sched: Give CPU bound RT tasks preference
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
6e0534f2 81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
7c941438 238#ifdef CONFIG_CGROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
68318b8e 248 struct cgroup_subsys_state css;
6c415b92 249
052f1dc7 250#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
052f1dc7
PZ
256#endif
257
258#ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
d0b27fa7 262 struct rt_bandwidth rt_bandwidth;
052f1dc7 263#endif
6b2d7700 264
ae8393e5 265 struct rcu_head rcu;
6f505b16 266 struct list_head list;
f473aa5e
PZ
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
29f59db3
SV
271};
272
eff766a6 273#define root_task_group init_task_group
6f505b16 274
8ed36996 275/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
276 * a task group's cpu shares.
277 */
8ed36996 278static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 279
e9036b36
CG
280#ifdef CONFIG_FAIR_GROUP_SCHED
281
57310a98
PZ
282#ifdef CONFIG_SMP
283static int root_task_group_empty(void)
284{
285 return list_empty(&root_task_group.children);
286}
287#endif
288
052f1dc7 289# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 290
cb4ad1ff 291/*
2e084786
LJ
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
cb4ad1ff
MX
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
18d95a28 299#define MIN_SHARES 2
2e084786 300#define MAX_SHARES (1UL << 18)
18d95a28 301
052f1dc7
PZ
302static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303#endif
304
29f59db3 305/* Default task group.
3a252015 306 * Every task in system belong to this group at bootup.
29f59db3 307 */
434d53b0 308struct task_group init_task_group;
29f59db3 309
7c941438 310#endif /* CONFIG_CGROUP_SCHED */
29f59db3 311
6aa645ea
IM
312/* CFS-related fields in a runqueue */
313struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
6aa645ea 317 u64 exec_clock;
e9acbff6 318 u64 min_vruntime;
6aa645ea
IM
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
4a55bd5e
PZ
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
4793241b 330 struct sched_entity *curr, *next, *last;
ddc97297 331
5ac5c4d6 332 unsigned int nr_spread_over;
ddc97297 333
62160e3f 334#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
41a2d6cf
IM
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
41a2d6cf
IM
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
347
348#ifdef CONFIG_SMP
c09595f6 349 /*
c8cba857 350 * the part of load.weight contributed by tasks
c09595f6 351 */
c8cba857 352 unsigned long task_weight;
c09595f6 353
c8cba857
PZ
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
c09595f6 361
c8cba857
PZ
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
f1d239f7
PZ
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
36c8b586 489 struct task_struct *curr, *idle;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
7740191c 724 char *cmp;
f00b45c1
PZ
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
7740191c 735 cmp = strstrip(buf);
f00b45c1 736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
7740191c 743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
749 }
750 }
751
752 if (!sched_feat_names[i])
753 return -EINVAL;
754
42994724 755 *ppos += cnt;
f00b45c1
PZ
756
757 return cnt;
758}
759
34f3a814
LZ
760static int sched_feat_open(struct inode *inode, struct file *filp)
761{
762 return single_open(filp, sched_feat_show, NULL);
763}
764
828c0950 765static const struct file_operations sched_feat_fops = {
34f3a814
LZ
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
f00b45c1
PZ
771};
772
773static __init int sched_init_debug(void)
774{
f00b45c1
PZ
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
777
778 return 0;
779}
780late_initcall(sched_init_debug);
781
782#endif
783
784#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 785
b82d9fdd
PZ
786/*
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
789 */
790const_debug unsigned int sysctl_sched_nr_migrate = 32;
791
2398f2c6
PZ
792/*
793 * ratelimit for updating the group shares.
55cd5340 794 * default: 0.25ms
2398f2c6 795 */
55cd5340 796unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 797unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 798
ffda12a1
PZ
799/*
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
803 */
804unsigned int sysctl_sched_shares_thresh = 4;
805
e9e9250b
PZ
806/*
807 * period over which we average the RT time consumption, measured
808 * in ms.
809 *
810 * default: 1s
811 */
812const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
813
fa85ae24 814/*
9f0c1e56 815 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
816 * default: 1s
817 */
9f0c1e56 818unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 819
6892b75e
IM
820static __read_mostly int scheduler_running;
821
9f0c1e56
PZ
822/*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826int sysctl_sched_rt_runtime = 950000;
fa85ae24 827
d0b27fa7
PZ
828static inline u64 global_rt_period(void)
829{
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831}
832
833static inline u64 global_rt_runtime(void)
834{
e26873bb 835 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839}
fa85ae24 840
1da177e4 841#ifndef prepare_arch_switch
4866cde0
NP
842# define prepare_arch_switch(next) do { } while (0)
843#endif
844#ifndef finish_arch_switch
845# define finish_arch_switch(prev) do { } while (0)
846#endif
847
051a1d1a
DA
848static inline int task_current(struct rq *rq, struct task_struct *p)
849{
850 return rq->curr == p;
851}
852
4866cde0 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 855{
051a1d1a 856 return task_current(rq, p);
4866cde0
NP
857}
858
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
860{
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
da04c035
IM
865#ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868#endif
8a25d5de
IM
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
05fa785c 876 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
877}
878
879#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 880static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 return p->oncpu;
884#else
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886#endif
887}
888
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2dd73a4f
PW
1355/*
1356 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1357 * of tasks with abnormal "nice" values across CPUs the contribution that
1358 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1359 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1360 * scaled version of the new time slice allocation that they receive on time
1361 * slice expiry etc.
1362 */
1363
cce7ade8
PZ
1364#define WEIGHT_IDLEPRIO 3
1365#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1366
1367/*
1368 * Nice levels are multiplicative, with a gentle 10% change for every
1369 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1370 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1371 * that remained on nice 0.
1372 *
1373 * The "10% effect" is relative and cumulative: from _any_ nice level,
1374 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1375 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1376 * If a task goes up by ~10% and another task goes down by ~10% then
1377 * the relative distance between them is ~25%.)
dd41f596
IM
1378 */
1379static const int prio_to_weight[40] = {
254753dc
IM
1380 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1381 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1382 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1383 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1384 /* 0 */ 1024, 820, 655, 526, 423,
1385 /* 5 */ 335, 272, 215, 172, 137,
1386 /* 10 */ 110, 87, 70, 56, 45,
1387 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1388};
1389
5714d2de
IM
1390/*
1391 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 *
1393 * In cases where the weight does not change often, we can use the
1394 * precalculated inverse to speed up arithmetics by turning divisions
1395 * into multiplications:
1396 */
dd41f596 1397static const u32 prio_to_wmult[40] = {
254753dc
IM
1398 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1399 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1400 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1401 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1402 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1403 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1404 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1405 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1406};
2dd73a4f 1407
ef12fefa
BR
1408/* Time spent by the tasks of the cpu accounting group executing in ... */
1409enum cpuacct_stat_index {
1410 CPUACCT_STAT_USER, /* ... user mode */
1411 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1412
1413 CPUACCT_STAT_NSTATS,
1414};
1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1418static void cpuacct_update_stats(struct task_struct *tsk,
1419 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1420#else
1421static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1422static inline void cpuacct_update_stats(struct task_struct *tsk,
1423 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1424#endif
1425
18d95a28
PZ
1426static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1427{
1428 update_load_add(&rq->load, load);
1429}
1430
1431static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1432{
1433 update_load_sub(&rq->load, load);
1434}
1435
7940ca36 1436#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1437typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1438
1439/*
1440 * Iterate the full tree, calling @down when first entering a node and @up when
1441 * leaving it for the final time.
1442 */
eb755805 1443static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1444{
1445 struct task_group *parent, *child;
eb755805 1446 int ret;
c09595f6
PZ
1447
1448 rcu_read_lock();
1449 parent = &root_task_group;
1450down:
eb755805
PZ
1451 ret = (*down)(parent, data);
1452 if (ret)
1453 goto out_unlock;
c09595f6
PZ
1454 list_for_each_entry_rcu(child, &parent->children, siblings) {
1455 parent = child;
1456 goto down;
1457
1458up:
1459 continue;
1460 }
eb755805
PZ
1461 ret = (*up)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464
1465 child = parent;
1466 parent = parent->parent;
1467 if (parent)
1468 goto up;
eb755805 1469out_unlock:
c09595f6 1470 rcu_read_unlock();
eb755805
PZ
1471
1472 return ret;
c09595f6
PZ
1473}
1474
eb755805
PZ
1475static int tg_nop(struct task_group *tg, void *data)
1476{
1477 return 0;
c09595f6 1478}
eb755805
PZ
1479#endif
1480
1481#ifdef CONFIG_SMP
f5f08f39
PZ
1482/* Used instead of source_load when we know the type == 0 */
1483static unsigned long weighted_cpuload(const int cpu)
1484{
1485 return cpu_rq(cpu)->load.weight;
1486}
1487
1488/*
1489 * Return a low guess at the load of a migration-source cpu weighted
1490 * according to the scheduling class and "nice" value.
1491 *
1492 * We want to under-estimate the load of migration sources, to
1493 * balance conservatively.
1494 */
1495static unsigned long source_load(int cpu, int type)
1496{
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return min(rq->cpu_load[type-1], total);
1504}
1505
1506/*
1507 * Return a high guess at the load of a migration-target cpu weighted
1508 * according to the scheduling class and "nice" value.
1509 */
1510static unsigned long target_load(int cpu, int type)
1511{
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long total = weighted_cpuload(cpu);
1514
1515 if (type == 0 || !sched_feat(LB_BIAS))
1516 return total;
1517
1518 return max(rq->cpu_load[type-1], total);
1519}
1520
ae154be1
PZ
1521static unsigned long power_of(int cpu)
1522{
e51fd5e2 1523 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1524}
1525
eb755805
PZ
1526static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528static unsigned long cpu_avg_load_per_task(int cpu)
1529{
1530 struct rq *rq = cpu_rq(cpu);
af6d596f 1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1532
4cd42620
SR
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1535 else
1536 rq->avg_load_per_task = 0;
eb755805
PZ
1537
1538 return rq->avg_load_per_task;
1539}
1540
1541#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1542
43cf38eb 1543static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1544
c09595f6
PZ
1545static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547/*
1548 * Calculate and set the cpu's group shares.
1549 */
34d76c41
PZ
1550static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
4a6cc4bd 1553 unsigned long *usd_rq_weight)
18d95a28 1554{
34d76c41 1555 unsigned long shares, rq_weight;
a5004278 1556 int boost = 0;
c09595f6 1557
4a6cc4bd 1558 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
c8cba857 1563
c09595f6 1564 /*
a8af7246
PZ
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
c09595f6 1568 */
ec4e0e2f 1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1571
ffda12a1
PZ
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
c09595f6 1576
05fa785c 1577 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1580 __set_se_shares(tg->se[cpu], shares);
05fa785c 1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1582 }
18d95a28 1583}
c09595f6
PZ
1584
1585/*
c8cba857
PZ
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
c09595f6 1589 */
eb755805 1590static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1591{
cd8ad40d 1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1593 unsigned long *usd_rq_weight;
eb755805 1594 struct sched_domain *sd = data;
34d76c41 1595 unsigned long flags;
c8cba857 1596 int i;
c09595f6 1597
34d76c41
PZ
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
4a6cc4bd 1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1603
758b2cdc 1604 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1605 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1606 usd_rq_weight[i] = weight;
34d76c41 1607
cd8ad40d 1608 rq_weight += weight;
ec4e0e2f
KC
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
ec4e0e2f
KC
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
cd8ad40d 1617 sum_weight += weight;
c8cba857 1618 shares += tg->cfs_rq[i]->shares;
c09595f6 1619 }
c09595f6 1620
cd8ad40d
PZ
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
c8cba857
PZ
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
c09595f6 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1632
1633 local_irq_restore(flags);
eb755805
PZ
1634
1635 return 0;
c09595f6
PZ
1636}
1637
1638/*
c8cba857
PZ
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
c09595f6 1642 */
eb755805 1643static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1644{
c8cba857 1645 unsigned long load;
eb755805 1646 long cpu = (long)data;
c09595f6 1647
c8cba857
PZ
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
c09595f6 1655
c8cba857 1656 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1657
eb755805 1658 return 0;
c09595f6
PZ
1659}
1660
c8cba857 1661static void update_shares(struct sched_domain *sd)
4d8d595d 1662{
e7097159
PZ
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
c676329a 1669 now = local_clock();
e7097159 1670 elapsed = now - sd->last_update;
2398f2c6
PZ
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
eb755805 1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1675 }
4d8d595d
PZ
1676}
1677
eb755805 1678static void update_h_load(long cpu)
c09595f6 1679{
eb755805 1680 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1681}
1682
c09595f6
PZ
1683#else
1684
c8cba857 1685static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1686{
1687}
1688
18d95a28
PZ
1689#endif
1690
8f45e2b5
GH
1691#ifdef CONFIG_PREEMPT
1692
b78bb868
PZ
1693static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1694
70574a99 1695/*
8f45e2b5
GH
1696 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1697 * way at the expense of forcing extra atomic operations in all
1698 * invocations. This assures that the double_lock is acquired using the
1699 * same underlying policy as the spinlock_t on this architecture, which
1700 * reduces latency compared to the unfair variant below. However, it
1701 * also adds more overhead and therefore may reduce throughput.
70574a99 1702 */
8f45e2b5
GH
1703static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1704 __releases(this_rq->lock)
1705 __acquires(busiest->lock)
1706 __acquires(this_rq->lock)
1707{
05fa785c 1708 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1709 double_rq_lock(this_rq, busiest);
1710
1711 return 1;
1712}
1713
1714#else
1715/*
1716 * Unfair double_lock_balance: Optimizes throughput at the expense of
1717 * latency by eliminating extra atomic operations when the locks are
1718 * already in proper order on entry. This favors lower cpu-ids and will
1719 * grant the double lock to lower cpus over higher ids under contention,
1720 * regardless of entry order into the function.
1721 */
1722static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1723 __releases(this_rq->lock)
1724 __acquires(busiest->lock)
1725 __acquires(this_rq->lock)
1726{
1727 int ret = 0;
1728
05fa785c 1729 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1730 if (busiest < this_rq) {
05fa785c
TG
1731 raw_spin_unlock(&this_rq->lock);
1732 raw_spin_lock(&busiest->lock);
1733 raw_spin_lock_nested(&this_rq->lock,
1734 SINGLE_DEPTH_NESTING);
70574a99
AD
1735 ret = 1;
1736 } else
05fa785c
TG
1737 raw_spin_lock_nested(&busiest->lock,
1738 SINGLE_DEPTH_NESTING);
70574a99
AD
1739 }
1740 return ret;
1741}
1742
8f45e2b5
GH
1743#endif /* CONFIG_PREEMPT */
1744
1745/*
1746 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 */
1748static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749{
1750 if (unlikely(!irqs_disabled())) {
1751 /* printk() doesn't work good under rq->lock */
05fa785c 1752 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1753 BUG_ON(1);
1754 }
1755
1756 return _double_lock_balance(this_rq, busiest);
1757}
1758
70574a99
AD
1759static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1760 __releases(busiest->lock)
1761{
05fa785c 1762 raw_spin_unlock(&busiest->lock);
70574a99
AD
1763 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1764}
1e3c88bd
PZ
1765
1766/*
1767 * double_rq_lock - safely lock two runqueues
1768 *
1769 * Note this does not disable interrupts like task_rq_lock,
1770 * you need to do so manually before calling.
1771 */
1772static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1773 __acquires(rq1->lock)
1774 __acquires(rq2->lock)
1775{
1776 BUG_ON(!irqs_disabled());
1777 if (rq1 == rq2) {
1778 raw_spin_lock(&rq1->lock);
1779 __acquire(rq2->lock); /* Fake it out ;) */
1780 } else {
1781 if (rq1 < rq2) {
1782 raw_spin_lock(&rq1->lock);
1783 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1784 } else {
1785 raw_spin_lock(&rq2->lock);
1786 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1787 }
1788 }
1e3c88bd
PZ
1789}
1790
1791/*
1792 * double_rq_unlock - safely unlock two runqueues
1793 *
1794 * Note this does not restore interrupts like task_rq_unlock,
1795 * you need to do so manually after calling.
1796 */
1797static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1798 __releases(rq1->lock)
1799 __releases(rq2->lock)
1800{
1801 raw_spin_unlock(&rq1->lock);
1802 if (rq1 != rq2)
1803 raw_spin_unlock(&rq2->lock);
1804 else
1805 __release(rq2->lock);
1806}
1807
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
74f5187a 1819static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
fdf3e95d 1822static void update_cpu_load(struct rq *this_rq);
dce48a84 1823
cd29fe6f
PZ
1824static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825{
1826 set_task_rq(p, cpu);
1827#ifdef CONFIG_SMP
1828 /*
1829 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1830 * successfuly executed on another CPU. We must ensure that updates of
1831 * per-task data have been completed by this moment.
1832 */
1833 smp_wmb();
1834 task_thread_info(p)->cpu = cpu;
1835#endif
1836}
dce48a84 1837
1e3c88bd 1838static const struct sched_class rt_sched_class;
dd41f596
IM
1839
1840#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1841#define for_each_class(class) \
1842 for (class = sched_class_highest; class; class = class->next)
dd41f596 1843
1e3c88bd
PZ
1844#include "sched_stats.h"
1845
c09595f6 1846static void inc_nr_running(struct rq *rq)
9c217245
IM
1847{
1848 rq->nr_running++;
9c217245
IM
1849}
1850
c09595f6 1851static void dec_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running--;
9c217245
IM
1854}
1855
45bf76df
IM
1856static void set_load_weight(struct task_struct *p)
1857{
1858 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1859 p->se.load.weight = 0;
1860 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1861 return;
1862 }
45bf76df 1863
dd41f596
IM
1864 /*
1865 * SCHED_IDLE tasks get minimal weight:
1866 */
1867 if (p->policy == SCHED_IDLE) {
1868 p->se.load.weight = WEIGHT_IDLEPRIO;
1869 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 return;
1871 }
71f8bd46 1872
dd41f596
IM
1873 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1874 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1875}
1876
371fd7e7 1877static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1878{
a64692a3 1879 update_rq_clock(rq);
dd41f596 1880 sched_info_queued(p);
371fd7e7 1881 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1882 p->se.on_rq = 1;
71f8bd46
IM
1883}
1884
371fd7e7 1885static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1886{
a64692a3 1887 update_rq_clock(rq);
46ac22ba 1888 sched_info_dequeued(p);
371fd7e7 1889 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1890 p->se.on_rq = 0;
71f8bd46
IM
1891}
1892
1e3c88bd
PZ
1893/*
1894 * activate_task - move a task to the runqueue.
1895 */
371fd7e7 1896static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1897{
1898 if (task_contributes_to_load(p))
1899 rq->nr_uninterruptible--;
1900
371fd7e7 1901 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1902 inc_nr_running(rq);
1903}
1904
1905/*
1906 * deactivate_task - remove a task from the runqueue.
1907 */
371fd7e7 1908static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1909{
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible++;
1912
371fd7e7 1913 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1914 dec_nr_running(rq);
1915}
1916
1917#include "sched_idletask.c"
1918#include "sched_fair.c"
1919#include "sched_rt.c"
1920#ifdef CONFIG_SCHED_DEBUG
1921# include "sched_debug.c"
1922#endif
1923
14531189 1924/*
dd41f596 1925 * __normal_prio - return the priority that is based on the static prio
14531189 1926 */
14531189
IM
1927static inline int __normal_prio(struct task_struct *p)
1928{
dd41f596 1929 return p->static_prio;
14531189
IM
1930}
1931
b29739f9
IM
1932/*
1933 * Calculate the expected normal priority: i.e. priority
1934 * without taking RT-inheritance into account. Might be
1935 * boosted by interactivity modifiers. Changes upon fork,
1936 * setprio syscalls, and whenever the interactivity
1937 * estimator recalculates.
1938 */
36c8b586 1939static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1940{
1941 int prio;
1942
e05606d3 1943 if (task_has_rt_policy(p))
b29739f9
IM
1944 prio = MAX_RT_PRIO-1 - p->rt_priority;
1945 else
1946 prio = __normal_prio(p);
1947 return prio;
1948}
1949
1950/*
1951 * Calculate the current priority, i.e. the priority
1952 * taken into account by the scheduler. This value might
1953 * be boosted by RT tasks, or might be boosted by
1954 * interactivity modifiers. Will be RT if the task got
1955 * RT-boosted. If not then it returns p->normal_prio.
1956 */
36c8b586 1957static int effective_prio(struct task_struct *p)
b29739f9
IM
1958{
1959 p->normal_prio = normal_prio(p);
1960 /*
1961 * If we are RT tasks or we were boosted to RT priority,
1962 * keep the priority unchanged. Otherwise, update priority
1963 * to the normal priority:
1964 */
1965 if (!rt_prio(p->prio))
1966 return p->normal_prio;
1967 return p->prio;
1968}
1969
1da177e4
LT
1970/**
1971 * task_curr - is this task currently executing on a CPU?
1972 * @p: the task in question.
1973 */
36c8b586 1974inline int task_curr(const struct task_struct *p)
1da177e4
LT
1975{
1976 return cpu_curr(task_cpu(p)) == p;
1977}
1978
cb469845
SR
1979static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1980 const struct sched_class *prev_class,
1981 int oldprio, int running)
1982{
1983 if (prev_class != p->sched_class) {
1984 if (prev_class->switched_from)
1985 prev_class->switched_from(rq, p, running);
1986 p->sched_class->switched_to(rq, p, running);
1987 } else
1988 p->sched_class->prio_changed(rq, p, oldprio, running);
1989}
1990
1da177e4 1991#ifdef CONFIG_SMP
cc367732
IM
1992/*
1993 * Is this task likely cache-hot:
1994 */
e7693a36 1995static int
cc367732
IM
1996task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1997{
1998 s64 delta;
1999
e6c8fba7
PZ
2000 if (p->sched_class != &fair_sched_class)
2001 return 0;
2002
f540a608
IM
2003 /*
2004 * Buddy candidates are cache hot:
2005 */
f685ceac 2006 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2007 (&p->se == cfs_rq_of(&p->se)->next ||
2008 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2009 return 1;
2010
6bc1665b
IM
2011 if (sysctl_sched_migration_cost == -1)
2012 return 1;
2013 if (sysctl_sched_migration_cost == 0)
2014 return 0;
2015
cc367732
IM
2016 delta = now - p->se.exec_start;
2017
2018 return delta < (s64)sysctl_sched_migration_cost;
2019}
2020
dd41f596 2021void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2022{
e2912009
PZ
2023#ifdef CONFIG_SCHED_DEBUG
2024 /*
2025 * We should never call set_task_cpu() on a blocked task,
2026 * ttwu() will sort out the placement.
2027 */
077614ee
PZ
2028 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2029 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2030#endif
2031
de1d7286 2032 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2033
0c69774e
PZ
2034 if (task_cpu(p) != new_cpu) {
2035 p->se.nr_migrations++;
2036 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2037 }
dd41f596
IM
2038
2039 __set_task_cpu(p, new_cpu);
c65cc870
IM
2040}
2041
969c7921 2042struct migration_arg {
36c8b586 2043 struct task_struct *task;
1da177e4 2044 int dest_cpu;
70b97a7f 2045};
1da177e4 2046
969c7921
TH
2047static int migration_cpu_stop(void *data);
2048
1da177e4
LT
2049/*
2050 * The task's runqueue lock must be held.
2051 * Returns true if you have to wait for migration thread.
2052 */
969c7921 2053static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2054{
70b97a7f 2055 struct rq *rq = task_rq(p);
1da177e4
LT
2056
2057 /*
2058 * If the task is not on a runqueue (and not running), then
e2912009 2059 * the next wake-up will properly place the task.
1da177e4 2060 */
969c7921 2061 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2062}
2063
2064/*
2065 * wait_task_inactive - wait for a thread to unschedule.
2066 *
85ba2d86
RM
2067 * If @match_state is nonzero, it's the @p->state value just checked and
2068 * not expected to change. If it changes, i.e. @p might have woken up,
2069 * then return zero. When we succeed in waiting for @p to be off its CPU,
2070 * we return a positive number (its total switch count). If a second call
2071 * a short while later returns the same number, the caller can be sure that
2072 * @p has remained unscheduled the whole time.
2073 *
1da177e4
LT
2074 * The caller must ensure that the task *will* unschedule sometime soon,
2075 * else this function might spin for a *long* time. This function can't
2076 * be called with interrupts off, or it may introduce deadlock with
2077 * smp_call_function() if an IPI is sent by the same process we are
2078 * waiting to become inactive.
2079 */
85ba2d86 2080unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2081{
2082 unsigned long flags;
dd41f596 2083 int running, on_rq;
85ba2d86 2084 unsigned long ncsw;
70b97a7f 2085 struct rq *rq;
1da177e4 2086
3a5c359a
AK
2087 for (;;) {
2088 /*
2089 * We do the initial early heuristics without holding
2090 * any task-queue locks at all. We'll only try to get
2091 * the runqueue lock when things look like they will
2092 * work out!
2093 */
2094 rq = task_rq(p);
fa490cfd 2095
3a5c359a
AK
2096 /*
2097 * If the task is actively running on another CPU
2098 * still, just relax and busy-wait without holding
2099 * any locks.
2100 *
2101 * NOTE! Since we don't hold any locks, it's not
2102 * even sure that "rq" stays as the right runqueue!
2103 * But we don't care, since "task_running()" will
2104 * return false if the runqueue has changed and p
2105 * is actually now running somewhere else!
2106 */
85ba2d86
RM
2107 while (task_running(rq, p)) {
2108 if (match_state && unlikely(p->state != match_state))
2109 return 0;
3a5c359a 2110 cpu_relax();
85ba2d86 2111 }
fa490cfd 2112
3a5c359a
AK
2113 /*
2114 * Ok, time to look more closely! We need the rq
2115 * lock now, to be *sure*. If we're wrong, we'll
2116 * just go back and repeat.
2117 */
2118 rq = task_rq_lock(p, &flags);
27a9da65 2119 trace_sched_wait_task(p);
3a5c359a
AK
2120 running = task_running(rq, p);
2121 on_rq = p->se.on_rq;
85ba2d86 2122 ncsw = 0;
f31e11d8 2123 if (!match_state || p->state == match_state)
93dcf55f 2124 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2125 task_rq_unlock(rq, &flags);
fa490cfd 2126
85ba2d86
RM
2127 /*
2128 * If it changed from the expected state, bail out now.
2129 */
2130 if (unlikely(!ncsw))
2131 break;
2132
3a5c359a
AK
2133 /*
2134 * Was it really running after all now that we
2135 * checked with the proper locks actually held?
2136 *
2137 * Oops. Go back and try again..
2138 */
2139 if (unlikely(running)) {
2140 cpu_relax();
2141 continue;
2142 }
fa490cfd 2143
3a5c359a
AK
2144 /*
2145 * It's not enough that it's not actively running,
2146 * it must be off the runqueue _entirely_, and not
2147 * preempted!
2148 *
80dd99b3 2149 * So if it was still runnable (but just not actively
3a5c359a
AK
2150 * running right now), it's preempted, and we should
2151 * yield - it could be a while.
2152 */
2153 if (unlikely(on_rq)) {
2154 schedule_timeout_uninterruptible(1);
2155 continue;
2156 }
fa490cfd 2157
3a5c359a
AK
2158 /*
2159 * Ahh, all good. It wasn't running, and it wasn't
2160 * runnable, which means that it will never become
2161 * running in the future either. We're all done!
2162 */
2163 break;
2164 }
85ba2d86
RM
2165
2166 return ncsw;
1da177e4
LT
2167}
2168
2169/***
2170 * kick_process - kick a running thread to enter/exit the kernel
2171 * @p: the to-be-kicked thread
2172 *
2173 * Cause a process which is running on another CPU to enter
2174 * kernel-mode, without any delay. (to get signals handled.)
2175 *
2176 * NOTE: this function doesnt have to take the runqueue lock,
2177 * because all it wants to ensure is that the remote task enters
2178 * the kernel. If the IPI races and the task has been migrated
2179 * to another CPU then no harm is done and the purpose has been
2180 * achieved as well.
2181 */
36c8b586 2182void kick_process(struct task_struct *p)
1da177e4
LT
2183{
2184 int cpu;
2185
2186 preempt_disable();
2187 cpu = task_cpu(p);
2188 if ((cpu != smp_processor_id()) && task_curr(p))
2189 smp_send_reschedule(cpu);
2190 preempt_enable();
2191}
b43e3521 2192EXPORT_SYMBOL_GPL(kick_process);
476d139c 2193#endif /* CONFIG_SMP */
1da177e4 2194
0793a61d
TG
2195/**
2196 * task_oncpu_function_call - call a function on the cpu on which a task runs
2197 * @p: the task to evaluate
2198 * @func: the function to be called
2199 * @info: the function call argument
2200 *
2201 * Calls the function @func when the task is currently running. This might
2202 * be on the current CPU, which just calls the function directly
2203 */
2204void task_oncpu_function_call(struct task_struct *p,
2205 void (*func) (void *info), void *info)
2206{
2207 int cpu;
2208
2209 preempt_disable();
2210 cpu = task_cpu(p);
2211 if (task_curr(p))
2212 smp_call_function_single(cpu, func, info, 1);
2213 preempt_enable();
2214}
2215
970b13ba 2216#ifdef CONFIG_SMP
30da688e
ON
2217/*
2218 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2219 */
5da9a0fb
PZ
2220static int select_fallback_rq(int cpu, struct task_struct *p)
2221{
2222 int dest_cpu;
2223 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2224
2225 /* Look for allowed, online CPU in same node. */
2226 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2227 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2228 return dest_cpu;
2229
2230 /* Any allowed, online CPU? */
2231 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2232 if (dest_cpu < nr_cpu_ids)
2233 return dest_cpu;
2234
2235 /* No more Mr. Nice Guy. */
897f0b3c 2236 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2237 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2238 /*
2239 * Don't tell them about moving exiting tasks or
2240 * kernel threads (both mm NULL), since they never
2241 * leave kernel.
2242 */
2243 if (p->mm && printk_ratelimit()) {
2244 printk(KERN_INFO "process %d (%s) no "
2245 "longer affine to cpu%d\n",
2246 task_pid_nr(p), p->comm, cpu);
2247 }
2248 }
2249
2250 return dest_cpu;
2251}
2252
e2912009 2253/*
30da688e 2254 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2255 */
970b13ba 2256static inline
0017d735 2257int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2258{
0017d735 2259 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2260
2261 /*
2262 * In order not to call set_task_cpu() on a blocking task we need
2263 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2264 * cpu.
2265 *
2266 * Since this is common to all placement strategies, this lives here.
