Merge branch 'sched/cleanups'; commit 'v2.6.29' into sched/core
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
2749 arch_enter_lazy_cpu_mode();
2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596
IM
3191}
3192
1da177e4
LT
3193/*
3194 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3195 * domain. It calculates and returns the amount of weighted load which
3196 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3197 */
3198static struct sched_group *
3199find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3200 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3201 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3202{
3203 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3204 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3205 unsigned long max_pull;
2dd73a4f
PW
3206 unsigned long busiest_load_per_task, busiest_nr_running;
3207 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3208 int load_idx, group_imb = 0;
5c45bf27
SS
3209#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3210 int power_savings_balance = 1;
3211 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3212 unsigned long min_nr_running = ULONG_MAX;
3213 struct sched_group *group_min = NULL, *group_leader = NULL;
3214#endif
1da177e4
LT
3215
3216 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3217 busiest_load_per_task = busiest_nr_running = 0;
3218 this_load_per_task = this_nr_running = 0;
408ed066 3219
d15bcfdb 3220 if (idle == CPU_NOT_IDLE)
7897986b 3221 load_idx = sd->busy_idx;
d15bcfdb 3222 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3223 load_idx = sd->newidle_idx;
3224 else
3225 load_idx = sd->idle_idx;
1da177e4
LT
3226
3227 do {
908a7c1b 3228 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3229 int local_group;
3230 int i;
908a7c1b 3231 int __group_imb = 0;
783609c6 3232 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3233 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3234 unsigned long sum_avg_load_per_task;
3235 unsigned long avg_load_per_task;
1da177e4 3236
758b2cdc
RR
3237 local_group = cpumask_test_cpu(this_cpu,
3238 sched_group_cpus(group));
1da177e4 3239
783609c6 3240 if (local_group)
758b2cdc 3241 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3242
1da177e4 3243 /* Tally up the load of all CPUs in the group */
2dd73a4f 3244 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3245 sum_avg_load_per_task = avg_load_per_task = 0;
3246
908a7c1b
KC
3247 max_cpu_load = 0;
3248 min_cpu_load = ~0UL;
1da177e4 3249
758b2cdc
RR
3250 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3251 struct rq *rq = cpu_rq(i);
2dd73a4f 3252
9439aab8 3253 if (*sd_idle && rq->nr_running)
5969fe06
NP
3254 *sd_idle = 0;
3255
1da177e4 3256 /* Bias balancing toward cpus of our domain */
783609c6
SS
3257 if (local_group) {
3258 if (idle_cpu(i) && !first_idle_cpu) {
3259 first_idle_cpu = 1;
3260 balance_cpu = i;
3261 }
3262
a2000572 3263 load = target_load(i, load_idx);
908a7c1b 3264 } else {
a2000572 3265 load = source_load(i, load_idx);
908a7c1b
KC
3266 if (load > max_cpu_load)
3267 max_cpu_load = load;
3268 if (min_cpu_load > load)
3269 min_cpu_load = load;
3270 }
1da177e4
LT
3271
3272 avg_load += load;
2dd73a4f 3273 sum_nr_running += rq->nr_running;
dd41f596 3274 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3275
3276 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3277 }
3278
783609c6
SS
3279 /*
3280 * First idle cpu or the first cpu(busiest) in this sched group
3281 * is eligible for doing load balancing at this and above
9439aab8
SS
3282 * domains. In the newly idle case, we will allow all the cpu's
3283 * to do the newly idle load balance.
783609c6 3284 */
9439aab8
SS
3285 if (idle != CPU_NEWLY_IDLE && local_group &&
3286 balance_cpu != this_cpu && balance) {
783609c6
SS
3287 *balance = 0;
3288 goto ret;
3289 }
3290
1da177e4 3291 total_load += avg_load;
5517d86b 3292 total_pwr += group->__cpu_power;
1da177e4
LT
3293
3294 /* Adjust by relative CPU power of the group */
5517d86b
ED
3295 avg_load = sg_div_cpu_power(group,
3296 avg_load * SCHED_LOAD_SCALE);
1da177e4 3297
408ed066
PZ
3298
3299 /*
3300 * Consider the group unbalanced when the imbalance is larger
3301 * than the average weight of two tasks.
3302 *
3303 * APZ: with cgroup the avg task weight can vary wildly and
3304 * might not be a suitable number - should we keep a
3305 * normalized nr_running number somewhere that negates
3306 * the hierarchy?
3307 */
3308 avg_load_per_task = sg_div_cpu_power(group,
3309 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3310
3311 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3312 __group_imb = 1;
3313
5517d86b 3314 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3315
1da177e4
LT
3316 if (local_group) {
3317 this_load = avg_load;
3318 this = group;
2dd73a4f
PW
3319 this_nr_running = sum_nr_running;
3320 this_load_per_task = sum_weighted_load;
3321 } else if (avg_load > max_load &&
908a7c1b 3322 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3323 max_load = avg_load;
3324 busiest = group;
2dd73a4f
PW
3325 busiest_nr_running = sum_nr_running;
3326 busiest_load_per_task = sum_weighted_load;
908a7c1b 3327 group_imb = __group_imb;
1da177e4 3328 }
5c45bf27
SS
3329
3330#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3331 /*
3332 * Busy processors will not participate in power savings
3333 * balance.
3334 */
dd41f596
IM
3335 if (idle == CPU_NOT_IDLE ||
3336 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3337 goto group_next;
5c45bf27
SS
3338
3339 /*
3340 * If the local group is idle or completely loaded
3341 * no need to do power savings balance at this domain
3342 */
3343 if (local_group && (this_nr_running >= group_capacity ||
3344 !this_nr_running))
3345 power_savings_balance = 0;
3346
dd41f596 3347 /*
5c45bf27
SS
3348 * If a group is already running at full capacity or idle,
3349 * don't include that group in power savings calculations
dd41f596
IM
3350 */
3351 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3352 || !sum_nr_running)
dd41f596 3353 goto group_next;
5c45bf27 3354
dd41f596 3355 /*
5c45bf27 3356 * Calculate the group which has the least non-idle load.
dd41f596
IM
3357 * This is the group from where we need to pick up the load
3358 * for saving power
3359 */
3360 if ((sum_nr_running < min_nr_running) ||
3361 (sum_nr_running == min_nr_running &&
d5679bd1 3362 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3363 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3364 group_min = group;
3365 min_nr_running = sum_nr_running;
5c45bf27
SS
3366 min_load_per_task = sum_weighted_load /
3367 sum_nr_running;
dd41f596 3368 }
5c45bf27 3369
dd41f596 3370 /*
5c45bf27 3371 * Calculate the group which is almost near its
dd41f596
IM
3372 * capacity but still has some space to pick up some load
3373 * from other group and save more power
3374 */
3375 if (sum_nr_running <= group_capacity - 1) {
3376 if (sum_nr_running > leader_nr_running ||
3377 (sum_nr_running == leader_nr_running &&
d5679bd1 3378 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3379 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3380 group_leader = group;
3381 leader_nr_running = sum_nr_running;
3382 }
48f24c4d 3383 }
5c45bf27
SS
3384group_next:
3385#endif
1da177e4
LT
3386 group = group->next;
3387 } while (group != sd->groups);
3388
2dd73a4f 3389 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3390 goto out_balanced;
3391
3392 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3393
3394 if (this_load >= avg_load ||
3395 100*max_load <= sd->imbalance_pct*this_load)
3396 goto out_balanced;
3397
2dd73a4f 3398 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3399 if (group_imb)
3400 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3401
1da177e4
LT
3402 /*
3403 * We're trying to get all the cpus to the average_load, so we don't
3404 * want to push ourselves above the average load, nor do we wish to
3405 * reduce the max loaded cpu below the average load, as either of these
3406 * actions would just result in more rebalancing later, and ping-pong
3407 * tasks around. Thus we look for the minimum possible imbalance.
3408 * Negative imbalances (*we* are more loaded than anyone else) will
3409 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3410 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3411 * appear as very large values with unsigned longs.
3412 */
2dd73a4f
PW
3413 if (max_load <= busiest_load_per_task)
3414 goto out_balanced;
3415
3416 /*
3417 * In the presence of smp nice balancing, certain scenarios can have
3418 * max load less than avg load(as we skip the groups at or below
3419 * its cpu_power, while calculating max_load..)
3420 */
3421 if (max_load < avg_load) {
3422 *imbalance = 0;
3423 goto small_imbalance;
3424 }
0c117f1b
SS
3425
3426 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3427 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3428
1da177e4 3429 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3430 *imbalance = min(max_pull * busiest->__cpu_power,
3431 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3432 / SCHED_LOAD_SCALE;
3433
2dd73a4f
PW
3434 /*
3435 * if *imbalance is less than the average load per runnable task
3436 * there is no gaurantee that any tasks will be moved so we'll have
3437 * a think about bumping its value to force at least one task to be
3438 * moved
3439 */
7fd0d2dd 3440 if (*imbalance < busiest_load_per_task) {
48f24c4d 3441 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3442 unsigned int imbn;
3443
3444small_imbalance:
3445 pwr_move = pwr_now = 0;
3446 imbn = 2;
3447 if (this_nr_running) {
3448 this_load_per_task /= this_nr_running;
3449 if (busiest_load_per_task > this_load_per_task)
3450 imbn = 1;
3451 } else
408ed066 3452 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3453
01c8c57d 3454 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3455 busiest_load_per_task * imbn) {
2dd73a4f 3456 *imbalance = busiest_load_per_task;
1da177e4
LT
3457 return busiest;
3458 }
3459
3460 /*
3461 * OK, we don't have enough imbalance to justify moving tasks,
3462 * however we may be able to increase total CPU power used by
3463 * moving them.
3464 */
3465
5517d86b
ED
3466 pwr_now += busiest->__cpu_power *
3467 min(busiest_load_per_task, max_load);
3468 pwr_now += this->__cpu_power *
3469 min(this_load_per_task, this_load);
1da177e4
LT
3470 pwr_now /= SCHED_LOAD_SCALE;
3471
3472 /* Amount of load we'd subtract */
5517d86b
ED
3473 tmp = sg_div_cpu_power(busiest,
3474 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3475 if (max_load > tmp)
5517d86b 3476 pwr_move += busiest->__cpu_power *
2dd73a4f 3477 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3478
3479 /* Amount of load we'd add */
5517d86b 3480 if (max_load * busiest->__cpu_power <
33859f7f 3481 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3482 tmp = sg_div_cpu_power(this,
3483 max_load * busiest->__cpu_power);
1da177e4 3484 else
5517d86b
ED
3485 tmp = sg_div_cpu_power(this,
3486 busiest_load_per_task * SCHED_LOAD_SCALE);
3487 pwr_move += this->__cpu_power *
3488 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3489 pwr_move /= SCHED_LOAD_SCALE;
3490
3491 /* Move if we gain throughput */
7fd0d2dd
SS
3492 if (pwr_move > pwr_now)
3493 *imbalance = busiest_load_per_task;
1da177e4
LT
3494 }
3495
1da177e4
LT
3496 return busiest;
3497
3498out_balanced:
5c45bf27 3499#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3500 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3501 goto ret;
1da177e4 3502
5c45bf27
SS
3503 if (this == group_leader && group_leader != group_min) {
3504 *imbalance = min_load_per_task;
7a09b1a2
VS
3505 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3506 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3507 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3508 }
5c45bf27
SS
3509 return group_min;
3510 }
5c45bf27 3511#endif
783609c6 3512ret:
1da177e4
LT
3513 *imbalance = 0;
3514 return NULL;
3515}
3516
3517/*
3518 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3519 */
70b97a7f 3520static struct rq *
d15bcfdb 3521find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3522 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3523{
70b97a7f 3524 struct rq *busiest = NULL, *rq;
2dd73a4f 3525 unsigned long max_load = 0;
1da177e4
LT
3526 int i;
3527
758b2cdc 3528 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3529 unsigned long wl;
0a2966b4 3530
96f874e2 3531 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3532 continue;
3533
48f24c4d 3534 rq = cpu_rq(i);
dd41f596 3535 wl = weighted_cpuload(i);
2dd73a4f 3536
dd41f596 3537 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3538 continue;
1da177e4 3539
dd41f596
IM
3540 if (wl > max_load) {
3541 max_load = wl;
48f24c4d 3542 busiest = rq;
1da177e4
LT
3543 }
3544 }
3545
3546 return busiest;
3547}
3548
77391d71
NP
3549/*
3550 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3551 * so long as it is large enough.
3552 */
3553#define MAX_PINNED_INTERVAL 512
3554
1da177e4
LT
3555/*
3556 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3557 * tasks if there is an imbalance.
1da177e4 3558 */
70b97a7f 3559static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3560 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3561 int *balance, struct cpumask *cpus)
1da177e4 3562{
43010659 3563 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3564 struct sched_group *group;
1da177e4 3565 unsigned long imbalance;
70b97a7f 3566 struct rq *busiest;
fe2eea3f 3567 unsigned long flags;
5969fe06 3568
96f874e2 3569 cpumask_setall(cpus);
7c16ec58 3570
89c4710e
SS
3571 /*
3572 * When power savings policy is enabled for the parent domain, idle
3573 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3574 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3575 * portraying it as CPU_NOT_IDLE.
89c4710e 3576 */
d15bcfdb 3577 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3578 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3579 sd_idle = 1;
1da177e4 3580
2d72376b 3581 schedstat_inc(sd, lb_count[idle]);
1da177e4 3582
0a2966b4 3583redo:
c8cba857 3584 update_shares(sd);
0a2966b4 3585 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3586 cpus, balance);
783609c6 3587
06066714 3588 if (*balance == 0)
783609c6 3589 goto out_balanced;
783609c6 3590
1da177e4
LT
3591 if (!group) {
3592 schedstat_inc(sd, lb_nobusyg[idle]);
3593 goto out_balanced;
3594 }
3595
7c16ec58 3596 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3597 if (!busiest) {
3598 schedstat_inc(sd, lb_nobusyq[idle]);
3599 goto out_balanced;
3600 }
3601
db935dbd 3602 BUG_ON(busiest == this_rq);
1da177e4
LT
3603
3604 schedstat_add(sd, lb_imbalance[idle], imbalance);
3605
43010659 3606 ld_moved = 0;
1da177e4
LT
3607 if (busiest->nr_running > 1) {
3608 /*
3609 * Attempt to move tasks. If find_busiest_group has found
3610 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3611 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3612 * correctly treated as an imbalance.
3613 */
fe2eea3f 3614 local_irq_save(flags);
e17224bf 3615 double_rq_lock(this_rq, busiest);
43010659 3616 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3617 imbalance, sd, idle, &all_pinned);
e17224bf 3618 double_rq_unlock(this_rq, busiest);
fe2eea3f 3619 local_irq_restore(flags);
81026794 3620
46cb4b7c
SS
3621 /*
3622 * some other cpu did the load balance for us.
3623 */
43010659 3624 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3625 resched_cpu(this_cpu);
3626
81026794 3627 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3628 if (unlikely(all_pinned)) {
96f874e2
RR
3629 cpumask_clear_cpu(cpu_of(busiest), cpus);
3630 if (!cpumask_empty(cpus))
0a2966b4 3631 goto redo;
81026794 3632 goto out_balanced;
0a2966b4 3633 }
1da177e4 3634 }
81026794 3635
43010659 3636 if (!ld_moved) {
1da177e4
LT
3637 schedstat_inc(sd, lb_failed[idle]);
3638 sd->nr_balance_failed++;
3639
3640 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3641
fe2eea3f 3642 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3643
3644 /* don't kick the migration_thread, if the curr
3645 * task on busiest cpu can't be moved to this_cpu
3646 */
96f874e2
RR
3647 if (!cpumask_test_cpu(this_cpu,
3648 &busiest->curr->cpus_allowed)) {
fe2eea3f 3649 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3650 all_pinned = 1;
3651 goto out_one_pinned;
3652 }
3653
1da177e4
LT
3654 if (!busiest->active_balance) {
3655 busiest->active_balance = 1;
3656 busiest->push_cpu = this_cpu;
81026794 3657 active_balance = 1;
1da177e4 3658 }
fe2eea3f 3659 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3660 if (active_balance)
1da177e4
LT
3661 wake_up_process(busiest->migration_thread);
3662
3663 /*
3664 * We've kicked active balancing, reset the failure
3665 * counter.
3666 */
39507451 3667 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3668 }
81026794 3669 } else
1da177e4
LT
3670 sd->nr_balance_failed = 0;
3671
81026794 3672 if (likely(!active_balance)) {
1da177e4
LT
3673 /* We were unbalanced, so reset the balancing interval */
3674 sd->balance_interval = sd->min_interval;
81026794
NP
3675 } else {
3676 /*
3677 * If we've begun active balancing, start to back off. This
3678 * case may not be covered by the all_pinned logic if there
3679 * is only 1 task on the busy runqueue (because we don't call
3680 * move_tasks).
3681 */
3682 if (sd->balance_interval < sd->max_interval)
3683 sd->balance_interval *= 2;
1da177e4
LT
3684 }
3685
43010659 3686 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3688 ld_moved = -1;
3689
3690 goto out;
1da177e4
LT
3691
3692out_balanced:
1da177e4
LT
3693 schedstat_inc(sd, lb_balanced[idle]);
3694
16cfb1c0 3695 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3696
3697out_one_pinned:
1da177e4 3698 /* tune up the balancing interval */
77391d71
NP
3699 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3700 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3701 sd->balance_interval *= 2;
3702
48f24c4d 3703 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3704 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3705 ld_moved = -1;
3706 else
3707 ld_moved = 0;
3708out:
c8cba857
PZ
3709 if (ld_moved)
3710 update_shares(sd);
c09595f6 3711 return ld_moved;
1da177e4
LT
3712}
3713
3714/*
3715 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3716 * tasks if there is an imbalance.
3717 *
d15bcfdb 3718 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3719 * this_rq is locked.
3720 */
48f24c4d 3721static int
7c16ec58 3722load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3723 struct cpumask *cpus)
1da177e4
LT
3724{
3725 struct sched_group *group;
70b97a7f 3726 struct rq *busiest = NULL;
1da177e4 3727 unsigned long imbalance;
43010659 3728 int ld_moved = 0;
5969fe06 3729 int sd_idle = 0;
969bb4e4 3730 int all_pinned = 0;
7c16ec58 3731
96f874e2 3732 cpumask_setall(cpus);
5969fe06 3733
89c4710e
SS
3734 /*
3735 * When power savings policy is enabled for the parent domain, idle
3736 * sibling can pick up load irrespective of busy siblings. In this case,
3737 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3738 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3739 */
3740 if (sd->flags & SD_SHARE_CPUPOWER &&
3741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3742 sd_idle = 1;
1da177e4 3743
2d72376b 3744 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3745redo:
3e5459b4 3746 update_shares_locked(this_rq, sd);
d15bcfdb 3747 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3748 &sd_idle, cpus, NULL);
1da177e4 3749 if (!group) {
d15bcfdb 3750 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3751 goto out_balanced;
1da177e4
LT
3752 }
3753
7c16ec58 3754 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3755 if (!busiest) {
d15bcfdb 3756 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3757 goto out_balanced;
1da177e4
LT
3758 }
3759
db935dbd
NP
3760 BUG_ON(busiest == this_rq);
3761
d15bcfdb 3762 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3763
43010659 3764 ld_moved = 0;
d6d5cfaf
NP
3765 if (busiest->nr_running > 1) {
3766 /* Attempt to move tasks */
3767 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3768 /* this_rq->clock is already updated */
3769 update_rq_clock(busiest);
43010659 3770 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3771 imbalance, sd, CPU_NEWLY_IDLE,
3772 &all_pinned);
1b12bbc7 3773 double_unlock_balance(this_rq, busiest);
0a2966b4 3774
969bb4e4 3775 if (unlikely(all_pinned)) {
96f874e2
RR
3776 cpumask_clear_cpu(cpu_of(busiest), cpus);
3777 if (!cpumask_empty(cpus))
0a2966b4
CL
3778 goto redo;
3779 }
d6d5cfaf
NP
3780 }
3781
43010659 3782 if (!ld_moved) {
36dffab6 3783 int active_balance = 0;
ad273b32 3784
d15bcfdb 3785 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3786 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3787 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3788 return -1;
ad273b32
VS
3789
3790 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3791 return -1;
3792
3793 if (sd->nr_balance_failed++ < 2)
3794 return -1;
3795
3796 /*
3797 * The only task running in a non-idle cpu can be moved to this
3798 * cpu in an attempt to completely freeup the other CPU
3799 * package. The same method used to move task in load_balance()
3800 * have been extended for load_balance_newidle() to speedup
3801 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3802 *
3803 * The package power saving logic comes from
3804 * find_busiest_group(). If there are no imbalance, then
3805 * f_b_g() will return NULL. However when sched_mc={1,2} then
3806 * f_b_g() will select a group from which a running task may be
3807 * pulled to this cpu in order to make the other package idle.
3808 * If there is no opportunity to make a package idle and if
3809 * there are no imbalance, then f_b_g() will return NULL and no
3810 * action will be taken in load_balance_newidle().
3811 *
3812 * Under normal task pull operation due to imbalance, there
3813 * will be more than one task in the source run queue and
3814 * move_tasks() will succeed. ld_moved will be true and this
3815 * active balance code will not be triggered.
3816 */
3817
3818 /* Lock busiest in correct order while this_rq is held */
3819 double_lock_balance(this_rq, busiest);
3820
3821 /*
3822 * don't kick the migration_thread, if the curr
3823 * task on busiest cpu can't be moved to this_cpu
3824 */
6ca09dfc 3825 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3826 double_unlock_balance(this_rq, busiest);
3827 all_pinned = 1;
3828 return ld_moved;
3829 }
3830
3831 if (!busiest->active_balance) {
3832 busiest->active_balance = 1;
3833 busiest->push_cpu = this_cpu;
3834 active_balance = 1;
3835 }
3836
3837 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3838 /*
3839 * Should not call ttwu while holding a rq->lock
3840 */
3841 spin_unlock(&this_rq->lock);
ad273b32
VS
3842 if (active_balance)
3843 wake_up_process(busiest->migration_thread);
da8d5089 3844 spin_lock(&this_rq->lock);
ad273b32 3845
5969fe06 3846 } else
16cfb1c0 3847 sd->nr_balance_failed = 0;
1da177e4 3848
3e5459b4 3849 update_shares_locked(this_rq, sd);
43010659 3850 return ld_moved;
16cfb1c0
NP
3851
3852out_balanced:
d15bcfdb 3853 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3854 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3855 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3856 return -1;
16cfb1c0 3857 sd->nr_balance_failed = 0;
48f24c4d 3858
16cfb1c0 3859 return 0;
1da177e4
LT
3860}
3861
3862/*
3863 * idle_balance is called by schedule() if this_cpu is about to become
3864 * idle. Attempts to pull tasks from other CPUs.
3865 */
70b97a7f 3866static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3867{
3868 struct sched_domain *sd;
efbe027e 3869 int pulled_task = 0;
dd41f596 3870 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3871 cpumask_var_t tmpmask;
3872
3873 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3874 return;
1da177e4
LT
3875
3876 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3877 unsigned long interval;
3878
3879 if (!(sd->flags & SD_LOAD_BALANCE))
3880 continue;
3881
3882 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3883 /* If we've pulled tasks over stop searching: */
7c16ec58 3884 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3885 sd, tmpmask);
92c4ca5c
CL
3886
3887 interval = msecs_to_jiffies(sd->balance_interval);
3888 if (time_after(next_balance, sd->last_balance + interval))
3889 next_balance = sd->last_balance + interval;
3890 if (pulled_task)
3891 break;
1da177e4 3892 }
dd41f596 3893 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3894 /*
3895 * We are going idle. next_balance may be set based on
3896 * a busy processor. So reset next_balance.
3897 */
3898 this_rq->next_balance = next_balance;
dd41f596 3899 }
4d2732c6 3900 free_cpumask_var(tmpmask);
1da177e4
LT
3901}
3902
3903/*
3904 * active_load_balance is run by migration threads. It pushes running tasks
3905 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3906 * running on each physical CPU where possible, and avoids physical /
3907 * logical imbalances.
3908 *
3909 * Called with busiest_rq locked.
3910 */
70b97a7f 3911static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3912{
39507451 3913 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3914 struct sched_domain *sd;
3915 struct rq *target_rq;
39507451 3916
48f24c4d 3917 /* Is there any task to move? */
39507451 3918 if (busiest_rq->nr_running <= 1)
39507451
NP
3919 return;
3920
3921 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3922
3923 /*
39507451 3924 * This condition is "impossible", if it occurs
41a2d6cf 3925 * we need to fix it. Originally reported by
39507451 3926 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3927 */
39507451 3928 BUG_ON(busiest_rq == target_rq);
1da177e4 3929
39507451
NP
3930 /* move a task from busiest_rq to target_rq */
3931 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3932 update_rq_clock(busiest_rq);
3933 update_rq_clock(target_rq);
39507451
NP
3934
3935 /* Search for an sd spanning us and the target CPU. */
c96d145e 3936 for_each_domain(target_cpu, sd) {
39507451 3937 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3938 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3939 break;
c96d145e 3940 }
39507451 3941
48f24c4d 3942 if (likely(sd)) {
2d72376b 3943 schedstat_inc(sd, alb_count);
39507451 3944
43010659
PW
3945 if (move_one_task(target_rq, target_cpu, busiest_rq,
3946 sd, CPU_IDLE))
48f24c4d
IM
3947 schedstat_inc(sd, alb_pushed);
3948 else
3949 schedstat_inc(sd, alb_failed);
3950 }
1b12bbc7 3951 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3952}
3953
46cb4b7c
SS
3954#ifdef CONFIG_NO_HZ
3955static struct {
3956 atomic_t load_balancer;
7d1e6a9b 3957 cpumask_var_t cpu_mask;
46cb4b7c
SS
3958} nohz ____cacheline_aligned = {
3959 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3960};
3961
7835b98b 3962/*
46cb4b7c
SS
3963 * This routine will try to nominate the ilb (idle load balancing)
3964 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3965 * load balancing on behalf of all those cpus. If all the cpus in the system
3966 * go into this tickless mode, then there will be no ilb owner (as there is
3967 * no need for one) and all the cpus will sleep till the next wakeup event
3968 * arrives...
