sched: Refactor the power savings balance code
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434 641 unsigned int yld_count;
1da177e4
LT
642
643 /* schedule() stats */
480b9434
KC
644 unsigned int sched_switch;
645 unsigned int sched_count;
646 unsigned int sched_goidle;
1da177e4
LT
647
648 /* try_to_wake_up() stats */
480b9434
KC
649 unsigned int ttwu_count;
650 unsigned int ttwu_local;
b8efb561
IM
651
652 /* BKL stats */
480b9434 653 unsigned int bkl_count;
1da177e4
LT
654#endif
655};
656
f34e3b61 657static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 658
15afe09b 659static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 660{
15afe09b 661 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
662}
663
0a2966b4
CL
664static inline int cpu_of(struct rq *rq)
665{
666#ifdef CONFIG_SMP
667 return rq->cpu;
668#else
669 return 0;
670#endif
671}
672
674311d5
NP
673/*
674 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 675 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
676 *
677 * The domain tree of any CPU may only be accessed from within
678 * preempt-disabled sections.
679 */
48f24c4d
IM
680#define for_each_domain(cpu, __sd) \
681 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
682
683#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
684#define this_rq() (&__get_cpu_var(runqueues))
685#define task_rq(p) cpu_rq(task_cpu(p))
686#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
687
3e51f33f
PZ
688static inline void update_rq_clock(struct rq *rq)
689{
690 rq->clock = sched_clock_cpu(cpu_of(rq));
691}
692
bf5c91ba
IM
693/*
694 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
695 */
696#ifdef CONFIG_SCHED_DEBUG
697# define const_debug __read_mostly
698#else
699# define const_debug static const
700#endif
701
017730c1
IM
702/**
703 * runqueue_is_locked
704 *
705 * Returns true if the current cpu runqueue is locked.
706 * This interface allows printk to be called with the runqueue lock
707 * held and know whether or not it is OK to wake up the klogd.
708 */
709int runqueue_is_locked(void)
710{
711 int cpu = get_cpu();
712 struct rq *rq = cpu_rq(cpu);
713 int ret;
714
715 ret = spin_is_locked(&rq->lock);
716 put_cpu();
717 return ret;
718}
719
bf5c91ba
IM
720/*
721 * Debugging: various feature bits
722 */
f00b45c1
PZ
723
724#define SCHED_FEAT(name, enabled) \
725 __SCHED_FEAT_##name ,
726
bf5c91ba 727enum {
f00b45c1 728#include "sched_features.h"
bf5c91ba
IM
729};
730
f00b45c1
PZ
731#undef SCHED_FEAT
732
733#define SCHED_FEAT(name, enabled) \
734 (1UL << __SCHED_FEAT_##name) * enabled |
735
bf5c91ba 736const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
737#include "sched_features.h"
738 0;
739
740#undef SCHED_FEAT
741
742#ifdef CONFIG_SCHED_DEBUG
743#define SCHED_FEAT(name, enabled) \
744 #name ,
745
983ed7a6 746static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
747#include "sched_features.h"
748 NULL
749};
750
751#undef SCHED_FEAT
752
34f3a814 753static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 754{
f00b45c1
PZ
755 int i;
756
757 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
758 if (!(sysctl_sched_features & (1UL << i)))
759 seq_puts(m, "NO_");
760 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 761 }
34f3a814 762 seq_puts(m, "\n");
f00b45c1 763
34f3a814 764 return 0;
f00b45c1
PZ
765}
766
767static ssize_t
768sched_feat_write(struct file *filp, const char __user *ubuf,
769 size_t cnt, loff_t *ppos)
770{
771 char buf[64];
772 char *cmp = buf;
773 int neg = 0;
774 int i;
775
776 if (cnt > 63)
777 cnt = 63;
778
779 if (copy_from_user(&buf, ubuf, cnt))
780 return -EFAULT;
781
782 buf[cnt] = 0;
783
c24b7c52 784 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
785 neg = 1;
786 cmp += 3;
787 }
788
789 for (i = 0; sched_feat_names[i]; i++) {
790 int len = strlen(sched_feat_names[i]);
791
792 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
793 if (neg)
794 sysctl_sched_features &= ~(1UL << i);
795 else
796 sysctl_sched_features |= (1UL << i);
797 break;
798 }
799 }
800
801 if (!sched_feat_names[i])
802 return -EINVAL;
803
804 filp->f_pos += cnt;
805
806 return cnt;
807}
808
34f3a814
LZ
809static int sched_feat_open(struct inode *inode, struct file *filp)
810{
811 return single_open(filp, sched_feat_show, NULL);
812}
813
f00b45c1 814static struct file_operations sched_feat_fops = {
34f3a814
LZ
815 .open = sched_feat_open,
816 .write = sched_feat_write,
817 .read = seq_read,
818 .llseek = seq_lseek,
819 .release = single_release,
f00b45c1
PZ
820};
821
822static __init int sched_init_debug(void)
823{
f00b45c1
PZ
824 debugfs_create_file("sched_features", 0644, NULL, NULL,
825 &sched_feat_fops);
826
827 return 0;
828}
829late_initcall(sched_init_debug);
830
831#endif
832
833#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 834
b82d9fdd
PZ
835/*
836 * Number of tasks to iterate in a single balance run.
837 * Limited because this is done with IRQs disabled.
838 */
839const_debug unsigned int sysctl_sched_nr_migrate = 32;
840
2398f2c6
PZ
841/*
842 * ratelimit for updating the group shares.
55cd5340 843 * default: 0.25ms
2398f2c6 844 */
55cd5340 845unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 846
ffda12a1
PZ
847/*
848 * Inject some fuzzyness into changing the per-cpu group shares
849 * this avoids remote rq-locks at the expense of fairness.
850 * default: 4
851 */
852unsigned int sysctl_sched_shares_thresh = 4;
853
fa85ae24 854/*
9f0c1e56 855 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
856 * default: 1s
857 */
9f0c1e56 858unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 859
6892b75e
IM
860static __read_mostly int scheduler_running;
861
9f0c1e56
PZ
862/*
863 * part of the period that we allow rt tasks to run in us.
864 * default: 0.95s
865 */
866int sysctl_sched_rt_runtime = 950000;
fa85ae24 867
d0b27fa7
PZ
868static inline u64 global_rt_period(void)
869{
870 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
871}
872
873static inline u64 global_rt_runtime(void)
874{
e26873bb 875 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
876 return RUNTIME_INF;
877
878 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
879}
fa85ae24 880
1da177e4 881#ifndef prepare_arch_switch
4866cde0
NP
882# define prepare_arch_switch(next) do { } while (0)
883#endif
884#ifndef finish_arch_switch
885# define finish_arch_switch(prev) do { } while (0)
886#endif
887
051a1d1a
DA
888static inline int task_current(struct rq *rq, struct task_struct *p)
889{
890 return rq->curr == p;
891}
892
4866cde0 893#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 894static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 895{
051a1d1a 896 return task_current(rq, p);
4866cde0
NP
897}
898
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901}
902
70b97a7f 903static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 904{
da04c035
IM
905#ifdef CONFIG_DEBUG_SPINLOCK
906 /* this is a valid case when another task releases the spinlock */
907 rq->lock.owner = current;
908#endif
8a25d5de
IM
909 /*
910 * If we are tracking spinlock dependencies then we have to
911 * fix up the runqueue lock - which gets 'carried over' from
912 * prev into current:
913 */
914 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915
4866cde0
NP
916 spin_unlock_irq(&rq->lock);
917}
918
919#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 920static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
921{
922#ifdef CONFIG_SMP
923 return p->oncpu;
924#else
051a1d1a 925 return task_current(rq, p);
4866cde0
NP
926#endif
927}
928
70b97a7f 929static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * We can optimise this out completely for !SMP, because the
934 * SMP rebalancing from interrupt is the only thing that cares
935 * here.
936 */
937 next->oncpu = 1;
938#endif
939#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 spin_unlock_irq(&rq->lock);
941#else
942 spin_unlock(&rq->lock);
943#endif
944}
945
70b97a7f 946static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
947{
948#ifdef CONFIG_SMP
949 /*
950 * After ->oncpu is cleared, the task can be moved to a different CPU.
951 * We must ensure this doesn't happen until the switch is completely
952 * finished.
953 */
954 smp_wmb();
955 prev->oncpu = 0;
956#endif
957#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
958 local_irq_enable();
1da177e4 959#endif
4866cde0
NP
960}
961#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 962
b29739f9
IM
963/*
964 * __task_rq_lock - lock the runqueue a given task resides on.
965 * Must be called interrupts disabled.
966 */
70b97a7f 967static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
968 __acquires(rq->lock)
969{
3a5c359a
AK
970 for (;;) {
971 struct rq *rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
b29739f9 975 spin_unlock(&rq->lock);
b29739f9 976 }
b29739f9
IM
977}
978
1da177e4
LT
979/*
980 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 981 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
982 * explicitly disabling preemption.
983 */
70b97a7f 984static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
985 __acquires(rq->lock)
986{
70b97a7f 987 struct rq *rq;
1da177e4 988
3a5c359a
AK
989 for (;;) {
990 local_irq_save(*flags);
991 rq = task_rq(p);
992 spin_lock(&rq->lock);
993 if (likely(rq == task_rq(p)))
994 return rq;
1da177e4 995 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 996 }
1da177e4
LT
997}
998
ad474cac
ON
999void task_rq_unlock_wait(struct task_struct *p)
1000{
1001 struct rq *rq = task_rq(p);
1002
1003 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1004 spin_unlock_wait(&rq->lock);
1005}
1006
a9957449 1007static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1008 __releases(rq->lock)
1009{
1010 spin_unlock(&rq->lock);
1011}
1012
70b97a7f 1013static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1014 __releases(rq->lock)
1015{
1016 spin_unlock_irqrestore(&rq->lock, *flags);
1017}
1018
1da177e4 1019/*
cc2a73b5 1020 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1021 */
a9957449 1022static struct rq *this_rq_lock(void)
1da177e4
LT
1023 __acquires(rq->lock)
1024{
70b97a7f 1025 struct rq *rq;
1da177e4
LT
1026
1027 local_irq_disable();
1028 rq = this_rq();
1029 spin_lock(&rq->lock);
1030
1031 return rq;
1032}
1033
8f4d37ec
PZ
1034#ifdef CONFIG_SCHED_HRTICK
1035/*
1036 * Use HR-timers to deliver accurate preemption points.
1037 *
1038 * Its all a bit involved since we cannot program an hrt while holding the
1039 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1040 * reschedule event.
1041 *
1042 * When we get rescheduled we reprogram the hrtick_timer outside of the
1043 * rq->lock.
1044 */
8f4d37ec
PZ
1045
1046/*
1047 * Use hrtick when:
1048 * - enabled by features
1049 * - hrtimer is actually high res
1050 */
1051static inline int hrtick_enabled(struct rq *rq)
1052{
1053 if (!sched_feat(HRTICK))
1054 return 0;
ba42059f 1055 if (!cpu_active(cpu_of(rq)))
b328ca18 1056 return 0;
8f4d37ec
PZ
1057 return hrtimer_is_hres_active(&rq->hrtick_timer);
1058}
1059
8f4d37ec
PZ
1060static void hrtick_clear(struct rq *rq)
1061{
1062 if (hrtimer_active(&rq->hrtick_timer))
1063 hrtimer_cancel(&rq->hrtick_timer);
1064}
1065
8f4d37ec
PZ
1066/*
1067 * High-resolution timer tick.
1068 * Runs from hardirq context with interrupts disabled.
1069 */
1070static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071{
1072 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073
1074 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075
1076 spin_lock(&rq->lock);
3e51f33f 1077 update_rq_clock(rq);
8f4d37ec
PZ
1078 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1079 spin_unlock(&rq->lock);
1080
1081 return HRTIMER_NORESTART;
1082}
1083
95e904c7 1084#ifdef CONFIG_SMP
31656519
PZ
1085/*
1086 * called from hardirq (IPI) context
1087 */
1088static void __hrtick_start(void *arg)
b328ca18 1089{
31656519 1090 struct rq *rq = arg;
b328ca18 1091
31656519
PZ
1092 spin_lock(&rq->lock);
1093 hrtimer_restart(&rq->hrtick_timer);
1094 rq->hrtick_csd_pending = 0;
1095 spin_unlock(&rq->lock);
b328ca18
PZ
1096}
1097
31656519
PZ
1098/*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1104{
31656519
PZ
1105 struct hrtimer *timer = &rq->hrtick_timer;
1106 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1107
cc584b21 1108 hrtimer_set_expires(timer, time);
31656519
PZ
1109
1110 if (rq == this_rq()) {
1111 hrtimer_restart(timer);
1112 } else if (!rq->hrtick_csd_pending) {
1113 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1114 rq->hrtick_csd_pending = 1;
1115 }
b328ca18
PZ
1116}
1117
1118static int
1119hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120{
1121 int cpu = (int)(long)hcpu;
1122
1123 switch (action) {
1124 case CPU_UP_CANCELED:
1125 case CPU_UP_CANCELED_FROZEN:
1126 case CPU_DOWN_PREPARE:
1127 case CPU_DOWN_PREPARE_FROZEN:
1128 case CPU_DEAD:
1129 case CPU_DEAD_FROZEN:
31656519 1130 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1131 return NOTIFY_OK;
1132 }
1133
1134 return NOTIFY_DONE;
1135}
1136
fa748203 1137static __init void init_hrtick(void)
b328ca18
PZ
1138{
1139 hotcpu_notifier(hotplug_hrtick, 0);
1140}
31656519
PZ
1141#else
1142/*
1143 * Called to set the hrtick timer state.
1144 *
1145 * called with rq->lock held and irqs disabled
1146 */
1147static void hrtick_start(struct rq *rq, u64 delay)
1148{
1149 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1150}
b328ca18 1151
006c75f1 1152static inline void init_hrtick(void)
8f4d37ec 1153{
8f4d37ec 1154}
31656519 1155#endif /* CONFIG_SMP */
8f4d37ec 1156
31656519 1157static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1158{
31656519
PZ
1159#ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
8f4d37ec 1161
31656519
PZ
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165#endif
8f4d37ec 1166
31656519
PZ
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
8f4d37ec 1169}
006c75f1 1170#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1171static inline void hrtick_clear(struct rq *rq)
1172{
1173}
1174
8f4d37ec
PZ
1175static inline void init_rq_hrtick(struct rq *rq)
1176{
1177}
1178
b328ca18
PZ
1179static inline void init_hrtick(void)
1180{
1181}
006c75f1 1182#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
31656519 1197static void resched_task(struct task_struct *p)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
5ed0cec0 1203 if (test_tsk_need_resched(p))
c24d20db
IM
1204 return;
1205
5ed0cec0 1206 set_tsk_need_resched(p);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
5ed0cec0 1262 set_tsk_need_resched(rq->idle);
06d8308c
TG
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
cce7ade8
PZ
1343#define WEIGHT_IDLEPRIO 3
1344#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
7940ca36 1429#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1430typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1431
1432/*
1433 * Iterate the full tree, calling @down when first entering a node and @up when
1434 * leaving it for the final time.
1435 */
eb755805 1436static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1437{
1438 struct task_group *parent, *child;
eb755805 1439 int ret;
c09595f6
PZ
1440
1441 rcu_read_lock();
1442 parent = &root_task_group;
1443down:
eb755805
PZ
1444 ret = (*down)(parent, data);
1445 if (ret)
1446 goto out_unlock;
c09595f6
PZ
1447 list_for_each_entry_rcu(child, &parent->children, siblings) {
1448 parent = child;
1449 goto down;
1450
1451up:
1452 continue;
1453 }
eb755805
PZ
1454 ret = (*up)(parent, data);
1455 if (ret)
1456 goto out_unlock;
c09595f6
PZ
1457
1458 child = parent;
1459 parent = parent->parent;
1460 if (parent)
1461 goto up;
eb755805 1462out_unlock:
c09595f6 1463 rcu_read_unlock();
eb755805
PZ
1464
1465 return ret;
c09595f6
PZ
1466}
1467
eb755805
PZ
1468static int tg_nop(struct task_group *tg, void *data)
1469{
1470 return 0;
c09595f6 1471}
eb755805
PZ
1472#endif
1473
1474#ifdef CONFIG_SMP
1475static unsigned long source_load(int cpu, int type);
1476static unsigned long target_load(int cpu, int type);
1477static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1478
1479static unsigned long cpu_avg_load_per_task(int cpu)
1480{
1481 struct rq *rq = cpu_rq(cpu);
af6d596f 1482 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1483
4cd42620
SR
1484 if (nr_running)
1485 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1486 else
1487 rq->avg_load_per_task = 0;
eb755805
PZ
1488
1489 return rq->avg_load_per_task;
1490}
1491
1492#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1493
c09595f6
PZ
1494static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1495
1496/*
1497 * Calculate and set the cpu's group shares.
1498 */
1499static void
ffda12a1
PZ
1500update_group_shares_cpu(struct task_group *tg, int cpu,
1501 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1502{
c09595f6
PZ
1503 unsigned long shares;
1504 unsigned long rq_weight;
1505
c8cba857 1506 if (!tg->se[cpu])
c09595f6
PZ
1507 return;
1508
ec4e0e2f 1509 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1510
c09595f6
PZ
1511 /*
1512 * \Sum shares * rq_weight
1513 * shares = -----------------------
1514 * \Sum rq_weight
1515 *
1516 */
ec4e0e2f 1517 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1518 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1519
ffda12a1
PZ
1520 if (abs(shares - tg->se[cpu]->load.weight) >
1521 sysctl_sched_shares_thresh) {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long flags;
c09595f6 1524
ffda12a1 1525 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1526 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1527
ffda12a1
PZ
1528 __set_se_shares(tg->se[cpu], shares);
1529 spin_unlock_irqrestore(&rq->lock, flags);
1530 }
18d95a28 1531}
c09595f6
PZ
1532
1533/*
c8cba857
PZ
1534 * Re-compute the task group their per cpu shares over the given domain.
1535 * This needs to be done in a bottom-up fashion because the rq weight of a
1536 * parent group depends on the shares of its child groups.
c09595f6 1537 */
eb755805 1538static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1539{
ec4e0e2f 1540 unsigned long weight, rq_weight = 0;
c8cba857 1541 unsigned long shares = 0;
eb755805 1542 struct sched_domain *sd = data;
c8cba857 1543 int i;
c09595f6 1544
758b2cdc 1545 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1546 /*
1547 * If there are currently no tasks on the cpu pretend there
1548 * is one of average load so that when a new task gets to
1549 * run here it will not get delayed by group starvation.
1550 */
1551 weight = tg->cfs_rq[i]->load.weight;
1552 if (!weight)
1553 weight = NICE_0_LOAD;
1554
1555 tg->cfs_rq[i]->rq_weight = weight;
1556 rq_weight += weight;
c8cba857 1557 shares += tg->cfs_rq[i]->shares;
c09595f6 1558 }
c09595f6 1559
c8cba857
PZ
1560 if ((!shares && rq_weight) || shares > tg->shares)
1561 shares = tg->shares;
1562
1563 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1564 shares = tg->shares;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1567 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1568
1569 return 0;
c09595f6
PZ
1570}
1571
1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
1586 load *= tg->cfs_rq[cpu]->shares;
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
c8cba857 1595static void update_shares(struct sched_domain *sd)
4d8d595d 1596{
2398f2c6
PZ
1597 u64 now = cpu_clock(raw_smp_processor_id());
1598 s64 elapsed = now - sd->last_update;
1599
1600 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1601 sd->last_update = now;
eb755805 1602 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1603 }
4d8d595d
PZ
1604}
1605
3e5459b4
PZ
1606static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1607{
1608 spin_unlock(&rq->lock);
1609 update_shares(sd);
1610 spin_lock(&rq->lock);
1611}
1612
eb755805 1613static void update_h_load(long cpu)
c09595f6 1614{
eb755805 1615 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1616}
1617
c09595f6
PZ
1618#else
1619
c8cba857 1620static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1621{
1622}
1623
3e5459b4
PZ
1624static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1625{
1626}
1627
18d95a28
PZ
1628#endif
1629
8f45e2b5
GH
1630#ifdef CONFIG_PREEMPT
1631
70574a99 1632/*
8f45e2b5
GH
1633 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1634 * way at the expense of forcing extra atomic operations in all
1635 * invocations. This assures that the double_lock is acquired using the
1636 * same underlying policy as the spinlock_t on this architecture, which
1637 * reduces latency compared to the unfair variant below. However, it
1638 * also adds more overhead and therefore may reduce throughput.
70574a99 1639 */
8f45e2b5
GH
1640static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(this_rq->lock)
1642 __acquires(busiest->lock)
1643 __acquires(this_rq->lock)
1644{
1645 spin_unlock(&this_rq->lock);
1646 double_rq_lock(this_rq, busiest);
1647
1648 return 1;
1649}
1650
1651#else
1652/*
1653 * Unfair double_lock_balance: Optimizes throughput at the expense of
1654 * latency by eliminating extra atomic operations when the locks are
1655 * already in proper order on entry. This favors lower cpu-ids and will
1656 * grant the double lock to lower cpus over higher ids under contention,
1657 * regardless of entry order into the function.
1658 */
1659static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1660 __releases(this_rq->lock)
1661 __acquires(busiest->lock)
1662 __acquires(this_rq->lock)
1663{
1664 int ret = 0;
1665
70574a99
AD
1666 if (unlikely(!spin_trylock(&busiest->lock))) {
1667 if (busiest < this_rq) {
1668 spin_unlock(&this_rq->lock);
1669 spin_lock(&busiest->lock);
1670 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1671 ret = 1;
1672 } else
1673 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1674 }
1675 return ret;
1676}
1677
8f45e2b5
GH
1678#endif /* CONFIG_PREEMPT */
1679
1680/*
1681 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1682 */
1683static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1684{
1685 if (unlikely(!irqs_disabled())) {
1686 /* printk() doesn't work good under rq->lock */
1687 spin_unlock(&this_rq->lock);
1688 BUG_ON(1);
1689 }
1690
1691 return _double_lock_balance(this_rq, busiest);
1692}
1693
70574a99
AD
1694static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1695 __releases(busiest->lock)
1696{
1697 spin_unlock(&busiest->lock);
1698 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1699}
18d95a28
PZ
1700#endif
1701
30432094 1702#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1703static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1704{
30432094 1705#ifdef CONFIG_SMP
34e83e85
IM
1706 cfs_rq->shares = shares;
1707#endif
1708}
30432094 1709#endif
e7693a36 1710
dd41f596 1711#include "sched_stats.h"
dd41f596 1712#include "sched_idletask.c"
5522d5d5
IM
1713#include "sched_fair.c"
1714#include "sched_rt.c"
dd41f596
IM
1715#ifdef CONFIG_SCHED_DEBUG
1716# include "sched_debug.c"
1717#endif
1718
1719#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1720#define for_each_class(class) \
1721 for (class = sched_class_highest; class; class = class->next)
dd41f596 1722
c09595f6 1723static void inc_nr_running(struct rq *rq)
9c217245
IM
1724{
1725 rq->nr_running++;
9c217245
IM
1726}
1727
c09595f6 1728static void dec_nr_running(struct rq *rq)
9c217245
IM
1729{
1730 rq->nr_running--;
9c217245
IM
1731}
1732
45bf76df
IM
1733static void set_load_weight(struct task_struct *p)
1734{
1735 if (task_has_rt_policy(p)) {
dd41f596
IM
1736 p->se.load.weight = prio_to_weight[0] * 2;
1737 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1738 return;
1739 }
45bf76df 1740
dd41f596
IM
1741 /*
1742 * SCHED_IDLE tasks get minimal weight:
1743 */
1744 if (p->policy == SCHED_IDLE) {
1745 p->se.load.weight = WEIGHT_IDLEPRIO;
1746 p->se.load.inv_weight = WMULT_IDLEPRIO;
1747 return;
1748 }
71f8bd46 1749
dd41f596
IM
1750 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1751 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1752}
1753
2087a1ad
GH
1754static void update_avg(u64 *avg, u64 sample)
1755{
1756 s64 diff = sample - *avg;
1757 *avg += diff >> 3;
1758}
1759
8159f87e 1760static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1761{
831451ac
PZ
1762 if (wakeup)
1763 p->se.start_runtime = p->se.sum_exec_runtime;
1764
dd41f596 1765 sched_info_queued(p);
fd390f6a 1766 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1767 p->se.on_rq = 1;
71f8bd46
IM
1768}
1769
69be72c1 1770static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1771{
831451ac
PZ
1772 if (sleep) {
1773 if (p->se.last_wakeup) {
1774 update_avg(&p->se.avg_overlap,
1775 p->se.sum_exec_runtime - p->se.last_wakeup);
1776 p->se.last_wakeup = 0;
1777 } else {
1778 update_avg(&p->se.avg_wakeup,
1779 sysctl_sched_wakeup_granularity);
1780 }
2087a1ad
GH
1781 }
1782
46ac22ba 1783 sched_info_dequeued(p);
f02231e5 1784 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
14531189 1788/*
dd41f596 1789 * __normal_prio - return the priority that is based on the static prio
14531189 1790 */
14531189
IM
1791static inline int __normal_prio(struct task_struct *p)
1792{
dd41f596 1793 return p->static_prio;
14531189
IM
1794}
1795
b29739f9
IM
1796/*
1797 * Calculate the expected normal priority: i.e. priority
1798 * without taking RT-inheritance into account. Might be
1799 * boosted by interactivity modifiers. Changes upon fork,
1800 * setprio syscalls, and whenever the interactivity
1801 * estimator recalculates.
1802 */
36c8b586 1803static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1804{
1805 int prio;
1806
e05606d3 1807 if (task_has_rt_policy(p))
b29739f9
IM
1808 prio = MAX_RT_PRIO-1 - p->rt_priority;
1809 else
1810 prio = __normal_prio(p);
1811 return prio;
1812}
1813
1814/*
1815 * Calculate the current priority, i.e. the priority
1816 * taken into account by the scheduler. This value might
1817 * be boosted by RT tasks, or might be boosted by
1818 * interactivity modifiers. Will be RT if the task got
1819 * RT-boosted. If not then it returns p->normal_prio.
1820 */
36c8b586 1821static int effective_prio(struct task_struct *p)
b29739f9
IM
1822{
1823 p->normal_prio = normal_prio(p);
1824 /*
1825 * If we are RT tasks or we were boosted to RT priority,
1826 * keep the priority unchanged. Otherwise, update priority
1827 * to the normal priority:
1828 */
1829 if (!rt_prio(p->prio))
1830 return p->normal_prio;
1831 return p->prio;
1832}
1833
1da177e4 1834/*
dd41f596 1835 * activate_task - move a task to the runqueue.
1da177e4 1836 */
dd41f596 1837static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1838{
d9514f6c 1839 if (task_contributes_to_load(p))
dd41f596 1840 rq->nr_uninterruptible--;
1da177e4 1841
8159f87e 1842 enqueue_task(rq, p, wakeup);
c09595f6 1843 inc_nr_running(rq);
1da177e4
LT
1844}
1845
1da177e4
LT
1846/*
1847 * deactivate_task - remove a task from the runqueue.
1848 */
2e1cb74a 1849static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1850{
d9514f6c 1851 if (task_contributes_to_load(p))
dd41f596
IM
1852 rq->nr_uninterruptible++;
1853
69be72c1 1854 dequeue_task(rq, p, sleep);
c09595f6 1855 dec_nr_running(rq);
1da177e4
LT
1856}
1857
1da177e4
LT
1858/**
1859 * task_curr - is this task currently executing on a CPU?
1860 * @p: the task in question.
1861 */
36c8b586 1862inline int task_curr(const struct task_struct *p)
1da177e4
LT
1863{
1864 return cpu_curr(task_cpu(p)) == p;
1865}
1866
dd41f596
IM
1867static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1868{
6f505b16 1869 set_task_rq(p, cpu);
dd41f596 1870#ifdef CONFIG_SMP
ce96b5ac
DA
1871 /*
1872 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1873 * successfuly executed on another CPU. We must ensure that updates of
1874 * per-task data have been completed by this moment.
1875 */
1876 smp_wmb();
dd41f596 1877 task_thread_info(p)->cpu = cpu;
dd41f596 1878#endif
2dd73a4f
PW
1879}
1880
cb469845
SR
1881static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1882 const struct sched_class *prev_class,
1883 int oldprio, int running)
1884{
1885 if (prev_class != p->sched_class) {
1886 if (prev_class->switched_from)
1887 prev_class->switched_from(rq, p, running);
1888 p->sched_class->switched_to(rq, p, running);
1889 } else
1890 p->sched_class->prio_changed(rq, p, oldprio, running);
1891}
1892
1da177e4 1893#ifdef CONFIG_SMP
c65cc870 1894
e958b360
TG
1895/* Used instead of source_load when we know the type == 0 */
1896static unsigned long weighted_cpuload(const int cpu)
1897{
1898 return cpu_rq(cpu)->load.weight;
1899}
1900
cc367732
IM
1901/*
1902 * Is this task likely cache-hot:
1903 */
e7693a36 1904static int
cc367732
IM
1905task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1906{
1907 s64 delta;
1908
f540a608
IM
1909 /*
1910 * Buddy candidates are cache hot:
1911 */
4793241b
PZ
1912 if (sched_feat(CACHE_HOT_BUDDY) &&
1913 (&p->se == cfs_rq_of(&p->se)->next ||
1914 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1915 return 1;
1916
cc367732
IM
1917 if (p->sched_class != &fair_sched_class)
1918 return 0;
1919
6bc1665b
IM
1920 if (sysctl_sched_migration_cost == -1)
1921 return 1;
1922 if (sysctl_sched_migration_cost == 0)
1923 return 0;
1924
cc367732
IM
1925 delta = now - p->se.exec_start;
1926
1927 return delta < (s64)sysctl_sched_migration_cost;
1928}
1929
1930
dd41f596 1931void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1932{
dd41f596
IM
1933 int old_cpu = task_cpu(p);
1934 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1935 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1936 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1937 u64 clock_offset;
dd41f596
IM
1938
1939 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1940
cbc34ed1
PZ
1941 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1942
6cfb0d5d
IM
1943#ifdef CONFIG_SCHEDSTATS
1944 if (p->se.wait_start)
1945 p->se.wait_start -= clock_offset;
dd41f596
IM
1946 if (p->se.sleep_start)
1947 p->se.sleep_start -= clock_offset;
1948 if (p->se.block_start)
1949 p->se.block_start -= clock_offset;
cc367732
IM
1950 if (old_cpu != new_cpu) {
1951 schedstat_inc(p, se.nr_migrations);
1952 if (task_hot(p, old_rq->clock, NULL))
1953 schedstat_inc(p, se.nr_forced2_migrations);
1954 }
6cfb0d5d 1955#endif
2830cf8c
SV
1956 p->se.vruntime -= old_cfsrq->min_vruntime -
1957 new_cfsrq->min_vruntime;
dd41f596
IM
1958
1959 __set_task_cpu(p, new_cpu);
c65cc870
IM
1960}
1961
70b97a7f 1962struct migration_req {
1da177e4 1963 struct list_head list;
1da177e4 1964
36c8b586 1965 struct task_struct *task;
1da177e4
LT
1966 int dest_cpu;
1967
1da177e4 1968 struct completion done;
70b97a7f 1969};
1da177e4
LT
1970
1971/*
1972 * The task's runqueue lock must be held.
1973 * Returns true if you have to wait for migration thread.
1974 */
36c8b586 1975static int
70b97a7f 1976migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1977{
70b97a7f 1978 struct rq *rq = task_rq(p);
1da177e4
LT
1979
1980 /*
1981 * If the task is not on a runqueue (and not running), then
1982 * it is sufficient to simply update the task's cpu field.
1983 */
dd41f596 1984 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1985 set_task_cpu(p, dest_cpu);
1986 return 0;
1987 }
1988
1989 init_completion(&req->done);
1da177e4
LT
1990 req->task = p;
1991 req->dest_cpu = dest_cpu;
1992 list_add(&req->list, &rq->migration_queue);
48f24c4d 1993
1da177e4
LT
1994 return 1;
1995}
1996
1997/*
1998 * wait_task_inactive - wait for a thread to unschedule.
1999 *
85ba2d86
RM
2000 * If @match_state is nonzero, it's the @p->state value just checked and
2001 * not expected to change. If it changes, i.e. @p might have woken up,
2002 * then return zero. When we succeed in waiting for @p to be off its CPU,
2003 * we return a positive number (its total switch count). If a second call
2004 * a short while later returns the same number, the caller can be sure that
2005 * @p has remained unscheduled the whole time.
2006 *
1da177e4
LT
2007 * The caller must ensure that the task *will* unschedule sometime soon,
2008 * else this function might spin for a *long* time. This function can't
2009 * be called with interrupts off, or it may introduce deadlock with
2010 * smp_call_function() if an IPI is sent by the same process we are
2011 * waiting to become inactive.
2012 */
85ba2d86 2013unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2014{
2015 unsigned long flags;
dd41f596 2016 int running, on_rq;
85ba2d86 2017 unsigned long ncsw;
70b97a7f 2018 struct rq *rq;
1da177e4 2019
3a5c359a
AK
2020 for (;;) {
2021 /*
2022 * We do the initial early heuristics without holding
2023 * any task-queue locks at all. We'll only try to get
2024 * the runqueue lock when things look like they will
2025 * work out!