2267 *
2268 * [ this allows ->select_task() to simply return task_cpu(p) and
2269 * not worry about this generic constraint ]
2270 */
2271 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2272 !cpu_online(cpu)))
5da9a0fb 2273 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2274
2275 return cpu;
970b13ba 2276}
09a40af5
MG
2277
2278static void update_avg(u64 *avg, u64 sample)
2279{
2280 s64 diff = sample - *avg;
2281 *avg += diff >> 3;
2282}
970b13ba
PZ
2283#endif
2284
9ed3811a
TH
2285static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2286 bool is_sync, bool is_migrate, bool is_local,
2287 unsigned long en_flags)
2288{
2289 schedstat_inc(p, se.statistics.nr_wakeups);
2290 if (is_sync)
2291 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2292 if (is_migrate)
2293 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2294 if (is_local)
2295 schedstat_inc(p, se.statistics.nr_wakeups_local);
2296 else
2297 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2298
2299 activate_task(rq, p, en_flags);
2300}
2301
2302static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2303 int wake_flags, bool success)
2304{
2305 trace_sched_wakeup(p, success);
2306 check_preempt_curr(rq, p, wake_flags);
2307
2308 p->state = TASK_RUNNING;
2309#ifdef CONFIG_SMP
2310 if (p->sched_class->task_woken)
2311 p->sched_class->task_woken(rq, p);
2312
2313 if (unlikely(rq->idle_stamp)) {
2314 u64 delta = rq->clock - rq->idle_stamp;
2315 u64 max = 2*sysctl_sched_migration_cost;
2316
2317 if (delta > max)
2318 rq->avg_idle = max;
2319 else
2320 update_avg(&rq->avg_idle, delta);
2321 rq->idle_stamp = 0;
2322 }
2323#endif
21aa9af0
TH
2324 /* if a worker is waking up, notify workqueue */
2325 if ((p->flags & PF_WQ_WORKER) && success)
2326 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2327}
2328
2329/**
1da177e4 2330 * try_to_wake_up - wake up a thread
9ed3811a 2331 * @p: the thread to be awakened
1da177e4 2332 * @state: the mask of task states that can be woken
9ed3811a 2333 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2334 *
2335 * Put it on the run-queue if it's not already there. The "current"
2336 * thread is always on the run-queue (except when the actual
2337 * re-schedule is in progress), and as such you're allowed to do
2338 * the simpler "current->state = TASK_RUNNING" to mark yourself
2339 * runnable without the overhead of this.
2340 *
9ed3811a
TH
2341 * Returns %true if @p was woken up, %false if it was already running
2342 * or @state didn't match @p's state.
1da177e4 2343 */
7d478721
PZ
2344static int try_to_wake_up(struct task_struct *p, unsigned int state,
2345 int wake_flags)
1da177e4 2346{
cc367732 2347 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2348 unsigned long flags;
371fd7e7 2349 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2350 struct rq *rq;
1da177e4 2351
e9c84311 2352 this_cpu = get_cpu();
2398f2c6 2353
04e2f174 2354 smp_wmb();
ab3b3aa5 2355 rq = task_rq_lock(p, &flags);
e9c84311 2356 if (!(p->state & state))
1da177e4
LT
2357 goto out;
2358
dd41f596 2359 if (p->se.on_rq)
1da177e4
LT
2360 goto out_running;
2361
2362 cpu = task_cpu(p);
cc367732 2363 orig_cpu = cpu;
1da177e4
LT
2364
2365#ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2368
e9c84311
PZ
2369 /*
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
eb24073b
IM
2372 *
2373 * First fix up the nr_uninterruptible count:
e9c84311 2374 */
cc87f76a
PZ
2375 if (task_contributes_to_load(p)) {
2376 if (likely(cpu_online(orig_cpu)))
2377 rq->nr_uninterruptible--;
2378 else
2379 this_rq()->nr_uninterruptible--;
2380 }
e9c84311 2381 p->state = TASK_WAKING;
efbbd05a 2382
371fd7e7 2383 if (p->sched_class->task_waking) {
efbbd05a 2384 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2385 en_flags |= ENQUEUE_WAKING;
2386 }
efbbd05a 2387
0017d735
PZ
2388 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2389 if (cpu != orig_cpu)
5d2f5a61 2390 set_task_cpu(p, cpu);
0017d735 2391 __task_rq_unlock(rq);
ab19cb23 2392
0970d299
PZ
2393 rq = cpu_rq(cpu);
2394 raw_spin_lock(&rq->lock);
f5dc3753 2395
0970d299
PZ
2396 /*
2397 * We migrated the task without holding either rq->lock, however
2398 * since the task is not on the task list itself, nobody else
2399 * will try and migrate the task, hence the rq should match the
2400 * cpu we just moved it to.
2401 */
2402 WARN_ON(task_cpu(p) != cpu);
e9c84311 2403 WARN_ON(p->state != TASK_WAKING);
1da177e4 2404
e7693a36
GH
2405#ifdef CONFIG_SCHEDSTATS
2406 schedstat_inc(rq, ttwu_count);
2407 if (cpu == this_cpu)
2408 schedstat_inc(rq, ttwu_local);
2409 else {
2410 struct sched_domain *sd;
2411 for_each_domain(this_cpu, sd) {
758b2cdc 2412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2413 schedstat_inc(sd, ttwu_wake_remote);
2414 break;
2415 }
2416 }
2417 }
6d6bc0ad 2418#endif /* CONFIG_SCHEDSTATS */
e7693a36 2419
1da177e4
LT
2420out_activate:
2421#endif /* CONFIG_SMP */
9ed3811a
TH
2422 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2423 cpu == this_cpu, en_flags);
1da177e4 2424 success = 1;
1da177e4 2425out_running:
9ed3811a 2426 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2427out:
2428 task_rq_unlock(rq, &flags);
e9c84311 2429 put_cpu();
1da177e4
LT
2430
2431 return success;
2432}
2433
21aa9af0
TH
2434/**
2435 * try_to_wake_up_local - try to wake up a local task with rq lock held
2436 * @p: the thread to be awakened
2437 *
2438 * Put @p on the run-queue if it's not alredy there. The caller must
2439 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2440 * the current task. this_rq() stays locked over invocation.
2441 */
2442static void try_to_wake_up_local(struct task_struct *p)
2443{
2444 struct rq *rq = task_rq(p);
2445 bool success = false;
2446
2447 BUG_ON(rq != this_rq());
2448 BUG_ON(p == current);
2449 lockdep_assert_held(&rq->lock);
2450
2451 if (!(p->state & TASK_NORMAL))
2452 return;
2453
2454 if (!p->se.on_rq) {
2455 if (likely(!task_running(rq, p))) {
2456 schedstat_inc(rq, ttwu_count);
2457 schedstat_inc(rq, ttwu_local);
2458 }
2459 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2460 success = true;
2461 }
2462 ttwu_post_activation(p, rq, 0, success);
2463}
2464
50fa610a
DH
2465/**
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2468 *
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2472 *
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2475 */
7ad5b3a5 2476int wake_up_process(struct task_struct *p)
1da177e4 2477{
d9514f6c 2478 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2479}
1da177e4
LT
2480EXPORT_SYMBOL(wake_up_process);
2481
7ad5b3a5 2482int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2483{
2484 return try_to_wake_up(p, state, 0);
2485}
2486
1da177e4
LT
2487/*
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
dd41f596
IM
2490 *
2491 * __sched_fork() is basic setup used by init_idle() too:
2492 */
2493static void __sched_fork(struct task_struct *p)
2494{
dd41f596
IM
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
f6cf891c 2497 p->se.prev_sum_exec_runtime = 0;
6c594c21 2498 p->se.nr_migrations = 0;
6cfb0d5d
IM
2499
2500#ifdef CONFIG_SCHEDSTATS
41acab88 2501 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2502#endif
476d139c 2503
fa717060 2504 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2505 p->se.on_rq = 0;
4a55bd5e 2506 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2507
e107be36
AK
2508#ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p->preempt_notifiers);
2510#endif
dd41f596
IM
2511}
2512
2513/*
2514 * fork()/clone()-time setup:
2515 */
2516void sched_fork(struct task_struct *p, int clone_flags)
2517{
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
06b83b5f 2521 /*
0017d735 2522 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2525 */
0017d735 2526 p->state = TASK_RUNNING;
dd41f596 2527
b9dc29e7
MG
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2533 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2534 p->normal_prio = p->static_prio;
2535 }
b9dc29e7 2536
6c697bdf
MG
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2539 p->normal_prio = p->static_prio;
6c697bdf
MG
2540 set_load_weight(p);
2541 }
2542
b9dc29e7
MG
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
ca94c442 2549
f83f9ac2
PW
2550 /*
2551 * Make sure we do not leak PI boosting priority to the child.
2552 */
2553 p->prio = current->normal_prio;
2554
2ddbf952
HS
2555 if (!rt_prio(p->prio))
2556 p->sched_class = &fair_sched_class;
b29739f9 2557
cd29fe6f
PZ
2558 if (p->sched_class->task_fork)
2559 p->sched_class->task_fork(p);
2560
86951599
PZ
2561 /*
2562 * The child is not yet in the pid-hash so no cgroup attach races,
2563 * and the cgroup is pinned to this child due to cgroup_fork()
2564 * is ran before sched_fork().
2565 *
2566 * Silence PROVE_RCU.
2567 */
2568 rcu_read_lock();
5f3edc1b 2569 set_task_cpu(p, cpu);
86951599 2570 rcu_read_unlock();
5f3edc1b 2571
52f17b6c 2572#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2573 if (likely(sched_info_on()))
52f17b6c 2574 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2575#endif
d6077cb8 2576#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2577 p->oncpu = 0;
2578#endif
1da177e4 2579#ifdef CONFIG_PREEMPT
4866cde0 2580 /* Want to start with kernel preemption disabled. */
a1261f54 2581 task_thread_info(p)->preempt_count = 1;
1da177e4 2582#endif
917b627d
GH
2583 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2584
476d139c 2585 put_cpu();
1da177e4
LT
2586}
2587
2588/*
2589 * wake_up_new_task - wake up a newly created task for the first time.
2590 *
2591 * This function will do some initial scheduler statistics housekeeping
2592 * that must be done for every newly created context, then puts the task
2593 * on the runqueue and wakes it.
2594 */
7ad5b3a5 2595void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2596{
2597 unsigned long flags;
dd41f596 2598 struct rq *rq;
c890692b 2599 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2600
2601#ifdef CONFIG_SMP
0017d735
PZ
2602 rq = task_rq_lock(p, &flags);
2603 p->state = TASK_WAKING;
2604
fabf318e
PZ
2605 /*
2606 * Fork balancing, do it here and not earlier because:
2607 * - cpus_allowed can change in the fork path
2608 * - any previously selected cpu might disappear through hotplug
2609 *
0017d735
PZ
2610 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2611 * without people poking at ->cpus_allowed.
fabf318e 2612 */
0017d735 2613 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2614 set_task_cpu(p, cpu);
1da177e4 2615
06b83b5f 2616 p->state = TASK_RUNNING;
0017d735
PZ
2617 task_rq_unlock(rq, &flags);
2618#endif
2619
2620 rq = task_rq_lock(p, &flags);
cd29fe6f 2621 activate_task(rq, p, 0);
27a9da65 2622 trace_sched_wakeup_new(p, 1);
a7558e01 2623 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2624#ifdef CONFIG_SMP
efbbd05a
PZ
2625 if (p->sched_class->task_woken)
2626 p->sched_class->task_woken(rq, p);
9a897c5a 2627#endif
dd41f596 2628 task_rq_unlock(rq, &flags);
fabf318e 2629 put_cpu();
1da177e4
LT
2630}
2631
e107be36
AK
2632#ifdef CONFIG_PREEMPT_NOTIFIERS
2633
2634/**
80dd99b3 2635 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2636 * @notifier: notifier struct to register
e107be36
AK
2637 */
2638void preempt_notifier_register(struct preempt_notifier *notifier)
2639{
2640 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2641}
2642EXPORT_SYMBOL_GPL(preempt_notifier_register);
2643
2644/**
2645 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2646 * @notifier: notifier struct to unregister
e107be36
AK
2647 *
2648 * This is safe to call from within a preemption notifier.
2649 */
2650void preempt_notifier_unregister(struct preempt_notifier *notifier)
2651{
2652 hlist_del(&notifier->link);
2653}
2654EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2655
2656static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2657{
2658 struct preempt_notifier *notifier;
2659 struct hlist_node *node;
2660
2661 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2662 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2663}
2664
2665static void
2666fire_sched_out_preempt_notifiers(struct task_struct *curr,
2667 struct task_struct *next)
2668{
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2671
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_out(notifier, next);
2674}
2675
6d6bc0ad 2676#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2677
2678static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2679{
2680}
2681
2682static void
2683fire_sched_out_preempt_notifiers(struct task_struct *curr,
2684 struct task_struct *next)
2685{
2686}
2687
6d6bc0ad 2688#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2689
4866cde0
NP
2690/**
2691 * prepare_task_switch - prepare to switch tasks
2692 * @rq: the runqueue preparing to switch
421cee29 2693 * @prev: the current task that is being switched out
4866cde0
NP
2694 * @next: the task we are going to switch to.
2695 *
2696 * This is called with the rq lock held and interrupts off. It must
2697 * be paired with a subsequent finish_task_switch after the context
2698 * switch.
2699 *
2700 * prepare_task_switch sets up locking and calls architecture specific
2701 * hooks.
2702 */
e107be36
AK
2703static inline void
2704prepare_task_switch(struct rq *rq, struct task_struct *prev,
2705 struct task_struct *next)
4866cde0 2706{
e107be36 2707 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710}
2711
1da177e4
LT
2712/**
2713 * finish_task_switch - clean up after a task-switch
344babaa 2714 * @rq: runqueue associated with task-switch
1da177e4
LT
2715 * @prev: the thread we just switched away from.
2716 *
4866cde0
NP
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2721 *
2722 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2723 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
2726 */
a9957449 2727static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2728 __releases(rq->lock)
2729{
1da177e4 2730 struct mm_struct *mm = rq->prev_mm;
55a101f8 2731 long prev_state;
1da177e4
LT
2732
2733 rq->prev_mm = NULL;
2734
2735 /*
2736 * A task struct has one reference for the use as "current".
c394cc9f 2737 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2738 * schedule one last time. The schedule call will never return, and
2739 * the scheduled task must drop that reference.
c394cc9f 2740 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2741 * still held, otherwise prev could be scheduled on another cpu, die
2742 * there before we look at prev->state, and then the reference would
2743 * be dropped twice.
2744 * Manfred Spraul <manfred@colorfullife.com>
2745 */
55a101f8 2746 prev_state = prev->state;
4866cde0 2747 finish_arch_switch(prev);
8381f65d
JI
2748#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2749 local_irq_disable();
2750#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2751 perf_event_task_sched_in(current);
8381f65d
JI
2752#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2753 local_irq_enable();
2754#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2755 finish_lock_switch(rq, prev);
e8fa1362 2756
e107be36 2757 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2758 if (mm)
2759 mmdrop(mm);
c394cc9f 2760 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2761 /*
2762 * Remove function-return probe instances associated with this
2763 * task and put them back on the free list.
9761eea8 2764 */
c6fd91f0 2765 kprobe_flush_task(prev);
1da177e4 2766 put_task_struct(prev);
c6fd91f0 2767 }
1da177e4
LT
2768}
2769
3f029d3c
GH
2770#ifdef CONFIG_SMP
2771
2772/* assumes rq->lock is held */
2773static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2774{
2775 if (prev->sched_class->pre_schedule)
2776 prev->sched_class->pre_schedule(rq, prev);
2777}
2778
2779/* rq->lock is NOT held, but preemption is disabled */
2780static inline void post_schedule(struct rq *rq)
2781{
2782 if (rq->post_schedule) {
2783 unsigned long flags;
2784
05fa785c 2785 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2786 if (rq->curr->sched_class->post_schedule)
2787 rq->curr->sched_class->post_schedule(rq);
05fa785c 2788 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2789
2790 rq->post_schedule = 0;
2791 }
2792}
2793
2794#else
da19ab51 2795
3f029d3c
GH
2796static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2797{
2798}
2799
2800static inline void post_schedule(struct rq *rq)
2801{
1da177e4
LT
2802}
2803
3f029d3c
GH
2804#endif
2805
1da177e4
LT
2806/**
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2809 */
36c8b586 2810asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2811 __releases(rq->lock)
2812{
70b97a7f
IM
2813 struct rq *rq = this_rq();
2814
4866cde0 2815 finish_task_switch(rq, prev);
da19ab51 2816
3f029d3c
GH
2817 /*
2818 * FIXME: do we need to worry about rq being invalidated by the
2819 * task_switch?
2820 */
2821 post_schedule(rq);
70b97a7f 2822
4866cde0
NP
2823#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2824 /* In this case, finish_task_switch does not reenable preemption */
2825 preempt_enable();
2826#endif
1da177e4 2827 if (current->set_child_tid)
b488893a 2828 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2829}
2830
2831/*
2832 * context_switch - switch to the new MM and the new
2833 * thread's register state.
2834 */
dd41f596 2835static inline void
70b97a7f 2836context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2837 struct task_struct *next)
1da177e4 2838{
dd41f596 2839 struct mm_struct *mm, *oldmm;
1da177e4 2840
e107be36 2841 prepare_task_switch(rq, prev, next);
27a9da65 2842 trace_sched_switch(prev, next);
dd41f596
IM
2843 mm = next->mm;
2844 oldmm = prev->active_mm;
9226d125
ZA
2845 /*
2846 * For paravirt, this is coupled with an exit in switch_to to
2847 * combine the page table reload and the switch backend into
2848 * one hypercall.
2849 */
224101ed 2850 arch_start_context_switch(prev);
9226d125 2851
31915ab4 2852 if (!mm) {
1da177e4
LT
2853 next->active_mm = oldmm;
2854 atomic_inc(&oldmm->mm_count);
2855 enter_lazy_tlb(oldmm, next);
2856 } else
2857 switch_mm(oldmm, mm, next);
2858
31915ab4 2859 if (!prev->mm) {
1da177e4 2860 prev->active_mm = NULL;
1da177e4
LT
2861 rq->prev_mm = oldmm;
2862 }
3a5f5e48
IM
2863 /*
2864 * Since the runqueue lock will be released by the next
2865 * task (which is an invalid locking op but in the case
2866 * of the scheduler it's an obvious special-case), so we
2867 * do an early lockdep release here:
2868 */
2869#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2870 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2871#endif
1da177e4
LT
2872
2873 /* Here we just switch the register state and the stack. */
2874 switch_to(prev, next, prev);
2875
dd41f596
IM
2876 barrier();
2877 /*
2878 * this_rq must be evaluated again because prev may have moved
2879 * CPUs since it called schedule(), thus the 'rq' on its stack
2880 * frame will be invalid.
2881 */
2882 finish_task_switch(this_rq(), prev);
1da177e4
LT
2883}
2884
2885/*
2886 * nr_running, nr_uninterruptible and nr_context_switches:
2887 *
2888 * externally visible scheduler statistics: current number of runnable
2889 * threads, current number of uninterruptible-sleeping threads, total
2890 * number of context switches performed since bootup.
2891 */
2892unsigned long nr_running(void)
2893{
2894 unsigned long i, sum = 0;
2895
2896 for_each_online_cpu(i)
2897 sum += cpu_rq(i)->nr_running;
2898
2899 return sum;
f711f609 2900}
1da177e4
LT
2901
2902unsigned long nr_uninterruptible(void)
f711f609 2903{
1da177e4 2904 unsigned long i, sum = 0;
f711f609 2905
0a945022 2906 for_each_possible_cpu(i)
1da177e4 2907 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2908
2909 /*
1da177e4
LT
2910 * Since we read the counters lockless, it might be slightly
2911 * inaccurate. Do not allow it to go below zero though:
f711f609 2912 */
1da177e4
LT
2913 if (unlikely((long)sum < 0))
2914 sum = 0;
f711f609 2915
1da177e4 2916 return sum;
f711f609 2917}
f711f609 2918
1da177e4 2919unsigned long long nr_context_switches(void)
46cb4b7c 2920{
cc94abfc
SR
2921 int i;
2922 unsigned long long sum = 0;
46cb4b7c 2923
0a945022 2924 for_each_possible_cpu(i)
1da177e4 2925 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2926
1da177e4
LT
2927 return sum;
2928}
483b4ee6 2929
1da177e4
LT
2930unsigned long nr_iowait(void)
2931{
2932 unsigned long i, sum = 0;
483b4ee6 2933
0a945022 2934 for_each_possible_cpu(i)
1da177e4 2935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2936
1da177e4
LT
2937 return sum;
2938}
483b4ee6 2939
8c215bd3 2940unsigned long nr_iowait_cpu(int cpu)
69d25870 2941{
8c215bd3 2942 struct rq *this = cpu_rq(cpu);
69d25870
AV
2943 return atomic_read(&this->nr_iowait);
2944}
46cb4b7c 2945
69d25870
AV
2946unsigned long this_cpu_load(void)
2947{
2948 struct rq *this = this_rq();
2949 return this->cpu_load[0];
2950}
e790fb0b 2951
46cb4b7c 2952
dce48a84
TG
2953/* Variables and functions for calc_load */
2954static atomic_long_t calc_load_tasks;
2955static unsigned long calc_load_update;
2956unsigned long avenrun[3];
2957EXPORT_SYMBOL(avenrun);
46cb4b7c 2958
74f5187a
PZ
2959static long calc_load_fold_active(struct rq *this_rq)
2960{
2961 long nr_active, delta = 0;
2962
2963 nr_active = this_rq->nr_running;
2964 nr_active += (long) this_rq->nr_uninterruptible;
2965
2966 if (nr_active != this_rq->calc_load_active) {
2967 delta = nr_active - this_rq->calc_load_active;
2968 this_rq->calc_load_active = nr_active;
2969 }
2970
2971 return delta;
2972}
2973
2974#ifdef CONFIG_NO_HZ
2975/*
2976 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2977 *
2978 * When making the ILB scale, we should try to pull this in as well.
2979 */
2980static atomic_long_t calc_load_tasks_idle;
2981
2982static void calc_load_account_idle(struct rq *this_rq)
2983{
2984 long delta;
2985
2986 delta = calc_load_fold_active(this_rq);
2987 if (delta)
2988 atomic_long_add(delta, &calc_load_tasks_idle);
2989}
2990
2991static long calc_load_fold_idle(void)
2992{
2993 long delta = 0;
2994
2995 /*
2996 * Its got a race, we don't care...
2997 */
2998 if (atomic_long_read(&calc_load_tasks_idle))
2999 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3000
3001 return delta;
3002}
3003#else
3004static void calc_load_account_idle(struct rq *this_rq)
3005{
3006}
3007
3008static inline long calc_load_fold_idle(void)
3009{
3010 return 0;
3011}
3012#endif
3013
2d02494f
TG
3014/**
3015 * get_avenrun - get the load average array
3016 * @loads: pointer to dest load array
3017 * @offset: offset to add
3018 * @shift: shift count to shift the result left
3019 *
3020 * These values are estimates at best, so no need for locking.
3021 */
3022void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3023{
3024 loads[0] = (avenrun[0] + offset) << shift;
3025 loads[1] = (avenrun[1] + offset) << shift;
3026 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3027}
46cb4b7c 3028
dce48a84
TG
3029static unsigned long
3030calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3031{
dce48a84
TG
3032 load *= exp;
3033 load += active * (FIXED_1 - exp);
3034 return load >> FSHIFT;
3035}
46cb4b7c
SS
3036
3037/*
dce48a84
TG
3038 * calc_load - update the avenrun load estimates 10 ticks after the
3039 * CPUs have updated calc_load_tasks.
7835b98b 3040 */
dce48a84 3041void calc_global_load(void)
7835b98b 3042{
dce48a84
TG
3043 unsigned long upd = calc_load_update + 10;
3044 long active;
1da177e4 3045
dce48a84
TG
3046 if (time_before(jiffies, upd))
3047 return;
1da177e4 3048
dce48a84
TG
3049 active = atomic_long_read(&calc_load_tasks);
3050 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3051
dce48a84
TG
3052 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3053 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3054 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3055
dce48a84
TG
3056 calc_load_update += LOAD_FREQ;
3057}
1da177e4 3058
dce48a84 3059/*
74f5187a
PZ
3060 * Called from update_cpu_load() to periodically update this CPU's
3061 * active count.
dce48a84
TG
3062 */
3063static void calc_load_account_active(struct rq *this_rq)
3064{
74f5187a 3065 long delta;
08c183f3 3066
74f5187a
PZ
3067 if (time_before(jiffies, this_rq->calc_load_update))
3068 return;
783609c6 3069
74f5187a
PZ
3070 delta = calc_load_fold_active(this_rq);
3071 delta += calc_load_fold_idle();
3072 if (delta)
dce48a84 3073 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3074
3075 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3076}
3077
fdf3e95d
VP
3078/*
3079 * The exact cpuload at various idx values, calculated at every tick would be
3080 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3081 *
3082 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3083 * on nth tick when cpu may be busy, then we have:
3084 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3085 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3086 *
3087 * decay_load_missed() below does efficient calculation of
3088 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3089 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3090 *
3091 * The calculation is approximated on a 128 point scale.
3092 * degrade_zero_ticks is the number of ticks after which load at any
3093 * particular idx is approximated to be zero.
3094 * degrade_factor is a precomputed table, a row for each load idx.
3095 * Each column corresponds to degradation factor for a power of two ticks,
3096 * based on 128 point scale.
3097 * Example:
3098 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3099 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3100 *
3101 * With this power of 2 load factors, we can degrade the load n times
3102 * by looking at 1 bits in n and doing as many mult/shift instead of
3103 * n mult/shifts needed by the exact degradation.
3104 */
3105#define DEGRADE_SHIFT 7
3106static const unsigned char
3107 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3108static const unsigned char
3109 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3110 {0, 0, 0, 0, 0, 0, 0, 0},
3111 {64, 32, 8, 0, 0, 0, 0, 0},
3112 {96, 72, 40, 12, 1, 0, 0},
3113 {112, 98, 75, 43, 15, 1, 0},
3114 {120, 112, 98, 76, 45, 16, 2} };
3115
3116/*
3117 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3118 * would be when CPU is idle and so we just decay the old load without
3119 * adding any new load.
3120 */
3121static unsigned long
3122decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3123{
3124 int j = 0;
3125
3126 if (!missed_updates)
3127 return load;
3128
3129 if (missed_updates >= degrade_zero_ticks[idx])
3130 return 0;
3131
3132 if (idx == 1)
3133 return load >> missed_updates;
3134
3135 while (missed_updates) {
3136 if (missed_updates % 2)
3137 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3138
3139 missed_updates >>= 1;
3140 j++;
3141 }
3142 return load;
3143}
3144
46cb4b7c 3145/*
dd41f596 3146 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3147 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3148 * every tick. We fix it up based on jiffies.
46cb4b7c 3149 */
dd41f596 3150static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3151{
495eca49 3152 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3153 unsigned long curr_jiffies = jiffies;
3154 unsigned long pending_updates;
dd41f596 3155 int i, scale;
46cb4b7c 3156
dd41f596 3157 this_rq->nr_load_updates++;
46cb4b7c 3158
fdf3e95d
VP
3159 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3160 if (curr_jiffies == this_rq->last_load_update_tick)
3161 return;
3162
3163 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3164 this_rq->last_load_update_tick = curr_jiffies;
3165
dd41f596 3166 /* Update our load: */
fdf3e95d
VP
3167 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3168 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3169 unsigned long old_load, new_load;
7d1e6a9b 3170
dd41f596 3171 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3172
dd41f596 3173 old_load = this_rq->cpu_load[i];
fdf3e95d 3174 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3175 new_load = this_load;
a25707f3
IM
3176 /*
3177 * Round up the averaging division if load is increasing. This
3178 * prevents us from getting stuck on 9 if the load is 10, for
3179 * example.
3180 */
3181 if (new_load > old_load)
fdf3e95d
VP
3182 new_load += scale - 1;
3183
3184 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3185 }
da2b71ed
SS
3186
3187 sched_avg_update(this_rq);
fdf3e95d
VP
3188}
3189
3190static void update_cpu_load_active(struct rq *this_rq)
3191{
3192 update_cpu_load(this_rq);
46cb4b7c 3193
74f5187a 3194 calc_load_account_active(this_rq);
46cb4b7c
SS
3195}
3196
dd41f596 3197#ifdef CONFIG_SMP
8a0be9ef 3198
46cb4b7c 3199/*
38022906
PZ
3200 * sched_exec - execve() is a valuable balancing opportunity, because at
3201 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3202 */
38022906 3203void sched_exec(void)
46cb4b7c 3204{
38022906 3205 struct task_struct *p = current;
1da177e4 3206 unsigned long flags;
70b97a7f 3207 struct rq *rq;
0017d735 3208 int dest_cpu;
46cb4b7c 3209
1da177e4 3210 rq = task_rq_lock(p, &flags);
0017d735
PZ
3211 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3212 if (dest_cpu == smp_processor_id())
3213 goto unlock;
38022906 3214
46cb4b7c 3215 /*
38022906 3216 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3217 */
30da688e 3218 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3219 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3220 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3221
1da177e4 3222 task_rq_unlock(rq, &flags);
969c7921 3223 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3224 return;
3225 }
0017d735 3226unlock:
1da177e4 3227 task_rq_unlock(rq, &flags);
1da177e4 3228}
dd41f596 3229
1da177e4
LT
3230#endif
3231
1da177e4
LT
3232DEFINE_PER_CPU(struct kernel_stat, kstat);
3233
3234EXPORT_PER_CPU_SYMBOL(kstat);
3235
3236/*
c5f8d995 3237 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3238 * @p in case that task is currently running.
c5f8d995
HS
3239 *
3240 * Called with task_rq_lock() held on @rq.
1da177e4 3241 */
c5f8d995
HS
3242static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3243{
3244 u64 ns = 0;
3245
3246 if (task_current(rq, p)) {
3247 update_rq_clock(rq);
3248 ns = rq->clock - p->se.exec_start;
3249 if ((s64)ns < 0)
3250 ns = 0;
3251 }
3252
3253 return ns;
3254}
3255
bb34d92f 3256unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3257{
1da177e4 3258 unsigned long flags;
41b86e9c 3259 struct rq *rq;
bb34d92f 3260 u64 ns = 0;
48f24c4d 3261
41b86e9c 3262 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3263 ns = do_task_delta_exec(p, rq);
3264 task_rq_unlock(rq, &flags);
1508487e 3265
c5f8d995
HS
3266 return ns;
3267}
f06febc9 3268
c5f8d995
HS
3269/*
3270 * Return accounted runtime for the task.
3271 * In case the task is currently running, return the runtime plus current's
3272 * pending runtime that have not been accounted yet.