3969 *
3970 * For the ilb owner, tick is not stopped. And this tick will be used
3971 * for idle load balancing. ilb owner will still be part of
3972 * nohz.cpu_mask..
7835b98b 3973 *
46cb4b7c
SS
3974 * While stopping the tick, this cpu will become the ilb owner if there
3975 * is no other owner. And will be the owner till that cpu becomes busy
3976 * or if all cpus in the system stop their ticks at which point
3977 * there is no need for ilb owner.
3978 *
3979 * When the ilb owner becomes busy, it nominates another owner, during the
3980 * next busy scheduler_tick()
3981 */
3982int select_nohz_load_balancer(int stop_tick)
3983{
3984 int cpu = smp_processor_id();
3985
3986 if (stop_tick) {
46cb4b7c
SS
3987 cpu_rq(cpu)->in_nohz_recently = 1;
3988
483b4ee6
SS
3989 if (!cpu_active(cpu)) {
3990 if (atomic_read(&nohz.load_balancer) != cpu)
3991 return 0;
3992
3993 /*
3994 * If we are going offline and still the leader,
3995 * give up!
3996 */
46cb4b7c
SS
3997 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3998 BUG();
483b4ee6 3999
46cb4b7c
SS
4000 return 0;
4001 }
4002
483b4ee6
SS
4003 cpumask_set_cpu(cpu, nohz.cpu_mask);
4004
46cb4b7c 4005 /* time for ilb owner also to sleep */
7d1e6a9b 4006 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4007 if (atomic_read(&nohz.load_balancer) == cpu)
4008 atomic_set(&nohz.load_balancer, -1);
4009 return 0;
4010 }
4011
4012 if (atomic_read(&nohz.load_balancer) == -1) {
4013 /* make me the ilb owner */
4014 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4015 return 1;
4016 } else if (atomic_read(&nohz.load_balancer) == cpu)
4017 return 1;
4018 } else {
7d1e6a9b 4019 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4020 return 0;
4021
7d1e6a9b 4022 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4023
4024 if (atomic_read(&nohz.load_balancer) == cpu)
4025 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4026 BUG();
4027 }
4028 return 0;
4029}
4030#endif
4031
4032static DEFINE_SPINLOCK(balancing);
4033
4034/*
7835b98b
CL
4035 * It checks each scheduling domain to see if it is due to be balanced,
4036 * and initiates a balancing operation if so.
4037 *
4038 * Balancing parameters are set up in arch_init_sched_domains.
4039 */
a9957449 4040static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4041{
46cb4b7c
SS
4042 int balance = 1;
4043 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4044 unsigned long interval;
4045 struct sched_domain *sd;
46cb4b7c 4046 /* Earliest time when we have to do rebalance again */
c9819f45 4047 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4048 int update_next_balance = 0;
d07355f5 4049 int need_serialize;
a0e90245
RR
4050 cpumask_var_t tmp;
4051
4052 /* Fails alloc? Rebalancing probably not a priority right now. */
4053 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4054 return;
1da177e4 4055
46cb4b7c 4056 for_each_domain(cpu, sd) {
1da177e4
LT
4057 if (!(sd->flags & SD_LOAD_BALANCE))
4058 continue;
4059
4060 interval = sd->balance_interval;
d15bcfdb 4061 if (idle != CPU_IDLE)
1da177e4
LT
4062 interval *= sd->busy_factor;
4063
4064 /* scale ms to jiffies */
4065 interval = msecs_to_jiffies(interval);
4066 if (unlikely(!interval))
4067 interval = 1;
dd41f596
IM
4068 if (interval > HZ*NR_CPUS/10)
4069 interval = HZ*NR_CPUS/10;
4070
d07355f5 4071 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4072
d07355f5 4073 if (need_serialize) {
08c183f3
CL
4074 if (!spin_trylock(&balancing))
4075 goto out;
4076 }
4077
c9819f45 4078 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4079 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4080 /*
4081 * We've pulled tasks over so either we're no
5969fe06
NP
4082 * longer idle, or one of our SMT siblings is
4083 * not idle.
4084 */
d15bcfdb 4085 idle = CPU_NOT_IDLE;
1da177e4 4086 }
1bd77f2d 4087 sd->last_balance = jiffies;
1da177e4 4088 }
d07355f5 4089 if (need_serialize)
08c183f3
CL
4090 spin_unlock(&balancing);
4091out:
f549da84 4092 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4093 next_balance = sd->last_balance + interval;
f549da84
SS
4094 update_next_balance = 1;
4095 }
783609c6
SS
4096
4097 /*
4098 * Stop the load balance at this level. There is another
4099 * CPU in our sched group which is doing load balancing more
4100 * actively.
4101 */
4102 if (!balance)
4103 break;
1da177e4 4104 }
f549da84
SS
4105
4106 /*
4107 * next_balance will be updated only when there is a need.
4108 * When the cpu is attached to null domain for ex, it will not be
4109 * updated.
4110 */
4111 if (likely(update_next_balance))
4112 rq->next_balance = next_balance;
a0e90245
RR
4113
4114 free_cpumask_var(tmp);
46cb4b7c
SS
4115}
4116
4117/*
4118 * run_rebalance_domains is triggered when needed from the scheduler tick.
4119 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4120 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4121 */
4122static void run_rebalance_domains(struct softirq_action *h)
4123{
dd41f596
IM
4124 int this_cpu = smp_processor_id();
4125 struct rq *this_rq = cpu_rq(this_cpu);
4126 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4127 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4128
dd41f596 4129 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4130
4131#ifdef CONFIG_NO_HZ
4132 /*
4133 * If this cpu is the owner for idle load balancing, then do the
4134 * balancing on behalf of the other idle cpus whose ticks are
4135 * stopped.
4136 */
dd41f596
IM
4137 if (this_rq->idle_at_tick &&
4138 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4139 struct rq *rq;
4140 int balance_cpu;
4141
7d1e6a9b
RR
4142 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4143 if (balance_cpu == this_cpu)
4144 continue;
4145
46cb4b7c
SS
4146 /*
4147 * If this cpu gets work to do, stop the load balancing
4148 * work being done for other cpus. Next load
4149 * balancing owner will pick it up.
4150 */
4151 if (need_resched())
4152 break;
4153
de0cf899 4154 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4155
4156 rq = cpu_rq(balance_cpu);
dd41f596
IM
4157 if (time_after(this_rq->next_balance, rq->next_balance))
4158 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4159 }
4160 }
4161#endif
4162}
4163
8a0be9ef
FW
4164static inline int on_null_domain(int cpu)
4165{
4166 return !rcu_dereference(cpu_rq(cpu)->sd);
4167}
4168
46cb4b7c
SS
4169/*
4170 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4171 *
4172 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4173 * idle load balancing owner or decide to stop the periodic load balancing,
4174 * if the whole system is idle.
4175 */
dd41f596 4176static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4177{
46cb4b7c
SS
4178#ifdef CONFIG_NO_HZ
4179 /*
4180 * If we were in the nohz mode recently and busy at the current
4181 * scheduler tick, then check if we need to nominate new idle
4182 * load balancer.
4183 */
4184 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4185 rq->in_nohz_recently = 0;
4186
4187 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4188 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4189 atomic_set(&nohz.load_balancer, -1);
4190 }
4191
4192 if (atomic_read(&nohz.load_balancer) == -1) {
4193 /*
4194 * simple selection for now: Nominate the
4195 * first cpu in the nohz list to be the next
4196 * ilb owner.
4197 *
4198 * TBD: Traverse the sched domains and nominate
4199 * the nearest cpu in the nohz.cpu_mask.
4200 */
7d1e6a9b 4201 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4202
434d53b0 4203 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4204 resched_cpu(ilb);
4205 }
4206 }
4207
4208 /*
4209 * If this cpu is idle and doing idle load balancing for all the
4210 * cpus with ticks stopped, is it time for that to stop?
4211 */
4212 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4213 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4214 resched_cpu(cpu);
4215 return;
4216 }
4217
4218 /*
4219 * If this cpu is idle and the idle load balancing is done by
4220 * someone else, then no need raise the SCHED_SOFTIRQ
4221 */
4222 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4223 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4224 return;
4225#endif
8a0be9ef
FW
4226 /* Don't need to rebalance while attached to NULL domain */
4227 if (time_after_eq(jiffies, rq->next_balance) &&
4228 likely(!on_null_domain(cpu)))
46cb4b7c 4229 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4230}
dd41f596
IM
4231
4232#else /* CONFIG_SMP */
4233
1da177e4
LT
4234/*
4235 * on UP we do not need to balance between CPUs:
4236 */
70b97a7f 4237static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4238{
4239}
dd41f596 4240
1da177e4
LT
4241#endif
4242
1da177e4
LT
4243DEFINE_PER_CPU(struct kernel_stat, kstat);
4244
4245EXPORT_PER_CPU_SYMBOL(kstat);
4246
4247/*
f06febc9
FM
4248 * Return any ns on the sched_clock that have not yet been banked in
4249 * @p in case that task is currently running.
1da177e4 4250 */
bb34d92f 4251unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4252{
1da177e4 4253 unsigned long flags;
41b86e9c 4254 struct rq *rq;
bb34d92f 4255 u64 ns = 0;
48f24c4d 4256
41b86e9c 4257 rq = task_rq_lock(p, &flags);
1508487e 4258
051a1d1a 4259 if (task_current(rq, p)) {
f06febc9
FM
4260 u64 delta_exec;
4261
a8e504d2
IM
4262 update_rq_clock(rq);
4263 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4264 if ((s64)delta_exec > 0)
bb34d92f 4265 ns = delta_exec;
41b86e9c 4266 }
48f24c4d 4267
41b86e9c 4268 task_rq_unlock(rq, &flags);
48f24c4d 4269
1da177e4
LT
4270 return ns;
4271}
4272
1da177e4
LT
4273/*
4274 * Account user cpu time to a process.
4275 * @p: the process that the cpu time gets accounted to
1da177e4 4276 * @cputime: the cpu time spent in user space since the last update
457533a7 4277 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4278 */
457533a7
MS
4279void account_user_time(struct task_struct *p, cputime_t cputime,
4280 cputime_t cputime_scaled)
1da177e4
LT
4281{
4282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4283 cputime64_t tmp;
4284
457533a7 4285 /* Add user time to process. */
1da177e4 4286 p->utime = cputime_add(p->utime, cputime);
457533a7 4287 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4288 account_group_user_time(p, cputime);
1da177e4
LT
4289
4290 /* Add user time to cpustat. */
4291 tmp = cputime_to_cputime64(cputime);
4292 if (TASK_NICE(p) > 0)
4293 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4294 else
4295 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4296 /* Account for user time used */
4297 acct_update_integrals(p);
1da177e4
LT
4298}
4299
94886b84
LV
4300/*
4301 * Account guest cpu time to a process.
4302 * @p: the process that the cpu time gets accounted to
4303 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4304 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4305 */
457533a7
MS
4306static void account_guest_time(struct task_struct *p, cputime_t cputime,
4307 cputime_t cputime_scaled)
94886b84
LV
4308{
4309 cputime64_t tmp;
4310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4311
4312 tmp = cputime_to_cputime64(cputime);
4313
457533a7 4314 /* Add guest time to process. */
94886b84 4315 p->utime = cputime_add(p->utime, cputime);
457533a7 4316 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4317 account_group_user_time(p, cputime);
94886b84
LV
4318 p->gtime = cputime_add(p->gtime, cputime);
4319
457533a7 4320 /* Add guest time to cpustat. */
94886b84
LV
4321 cpustat->user = cputime64_add(cpustat->user, tmp);
4322 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4323}
4324
1da177e4
LT
4325/*
4326 * Account system cpu time to a process.
4327 * @p: the process that the cpu time gets accounted to
4328 * @hardirq_offset: the offset to subtract from hardirq_count()
4329 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4330 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4331 */
4332void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4333 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4334{
4335 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4336 cputime64_t tmp;
4337
983ed7a6 4338 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4339 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4340 return;
4341 }
94886b84 4342
457533a7 4343 /* Add system time to process. */
1da177e4 4344 p->stime = cputime_add(p->stime, cputime);
457533a7 4345 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4346 account_group_system_time(p, cputime);
1da177e4
LT
4347
4348 /* Add system time to cpustat. */
4349 tmp = cputime_to_cputime64(cputime);
4350 if (hardirq_count() - hardirq_offset)
4351 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4352 else if (softirq_count())
4353 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4354 else
79741dd3
MS
4355 cpustat->system = cputime64_add(cpustat->system, tmp);
4356
1da177e4
LT
4357 /* Account for system time used */
4358 acct_update_integrals(p);
1da177e4
LT
4359}
4360
c66f08be 4361/*
1da177e4 4362 * Account for involuntary wait time.
1da177e4 4363 * @steal: the cpu time spent in involuntary wait
c66f08be 4364 */
79741dd3 4365void account_steal_time(cputime_t cputime)
c66f08be 4366{
79741dd3
MS
4367 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4368 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4369
4370 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4371}
4372
1da177e4 4373/*
79741dd3
MS
4374 * Account for idle time.
4375 * @cputime: the cpu time spent in idle wait
1da177e4 4376 */
79741dd3 4377void account_idle_time(cputime_t cputime)
1da177e4
LT
4378{
4379 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4380 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4381 struct rq *rq = this_rq();
1da177e4 4382
79741dd3
MS
4383 if (atomic_read(&rq->nr_iowait) > 0)
4384 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4385 else
4386 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4387}
4388
79741dd3
MS
4389#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4390
4391/*
4392 * Account a single tick of cpu time.
4393 * @p: the process that the cpu time gets accounted to
4394 * @user_tick: indicates if the tick is a user or a system tick
4395 */
4396void account_process_tick(struct task_struct *p, int user_tick)
4397{
4398 cputime_t one_jiffy = jiffies_to_cputime(1);
4399 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4400 struct rq *rq = this_rq();
4401
4402 if (user_tick)
4403 account_user_time(p, one_jiffy, one_jiffy_scaled);
4404 else if (p != rq->idle)
4405 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4406 one_jiffy_scaled);
4407 else
4408 account_idle_time(one_jiffy);
4409}
4410
4411/*
4412 * Account multiple ticks of steal time.
4413 * @p: the process from which the cpu time has been stolen
4414 * @ticks: number of stolen ticks
4415 */
4416void account_steal_ticks(unsigned long ticks)
4417{
4418 account_steal_time(jiffies_to_cputime(ticks));
4419}
4420
4421/*
4422 * Account multiple ticks of idle time.
4423 * @ticks: number of stolen ticks
4424 */
4425void account_idle_ticks(unsigned long ticks)
4426{
4427 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4428}
4429
79741dd3
MS
4430#endif
4431
49048622
BS
4432/*
4433 * Use precise platform statistics if available:
4434 */
4435#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4436cputime_t task_utime(struct task_struct *p)
4437{
4438 return p->utime;
4439}
4440
4441cputime_t task_stime(struct task_struct *p)
4442{
4443 return p->stime;
4444}
4445#else
4446cputime_t task_utime(struct task_struct *p)
4447{
4448 clock_t utime = cputime_to_clock_t(p->utime),
4449 total = utime + cputime_to_clock_t(p->stime);
4450 u64 temp;
4451
4452 /*
4453 * Use CFS's precise accounting:
4454 */
4455 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4456
4457 if (total) {
4458 temp *= utime;
4459 do_div(temp, total);
4460 }
4461 utime = (clock_t)temp;
4462
4463 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4464 return p->prev_utime;
4465}
4466
4467cputime_t task_stime(struct task_struct *p)
4468{
4469 clock_t stime;
4470
4471 /*
4472 * Use CFS's precise accounting. (we subtract utime from
4473 * the total, to make sure the total observed by userspace
4474 * grows monotonically - apps rely on that):
4475 */
4476 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4477 cputime_to_clock_t(task_utime(p));
4478
4479 if (stime >= 0)
4480 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4481
4482 return p->prev_stime;
4483}
4484#endif
4485
4486inline cputime_t task_gtime(struct task_struct *p)
4487{
4488 return p->gtime;
4489}
4490
7835b98b
CL
4491/*
4492 * This function gets called by the timer code, with HZ frequency.
4493 * We call it with interrupts disabled.
4494 *
4495 * It also gets called by the fork code, when changing the parent's
4496 * timeslices.
4497 */
4498void scheduler_tick(void)
4499{
7835b98b
CL
4500 int cpu = smp_processor_id();
4501 struct rq *rq = cpu_rq(cpu);
dd41f596 4502 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4503
4504 sched_clock_tick();
dd41f596
IM
4505
4506 spin_lock(&rq->lock);
3e51f33f 4507 update_rq_clock(rq);
f1a438d8 4508 update_cpu_load(rq);
fa85ae24 4509 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4510 spin_unlock(&rq->lock);
7835b98b 4511
e418e1c2 4512#ifdef CONFIG_SMP
dd41f596
IM
4513 rq->idle_at_tick = idle_cpu(cpu);
4514 trigger_load_balance(rq, cpu);
e418e1c2 4515#endif
1da177e4
LT
4516}
4517
6cd8a4bb
SR
4518#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4519 defined(CONFIG_PREEMPT_TRACER))
4520
4521static inline unsigned long get_parent_ip(unsigned long addr)
4522{
4523 if (in_lock_functions(addr)) {
4524 addr = CALLER_ADDR2;
4525 if (in_lock_functions(addr))
4526 addr = CALLER_ADDR3;
4527 }
4528 return addr;
4529}
1da177e4 4530
43627582 4531void __kprobes add_preempt_count(int val)
1da177e4 4532{
6cd8a4bb 4533#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4534 /*
4535 * Underflow?
4536 */
9a11b49a
IM
4537 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4538 return;
6cd8a4bb 4539#endif
1da177e4 4540 preempt_count() += val;
6cd8a4bb 4541#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4542 /*
4543 * Spinlock count overflowing soon?
4544 */
33859f7f
MOS
4545 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4546 PREEMPT_MASK - 10);
6cd8a4bb
SR
4547#endif
4548 if (preempt_count() == val)
4549 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4550}
4551EXPORT_SYMBOL(add_preempt_count);
4552
43627582 4553void __kprobes sub_preempt_count(int val)
1da177e4 4554{
6cd8a4bb 4555#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4556 /*
4557 * Underflow?
4558 */
01e3eb82 4559 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4560 return;
1da177e4
LT
4561 /*
4562 * Is the spinlock portion underflowing?
4563 */
9a11b49a
IM
4564 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4565 !(preempt_count() & PREEMPT_MASK)))
4566 return;
6cd8a4bb 4567#endif
9a11b49a 4568
6cd8a4bb
SR
4569 if (preempt_count() == val)
4570 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4571 preempt_count() -= val;
4572}
4573EXPORT_SYMBOL(sub_preempt_count);
4574
4575#endif
4576
4577/*
dd41f596 4578 * Print scheduling while atomic bug:
1da177e4 4579 */
dd41f596 4580static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4581{
838225b4
SS
4582 struct pt_regs *regs = get_irq_regs();
4583
4584 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4585 prev->comm, prev->pid, preempt_count());
4586
dd41f596 4587 debug_show_held_locks(prev);
e21f5b15 4588 print_modules();
dd41f596
IM
4589 if (irqs_disabled())
4590 print_irqtrace_events(prev);
838225b4
SS
4591
4592 if (regs)
4593 show_regs(regs);
4594 else
4595 dump_stack();
dd41f596 4596}
1da177e4 4597
dd41f596
IM
4598/*
4599 * Various schedule()-time debugging checks and statistics:
4600 */
4601static inline void schedule_debug(struct task_struct *prev)
4602{
1da177e4 4603 /*
41a2d6cf 4604 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4605 * schedule() atomically, we ignore that path for now.
4606 * Otherwise, whine if we are scheduling when we should not be.
4607 */
3f33a7ce 4608 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4609 __schedule_bug(prev);
4610
1da177e4
LT
4611 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4612
2d72376b 4613 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4614#ifdef CONFIG_SCHEDSTATS
4615 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4616 schedstat_inc(this_rq(), bkl_count);
4617 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4618 }
4619#endif
dd41f596
IM
4620}
4621
df1c99d4
MG
4622static void put_prev_task(struct rq *rq, struct task_struct *prev)
4623{
4624 if (prev->state == TASK_RUNNING) {
4625 u64 runtime = prev->se.sum_exec_runtime;
4626
4627 runtime -= prev->se.prev_sum_exec_runtime;
4628 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4629
4630 /*
4631 * In order to avoid avg_overlap growing stale when we are
4632 * indeed overlapping and hence not getting put to sleep, grow
4633 * the avg_overlap on preemption.
4634 *
4635 * We use the average preemption runtime because that
4636 * correlates to the amount of cache footprint a task can
4637 * build up.
4638 */
4639 update_avg(&prev->se.avg_overlap, runtime);
4640 }
4641 prev->sched_class->put_prev_task(rq, prev);
4642}
4643
dd41f596
IM
4644/*
4645 * Pick up the highest-prio task:
4646 */
4647static inline struct task_struct *
b67802ea 4648pick_next_task(struct rq *rq)
dd41f596 4649{
5522d5d5 4650 const struct sched_class *class;
dd41f596 4651 struct task_struct *p;
1da177e4
LT
4652
4653 /*
dd41f596
IM
4654 * Optimization: we know that if all tasks are in
4655 * the fair class we can call that function directly:
1da177e4 4656 */
dd41f596 4657 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4658 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4659 if (likely(p))
4660 return p;
1da177e4
LT
4661 }
4662
dd41f596
IM
4663 class = sched_class_highest;
4664 for ( ; ; ) {
fb8d4724 4665 p = class->pick_next_task(rq);
dd41f596
IM
4666 if (p)
4667 return p;
4668 /*
4669 * Will never be NULL as the idle class always
4670 * returns a non-NULL p:
4671 */
4672 class = class->next;
4673 }
4674}
1da177e4 4675
dd41f596
IM
4676/*
4677 * schedule() is the main scheduler function.
4678 */
4679asmlinkage void __sched schedule(void)
4680{
4681 struct task_struct *prev, *next;
67ca7bde 4682 unsigned long *switch_count;
dd41f596 4683 struct rq *rq;
31656519 4684 int cpu;
dd41f596
IM
4685
4686need_resched:
4687 preempt_disable();
4688 cpu = smp_processor_id();
4689 rq = cpu_rq(cpu);
4690 rcu_qsctr_inc(cpu);
4691 prev = rq->curr;
4692 switch_count = &prev->nivcsw;
4693
4694 release_kernel_lock(prev);
4695need_resched_nonpreemptible:
4696
4697 schedule_debug(prev);
1da177e4 4698
31656519 4699 if (sched_feat(HRTICK))
f333fdc9 4700 hrtick_clear(rq);
8f4d37ec 4701
8cd162ce 4702 spin_lock_irq(&rq->lock);
3e51f33f 4703 update_rq_clock(rq);
1e819950 4704 clear_tsk_need_resched(prev);
1da177e4 4705
1da177e4 4706 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4707 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4708 prev->state = TASK_RUNNING;
16882c1e 4709 else
2e1cb74a 4710 deactivate_task(rq, prev, 1);
dd41f596 4711 switch_count = &prev->nvcsw;
1da177e4
LT
4712 }
4713
9a897c5a
SR
4714#ifdef CONFIG_SMP
4715 if (prev->sched_class->pre_schedule)
4716 prev->sched_class->pre_schedule(rq, prev);
4717#endif
f65eda4f 4718
dd41f596 4719 if (unlikely(!rq->nr_running))
1da177e4 4720 idle_balance(cpu, rq);
1da177e4 4721
df1c99d4 4722 put_prev_task(rq, prev);
b67802ea 4723 next = pick_next_task(rq);
1da177e4 4724
1da177e4 4725 if (likely(prev != next)) {
673a90a1
DS
4726 sched_info_switch(prev, next);
4727
1da177e4
LT
4728 rq->nr_switches++;
4729 rq->curr = next;
4730 ++*switch_count;
4731
dd41f596 4732 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4733 /*
4734 * the context switch might have flipped the stack from under
4735 * us, hence refresh the local variables.
4736 */
4737 cpu = smp_processor_id();
4738 rq = cpu_rq(cpu);
1da177e4
LT
4739 } else
4740 spin_unlock_irq(&rq->lock);
4741
8f4d37ec 4742 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4743 goto need_resched_nonpreemptible;
8f4d37ec 4744
1da177e4
LT
4745 preempt_enable_no_resched();
4746 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4747 goto need_resched;
4748}
1da177e4
LT
4749EXPORT_SYMBOL(schedule);
4750
4751#ifdef CONFIG_PREEMPT
4752/*
2ed6e34f 4753 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4754 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4755 * occur there and call schedule directly.
4756 */
4757asmlinkage void __sched preempt_schedule(void)
4758{
4759 struct thread_info *ti = current_thread_info();
6478d880 4760
1da177e4
LT
4761 /*
4762 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4763 * we do not want to preempt the current task. Just return..
1da177e4 4764 */
beed33a8 4765 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4766 return;
4767
3a5c359a
AK
4768 do {
4769 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4770 schedule();
3a5c359a 4771 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4772
3a5c359a
AK
4773 /*
4774 * Check again in case we missed a preemption opportunity
4775 * between schedule and now.
4776 */
4777 barrier();
5ed0cec0 4778 } while (need_resched());
1da177e4 4779}
1da177e4
LT
4780EXPORT_SYMBOL(preempt_schedule);
4781
4782/*
2ed6e34f 4783 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4784 * off of irq context.