2026 */
2027 rq = task_rq(p);
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * If the task is actively running on another CPU
2031 * still, just relax and busy-wait without holding
2032 * any locks.
2033 *
2034 * NOTE! Since we don't hold any locks, it's not
2035 * even sure that "rq" stays as the right runqueue!
2036 * But we don't care, since "task_running()" will
2037 * return false if the runqueue has changed and p
2038 * is actually now running somewhere else!
2039 */
85ba2d86
RM
2040 while (task_running(rq, p)) {
2041 if (match_state && unlikely(p->state != match_state))
2042 return 0;
3a5c359a 2043 cpu_relax();
85ba2d86 2044 }
fa490cfd 2045
3a5c359a
AK
2046 /*
2047 * Ok, time to look more closely! We need the rq
2048 * lock now, to be *sure*. If we're wrong, we'll
2049 * just go back and repeat.
2050 */
2051 rq = task_rq_lock(p, &flags);
0a16b607 2052 trace_sched_wait_task(rq, p);
3a5c359a
AK
2053 running = task_running(rq, p);
2054 on_rq = p->se.on_rq;
85ba2d86 2055 ncsw = 0;
f31e11d8 2056 if (!match_state || p->state == match_state)
93dcf55f 2057 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2058 task_rq_unlock(rq, &flags);
fa490cfd 2059
85ba2d86
RM
2060 /*
2061 * If it changed from the expected state, bail out now.
2062 */
2063 if (unlikely(!ncsw))
2064 break;
2065
3a5c359a
AK
2066 /*
2067 * Was it really running after all now that we
2068 * checked with the proper locks actually held?
2069 *
2070 * Oops. Go back and try again..
2071 */
2072 if (unlikely(running)) {
2073 cpu_relax();
2074 continue;
2075 }
fa490cfd 2076
3a5c359a
AK
2077 /*
2078 * It's not enough that it's not actively running,
2079 * it must be off the runqueue _entirely_, and not
2080 * preempted!
2081 *
80dd99b3 2082 * So if it was still runnable (but just not actively
3a5c359a
AK
2083 * running right now), it's preempted, and we should
2084 * yield - it could be a while.
2085 */
2086 if (unlikely(on_rq)) {
2087 schedule_timeout_uninterruptible(1);
2088 continue;
2089 }
fa490cfd 2090
3a5c359a
AK
2091 /*
2092 * Ahh, all good. It wasn't running, and it wasn't
2093 * runnable, which means that it will never become
2094 * running in the future either. We're all done!
2095 */
2096 break;
2097 }
85ba2d86
RM
2098
2099 return ncsw;
1da177e4
LT
2100}
2101
2102/***
2103 * kick_process - kick a running thread to enter/exit the kernel
2104 * @p: the to-be-kicked thread
2105 *
2106 * Cause a process which is running on another CPU to enter
2107 * kernel-mode, without any delay. (to get signals handled.)
2108 *
2109 * NOTE: this function doesnt have to take the runqueue lock,
2110 * because all it wants to ensure is that the remote task enters
2111 * the kernel. If the IPI races and the task has been migrated
2112 * to another CPU then no harm is done and the purpose has been
2113 * achieved as well.
2114 */
36c8b586 2115void kick_process(struct task_struct *p)
1da177e4
LT
2116{
2117 int cpu;
2118
2119 preempt_disable();
2120 cpu = task_cpu(p);
2121 if ((cpu != smp_processor_id()) && task_curr(p))
2122 smp_send_reschedule(cpu);
2123 preempt_enable();
2124}
2125
2126/*
2dd73a4f
PW
2127 * Return a low guess at the load of a migration-source cpu weighted
2128 * according to the scheduling class and "nice" value.
1da177e4
LT
2129 *
2130 * We want to under-estimate the load of migration sources, to
2131 * balance conservatively.
2132 */
a9957449 2133static unsigned long source_load(int cpu, int type)
1da177e4 2134{
70b97a7f 2135 struct rq *rq = cpu_rq(cpu);
dd41f596 2136 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2137
93b75217 2138 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2139 return total;
b910472d 2140
dd41f596 2141 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2142}
2143
2144/*
2dd73a4f
PW
2145 * Return a high guess at the load of a migration-target cpu weighted
2146 * according to the scheduling class and "nice" value.
1da177e4 2147 */
a9957449 2148static unsigned long target_load(int cpu, int type)
1da177e4 2149{
70b97a7f 2150 struct rq *rq = cpu_rq(cpu);
dd41f596 2151 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2152
93b75217 2153 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2154 return total;
3b0bd9bc 2155
dd41f596 2156 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2157}
2158
147cbb4b
NP
2159/*
2160 * find_idlest_group finds and returns the least busy CPU group within the
2161 * domain.
2162 */
2163static struct sched_group *
2164find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2165{
2166 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2167 unsigned long min_load = ULONG_MAX, this_load = 0;
2168 int load_idx = sd->forkexec_idx;
2169 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2170
2171 do {
2172 unsigned long load, avg_load;
2173 int local_group;
2174 int i;
2175
da5a5522 2176 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2177 if (!cpumask_intersects(sched_group_cpus(group),
2178 &p->cpus_allowed))
3a5c359a 2179 continue;
da5a5522 2180
758b2cdc
RR
2181 local_group = cpumask_test_cpu(this_cpu,
2182 sched_group_cpus(group));
147cbb4b
NP
2183
2184 /* Tally up the load of all CPUs in the group */
2185 avg_load = 0;
2186
758b2cdc 2187 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2188 /* Bias balancing toward cpus of our domain */
2189 if (local_group)
2190 load = source_load(i, load_idx);
2191 else
2192 load = target_load(i, load_idx);
2193
2194 avg_load += load;
2195 }
2196
2197 /* Adjust by relative CPU power of the group */
5517d86b
ED
2198 avg_load = sg_div_cpu_power(group,
2199 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2200
2201 if (local_group) {
2202 this_load = avg_load;
2203 this = group;
2204 } else if (avg_load < min_load) {
2205 min_load = avg_load;
2206 idlest = group;
2207 }
3a5c359a 2208 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2209
2210 if (!idlest || 100*this_load < imbalance*min_load)
2211 return NULL;
2212 return idlest;
2213}
2214
2215/*
0feaece9 2216 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2217 */
95cdf3b7 2218static int
758b2cdc 2219find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2220{
2221 unsigned long load, min_load = ULONG_MAX;
2222 int idlest = -1;
2223 int i;
2224
da5a5522 2225 /* Traverse only the allowed CPUs */
758b2cdc 2226 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2227 load = weighted_cpuload(i);
147cbb4b
NP
2228
2229 if (load < min_load || (load == min_load && i == this_cpu)) {
2230 min_load = load;
2231 idlest = i;
2232 }
2233 }
2234
2235 return idlest;
2236}
2237
476d139c
NP
2238/*
2239 * sched_balance_self: balance the current task (running on cpu) in domains
2240 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2241 * SD_BALANCE_EXEC.
2242 *
2243 * Balance, ie. select the least loaded group.
2244 *
2245 * Returns the target CPU number, or the same CPU if no balancing is needed.
2246 *
2247 * preempt must be disabled.
2248 */
2249static int sched_balance_self(int cpu, int flag)
2250{
2251 struct task_struct *t = current;
2252 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2253
c96d145e 2254 for_each_domain(cpu, tmp) {
9761eea8
IM
2255 /*
2256 * If power savings logic is enabled for a domain, stop there.
2257 */
5c45bf27
SS
2258 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2259 break;
476d139c
NP
2260 if (tmp->flags & flag)
2261 sd = tmp;
c96d145e 2262 }
476d139c 2263
039a1c41
PZ
2264 if (sd)
2265 update_shares(sd);
2266
476d139c 2267 while (sd) {
476d139c 2268 struct sched_group *group;
1a848870
SS
2269 int new_cpu, weight;
2270
2271 if (!(sd->flags & flag)) {
2272 sd = sd->child;
2273 continue;
2274 }
476d139c 2275
476d139c 2276 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2277 if (!group) {
2278 sd = sd->child;
2279 continue;
2280 }
476d139c 2281
758b2cdc 2282 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2283 if (new_cpu == -1 || new_cpu == cpu) {
2284 /* Now try balancing at a lower domain level of cpu */
2285 sd = sd->child;
2286 continue;
2287 }
476d139c 2288
1a848870 2289 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2290 cpu = new_cpu;
758b2cdc 2291 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2292 sd = NULL;
476d139c 2293 for_each_domain(cpu, tmp) {
758b2cdc 2294 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2295 break;
2296 if (tmp->flags & flag)
2297 sd = tmp;
2298 }
2299 /* while loop will break here if sd == NULL */
2300 }
2301
2302 return cpu;
2303}
2304
2305#endif /* CONFIG_SMP */
1da177e4 2306
1da177e4
LT
2307/***
2308 * try_to_wake_up - wake up a thread
2309 * @p: the to-be-woken-up thread
2310 * @state: the mask of task states that can be woken
2311 * @sync: do a synchronous wakeup?
2312 *
2313 * Put it on the run-queue if it's not already there. The "current"
2314 * thread is always on the run-queue (except when the actual
2315 * re-schedule is in progress), and as such you're allowed to do
2316 * the simpler "current->state = TASK_RUNNING" to mark yourself
2317 * runnable without the overhead of this.
2318 *
2319 * returns failure only if the task is already active.
2320 */
36c8b586 2321static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2322{
cc367732 2323 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2324 unsigned long flags;
2325 long old_state;
70b97a7f 2326 struct rq *rq;
1da177e4 2327
b85d0667
IM
2328 if (!sched_feat(SYNC_WAKEUPS))
2329 sync = 0;
2330
2398f2c6 2331#ifdef CONFIG_SMP
57310a98 2332 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2333 struct sched_domain *sd;
2334
2335 this_cpu = raw_smp_processor_id();
2336 cpu = task_cpu(p);
2337
2338 for_each_domain(this_cpu, sd) {
758b2cdc 2339 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2340 update_shares(sd);
2341 break;
2342 }
2343 }
2344 }
2345#endif
2346
04e2f174 2347 smp_wmb();
1da177e4 2348 rq = task_rq_lock(p, &flags);
03e89e45 2349 update_rq_clock(rq);
1da177e4
LT
2350 old_state = p->state;
2351 if (!(old_state & state))
2352 goto out;
2353
dd41f596 2354 if (p->se.on_rq)
1da177e4
LT
2355 goto out_running;
2356
2357 cpu = task_cpu(p);
cc367732 2358 orig_cpu = cpu;
1da177e4
LT
2359 this_cpu = smp_processor_id();
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
5d2f5a61
DA
2365 cpu = p->sched_class->select_task_rq(p, sync);
2366 if (cpu != orig_cpu) {
2367 set_task_cpu(p, cpu);
1da177e4
LT
2368 task_rq_unlock(rq, &flags);
2369 /* might preempt at this point */
2370 rq = task_rq_lock(p, &flags);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
dd41f596 2374 if (p->se.on_rq)
1da177e4
LT
2375 goto out_running;
2376
2377 this_cpu = smp_processor_id();
2378 cpu = task_cpu(p);
2379 }
2380
e7693a36
GH
2381#ifdef CONFIG_SCHEDSTATS
2382 schedstat_inc(rq, ttwu_count);
2383 if (cpu == this_cpu)
2384 schedstat_inc(rq, ttwu_local);
2385 else {
2386 struct sched_domain *sd;
2387 for_each_domain(this_cpu, sd) {
758b2cdc 2388 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2389 schedstat_inc(sd, ttwu_wake_remote);
2390 break;
2391 }
2392 }
2393 }
6d6bc0ad 2394#endif /* CONFIG_SCHEDSTATS */
e7693a36 2395
1da177e4
LT
2396out_activate:
2397#endif /* CONFIG_SMP */
cc367732
IM
2398 schedstat_inc(p, se.nr_wakeups);
2399 if (sync)
2400 schedstat_inc(p, se.nr_wakeups_sync);
2401 if (orig_cpu != cpu)
2402 schedstat_inc(p, se.nr_wakeups_migrate);
2403 if (cpu == this_cpu)
2404 schedstat_inc(p, se.nr_wakeups_local);
2405 else
2406 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2407 activate_task(rq, p, 1);
1da177e4
LT
2408 success = 1;
2409
831451ac
PZ
2410 /*
2411 * Only attribute actual wakeups done by this task.
2412 */
2413 if (!in_interrupt()) {
2414 struct sched_entity *se = &current->se;
2415 u64 sample = se->sum_exec_runtime;
2416
2417 if (se->last_wakeup)
2418 sample -= se->last_wakeup;
2419 else
2420 sample -= se->start_runtime;
2421 update_avg(&se->avg_wakeup, sample);
2422
2423 se->last_wakeup = se->sum_exec_runtime;
2424 }
2425
1da177e4 2426out_running:
468a15bb 2427 trace_sched_wakeup(rq, p, success);
15afe09b 2428 check_preempt_curr(rq, p, sync);
4ae7d5ce 2429
1da177e4 2430 p->state = TASK_RUNNING;
9a897c5a
SR
2431#ifdef CONFIG_SMP
2432 if (p->sched_class->task_wake_up)
2433 p->sched_class->task_wake_up(rq, p);
2434#endif
1da177e4
LT
2435out:
2436 task_rq_unlock(rq, &flags);
2437
2438 return success;
2439}
2440
7ad5b3a5 2441int wake_up_process(struct task_struct *p)
1da177e4 2442{
d9514f6c 2443 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2444}
1da177e4
LT
2445EXPORT_SYMBOL(wake_up_process);
2446
7ad5b3a5 2447int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2448{
2449 return try_to_wake_up(p, state, 0);
2450}
2451
1da177e4
LT
2452/*
2453 * Perform scheduler related setup for a newly forked process p.
2454 * p is forked by current.
dd41f596
IM
2455 *
2456 * __sched_fork() is basic setup used by init_idle() too:
2457 */
2458static void __sched_fork(struct task_struct *p)
2459{
dd41f596
IM
2460 p->se.exec_start = 0;
2461 p->se.sum_exec_runtime = 0;
f6cf891c 2462 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2463 p->se.last_wakeup = 0;
2464 p->se.avg_overlap = 0;
831451ac
PZ
2465 p->se.start_runtime = 0;
2466 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2467
2468#ifdef CONFIG_SCHEDSTATS
2469 p->se.wait_start = 0;
dd41f596
IM
2470 p->se.sum_sleep_runtime = 0;
2471 p->se.sleep_start = 0;
dd41f596
IM
2472 p->se.block_start = 0;
2473 p->se.sleep_max = 0;
2474 p->se.block_max = 0;
2475 p->se.exec_max = 0;
eba1ed4b 2476 p->se.slice_max = 0;
dd41f596 2477 p->se.wait_max = 0;
6cfb0d5d 2478#endif
476d139c 2479
fa717060 2480 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2481 p->se.on_rq = 0;
4a55bd5e 2482 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2483
e107be36
AK
2484#ifdef CONFIG_PREEMPT_NOTIFIERS
2485 INIT_HLIST_HEAD(&p->preempt_notifiers);
2486#endif
2487
1da177e4
LT
2488 /*
2489 * We mark the process as running here, but have not actually
2490 * inserted it onto the runqueue yet. This guarantees that
2491 * nobody will actually run it, and a signal or other external
2492 * event cannot wake it up and insert it on the runqueue either.
2493 */
2494 p->state = TASK_RUNNING;
dd41f596
IM
2495}
2496
2497/*
2498 * fork()/clone()-time setup:
2499 */
2500void sched_fork(struct task_struct *p, int clone_flags)
2501{
2502 int cpu = get_cpu();
2503
2504 __sched_fork(p);
2505
2506#ifdef CONFIG_SMP
2507 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2508#endif
02e4bac2 2509 set_task_cpu(p, cpu);
b29739f9
IM
2510
2511 /*
2512 * Make sure we do not leak PI boosting priority to the child:
2513 */
2514 p->prio = current->normal_prio;
2ddbf952
HS
2515 if (!rt_prio(p->prio))
2516 p->sched_class = &fair_sched_class;
b29739f9 2517
52f17b6c 2518#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2519 if (likely(sched_info_on()))
52f17b6c 2520 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2521#endif
d6077cb8 2522#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2523 p->oncpu = 0;
2524#endif
1da177e4 2525#ifdef CONFIG_PREEMPT
4866cde0 2526 /* Want to start with kernel preemption disabled. */
a1261f54 2527 task_thread_info(p)->preempt_count = 1;
1da177e4 2528#endif
917b627d
GH
2529 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2530
476d139c 2531 put_cpu();
1da177e4
LT
2532}
2533
2534/*
2535 * wake_up_new_task - wake up a newly created task for the first time.
2536 *
2537 * This function will do some initial scheduler statistics housekeeping
2538 * that must be done for every newly created context, then puts the task
2539 * on the runqueue and wakes it.
2540 */
7ad5b3a5 2541void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2542{
2543 unsigned long flags;
dd41f596 2544 struct rq *rq;
1da177e4
LT
2545
2546 rq = task_rq_lock(p, &flags);
147cbb4b 2547 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2548 update_rq_clock(rq);
1da177e4
LT
2549
2550 p->prio = effective_prio(p);
2551
b9dca1e0 2552 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2553 activate_task(rq, p, 0);
1da177e4 2554 } else {
1da177e4 2555 /*
dd41f596
IM
2556 * Let the scheduling class do new task startup
2557 * management (if any):
1da177e4 2558 */
ee0827d8 2559 p->sched_class->task_new(rq, p);
c09595f6 2560 inc_nr_running(rq);
1da177e4 2561 }
c71dd42d 2562 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2563 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2564#ifdef CONFIG_SMP
2565 if (p->sched_class->task_wake_up)
2566 p->sched_class->task_wake_up(rq, p);
2567#endif
dd41f596 2568 task_rq_unlock(rq, &flags);
1da177e4
LT
2569}
2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572
2573/**
80dd99b3 2574 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2575 * @notifier: notifier struct to register
e107be36
AK
2576 */
2577void preempt_notifier_register(struct preempt_notifier *notifier)
2578{
2579 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2580}
2581EXPORT_SYMBOL_GPL(preempt_notifier_register);
2582
2583/**
2584 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2585 * @notifier: notifier struct to unregister
e107be36
AK
2586 *
2587 * This is safe to call from within a preemption notifier.
2588 */
2589void preempt_notifier_unregister(struct preempt_notifier *notifier)
2590{
2591 hlist_del(&notifier->link);
2592}
2593EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2594
2595static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2602}
2603
2604static void
2605fire_sched_out_preempt_notifiers(struct task_struct *curr,
2606 struct task_struct *next)
2607{
2608 struct preempt_notifier *notifier;
2609 struct hlist_node *node;
2610
2611 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2612 notifier->ops->sched_out(notifier, next);
2613}
2614
6d6bc0ad 2615#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2616
2617static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618{
2619}
2620
2621static void
2622fire_sched_out_preempt_notifiers(struct task_struct *curr,
2623 struct task_struct *next)
2624{
2625}
2626
6d6bc0ad 2627#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2628
4866cde0
NP
2629/**
2630 * prepare_task_switch - prepare to switch tasks
2631 * @rq: the runqueue preparing to switch
421cee29 2632 * @prev: the current task that is being switched out
4866cde0
NP
2633 * @next: the task we are going to switch to.
2634 *
2635 * This is called with the rq lock held and interrupts off. It must
2636 * be paired with a subsequent finish_task_switch after the context
2637 * switch.
2638 *
2639 * prepare_task_switch sets up locking and calls architecture specific
2640 * hooks.
2641 */
e107be36
AK
2642static inline void
2643prepare_task_switch(struct rq *rq, struct task_struct *prev,
2644 struct task_struct *next)
4866cde0 2645{
e107be36 2646 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2647 prepare_lock_switch(rq, next);
2648 prepare_arch_switch(next);
2649}
2650
1da177e4
LT
2651/**
2652 * finish_task_switch - clean up after a task-switch
344babaa 2653 * @rq: runqueue associated with task-switch
1da177e4
LT
2654 * @prev: the thread we just switched away from.
2655 *
4866cde0
NP
2656 * finish_task_switch must be called after the context switch, paired
2657 * with a prepare_task_switch call before the context switch.
2658 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2659 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2660 *
2661 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2662 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2663 * with the lock held can cause deadlocks; see schedule() for
2664 * details.)
2665 */
a9957449 2666static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2667 __releases(rq->lock)
2668{
1da177e4 2669 struct mm_struct *mm = rq->prev_mm;
55a101f8 2670 long prev_state;
967fc046
GH
2671#ifdef CONFIG_SMP
2672 int post_schedule = 0;
2673
2674 if (current->sched_class->needs_post_schedule)
2675 post_schedule = current->sched_class->needs_post_schedule(rq);
2676#endif
1da177e4
LT
2677
2678 rq->prev_mm = NULL;
2679
2680 /*
2681 * A task struct has one reference for the use as "current".
c394cc9f 2682 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2683 * schedule one last time. The schedule call will never return, and
2684 * the scheduled task must drop that reference.
c394cc9f 2685 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2686 * still held, otherwise prev could be scheduled on another cpu, die
2687 * there before we look at prev->state, and then the reference would
2688 * be dropped twice.
2689 * Manfred Spraul <manfred@colorfullife.com>
2690 */
55a101f8 2691 prev_state = prev->state;
4866cde0
NP
2692 finish_arch_switch(prev);
2693 finish_lock_switch(rq, prev);
9a897c5a 2694#ifdef CONFIG_SMP
967fc046 2695 if (post_schedule)
9a897c5a
SR
2696 current->sched_class->post_schedule(rq);
2697#endif
e8fa1362 2698
e107be36 2699 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2700 if (mm)
2701 mmdrop(mm);
c394cc9f 2702 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2703 /*
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
9761eea8 2706 */
c6fd91f0 2707 kprobe_flush_task(prev);
1da177e4 2708 put_task_struct(prev);
c6fd91f0 2709 }
1da177e4
LT
2710}
2711
2712/**
2713 * schedule_tail - first thing a freshly forked thread must call.
2714 * @prev: the thread we just switched away from.
2715 */
36c8b586 2716asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2717 __releases(rq->lock)
2718{
70b97a7f
IM
2719 struct rq *rq = this_rq();
2720
4866cde0
NP
2721 finish_task_switch(rq, prev);
2722#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2723 /* In this case, finish_task_switch does not reenable preemption */
2724 preempt_enable();
2725#endif
1da177e4 2726 if (current->set_child_tid)
b488893a 2727 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2728}
2729
2730/*
2731 * context_switch - switch to the new MM and the new
2732 * thread's register state.
2733 */
dd41f596 2734static inline void
70b97a7f 2735context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2736 struct task_struct *next)
1da177e4 2737{
dd41f596 2738 struct mm_struct *mm, *oldmm;
1da177e4 2739
e107be36 2740 prepare_task_switch(rq, prev, next);
0a16b607 2741 trace_sched_switch(rq, prev, next);
dd41f596
IM
2742 mm = next->mm;
2743 oldmm = prev->active_mm;
9226d125
ZA
2744 /*
2745 * For paravirt, this is coupled with an exit in switch_to to
2746 * combine the page table reload and the switch backend into
2747 * one hypercall.
2748 */
2749 arch_enter_lazy_cpu_mode();
2750
dd41f596 2751 if (unlikely(!mm)) {
1da177e4
LT
2752 next->active_mm = oldmm;
2753 atomic_inc(&oldmm->mm_count);
2754 enter_lazy_tlb(oldmm, next);
2755 } else
2756 switch_mm(oldmm, mm, next);
2757
dd41f596 2758 if (unlikely(!prev->mm)) {
1da177e4 2759 prev->active_mm = NULL;
1da177e4
LT
2760 rq->prev_mm = oldmm;
2761 }
3a5f5e48
IM
2762 /*
2763 * Since the runqueue lock will be released by the next
2764 * task (which is an invalid locking op but in the case
2765 * of the scheduler it's an obvious special-case), so we
2766 * do an early lockdep release here:
2767 */
2768#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2769 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2770#endif
1da177e4
LT
2771
2772 /* Here we just switch the register state and the stack. */
2773 switch_to(prev, next, prev);
2774
dd41f596
IM
2775 barrier();
2776 /*
2777 * this_rq must be evaluated again because prev may have moved
2778 * CPUs since it called schedule(), thus the 'rq' on its stack
2779 * frame will be invalid.
2780 */
2781 finish_task_switch(this_rq(), prev);
1da177e4
LT
2782}
2783
2784/*
2785 * nr_running, nr_uninterruptible and nr_context_switches:
2786 *
2787 * externally visible scheduler statistics: current number of runnable
2788 * threads, current number of uninterruptible-sleeping threads, total
2789 * number of context switches performed since bootup.
2790 */
2791unsigned long nr_running(void)
2792{
2793 unsigned long i, sum = 0;
2794
2795 for_each_online_cpu(i)
2796 sum += cpu_rq(i)->nr_running;
2797
2798 return sum;
2799}
2800
2801unsigned long nr_uninterruptible(void)
2802{
2803 unsigned long i, sum = 0;
2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4
LT
2806 sum += cpu_rq(i)->nr_uninterruptible;
2807
2808 /*
2809 * Since we read the counters lockless, it might be slightly
2810 * inaccurate. Do not allow it to go below zero though:
2811 */
2812 if (unlikely((long)sum < 0))
2813 sum = 0;
2814
2815 return sum;
2816}
2817
2818unsigned long long nr_context_switches(void)
2819{
cc94abfc
SR
2820 int i;
2821 unsigned long long sum = 0;
1da177e4 2822
0a945022 2823 for_each_possible_cpu(i)
1da177e4
LT
2824 sum += cpu_rq(i)->nr_switches;
2825
2826 return sum;
2827}
2828
2829unsigned long nr_iowait(void)
2830{
2831 unsigned long i, sum = 0;
2832
0a945022 2833 for_each_possible_cpu(i)
1da177e4
LT
2834 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2835
2836 return sum;
2837}
2838
db1b1fef
JS
2839unsigned long nr_active(void)
2840{
2841 unsigned long i, running = 0, uninterruptible = 0;
2842
2843 for_each_online_cpu(i) {
2844 running += cpu_rq(i)->nr_running;
2845 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2846 }
2847
2848 if (unlikely((long)uninterruptible < 0))
2849 uninterruptible = 0;
2850
2851 return running + uninterruptible;
2852}
2853
48f24c4d 2854/*
dd41f596
IM
2855 * Update rq->cpu_load[] statistics. This function is usually called every
2856 * scheduler tick (TICK_NSEC).
48f24c4d 2857 */
dd41f596 2858static void update_cpu_load(struct rq *this_rq)
48f24c4d 2859{
495eca49 2860 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2861 int i, scale;
2862
2863 this_rq->nr_load_updates++;
dd41f596
IM
2864
2865 /* Update our load: */
2866 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2867 unsigned long old_load, new_load;
2868
2869 /* scale is effectively 1 << i now, and >> i divides by scale */
2870
2871 old_load = this_rq->cpu_load[i];
2872 new_load = this_load;
a25707f3
IM
2873 /*
2874 * Round up the averaging division if load is increasing. This
2875 * prevents us from getting stuck on 9 if the load is 10, for
2876 * example.
2877 */
2878 if (new_load > old_load)
2879 new_load += scale-1;
dd41f596
IM
2880 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2881 }
48f24c4d
IM
2882}
2883
dd41f596
IM
2884#ifdef CONFIG_SMP
2885
1da177e4
LT
2886/*
2887 * double_rq_lock - safely lock two runqueues
2888 *
2889 * Note this does not disable interrupts like task_rq_lock,
2890 * you need to do so manually before calling.
2891 */
70b97a7f 2892static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2893 __acquires(rq1->lock)
2894 __acquires(rq2->lock)
2895{
054b9108 2896 BUG_ON(!irqs_disabled());
1da177e4
LT
2897 if (rq1 == rq2) {
2898 spin_lock(&rq1->lock);
2899 __acquire(rq2->lock); /* Fake it out ;) */
2900 } else {
c96d145e 2901 if (rq1 < rq2) {
1da177e4 2902 spin_lock(&rq1->lock);
5e710e37 2903 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2904 } else {
2905 spin_lock(&rq2->lock);
5e710e37 2906 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 }
2908 }
6e82a3be
IM
2909 update_rq_clock(rq1);
2910 update_rq_clock(rq2);
1da177e4
LT
2911}
2912
2913/*
2914 * double_rq_unlock - safely unlock two runqueues
2915 *
2916 * Note this does not restore interrupts like task_rq_unlock,
2917 * you need to do so manually after calling.
2918 */
70b97a7f 2919static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2920 __releases(rq1->lock)
2921 __releases(rq2->lock)
2922{
2923 spin_unlock(&rq1->lock);
2924 if (rq1 != rq2)
2925 spin_unlock(&rq2->lock);
2926 else
2927 __release(rq2->lock);
2928}
2929
1da177e4
LT
2930/*
2931 * If dest_cpu is allowed for this process, migrate the task to it.
2932 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2933 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2934 * the cpu_allowed mask is restored.
2935 */
36c8b586 2936static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2937{
70b97a7f 2938 struct migration_req req;
1da177e4 2939 unsigned long flags;
70b97a7f 2940 struct rq *rq;
1da177e4
LT
2941
2942 rq = task_rq_lock(p, &flags);
96f874e2 2943 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2944 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2945 goto out;
2946
2947 /* force the process onto the specified CPU */
2948 if (migrate_task(p, dest_cpu, &req)) {
2949 /* Need to wait for migration thread (might exit: take ref). */
2950 struct task_struct *mt = rq->migration_thread;
36c8b586 2951
1da177e4
LT
2952 get_task_struct(mt);
2953 task_rq_unlock(rq, &flags);
2954 wake_up_process(mt);
2955 put_task_struct(mt);
2956 wait_for_completion(&req.done);
36c8b586 2957
1da177e4
LT
2958 return;
2959 }
2960out:
2961 task_rq_unlock(rq, &flags);
2962}
2963
2964/*
476d139c
NP
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2967 */
2968void sched_exec(void)
2969{
1da177e4 2970 int new_cpu, this_cpu = get_cpu();
476d139c 2971 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2972 put_cpu();
476d139c
NP
2973 if (new_cpu != this_cpu)
2974 sched_migrate_task(current, new_cpu);
1da177e4
LT
2975}
2976
2977/*
2978 * pull_task - move a task from a remote runqueue to the local runqueue.
2979 * Both runqueues must be locked.
2980 */
dd41f596
IM
2981static void pull_task(struct rq *src_rq, struct task_struct *p,
2982 struct rq *this_rq, int this_cpu)
1da177e4 2983{
2e1cb74a 2984 deactivate_task(src_rq, p, 0);
1da177e4 2985 set_task_cpu(p, this_cpu);
dd41f596 2986 activate_task(this_rq, p, 0);
1da177e4
LT
2987 /*
2988 * Note that idle threads have a prio of MAX_PRIO, for this test
2989 * to be always true for them.
2990 */
15afe09b 2991 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2992}
2993
2994/*
2995 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2996 */
858119e1 2997static
70b97a7f 2998int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2999 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3000 int *all_pinned)
1da177e4 3001{
708dc512 3002 int tsk_cache_hot = 0;
1da177e4
LT
3003 /*
3004 * We do not migrate tasks that are:
3005 * 1) running (obviously), or
3006 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3007 * 3) are cache-hot on their current CPU.
3008 */
96f874e2 3009 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3010 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3011 return 0;
cc367732 3012 }
81026794
NP
3013 *all_pinned = 0;
3014
cc367732
IM
3015 if (task_running(rq, p)) {
3016 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3017 return 0;
cc367732 3018 }
1da177e4 3019
da84d961
IM
3020 /*
3021 * Aggressive migration if:
3022 * 1) task is cache cold, or
3023 * 2) too many balance attempts have failed.
3024 */
3025
708dc512
LH
3026 tsk_cache_hot = task_hot(p, rq->clock, sd);
3027 if (!tsk_cache_hot ||
3028 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3029#ifdef CONFIG_SCHEDSTATS
708dc512 3030 if (tsk_cache_hot) {
da84d961 3031 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3032 schedstat_inc(p, se.nr_forced_migrations);
3033 }
da84d961
IM
3034#endif
3035 return 1;
3036 }
3037
708dc512 3038 if (tsk_cache_hot) {
cc367732 3039 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3040 return 0;
cc367732 3041 }
1da177e4
LT
3042 return 1;
3043}
3044
e1d1484f
PW
3045static unsigned long
3046balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3047 unsigned long max_load_move, struct sched_domain *sd,
3048 enum cpu_idle_type idle, int *all_pinned,
3049 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3050{
051c6764 3051 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3052 struct task_struct *p;
3053 long rem_load_move = max_load_move;
1da177e4 3054
e1d1484f 3055 if (max_load_move == 0)
1da177e4
LT
3056 goto out;
3057
81026794
NP
3058 pinned = 1;
3059
1da177e4 3060 /*
dd41f596 3061 * Start the load-balancing iterator:
1da177e4 3062 */
dd41f596
IM
3063 p = iterator->start(iterator->arg);
3064next:
b82d9fdd 3065 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3066 goto out;
051c6764
PZ
3067
3068 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3069 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3070 p = iterator->next(iterator->arg);
3071 goto next;
1da177e4
LT
3072 }
3073
dd41f596 3074 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3075 pulled++;
dd41f596 3076 rem_load_move -= p->se.load.weight;
1da177e4 3077
7e96fa58
GH
3078#ifdef CONFIG_PREEMPT
3079 /*
3080 * NEWIDLE balancing is a source of latency, so preemptible kernels
3081 * will stop after the first task is pulled to minimize the critical
3082 * section.
