZ
8594}
8595
9a7e0b18 8596static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8597{
9a7e0b18
PZ
8598 struct rt_schedulable_data data = {
8599 .tg = tg,
8600 .rt_period = period,
8601 .rt_runtime = runtime,
8602 };
8603
8604 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8605}
8606
d0b27fa7
PZ
8607static int tg_set_bandwidth(struct task_group *tg,
8608 u64 rt_period, u64 rt_runtime)
6f505b16 8609{
ac086bc2 8610 int i, err = 0;
9f0c1e56 8611
9f0c1e56 8612 mutex_lock(&rt_constraints_mutex);
521f1a24 8613 read_lock(&tasklist_lock);
9a7e0b18
PZ
8614 err = __rt_schedulable(tg, rt_period, rt_runtime);
8615 if (err)
9f0c1e56 8616 goto unlock;
ac086bc2 8617
0986b11b 8618 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8619 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8620 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8621
8622 for_each_possible_cpu(i) {
8623 struct rt_rq *rt_rq = tg->rt_rq[i];
8624
0986b11b 8625 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8626 rt_rq->rt_runtime = rt_runtime;
0986b11b 8627 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8628 }
0986b11b 8629 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8630unlock:
521f1a24 8631 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8632 mutex_unlock(&rt_constraints_mutex);
8633
8634 return err;
6f505b16
PZ
8635}
8636
d0b27fa7
PZ
8637int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8638{
8639 u64 rt_runtime, rt_period;
8640
8641 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8642 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8643 if (rt_runtime_us < 0)
8644 rt_runtime = RUNTIME_INF;
8645
8646 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8647}
8648
9f0c1e56
PZ
8649long sched_group_rt_runtime(struct task_group *tg)
8650{
8651 u64 rt_runtime_us;
8652
d0b27fa7 8653 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8654 return -1;
8655
d0b27fa7 8656 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8657 do_div(rt_runtime_us, NSEC_PER_USEC);
8658 return rt_runtime_us;
8659}
d0b27fa7
PZ
8660
8661int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8662{
8663 u64 rt_runtime, rt_period;
8664
8665 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8666 rt_runtime = tg->rt_bandwidth.rt_runtime;
8667
619b0488
R
8668 if (rt_period == 0)
8669 return -EINVAL;
8670
d0b27fa7
PZ
8671 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8672}
8673
8674long sched_group_rt_period(struct task_group *tg)
8675{
8676 u64 rt_period_us;
8677
8678 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8679 do_div(rt_period_us, NSEC_PER_USEC);
8680 return rt_period_us;
8681}
8682
8683static int sched_rt_global_constraints(void)
8684{
4653f803 8685 u64 runtime, period;
d0b27fa7
PZ
8686 int ret = 0;
8687
ec5d4989
HS
8688 if (sysctl_sched_rt_period <= 0)
8689 return -EINVAL;
8690
4653f803
PZ
8691 runtime = global_rt_runtime();
8692 period = global_rt_period();
8693
8694 /*
8695 * Sanity check on the sysctl variables.
8696 */
8697 if (runtime > period && runtime != RUNTIME_INF)
8698 return -EINVAL;
10b612f4 8699
d0b27fa7 8700 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8701 read_lock(&tasklist_lock);
4653f803 8702 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8703 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8704 mutex_unlock(&rt_constraints_mutex);
8705
8706 return ret;
8707}
54e99124
DG
8708
8709int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8710{
8711 /* Don't accept realtime tasks when there is no way for them to run */
8712 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8713 return 0;
8714
8715 return 1;
8716}
8717
6d6bc0ad 8718#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8719static int sched_rt_global_constraints(void)
8720{
ac086bc2
PZ
8721 unsigned long flags;
8722 int i;
8723
ec5d4989
HS
8724 if (sysctl_sched_rt_period <= 0)
8725 return -EINVAL;
8726
60aa605d
PZ
8727 /*
8728 * There's always some RT tasks in the root group
8729 * -- migration, kstopmachine etc..