4785 * Note, that this is called and return with irqs disabled. This will
4786 * protect us against recursive calling from irq.
4787 */
4788asmlinkage void __sched preempt_schedule_irq(void)
4789{
4790 struct thread_info *ti = current_thread_info();
6478d880 4791
2ed6e34f 4792 /* Catch callers which need to be fixed */
1da177e4
LT
4793 BUG_ON(ti->preempt_count || !irqs_disabled());
4794
3a5c359a
AK
4795 do {
4796 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4797 local_irq_enable();
4798 schedule();
4799 local_irq_disable();
3a5c359a 4800 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4801
3a5c359a
AK
4802 /*
4803 * Check again in case we missed a preemption opportunity
4804 * between schedule and now.
4805 */
4806 barrier();
5ed0cec0 4807 } while (need_resched());
1da177e4
LT
4808}
4809
4810#endif /* CONFIG_PREEMPT */
4811
95cdf3b7
IM
4812int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4813 void *key)
1da177e4 4814{
48f24c4d 4815 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4816}
1da177e4
LT
4817EXPORT_SYMBOL(default_wake_function);
4818
4819/*
41a2d6cf
IM
4820 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4821 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4822 * number) then we wake all the non-exclusive tasks and one exclusive task.
4823 *
4824 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4825 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4826 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4827 */
777c6c5f
JW
4828void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4829 int nr_exclusive, int sync, void *key)
1da177e4 4830{
2e45874c 4831 wait_queue_t *curr, *next;
1da177e4 4832
2e45874c 4833 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4834 unsigned flags = curr->flags;
4835
1da177e4 4836 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4837 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4838 break;
4839 }
4840}
4841
4842/**
4843 * __wake_up - wake up threads blocked on a waitqueue.
4844 * @q: the waitqueue
4845 * @mode: which threads
4846 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4847 * @key: is directly passed to the wakeup function
1da177e4 4848 */
7ad5b3a5 4849void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4850 int nr_exclusive, void *key)
1da177e4
LT
4851{
4852 unsigned long flags;
4853
4854 spin_lock_irqsave(&q->lock, flags);
4855 __wake_up_common(q, mode, nr_exclusive, 0, key);
4856 spin_unlock_irqrestore(&q->lock, flags);
4857}
1da177e4
LT
4858EXPORT_SYMBOL(__wake_up);
4859
4860/*
4861 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4862 */
7ad5b3a5 4863void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4864{
4865 __wake_up_common(q, mode, 1, 0, NULL);
4866}
4867
4868/**
67be2dd1 4869 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4870 * @q: the waitqueue
4871 * @mode: which threads
4872 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4873 *
4874 * The sync wakeup differs that the waker knows that it will schedule
4875 * away soon, so while the target thread will be woken up, it will not
4876 * be migrated to another CPU - ie. the two threads are 'synchronized'
4877 * with each other. This can prevent needless bouncing between CPUs.
4878 *
4879 * On UP it can prevent extra preemption.
4880 */
7ad5b3a5 4881void
95cdf3b7 4882__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4883{
4884 unsigned long flags;
4885 int sync = 1;
4886
4887 if (unlikely(!q))
4888 return;
4889
4890 if (unlikely(!nr_exclusive))
4891 sync = 0;
4892
4893 spin_lock_irqsave(&q->lock, flags);
4894 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4895 spin_unlock_irqrestore(&q->lock, flags);
4896}
4897EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4898
65eb3dc6
KD
4899/**
4900 * complete: - signals a single thread waiting on this completion
4901 * @x: holds the state of this particular completion
4902 *
4903 * This will wake up a single thread waiting on this completion. Threads will be
4904 * awakened in the same order in which they were queued.
4905 *
4906 * See also complete_all(), wait_for_completion() and related routines.
4907 */
b15136e9 4908void complete(struct completion *x)
1da177e4
LT
4909{
4910 unsigned long flags;
4911
4912 spin_lock_irqsave(&x->wait.lock, flags);
4913 x->done++;
d9514f6c 4914 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4915 spin_unlock_irqrestore(&x->wait.lock, flags);
4916}
4917EXPORT_SYMBOL(complete);
4918
65eb3dc6
KD
4919/**
4920 * complete_all: - signals all threads waiting on this completion
4921 * @x: holds the state of this particular completion
4922 *
4923 * This will wake up all threads waiting on this particular completion event.
4924 */
b15136e9 4925void complete_all(struct completion *x)
1da177e4
LT
4926{
4927 unsigned long flags;
4928
4929 spin_lock_irqsave(&x->wait.lock, flags);
4930 x->done += UINT_MAX/2;
d9514f6c 4931 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4932 spin_unlock_irqrestore(&x->wait.lock, flags);
4933}
4934EXPORT_SYMBOL(complete_all);
4935
8cbbe86d
AK
4936static inline long __sched
4937do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4938{
1da177e4
LT
4939 if (!x->done) {
4940 DECLARE_WAITQUEUE(wait, current);
4941
4942 wait.flags |= WQ_FLAG_EXCLUSIVE;
4943 __add_wait_queue_tail(&x->wait, &wait);
4944 do {
94d3d824 4945 if (signal_pending_state(state, current)) {
ea71a546
ON
4946 timeout = -ERESTARTSYS;
4947 break;
8cbbe86d
AK
4948 }
4949 __set_current_state(state);
1da177e4
LT
4950 spin_unlock_irq(&x->wait.lock);
4951 timeout = schedule_timeout(timeout);
4952 spin_lock_irq(&x->wait.lock);
ea71a546 4953 } while (!x->done && timeout);
1da177e4 4954 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4955 if (!x->done)
4956 return timeout;
1da177e4
LT
4957 }
4958 x->done--;
ea71a546 4959 return timeout ?: 1;
1da177e4 4960}
1da177e4 4961
8cbbe86d
AK
4962static long __sched
4963wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4964{
1da177e4
LT
4965 might_sleep();
4966
4967 spin_lock_irq(&x->wait.lock);
8cbbe86d 4968 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4969 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4970 return timeout;
4971}
1da177e4 4972
65eb3dc6
KD
4973/**
4974 * wait_for_completion: - waits for completion of a task
4975 * @x: holds the state of this particular completion
4976 *
4977 * This waits to be signaled for completion of a specific task. It is NOT
4978 * interruptible and there is no timeout.
4979 *
4980 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4981 * and interrupt capability. Also see complete().
4982 */
b15136e9 4983void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4984{
4985 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4986}
8cbbe86d 4987EXPORT_SYMBOL(wait_for_completion);
1da177e4 4988
65eb3dc6
KD
4989/**
4990 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4991 * @x: holds the state of this particular completion
4992 * @timeout: timeout value in jiffies
4993 *
4994 * This waits for either a completion of a specific task to be signaled or for a
4995 * specified timeout to expire. The timeout is in jiffies. It is not
4996 * interruptible.
4997 */
b15136e9 4998unsigned long __sched
8cbbe86d 4999wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5000{
8cbbe86d 5001 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5002}
8cbbe86d 5003EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5004
65eb3dc6
KD
5005/**
5006 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5007 * @x: holds the state of this particular completion
5008 *
5009 * This waits for completion of a specific task to be signaled. It is
5010 * interruptible.
5011 */
8cbbe86d 5012int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5013{
51e97990
AK
5014 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5015 if (t == -ERESTARTSYS)
5016 return t;
5017 return 0;
0fec171c 5018}
8cbbe86d 5019EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5020
65eb3dc6
KD
5021/**
5022 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5023 * @x: holds the state of this particular completion
5024 * @timeout: timeout value in jiffies
5025 *
5026 * This waits for either a completion of a specific task to be signaled or for a
5027 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5028 */
b15136e9 5029unsigned long __sched
8cbbe86d
AK
5030wait_for_completion_interruptible_timeout(struct completion *x,
5031 unsigned long timeout)
0fec171c 5032{
8cbbe86d 5033 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5034}
8cbbe86d 5035EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5036
65eb3dc6
KD
5037/**
5038 * wait_for_completion_killable: - waits for completion of a task (killable)
5039 * @x: holds the state of this particular completion
5040 *
5041 * This waits to be signaled for completion of a specific task. It can be
5042 * interrupted by a kill signal.
5043 */
009e577e
MW
5044int __sched wait_for_completion_killable(struct completion *x)
5045{
5046 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5047 if (t == -ERESTARTSYS)
5048 return t;
5049 return 0;
5050}
5051EXPORT_SYMBOL(wait_for_completion_killable);
5052
be4de352
DC
5053/**
5054 * try_wait_for_completion - try to decrement a completion without blocking
5055 * @x: completion structure
5056 *
5057 * Returns: 0 if a decrement cannot be done without blocking
5058 * 1 if a decrement succeeded.
5059 *
5060 * If a completion is being used as a counting completion,
5061 * attempt to decrement the counter without blocking. This
5062 * enables us to avoid waiting if the resource the completion
5063 * is protecting is not available.
5064 */
5065bool try_wait_for_completion(struct completion *x)
5066{
5067 int ret = 1;
5068
5069 spin_lock_irq(&x->wait.lock);
5070 if (!x->done)
5071 ret = 0;
5072 else
5073 x->done--;
5074 spin_unlock_irq(&x->wait.lock);
5075 return ret;
5076}
5077EXPORT_SYMBOL(try_wait_for_completion);
5078
5079/**
5080 * completion_done - Test to see if a completion has any waiters
5081 * @x: completion structure
5082 *
5083 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5084 * 1 if there are no waiters.
5085 *
5086 */
5087bool completion_done(struct completion *x)
5088{
5089 int ret = 1;
5090
5091 spin_lock_irq(&x->wait.lock);
5092 if (!x->done)
5093 ret = 0;
5094 spin_unlock_irq(&x->wait.lock);
5095 return ret;
5096}
5097EXPORT_SYMBOL(completion_done);
5098
8cbbe86d
AK
5099static long __sched
5100sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5101{
0fec171c
IM
5102 unsigned long flags;
5103 wait_queue_t wait;
5104
5105 init_waitqueue_entry(&wait, current);
1da177e4 5106
8cbbe86d 5107 __set_current_state(state);
1da177e4 5108
8cbbe86d
AK
5109 spin_lock_irqsave(&q->lock, flags);
5110 __add_wait_queue(q, &wait);
5111 spin_unlock(&q->lock);
5112 timeout = schedule_timeout(timeout);
5113 spin_lock_irq(&q->lock);
5114 __remove_wait_queue(q, &wait);
5115 spin_unlock_irqrestore(&q->lock, flags);
5116
5117 return timeout;
5118}
5119
5120void __sched interruptible_sleep_on(wait_queue_head_t *q)
5121{
5122 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5123}
1da177e4
LT
5124EXPORT_SYMBOL(interruptible_sleep_on);
5125
0fec171c 5126long __sched
95cdf3b7 5127interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5128{
8cbbe86d 5129 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5130}
1da177e4
LT
5131EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5132
0fec171c 5133void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5134{
8cbbe86d 5135 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5136}
1da177e4
LT
5137EXPORT_SYMBOL(sleep_on);
5138
0fec171c 5139long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5140{
8cbbe86d 5141 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5142}
1da177e4
LT
5143EXPORT_SYMBOL(sleep_on_timeout);
5144
b29739f9
IM
5145#ifdef CONFIG_RT_MUTEXES
5146
5147/*
5148 * rt_mutex_setprio - set the current priority of a task
5149 * @p: task
5150 * @prio: prio value (kernel-internal form)
5151 *
5152 * This function changes the 'effective' priority of a task. It does
5153 * not touch ->normal_prio like __setscheduler().
5154 *
5155 * Used by the rt_mutex code to implement priority inheritance logic.
5156 */
36c8b586 5157void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5158{
5159 unsigned long flags;
83b699ed 5160 int oldprio, on_rq, running;
70b97a7f 5161 struct rq *rq;
cb469845 5162 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5163
5164 BUG_ON(prio < 0 || prio > MAX_PRIO);
5165
5166 rq = task_rq_lock(p, &flags);
a8e504d2 5167 update_rq_clock(rq);
b29739f9 5168
d5f9f942 5169 oldprio = p->prio;
dd41f596 5170 on_rq = p->se.on_rq;
051a1d1a 5171 running = task_current(rq, p);
0e1f3483 5172 if (on_rq)
69be72c1 5173 dequeue_task(rq, p, 0);
0e1f3483
HS
5174 if (running)
5175 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5176
5177 if (rt_prio(prio))
5178 p->sched_class = &rt_sched_class;
5179 else
5180 p->sched_class = &fair_sched_class;
5181
b29739f9
IM
5182 p->prio = prio;
5183
0e1f3483
HS
5184 if (running)
5185 p->sched_class->set_curr_task(rq);
dd41f596 5186 if (on_rq) {
8159f87e 5187 enqueue_task(rq, p, 0);
cb469845
SR
5188
5189 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5190 }
5191 task_rq_unlock(rq, &flags);
5192}
5193
5194#endif
5195
36c8b586 5196void set_user_nice(struct task_struct *p, long nice)
1da177e4 5197{
dd41f596 5198 int old_prio, delta, on_rq;
1da177e4 5199 unsigned long flags;
70b97a7f 5200 struct rq *rq;
1da177e4
LT
5201
5202 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5203 return;
5204 /*
5205 * We have to be careful, if called from sys_setpriority(),
5206 * the task might be in the middle of scheduling on another CPU.
5207 */
5208 rq = task_rq_lock(p, &flags);
a8e504d2 5209 update_rq_clock(rq);
1da177e4
LT
5210 /*
5211 * The RT priorities are set via sched_setscheduler(), but we still
5212 * allow the 'normal' nice value to be set - but as expected
5213 * it wont have any effect on scheduling until the task is
dd41f596 5214 * SCHED_FIFO/SCHED_RR:
1da177e4 5215 */
e05606d3 5216 if (task_has_rt_policy(p)) {
1da177e4
LT
5217 p->static_prio = NICE_TO_PRIO(nice);
5218 goto out_unlock;
5219 }
dd41f596 5220 on_rq = p->se.on_rq;
c09595f6 5221 if (on_rq)
69be72c1 5222 dequeue_task(rq, p, 0);
1da177e4 5223
1da177e4 5224 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5225 set_load_weight(p);
b29739f9
IM
5226 old_prio = p->prio;
5227 p->prio = effective_prio(p);
5228 delta = p->prio - old_prio;
1da177e4 5229
dd41f596 5230 if (on_rq) {
8159f87e 5231 enqueue_task(rq, p, 0);
1da177e4 5232 /*
d5f9f942
AM
5233 * If the task increased its priority or is running and
5234 * lowered its priority, then reschedule its CPU:
1da177e4 5235 */
d5f9f942 5236 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5237 resched_task(rq->curr);
5238 }
5239out_unlock:
5240 task_rq_unlock(rq, &flags);
5241}
1da177e4
LT
5242EXPORT_SYMBOL(set_user_nice);
5243
e43379f1
MM
5244/*
5245 * can_nice - check if a task can reduce its nice value
5246 * @p: task
5247 * @nice: nice value
5248 */
36c8b586 5249int can_nice(const struct task_struct *p, const int nice)
e43379f1 5250{
024f4747
MM
5251 /* convert nice value [19,-20] to rlimit style value [1,40] */
5252 int nice_rlim = 20 - nice;
48f24c4d 5253
e43379f1
MM
5254 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5255 capable(CAP_SYS_NICE));
5256}
5257
1da177e4
LT
5258#ifdef __ARCH_WANT_SYS_NICE
5259
5260/*
5261 * sys_nice - change the priority of the current process.
5262 * @increment: priority increment
5263 *
5264 * sys_setpriority is a more generic, but much slower function that
5265 * does similar things.
5266 */
5add95d4 5267SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5268{
48f24c4d 5269 long nice, retval;
1da177e4
LT
5270
5271 /*
5272 * Setpriority might change our priority at the same moment.
5273 * We don't have to worry. Conceptually one call occurs first
5274 * and we have a single winner.
5275 */
e43379f1
MM
5276 if (increment < -40)
5277 increment = -40;
1da177e4
LT
5278 if (increment > 40)
5279 increment = 40;
5280
2b8f836f 5281 nice = TASK_NICE(current) + increment;
1da177e4
LT
5282 if (nice < -20)
5283 nice = -20;
5284 if (nice > 19)
5285 nice = 19;
5286
e43379f1
MM
5287 if (increment < 0 && !can_nice(current, nice))
5288 return -EPERM;
5289
1da177e4
LT
5290 retval = security_task_setnice(current, nice);
5291 if (retval)
5292 return retval;
5293
5294 set_user_nice(current, nice);
5295 return 0;
5296}
5297
5298#endif
5299
5300/**
5301 * task_prio - return the priority value of a given task.
5302 * @p: the task in question.
5303 *
5304 * This is the priority value as seen by users in /proc.
5305 * RT tasks are offset by -200. Normal tasks are centered
5306 * around 0, value goes from -16 to +15.
5307 */
36c8b586 5308int task_prio(const struct task_struct *p)
1da177e4
LT
5309{
5310 return p->prio - MAX_RT_PRIO;
5311}
5312
5313/**
5314 * task_nice - return the nice value of a given task.
5315 * @p: the task in question.
5316 */
36c8b586 5317int task_nice(const struct task_struct *p)
1da177e4
LT
5318{
5319 return TASK_NICE(p);
5320}
150d8bed 5321EXPORT_SYMBOL(task_nice);
1da177e4
LT
5322
5323/**
5324 * idle_cpu - is a given cpu idle currently?
5325 * @cpu: the processor in question.
5326 */
5327int idle_cpu(int cpu)
5328{
5329 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5330}
5331
1da177e4
LT
5332/**
5333 * idle_task - return the idle task for a given cpu.
5334 * @cpu: the processor in question.
5335 */
36c8b586 5336struct task_struct *idle_task(int cpu)
1da177e4
LT
5337{
5338 return cpu_rq(cpu)->idle;
5339}
5340
5341/**
5342 * find_process_by_pid - find a process with a matching PID value.
5343 * @pid: the pid in question.
5344 */
a9957449 5345static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5346{
228ebcbe 5347 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5348}
5349
5350/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5351static void
5352__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5353{
dd41f596 5354 BUG_ON(p->se.on_rq);
48f24c4d 5355
1da177e4 5356 p->policy = policy;
dd41f596
IM
5357 switch (p->policy) {
5358 case SCHED_NORMAL:
5359 case SCHED_BATCH:
5360 case SCHED_IDLE:
5361 p->sched_class = &fair_sched_class;
5362 break;
5363 case SCHED_FIFO:
5364 case SCHED_RR:
5365 p->sched_class = &rt_sched_class;
5366 break;
5367 }
5368
1da177e4 5369 p->rt_priority = prio;
b29739f9
IM
5370 p->normal_prio = normal_prio(p);
5371 /* we are holding p->pi_lock already */
5372 p->prio = rt_mutex_getprio(p);
2dd73a4f 5373 set_load_weight(p);
1da177e4
LT
5374}
5375
c69e8d9c
DH
5376/*
5377 * check the target process has a UID that matches the current process's
5378 */
5379static bool check_same_owner(struct task_struct *p)
5380{
5381 const struct cred *cred = current_cred(), *pcred;
5382 bool match;
5383
5384 rcu_read_lock();
5385 pcred = __task_cred(p);
5386 match = (cred->euid == pcred->euid ||
5387 cred->euid == pcred->uid);
5388 rcu_read_unlock();
5389 return match;
5390}
5391
961ccddd
RR
5392static int __sched_setscheduler(struct task_struct *p, int policy,
5393 struct sched_param *param, bool user)
1da177e4 5394{
83b699ed 5395 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5396 unsigned long flags;
cb469845 5397 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5398 struct rq *rq;
1da177e4 5399
66e5393a
SR
5400 /* may grab non-irq protected spin_locks */
5401 BUG_ON(in_interrupt());
1da177e4
LT
5402recheck:
5403 /* double check policy once rq lock held */
5404 if (policy < 0)
5405 policy = oldpolicy = p->policy;
5406 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5407 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5408 policy != SCHED_IDLE)
b0a9499c 5409 return -EINVAL;
1da177e4
LT
5410 /*
5411 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5412 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5413 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5414 */
5415 if (param->sched_priority < 0 ||
95cdf3b7 5416 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5417 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5418 return -EINVAL;
e05606d3 5419 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5420 return -EINVAL;
5421
37e4ab3f
OC
5422 /*
5423 * Allow unprivileged RT tasks to decrease priority:
5424 */
961ccddd 5425 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5426 if (rt_policy(policy)) {
8dc3e909 5427 unsigned long rlim_rtprio;
8dc3e909
ON
5428
5429 if (!lock_task_sighand(p, &flags))
5430 return -ESRCH;
5431 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5432 unlock_task_sighand(p, &flags);
5433
5434 /* can't set/change the rt policy */
5435 if (policy != p->policy && !rlim_rtprio)
5436 return -EPERM;
5437
5438 /* can't increase priority */
5439 if (param->sched_priority > p->rt_priority &&
5440 param->sched_priority > rlim_rtprio)
5441 return -EPERM;
5442 }
dd41f596
IM
5443 /*
5444 * Like positive nice levels, dont allow tasks to
5445 * move out of SCHED_IDLE either:
5446 */
5447 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5448 return -EPERM;
5fe1d75f 5449
37e4ab3f 5450 /* can't change other user's priorities */
c69e8d9c 5451 if (!check_same_owner(p))
37e4ab3f
OC
5452 return -EPERM;
5453 }
1da177e4 5454
725aad24 5455 if (user) {
b68aa230 5456#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5457 /*
5458 * Do not allow realtime tasks into groups that have no runtime
5459 * assigned.
5460 */
9a7e0b18
PZ
5461 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5462 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5463 return -EPERM;
b68aa230
PZ
5464#endif
5465
725aad24
JF
5466 retval = security_task_setscheduler(p, policy, param);
5467 if (retval)
5468 return retval;
5469 }
5470
b29739f9
IM
5471 /*
5472 * make sure no PI-waiters arrive (or leave) while we are
5473 * changing the priority of the task:
5474 */
5475 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5476 /*
5477 * To be able to change p->policy safely, the apropriate
5478 * runqueue lock must be held.
5479 */
b29739f9 5480 rq = __task_rq_lock(p);
1da177e4
LT
5481 /* recheck policy now with rq lock held */
5482 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5483 policy = oldpolicy = -1;
b29739f9
IM
5484 __task_rq_unlock(rq);
5485 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5486 goto recheck;
5487 }
2daa3577 5488 update_rq_clock(rq);
dd41f596 5489 on_rq = p->se.on_rq;
051a1d1a 5490 running = task_current(rq, p);
0e1f3483 5491 if (on_rq)
2e1cb74a 5492 deactivate_task(rq, p, 0);
0e1f3483
HS
5493 if (running)
5494 p->sched_class->put_prev_task(rq, p);
f6b53205 5495
1da177e4 5496 oldprio = p->prio;
dd41f596 5497 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5498
0e1f3483
HS
5499 if (running)
5500 p->sched_class->set_curr_task(rq);
dd41f596
IM
5501 if (on_rq) {
5502 activate_task(rq, p, 0);
cb469845
SR
5503
5504 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5505 }
b29739f9
IM
5506 __task_rq_unlock(rq);
5507 spin_unlock_irqrestore(&p->pi_lock, flags);
5508
95e02ca9
TG
5509 rt_mutex_adjust_pi(p);
5510
1da177e4
LT
5511 return 0;
5512}
961ccddd
RR
5513
5514/**
5515 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5516 * @p: the task in question.
5517 * @policy: new policy.
5518 * @param: structure containing the new RT priority.
5519 *
5520 * NOTE that the task may be already dead.
5521 */
5522int sched_setscheduler(struct task_struct *p, int policy,
5523 struct sched_param *param)
5524{
5525 return __sched_setscheduler(p, policy, param, true);
5526}
1da177e4
LT
5527EXPORT_SYMBOL_GPL(sched_setscheduler);
5528
961ccddd
RR
5529/**
5530 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5531 * @p: the task in question.
5532 * @policy: new policy.
5533 * @param: structure containing the new RT priority.
5534 *
5535 * Just like sched_setscheduler, only don't bother checking if the
5536 * current context has permission. For example, this is needed in
5537 * stop_machine(): we create temporary high priority worker threads,
5538 * but our caller might not have that capability.
5539 */
5540int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5541 struct sched_param *param)
5542{
5543 return __sched_setscheduler(p, policy, param, false);
5544}
5545
95cdf3b7
IM
5546static int
5547do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5548{
1da177e4
LT
5549 struct sched_param lparam;
5550 struct task_struct *p;
36c8b586 5551 int retval;
1da177e4
LT
5552
5553 if (!param || pid < 0)
5554 return -EINVAL;
5555 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5556 return -EFAULT;
5fe1d75f
ON
5557
5558 rcu_read_lock();
5559 retval = -ESRCH;
1da177e4 5560 p = find_process_by_pid(pid);
5fe1d75f
ON
5561 if (p != NULL)
5562 retval = sched_setscheduler(p, policy, &lparam);
5563 rcu_read_unlock();
36c8b586 5564
1da177e4
LT
5565 return retval;
5566}
5567
5568/**
5569 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5570 * @pid: the pid in question.
5571 * @policy: new policy.
5572 * @param: structure containing the new RT priority.
5573 */
5add95d4
HC
5574SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5575 struct sched_param __user *, param)
1da177e4 5576{
c21761f1
JB
5577 /* negative values for policy are not valid */
5578 if (policy < 0)
5579 return -EINVAL;
5580
1da177e4
LT
5581 return do_sched_setscheduler(pid, policy, param);
5582}
5583
5584/**
5585 * sys_sched_setparam - set/change the RT priority of a thread
5586 * @pid: the pid in question.
5587 * @param: structure containing the new RT priority.