3083 */
3084 if (idle == CPU_NEWLY_IDLE)
3085 goto out;
3086#endif
3087
2dd73a4f 3088 /*
b82d9fdd 3089 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3090 */
e1d1484f 3091 if (rem_load_move > 0) {
a4ac01c3
PW
3092 if (p->prio < *this_best_prio)
3093 *this_best_prio = p->prio;
dd41f596
IM
3094 p = iterator->next(iterator->arg);
3095 goto next;
1da177e4
LT
3096 }
3097out:
3098 /*
e1d1484f 3099 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3100 * so we can safely collect pull_task() stats here rather than
3101 * inside pull_task().
3102 */
3103 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3104
3105 if (all_pinned)
3106 *all_pinned = pinned;
e1d1484f
PW
3107
3108 return max_load_move - rem_load_move;
1da177e4
LT
3109}
3110
dd41f596 3111/*
43010659
PW
3112 * move_tasks tries to move up to max_load_move weighted load from busiest to
3113 * this_rq, as part of a balancing operation within domain "sd".
3114 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3115 *
3116 * Called with both runqueues locked.
3117 */
3118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3119 unsigned long max_load_move,
dd41f596
IM
3120 struct sched_domain *sd, enum cpu_idle_type idle,
3121 int *all_pinned)
3122{
5522d5d5 3123 const struct sched_class *class = sched_class_highest;
43010659 3124 unsigned long total_load_moved = 0;
a4ac01c3 3125 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3126
3127 do {
43010659
PW
3128 total_load_moved +=
3129 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3130 max_load_move - total_load_moved,
a4ac01c3 3131 sd, idle, all_pinned, &this_best_prio);
dd41f596 3132 class = class->next;
c4acb2c0 3133
7e96fa58
GH
3134#ifdef CONFIG_PREEMPT
3135 /*
3136 * NEWIDLE balancing is a source of latency, so preemptible
3137 * kernels will stop after the first task is pulled to minimize
3138 * the critical section.
3139 */
c4acb2c0
GH
3140 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3141 break;
7e96fa58 3142#endif
43010659 3143 } while (class && max_load_move > total_load_moved);
dd41f596 3144
43010659
PW
3145 return total_load_moved > 0;
3146}
3147
e1d1484f
PW
3148static int
3149iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3150 struct sched_domain *sd, enum cpu_idle_type idle,
3151 struct rq_iterator *iterator)
3152{
3153 struct task_struct *p = iterator->start(iterator->arg);
3154 int pinned = 0;
3155
3156 while (p) {
3157 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3158 pull_task(busiest, p, this_rq, this_cpu);
3159 /*
3160 * Right now, this is only the second place pull_task()
3161 * is called, so we can safely collect pull_task()
3162 * stats here rather than inside pull_task().
3163 */
3164 schedstat_inc(sd, lb_gained[idle]);
3165
3166 return 1;
3167 }
3168 p = iterator->next(iterator->arg);
3169 }
3170
3171 return 0;
3172}
3173
43010659
PW
3174/*
3175 * move_one_task tries to move exactly one task from busiest to this_rq, as
3176 * part of active balancing operations within "domain".
3177 * Returns 1 if successful and 0 otherwise.
3178 *
3179 * Called with both runqueues locked.
3180 */
3181static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 struct sched_domain *sd, enum cpu_idle_type idle)
3183{
5522d5d5 3184 const struct sched_class *class;
43010659
PW
3185
3186 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3187 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3188 return 1;
3189
3190 return 0;
dd41f596 3191}
67bb6c03 3192/********** Helpers for find_busiest_group ************************/
222d656d
GS
3193/**
3194 * sd_lb_stats - Structure to store the statistics of a sched_domain
3195 * during load balancing.
3196 */
3197struct sd_lb_stats {
3198 struct sched_group *busiest; /* Busiest group in this sd */
3199 struct sched_group *this; /* Local group in this sd */
3200 unsigned long total_load; /* Total load of all groups in sd */
3201 unsigned long total_pwr; /* Total power of all groups in sd */
3202 unsigned long avg_load; /* Average load across all groups in sd */
3203
3204 /** Statistics of this group */
3205 unsigned long this_load;
3206 unsigned long this_load_per_task;
3207 unsigned long this_nr_running;
3208
3209 /* Statistics of the busiest group */
3210 unsigned long max_load;
3211 unsigned long busiest_load_per_task;
3212 unsigned long busiest_nr_running;
3213
3214 int group_imb; /* Is there imbalance in this sd */
3215#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3216 int power_savings_balance; /* Is powersave balance needed for this sd */
3217 struct sched_group *group_min; /* Least loaded group in sd */
3218 struct sched_group *group_leader; /* Group which relieves group_min */
3219 unsigned long min_load_per_task; /* load_per_task in group_min */
3220 unsigned long leader_nr_running; /* Nr running of group_leader */
3221 unsigned long min_nr_running; /* Nr running of group_min */
3222#endif
3223};
67bb6c03 3224
381be78f
GS
3225/**
3226 * sg_lb_stats - stats of a sched_group required for load_balancing
3227 */
3228struct sg_lb_stats {
3229 unsigned long avg_load; /*Avg load across the CPUs of the group */
3230 unsigned long group_load; /* Total load over the CPUs of the group */
3231 unsigned long sum_nr_running; /* Nr tasks running in the group */
3232 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3233 unsigned long group_capacity;
3234 int group_imb; /* Is there an imbalance in the group ? */
3235};
3236
67bb6c03
GS
3237/**
3238 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3239 * @group: The group whose first cpu is to be returned.
3240 */
3241static inline unsigned int group_first_cpu(struct sched_group *group)
3242{
3243 return cpumask_first(sched_group_cpus(group));
3244}
3245
3246/**
3247 * get_sd_load_idx - Obtain the load index for a given sched domain.
3248 * @sd: The sched_domain whose load_idx is to be obtained.
3249 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3250 */
3251static inline int get_sd_load_idx(struct sched_domain *sd,
3252 enum cpu_idle_type idle)
3253{
3254 int load_idx;
3255
3256 switch (idle) {
3257 case CPU_NOT_IDLE:
3258 load_idx = sd->busy_idx;
3259 break;
3260
3261 case CPU_NEWLY_IDLE:
3262 load_idx = sd->newidle_idx;
3263 break;
3264 default:
3265 load_idx = sd->idle_idx;
3266 break;
3267 }
3268
3269 return load_idx;
3270}
1f8c553d
GS
3271
3272
c071df18
GS
3273#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3274/**
3275 * init_sd_power_savings_stats - Initialize power savings statistics for
3276 * the given sched_domain, during load balancing.
3277 *
3278 * @sd: Sched domain whose power-savings statistics are to be initialized.
3279 * @sds: Variable containing the statistics for sd.
3280 * @idle: Idle status of the CPU at which we're performing load-balancing.
3281 */
3282static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3284{
3285 /*
3286 * Busy processors will not participate in power savings
3287 * balance.
3288 */
3289 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3290 sds->power_savings_balance = 0;
3291 else {
3292 sds->power_savings_balance = 1;
3293 sds->min_nr_running = ULONG_MAX;
3294 sds->leader_nr_running = 0;
3295 }
3296}
3297
3298/**
3299 * update_sd_power_savings_stats - Update the power saving stats for a
3300 * sched_domain while performing load balancing.
3301 *
3302 * @group: sched_group belonging to the sched_domain under consideration.
3303 * @sds: Variable containing the statistics of the sched_domain
3304 * @local_group: Does group contain the CPU for which we're performing
3305 * load balancing ?
3306 * @sgs: Variable containing the statistics of the group.
3307 */
3308static inline void update_sd_power_savings_stats(struct sched_group *group,
3309 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3310{
3311
3312 if (!sds->power_savings_balance)
3313 return;
3314
3315 /*
3316 * If the local group is idle or completely loaded
3317 * no need to do power savings balance at this domain
3318 */
3319 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3320 !sds->this_nr_running))
3321 sds->power_savings_balance = 0;
3322
3323 /*
3324 * If a group is already running at full capacity or idle,
3325 * don't include that group in power savings calculations
3326 */
3327 if (!sds->power_savings_balance ||
3328 sgs->sum_nr_running >= sgs->group_capacity ||
3329 !sgs->sum_nr_running)
3330 return;
3331
3332 /*
3333 * Calculate the group which has the least non-idle load.
3334 * This is the group from where we need to pick up the load
3335 * for saving power
3336 */
3337 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3338 (sgs->sum_nr_running == sds->min_nr_running &&
3339 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3340 sds->group_min = group;
3341 sds->min_nr_running = sgs->sum_nr_running;
3342 sds->min_load_per_task = sgs->sum_weighted_load /
3343 sgs->sum_nr_running;
3344 }
3345
3346 /*
3347 * Calculate the group which is almost near its
3348 * capacity but still has some space to pick up some load
3349 * from other group and save more power
3350 */
3351 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3352 return;
3353
3354 if (sgs->sum_nr_running > sds->leader_nr_running ||
3355 (sgs->sum_nr_running == sds->leader_nr_running &&
3356 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3357 sds->group_leader = group;
3358 sds->leader_nr_running = sgs->sum_nr_running;
3359 }
3360}
3361
3362/**
3363 * check_power_save_busiest_group - Check if we have potential to perform
3364 * some power-savings balance. If yes, set the busiest group to be
3365 * the least loaded group in the sched_domain, so that it's CPUs can
3366 * be put to idle.
3367 *
3368 * @sds: Variable containing the statistics of the sched_domain
3369 * under consideration.
3370 * @this_cpu: Cpu at which we're currently performing load-balancing.
3371 * @imbalance: Variable to store the imbalance.
3372 *
3373 * Returns 1 if there is potential to perform power-savings balance.
3374 * Else returns 0.
3375 */
3376static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3377 int this_cpu, unsigned long *imbalance)
3378{
3379 if (!sds->power_savings_balance)
3380 return 0;
3381
3382 if (sds->this != sds->group_leader ||
3383 sds->group_leader == sds->group_min)
3384 return 0;
3385
3386 *imbalance = sds->min_load_per_task;
3387 sds->busiest = sds->group_min;
3388
3389 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3390 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3391 group_first_cpu(sds->group_leader);
3392 }
3393
3394 return 1;
3395
3396}
3397#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3398static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3399 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3400{
3401 return;
3402}
3403
3404static inline void update_sd_power_savings_stats(struct sched_group *group,
3405 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3406{
3407 return;
3408}
3409
3410static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3411 int this_cpu, unsigned long *imbalance)
3412{
3413 return 0;
3414}
3415#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3416
3417
1f8c553d
GS
3418/**
3419 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3420 * @group: sched_group whose statistics are to be updated.
3421 * @this_cpu: Cpu for which load balance is currently performed.
3422 * @idle: Idle status of this_cpu
3423 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3424 * @sd_idle: Idle status of the sched_domain containing group.
3425 * @local_group: Does group contain this_cpu.
3426 * @cpus: Set of cpus considered for load balancing.
3427 * @balance: Should we balance.
3428 * @sgs: variable to hold the statistics for this group.
3429 */
3430static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3431 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3432 int local_group, const struct cpumask *cpus,
3433 int *balance, struct sg_lb_stats *sgs)
3434{
3435 unsigned long load, max_cpu_load, min_cpu_load;
3436 int i;
3437 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3438 unsigned long sum_avg_load_per_task;
3439 unsigned long avg_load_per_task;
3440
3441 if (local_group)
3442 balance_cpu = group_first_cpu(group);
3443
3444 /* Tally up the load of all CPUs in the group */
3445 sum_avg_load_per_task = avg_load_per_task = 0;
3446 max_cpu_load = 0;
3447 min_cpu_load = ~0UL;
3448
3449 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3450 struct rq *rq = cpu_rq(i);
3451
3452 if (*sd_idle && rq->nr_running)
3453 *sd_idle = 0;
3454
3455 /* Bias balancing toward cpus of our domain */
3456 if (local_group) {
3457 if (idle_cpu(i) && !first_idle_cpu) {
3458 first_idle_cpu = 1;
3459 balance_cpu = i;
3460 }
3461
3462 load = target_load(i, load_idx);
3463 } else {
3464 load = source_load(i, load_idx);
3465 if (load > max_cpu_load)
3466 max_cpu_load = load;
3467 if (min_cpu_load > load)
3468 min_cpu_load = load;
3469 }
3470
3471 sgs->group_load += load;
3472 sgs->sum_nr_running += rq->nr_running;
3473 sgs->sum_weighted_load += weighted_cpuload(i);
3474
3475 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3476 }
3477
3478 /*
3479 * First idle cpu or the first cpu(busiest) in this sched group
3480 * is eligible for doing load balancing at this and above
3481 * domains. In the newly idle case, we will allow all the cpu's
3482 * to do the newly idle load balance.
3483 */
3484 if (idle != CPU_NEWLY_IDLE && local_group &&
3485 balance_cpu != this_cpu && balance) {
3486 *balance = 0;
3487 return;
3488 }
3489
3490 /* Adjust by relative CPU power of the group */
3491 sgs->avg_load = sg_div_cpu_power(group,
3492 sgs->group_load * SCHED_LOAD_SCALE);
3493
3494
3495 /*
3496 * Consider the group unbalanced when the imbalance is larger
3497 * than the average weight of two tasks.
3498 *
3499 * APZ: with cgroup the avg task weight can vary wildly and
3500 * might not be a suitable number - should we keep a
3501 * normalized nr_running number somewhere that negates
3502 * the hierarchy?
3503 */
3504 avg_load_per_task = sg_div_cpu_power(group,
3505 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3506
3507 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3508 sgs->group_imb = 1;
3509
3510 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3511
3512}
dd41f596 3513
37abe198
GS
3514/**
3515 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3516 * @sd: sched_domain whose statistics are to be updated.
3517 * @this_cpu: Cpu for which load balance is currently performed.
3518 * @idle: Idle status of this_cpu
3519 * @sd_idle: Idle status of the sched_domain containing group.
3520 * @cpus: Set of cpus considered for load balancing.
3521 * @balance: Should we balance.
3522 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3523 */
37abe198
GS
3524static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3525 enum cpu_idle_type idle, int *sd_idle,
3526 const struct cpumask *cpus, int *balance,
3527 struct sd_lb_stats *sds)
1da177e4 3528{
222d656d 3529 struct sched_group *group = sd->groups;
37abe198 3530 struct sg_lb_stats sgs;
222d656d
GS
3531 int load_idx;
3532
c071df18 3533 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3534 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3535
3536 do {
1da177e4 3537 int local_group;
1da177e4 3538
758b2cdc
RR
3539 local_group = cpumask_test_cpu(this_cpu,
3540 sched_group_cpus(group));
381be78f 3541 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3542 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3543 local_group, cpus, balance, &sgs);
1da177e4 3544
37abe198
GS
3545 if (local_group && balance && !(*balance))
3546 return;
783609c6 3547
37abe198
GS
3548 sds->total_load += sgs.group_load;
3549 sds->total_pwr += group->__cpu_power;
1da177e4 3550
1da177e4 3551 if (local_group) {
37abe198
GS
3552 sds->this_load = sgs.avg_load;
3553 sds->this = group;
3554 sds->this_nr_running = sgs.sum_nr_running;
3555 sds->this_load_per_task = sgs.sum_weighted_load;
3556 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3557 (sgs.sum_nr_running > sgs.group_capacity ||
3558 sgs.group_imb)) {
37abe198
GS
3559 sds->max_load = sgs.avg_load;
3560 sds->busiest = group;
3561 sds->busiest_nr_running = sgs.sum_nr_running;
3562 sds->busiest_load_per_task = sgs.sum_weighted_load;
3563 sds->group_imb = sgs.group_imb;
1da177e4 3564 }
5c45bf27 3565
c071df18 3566 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3567 group = group->next;
3568 } while (group != sd->groups);
3569
37abe198 3570}
2e6f44ae
GS
3571
3572/**
3573 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3574 * amongst the groups of a sched_domain, during
3575 * load balancing.
2e6f44ae
GS
3576 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3577 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3578 * @imbalance: Variable to store the imbalance.
3579 */
3580static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3582{
3583 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3584 unsigned int imbn = 2;
3585
3586 if (sds->this_nr_running) {
3587 sds->this_load_per_task /= sds->this_nr_running;
3588 if (sds->busiest_load_per_task >
3589 sds->this_load_per_task)
3590 imbn = 1;
3591 } else
3592 sds->this_load_per_task =
3593 cpu_avg_load_per_task(this_cpu);
3594
3595 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3596 sds->busiest_load_per_task * imbn) {
3597 *imbalance = sds->busiest_load_per_task;
3598 return;
3599 }
3600
3601 /*
3602 * OK, we don't have enough imbalance to justify moving tasks,
3603 * however we may be able to increase total CPU power used by
3604 * moving them.
3605 */
3606
3607 pwr_now += sds->busiest->__cpu_power *
3608 min(sds->busiest_load_per_task, sds->max_load);
3609 pwr_now += sds->this->__cpu_power *
3610 min(sds->this_load_per_task, sds->this_load);
3611 pwr_now /= SCHED_LOAD_SCALE;
3612
3613 /* Amount of load we'd subtract */
3614 tmp = sg_div_cpu_power(sds->busiest,
3615 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3616 if (sds->max_load > tmp)
3617 pwr_move += sds->busiest->__cpu_power *
3618 min(sds->busiest_load_per_task, sds->max_load - tmp);
3619
3620 /* Amount of load we'd add */
3621 if (sds->max_load * sds->busiest->__cpu_power <
3622 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3623 tmp = sg_div_cpu_power(sds->this,
3624 sds->max_load * sds->busiest->__cpu_power);
3625 else
3626 tmp = sg_div_cpu_power(sds->this,
3627 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3628 pwr_move += sds->this->__cpu_power *
3629 min(sds->this_load_per_task, sds->this_load + tmp);
3630 pwr_move /= SCHED_LOAD_SCALE;
3631
3632 /* Move if we gain throughput */
3633 if (pwr_move > pwr_now)
3634 *imbalance = sds->busiest_load_per_task;
3635}
dbc523a3
GS
3636
3637/**
3638 * calculate_imbalance - Calculate the amount of imbalance present within the
3639 * groups of a given sched_domain during load balance.
3640 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3641 * @this_cpu: Cpu for which currently load balance is being performed.
3642 * @imbalance: The variable to store the imbalance.
3643 */
3644static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3645 unsigned long *imbalance)
3646{
3647 unsigned long max_pull;
3648 /*
3649 * In the presence of smp nice balancing, certain scenarios can have
3650 * max load less than avg load(as we skip the groups at or below
3651 * its cpu_power, while calculating max_load..)
3652 */
3653 if (sds->max_load < sds->avg_load) {
3654 *imbalance = 0;
3655 return fix_small_imbalance(sds, this_cpu, imbalance);
3656 }
3657
3658 /* Don't want to pull so many tasks that a group would go idle */
3659 max_pull = min(sds->max_load - sds->avg_load,
3660 sds->max_load - sds->busiest_load_per_task);
3661
3662 /* How much load to actually move to equalise the imbalance */
3663 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3664 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3665 / SCHED_LOAD_SCALE;
3666
3667 /*
3668 * if *imbalance is less than the average load per runnable task
3669 * there is no gaurantee that any tasks will be moved so we'll have
3670 * a think about bumping its value to force at least one task to be
3671 * moved
3672 */
3673 if (*imbalance < sds->busiest_load_per_task)
3674 return fix_small_imbalance(sds, this_cpu, imbalance);
3675
3676}
37abe198
GS
3677/******* find_busiest_group() helpers end here *********************/
3678
3679/*
3680 * find_busiest_group finds and returns the busiest CPU group within the
3681 * domain. It calculates and returns the amount of weighted load which
3682 * should be moved to restore balance via the imbalance parameter.
3683 */
3684static struct sched_group *
3685find_busiest_group(struct sched_domain *sd, int this_cpu,
3686 unsigned long *imbalance, enum cpu_idle_type idle,
3687 int *sd_idle, const struct cpumask *cpus, int *balance)
3688{
3689 struct sd_lb_stats sds;
37abe198
GS
3690
3691 memset(&sds, 0, sizeof(sds));
3692
3693 /*
3694 * Compute the various statistics relavent for load balancing at
3695 * this level.
3696 */
3697 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3698 balance, &sds);
3699
3700 if (balance && !(*balance))
3701 goto ret;
3702
222d656d
GS
3703 if (!sds.busiest || sds.this_load >= sds.max_load
3704 || sds.busiest_nr_running == 0)
1da177e4
LT
3705 goto out_balanced;
3706
222d656d 3707 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3708
222d656d
GS
3709 if (sds.this_load >= sds.avg_load ||
3710 100*sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3711 goto out_balanced;
3712
222d656d
GS
3713 sds.busiest_load_per_task /= sds.busiest_nr_running;
3714 if (sds.group_imb)
3715 sds.busiest_load_per_task =
3716 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3717
1da177e4
LT
3718 /*
3719 * We're trying to get all the cpus to the average_load, so we don't
3720 * want to push ourselves above the average load, nor do we wish to
3721 * reduce the max loaded cpu below the average load, as either of these
3722 * actions would just result in more rebalancing later, and ping-pong
3723 * tasks around. Thus we look for the minimum possible imbalance.
3724 * Negative imbalances (*we* are more loaded than anyone else) will
3725 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3726 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3727 * appear as very large values with unsigned longs.
3728 */
222d656d 3729 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3730 goto out_balanced;
3731
dbc523a3
GS
3732 /* Looks like there is an imbalance. Compute it */
3733 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3734 return sds.busiest;
1da177e4
LT
3735
3736out_balanced:
c071df18
GS
3737 /*
3738 * There is no obvious imbalance. But check if we can do some balancing
3739 * to save power.
3740 */
3741 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3742 return sds.busiest;
783609c6 3743ret:
1da177e4
LT
3744 *imbalance = 0;
3745 return NULL;
3746}
3747
3748/*
3749 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3750 */
70b97a7f 3751static struct rq *
d15bcfdb 3752find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3753 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3754{
70b97a7f 3755 struct rq *busiest = NULL, *rq;
2dd73a4f 3756 unsigned long max_load = 0;
1da177e4
LT
3757 int i;
3758
758b2cdc 3759 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3760 unsigned long wl;
0a2966b4 3761
96f874e2 3762 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3763 continue;
3764
48f24c4d 3765 rq = cpu_rq(i);
dd41f596 3766 wl = weighted_cpuload(i);
2dd73a4f 3767
dd41f596 3768 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3769 continue;
1da177e4 3770
dd41f596
IM
3771 if (wl > max_load) {
3772 max_load = wl;
48f24c4d 3773 busiest = rq;
1da177e4
LT
3774 }
3775 }
3776
3777 return busiest;
3778}
3779
77391d71
NP
3780/*
3781 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3782 * so long as it is large enough.
3783 */
3784#define MAX_PINNED_INTERVAL 512
3785
1da177e4
LT
3786/*
3787 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3788 * tasks if there is an imbalance.
1da177e4 3789 */
70b97a7f 3790static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3791 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3792 int *balance, struct cpumask *cpus)
1da177e4 3793{
43010659 3794 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3795 struct sched_group *group;
1da177e4 3796 unsigned long imbalance;
70b97a7f 3797 struct rq *busiest;
fe2eea3f 3798 unsigned long flags;
5969fe06 3799
96f874e2 3800 cpumask_setall(cpus);
7c16ec58 3801
89c4710e
SS
3802 /*
3803 * When power savings policy is enabled for the parent domain, idle
3804 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3805 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3806 * portraying it as CPU_NOT_IDLE.
89c4710e 3807 */
d15bcfdb 3808 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3810 sd_idle = 1;
1da177e4 3811
2d72376b 3812 schedstat_inc(sd, lb_count[idle]);
1da177e4 3813
0a2966b4 3814redo:
c8cba857 3815 update_shares(sd);
0a2966b4 3816 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3817 cpus, balance);
783609c6 3818
06066714 3819 if (*balance == 0)
783609c6 3820 goto out_balanced;
783609c6 3821
1da177e4
LT
3822 if (!group) {
3823 schedstat_inc(sd, lb_nobusyg[idle]);
3824 goto out_balanced;
3825 }
3826
7c16ec58 3827 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3828 if (!busiest) {
3829 schedstat_inc(sd, lb_nobusyq[idle]);
3830 goto out_balanced;
3831 }
3832
db935dbd 3833 BUG_ON(busiest == this_rq);
1da177e4
LT
3834
3835 schedstat_add(sd, lb_imbalance[idle], imbalance);
3836
43010659 3837 ld_moved = 0;
1da177e4
LT
3838 if (busiest->nr_running > 1) {
3839 /*
3840 * Attempt to move tasks. If find_busiest_group has found
3841 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3842 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3843 * correctly treated as an imbalance.
3844 */
fe2eea3f 3845 local_irq_save(flags);
e17224bf 3846 double_rq_lock(this_rq, busiest);
43010659 3847 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3848 imbalance, sd, idle, &all_pinned);
e17224bf 3849 double_rq_unlock(this_rq, busiest);
fe2eea3f 3850 local_irq_restore(flags);
81026794 3851
46cb4b7c
SS
3852 /*
3853 * some other cpu did the load balance for us.
3854 */
43010659 3855 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3856 resched_cpu(this_cpu);
3857
81026794 3858 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3859 if (unlikely(all_pinned)) {
96f874e2
RR
3860 cpumask_clear_cpu(cpu_of(busiest), cpus);
3861 if (!cpumask_empty(cpus))
0a2966b4 3862 goto redo;
81026794 3863 goto out_balanced;
0a2966b4 3864 }
1da177e4 3865 }
81026794 3866
43010659 3867 if (!ld_moved) {
1da177e4
LT
3868 schedstat_inc(sd, lb_failed[idle]);
3869 sd->nr_balance_failed++;
3870
3871 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3872
fe2eea3f 3873 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3874
3875 /* don't kick the migration_thread, if the curr
3876 * task on busiest cpu can't be moved to this_cpu
3877 */
96f874e2
RR
3878 if (!cpumask_test_cpu(this_cpu,
3879 &busiest->curr->cpus_allowed)) {
fe2eea3f 3880 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3881 all_pinned = 1;
3882 goto out_one_pinned;
3883 }
3884
1da177e4
LT
3885 if (!busiest->active_balance) {
3886 busiest->active_balance = 1;
3887 busiest->push_cpu = this_cpu;
81026794 3888 active_balance = 1;
1da177e4 3889 }
fe2eea3f 3890 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3891 if (active_balance)
1da177e4
LT
3892 wake_up_process(busiest->migration_thread);
3893
3894 /*
3895 * We've kicked active balancing, reset the failure
3896 * counter.
3897 */
39507451 3898 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3899 }
81026794 3900 } else
1da177e4
LT
3901 sd->nr_balance_failed = 0;
3902
81026794 3903 if (likely(!active_balance)) {
1da177e4
LT
3904 /* We were unbalanced, so reset the balancing interval */
3905 sd->balance_interval = sd->min_interval;
81026794
NP
3906 } else {
3907 /*
3908 * If we've begun active balancing, start to back off. This
3909 * case may not be covered by the all_pinned logic if there
3910 * is only 1 task on the busy runqueue (because we don't call
3911 * move_tasks).
3912 */
3913 if (sd->balance_interval < sd->max_interval)
3914 sd->balance_interval *= 2;
1da177e4
LT
3915 }
3916
43010659 3917 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3918 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3919 ld_moved = -1;
3920
3921 goto out;
1da177e4
LT
3922
3923out_balanced:
1da177e4
LT
3924 schedstat_inc(sd, lb_balanced[idle]);
3925
16cfb1c0 3926 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3927
3928out_one_pinned:
1da177e4 3929 /* tune up the balancing interval */
77391d71
NP
3930 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3931 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3932 sd->balance_interval *= 2;
3933
48f24c4d 3934 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3935 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3936 ld_moved = -1;
3937 else
3938 ld_moved = 0;
3939out:
c8cba857
PZ
3940 if (ld_moved)
3941 update_shares(sd);
c09595f6 3942 return ld_moved;
1da177e4
LT
3943}
3944
3945/*
3946 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3947 * tasks if there is an imbalance.
3948 *
d15bcfdb 3949 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3950 * this_rq is locked.
3951 */
48f24c4d 3952static int
7c16ec58 3953load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3954 struct cpumask *cpus)
1da177e4
LT
3955{
3956 struct sched_group *group;
70b97a7f 3957 struct rq *busiest = NULL;
1da177e4 3958 unsigned long imbalance;
43010659 3959 int ld_moved = 0;
5969fe06 3960 int sd_idle = 0;
969bb4e4 3961 int all_pinned = 0;
7c16ec58 3962
96f874e2 3963 cpumask_setall(cpus);
5969fe06 3964
89c4710e
SS
3965 /*
3966 * When power savings policy is enabled for the parent domain, idle
3967 * sibling can pick up load irrespective of busy siblings. In this case,
3968 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3969 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3970 */
3971 if (sd->flags & SD_SHARE_CPUPOWER &&
3972 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3973 sd_idle = 1;
1da177e4 3974
2d72376b 3975 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3976redo:
3e5459b4 3977 update_shares_locked(this_rq, sd);
d15bcfdb 3978 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3979 &sd_idle, cpus, NULL);
1da177e4 3980 if (!group) {
d15bcfdb 3981 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3982 goto out_balanced;
1da177e4
LT
3983 }
3984
7c16ec58 3985 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3986 if (!busiest) {
d15bcfdb 3987 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3988 goto out_balanced;
1da177e4
LT
3989 }
3990
db935dbd
NP
3991 BUG_ON(busiest == this_rq);
3992
d15bcfdb 3993 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3994
43010659 3995 ld_moved = 0;
d6d5cfaf
NP
3996 if (busiest->nr_running > 1) {
3997 /* Attempt to move tasks */
3998 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3999 /* this_rq->clock is already updated */
4000 update_rq_clock(busiest);
43010659 4001 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4002 imbalance, sd, CPU_NEWLY_IDLE,
4003 &all_pinned);
1b12bbc7 4004 double_unlock_balance(this_rq, busiest);
0a2966b4 4005
969bb4e4 4006 if (unlikely(all_pinned)) {
96f874e2
RR
4007 cpumask_clear_cpu(cpu_of(busiest), cpus);
4008 if (!cpumask_empty(cpus))
0a2966b4
CL
4009 goto redo;
4010 }
d6d5cfaf
NP
4011 }
4012
43010659 4013 if (!ld_moved) {
36dffab6 4014 int active_balance = 0;
ad273b32 4015
d15bcfdb 4016 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4017 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4018 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4019 return -1;
ad273b32
VS
4020
4021 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4022 return -1;
4023
4024 if (sd->nr_balance_failed++ < 2)
4025 return -1;
4026
4027 /*
4028 * The only task running in a non-idle cpu can be moved to this
4029 * cpu in an attempt to completely freeup the other CPU
4030 * package. The same method used to move task in load_balance()
4031 * have been extended for load_balance_newidle() to speedup
4032 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4033 *
4034 * The package power saving logic comes from
4035 * find_busiest_group(). If there are no imbalance, then
4036 * f_b_g() will return NULL. However when sched_mc={1,2} then
4037 * f_b_g() will select a group from which a running task may be
4038 * pulled to this cpu in order to make the other package idle.
4039 * If there is no opportunity to make a package idle and if
4040 * there are no imbalance, then f_b_g() will return NULL and no
4041 * action will be taken in load_balance_newidle().
4042 *
4043 * Under normal task pull operation due to imbalance, there
4044 * will be more than one task in the source run queue and
4045 * move_tasks() will succeed. ld_moved will be true and this
4046 * active balance code will not be triggered.
4047 */
4048
4049 /* Lock busiest in correct order while this_rq is held */
4050 double_lock_balance(this_rq, busiest);
4051
4052 /*
4053 * don't kick the migration_thread, if the curr
4054 * task on busiest cpu can't be moved to this_cpu
4055 */
6ca09dfc 4056 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4057 double_unlock_balance(this_rq, busiest);
4058 all_pinned = 1;
4059 return ld_moved;
4060 }
4061
4062 if (!busiest->active_balance) {
4063 busiest->active_balance = 1;
4064 busiest->push_cpu = this_cpu;
4065 active_balance = 1;
4066 }
4067
4068 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4069 /*
4070 * Should not call ttwu while holding a rq->lock
4071 */
4072 spin_unlock(&this_rq->lock);
ad273b32
VS
4073 if (active_balance)
4074 wake_up_process(busiest->migration_thread);
da8d5089 4075 spin_lock(&this_rq->lock);
ad273b32 4076
5969fe06 4077 } else
16cfb1c0 4078 sd->nr_balance_failed = 0;
1da177e4 4079
3e5459b4 4080 update_shares_locked(this_rq, sd);
43010659 4081 return ld_moved;
16cfb1c0
NP
4082
4083out_balanced:
d15bcfdb 4084 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4085 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4086 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4087 return -1;
16cfb1c0 4088 sd->nr_balance_failed = 0;
48f24c4d 4089
16cfb1c0 4090 return 0;
1da177e4
LT
4091}
4092
4093/*
4094 * idle_balance is called by schedule() if this_cpu is about to become
4095 * idle. Attempts to pull tasks from other CPUs.