8730 */
8731 if (sysctl_sched_rt_runtime == 0)
8732 return -EBUSY;
8733
0986b11b 8734 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8735 for_each_possible_cpu(i) {
8736 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8737
0986b11b 8738 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8739 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8740 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8741 }
0986b11b 8742 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8743
d0b27fa7
PZ
8744 return 0;
8745}
6d6bc0ad 8746#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8747
8748int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8749 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8750 loff_t *ppos)
8751{
8752 int ret;
8753 int old_period, old_runtime;
8754 static DEFINE_MUTEX(mutex);
8755
8756 mutex_lock(&mutex);
8757 old_period = sysctl_sched_rt_period;
8758 old_runtime = sysctl_sched_rt_runtime;
8759
8d65af78 8760 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8761
8762 if (!ret && write) {
8763 ret = sched_rt_global_constraints();
8764 if (ret) {
8765 sysctl_sched_rt_period = old_period;
8766 sysctl_sched_rt_runtime = old_runtime;
8767 } else {
8768 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8769 def_rt_bandwidth.rt_period =
8770 ns_to_ktime(global_rt_period());
8771 }
8772 }
8773 mutex_unlock(&mutex);
8774
8775 return ret;
8776}
68318b8e 8777
052f1dc7 8778#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8779
8780/* return corresponding task_group object of a cgroup */
2b01dfe3 8781static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8782{
2b01dfe3
PM
8783 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8784 struct task_group, css);
68318b8e
SV
8785}
8786
8787static struct cgroup_subsys_state *
2b01dfe3 8788cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8789{
ec7dc8ac 8790 struct task_group *tg, *parent;
68318b8e 8791
2b01dfe3 8792 if (!cgrp->parent) {
68318b8e 8793 /* This is early initialization for the top cgroup */
07e06b01 8794 return &root_task_group.css;
68318b8e
SV
8795 }
8796
ec7dc8ac
DG
8797 parent = cgroup_tg(cgrp->parent);
8798 tg = sched_create_group(parent);
68318b8e
SV
8799 if (IS_ERR(tg))
8800 return ERR_PTR(-ENOMEM);
8801
68318b8e
SV
8802 return &tg->css;
8803}
8804
41a2d6cf
IM
8805static void
8806cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8807{
2b01dfe3 8808 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8809
8810 sched_destroy_group(tg);
8811}
8812
41a2d6cf 8813static int
be367d09 8814cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8815{
b68aa230 8816#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8817 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8818 return -EINVAL;
8819#else
68318b8e
SV
8820 /* We don't support RT-tasks being in separate groups */
8821 if (tsk->sched_class != &fair_sched_class)
8822 return -EINVAL;
b68aa230 8823#endif
be367d09
BB
8824 return 0;
8825}
68318b8e 8826
be367d09
BB
8827static int
8828cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8829 struct task_struct *tsk, bool threadgroup)
8830{
8831 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8832 if (retval)
8833 return retval;
8834 if (threadgroup) {
8835 struct task_struct *c;
8836 rcu_read_lock();
8837 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8838 retval = cpu_cgroup_can_attach_task(cgrp, c);
8839 if (retval) {
8840 rcu_read_unlock();
8841 return retval;
8842 }
8843 }
8844 rcu_read_unlock();
8845 }
68318b8e
SV
8846 return 0;
8847}
8848
8849static void
2b01dfe3 8850cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8851 struct cgroup *old_cont, struct task_struct *tsk,
8852 bool threadgroup)
68318b8e
SV
8853{
8854 sched_move_task(tsk);
be367d09
BB
8855 if (threadgroup) {
8856 struct task_struct *c;
8857 rcu_read_lock();
8858 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8859 sched_move_task(c);
8860 }
8861 rcu_read_unlock();
8862 }
68318b8e
SV
8863}
8864
068c5cc5
PZ
8865static void
8866cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
8867{
8868 /*
8869 * cgroup_exit() is called in the copy_process() failure path.
8870 * Ignore this case since the task hasn't ran yet, this avoids
8871 * trying to poke a half freed task state from generic code.