5588 */
5add95d4 5589SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5590{
5591 return do_sched_setscheduler(pid, -1, param);
5592}
5593
5594/**
5595 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5596 * @pid: the pid in question.
5597 */
5add95d4 5598SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5599{
36c8b586 5600 struct task_struct *p;
3a5c359a 5601 int retval;
1da177e4
LT
5602
5603 if (pid < 0)
3a5c359a 5604 return -EINVAL;
1da177e4
LT
5605
5606 retval = -ESRCH;
5607 read_lock(&tasklist_lock);
5608 p = find_process_by_pid(pid);
5609 if (p) {
5610 retval = security_task_getscheduler(p);
5611 if (!retval)
5612 retval = p->policy;
5613 }
5614 read_unlock(&tasklist_lock);
1da177e4
LT
5615 return retval;
5616}
5617
5618/**
5619 * sys_sched_getscheduler - get the RT priority of a thread
5620 * @pid: the pid in question.
5621 * @param: structure containing the RT priority.
5622 */
5add95d4 5623SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5624{
5625 struct sched_param lp;
36c8b586 5626 struct task_struct *p;
3a5c359a 5627 int retval;
1da177e4
LT
5628
5629 if (!param || pid < 0)
3a5c359a 5630 return -EINVAL;
1da177e4
LT
5631
5632 read_lock(&tasklist_lock);
5633 p = find_process_by_pid(pid);
5634 retval = -ESRCH;
5635 if (!p)
5636 goto out_unlock;
5637
5638 retval = security_task_getscheduler(p);
5639 if (retval)
5640 goto out_unlock;
5641
5642 lp.sched_priority = p->rt_priority;
5643 read_unlock(&tasklist_lock);
5644
5645 /*
5646 * This one might sleep, we cannot do it with a spinlock held ...
5647 */
5648 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5649
1da177e4
LT
5650 return retval;
5651
5652out_unlock:
5653 read_unlock(&tasklist_lock);
5654 return retval;
5655}
5656
96f874e2 5657long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5658{
5a16f3d3 5659 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5660 struct task_struct *p;
5661 int retval;
1da177e4 5662
95402b38 5663 get_online_cpus();
1da177e4
LT
5664 read_lock(&tasklist_lock);
5665
5666 p = find_process_by_pid(pid);
5667 if (!p) {
5668 read_unlock(&tasklist_lock);
95402b38 5669 put_online_cpus();
1da177e4
LT
5670 return -ESRCH;
5671 }
5672
5673 /*
5674 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5675 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5676 * usage count and then drop tasklist_lock.
5677 */
5678 get_task_struct(p);
5679 read_unlock(&tasklist_lock);
5680
5a16f3d3
RR
5681 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5682 retval = -ENOMEM;
5683 goto out_put_task;
5684 }
5685 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5686 retval = -ENOMEM;
5687 goto out_free_cpus_allowed;
5688 }
1da177e4 5689 retval = -EPERM;
c69e8d9c 5690 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5691 goto out_unlock;
5692
e7834f8f
DQ
5693 retval = security_task_setscheduler(p, 0, NULL);
5694 if (retval)
5695 goto out_unlock;
5696
5a16f3d3
RR
5697 cpuset_cpus_allowed(p, cpus_allowed);
5698 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5699 again:
5a16f3d3 5700 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5701
8707d8b8 5702 if (!retval) {
5a16f3d3
RR
5703 cpuset_cpus_allowed(p, cpus_allowed);
5704 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5705 /*
5706 * We must have raced with a concurrent cpuset
5707 * update. Just reset the cpus_allowed to the
5708 * cpuset's cpus_allowed
5709 */
5a16f3d3 5710 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5711 goto again;
5712 }
5713 }
1da177e4 5714out_unlock:
5a16f3d3
RR
5715 free_cpumask_var(new_mask);
5716out_free_cpus_allowed:
5717 free_cpumask_var(cpus_allowed);
5718out_put_task:
1da177e4 5719 put_task_struct(p);
95402b38 5720 put_online_cpus();
1da177e4
LT
5721 return retval;
5722}
5723
5724static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5725 struct cpumask *new_mask)
1da177e4 5726{
96f874e2
RR
5727 if (len < cpumask_size())
5728 cpumask_clear(new_mask);
5729 else if (len > cpumask_size())
5730 len = cpumask_size();
5731
1da177e4
LT
5732 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5733}
5734
5735/**
5736 * sys_sched_setaffinity - set the cpu affinity of a process
5737 * @pid: pid of the process
5738 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5739 * @user_mask_ptr: user-space pointer to the new cpu mask
5740 */
5add95d4
HC
5741SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5742 unsigned long __user *, user_mask_ptr)
1da177e4 5743{
5a16f3d3 5744 cpumask_var_t new_mask;
1da177e4
LT
5745 int retval;
5746
5a16f3d3
RR
5747 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5748 return -ENOMEM;
1da177e4 5749
5a16f3d3
RR
5750 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5751 if (retval == 0)
5752 retval = sched_setaffinity(pid, new_mask);
5753 free_cpumask_var(new_mask);
5754 return retval;
1da177e4
LT
5755}
5756
96f874e2 5757long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5758{
36c8b586 5759 struct task_struct *p;
1da177e4 5760 int retval;
1da177e4 5761
95402b38 5762 get_online_cpus();
1da177e4
LT
5763 read_lock(&tasklist_lock);
5764
5765 retval = -ESRCH;
5766 p = find_process_by_pid(pid);
5767 if (!p)
5768 goto out_unlock;
5769
e7834f8f
DQ
5770 retval = security_task_getscheduler(p);
5771 if (retval)
5772 goto out_unlock;
5773
96f874e2 5774 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5775
5776out_unlock:
5777 read_unlock(&tasklist_lock);
95402b38 5778 put_online_cpus();
1da177e4 5779
9531b62f 5780 return retval;
1da177e4
LT
5781}
5782
5783/**
5784 * sys_sched_getaffinity - get the cpu affinity of a process
5785 * @pid: pid of the process
5786 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5787 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5788 */
5add95d4
HC
5789SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5790 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5791{
5792 int ret;
f17c8607 5793 cpumask_var_t mask;
1da177e4 5794
f17c8607 5795 if (len < cpumask_size())
1da177e4
LT
5796 return -EINVAL;
5797
f17c8607
RR
5798 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5799 return -ENOMEM;
1da177e4 5800
f17c8607
RR
5801 ret = sched_getaffinity(pid, mask);
5802 if (ret == 0) {
5803 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5804 ret = -EFAULT;
5805 else
5806 ret = cpumask_size();
5807 }
5808 free_cpumask_var(mask);
1da177e4 5809
f17c8607 5810 return ret;
1da177e4
LT
5811}
5812
5813/**
5814 * sys_sched_yield - yield the current processor to other threads.
5815 *
dd41f596
IM
5816 * This function yields the current CPU to other tasks. If there are no
5817 * other threads running on this CPU then this function will return.
1da177e4 5818 */
5add95d4 5819SYSCALL_DEFINE0(sched_yield)
1da177e4 5820{
70b97a7f 5821 struct rq *rq = this_rq_lock();
1da177e4 5822
2d72376b 5823 schedstat_inc(rq, yld_count);
4530d7ab 5824 current->sched_class->yield_task(rq);
1da177e4
LT
5825
5826 /*
5827 * Since we are going to call schedule() anyway, there's
5828 * no need to preempt or enable interrupts:
5829 */
5830 __release(rq->lock);
8a25d5de 5831 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5832 _raw_spin_unlock(&rq->lock);
5833 preempt_enable_no_resched();
5834
5835 schedule();
5836
5837 return 0;
5838}
5839
e7b38404 5840static void __cond_resched(void)
1da177e4 5841{
8e0a43d8
IM
5842#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5843 __might_sleep(__FILE__, __LINE__);
5844#endif
5bbcfd90
IM
5845 /*
5846 * The BKS might be reacquired before we have dropped
5847 * PREEMPT_ACTIVE, which could trigger a second
5848 * cond_resched() call.
5849 */
1da177e4
LT
5850 do {
5851 add_preempt_count(PREEMPT_ACTIVE);
5852 schedule();
5853 sub_preempt_count(PREEMPT_ACTIVE);
5854 } while (need_resched());
5855}
5856
02b67cc3 5857int __sched _cond_resched(void)
1da177e4 5858{
9414232f
IM
5859 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5860 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5861 __cond_resched();
5862 return 1;
5863 }
5864 return 0;
5865}
02b67cc3 5866EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5867
5868/*
5869 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5870 * call schedule, and on return reacquire the lock.
5871 *
41a2d6cf 5872 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5873 * operations here to prevent schedule() from being called twice (once via
5874 * spin_unlock(), once by hand).
5875 */
95cdf3b7 5876int cond_resched_lock(spinlock_t *lock)
1da177e4 5877{
95c354fe 5878 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5879 int ret = 0;
5880
95c354fe 5881 if (spin_needbreak(lock) || resched) {
1da177e4 5882 spin_unlock(lock);
95c354fe
NP
5883 if (resched && need_resched())
5884 __cond_resched();
5885 else
5886 cpu_relax();
6df3cecb 5887 ret = 1;
1da177e4 5888 spin_lock(lock);
1da177e4 5889 }
6df3cecb 5890 return ret;
1da177e4 5891}
1da177e4
LT
5892EXPORT_SYMBOL(cond_resched_lock);
5893
5894int __sched cond_resched_softirq(void)
5895{
5896 BUG_ON(!in_softirq());
5897
9414232f 5898 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5899 local_bh_enable();
1da177e4
LT
5900 __cond_resched();
5901 local_bh_disable();
5902 return 1;
5903 }
5904 return 0;
5905}
1da177e4
LT
5906EXPORT_SYMBOL(cond_resched_softirq);
5907
1da177e4
LT
5908/**
5909 * yield - yield the current processor to other threads.
5910 *
72fd4a35 5911 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5912 * thread runnable and calls sys_sched_yield().
5913 */
5914void __sched yield(void)
5915{
5916 set_current_state(TASK_RUNNING);
5917 sys_sched_yield();
5918}
1da177e4
LT
5919EXPORT_SYMBOL(yield);
5920
5921/*
41a2d6cf 5922 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5923 * that process accounting knows that this is a task in IO wait state.
5924 *
5925 * But don't do that if it is a deliberate, throttling IO wait (this task
5926 * has set its backing_dev_info: the queue against which it should throttle)
5927 */
5928void __sched io_schedule(void)
5929{
70b97a7f 5930 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5931
0ff92245 5932 delayacct_blkio_start();
1da177e4
LT
5933 atomic_inc(&rq->nr_iowait);
5934 schedule();
5935 atomic_dec(&rq->nr_iowait);
0ff92245 5936 delayacct_blkio_end();
1da177e4 5937}
1da177e4
LT
5938EXPORT_SYMBOL(io_schedule);
5939
5940long __sched io_schedule_timeout(long timeout)
5941{
70b97a7f 5942 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5943 long ret;
5944
0ff92245 5945 delayacct_blkio_start();
1da177e4
LT
5946 atomic_inc(&rq->nr_iowait);
5947 ret = schedule_timeout(timeout);
5948 atomic_dec(&rq->nr_iowait);
0ff92245 5949 delayacct_blkio_end();
1da177e4
LT
5950 return ret;
5951}
5952
5953/**
5954 * sys_sched_get_priority_max - return maximum RT priority.
5955 * @policy: scheduling class.
5956 *
5957 * this syscall returns the maximum rt_priority that can be used
5958 * by a given scheduling class.
5959 */
5add95d4 5960SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5961{
5962 int ret = -EINVAL;
5963
5964 switch (policy) {
5965 case SCHED_FIFO:
5966 case SCHED_RR:
5967 ret = MAX_USER_RT_PRIO-1;
5968 break;
5969 case SCHED_NORMAL:
b0a9499c 5970 case SCHED_BATCH:
dd41f596 5971 case SCHED_IDLE:
1da177e4
LT
5972 ret = 0;
5973 break;
5974 }
5975 return ret;
5976}
5977
5978/**
5979 * sys_sched_get_priority_min - return minimum RT priority.
5980 * @policy: scheduling class.
5981 *
5982 * this syscall returns the minimum rt_priority that can be used
5983 * by a given scheduling class.
5984 */
5add95d4 5985SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5986{
5987 int ret = -EINVAL;
5988
5989 switch (policy) {
5990 case SCHED_FIFO:
5991 case SCHED_RR:
5992 ret = 1;
5993 break;
5994 case SCHED_NORMAL:
b0a9499c 5995 case SCHED_BATCH:
dd41f596 5996 case SCHED_IDLE:
1da177e4
LT
5997 ret = 0;
5998 }
5999 return ret;
6000}
6001
6002/**
6003 * sys_sched_rr_get_interval - return the default timeslice of a process.
6004 * @pid: pid of the process.
6005 * @interval: userspace pointer to the timeslice value.
6006 *
6007 * this syscall writes the default timeslice value of a given process
6008 * into the user-space timespec buffer. A value of '0' means infinity.
6009 */
17da2bd9 6010SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6011 struct timespec __user *, interval)
1da177e4 6012{
36c8b586 6013 struct task_struct *p;
a4ec24b4 6014 unsigned int time_slice;
3a5c359a 6015 int retval;
1da177e4 6016 struct timespec t;
1da177e4
LT
6017
6018 if (pid < 0)
3a5c359a 6019 return -EINVAL;
1da177e4
LT
6020
6021 retval = -ESRCH;
6022 read_lock(&tasklist_lock);
6023 p = find_process_by_pid(pid);
6024 if (!p)
6025 goto out_unlock;
6026
6027 retval = security_task_getscheduler(p);
6028 if (retval)
6029 goto out_unlock;
6030
77034937
IM
6031 /*
6032 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6033 * tasks that are on an otherwise idle runqueue:
6034 */
6035 time_slice = 0;
6036 if (p->policy == SCHED_RR) {
a4ec24b4 6037 time_slice = DEF_TIMESLICE;
1868f958 6038 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6039 struct sched_entity *se = &p->se;
6040 unsigned long flags;
6041 struct rq *rq;
6042
6043 rq = task_rq_lock(p, &flags);
77034937
IM
6044 if (rq->cfs.load.weight)
6045 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6046 task_rq_unlock(rq, &flags);
6047 }
1da177e4 6048 read_unlock(&tasklist_lock);
a4ec24b4 6049 jiffies_to_timespec(time_slice, &t);
1da177e4 6050 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6051 return retval;
3a5c359a 6052
1da177e4
LT
6053out_unlock:
6054 read_unlock(&tasklist_lock);
6055 return retval;
6056}
6057
7c731e0a 6058static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6059
82a1fcb9 6060void sched_show_task(struct task_struct *p)
1da177e4 6061{
1da177e4 6062 unsigned long free = 0;
36c8b586 6063 unsigned state;
1da177e4 6064
1da177e4 6065 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6066 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6067 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6068#if BITS_PER_LONG == 32
1da177e4 6069 if (state == TASK_RUNNING)
cc4ea795 6070 printk(KERN_CONT " running ");
1da177e4 6071 else
cc4ea795 6072 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6073#else
6074 if (state == TASK_RUNNING)
cc4ea795 6075 printk(KERN_CONT " running task ");
1da177e4 6076 else
cc4ea795 6077 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6078#endif
6079#ifdef CONFIG_DEBUG_STACK_USAGE
6080 {
10ebffde 6081 unsigned long *n = end_of_stack(p);
1da177e4
LT
6082 while (!*n)
6083 n++;
10ebffde 6084 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6085 }
6086#endif
ba25f9dc 6087 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6088 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6089
5fb5e6de 6090 show_stack(p, NULL);
1da177e4
LT
6091}
6092
e59e2ae2 6093void show_state_filter(unsigned long state_filter)
1da177e4 6094{
36c8b586 6095 struct task_struct *g, *p;
1da177e4 6096
4bd77321
IM
6097#if BITS_PER_LONG == 32
6098 printk(KERN_INFO
6099 " task PC stack pid father\n");
1da177e4 6100#else
4bd77321
IM
6101 printk(KERN_INFO
6102 " task PC stack pid father\n");
1da177e4
LT
6103#endif
6104 read_lock(&tasklist_lock);
6105 do_each_thread(g, p) {
6106 /*
6107 * reset the NMI-timeout, listing all files on a slow
6108 * console might take alot of time:
6109 */
6110 touch_nmi_watchdog();
39bc89fd 6111 if (!state_filter || (p->state & state_filter))
82a1fcb9 6112 sched_show_task(p);
1da177e4
LT
6113 } while_each_thread(g, p);
6114
04c9167f
JF
6115 touch_all_softlockup_watchdogs();
6116
dd41f596
IM
6117#ifdef CONFIG_SCHED_DEBUG
6118 sysrq_sched_debug_show();
6119#endif
1da177e4 6120 read_unlock(&tasklist_lock);
e59e2ae2
IM
6121 /*
6122 * Only show locks if all tasks are dumped:
6123 */
6124 if (state_filter == -1)
6125 debug_show_all_locks();
1da177e4
LT
6126}
6127
1df21055
IM
6128void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6129{
dd41f596 6130 idle->sched_class = &idle_sched_class;
1df21055
IM
6131}
6132
f340c0d1
IM
6133/**
6134 * init_idle - set up an idle thread for a given CPU
6135 * @idle: task in question
6136 * @cpu: cpu the idle task belongs to
6137 *
6138 * NOTE: this function does not set the idle thread's NEED_RESCHED
6139 * flag, to make booting more robust.
6140 */
5c1e1767 6141void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6142{
70b97a7f 6143 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6144 unsigned long flags;
6145
5cbd54ef
IM
6146 spin_lock_irqsave(&rq->lock, flags);
6147
dd41f596
IM
6148 __sched_fork(idle);
6149 idle->se.exec_start = sched_clock();
6150
b29739f9 6151 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6152 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6153 __set_task_cpu(idle, cpu);
1da177e4 6154
1da177e4 6155 rq->curr = rq->idle = idle;
4866cde0
NP
6156#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6157 idle->oncpu = 1;
6158#endif
1da177e4
LT
6159 spin_unlock_irqrestore(&rq->lock, flags);
6160
6161 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6162#if defined(CONFIG_PREEMPT)
6163 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6164#else
a1261f54 6165 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6166#endif
dd41f596
IM
6167 /*
6168 * The idle tasks have their own, simple scheduling class:
6169 */
6170 idle->sched_class = &idle_sched_class;
fb52607a 6171 ftrace_graph_init_task(idle);
1da177e4
LT
6172}
6173
6174/*
6175 * In a system that switches off the HZ timer nohz_cpu_mask
6176 * indicates which cpus entered this state. This is used
6177 * in the rcu update to wait only for active cpus. For system
6178 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6179 * always be CPU_BITS_NONE.
1da177e4 6180 */
6a7b3dc3 6181cpumask_var_t nohz_cpu_mask;
1da177e4 6182
19978ca6
IM
6183/*
6184 * Increase the granularity value when there are more CPUs,
6185 * because with more CPUs the 'effective latency' as visible
6186 * to users decreases. But the relationship is not linear,
6187 * so pick a second-best guess by going with the log2 of the
6188 * number of CPUs.
6189 *
6190 * This idea comes from the SD scheduler of Con Kolivas:
6191 */
6192static inline void sched_init_granularity(void)
6193{
6194 unsigned int factor = 1 + ilog2(num_online_cpus());
6195 const unsigned long limit = 200000000;
6196
6197 sysctl_sched_min_granularity *= factor;
6198 if (sysctl_sched_min_granularity > limit)
6199 sysctl_sched_min_granularity = limit;
6200
6201 sysctl_sched_latency *= factor;
6202 if (sysctl_sched_latency > limit)
6203 sysctl_sched_latency = limit;
6204
6205 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6206
6207 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6208}
6209
1da177e4
LT
6210#ifdef CONFIG_SMP
6211/*
6212 * This is how migration works:
6213 *
70b97a7f 6214 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6215 * runqueue and wake up that CPU's migration thread.
6216 * 2) we down() the locked semaphore => thread blocks.
6217 * 3) migration thread wakes up (implicitly it forces the migrated
6218 * thread off the CPU)
6219 * 4) it gets the migration request and checks whether the migrated
6220 * task is still in the wrong runqueue.
6221 * 5) if it's in the wrong runqueue then the migration thread removes
6222 * it and puts it into the right queue.
6223 * 6) migration thread up()s the semaphore.
6224 * 7) we wake up and the migration is done.
6225 */
6226
6227/*
6228 * Change a given task's CPU affinity. Migrate the thread to a
6229 * proper CPU and schedule it away if the CPU it's executing on
6230 * is removed from the allowed bitmask.
6231 *
6232 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6233 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6234 * call is not atomic; no spinlocks may be held.
6235 */
96f874e2 6236int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6237{
70b97a7f 6238 struct migration_req req;
1da177e4 6239 unsigned long flags;
70b97a7f 6240 struct rq *rq;
48f24c4d 6241 int ret = 0;
1da177e4
LT
6242
6243 rq = task_rq_lock(p, &flags);
96f874e2 6244 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6245 ret = -EINVAL;
6246 goto out;
6247 }
6248
9985b0ba 6249 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6250 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6251 ret = -EINVAL;
6252 goto out;
6253 }
6254
73fe6aae 6255 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6256 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6257 else {
96f874e2
RR
6258 cpumask_copy(&p->cpus_allowed, new_mask);
6259 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6260 }
6261
1da177e4 6262 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6263 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6264 goto out;
6265
1e5ce4f4 6266 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6267 /* Need help from migration thread: drop lock and wait. */
6268 task_rq_unlock(rq, &flags);
6269 wake_up_process(rq->migration_thread);
6270 wait_for_completion(&req.done);
6271 tlb_migrate_finish(p->mm);
6272 return 0;
6273 }
6274out:
6275 task_rq_unlock(rq, &flags);
48f24c4d 6276
1da177e4
LT
6277 return ret;
6278}
cd8ba7cd 6279EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6280
6281/*
41a2d6cf 6282 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6283 * this because either it can't run here any more (set_cpus_allowed()
6284 * away from this CPU, or CPU going down), or because we're
6285 * attempting to rebalance this task on exec (sched_exec).
6286 *
6287 * So we race with normal scheduler movements, but that's OK, as long
6288 * as the task is no longer on this CPU.
efc30814
KK
6289 *
6290 * Returns non-zero if task was successfully migrated.
1da177e4 6291 */
efc30814 6292static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6293{
70b97a7f 6294 struct rq *rq_dest, *rq_src;
dd41f596 6295 int ret = 0, on_rq;
1da177e4 6296
e761b772 6297 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6298 return ret;
1da177e4
LT
6299
6300 rq_src = cpu_rq(src_cpu);
6301 rq_dest = cpu_rq(dest_cpu);
6302
6303 double_rq_lock(rq_src, rq_dest);
6304 /* Already moved. */
6305 if (task_cpu(p) != src_cpu)
b1e38734 6306 goto done;
1da177e4 6307 /* Affinity changed (again). */
96f874e2 6308 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6309 goto fail;
1da177e4 6310
dd41f596 6311 on_rq = p->se.on_rq;
6e82a3be 6312 if (on_rq)
2e1cb74a 6313 deactivate_task(rq_src, p, 0);
6e82a3be 6314
1da177e4 6315 set_task_cpu(p, dest_cpu);
dd41f596
IM
6316 if (on_rq) {
6317 activate_task(rq_dest, p, 0);
15afe09b 6318 check_preempt_curr(rq_dest, p, 0);
1da177e4 6319 }
b1e38734 6320done:
efc30814 6321 ret = 1;
b1e38734 6322fail:
1da177e4 6323 double_rq_unlock(rq_src, rq_dest);
efc30814 6324 return ret;
1da177e4
LT
6325}
6326
6327/*
6328 * migration_thread - this is a highprio system thread that performs
6329 * thread migration by bumping thread off CPU then 'pushing' onto
6330 * another runqueue.
6331 */
95cdf3b7 6332static int migration_thread(void *data)
1da177e4 6333{
1da177e4 6334 int cpu = (long)data;
70b97a7f 6335 struct rq *rq;
1da177e4
LT
6336
6337 rq = cpu_rq(cpu);
6338 BUG_ON(rq->migration_thread != current);
6339
6340 set_current_state(TASK_INTERRUPTIBLE);
6341 while (!kthread_should_stop()) {
70b97a7f 6342 struct migration_req *req;
1da177e4 6343 struct list_head *head;
1da177e4 6344
1da177e4
LT
6345 spin_lock_irq(&rq->lock);
6346
6347 if (cpu_is_offline(cpu)) {
6348 spin_unlock_irq(&rq->lock);
6349 goto wait_to_die;
6350 }
6351
6352 if (rq->active_balance) {
6353 active_load_balance(rq, cpu);
6354 rq->active_balance = 0;
6355 }
6356
6357 head = &rq->migration_queue;
6358
6359 if (list_empty(head)) {
6360 spin_unlock_irq(&rq->lock);
6361 schedule();
6362 set_current_state(TASK_INTERRUPTIBLE);
6363 continue;
6364 }
70b97a7f 6365 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6366 list_del_init(head->next);
6367
674311d5
NP
6368 spin_unlock(&rq->lock);
6369 __migrate_task(req->task, cpu, req->dest_cpu);
6370 local_irq_enable();
1da177e4
LT
6371
6372 complete(&req->done);
6373 }
6374 __set_current_state(TASK_RUNNING);
6375 return 0;
6376
6377wait_to_die:
6378 /* Wait for kthread_stop */
6379 set_current_state(TASK_INTERRUPTIBLE);
6380 while (!kthread_should_stop()) {
6381 schedule();
6382 set_current_state(TASK_INTERRUPTIBLE);
6383 }
6384 __set_current_state(TASK_RUNNING);
6385 return 0;
6386}
6387
6388#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6389
6390static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6391{
6392 int ret;
6393
6394 local_irq_disable();
6395 ret = __migrate_task(p, src_cpu, dest_cpu);
6396 local_irq_enable();
6397 return ret;
6398}
6399
054b9108 6400/*
3a4fa0a2 6401 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6402 */
48f24c4d 6403static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6404{
70b97a7f 6405 int dest_cpu;
6ca09dfc 6406 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6407
6408again:
6409 /* Look for allowed, online CPU in same node. */
6410 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6411 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6412 goto move;
6413
6414 /* Any allowed, online CPU? */
6415 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6416 if (dest_cpu < nr_cpu_ids)
6417 goto move;
6418
6419 /* No more Mr. Nice Guy. */
6420 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6421 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6422 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6423
e76bd8d9
RR
6424 /*
6425 * Don't tell them about moving exiting tasks or
6426 * kernel threads (both mm NULL), since they never
6427 * leave kernel.