4096 */
70b97a7f 4097static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4098{
4099 struct sched_domain *sd;
efbe027e 4100 int pulled_task = 0;
dd41f596 4101 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
4102 cpumask_var_t tmpmask;
4103
4104 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4105 return;
1da177e4
LT
4106
4107 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4108 unsigned long interval;
4109
4110 if (!(sd->flags & SD_LOAD_BALANCE))
4111 continue;
4112
4113 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4114 /* If we've pulled tasks over stop searching: */
7c16ec58 4115 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 4116 sd, tmpmask);
92c4ca5c
CL
4117
4118 interval = msecs_to_jiffies(sd->balance_interval);
4119 if (time_after(next_balance, sd->last_balance + interval))
4120 next_balance = sd->last_balance + interval;
4121 if (pulled_task)
4122 break;
1da177e4 4123 }
dd41f596 4124 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4125 /*
4126 * We are going idle. next_balance may be set based on
4127 * a busy processor. So reset next_balance.
4128 */
4129 this_rq->next_balance = next_balance;
dd41f596 4130 }
4d2732c6 4131 free_cpumask_var(tmpmask);
1da177e4
LT
4132}
4133
4134/*
4135 * active_load_balance is run by migration threads. It pushes running tasks
4136 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4137 * running on each physical CPU where possible, and avoids physical /
4138 * logical imbalances.
4139 *
4140 * Called with busiest_rq locked.
4141 */
70b97a7f 4142static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4143{
39507451 4144 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4145 struct sched_domain *sd;
4146 struct rq *target_rq;
39507451 4147
48f24c4d 4148 /* Is there any task to move? */
39507451 4149 if (busiest_rq->nr_running <= 1)
39507451
NP
4150 return;
4151
4152 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4153
4154 /*
39507451 4155 * This condition is "impossible", if it occurs
41a2d6cf 4156 * we need to fix it. Originally reported by
39507451 4157 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4158 */
39507451 4159 BUG_ON(busiest_rq == target_rq);
1da177e4 4160
39507451
NP
4161 /* move a task from busiest_rq to target_rq */
4162 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4163 update_rq_clock(busiest_rq);
4164 update_rq_clock(target_rq);
39507451
NP
4165
4166 /* Search for an sd spanning us and the target CPU. */
c96d145e 4167 for_each_domain(target_cpu, sd) {
39507451 4168 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4169 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4170 break;
c96d145e 4171 }
39507451 4172
48f24c4d 4173 if (likely(sd)) {
2d72376b 4174 schedstat_inc(sd, alb_count);
39507451 4175
43010659
PW
4176 if (move_one_task(target_rq, target_cpu, busiest_rq,
4177 sd, CPU_IDLE))
48f24c4d
IM
4178 schedstat_inc(sd, alb_pushed);
4179 else
4180 schedstat_inc(sd, alb_failed);
4181 }
1b12bbc7 4182 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4183}
4184
46cb4b7c
SS
4185#ifdef CONFIG_NO_HZ
4186static struct {
4187 atomic_t load_balancer;
7d1e6a9b 4188 cpumask_var_t cpu_mask;
46cb4b7c
SS
4189} nohz ____cacheline_aligned = {
4190 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4191};
4192
7835b98b 4193/*
46cb4b7c
SS
4194 * This routine will try to nominate the ilb (idle load balancing)
4195 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4196 * load balancing on behalf of all those cpus. If all the cpus in the system
4197 * go into this tickless mode, then there will be no ilb owner (as there is
4198 * no need for one) and all the cpus will sleep till the next wakeup event
4199 * arrives...
4200 *
4201 * For the ilb owner, tick is not stopped. And this tick will be used
4202 * for idle load balancing. ilb owner will still be part of
4203 * nohz.cpu_mask..
7835b98b 4204 *
46cb4b7c
SS
4205 * While stopping the tick, this cpu will become the ilb owner if there
4206 * is no other owner. And will be the owner till that cpu becomes busy
4207 * or if all cpus in the system stop their ticks at which point
4208 * there is no need for ilb owner.
4209 *
4210 * When the ilb owner becomes busy, it nominates another owner, during the
4211 * next busy scheduler_tick()
4212 */
4213int select_nohz_load_balancer(int stop_tick)
4214{
4215 int cpu = smp_processor_id();
4216
4217 if (stop_tick) {
46cb4b7c
SS
4218 cpu_rq(cpu)->in_nohz_recently = 1;
4219
483b4ee6
SS
4220 if (!cpu_active(cpu)) {
4221 if (atomic_read(&nohz.load_balancer) != cpu)
4222 return 0;
4223
4224 /*
4225 * If we are going offline and still the leader,
4226 * give up!
4227 */
46cb4b7c
SS
4228 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4229 BUG();
483b4ee6 4230
46cb4b7c
SS
4231 return 0;
4232 }
4233
483b4ee6
SS
4234 cpumask_set_cpu(cpu, nohz.cpu_mask);
4235
46cb4b7c 4236 /* time for ilb owner also to sleep */
7d1e6a9b 4237 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4238 if (atomic_read(&nohz.load_balancer) == cpu)
4239 atomic_set(&nohz.load_balancer, -1);
4240 return 0;
4241 }
4242
4243 if (atomic_read(&nohz.load_balancer) == -1) {
4244 /* make me the ilb owner */
4245 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4246 return 1;
4247 } else if (atomic_read(&nohz.load_balancer) == cpu)
4248 return 1;
4249 } else {
7d1e6a9b 4250 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4251 return 0;
4252
7d1e6a9b 4253 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4254
4255 if (atomic_read(&nohz.load_balancer) == cpu)
4256 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4257 BUG();
4258 }
4259 return 0;
4260}
4261#endif
4262
4263static DEFINE_SPINLOCK(balancing);
4264
4265/*
7835b98b
CL
4266 * It checks each scheduling domain to see if it is due to be balanced,
4267 * and initiates a balancing operation if so.
4268 *
4269 * Balancing parameters are set up in arch_init_sched_domains.
4270 */
a9957449 4271static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4272{
46cb4b7c
SS
4273 int balance = 1;
4274 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4275 unsigned long interval;
4276 struct sched_domain *sd;
46cb4b7c 4277 /* Earliest time when we have to do rebalance again */
c9819f45 4278 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4279 int update_next_balance = 0;
d07355f5 4280 int need_serialize;
a0e90245
RR
4281 cpumask_var_t tmp;
4282
4283 /* Fails alloc? Rebalancing probably not a priority right now. */
4284 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4285 return;
1da177e4 4286
46cb4b7c 4287 for_each_domain(cpu, sd) {
1da177e4
LT
4288 if (!(sd->flags & SD_LOAD_BALANCE))
4289 continue;
4290
4291 interval = sd->balance_interval;
d15bcfdb 4292 if (idle != CPU_IDLE)
1da177e4
LT
4293 interval *= sd->busy_factor;
4294
4295 /* scale ms to jiffies */
4296 interval = msecs_to_jiffies(interval);
4297 if (unlikely(!interval))
4298 interval = 1;
dd41f596
IM
4299 if (interval > HZ*NR_CPUS/10)
4300 interval = HZ*NR_CPUS/10;
4301
d07355f5 4302 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4303
d07355f5 4304 if (need_serialize) {
08c183f3
CL
4305 if (!spin_trylock(&balancing))
4306 goto out;
4307 }
4308
c9819f45 4309 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4310 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4311 /*
4312 * We've pulled tasks over so either we're no
5969fe06
NP
4313 * longer idle, or one of our SMT siblings is
4314 * not idle.
4315 */
d15bcfdb 4316 idle = CPU_NOT_IDLE;
1da177e4 4317 }
1bd77f2d 4318 sd->last_balance = jiffies;
1da177e4 4319 }
d07355f5 4320 if (need_serialize)
08c183f3
CL
4321 spin_unlock(&balancing);
4322out:
f549da84 4323 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4324 next_balance = sd->last_balance + interval;
f549da84
SS
4325 update_next_balance = 1;
4326 }
783609c6
SS
4327
4328 /*
4329 * Stop the load balance at this level. There is another
4330 * CPU in our sched group which is doing load balancing more
4331 * actively.
4332 */
4333 if (!balance)
4334 break;
1da177e4 4335 }
f549da84
SS
4336
4337 /*
4338 * next_balance will be updated only when there is a need.
4339 * When the cpu is attached to null domain for ex, it will not be
4340 * updated.
4341 */
4342 if (likely(update_next_balance))
4343 rq->next_balance = next_balance;
a0e90245
RR
4344
4345 free_cpumask_var(tmp);
46cb4b7c
SS
4346}
4347
4348/*
4349 * run_rebalance_domains is triggered when needed from the scheduler tick.
4350 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4351 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4352 */
4353static void run_rebalance_domains(struct softirq_action *h)
4354{
dd41f596
IM
4355 int this_cpu = smp_processor_id();
4356 struct rq *this_rq = cpu_rq(this_cpu);
4357 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4358 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4359
dd41f596 4360 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4361
4362#ifdef CONFIG_NO_HZ
4363 /*
4364 * If this cpu is the owner for idle load balancing, then do the
4365 * balancing on behalf of the other idle cpus whose ticks are
4366 * stopped.
4367 */
dd41f596
IM
4368 if (this_rq->idle_at_tick &&
4369 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4370 struct rq *rq;
4371 int balance_cpu;
4372
7d1e6a9b
RR
4373 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4374 if (balance_cpu == this_cpu)
4375 continue;
4376
46cb4b7c
SS
4377 /*
4378 * If this cpu gets work to do, stop the load balancing
4379 * work being done for other cpus. Next load
4380 * balancing owner will pick it up.
4381 */
4382 if (need_resched())
4383 break;
4384
de0cf899 4385 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4386
4387 rq = cpu_rq(balance_cpu);
dd41f596
IM
4388 if (time_after(this_rq->next_balance, rq->next_balance))
4389 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4390 }
4391 }
4392#endif
4393}
4394
8a0be9ef
FW
4395static inline int on_null_domain(int cpu)
4396{
4397 return !rcu_dereference(cpu_rq(cpu)->sd);
4398}
4399
46cb4b7c
SS
4400/*
4401 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4402 *
4403 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4404 * idle load balancing owner or decide to stop the periodic load balancing,
4405 * if the whole system is idle.
4406 */
dd41f596 4407static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4408{
46cb4b7c
SS
4409#ifdef CONFIG_NO_HZ
4410 /*
4411 * If we were in the nohz mode recently and busy at the current
4412 * scheduler tick, then check if we need to nominate new idle
4413 * load balancer.
4414 */
4415 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4416 rq->in_nohz_recently = 0;
4417
4418 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4419 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4420 atomic_set(&nohz.load_balancer, -1);
4421 }
4422
4423 if (atomic_read(&nohz.load_balancer) == -1) {
4424 /*
4425 * simple selection for now: Nominate the
4426 * first cpu in the nohz list to be the next
4427 * ilb owner.
4428 *
4429 * TBD: Traverse the sched domains and nominate
4430 * the nearest cpu in the nohz.cpu_mask.
4431 */
7d1e6a9b 4432 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4433
434d53b0 4434 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4435 resched_cpu(ilb);
4436 }
4437 }
4438
4439 /*
4440 * If this cpu is idle and doing idle load balancing for all the
4441 * cpus with ticks stopped, is it time for that to stop?
4442 */
4443 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4444 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4445 resched_cpu(cpu);
4446 return;
4447 }
4448
4449 /*
4450 * If this cpu is idle and the idle load balancing is done by
4451 * someone else, then no need raise the SCHED_SOFTIRQ
4452 */
4453 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4454 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4455 return;
4456#endif
8a0be9ef
FW
4457 /* Don't need to rebalance while attached to NULL domain */
4458 if (time_after_eq(jiffies, rq->next_balance) &&
4459 likely(!on_null_domain(cpu)))
46cb4b7c 4460 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4461}
dd41f596
IM
4462
4463#else /* CONFIG_SMP */
4464
1da177e4
LT
4465/*
4466 * on UP we do not need to balance between CPUs:
4467 */
70b97a7f 4468static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4469{
4470}
dd41f596 4471
1da177e4
LT
4472#endif
4473
1da177e4
LT
4474DEFINE_PER_CPU(struct kernel_stat, kstat);
4475
4476EXPORT_PER_CPU_SYMBOL(kstat);
4477
4478/*
f06febc9
FM
4479 * Return any ns on the sched_clock that have not yet been banked in
4480 * @p in case that task is currently running.
1da177e4 4481 */
bb34d92f 4482unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4483{
1da177e4 4484 unsigned long flags;
41b86e9c 4485 struct rq *rq;
bb34d92f 4486 u64 ns = 0;
48f24c4d 4487
41b86e9c 4488 rq = task_rq_lock(p, &flags);
1508487e 4489
051a1d1a 4490 if (task_current(rq, p)) {
f06febc9
FM
4491 u64 delta_exec;
4492
a8e504d2
IM
4493 update_rq_clock(rq);
4494 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4495 if ((s64)delta_exec > 0)
bb34d92f 4496 ns = delta_exec;
41b86e9c 4497 }
48f24c4d 4498
41b86e9c 4499 task_rq_unlock(rq, &flags);
48f24c4d 4500
1da177e4
LT
4501 return ns;
4502}
4503
1da177e4
LT
4504/*
4505 * Account user cpu time to a process.
4506 * @p: the process that the cpu time gets accounted to
1da177e4 4507 * @cputime: the cpu time spent in user space since the last update
457533a7 4508 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4509 */
457533a7
MS
4510void account_user_time(struct task_struct *p, cputime_t cputime,
4511 cputime_t cputime_scaled)
1da177e4
LT
4512{
4513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4514 cputime64_t tmp;
4515
457533a7 4516 /* Add user time to process. */
1da177e4 4517 p->utime = cputime_add(p->utime, cputime);
457533a7 4518 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4519 account_group_user_time(p, cputime);
1da177e4
LT
4520
4521 /* Add user time to cpustat. */
4522 tmp = cputime_to_cputime64(cputime);
4523 if (TASK_NICE(p) > 0)
4524 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4525 else
4526 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4527 /* Account for user time used */
4528 acct_update_integrals(p);
1da177e4
LT
4529}
4530
94886b84
LV
4531/*
4532 * Account guest cpu time to a process.
4533 * @p: the process that the cpu time gets accounted to
4534 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4535 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4536 */
457533a7
MS
4537static void account_guest_time(struct task_struct *p, cputime_t cputime,
4538 cputime_t cputime_scaled)
94886b84
LV
4539{
4540 cputime64_t tmp;
4541 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4542
4543 tmp = cputime_to_cputime64(cputime);
4544
457533a7 4545 /* Add guest time to process. */
94886b84 4546 p->utime = cputime_add(p->utime, cputime);
457533a7 4547 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4548 account_group_user_time(p, cputime);
94886b84
LV
4549 p->gtime = cputime_add(p->gtime, cputime);
4550
457533a7 4551 /* Add guest time to cpustat. */
94886b84
LV
4552 cpustat->user = cputime64_add(cpustat->user, tmp);
4553 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4554}
4555
1da177e4
LT
4556/*
4557 * Account system cpu time to a process.
4558 * @p: the process that the cpu time gets accounted to
4559 * @hardirq_offset: the offset to subtract from hardirq_count()
4560 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4561 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4562 */
4563void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4564 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4565{
4566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4567 cputime64_t tmp;
4568
983ed7a6 4569 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4570 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4571 return;
4572 }
94886b84 4573
457533a7 4574 /* Add system time to process. */
1da177e4 4575 p->stime = cputime_add(p->stime, cputime);
457533a7 4576 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4577 account_group_system_time(p, cputime);
1da177e4
LT
4578
4579 /* Add system time to cpustat. */
4580 tmp = cputime_to_cputime64(cputime);
4581 if (hardirq_count() - hardirq_offset)
4582 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4583 else if (softirq_count())
4584 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4585 else
79741dd3
MS
4586 cpustat->system = cputime64_add(cpustat->system, tmp);
4587
1da177e4
LT
4588 /* Account for system time used */
4589 acct_update_integrals(p);
1da177e4
LT
4590}
4591
c66f08be 4592/*
1da177e4 4593 * Account for involuntary wait time.
1da177e4 4594 * @steal: the cpu time spent in involuntary wait
c66f08be 4595 */
79741dd3 4596void account_steal_time(cputime_t cputime)
c66f08be 4597{
79741dd3
MS
4598 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4599 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4600
4601 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4602}
4603
1da177e4 4604/*
79741dd3
MS
4605 * Account for idle time.
4606 * @cputime: the cpu time spent in idle wait
1da177e4 4607 */
79741dd3 4608void account_idle_time(cputime_t cputime)
1da177e4
LT
4609{
4610 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4611 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4612 struct rq *rq = this_rq();
1da177e4 4613
79741dd3
MS
4614 if (atomic_read(&rq->nr_iowait) > 0)
4615 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4616 else
4617 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4618}
4619
79741dd3
MS
4620#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4621
4622/*
4623 * Account a single tick of cpu time.
4624 * @p: the process that the cpu time gets accounted to
4625 * @user_tick: indicates if the tick is a user or a system tick
4626 */
4627void account_process_tick(struct task_struct *p, int user_tick)
4628{
4629 cputime_t one_jiffy = jiffies_to_cputime(1);
4630 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4631 struct rq *rq = this_rq();
4632
4633 if (user_tick)
4634 account_user_time(p, one_jiffy, one_jiffy_scaled);
4635 else if (p != rq->idle)
4636 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4637 one_jiffy_scaled);
4638 else
4639 account_idle_time(one_jiffy);
4640}
4641
4642/*
4643 * Account multiple ticks of steal time.
4644 * @p: the process from which the cpu time has been stolen
4645 * @ticks: number of stolen ticks
4646 */
4647void account_steal_ticks(unsigned long ticks)
4648{
4649 account_steal_time(jiffies_to_cputime(ticks));
4650}
4651
4652/*
4653 * Account multiple ticks of idle time.
4654 * @ticks: number of stolen ticks
4655 */
4656void account_idle_ticks(unsigned long ticks)
4657{
4658 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4659}
4660
79741dd3
MS
4661#endif
4662
49048622
BS
4663/*
4664 * Use precise platform statistics if available:
4665 */
4666#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4667cputime_t task_utime(struct task_struct *p)
4668{
4669 return p->utime;
4670}
4671
4672cputime_t task_stime(struct task_struct *p)
4673{
4674 return p->stime;
4675}
4676#else
4677cputime_t task_utime(struct task_struct *p)
4678{
4679 clock_t utime = cputime_to_clock_t(p->utime),
4680 total = utime + cputime_to_clock_t(p->stime);
4681 u64 temp;
4682
4683 /*
4684 * Use CFS's precise accounting:
4685 */
4686 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4687
4688 if (total) {
4689 temp *= utime;
4690 do_div(temp, total);
4691 }
4692 utime = (clock_t)temp;
4693
4694 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4695 return p->prev_utime;
4696}
4697
4698cputime_t task_stime(struct task_struct *p)
4699{
4700 clock_t stime;
4701
4702 /*
4703 * Use CFS's precise accounting. (we subtract utime from
4704 * the total, to make sure the total observed by userspace
4705 * grows monotonically - apps rely on that):
4706 */
4707 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4708 cputime_to_clock_t(task_utime(p));
4709
4710 if (stime >= 0)
4711 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4712
4713 return p->prev_stime;
4714}
4715#endif
4716
4717inline cputime_t task_gtime(struct task_struct *p)
4718{
4719 return p->gtime;
4720}
4721
7835b98b
CL
4722/*
4723 * This function gets called by the timer code, with HZ frequency.
4724 * We call it with interrupts disabled.
4725 *
4726 * It also gets called by the fork code, when changing the parent's
4727 * timeslices.
4728 */
4729void scheduler_tick(void)
4730{
7835b98b
CL
4731 int cpu = smp_processor_id();
4732 struct rq *rq = cpu_rq(cpu);
dd41f596 4733 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4734
4735 sched_clock_tick();
dd41f596
IM
4736
4737 spin_lock(&rq->lock);
3e51f33f 4738 update_rq_clock(rq);
f1a438d8 4739 update_cpu_load(rq);
fa85ae24 4740 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4741 spin_unlock(&rq->lock);
7835b98b 4742
e418e1c2 4743#ifdef CONFIG_SMP
dd41f596
IM
4744 rq->idle_at_tick = idle_cpu(cpu);
4745 trigger_load_balance(rq, cpu);
e418e1c2 4746#endif
1da177e4
LT
4747}
4748
6cd8a4bb
SR
4749#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4750 defined(CONFIG_PREEMPT_TRACER))
4751
4752static inline unsigned long get_parent_ip(unsigned long addr)
4753{
4754 if (in_lock_functions(addr)) {
4755 addr = CALLER_ADDR2;
4756 if (in_lock_functions(addr))
4757 addr = CALLER_ADDR3;
4758 }
4759 return addr;
4760}
1da177e4 4761
43627582 4762void __kprobes add_preempt_count(int val)
1da177e4 4763{
6cd8a4bb 4764#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4765 /*
4766 * Underflow?
4767 */
9a11b49a
IM
4768 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4769 return;
6cd8a4bb 4770#endif
1da177e4 4771 preempt_count() += val;
6cd8a4bb 4772#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4773 /*
4774 * Spinlock count overflowing soon?
4775 */
33859f7f
MOS
4776 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4777 PREEMPT_MASK - 10);
6cd8a4bb
SR
4778#endif
4779 if (preempt_count() == val)
4780 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4781}
4782EXPORT_SYMBOL(add_preempt_count);
4783
43627582 4784void __kprobes sub_preempt_count(int val)
1da177e4 4785{
6cd8a4bb 4786#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4787 /*
4788 * Underflow?
4789 */
01e3eb82 4790 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4791 return;
1da177e4
LT
4792 /*
4793 * Is the spinlock portion underflowing?
4794 */
9a11b49a
IM
4795 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4796 !(preempt_count() & PREEMPT_MASK)))
4797 return;
6cd8a4bb 4798#endif
9a11b49a 4799
6cd8a4bb
SR
4800 if (preempt_count() == val)
4801 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4802 preempt_count() -= val;
4803}
4804EXPORT_SYMBOL(sub_preempt_count);
4805
4806#endif
4807
4808/*
dd41f596 4809 * Print scheduling while atomic bug:
1da177e4 4810 */
dd41f596 4811static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4812{
838225b4
SS
4813 struct pt_regs *regs = get_irq_regs();
4814
4815 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4816 prev->comm, prev->pid, preempt_count());
4817
dd41f596 4818 debug_show_held_locks(prev);
e21f5b15 4819 print_modules();
dd41f596
IM
4820 if (irqs_disabled())
4821 print_irqtrace_events(prev);
838225b4
SS
4822
4823 if (regs)
4824 show_regs(regs);
4825 else
4826 dump_stack();
dd41f596 4827}
1da177e4 4828
dd41f596
IM
4829/*
4830 * Various schedule()-time debugging checks and statistics:
4831 */
4832static inline void schedule_debug(struct task_struct *prev)
4833{
1da177e4 4834 /*
41a2d6cf 4835 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4836 * schedule() atomically, we ignore that path for now.
4837 * Otherwise, whine if we are scheduling when we should not be.
4838 */
3f33a7ce 4839 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4840 __schedule_bug(prev);
4841
1da177e4
LT
4842 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4843
2d72376b 4844 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4845#ifdef CONFIG_SCHEDSTATS
4846 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4847 schedstat_inc(this_rq(), bkl_count);
4848 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4849 }
4850#endif
dd41f596
IM
4851}
4852
df1c99d4
MG
4853static void put_prev_task(struct rq *rq, struct task_struct *prev)
4854{
4855 if (prev->state == TASK_RUNNING) {
4856 u64 runtime = prev->se.sum_exec_runtime;
4857
4858 runtime -= prev->se.prev_sum_exec_runtime;
4859 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4860
4861 /*
4862 * In order to avoid avg_overlap growing stale when we are
4863 * indeed overlapping and hence not getting put to sleep, grow
4864 * the avg_overlap on preemption.
4865 *
4866 * We use the average preemption runtime because that
4867 * correlates to the amount of cache footprint a task can
4868 * build up.
4869 */
4870 update_avg(&prev->se.avg_overlap, runtime);
4871 }
4872 prev->sched_class->put_prev_task(rq, prev);
4873}
4874
dd41f596
IM
4875/*
4876 * Pick up the highest-prio task:
4877 */
4878static inline struct task_struct *
b67802ea 4879pick_next_task(struct rq *rq)
dd41f596 4880{
5522d5d5 4881 const struct sched_class *class;
dd41f596 4882 struct task_struct *p;
1da177e4
LT
4883
4884 /*
dd41f596
IM
4885 * Optimization: we know that if all tasks are in
4886 * the fair class we can call that function directly:
1da177e4 4887 */
dd41f596 4888 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4889 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4890 if (likely(p))
4891 return p;
1da177e4
LT
4892 }
4893
dd41f596
IM
4894 class = sched_class_highest;
4895 for ( ; ; ) {
fb8d4724 4896 p = class->pick_next_task(rq);
dd41f596
IM
4897 if (p)
4898 return p;
4899 /*
4900 * Will never be NULL as the idle class always
4901 * returns a non-NULL p:
4902 */
4903 class = class->next;
4904 }
4905}
1da177e4 4906
dd41f596
IM
4907/*
4908 * schedule() is the main scheduler function.
4909 */
4910asmlinkage void __sched schedule(void)
4911{
4912 struct task_struct *prev, *next;
67ca7bde 4913 unsigned long *switch_count;
dd41f596 4914 struct rq *rq;
31656519 4915 int cpu;
dd41f596
IM
4916
4917need_resched:
4918 preempt_disable();
4919 cpu = smp_processor_id();
4920 rq = cpu_rq(cpu);
4921 rcu_qsctr_inc(cpu);
4922 prev = rq->curr;
4923 switch_count = &prev->nivcsw;
4924
4925 release_kernel_lock(prev);
4926need_resched_nonpreemptible:
4927
4928 schedule_debug(prev);
1da177e4 4929
31656519 4930 if (sched_feat(HRTICK))
f333fdc9 4931 hrtick_clear(rq);
8f4d37ec 4932
8cd162ce 4933 spin_lock_irq(&rq->lock);
3e51f33f 4934 update_rq_clock(rq);
1e819950 4935 clear_tsk_need_resched(prev);
1da177e4 4936
1da177e4 4937 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4938 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4939 prev->state = TASK_RUNNING;
16882c1e 4940 else
2e1cb74a 4941 deactivate_task(rq, prev, 1);
dd41f596 4942 switch_count = &prev->nvcsw;
1da177e4
LT
4943 }
4944
9a897c5a
SR
4945#ifdef CONFIG_SMP
4946 if (prev->sched_class->pre_schedule)
4947 prev->sched_class->pre_schedule(rq, prev);
4948#endif
f65eda4f 4949
dd41f596 4950 if (unlikely(!rq->nr_running))
1da177e4 4951 idle_balance(cpu, rq);
1da177e4 4952
df1c99d4 4953 put_prev_task(rq, prev);
b67802ea 4954 next = pick_next_task(rq);
1da177e4 4955
1da177e4 4956 if (likely(prev != next)) {
673a90a1
DS
4957 sched_info_switch(prev, next);
4958
1da177e4
LT
4959 rq->nr_switches++;
4960 rq->curr = next;
4961 ++*switch_count;
4962
dd41f596 4963 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4964 /*
4965 * the context switch might have flipped the stack from under
4966 * us, hence refresh the local variables.
4967 */
4968 cpu = smp_processor_id();
4969 rq = cpu_rq(cpu);
1da177e4
LT
4970 } else
4971 spin_unlock_irq(&rq->lock);
4972
8f4d37ec 4973 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4974 goto need_resched_nonpreemptible;
8f4d37ec 4975
1da177e4
LT
4976 preempt_enable_no_resched();
4977 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4978 goto need_resched;
4979}
1da177e4
LT
4980EXPORT_SYMBOL(schedule);
4981
4982#ifdef CONFIG_PREEMPT
4983/*
2ed6e34f 4984 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4985 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4986 * occur there and call schedule directly.
4987 */
4988asmlinkage void __sched preempt_schedule(void)
4989{
4990 struct thread_info *ti = current_thread_info();
6478d880 4991
1da177e4
LT
4992 /*
4993 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4994 * we do not want to preempt the current task. Just return..
1da177e4 4995 */
beed33a8 4996 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4997 return;
4998
3a5c359a
AK
4999 do {
5000 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5001 schedule();
3a5c359a 5002 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5003
3a5c359a
AK
5004 /*
5005 * Check again in case we missed a preemption opportunity
5006 * between schedule and now.
5007 */
5008 barrier();
5ed0cec0 5009 } while (need_resched());
1da177e4 5010}
1da177e4
LT
5011EXPORT_SYMBOL(preempt_schedule);
5012
5013/*
2ed6e34f 5014 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5015 * off of irq context.
5016 * Note, that this is called and return with irqs disabled. This will
5017 * protect us against recursive calling from irq.
5018 */
5019asmlinkage void __sched preempt_schedule_irq(void)
5020{
5021 struct thread_info *ti = current_thread_info();
6478d880 5022
2ed6e34f 5023 /* Catch callers which need to be fixed */
1da177e4
LT
5024 BUG_ON(ti->preempt_count || !irqs_disabled());
5025
3a5c359a
AK
5026 do {
5027 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5028 local_irq_enable();
5029 schedule();
5030 local_irq_disable();
3a5c359a 5031 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5032
3a5c359a
AK
5033 /*
5034 * Check again in case we missed a preemption opportunity
5035 * between schedule and now.
5036 */
5037 barrier();
5ed0cec0 5038 } while (need_resched());
1da177e4
LT
5039}
5040
5041#endif /* CONFIG_PREEMPT */
5042
95cdf3b7
IM
5043int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5044 void *key)
1da177e4 5045{
48f24c4d 5046 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5047}
1da177e4
LT
5048EXPORT_SYMBOL(default_wake_function);
5049
5050/*
41a2d6cf
IM
5051 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5052 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5053 * number) then we wake all the non-exclusive tasks and one exclusive task.
5054 *
5055 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5056 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5057 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5058 */
777c6c5f
JW
5059void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5060 int nr_exclusive, int sync, void *key)
1da177e4 5061{
2e45874c 5062 wait_queue_t *curr, *next;
1da177e4 5063
2e45874c 5064 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5065 unsigned flags = curr->flags;
5066
1da177e4 5067 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5068 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5069 break;
5070 }
5071}
5072
5073/**
5074 * __wake_up - wake up threads blocked on a waitqueue.
5075 * @q: the waitqueue
5076 * @mode: which threads
5077 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5078 * @key: is directly passed to the wakeup function
1da177e4 5079 */
7ad5b3a5 5080void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5081 int nr_exclusive, void *key)
1da177e4
LT
5082{
5083 unsigned long flags;
5084
5085 spin_lock_irqsave(&q->lock, flags);
5086 __wake_up_common(q, mode, nr_exclusive, 0, key);
5087 spin_unlock_irqrestore(&q->lock, flags);
5088}
1da177e4
LT
5089EXPORT_SYMBOL(__wake_up);
5090
5091/*
5092 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5093 */
7ad5b3a5 5094void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5095{
5096 __wake_up_common(q, mode, 1, 0, NULL);
5097}
5098
5099/**
67be2dd1 5100 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
5101 * @q: the waitqueue
5102 * @mode: which threads
5103 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5104 *
5105 * The sync wakeup differs that the waker knows that it will schedule
5106 * away soon, so while the target thread will be woken up, it will not
5107 * be migrated to another CPU - ie. the two threads are 'synchronized'
5108 * with each other. This can prevent needless bouncing between CPUs.
5109 *
5110 * On UP it can prevent extra preemption.
5111 */
7ad5b3a5 5112void
95cdf3b7 5113__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
5114{
5115 unsigned long flags;
5116 int sync = 1;
5117
5118 if (unlikely(!q))
5119 return;
5120
5121 if (unlikely(!nr_exclusive))
5122 sync = 0;
5123
5124 spin_lock_irqsave(&q->lock, flags);
5125 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5126 spin_unlock_irqrestore(&q->lock, flags);
5127}
5128EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5129
65eb3dc6
KD
5130/**
5131 * complete: - signals a single thread waiting on this completion
5132 * @x: holds the state of this particular completion
5133 *
5134 * This will wake up a single thread waiting on this completion. Threads will be
5135 * awakened in the same order in which they were queued.
5136 *
5137 * See also complete_all(), wait_for_completion() and related routines.
5138 */
b15136e9 5139void complete(struct completion *x)
1da177e4
LT
5140{
5141 unsigned long flags;
5142
5143 spin_lock_irqsave(&x->wait.lock, flags);
5144 x->done++;
d9514f6c 5145 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5146 spin_unlock_irqrestore(&x->wait.lock, flags);
5147}
5148EXPORT_SYMBOL(complete);
5149
65eb3dc6
KD
5150/**
5151 * complete_all: - signals all threads waiting on this completion
5152 * @x: holds the state of this particular completion
5153 *
5154 * This will wake up all threads waiting on this particular completion event.