8872 */
8873 if (!(task->flags & PF_EXITING))
8874 return;
8875
8876 sched_move_task(task);
8877}
8878
052f1dc7 8879#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8880static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8881 u64 shareval)
68318b8e 8882{
2b01dfe3 8883 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8884}
8885
f4c753b7 8886static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8887{
2b01dfe3 8888 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8889
8890 return (u64) tg->shares;
8891}
6d6bc0ad 8892#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8893
052f1dc7 8894#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8895static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8896 s64 val)
6f505b16 8897{
06ecb27c 8898 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8899}
8900
06ecb27c 8901static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8902{
06ecb27c 8903 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8904}
d0b27fa7
PZ
8905
8906static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8907 u64 rt_period_us)
8908{
8909 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8910}
8911
8912static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8913{
8914 return sched_group_rt_period(cgroup_tg(cgrp));
8915}
6d6bc0ad 8916#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8917
fe5c7cc2 8918static struct cftype cpu_files[] = {
052f1dc7 8919#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8920 {
8921 .name = "shares",
f4c753b7
PM
8922 .read_u64 = cpu_shares_read_u64,
8923 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8924 },
052f1dc7
PZ
8925#endif
8926#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8927 {
9f0c1e56 8928 .name = "rt_runtime_us",
06ecb27c
PM
8929 .read_s64 = cpu_rt_runtime_read,
8930 .write_s64 = cpu_rt_runtime_write,
6f505b16 8931 },
d0b27fa7
PZ
8932 {
8933 .name = "rt_period_us",
f4c753b7
PM
8934 .read_u64 = cpu_rt_period_read_uint,
8935 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8936 },
052f1dc7 8937#endif
68318b8e
SV
8938};
8939
8940static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8941{
fe5c7cc2 8942 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8943}
8944
8945struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8946 .name = "cpu",
8947 .create = cpu_cgroup_create,
8948 .destroy = cpu_cgroup_destroy,
8949 .can_attach = cpu_cgroup_can_attach,
8950 .attach = cpu_cgroup_attach,
068c5cc5 8951 .exit = cpu_cgroup_exit,
38605cae
IM
8952 .populate = cpu_cgroup_populate,
8953 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8954 .early_init = 1,
8955};
8956
052f1dc7 8957#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8958
8959#ifdef CONFIG_CGROUP_CPUACCT
8960
8961/*
8962 * CPU accounting code for task groups.
8963 *
8964 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8965 * (balbir@in.ibm.com).
8966 */
8967
934352f2 8968/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8969struct cpuacct {
8970 struct cgroup_subsys_state css;
8971 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8972 u64 __percpu *cpuusage;
ef12fefa 8973 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8974 struct cpuacct *parent;
d842de87
SV
8975};
8976
8977struct cgroup_subsys cpuacct_subsys;
8978
8979/* return cpu accounting group corresponding to this container */
32cd756a 8980static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8981{
32cd756a 8982 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8983 struct cpuacct, css);
8984}
8985
8986/* return cpu accounting group to which this task belongs */
8987static inline struct cpuacct *task_ca(struct task_struct *tsk)
8988{
8989 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8990 struct cpuacct, css);
8991}
8992
8993/* create a new cpu accounting group */
8994static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8995 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8996{
8997 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8998 int i;
d842de87
SV
8999
9000 if (!ca)
ef12fefa 9001 goto out;
d842de87
SV
9002
9003 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9004 if (!ca->cpuusage)
9005 goto out_free_ca;
9006
9007 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9008 if (percpu_counter_init(&ca->cpustat[i], 0))
9009 goto out_free_counters;
d842de87 9010
934352f2
BR
9011 if (cgrp->parent)
9012 ca->parent = cgroup_ca(cgrp->parent);
9013
d842de87 9014 return &ca->css;
ef12fefa
BR
9015
9016out_free_counters:
9017 while (--i >= 0)
9018 percpu_counter_destroy(&ca->cpustat[i]);
9019 free_percpu(ca->cpuusage);
9020out_free_ca:
9021 kfree(ca);
9022out:
9023 return ERR_PTR(-ENOMEM);
d842de87
SV
9024}
9025
9026/* destroy an existing cpu accounting group */
41a2d6cf 9027static void
32cd756a 9028cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9029{
32cd756a 9030 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9031 int i;
d842de87 9032
ef12fefa
BR
9033 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9034 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9035 free_percpu(ca->cpuusage);
9036 kfree(ca);
9037}
9038
720f5498
KC
9039static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9040{
b36128c8 9041 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9042 u64 data;