6428 */
6429 if (p->mm && printk_ratelimit()) {
6430 printk(KERN_INFO "process %d (%s) no "
6431 "longer affine to cpu%d\n",
6432 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6433 }
e76bd8d9
RR
6434 }
6435
6436move:
6437 /* It can have affinity changed while we were choosing. */
6438 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6439 goto again;
1da177e4
LT
6440}
6441
6442/*
6443 * While a dead CPU has no uninterruptible tasks queued at this point,
6444 * it might still have a nonzero ->nr_uninterruptible counter, because
6445 * for performance reasons the counter is not stricly tracking tasks to
6446 * their home CPUs. So we just add the counter to another CPU's counter,
6447 * to keep the global sum constant after CPU-down:
6448 */
70b97a7f 6449static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6450{
1e5ce4f4 6451 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6452 unsigned long flags;
6453
6454 local_irq_save(flags);
6455 double_rq_lock(rq_src, rq_dest);
6456 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6457 rq_src->nr_uninterruptible = 0;
6458 double_rq_unlock(rq_src, rq_dest);
6459 local_irq_restore(flags);
6460}
6461
6462/* Run through task list and migrate tasks from the dead cpu. */
6463static void migrate_live_tasks(int src_cpu)
6464{
48f24c4d 6465 struct task_struct *p, *t;
1da177e4 6466
f7b4cddc 6467 read_lock(&tasklist_lock);
1da177e4 6468
48f24c4d
IM
6469 do_each_thread(t, p) {
6470 if (p == current)
1da177e4
LT
6471 continue;
6472
48f24c4d
IM
6473 if (task_cpu(p) == src_cpu)
6474 move_task_off_dead_cpu(src_cpu, p);
6475 } while_each_thread(t, p);
1da177e4 6476
f7b4cddc 6477 read_unlock(&tasklist_lock);
1da177e4
LT
6478}
6479
dd41f596
IM
6480/*
6481 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6482 * It does so by boosting its priority to highest possible.
6483 * Used by CPU offline code.
1da177e4
LT
6484 */
6485void sched_idle_next(void)
6486{
48f24c4d 6487 int this_cpu = smp_processor_id();
70b97a7f 6488 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6489 struct task_struct *p = rq->idle;
6490 unsigned long flags;
6491
6492 /* cpu has to be offline */
48f24c4d 6493 BUG_ON(cpu_online(this_cpu));
1da177e4 6494
48f24c4d
IM
6495 /*
6496 * Strictly not necessary since rest of the CPUs are stopped by now
6497 * and interrupts disabled on the current cpu.
1da177e4
LT
6498 */
6499 spin_lock_irqsave(&rq->lock, flags);
6500
dd41f596 6501 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6502
94bc9a7b
DA
6503 update_rq_clock(rq);
6504 activate_task(rq, p, 0);
1da177e4
LT
6505
6506 spin_unlock_irqrestore(&rq->lock, flags);
6507}
6508
48f24c4d
IM
6509/*
6510 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6511 * offline.
6512 */
6513void idle_task_exit(void)
6514{
6515 struct mm_struct *mm = current->active_mm;
6516
6517 BUG_ON(cpu_online(smp_processor_id()));
6518
6519 if (mm != &init_mm)
6520 switch_mm(mm, &init_mm, current);
6521 mmdrop(mm);
6522}
6523
054b9108 6524/* called under rq->lock with disabled interrupts */
36c8b586 6525static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6526{
70b97a7f 6527 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6528
6529 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6530 BUG_ON(!p->exit_state);
1da177e4
LT
6531
6532 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6533 BUG_ON(p->state == TASK_DEAD);
1da177e4 6534
48f24c4d 6535 get_task_struct(p);
1da177e4
LT
6536
6537 /*
6538 * Drop lock around migration; if someone else moves it,
41a2d6cf 6539 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6540 * fine.
6541 */
f7b4cddc 6542 spin_unlock_irq(&rq->lock);
48f24c4d 6543 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6544 spin_lock_irq(&rq->lock);
1da177e4 6545
48f24c4d 6546 put_task_struct(p);
1da177e4
LT
6547}
6548
6549/* release_task() removes task from tasklist, so we won't find dead tasks. */
6550static void migrate_dead_tasks(unsigned int dead_cpu)
6551{
70b97a7f 6552 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6553 struct task_struct *next;
48f24c4d 6554
dd41f596
IM
6555 for ( ; ; ) {
6556 if (!rq->nr_running)
6557 break;
a8e504d2 6558 update_rq_clock(rq);
b67802ea 6559 next = pick_next_task(rq);
dd41f596
IM
6560 if (!next)
6561 break;
79c53799 6562 next->sched_class->put_prev_task(rq, next);
dd41f596 6563 migrate_dead(dead_cpu, next);
e692ab53 6564
1da177e4
LT
6565 }
6566}
6567#endif /* CONFIG_HOTPLUG_CPU */
6568
e692ab53
NP
6569#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6570
6571static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6572 {
6573 .procname = "sched_domain",
c57baf1e 6574 .mode = 0555,
e0361851 6575 },
38605cae 6576 {0, },
e692ab53
NP
6577};
6578
6579static struct ctl_table sd_ctl_root[] = {
e0361851 6580 {
c57baf1e 6581 .ctl_name = CTL_KERN,
e0361851 6582 .procname = "kernel",
c57baf1e 6583 .mode = 0555,
e0361851
AD
6584 .child = sd_ctl_dir,
6585 },
38605cae 6586 {0, },
e692ab53
NP
6587};
6588
6589static struct ctl_table *sd_alloc_ctl_entry(int n)
6590{
6591 struct ctl_table *entry =
5cf9f062 6592 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6593
e692ab53
NP
6594 return entry;
6595}
6596
6382bc90
MM
6597static void sd_free_ctl_entry(struct ctl_table **tablep)
6598{
cd790076 6599 struct ctl_table *entry;
6382bc90 6600
cd790076
MM
6601 /*
6602 * In the intermediate directories, both the child directory and
6603 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6604 * will always be set. In the lowest directory the names are
cd790076
MM
6605 * static strings and all have proc handlers.
6606 */
6607 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6608 if (entry->child)
6609 sd_free_ctl_entry(&entry->child);
cd790076
MM
6610 if (entry->proc_handler == NULL)
6611 kfree(entry->procname);
6612 }
6382bc90
MM
6613
6614 kfree(*tablep);
6615 *tablep = NULL;
6616}
6617
e692ab53 6618static void
e0361851 6619set_table_entry(struct ctl_table *entry,
e692ab53
NP
6620 const char *procname, void *data, int maxlen,
6621 mode_t mode, proc_handler *proc_handler)
6622{
e692ab53
NP
6623 entry->procname = procname;
6624 entry->data = data;
6625 entry->maxlen = maxlen;
6626 entry->mode = mode;
6627 entry->proc_handler = proc_handler;
6628}
6629
6630static struct ctl_table *
6631sd_alloc_ctl_domain_table(struct sched_domain *sd)
6632{
a5d8c348 6633 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6634
ad1cdc1d
MM
6635 if (table == NULL)
6636 return NULL;
6637
e0361851 6638 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6639 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6640 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6641 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6642 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6643 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6644 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6645 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6646 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6647 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6648 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6649 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6650 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6651 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6652 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6653 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6654 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6655 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6656 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6657 &sd->cache_nice_tries,
6658 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6659 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6660 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6661 set_table_entry(&table[11], "name", sd->name,
6662 CORENAME_MAX_SIZE, 0444, proc_dostring);
6663 /* &table[12] is terminator */
e692ab53
NP
6664
6665 return table;
6666}
6667
9a4e7159 6668static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6669{
6670 struct ctl_table *entry, *table;
6671 struct sched_domain *sd;
6672 int domain_num = 0, i;
6673 char buf[32];
6674
6675 for_each_domain(cpu, sd)
6676 domain_num++;
6677 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6678 if (table == NULL)
6679 return NULL;
e692ab53
NP
6680
6681 i = 0;
6682 for_each_domain(cpu, sd) {
6683 snprintf(buf, 32, "domain%d", i);
e692ab53 6684 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6685 entry->mode = 0555;
e692ab53
NP
6686 entry->child = sd_alloc_ctl_domain_table(sd);
6687 entry++;
6688 i++;
6689 }
6690 return table;
6691}
6692
6693static struct ctl_table_header *sd_sysctl_header;
6382bc90 6694static void register_sched_domain_sysctl(void)
e692ab53
NP
6695{
6696 int i, cpu_num = num_online_cpus();
6697 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6698 char buf[32];
6699
7378547f
MM
6700 WARN_ON(sd_ctl_dir[0].child);
6701 sd_ctl_dir[0].child = entry;
6702
ad1cdc1d
MM
6703 if (entry == NULL)
6704 return;
6705
97b6ea7b 6706 for_each_online_cpu(i) {
e692ab53 6707 snprintf(buf, 32, "cpu%d", i);
e692ab53 6708 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6709 entry->mode = 0555;
e692ab53 6710 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6711 entry++;
e692ab53 6712 }
7378547f
MM
6713
6714 WARN_ON(sd_sysctl_header);
e692ab53
NP
6715 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6716}
6382bc90 6717
7378547f 6718/* may be called multiple times per register */
6382bc90
MM
6719static void unregister_sched_domain_sysctl(void)
6720{
7378547f
MM
6721 if (sd_sysctl_header)
6722 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6723 sd_sysctl_header = NULL;
7378547f
MM
6724 if (sd_ctl_dir[0].child)
6725 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6726}
e692ab53 6727#else
6382bc90
MM
6728static void register_sched_domain_sysctl(void)
6729{
6730}
6731static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6732{
6733}
6734#endif
6735
1f11eb6a
GH
6736static void set_rq_online(struct rq *rq)
6737{
6738 if (!rq->online) {
6739 const struct sched_class *class;
6740
c6c4927b 6741 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6742 rq->online = 1;
6743
6744 for_each_class(class) {
6745 if (class->rq_online)
6746 class->rq_online(rq);
6747 }
6748 }
6749}
6750
6751static void set_rq_offline(struct rq *rq)
6752{
6753 if (rq->online) {
6754 const struct sched_class *class;
6755
6756 for_each_class(class) {
6757 if (class->rq_offline)
6758 class->rq_offline(rq);
6759 }
6760
c6c4927b 6761 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6762 rq->online = 0;
6763 }
6764}
6765
1da177e4
LT
6766/*
6767 * migration_call - callback that gets triggered when a CPU is added.
6768 * Here we can start up the necessary migration thread for the new CPU.
6769 */
48f24c4d
IM
6770static int __cpuinit
6771migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6772{
1da177e4 6773 struct task_struct *p;
48f24c4d 6774 int cpu = (long)hcpu;
1da177e4 6775 unsigned long flags;
70b97a7f 6776 struct rq *rq;
1da177e4
LT
6777
6778 switch (action) {
5be9361c 6779
1da177e4 6780 case CPU_UP_PREPARE:
8bb78442 6781 case CPU_UP_PREPARE_FROZEN:
dd41f596 6782 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6783 if (IS_ERR(p))
6784 return NOTIFY_BAD;
1da177e4
LT
6785 kthread_bind(p, cpu);
6786 /* Must be high prio: stop_machine expects to yield to it. */
6787 rq = task_rq_lock(p, &flags);
dd41f596 6788 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6789 task_rq_unlock(rq, &flags);
6790 cpu_rq(cpu)->migration_thread = p;
6791 break;
48f24c4d 6792
1da177e4 6793 case CPU_ONLINE:
8bb78442 6794 case CPU_ONLINE_FROZEN:
3a4fa0a2 6795 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6796 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6797
6798 /* Update our root-domain */
6799 rq = cpu_rq(cpu);
6800 spin_lock_irqsave(&rq->lock, flags);
6801 if (rq->rd) {
c6c4927b 6802 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6803
6804 set_rq_online(rq);
1f94ef59
GH
6805 }
6806 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6807 break;
48f24c4d 6808
1da177e4
LT
6809#ifdef CONFIG_HOTPLUG_CPU
6810 case CPU_UP_CANCELED:
8bb78442 6811 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6812 if (!cpu_rq(cpu)->migration_thread)
6813 break;
41a2d6cf 6814 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6815 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6816 cpumask_any(cpu_online_mask));
1da177e4
LT
6817 kthread_stop(cpu_rq(cpu)->migration_thread);
6818 cpu_rq(cpu)->migration_thread = NULL;
6819 break;
48f24c4d 6820
1da177e4 6821 case CPU_DEAD:
8bb78442 6822 case CPU_DEAD_FROZEN:
470fd646 6823 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6824 migrate_live_tasks(cpu);
6825 rq = cpu_rq(cpu);
6826 kthread_stop(rq->migration_thread);
6827 rq->migration_thread = NULL;
6828 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6829 spin_lock_irq(&rq->lock);
a8e504d2 6830 update_rq_clock(rq);
2e1cb74a 6831 deactivate_task(rq, rq->idle, 0);
1da177e4 6832 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6833 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6834 rq->idle->sched_class = &idle_sched_class;
1da177e4 6835 migrate_dead_tasks(cpu);
d2da272a 6836 spin_unlock_irq(&rq->lock);
470fd646 6837 cpuset_unlock();
1da177e4
LT
6838 migrate_nr_uninterruptible(rq);
6839 BUG_ON(rq->nr_running != 0);
6840
41a2d6cf
IM
6841 /*
6842 * No need to migrate the tasks: it was best-effort if
6843 * they didn't take sched_hotcpu_mutex. Just wake up
6844 * the requestors.
6845 */
1da177e4
LT
6846 spin_lock_irq(&rq->lock);
6847 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6848 struct migration_req *req;
6849
1da177e4 6850 req = list_entry(rq->migration_queue.next,
70b97a7f 6851 struct migration_req, list);
1da177e4 6852 list_del_init(&req->list);
9a2bd244 6853 spin_unlock_irq(&rq->lock);
1da177e4 6854 complete(&req->done);
9a2bd244 6855 spin_lock_irq(&rq->lock);
1da177e4
LT
6856 }
6857 spin_unlock_irq(&rq->lock);
6858 break;
57d885fe 6859
08f503b0
GH
6860 case CPU_DYING:
6861 case CPU_DYING_FROZEN:
57d885fe
GH
6862 /* Update our root-domain */
6863 rq = cpu_rq(cpu);
6864 spin_lock_irqsave(&rq->lock, flags);
6865 if (rq->rd) {
c6c4927b 6866 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6867 set_rq_offline(rq);
57d885fe
GH
6868 }
6869 spin_unlock_irqrestore(&rq->lock, flags);
6870 break;
1da177e4
LT
6871#endif
6872 }
6873 return NOTIFY_OK;
6874}
6875
6876/* Register at highest priority so that task migration (migrate_all_tasks)
6877 * happens before everything else.
6878 */
26c2143b 6879static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6880 .notifier_call = migration_call,
6881 .priority = 10
6882};
6883
7babe8db 6884static int __init migration_init(void)
1da177e4
LT
6885{
6886 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6887 int err;
48f24c4d
IM
6888
6889 /* Start one for the boot CPU: */
07dccf33
AM
6890 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6891 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6892 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6893 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6894
6895 return err;
1da177e4 6896}
7babe8db 6897early_initcall(migration_init);
1da177e4
LT
6898#endif
6899
6900#ifdef CONFIG_SMP
476f3534 6901
3e9830dc 6902#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6903
7c16ec58 6904static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6905 struct cpumask *groupmask)
1da177e4 6906{
4dcf6aff 6907 struct sched_group *group = sd->groups;
434d53b0 6908 char str[256];
1da177e4 6909
968ea6d8 6910 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6911 cpumask_clear(groupmask);
4dcf6aff
IM
6912
6913 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6914
6915 if (!(sd->flags & SD_LOAD_BALANCE)) {
6916 printk("does not load-balance\n");
6917 if (sd->parent)
6918 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6919 " has parent");
6920 return -1;
41c7ce9a
NP
6921 }
6922
eefd796a 6923 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6924
758b2cdc 6925 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6926 printk(KERN_ERR "ERROR: domain->span does not contain "
6927 "CPU%d\n", cpu);
6928 }
758b2cdc 6929 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6930 printk(KERN_ERR "ERROR: domain->groups does not contain"
6931 " CPU%d\n", cpu);
6932 }
1da177e4 6933
4dcf6aff 6934 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6935 do {
4dcf6aff
IM
6936 if (!group) {
6937 printk("\n");
6938 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6939 break;
6940 }
6941
4dcf6aff
IM
6942 if (!group->__cpu_power) {
6943 printk(KERN_CONT "\n");
6944 printk(KERN_ERR "ERROR: domain->cpu_power not "
6945 "set\n");
6946 break;
6947 }
1da177e4 6948
758b2cdc 6949 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6950 printk(KERN_CONT "\n");
6951 printk(KERN_ERR "ERROR: empty group\n");
6952 break;
6953 }
1da177e4 6954
758b2cdc 6955 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6956 printk(KERN_CONT "\n");
6957 printk(KERN_ERR "ERROR: repeated CPUs\n");
6958 break;
6959 }
1da177e4 6960
758b2cdc 6961 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6962
968ea6d8 6963 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6964 printk(KERN_CONT " %s", str);
1da177e4 6965
4dcf6aff
IM
6966 group = group->next;
6967 } while (group != sd->groups);
6968 printk(KERN_CONT "\n");
1da177e4 6969
758b2cdc 6970 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6971 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6972
758b2cdc
RR
6973 if (sd->parent &&
6974 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6975 printk(KERN_ERR "ERROR: parent span is not a superset "
6976 "of domain->span\n");
6977 return 0;
6978}
1da177e4 6979
4dcf6aff
IM
6980static void sched_domain_debug(struct sched_domain *sd, int cpu)
6981{
d5dd3db1 6982 cpumask_var_t groupmask;
4dcf6aff 6983 int level = 0;
1da177e4 6984
4dcf6aff
IM
6985 if (!sd) {
6986 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6987 return;
6988 }
1da177e4 6989
4dcf6aff
IM
6990 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6991
d5dd3db1 6992 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6993 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6994 return;
6995 }
6996
4dcf6aff 6997 for (;;) {
7c16ec58 6998 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6999 break;
1da177e4
LT
7000 level++;
7001 sd = sd->parent;
33859f7f 7002 if (!sd)
4dcf6aff
IM
7003 break;
7004 }
d5dd3db1 7005 free_cpumask_var(groupmask);
1da177e4 7006}
6d6bc0ad 7007#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7008# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7009#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7010
1a20ff27 7011static int sd_degenerate(struct sched_domain *sd)
245af2c7 7012{
758b2cdc 7013 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7014 return 1;
7015
7016 /* Following flags need at least 2 groups */
7017 if (sd->flags & (SD_LOAD_BALANCE |
7018 SD_BALANCE_NEWIDLE |
7019 SD_BALANCE_FORK |
89c4710e
SS
7020 SD_BALANCE_EXEC |
7021 SD_SHARE_CPUPOWER |
7022 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7023 if (sd->groups != sd->groups->next)
7024 return 0;
7025 }
7026
7027 /* Following flags don't use groups */
7028 if (sd->flags & (SD_WAKE_IDLE |
7029 SD_WAKE_AFFINE |
7030 SD_WAKE_BALANCE))
7031 return 0;
7032
7033 return 1;
7034}
7035
48f24c4d
IM
7036static int
7037sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7038{
7039 unsigned long cflags = sd->flags, pflags = parent->flags;
7040
7041 if (sd_degenerate(parent))
7042 return 1;
7043
758b2cdc 7044 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7045 return 0;
7046
7047 /* Does parent contain flags not in child? */
7048 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7049 if (cflags & SD_WAKE_AFFINE)
7050 pflags &= ~SD_WAKE_BALANCE;
7051 /* Flags needing groups don't count if only 1 group in parent */
7052 if (parent->groups == parent->groups->next) {
7053 pflags &= ~(SD_LOAD_BALANCE |
7054 SD_BALANCE_NEWIDLE |
7055 SD_BALANCE_FORK |
89c4710e
SS
7056 SD_BALANCE_EXEC |
7057 SD_SHARE_CPUPOWER |
7058 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7059 if (nr_node_ids == 1)
7060 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7061 }
7062 if (~cflags & pflags)
7063 return 0;
7064
7065 return 1;
7066}
7067
c6c4927b
RR
7068static void free_rootdomain(struct root_domain *rd)
7069{
68e74568
RR
7070 cpupri_cleanup(&rd->cpupri);
7071
c6c4927b
RR
7072 free_cpumask_var(rd->rto_mask);
7073 free_cpumask_var(rd->online);
7074 free_cpumask_var(rd->span);
7075 kfree(rd);
7076}
7077
57d885fe
GH
7078static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7079{
a0490fa3 7080 struct root_domain *old_rd = NULL;
57d885fe 7081 unsigned long flags;
57d885fe
GH
7082
7083 spin_lock_irqsave(&rq->lock, flags);
7084
7085 if (rq->rd) {
a0490fa3 7086 old_rd = rq->rd;
57d885fe 7087
c6c4927b 7088 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7089 set_rq_offline(rq);
57d885fe 7090
c6c4927b 7091 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7092
a0490fa3
IM
7093 /*
7094 * If we dont want to free the old_rt yet then
7095 * set old_rd to NULL to skip the freeing later
7096 * in this function:
7097 */
7098 if (!atomic_dec_and_test(&old_rd->refcount))
7099 old_rd = NULL;
57d885fe
GH
7100 }
7101
7102 atomic_inc(&rd->refcount);
7103 rq->rd = rd;
7104
c6c4927b
RR
7105 cpumask_set_cpu(rq->cpu, rd->span);
7106 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7107 set_rq_online(rq);
57d885fe
GH
7108
7109 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7110
7111 if (old_rd)
7112 free_rootdomain(old_rd);
57d885fe
GH
7113}
7114
db2f59c8 7115static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7116{
7117 memset(rd, 0, sizeof(*rd));
7118
c6c4927b
RR
7119 if (bootmem) {
7120 alloc_bootmem_cpumask_var(&def_root_domain.span);
7121 alloc_bootmem_cpumask_var(&def_root_domain.online);
7122 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7123 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7124 return 0;
7125 }
7126
7127 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7128 goto out;
c6c4927b
RR
7129 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7130 goto free_span;
7131 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7132 goto free_online;
6e0534f2 7133
68e74568
RR
7134 if (cpupri_init(&rd->cpupri, false) != 0)
7135 goto free_rto_mask;
c6c4927b 7136 return 0;
6e0534f2 7137
68e74568
RR
7138free_rto_mask:
7139 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7140free_online:
7141 free_cpumask_var(rd->online);
7142free_span:
7143 free_cpumask_var(rd->span);
0c910d28 7144out:
c6c4927b 7145 return -ENOMEM;
57d885fe
GH
7146}
7147
7148static void init_defrootdomain(void)
7149{
c6c4927b
RR
7150 init_rootdomain(&def_root_domain, true);
7151
57d885fe
GH
7152 atomic_set(&def_root_domain.refcount, 1);
7153}
7154
dc938520 7155static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7156{
7157 struct root_domain *rd;
7158
7159 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7160 if (!rd)
7161 return NULL;
7162
c6c4927b
RR
7163 if (init_rootdomain(rd, false) != 0) {
7164 kfree(rd);
7165 return NULL;
7166 }
57d885fe
GH
7167
7168 return rd;
7169}
7170
1da177e4 7171/*
0eab9146 7172 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7173 * hold the hotplug lock.
7174 */
0eab9146
IM
7175static void
7176cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7177{
70b97a7f 7178 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7179 struct sched_domain *tmp;
7180
7181 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7182 for (tmp = sd; tmp; ) {
245af2c7
SS
7183 struct sched_domain *parent = tmp->parent;
7184 if (!parent)
7185 break;
f29c9b1c 7186
1a848870 7187 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7188 tmp->parent = parent->parent;
1a848870
SS
7189 if (parent->parent)
7190 parent->parent->child = tmp;
f29c9b1c
LZ
7191 } else
7192 tmp = tmp->parent;
245af2c7
SS
7193 }
7194
1a848870 7195 if (sd && sd_degenerate(sd)) {
245af2c7 7196 sd = sd->parent;
1a848870
SS
7197 if (sd)
7198 sd->child = NULL;
7199 }
1da177e4
LT
7200
7201 sched_domain_debug(sd, cpu);
7202
57d885fe 7203 rq_attach_root(rq, rd);
674311d5 7204 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7205}
7206
7207/* cpus with isolated domains */
dcc30a35 7208static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7209
7210/* Setup the mask of cpus configured for isolated domains */
7211static int __init isolated_cpu_setup(char *str)
7212{
968ea6d8 7213 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7214 return 1;
7215}
7216
8927f494 7217__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7218
7219/*
6711cab4
SS
7220 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7221 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7222 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7223 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7224 *
7225 * init_sched_build_groups will build a circular linked list of the groups
7226 * covered by the given span, and will set each group's ->cpumask correctly,
7227 * and ->cpu_power to 0.