5155 */
b15136e9 5156void complete_all(struct completion *x)
1da177e4
LT
5157{
5158 unsigned long flags;
5159
5160 spin_lock_irqsave(&x->wait.lock, flags);
5161 x->done += UINT_MAX/2;
d9514f6c 5162 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5163 spin_unlock_irqrestore(&x->wait.lock, flags);
5164}
5165EXPORT_SYMBOL(complete_all);
5166
8cbbe86d
AK
5167static inline long __sched
5168do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5169{
1da177e4
LT
5170 if (!x->done) {
5171 DECLARE_WAITQUEUE(wait, current);
5172
5173 wait.flags |= WQ_FLAG_EXCLUSIVE;
5174 __add_wait_queue_tail(&x->wait, &wait);
5175 do {
94d3d824 5176 if (signal_pending_state(state, current)) {
ea71a546
ON
5177 timeout = -ERESTARTSYS;
5178 break;
8cbbe86d
AK
5179 }
5180 __set_current_state(state);
1da177e4
LT
5181 spin_unlock_irq(&x->wait.lock);
5182 timeout = schedule_timeout(timeout);
5183 spin_lock_irq(&x->wait.lock);
ea71a546 5184 } while (!x->done && timeout);
1da177e4 5185 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5186 if (!x->done)
5187 return timeout;
1da177e4
LT
5188 }
5189 x->done--;
ea71a546 5190 return timeout ?: 1;
1da177e4 5191}
1da177e4 5192
8cbbe86d
AK
5193static long __sched
5194wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5195{
1da177e4
LT
5196 might_sleep();
5197
5198 spin_lock_irq(&x->wait.lock);
8cbbe86d 5199 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5200 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5201 return timeout;
5202}
1da177e4 5203
65eb3dc6
KD
5204/**
5205 * wait_for_completion: - waits for completion of a task
5206 * @x: holds the state of this particular completion
5207 *
5208 * This waits to be signaled for completion of a specific task. It is NOT
5209 * interruptible and there is no timeout.
5210 *
5211 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5212 * and interrupt capability. Also see complete().
5213 */
b15136e9 5214void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5215{
5216 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5217}
8cbbe86d 5218EXPORT_SYMBOL(wait_for_completion);
1da177e4 5219
65eb3dc6
KD
5220/**
5221 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5222 * @x: holds the state of this particular completion
5223 * @timeout: timeout value in jiffies
5224 *
5225 * This waits for either a completion of a specific task to be signaled or for a
5226 * specified timeout to expire. The timeout is in jiffies. It is not
5227 * interruptible.
5228 */
b15136e9 5229unsigned long __sched
8cbbe86d 5230wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5231{
8cbbe86d 5232 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5233}
8cbbe86d 5234EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5235
65eb3dc6
KD
5236/**
5237 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5238 * @x: holds the state of this particular completion
5239 *
5240 * This waits for completion of a specific task to be signaled. It is
5241 * interruptible.
5242 */
8cbbe86d 5243int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5244{
51e97990
AK
5245 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5246 if (t == -ERESTARTSYS)
5247 return t;
5248 return 0;
0fec171c 5249}
8cbbe86d 5250EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5251
65eb3dc6
KD
5252/**
5253 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5254 * @x: holds the state of this particular completion
5255 * @timeout: timeout value in jiffies
5256 *
5257 * This waits for either a completion of a specific task to be signaled or for a
5258 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5259 */
b15136e9 5260unsigned long __sched
8cbbe86d
AK
5261wait_for_completion_interruptible_timeout(struct completion *x,
5262 unsigned long timeout)
0fec171c 5263{
8cbbe86d 5264 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5265}
8cbbe86d 5266EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5267
65eb3dc6
KD
5268/**
5269 * wait_for_completion_killable: - waits for completion of a task (killable)
5270 * @x: holds the state of this particular completion
5271 *
5272 * This waits to be signaled for completion of a specific task. It can be
5273 * interrupted by a kill signal.
5274 */
009e577e
MW
5275int __sched wait_for_completion_killable(struct completion *x)
5276{
5277 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5278 if (t == -ERESTARTSYS)
5279 return t;
5280 return 0;
5281}
5282EXPORT_SYMBOL(wait_for_completion_killable);
5283
be4de352
DC
5284/**
5285 * try_wait_for_completion - try to decrement a completion without blocking
5286 * @x: completion structure
5287 *
5288 * Returns: 0 if a decrement cannot be done without blocking
5289 * 1 if a decrement succeeded.
5290 *
5291 * If a completion is being used as a counting completion,
5292 * attempt to decrement the counter without blocking. This
5293 * enables us to avoid waiting if the resource the completion
5294 * is protecting is not available.
5295 */
5296bool try_wait_for_completion(struct completion *x)
5297{
5298 int ret = 1;
5299
5300 spin_lock_irq(&x->wait.lock);
5301 if (!x->done)
5302 ret = 0;
5303 else
5304 x->done--;
5305 spin_unlock_irq(&x->wait.lock);
5306 return ret;
5307}
5308EXPORT_SYMBOL(try_wait_for_completion);
5309
5310/**
5311 * completion_done - Test to see if a completion has any waiters
5312 * @x: completion structure
5313 *
5314 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5315 * 1 if there are no waiters.
5316 *
5317 */
5318bool completion_done(struct completion *x)
5319{
5320 int ret = 1;
5321
5322 spin_lock_irq(&x->wait.lock);
5323 if (!x->done)
5324 ret = 0;
5325 spin_unlock_irq(&x->wait.lock);
5326 return ret;
5327}
5328EXPORT_SYMBOL(completion_done);
5329
8cbbe86d
AK
5330static long __sched
5331sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5332{
0fec171c
IM
5333 unsigned long flags;
5334 wait_queue_t wait;
5335
5336 init_waitqueue_entry(&wait, current);
1da177e4 5337
8cbbe86d 5338 __set_current_state(state);
1da177e4 5339
8cbbe86d
AK
5340 spin_lock_irqsave(&q->lock, flags);
5341 __add_wait_queue(q, &wait);
5342 spin_unlock(&q->lock);
5343 timeout = schedule_timeout(timeout);
5344 spin_lock_irq(&q->lock);
5345 __remove_wait_queue(q, &wait);
5346 spin_unlock_irqrestore(&q->lock, flags);
5347
5348 return timeout;
5349}
5350
5351void __sched interruptible_sleep_on(wait_queue_head_t *q)
5352{
5353 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5354}
1da177e4
LT
5355EXPORT_SYMBOL(interruptible_sleep_on);
5356
0fec171c 5357long __sched
95cdf3b7 5358interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5359{
8cbbe86d 5360 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5361}
1da177e4
LT
5362EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5363
0fec171c 5364void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5365{
8cbbe86d 5366 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5367}
1da177e4
LT
5368EXPORT_SYMBOL(sleep_on);
5369
0fec171c 5370long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5371{
8cbbe86d 5372 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5373}
1da177e4
LT
5374EXPORT_SYMBOL(sleep_on_timeout);
5375
b29739f9
IM
5376#ifdef CONFIG_RT_MUTEXES
5377
5378/*
5379 * rt_mutex_setprio - set the current priority of a task
5380 * @p: task
5381 * @prio: prio value (kernel-internal form)
5382 *
5383 * This function changes the 'effective' priority of a task. It does
5384 * not touch ->normal_prio like __setscheduler().
5385 *
5386 * Used by the rt_mutex code to implement priority inheritance logic.
5387 */
36c8b586 5388void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5389{
5390 unsigned long flags;
83b699ed 5391 int oldprio, on_rq, running;
70b97a7f 5392 struct rq *rq;
cb469845 5393 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5394
5395 BUG_ON(prio < 0 || prio > MAX_PRIO);
5396
5397 rq = task_rq_lock(p, &flags);
a8e504d2 5398 update_rq_clock(rq);
b29739f9 5399
d5f9f942 5400 oldprio = p->prio;
dd41f596 5401 on_rq = p->se.on_rq;
051a1d1a 5402 running = task_current(rq, p);
0e1f3483 5403 if (on_rq)
69be72c1 5404 dequeue_task(rq, p, 0);
0e1f3483
HS
5405 if (running)
5406 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5407
5408 if (rt_prio(prio))
5409 p->sched_class = &rt_sched_class;
5410 else
5411 p->sched_class = &fair_sched_class;
5412
b29739f9
IM
5413 p->prio = prio;
5414
0e1f3483
HS
5415 if (running)
5416 p->sched_class->set_curr_task(rq);
dd41f596 5417 if (on_rq) {
8159f87e 5418 enqueue_task(rq, p, 0);
cb469845
SR
5419
5420 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5421 }
5422 task_rq_unlock(rq, &flags);
5423}
5424
5425#endif
5426
36c8b586 5427void set_user_nice(struct task_struct *p, long nice)
1da177e4 5428{
dd41f596 5429 int old_prio, delta, on_rq;
1da177e4 5430 unsigned long flags;
70b97a7f 5431 struct rq *rq;
1da177e4
LT
5432
5433 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5434 return;
5435 /*
5436 * We have to be careful, if called from sys_setpriority(),
5437 * the task might be in the middle of scheduling on another CPU.
5438 */
5439 rq = task_rq_lock(p, &flags);
a8e504d2 5440 update_rq_clock(rq);
1da177e4
LT
5441 /*
5442 * The RT priorities are set via sched_setscheduler(), but we still
5443 * allow the 'normal' nice value to be set - but as expected
5444 * it wont have any effect on scheduling until the task is
dd41f596 5445 * SCHED_FIFO/SCHED_RR:
1da177e4 5446 */
e05606d3 5447 if (task_has_rt_policy(p)) {
1da177e4
LT
5448 p->static_prio = NICE_TO_PRIO(nice);
5449 goto out_unlock;
5450 }
dd41f596 5451 on_rq = p->se.on_rq;
c09595f6 5452 if (on_rq)
69be72c1 5453 dequeue_task(rq, p, 0);
1da177e4 5454
1da177e4 5455 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5456 set_load_weight(p);
b29739f9
IM
5457 old_prio = p->prio;
5458 p->prio = effective_prio(p);
5459 delta = p->prio - old_prio;
1da177e4 5460
dd41f596 5461 if (on_rq) {
8159f87e 5462 enqueue_task(rq, p, 0);
1da177e4 5463 /*
d5f9f942
AM
5464 * If the task increased its priority or is running and
5465 * lowered its priority, then reschedule its CPU:
1da177e4 5466 */
d5f9f942 5467 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5468 resched_task(rq->curr);
5469 }
5470out_unlock:
5471 task_rq_unlock(rq, &flags);
5472}
1da177e4
LT
5473EXPORT_SYMBOL(set_user_nice);
5474
e43379f1
MM
5475/*
5476 * can_nice - check if a task can reduce its nice value
5477 * @p: task
5478 * @nice: nice value
5479 */
36c8b586 5480int can_nice(const struct task_struct *p, const int nice)
e43379f1 5481{
024f4747
MM
5482 /* convert nice value [19,-20] to rlimit style value [1,40] */
5483 int nice_rlim = 20 - nice;
48f24c4d 5484
e43379f1
MM
5485 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5486 capable(CAP_SYS_NICE));
5487}
5488
1da177e4
LT
5489#ifdef __ARCH_WANT_SYS_NICE
5490
5491/*
5492 * sys_nice - change the priority of the current process.
5493 * @increment: priority increment
5494 *
5495 * sys_setpriority is a more generic, but much slower function that
5496 * does similar things.
5497 */
5add95d4 5498SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5499{
48f24c4d 5500 long nice, retval;
1da177e4
LT
5501
5502 /*
5503 * Setpriority might change our priority at the same moment.
5504 * We don't have to worry. Conceptually one call occurs first
5505 * and we have a single winner.
5506 */
e43379f1
MM
5507 if (increment < -40)
5508 increment = -40;
1da177e4
LT
5509 if (increment > 40)
5510 increment = 40;
5511
2b8f836f 5512 nice = TASK_NICE(current) + increment;
1da177e4
LT
5513 if (nice < -20)
5514 nice = -20;
5515 if (nice > 19)
5516 nice = 19;
5517
e43379f1
MM
5518 if (increment < 0 && !can_nice(current, nice))
5519 return -EPERM;
5520
1da177e4
LT
5521 retval = security_task_setnice(current, nice);
5522 if (retval)
5523 return retval;
5524
5525 set_user_nice(current, nice);
5526 return 0;
5527}
5528
5529#endif
5530
5531/**
5532 * task_prio - return the priority value of a given task.
5533 * @p: the task in question.
5534 *
5535 * This is the priority value as seen by users in /proc.
5536 * RT tasks are offset by -200. Normal tasks are centered
5537 * around 0, value goes from -16 to +15.
5538 */
36c8b586 5539int task_prio(const struct task_struct *p)
1da177e4
LT
5540{
5541 return p->prio - MAX_RT_PRIO;
5542}
5543
5544/**
5545 * task_nice - return the nice value of a given task.
5546 * @p: the task in question.
5547 */
36c8b586 5548int task_nice(const struct task_struct *p)
1da177e4
LT
5549{
5550 return TASK_NICE(p);
5551}
150d8bed 5552EXPORT_SYMBOL(task_nice);
1da177e4
LT
5553
5554/**
5555 * idle_cpu - is a given cpu idle currently?
5556 * @cpu: the processor in question.
5557 */
5558int idle_cpu(int cpu)
5559{
5560 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5561}
5562
1da177e4
LT
5563/**
5564 * idle_task - return the idle task for a given cpu.
5565 * @cpu: the processor in question.
5566 */
36c8b586 5567struct task_struct *idle_task(int cpu)
1da177e4
LT
5568{
5569 return cpu_rq(cpu)->idle;
5570}
5571
5572/**
5573 * find_process_by_pid - find a process with a matching PID value.
5574 * @pid: the pid in question.
5575 */
a9957449 5576static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5577{
228ebcbe 5578 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5579}
5580
5581/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5582static void
5583__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5584{
dd41f596 5585 BUG_ON(p->se.on_rq);
48f24c4d 5586
1da177e4 5587 p->policy = policy;
dd41f596
IM
5588 switch (p->policy) {
5589 case SCHED_NORMAL:
5590 case SCHED_BATCH:
5591 case SCHED_IDLE:
5592 p->sched_class = &fair_sched_class;
5593 break;
5594 case SCHED_FIFO:
5595 case SCHED_RR:
5596 p->sched_class = &rt_sched_class;
5597 break;
5598 }
5599
1da177e4 5600 p->rt_priority = prio;
b29739f9
IM
5601 p->normal_prio = normal_prio(p);
5602 /* we are holding p->pi_lock already */
5603 p->prio = rt_mutex_getprio(p);
2dd73a4f 5604 set_load_weight(p);
1da177e4
LT
5605}
5606
c69e8d9c
DH
5607/*
5608 * check the target process has a UID that matches the current process's
5609 */
5610static bool check_same_owner(struct task_struct *p)
5611{
5612 const struct cred *cred = current_cred(), *pcred;
5613 bool match;
5614
5615 rcu_read_lock();
5616 pcred = __task_cred(p);
5617 match = (cred->euid == pcred->euid ||
5618 cred->euid == pcred->uid);
5619 rcu_read_unlock();
5620 return match;
5621}
5622
961ccddd
RR
5623static int __sched_setscheduler(struct task_struct *p, int policy,
5624 struct sched_param *param, bool user)
1da177e4 5625{
83b699ed 5626 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5627 unsigned long flags;
cb469845 5628 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5629 struct rq *rq;
1da177e4 5630
66e5393a
SR
5631 /* may grab non-irq protected spin_locks */
5632 BUG_ON(in_interrupt());
1da177e4
LT
5633recheck:
5634 /* double check policy once rq lock held */
5635 if (policy < 0)
5636 policy = oldpolicy = p->policy;
5637 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5638 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5639 policy != SCHED_IDLE)
b0a9499c 5640 return -EINVAL;
1da177e4
LT
5641 /*
5642 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5643 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5644 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5645 */
5646 if (param->sched_priority < 0 ||
95cdf3b7 5647 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5648 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5649 return -EINVAL;
e05606d3 5650 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5651 return -EINVAL;
5652
37e4ab3f
OC
5653 /*
5654 * Allow unprivileged RT tasks to decrease priority:
5655 */
961ccddd 5656 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5657 if (rt_policy(policy)) {
8dc3e909 5658 unsigned long rlim_rtprio;
8dc3e909
ON
5659
5660 if (!lock_task_sighand(p, &flags))
5661 return -ESRCH;
5662 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5663 unlock_task_sighand(p, &flags);
5664
5665 /* can't set/change the rt policy */
5666 if (policy != p->policy && !rlim_rtprio)
5667 return -EPERM;
5668
5669 /* can't increase priority */
5670 if (param->sched_priority > p->rt_priority &&
5671 param->sched_priority > rlim_rtprio)
5672 return -EPERM;
5673 }
dd41f596
IM
5674 /*
5675 * Like positive nice levels, dont allow tasks to
5676 * move out of SCHED_IDLE either:
5677 */
5678 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5679 return -EPERM;
5fe1d75f 5680
37e4ab3f 5681 /* can't change other user's priorities */
c69e8d9c 5682 if (!check_same_owner(p))
37e4ab3f
OC
5683 return -EPERM;
5684 }
1da177e4 5685
725aad24 5686 if (user) {
b68aa230 5687#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5688 /*
5689 * Do not allow realtime tasks into groups that have no runtime
5690 * assigned.
5691 */
9a7e0b18
PZ
5692 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5693 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5694 return -EPERM;
b68aa230
PZ
5695#endif
5696
725aad24
JF
5697 retval = security_task_setscheduler(p, policy, param);
5698 if (retval)
5699 return retval;
5700 }
5701
b29739f9
IM
5702 /*
5703 * make sure no PI-waiters arrive (or leave) while we are
5704 * changing the priority of the task:
5705 */
5706 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5707 /*
5708 * To be able to change p->policy safely, the apropriate
5709 * runqueue lock must be held.
5710 */
b29739f9 5711 rq = __task_rq_lock(p);
1da177e4
LT
5712 /* recheck policy now with rq lock held */
5713 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5714 policy = oldpolicy = -1;
b29739f9
IM
5715 __task_rq_unlock(rq);
5716 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5717 goto recheck;
5718 }
2daa3577 5719 update_rq_clock(rq);
dd41f596 5720 on_rq = p->se.on_rq;
051a1d1a 5721 running = task_current(rq, p);
0e1f3483 5722 if (on_rq)
2e1cb74a 5723 deactivate_task(rq, p, 0);
0e1f3483
HS
5724 if (running)
5725 p->sched_class->put_prev_task(rq, p);
f6b53205 5726
1da177e4 5727 oldprio = p->prio;
dd41f596 5728 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5729
0e1f3483
HS
5730 if (running)
5731 p->sched_class->set_curr_task(rq);
dd41f596
IM
5732 if (on_rq) {
5733 activate_task(rq, p, 0);
cb469845
SR
5734
5735 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5736 }
b29739f9
IM
5737 __task_rq_unlock(rq);
5738 spin_unlock_irqrestore(&p->pi_lock, flags);
5739
95e02ca9
TG
5740 rt_mutex_adjust_pi(p);
5741
1da177e4
LT
5742 return 0;
5743}
961ccddd
RR
5744
5745/**
5746 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5747 * @p: the task in question.
5748 * @policy: new policy.
5749 * @param: structure containing the new RT priority.
5750 *
5751 * NOTE that the task may be already dead.
5752 */
5753int sched_setscheduler(struct task_struct *p, int policy,
5754 struct sched_param *param)
5755{
5756 return __sched_setscheduler(p, policy, param, true);
5757}
1da177e4
LT
5758EXPORT_SYMBOL_GPL(sched_setscheduler);
5759
961ccddd
RR
5760/**
5761 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5762 * @p: the task in question.
5763 * @policy: new policy.
5764 * @param: structure containing the new RT priority.
5765 *
5766 * Just like sched_setscheduler, only don't bother checking if the
5767 * current context has permission. For example, this is needed in
5768 * stop_machine(): we create temporary high priority worker threads,
5769 * but our caller might not have that capability.
5770 */
5771int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5772 struct sched_param *param)
5773{
5774 return __sched_setscheduler(p, policy, param, false);
5775}
5776
95cdf3b7
IM
5777static int
5778do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5779{
1da177e4
LT
5780 struct sched_param lparam;
5781 struct task_struct *p;
36c8b586 5782 int retval;
1da177e4
LT
5783
5784 if (!param || pid < 0)
5785 return -EINVAL;
5786 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5787 return -EFAULT;
5fe1d75f
ON
5788
5789 rcu_read_lock();
5790 retval = -ESRCH;
1da177e4 5791 p = find_process_by_pid(pid);
5fe1d75f
ON
5792 if (p != NULL)
5793 retval = sched_setscheduler(p, policy, &lparam);
5794 rcu_read_unlock();
36c8b586 5795
1da177e4
LT
5796 return retval;
5797}
5798
5799/**
5800 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5801 * @pid: the pid in question.
5802 * @policy: new policy.
5803 * @param: structure containing the new RT priority.
5804 */
5add95d4
HC
5805SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5806 struct sched_param __user *, param)
1da177e4 5807{
c21761f1
JB
5808 /* negative values for policy are not valid */
5809 if (policy < 0)
5810 return -EINVAL;
5811
1da177e4
LT
5812 return do_sched_setscheduler(pid, policy, param);
5813}
5814
5815/**
5816 * sys_sched_setparam - set/change the RT priority of a thread
5817 * @pid: the pid in question.
5818 * @param: structure containing the new RT priority.
5819 */
5add95d4 5820SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5821{
5822 return do_sched_setscheduler(pid, -1, param);
5823}
5824
5825/**
5826 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5827 * @pid: the pid in question.
5828 */
5add95d4 5829SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5830{
36c8b586 5831 struct task_struct *p;
3a5c359a 5832 int retval;
1da177e4
LT
5833
5834 if (pid < 0)
3a5c359a 5835 return -EINVAL;
1da177e4
LT
5836
5837 retval = -ESRCH;
5838 read_lock(&tasklist_lock);
5839 p = find_process_by_pid(pid);
5840 if (p) {
5841 retval = security_task_getscheduler(p);
5842 if (!retval)
5843 retval = p->policy;
5844 }
5845 read_unlock(&tasklist_lock);
1da177e4
LT
5846 return retval;
5847}
5848
5849/**
5850 * sys_sched_getscheduler - get the RT priority of a thread
5851 * @pid: the pid in question.
5852 * @param: structure containing the RT priority.
5853 */
5add95d4 5854SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5855{
5856 struct sched_param lp;
36c8b586 5857 struct task_struct *p;
3a5c359a 5858 int retval;
1da177e4
LT
5859
5860 if (!param || pid < 0)
3a5c359a 5861 return -EINVAL;
1da177e4
LT
5862
5863 read_lock(&tasklist_lock);
5864 p = find_process_by_pid(pid);
5865 retval = -ESRCH;
5866 if (!p)
5867 goto out_unlock;
5868
5869 retval = security_task_getscheduler(p);
5870 if (retval)
5871 goto out_unlock;
5872
5873 lp.sched_priority = p->rt_priority;
5874 read_unlock(&tasklist_lock);
5875
5876 /*
5877 * This one might sleep, we cannot do it with a spinlock held ...
5878 */
5879 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5880
1da177e4
LT
5881 return retval;
5882
5883out_unlock:
5884 read_unlock(&tasklist_lock);
5885 return retval;
5886}
5887
96f874e2 5888long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5889{
5a16f3d3 5890 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5891 struct task_struct *p;
5892 int retval;
1da177e4 5893
95402b38 5894 get_online_cpus();
1da177e4
LT
5895 read_lock(&tasklist_lock);
5896
5897 p = find_process_by_pid(pid);
5898 if (!p) {
5899 read_unlock(&tasklist_lock);
95402b38 5900 put_online_cpus();
1da177e4
LT
5901 return -ESRCH;
5902 }
5903
5904 /*
5905 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5906 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5907 * usage count and then drop tasklist_lock.
5908 */
5909 get_task_struct(p);
5910 read_unlock(&tasklist_lock);
5911
5a16f3d3
RR
5912 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5913 retval = -ENOMEM;
5914 goto out_put_task;
5915 }
5916 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5917 retval = -ENOMEM;
5918 goto out_free_cpus_allowed;
5919 }
1da177e4 5920 retval = -EPERM;
c69e8d9c 5921 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5922 goto out_unlock;
5923
e7834f8f
DQ
5924 retval = security_task_setscheduler(p, 0, NULL);
5925 if (retval)
5926 goto out_unlock;
5927
5a16f3d3
RR
5928 cpuset_cpus_allowed(p, cpus_allowed);
5929 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5930 again:
5a16f3d3 5931 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5932
8707d8b8 5933 if (!retval) {
5a16f3d3
RR
5934 cpuset_cpus_allowed(p, cpus_allowed);
5935 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5936 /*
5937 * We must have raced with a concurrent cpuset
5938 * update. Just reset the cpus_allowed to the
5939 * cpuset's cpus_allowed
5940 */
5a16f3d3 5941 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5942 goto again;
5943 }
5944 }
1da177e4 5945out_unlock:
5a16f3d3
RR
5946 free_cpumask_var(new_mask);
5947out_free_cpus_allowed:
5948 free_cpumask_var(cpus_allowed);
5949out_put_task:
1da177e4 5950 put_task_struct(p);
95402b38 5951 put_online_cpus();
1da177e4
LT
5952 return retval;
5953}
5954
5955static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5956 struct cpumask *new_mask)
1da177e4 5957{
96f874e2
RR
5958 if (len < cpumask_size())
5959 cpumask_clear(new_mask);
5960 else if (len > cpumask_size())
5961 len = cpumask_size();
5962
1da177e4
LT
5963 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5964}
5965
5966/**
5967 * sys_sched_setaffinity - set the cpu affinity of a process
5968 * @pid: pid of the process
5969 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5970 * @user_mask_ptr: user-space pointer to the new cpu mask
5971 */
5add95d4
HC
5972SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5973 unsigned long __user *, user_mask_ptr)
1da177e4 5974{
5a16f3d3 5975 cpumask_var_t new_mask;
1da177e4
LT
5976 int retval;
5977
5a16f3d3
RR
5978 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5979 return -ENOMEM;
1da177e4 5980
5a16f3d3
RR
5981 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5982 if (retval == 0)
5983 retval = sched_setaffinity(pid, new_mask);
5984 free_cpumask_var(new_mask);
5985 return retval;
1da177e4
LT
5986}
5987
96f874e2 5988long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5989{
36c8b586 5990 struct task_struct *p;
1da177e4 5991 int retval;
1da177e4 5992
95402b38 5993 get_online_cpus();
1da177e4
LT
5994 read_lock(&tasklist_lock);
5995
5996 retval = -ESRCH;
5997 p = find_process_by_pid(pid);
5998 if (!p)
5999 goto out_unlock;
6000
e7834f8f
DQ
6001 retval = security_task_getscheduler(p);
6002 if (retval)
6003 goto out_unlock;
6004
96f874e2 6005 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6006
6007out_unlock:
6008 read_unlock(&tasklist_lock);
95402b38 6009 put_online_cpus();
1da177e4 6010
9531b62f 6011 return retval;
1da177e4
LT
6012}
6013
6014/**
6015 * sys_sched_getaffinity - get the cpu affinity of a process
6016 * @pid: pid of the process
6017 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6018 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6019 */
5add95d4
HC
6020SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6021 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6022{
6023 int ret;
f17c8607 6024 cpumask_var_t mask;
1da177e4 6025
f17c8607 6026 if (len < cpumask_size())
1da177e4
LT
6027 return -EINVAL;
6028
f17c8607
RR
6029 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6030 return -ENOMEM;
1da177e4 6031
f17c8607
RR
6032 ret = sched_getaffinity(pid, mask);
6033 if (ret == 0) {
6034 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6035 ret = -EFAULT;
6036 else
6037 ret = cpumask_size();
6038 }
6039 free_cpumask_var(mask);
1da177e4 6040
f17c8607 6041 return ret;
1da177e4
LT
6042}
6043
6044/**
6045 * sys_sched_yield - yield the current processor to other threads.
6046 *
dd41f596
IM
6047 * This function yields the current CPU to other tasks. If there are no
6048 * other threads running on this CPU then this function will return.
1da177e4 6049 */
5add95d4 6050SYSCALL_DEFINE0(sched_yield)
1da177e4 6051{
70b97a7f 6052 struct rq *rq = this_rq_lock();
1da177e4 6053
2d72376b 6054 schedstat_inc(rq, yld_count);
4530d7ab 6055 current->sched_class->yield_task(rq);
1da177e4
LT
6056
6057 /*
6058 * Since we are going to call schedule() anyway, there's
6059 * no need to preempt or enable interrupts:
6060 */
6061 __release(rq->lock);
8a25d5de 6062 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6063 _raw_spin_unlock(&rq->lock);
6064 preempt_enable_no_resched();
6065
6066 schedule();
6067
6068 return 0;
6069}
6070
e7b38404 6071static void __cond_resched(void)
1da177e4 6072{
8e0a43d8
IM
6073#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6074 __might_sleep(__FILE__, __LINE__);
6075#endif
5bbcfd90
IM
6076 /*
6077 * The BKS might be reacquired before we have dropped
6078 * PREEMPT_ACTIVE, which could trigger a second
6079 * cond_resched() call.
6080 */
1da177e4
LT
6081 do {
6082 add_preempt_count(PREEMPT_ACTIVE);
6083 schedule();
6084 sub_preempt_count(PREEMPT_ACTIVE);
6085 } while (need_resched());
6086}
6087
02b67cc3 6088int __sched _cond_resched(void)
1da177e4 6089{
9414232f
IM
6090 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6091 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6092 __cond_resched();
6093 return 1;
6094 }
6095 return 0;
6096}
02b67cc3 6097EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6098
6099/*
6100 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6101 * call schedule, and on return reacquire the lock.
6102 *
41a2d6cf 6103 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6104 * operations here to prevent schedule() from being called twice (once via
6105 * spin_unlock(), once by hand).
6106 */
95cdf3b7 6107int cond_resched_lock(spinlock_t *lock)
1da177e4 6108{
95c354fe 6109 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6110 int ret = 0;
6111
95c354fe 6112 if (spin_needbreak(lock) || resched) {
1da177e4 6113 spin_unlock(lock);
95c354fe
NP
6114 if (resched && need_resched())
6115 __cond_resched();
6116 else
6117 cpu_relax();
6df3cecb 6118 ret = 1;
1da177e4 6119 spin_lock(lock);
1da177e4 6120 }
6df3cecb 6121 return ret;
1da177e4 6122}
1da177e4
LT
6123EXPORT_SYMBOL(cond_resched_lock);
6124
6125int __sched cond_resched_softirq(void)
6126{
6127 BUG_ON(!in_softirq());
6128
9414232f 6129 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6130 local_bh_enable();
1da177e4
LT
6131 __cond_resched();
6132 local_bh_disable();
6133 return 1;
6134 }
6135 return 0;
6136}
1da177e4
LT
6137EXPORT_SYMBOL(cond_resched_softirq);
6138
1da177e4
LT
6139/**
6140 * yield - yield the current processor to other threads.
6141 *
72fd4a35 6142 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6143 * thread runnable and calls sys_sched_yield().
6144 */
6145void __sched yield(void)
6146{
6147 set_current_state(TASK_RUNNING);
6148 sys_sched_yield();
6149}
1da177e4
LT
6150EXPORT_SYMBOL(yield);
6151
6152/*
41a2d6cf 6153 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6154 * that process accounting knows that this is a task in IO wait state.
6155 *
6156 * But don't do that if it is a deliberate, throttling IO wait (this task
6157 * has set its backing_dev_info: the queue against which it should throttle)
6158 */
6159void __sched io_schedule(void)
6160{
70b97a7f 6161 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6162
0ff92245 6163 delayacct_blkio_start();
1da177e4
LT
6164 atomic_inc(&rq->nr_iowait);
6165 schedule();
6166 atomic_dec(&rq->nr_iowait);
0ff92245 6167 delayacct_blkio_end();
1da177e4 6168}
1da177e4
LT
6169EXPORT_SYMBOL(io_schedule);
6170
6171long __sched io_schedule_timeout(long timeout)
6172{
70b97a7f 6173 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6174 long ret;
6175
0ff92245 6176 delayacct_blkio_start();
1da177e4
LT
6177 atomic_inc(&rq->nr_iowait);
6178 ret = schedule_timeout(timeout);
6179 atomic_dec(&rq->nr_iowait);
0ff92245 6180 delayacct_blkio_end();
1da177e4
LT
6181 return ret;
6182}
6183
6184/**
6185 * sys_sched_get_priority_max - return maximum RT priority.
6186 * @policy: scheduling class.
6187 *
6188 * this syscall returns the maximum rt_priority that can be used
6189 * by a given scheduling class.