3273 */
3274unsigned long long task_sched_runtime(struct task_struct *p)
3275{
3276 unsigned long flags;
3277 struct rq *rq;
3278 u64 ns = 0;
3279
3280 rq = task_rq_lock(p, &flags);
3281 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3282 task_rq_unlock(rq, &flags);
3283
3284 return ns;
3285}
48f24c4d 3286
c5f8d995
HS
3287/*
3288 * Return sum_exec_runtime for the thread group.
3289 * In case the task is currently running, return the sum plus current's
3290 * pending runtime that have not been accounted yet.
3291 *
3292 * Note that the thread group might have other running tasks as well,
3293 * so the return value not includes other pending runtime that other
3294 * running tasks might have.
3295 */
3296unsigned long long thread_group_sched_runtime(struct task_struct *p)
3297{
3298 struct task_cputime totals;
3299 unsigned long flags;
3300 struct rq *rq;
3301 u64 ns;
3302
3303 rq = task_rq_lock(p, &flags);
3304 thread_group_cputime(p, &totals);
3305 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3306 task_rq_unlock(rq, &flags);
48f24c4d 3307
1da177e4
LT
3308 return ns;
3309}
3310
1da177e4
LT
3311/*
3312 * Account user cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
1da177e4 3314 * @cputime: the cpu time spent in user space since the last update
457533a7 3315 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3316 */
457533a7
MS
3317void account_user_time(struct task_struct *p, cputime_t cputime,
3318 cputime_t cputime_scaled)
1da177e4
LT
3319{
3320 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3321 cputime64_t tmp;
3322
457533a7 3323 /* Add user time to process. */
1da177e4 3324 p->utime = cputime_add(p->utime, cputime);
457533a7 3325 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3326 account_group_user_time(p, cputime);
1da177e4
LT
3327
3328 /* Add user time to cpustat. */
3329 tmp = cputime_to_cputime64(cputime);
3330 if (TASK_NICE(p) > 0)
3331 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3332 else
3333 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3334
3335 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3336 /* Account for user time used */
3337 acct_update_integrals(p);
1da177e4
LT
3338}
3339
94886b84
LV
3340/*
3341 * Account guest cpu time to a process.
3342 * @p: the process that the cpu time gets accounted to
3343 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3344 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3345 */
457533a7
MS
3346static void account_guest_time(struct task_struct *p, cputime_t cputime,
3347 cputime_t cputime_scaled)
94886b84
LV
3348{
3349 cputime64_t tmp;
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3351
3352 tmp = cputime_to_cputime64(cputime);
3353
457533a7 3354 /* Add guest time to process. */
94886b84 3355 p->utime = cputime_add(p->utime, cputime);
457533a7 3356 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3357 account_group_user_time(p, cputime);
94886b84
LV
3358 p->gtime = cputime_add(p->gtime, cputime);
3359
457533a7 3360 /* Add guest time to cpustat. */
ce0e7b28
RO
3361 if (TASK_NICE(p) > 0) {
3362 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3363 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3364 } else {
3365 cpustat->user = cputime64_add(cpustat->user, tmp);
3366 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3367 }
94886b84
LV
3368}
3369
1da177e4
LT
3370/*
3371 * Account system cpu time to a process.
3372 * @p: the process that the cpu time gets accounted to
3373 * @hardirq_offset: the offset to subtract from hardirq_count()
3374 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3375 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3376 */
3377void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3378 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3379{
3380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3381 cputime64_t tmp;
3382
983ed7a6 3383 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3384 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3385 return;
3386 }
94886b84 3387
457533a7 3388 /* Add system time to process. */
1da177e4 3389 p->stime = cputime_add(p->stime, cputime);
457533a7 3390 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3391 account_group_system_time(p, cputime);
1da177e4
LT
3392
3393 /* Add system time to cpustat. */
3394 tmp = cputime_to_cputime64(cputime);
3395 if (hardirq_count() - hardirq_offset)
3396 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3397 else if (softirq_count())
3398 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3399 else
79741dd3
MS
3400 cpustat->system = cputime64_add(cpustat->system, tmp);
3401
ef12fefa
BR
3402 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3403
1da177e4
LT
3404 /* Account for system time used */
3405 acct_update_integrals(p);
1da177e4
LT
3406}
3407
c66f08be 3408/*
1da177e4 3409 * Account for involuntary wait time.
1da177e4 3410 * @steal: the cpu time spent in involuntary wait
c66f08be 3411 */
79741dd3 3412void account_steal_time(cputime_t cputime)
c66f08be 3413{
79741dd3
MS
3414 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3415 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3416
3417 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3418}
3419
1da177e4 3420/*
79741dd3
MS
3421 * Account for idle time.
3422 * @cputime: the cpu time spent in idle wait
1da177e4 3423 */
79741dd3 3424void account_idle_time(cputime_t cputime)
1da177e4
LT
3425{
3426 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3427 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3428 struct rq *rq = this_rq();
1da177e4 3429
79741dd3
MS
3430 if (atomic_read(&rq->nr_iowait) > 0)
3431 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3432 else
3433 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3434}
3435
79741dd3
MS
3436#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3437
3438/*
3439 * Account a single tick of cpu time.
3440 * @p: the process that the cpu time gets accounted to
3441 * @user_tick: indicates if the tick is a user or a system tick
3442 */
3443void account_process_tick(struct task_struct *p, int user_tick)
3444{
a42548a1 3445 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3446 struct rq *rq = this_rq();
3447
3448 if (user_tick)
a42548a1 3449 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3450 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3451 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3452 one_jiffy_scaled);
3453 else
a42548a1 3454 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3455}
3456
3457/*
3458 * Account multiple ticks of steal time.
3459 * @p: the process from which the cpu time has been stolen
3460 * @ticks: number of stolen ticks
3461 */
3462void account_steal_ticks(unsigned long ticks)
3463{
3464 account_steal_time(jiffies_to_cputime(ticks));
3465}
3466
3467/*
3468 * Account multiple ticks of idle time.
3469 * @ticks: number of stolen ticks
3470 */
3471void account_idle_ticks(unsigned long ticks)
3472{
3473 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3474}
3475
79741dd3
MS
3476#endif
3477
49048622
BS
3478/*
3479 * Use precise platform statistics if available:
3480 */
3481#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3482void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3483{
d99ca3b9
HS
3484 *ut = p->utime;
3485 *st = p->stime;
49048622
BS
3486}
3487
0cf55e1e 3488void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3489{
0cf55e1e
HS
3490 struct task_cputime cputime;
3491
3492 thread_group_cputime(p, &cputime);
3493
3494 *ut = cputime.utime;
3495 *st = cputime.stime;
49048622
BS
3496}
3497#else
761b1d26
HS
3498
3499#ifndef nsecs_to_cputime
b7b20df9 3500# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3501#endif
3502
d180c5bc 3503void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3504{
d99ca3b9 3505 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3506
3507 /*
3508 * Use CFS's precise accounting:
3509 */
d180c5bc 3510 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3511
3512 if (total) {
d180c5bc
HS
3513 u64 temp;
3514
3515 temp = (u64)(rtime * utime);
49048622 3516 do_div(temp, total);
d180c5bc
HS
3517 utime = (cputime_t)temp;
3518 } else
3519 utime = rtime;
49048622 3520
d180c5bc
HS
3521 /*
3522 * Compare with previous values, to keep monotonicity:
3523 */
761b1d26 3524 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3525 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3526
d99ca3b9
HS
3527 *ut = p->prev_utime;
3528 *st = p->prev_stime;
49048622
BS
3529}
3530
0cf55e1e
HS
3531/*
3532 * Must be called with siglock held.
3533 */
3534void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3535{
0cf55e1e
HS
3536 struct signal_struct *sig = p->signal;
3537 struct task_cputime cputime;
3538 cputime_t rtime, utime, total;
49048622 3539
0cf55e1e 3540 thread_group_cputime(p, &cputime);
49048622 3541
0cf55e1e
HS
3542 total = cputime_add(cputime.utime, cputime.stime);
3543 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3544
0cf55e1e
HS
3545 if (total) {
3546 u64 temp;
49048622 3547
0cf55e1e
HS
3548 temp = (u64)(rtime * cputime.utime);
3549 do_div(temp, total);
3550 utime = (cputime_t)temp;
3551 } else
3552 utime = rtime;
3553
3554 sig->prev_utime = max(sig->prev_utime, utime);
3555 sig->prev_stime = max(sig->prev_stime,
3556 cputime_sub(rtime, sig->prev_utime));
3557
3558 *ut = sig->prev_utime;
3559 *st = sig->prev_stime;
49048622 3560}
49048622 3561#endif
49048622 3562
7835b98b
CL
3563/*
3564 * This function gets called by the timer code, with HZ frequency.
3565 * We call it with interrupts disabled.
3566 *
3567 * It also gets called by the fork code, when changing the parent's
3568 * timeslices.
3569 */
3570void scheduler_tick(void)
3571{
7835b98b
CL
3572 int cpu = smp_processor_id();
3573 struct rq *rq = cpu_rq(cpu);
dd41f596 3574 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3575
3576 sched_clock_tick();
dd41f596 3577
05fa785c 3578 raw_spin_lock(&rq->lock);
3e51f33f 3579 update_rq_clock(rq);
fdf3e95d 3580 update_cpu_load_active(rq);
fa85ae24 3581 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3582 raw_spin_unlock(&rq->lock);
7835b98b 3583
49f47433 3584 perf_event_task_tick(curr);
e220d2dc 3585
e418e1c2 3586#ifdef CONFIG_SMP
dd41f596
IM
3587 rq->idle_at_tick = idle_cpu(cpu);
3588 trigger_load_balance(rq, cpu);
e418e1c2 3589#endif
1da177e4
LT
3590}
3591
132380a0 3592notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3593{
3594 if (in_lock_functions(addr)) {
3595 addr = CALLER_ADDR2;
3596 if (in_lock_functions(addr))
3597 addr = CALLER_ADDR3;
3598 }
3599 return addr;
3600}
1da177e4 3601
7e49fcce
SR
3602#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3603 defined(CONFIG_PREEMPT_TRACER))
3604
43627582 3605void __kprobes add_preempt_count(int val)
1da177e4 3606{
6cd8a4bb 3607#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3608 /*
3609 * Underflow?
3610 */
9a11b49a
IM
3611 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3612 return;
6cd8a4bb 3613#endif
1da177e4 3614 preempt_count() += val;
6cd8a4bb 3615#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3616 /*
3617 * Spinlock count overflowing soon?
3618 */
33859f7f
MOS
3619 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3620 PREEMPT_MASK - 10);
6cd8a4bb
SR
3621#endif
3622 if (preempt_count() == val)
3623 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3624}
3625EXPORT_SYMBOL(add_preempt_count);
3626
43627582 3627void __kprobes sub_preempt_count(int val)
1da177e4 3628{
6cd8a4bb 3629#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3630 /*
3631 * Underflow?
3632 */
01e3eb82 3633 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3634 return;
1da177e4
LT
3635 /*
3636 * Is the spinlock portion underflowing?
3637 */
9a11b49a
IM
3638 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3639 !(preempt_count() & PREEMPT_MASK)))
3640 return;
6cd8a4bb 3641#endif
9a11b49a 3642
6cd8a4bb
SR
3643 if (preempt_count() == val)
3644 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3645 preempt_count() -= val;
3646}
3647EXPORT_SYMBOL(sub_preempt_count);
3648
3649#endif
3650
3651/*
dd41f596 3652 * Print scheduling while atomic bug:
1da177e4 3653 */
dd41f596 3654static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3655{
838225b4
SS
3656 struct pt_regs *regs = get_irq_regs();
3657
3df0fc5b
PZ
3658 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3659 prev->comm, prev->pid, preempt_count());
838225b4 3660
dd41f596 3661 debug_show_held_locks(prev);
e21f5b15 3662 print_modules();
dd41f596
IM
3663 if (irqs_disabled())
3664 print_irqtrace_events(prev);
838225b4
SS
3665
3666 if (regs)
3667 show_regs(regs);
3668 else
3669 dump_stack();
dd41f596 3670}
1da177e4 3671
dd41f596
IM
3672/*
3673 * Various schedule()-time debugging checks and statistics:
3674 */
3675static inline void schedule_debug(struct task_struct *prev)
3676{
1da177e4 3677 /*
41a2d6cf 3678 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3679 * schedule() atomically, we ignore that path for now.
3680 * Otherwise, whine if we are scheduling when we should not be.
3681 */
3f33a7ce 3682 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3683 __schedule_bug(prev);
3684
1da177e4
LT
3685 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3686
2d72376b 3687 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3688#ifdef CONFIG_SCHEDSTATS
3689 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3690 schedstat_inc(this_rq(), bkl_count);
3691 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3692 }
3693#endif
dd41f596
IM
3694}
3695
6cecd084 3696static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3697{
a64692a3
MG
3698 if (prev->se.on_rq)
3699 update_rq_clock(rq);
3700 rq->skip_clock_update = 0;
6cecd084 3701 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3702}
3703
dd41f596
IM
3704/*
3705 * Pick up the highest-prio task:
3706 */
3707static inline struct task_struct *
b67802ea 3708pick_next_task(struct rq *rq)
dd41f596 3709{
5522d5d5 3710 const struct sched_class *class;
dd41f596 3711 struct task_struct *p;
1da177e4
LT
3712
3713 /*
dd41f596
IM
3714 * Optimization: we know that if all tasks are in
3715 * the fair class we can call that function directly:
1da177e4 3716 */
dd41f596 3717 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3718 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3719 if (likely(p))
3720 return p;
1da177e4
LT
3721 }
3722
dd41f596
IM
3723 class = sched_class_highest;
3724 for ( ; ; ) {
fb8d4724 3725 p = class->pick_next_task(rq);
dd41f596
IM
3726 if (p)
3727 return p;
3728 /*
3729 * Will never be NULL as the idle class always
3730 * returns a non-NULL p:
3731 */
3732 class = class->next;
3733 }
3734}
1da177e4 3735
dd41f596
IM
3736/*
3737 * schedule() is the main scheduler function.
3738 */
ff743345 3739asmlinkage void __sched schedule(void)
dd41f596
IM
3740{
3741 struct task_struct *prev, *next;
67ca7bde 3742 unsigned long *switch_count;
dd41f596 3743 struct rq *rq;
31656519 3744 int cpu;
dd41f596 3745
ff743345
PZ
3746need_resched:
3747 preempt_disable();
dd41f596
IM
3748 cpu = smp_processor_id();
3749 rq = cpu_rq(cpu);
25502a6c 3750 rcu_note_context_switch(cpu);
dd41f596 3751 prev = rq->curr;
dd41f596
IM
3752
3753 release_kernel_lock(prev);
3754need_resched_nonpreemptible:
3755
3756 schedule_debug(prev);
1da177e4 3757
31656519 3758 if (sched_feat(HRTICK))
f333fdc9 3759 hrtick_clear(rq);
8f4d37ec 3760
05fa785c 3761 raw_spin_lock_irq(&rq->lock);
1e819950 3762 clear_tsk_need_resched(prev);
1da177e4 3763
246d86b5 3764 switch_count = &prev->nivcsw;
1da177e4 3765 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3766 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3767 prev->state = TASK_RUNNING;
21aa9af0
TH
3768 } else {
3769 /*
3770 * If a worker is going to sleep, notify and
3771 * ask workqueue whether it wants to wake up a
3772 * task to maintain concurrency. If so, wake
3773 * up the task.
3774 */
3775 if (prev->flags & PF_WQ_WORKER) {
3776 struct task_struct *to_wakeup;
3777
3778 to_wakeup = wq_worker_sleeping(prev, cpu);
3779 if (to_wakeup)
3780 try_to_wake_up_local(to_wakeup);
3781 }
371fd7e7 3782 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3783 }
dd41f596 3784 switch_count = &prev->nvcsw;
1da177e4
LT
3785 }
3786
3f029d3c 3787 pre_schedule(rq, prev);
f65eda4f 3788
dd41f596 3789 if (unlikely(!rq->nr_running))
1da177e4 3790 idle_balance(cpu, rq);
1da177e4 3791
df1c99d4 3792 put_prev_task(rq, prev);
b67802ea 3793 next = pick_next_task(rq);
1da177e4 3794
1da177e4 3795 if (likely(prev != next)) {
673a90a1 3796 sched_info_switch(prev, next);
49f47433 3797 perf_event_task_sched_out(prev, next);
673a90a1 3798
1da177e4
LT
3799 rq->nr_switches++;
3800 rq->curr = next;
3801 ++*switch_count;
3802
dd41f596 3803 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3804 /*
246d86b5
ON
3805 * The context switch have flipped the stack from under us
3806 * and restored the local variables which were saved when
3807 * this task called schedule() in the past. prev == current
3808 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3809 */
3810 cpu = smp_processor_id();
3811 rq = cpu_rq(cpu);
1da177e4 3812 } else
05fa785c 3813 raw_spin_unlock_irq(&rq->lock);
1da177e4 3814
3f029d3c 3815 post_schedule(rq);
1da177e4 3816
246d86b5 3817 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3818 goto need_resched_nonpreemptible;
8f4d37ec 3819
1da177e4 3820 preempt_enable_no_resched();
ff743345 3821 if (need_resched())
1da177e4
LT
3822 goto need_resched;
3823}
1da177e4
LT
3824EXPORT_SYMBOL(schedule);
3825
c08f7829 3826#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3827/*
3828 * Look out! "owner" is an entirely speculative pointer
3829 * access and not reliable.
3830 */
3831int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3832{
3833 unsigned int cpu;
3834 struct rq *rq;
3835
3836 if (!sched_feat(OWNER_SPIN))
3837 return 0;
3838
3839#ifdef CONFIG_DEBUG_PAGEALLOC
3840 /*
3841 * Need to access the cpu field knowing that
3842 * DEBUG_PAGEALLOC could have unmapped it if
3843 * the mutex owner just released it and exited.
3844 */
3845 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3846 return 0;
0d66bf6d
PZ
3847#else
3848 cpu = owner->cpu;
3849#endif
3850
3851 /*
3852 * Even if the access succeeded (likely case),
3853 * the cpu field may no longer be valid.
3854 */
3855 if (cpu >= nr_cpumask_bits)
4b402210 3856 return 0;
0d66bf6d
PZ
3857
3858 /*
3859 * We need to validate that we can do a
3860 * get_cpu() and that we have the percpu area.
3861 */
3862 if (!cpu_online(cpu))
4b402210 3863 return 0;
0d66bf6d
PZ
3864
3865 rq = cpu_rq(cpu);
3866
3867 for (;;) {
3868 /*
3869 * Owner changed, break to re-assess state.
3870 */
9d0f4dcc
TC
3871 if (lock->owner != owner) {
3872 /*
3873 * If the lock has switched to a different owner,
3874 * we likely have heavy contention. Return 0 to quit
3875 * optimistic spinning and not contend further:
3876 */
3877 if (lock->owner)
3878 return 0;
0d66bf6d 3879 break;
9d0f4dcc 3880 }
0d66bf6d
PZ
3881
3882 /*
3883 * Is that owner really running on that cpu?
3884 */
3885 if (task_thread_info(rq->curr) != owner || need_resched())
3886 return 0;
3887
3888 cpu_relax();
3889 }
4b402210 3890
0d66bf6d
PZ
3891 return 1;
3892}
3893#endif
3894
1da177e4
LT
3895#ifdef CONFIG_PREEMPT
3896/*
2ed6e34f 3897 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3898 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3899 * occur there and call schedule directly.
3900 */
d1f74e20 3901asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3902{
3903 struct thread_info *ti = current_thread_info();
6478d880 3904
1da177e4
LT
3905 /*
3906 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3907 * we do not want to preempt the current task. Just return..
1da177e4 3908 */
beed33a8 3909 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3910 return;
3911
3a5c359a 3912 do {
d1f74e20 3913 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3914 schedule();
d1f74e20 3915 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3916
3a5c359a
AK
3917 /*
3918 * Check again in case we missed a preemption opportunity
3919 * between schedule and now.
3920 */
3921 barrier();
5ed0cec0 3922 } while (need_resched());
1da177e4 3923}
1da177e4
LT
3924EXPORT_SYMBOL(preempt_schedule);
3925
3926/*
2ed6e34f 3927 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3928 * off of irq context.
3929 * Note, that this is called and return with irqs disabled. This will
3930 * protect us against recursive calling from irq.
3931 */
3932asmlinkage void __sched preempt_schedule_irq(void)
3933{
3934 struct thread_info *ti = current_thread_info();
6478d880 3935
2ed6e34f 3936 /* Catch callers which need to be fixed */
1da177e4
LT
3937 BUG_ON(ti->preempt_count || !irqs_disabled());
3938
3a5c359a
AK
3939 do {
3940 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3941 local_irq_enable();
3942 schedule();
3943 local_irq_disable();
3a5c359a 3944 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3945
3a5c359a
AK
3946 /*
3947 * Check again in case we missed a preemption opportunity
3948 * between schedule and now.
3949 */
3950 barrier();
5ed0cec0 3951 } while (need_resched());
1da177e4
LT
3952}
3953
3954#endif /* CONFIG_PREEMPT */
3955
63859d4f 3956int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3957 void *key)
1da177e4 3958{
63859d4f 3959 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3960}
1da177e4
LT
3961EXPORT_SYMBOL(default_wake_function);
3962
3963/*
41a2d6cf
IM
3964 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3965 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3966 * number) then we wake all the non-exclusive tasks and one exclusive task.
3967 *
3968 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3969 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3970 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3971 */
78ddb08f 3972static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3973 int nr_exclusive, int wake_flags, void *key)
1da177e4 3974{
2e45874c 3975 wait_queue_t *curr, *next;
1da177e4 3976
2e45874c 3977 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3978 unsigned flags = curr->flags;
3979
63859d4f 3980 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3981 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3982 break;
3983 }
3984}
3985
3986/**
3987 * __wake_up - wake up threads blocked on a waitqueue.
3988 * @q: the waitqueue
3989 * @mode: which threads
3990 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3991 * @key: is directly passed to the wakeup function
50fa610a
DH
3992 *
3993 * It may be assumed that this function implies a write memory barrier before
3994 * changing the task state if and only if any tasks are woken up.
1da177e4 3995 */
7ad5b3a5 3996void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3997 int nr_exclusive, void *key)
1da177e4
LT
3998{
3999 unsigned long flags;
4000
4001 spin_lock_irqsave(&q->lock, flags);
4002 __wake_up_common(q, mode, nr_exclusive, 0, key);
4003 spin_unlock_irqrestore(&q->lock, flags);
4004}
1da177e4
LT
4005EXPORT_SYMBOL(__wake_up);
4006
4007/*
4008 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4009 */
7ad5b3a5 4010void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4011{
4012 __wake_up_common(q, mode, 1, 0, NULL);
4013}
22c43c81 4014EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4015
4ede816a
DL
4016void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4017{
4018 __wake_up_common(q, mode, 1, 0, key);
4019}
4020
1da177e4 4021/**
4ede816a 4022 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4023 * @q: the waitqueue
4024 * @mode: which threads
4025 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4026 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4027 *
4028 * The sync wakeup differs that the waker knows that it will schedule
4029 * away soon, so while the target thread will be woken up, it will not
4030 * be migrated to another CPU - ie. the two threads are 'synchronized'
4031 * with each other. This can prevent needless bouncing between CPUs.
4032 *
4033 * On UP it can prevent extra preemption.
50fa610a
DH
4034 *
4035 * It may be assumed that this function implies a write memory barrier before
4036 * changing the task state if and only if any tasks are woken up.
1da177e4 4037 */
4ede816a
DL
4038void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4039 int nr_exclusive, void *key)
1da177e4
LT
4040{
4041 unsigned long flags;
7d478721 4042 int wake_flags = WF_SYNC;
1da177e4
LT
4043
4044 if (unlikely(!q))
4045 return;
4046
4047 if (unlikely(!nr_exclusive))
7d478721 4048 wake_flags = 0;
1da177e4
LT
4049
4050 spin_lock_irqsave(&q->lock, flags);
7d478721 4051 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4052 spin_unlock_irqrestore(&q->lock, flags);
4053}
4ede816a
DL
4054EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4055
4056/*
4057 * __wake_up_sync - see __wake_up_sync_key()
4058 */
4059void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4060{
4061 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4062}
1da177e4
LT
4063EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4064
65eb3dc6
KD
4065/**
4066 * complete: - signals a single thread waiting on this completion
4067 * @x: holds the state of this particular completion
4068 *
4069 * This will wake up a single thread waiting on this completion. Threads will be
4070 * awakened in the same order in which they were queued.
4071 *
4072 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4073 *
4074 * It may be assumed that this function implies a write memory barrier before
4075 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4076 */
b15136e9 4077void complete(struct completion *x)
1da177e4
LT
4078{
4079 unsigned long flags;
4080
4081 spin_lock_irqsave(&x->wait.lock, flags);
4082 x->done++;
d9514f6c 4083 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4084 spin_unlock_irqrestore(&x->wait.lock, flags);
4085}
4086EXPORT_SYMBOL(complete);
4087
65eb3dc6
KD
4088/**
4089 * complete_all: - signals all threads waiting on this completion
4090 * @x: holds the state of this particular completion
4091 *
4092 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4093 *
4094 * It may be assumed that this function implies a write memory barrier before
4095 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4096 */
b15136e9 4097void complete_all(struct completion *x)
1da177e4
LT
4098{
4099 unsigned long flags;
4100
4101 spin_lock_irqsave(&x->wait.lock, flags);
4102 x->done += UINT_MAX/2;
d9514f6c 4103 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4104 spin_unlock_irqrestore(&x->wait.lock, flags);
4105}
4106EXPORT_SYMBOL(complete_all);
4107
8cbbe86d
AK
4108static inline long __sched
4109do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4110{
1da177e4
LT
4111 if (!x->done) {
4112 DECLARE_WAITQUEUE(wait, current);
4113
a93d2f17 4114 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4115 do {
94d3d824 4116 if (signal_pending_state(state, current)) {
ea71a546
ON
4117 timeout = -ERESTARTSYS;
4118 break;
8cbbe86d
AK
4119 }
4120 __set_current_state(state);
1da177e4
LT
4121 spin_unlock_irq(&x->wait.lock);
4122 timeout = schedule_timeout(timeout);
4123 spin_lock_irq(&x->wait.lock);
ea71a546 4124 } while (!x->done && timeout);
1da177e4 4125 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4126 if (!x->done)
4127 return timeout;
1da177e4
LT
4128 }
4129 x->done--;
ea71a546 4130 return timeout ?: 1;
1da177e4 4131}
1da177e4 4132
8cbbe86d
AK
4133static long __sched
4134wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4135{
1da177e4
LT
4136 might_sleep();
4137
4138 spin_lock_irq(&x->wait.lock);
8cbbe86d 4139 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4140 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4141 return timeout;
4142}
1da177e4 4143
65eb3dc6
KD
4144/**
4145 * wait_for_completion: - waits for completion of a task
4146 * @x: holds the state of this particular completion
4147 *
4148 * This waits to be signaled for completion of a specific task. It is NOT
4149 * interruptible and there is no timeout.
4150 *
4151 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4152 * and interrupt capability. Also see complete().
4153 */
b15136e9 4154void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4155{
4156 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4157}
8cbbe86d 4158EXPORT_SYMBOL(wait_for_completion);
1da177e4 4159
65eb3dc6
KD
4160/**
4161 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4162 * @x: holds the state of this particular completion
4163 * @timeout: timeout value in jiffies
4164 *
4165 * This waits for either a completion of a specific task to be signaled or for a
4166 * specified timeout to expire. The timeout is in jiffies. It is not
4167 * interruptible.
4168 */
b15136e9 4169unsigned long __sched
8cbbe86d 4170wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4171{
8cbbe86d 4172 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4173}
8cbbe86d 4174EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4175
65eb3dc6
KD
4176/**
4177 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4178 * @x: holds the state of this particular completion
4179 *
4180 * This waits for completion of a specific task to be signaled. It is
4181 * interruptible.
4182 */
8cbbe86d 4183int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4184{
51e97990
AK
4185 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4186 if (t == -ERESTARTSYS)
4187 return t;
4188 return 0;
0fec171c 4189}
8cbbe86d 4190EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4191
65eb3dc6
KD
4192/**
4193 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4194 * @x: holds the state of this particular completion
4195 * @timeout: timeout value in jiffies
4196 *
4197 * This waits for either a completion of a specific task to be signaled or for a
4198 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4199 */
b15136e9 4200unsigned long __sched
8cbbe86d
AK
4201wait_for_completion_interruptible_timeout(struct completion *x,
4202 unsigned long timeout)
0fec171c 4203{
8cbbe86d 4204 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4205}
8cbbe86d 4206EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4207
65eb3dc6
KD
4208/**
4209 * wait_for_completion_killable: - waits for completion of a task (killable)
4210 * @x: holds the state of this particular completion
4211 *
4212 * This waits to be signaled for completion of a specific task. It can be
4213 * interrupted by a kill signal.
4214 */
009e577e
MW
4215int __sched wait_for_completion_killable(struct completion *x)
4216{
4217 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4218 if (t == -ERESTARTSYS)
4219 return t;
4220 return 0;
4221}
4222EXPORT_SYMBOL(wait_for_completion_killable);
4223
0aa12fb4
SW
4224/**
4225 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4226 * @x: holds the state of this particular completion
4227 * @timeout: timeout value in jiffies
4228 *
4229 * This waits for either a completion of a specific task to be
4230 * signaled or for a specified timeout to expire. It can be
4231 * interrupted by a kill signal. The timeout is in jiffies.
4232 */
4233unsigned long __sched
4234wait_for_completion_killable_timeout(struct completion *x,
4235 unsigned long timeout)
4236{
4237 return wait_for_common(x, timeout, TASK_KILLABLE);
4238}
4239EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4240
be4de352
DC
4241/**
4242 * try_wait_for_completion - try to decrement a completion without blocking
4243 * @x: completion structure
4244 *
4245 * Returns: 0 if a decrement cannot be done without blocking
4246 * 1 if a decrement succeeded.
4247 *
4248 * If a completion is being used as a counting completion,
4249 * attempt to decrement the counter without blocking. This
4250 * enables us to avoid waiting if the resource the completion
4251 * is protecting is not available.
4252 */
4253bool try_wait_for_completion(struct completion *x)
4254{
7539a3b3 4255 unsigned long flags;
be4de352
DC
4256 int ret = 1;
4257
7539a3b3 4258 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4259 if (!x->done)
4260 ret = 0;
4261 else
4262 x->done--;
7539a3b3 4263 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4264 return ret;
4265}
4266EXPORT_SYMBOL(try_wait_for_completion);
4267
4268/**
4269 * completion_done - Test to see if a completion has any waiters
4270 * @x: completion structure
4271 *
4272 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4273 * 1 if there are no waiters.