7228 */
a616058b 7229static void
96f874e2
RR
7230init_sched_build_groups(const struct cpumask *span,
7231 const struct cpumask *cpu_map,
7232 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7233 struct sched_group **sg,
96f874e2
RR
7234 struct cpumask *tmpmask),
7235 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7236{
7237 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7238 int i;
7239
96f874e2 7240 cpumask_clear(covered);
7c16ec58 7241
abcd083a 7242 for_each_cpu(i, span) {
6711cab4 7243 struct sched_group *sg;
7c16ec58 7244 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7245 int j;
7246
758b2cdc 7247 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7248 continue;
7249
758b2cdc 7250 cpumask_clear(sched_group_cpus(sg));
5517d86b 7251 sg->__cpu_power = 0;
1da177e4 7252
abcd083a 7253 for_each_cpu(j, span) {
7c16ec58 7254 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7255 continue;
7256
96f874e2 7257 cpumask_set_cpu(j, covered);
758b2cdc 7258 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7259 }
7260 if (!first)
7261 first = sg;
7262 if (last)
7263 last->next = sg;
7264 last = sg;
7265 }
7266 last->next = first;
7267}
7268
9c1cfda2 7269#define SD_NODES_PER_DOMAIN 16
1da177e4 7270
9c1cfda2 7271#ifdef CONFIG_NUMA
198e2f18 7272
9c1cfda2
JH
7273/**
7274 * find_next_best_node - find the next node to include in a sched_domain
7275 * @node: node whose sched_domain we're building
7276 * @used_nodes: nodes already in the sched_domain
7277 *
41a2d6cf 7278 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7279 * finds the closest node not already in the @used_nodes map.
7280 *
7281 * Should use nodemask_t.
7282 */
c5f59f08 7283static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7284{
7285 int i, n, val, min_val, best_node = 0;
7286
7287 min_val = INT_MAX;
7288
076ac2af 7289 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7290 /* Start at @node */
076ac2af 7291 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7292
7293 if (!nr_cpus_node(n))
7294 continue;
7295
7296 /* Skip already used nodes */
c5f59f08 7297 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7298 continue;
7299
7300 /* Simple min distance search */
7301 val = node_distance(node, n);
7302
7303 if (val < min_val) {
7304 min_val = val;
7305 best_node = n;
7306 }
7307 }
7308
c5f59f08 7309 node_set(best_node, *used_nodes);
9c1cfda2
JH
7310 return best_node;
7311}
7312
7313/**
7314 * sched_domain_node_span - get a cpumask for a node's sched_domain
7315 * @node: node whose cpumask we're constructing
73486722 7316 * @span: resulting cpumask
9c1cfda2 7317 *
41a2d6cf 7318 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7319 * should be one that prevents unnecessary balancing, but also spreads tasks
7320 * out optimally.
7321 */
96f874e2 7322static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7323{
c5f59f08 7324 nodemask_t used_nodes;
48f24c4d 7325 int i;
9c1cfda2 7326
6ca09dfc 7327 cpumask_clear(span);
c5f59f08 7328 nodes_clear(used_nodes);
9c1cfda2 7329
6ca09dfc 7330 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7331 node_set(node, used_nodes);
9c1cfda2
JH
7332
7333 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7334 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7335
6ca09dfc 7336 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7337 }
9c1cfda2 7338}
6d6bc0ad 7339#endif /* CONFIG_NUMA */
9c1cfda2 7340
5c45bf27 7341int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7342
6c99e9ad
RR
7343/*
7344 * The cpus mask in sched_group and sched_domain hangs off the end.
7345 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7346 * for nr_cpu_ids < CONFIG_NR_CPUS.
7347 */
7348struct static_sched_group {
7349 struct sched_group sg;
7350 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7351};
7352
7353struct static_sched_domain {
7354 struct sched_domain sd;
7355 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7356};
7357
9c1cfda2 7358/*
48f24c4d 7359 * SMT sched-domains:
9c1cfda2 7360 */
1da177e4 7361#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7362static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7363static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7364
41a2d6cf 7365static int
96f874e2
RR
7366cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7367 struct sched_group **sg, struct cpumask *unused)
1da177e4 7368{
6711cab4 7369 if (sg)
6c99e9ad 7370 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7371 return cpu;
7372}
6d6bc0ad 7373#endif /* CONFIG_SCHED_SMT */
1da177e4 7374
48f24c4d
IM
7375/*
7376 * multi-core sched-domains:
7377 */
1e9f28fa 7378#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7379static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7380static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7381#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7382
7383#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7384static int
96f874e2
RR
7385cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7386 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7387{
6711cab4 7388 int group;
7c16ec58 7389
96f874e2
RR
7390 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7391 group = cpumask_first(mask);
6711cab4 7392 if (sg)
6c99e9ad 7393 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7394 return group;
1e9f28fa
SS
7395}
7396#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7397static int
96f874e2
RR
7398cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7399 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7400{
6711cab4 7401 if (sg)
6c99e9ad 7402 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7403 return cpu;
7404}
7405#endif
7406
6c99e9ad
RR
7407static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7408static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7409
41a2d6cf 7410static int
96f874e2
RR
7411cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7412 struct sched_group **sg, struct cpumask *mask)
1da177e4 7413{
6711cab4 7414 int group;
48f24c4d 7415#ifdef CONFIG_SCHED_MC
6ca09dfc 7416 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7417 group = cpumask_first(mask);
1e9f28fa 7418#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7419 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7420 group = cpumask_first(mask);
1da177e4 7421#else
6711cab4 7422 group = cpu;
1da177e4 7423#endif
6711cab4 7424 if (sg)
6c99e9ad 7425 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7426 return group;
1da177e4
LT
7427}
7428
7429#ifdef CONFIG_NUMA
1da177e4 7430/*
9c1cfda2
JH
7431 * The init_sched_build_groups can't handle what we want to do with node
7432 * groups, so roll our own. Now each node has its own list of groups which
7433 * gets dynamically allocated.
1da177e4 7434 */
62ea9ceb 7435static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7436static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7437
62ea9ceb 7438static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7439static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7440
96f874e2
RR
7441static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7442 struct sched_group **sg,
7443 struct cpumask *nodemask)
9c1cfda2 7444{
6711cab4
SS
7445 int group;
7446
6ca09dfc 7447 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7448 group = cpumask_first(nodemask);
6711cab4
SS
7449
7450 if (sg)
6c99e9ad 7451 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7452 return group;
1da177e4 7453}
6711cab4 7454
08069033
SS
7455static void init_numa_sched_groups_power(struct sched_group *group_head)
7456{
7457 struct sched_group *sg = group_head;
7458 int j;
7459
7460 if (!sg)
7461 return;
3a5c359a 7462 do {
758b2cdc 7463 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7464 struct sched_domain *sd;
08069033 7465
6c99e9ad 7466 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7467 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7468 /*
7469 * Only add "power" once for each
7470 * physical package.
7471 */
7472 continue;
7473 }
08069033 7474
3a5c359a
AK
7475 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7476 }
7477 sg = sg->next;
7478 } while (sg != group_head);
08069033 7479}
6d6bc0ad 7480#endif /* CONFIG_NUMA */
1da177e4 7481
a616058b 7482#ifdef CONFIG_NUMA
51888ca2 7483/* Free memory allocated for various sched_group structures */
96f874e2
RR
7484static void free_sched_groups(const struct cpumask *cpu_map,
7485 struct cpumask *nodemask)
51888ca2 7486{
a616058b 7487 int cpu, i;
51888ca2 7488
abcd083a 7489 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7490 struct sched_group **sched_group_nodes
7491 = sched_group_nodes_bycpu[cpu];
7492
51888ca2
SV
7493 if (!sched_group_nodes)
7494 continue;
7495
076ac2af 7496 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7497 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7498
6ca09dfc 7499 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7500 if (cpumask_empty(nodemask))
51888ca2
SV
7501 continue;
7502
7503 if (sg == NULL)
7504 continue;
7505 sg = sg->next;
7506next_sg:
7507 oldsg = sg;
7508 sg = sg->next;
7509 kfree(oldsg);
7510 if (oldsg != sched_group_nodes[i])
7511 goto next_sg;
7512 }
7513 kfree(sched_group_nodes);
7514 sched_group_nodes_bycpu[cpu] = NULL;
7515 }
51888ca2 7516}
6d6bc0ad 7517#else /* !CONFIG_NUMA */
96f874e2
RR
7518static void free_sched_groups(const struct cpumask *cpu_map,
7519 struct cpumask *nodemask)
a616058b
SS
7520{
7521}
6d6bc0ad 7522#endif /* CONFIG_NUMA */
51888ca2 7523
89c4710e
SS
7524/*
7525 * Initialize sched groups cpu_power.
7526 *
7527 * cpu_power indicates the capacity of sched group, which is used while
7528 * distributing the load between different sched groups in a sched domain.
7529 * Typically cpu_power for all the groups in a sched domain will be same unless
7530 * there are asymmetries in the topology. If there are asymmetries, group
7531 * having more cpu_power will pickup more load compared to the group having
7532 * less cpu_power.
7533 *
7534 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7535 * the maximum number of tasks a group can handle in the presence of other idle
7536 * or lightly loaded groups in the same sched domain.
7537 */
7538static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7539{
7540 struct sched_domain *child;
7541 struct sched_group *group;
7542
7543 WARN_ON(!sd || !sd->groups);
7544
758b2cdc 7545 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7546 return;
7547
7548 child = sd->child;
7549
5517d86b
ED
7550 sd->groups->__cpu_power = 0;
7551
89c4710e
SS
7552 /*
7553 * For perf policy, if the groups in child domain share resources
7554 * (for example cores sharing some portions of the cache hierarchy
7555 * or SMT), then set this domain groups cpu_power such that each group
7556 * can handle only one task, when there are other idle groups in the
7557 * same sched domain.
7558 */
7559 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7560 (child->flags &
7561 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7562 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7563 return;
7564 }
7565
89c4710e
SS
7566 /*
7567 * add cpu_power of each child group to this groups cpu_power
7568 */
7569 group = child->groups;
7570 do {
5517d86b 7571 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7572 group = group->next;
7573 } while (group != child->groups);
7574}
7575
7c16ec58
MT
7576/*
7577 * Initializers for schedule domains
7578 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7579 */
7580
a5d8c348
IM
7581#ifdef CONFIG_SCHED_DEBUG
7582# define SD_INIT_NAME(sd, type) sd->name = #type
7583#else
7584# define SD_INIT_NAME(sd, type) do { } while (0)
7585#endif
7586
7c16ec58 7587#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7588
7c16ec58
MT
7589#define SD_INIT_FUNC(type) \
7590static noinline void sd_init_##type(struct sched_domain *sd) \
7591{ \
7592 memset(sd, 0, sizeof(*sd)); \
7593 *sd = SD_##type##_INIT; \
1d3504fc 7594 sd->level = SD_LV_##type; \
a5d8c348 7595 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7596}
7597
7598SD_INIT_FUNC(CPU)
7599#ifdef CONFIG_NUMA
7600 SD_INIT_FUNC(ALLNODES)
7601 SD_INIT_FUNC(NODE)
7602#endif
7603#ifdef CONFIG_SCHED_SMT
7604 SD_INIT_FUNC(SIBLING)
7605#endif
7606#ifdef CONFIG_SCHED_MC
7607 SD_INIT_FUNC(MC)
7608#endif
7609
1d3504fc
HS
7610static int default_relax_domain_level = -1;
7611
7612static int __init setup_relax_domain_level(char *str)
7613{
30e0e178
LZ
7614 unsigned long val;
7615
7616 val = simple_strtoul(str, NULL, 0);
7617 if (val < SD_LV_MAX)
7618 default_relax_domain_level = val;
7619
1d3504fc
HS
7620 return 1;
7621}
7622__setup("relax_domain_level=", setup_relax_domain_level);
7623
7624static void set_domain_attribute(struct sched_domain *sd,
7625 struct sched_domain_attr *attr)
7626{
7627 int request;
7628
7629 if (!attr || attr->relax_domain_level < 0) {
7630 if (default_relax_domain_level < 0)
7631 return;
7632 else
7633 request = default_relax_domain_level;
7634 } else
7635 request = attr->relax_domain_level;
7636 if (request < sd->level) {
7637 /* turn off idle balance on this domain */
7638 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7639 } else {
7640 /* turn on idle balance on this domain */
7641 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7642 }
7643}
7644
1da177e4 7645/*
1a20ff27
DG
7646 * Build sched domains for a given set of cpus and attach the sched domains
7647 * to the individual cpus
1da177e4 7648 */
96f874e2 7649static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7650 struct sched_domain_attr *attr)
1da177e4 7651{
3404c8d9 7652 int i, err = -ENOMEM;
57d885fe 7653 struct root_domain *rd;
3404c8d9
RR
7654 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7655 tmpmask;
d1b55138 7656#ifdef CONFIG_NUMA
3404c8d9 7657 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7658 struct sched_group **sched_group_nodes = NULL;
6711cab4 7659 int sd_allnodes = 0;
d1b55138 7660
3404c8d9
RR
7661 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7662 goto out;
7663 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7664 goto free_domainspan;
7665 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7666 goto free_covered;
7667#endif
7668
7669 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7670 goto free_notcovered;
7671 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7672 goto free_nodemask;
7673 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7674 goto free_this_sibling_map;
7675 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7676 goto free_this_core_map;
7677 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7678 goto free_send_covered;
7679
7680#ifdef CONFIG_NUMA
d1b55138
JH
7681 /*
7682 * Allocate the per-node list of sched groups
7683 */
076ac2af 7684 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7685 GFP_KERNEL);
d1b55138
JH
7686 if (!sched_group_nodes) {
7687 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7688 goto free_tmpmask;
d1b55138 7689 }
d1b55138 7690#endif
1da177e4 7691
dc938520 7692 rd = alloc_rootdomain();
57d885fe
GH
7693 if (!rd) {
7694 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7695 goto free_sched_groups;
57d885fe
GH
7696 }
7697
7c16ec58 7698#ifdef CONFIG_NUMA
96f874e2 7699 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7700#endif
7701
1da177e4 7702 /*
1a20ff27 7703 * Set up domains for cpus specified by the cpu_map.
1da177e4 7704 */
abcd083a 7705 for_each_cpu(i, cpu_map) {
1da177e4 7706 struct sched_domain *sd = NULL, *p;
1da177e4 7707
6ca09dfc 7708 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7709
7710#ifdef CONFIG_NUMA
96f874e2
RR
7711 if (cpumask_weight(cpu_map) >
7712 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7713 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7714 SD_INIT(sd, ALLNODES);
1d3504fc 7715 set_domain_attribute(sd, attr);
758b2cdc 7716 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7717 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7718 p = sd;
6711cab4 7719 sd_allnodes = 1;
9c1cfda2
JH
7720 } else
7721 p = NULL;
7722
62ea9ceb 7723 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7724 SD_INIT(sd, NODE);
1d3504fc 7725 set_domain_attribute(sd, attr);
758b2cdc 7726 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7727 sd->parent = p;
1a848870
SS
7728 if (p)
7729 p->child = sd;
758b2cdc
RR
7730 cpumask_and(sched_domain_span(sd),
7731 sched_domain_span(sd), cpu_map);
1da177e4
LT
7732#endif
7733
7734 p = sd;
6c99e9ad 7735 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7736 SD_INIT(sd, CPU);
1d3504fc 7737 set_domain_attribute(sd, attr);
758b2cdc 7738 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7739 sd->parent = p;
1a848870
SS
7740 if (p)
7741 p->child = sd;
7c16ec58 7742 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7743
1e9f28fa
SS
7744#ifdef CONFIG_SCHED_MC
7745 p = sd;
6c99e9ad 7746 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7747 SD_INIT(sd, MC);
1d3504fc 7748 set_domain_attribute(sd, attr);
6ca09dfc
MT
7749 cpumask_and(sched_domain_span(sd), cpu_map,
7750 cpu_coregroup_mask(i));
1e9f28fa 7751 sd->parent = p;
1a848870 7752 p->child = sd;
7c16ec58 7753 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7754#endif
7755
1da177e4
LT
7756#ifdef CONFIG_SCHED_SMT
7757 p = sd;
6c99e9ad 7758 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7759 SD_INIT(sd, SIBLING);
1d3504fc 7760 set_domain_attribute(sd, attr);
758b2cdc
RR
7761 cpumask_and(sched_domain_span(sd),
7762 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7763 sd->parent = p;
1a848870 7764 p->child = sd;
7c16ec58 7765 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7766#endif
7767 }
7768
7769#ifdef CONFIG_SCHED_SMT
7770 /* Set up CPU (sibling) groups */
abcd083a 7771 for_each_cpu(i, cpu_map) {
96f874e2
RR
7772 cpumask_and(this_sibling_map,
7773 &per_cpu(cpu_sibling_map, i), cpu_map);
7774 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7775 continue;
7776
dd41f596 7777 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7778 &cpu_to_cpu_group,
7779 send_covered, tmpmask);
1da177e4
LT
7780 }
7781#endif
7782
1e9f28fa
SS
7783#ifdef CONFIG_SCHED_MC
7784 /* Set up multi-core groups */
abcd083a 7785 for_each_cpu(i, cpu_map) {
6ca09dfc 7786 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7787 if (i != cpumask_first(this_core_map))
1e9f28fa 7788 continue;
7c16ec58 7789
dd41f596 7790 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7791 &cpu_to_core_group,
7792 send_covered, tmpmask);
1e9f28fa
SS
7793 }
7794#endif
7795
1da177e4 7796 /* Set up physical groups */
076ac2af 7797 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7798 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7799 if (cpumask_empty(nodemask))
1da177e4
LT
7800 continue;
7801
7c16ec58
MT
7802 init_sched_build_groups(nodemask, cpu_map,
7803 &cpu_to_phys_group,
7804 send_covered, tmpmask);
1da177e4
LT
7805 }
7806
7807#ifdef CONFIG_NUMA
7808 /* Set up node groups */
7c16ec58 7809 if (sd_allnodes) {
7c16ec58
MT
7810 init_sched_build_groups(cpu_map, cpu_map,
7811 &cpu_to_allnodes_group,
7812 send_covered, tmpmask);
7813 }
9c1cfda2 7814
076ac2af 7815 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7816 /* Set up node groups */
7817 struct sched_group *sg, *prev;
9c1cfda2
JH
7818 int j;
7819
96f874e2 7820 cpumask_clear(covered);
6ca09dfc 7821 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7822 if (cpumask_empty(nodemask)) {
d1b55138 7823 sched_group_nodes[i] = NULL;
9c1cfda2 7824 continue;
d1b55138 7825 }
9c1cfda2 7826
4bdbaad3 7827 sched_domain_node_span(i, domainspan);
96f874e2 7828 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7829
6c99e9ad
RR
7830 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7831 GFP_KERNEL, i);
51888ca2
SV
7832 if (!sg) {
7833 printk(KERN_WARNING "Can not alloc domain group for "
7834 "node %d\n", i);
7835 goto error;
7836 }
9c1cfda2 7837 sched_group_nodes[i] = sg;
abcd083a 7838 for_each_cpu(j, nodemask) {
9c1cfda2 7839 struct sched_domain *sd;
9761eea8 7840
62ea9ceb 7841 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7842 sd->groups = sg;
9c1cfda2 7843 }
5517d86b 7844 sg->__cpu_power = 0;
758b2cdc 7845 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7846 sg->next = sg;
96f874e2 7847 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7848 prev = sg;
7849
076ac2af 7850 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7851 int n = (i + j) % nr_node_ids;
9c1cfda2 7852
96f874e2
RR
7853 cpumask_complement(notcovered, covered);
7854 cpumask_and(tmpmask, notcovered, cpu_map);
7855 cpumask_and(tmpmask, tmpmask, domainspan);
7856 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7857 break;
7858
6ca09dfc 7859 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7860 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7861 continue;
7862
6c99e9ad
RR
7863 sg = kmalloc_node(sizeof(struct sched_group) +
7864 cpumask_size(),
15f0b676 7865 GFP_KERNEL, i);
9c1cfda2
JH
7866 if (!sg) {
7867 printk(KERN_WARNING
7868 "Can not alloc domain group for node %d\n", j);
51888ca2 7869 goto error;
9c1cfda2 7870 }
5517d86b 7871 sg->__cpu_power = 0;
758b2cdc 7872 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7873 sg->next = prev->next;
96f874e2 7874 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7875 prev->next = sg;
7876 prev = sg;
7877 }
9c1cfda2 7878 }
1da177e4
LT
7879#endif
7880
7881 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7882#ifdef CONFIG_SCHED_SMT
abcd083a 7883 for_each_cpu(i, cpu_map) {
6c99e9ad 7884 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7885
89c4710e 7886 init_sched_groups_power(i, sd);
5c45bf27 7887 }
1da177e4 7888#endif
1e9f28fa 7889#ifdef CONFIG_SCHED_MC
abcd083a 7890 for_each_cpu(i, cpu_map) {
6c99e9ad 7891 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7892
89c4710e 7893 init_sched_groups_power(i, sd);
5c45bf27
SS
7894 }
7895#endif
1e9f28fa 7896
abcd083a 7897 for_each_cpu(i, cpu_map) {
6c99e9ad 7898 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7899
89c4710e 7900 init_sched_groups_power(i, sd);
1da177e4
LT
7901 }
7902
9c1cfda2 7903#ifdef CONFIG_NUMA
076ac2af 7904 for (i = 0; i < nr_node_ids; i++)
08069033 7905 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7906
6711cab4
SS
7907 if (sd_allnodes) {
7908 struct sched_group *sg;
f712c0c7 7909
96f874e2 7910 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7911 tmpmask);
f712c0c7
SS
7912 init_numa_sched_groups_power(sg);
7913 }
9c1cfda2
JH
7914#endif
7915
1da177e4 7916 /* Attach the domains */
abcd083a 7917 for_each_cpu(i, cpu_map) {
1da177e4
LT
7918 struct sched_domain *sd;
7919#ifdef CONFIG_SCHED_SMT
6c99e9ad 7920 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7921#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7922 sd = &per_cpu(core_domains, i).sd;
1da177e4 7923#else
6c99e9ad 7924 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7925#endif
57d885fe 7926 cpu_attach_domain(sd, rd, i);
1da177e4 7927 }
51888ca2 7928
3404c8d9
RR
7929 err = 0;
7930
7931free_tmpmask:
7932 free_cpumask_var(tmpmask);
7933free_send_covered:
7934 free_cpumask_var(send_covered);
7935free_this_core_map:
7936 free_cpumask_var(this_core_map);
7937free_this_sibling_map:
7938 free_cpumask_var(this_sibling_map);
7939free_nodemask:
7940 free_cpumask_var(nodemask);
7941free_notcovered:
7942#ifdef CONFIG_NUMA
7943 free_cpumask_var(notcovered);
7944free_covered:
7945 free_cpumask_var(covered);
7946free_domainspan:
7947 free_cpumask_var(domainspan);
7948out:
7949#endif
7950 return err;
7951
7952free_sched_groups:
7953#ifdef CONFIG_NUMA
7954 kfree(sched_group_nodes);
7955#endif
7956 goto free_tmpmask;
51888ca2 7957
a616058b 7958#ifdef CONFIG_NUMA
51888ca2 7959error:
7c16ec58 7960 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7961 free_rootdomain(rd);
3404c8d9 7962 goto free_tmpmask;
a616058b 7963#endif
1da177e4 7964}
029190c5 7965
96f874e2 7966static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7967{
7968 return __build_sched_domains(cpu_map, NULL);
7969}
7970
96f874e2 7971static struct cpumask *doms_cur; /* current sched domains */
029190c5 7972static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7973static struct sched_domain_attr *dattr_cur;
7974 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7975
7976/*
7977 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7978 * cpumask) fails, then fallback to a single sched domain,
7979 * as determined by the single cpumask fallback_doms.
029190c5 7980 */
4212823f 7981static cpumask_var_t fallback_doms;
029190c5 7982
ee79d1bd
HC
7983/*
7984 * arch_update_cpu_topology lets virtualized architectures update the
7985 * cpu core maps. It is supposed to return 1 if the topology changed
7986 * or 0 if it stayed the same.
7987 */
7988int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7989{
ee79d1bd 7990 return 0;
22e52b07
HC
7991}
7992
1a20ff27 7993/*
41a2d6cf 7994 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7995 * For now this just excludes isolated cpus, but could be used to
7996 * exclude other special cases in the future.
1a20ff27 7997 */
96f874e2 7998static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7999{
7378547f
MM
8000 int err;
8001
22e52b07 8002 arch_update_cpu_topology();
029190c5 8003 ndoms_cur = 1;
96f874e2 8004 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8005 if (!doms_cur)
4212823f 8006 doms_cur = fallback_doms;
dcc30a35 8007 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8008 dattr_cur = NULL;
7378547f 8009 err = build_sched_domains(doms_cur);
6382bc90 8010 register_sched_domain_sysctl();
7378547f
MM
8011
8012 return err;
1a20ff27
DG
8013}
8014
96f874e2
RR
8015static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8016 struct cpumask *tmpmask)
1da177e4 8017{
7c16ec58 8018 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8019}
1da177e4 8020
1a20ff27
DG
8021/*
8022 * Detach sched domains from a group of cpus specified in cpu_map
8023 * These cpus will now be attached to the NULL domain
8024 */
96f874e2 8025static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8026{
96f874e2
RR
8027 /* Save because hotplug lock held. */
8028 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8029 int i;
8030
abcd083a 8031 for_each_cpu(i, cpu_map)
57d885fe 8032 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8033 synchronize_sched();
96f874e2 8034 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8035}
8036
1d3504fc
HS
8037/* handle null as "default" */
8038static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8039 struct sched_domain_attr *new, int idx_new)
8040{
8041 struct sched_domain_attr tmp;
8042
8043 /* fast path */
8044 if (!new && !cur)
8045 return 1;
8046
8047 tmp = SD_ATTR_INIT;
8048 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8049 new ? (new + idx_new) : &tmp,
8050 sizeof(struct sched_domain_attr));
8051}
8052
029190c5
PJ
8053/*
8054 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8055 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8056 * doms_new[] to the current sched domain partitioning, doms_cur[].