6190 */
5add95d4 6191SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6192{
6193 int ret = -EINVAL;
6194
6195 switch (policy) {
6196 case SCHED_FIFO:
6197 case SCHED_RR:
6198 ret = MAX_USER_RT_PRIO-1;
6199 break;
6200 case SCHED_NORMAL:
b0a9499c 6201 case SCHED_BATCH:
dd41f596 6202 case SCHED_IDLE:
1da177e4
LT
6203 ret = 0;
6204 break;
6205 }
6206 return ret;
6207}
6208
6209/**
6210 * sys_sched_get_priority_min - return minimum RT priority.
6211 * @policy: scheduling class.
6212 *
6213 * this syscall returns the minimum rt_priority that can be used
6214 * by a given scheduling class.
6215 */
5add95d4 6216SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6217{
6218 int ret = -EINVAL;
6219
6220 switch (policy) {
6221 case SCHED_FIFO:
6222 case SCHED_RR:
6223 ret = 1;
6224 break;
6225 case SCHED_NORMAL:
b0a9499c 6226 case SCHED_BATCH:
dd41f596 6227 case SCHED_IDLE:
1da177e4
LT
6228 ret = 0;
6229 }
6230 return ret;
6231}
6232
6233/**
6234 * sys_sched_rr_get_interval - return the default timeslice of a process.
6235 * @pid: pid of the process.
6236 * @interval: userspace pointer to the timeslice value.
6237 *
6238 * this syscall writes the default timeslice value of a given process
6239 * into the user-space timespec buffer. A value of '0' means infinity.
6240 */
17da2bd9 6241SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6242 struct timespec __user *, interval)
1da177e4 6243{
36c8b586 6244 struct task_struct *p;
a4ec24b4 6245 unsigned int time_slice;
3a5c359a 6246 int retval;
1da177e4 6247 struct timespec t;
1da177e4
LT
6248
6249 if (pid < 0)
3a5c359a 6250 return -EINVAL;
1da177e4
LT
6251
6252 retval = -ESRCH;
6253 read_lock(&tasklist_lock);
6254 p = find_process_by_pid(pid);
6255 if (!p)
6256 goto out_unlock;
6257
6258 retval = security_task_getscheduler(p);
6259 if (retval)
6260 goto out_unlock;
6261
77034937
IM
6262 /*
6263 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6264 * tasks that are on an otherwise idle runqueue:
6265 */
6266 time_slice = 0;
6267 if (p->policy == SCHED_RR) {
a4ec24b4 6268 time_slice = DEF_TIMESLICE;
1868f958 6269 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6270 struct sched_entity *se = &p->se;
6271 unsigned long flags;
6272 struct rq *rq;
6273
6274 rq = task_rq_lock(p, &flags);
77034937
IM
6275 if (rq->cfs.load.weight)
6276 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6277 task_rq_unlock(rq, &flags);
6278 }
1da177e4 6279 read_unlock(&tasklist_lock);
a4ec24b4 6280 jiffies_to_timespec(time_slice, &t);
1da177e4 6281 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6282 return retval;
3a5c359a 6283
1da177e4
LT
6284out_unlock:
6285 read_unlock(&tasklist_lock);
6286 return retval;
6287}
6288
7c731e0a 6289static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6290
82a1fcb9 6291void sched_show_task(struct task_struct *p)
1da177e4 6292{
1da177e4 6293 unsigned long free = 0;
36c8b586 6294 unsigned state;
1da177e4 6295
1da177e4 6296 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6297 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6298 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6299#if BITS_PER_LONG == 32
1da177e4 6300 if (state == TASK_RUNNING)
cc4ea795 6301 printk(KERN_CONT " running ");
1da177e4 6302 else
cc4ea795 6303 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6304#else
6305 if (state == TASK_RUNNING)
cc4ea795 6306 printk(KERN_CONT " running task ");
1da177e4 6307 else
cc4ea795 6308 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6309#endif
6310#ifdef CONFIG_DEBUG_STACK_USAGE
6311 {
10ebffde 6312 unsigned long *n = end_of_stack(p);
1da177e4
LT
6313 while (!*n)
6314 n++;
10ebffde 6315 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6316 }
6317#endif
ba25f9dc 6318 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6319 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6320
5fb5e6de 6321 show_stack(p, NULL);
1da177e4
LT
6322}
6323
e59e2ae2 6324void show_state_filter(unsigned long state_filter)
1da177e4 6325{
36c8b586 6326 struct task_struct *g, *p;
1da177e4 6327
4bd77321
IM
6328#if BITS_PER_LONG == 32
6329 printk(KERN_INFO
6330 " task PC stack pid father\n");
1da177e4 6331#else
4bd77321
IM
6332 printk(KERN_INFO
6333 " task PC stack pid father\n");
1da177e4
LT
6334#endif
6335 read_lock(&tasklist_lock);
6336 do_each_thread(g, p) {
6337 /*
6338 * reset the NMI-timeout, listing all files on a slow
6339 * console might take alot of time:
6340 */
6341 touch_nmi_watchdog();
39bc89fd 6342 if (!state_filter || (p->state & state_filter))
82a1fcb9 6343 sched_show_task(p);
1da177e4
LT
6344 } while_each_thread(g, p);
6345
04c9167f
JF
6346 touch_all_softlockup_watchdogs();
6347
dd41f596
IM
6348#ifdef CONFIG_SCHED_DEBUG
6349 sysrq_sched_debug_show();
6350#endif
1da177e4 6351 read_unlock(&tasklist_lock);
e59e2ae2
IM
6352 /*
6353 * Only show locks if all tasks are dumped:
6354 */
6355 if (state_filter == -1)
6356 debug_show_all_locks();
1da177e4
LT
6357}
6358
1df21055
IM
6359void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6360{
dd41f596 6361 idle->sched_class = &idle_sched_class;
1df21055
IM
6362}
6363
f340c0d1
IM
6364/**
6365 * init_idle - set up an idle thread for a given CPU
6366 * @idle: task in question
6367 * @cpu: cpu the idle task belongs to
6368 *
6369 * NOTE: this function does not set the idle thread's NEED_RESCHED
6370 * flag, to make booting more robust.
6371 */
5c1e1767 6372void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6373{
70b97a7f 6374 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6375 unsigned long flags;
6376
5cbd54ef
IM
6377 spin_lock_irqsave(&rq->lock, flags);
6378
dd41f596
IM
6379 __sched_fork(idle);
6380 idle->se.exec_start = sched_clock();
6381
b29739f9 6382 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6383 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6384 __set_task_cpu(idle, cpu);
1da177e4 6385
1da177e4 6386 rq->curr = rq->idle = idle;
4866cde0
NP
6387#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6388 idle->oncpu = 1;
6389#endif
1da177e4
LT
6390 spin_unlock_irqrestore(&rq->lock, flags);
6391
6392 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6393#if defined(CONFIG_PREEMPT)
6394 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6395#else
a1261f54 6396 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6397#endif
dd41f596
IM
6398 /*
6399 * The idle tasks have their own, simple scheduling class:
6400 */
6401 idle->sched_class = &idle_sched_class;
fb52607a 6402 ftrace_graph_init_task(idle);
1da177e4
LT
6403}
6404
6405/*
6406 * In a system that switches off the HZ timer nohz_cpu_mask
6407 * indicates which cpus entered this state. This is used
6408 * in the rcu update to wait only for active cpus. For system
6409 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6410 * always be CPU_BITS_NONE.
1da177e4 6411 */
6a7b3dc3 6412cpumask_var_t nohz_cpu_mask;
1da177e4 6413
19978ca6
IM
6414/*
6415 * Increase the granularity value when there are more CPUs,
6416 * because with more CPUs the 'effective latency' as visible
6417 * to users decreases. But the relationship is not linear,
6418 * so pick a second-best guess by going with the log2 of the
6419 * number of CPUs.
6420 *
6421 * This idea comes from the SD scheduler of Con Kolivas:
6422 */
6423static inline void sched_init_granularity(void)
6424{
6425 unsigned int factor = 1 + ilog2(num_online_cpus());
6426 const unsigned long limit = 200000000;
6427
6428 sysctl_sched_min_granularity *= factor;
6429 if (sysctl_sched_min_granularity > limit)
6430 sysctl_sched_min_granularity = limit;
6431
6432 sysctl_sched_latency *= factor;
6433 if (sysctl_sched_latency > limit)
6434 sysctl_sched_latency = limit;
6435
6436 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6437
6438 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6439}
6440
1da177e4
LT
6441#ifdef CONFIG_SMP
6442/*
6443 * This is how migration works:
6444 *
70b97a7f 6445 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6446 * runqueue and wake up that CPU's migration thread.
6447 * 2) we down() the locked semaphore => thread blocks.
6448 * 3) migration thread wakes up (implicitly it forces the migrated
6449 * thread off the CPU)
6450 * 4) it gets the migration request and checks whether the migrated
6451 * task is still in the wrong runqueue.
6452 * 5) if it's in the wrong runqueue then the migration thread removes
6453 * it and puts it into the right queue.
6454 * 6) migration thread up()s the semaphore.
6455 * 7) we wake up and the migration is done.
6456 */
6457
6458/*
6459 * Change a given task's CPU affinity. Migrate the thread to a
6460 * proper CPU and schedule it away if the CPU it's executing on
6461 * is removed from the allowed bitmask.
6462 *
6463 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6464 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6465 * call is not atomic; no spinlocks may be held.
6466 */
96f874e2 6467int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6468{
70b97a7f 6469 struct migration_req req;
1da177e4 6470 unsigned long flags;
70b97a7f 6471 struct rq *rq;
48f24c4d 6472 int ret = 0;
1da177e4
LT
6473
6474 rq = task_rq_lock(p, &flags);
96f874e2 6475 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6476 ret = -EINVAL;
6477 goto out;
6478 }
6479
9985b0ba 6480 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6481 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6482 ret = -EINVAL;
6483 goto out;
6484 }
6485
73fe6aae 6486 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6487 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6488 else {
96f874e2
RR
6489 cpumask_copy(&p->cpus_allowed, new_mask);
6490 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6491 }
6492
1da177e4 6493 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6494 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6495 goto out;
6496
1e5ce4f4 6497 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6498 /* Need help from migration thread: drop lock and wait. */
6499 task_rq_unlock(rq, &flags);
6500 wake_up_process(rq->migration_thread);
6501 wait_for_completion(&req.done);
6502 tlb_migrate_finish(p->mm);
6503 return 0;
6504 }
6505out:
6506 task_rq_unlock(rq, &flags);
48f24c4d 6507
1da177e4
LT
6508 return ret;
6509}
cd8ba7cd 6510EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6511
6512/*
41a2d6cf 6513 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6514 * this because either it can't run here any more (set_cpus_allowed()
6515 * away from this CPU, or CPU going down), or because we're
6516 * attempting to rebalance this task on exec (sched_exec).
6517 *
6518 * So we race with normal scheduler movements, but that's OK, as long
6519 * as the task is no longer on this CPU.
efc30814
KK
6520 *
6521 * Returns non-zero if task was successfully migrated.
1da177e4 6522 */
efc30814 6523static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6524{
70b97a7f 6525 struct rq *rq_dest, *rq_src;
dd41f596 6526 int ret = 0, on_rq;
1da177e4 6527
e761b772 6528 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6529 return ret;
1da177e4
LT
6530
6531 rq_src = cpu_rq(src_cpu);
6532 rq_dest = cpu_rq(dest_cpu);
6533
6534 double_rq_lock(rq_src, rq_dest);
6535 /* Already moved. */
6536 if (task_cpu(p) != src_cpu)
b1e38734 6537 goto done;
1da177e4 6538 /* Affinity changed (again). */
96f874e2 6539 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6540 goto fail;
1da177e4 6541
dd41f596 6542 on_rq = p->se.on_rq;
6e82a3be 6543 if (on_rq)
2e1cb74a 6544 deactivate_task(rq_src, p, 0);
6e82a3be 6545
1da177e4 6546 set_task_cpu(p, dest_cpu);
dd41f596
IM
6547 if (on_rq) {
6548 activate_task(rq_dest, p, 0);
15afe09b 6549 check_preempt_curr(rq_dest, p, 0);
1da177e4 6550 }
b1e38734 6551done:
efc30814 6552 ret = 1;
b1e38734 6553fail:
1da177e4 6554 double_rq_unlock(rq_src, rq_dest);
efc30814 6555 return ret;
1da177e4
LT
6556}
6557
6558/*
6559 * migration_thread - this is a highprio system thread that performs
6560 * thread migration by bumping thread off CPU then 'pushing' onto
6561 * another runqueue.
6562 */
95cdf3b7 6563static int migration_thread(void *data)
1da177e4 6564{
1da177e4 6565 int cpu = (long)data;
70b97a7f 6566 struct rq *rq;
1da177e4
LT
6567
6568 rq = cpu_rq(cpu);
6569 BUG_ON(rq->migration_thread != current);
6570
6571 set_current_state(TASK_INTERRUPTIBLE);
6572 while (!kthread_should_stop()) {
70b97a7f 6573 struct migration_req *req;
1da177e4 6574 struct list_head *head;
1da177e4 6575
1da177e4
LT
6576 spin_lock_irq(&rq->lock);
6577
6578 if (cpu_is_offline(cpu)) {
6579 spin_unlock_irq(&rq->lock);
6580 goto wait_to_die;
6581 }
6582
6583 if (rq->active_balance) {
6584 active_load_balance(rq, cpu);
6585 rq->active_balance = 0;
6586 }
6587
6588 head = &rq->migration_queue;
6589
6590 if (list_empty(head)) {
6591 spin_unlock_irq(&rq->lock);
6592 schedule();
6593 set_current_state(TASK_INTERRUPTIBLE);
6594 continue;
6595 }
70b97a7f 6596 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6597 list_del_init(head->next);
6598
674311d5
NP
6599 spin_unlock(&rq->lock);
6600 __migrate_task(req->task, cpu, req->dest_cpu);
6601 local_irq_enable();
1da177e4
LT
6602
6603 complete(&req->done);
6604 }
6605 __set_current_state(TASK_RUNNING);
6606 return 0;
6607
6608wait_to_die:
6609 /* Wait for kthread_stop */
6610 set_current_state(TASK_INTERRUPTIBLE);
6611 while (!kthread_should_stop()) {
6612 schedule();
6613 set_current_state(TASK_INTERRUPTIBLE);
6614 }
6615 __set_current_state(TASK_RUNNING);
6616 return 0;
6617}
6618
6619#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6620
6621static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6622{
6623 int ret;
6624
6625 local_irq_disable();
6626 ret = __migrate_task(p, src_cpu, dest_cpu);
6627 local_irq_enable();
6628 return ret;
6629}
6630
054b9108 6631/*
3a4fa0a2 6632 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6633 */
48f24c4d 6634static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6635{
70b97a7f 6636 int dest_cpu;
6ca09dfc 6637 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6638
6639again:
6640 /* Look for allowed, online CPU in same node. */
6641 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6642 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6643 goto move;
6644
6645 /* Any allowed, online CPU? */
6646 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6647 if (dest_cpu < nr_cpu_ids)
6648 goto move;
6649
6650 /* No more Mr. Nice Guy. */
6651 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6652 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6653 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6654
e76bd8d9
RR
6655 /*
6656 * Don't tell them about moving exiting tasks or
6657 * kernel threads (both mm NULL), since they never
6658 * leave kernel.
6659 */
6660 if (p->mm && printk_ratelimit()) {
6661 printk(KERN_INFO "process %d (%s) no "
6662 "longer affine to cpu%d\n",
6663 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6664 }
e76bd8d9
RR
6665 }
6666
6667move:
6668 /* It can have affinity changed while we were choosing. */
6669 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6670 goto again;
1da177e4
LT
6671}
6672
6673/*
6674 * While a dead CPU has no uninterruptible tasks queued at this point,
6675 * it might still have a nonzero ->nr_uninterruptible counter, because
6676 * for performance reasons the counter is not stricly tracking tasks to
6677 * their home CPUs. So we just add the counter to another CPU's counter,
6678 * to keep the global sum constant after CPU-down:
6679 */
70b97a7f 6680static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6681{
1e5ce4f4 6682 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6683 unsigned long flags;
6684
6685 local_irq_save(flags);
6686 double_rq_lock(rq_src, rq_dest);
6687 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6688 rq_src->nr_uninterruptible = 0;
6689 double_rq_unlock(rq_src, rq_dest);
6690 local_irq_restore(flags);
6691}
6692
6693/* Run through task list and migrate tasks from the dead cpu. */
6694static void migrate_live_tasks(int src_cpu)
6695{
48f24c4d 6696 struct task_struct *p, *t;
1da177e4 6697
f7b4cddc 6698 read_lock(&tasklist_lock);
1da177e4 6699
48f24c4d
IM
6700 do_each_thread(t, p) {
6701 if (p == current)
1da177e4
LT
6702 continue;
6703
48f24c4d
IM
6704 if (task_cpu(p) == src_cpu)
6705 move_task_off_dead_cpu(src_cpu, p);
6706 } while_each_thread(t, p);
1da177e4 6707
f7b4cddc 6708 read_unlock(&tasklist_lock);
1da177e4
LT
6709}
6710
dd41f596
IM
6711/*
6712 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6713 * It does so by boosting its priority to highest possible.
6714 * Used by CPU offline code.
1da177e4
LT
6715 */
6716void sched_idle_next(void)
6717{
48f24c4d 6718 int this_cpu = smp_processor_id();
70b97a7f 6719 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6720 struct task_struct *p = rq->idle;
6721 unsigned long flags;
6722
6723 /* cpu has to be offline */
48f24c4d 6724 BUG_ON(cpu_online(this_cpu));
1da177e4 6725
48f24c4d
IM
6726 /*
6727 * Strictly not necessary since rest of the CPUs are stopped by now
6728 * and interrupts disabled on the current cpu.
1da177e4
LT
6729 */
6730 spin_lock_irqsave(&rq->lock, flags);
6731
dd41f596 6732 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6733
94bc9a7b
DA
6734 update_rq_clock(rq);
6735 activate_task(rq, p, 0);
1da177e4
LT
6736
6737 spin_unlock_irqrestore(&rq->lock, flags);
6738}
6739
48f24c4d
IM
6740/*
6741 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6742 * offline.
6743 */
6744void idle_task_exit(void)
6745{
6746 struct mm_struct *mm = current->active_mm;
6747
6748 BUG_ON(cpu_online(smp_processor_id()));
6749
6750 if (mm != &init_mm)
6751 switch_mm(mm, &init_mm, current);
6752 mmdrop(mm);
6753}
6754
054b9108 6755/* called under rq->lock with disabled interrupts */
36c8b586 6756static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6757{
70b97a7f 6758 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6759
6760 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6761 BUG_ON(!p->exit_state);
1da177e4
LT
6762
6763 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6764 BUG_ON(p->state == TASK_DEAD);
1da177e4 6765
48f24c4d 6766 get_task_struct(p);
1da177e4
LT
6767
6768 /*
6769 * Drop lock around migration; if someone else moves it,
41a2d6cf 6770 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6771 * fine.
6772 */
f7b4cddc 6773 spin_unlock_irq(&rq->lock);
48f24c4d 6774 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6775 spin_lock_irq(&rq->lock);
1da177e4 6776
48f24c4d 6777 put_task_struct(p);
1da177e4
LT
6778}
6779
6780/* release_task() removes task from tasklist, so we won't find dead tasks. */
6781static void migrate_dead_tasks(unsigned int dead_cpu)
6782{
70b97a7f 6783 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6784 struct task_struct *next;
48f24c4d 6785
dd41f596
IM
6786 for ( ; ; ) {
6787 if (!rq->nr_running)
6788 break;
a8e504d2 6789 update_rq_clock(rq);
b67802ea 6790 next = pick_next_task(rq);
dd41f596
IM
6791 if (!next)
6792 break;
79c53799 6793 next->sched_class->put_prev_task(rq, next);
dd41f596 6794 migrate_dead(dead_cpu, next);
e692ab53 6795
1da177e4
LT
6796 }
6797}
6798#endif /* CONFIG_HOTPLUG_CPU */
6799
e692ab53
NP
6800#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6801
6802static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6803 {
6804 .procname = "sched_domain",
c57baf1e 6805 .mode = 0555,
e0361851 6806 },
38605cae 6807 {0, },
e692ab53
NP
6808};
6809
6810static struct ctl_table sd_ctl_root[] = {
e0361851 6811 {
c57baf1e 6812 .ctl_name = CTL_KERN,
e0361851 6813 .procname = "kernel",
c57baf1e 6814 .mode = 0555,
e0361851
AD
6815 .child = sd_ctl_dir,
6816 },
38605cae 6817 {0, },
e692ab53
NP
6818};
6819
6820static struct ctl_table *sd_alloc_ctl_entry(int n)
6821{
6822 struct ctl_table *entry =
5cf9f062 6823 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6824
e692ab53
NP
6825 return entry;
6826}
6827
6382bc90
MM
6828static void sd_free_ctl_entry(struct ctl_table **tablep)
6829{
cd790076 6830 struct ctl_table *entry;
6382bc90 6831
cd790076
MM
6832 /*
6833 * In the intermediate directories, both the child directory and
6834 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6835 * will always be set. In the lowest directory the names are
cd790076
MM
6836 * static strings and all have proc handlers.
6837 */
6838 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6839 if (entry->child)
6840 sd_free_ctl_entry(&entry->child);
cd790076
MM
6841 if (entry->proc_handler == NULL)
6842 kfree(entry->procname);
6843 }
6382bc90
MM
6844
6845 kfree(*tablep);
6846 *tablep = NULL;
6847}
6848
e692ab53 6849static void
e0361851 6850set_table_entry(struct ctl_table *entry,
e692ab53
NP
6851 const char *procname, void *data, int maxlen,
6852 mode_t mode, proc_handler *proc_handler)
6853{
e692ab53
NP
6854 entry->procname = procname;
6855 entry->data = data;
6856 entry->maxlen = maxlen;
6857 entry->mode = mode;
6858 entry->proc_handler = proc_handler;
6859}
6860
6861static struct ctl_table *
6862sd_alloc_ctl_domain_table(struct sched_domain *sd)
6863{
a5d8c348 6864 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6865
ad1cdc1d
MM
6866 if (table == NULL)
6867 return NULL;
6868
e0361851 6869 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6870 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6871 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6872 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6873 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6874 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6875 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6876 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6877 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6878 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6879 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6880 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6881 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6882 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6883 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6884 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6885 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6886 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6887 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6888 &sd->cache_nice_tries,
6889 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6890 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6891 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6892 set_table_entry(&table[11], "name", sd->name,
6893 CORENAME_MAX_SIZE, 0444, proc_dostring);
6894 /* &table[12] is terminator */
e692ab53
NP
6895
6896 return table;
6897}
6898
9a4e7159 6899static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6900{
6901 struct ctl_table *entry, *table;
6902 struct sched_domain *sd;
6903 int domain_num = 0, i;
6904 char buf[32];
6905
6906 for_each_domain(cpu, sd)
6907 domain_num++;
6908 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6909 if (table == NULL)
6910 return NULL;
e692ab53
NP
6911
6912 i = 0;
6913 for_each_domain(cpu, sd) {
6914 snprintf(buf, 32, "domain%d", i);
e692ab53 6915 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6916 entry->mode = 0555;
e692ab53
NP
6917 entry->child = sd_alloc_ctl_domain_table(sd);
6918 entry++;
6919 i++;
6920 }
6921 return table;
6922}
6923
6924static struct ctl_table_header *sd_sysctl_header;
6382bc90 6925static void register_sched_domain_sysctl(void)
e692ab53
NP
6926{
6927 int i, cpu_num = num_online_cpus();
6928 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6929 char buf[32];
6930
7378547f
MM
6931 WARN_ON(sd_ctl_dir[0].child);
6932 sd_ctl_dir[0].child = entry;
6933
ad1cdc1d
MM
6934 if (entry == NULL)
6935 return;
6936
97b6ea7b 6937 for_each_online_cpu(i) {
e692ab53 6938 snprintf(buf, 32, "cpu%d", i);
e692ab53 6939 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6940 entry->mode = 0555;
e692ab53 6941 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6942 entry++;
e692ab53 6943 }
7378547f
MM
6944
6945 WARN_ON(sd_sysctl_header);
e692ab53
NP
6946 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6947}
6382bc90 6948
7378547f 6949/* may be called multiple times per register */
6382bc90
MM
6950static void unregister_sched_domain_sysctl(void)
6951{
7378547f
MM
6952 if (sd_sysctl_header)
6953 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6954 sd_sysctl_header = NULL;
7378547f
MM
6955 if (sd_ctl_dir[0].child)
6956 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6957}
e692ab53 6958#else
6382bc90
MM
6959static void register_sched_domain_sysctl(void)
6960{
6961}
6962static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6963{
6964}
6965#endif
6966
1f11eb6a
GH
6967static void set_rq_online(struct rq *rq)
6968{
6969 if (!rq->online) {
6970 const struct sched_class *class;
6971
c6c4927b 6972 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6973 rq->online = 1;
6974
6975 for_each_class(class) {
6976 if (class->rq_online)
6977 class->rq_online(rq);
6978 }
6979 }
6980}
6981
6982static void set_rq_offline(struct rq *rq)
6983{
6984 if (rq->online) {
6985 const struct sched_class *class;
6986
6987 for_each_class(class) {
6988 if (class->rq_offline)
6989 class->rq_offline(rq);
6990 }
6991
c6c4927b 6992 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6993 rq->online = 0;
6994 }
6995}
6996
1da177e4
LT
6997/*
6998 * migration_call - callback that gets triggered when a CPU is added.
6999 * Here we can start up the necessary migration thread for the new CPU.
7000 */
48f24c4d
IM
7001static int __cpuinit
7002migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7003{
1da177e4 7004 struct task_struct *p;
48f24c4d 7005 int cpu = (long)hcpu;
1da177e4 7006 unsigned long flags;
70b97a7f 7007 struct rq *rq;
1da177e4
LT
7008
7009 switch (action) {
5be9361c 7010
1da177e4 7011 case CPU_UP_PREPARE:
8bb78442 7012 case CPU_UP_PREPARE_FROZEN:
dd41f596 7013 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7014 if (IS_ERR(p))
7015 return NOTIFY_BAD;
1da177e4
LT
7016 kthread_bind(p, cpu);
7017 /* Must be high prio: stop_machine expects to yield to it. */
7018 rq = task_rq_lock(p, &flags);
dd41f596 7019 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7020 task_rq_unlock(rq, &flags);
7021 cpu_rq(cpu)->migration_thread = p;
7022 break;
48f24c4d 7023
1da177e4 7024 case CPU_ONLINE:
8bb78442 7025 case CPU_ONLINE_FROZEN:
3a4fa0a2 7026 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7027 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7028
7029 /* Update our root-domain */
7030 rq = cpu_rq(cpu);
7031 spin_lock_irqsave(&rq->lock, flags);
7032 if (rq->rd) {
c6c4927b 7033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7034
7035 set_rq_online(rq);
1f94ef59
GH
7036 }
7037 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7038 break;
48f24c4d 7039
1da177e4
LT
7040#ifdef CONFIG_HOTPLUG_CPU
7041 case CPU_UP_CANCELED:
8bb78442 7042 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7043 if (!cpu_rq(cpu)->migration_thread)
7044 break;
41a2d6cf 7045 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7046 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7047 cpumask_any(cpu_online_mask));
1da177e4
LT
7048 kthread_stop(cpu_rq(cpu)->migration_thread);
7049 cpu_rq(cpu)->migration_thread = NULL;
7050 break;
48f24c4d 7051
1da177e4 7052 case CPU_DEAD:
8bb78442 7053 case CPU_DEAD_FROZEN:
470fd646 7054 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7055 migrate_live_tasks(cpu);
7056 rq = cpu_rq(cpu);
7057 kthread_stop(rq->migration_thread);
7058 rq->migration_thread = NULL;
7059 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7060 spin_lock_irq(&rq->lock);
a8e504d2 7061 update_rq_clock(rq);
2e1cb74a 7062 deactivate_task(rq, rq->idle, 0);
1da177e4 7063 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7064 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7065 rq->idle->sched_class = &idle_sched_class;
1da177e4 7066 migrate_dead_tasks(cpu);
d2da272a 7067 spin_unlock_irq(&rq->lock);
470fd646 7068 cpuset_unlock();
1da177e4
LT
7069 migrate_nr_uninterruptible(rq);
7070 BUG_ON(rq->nr_running != 0);
7071
41a2d6cf
IM
7072 /*
7073 * No need to migrate the tasks: it was best-effort if
7074 * they didn't take sched_hotcpu_mutex. Just wake up
7075 * the requestors.
7076 */
1da177e4
LT
7077 spin_lock_irq(&rq->lock);
7078 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7079 struct migration_req *req;
7080
1da177e4 7081 req = list_entry(rq->migration_queue.next,
70b97a7f 7082 struct migration_req, list);
1da177e4 7083 list_del_init(&req->list);
9a2bd244 7084 spin_unlock_irq(&rq->lock);
1da177e4 7085 complete(&req->done);
9a2bd244 7086 spin_lock_irq(&rq->lock);
1da177e4
LT
7087 }
7088 spin_unlock_irq(&rq->lock);
7089 break;
57d885fe 7090
08f503b0
GH
7091 case CPU_DYING:
7092 case CPU_DYING_FROZEN:
57d885fe
GH
7093 /* Update our root-domain */
7094 rq = cpu_rq(cpu);
7095 spin_lock_irqsave(&rq->lock, flags);
7096 if (rq->rd) {
c6c4927b 7097 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7098 set_rq_offline(rq);
57d885fe
GH
7099 }
7100 spin_unlock_irqrestore(&rq->lock, flags);
7101 break;
1da177e4
LT
7102#endif
7103 }
7104 return NOTIFY_OK;
7105}
7106
7107/* Register at highest priority so that task migration (migrate_all_tasks)
7108 * happens before everything else.