4274 *
4275 */
4276bool completion_done(struct completion *x)
4277{
7539a3b3 4278 unsigned long flags;
be4de352
DC
4279 int ret = 1;
4280
7539a3b3 4281 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4282 if (!x->done)
4283 ret = 0;
7539a3b3 4284 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4285 return ret;
4286}
4287EXPORT_SYMBOL(completion_done);
4288
8cbbe86d
AK
4289static long __sched
4290sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4291{
0fec171c
IM
4292 unsigned long flags;
4293 wait_queue_t wait;
4294
4295 init_waitqueue_entry(&wait, current);
1da177e4 4296
8cbbe86d 4297 __set_current_state(state);
1da177e4 4298
8cbbe86d
AK
4299 spin_lock_irqsave(&q->lock, flags);
4300 __add_wait_queue(q, &wait);
4301 spin_unlock(&q->lock);
4302 timeout = schedule_timeout(timeout);
4303 spin_lock_irq(&q->lock);
4304 __remove_wait_queue(q, &wait);
4305 spin_unlock_irqrestore(&q->lock, flags);
4306
4307 return timeout;
4308}
4309
4310void __sched interruptible_sleep_on(wait_queue_head_t *q)
4311{
4312 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4313}
1da177e4
LT
4314EXPORT_SYMBOL(interruptible_sleep_on);
4315
0fec171c 4316long __sched
95cdf3b7 4317interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4318{
8cbbe86d 4319 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4320}
1da177e4
LT
4321EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4322
0fec171c 4323void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4324{
8cbbe86d 4325 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4326}
1da177e4
LT
4327EXPORT_SYMBOL(sleep_on);
4328
0fec171c 4329long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4330{
8cbbe86d 4331 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4332}
1da177e4
LT
4333EXPORT_SYMBOL(sleep_on_timeout);
4334
b29739f9
IM
4335#ifdef CONFIG_RT_MUTEXES
4336
4337/*
4338 * rt_mutex_setprio - set the current priority of a task
4339 * @p: task
4340 * @prio: prio value (kernel-internal form)
4341 *
4342 * This function changes the 'effective' priority of a task. It does
4343 * not touch ->normal_prio like __setscheduler().
4344 *
4345 * Used by the rt_mutex code to implement priority inheritance logic.
4346 */
36c8b586 4347void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4348{
4349 unsigned long flags;
83b699ed 4350 int oldprio, on_rq, running;
70b97a7f 4351 struct rq *rq;
83ab0aa0 4352 const struct sched_class *prev_class;
b29739f9
IM
4353
4354 BUG_ON(prio < 0 || prio > MAX_PRIO);
4355
4356 rq = task_rq_lock(p, &flags);
4357
d5f9f942 4358 oldprio = p->prio;
83ab0aa0 4359 prev_class = p->sched_class;
dd41f596 4360 on_rq = p->se.on_rq;
051a1d1a 4361 running = task_current(rq, p);
0e1f3483 4362 if (on_rq)
69be72c1 4363 dequeue_task(rq, p, 0);
0e1f3483
HS
4364 if (running)
4365 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4366
4367 if (rt_prio(prio))
4368 p->sched_class = &rt_sched_class;
4369 else
4370 p->sched_class = &fair_sched_class;
4371
b29739f9
IM
4372 p->prio = prio;
4373
0e1f3483
HS
4374 if (running)
4375 p->sched_class->set_curr_task(rq);
dd41f596 4376 if (on_rq) {
371fd7e7 4377 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4378
4379 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4380 }
4381 task_rq_unlock(rq, &flags);
4382}
4383
4384#endif
4385
36c8b586 4386void set_user_nice(struct task_struct *p, long nice)
1da177e4 4387{
dd41f596 4388 int old_prio, delta, on_rq;
1da177e4 4389 unsigned long flags;
70b97a7f 4390 struct rq *rq;
1da177e4
LT
4391
4392 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4393 return;
4394 /*
4395 * We have to be careful, if called from sys_setpriority(),
4396 * the task might be in the middle of scheduling on another CPU.
4397 */
4398 rq = task_rq_lock(p, &flags);
4399 /*
4400 * The RT priorities are set via sched_setscheduler(), but we still
4401 * allow the 'normal' nice value to be set - but as expected
4402 * it wont have any effect on scheduling until the task is
dd41f596 4403 * SCHED_FIFO/SCHED_RR:
1da177e4 4404 */
e05606d3 4405 if (task_has_rt_policy(p)) {
1da177e4
LT
4406 p->static_prio = NICE_TO_PRIO(nice);
4407 goto out_unlock;
4408 }
dd41f596 4409 on_rq = p->se.on_rq;
c09595f6 4410 if (on_rq)
69be72c1 4411 dequeue_task(rq, p, 0);
1da177e4 4412
1da177e4 4413 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4414 set_load_weight(p);
b29739f9
IM
4415 old_prio = p->prio;
4416 p->prio = effective_prio(p);
4417 delta = p->prio - old_prio;
1da177e4 4418
dd41f596 4419 if (on_rq) {
371fd7e7 4420 enqueue_task(rq, p, 0);
1da177e4 4421 /*
d5f9f942
AM
4422 * If the task increased its priority or is running and
4423 * lowered its priority, then reschedule its CPU:
1da177e4 4424 */
d5f9f942 4425 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4426 resched_task(rq->curr);
4427 }
4428out_unlock:
4429 task_rq_unlock(rq, &flags);
4430}
1da177e4
LT
4431EXPORT_SYMBOL(set_user_nice);
4432
e43379f1
MM
4433/*
4434 * can_nice - check if a task can reduce its nice value
4435 * @p: task
4436 * @nice: nice value
4437 */
36c8b586 4438int can_nice(const struct task_struct *p, const int nice)
e43379f1 4439{
024f4747
MM
4440 /* convert nice value [19,-20] to rlimit style value [1,40] */
4441 int nice_rlim = 20 - nice;
48f24c4d 4442
78d7d407 4443 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4444 capable(CAP_SYS_NICE));
4445}
4446
1da177e4
LT
4447#ifdef __ARCH_WANT_SYS_NICE
4448
4449/*
4450 * sys_nice - change the priority of the current process.
4451 * @increment: priority increment
4452 *
4453 * sys_setpriority is a more generic, but much slower function that
4454 * does similar things.
4455 */
5add95d4 4456SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4457{
48f24c4d 4458 long nice, retval;
1da177e4
LT
4459
4460 /*
4461 * Setpriority might change our priority at the same moment.
4462 * We don't have to worry. Conceptually one call occurs first
4463 * and we have a single winner.
4464 */
e43379f1
MM
4465 if (increment < -40)
4466 increment = -40;
1da177e4
LT
4467 if (increment > 40)
4468 increment = 40;
4469
2b8f836f 4470 nice = TASK_NICE(current) + increment;
1da177e4
LT
4471 if (nice < -20)
4472 nice = -20;
4473 if (nice > 19)
4474 nice = 19;
4475
e43379f1
MM
4476 if (increment < 0 && !can_nice(current, nice))
4477 return -EPERM;
4478
1da177e4
LT
4479 retval = security_task_setnice(current, nice);
4480 if (retval)
4481 return retval;
4482
4483 set_user_nice(current, nice);
4484 return 0;
4485}
4486
4487#endif
4488
4489/**
4490 * task_prio - return the priority value of a given task.
4491 * @p: the task in question.
4492 *
4493 * This is the priority value as seen by users in /proc.
4494 * RT tasks are offset by -200. Normal tasks are centered
4495 * around 0, value goes from -16 to +15.
4496 */
36c8b586 4497int task_prio(const struct task_struct *p)
1da177e4
LT
4498{
4499 return p->prio - MAX_RT_PRIO;
4500}
4501
4502/**
4503 * task_nice - return the nice value of a given task.
4504 * @p: the task in question.
4505 */
36c8b586 4506int task_nice(const struct task_struct *p)
1da177e4
LT
4507{
4508 return TASK_NICE(p);
4509}
150d8bed 4510EXPORT_SYMBOL(task_nice);
1da177e4
LT
4511
4512/**
4513 * idle_cpu - is a given cpu idle currently?
4514 * @cpu: the processor in question.
4515 */
4516int idle_cpu(int cpu)
4517{
4518 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4519}
4520
1da177e4
LT
4521/**
4522 * idle_task - return the idle task for a given cpu.
4523 * @cpu: the processor in question.
4524 */
36c8b586 4525struct task_struct *idle_task(int cpu)
1da177e4
LT
4526{
4527 return cpu_rq(cpu)->idle;
4528}
4529
4530/**
4531 * find_process_by_pid - find a process with a matching PID value.
4532 * @pid: the pid in question.
4533 */
a9957449 4534static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4535{
228ebcbe 4536 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4537}
4538
4539/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4540static void
4541__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4542{
dd41f596 4543 BUG_ON(p->se.on_rq);
48f24c4d 4544
1da177e4
LT
4545 p->policy = policy;
4546 p->rt_priority = prio;
b29739f9
IM
4547 p->normal_prio = normal_prio(p);
4548 /* we are holding p->pi_lock already */
4549 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4550 if (rt_prio(p->prio))
4551 p->sched_class = &rt_sched_class;
4552 else
4553 p->sched_class = &fair_sched_class;
2dd73a4f 4554 set_load_weight(p);
1da177e4
LT
4555}
4556
c69e8d9c
DH
4557/*
4558 * check the target process has a UID that matches the current process's
4559 */
4560static bool check_same_owner(struct task_struct *p)
4561{
4562 const struct cred *cred = current_cred(), *pcred;
4563 bool match;
4564
4565 rcu_read_lock();
4566 pcred = __task_cred(p);
4567 match = (cred->euid == pcred->euid ||
4568 cred->euid == pcred->uid);
4569 rcu_read_unlock();
4570 return match;
4571}
4572
961ccddd
RR
4573static int __sched_setscheduler(struct task_struct *p, int policy,
4574 struct sched_param *param, bool user)
1da177e4 4575{
83b699ed 4576 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4577 unsigned long flags;
83ab0aa0 4578 const struct sched_class *prev_class;
70b97a7f 4579 struct rq *rq;
ca94c442 4580 int reset_on_fork;
1da177e4 4581
66e5393a
SR
4582 /* may grab non-irq protected spin_locks */
4583 BUG_ON(in_interrupt());
1da177e4
LT
4584recheck:
4585 /* double check policy once rq lock held */
ca94c442
LP
4586 if (policy < 0) {
4587 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4588 policy = oldpolicy = p->policy;
ca94c442
LP
4589 } else {
4590 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4591 policy &= ~SCHED_RESET_ON_FORK;
4592
4593 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4594 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4595 policy != SCHED_IDLE)
4596 return -EINVAL;
4597 }
4598
1da177e4
LT
4599 /*
4600 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4601 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4602 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4603 */
4604 if (param->sched_priority < 0 ||
95cdf3b7 4605 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4606 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4607 return -EINVAL;
e05606d3 4608 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4609 return -EINVAL;
4610
37e4ab3f
OC
4611 /*
4612 * Allow unprivileged RT tasks to decrease priority:
4613 */
961ccddd 4614 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4615 if (rt_policy(policy)) {
a44702e8
ON
4616 unsigned long rlim_rtprio =
4617 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4618
4619 /* can't set/change the rt policy */
4620 if (policy != p->policy && !rlim_rtprio)
4621 return -EPERM;
4622
4623 /* can't increase priority */
4624 if (param->sched_priority > p->rt_priority &&
4625 param->sched_priority > rlim_rtprio)
4626 return -EPERM;
4627 }
dd41f596
IM
4628 /*
4629 * Like positive nice levels, dont allow tasks to
4630 * move out of SCHED_IDLE either:
4631 */
4632 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4633 return -EPERM;
5fe1d75f 4634
37e4ab3f 4635 /* can't change other user's priorities */
c69e8d9c 4636 if (!check_same_owner(p))
37e4ab3f 4637 return -EPERM;
ca94c442
LP
4638
4639 /* Normal users shall not reset the sched_reset_on_fork flag */
4640 if (p->sched_reset_on_fork && !reset_on_fork)
4641 return -EPERM;
37e4ab3f 4642 }
1da177e4 4643
725aad24 4644 if (user) {
725aad24
JF
4645 retval = security_task_setscheduler(p, policy, param);
4646 if (retval)
4647 return retval;
4648 }
4649
b29739f9
IM
4650 /*
4651 * make sure no PI-waiters arrive (or leave) while we are
4652 * changing the priority of the task:
4653 */
1d615482 4654 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4655 /*
4656 * To be able to change p->policy safely, the apropriate
4657 * runqueue lock must be held.
4658 */
b29739f9 4659 rq = __task_rq_lock(p);
dc61b1d6
PZ
4660
4661#ifdef CONFIG_RT_GROUP_SCHED
4662 if (user) {
4663 /*
4664 * Do not allow realtime tasks into groups that have no runtime
4665 * assigned.
4666 */
4667 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4668 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4669 __task_rq_unlock(rq);
4670 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4671 return -EPERM;
4672 }
4673 }
4674#endif
4675
1da177e4
LT
4676 /* recheck policy now with rq lock held */
4677 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4678 policy = oldpolicy = -1;
b29739f9 4679 __task_rq_unlock(rq);
1d615482 4680 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4681 goto recheck;
4682 }
dd41f596 4683 on_rq = p->se.on_rq;
051a1d1a 4684 running = task_current(rq, p);
0e1f3483 4685 if (on_rq)
2e1cb74a 4686 deactivate_task(rq, p, 0);
0e1f3483
HS
4687 if (running)
4688 p->sched_class->put_prev_task(rq, p);
f6b53205 4689
ca94c442
LP
4690 p->sched_reset_on_fork = reset_on_fork;
4691
1da177e4 4692 oldprio = p->prio;
83ab0aa0 4693 prev_class = p->sched_class;
dd41f596 4694 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4695
0e1f3483
HS
4696 if (running)
4697 p->sched_class->set_curr_task(rq);
dd41f596
IM
4698 if (on_rq) {
4699 activate_task(rq, p, 0);
cb469845
SR
4700
4701 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4702 }
b29739f9 4703 __task_rq_unlock(rq);
1d615482 4704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4705
95e02ca9
TG
4706 rt_mutex_adjust_pi(p);
4707
1da177e4
LT
4708 return 0;
4709}
961ccddd
RR
4710
4711/**
4712 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4713 * @p: the task in question.
4714 * @policy: new policy.
4715 * @param: structure containing the new RT priority.
4716 *
4717 * NOTE that the task may be already dead.
4718 */
4719int sched_setscheduler(struct task_struct *p, int policy,
4720 struct sched_param *param)
4721{
4722 return __sched_setscheduler(p, policy, param, true);
4723}
1da177e4
LT
4724EXPORT_SYMBOL_GPL(sched_setscheduler);
4725
961ccddd
RR
4726/**
4727 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4728 * @p: the task in question.
4729 * @policy: new policy.
4730 * @param: structure containing the new RT priority.
4731 *
4732 * Just like sched_setscheduler, only don't bother checking if the
4733 * current context has permission. For example, this is needed in
4734 * stop_machine(): we create temporary high priority worker threads,
4735 * but our caller might not have that capability.
4736 */
4737int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4738 struct sched_param *param)
4739{
4740 return __sched_setscheduler(p, policy, param, false);
4741}
4742
95cdf3b7
IM
4743static int
4744do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4745{
1da177e4
LT
4746 struct sched_param lparam;
4747 struct task_struct *p;
36c8b586 4748 int retval;
1da177e4
LT
4749
4750 if (!param || pid < 0)
4751 return -EINVAL;
4752 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4753 return -EFAULT;
5fe1d75f
ON
4754
4755 rcu_read_lock();
4756 retval = -ESRCH;
1da177e4 4757 p = find_process_by_pid(pid);
5fe1d75f
ON
4758 if (p != NULL)
4759 retval = sched_setscheduler(p, policy, &lparam);
4760 rcu_read_unlock();
36c8b586 4761
1da177e4
LT
4762 return retval;
4763}
4764
4765/**
4766 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4767 * @pid: the pid in question.
4768 * @policy: new policy.
4769 * @param: structure containing the new RT priority.
4770 */
5add95d4
HC
4771SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4772 struct sched_param __user *, param)
1da177e4 4773{
c21761f1
JB
4774 /* negative values for policy are not valid */
4775 if (policy < 0)
4776 return -EINVAL;
4777
1da177e4
LT
4778 return do_sched_setscheduler(pid, policy, param);
4779}
4780
4781/**
4782 * sys_sched_setparam - set/change the RT priority of a thread
4783 * @pid: the pid in question.
4784 * @param: structure containing the new RT priority.
4785 */
5add95d4 4786SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4787{
4788 return do_sched_setscheduler(pid, -1, param);
4789}
4790
4791/**
4792 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4793 * @pid: the pid in question.
4794 */
5add95d4 4795SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4796{
36c8b586 4797 struct task_struct *p;
3a5c359a 4798 int retval;
1da177e4
LT
4799
4800 if (pid < 0)
3a5c359a 4801 return -EINVAL;
1da177e4
LT
4802
4803 retval = -ESRCH;
5fe85be0 4804 rcu_read_lock();
1da177e4
LT
4805 p = find_process_by_pid(pid);
4806 if (p) {
4807 retval = security_task_getscheduler(p);
4808 if (!retval)
ca94c442
LP
4809 retval = p->policy
4810 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4811 }
5fe85be0 4812 rcu_read_unlock();
1da177e4
LT
4813 return retval;
4814}
4815
4816/**
ca94c442 4817 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4818 * @pid: the pid in question.
4819 * @param: structure containing the RT priority.
4820 */
5add95d4 4821SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4822{
4823 struct sched_param lp;
36c8b586 4824 struct task_struct *p;
3a5c359a 4825 int retval;
1da177e4
LT
4826
4827 if (!param || pid < 0)
3a5c359a 4828 return -EINVAL;
1da177e4 4829
5fe85be0 4830 rcu_read_lock();
1da177e4
LT
4831 p = find_process_by_pid(pid);
4832 retval = -ESRCH;
4833 if (!p)
4834 goto out_unlock;
4835
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4839
4840 lp.sched_priority = p->rt_priority;
5fe85be0 4841 rcu_read_unlock();
1da177e4
LT
4842
4843 /*
4844 * This one might sleep, we cannot do it with a spinlock held ...
4845 */
4846 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4847
1da177e4
LT
4848 return retval;
4849
4850out_unlock:
5fe85be0 4851 rcu_read_unlock();
1da177e4
LT
4852 return retval;
4853}
4854
96f874e2 4855long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4856{
5a16f3d3 4857 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4858 struct task_struct *p;
4859 int retval;
1da177e4 4860
95402b38 4861 get_online_cpus();
23f5d142 4862 rcu_read_lock();
1da177e4
LT
4863
4864 p = find_process_by_pid(pid);
4865 if (!p) {
23f5d142 4866 rcu_read_unlock();
95402b38 4867 put_online_cpus();
1da177e4
LT
4868 return -ESRCH;
4869 }
4870
23f5d142 4871 /* Prevent p going away */
1da177e4 4872 get_task_struct(p);
23f5d142 4873 rcu_read_unlock();
1da177e4 4874
5a16f3d3
RR
4875 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4876 retval = -ENOMEM;
4877 goto out_put_task;
4878 }
4879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4880 retval = -ENOMEM;
4881 goto out_free_cpus_allowed;
4882 }
1da177e4 4883 retval = -EPERM;
c69e8d9c 4884 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4885 goto out_unlock;
4886
e7834f8f
DQ
4887 retval = security_task_setscheduler(p, 0, NULL);
4888 if (retval)
4889 goto out_unlock;
4890
5a16f3d3
RR
4891 cpuset_cpus_allowed(p, cpus_allowed);
4892 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4893 again:
5a16f3d3 4894 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4895
8707d8b8 4896 if (!retval) {
5a16f3d3
RR
4897 cpuset_cpus_allowed(p, cpus_allowed);
4898 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4899 /*
4900 * We must have raced with a concurrent cpuset
4901 * update. Just reset the cpus_allowed to the
4902 * cpuset's cpus_allowed
4903 */
5a16f3d3 4904 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4905 goto again;
4906 }
4907 }
1da177e4 4908out_unlock:
5a16f3d3
RR
4909 free_cpumask_var(new_mask);
4910out_free_cpus_allowed:
4911 free_cpumask_var(cpus_allowed);
4912out_put_task:
1da177e4 4913 put_task_struct(p);
95402b38 4914 put_online_cpus();
1da177e4
LT
4915 return retval;
4916}
4917
4918static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4919 struct cpumask *new_mask)
1da177e4 4920{
96f874e2
RR
4921 if (len < cpumask_size())
4922 cpumask_clear(new_mask);
4923 else if (len > cpumask_size())
4924 len = cpumask_size();
4925
1da177e4
LT
4926 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4927}
4928
4929/**
4930 * sys_sched_setaffinity - set the cpu affinity of a process
4931 * @pid: pid of the process
4932 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4933 * @user_mask_ptr: user-space pointer to the new cpu mask
4934 */
5add95d4
HC
4935SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4936 unsigned long __user *, user_mask_ptr)
1da177e4 4937{
5a16f3d3 4938 cpumask_var_t new_mask;
1da177e4
LT
4939 int retval;
4940
5a16f3d3
RR
4941 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4942 return -ENOMEM;
1da177e4 4943
5a16f3d3
RR
4944 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4945 if (retval == 0)
4946 retval = sched_setaffinity(pid, new_mask);
4947 free_cpumask_var(new_mask);
4948 return retval;
1da177e4
LT
4949}
4950
96f874e2 4951long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4952{
36c8b586 4953 struct task_struct *p;
31605683
TG
4954 unsigned long flags;
4955 struct rq *rq;
1da177e4 4956 int retval;
1da177e4 4957
95402b38 4958 get_online_cpus();
23f5d142 4959 rcu_read_lock();
1da177e4
LT
4960
4961 retval = -ESRCH;
4962 p = find_process_by_pid(pid);
4963 if (!p)
4964 goto out_unlock;
4965
e7834f8f
DQ
4966 retval = security_task_getscheduler(p);
4967 if (retval)
4968 goto out_unlock;
4969
31605683 4970 rq = task_rq_lock(p, &flags);
96f874e2 4971 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4972 task_rq_unlock(rq, &flags);
1da177e4
LT
4973
4974out_unlock:
23f5d142 4975 rcu_read_unlock();
95402b38 4976 put_online_cpus();
1da177e4 4977
9531b62f 4978 return retval;
1da177e4
LT
4979}
4980
4981/**
4982 * sys_sched_getaffinity - get the cpu affinity of a process
4983 * @pid: pid of the process
4984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4986 */
5add95d4
HC
4987SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4988 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4989{
4990 int ret;
f17c8607 4991 cpumask_var_t mask;
1da177e4 4992
84fba5ec 4993 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4994 return -EINVAL;
4995 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4996 return -EINVAL;
4997
f17c8607
RR
4998 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4999 return -ENOMEM;
1da177e4 5000
f17c8607
RR
5001 ret = sched_getaffinity(pid, mask);
5002 if (ret == 0) {
8bc037fb 5003 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5004
5005 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5006 ret = -EFAULT;
5007 else
cd3d8031 5008 ret = retlen;
f17c8607
RR
5009 }
5010 free_cpumask_var(mask);
1da177e4 5011
f17c8607 5012 return ret;
1da177e4
LT
5013}
5014
5015/**
5016 * sys_sched_yield - yield the current processor to other threads.
5017 *
dd41f596
IM
5018 * This function yields the current CPU to other tasks. If there are no
5019 * other threads running on this CPU then this function will return.
1da177e4 5020 */
5add95d4 5021SYSCALL_DEFINE0(sched_yield)
1da177e4 5022{
70b97a7f 5023 struct rq *rq = this_rq_lock();
1da177e4 5024
2d72376b 5025 schedstat_inc(rq, yld_count);
4530d7ab 5026 current->sched_class->yield_task(rq);
1da177e4
LT
5027
5028 /*
5029 * Since we are going to call schedule() anyway, there's
5030 * no need to preempt or enable interrupts:
5031 */
5032 __release(rq->lock);
8a25d5de 5033 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5034 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5035 preempt_enable_no_resched();
5036
5037 schedule();
5038
5039 return 0;
5040}
5041
d86ee480
PZ
5042static inline int should_resched(void)
5043{
5044 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5045}
5046
e7b38404 5047static void __cond_resched(void)
1da177e4 5048{
e7aaaa69
FW
5049 add_preempt_count(PREEMPT_ACTIVE);
5050 schedule();
5051 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5052}
5053
02b67cc3 5054int __sched _cond_resched(void)
1da177e4 5055{
d86ee480 5056 if (should_resched()) {
1da177e4
LT
5057 __cond_resched();
5058 return 1;
5059 }
5060 return 0;
5061}
02b67cc3 5062EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5063
5064/*
613afbf8 5065 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5066 * call schedule, and on return reacquire the lock.
5067 *
41a2d6cf 5068 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5069 * operations here to prevent schedule() from being called twice (once via
5070 * spin_unlock(), once by hand).
5071 */
613afbf8 5072int __cond_resched_lock(spinlock_t *lock)
1da177e4 5073{
d86ee480 5074 int resched = should_resched();
6df3cecb
JK
5075 int ret = 0;
5076
f607c668
PZ
5077 lockdep_assert_held(lock);
5078
95c354fe 5079 if (spin_needbreak(lock) || resched) {
1da177e4 5080 spin_unlock(lock);
d86ee480 5081 if (resched)
95c354fe
NP
5082 __cond_resched();
5083 else
5084 cpu_relax();
6df3cecb 5085 ret = 1;
1da177e4 5086 spin_lock(lock);
1da177e4 5087 }
6df3cecb 5088 return ret;
1da177e4 5089}
613afbf8 5090EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5091
613afbf8 5092int __sched __cond_resched_softirq(void)
1da177e4
LT
5093{
5094 BUG_ON(!in_softirq());
5095
d86ee480 5096 if (should_resched()) {
98d82567 5097 local_bh_enable();
1da177e4
LT
5098 __cond_resched();
5099 local_bh_disable();
5100 return 1;
5101 }
5102 return 0;
5103}
613afbf8 5104EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5105
1da177e4
LT
5106/**
5107 * yield - yield the current processor to other threads.
5108 *
72fd4a35 5109 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5110 * thread runnable and calls sys_sched_yield().
5111 */
5112void __sched yield(void)
5113{
5114 set_current_state(TASK_RUNNING);
5115 sys_sched_yield();
5116}
1da177e4
LT
5117EXPORT_SYMBOL(yield);
5118
5119/*
41a2d6cf 5120 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5121 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5122 */
5123void __sched io_schedule(void)
5124{
54d35f29 5125 struct rq *rq = raw_rq();
1da177e4 5126
0ff92245 5127 delayacct_blkio_start();
1da177e4 5128 atomic_inc(&rq->nr_iowait);
8f0dfc34 5129 current->in_iowait = 1;
1da177e4 5130 schedule();
8f0dfc34 5131 current->in_iowait = 0;
1da177e4 5132 atomic_dec(&rq->nr_iowait);
0ff92245 5133 delayacct_blkio_end();
1da177e4 5134}
1da177e4
LT
5135EXPORT_SYMBOL(io_schedule);
5136
5137long __sched io_schedule_timeout(long timeout)
5138{
54d35f29 5139 struct rq *rq = raw_rq();
1da177e4
LT
5140 long ret;
5141
0ff92245 5142 delayacct_blkio_start();
1da177e4 5143 atomic_inc(&rq->nr_iowait);
8f0dfc34 5144 current->in_iowait = 1;
1da177e4 5145 ret = schedule_timeout(timeout);
8f0dfc34 5146 current->in_iowait = 0;
1da177e4 5147 atomic_dec(&rq->nr_iowait);
0ff92245 5148 delayacct_blkio_end();
1da177e4
LT
5149 return ret;
5150}
5151
5152/**
5153 * sys_sched_get_priority_max - return maximum RT priority.
5154 * @policy: scheduling class.
5155 *
5156 * this syscall returns the maximum rt_priority that can be used
5157 * by a given scheduling class.
5158 */
5add95d4 5159SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5160{
5161 int ret = -EINVAL;
5162
5163 switch (policy) {
5164 case SCHED_FIFO:
5165 case SCHED_RR:
5166 ret = MAX_USER_RT_PRIO-1;
5167 break;
5168 case SCHED_NORMAL:
b0a9499c 5169 case SCHED_BATCH:
dd41f596 5170 case SCHED_IDLE:
1da177e4
LT
5171 ret = 0;
5172 break;
5173 }
5174 return ret;
5175}
5176
5177/**
5178 * sys_sched_get_priority_min - return minimum RT priority.
5179 * @policy: scheduling class.
5180 *
5181 * this syscall returns the minimum rt_priority that can be used
5182 * by a given scheduling class.
5183 */
5add95d4 5184SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5185{
5186 int ret = -EINVAL;
5187
5188 switch (policy) {
5189 case SCHED_FIFO:
5190 case SCHED_RR:
5191 ret = 1;
5192 break;
5193 case SCHED_NORMAL:
b0a9499c 5194 case SCHED_BATCH:
dd41f596 5195 case SCHED_IDLE:
1da177e4
LT
5196 ret = 0;
5197 }
5198 return ret;
5199}
5200
5201/**
5202 * sys_sched_rr_get_interval - return the default timeslice of a process.
5203 * @pid: pid of the process.
5204 * @interval: userspace pointer to the timeslice value.
5205 *
5206 * this syscall writes the default timeslice value of a given process
5207 * into the user-space timespec buffer. A value of '0' means infinity.