9043
9044#ifndef CONFIG_64BIT
9045 /*
9046 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9047 */
05fa785c 9048 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9049 data = *cpuusage;
05fa785c 9050 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9051#else
9052 data = *cpuusage;
9053#endif
9054
9055 return data;
9056}
9057
9058static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9059{
b36128c8 9060 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9061
9062#ifndef CONFIG_64BIT
9063 /*
9064 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9065 */
05fa785c 9066 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9067 *cpuusage = val;
05fa785c 9068 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9069#else
9070 *cpuusage = val;
9071#endif
9072}
9073
d842de87 9074/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9075static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9076{
32cd756a 9077 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9078 u64 totalcpuusage = 0;
9079 int i;
9080
720f5498
KC
9081 for_each_present_cpu(i)
9082 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9083
9084 return totalcpuusage;
9085}
9086
0297b803
DG
9087static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9088 u64 reset)
9089{
9090 struct cpuacct *ca = cgroup_ca(cgrp);
9091 int err = 0;
9092 int i;
9093
9094 if (reset) {
9095 err = -EINVAL;
9096 goto out;
9097 }
9098
720f5498
KC
9099 for_each_present_cpu(i)
9100 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9101
0297b803
DG
9102out:
9103 return err;
9104}
9105
e9515c3c
KC
9106static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9107 struct seq_file *m)
9108{
9109 struct cpuacct *ca = cgroup_ca(cgroup);
9110 u64 percpu;
9111 int i;
9112
9113 for_each_present_cpu(i) {
9114 percpu = cpuacct_cpuusage_read(ca, i);
9115 seq_printf(m, "%llu ", (unsigned long long) percpu);
9116 }
9117 seq_printf(m, "\n");
9118 return 0;
9119}
9120
ef12fefa
BR
9121static const char *cpuacct_stat_desc[] = {
9122 [CPUACCT_STAT_USER] = "user",
9123 [CPUACCT_STAT_SYSTEM] = "system",
9124};
9125
9126static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9127 struct cgroup_map_cb *cb)
9128{
9129 struct cpuacct *ca = cgroup_ca(cgrp);
9130 int i;
9131
9132 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9133 s64 val = percpu_counter_read(&ca->cpustat[i]);
9134 val = cputime64_to_clock_t(val);
9135 cb->fill(cb, cpuacct_stat_desc[i], val);
9136 }
9137 return 0;
9138}
9139
d842de87
SV
9140static struct cftype files[] = {
9141 {
9142 .name = "usage",
f4c753b7
PM
9143 .read_u64 = cpuusage_read,
9144 .write_u64 = cpuusage_write,
d842de87 9145 },
e9515c3c
KC
9146 {
9147 .name = "usage_percpu",
9148 .read_seq_string = cpuacct_percpu_seq_read,
9149 },
ef12fefa
BR
9150 {
9151 .name = "stat",
9152 .read_map = cpuacct_stats_show,
9153 },
d842de87
SV
9154};
9155
32cd756a 9156static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9157{
32cd756a 9158 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9159}
9160
9161/*
9162 * charge this task's execution time to its accounting group.
9163 *
9164 * called with rq->lock held.
9165 */
9166static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9167{
9168 struct cpuacct *ca;
934352f2 9169 int cpu;
d842de87 9170
c40c6f85 9171 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9172 return;
9173
934352f2 9174 cpu = task_cpu(tsk);
a18b83b7
BR
9175
9176 rcu_read_lock();
9177
d842de87 9178 ca = task_ca(tsk);
d842de87 9179
934352f2 9180 for (; ca; ca = ca->parent) {
b36128c8 9181 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9182 *cpuusage += cputime;
9183 }
a18b83b7
BR
9184
9185 rcu_read_unlock();
d842de87
SV
9186}
9187
fa535a77
AB
9188/*
9189 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9190 * in cputime_t units. As a result, cpuacct_update_stats calls
9191 * percpu_counter_add with values large enough to always overflow the
9192 * per cpu batch limit causing bad SMP scalability.
9193 *
9194 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9195 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9196 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9197 */
9198#ifdef CONFIG_SMP
9199#define CPUACCT_BATCH \
9200 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9201#else
9202#define CPUACCT_BATCH 0
9203#endif
9204
ef12fefa
BR
9205/*
9206 * Charge the system/user time to the task's accounting group.
9207 */
9208static void cpuacct_update_stats(struct task_struct *tsk,
9209 enum cpuacct_stat_index idx, cputime_t val)
9210{
9211 struct cpuacct *ca;
fa535a77 9212 int batch = CPUACCT_BATCH;
ef12fefa
BR
9213
9214 if (unlikely(!cpuacct_subsys.active))
9215 return;
9216
9217 rcu_read_lock();
9218 ca = task_ca(tsk);
9219
9220 do {
fa535a77 9221 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9222 ca = ca->parent;
9223 } while (ca);
9224 rcu_read_unlock();
9225}
9226
d842de87
SV
9227struct cgroup_subsys cpuacct_subsys = {
9228 .name = "cpuacct",
9229 .create = cpuacct_create,
9230 .destroy = cpuacct_destroy,
9231 .populate = cpuacct_populate,
9232 .subsys_id = cpuacct_subsys_id,
9233};
9234#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9235
This page took 2.199205 seconds and 5 git commands to generate.