7109 */
26c2143b 7110static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7111 .notifier_call = migration_call,
7112 .priority = 10
7113};
7114
7babe8db 7115static int __init migration_init(void)
1da177e4
LT
7116{
7117 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7118 int err;
48f24c4d
IM
7119
7120 /* Start one for the boot CPU: */
07dccf33
AM
7121 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7122 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7123 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7124 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7125
7126 return err;
1da177e4 7127}
7babe8db 7128early_initcall(migration_init);
1da177e4
LT
7129#endif
7130
7131#ifdef CONFIG_SMP
476f3534 7132
3e9830dc 7133#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7134
7c16ec58 7135static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7136 struct cpumask *groupmask)
1da177e4 7137{
4dcf6aff 7138 struct sched_group *group = sd->groups;
434d53b0 7139 char str[256];
1da177e4 7140
968ea6d8 7141 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7142 cpumask_clear(groupmask);
4dcf6aff
IM
7143
7144 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7145
7146 if (!(sd->flags & SD_LOAD_BALANCE)) {
7147 printk("does not load-balance\n");
7148 if (sd->parent)
7149 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7150 " has parent");
7151 return -1;
41c7ce9a
NP
7152 }
7153
eefd796a 7154 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7155
758b2cdc 7156 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7157 printk(KERN_ERR "ERROR: domain->span does not contain "
7158 "CPU%d\n", cpu);
7159 }
758b2cdc 7160 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7161 printk(KERN_ERR "ERROR: domain->groups does not contain"
7162 " CPU%d\n", cpu);
7163 }
1da177e4 7164
4dcf6aff 7165 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7166 do {
4dcf6aff
IM
7167 if (!group) {
7168 printk("\n");
7169 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7170 break;
7171 }
7172
4dcf6aff
IM
7173 if (!group->__cpu_power) {
7174 printk(KERN_CONT "\n");
7175 printk(KERN_ERR "ERROR: domain->cpu_power not "
7176 "set\n");
7177 break;
7178 }
1da177e4 7179
758b2cdc 7180 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7181 printk(KERN_CONT "\n");
7182 printk(KERN_ERR "ERROR: empty group\n");
7183 break;
7184 }
1da177e4 7185
758b2cdc 7186 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7187 printk(KERN_CONT "\n");
7188 printk(KERN_ERR "ERROR: repeated CPUs\n");
7189 break;
7190 }
1da177e4 7191
758b2cdc 7192 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7193
968ea6d8 7194 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 7195 printk(KERN_CONT " %s", str);
1da177e4 7196
4dcf6aff
IM
7197 group = group->next;
7198 } while (group != sd->groups);
7199 printk(KERN_CONT "\n");
1da177e4 7200
758b2cdc 7201 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7202 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7203
758b2cdc
RR
7204 if (sd->parent &&
7205 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7206 printk(KERN_ERR "ERROR: parent span is not a superset "
7207 "of domain->span\n");
7208 return 0;
7209}
1da177e4 7210
4dcf6aff
IM
7211static void sched_domain_debug(struct sched_domain *sd, int cpu)
7212{
d5dd3db1 7213 cpumask_var_t groupmask;
4dcf6aff 7214 int level = 0;
1da177e4 7215
4dcf6aff
IM
7216 if (!sd) {
7217 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7218 return;
7219 }
1da177e4 7220
4dcf6aff
IM
7221 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7222
d5dd3db1 7223 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7224 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7225 return;
7226 }
7227
4dcf6aff 7228 for (;;) {
7c16ec58 7229 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7230 break;
1da177e4
LT
7231 level++;
7232 sd = sd->parent;
33859f7f 7233 if (!sd)
4dcf6aff
IM
7234 break;
7235 }
d5dd3db1 7236 free_cpumask_var(groupmask);
1da177e4 7237}
6d6bc0ad 7238#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7239# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7240#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7241
1a20ff27 7242static int sd_degenerate(struct sched_domain *sd)
245af2c7 7243{
758b2cdc 7244 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7245 return 1;
7246
7247 /* Following flags need at least 2 groups */
7248 if (sd->flags & (SD_LOAD_BALANCE |
7249 SD_BALANCE_NEWIDLE |
7250 SD_BALANCE_FORK |
89c4710e
SS
7251 SD_BALANCE_EXEC |
7252 SD_SHARE_CPUPOWER |
7253 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7254 if (sd->groups != sd->groups->next)
7255 return 0;
7256 }
7257
7258 /* Following flags don't use groups */
7259 if (sd->flags & (SD_WAKE_IDLE |
7260 SD_WAKE_AFFINE |
7261 SD_WAKE_BALANCE))
7262 return 0;
7263
7264 return 1;
7265}
7266
48f24c4d
IM
7267static int
7268sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7269{
7270 unsigned long cflags = sd->flags, pflags = parent->flags;
7271
7272 if (sd_degenerate(parent))
7273 return 1;
7274
758b2cdc 7275 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7276 return 0;
7277
7278 /* Does parent contain flags not in child? */
7279 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7280 if (cflags & SD_WAKE_AFFINE)
7281 pflags &= ~SD_WAKE_BALANCE;
7282 /* Flags needing groups don't count if only 1 group in parent */
7283 if (parent->groups == parent->groups->next) {
7284 pflags &= ~(SD_LOAD_BALANCE |
7285 SD_BALANCE_NEWIDLE |
7286 SD_BALANCE_FORK |
89c4710e
SS
7287 SD_BALANCE_EXEC |
7288 SD_SHARE_CPUPOWER |
7289 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7290 if (nr_node_ids == 1)
7291 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7292 }
7293 if (~cflags & pflags)
7294 return 0;
7295
7296 return 1;
7297}
7298
c6c4927b
RR
7299static void free_rootdomain(struct root_domain *rd)
7300{
68e74568
RR
7301 cpupri_cleanup(&rd->cpupri);
7302
c6c4927b
RR
7303 free_cpumask_var(rd->rto_mask);
7304 free_cpumask_var(rd->online);
7305 free_cpumask_var(rd->span);
7306 kfree(rd);
7307}
7308
57d885fe
GH
7309static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7310{
a0490fa3 7311 struct root_domain *old_rd = NULL;
57d885fe 7312 unsigned long flags;
57d885fe
GH
7313
7314 spin_lock_irqsave(&rq->lock, flags);
7315
7316 if (rq->rd) {
a0490fa3 7317 old_rd = rq->rd;
57d885fe 7318
c6c4927b 7319 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7320 set_rq_offline(rq);
57d885fe 7321
c6c4927b 7322 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7323
a0490fa3
IM
7324 /*
7325 * If we dont want to free the old_rt yet then
7326 * set old_rd to NULL to skip the freeing later
7327 * in this function:
7328 */
7329 if (!atomic_dec_and_test(&old_rd->refcount))
7330 old_rd = NULL;
57d885fe
GH
7331 }
7332
7333 atomic_inc(&rd->refcount);
7334 rq->rd = rd;
7335
c6c4927b
RR
7336 cpumask_set_cpu(rq->cpu, rd->span);
7337 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7338 set_rq_online(rq);
57d885fe
GH
7339
7340 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7341
7342 if (old_rd)
7343 free_rootdomain(old_rd);
57d885fe
GH
7344}
7345
db2f59c8 7346static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7347{
7348 memset(rd, 0, sizeof(*rd));
7349
c6c4927b
RR
7350 if (bootmem) {
7351 alloc_bootmem_cpumask_var(&def_root_domain.span);
7352 alloc_bootmem_cpumask_var(&def_root_domain.online);
7353 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7354 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7355 return 0;
7356 }
7357
7358 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7359 goto out;
c6c4927b
RR
7360 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7361 goto free_span;
7362 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7363 goto free_online;
6e0534f2 7364
68e74568
RR
7365 if (cpupri_init(&rd->cpupri, false) != 0)
7366 goto free_rto_mask;
c6c4927b 7367 return 0;
6e0534f2 7368
68e74568
RR
7369free_rto_mask:
7370 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7371free_online:
7372 free_cpumask_var(rd->online);
7373free_span:
7374 free_cpumask_var(rd->span);
0c910d28 7375out:
c6c4927b 7376 return -ENOMEM;
57d885fe
GH
7377}
7378
7379static void init_defrootdomain(void)
7380{
c6c4927b
RR
7381 init_rootdomain(&def_root_domain, true);
7382
57d885fe
GH
7383 atomic_set(&def_root_domain.refcount, 1);
7384}
7385
dc938520 7386static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7387{
7388 struct root_domain *rd;
7389
7390 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7391 if (!rd)
7392 return NULL;
7393
c6c4927b
RR
7394 if (init_rootdomain(rd, false) != 0) {
7395 kfree(rd);
7396 return NULL;
7397 }
57d885fe
GH
7398
7399 return rd;
7400}
7401
1da177e4 7402/*
0eab9146 7403 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7404 * hold the hotplug lock.
7405 */
0eab9146
IM
7406static void
7407cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7408{
70b97a7f 7409 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7410 struct sched_domain *tmp;
7411
7412 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7413 for (tmp = sd; tmp; ) {
245af2c7
SS
7414 struct sched_domain *parent = tmp->parent;
7415 if (!parent)
7416 break;
f29c9b1c 7417
1a848870 7418 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7419 tmp->parent = parent->parent;
1a848870
SS
7420 if (parent->parent)
7421 parent->parent->child = tmp;
f29c9b1c
LZ
7422 } else
7423 tmp = tmp->parent;
245af2c7
SS
7424 }
7425
1a848870 7426 if (sd && sd_degenerate(sd)) {
245af2c7 7427 sd = sd->parent;
1a848870
SS
7428 if (sd)
7429 sd->child = NULL;
7430 }
1da177e4
LT
7431
7432 sched_domain_debug(sd, cpu);
7433
57d885fe 7434 rq_attach_root(rq, rd);
674311d5 7435 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7436}
7437
7438/* cpus with isolated domains */
dcc30a35 7439static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7440
7441/* Setup the mask of cpus configured for isolated domains */
7442static int __init isolated_cpu_setup(char *str)
7443{
968ea6d8 7444 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7445 return 1;
7446}
7447
8927f494 7448__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7449
7450/*
6711cab4
SS
7451 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7452 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7453 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7454 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7455 *
7456 * init_sched_build_groups will build a circular linked list of the groups
7457 * covered by the given span, and will set each group's ->cpumask correctly,
7458 * and ->cpu_power to 0.
7459 */
a616058b 7460static void
96f874e2
RR
7461init_sched_build_groups(const struct cpumask *span,
7462 const struct cpumask *cpu_map,
7463 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7464 struct sched_group **sg,
96f874e2
RR
7465 struct cpumask *tmpmask),
7466 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7467{
7468 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7469 int i;
7470
96f874e2 7471 cpumask_clear(covered);
7c16ec58 7472
abcd083a 7473 for_each_cpu(i, span) {
6711cab4 7474 struct sched_group *sg;
7c16ec58 7475 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7476 int j;
7477
758b2cdc 7478 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7479 continue;
7480
758b2cdc 7481 cpumask_clear(sched_group_cpus(sg));
5517d86b 7482 sg->__cpu_power = 0;
1da177e4 7483
abcd083a 7484 for_each_cpu(j, span) {
7c16ec58 7485 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7486 continue;
7487
96f874e2 7488 cpumask_set_cpu(j, covered);
758b2cdc 7489 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7490 }
7491 if (!first)
7492 first = sg;
7493 if (last)
7494 last->next = sg;
7495 last = sg;
7496 }
7497 last->next = first;
7498}
7499
9c1cfda2 7500#define SD_NODES_PER_DOMAIN 16
1da177e4 7501
9c1cfda2 7502#ifdef CONFIG_NUMA
198e2f18 7503
9c1cfda2
JH
7504/**
7505 * find_next_best_node - find the next node to include in a sched_domain
7506 * @node: node whose sched_domain we're building
7507 * @used_nodes: nodes already in the sched_domain
7508 *
41a2d6cf 7509 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7510 * finds the closest node not already in the @used_nodes map.
7511 *
7512 * Should use nodemask_t.
7513 */
c5f59f08 7514static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7515{
7516 int i, n, val, min_val, best_node = 0;
7517
7518 min_val = INT_MAX;
7519
076ac2af 7520 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7521 /* Start at @node */
076ac2af 7522 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7523
7524 if (!nr_cpus_node(n))
7525 continue;
7526
7527 /* Skip already used nodes */
c5f59f08 7528 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7529 continue;
7530
7531 /* Simple min distance search */
7532 val = node_distance(node, n);
7533
7534 if (val < min_val) {
7535 min_val = val;
7536 best_node = n;
7537 }
7538 }
7539
c5f59f08 7540 node_set(best_node, *used_nodes);
9c1cfda2
JH
7541 return best_node;
7542}
7543
7544/**
7545 * sched_domain_node_span - get a cpumask for a node's sched_domain
7546 * @node: node whose cpumask we're constructing
73486722 7547 * @span: resulting cpumask
9c1cfda2 7548 *
41a2d6cf 7549 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7550 * should be one that prevents unnecessary balancing, but also spreads tasks
7551 * out optimally.
7552 */
96f874e2 7553static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7554{
c5f59f08 7555 nodemask_t used_nodes;
48f24c4d 7556 int i;
9c1cfda2 7557
6ca09dfc 7558 cpumask_clear(span);
c5f59f08 7559 nodes_clear(used_nodes);
9c1cfda2 7560
6ca09dfc 7561 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7562 node_set(node, used_nodes);
9c1cfda2
JH
7563
7564 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7565 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7566
6ca09dfc 7567 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7568 }
9c1cfda2 7569}
6d6bc0ad 7570#endif /* CONFIG_NUMA */
9c1cfda2 7571
5c45bf27 7572int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7573
6c99e9ad
RR
7574/*
7575 * The cpus mask in sched_group and sched_domain hangs off the end.
7576 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7577 * for nr_cpu_ids < CONFIG_NR_CPUS.
7578 */
7579struct static_sched_group {
7580 struct sched_group sg;
7581 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7582};
7583
7584struct static_sched_domain {
7585 struct sched_domain sd;
7586 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7587};
7588
9c1cfda2 7589/*
48f24c4d 7590 * SMT sched-domains:
9c1cfda2 7591 */
1da177e4 7592#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7593static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7594static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7595
41a2d6cf 7596static int
96f874e2
RR
7597cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7598 struct sched_group **sg, struct cpumask *unused)
1da177e4 7599{
6711cab4 7600 if (sg)
6c99e9ad 7601 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7602 return cpu;
7603}
6d6bc0ad 7604#endif /* CONFIG_SCHED_SMT */
1da177e4 7605
48f24c4d
IM
7606/*
7607 * multi-core sched-domains:
7608 */
1e9f28fa 7609#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7610static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7611static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7612#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7613
7614#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7615static int
96f874e2
RR
7616cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7617 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7618{
6711cab4 7619 int group;
7c16ec58 7620
96f874e2
RR
7621 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7622 group = cpumask_first(mask);
6711cab4 7623 if (sg)
6c99e9ad 7624 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7625 return group;
1e9f28fa
SS
7626}
7627#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7628static int
96f874e2
RR
7629cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7630 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7631{
6711cab4 7632 if (sg)
6c99e9ad 7633 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7634 return cpu;
7635}
7636#endif
7637
6c99e9ad
RR
7638static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7639static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7640
41a2d6cf 7641static int
96f874e2
RR
7642cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7643 struct sched_group **sg, struct cpumask *mask)
1da177e4 7644{
6711cab4 7645 int group;
48f24c4d 7646#ifdef CONFIG_SCHED_MC
6ca09dfc 7647 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7648 group = cpumask_first(mask);
1e9f28fa 7649#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7650 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7651 group = cpumask_first(mask);
1da177e4 7652#else
6711cab4 7653 group = cpu;
1da177e4 7654#endif
6711cab4 7655 if (sg)
6c99e9ad 7656 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7657 return group;
1da177e4
LT
7658}
7659
7660#ifdef CONFIG_NUMA
1da177e4 7661/*
9c1cfda2
JH
7662 * The init_sched_build_groups can't handle what we want to do with node
7663 * groups, so roll our own. Now each node has its own list of groups which
7664 * gets dynamically allocated.
1da177e4 7665 */
62ea9ceb 7666static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7667static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7668
62ea9ceb 7669static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7670static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7671
96f874e2
RR
7672static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7673 struct sched_group **sg,
7674 struct cpumask *nodemask)
9c1cfda2 7675{
6711cab4
SS
7676 int group;
7677
6ca09dfc 7678 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7679 group = cpumask_first(nodemask);
6711cab4
SS
7680
7681 if (sg)
6c99e9ad 7682 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7683 return group;
1da177e4 7684}
6711cab4 7685
08069033
SS
7686static void init_numa_sched_groups_power(struct sched_group *group_head)
7687{
7688 struct sched_group *sg = group_head;
7689 int j;
7690
7691 if (!sg)
7692 return;
3a5c359a 7693 do {
758b2cdc 7694 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7695 struct sched_domain *sd;
08069033 7696
6c99e9ad 7697 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7698 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7699 /*
7700 * Only add "power" once for each
7701 * physical package.
7702 */
7703 continue;
7704 }
08069033 7705
3a5c359a
AK
7706 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7707 }
7708 sg = sg->next;
7709 } while (sg != group_head);
08069033 7710}
6d6bc0ad 7711#endif /* CONFIG_NUMA */
1da177e4 7712
a616058b 7713#ifdef CONFIG_NUMA
51888ca2 7714/* Free memory allocated for various sched_group structures */
96f874e2
RR
7715static void free_sched_groups(const struct cpumask *cpu_map,
7716 struct cpumask *nodemask)
51888ca2 7717{
a616058b 7718 int cpu, i;
51888ca2 7719
abcd083a 7720 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7721 struct sched_group **sched_group_nodes
7722 = sched_group_nodes_bycpu[cpu];
7723
51888ca2
SV
7724 if (!sched_group_nodes)
7725 continue;
7726
076ac2af 7727 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7728 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7729
6ca09dfc 7730 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7731 if (cpumask_empty(nodemask))
51888ca2
SV
7732 continue;
7733
7734 if (sg == NULL)
7735 continue;
7736 sg = sg->next;
7737next_sg:
7738 oldsg = sg;
7739 sg = sg->next;
7740 kfree(oldsg);
7741 if (oldsg != sched_group_nodes[i])
7742 goto next_sg;
7743 }
7744 kfree(sched_group_nodes);
7745 sched_group_nodes_bycpu[cpu] = NULL;
7746 }
51888ca2 7747}
6d6bc0ad 7748#else /* !CONFIG_NUMA */
96f874e2
RR
7749static void free_sched_groups(const struct cpumask *cpu_map,
7750 struct cpumask *nodemask)
a616058b
SS
7751{
7752}
6d6bc0ad 7753#endif /* CONFIG_NUMA */
51888ca2 7754
89c4710e
SS
7755/*
7756 * Initialize sched groups cpu_power.
7757 *
7758 * cpu_power indicates the capacity of sched group, which is used while
7759 * distributing the load between different sched groups in a sched domain.
7760 * Typically cpu_power for all the groups in a sched domain will be same unless
7761 * there are asymmetries in the topology. If there are asymmetries, group
7762 * having more cpu_power will pickup more load compared to the group having
7763 * less cpu_power.
7764 *
7765 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7766 * the maximum number of tasks a group can handle in the presence of other idle
7767 * or lightly loaded groups in the same sched domain.
7768 */
7769static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7770{
7771 struct sched_domain *child;
7772 struct sched_group *group;
7773
7774 WARN_ON(!sd || !sd->groups);
7775
758b2cdc 7776 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7777 return;
7778
7779 child = sd->child;
7780
5517d86b
ED
7781 sd->groups->__cpu_power = 0;
7782
89c4710e
SS
7783 /*
7784 * For perf policy, if the groups in child domain share resources
7785 * (for example cores sharing some portions of the cache hierarchy
7786 * or SMT), then set this domain groups cpu_power such that each group
7787 * can handle only one task, when there are other idle groups in the
7788 * same sched domain.
7789 */
7790 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7791 (child->flags &
7792 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7793 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7794 return;
7795 }
7796
89c4710e
SS
7797 /*
7798 * add cpu_power of each child group to this groups cpu_power
7799 */
7800 group = child->groups;
7801 do {
5517d86b 7802 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7803 group = group->next;
7804 } while (group != child->groups);
7805}
7806
7c16ec58
MT
7807/*
7808 * Initializers for schedule domains
7809 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7810 */
7811
a5d8c348
IM
7812#ifdef CONFIG_SCHED_DEBUG
7813# define SD_INIT_NAME(sd, type) sd->name = #type
7814#else
7815# define SD_INIT_NAME(sd, type) do { } while (0)
7816#endif
7817
7c16ec58 7818#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7819
7c16ec58
MT
7820#define SD_INIT_FUNC(type) \
7821static noinline void sd_init_##type(struct sched_domain *sd) \
7822{ \
7823 memset(sd, 0, sizeof(*sd)); \
7824 *sd = SD_##type##_INIT; \
1d3504fc 7825 sd->level = SD_LV_##type; \
a5d8c348 7826 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7827}
7828
7829SD_INIT_FUNC(CPU)
7830#ifdef CONFIG_NUMA
7831 SD_INIT_FUNC(ALLNODES)
7832 SD_INIT_FUNC(NODE)
7833#endif
7834#ifdef CONFIG_SCHED_SMT
7835 SD_INIT_FUNC(SIBLING)
7836#endif
7837#ifdef CONFIG_SCHED_MC
7838 SD_INIT_FUNC(MC)
7839#endif
7840
1d3504fc
HS
7841static int default_relax_domain_level = -1;
7842
7843static int __init setup_relax_domain_level(char *str)
7844{
30e0e178
LZ
7845 unsigned long val;
7846
7847 val = simple_strtoul(str, NULL, 0);
7848 if (val < SD_LV_MAX)
7849 default_relax_domain_level = val;
7850
1d3504fc
HS
7851 return 1;
7852}
7853__setup("relax_domain_level=", setup_relax_domain_level);
7854
7855static void set_domain_attribute(struct sched_domain *sd,
7856 struct sched_domain_attr *attr)
7857{
7858 int request;
7859
7860 if (!attr || attr->relax_domain_level < 0) {
7861 if (default_relax_domain_level < 0)
7862 return;
7863 else
7864 request = default_relax_domain_level;
7865 } else
7866 request = attr->relax_domain_level;
7867 if (request < sd->level) {
7868 /* turn off idle balance on this domain */
7869 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7870 } else {
7871 /* turn on idle balance on this domain */
7872 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7873 }
7874}
7875
1da177e4 7876/*
1a20ff27
DG
7877 * Build sched domains for a given set of cpus and attach the sched domains
7878 * to the individual cpus
1da177e4 7879 */
96f874e2 7880static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7881 struct sched_domain_attr *attr)
1da177e4 7882{
3404c8d9 7883 int i, err = -ENOMEM;
57d885fe 7884 struct root_domain *rd;
3404c8d9
RR
7885 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7886 tmpmask;
d1b55138 7887#ifdef CONFIG_NUMA
3404c8d9 7888 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7889 struct sched_group **sched_group_nodes = NULL;
6711cab4 7890 int sd_allnodes = 0;
d1b55138 7891
3404c8d9
RR
7892 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7893 goto out;
7894 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7895 goto free_domainspan;
7896 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7897 goto free_covered;
7898#endif
7899
7900 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7901 goto free_notcovered;
7902 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7903 goto free_nodemask;
7904 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7905 goto free_this_sibling_map;
7906 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7907 goto free_this_core_map;
7908 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7909 goto free_send_covered;
7910
7911#ifdef CONFIG_NUMA
d1b55138
JH
7912 /*
7913 * Allocate the per-node list of sched groups
7914 */
076ac2af 7915 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7916 GFP_KERNEL);
d1b55138
JH
7917 if (!sched_group_nodes) {
7918 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7919 goto free_tmpmask;
d1b55138 7920 }
d1b55138 7921#endif
1da177e4 7922
dc938520 7923 rd = alloc_rootdomain();
57d885fe
GH
7924 if (!rd) {
7925 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7926 goto free_sched_groups;
57d885fe
GH
7927 }
7928
7c16ec58 7929#ifdef CONFIG_NUMA
96f874e2 7930 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7931#endif
7932
1da177e4 7933 /*
1a20ff27 7934 * Set up domains for cpus specified by the cpu_map.
1da177e4 7935 */
abcd083a 7936 for_each_cpu(i, cpu_map) {
1da177e4 7937 struct sched_domain *sd = NULL, *p;
1da177e4 7938
6ca09dfc 7939 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7940
7941#ifdef CONFIG_NUMA
96f874e2
RR
7942 if (cpumask_weight(cpu_map) >
7943 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7944 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7945 SD_INIT(sd, ALLNODES);
1d3504fc 7946 set_domain_attribute(sd, attr);
758b2cdc 7947 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7948 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7949 p = sd;
6711cab4 7950 sd_allnodes = 1;
9c1cfda2
JH
7951 } else
7952 p = NULL;
7953
62ea9ceb 7954 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7955 SD_INIT(sd, NODE);
1d3504fc 7956 set_domain_attribute(sd, attr);
758b2cdc 7957 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7958 sd->parent = p;
1a848870
SS
7959 if (p)
7960 p->child = sd;
758b2cdc
RR
7961 cpumask_and(sched_domain_span(sd),
7962 sched_domain_span(sd), cpu_map);
1da177e4
LT
7963#endif
7964
7965 p = sd;
6c99e9ad 7966 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7967 SD_INIT(sd, CPU);
1d3504fc 7968 set_domain_attribute(sd, attr);
758b2cdc 7969 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7970 sd->parent = p;
1a848870
SS
7971 if (p)
7972 p->child = sd;
7c16ec58 7973 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7974
1e9f28fa
SS
7975#ifdef CONFIG_SCHED_MC
7976 p = sd;
6c99e9ad 7977 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7978 SD_INIT(sd, MC);
1d3504fc 7979 set_domain_attribute(sd, attr);
6ca09dfc
MT
7980 cpumask_and(sched_domain_span(sd), cpu_map,
7981 cpu_coregroup_mask(i));
1e9f28fa 7982 sd->parent = p;
1a848870 7983 p->child = sd;
7c16ec58 7984 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7985#endif
7986
1da177e4
LT
7987#ifdef CONFIG_SCHED_SMT
7988 p = sd;
6c99e9ad 7989 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7990 SD_INIT(sd, SIBLING);
1d3504fc 7991 set_domain_attribute(sd, attr);
758b2cdc
RR
7992 cpumask_and(sched_domain_span(sd),
7993 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7994 sd->parent = p;
1a848870 7995 p->child = sd;
7c16ec58 7996 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7997#endif
7998 }
7999
8000#ifdef CONFIG_SCHED_SMT
8001 /* Set up CPU (sibling) groups */
abcd083a 8002 for_each_cpu(i, cpu_map) {
96f874e2
RR
8003 cpumask_and(this_sibling_map,
8004 &per_cpu(cpu_sibling_map, i), cpu_map);
8005 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8006 continue;
8007
dd41f596 8008 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8009 &cpu_to_cpu_group,
8010 send_covered, tmpmask);
1da177e4
LT
8011 }
8012#endif
8013
1e9f28fa
SS
8014#ifdef CONFIG_SCHED_MC
8015 /* Set up multi-core groups */
abcd083a 8016 for_each_cpu(i, cpu_map) {
6ca09dfc 8017 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8018 if (i != cpumask_first(this_core_map))
1e9f28fa 8019 continue;
7c16ec58 8020
dd41f596 8021 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8022 &cpu_to_core_group,
8023 send_covered, tmpmask);
1e9f28fa
SS
8024 }
8025#endif
8026
1da177e4 8027 /* Set up physical groups */
076ac2af 8028 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8029 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8030 if (cpumask_empty(nodemask))
1da177e4
LT
8031 continue;
8032
7c16ec58
MT
8033 init_sched_build_groups(nodemask, cpu_map,
8034 &cpu_to_phys_group,
8035 send_covered, tmpmask);
1da177e4
LT
8036 }
8037
8038#ifdef CONFIG_NUMA
8039 /* Set up node groups */
7c16ec58 8040 if (sd_allnodes) {
7c16ec58
MT
8041 init_sched_build_groups(cpu_map, cpu_map,
8042 &cpu_to_allnodes_group,
8043 send_covered, tmpmask);
8044 }
9c1cfda2 8045
076ac2af 8046 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8047 /* Set up node groups */
8048 struct sched_group *sg, *prev;
9c1cfda2
JH
8049 int j;
8050
96f874e2 8051 cpumask_clear(covered);
6ca09dfc 8052 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8053 if (cpumask_empty(nodemask)) {
d1b55138 8054 sched_group_nodes[i] = NULL;
9c1cfda2 8055 continue;
d1b55138 8056 }
9c1cfda2 8057
4bdbaad3 8058 sched_domain_node_span(i, domainspan);
96f874e2 8059 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8060
6c99e9ad
RR
8061 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8062 GFP_KERNEL, i);
51888ca2
SV
8063 if (!sg) {
8064 printk(KERN_WARNING "Can not alloc domain group for "
8065 "node %d\n", i);
8066 goto error;
8067 }
9c1cfda2 8068 sched_group_nodes[i] = sg;
abcd083a 8069 for_each_cpu(j, nodemask) {
9c1cfda2 8070 struct sched_domain *sd;
9761eea8 8071
62ea9ceb 8072 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8073 sd->groups = sg;
9c1cfda2 8074 }
5517d86b 8075 sg->__cpu_power = 0;
758b2cdc 8076 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8077 sg->next = sg;
96f874e2 8078 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8079 prev = sg;
8080
076ac2af 8081 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8082 int n = (i + j) % nr_node_ids;
9c1cfda2 8083
96f874e2
RR
8084 cpumask_complement(notcovered, covered);
8085 cpumask_and(tmpmask, notcovered, cpu_map);
8086 cpumask_and(tmpmask, tmpmask, domainspan);
8087 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8088 break;
8089
6ca09dfc 8090 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8091 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8092 continue;
8093
6c99e9ad
RR
8094 sg = kmalloc_node(sizeof(struct sched_group) +
8095 cpumask_size(),
15f0b676 8096 GFP_KERNEL, i);
9c1cfda2
JH
8097 if (!sg) {
8098 printk(KERN_WARNING
8099 "Can not alloc domain group for node %d\n", j);
51888ca2 8100 goto error;
9c1cfda2 8101 }
5517d86b 8102 sg->__cpu_power = 0;
758b2cdc 8103 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8104 sg->next = prev->next;
96f874e2 8105 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8106 prev->next = sg;
8107 prev = sg;
8108 }
9c1cfda2 8109 }
1da177e4
LT
8110#endif
8111
8112 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8113#ifdef CONFIG_SCHED_SMT
abcd083a 8114 for_each_cpu(i, cpu_map) {
6c99e9ad 8115 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8116
89c4710e 8117 init_sched_groups_power(i, sd);
5c45bf27 8118 }
1da177e4 8119#endif
1e9f28fa 8120#ifdef CONFIG_SCHED_MC
abcd083a 8121 for_each_cpu(i, cpu_map) {
6c99e9ad 8122 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8123
89c4710e 8124 init_sched_groups_power(i, sd);
5c45bf27
SS
8125 }
8126#endif
1e9f28fa 8127
abcd083a 8128 for_each_cpu(i, cpu_map) {
6c99e9ad 8129 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8130
89c4710e 8131 init_sched_groups_power(i, sd);
1da177e4
LT
8132 }
8133
9c1cfda2 8134#ifdef CONFIG_NUMA
076ac2af 8135 for (i = 0; i < nr_node_ids; i++)
08069033 8136 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8137
6711cab4
SS
8138 if (sd_allnodes) {
8139 struct sched_group *sg;
f712c0c7 8140
96f874e2 8141 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8142 tmpmask);
f712c0c7
SS
8143 init_numa_sched_groups_power(sg);
8144 }
9c1cfda2
JH
8145#endif
8146
1da177e4 8147 /* Attach the domains */
abcd083a 8148 for_each_cpu(i, cpu_map) {
1da177e4
LT
8149 struct sched_domain *sd;
8150#ifdef CONFIG_SCHED_SMT
6c99e9ad 8151 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8152#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8153 sd = &per_cpu(core_domains, i).sd;
1da177e4 8154#else
6c99e9ad 8155 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8156#endif
57d885fe 8157 cpu_attach_domain(sd, rd, i);
1da177e4 8158 }
51888ca2 8159
3404c8d9
RR
8160 err = 0;
8161
8162free_tmpmask:
8163 free_cpumask_var(tmpmask);
8164free_send_covered:
8165 free_cpumask_var(send_covered);
8166free_this_core_map:
8167 free_cpumask_var(this_core_map);
8168free_this_sibling_map:
8169 free_cpumask_var(this_sibling_map);
8170free_nodemask:
8171 free_cpumask_var(nodemask);
8172free_notcovered:
8173#ifdef CONFIG_NUMA
8174 free_cpumask_var(notcovered);
8175free_covered:
8176 free_cpumask_var(covered);
8177free_domainspan:
8178 free_cpumask_var(domainspan);
8179out:
8180#endif
8181 return err;
8182
8183free_sched_groups:
8184#ifdef CONFIG_NUMA
8185 kfree(sched_group_nodes);
8186#endif
8187 goto free_tmpmask;
51888ca2 8188
a616058b 8189#ifdef CONFIG_NUMA
51888ca2 8190error:
7c16ec58 8191 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8192 free_rootdomain(rd);
3404c8d9 8193 goto free_tmpmask;
a616058b 8194#endif
1da177e4 8195}
029190c5 8196
96f874e2 8197static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8198{
8199 return __build_sched_domains(cpu_map, NULL);
8200}
8201
96f874e2 8202static struct cpumask *doms_cur; /* current sched domains */
029190c5 8203static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8204static struct sched_domain_attr *dattr_cur;
8205 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8206
8207/*
8208 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8209 * cpumask) fails, then fallback to a single sched domain,
8210 * as determined by the single cpumask fallback_doms.
029190c5 8211 */
4212823f 8212static cpumask_var_t fallback_doms;
029190c5 8213
ee79d1bd
HC
8214/*
8215 * arch_update_cpu_topology lets virtualized architectures update the
8216 * cpu core maps. It is supposed to return 1 if the topology changed
8217 * or 0 if it stayed the same.
8218 */
8219int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8220{
ee79d1bd 8221 return 0;
22e52b07
HC
8222}
8223
1a20ff27 8224/*
41a2d6cf 8225 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8226 * For now this just excludes isolated cpus, but could be used to
8227 * exclude other special cases in the future.
1a20ff27 8228 */
96f874e2 8229static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8230{
7378547f
MM
8231 int err;
8232
22e52b07 8233 arch_update_cpu_topology();
029190c5 8234 ndoms_cur = 1;
96f874e2 8235 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8236 if (!doms_cur)
4212823f 8237 doms_cur = fallback_doms;
dcc30a35 8238 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8239 dattr_cur = NULL;
7378547f 8240 err = build_sched_domains(doms_cur);
6382bc90 8241 register_sched_domain_sysctl();
7378547f
MM
8242
8243 return err;
1a20ff27
DG
8244}
8245
96f874e2
RR
8246static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8247 struct cpumask *tmpmask)
1da177e4 8248{
7c16ec58 8249 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8250}
1da177e4 8251
1a20ff27
DG
8252/*
8253 * Detach sched domains from a group of cpus specified in cpu_map
8254 * These cpus will now be attached to the NULL domain
8255 */
96f874e2 8256static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8257{
96f874e2
RR
8258 /* Save because hotplug lock held. */
8259 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8260 int i;
8261
abcd083a 8262 for_each_cpu(i, cpu_map)
57d885fe 8263 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8264 synchronize_sched();
96f874e2 8265 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8266}
8267
1d3504fc
HS
8268/* handle null as "default" */
8269static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8270 struct sched_domain_attr *new, int idx_new)
8271{
8272 struct sched_domain_attr tmp;
8273
8274 /* fast path */
8275 if (!new && !cur)
8276 return 1;
8277
8278 tmp = SD_ATTR_INIT;
8279 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8280 new ? (new + idx_new) : &tmp,
8281 sizeof(struct sched_domain_attr));
8282}
8283
029190c5
PJ
8284/*
8285 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8286 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8287 * doms_new[] to the current sched domain partitioning, doms_cur[].
8288 * It destroys each deleted domain and builds each new domain.
8289 *
96f874e2 8290 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8291 * The masks don't intersect (don't overlap.) We should setup one
8292 * sched domain for each mask. CPUs not in any of the cpumasks will
8293 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8294 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8295 * it as it is.