5208 */
17da2bd9 5209SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5210 struct timespec __user *, interval)
1da177e4 5211{
36c8b586 5212 struct task_struct *p;
a4ec24b4 5213 unsigned int time_slice;
dba091b9
TG
5214 unsigned long flags;
5215 struct rq *rq;
3a5c359a 5216 int retval;
1da177e4 5217 struct timespec t;
1da177e4
LT
5218
5219 if (pid < 0)
3a5c359a 5220 return -EINVAL;
1da177e4
LT
5221
5222 retval = -ESRCH;
1a551ae7 5223 rcu_read_lock();
1da177e4
LT
5224 p = find_process_by_pid(pid);
5225 if (!p)
5226 goto out_unlock;
5227
5228 retval = security_task_getscheduler(p);
5229 if (retval)
5230 goto out_unlock;
5231
dba091b9
TG
5232 rq = task_rq_lock(p, &flags);
5233 time_slice = p->sched_class->get_rr_interval(rq, p);
5234 task_rq_unlock(rq, &flags);
a4ec24b4 5235
1a551ae7 5236 rcu_read_unlock();
a4ec24b4 5237 jiffies_to_timespec(time_slice, &t);
1da177e4 5238 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5239 return retval;
3a5c359a 5240
1da177e4 5241out_unlock:
1a551ae7 5242 rcu_read_unlock();
1da177e4
LT
5243 return retval;
5244}
5245
7c731e0a 5246static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5247
82a1fcb9 5248void sched_show_task(struct task_struct *p)
1da177e4 5249{
1da177e4 5250 unsigned long free = 0;
36c8b586 5251 unsigned state;
1da177e4 5252
1da177e4 5253 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5254 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5255 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5256#if BITS_PER_LONG == 32
1da177e4 5257 if (state == TASK_RUNNING)
3df0fc5b 5258 printk(KERN_CONT " running ");
1da177e4 5259 else
3df0fc5b 5260 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5261#else
5262 if (state == TASK_RUNNING)
3df0fc5b 5263 printk(KERN_CONT " running task ");
1da177e4 5264 else
3df0fc5b 5265 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5266#endif
5267#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5268 free = stack_not_used(p);
1da177e4 5269#endif
3df0fc5b 5270 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5271 task_pid_nr(p), task_pid_nr(p->real_parent),
5272 (unsigned long)task_thread_info(p)->flags);
1da177e4 5273
5fb5e6de 5274 show_stack(p, NULL);
1da177e4
LT
5275}
5276
e59e2ae2 5277void show_state_filter(unsigned long state_filter)
1da177e4 5278{
36c8b586 5279 struct task_struct *g, *p;
1da177e4 5280
4bd77321 5281#if BITS_PER_LONG == 32
3df0fc5b
PZ
5282 printk(KERN_INFO
5283 " task PC stack pid father\n");
1da177e4 5284#else
3df0fc5b
PZ
5285 printk(KERN_INFO
5286 " task PC stack pid father\n");
1da177e4
LT
5287#endif
5288 read_lock(&tasklist_lock);
5289 do_each_thread(g, p) {
5290 /*
5291 * reset the NMI-timeout, listing all files on a slow
5292 * console might take alot of time:
5293 */
5294 touch_nmi_watchdog();
39bc89fd 5295 if (!state_filter || (p->state & state_filter))
82a1fcb9 5296 sched_show_task(p);
1da177e4
LT
5297 } while_each_thread(g, p);
5298
04c9167f
JF
5299 touch_all_softlockup_watchdogs();
5300
dd41f596
IM
5301#ifdef CONFIG_SCHED_DEBUG
5302 sysrq_sched_debug_show();
5303#endif
1da177e4 5304 read_unlock(&tasklist_lock);
e59e2ae2
IM
5305 /*
5306 * Only show locks if all tasks are dumped:
5307 */
93335a21 5308 if (!state_filter)
e59e2ae2 5309 debug_show_all_locks();
1da177e4
LT
5310}
5311
1df21055
IM
5312void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5313{
dd41f596 5314 idle->sched_class = &idle_sched_class;
1df21055
IM
5315}
5316
f340c0d1
IM
5317/**
5318 * init_idle - set up an idle thread for a given CPU
5319 * @idle: task in question
5320 * @cpu: cpu the idle task belongs to
5321 *
5322 * NOTE: this function does not set the idle thread's NEED_RESCHED
5323 * flag, to make booting more robust.
5324 */
5c1e1767 5325void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5326{
70b97a7f 5327 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5328 unsigned long flags;
5329
05fa785c 5330 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5331
dd41f596 5332 __sched_fork(idle);
06b83b5f 5333 idle->state = TASK_RUNNING;
dd41f596
IM
5334 idle->se.exec_start = sched_clock();
5335
96f874e2 5336 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5337 __set_task_cpu(idle, cpu);
1da177e4 5338
1da177e4 5339 rq->curr = rq->idle = idle;
4866cde0
NP
5340#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5341 idle->oncpu = 1;
5342#endif
05fa785c 5343 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5344
5345 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5346#if defined(CONFIG_PREEMPT)
5347 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5348#else
a1261f54 5349 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5350#endif
dd41f596
IM
5351 /*
5352 * The idle tasks have their own, simple scheduling class:
5353 */
5354 idle->sched_class = &idle_sched_class;
fb52607a 5355 ftrace_graph_init_task(idle);
1da177e4
LT
5356}
5357
5358/*
5359 * In a system that switches off the HZ timer nohz_cpu_mask
5360 * indicates which cpus entered this state. This is used
5361 * in the rcu update to wait only for active cpus. For system
5362 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5363 * always be CPU_BITS_NONE.
1da177e4 5364 */
6a7b3dc3 5365cpumask_var_t nohz_cpu_mask;
1da177e4 5366
19978ca6
IM
5367/*
5368 * Increase the granularity value when there are more CPUs,
5369 * because with more CPUs the 'effective latency' as visible
5370 * to users decreases. But the relationship is not linear,
5371 * so pick a second-best guess by going with the log2 of the
5372 * number of CPUs.
5373 *
5374 * This idea comes from the SD scheduler of Con Kolivas:
5375 */
acb4a848 5376static int get_update_sysctl_factor(void)
19978ca6 5377{
4ca3ef71 5378 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5379 unsigned int factor;
5380
5381 switch (sysctl_sched_tunable_scaling) {
5382 case SCHED_TUNABLESCALING_NONE:
5383 factor = 1;
5384 break;
5385 case SCHED_TUNABLESCALING_LINEAR:
5386 factor = cpus;
5387 break;
5388 case SCHED_TUNABLESCALING_LOG:
5389 default:
5390 factor = 1 + ilog2(cpus);
5391 break;
5392 }
19978ca6 5393
acb4a848
CE
5394 return factor;
5395}
19978ca6 5396
acb4a848
CE
5397static void update_sysctl(void)
5398{
5399 unsigned int factor = get_update_sysctl_factor();
19978ca6 5400
0bcdcf28
CE
5401#define SET_SYSCTL(name) \
5402 (sysctl_##name = (factor) * normalized_sysctl_##name)
5403 SET_SYSCTL(sched_min_granularity);
5404 SET_SYSCTL(sched_latency);
5405 SET_SYSCTL(sched_wakeup_granularity);
5406 SET_SYSCTL(sched_shares_ratelimit);
5407#undef SET_SYSCTL
5408}
55cd5340 5409
0bcdcf28
CE
5410static inline void sched_init_granularity(void)
5411{
5412 update_sysctl();
19978ca6
IM
5413}
5414
1da177e4
LT
5415#ifdef CONFIG_SMP
5416/*
5417 * This is how migration works:
5418 *
969c7921
TH
5419 * 1) we invoke migration_cpu_stop() on the target CPU using
5420 * stop_one_cpu().
5421 * 2) stopper starts to run (implicitly forcing the migrated thread
5422 * off the CPU)
5423 * 3) it checks whether the migrated task is still in the wrong runqueue.
5424 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5425 * it and puts it into the right queue.
969c7921
TH
5426 * 5) stopper completes and stop_one_cpu() returns and the migration
5427 * is done.
1da177e4
LT
5428 */
5429
5430/*
5431 * Change a given task's CPU affinity. Migrate the thread to a
5432 * proper CPU and schedule it away if the CPU it's executing on
5433 * is removed from the allowed bitmask.
5434 *
5435 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5436 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5437 * call is not atomic; no spinlocks may be held.
5438 */
96f874e2 5439int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5440{
5441 unsigned long flags;
70b97a7f 5442 struct rq *rq;
969c7921 5443 unsigned int dest_cpu;
48f24c4d 5444 int ret = 0;
1da177e4 5445
65cc8e48
PZ
5446 /*
5447 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5448 * drop the rq->lock and still rely on ->cpus_allowed.
5449 */
5450again:
5451 while (task_is_waking(p))
5452 cpu_relax();
1da177e4 5453 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5454 if (task_is_waking(p)) {
5455 task_rq_unlock(rq, &flags);
5456 goto again;
5457 }
e2912009 5458
6ad4c188 5459 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5460 ret = -EINVAL;
5461 goto out;
5462 }
5463
9985b0ba 5464 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5465 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5466 ret = -EINVAL;
5467 goto out;
5468 }
5469
73fe6aae 5470 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5471 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5472 else {
96f874e2
RR
5473 cpumask_copy(&p->cpus_allowed, new_mask);
5474 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5475 }
5476
1da177e4 5477 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5478 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5479 goto out;
5480
969c7921
TH
5481 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5482 if (migrate_task(p, dest_cpu)) {
5483 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5484 /* Need help from migration thread: drop lock and wait. */
5485 task_rq_unlock(rq, &flags);
969c7921 5486 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5487 tlb_migrate_finish(p->mm);
5488 return 0;
5489 }
5490out:
5491 task_rq_unlock(rq, &flags);
48f24c4d 5492
1da177e4
LT
5493 return ret;
5494}
cd8ba7cd 5495EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5496
5497/*
41a2d6cf 5498 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5499 * this because either it can't run here any more (set_cpus_allowed()
5500 * away from this CPU, or CPU going down), or because we're
5501 * attempting to rebalance this task on exec (sched_exec).
5502 *
5503 * So we race with normal scheduler movements, but that's OK, as long
5504 * as the task is no longer on this CPU.
efc30814
KK
5505 *
5506 * Returns non-zero if task was successfully migrated.
1da177e4 5507 */
efc30814 5508static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5509{
70b97a7f 5510 struct rq *rq_dest, *rq_src;
e2912009 5511 int ret = 0;
1da177e4 5512
e761b772 5513 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5514 return ret;
1da177e4
LT
5515
5516 rq_src = cpu_rq(src_cpu);
5517 rq_dest = cpu_rq(dest_cpu);
5518
5519 double_rq_lock(rq_src, rq_dest);
5520 /* Already moved. */
5521 if (task_cpu(p) != src_cpu)
b1e38734 5522 goto done;
1da177e4 5523 /* Affinity changed (again). */
96f874e2 5524 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5525 goto fail;
1da177e4 5526
e2912009
PZ
5527 /*
5528 * If we're not on a rq, the next wake-up will ensure we're
5529 * placed properly.
5530 */
5531 if (p->se.on_rq) {
2e1cb74a 5532 deactivate_task(rq_src, p, 0);
e2912009 5533 set_task_cpu(p, dest_cpu);
dd41f596 5534 activate_task(rq_dest, p, 0);
15afe09b 5535 check_preempt_curr(rq_dest, p, 0);
1da177e4 5536 }
b1e38734 5537done:
efc30814 5538 ret = 1;
b1e38734 5539fail:
1da177e4 5540 double_rq_unlock(rq_src, rq_dest);
efc30814 5541 return ret;
1da177e4
LT
5542}
5543
5544/*
969c7921
TH
5545 * migration_cpu_stop - this will be executed by a highprio stopper thread
5546 * and performs thread migration by bumping thread off CPU then
5547 * 'pushing' onto another runqueue.
1da177e4 5548 */
969c7921 5549static int migration_cpu_stop(void *data)
1da177e4 5550{
969c7921 5551 struct migration_arg *arg = data;
f7b4cddc 5552
969c7921
TH
5553 /*
5554 * The original target cpu might have gone down and we might
5555 * be on another cpu but it doesn't matter.
5556 */
f7b4cddc 5557 local_irq_disable();
969c7921 5558 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5559 local_irq_enable();
1da177e4 5560 return 0;
f7b4cddc
ON
5561}
5562
1da177e4 5563#ifdef CONFIG_HOTPLUG_CPU
054b9108 5564/*
3a4fa0a2 5565 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5566 */
6a1bdc1b 5567void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5568{
1445c08d
ON
5569 struct rq *rq = cpu_rq(dead_cpu);
5570 int needs_cpu, uninitialized_var(dest_cpu);
5571 unsigned long flags;
e76bd8d9 5572
1445c08d 5573 local_irq_save(flags);
e76bd8d9 5574
1445c08d
ON
5575 raw_spin_lock(&rq->lock);
5576 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5577 if (needs_cpu)
5578 dest_cpu = select_fallback_rq(dead_cpu, p);
5579 raw_spin_unlock(&rq->lock);
c1804d54
ON
5580 /*
5581 * It can only fail if we race with set_cpus_allowed(),
5582 * in the racer should migrate the task anyway.
5583 */
1445c08d 5584 if (needs_cpu)
c1804d54 5585 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5586 local_irq_restore(flags);
1da177e4
LT
5587}
5588
5589/*
5590 * While a dead CPU has no uninterruptible tasks queued at this point,
5591 * it might still have a nonzero ->nr_uninterruptible counter, because
5592 * for performance reasons the counter is not stricly tracking tasks to
5593 * their home CPUs. So we just add the counter to another CPU's counter,
5594 * to keep the global sum constant after CPU-down:
5595 */
70b97a7f 5596static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5597{
6ad4c188 5598 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5599 unsigned long flags;
5600
5601 local_irq_save(flags);
5602 double_rq_lock(rq_src, rq_dest);
5603 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5604 rq_src->nr_uninterruptible = 0;
5605 double_rq_unlock(rq_src, rq_dest);
5606 local_irq_restore(flags);
5607}
5608
5609/* Run through task list and migrate tasks from the dead cpu. */
5610static void migrate_live_tasks(int src_cpu)
5611{
48f24c4d 5612 struct task_struct *p, *t;
1da177e4 5613
f7b4cddc 5614 read_lock(&tasklist_lock);
1da177e4 5615
48f24c4d
IM
5616 do_each_thread(t, p) {
5617 if (p == current)
1da177e4
LT
5618 continue;
5619
48f24c4d
IM
5620 if (task_cpu(p) == src_cpu)
5621 move_task_off_dead_cpu(src_cpu, p);
5622 } while_each_thread(t, p);
1da177e4 5623
f7b4cddc 5624 read_unlock(&tasklist_lock);
1da177e4
LT
5625}
5626
dd41f596
IM
5627/*
5628 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5629 * It does so by boosting its priority to highest possible.
5630 * Used by CPU offline code.
1da177e4
LT
5631 */
5632void sched_idle_next(void)
5633{
48f24c4d 5634 int this_cpu = smp_processor_id();
70b97a7f 5635 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5636 struct task_struct *p = rq->idle;
5637 unsigned long flags;
5638
5639 /* cpu has to be offline */
48f24c4d 5640 BUG_ON(cpu_online(this_cpu));
1da177e4 5641
48f24c4d
IM
5642 /*
5643 * Strictly not necessary since rest of the CPUs are stopped by now
5644 * and interrupts disabled on the current cpu.
1da177e4 5645 */
05fa785c 5646 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5647
dd41f596 5648 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5649
94bc9a7b 5650 activate_task(rq, p, 0);
1da177e4 5651
05fa785c 5652 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5653}
5654
48f24c4d
IM
5655/*
5656 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5657 * offline.
5658 */
5659void idle_task_exit(void)
5660{
5661 struct mm_struct *mm = current->active_mm;
5662
5663 BUG_ON(cpu_online(smp_processor_id()));
5664
5665 if (mm != &init_mm)
5666 switch_mm(mm, &init_mm, current);
5667 mmdrop(mm);
5668}
5669
054b9108 5670/* called under rq->lock with disabled interrupts */
36c8b586 5671static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5672{
70b97a7f 5673 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5674
5675 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5676 BUG_ON(!p->exit_state);
1da177e4
LT
5677
5678 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5679 BUG_ON(p->state == TASK_DEAD);
1da177e4 5680
48f24c4d 5681 get_task_struct(p);
1da177e4
LT
5682
5683 /*
5684 * Drop lock around migration; if someone else moves it,
41a2d6cf 5685 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5686 * fine.
5687 */
05fa785c 5688 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5689 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5690 raw_spin_lock_irq(&rq->lock);
1da177e4 5691
48f24c4d 5692 put_task_struct(p);
1da177e4
LT
5693}
5694
5695/* release_task() removes task from tasklist, so we won't find dead tasks. */
5696static void migrate_dead_tasks(unsigned int dead_cpu)
5697{
70b97a7f 5698 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5699 struct task_struct *next;
48f24c4d 5700
dd41f596
IM
5701 for ( ; ; ) {
5702 if (!rq->nr_running)
5703 break;
b67802ea 5704 next = pick_next_task(rq);
dd41f596
IM
5705 if (!next)
5706 break;
79c53799 5707 next->sched_class->put_prev_task(rq, next);
dd41f596 5708 migrate_dead(dead_cpu, next);
e692ab53 5709
1da177e4
LT
5710 }
5711}
dce48a84
TG
5712
5713/*
5714 * remove the tasks which were accounted by rq from calc_load_tasks.
5715 */
5716static void calc_global_load_remove(struct rq *rq)
5717{
5718 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5719 rq->calc_load_active = 0;
dce48a84 5720}
1da177e4
LT
5721#endif /* CONFIG_HOTPLUG_CPU */
5722
e692ab53
NP
5723#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5724
5725static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5726 {
5727 .procname = "sched_domain",
c57baf1e 5728 .mode = 0555,
e0361851 5729 },
56992309 5730 {}
e692ab53
NP
5731};
5732
5733static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5734 {
5735 .procname = "kernel",
c57baf1e 5736 .mode = 0555,
e0361851
AD
5737 .child = sd_ctl_dir,
5738 },
56992309 5739 {}
e692ab53
NP
5740};
5741
5742static struct ctl_table *sd_alloc_ctl_entry(int n)
5743{
5744 struct ctl_table *entry =
5cf9f062 5745 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5746
e692ab53
NP
5747 return entry;
5748}
5749
6382bc90
MM
5750static void sd_free_ctl_entry(struct ctl_table **tablep)
5751{
cd790076 5752 struct ctl_table *entry;
6382bc90 5753
cd790076
MM
5754 /*
5755 * In the intermediate directories, both the child directory and
5756 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5757 * will always be set. In the lowest directory the names are
cd790076
MM
5758 * static strings and all have proc handlers.
5759 */
5760 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5761 if (entry->child)
5762 sd_free_ctl_entry(&entry->child);
cd790076
MM
5763 if (entry->proc_handler == NULL)
5764 kfree(entry->procname);
5765 }
6382bc90
MM
5766
5767 kfree(*tablep);
5768 *tablep = NULL;
5769}
5770
e692ab53 5771static void
e0361851 5772set_table_entry(struct ctl_table *entry,
e692ab53
NP
5773 const char *procname, void *data, int maxlen,
5774 mode_t mode, proc_handler *proc_handler)
5775{
e692ab53
NP
5776 entry->procname = procname;
5777 entry->data = data;
5778 entry->maxlen = maxlen;
5779 entry->mode = mode;
5780 entry->proc_handler = proc_handler;
5781}
5782
5783static struct ctl_table *
5784sd_alloc_ctl_domain_table(struct sched_domain *sd)
5785{
a5d8c348 5786 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5787
ad1cdc1d
MM
5788 if (table == NULL)
5789 return NULL;
5790
e0361851 5791 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5792 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5793 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5794 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5795 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5796 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5797 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5798 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5799 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5800 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5801 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5802 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5803 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5804 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5805 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5806 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5807 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5808 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5809 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5810 &sd->cache_nice_tries,
5811 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5812 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5813 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5814 set_table_entry(&table[11], "name", sd->name,
5815 CORENAME_MAX_SIZE, 0444, proc_dostring);
5816 /* &table[12] is terminator */
e692ab53
NP
5817
5818 return table;
5819}
5820
9a4e7159 5821static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5822{
5823 struct ctl_table *entry, *table;
5824 struct sched_domain *sd;
5825 int domain_num = 0, i;
5826 char buf[32];
5827
5828 for_each_domain(cpu, sd)
5829 domain_num++;
5830 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5831 if (table == NULL)
5832 return NULL;
e692ab53
NP
5833
5834 i = 0;
5835 for_each_domain(cpu, sd) {
5836 snprintf(buf, 32, "domain%d", i);
e692ab53 5837 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5838 entry->mode = 0555;
e692ab53
NP
5839 entry->child = sd_alloc_ctl_domain_table(sd);
5840 entry++;
5841 i++;
5842 }
5843 return table;
5844}
5845
5846static struct ctl_table_header *sd_sysctl_header;
6382bc90 5847static void register_sched_domain_sysctl(void)
e692ab53 5848{
6ad4c188 5849 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5850 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5851 char buf[32];
5852
7378547f
MM
5853 WARN_ON(sd_ctl_dir[0].child);
5854 sd_ctl_dir[0].child = entry;
5855
ad1cdc1d
MM
5856 if (entry == NULL)
5857 return;
5858
6ad4c188 5859 for_each_possible_cpu(i) {
e692ab53 5860 snprintf(buf, 32, "cpu%d", i);
e692ab53 5861 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5862 entry->mode = 0555;
e692ab53 5863 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5864 entry++;
e692ab53 5865 }
7378547f
MM
5866
5867 WARN_ON(sd_sysctl_header);
e692ab53
NP
5868 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5869}
6382bc90 5870
7378547f 5871/* may be called multiple times per register */
6382bc90
MM
5872static void unregister_sched_domain_sysctl(void)
5873{
7378547f
MM
5874 if (sd_sysctl_header)
5875 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5876 sd_sysctl_header = NULL;
7378547f
MM
5877 if (sd_ctl_dir[0].child)
5878 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5879}
e692ab53 5880#else
6382bc90
MM
5881static void register_sched_domain_sysctl(void)
5882{
5883}
5884static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5885{
5886}
5887#endif
5888
1f11eb6a
GH
5889static void set_rq_online(struct rq *rq)
5890{
5891 if (!rq->online) {
5892 const struct sched_class *class;
5893
c6c4927b 5894 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5895 rq->online = 1;
5896
5897 for_each_class(class) {
5898 if (class->rq_online)
5899 class->rq_online(rq);
5900 }
5901 }
5902}
5903
5904static void set_rq_offline(struct rq *rq)
5905{
5906 if (rq->online) {
5907 const struct sched_class *class;
5908
5909 for_each_class(class) {
5910 if (class->rq_offline)
5911 class->rq_offline(rq);
5912 }
5913
c6c4927b 5914 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5915 rq->online = 0;
5916 }
5917}
5918
1da177e4
LT
5919/*
5920 * migration_call - callback that gets triggered when a CPU is added.
5921 * Here we can start up the necessary migration thread for the new CPU.
5922 */
48f24c4d
IM
5923static int __cpuinit
5924migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5925{
48f24c4d 5926 int cpu = (long)hcpu;
1da177e4 5927 unsigned long flags;
969c7921 5928 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5929
5930 switch (action) {
5be9361c 5931
1da177e4 5932 case CPU_UP_PREPARE:
8bb78442 5933 case CPU_UP_PREPARE_FROZEN:
a468d389 5934 rq->calc_load_update = calc_load_update;
1da177e4 5935 break;
48f24c4d 5936
1da177e4 5937 case CPU_ONLINE:
8bb78442 5938 case CPU_ONLINE_FROZEN:
1f94ef59 5939 /* Update our root-domain */
05fa785c 5940 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5941 if (rq->rd) {
c6c4927b 5942 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5943
5944 set_rq_online(rq);
1f94ef59 5945 }
05fa785c 5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5947 break;
48f24c4d 5948
1da177e4 5949#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5950 case CPU_DEAD:
8bb78442 5951 case CPU_DEAD_FROZEN:
1da177e4 5952 migrate_live_tasks(cpu);
1da177e4 5953 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5954 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5955 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5956 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5957 rq->idle->sched_class = &idle_sched_class;
1da177e4 5958 migrate_dead_tasks(cpu);
05fa785c 5959 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5960 migrate_nr_uninterruptible(rq);
5961 BUG_ON(rq->nr_running != 0);
dce48a84 5962 calc_global_load_remove(rq);
1da177e4 5963 break;
57d885fe 5964
08f503b0
GH
5965 case CPU_DYING:
5966 case CPU_DYING_FROZEN:
57d885fe 5967 /* Update our root-domain */
05fa785c 5968 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5969 if (rq->rd) {
c6c4927b 5970 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5971 set_rq_offline(rq);
57d885fe 5972 }
05fa785c 5973 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5974 break;
1da177e4
LT
5975#endif
5976 }
5977 return NOTIFY_OK;
5978}
5979
f38b0820
PM
5980/*
5981 * Register at high priority so that task migration (migrate_all_tasks)
5982 * happens before everything else. This has to be lower priority than
cdd6c482 5983 * the notifier in the perf_event subsystem, though.
1da177e4 5984 */
26c2143b 5985static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5986 .notifier_call = migration_call,
50a323b7 5987 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5988};
5989
3a101d05
TH
5990static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5991 unsigned long action, void *hcpu)
5992{
5993 switch (action & ~CPU_TASKS_FROZEN) {
5994 case CPU_ONLINE:
5995 case CPU_DOWN_FAILED:
5996 set_cpu_active((long)hcpu, true);
5997 return NOTIFY_OK;
5998 default:
5999 return NOTIFY_DONE;
6000 }
6001}
6002
6003static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6004 unsigned long action, void *hcpu)
6005{
6006 switch (action & ~CPU_TASKS_FROZEN) {
6007 case CPU_DOWN_PREPARE:
6008 set_cpu_active((long)hcpu, false);
6009 return NOTIFY_OK;
6010 default:
6011 return NOTIFY_DONE;
6012 }
6013}
6014
7babe8db 6015static int __init migration_init(void)
1da177e4
LT
6016{
6017 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6018 int err;
48f24c4d 6019
3a101d05 6020 /* Initialize migration for the boot CPU */
07dccf33
AM
6021 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6022 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6023 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6024 register_cpu_notifier(&migration_notifier);
7babe8db 6025
3a101d05
TH
6026 /* Register cpu active notifiers */
6027 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6028 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6029
a004cd42 6030 return 0;
1da177e4 6031}
7babe8db 6032early_initcall(migration_init);
1da177e4
LT
6033#endif
6034
6035#ifdef CONFIG_SMP
476f3534 6036
3e9830dc 6037#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6038
f6630114
MT
6039static __read_mostly int sched_domain_debug_enabled;
6040
6041static int __init sched_domain_debug_setup(char *str)
6042{
6043 sched_domain_debug_enabled = 1;
6044
6045 return 0;
6046}
6047early_param("sched_debug", sched_domain_debug_setup);
6048
7c16ec58 6049static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6050 struct cpumask *groupmask)
1da177e4 6051{
4dcf6aff 6052 struct sched_group *group = sd->groups;
434d53b0 6053 char str[256];
1da177e4 6054
968ea6d8 6055 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6056 cpumask_clear(groupmask);
4dcf6aff
IM
6057
6058 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6059
6060 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6061 printk("does not load-balance\n");
4dcf6aff 6062 if (sd->parent)
3df0fc5b
PZ
6063 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6064 " has parent");
4dcf6aff 6065 return -1;
41c7ce9a
NP
6066 }
6067
3df0fc5b 6068 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6069
758b2cdc 6070 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6071 printk(KERN_ERR "ERROR: domain->span does not contain "
6072 "CPU%d\n", cpu);
4dcf6aff 6073 }
758b2cdc 6074 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6075 printk(KERN_ERR "ERROR: domain->groups does not contain"
6076 " CPU%d\n", cpu);
4dcf6aff 6077 }
1da177e4 6078
4dcf6aff 6079 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6080 do {
4dcf6aff 6081 if (!group) {
3df0fc5b
PZ
6082 printk("\n");
6083 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6084 break;
6085 }
6086
18a3885f 6087 if (!group->cpu_power) {
3df0fc5b
PZ
6088 printk(KERN_CONT "\n");
6089 printk(KERN_ERR "ERROR: domain->cpu_power not "
6090 "set\n");
4dcf6aff
IM
6091 break;
6092 }
1da177e4 6093
758b2cdc 6094 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6095 printk(KERN_CONT "\n");
6096 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6097 break;
6098 }
1da177e4 6099
758b2cdc 6100 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6101 printk(KERN_CONT "\n");
6102 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6103 break;
6104 }
1da177e4 6105
758b2cdc 6106 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6107
968ea6d8 6108 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6109
3df0fc5b 6110 printk(KERN_CONT " %s", str);
18a3885f 6111 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6112 printk(KERN_CONT " (cpu_power = %d)",
6113 group->cpu_power);
381512cf 6114 }
1da177e4 6115
4dcf6aff
IM
6116 group = group->next;
6117 } while (group != sd->groups);
3df0fc5b 6118 printk(KERN_CONT "\n");
1da177e4 6119
758b2cdc 6120 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6121 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6122
758b2cdc
RR
6123 if (sd->parent &&
6124 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6125 printk(KERN_ERR "ERROR: parent span is not a superset "
6126 "of domain->span\n");
4dcf6aff
IM
6127 return 0;
6128}
1da177e4 6129
4dcf6aff
IM
6130static void sched_domain_debug(struct sched_domain *sd, int cpu)
6131{
d5dd3db1 6132 cpumask_var_t groupmask;
4dcf6aff 6133 int level = 0;
1da177e4 6134
f6630114
MT
6135 if (!sched_domain_debug_enabled)
6136 return;
6137
4dcf6aff
IM
6138 if (!sd) {
6139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6140 return;
6141 }
1da177e4 6142
4dcf6aff
IM
6143 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6144
d5dd3db1 6145 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6146 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6147 return;
6148 }
6149
4dcf6aff 6150 for (;;) {
7c16ec58 6151 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6152 break;
1da177e4
LT
6153 level++;
6154 sd = sd->parent;
33859f7f 6155 if (!sd)
4dcf6aff
IM
6156 break;
6157 }
d5dd3db1 6158 free_cpumask_var(groupmask);
1da177e4 6159}
6d6bc0ad 6160#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6161# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6162#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6163
1a20ff27 6164static int sd_degenerate(struct sched_domain *sd)
245af2c7 6165{
758b2cdc 6166 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6167 return 1;
6168
6169 /* Following flags need at least 2 groups */
6170 if (sd->flags & (SD_LOAD_BALANCE |
6171 SD_BALANCE_NEWIDLE |
6172 SD_BALANCE_FORK |
89c4710e
SS
6173 SD_BALANCE_EXEC |
6174 SD_SHARE_CPUPOWER |
6175 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6176 if (sd->groups != sd->groups->next)
6177 return 0;
6178 }
6179
6180 /* Following flags don't use groups */
c88d5910 6181 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6182 return 0;
6183
6184 return 1;
6185}
6186
48f24c4d
IM
6187static int
6188sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6189{
6190 unsigned long cflags = sd->flags, pflags = parent->flags;
6191
6192 if (sd_degenerate(parent))
6193 return 1;
6194
758b2cdc 6195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6196 return 0;
6197
245af2c7
SS
6198 /* Flags needing groups don't count if only 1 group in parent */
6199 if (parent->groups == parent->groups->next) {
6200 pflags &= ~(SD_LOAD_BALANCE |
6201 SD_BALANCE_NEWIDLE |
6202 SD_BALANCE_FORK |
89c4710e
SS
6203 SD_BALANCE_EXEC |
6204 SD_SHARE_CPUPOWER |
6205 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6206 if (nr_node_ids == 1)
6207 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6208 }
6209 if (~cflags & pflags)
6210 return 0;
6211
6212 return 1;
6213}
6214
c6c4927b
RR
6215static void free_rootdomain(struct root_domain *rd)
6216{
047106ad
PZ
6217 synchronize_sched();
6218
68e74568
RR
6219 cpupri_cleanup(&rd->cpupri);
6220
c6c4927b
RR
6221 free_cpumask_var(rd->rto_mask);
6222 free_cpumask_var(rd->online);
6223 free_cpumask_var(rd->span);
6224 kfree(rd);
6225}
6226
57d885fe
GH
6227static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6228{
a0490fa3 6229 struct root_domain *old_rd = NULL;
57d885fe 6230 unsigned long flags;
57d885fe 6231
05fa785c 6232 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6233
6234 if (rq->rd) {
a0490fa3 6235 old_rd = rq->rd;
57d885fe 6236
c6c4927b 6237 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6238 set_rq_offline(rq);
57d885fe 6239
c6c4927b 6240 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6241
a0490fa3
IM
6242 /*
6243 * If we dont want to free the old_rt yet then
6244 * set old_rd to NULL to skip the freeing later
6245 * in this function:
6246 */
6247 if (!atomic_dec_and_test(&old_rd->refcount))
6248 old_rd = NULL;
57d885fe
GH
6249 }
6250
6251 atomic_inc(&rd->refcount);
6252 rq->rd = rd;
6253
c6c4927b 6254 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6255 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6256 set_rq_online(rq);
57d885fe 6257
05fa785c 6258 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6259
6260 if (old_rd)
6261 free_rootdomain(old_rd);
57d885fe
GH
6262}
6263
68c38fc3 6264static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6265{
6266 memset(rd, 0, sizeof(*rd));
6267
68c38fc3 6268 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6269 goto out;
68c38fc3 6270 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6271 goto free_span;
68c38fc3 6272 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6273 goto free_online;
6e0534f2 6274
68c38fc3 6275 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6276 goto free_rto_mask;
c6c4927b 6277 return 0;
6e0534f2 6278
68e74568
RR
6279free_rto_mask:
6280 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6281free_online:
6282 free_cpumask_var(rd->online);
6283free_span:
6284 free_cpumask_var(rd->span);
0c910d28 6285out:
c6c4927b 6286 return -ENOMEM;
57d885fe
GH
6287}
6288
6289static void init_defrootdomain(void)
6290{
68c38fc3 6291 init_rootdomain(&def_root_domain);
c6c4927b 6292
57d885fe
GH
6293 atomic_set(&def_root_domain.refcount, 1);
6294}
6295
dc938520 6296static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6297{
6298 struct root_domain *rd;
6299
6300 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6301 if (!rd)
6302 return NULL;
6303
68c38fc3 6304 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6305 kfree(rd);
6306 return NULL;
6307 }
57d885fe
GH
6308
6309 return rd;
6310}
6311
1da177e4 6312/*
0eab9146 6313 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6314 * hold the hotplug lock.