8057 * It destroys each deleted domain and builds each new domain.
8058 *
96f874e2 8059 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8060 * The masks don't intersect (don't overlap.) We should setup one
8061 * sched domain for each mask. CPUs not in any of the cpumasks will
8062 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8063 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8064 * it as it is.
8065 *
41a2d6cf
IM
8066 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8067 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8068 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8069 * ndoms_new == 1, and partition_sched_domains() will fallback to
8070 * the single partition 'fallback_doms', it also forces the domains
8071 * to be rebuilt.
029190c5 8072 *
96f874e2 8073 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8074 * ndoms_new == 0 is a special case for destroying existing domains,
8075 * and it will not create the default domain.
dfb512ec 8076 *
029190c5
PJ
8077 * Call with hotplug lock held
8078 */
96f874e2
RR
8079/* FIXME: Change to struct cpumask *doms_new[] */
8080void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8081 struct sched_domain_attr *dattr_new)
029190c5 8082{
dfb512ec 8083 int i, j, n;
d65bd5ec 8084 int new_topology;
029190c5 8085
712555ee 8086 mutex_lock(&sched_domains_mutex);
a1835615 8087
7378547f
MM
8088 /* always unregister in case we don't destroy any domains */
8089 unregister_sched_domain_sysctl();
8090
d65bd5ec
HC
8091 /* Let architecture update cpu core mappings. */
8092 new_topology = arch_update_cpu_topology();
8093
dfb512ec 8094 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8095
8096 /* Destroy deleted domains */
8097 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8098 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8099 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8100 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8101 goto match1;
8102 }
8103 /* no match - a current sched domain not in new doms_new[] */
8104 detach_destroy_domains(doms_cur + i);
8105match1:
8106 ;
8107 }
8108
e761b772
MK
8109 if (doms_new == NULL) {
8110 ndoms_cur = 0;
4212823f 8111 doms_new = fallback_doms;
dcc30a35 8112 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8113 WARN_ON_ONCE(dattr_new);
e761b772
MK
8114 }
8115
029190c5
PJ
8116 /* Build new domains */
8117 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8118 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8119 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8120 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8121 goto match2;
8122 }
8123 /* no match - add a new doms_new */
1d3504fc
HS
8124 __build_sched_domains(doms_new + i,
8125 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8126match2:
8127 ;
8128 }
8129
8130 /* Remember the new sched domains */
4212823f 8131 if (doms_cur != fallback_doms)
029190c5 8132 kfree(doms_cur);
1d3504fc 8133 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8134 doms_cur = doms_new;
1d3504fc 8135 dattr_cur = dattr_new;
029190c5 8136 ndoms_cur = ndoms_new;
7378547f
MM
8137
8138 register_sched_domain_sysctl();
a1835615 8139
712555ee 8140 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8141}
8142
5c45bf27 8143#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8144static void arch_reinit_sched_domains(void)
5c45bf27 8145{
95402b38 8146 get_online_cpus();
dfb512ec
MK
8147
8148 /* Destroy domains first to force the rebuild */
8149 partition_sched_domains(0, NULL, NULL);
8150
e761b772 8151 rebuild_sched_domains();
95402b38 8152 put_online_cpus();
5c45bf27
SS
8153}
8154
8155static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8156{
afb8a9b7 8157 unsigned int level = 0;
5c45bf27 8158
afb8a9b7
GS
8159 if (sscanf(buf, "%u", &level) != 1)
8160 return -EINVAL;
8161
8162 /*
8163 * level is always be positive so don't check for
8164 * level < POWERSAVINGS_BALANCE_NONE which is 0
8165 * What happens on 0 or 1 byte write,
8166 * need to check for count as well?
8167 */
8168
8169 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8170 return -EINVAL;
8171
8172 if (smt)
afb8a9b7 8173 sched_smt_power_savings = level;
5c45bf27 8174 else
afb8a9b7 8175 sched_mc_power_savings = level;
5c45bf27 8176
c70f22d2 8177 arch_reinit_sched_domains();
5c45bf27 8178
c70f22d2 8179 return count;
5c45bf27
SS
8180}
8181
5c45bf27 8182#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8183static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8184 char *page)
5c45bf27
SS
8185{
8186 return sprintf(page, "%u\n", sched_mc_power_savings);
8187}
f718cd4a 8188static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8189 const char *buf, size_t count)
5c45bf27
SS
8190{
8191 return sched_power_savings_store(buf, count, 0);
8192}
f718cd4a
AK
8193static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8194 sched_mc_power_savings_show,
8195 sched_mc_power_savings_store);
5c45bf27
SS
8196#endif
8197
8198#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8199static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8200 char *page)
5c45bf27
SS
8201{
8202 return sprintf(page, "%u\n", sched_smt_power_savings);
8203}
f718cd4a 8204static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8205 const char *buf, size_t count)
5c45bf27
SS
8206{
8207 return sched_power_savings_store(buf, count, 1);
8208}
f718cd4a
AK
8209static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8210 sched_smt_power_savings_show,
6707de00
AB
8211 sched_smt_power_savings_store);
8212#endif
8213
39aac648 8214int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8215{
8216 int err = 0;
8217
8218#ifdef CONFIG_SCHED_SMT
8219 if (smt_capable())
8220 err = sysfs_create_file(&cls->kset.kobj,
8221 &attr_sched_smt_power_savings.attr);
8222#endif
8223#ifdef CONFIG_SCHED_MC
8224 if (!err && mc_capable())
8225 err = sysfs_create_file(&cls->kset.kobj,
8226 &attr_sched_mc_power_savings.attr);
8227#endif
8228 return err;
8229}
6d6bc0ad 8230#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8231
e761b772 8232#ifndef CONFIG_CPUSETS
1da177e4 8233/*
e761b772
MK
8234 * Add online and remove offline CPUs from the scheduler domains.
8235 * When cpusets are enabled they take over this function.
1da177e4
LT
8236 */
8237static int update_sched_domains(struct notifier_block *nfb,
8238 unsigned long action, void *hcpu)
e761b772
MK
8239{
8240 switch (action) {
8241 case CPU_ONLINE:
8242 case CPU_ONLINE_FROZEN:
8243 case CPU_DEAD:
8244 case CPU_DEAD_FROZEN:
dfb512ec 8245 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8246 return NOTIFY_OK;
8247
8248 default:
8249 return NOTIFY_DONE;
8250 }
8251}
8252#endif
8253
8254static int update_runtime(struct notifier_block *nfb,
8255 unsigned long action, void *hcpu)
1da177e4 8256{
7def2be1
PZ
8257 int cpu = (int)(long)hcpu;
8258
1da177e4 8259 switch (action) {
1da177e4 8260 case CPU_DOWN_PREPARE:
8bb78442 8261 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8262 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8263 return NOTIFY_OK;
8264
1da177e4 8265 case CPU_DOWN_FAILED:
8bb78442 8266 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8267 case CPU_ONLINE:
8bb78442 8268 case CPU_ONLINE_FROZEN:
7def2be1 8269 enable_runtime(cpu_rq(cpu));
e761b772
MK
8270 return NOTIFY_OK;
8271
1da177e4
LT
8272 default:
8273 return NOTIFY_DONE;
8274 }
1da177e4 8275}
1da177e4
LT
8276
8277void __init sched_init_smp(void)
8278{
dcc30a35
RR
8279 cpumask_var_t non_isolated_cpus;
8280
8281 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8282
434d53b0
MT
8283#if defined(CONFIG_NUMA)
8284 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8285 GFP_KERNEL);
8286 BUG_ON(sched_group_nodes_bycpu == NULL);
8287#endif
95402b38 8288 get_online_cpus();
712555ee 8289 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8290 arch_init_sched_domains(cpu_online_mask);
8291 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8292 if (cpumask_empty(non_isolated_cpus))
8293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8294 mutex_unlock(&sched_domains_mutex);
95402b38 8295 put_online_cpus();
e761b772
MK
8296
8297#ifndef CONFIG_CPUSETS
1da177e4
LT
8298 /* XXX: Theoretical race here - CPU may be hotplugged now */
8299 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8300#endif
8301
8302 /* RT runtime code needs to handle some hotplug events */
8303 hotcpu_notifier(update_runtime, 0);
8304
b328ca18 8305 init_hrtick();
5c1e1767
NP
8306
8307 /* Move init over to a non-isolated CPU */
dcc30a35 8308 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8309 BUG();
19978ca6 8310 sched_init_granularity();
dcc30a35 8311 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8312
8313 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8314 init_sched_rt_class();
1da177e4
LT
8315}
8316#else
8317void __init sched_init_smp(void)
8318{
19978ca6 8319 sched_init_granularity();
1da177e4
LT
8320}
8321#endif /* CONFIG_SMP */
8322
8323int in_sched_functions(unsigned long addr)
8324{
1da177e4
LT
8325 return in_lock_functions(addr) ||
8326 (addr >= (unsigned long)__sched_text_start
8327 && addr < (unsigned long)__sched_text_end);
8328}
8329
a9957449 8330static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8331{
8332 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8333 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8334#ifdef CONFIG_FAIR_GROUP_SCHED
8335 cfs_rq->rq = rq;
8336#endif
67e9fb2a 8337 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8338}
8339
fa85ae24
PZ
8340static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8341{
8342 struct rt_prio_array *array;
8343 int i;
8344
8345 array = &rt_rq->active;
8346 for (i = 0; i < MAX_RT_PRIO; i++) {
8347 INIT_LIST_HEAD(array->queue + i);
8348 __clear_bit(i, array->bitmap);
8349 }
8350 /* delimiter for bitsearch: */
8351 __set_bit(MAX_RT_PRIO, array->bitmap);
8352
052f1dc7 8353#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8354 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8355#ifdef CONFIG_SMP
e864c499 8356 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8357#endif
48d5e258 8358#endif
fa85ae24
PZ
8359#ifdef CONFIG_SMP
8360 rt_rq->rt_nr_migratory = 0;
fa85ae24 8361 rt_rq->overloaded = 0;
917b627d 8362 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8363#endif
8364
8365 rt_rq->rt_time = 0;
8366 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8367 rt_rq->rt_runtime = 0;
8368 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8369
052f1dc7 8370#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8371 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8372 rt_rq->rq = rq;
8373#endif
fa85ae24
PZ
8374}
8375
6f505b16 8376#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8377static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8378 struct sched_entity *se, int cpu, int add,
8379 struct sched_entity *parent)
6f505b16 8380{
ec7dc8ac 8381 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8382 tg->cfs_rq[cpu] = cfs_rq;
8383 init_cfs_rq(cfs_rq, rq);
8384 cfs_rq->tg = tg;
8385 if (add)
8386 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8387
8388 tg->se[cpu] = se;
354d60c2
DG
8389 /* se could be NULL for init_task_group */
8390 if (!se)
8391 return;
8392
ec7dc8ac
DG
8393 if (!parent)
8394 se->cfs_rq = &rq->cfs;
8395 else
8396 se->cfs_rq = parent->my_q;
8397
6f505b16
PZ
8398 se->my_q = cfs_rq;
8399 se->load.weight = tg->shares;
e05510d0 8400 se->load.inv_weight = 0;
ec7dc8ac 8401 se->parent = parent;
6f505b16 8402}
052f1dc7 8403#endif
6f505b16 8404
052f1dc7 8405#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8406static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8407 struct sched_rt_entity *rt_se, int cpu, int add,
8408 struct sched_rt_entity *parent)
6f505b16 8409{
ec7dc8ac
DG
8410 struct rq *rq = cpu_rq(cpu);
8411
6f505b16
PZ
8412 tg->rt_rq[cpu] = rt_rq;
8413 init_rt_rq(rt_rq, rq);
8414 rt_rq->tg = tg;
8415 rt_rq->rt_se = rt_se;
ac086bc2 8416 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8417 if (add)
8418 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8419
8420 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8421 if (!rt_se)
8422 return;
8423
ec7dc8ac
DG
8424 if (!parent)
8425 rt_se->rt_rq = &rq->rt;
8426 else
8427 rt_se->rt_rq = parent->my_q;
8428
6f505b16 8429 rt_se->my_q = rt_rq;
ec7dc8ac 8430 rt_se->parent = parent;
6f505b16
PZ
8431 INIT_LIST_HEAD(&rt_se->run_list);
8432}
8433#endif
8434
1da177e4
LT
8435void __init sched_init(void)
8436{
dd41f596 8437 int i, j;
434d53b0
MT
8438 unsigned long alloc_size = 0, ptr;
8439
8440#ifdef CONFIG_FAIR_GROUP_SCHED
8441 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8442#endif
8443#ifdef CONFIG_RT_GROUP_SCHED
8444 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8445#endif
8446#ifdef CONFIG_USER_SCHED
8447 alloc_size *= 2;
434d53b0
MT
8448#endif
8449 /*
8450 * As sched_init() is called before page_alloc is setup,
8451 * we use alloc_bootmem().
8452 */
8453 if (alloc_size) {
5a9d3225 8454 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8455
8456#ifdef CONFIG_FAIR_GROUP_SCHED
8457 init_task_group.se = (struct sched_entity **)ptr;
8458 ptr += nr_cpu_ids * sizeof(void **);
8459
8460 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8461 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8462
8463#ifdef CONFIG_USER_SCHED
8464 root_task_group.se = (struct sched_entity **)ptr;
8465 ptr += nr_cpu_ids * sizeof(void **);
8466
8467 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8468 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8469#endif /* CONFIG_USER_SCHED */
8470#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8471#ifdef CONFIG_RT_GROUP_SCHED
8472 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8473 ptr += nr_cpu_ids * sizeof(void **);
8474
8475 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8476 ptr += nr_cpu_ids * sizeof(void **);
8477
8478#ifdef CONFIG_USER_SCHED
8479 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8480 ptr += nr_cpu_ids * sizeof(void **);
8481
8482 root_task_group.rt_rq = (struct rt_rq **)ptr;
8483 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8484#endif /* CONFIG_USER_SCHED */
8485#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8486 }
dd41f596 8487
57d885fe
GH
8488#ifdef CONFIG_SMP
8489 init_defrootdomain();
8490#endif
8491
d0b27fa7
PZ
8492 init_rt_bandwidth(&def_rt_bandwidth,
8493 global_rt_period(), global_rt_runtime());
8494
8495#ifdef CONFIG_RT_GROUP_SCHED
8496 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8497 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8498#ifdef CONFIG_USER_SCHED
8499 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8500 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8501#endif /* CONFIG_USER_SCHED */
8502#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8503
052f1dc7 8504#ifdef CONFIG_GROUP_SCHED
6f505b16 8505 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8506 INIT_LIST_HEAD(&init_task_group.children);
8507
8508#ifdef CONFIG_USER_SCHED
8509 INIT_LIST_HEAD(&root_task_group.children);
8510 init_task_group.parent = &root_task_group;
8511 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8512#endif /* CONFIG_USER_SCHED */
8513#endif /* CONFIG_GROUP_SCHED */
6f505b16 8514
0a945022 8515 for_each_possible_cpu(i) {
70b97a7f 8516 struct rq *rq;
1da177e4
LT
8517
8518 rq = cpu_rq(i);
8519 spin_lock_init(&rq->lock);
7897986b 8520 rq->nr_running = 0;
dd41f596 8521 init_cfs_rq(&rq->cfs, rq);
6f505b16 8522 init_rt_rq(&rq->rt, rq);
dd41f596 8523#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8524 init_task_group.shares = init_task_group_load;
6f505b16 8525 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8526#ifdef CONFIG_CGROUP_SCHED
8527 /*
8528 * How much cpu bandwidth does init_task_group get?
8529 *
8530 * In case of task-groups formed thr' the cgroup filesystem, it
8531 * gets 100% of the cpu resources in the system. This overall
8532 * system cpu resource is divided among the tasks of
8533 * init_task_group and its child task-groups in a fair manner,
8534 * based on each entity's (task or task-group's) weight
8535 * (se->load.weight).
8536 *
8537 * In other words, if init_task_group has 10 tasks of weight
8538 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8539 * then A0's share of the cpu resource is:
8540 *
8541 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8542 *
8543 * We achieve this by letting init_task_group's tasks sit
8544 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8545 */
ec7dc8ac 8546 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8547#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8548 root_task_group.shares = NICE_0_LOAD;
8549 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8550 /*
8551 * In case of task-groups formed thr' the user id of tasks,
8552 * init_task_group represents tasks belonging to root user.
8553 * Hence it forms a sibling of all subsequent groups formed.
8554 * In this case, init_task_group gets only a fraction of overall
8555 * system cpu resource, based on the weight assigned to root
8556 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8557 * by letting tasks of init_task_group sit in a separate cfs_rq
8558 * (init_cfs_rq) and having one entity represent this group of
8559 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8560 */
ec7dc8ac 8561 init_tg_cfs_entry(&init_task_group,
6f505b16 8562 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8563 &per_cpu(init_sched_entity, i), i, 1,
8564 root_task_group.se[i]);
6f505b16 8565
052f1dc7 8566#endif
354d60c2
DG
8567#endif /* CONFIG_FAIR_GROUP_SCHED */
8568
8569 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8570#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8571 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8572#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8573 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8574#elif defined CONFIG_USER_SCHED
eff766a6 8575 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8576 init_tg_rt_entry(&init_task_group,
6f505b16 8577 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8578 &per_cpu(init_sched_rt_entity, i), i, 1,
8579 root_task_group.rt_se[i]);
354d60c2 8580#endif
dd41f596 8581#endif
1da177e4 8582
dd41f596
IM
8583 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8584 rq->cpu_load[j] = 0;
1da177e4 8585#ifdef CONFIG_SMP
41c7ce9a 8586 rq->sd = NULL;
57d885fe 8587 rq->rd = NULL;
1da177e4 8588 rq->active_balance = 0;
dd41f596 8589 rq->next_balance = jiffies;
1da177e4 8590 rq->push_cpu = 0;
0a2966b4 8591 rq->cpu = i;
1f11eb6a 8592 rq->online = 0;
1da177e4
LT
8593 rq->migration_thread = NULL;
8594 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8595 rq_attach_root(rq, &def_root_domain);
1da177e4 8596#endif
8f4d37ec 8597 init_rq_hrtick(rq);
1da177e4 8598 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8599 }
8600
2dd73a4f 8601 set_load_weight(&init_task);
b50f60ce 8602
e107be36
AK
8603#ifdef CONFIG_PREEMPT_NOTIFIERS
8604 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8605#endif
8606
c9819f45 8607#ifdef CONFIG_SMP
962cf36c 8608 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8609#endif
8610
b50f60ce
HC
8611#ifdef CONFIG_RT_MUTEXES
8612 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8613#endif
8614
1da177e4
LT
8615 /*
8616 * The boot idle thread does lazy MMU switching as well:
8617 */
8618 atomic_inc(&init_mm.mm_count);
8619 enter_lazy_tlb(&init_mm, current);
8620
8621 /*
8622 * Make us the idle thread. Technically, schedule() should not be
8623 * called from this thread, however somewhere below it might be,
8624 * but because we are the idle thread, we just pick up running again
8625 * when this runqueue becomes "idle".
8626 */
8627 init_idle(current, smp_processor_id());
dd41f596
IM
8628 /*
8629 * During early bootup we pretend to be a normal task:
8630 */
8631 current->sched_class = &fair_sched_class;
6892b75e 8632
6a7b3dc3
RR
8633 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8634 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8635#ifdef CONFIG_SMP
7d1e6a9b
RR
8636#ifdef CONFIG_NO_HZ
8637 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8638#endif
dcc30a35 8639 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8640#endif /* SMP */
6a7b3dc3 8641
6892b75e 8642 scheduler_running = 1;
1da177e4
LT
8643}
8644
8645#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8646void __might_sleep(char *file, int line)
8647{
48f24c4d 8648#ifdef in_atomic
1da177e4
LT
8649 static unsigned long prev_jiffy; /* ratelimiting */
8650
aef745fc
IM
8651 if ((!in_atomic() && !irqs_disabled()) ||
8652 system_state != SYSTEM_RUNNING || oops_in_progress)
8653 return;
8654 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8655 return;
8656 prev_jiffy = jiffies;
8657
8658 printk(KERN_ERR
8659 "BUG: sleeping function called from invalid context at %s:%d\n",
8660 file, line);
8661 printk(KERN_ERR
8662 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8663 in_atomic(), irqs_disabled(),
8664 current->pid, current->comm);
8665
8666 debug_show_held_locks(current);
8667 if (irqs_disabled())
8668 print_irqtrace_events(current);
8669 dump_stack();
1da177e4
LT
8670#endif
8671}
8672EXPORT_SYMBOL(__might_sleep);
8673#endif
8674
8675#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8676static void normalize_task(struct rq *rq, struct task_struct *p)
8677{
8678 int on_rq;
3e51f33f 8679
3a5e4dc1
AK
8680 update_rq_clock(rq);
8681 on_rq = p->se.on_rq;
8682 if (on_rq)
8683 deactivate_task(rq, p, 0);
8684 __setscheduler(rq, p, SCHED_NORMAL, 0);
8685 if (on_rq) {
8686 activate_task(rq, p, 0);
8687 resched_task(rq->curr);
8688 }
8689}
8690
1da177e4
LT
8691void normalize_rt_tasks(void)
8692{
a0f98a1c 8693 struct task_struct *g, *p;
1da177e4 8694 unsigned long flags;
70b97a7f 8695 struct rq *rq;
1da177e4 8696
4cf5d77a 8697 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8698 do_each_thread(g, p) {
178be793
IM
8699 /*
8700 * Only normalize user tasks:
8701 */
8702 if (!p->mm)
8703 continue;
8704
6cfb0d5d 8705 p->se.exec_start = 0;
6cfb0d5d 8706#ifdef CONFIG_SCHEDSTATS
dd41f596 8707 p->se.wait_start = 0;
dd41f596 8708 p->se.sleep_start = 0;
dd41f596 8709 p->se.block_start = 0;
6cfb0d5d 8710#endif
dd41f596
IM
8711
8712 if (!rt_task(p)) {
8713 /*
8714 * Renice negative nice level userspace
8715 * tasks back to 0:
8716 */
8717 if (TASK_NICE(p) < 0 && p->mm)
8718 set_user_nice(p, 0);
1da177e4 8719 continue;
dd41f596 8720 }
1da177e4 8721
4cf5d77a 8722 spin_lock(&p->pi_lock);
b29739f9 8723 rq = __task_rq_lock(p);
1da177e4 8724
178be793 8725 normalize_task(rq, p);
3a5e4dc1 8726
b29739f9 8727 __task_rq_unlock(rq);
4cf5d77a 8728 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8729 } while_each_thread(g, p);
8730
4cf5d77a 8731 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8732}
8733
8734#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8735
8736#ifdef CONFIG_IA64
8737/*
8738 * These functions are only useful for the IA64 MCA handling.
8739 *
8740 * They can only be called when the whole system has been
8741 * stopped - every CPU needs to be quiescent, and no scheduling
8742 * activity can take place. Using them for anything else would
8743 * be a serious bug, and as a result, they aren't even visible
8744 * under any other configuration.
8745 */
8746
8747/**
8748 * curr_task - return the current task for a given cpu.
8749 * @cpu: the processor in question.
8750 *
8751 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8752 */
36c8b586 8753struct task_struct *curr_task(int cpu)
1df5c10a
LT
8754{
8755 return cpu_curr(cpu);
8756}
8757
8758/**
8759 * set_curr_task - set the current task for a given cpu.
8760 * @cpu: the processor in question.
8761 * @p: the task pointer to set.
8762 *
8763 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8764 * are serviced on a separate stack. It allows the architecture to switch the
8765 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8766 * must be called with all CPU's synchronized, and interrupts disabled, the
8767 * and caller must save the original value of the current task (see
8768 * curr_task() above) and restore that value before reenabling interrupts and
8769 * re-starting the system.