6315 */
0eab9146
IM
6316static void
6317cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6318{
70b97a7f 6319 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6320 struct sched_domain *tmp;
6321
669c55e9
PZ
6322 for (tmp = sd; tmp; tmp = tmp->parent)
6323 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6324
245af2c7 6325 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6326 for (tmp = sd; tmp; ) {
245af2c7
SS
6327 struct sched_domain *parent = tmp->parent;
6328 if (!parent)
6329 break;
f29c9b1c 6330
1a848870 6331 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6332 tmp->parent = parent->parent;
1a848870
SS
6333 if (parent->parent)
6334 parent->parent->child = tmp;
f29c9b1c
LZ
6335 } else
6336 tmp = tmp->parent;
245af2c7
SS
6337 }
6338
1a848870 6339 if (sd && sd_degenerate(sd)) {
245af2c7 6340 sd = sd->parent;
1a848870
SS
6341 if (sd)
6342 sd->child = NULL;
6343 }
1da177e4
LT
6344
6345 sched_domain_debug(sd, cpu);
6346
57d885fe 6347 rq_attach_root(rq, rd);
674311d5 6348 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6349}
6350
6351/* cpus with isolated domains */
dcc30a35 6352static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6353
6354/* Setup the mask of cpus configured for isolated domains */
6355static int __init isolated_cpu_setup(char *str)
6356{
bdddd296 6357 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6358 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6359 return 1;
6360}
6361
8927f494 6362__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6363
6364/*
6711cab4
SS
6365 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6366 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6367 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6368 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6369 *
6370 * init_sched_build_groups will build a circular linked list of the groups
6371 * covered by the given span, and will set each group's ->cpumask correctly,
6372 * and ->cpu_power to 0.
6373 */
a616058b 6374static void
96f874e2
RR
6375init_sched_build_groups(const struct cpumask *span,
6376 const struct cpumask *cpu_map,
6377 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6378 struct sched_group **sg,
96f874e2
RR
6379 struct cpumask *tmpmask),
6380 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6381{
6382 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6383 int i;
6384
96f874e2 6385 cpumask_clear(covered);
7c16ec58 6386
abcd083a 6387 for_each_cpu(i, span) {
6711cab4 6388 struct sched_group *sg;
7c16ec58 6389 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6390 int j;
6391
758b2cdc 6392 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6393 continue;
6394
758b2cdc 6395 cpumask_clear(sched_group_cpus(sg));
18a3885f 6396 sg->cpu_power = 0;
1da177e4 6397
abcd083a 6398 for_each_cpu(j, span) {
7c16ec58 6399 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6400 continue;
6401
96f874e2 6402 cpumask_set_cpu(j, covered);
758b2cdc 6403 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6404 }
6405 if (!first)
6406 first = sg;
6407 if (last)
6408 last->next = sg;
6409 last = sg;
6410 }
6411 last->next = first;
6412}
6413
9c1cfda2 6414#define SD_NODES_PER_DOMAIN 16
1da177e4 6415
9c1cfda2 6416#ifdef CONFIG_NUMA
198e2f18 6417
9c1cfda2
JH
6418/**
6419 * find_next_best_node - find the next node to include in a sched_domain
6420 * @node: node whose sched_domain we're building
6421 * @used_nodes: nodes already in the sched_domain
6422 *
41a2d6cf 6423 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6424 * finds the closest node not already in the @used_nodes map.
6425 *
6426 * Should use nodemask_t.
6427 */
c5f59f08 6428static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6429{
6430 int i, n, val, min_val, best_node = 0;
6431
6432 min_val = INT_MAX;
6433
076ac2af 6434 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6435 /* Start at @node */
076ac2af 6436 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6437
6438 if (!nr_cpus_node(n))
6439 continue;
6440
6441 /* Skip already used nodes */
c5f59f08 6442 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6443 continue;
6444
6445 /* Simple min distance search */
6446 val = node_distance(node, n);
6447
6448 if (val < min_val) {
6449 min_val = val;
6450 best_node = n;
6451 }
6452 }
6453
c5f59f08 6454 node_set(best_node, *used_nodes);
9c1cfda2
JH
6455 return best_node;
6456}
6457
6458/**
6459 * sched_domain_node_span - get a cpumask for a node's sched_domain
6460 * @node: node whose cpumask we're constructing
73486722 6461 * @span: resulting cpumask
9c1cfda2 6462 *
41a2d6cf 6463 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6464 * should be one that prevents unnecessary balancing, but also spreads tasks
6465 * out optimally.
6466 */
96f874e2 6467static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6468{
c5f59f08 6469 nodemask_t used_nodes;
48f24c4d 6470 int i;
9c1cfda2 6471
6ca09dfc 6472 cpumask_clear(span);
c5f59f08 6473 nodes_clear(used_nodes);
9c1cfda2 6474
6ca09dfc 6475 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6476 node_set(node, used_nodes);
9c1cfda2
JH
6477
6478 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6479 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6480
6ca09dfc 6481 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6482 }
9c1cfda2 6483}
6d6bc0ad 6484#endif /* CONFIG_NUMA */
9c1cfda2 6485
5c45bf27 6486int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6487
6c99e9ad
RR
6488/*
6489 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6490 *
6491 * ( See the the comments in include/linux/sched.h:struct sched_group
6492 * and struct sched_domain. )
6c99e9ad
RR
6493 */
6494struct static_sched_group {
6495 struct sched_group sg;
6496 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6497};
6498
6499struct static_sched_domain {
6500 struct sched_domain sd;
6501 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6502};
6503
49a02c51
AH
6504struct s_data {
6505#ifdef CONFIG_NUMA
6506 int sd_allnodes;
6507 cpumask_var_t domainspan;
6508 cpumask_var_t covered;
6509 cpumask_var_t notcovered;
6510#endif
6511 cpumask_var_t nodemask;
6512 cpumask_var_t this_sibling_map;
6513 cpumask_var_t this_core_map;
01a08546 6514 cpumask_var_t this_book_map;
49a02c51
AH
6515 cpumask_var_t send_covered;
6516 cpumask_var_t tmpmask;
6517 struct sched_group **sched_group_nodes;
6518 struct root_domain *rd;
6519};
6520
2109b99e
AH
6521enum s_alloc {
6522 sa_sched_groups = 0,
6523 sa_rootdomain,
6524 sa_tmpmask,
6525 sa_send_covered,
01a08546 6526 sa_this_book_map,
2109b99e
AH
6527 sa_this_core_map,
6528 sa_this_sibling_map,
6529 sa_nodemask,
6530 sa_sched_group_nodes,
6531#ifdef CONFIG_NUMA
6532 sa_notcovered,
6533 sa_covered,
6534 sa_domainspan,
6535#endif
6536 sa_none,
6537};
6538
9c1cfda2 6539/*
48f24c4d 6540 * SMT sched-domains:
9c1cfda2 6541 */
1da177e4 6542#ifdef CONFIG_SCHED_SMT
6c99e9ad 6543static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6544static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6545
41a2d6cf 6546static int
96f874e2
RR
6547cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6548 struct sched_group **sg, struct cpumask *unused)
1da177e4 6549{
6711cab4 6550 if (sg)
1871e52c 6551 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6552 return cpu;
6553}
6d6bc0ad 6554#endif /* CONFIG_SCHED_SMT */
1da177e4 6555
48f24c4d
IM
6556/*
6557 * multi-core sched-domains:
6558 */
1e9f28fa 6559#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6560static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6561static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6562
41a2d6cf 6563static int
96f874e2
RR
6564cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6565 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6566{
6711cab4 6567 int group;
f269893c 6568#ifdef CONFIG_SCHED_SMT
c69fc56d 6569 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6570 group = cpumask_first(mask);
f269893c
HC
6571#else
6572 group = cpu;
6573#endif
6711cab4 6574 if (sg)
6c99e9ad 6575 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6576 return group;
1e9f28fa 6577}
f269893c 6578#endif /* CONFIG_SCHED_MC */
1e9f28fa 6579
01a08546
HC
6580/*
6581 * book sched-domains:
6582 */
6583#ifdef CONFIG_SCHED_BOOK
6584static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6585static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6586
6587static int
6588cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6589 struct sched_group **sg, struct cpumask *mask)
6590{
6591 int group = cpu;
6592#ifdef CONFIG_SCHED_MC
6593 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6594 group = cpumask_first(mask);
6595#elif defined(CONFIG_SCHED_SMT)
6596 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6597 group = cpumask_first(mask);
6598#endif
6599 if (sg)
6600 *sg = &per_cpu(sched_group_book, group).sg;
6601 return group;
6602}
6603#endif /* CONFIG_SCHED_BOOK */
6604
6c99e9ad
RR
6605static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6606static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6607
41a2d6cf 6608static int
96f874e2
RR
6609cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6610 struct sched_group **sg, struct cpumask *mask)
1da177e4 6611{
6711cab4 6612 int group;
01a08546
HC
6613#ifdef CONFIG_SCHED_BOOK
6614 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6615 group = cpumask_first(mask);
6616#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6617 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6618 group = cpumask_first(mask);
1e9f28fa 6619#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6620 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6621 group = cpumask_first(mask);
1da177e4 6622#else
6711cab4 6623 group = cpu;
1da177e4 6624#endif
6711cab4 6625 if (sg)
6c99e9ad 6626 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6627 return group;
1da177e4
LT
6628}
6629
6630#ifdef CONFIG_NUMA
1da177e4 6631/*
9c1cfda2
JH
6632 * The init_sched_build_groups can't handle what we want to do with node
6633 * groups, so roll our own. Now each node has its own list of groups which
6634 * gets dynamically allocated.
1da177e4 6635 */
62ea9ceb 6636static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6637static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6638
62ea9ceb 6639static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6640static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6641
96f874e2
RR
6642static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6643 struct sched_group **sg,
6644 struct cpumask *nodemask)
9c1cfda2 6645{
6711cab4
SS
6646 int group;
6647
6ca09dfc 6648 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6649 group = cpumask_first(nodemask);
6711cab4
SS
6650
6651 if (sg)
6c99e9ad 6652 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6653 return group;
1da177e4 6654}
6711cab4 6655
08069033
SS
6656static void init_numa_sched_groups_power(struct sched_group *group_head)
6657{
6658 struct sched_group *sg = group_head;
6659 int j;
6660
6661 if (!sg)
6662 return;
3a5c359a 6663 do {
758b2cdc 6664 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6665 struct sched_domain *sd;
08069033 6666
6c99e9ad 6667 sd = &per_cpu(phys_domains, j).sd;
13318a71 6668 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6669 /*
6670 * Only add "power" once for each
6671 * physical package.
6672 */
6673 continue;
6674 }
08069033 6675
18a3885f 6676 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6677 }
6678 sg = sg->next;
6679 } while (sg != group_head);
08069033 6680}
0601a88d
AH
6681
6682static int build_numa_sched_groups(struct s_data *d,
6683 const struct cpumask *cpu_map, int num)
6684{
6685 struct sched_domain *sd;
6686 struct sched_group *sg, *prev;
6687 int n, j;
6688
6689 cpumask_clear(d->covered);
6690 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6691 if (cpumask_empty(d->nodemask)) {
6692 d->sched_group_nodes[num] = NULL;
6693 goto out;
6694 }
6695
6696 sched_domain_node_span(num, d->domainspan);
6697 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6698
6699 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6700 GFP_KERNEL, num);
6701 if (!sg) {
3df0fc5b
PZ
6702 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6703 num);
0601a88d
AH
6704 return -ENOMEM;
6705 }
6706 d->sched_group_nodes[num] = sg;
6707
6708 for_each_cpu(j, d->nodemask) {
6709 sd = &per_cpu(node_domains, j).sd;
6710 sd->groups = sg;
6711 }
6712
18a3885f 6713 sg->cpu_power = 0;
0601a88d
AH
6714 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6715 sg->next = sg;
6716 cpumask_or(d->covered, d->covered, d->nodemask);
6717
6718 prev = sg;
6719 for (j = 0; j < nr_node_ids; j++) {
6720 n = (num + j) % nr_node_ids;
6721 cpumask_complement(d->notcovered, d->covered);
6722 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6723 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6724 if (cpumask_empty(d->tmpmask))
6725 break;
6726 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6727 if (cpumask_empty(d->tmpmask))
6728 continue;
6729 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6730 GFP_KERNEL, num);
6731 if (!sg) {
3df0fc5b
PZ
6732 printk(KERN_WARNING
6733 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6734 return -ENOMEM;
6735 }
18a3885f 6736 sg->cpu_power = 0;
0601a88d
AH
6737 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6738 sg->next = prev->next;
6739 cpumask_or(d->covered, d->covered, d->tmpmask);
6740 prev->next = sg;
6741 prev = sg;
6742 }
6743out:
6744 return 0;
6745}
6d6bc0ad 6746#endif /* CONFIG_NUMA */
1da177e4 6747
a616058b 6748#ifdef CONFIG_NUMA
51888ca2 6749/* Free memory allocated for various sched_group structures */
96f874e2
RR
6750static void free_sched_groups(const struct cpumask *cpu_map,
6751 struct cpumask *nodemask)
51888ca2 6752{
a616058b 6753 int cpu, i;
51888ca2 6754
abcd083a 6755 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6756 struct sched_group **sched_group_nodes
6757 = sched_group_nodes_bycpu[cpu];
6758
51888ca2
SV
6759 if (!sched_group_nodes)
6760 continue;
6761
076ac2af 6762 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6763 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6764
6ca09dfc 6765 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6766 if (cpumask_empty(nodemask))
51888ca2
SV
6767 continue;
6768
6769 if (sg == NULL)
6770 continue;
6771 sg = sg->next;
6772next_sg:
6773 oldsg = sg;
6774 sg = sg->next;
6775 kfree(oldsg);
6776 if (oldsg != sched_group_nodes[i])
6777 goto next_sg;
6778 }
6779 kfree(sched_group_nodes);
6780 sched_group_nodes_bycpu[cpu] = NULL;
6781 }
51888ca2 6782}
6d6bc0ad 6783#else /* !CONFIG_NUMA */
96f874e2
RR
6784static void free_sched_groups(const struct cpumask *cpu_map,
6785 struct cpumask *nodemask)
a616058b
SS
6786{
6787}
6d6bc0ad 6788#endif /* CONFIG_NUMA */
51888ca2 6789
89c4710e
SS
6790/*
6791 * Initialize sched groups cpu_power.
6792 *
6793 * cpu_power indicates the capacity of sched group, which is used while
6794 * distributing the load between different sched groups in a sched domain.
6795 * Typically cpu_power for all the groups in a sched domain will be same unless
6796 * there are asymmetries in the topology. If there are asymmetries, group
6797 * having more cpu_power will pickup more load compared to the group having
6798 * less cpu_power.
89c4710e
SS
6799 */
6800static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6801{
6802 struct sched_domain *child;
6803 struct sched_group *group;
f93e65c1
PZ
6804 long power;
6805 int weight;
89c4710e
SS
6806
6807 WARN_ON(!sd || !sd->groups);
6808
13318a71 6809 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6810 return;
6811
6812 child = sd->child;
6813
18a3885f 6814 sd->groups->cpu_power = 0;
5517d86b 6815
f93e65c1
PZ
6816 if (!child) {
6817 power = SCHED_LOAD_SCALE;
6818 weight = cpumask_weight(sched_domain_span(sd));
6819 /*
6820 * SMT siblings share the power of a single core.
a52bfd73
PZ
6821 * Usually multiple threads get a better yield out of
6822 * that one core than a single thread would have,
6823 * reflect that in sd->smt_gain.
f93e65c1 6824 */
a52bfd73
PZ
6825 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6826 power *= sd->smt_gain;
f93e65c1 6827 power /= weight;
a52bfd73
PZ
6828 power >>= SCHED_LOAD_SHIFT;
6829 }
18a3885f 6830 sd->groups->cpu_power += power;
89c4710e
SS
6831 return;
6832 }
6833
89c4710e 6834 /*
f93e65c1 6835 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6836 */
6837 group = child->groups;
6838 do {
18a3885f 6839 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6840 group = group->next;
6841 } while (group != child->groups);
6842}
6843
7c16ec58
MT
6844/*
6845 * Initializers for schedule domains
6846 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6847 */
6848
a5d8c348
IM
6849#ifdef CONFIG_SCHED_DEBUG
6850# define SD_INIT_NAME(sd, type) sd->name = #type
6851#else
6852# define SD_INIT_NAME(sd, type) do { } while (0)
6853#endif
6854
7c16ec58 6855#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6856
7c16ec58
MT
6857#define SD_INIT_FUNC(type) \
6858static noinline void sd_init_##type(struct sched_domain *sd) \
6859{ \
6860 memset(sd, 0, sizeof(*sd)); \
6861 *sd = SD_##type##_INIT; \
1d3504fc 6862 sd->level = SD_LV_##type; \
a5d8c348 6863 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6864}
6865
6866SD_INIT_FUNC(CPU)
6867#ifdef CONFIG_NUMA
6868 SD_INIT_FUNC(ALLNODES)
6869 SD_INIT_FUNC(NODE)
6870#endif
6871#ifdef CONFIG_SCHED_SMT
6872 SD_INIT_FUNC(SIBLING)
6873#endif
6874#ifdef CONFIG_SCHED_MC
6875 SD_INIT_FUNC(MC)
6876#endif
01a08546
HC
6877#ifdef CONFIG_SCHED_BOOK
6878 SD_INIT_FUNC(BOOK)
6879#endif
7c16ec58 6880
1d3504fc
HS
6881static int default_relax_domain_level = -1;
6882
6883static int __init setup_relax_domain_level(char *str)
6884{
30e0e178
LZ
6885 unsigned long val;
6886
6887 val = simple_strtoul(str, NULL, 0);
6888 if (val < SD_LV_MAX)
6889 default_relax_domain_level = val;
6890
1d3504fc
HS
6891 return 1;
6892}
6893__setup("relax_domain_level=", setup_relax_domain_level);
6894
6895static void set_domain_attribute(struct sched_domain *sd,
6896 struct sched_domain_attr *attr)
6897{
6898 int request;
6899
6900 if (!attr || attr->relax_domain_level < 0) {
6901 if (default_relax_domain_level < 0)
6902 return;
6903 else
6904 request = default_relax_domain_level;
6905 } else
6906 request = attr->relax_domain_level;
6907 if (request < sd->level) {
6908 /* turn off idle balance on this domain */
c88d5910 6909 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6910 } else {
6911 /* turn on idle balance on this domain */
c88d5910 6912 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6913 }
6914}
6915
2109b99e
AH
6916static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6917 const struct cpumask *cpu_map)
6918{
6919 switch (what) {
6920 case sa_sched_groups:
6921 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6922 d->sched_group_nodes = NULL;
6923 case sa_rootdomain:
6924 free_rootdomain(d->rd); /* fall through */
6925 case sa_tmpmask:
6926 free_cpumask_var(d->tmpmask); /* fall through */
6927 case sa_send_covered:
6928 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
6929 case sa_this_book_map:
6930 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
6931 case sa_this_core_map:
6932 free_cpumask_var(d->this_core_map); /* fall through */
6933 case sa_this_sibling_map:
6934 free_cpumask_var(d->this_sibling_map); /* fall through */
6935 case sa_nodemask:
6936 free_cpumask_var(d->nodemask); /* fall through */
6937 case sa_sched_group_nodes:
d1b55138 6938#ifdef CONFIG_NUMA
2109b99e
AH
6939 kfree(d->sched_group_nodes); /* fall through */
6940 case sa_notcovered:
6941 free_cpumask_var(d->notcovered); /* fall through */
6942 case sa_covered:
6943 free_cpumask_var(d->covered); /* fall through */
6944 case sa_domainspan:
6945 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6946#endif
2109b99e
AH
6947 case sa_none:
6948 break;
6949 }
6950}
3404c8d9 6951
2109b99e
AH
6952static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6953 const struct cpumask *cpu_map)
6954{
3404c8d9 6955#ifdef CONFIG_NUMA
2109b99e
AH
6956 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6957 return sa_none;
6958 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6959 return sa_domainspan;
6960 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6961 return sa_covered;
6962 /* Allocate the per-node list of sched groups */
6963 d->sched_group_nodes = kcalloc(nr_node_ids,
6964 sizeof(struct sched_group *), GFP_KERNEL);
6965 if (!d->sched_group_nodes) {
3df0fc5b 6966 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6967 return sa_notcovered;
d1b55138 6968 }
2109b99e 6969 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6970#endif
2109b99e
AH
6971 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6972 return sa_sched_group_nodes;
6973 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6974 return sa_nodemask;
6975 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6976 return sa_this_sibling_map;
01a08546 6977 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 6978 return sa_this_core_map;
01a08546
HC
6979 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6980 return sa_this_book_map;
2109b99e
AH
6981 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6982 return sa_send_covered;
6983 d->rd = alloc_rootdomain();
6984 if (!d->rd) {
3df0fc5b 6985 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6986 return sa_tmpmask;
57d885fe 6987 }
2109b99e
AH
6988 return sa_rootdomain;
6989}
57d885fe 6990
7f4588f3
AH
6991static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6992 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6993{
6994 struct sched_domain *sd = NULL;
7c16ec58 6995#ifdef CONFIG_NUMA
7f4588f3 6996 struct sched_domain *parent;
1da177e4 6997
7f4588f3
AH
6998 d->sd_allnodes = 0;
6999 if (cpumask_weight(cpu_map) >
7000 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7001 sd = &per_cpu(allnodes_domains, i).sd;
7002 SD_INIT(sd, ALLNODES);
1d3504fc 7003 set_domain_attribute(sd, attr);
7f4588f3
AH
7004 cpumask_copy(sched_domain_span(sd), cpu_map);
7005 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7006 d->sd_allnodes = 1;
7007 }
7008 parent = sd;
7009
7010 sd = &per_cpu(node_domains, i).sd;
7011 SD_INIT(sd, NODE);
7012 set_domain_attribute(sd, attr);
7013 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7014 sd->parent = parent;
7015 if (parent)
7016 parent->child = sd;
7017 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7018#endif
7f4588f3
AH
7019 return sd;
7020}
1da177e4 7021
87cce662
AH
7022static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7023 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7024 struct sched_domain *parent, int i)
7025{
7026 struct sched_domain *sd;
7027 sd = &per_cpu(phys_domains, i).sd;
7028 SD_INIT(sd, CPU);
7029 set_domain_attribute(sd, attr);
7030 cpumask_copy(sched_domain_span(sd), d->nodemask);
7031 sd->parent = parent;
7032 if (parent)
7033 parent->child = sd;
7034 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7035 return sd;
7036}
1da177e4 7037
01a08546
HC
7038static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7039 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7040 struct sched_domain *parent, int i)
7041{
7042 struct sched_domain *sd = parent;
7043#ifdef CONFIG_SCHED_BOOK
7044 sd = &per_cpu(book_domains, i).sd;
7045 SD_INIT(sd, BOOK);
7046 set_domain_attribute(sd, attr);
7047 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7048 sd->parent = parent;
7049 parent->child = sd;
7050 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7051#endif
7052 return sd;
7053}
7054
410c4081
AH
7055static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7056 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7057 struct sched_domain *parent, int i)
7058{
7059 struct sched_domain *sd = parent;
1e9f28fa 7060#ifdef CONFIG_SCHED_MC
410c4081
AH
7061 sd = &per_cpu(core_domains, i).sd;
7062 SD_INIT(sd, MC);
7063 set_domain_attribute(sd, attr);
7064 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7065 sd->parent = parent;
7066 parent->child = sd;
7067 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7068#endif
410c4081
AH
7069 return sd;
7070}
1e9f28fa 7071
d8173535
AH
7072static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7073 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7074 struct sched_domain *parent, int i)
7075{
7076 struct sched_domain *sd = parent;
1da177e4 7077#ifdef CONFIG_SCHED_SMT
d8173535
AH
7078 sd = &per_cpu(cpu_domains, i).sd;
7079 SD_INIT(sd, SIBLING);
7080 set_domain_attribute(sd, attr);
7081 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7082 sd->parent = parent;
7083 parent->child = sd;
7084 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7085#endif
d8173535
AH
7086 return sd;
7087}
1da177e4 7088
0e8e85c9
AH
7089static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7090 const struct cpumask *cpu_map, int cpu)
7091{
7092 switch (l) {
1da177e4 7093#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7094 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7095 cpumask_and(d->this_sibling_map, cpu_map,
7096 topology_thread_cpumask(cpu));
7097 if (cpu == cpumask_first(d->this_sibling_map))
7098 init_sched_build_groups(d->this_sibling_map, cpu_map,
7099 &cpu_to_cpu_group,
7100 d->send_covered, d->tmpmask);
7101 break;
1da177e4 7102#endif
1e9f28fa 7103#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7104 case SD_LV_MC: /* set up multi-core groups */
7105 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7106 if (cpu == cpumask_first(d->this_core_map))
7107 init_sched_build_groups(d->this_core_map, cpu_map,
7108 &cpu_to_core_group,
7109 d->send_covered, d->tmpmask);
7110 break;
01a08546
HC
7111#endif
7112#ifdef CONFIG_SCHED_BOOK
7113 case SD_LV_BOOK: /* set up book groups */
7114 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7115 if (cpu == cpumask_first(d->this_book_map))
7116 init_sched_build_groups(d->this_book_map, cpu_map,
7117 &cpu_to_book_group,
7118 d->send_covered, d->tmpmask);
7119 break;
1e9f28fa 7120#endif
86548096
AH
7121 case SD_LV_CPU: /* set up physical groups */
7122 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7123 if (!cpumask_empty(d->nodemask))
7124 init_sched_build_groups(d->nodemask, cpu_map,
7125 &cpu_to_phys_group,
7126 d->send_covered, d->tmpmask);
7127 break;
1da177e4 7128#ifdef CONFIG_NUMA
de616e36
AH
7129 case SD_LV_ALLNODES:
7130 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7131 d->send_covered, d->tmpmask);
7132 break;
7133#endif
0e8e85c9
AH
7134 default:
7135 break;
7c16ec58 7136 }
0e8e85c9 7137}
9c1cfda2 7138
2109b99e
AH
7139/*
7140 * Build sched domains for a given set of cpus and attach the sched domains
7141 * to the individual cpus
7142 */
7143static int __build_sched_domains(const struct cpumask *cpu_map,
7144 struct sched_domain_attr *attr)
7145{
7146 enum s_alloc alloc_state = sa_none;
7147 struct s_data d;
294b0c96 7148 struct sched_domain *sd;
2109b99e 7149 int i;
7c16ec58 7150#ifdef CONFIG_NUMA
2109b99e 7151 d.sd_allnodes = 0;
7c16ec58 7152#endif
9c1cfda2 7153
2109b99e
AH
7154 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7155 if (alloc_state != sa_rootdomain)
7156 goto error;
7157 alloc_state = sa_sched_groups;
9c1cfda2 7158
1da177e4 7159 /*
1a20ff27 7160 * Set up domains for cpus specified by the cpu_map.