8770 *
8771 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8772 */
36c8b586 8773void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8774{
8775 cpu_curr(cpu) = p;
8776}
8777
8778#endif
29f59db3 8779
bccbe08a
PZ
8780#ifdef CONFIG_FAIR_GROUP_SCHED
8781static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8782{
8783 int i;
8784
8785 for_each_possible_cpu(i) {
8786 if (tg->cfs_rq)
8787 kfree(tg->cfs_rq[i]);
8788 if (tg->se)
8789 kfree(tg->se[i]);
6f505b16
PZ
8790 }
8791
8792 kfree(tg->cfs_rq);
8793 kfree(tg->se);
6f505b16
PZ
8794}
8795
ec7dc8ac
DG
8796static
8797int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8798{
29f59db3 8799 struct cfs_rq *cfs_rq;
eab17229 8800 struct sched_entity *se;
9b5b7751 8801 struct rq *rq;
29f59db3
SV
8802 int i;
8803
434d53b0 8804 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8805 if (!tg->cfs_rq)
8806 goto err;
434d53b0 8807 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8808 if (!tg->se)
8809 goto err;
052f1dc7
PZ
8810
8811 tg->shares = NICE_0_LOAD;
29f59db3
SV
8812
8813 for_each_possible_cpu(i) {
9b5b7751 8814 rq = cpu_rq(i);
29f59db3 8815
eab17229
LZ
8816 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8817 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8818 if (!cfs_rq)
8819 goto err;
8820
eab17229
LZ
8821 se = kzalloc_node(sizeof(struct sched_entity),
8822 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8823 if (!se)
8824 goto err;
8825
eab17229 8826 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8827 }
8828
8829 return 1;
8830
8831 err:
8832 return 0;
8833}
8834
8835static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8836{
8837 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8838 &cpu_rq(cpu)->leaf_cfs_rq_list);
8839}
8840
8841static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8842{
8843 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8844}
6d6bc0ad 8845#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8846static inline void free_fair_sched_group(struct task_group *tg)
8847{
8848}
8849
ec7dc8ac
DG
8850static inline
8851int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8852{
8853 return 1;
8854}
8855
8856static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8857{
8858}
8859
8860static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8861{
8862}
6d6bc0ad 8863#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8864
8865#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8866static void free_rt_sched_group(struct task_group *tg)
8867{
8868 int i;
8869
d0b27fa7
PZ
8870 destroy_rt_bandwidth(&tg->rt_bandwidth);
8871
bccbe08a
PZ
8872 for_each_possible_cpu(i) {
8873 if (tg->rt_rq)
8874 kfree(tg->rt_rq[i]);
8875 if (tg->rt_se)
8876 kfree(tg->rt_se[i]);
8877 }
8878
8879 kfree(tg->rt_rq);
8880 kfree(tg->rt_se);
8881}
8882
ec7dc8ac
DG
8883static
8884int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8885{
8886 struct rt_rq *rt_rq;
eab17229 8887 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8888 struct rq *rq;
8889 int i;
8890
434d53b0 8891 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8892 if (!tg->rt_rq)
8893 goto err;
434d53b0 8894 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8895 if (!tg->rt_se)
8896 goto err;
8897
d0b27fa7
PZ
8898 init_rt_bandwidth(&tg->rt_bandwidth,
8899 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8900
8901 for_each_possible_cpu(i) {
8902 rq = cpu_rq(i);
8903
eab17229
LZ
8904 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8905 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8906 if (!rt_rq)
8907 goto err;
29f59db3 8908
eab17229
LZ
8909 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8910 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8911 if (!rt_se)
8912 goto err;
29f59db3 8913
eab17229 8914 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8915 }
8916
bccbe08a
PZ
8917 return 1;
8918
8919 err:
8920 return 0;
8921}
8922
8923static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8924{
8925 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8926 &cpu_rq(cpu)->leaf_rt_rq_list);
8927}
8928
8929static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8930{
8931 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8932}
6d6bc0ad 8933#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8934static inline void free_rt_sched_group(struct task_group *tg)
8935{
8936}
8937
ec7dc8ac
DG
8938static inline
8939int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8940{
8941 return 1;
8942}
8943
8944static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8945{
8946}
8947
8948static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8949{
8950}
6d6bc0ad 8951#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8952
d0b27fa7 8953#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8954static void free_sched_group(struct task_group *tg)
8955{
8956 free_fair_sched_group(tg);
8957 free_rt_sched_group(tg);
8958 kfree(tg);
8959}
8960
8961/* allocate runqueue etc for a new task group */
ec7dc8ac 8962struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8963{
8964 struct task_group *tg;
8965 unsigned long flags;
8966 int i;
8967
8968 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8969 if (!tg)
8970 return ERR_PTR(-ENOMEM);
8971
ec7dc8ac 8972 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8973 goto err;
8974
ec7dc8ac 8975 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8976 goto err;
8977
8ed36996 8978 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8979 for_each_possible_cpu(i) {
bccbe08a
PZ
8980 register_fair_sched_group(tg, i);
8981 register_rt_sched_group(tg, i);
9b5b7751 8982 }
6f505b16 8983 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8984
8985 WARN_ON(!parent); /* root should already exist */
8986
8987 tg->parent = parent;
f473aa5e 8988 INIT_LIST_HEAD(&tg->children);
09f2724a 8989 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8990 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8991
9b5b7751 8992 return tg;
29f59db3
SV
8993
8994err:
6f505b16 8995 free_sched_group(tg);
29f59db3
SV
8996 return ERR_PTR(-ENOMEM);
8997}
8998
9b5b7751 8999/* rcu callback to free various structures associated with a task group */
6f505b16 9000static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9001{
29f59db3 9002 /* now it should be safe to free those cfs_rqs */
6f505b16 9003 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9004}
9005
9b5b7751 9006/* Destroy runqueue etc associated with a task group */
4cf86d77 9007void sched_destroy_group(struct task_group *tg)
29f59db3 9008{
8ed36996 9009 unsigned long flags;
9b5b7751 9010 int i;
29f59db3 9011
8ed36996 9012 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9013 for_each_possible_cpu(i) {
bccbe08a
PZ
9014 unregister_fair_sched_group(tg, i);
9015 unregister_rt_sched_group(tg, i);
9b5b7751 9016 }
6f505b16 9017 list_del_rcu(&tg->list);
f473aa5e 9018 list_del_rcu(&tg->siblings);
8ed36996 9019 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9020
9b5b7751 9021 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9022 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9023}
9024
9b5b7751 9025/* change task's runqueue when it moves between groups.
3a252015
IM
9026 * The caller of this function should have put the task in its new group
9027 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9028 * reflect its new group.
9b5b7751
SV
9029 */
9030void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9031{
9032 int on_rq, running;
9033 unsigned long flags;
9034 struct rq *rq;
9035
9036 rq = task_rq_lock(tsk, &flags);
9037
29f59db3
SV
9038 update_rq_clock(rq);
9039
051a1d1a 9040 running = task_current(rq, tsk);
29f59db3
SV
9041 on_rq = tsk->se.on_rq;
9042
0e1f3483 9043 if (on_rq)
29f59db3 9044 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9045 if (unlikely(running))
9046 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9047
6f505b16 9048 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9049
810b3817
PZ
9050#ifdef CONFIG_FAIR_GROUP_SCHED
9051 if (tsk->sched_class->moved_group)
9052 tsk->sched_class->moved_group(tsk);
9053#endif
9054
0e1f3483
HS
9055 if (unlikely(running))
9056 tsk->sched_class->set_curr_task(rq);
9057 if (on_rq)
7074badb 9058 enqueue_task(rq, tsk, 0);
29f59db3 9059
29f59db3
SV
9060 task_rq_unlock(rq, &flags);
9061}
6d6bc0ad 9062#endif /* CONFIG_GROUP_SCHED */
29f59db3 9063
052f1dc7 9064#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9065static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9066{
9067 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9068 int on_rq;
9069
29f59db3 9070 on_rq = se->on_rq;
62fb1851 9071 if (on_rq)
29f59db3
SV
9072 dequeue_entity(cfs_rq, se, 0);
9073
9074 se->load.weight = shares;
e05510d0 9075 se->load.inv_weight = 0;
29f59db3 9076
62fb1851 9077 if (on_rq)
29f59db3 9078 enqueue_entity(cfs_rq, se, 0);
c09595f6 9079}
62fb1851 9080
c09595f6
PZ
9081static void set_se_shares(struct sched_entity *se, unsigned long shares)
9082{
9083 struct cfs_rq *cfs_rq = se->cfs_rq;
9084 struct rq *rq = cfs_rq->rq;
9085 unsigned long flags;
9086
9087 spin_lock_irqsave(&rq->lock, flags);
9088 __set_se_shares(se, shares);
9089 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9090}
9091
8ed36996
PZ
9092static DEFINE_MUTEX(shares_mutex);
9093
4cf86d77 9094int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9095{
9096 int i;
8ed36996 9097 unsigned long flags;
c61935fd 9098
ec7dc8ac
DG
9099 /*
9100 * We can't change the weight of the root cgroup.
9101 */
9102 if (!tg->se[0])
9103 return -EINVAL;
9104
18d95a28
PZ
9105 if (shares < MIN_SHARES)
9106 shares = MIN_SHARES;
cb4ad1ff
MX
9107 else if (shares > MAX_SHARES)
9108 shares = MAX_SHARES;
62fb1851 9109
8ed36996 9110 mutex_lock(&shares_mutex);
9b5b7751 9111 if (tg->shares == shares)
5cb350ba 9112 goto done;
29f59db3 9113
8ed36996 9114 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9115 for_each_possible_cpu(i)
9116 unregister_fair_sched_group(tg, i);
f473aa5e 9117 list_del_rcu(&tg->siblings);
8ed36996 9118 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9119
9120 /* wait for any ongoing reference to this group to finish */
9121 synchronize_sched();
9122
9123 /*
9124 * Now we are free to modify the group's share on each cpu
9125 * w/o tripping rebalance_share or load_balance_fair.
9126 */
9b5b7751 9127 tg->shares = shares;
c09595f6
PZ
9128 for_each_possible_cpu(i) {
9129 /*
9130 * force a rebalance
9131 */
9132 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9133 set_se_shares(tg->se[i], shares);
c09595f6 9134 }
29f59db3 9135
6b2d7700
SV
9136 /*
9137 * Enable load balance activity on this group, by inserting it back on
9138 * each cpu's rq->leaf_cfs_rq_list.
9139 */
8ed36996 9140 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9141 for_each_possible_cpu(i)
9142 register_fair_sched_group(tg, i);
f473aa5e 9143 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9144 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9145done:
8ed36996 9146 mutex_unlock(&shares_mutex);
9b5b7751 9147 return 0;
29f59db3
SV
9148}
9149
5cb350ba
DG
9150unsigned long sched_group_shares(struct task_group *tg)
9151{
9152 return tg->shares;
9153}
052f1dc7 9154#endif
5cb350ba 9155
052f1dc7 9156#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9157/*
9f0c1e56 9158 * Ensure that the real time constraints are schedulable.
6f505b16 9159 */
9f0c1e56
PZ
9160static DEFINE_MUTEX(rt_constraints_mutex);
9161
9162static unsigned long to_ratio(u64 period, u64 runtime)
9163{
9164 if (runtime == RUNTIME_INF)
9a7e0b18 9165 return 1ULL << 20;
9f0c1e56 9166
9a7e0b18 9167 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9168}
9169
9a7e0b18
PZ
9170/* Must be called with tasklist_lock held */
9171static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9172{
9a7e0b18 9173 struct task_struct *g, *p;
b40b2e8e 9174
9a7e0b18
PZ
9175 do_each_thread(g, p) {
9176 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9177 return 1;
9178 } while_each_thread(g, p);
b40b2e8e 9179
9a7e0b18
PZ
9180 return 0;
9181}
b40b2e8e 9182
9a7e0b18
PZ
9183struct rt_schedulable_data {
9184 struct task_group *tg;
9185 u64 rt_period;
9186 u64 rt_runtime;
9187};
b40b2e8e 9188
9a7e0b18
PZ
9189static int tg_schedulable(struct task_group *tg, void *data)
9190{
9191 struct rt_schedulable_data *d = data;
9192 struct task_group *child;
9193 unsigned long total, sum = 0;
9194 u64 period, runtime;
b40b2e8e 9195
9a7e0b18
PZ
9196 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9197 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9198
9a7e0b18
PZ
9199 if (tg == d->tg) {
9200 period = d->rt_period;
9201 runtime = d->rt_runtime;
b40b2e8e 9202 }
b40b2e8e 9203
98a4826b
PZ
9204#ifdef CONFIG_USER_SCHED
9205 if (tg == &root_task_group) {
9206 period = global_rt_period();
9207 runtime = global_rt_runtime();
9208 }
9209#endif
9210
4653f803
PZ
9211 /*
9212 * Cannot have more runtime than the period.
9213 */
9214 if (runtime > period && runtime != RUNTIME_INF)
9215 return -EINVAL;
6f505b16 9216
4653f803
PZ
9217 /*
9218 * Ensure we don't starve existing RT tasks.
9219 */
9a7e0b18
PZ
9220 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9221 return -EBUSY;
6f505b16 9222
9a7e0b18 9223 total = to_ratio(period, runtime);
6f505b16 9224
4653f803
PZ
9225 /*
9226 * Nobody can have more than the global setting allows.
9227 */
9228 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9229 return -EINVAL;
6f505b16 9230
4653f803
PZ
9231 /*
9232 * The sum of our children's runtime should not exceed our own.
9233 */
9a7e0b18
PZ
9234 list_for_each_entry_rcu(child, &tg->children, siblings) {
9235 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9236 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9237
9a7e0b18
PZ
9238 if (child == d->tg) {
9239 period = d->rt_period;
9240 runtime = d->rt_runtime;
9241 }
6f505b16 9242
9a7e0b18 9243 sum += to_ratio(period, runtime);
9f0c1e56 9244 }
6f505b16 9245
9a7e0b18
PZ
9246 if (sum > total)
9247 return -EINVAL;
9248
9249 return 0;
6f505b16
PZ
9250}
9251
9a7e0b18 9252static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9253{
9a7e0b18
PZ
9254 struct rt_schedulable_data data = {
9255 .tg = tg,
9256 .rt_period = period,
9257 .rt_runtime = runtime,
9258 };
9259
9260 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9261}
9262
d0b27fa7
PZ
9263static int tg_set_bandwidth(struct task_group *tg,
9264 u64 rt_period, u64 rt_runtime)
6f505b16 9265{
ac086bc2 9266 int i, err = 0;
9f0c1e56 9267
9f0c1e56 9268 mutex_lock(&rt_constraints_mutex);
521f1a24 9269 read_lock(&tasklist_lock);
9a7e0b18
PZ
9270 err = __rt_schedulable(tg, rt_period, rt_runtime);
9271 if (err)
9f0c1e56 9272 goto unlock;
ac086bc2
PZ
9273
9274 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9275 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9276 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9277
9278 for_each_possible_cpu(i) {
9279 struct rt_rq *rt_rq = tg->rt_rq[i];
9280
9281 spin_lock(&rt_rq->rt_runtime_lock);
9282 rt_rq->rt_runtime = rt_runtime;
9283 spin_unlock(&rt_rq->rt_runtime_lock);
9284 }
9285 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9286 unlock:
521f1a24 9287 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9288 mutex_unlock(&rt_constraints_mutex);
9289
9290 return err;
6f505b16
PZ
9291}
9292
d0b27fa7
PZ
9293int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9294{
9295 u64 rt_runtime, rt_period;
9296
9297 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9298 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9299 if (rt_runtime_us < 0)
9300 rt_runtime = RUNTIME_INF;
9301
9302 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9303}
9304
9f0c1e56
PZ
9305long sched_group_rt_runtime(struct task_group *tg)
9306{
9307 u64 rt_runtime_us;
9308
d0b27fa7 9309 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9310 return -1;
9311
d0b27fa7 9312 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9313 do_div(rt_runtime_us, NSEC_PER_USEC);
9314 return rt_runtime_us;
9315}
d0b27fa7
PZ
9316
9317int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9318{
9319 u64 rt_runtime, rt_period;
9320
9321 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9322 rt_runtime = tg->rt_bandwidth.rt_runtime;
9323
619b0488
R
9324 if (rt_period == 0)
9325 return -EINVAL;
9326
d0b27fa7
PZ
9327 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9328}
9329
9330long sched_group_rt_period(struct task_group *tg)
9331{
9332 u64 rt_period_us;
9333
9334 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9335 do_div(rt_period_us, NSEC_PER_USEC);
9336 return rt_period_us;
9337}
9338
9339static int sched_rt_global_constraints(void)
9340{
4653f803 9341 u64 runtime, period;
d0b27fa7
PZ
9342 int ret = 0;
9343
ec5d4989
HS
9344 if (sysctl_sched_rt_period <= 0)
9345 return -EINVAL;
9346
4653f803
PZ
9347 runtime = global_rt_runtime();
9348 period = global_rt_period();
9349
9350 /*
9351 * Sanity check on the sysctl variables.
9352 */
9353 if (runtime > period && runtime != RUNTIME_INF)
9354 return -EINVAL;
10b612f4 9355
d0b27fa7 9356 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9357 read_lock(&tasklist_lock);
4653f803 9358 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9359 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9360 mutex_unlock(&rt_constraints_mutex);
9361
9362 return ret;
9363}
54e99124
DG
9364
9365int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9366{
9367 /* Don't accept realtime tasks when there is no way for them to run */
9368 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9369 return 0;
9370
9371 return 1;
9372}
9373
6d6bc0ad 9374#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9375static int sched_rt_global_constraints(void)
9376{
ac086bc2
PZ
9377 unsigned long flags;
9378 int i;
9379
ec5d4989
HS
9380 if (sysctl_sched_rt_period <= 0)
9381 return -EINVAL;
9382
ac086bc2
PZ
9383 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9384 for_each_possible_cpu(i) {
9385 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9386
9387 spin_lock(&rt_rq->rt_runtime_lock);
9388 rt_rq->rt_runtime = global_rt_runtime();
9389 spin_unlock(&rt_rq->rt_runtime_lock);
9390 }
9391 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9392
d0b27fa7
PZ
9393 return 0;
9394}
6d6bc0ad 9395#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9396
9397int sched_rt_handler(struct ctl_table *table, int write,
9398 struct file *filp, void __user *buffer, size_t *lenp,
9399 loff_t *ppos)
9400{
9401 int ret;
9402 int old_period, old_runtime;
9403 static DEFINE_MUTEX(mutex);
9404
9405 mutex_lock(&mutex);
9406 old_period = sysctl_sched_rt_period;
9407 old_runtime = sysctl_sched_rt_runtime;
9408
9409 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9410
9411 if (!ret && write) {
9412 ret = sched_rt_global_constraints();
9413 if (ret) {
9414 sysctl_sched_rt_period = old_period;
9415 sysctl_sched_rt_runtime = old_runtime;
9416 } else {
9417 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9418 def_rt_bandwidth.rt_period =
9419 ns_to_ktime(global_rt_period());
9420 }
9421 }
9422 mutex_unlock(&mutex);
9423
9424 return ret;
9425}
68318b8e 9426
052f1dc7 9427#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9428
9429/* return corresponding task_group object of a cgroup */
2b01dfe3 9430static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9431{
2b01dfe3
PM
9432 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9433 struct task_group, css);
68318b8e
SV
9434}
9435
9436static struct cgroup_subsys_state *
2b01dfe3 9437cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9438{
ec7dc8ac 9439 struct task_group *tg, *parent;
68318b8e 9440
2b01dfe3 9441 if (!cgrp->parent) {
68318b8e 9442 /* This is early initialization for the top cgroup */
68318b8e
SV
9443 return &init_task_group.css;
9444 }
9445
ec7dc8ac
DG
9446 parent = cgroup_tg(cgrp->parent);
9447 tg = sched_create_group(parent);
68318b8e
SV
9448 if (IS_ERR(tg))
9449 return ERR_PTR(-ENOMEM);
9450
68318b8e
SV
9451 return &tg->css;
9452}
9453
41a2d6cf
IM
9454static void
9455cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9456{
2b01dfe3 9457 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9458
9459 sched_destroy_group(tg);
9460}
9461
41a2d6cf
IM
9462static int
9463cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9464 struct task_struct *tsk)
68318b8e 9465{
b68aa230 9466#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9467 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9468 return -EINVAL;
9469#else
68318b8e
SV
9470 /* We don't support RT-tasks being in separate groups */
9471 if (tsk->sched_class != &fair_sched_class)
9472 return -EINVAL;
b68aa230 9473#endif
68318b8e
SV
9474
9475 return 0;
9476}
9477
9478static void
2b01dfe3 9479cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9480 struct cgroup *old_cont, struct task_struct *tsk)
9481{
9482 sched_move_task(tsk);
9483}
9484
052f1dc7 9485#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9486static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9487 u64 shareval)
68318b8e 9488{
2b01dfe3 9489 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9490}
9491
f4c753b7 9492static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9493{
2b01dfe3 9494 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9495
9496 return (u64) tg->shares;
9497}
6d6bc0ad 9498#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9499
052f1dc7 9500#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9501static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9502 s64 val)
6f505b16 9503{
06ecb27c 9504 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9505}
9506
06ecb27c 9507static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9508{
06ecb27c 9509 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9510}
d0b27fa7
PZ
9511
9512static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9513 u64 rt_period_us)
9514{
9515 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9516}
9517
9518static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9519{
9520 return sched_group_rt_period(cgroup_tg(cgrp));
9521}
6d6bc0ad 9522#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9523
fe5c7cc2 9524static struct cftype cpu_files[] = {
052f1dc7 9525#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9526 {
9527 .name = "shares",
f4c753b7
PM
9528 .read_u64 = cpu_shares_read_u64,
9529 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9530 },
052f1dc7
PZ
9531#endif
9532#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9533 {
9f0c1e56 9534 .name = "rt_runtime_us",
06ecb27c
PM
9535 .read_s64 = cpu_rt_runtime_read,
9536 .write_s64 = cpu_rt_runtime_write,
6f505b16 9537 },
d0b27fa7
PZ
9538 {
9539 .name = "rt_period_us",
f4c753b7
PM
9540 .read_u64 = cpu_rt_period_read_uint,
9541 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9542 },
052f1dc7 9543#endif
68318b8e
SV
9544};
9545
9546static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9547{
fe5c7cc2 9548 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9549}
9550
9551struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9552 .name = "cpu",
9553 .create = cpu_cgroup_create,
9554 .destroy = cpu_cgroup_destroy,
9555 .can_attach = cpu_cgroup_can_attach,
9556 .attach = cpu_cgroup_attach,
9557 .populate = cpu_cgroup_populate,
9558 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9559 .early_init = 1,
9560};
9561
052f1dc7 9562#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9563
9564#ifdef CONFIG_CGROUP_CPUACCT
9565
9566/*
9567 * CPU accounting code for task groups.
9568 *
9569 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9570 * (balbir@in.ibm.com).
9571 */
9572
934352f2 9573/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9574struct cpuacct {
9575 struct cgroup_subsys_state css;
9576 /* cpuusage holds pointer to a u64-type object on every cpu */
9577 u64 *cpuusage;
934352f2 9578 struct cpuacct *parent;
d842de87
SV
9579};
9580
9581struct cgroup_subsys cpuacct_subsys;
9582
9583/* return cpu accounting group corresponding to this container */
32cd756a 9584static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9585{
32cd756a 9586 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9587 struct cpuacct, css);
9588}
9589
9590/* return cpu accounting group to which this task belongs */
9591static inline struct cpuacct *task_ca(struct task_struct *tsk)
9592{
9593 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9594 struct cpuacct, css);
9595}
9596
9597/* create a new cpu accounting group */
9598static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9599 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9600{
9601 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9602
9603 if (!ca)
9604 return ERR_PTR(-ENOMEM);
9605
9606 ca->cpuusage = alloc_percpu(u64);
9607 if (!ca->cpuusage) {
9608 kfree(ca);
9609 return ERR_PTR(-ENOMEM);
9610 }
9611
934352f2
BR
9612 if (cgrp->parent)
9613 ca->parent = cgroup_ca(cgrp->parent);
9614
d842de87
SV
9615 return &ca->css;
9616}
9617
9618/* destroy an existing cpu accounting group */
41a2d6cf 9619static void
32cd756a 9620cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9621{
32cd756a 9622 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9623
9624 free_percpu(ca->cpuusage);
9625 kfree(ca);
9626}
9627
720f5498
KC
9628static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9629{
9630 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9631 u64 data;
9632
9633#ifndef CONFIG_64BIT
9634 /*
9635 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9636 */
9637 spin_lock_irq(&cpu_rq(cpu)->lock);
9638 data = *cpuusage;
9639 spin_unlock_irq(&cpu_rq(cpu)->lock);
9640#else
9641 data = *cpuusage;
9642#endif
9643
9644 return data;
9645}
9646
9647static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9648{
9649 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9650
9651#ifndef CONFIG_64BIT
9652 /*
9653 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9654 */
9655 spin_lock_irq(&cpu_rq(cpu)->lock);
9656 *cpuusage = val;
9657 spin_unlock_irq(&cpu_rq(cpu)->lock);
9658#else
9659 *cpuusage = val;
9660#endif
9661}
9662
d842de87 9663/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9664static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9665{
32cd756a 9666 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9667 u64 totalcpuusage = 0;
9668 int i;
9669
720f5498
KC
9670 for_each_present_cpu(i)
9671 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9672
9673 return totalcpuusage;
9674}
9675
0297b803
DG
9676static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9677 u64 reset)
9678{
9679 struct cpuacct *ca = cgroup_ca(cgrp);
9680 int err = 0;
9681 int i;
9682
9683 if (reset) {
9684 err = -EINVAL;
9685 goto out;
9686 }
9687
720f5498
KC
9688 for_each_present_cpu(i)
9689 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9690
0297b803
DG
9691out:
9692 return err;
9693}
9694
e9515c3c
KC
9695static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9696 struct seq_file *m)
9697{
9698 struct cpuacct *ca = cgroup_ca(cgroup);
9699 u64 percpu;
9700 int i;
9701
9702 for_each_present_cpu(i) {
9703 percpu = cpuacct_cpuusage_read(ca, i);
9704 seq_printf(m, "%llu ", (unsigned long long) percpu);
9705 }
9706 seq_printf(m, "\n");
9707 return 0;
9708}
9709
d842de87
SV
9710static struct cftype files[] = {
9711 {
9712 .name = "usage",
f4c753b7
PM
9713 .read_u64 = cpuusage_read,
9714 .write_u64 = cpuusage_write,
d842de87 9715 },
e9515c3c
KC
9716 {
9717 .name = "usage_percpu",
9718 .read_seq_string = cpuacct_percpu_seq_read,
9719 },
9720
d842de87
SV
9721};
9722
32cd756a 9723static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9724{
32cd756a 9725 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9726}
9727
9728/*
9729 * charge this task's execution time to its accounting group.
9730 *
9731 * called with rq->lock held.
9732 */
9733static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9734{
9735 struct cpuacct *ca;
934352f2 9736 int cpu;
d842de87 9737
c40c6f85 9738 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9739 return;
9740
934352f2 9741 cpu = task_cpu(tsk);
d842de87 9742 ca = task_ca(tsk);
d842de87 9743
934352f2
BR
9744 for (; ca; ca = ca->parent) {
9745 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9746 *cpuusage += cputime;
9747 }
9748}
9749
9750struct cgroup_subsys cpuacct_subsys = {
9751 .name = "cpuacct",
9752 .create = cpuacct_create,
9753 .destroy = cpuacct_destroy,
9754 .populate = cpuacct_populate,
9755 .subsys_id = cpuacct_subsys_id,
9756};
9757#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.104603 seconds and 5 git commands to generate.