1da177e4 7161 */
abcd083a 7162 for_each_cpu(i, cpu_map) {
49a02c51
AH
7163 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7164 cpu_map);
9761eea8 7165
7f4588f3 7166 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7167 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7168 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7169 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7170 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7171 }
9c1cfda2 7172
abcd083a 7173 for_each_cpu(i, cpu_map) {
0e8e85c9 7174 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7175 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7176 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7177 }
9c1cfda2 7178
1da177e4 7179 /* Set up physical groups */
86548096
AH
7180 for (i = 0; i < nr_node_ids; i++)
7181 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7182
1da177e4
LT
7183#ifdef CONFIG_NUMA
7184 /* Set up node groups */
de616e36
AH
7185 if (d.sd_allnodes)
7186 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7187
0601a88d
AH
7188 for (i = 0; i < nr_node_ids; i++)
7189 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7190 goto error;
1da177e4
LT
7191#endif
7192
7193 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7194#ifdef CONFIG_SCHED_SMT
abcd083a 7195 for_each_cpu(i, cpu_map) {
294b0c96 7196 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7197 init_sched_groups_power(i, sd);
5c45bf27 7198 }
1da177e4 7199#endif
1e9f28fa 7200#ifdef CONFIG_SCHED_MC
abcd083a 7201 for_each_cpu(i, cpu_map) {
294b0c96 7202 sd = &per_cpu(core_domains, i).sd;
89c4710e 7203 init_sched_groups_power(i, sd);
5c45bf27
SS
7204 }
7205#endif
01a08546
HC
7206#ifdef CONFIG_SCHED_BOOK
7207 for_each_cpu(i, cpu_map) {
7208 sd = &per_cpu(book_domains, i).sd;
7209 init_sched_groups_power(i, sd);
7210 }
7211#endif
1e9f28fa 7212
abcd083a 7213 for_each_cpu(i, cpu_map) {
294b0c96 7214 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7215 init_sched_groups_power(i, sd);
1da177e4
LT
7216 }
7217
9c1cfda2 7218#ifdef CONFIG_NUMA
076ac2af 7219 for (i = 0; i < nr_node_ids; i++)
49a02c51 7220 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7221
49a02c51 7222 if (d.sd_allnodes) {
6711cab4 7223 struct sched_group *sg;
f712c0c7 7224
96f874e2 7225 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7226 d.tmpmask);
f712c0c7
SS
7227 init_numa_sched_groups_power(sg);
7228 }
9c1cfda2
JH
7229#endif
7230
1da177e4 7231 /* Attach the domains */
abcd083a 7232 for_each_cpu(i, cpu_map) {
1da177e4 7233#ifdef CONFIG_SCHED_SMT
6c99e9ad 7234 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7235#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7236 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7237#elif defined(CONFIG_SCHED_BOOK)
7238 sd = &per_cpu(book_domains, i).sd;
1da177e4 7239#else
6c99e9ad 7240 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7241#endif
49a02c51 7242 cpu_attach_domain(sd, d.rd, i);
1da177e4 7243 }
51888ca2 7244
2109b99e
AH
7245 d.sched_group_nodes = NULL; /* don't free this we still need it */
7246 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7247 return 0;
51888ca2 7248
51888ca2 7249error:
2109b99e
AH
7250 __free_domain_allocs(&d, alloc_state, cpu_map);
7251 return -ENOMEM;
1da177e4 7252}
029190c5 7253
96f874e2 7254static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7255{
7256 return __build_sched_domains(cpu_map, NULL);
7257}
7258
acc3f5d7 7259static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7260static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7261static struct sched_domain_attr *dattr_cur;
7262 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7263
7264/*
7265 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7266 * cpumask) fails, then fallback to a single sched domain,
7267 * as determined by the single cpumask fallback_doms.
029190c5 7268 */
4212823f 7269static cpumask_var_t fallback_doms;
029190c5 7270
ee79d1bd
HC
7271/*
7272 * arch_update_cpu_topology lets virtualized architectures update the
7273 * cpu core maps. It is supposed to return 1 if the topology changed
7274 * or 0 if it stayed the same.
7275 */
7276int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7277{
ee79d1bd 7278 return 0;
22e52b07
HC
7279}
7280
acc3f5d7
RR
7281cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7282{
7283 int i;
7284 cpumask_var_t *doms;
7285
7286 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7287 if (!doms)
7288 return NULL;
7289 for (i = 0; i < ndoms; i++) {
7290 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7291 free_sched_domains(doms, i);
7292 return NULL;
7293 }
7294 }
7295 return doms;
7296}
7297
7298void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7299{
7300 unsigned int i;
7301 for (i = 0; i < ndoms; i++)
7302 free_cpumask_var(doms[i]);
7303 kfree(doms);
7304}
7305
1a20ff27 7306/*
41a2d6cf 7307 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7308 * For now this just excludes isolated cpus, but could be used to
7309 * exclude other special cases in the future.
1a20ff27 7310 */
96f874e2 7311static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7312{
7378547f
MM
7313 int err;
7314
22e52b07 7315 arch_update_cpu_topology();
029190c5 7316 ndoms_cur = 1;
acc3f5d7 7317 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7318 if (!doms_cur)
acc3f5d7
RR
7319 doms_cur = &fallback_doms;
7320 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7321 dattr_cur = NULL;
acc3f5d7 7322 err = build_sched_domains(doms_cur[0]);
6382bc90 7323 register_sched_domain_sysctl();
7378547f
MM
7324
7325 return err;
1a20ff27
DG
7326}
7327
96f874e2
RR
7328static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7329 struct cpumask *tmpmask)
1da177e4 7330{
7c16ec58 7331 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7332}
1da177e4 7333
1a20ff27
DG
7334/*
7335 * Detach sched domains from a group of cpus specified in cpu_map
7336 * These cpus will now be attached to the NULL domain
7337 */
96f874e2 7338static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7339{
96f874e2
RR
7340 /* Save because hotplug lock held. */
7341 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7342 int i;
7343
abcd083a 7344 for_each_cpu(i, cpu_map)
57d885fe 7345 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7346 synchronize_sched();
96f874e2 7347 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7348}
7349
1d3504fc
HS
7350/* handle null as "default" */
7351static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7352 struct sched_domain_attr *new, int idx_new)
7353{
7354 struct sched_domain_attr tmp;
7355
7356 /* fast path */
7357 if (!new && !cur)
7358 return 1;
7359
7360 tmp = SD_ATTR_INIT;
7361 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7362 new ? (new + idx_new) : &tmp,
7363 sizeof(struct sched_domain_attr));
7364}
7365
029190c5
PJ
7366/*
7367 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7368 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7369 * doms_new[] to the current sched domain partitioning, doms_cur[].
7370 * It destroys each deleted domain and builds each new domain.
7371 *
acc3f5d7 7372 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7373 * The masks don't intersect (don't overlap.) We should setup one
7374 * sched domain for each mask. CPUs not in any of the cpumasks will
7375 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7376 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7377 * it as it is.
7378 *
acc3f5d7
RR
7379 * The passed in 'doms_new' should be allocated using
7380 * alloc_sched_domains. This routine takes ownership of it and will
7381 * free_sched_domains it when done with it. If the caller failed the
7382 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7383 * and partition_sched_domains() will fallback to the single partition
7384 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7385 *
96f874e2 7386 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7387 * ndoms_new == 0 is a special case for destroying existing domains,
7388 * and it will not create the default domain.
dfb512ec 7389 *
029190c5
PJ
7390 * Call with hotplug lock held
7391 */
acc3f5d7 7392void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7393 struct sched_domain_attr *dattr_new)
029190c5 7394{
dfb512ec 7395 int i, j, n;
d65bd5ec 7396 int new_topology;
029190c5 7397
712555ee 7398 mutex_lock(&sched_domains_mutex);
a1835615 7399
7378547f
MM
7400 /* always unregister in case we don't destroy any domains */
7401 unregister_sched_domain_sysctl();
7402
d65bd5ec
HC
7403 /* Let architecture update cpu core mappings. */
7404 new_topology = arch_update_cpu_topology();
7405
dfb512ec 7406 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7407
7408 /* Destroy deleted domains */
7409 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7410 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7411 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7412 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7413 goto match1;
7414 }
7415 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7416 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7417match1:
7418 ;
7419 }
7420
e761b772
MK
7421 if (doms_new == NULL) {
7422 ndoms_cur = 0;
acc3f5d7 7423 doms_new = &fallback_doms;
6ad4c188 7424 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7425 WARN_ON_ONCE(dattr_new);
e761b772
MK
7426 }
7427
029190c5
PJ
7428 /* Build new domains */
7429 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7430 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7431 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7432 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7433 goto match2;
7434 }
7435 /* no match - add a new doms_new */
acc3f5d7 7436 __build_sched_domains(doms_new[i],
1d3504fc 7437 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7438match2:
7439 ;
7440 }
7441
7442 /* Remember the new sched domains */
acc3f5d7
RR
7443 if (doms_cur != &fallback_doms)
7444 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7445 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7446 doms_cur = doms_new;
1d3504fc 7447 dattr_cur = dattr_new;
029190c5 7448 ndoms_cur = ndoms_new;
7378547f
MM
7449
7450 register_sched_domain_sysctl();
a1835615 7451
712555ee 7452 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7453}
7454
5c45bf27 7455#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7456static void arch_reinit_sched_domains(void)
5c45bf27 7457{
95402b38 7458 get_online_cpus();
dfb512ec
MK
7459
7460 /* Destroy domains first to force the rebuild */
7461 partition_sched_domains(0, NULL, NULL);
7462
e761b772 7463 rebuild_sched_domains();
95402b38 7464 put_online_cpus();
5c45bf27
SS
7465}
7466
7467static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7468{
afb8a9b7 7469 unsigned int level = 0;
5c45bf27 7470
afb8a9b7
GS
7471 if (sscanf(buf, "%u", &level) != 1)
7472 return -EINVAL;
7473
7474 /*
7475 * level is always be positive so don't check for
7476 * level < POWERSAVINGS_BALANCE_NONE which is 0
7477 * What happens on 0 or 1 byte write,
7478 * need to check for count as well?
7479 */
7480
7481 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7482 return -EINVAL;
7483
7484 if (smt)
afb8a9b7 7485 sched_smt_power_savings = level;
5c45bf27 7486 else
afb8a9b7 7487 sched_mc_power_savings = level;
5c45bf27 7488
c70f22d2 7489 arch_reinit_sched_domains();
5c45bf27 7490
c70f22d2 7491 return count;
5c45bf27
SS
7492}
7493
5c45bf27 7494#ifdef CONFIG_SCHED_MC
f718cd4a 7495static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7496 struct sysdev_class_attribute *attr,
f718cd4a 7497 char *page)
5c45bf27
SS
7498{
7499 return sprintf(page, "%u\n", sched_mc_power_savings);
7500}
f718cd4a 7501static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7502 struct sysdev_class_attribute *attr,
48f24c4d 7503 const char *buf, size_t count)
5c45bf27
SS
7504{
7505 return sched_power_savings_store(buf, count, 0);
7506}
f718cd4a
AK
7507static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7508 sched_mc_power_savings_show,
7509 sched_mc_power_savings_store);
5c45bf27
SS
7510#endif
7511
7512#ifdef CONFIG_SCHED_SMT
f718cd4a 7513static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7514 struct sysdev_class_attribute *attr,
f718cd4a 7515 char *page)
5c45bf27
SS
7516{
7517 return sprintf(page, "%u\n", sched_smt_power_savings);
7518}
f718cd4a 7519static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7520 struct sysdev_class_attribute *attr,
48f24c4d 7521 const char *buf, size_t count)
5c45bf27
SS
7522{
7523 return sched_power_savings_store(buf, count, 1);
7524}
f718cd4a
AK
7525static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7526 sched_smt_power_savings_show,
6707de00
AB
7527 sched_smt_power_savings_store);
7528#endif
7529
39aac648 7530int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7531{
7532 int err = 0;
7533
7534#ifdef CONFIG_SCHED_SMT
7535 if (smt_capable())
7536 err = sysfs_create_file(&cls->kset.kobj,
7537 &attr_sched_smt_power_savings.attr);
7538#endif
7539#ifdef CONFIG_SCHED_MC
7540 if (!err && mc_capable())
7541 err = sysfs_create_file(&cls->kset.kobj,
7542 &attr_sched_mc_power_savings.attr);
7543#endif
7544 return err;
7545}
6d6bc0ad 7546#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7547
1da177e4 7548/*
3a101d05
TH
7549 * Update cpusets according to cpu_active mask. If cpusets are
7550 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7551 * around partition_sched_domains().
1da177e4 7552 */
0b2e918a
TH
7553static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7554 void *hcpu)
e761b772 7555{
3a101d05 7556 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7557 case CPU_ONLINE:
6ad4c188 7558 case CPU_DOWN_FAILED:
3a101d05 7559 cpuset_update_active_cpus();
e761b772 7560 return NOTIFY_OK;
3a101d05
TH
7561 default:
7562 return NOTIFY_DONE;
7563 }
7564}
e761b772 7565
0b2e918a
TH
7566static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7567 void *hcpu)
3a101d05
TH
7568{
7569 switch (action & ~CPU_TASKS_FROZEN) {
7570 case CPU_DOWN_PREPARE:
7571 cpuset_update_active_cpus();
7572 return NOTIFY_OK;
e761b772
MK
7573 default:
7574 return NOTIFY_DONE;
7575 }
7576}
e761b772
MK
7577
7578static int update_runtime(struct notifier_block *nfb,
7579 unsigned long action, void *hcpu)
1da177e4 7580{
7def2be1
PZ
7581 int cpu = (int)(long)hcpu;
7582
1da177e4 7583 switch (action) {
1da177e4 7584 case CPU_DOWN_PREPARE:
8bb78442 7585 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7586 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7587 return NOTIFY_OK;
7588
1da177e4 7589 case CPU_DOWN_FAILED:
8bb78442 7590 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7591 case CPU_ONLINE:
8bb78442 7592 case CPU_ONLINE_FROZEN:
7def2be1 7593 enable_runtime(cpu_rq(cpu));
e761b772
MK
7594 return NOTIFY_OK;
7595
1da177e4
LT
7596 default:
7597 return NOTIFY_DONE;
7598 }
1da177e4 7599}
1da177e4
LT
7600
7601void __init sched_init_smp(void)
7602{
dcc30a35
RR
7603 cpumask_var_t non_isolated_cpus;
7604
7605 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7606 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7607
434d53b0
MT
7608#if defined(CONFIG_NUMA)
7609 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7610 GFP_KERNEL);
7611 BUG_ON(sched_group_nodes_bycpu == NULL);
7612#endif
95402b38 7613 get_online_cpus();
712555ee 7614 mutex_lock(&sched_domains_mutex);
6ad4c188 7615 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7616 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7617 if (cpumask_empty(non_isolated_cpus))
7618 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7619 mutex_unlock(&sched_domains_mutex);
95402b38 7620 put_online_cpus();
e761b772 7621
3a101d05
TH
7622 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7623 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7624
7625 /* RT runtime code needs to handle some hotplug events */
7626 hotcpu_notifier(update_runtime, 0);
7627
b328ca18 7628 init_hrtick();
5c1e1767
NP
7629
7630 /* Move init over to a non-isolated CPU */
dcc30a35 7631 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7632 BUG();
19978ca6 7633 sched_init_granularity();
dcc30a35 7634 free_cpumask_var(non_isolated_cpus);
4212823f 7635
0e3900e6 7636 init_sched_rt_class();
1da177e4
LT
7637}
7638#else
7639void __init sched_init_smp(void)
7640{
19978ca6 7641 sched_init_granularity();
1da177e4
LT
7642}
7643#endif /* CONFIG_SMP */
7644
cd1bb94b
AB
7645const_debug unsigned int sysctl_timer_migration = 1;
7646
1da177e4
LT
7647int in_sched_functions(unsigned long addr)
7648{
1da177e4
LT
7649 return in_lock_functions(addr) ||
7650 (addr >= (unsigned long)__sched_text_start
7651 && addr < (unsigned long)__sched_text_end);
7652}
7653
a9957449 7654static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7655{
7656 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7657 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7658#ifdef CONFIG_FAIR_GROUP_SCHED
7659 cfs_rq->rq = rq;
7660#endif
67e9fb2a 7661 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7662}
7663
fa85ae24
PZ
7664static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7665{
7666 struct rt_prio_array *array;
7667 int i;
7668
7669 array = &rt_rq->active;
7670 for (i = 0; i < MAX_RT_PRIO; i++) {
7671 INIT_LIST_HEAD(array->queue + i);
7672 __clear_bit(i, array->bitmap);
7673 }
7674 /* delimiter for bitsearch: */
7675 __set_bit(MAX_RT_PRIO, array->bitmap);
7676
052f1dc7 7677#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7678 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7679#ifdef CONFIG_SMP
e864c499 7680 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7681#endif
48d5e258 7682#endif
fa85ae24
PZ
7683#ifdef CONFIG_SMP
7684 rt_rq->rt_nr_migratory = 0;
fa85ae24 7685 rt_rq->overloaded = 0;
05fa785c 7686 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7687#endif
7688
7689 rt_rq->rt_time = 0;
7690 rt_rq->rt_throttled = 0;
ac086bc2 7691 rt_rq->rt_runtime = 0;
0986b11b 7692 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7693
052f1dc7 7694#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7695 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7696 rt_rq->rq = rq;
7697#endif
fa85ae24
PZ
7698}
7699
6f505b16 7700#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7701static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7702 struct sched_entity *se, int cpu, int add,
7703 struct sched_entity *parent)
6f505b16 7704{
ec7dc8ac 7705 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7706 tg->cfs_rq[cpu] = cfs_rq;
7707 init_cfs_rq(cfs_rq, rq);
7708 cfs_rq->tg = tg;
7709 if (add)
7710 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7711
7712 tg->se[cpu] = se;
354d60c2
DG
7713 /* se could be NULL for init_task_group */
7714 if (!se)
7715 return;
7716
ec7dc8ac
DG
7717 if (!parent)
7718 se->cfs_rq = &rq->cfs;
7719 else
7720 se->cfs_rq = parent->my_q;
7721
6f505b16
PZ
7722 se->my_q = cfs_rq;
7723 se->load.weight = tg->shares;
e05510d0 7724 se->load.inv_weight = 0;
ec7dc8ac 7725 se->parent = parent;
6f505b16 7726}
052f1dc7 7727#endif
6f505b16 7728
052f1dc7 7729#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7730static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7731 struct sched_rt_entity *rt_se, int cpu, int add,
7732 struct sched_rt_entity *parent)
6f505b16 7733{
ec7dc8ac
DG
7734 struct rq *rq = cpu_rq(cpu);
7735
6f505b16
PZ
7736 tg->rt_rq[cpu] = rt_rq;
7737 init_rt_rq(rt_rq, rq);
7738 rt_rq->tg = tg;
ac086bc2 7739 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7740 if (add)
7741 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7742
7743 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7744 if (!rt_se)
7745 return;
7746
ec7dc8ac
DG
7747 if (!parent)
7748 rt_se->rt_rq = &rq->rt;
7749 else
7750 rt_se->rt_rq = parent->my_q;
7751
6f505b16 7752 rt_se->my_q = rt_rq;
ec7dc8ac 7753 rt_se->parent = parent;
6f505b16
PZ
7754 INIT_LIST_HEAD(&rt_se->run_list);
7755}
7756#endif
7757
1da177e4
LT
7758void __init sched_init(void)
7759{
dd41f596 7760 int i, j;
434d53b0
MT
7761 unsigned long alloc_size = 0, ptr;
7762
7763#ifdef CONFIG_FAIR_GROUP_SCHED
7764 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7765#endif
7766#ifdef CONFIG_RT_GROUP_SCHED
7767 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7768#endif
df7c8e84 7769#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7770 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7771#endif
434d53b0 7772 if (alloc_size) {
36b7b6d4 7773 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7774
7775#ifdef CONFIG_FAIR_GROUP_SCHED
7776 init_task_group.se = (struct sched_entity **)ptr;
7777 ptr += nr_cpu_ids * sizeof(void **);
7778
7779 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7780 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7781
6d6bc0ad 7782#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7783#ifdef CONFIG_RT_GROUP_SCHED
7784 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7785 ptr += nr_cpu_ids * sizeof(void **);
7786
7787 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7788 ptr += nr_cpu_ids * sizeof(void **);
7789
6d6bc0ad 7790#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7791#ifdef CONFIG_CPUMASK_OFFSTACK
7792 for_each_possible_cpu(i) {
7793 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7794 ptr += cpumask_size();
7795 }
7796#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7797 }
dd41f596 7798
57d885fe
GH
7799#ifdef CONFIG_SMP
7800 init_defrootdomain();
7801#endif
7802
d0b27fa7
PZ
7803 init_rt_bandwidth(&def_rt_bandwidth,
7804 global_rt_period(), global_rt_runtime());
7805
7806#ifdef CONFIG_RT_GROUP_SCHED
7807 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7808 global_rt_period(), global_rt_runtime());
6d6bc0ad 7809#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7810
7c941438 7811#ifdef CONFIG_CGROUP_SCHED
6f505b16 7812 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7813 INIT_LIST_HEAD(&init_task_group.children);
7814
7c941438 7815#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7816
4a6cc4bd
JK
7817#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7818 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7819 __alignof__(unsigned long));
7820#endif
0a945022 7821 for_each_possible_cpu(i) {
70b97a7f 7822 struct rq *rq;
1da177e4
LT
7823
7824 rq = cpu_rq(i);
05fa785c 7825 raw_spin_lock_init(&rq->lock);
7897986b 7826 rq->nr_running = 0;
dce48a84
TG
7827 rq->calc_load_active = 0;
7828 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7829 init_cfs_rq(&rq->cfs, rq);
6f505b16 7830 init_rt_rq(&rq->rt, rq);
dd41f596 7831#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7832 init_task_group.shares = init_task_group_load;
6f505b16 7833 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7834#ifdef CONFIG_CGROUP_SCHED
7835 /*
7836 * How much cpu bandwidth does init_task_group get?
7837 *
7838 * In case of task-groups formed thr' the cgroup filesystem, it
7839 * gets 100% of the cpu resources in the system. This overall
7840 * system cpu resource is divided among the tasks of
7841 * init_task_group and its child task-groups in a fair manner,
7842 * based on each entity's (task or task-group's) weight
7843 * (se->load.weight).
7844 *
7845 * In other words, if init_task_group has 10 tasks of weight
7846 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7847 * then A0's share of the cpu resource is:
7848 *
0d905bca 7849 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7850 *
7851 * We achieve this by letting init_task_group's tasks sit
7852 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7853 */
ec7dc8ac 7854 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7855#endif
354d60c2
DG
7856#endif /* CONFIG_FAIR_GROUP_SCHED */
7857
7858 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7859#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7860 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7861#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7862 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7863#endif
dd41f596 7864#endif
1da177e4 7865
dd41f596
IM
7866 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7867 rq->cpu_load[j] = 0;
fdf3e95d
VP
7868
7869 rq->last_load_update_tick = jiffies;
7870
1da177e4 7871#ifdef CONFIG_SMP
41c7ce9a 7872 rq->sd = NULL;
57d885fe 7873 rq->rd = NULL;
e51fd5e2 7874 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7875 rq->post_schedule = 0;
1da177e4 7876 rq->active_balance = 0;
dd41f596 7877 rq->next_balance = jiffies;
1da177e4 7878 rq->push_cpu = 0;
0a2966b4 7879 rq->cpu = i;
1f11eb6a 7880 rq->online = 0;
eae0c9df
MG
7881 rq->idle_stamp = 0;
7882 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7883 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7884#ifdef CONFIG_NO_HZ
7885 rq->nohz_balance_kick = 0;
7886 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7887#endif
1da177e4 7888#endif
8f4d37ec 7889 init_rq_hrtick(rq);
1da177e4 7890 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7891 }
7892
2dd73a4f 7893 set_load_weight(&init_task);
b50f60ce 7894
e107be36
AK
7895#ifdef CONFIG_PREEMPT_NOTIFIERS
7896 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7897#endif
7898
c9819f45 7899#ifdef CONFIG_SMP
962cf36c 7900 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7901#endif
7902
b50f60ce 7903#ifdef CONFIG_RT_MUTEXES
1d615482 7904 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7905#endif
7906
1da177e4
LT
7907 /*
7908 * The boot idle thread does lazy MMU switching as well:
7909 */
7910 atomic_inc(&init_mm.mm_count);
7911 enter_lazy_tlb(&init_mm, current);
7912
7913 /*
7914 * Make us the idle thread. Technically, schedule() should not be
7915 * called from this thread, however somewhere below it might be,
7916 * but because we are the idle thread, we just pick up running again
7917 * when this runqueue becomes "idle".
7918 */
7919 init_idle(current, smp_processor_id());
dce48a84
TG
7920
7921 calc_load_update = jiffies + LOAD_FREQ;
7922
dd41f596
IM
7923 /*
7924 * During early bootup we pretend to be a normal task:
7925 */
7926 current->sched_class = &fair_sched_class;
6892b75e 7927
6a7b3dc3 7928 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7929 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7930#ifdef CONFIG_SMP
7d1e6a9b 7931#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7932 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7933 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7934 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7935 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7936 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7937#endif
bdddd296
RR
7938 /* May be allocated at isolcpus cmdline parse time */
7939 if (cpu_isolated_map == NULL)
7940 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7941#endif /* SMP */
6a7b3dc3 7942
cdd6c482 7943 perf_event_init();
0d905bca 7944
6892b75e 7945 scheduler_running = 1;
1da177e4
LT
7946}
7947
7948#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7949static inline int preempt_count_equals(int preempt_offset)
7950{
234da7bc 7951 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7952
7953 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7954}
7955
d894837f 7956void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7957{
48f24c4d 7958#ifdef in_atomic
1da177e4
LT
7959 static unsigned long prev_jiffy; /* ratelimiting */
7960
e4aafea2
FW
7961 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7962 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7963 return;
7964 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7965 return;
7966 prev_jiffy = jiffies;
7967
3df0fc5b
PZ
7968 printk(KERN_ERR
7969 "BUG: sleeping function called from invalid context at %s:%d\n",
7970 file, line);
7971 printk(KERN_ERR
7972 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7973 in_atomic(), irqs_disabled(),
7974 current->pid, current->comm);
aef745fc
IM
7975
7976 debug_show_held_locks(current);
7977 if (irqs_disabled())
7978 print_irqtrace_events(current);
7979 dump_stack();
1da177e4
LT
7980#endif
7981}
7982EXPORT_SYMBOL(__might_sleep);
7983#endif
7984
7985#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7986static void normalize_task(struct rq *rq, struct task_struct *p)
7987{
7988 int on_rq;
3e51f33f 7989
3a5e4dc1
AK
7990 on_rq = p->se.on_rq;
7991 if (on_rq)
7992 deactivate_task(rq, p, 0);
7993 __setscheduler(rq, p, SCHED_NORMAL, 0);
7994 if (on_rq) {
7995 activate_task(rq, p, 0);
7996 resched_task(rq->curr);
7997 }
7998}
7999
1da177e4
LT
8000void normalize_rt_tasks(void)
8001{
a0f98a1c 8002 struct task_struct *g, *p;
1da177e4 8003 unsigned long flags;
70b97a7f 8004 struct rq *rq;
1da177e4 8005
4cf5d77a 8006 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8007 do_each_thread(g, p) {
178be793
IM
8008 /*
8009 * Only normalize user tasks:
8010 */
8011 if (!p->mm)
8012 continue;
8013
6cfb0d5d 8014 p->se.exec_start = 0;
6cfb0d5d 8015#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8016 p->se.statistics.wait_start = 0;
8017 p->se.statistics.sleep_start = 0;
8018 p->se.statistics.block_start = 0;
6cfb0d5d 8019#endif
dd41f596
IM
8020
8021 if (!rt_task(p)) {
8022 /*
8023 * Renice negative nice level userspace
8024 * tasks back to 0:
8025 */
8026 if (TASK_NICE(p) < 0 && p->mm)
8027 set_user_nice(p, 0);
1da177e4 8028 continue;
dd41f596 8029 }
1da177e4 8030
1d615482 8031 raw_spin_lock(&p->pi_lock);
b29739f9 8032 rq = __task_rq_lock(p);
1da177e4 8033
178be793 8034 normalize_task(rq, p);
3a5e4dc1 8035
b29739f9 8036 __task_rq_unlock(rq);
1d615482 8037 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8038 } while_each_thread(g, p);
8039
4cf5d77a 8040 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8041}
8042
8043#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8044
67fc4e0c 8045#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8046/*
67fc4e0c 8047 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8048 *
8049 * They can only be called when the whole system has been
8050 * stopped - every CPU needs to be quiescent, and no scheduling
8051 * activity can take place. Using them for anything else would
8052 * be a serious bug, and as a result, they aren't even visible
8053 * under any other configuration.
8054 */
8055
8056/**
8057 * curr_task - return the current task for a given cpu.
8058 * @cpu: the processor in question.
8059 *
8060 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8061 */
36c8b586 8062struct task_struct *curr_task(int cpu)
1df5c10a
LT
8063{
8064 return cpu_curr(cpu);
8065}
8066
67fc4e0c
JW
8067#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8068
8069#ifdef CONFIG_IA64
1df5c10a
LT
8070/**
8071 * set_curr_task - set the current task for a given cpu.
8072 * @cpu: the processor in question.
8073 * @p: the task pointer to set.
8074 *
8075 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8076 * are serviced on a separate stack. It allows the architecture to switch the
8077 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8078 * must be called with all CPU's synchronized, and interrupts disabled, the
8079 * and caller must save the original value of the current task (see
8080 * curr_task() above) and restore that value before reenabling interrupts and
8081 * re-starting the system.
8082 *
8083 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8084 */
36c8b586 8085void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8086{
8087 cpu_curr(cpu) = p;
8088}
8089
8090#endif
29f59db3 8091
bccbe08a
PZ
8092#ifdef CONFIG_FAIR_GROUP_SCHED
8093static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8094{
8095 int i;
8096
8097 for_each_possible_cpu(i) {
8098 if (tg->cfs_rq)
8099 kfree(tg->cfs_rq[i]);
8100 if (tg->se)
8101 kfree(tg->se[i]);
6f505b16
PZ
8102 }
8103
8104 kfree(tg->cfs_rq);
8105 kfree(tg->se);
6f505b16
PZ
8106}
8107
ec7dc8ac
DG
8108static
8109int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8110{
29f59db3 8111 struct cfs_rq *cfs_rq;
eab17229 8112 struct sched_entity *se;
9b5b7751 8113 struct rq *rq;
29f59db3
SV
8114 int i;
8115
434d53b0 8116 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8117 if (!tg->cfs_rq)
8118 goto err;
434d53b0 8119 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8120 if (!tg->se)
8121 goto err;
052f1dc7
PZ
8122
8123 tg->shares = NICE_0_LOAD;
29f59db3
SV
8124
8125 for_each_possible_cpu(i) {
9b5b7751 8126 rq = cpu_rq(i);
29f59db3 8127
eab17229
LZ
8128 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8129 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8130 if (!cfs_rq)
8131 goto err;
8132
eab17229
LZ
8133 se = kzalloc_node(sizeof(struct sched_entity),
8134 GFP_KERNEL, cpu_to_node(i));
29f59db3 8135 if (!se)
dfc12eb2 8136 goto err_free_rq;
29f59db3 8137
eab17229 8138 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8139 }
8140
8141 return 1;
8142
dfc12eb2
PC
8143 err_free_rq:
8144 kfree(cfs_rq);
bccbe08a
PZ
8145 err:
8146 return 0;
8147}
8148
8149static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8150{
8151 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8152 &cpu_rq(cpu)->leaf_cfs_rq_list);
8153}
8154
8155static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8156{
8157 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8158}
6d6bc0ad 8159#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8160static inline void free_fair_sched_group(struct task_group *tg)
8161{
8162}
8163
ec7dc8ac
DG
8164static inline
8165int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8166{
8167 return 1;
8168}
8169
8170static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8171{
8172}
8173
8174static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8175{
8176}
6d6bc0ad 8177#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8178
8179#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8180static void free_rt_sched_group(struct task_group *tg)
8181{
8182 int i;
8183
d0b27fa7
PZ
8184 destroy_rt_bandwidth(&tg->rt_bandwidth);
8185
bccbe08a
PZ
8186 for_each_possible_cpu(i) {
8187 if (tg->rt_rq)
8188 kfree(tg->rt_rq[i]);
8189 if (tg->rt_se)
8190 kfree(tg->rt_se[i]);
8191 }
8192
8193 kfree(tg->rt_rq);
8194 kfree(tg->rt_se);
8195}
8196
ec7dc8ac
DG
8197static
8198int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8199{
8200 struct rt_rq *rt_rq;
eab17229 8201 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8202 struct rq *rq;
8203 int i;
8204
434d53b0 8205 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8206 if (!tg->rt_rq)
8207 goto err;
434d53b0 8208 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8209 if (!tg->rt_se)
8210 goto err;
8211
d0b27fa7
PZ
8212 init_rt_bandwidth(&tg->rt_bandwidth,
8213 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8214
8215 for_each_possible_cpu(i) {
8216 rq = cpu_rq(i);
8217
eab17229
LZ
8218 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8219 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8220 if (!rt_rq)
8221 goto err;
29f59db3 8222
eab17229
LZ
8223 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8224 GFP_KERNEL, cpu_to_node(i));
6f505b16 8225 if (!rt_se)
dfc12eb2 8226 goto err_free_rq;
29f59db3 8227
eab17229 8228 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8229 }
8230
bccbe08a
PZ
8231 return 1;
8232
dfc12eb2
PC
8233 err_free_rq:
8234 kfree(rt_rq);
bccbe08a
PZ
8235 err:
8236 return 0;
8237}
8238
8239static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8240{
8241 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8242 &cpu_rq(cpu)->leaf_rt_rq_list);
8243}
8244
8245static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8246{
8247 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8248}
6d6bc0ad 8249#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8250static inline void free_rt_sched_group(struct task_group *tg)
8251{
8252}
8253
ec7dc8ac
DG
8254static inline
8255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8256{
8257 return 1;
8258}
8259
8260static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8261{
8262}
8263
8264static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8265{
8266}
6d6bc0ad 8267#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8268
7c941438 8269#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8270static void free_sched_group(struct task_group *tg)
8271{
8272 free_fair_sched_group(tg);
8273 free_rt_sched_group(tg);
8274 kfree(tg);
8275}
8276
8277/* allocate runqueue etc for a new task group */
ec7dc8ac 8278struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8279{
8280 struct task_group *tg;
8281 unsigned long flags;
8282 int i;
8283
8284 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8285 if (!tg)
8286 return ERR_PTR(-ENOMEM);
8287
ec7dc8ac 8288 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8289 goto err;
8290
ec7dc8ac 8291 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8292 goto err;
8293
8ed36996 8294 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8295 for_each_possible_cpu(i) {
bccbe08a
PZ
8296 register_fair_sched_group(tg, i);
8297 register_rt_sched_group(tg, i);
9b5b7751 8298 }
6f505b16 8299 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8300
8301 WARN_ON(!parent); /* root should already exist */
8302
8303 tg->parent = parent;
f473aa5e 8304 INIT_LIST_HEAD(&tg->children);
09f2724a 8305 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8306 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8307
9b5b7751 8308 return tg;
29f59db3
SV
8309
8310err:
6f505b16 8311 free_sched_group(tg);
29f59db3
SV
8312 return ERR_PTR(-ENOMEM);
8313}
8314
9b5b7751 8315/* rcu callback to free various structures associated with a task group */
6f505b16 8316static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8317{
29f59db3 8318 /* now it should be safe to free those cfs_rqs */
6f505b16 8319 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8320}
8321
9b5b7751 8322/* Destroy runqueue etc associated with a task group */
4cf86d77 8323void sched_destroy_group(struct task_group *tg)
29f59db3 8324{
8ed36996 8325 unsigned long flags;
9b5b7751 8326 int i;
29f59db3 8327
8ed36996 8328 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8329 for_each_possible_cpu(i) {
bccbe08a
PZ
8330 unregister_fair_sched_group(tg, i);
8331 unregister_rt_sched_group(tg, i);
9b5b7751 8332 }
6f505b16 8333 list_del_rcu(&tg->list);
f473aa5e 8334 list_del_rcu(&tg->siblings);
8ed36996 8335 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8336
9b5b7751 8337 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8338 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8339}
8340
9b5b7751 8341/* change task's runqueue when it moves between groups.
3a252015
IM
8342 * The caller of this function should have put the task in its new group
8343 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8344 * reflect its new group.
9b5b7751
SV
8345 */
8346void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8347{
8348 int on_rq, running;
8349 unsigned long flags;
8350 struct rq *rq;
8351
8352 rq = task_rq_lock(tsk, &flags);
8353
051a1d1a 8354 running = task_current(rq, tsk);
29f59db3
SV
8355 on_rq = tsk->se.on_rq;
8356
0e1f3483 8357 if (on_rq)
29f59db3 8358 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8359 if (unlikely(running))
8360 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8361
6f505b16 8362 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8363
810b3817
PZ
8364#ifdef CONFIG_FAIR_GROUP_SCHED
8365 if (tsk->sched_class->moved_group)
88ec22d3 8366 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8367#endif
8368
0e1f3483
HS
8369 if (unlikely(running))
8370 tsk->sched_class->set_curr_task(rq);
8371 if (on_rq)
371fd7e7 8372 enqueue_task(rq, tsk, 0);
29f59db3 8373
29f59db3
SV
8374 task_rq_unlock(rq, &flags);
8375}
7c941438 8376#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8377
052f1dc7 8378#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8379static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8380{
8381 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8382 int on_rq;
8383
29f59db3 8384 on_rq = se->on_rq;
62fb1851 8385 if (on_rq)
29f59db3
SV
8386 dequeue_entity(cfs_rq, se, 0);
8387
8388 se->load.weight = shares;
e05510d0 8389 se->load.inv_weight = 0;
29f59db3 8390
62fb1851 8391 if (on_rq)
29f59db3 8392 enqueue_entity(cfs_rq, se, 0);
c09595f6 8393}
62fb1851 8394
c09595f6
PZ
8395static void set_se_shares(struct sched_entity *se, unsigned long shares)
8396{
8397 struct cfs_rq *cfs_rq = se->cfs_rq;
8398 struct rq *rq = cfs_rq->rq;
8399 unsigned long flags;
8400
05fa785c 8401 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8402 __set_se_shares(se, shares);
05fa785c 8403 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8404}
8405
8ed36996
PZ
8406static DEFINE_MUTEX(shares_mutex);
8407
4cf86d77 8408int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8409{
8410 int i;
8ed36996 8411 unsigned long flags;
c61935fd 8412
ec7dc8ac
DG
8413 /*
8414 * We can't change the weight of the root cgroup.
8415 */
8416 if (!tg->se[0])
8417 return -EINVAL;
8418
18d95a28
PZ
8419 if (shares < MIN_SHARES)
8420 shares = MIN_SHARES;
cb4ad1ff
MX
8421 else if (shares > MAX_SHARES)
8422 shares = MAX_SHARES;
62fb1851 8423
8ed36996 8424 mutex_lock(&shares_mutex);
9b5b7751 8425 if (tg->shares == shares)
5cb350ba 8426 goto done;
29f59db3 8427
8ed36996 8428 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8429 for_each_possible_cpu(i)
8430 unregister_fair_sched_group(tg, i);
f473aa5e 8431 list_del_rcu(&tg->siblings);
8ed36996 8432 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8433
8434 /* wait for any ongoing reference to this group to finish */
8435 synchronize_sched();
8436
8437 /*
8438 * Now we are free to modify the group's share on each cpu
8439 * w/o tripping rebalance_share or load_balance_fair.
8440 */
9b5b7751 8441 tg->shares = shares;
c09595f6
PZ
8442 for_each_possible_cpu(i) {
8443 /*
8444 * force a rebalance
8445 */
8446 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8447 set_se_shares(tg->se[i], shares);
c09595f6 8448 }
29f59db3 8449
6b2d7700
SV
8450 /*
8451 * Enable load balance activity on this group, by inserting it back on
8452 * each cpu's rq->leaf_cfs_rq_list.
8453 */
8ed36996 8454 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8455 for_each_possible_cpu(i)
8456 register_fair_sched_group(tg, i);
f473aa5e 8457 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8458 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8459done:
8ed36996 8460 mutex_unlock(&shares_mutex);
9b5b7751 8461 return 0;
29f59db3
SV
8462}
8463
5cb350ba
DG
8464unsigned long sched_group_shares(struct task_group *tg)
8465{
8466 return tg->shares;
8467}
052f1dc7 8468#endif
5cb350ba 8469
052f1dc7 8470#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8471/*
9f0c1e56 8472 * Ensure that the real time constraints are schedulable.
6f505b16 8473 */
9f0c1e56
PZ
8474static DEFINE_MUTEX(rt_constraints_mutex);
8475
8476static unsigned long to_ratio(u64 period, u64 runtime)
8477{
8478 if (runtime == RUNTIME_INF)
9a7e0b18 8479 return 1ULL << 20;
9f0c1e56 8480
9a7e0b18 8481 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8482}
8483
9a7e0b18
PZ
8484/* Must be called with tasklist_lock held */
8485static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8486{
9a7e0b18 8487 struct task_struct *g, *p;
b40b2e8e 8488
9a7e0b18
PZ
8489 do_each_thread(g, p) {
8490 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8491 return 1;
8492 } while_each_thread(g, p);
b40b2e8e 8493
9a7e0b18
PZ
8494 return 0;
8495}
b40b2e8e 8496
9a7e0b18
PZ
8497struct rt_schedulable_data {
8498 struct task_group *tg;
8499 u64 rt_period;
8500 u64 rt_runtime;
8501};
b40b2e8e 8502
9a7e0b18
PZ
8503static int tg_schedulable(struct task_group *tg, void *data)
8504{
8505 struct rt_schedulable_data *d = data;
8506 struct task_group *child;
8507 unsigned long total, sum = 0;
8508 u64 period, runtime;
b40b2e8e 8509
9a7e0b18
PZ
8510 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8511 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8512
9a7e0b18
PZ
8513 if (tg == d->tg) {
8514 period = d->rt_period;
8515 runtime = d->rt_runtime;
b40b2e8e 8516 }
b40b2e8e 8517
4653f803
PZ
8518 /*
8519 * Cannot have more runtime than the period.
8520 */
8521 if (runtime > period && runtime != RUNTIME_INF)
8522 return -EINVAL;
6f505b16 8523
4653f803
PZ
8524 /*
8525 * Ensure we don't starve existing RT tasks.
8526 */
9a7e0b18
PZ
8527 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8528 return -EBUSY;
6f505b16 8529
9a7e0b18 8530 total = to_ratio(period, runtime);
6f505b16 8531
4653f803
PZ
8532 /*
8533 * Nobody can have more than the global setting allows.
8534 */
8535 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8536 return -EINVAL;
6f505b16 8537
4653f803
PZ
8538 /*
8539 * The sum of our children's runtime should not exceed our own.
8540 */
9a7e0b18
PZ
8541 list_for_each_entry_rcu(child, &tg->children, siblings) {
8542 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8543 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8544
9a7e0b18
PZ
8545 if (child == d->tg) {
8546 period = d->rt_period;
8547 runtime = d->rt_runtime;
8548 }
6f505b16 8549
9a7e0b18 8550 sum += to_ratio(period, runtime);
9f0c1e56 8551 }
6f505b16 8552
9a7e0b18
PZ
8553 if (sum > total)
8554 return -EINVAL;
8555
8556 return 0;
6f505b16
PZ
8557}
8558
9a7e0b18 8559static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8560{
9a7e0b18
PZ
8561 struct rt_schedulable_data data = {
8562 .tg = tg,
8563 .rt_period = period,
8564 .rt_runtime = runtime,
8565 };
8566
8567 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8568}
8569
d0b27fa7
PZ
8570static int tg_set_bandwidth(struct task_group *tg,
8571 u64 rt_period, u64 rt_runtime)
6f505b16 8572{
ac086bc2 8573 int i, err = 0;
9f0c1e56 8574
9f0c1e56 8575 mutex_lock(&rt_constraints_mutex);
521f1a24 8576 read_lock(&tasklist_lock);
9a7e0b18
PZ
8577 err = __rt_schedulable(tg, rt_period, rt_runtime);
8578 if (err)
9f0c1e56 8579 goto unlock;
ac086bc2 8580
0986b11b 8581 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8582 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8583 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8584
8585 for_each_possible_cpu(i) {
8586 struct rt_rq *rt_rq = tg->rt_rq[i];
8587
0986b11b 8588 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8589 rt_rq->rt_runtime = rt_runtime;
0986b11b 8590 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8591 }
0986b11b 8592 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8593 unlock:
521f1a24 8594 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8595 mutex_unlock(&rt_constraints_mutex);
8596
8597 return err;
6f505b16
PZ
8598}
8599
d0b27fa7
PZ
8600int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8601{
8602 u64 rt_runtime, rt_period;
8603
8604 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8605 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8606 if (rt_runtime_us < 0)
8607 rt_runtime = RUNTIME_INF;
8608
8609 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8610}
8611
9f0c1e56
PZ
8612long sched_group_rt_runtime(struct task_group *tg)
8613{
8614 u64 rt_runtime_us;
8615
d0b27fa7 8616 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8617 return -1;
8618
d0b27fa7 8619 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8620 do_div(rt_runtime_us, NSEC_PER_USEC);
8621 return rt_runtime_us;
8622}
d0b27fa7
PZ
8623
8624int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8625{
8626 u64 rt_runtime, rt_period;
8627
8628 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8629 rt_runtime = tg->rt_bandwidth.rt_runtime;
8630
619b0488
R
8631 if (rt_period == 0)
8632 return -EINVAL;
8633
d0b27fa7
PZ
8634 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8635}
8636
8637long sched_group_rt_period(struct task_group *tg)
8638{
8639 u64 rt_period_us;
8640
8641 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8642 do_div(rt_period_us, NSEC_PER_USEC);
8643 return rt_period_us;
8644}
8645
8646static int sched_rt_global_constraints(void)
8647{
4653f803 8648 u64 runtime, period;
d0b27fa7
PZ
8649 int ret = 0;
8650
ec5d4989
HS
8651 if (sysctl_sched_rt_period <= 0)
8652 return -EINVAL;
8653
4653f803
PZ
8654 runtime = global_rt_runtime();
8655 period = global_rt_period();
8656
8657 /*
8658 * Sanity check on the sysctl variables.
8659 */
8660 if (runtime > period && runtime != RUNTIME_INF)
8661 return -EINVAL;
10b612f4 8662
d0b27fa7 8663 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8664 read_lock(&tasklist_lock);
4653f803 8665 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8666 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8667 mutex_unlock(&rt_constraints_mutex);
8668
8669 return ret;
8670}
54e99124
DG
8671
8672int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8673{
8674 /* Don't accept realtime tasks when there is no way for them to run */
8675 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8676 return 0;
8677
8678 return 1;
8679}
8680
6d6bc0ad 8681#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8682static int sched_rt_global_constraints(void)
8683{
ac086bc2
PZ
8684 unsigned long flags;
8685 int i;
8686
ec5d4989
HS
8687 if (sysctl_sched_rt_period <= 0)
8688 return -EINVAL;
8689
60aa605d
PZ
8690 /*
8691 * There's always some RT tasks in the root group
8692 * -- migration, kstopmachine etc..
8693 */
8694 if (sysctl_sched_rt_runtime == 0)
8695 return -EBUSY;
8696
0986b11b 8697 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8698 for_each_possible_cpu(i) {
8699 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8700
0986b11b 8701 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8702 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8703 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8704 }
0986b11b 8705 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8706
d0b27fa7
PZ
8707 return 0;
8708}
6d6bc0ad 8709#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8710
8711int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8712 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8713 loff_t *ppos)
8714{
8715 int ret;
8716 int old_period, old_runtime;
8717 static DEFINE_MUTEX(mutex);
8718
8719 mutex_lock(&mutex);
8720 old_period = sysctl_sched_rt_period;
8721 old_runtime = sysctl_sched_rt_runtime;
8722
8d65af78 8723 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8724
8725 if (!ret && write) {
8726 ret = sched_rt_global_constraints();
8727 if (ret) {
8728 sysctl_sched_rt_period = old_period;
8729 sysctl_sched_rt_runtime = old_runtime;
8730 } else {
8731 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8732 def_rt_bandwidth.rt_period =
8733 ns_to_ktime(global_rt_period());
8734 }
8735 }
8736 mutex_unlock(&mutex);
8737
8738 return ret;
8739}
68318b8e 8740
052f1dc7 8741#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8742
8743/* return corresponding task_group object of a cgroup */
2b01dfe3 8744static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8745{
2b01dfe3
PM
8746 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8747 struct task_group, css);
68318b8e
SV
8748}
8749
8750static struct cgroup_subsys_state *
2b01dfe3 8751cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8752{
ec7dc8ac 8753 struct task_group *tg, *parent;
68318b8e 8754
2b01dfe3 8755 if (!cgrp->parent) {
68318b8e 8756 /* This is early initialization for the top cgroup */
68318b8e
SV
8757 return &init_task_group.css;
8758 }
8759
ec7dc8ac
DG
8760 parent = cgroup_tg(cgrp->parent);
8761 tg = sched_create_group(parent);
68318b8e
SV
8762 if (IS_ERR(tg))
8763 return ERR_PTR(-ENOMEM);
8764
68318b8e
SV
8765 return &tg->css;
8766}
8767
41a2d6cf
IM
8768static void
8769cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8770{
2b01dfe3 8771 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8772
8773 sched_destroy_group(tg);
8774}
8775
41a2d6cf 8776static int
be367d09 8777cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8778{
b68aa230 8779#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8780 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8781 return -EINVAL;
8782#else
68318b8e
SV
8783 /* We don't support RT-tasks being in separate groups */
8784 if (tsk->sched_class != &fair_sched_class)
8785 return -EINVAL;
b68aa230 8786#endif
be367d09
BB
8787 return 0;
8788}
68318b8e 8789
be367d09
BB
8790static int
8791cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8792 struct task_struct *tsk, bool threadgroup)
8793{
8794 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8795 if (retval)
8796 return retval;
8797 if (threadgroup) {
8798 struct task_struct *c;
8799 rcu_read_lock();
8800 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8801 retval = cpu_cgroup_can_attach_task(cgrp, c);
8802 if (retval) {
8803 rcu_read_unlock();
8804 return retval;
8805 }
8806 }
8807 rcu_read_unlock();
8808 }
68318b8e
SV
8809 return 0;
8810}
8811
8812static void
2b01dfe3 8813cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8814 struct cgroup *old_cont, struct task_struct *tsk,
8815 bool threadgroup)
68318b8e
SV
8816{
8817 sched_move_task(tsk);
be367d09
BB
8818 if (threadgroup) {
8819 struct task_struct *c;
8820 rcu_read_lock();
8821 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8822 sched_move_task(c);
8823 }
8824 rcu_read_unlock();
8825 }
68318b8e
SV
8826}
8827
052f1dc7 8828#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8829static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8830 u64 shareval)
68318b8e 8831{
2b01dfe3 8832 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8833}
8834
f4c753b7 8835static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8836{
2b01dfe3 8837 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8838
8839 return (u64) tg->shares;
8840}
6d6bc0ad 8841#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8842
052f1dc7 8843#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8844static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8845 s64 val)
6f505b16 8846{
06ecb27c 8847 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8848}
8849
06ecb27c 8850static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8851{
06ecb27c 8852 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8853}
d0b27fa7
PZ
8854
8855static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8856 u64 rt_period_us)
8857{
8858 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8859}
8860
8861static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8862{
8863 return sched_group_rt_period(cgroup_tg(cgrp));
8864}
6d6bc0ad 8865#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8866
fe5c7cc2 8867static struct cftype cpu_files[] = {
052f1dc7 8868#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8869 {
8870 .name = "shares",
f4c753b7
PM
8871 .read_u64 = cpu_shares_read_u64,
8872 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8873 },
052f1dc7
PZ
8874#endif
8875#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8876 {
9f0c1e56 8877 .name = "rt_runtime_us",
06ecb27c
PM
8878 .read_s64 = cpu_rt_runtime_read,
8879 .write_s64 = cpu_rt_runtime_write,
6f505b16 8880 },
d0b27fa7
PZ
8881 {
8882 .name = "rt_period_us",
f4c753b7
PM
8883 .read_u64 = cpu_rt_period_read_uint,
8884 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8885 },
052f1dc7 8886#endif
68318b8e
SV
8887};
8888
8889static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8890{
fe5c7cc2 8891 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8892}
8893
8894struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8895 .name = "cpu",
8896 .create = cpu_cgroup_create,
8897 .destroy = cpu_cgroup_destroy,
8898 .can_attach = cpu_cgroup_can_attach,
8899 .attach = cpu_cgroup_attach,
8900 .populate = cpu_cgroup_populate,
8901 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8902 .early_init = 1,
8903};
8904
052f1dc7 8905#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8906
8907#ifdef CONFIG_CGROUP_CPUACCT
8908
8909/*
8910 * CPU accounting code for task groups.
8911 *
8912 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8913 * (balbir@in.ibm.com).
8914 */
8915
934352f2 8916/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8917struct cpuacct {
8918 struct cgroup_subsys_state css;
8919 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8920 u64 __percpu *cpuusage;
ef12fefa 8921 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8922 struct cpuacct *parent;
d842de87
SV
8923};
8924
8925struct cgroup_subsys cpuacct_subsys;
8926
8927/* return cpu accounting group corresponding to this container */
32cd756a 8928static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8929{
32cd756a 8930 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8931 struct cpuacct, css);
8932}
8933
8934/* return cpu accounting group to which this task belongs */
8935static inline struct cpuacct *task_ca(struct task_struct *tsk)
8936{
8937 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8938 struct cpuacct, css);
8939}
8940
8941/* create a new cpu accounting group */
8942static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8943 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8944{
8945 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8946 int i;
d842de87
SV
8947
8948 if (!ca)
ef12fefa 8949 goto out;
d842de87
SV
8950
8951 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8952 if (!ca->cpuusage)
8953 goto out_free_ca;
8954
8955 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8956 if (percpu_counter_init(&ca->cpustat[i], 0))
8957 goto out_free_counters;
d842de87 8958
934352f2
BR
8959 if (cgrp->parent)
8960 ca->parent = cgroup_ca(cgrp->parent);
8961
d842de87 8962 return &ca->css;
ef12fefa
BR
8963
8964out_free_counters:
8965 while (--i >= 0)
8966 percpu_counter_destroy(&ca->cpustat[i]);
8967 free_percpu(ca->cpuusage);
8968out_free_ca:
8969 kfree(ca);
8970out:
8971 return ERR_PTR(-ENOMEM);
d842de87
SV
8972}
8973
8974/* destroy an existing cpu accounting group */
41a2d6cf 8975static void
32cd756a 8976cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8977{
32cd756a 8978 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8979 int i;
d842de87 8980
ef12fefa
BR
8981 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8982 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8983 free_percpu(ca->cpuusage);
8984 kfree(ca);
8985}
8986
720f5498
KC
8987static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8988{
b36128c8 8989 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8990 u64 data;
8991
8992#ifndef CONFIG_64BIT
8993 /*
8994 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8995 */
05fa785c 8996 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8997 data = *cpuusage;
05fa785c 8998 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8999#else
9000 data = *cpuusage;
9001#endif
9002
9003 return data;
9004}
9005
9006static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9007{
b36128c8 9008 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9009
9010#ifndef CONFIG_64BIT
9011 /*
9012 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9013 */
05fa785c 9014 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9015 *cpuusage = val;
05fa785c 9016 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9017#else
9018 *cpuusage = val;
9019#endif
9020}
9021
d842de87 9022/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9023static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9024{
32cd756a 9025 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9026 u64 totalcpuusage = 0;
9027 int i;
9028
720f5498
KC
9029 for_each_present_cpu(i)
9030 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9031
9032 return totalcpuusage;
9033}
9034
0297b803
DG
9035static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9036 u64 reset)
9037{
9038 struct cpuacct *ca = cgroup_ca(cgrp);
9039 int err = 0;
9040 int i;
9041
9042 if (reset) {
9043 err = -EINVAL;
9044 goto out;
9045 }
9046
720f5498
KC
9047 for_each_present_cpu(i)
9048 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9049
0297b803
DG
9050out:
9051 return err;
9052}
9053
e9515c3c
KC
9054static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9055 struct seq_file *m)
9056{
9057 struct cpuacct *ca = cgroup_ca(cgroup);
9058 u64 percpu;
9059 int i;
9060
9061 for_each_present_cpu(i) {
9062 percpu = cpuacct_cpuusage_read(ca, i);
9063 seq_printf(m, "%llu ", (unsigned long long) percpu);
9064 }
9065 seq_printf(m, "\n");
9066 return 0;
9067}
9068
ef12fefa
BR
9069static const char *cpuacct_stat_desc[] = {
9070 [CPUACCT_STAT_USER] = "user",
9071 [CPUACCT_STAT_SYSTEM] = "system",
9072};
9073
9074static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9075 struct cgroup_map_cb *cb)
9076{
9077 struct cpuacct *ca = cgroup_ca(cgrp);
9078 int i;
9079
9080 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9081 s64 val = percpu_counter_read(&ca->cpustat[i]);
9082 val = cputime64_to_clock_t(val);
9083 cb->fill(cb, cpuacct_stat_desc[i], val);
9084 }
9085 return 0;
9086}
9087
d842de87
SV
9088static struct cftype files[] = {
9089 {
9090 .name = "usage",
f4c753b7
PM
9091 .read_u64 = cpuusage_read,
9092 .write_u64 = cpuusage_write,
d842de87 9093 },
e9515c3c
KC
9094 {
9095 .name = "usage_percpu",
9096 .read_seq_string = cpuacct_percpu_seq_read,
9097 },
ef12fefa
BR
9098 {
9099 .name = "stat",
9100 .read_map = cpuacct_stats_show,
9101 },
d842de87
SV
9102};
9103
32cd756a 9104static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9105{
32cd756a 9106 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9107}
9108
9109/*
9110 * charge this task's execution time to its accounting group.
9111 *
9112 * called with rq->lock held.
9113 */
9114static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9115{
9116 struct cpuacct *ca;
934352f2 9117 int cpu;
d842de87 9118
c40c6f85 9119 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9120 return;
9121
934352f2 9122 cpu = task_cpu(tsk);
a18b83b7
BR
9123
9124 rcu_read_lock();
9125
d842de87 9126 ca = task_ca(tsk);
d842de87 9127
934352f2 9128 for (; ca; ca = ca->parent) {
b36128c8 9129 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9130 *cpuusage += cputime;
9131 }
a18b83b7
BR
9132
9133 rcu_read_unlock();
d842de87
SV
9134}
9135
fa535a77
AB
9136/*
9137 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9138 * in cputime_t units. As a result, cpuacct_update_stats calls
9139 * percpu_counter_add with values large enough to always overflow the
9140 * per cpu batch limit causing bad SMP scalability.
9141 *
9142 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9143 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9144 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9145 */
9146#ifdef CONFIG_SMP
9147#define CPUACCT_BATCH \
9148 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9149#else
9150#define CPUACCT_BATCH 0
9151#endif
9152
ef12fefa
BR
9153/*
9154 * Charge the system/user time to the task's accounting group.
9155 */
9156static void cpuacct_update_stats(struct task_struct *tsk,
9157 enum cpuacct_stat_index idx, cputime_t val)
9158{
9159 struct cpuacct *ca;
fa535a77 9160 int batch = CPUACCT_BATCH;
ef12fefa
BR
9161
9162 if (unlikely(!cpuacct_subsys.active))
9163 return;
9164
9165 rcu_read_lock();
9166 ca = task_ca(tsk);
9167
9168 do {
fa535a77 9169 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9170 ca = ca->parent;
9171 } while (ca);
9172 rcu_read_unlock();
9173}
9174
d842de87
SV
9175struct cgroup_subsys cpuacct_subsys = {
9176 .name = "cpuacct",
9177 .create = cpuacct_create,
9178 .destroy = cpuacct_destroy,
9179 .populate = cpuacct_populate,
9180 .subsys_id = cpuacct_subsys_id,
9181};
9182#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9183
9184#ifndef CONFIG_SMP
9185
03b042bf
PM
9186void synchronize_sched_expedited(void)
9187{
fc390cde 9188 barrier();
03b042bf
PM
9189}
9190EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9191
9192#else /* #ifndef CONFIG_SMP */
9193
cc631fb7 9194static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9195
cc631fb7 9196static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9197{
969c7921
TH
9198 /*
9199 * There must be a full memory barrier on each affected CPU
9200 * between the time that try_stop_cpus() is called and the
9201 * time that it returns.
9202 *
9203 * In the current initial implementation of cpu_stop, the
9204 * above condition is already met when the control reaches
9205 * this point and the following smp_mb() is not strictly
9206 * necessary. Do smp_mb() anyway for documentation and
9207 * robustness against future implementation changes.
9208 */
cc631fb7 9209 smp_mb(); /* See above comment block. */
969c7921 9210 return 0;
03b042bf 9211}
03b042bf
PM
9212
9213/*
9214 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9215 * approach to force grace period to end quickly. This consumes
9216 * significant time on all CPUs, and is thus not recommended for
9217 * any sort of common-case code.
9218 *
9219 * Note that it is illegal to call this function while holding any
9220 * lock that is acquired by a CPU-hotplug notifier. Failing to
9221 * observe this restriction will result in deadlock.
9222 */
9223void synchronize_sched_expedited(void)
9224{
969c7921 9225 int snap, trycount = 0;
03b042bf
PM
9226
9227 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9228 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9229 get_online_cpus();
969c7921
TH
9230 while (try_stop_cpus(cpu_online_mask,
9231 synchronize_sched_expedited_cpu_stop,
94458d5e 9232 NULL) == -EAGAIN) {
03b042bf
PM
9233 put_online_cpus();
9234 if (trycount++ < 10)
9235 udelay(trycount * num_online_cpus());
9236 else {
9237 synchronize_sched();
9238 return;
9239 }
969c7921 9240 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9241 smp_mb(); /* ensure test happens before caller kfree */
9242 return;
9243 }
9244 get_online_cpus();
9245 }
969c7921 9246 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9247 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9248 put_online_cpus();
03b042bf
PM
9249}
9250EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9251
9252#endif /* #else #ifndef CONFIG_SMP */
This page took 3.120079 seconds and 5 git commands to generate.