8296 *
41a2d6cf
IM
8297 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8298 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8299 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8300 * ndoms_new == 1, and partition_sched_domains() will fallback to
8301 * the single partition 'fallback_doms', it also forces the domains
8302 * to be rebuilt.
029190c5 8303 *
96f874e2 8304 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8305 * ndoms_new == 0 is a special case for destroying existing domains,
8306 * and it will not create the default domain.
dfb512ec 8307 *
029190c5
PJ
8308 * Call with hotplug lock held
8309 */
96f874e2
RR
8310/* FIXME: Change to struct cpumask *doms_new[] */
8311void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8312 struct sched_domain_attr *dattr_new)
029190c5 8313{
dfb512ec 8314 int i, j, n;
d65bd5ec 8315 int new_topology;
029190c5 8316
712555ee 8317 mutex_lock(&sched_domains_mutex);
a1835615 8318
7378547f
MM
8319 /* always unregister in case we don't destroy any domains */
8320 unregister_sched_domain_sysctl();
8321
d65bd5ec
HC
8322 /* Let architecture update cpu core mappings. */
8323 new_topology = arch_update_cpu_topology();
8324
dfb512ec 8325 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8326
8327 /* Destroy deleted domains */
8328 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8329 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8330 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8331 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8332 goto match1;
8333 }
8334 /* no match - a current sched domain not in new doms_new[] */
8335 detach_destroy_domains(doms_cur + i);
8336match1:
8337 ;
8338 }
8339
e761b772
MK
8340 if (doms_new == NULL) {
8341 ndoms_cur = 0;
4212823f 8342 doms_new = fallback_doms;
dcc30a35 8343 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8344 WARN_ON_ONCE(dattr_new);
e761b772
MK
8345 }
8346
029190c5
PJ
8347 /* Build new domains */
8348 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8349 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8350 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8351 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8352 goto match2;
8353 }
8354 /* no match - add a new doms_new */
1d3504fc
HS
8355 __build_sched_domains(doms_new + i,
8356 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8357match2:
8358 ;
8359 }
8360
8361 /* Remember the new sched domains */
4212823f 8362 if (doms_cur != fallback_doms)
029190c5 8363 kfree(doms_cur);
1d3504fc 8364 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8365 doms_cur = doms_new;
1d3504fc 8366 dattr_cur = dattr_new;
029190c5 8367 ndoms_cur = ndoms_new;
7378547f
MM
8368
8369 register_sched_domain_sysctl();
a1835615 8370
712555ee 8371 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8372}
8373
5c45bf27 8374#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8375static void arch_reinit_sched_domains(void)
5c45bf27 8376{
95402b38 8377 get_online_cpus();
dfb512ec
MK
8378
8379 /* Destroy domains first to force the rebuild */
8380 partition_sched_domains(0, NULL, NULL);
8381
e761b772 8382 rebuild_sched_domains();
95402b38 8383 put_online_cpus();
5c45bf27
SS
8384}
8385
8386static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8387{
afb8a9b7 8388 unsigned int level = 0;
5c45bf27 8389
afb8a9b7
GS
8390 if (sscanf(buf, "%u", &level) != 1)
8391 return -EINVAL;
8392
8393 /*
8394 * level is always be positive so don't check for
8395 * level < POWERSAVINGS_BALANCE_NONE which is 0
8396 * What happens on 0 or 1 byte write,
8397 * need to check for count as well?
8398 */
8399
8400 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8401 return -EINVAL;
8402
8403 if (smt)
afb8a9b7 8404 sched_smt_power_savings = level;
5c45bf27 8405 else
afb8a9b7 8406 sched_mc_power_savings = level;
5c45bf27 8407
c70f22d2 8408 arch_reinit_sched_domains();
5c45bf27 8409
c70f22d2 8410 return count;
5c45bf27
SS
8411}
8412
5c45bf27 8413#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8414static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8415 char *page)
5c45bf27
SS
8416{
8417 return sprintf(page, "%u\n", sched_mc_power_savings);
8418}
f718cd4a 8419static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8420 const char *buf, size_t count)
5c45bf27
SS
8421{
8422 return sched_power_savings_store(buf, count, 0);
8423}
f718cd4a
AK
8424static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8425 sched_mc_power_savings_show,
8426 sched_mc_power_savings_store);
5c45bf27
SS
8427#endif
8428
8429#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8430static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8431 char *page)
5c45bf27
SS
8432{
8433 return sprintf(page, "%u\n", sched_smt_power_savings);
8434}
f718cd4a 8435static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8436 const char *buf, size_t count)
5c45bf27
SS
8437{
8438 return sched_power_savings_store(buf, count, 1);
8439}
f718cd4a
AK
8440static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8441 sched_smt_power_savings_show,
6707de00
AB
8442 sched_smt_power_savings_store);
8443#endif
8444
39aac648 8445int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8446{
8447 int err = 0;
8448
8449#ifdef CONFIG_SCHED_SMT
8450 if (smt_capable())
8451 err = sysfs_create_file(&cls->kset.kobj,
8452 &attr_sched_smt_power_savings.attr);
8453#endif
8454#ifdef CONFIG_SCHED_MC
8455 if (!err && mc_capable())
8456 err = sysfs_create_file(&cls->kset.kobj,
8457 &attr_sched_mc_power_savings.attr);
8458#endif
8459 return err;
8460}
6d6bc0ad 8461#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8462
e761b772 8463#ifndef CONFIG_CPUSETS
1da177e4 8464/*
e761b772
MK
8465 * Add online and remove offline CPUs from the scheduler domains.
8466 * When cpusets are enabled they take over this function.
1da177e4
LT
8467 */
8468static int update_sched_domains(struct notifier_block *nfb,
8469 unsigned long action, void *hcpu)
e761b772
MK
8470{
8471 switch (action) {
8472 case CPU_ONLINE:
8473 case CPU_ONLINE_FROZEN:
8474 case CPU_DEAD:
8475 case CPU_DEAD_FROZEN:
dfb512ec 8476 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8477 return NOTIFY_OK;
8478
8479 default:
8480 return NOTIFY_DONE;
8481 }
8482}
8483#endif
8484
8485static int update_runtime(struct notifier_block *nfb,
8486 unsigned long action, void *hcpu)
1da177e4 8487{
7def2be1
PZ
8488 int cpu = (int)(long)hcpu;
8489
1da177e4 8490 switch (action) {
1da177e4 8491 case CPU_DOWN_PREPARE:
8bb78442 8492 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8493 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8494 return NOTIFY_OK;
8495
1da177e4 8496 case CPU_DOWN_FAILED:
8bb78442 8497 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8498 case CPU_ONLINE:
8bb78442 8499 case CPU_ONLINE_FROZEN:
7def2be1 8500 enable_runtime(cpu_rq(cpu));
e761b772
MK
8501 return NOTIFY_OK;
8502
1da177e4
LT
8503 default:
8504 return NOTIFY_DONE;
8505 }
1da177e4 8506}
1da177e4
LT
8507
8508void __init sched_init_smp(void)
8509{
dcc30a35
RR
8510 cpumask_var_t non_isolated_cpus;
8511
8512 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8513
434d53b0
MT
8514#if defined(CONFIG_NUMA)
8515 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8516 GFP_KERNEL);
8517 BUG_ON(sched_group_nodes_bycpu == NULL);
8518#endif
95402b38 8519 get_online_cpus();
712555ee 8520 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8521 arch_init_sched_domains(cpu_online_mask);
8522 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8523 if (cpumask_empty(non_isolated_cpus))
8524 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8525 mutex_unlock(&sched_domains_mutex);
95402b38 8526 put_online_cpus();
e761b772
MK
8527
8528#ifndef CONFIG_CPUSETS
1da177e4
LT
8529 /* XXX: Theoretical race here - CPU may be hotplugged now */
8530 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8531#endif
8532
8533 /* RT runtime code needs to handle some hotplug events */
8534 hotcpu_notifier(update_runtime, 0);
8535
b328ca18 8536 init_hrtick();
5c1e1767
NP
8537
8538 /* Move init over to a non-isolated CPU */
dcc30a35 8539 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8540 BUG();
19978ca6 8541 sched_init_granularity();
dcc30a35 8542 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8543
8544 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8545 init_sched_rt_class();
1da177e4
LT
8546}
8547#else
8548void __init sched_init_smp(void)
8549{
19978ca6 8550 sched_init_granularity();
1da177e4
LT
8551}
8552#endif /* CONFIG_SMP */
8553
8554int in_sched_functions(unsigned long addr)
8555{
1da177e4
LT
8556 return in_lock_functions(addr) ||
8557 (addr >= (unsigned long)__sched_text_start
8558 && addr < (unsigned long)__sched_text_end);
8559}
8560
a9957449 8561static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8562{
8563 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8564 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8565#ifdef CONFIG_FAIR_GROUP_SCHED
8566 cfs_rq->rq = rq;
8567#endif
67e9fb2a 8568 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8569}
8570
fa85ae24
PZ
8571static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8572{
8573 struct rt_prio_array *array;
8574 int i;
8575
8576 array = &rt_rq->active;
8577 for (i = 0; i < MAX_RT_PRIO; i++) {
8578 INIT_LIST_HEAD(array->queue + i);
8579 __clear_bit(i, array->bitmap);
8580 }
8581 /* delimiter for bitsearch: */
8582 __set_bit(MAX_RT_PRIO, array->bitmap);
8583
052f1dc7 8584#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8585 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8586#ifdef CONFIG_SMP
e864c499 8587 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8588#endif
48d5e258 8589#endif
fa85ae24
PZ
8590#ifdef CONFIG_SMP
8591 rt_rq->rt_nr_migratory = 0;
fa85ae24 8592 rt_rq->overloaded = 0;
917b627d 8593 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8594#endif
8595
8596 rt_rq->rt_time = 0;
8597 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8598 rt_rq->rt_runtime = 0;
8599 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8600
052f1dc7 8601#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8602 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8603 rt_rq->rq = rq;
8604#endif
fa85ae24
PZ
8605}
8606
6f505b16 8607#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8608static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8609 struct sched_entity *se, int cpu, int add,
8610 struct sched_entity *parent)
6f505b16 8611{
ec7dc8ac 8612 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8613 tg->cfs_rq[cpu] = cfs_rq;
8614 init_cfs_rq(cfs_rq, rq);
8615 cfs_rq->tg = tg;
8616 if (add)
8617 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8618
8619 tg->se[cpu] = se;
354d60c2
DG
8620 /* se could be NULL for init_task_group */
8621 if (!se)
8622 return;
8623
ec7dc8ac
DG
8624 if (!parent)
8625 se->cfs_rq = &rq->cfs;
8626 else
8627 se->cfs_rq = parent->my_q;
8628
6f505b16
PZ
8629 se->my_q = cfs_rq;
8630 se->load.weight = tg->shares;
e05510d0 8631 se->load.inv_weight = 0;
ec7dc8ac 8632 se->parent = parent;
6f505b16 8633}
052f1dc7 8634#endif
6f505b16 8635
052f1dc7 8636#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8637static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8638 struct sched_rt_entity *rt_se, int cpu, int add,
8639 struct sched_rt_entity *parent)
6f505b16 8640{
ec7dc8ac
DG
8641 struct rq *rq = cpu_rq(cpu);
8642
6f505b16
PZ
8643 tg->rt_rq[cpu] = rt_rq;
8644 init_rt_rq(rt_rq, rq);
8645 rt_rq->tg = tg;
8646 rt_rq->rt_se = rt_se;
ac086bc2 8647 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8648 if (add)
8649 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8650
8651 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8652 if (!rt_se)
8653 return;
8654
ec7dc8ac
DG
8655 if (!parent)
8656 rt_se->rt_rq = &rq->rt;
8657 else
8658 rt_se->rt_rq = parent->my_q;
8659
6f505b16 8660 rt_se->my_q = rt_rq;
ec7dc8ac 8661 rt_se->parent = parent;
6f505b16
PZ
8662 INIT_LIST_HEAD(&rt_se->run_list);
8663}
8664#endif
8665
1da177e4
LT
8666void __init sched_init(void)
8667{
dd41f596 8668 int i, j;
434d53b0
MT
8669 unsigned long alloc_size = 0, ptr;
8670
8671#ifdef CONFIG_FAIR_GROUP_SCHED
8672 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8673#endif
8674#ifdef CONFIG_RT_GROUP_SCHED
8675 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8676#endif
8677#ifdef CONFIG_USER_SCHED
8678 alloc_size *= 2;
434d53b0
MT
8679#endif
8680 /*
8681 * As sched_init() is called before page_alloc is setup,
8682 * we use alloc_bootmem().
8683 */
8684 if (alloc_size) {
5a9d3225 8685 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8686
8687#ifdef CONFIG_FAIR_GROUP_SCHED
8688 init_task_group.se = (struct sched_entity **)ptr;
8689 ptr += nr_cpu_ids * sizeof(void **);
8690
8691 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8692 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8693
8694#ifdef CONFIG_USER_SCHED
8695 root_task_group.se = (struct sched_entity **)ptr;
8696 ptr += nr_cpu_ids * sizeof(void **);
8697
8698 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8699 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8700#endif /* CONFIG_USER_SCHED */
8701#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8702#ifdef CONFIG_RT_GROUP_SCHED
8703 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8704 ptr += nr_cpu_ids * sizeof(void **);
8705
8706 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8707 ptr += nr_cpu_ids * sizeof(void **);
8708
8709#ifdef CONFIG_USER_SCHED
8710 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8711 ptr += nr_cpu_ids * sizeof(void **);
8712
8713 root_task_group.rt_rq = (struct rt_rq **)ptr;
8714 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8715#endif /* CONFIG_USER_SCHED */
8716#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8717 }
dd41f596 8718
57d885fe
GH
8719#ifdef CONFIG_SMP
8720 init_defrootdomain();
8721#endif
8722
d0b27fa7
PZ
8723 init_rt_bandwidth(&def_rt_bandwidth,
8724 global_rt_period(), global_rt_runtime());
8725
8726#ifdef CONFIG_RT_GROUP_SCHED
8727 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8728 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8729#ifdef CONFIG_USER_SCHED
8730 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8731 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8732#endif /* CONFIG_USER_SCHED */
8733#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8734
052f1dc7 8735#ifdef CONFIG_GROUP_SCHED
6f505b16 8736 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8737 INIT_LIST_HEAD(&init_task_group.children);
8738
8739#ifdef CONFIG_USER_SCHED
8740 INIT_LIST_HEAD(&root_task_group.children);
8741 init_task_group.parent = &root_task_group;
8742 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8743#endif /* CONFIG_USER_SCHED */
8744#endif /* CONFIG_GROUP_SCHED */
6f505b16 8745
0a945022 8746 for_each_possible_cpu(i) {
70b97a7f 8747 struct rq *rq;
1da177e4
LT
8748
8749 rq = cpu_rq(i);
8750 spin_lock_init(&rq->lock);
7897986b 8751 rq->nr_running = 0;
dd41f596 8752 init_cfs_rq(&rq->cfs, rq);
6f505b16 8753 init_rt_rq(&rq->rt, rq);
dd41f596 8754#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8755 init_task_group.shares = init_task_group_load;
6f505b16 8756 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8757#ifdef CONFIG_CGROUP_SCHED
8758 /*
8759 * How much cpu bandwidth does init_task_group get?
8760 *
8761 * In case of task-groups formed thr' the cgroup filesystem, it
8762 * gets 100% of the cpu resources in the system. This overall
8763 * system cpu resource is divided among the tasks of
8764 * init_task_group and its child task-groups in a fair manner,
8765 * based on each entity's (task or task-group's) weight
8766 * (se->load.weight).
8767 *
8768 * In other words, if init_task_group has 10 tasks of weight
8769 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8770 * then A0's share of the cpu resource is:
8771 *
8772 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8773 *
8774 * We achieve this by letting init_task_group's tasks sit
8775 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8776 */
ec7dc8ac 8777 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8778#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8779 root_task_group.shares = NICE_0_LOAD;
8780 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8781 /*
8782 * In case of task-groups formed thr' the user id of tasks,
8783 * init_task_group represents tasks belonging to root user.
8784 * Hence it forms a sibling of all subsequent groups formed.
8785 * In this case, init_task_group gets only a fraction of overall
8786 * system cpu resource, based on the weight assigned to root
8787 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8788 * by letting tasks of init_task_group sit in a separate cfs_rq
8789 * (init_cfs_rq) and having one entity represent this group of
8790 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8791 */
ec7dc8ac 8792 init_tg_cfs_entry(&init_task_group,
6f505b16 8793 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8794 &per_cpu(init_sched_entity, i), i, 1,
8795 root_task_group.se[i]);
6f505b16 8796
052f1dc7 8797#endif
354d60c2
DG
8798#endif /* CONFIG_FAIR_GROUP_SCHED */
8799
8800 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8801#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8802 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8803#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8804 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8805#elif defined CONFIG_USER_SCHED
eff766a6 8806 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8807 init_tg_rt_entry(&init_task_group,
6f505b16 8808 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8809 &per_cpu(init_sched_rt_entity, i), i, 1,
8810 root_task_group.rt_se[i]);
354d60c2 8811#endif
dd41f596 8812#endif
1da177e4 8813
dd41f596
IM
8814 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8815 rq->cpu_load[j] = 0;
1da177e4 8816#ifdef CONFIG_SMP
41c7ce9a 8817 rq->sd = NULL;
57d885fe 8818 rq->rd = NULL;
1da177e4 8819 rq->active_balance = 0;
dd41f596 8820 rq->next_balance = jiffies;
1da177e4 8821 rq->push_cpu = 0;
0a2966b4 8822 rq->cpu = i;
1f11eb6a 8823 rq->online = 0;
1da177e4
LT
8824 rq->migration_thread = NULL;
8825 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8826 rq_attach_root(rq, &def_root_domain);
1da177e4 8827#endif
8f4d37ec 8828 init_rq_hrtick(rq);
1da177e4 8829 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8830 }
8831
2dd73a4f 8832 set_load_weight(&init_task);
b50f60ce 8833
e107be36
AK
8834#ifdef CONFIG_PREEMPT_NOTIFIERS
8835 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8836#endif
8837
c9819f45 8838#ifdef CONFIG_SMP
962cf36c 8839 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8840#endif
8841
b50f60ce
HC
8842#ifdef CONFIG_RT_MUTEXES
8843 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8844#endif
8845
1da177e4
LT
8846 /*
8847 * The boot idle thread does lazy MMU switching as well:
8848 */
8849 atomic_inc(&init_mm.mm_count);
8850 enter_lazy_tlb(&init_mm, current);
8851
8852 /*
8853 * Make us the idle thread. Technically, schedule() should not be
8854 * called from this thread, however somewhere below it might be,
8855 * but because we are the idle thread, we just pick up running again
8856 * when this runqueue becomes "idle".
8857 */
8858 init_idle(current, smp_processor_id());
dd41f596
IM
8859 /*
8860 * During early bootup we pretend to be a normal task:
8861 */
8862 current->sched_class = &fair_sched_class;
6892b75e 8863
6a7b3dc3
RR
8864 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8865 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8866#ifdef CONFIG_SMP
7d1e6a9b
RR
8867#ifdef CONFIG_NO_HZ
8868 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8869#endif
dcc30a35 8870 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8871#endif /* SMP */
6a7b3dc3 8872
6892b75e 8873 scheduler_running = 1;
1da177e4
LT
8874}
8875
8876#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8877void __might_sleep(char *file, int line)
8878{
48f24c4d 8879#ifdef in_atomic
1da177e4
LT
8880 static unsigned long prev_jiffy; /* ratelimiting */
8881
aef745fc
IM
8882 if ((!in_atomic() && !irqs_disabled()) ||
8883 system_state != SYSTEM_RUNNING || oops_in_progress)
8884 return;
8885 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8886 return;
8887 prev_jiffy = jiffies;
8888
8889 printk(KERN_ERR
8890 "BUG: sleeping function called from invalid context at %s:%d\n",
8891 file, line);
8892 printk(KERN_ERR
8893 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8894 in_atomic(), irqs_disabled(),
8895 current->pid, current->comm);
8896
8897 debug_show_held_locks(current);
8898 if (irqs_disabled())
8899 print_irqtrace_events(current);
8900 dump_stack();
1da177e4
LT
8901#endif
8902}
8903EXPORT_SYMBOL(__might_sleep);
8904#endif
8905
8906#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8907static void normalize_task(struct rq *rq, struct task_struct *p)
8908{
8909 int on_rq;
3e51f33f 8910
3a5e4dc1
AK
8911 update_rq_clock(rq);
8912 on_rq = p->se.on_rq;
8913 if (on_rq)
8914 deactivate_task(rq, p, 0);
8915 __setscheduler(rq, p, SCHED_NORMAL, 0);
8916 if (on_rq) {
8917 activate_task(rq, p, 0);
8918 resched_task(rq->curr);
8919 }
8920}
8921
1da177e4
LT
8922void normalize_rt_tasks(void)
8923{
a0f98a1c 8924 struct task_struct *g, *p;
1da177e4 8925 unsigned long flags;
70b97a7f 8926 struct rq *rq;
1da177e4 8927
4cf5d77a 8928 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8929 do_each_thread(g, p) {
178be793
IM
8930 /*
8931 * Only normalize user tasks:
8932 */
8933 if (!p->mm)
8934 continue;
8935
6cfb0d5d 8936 p->se.exec_start = 0;
6cfb0d5d 8937#ifdef CONFIG_SCHEDSTATS
dd41f596 8938 p->se.wait_start = 0;
dd41f596 8939 p->se.sleep_start = 0;
dd41f596 8940 p->se.block_start = 0;
6cfb0d5d 8941#endif
dd41f596
IM
8942
8943 if (!rt_task(p)) {
8944 /*
8945 * Renice negative nice level userspace
8946 * tasks back to 0:
8947 */
8948 if (TASK_NICE(p) < 0 && p->mm)
8949 set_user_nice(p, 0);
1da177e4 8950 continue;
dd41f596 8951 }
1da177e4 8952
4cf5d77a 8953 spin_lock(&p->pi_lock);
b29739f9 8954 rq = __task_rq_lock(p);
1da177e4 8955
178be793 8956 normalize_task(rq, p);
3a5e4dc1 8957
b29739f9 8958 __task_rq_unlock(rq);
4cf5d77a 8959 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8960 } while_each_thread(g, p);
8961
4cf5d77a 8962 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8963}
8964
8965#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8966
8967#ifdef CONFIG_IA64
8968/*
8969 * These functions are only useful for the IA64 MCA handling.
8970 *
8971 * They can only be called when the whole system has been
8972 * stopped - every CPU needs to be quiescent, and no scheduling
8973 * activity can take place. Using them for anything else would
8974 * be a serious bug, and as a result, they aren't even visible
8975 * under any other configuration.
8976 */
8977
8978/**
8979 * curr_task - return the current task for a given cpu.
8980 * @cpu: the processor in question.
8981 *
8982 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8983 */
36c8b586 8984struct task_struct *curr_task(int cpu)
1df5c10a
LT
8985{
8986 return cpu_curr(cpu);
8987}
8988
8989/**
8990 * set_curr_task - set the current task for a given cpu.
8991 * @cpu: the processor in question.
8992 * @p: the task pointer to set.
8993 *
8994 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8995 * are serviced on a separate stack. It allows the architecture to switch the
8996 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8997 * must be called with all CPU's synchronized, and interrupts disabled, the
8998 * and caller must save the original value of the current task (see
8999 * curr_task() above) and restore that value before reenabling interrupts and
9000 * re-starting the system.
9001 *
9002 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9003 */
36c8b586 9004void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9005{
9006 cpu_curr(cpu) = p;
9007}
9008
9009#endif
29f59db3 9010
bccbe08a
PZ
9011#ifdef CONFIG_FAIR_GROUP_SCHED
9012static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9013{
9014 int i;
9015
9016 for_each_possible_cpu(i) {
9017 if (tg->cfs_rq)
9018 kfree(tg->cfs_rq[i]);
9019 if (tg->se)
9020 kfree(tg->se[i]);
6f505b16
PZ
9021 }
9022
9023 kfree(tg->cfs_rq);
9024 kfree(tg->se);
6f505b16
PZ
9025}
9026
ec7dc8ac
DG
9027static
9028int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9029{
29f59db3 9030 struct cfs_rq *cfs_rq;
eab17229 9031 struct sched_entity *se;
9b5b7751 9032 struct rq *rq;
29f59db3
SV
9033 int i;
9034
434d53b0 9035 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9036 if (!tg->cfs_rq)
9037 goto err;
434d53b0 9038 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9039 if (!tg->se)
9040 goto err;
052f1dc7
PZ
9041
9042 tg->shares = NICE_0_LOAD;
29f59db3
SV
9043
9044 for_each_possible_cpu(i) {
9b5b7751 9045 rq = cpu_rq(i);
29f59db3 9046
eab17229
LZ
9047 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9048 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9049 if (!cfs_rq)
9050 goto err;
9051
eab17229
LZ
9052 se = kzalloc_node(sizeof(struct sched_entity),
9053 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9054 if (!se)
9055 goto err;
9056
eab17229 9057 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9058 }
9059
9060 return 1;
9061
9062 err:
9063 return 0;
9064}
9065
9066static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9067{
9068 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9069 &cpu_rq(cpu)->leaf_cfs_rq_list);
9070}
9071
9072static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9073{
9074 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9075}
6d6bc0ad 9076#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9077static inline void free_fair_sched_group(struct task_group *tg)
9078{
9079}
9080
ec7dc8ac
DG
9081static inline
9082int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9083{
9084 return 1;
9085}
9086
9087static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9088{
9089}
9090
9091static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9092{
9093}
6d6bc0ad 9094#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9095
9096#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9097static void free_rt_sched_group(struct task_group *tg)
9098{
9099 int i;
9100
d0b27fa7
PZ
9101 destroy_rt_bandwidth(&tg->rt_bandwidth);
9102
bccbe08a
PZ
9103 for_each_possible_cpu(i) {
9104 if (tg->rt_rq)
9105 kfree(tg->rt_rq[i]);
9106 if (tg->rt_se)
9107 kfree(tg->rt_se[i]);
9108 }
9109
9110 kfree(tg->rt_rq);
9111 kfree(tg->rt_se);
9112}
9113
ec7dc8ac
DG
9114static
9115int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9116{
9117 struct rt_rq *rt_rq;
eab17229 9118 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9119 struct rq *rq;
9120 int i;
9121
434d53b0 9122 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9123 if (!tg->rt_rq)
9124 goto err;
434d53b0 9125 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9126 if (!tg->rt_se)
9127 goto err;
9128
d0b27fa7
PZ
9129 init_rt_bandwidth(&tg->rt_bandwidth,
9130 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9131
9132 for_each_possible_cpu(i) {
9133 rq = cpu_rq(i);
9134
eab17229
LZ
9135 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9136 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9137 if (!rt_rq)
9138 goto err;
29f59db3 9139
eab17229
LZ
9140 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9141 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9142 if (!rt_se)
9143 goto err;
29f59db3 9144
eab17229 9145 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9146 }
9147
bccbe08a
PZ
9148 return 1;
9149
9150 err:
9151 return 0;
9152}
9153
9154static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9155{
9156 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9157 &cpu_rq(cpu)->leaf_rt_rq_list);
9158}
9159
9160static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9161{
9162 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9163}
6d6bc0ad 9164#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9165static inline void free_rt_sched_group(struct task_group *tg)
9166{
9167}
9168
ec7dc8ac
DG
9169static inline
9170int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9171{
9172 return 1;
9173}
9174
9175static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9176{
9177}
9178
9179static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9180{
9181}
6d6bc0ad 9182#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9183
d0b27fa7 9184#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9185static void free_sched_group(struct task_group *tg)
9186{
9187 free_fair_sched_group(tg);
9188 free_rt_sched_group(tg);
9189 kfree(tg);
9190}
9191
9192/* allocate runqueue etc for a new task group */
ec7dc8ac 9193struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9194{
9195 struct task_group *tg;
9196 unsigned long flags;
9197 int i;
9198
9199 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9200 if (!tg)
9201 return ERR_PTR(-ENOMEM);
9202
ec7dc8ac 9203 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9204 goto err;
9205
ec7dc8ac 9206 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9207 goto err;
9208
8ed36996 9209 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9210 for_each_possible_cpu(i) {
bccbe08a
PZ
9211 register_fair_sched_group(tg, i);
9212 register_rt_sched_group(tg, i);
9b5b7751 9213 }
6f505b16 9214 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9215
9216 WARN_ON(!parent); /* root should already exist */
9217
9218 tg->parent = parent;
f473aa5e 9219 INIT_LIST_HEAD(&tg->children);
09f2724a 9220 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9221 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9222
9b5b7751 9223 return tg;
29f59db3
SV
9224
9225err:
6f505b16 9226 free_sched_group(tg);
29f59db3
SV
9227 return ERR_PTR(-ENOMEM);
9228}
9229
9b5b7751 9230/* rcu callback to free various structures associated with a task group */
6f505b16 9231static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9232{
29f59db3 9233 /* now it should be safe to free those cfs_rqs */
6f505b16 9234 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9235}
9236
9b5b7751 9237/* Destroy runqueue etc associated with a task group */
4cf86d77 9238void sched_destroy_group(struct task_group *tg)
29f59db3 9239{
8ed36996 9240 unsigned long flags;
9b5b7751 9241 int i;
29f59db3 9242
8ed36996 9243 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9244 for_each_possible_cpu(i) {
bccbe08a
PZ
9245 unregister_fair_sched_group(tg, i);
9246 unregister_rt_sched_group(tg, i);
9b5b7751 9247 }
6f505b16 9248 list_del_rcu(&tg->list);
f473aa5e 9249 list_del_rcu(&tg->siblings);
8ed36996 9250 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9251
9b5b7751 9252 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9253 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9254}
9255
9b5b7751 9256/* change task's runqueue when it moves between groups.
3a252015
IM
9257 * The caller of this function should have put the task in its new group
9258 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9259 * reflect its new group.
9b5b7751
SV
9260 */
9261void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9262{
9263 int on_rq, running;
9264 unsigned long flags;
9265 struct rq *rq;
9266
9267 rq = task_rq_lock(tsk, &flags);
9268
29f59db3
SV
9269 update_rq_clock(rq);
9270
051a1d1a 9271 running = task_current(rq, tsk);
29f59db3
SV
9272 on_rq = tsk->se.on_rq;
9273
0e1f3483 9274 if (on_rq)
29f59db3 9275 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9276 if (unlikely(running))
9277 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9278
6f505b16 9279 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9280
810b3817
PZ
9281#ifdef CONFIG_FAIR_GROUP_SCHED
9282 if (tsk->sched_class->moved_group)
9283 tsk->sched_class->moved_group(tsk);
9284#endif
9285
0e1f3483
HS
9286 if (unlikely(running))
9287 tsk->sched_class->set_curr_task(rq);
9288 if (on_rq)
7074badb 9289 enqueue_task(rq, tsk, 0);
29f59db3 9290
29f59db3
SV
9291 task_rq_unlock(rq, &flags);
9292}
6d6bc0ad 9293#endif /* CONFIG_GROUP_SCHED */
29f59db3 9294
052f1dc7 9295#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9296static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9297{
9298 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9299 int on_rq;
9300
29f59db3 9301 on_rq = se->on_rq;
62fb1851 9302 if (on_rq)
29f59db3
SV
9303 dequeue_entity(cfs_rq, se, 0);
9304
9305 se->load.weight = shares;
e05510d0 9306 se->load.inv_weight = 0;
29f59db3 9307
62fb1851 9308 if (on_rq)
29f59db3 9309 enqueue_entity(cfs_rq, se, 0);
c09595f6 9310}
62fb1851 9311
c09595f6
PZ
9312static void set_se_shares(struct sched_entity *se, unsigned long shares)
9313{
9314 struct cfs_rq *cfs_rq = se->cfs_rq;
9315 struct rq *rq = cfs_rq->rq;
9316 unsigned long flags;
9317
9318 spin_lock_irqsave(&rq->lock, flags);
9319 __set_se_shares(se, shares);
9320 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9321}
9322
8ed36996
PZ
9323static DEFINE_MUTEX(shares_mutex);
9324
4cf86d77 9325int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9326{
9327 int i;
8ed36996 9328 unsigned long flags;
c61935fd 9329
ec7dc8ac
DG
9330 /*
9331 * We can't change the weight of the root cgroup.
9332 */
9333 if (!tg->se[0])
9334 return -EINVAL;
9335
18d95a28
PZ
9336 if (shares < MIN_SHARES)
9337 shares = MIN_SHARES;
cb4ad1ff
MX
9338 else if (shares > MAX_SHARES)
9339 shares = MAX_SHARES;
62fb1851 9340
8ed36996 9341 mutex_lock(&shares_mutex);
9b5b7751 9342 if (tg->shares == shares)
5cb350ba 9343 goto done;
29f59db3 9344
8ed36996 9345 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9346 for_each_possible_cpu(i)
9347 unregister_fair_sched_group(tg, i);
f473aa5e 9348 list_del_rcu(&tg->siblings);
8ed36996 9349 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9350
9351 /* wait for any ongoing reference to this group to finish */
9352 synchronize_sched();
9353
9354 /*
9355 * Now we are free to modify the group's share on each cpu
9356 * w/o tripping rebalance_share or load_balance_fair.
9357 */
9b5b7751 9358 tg->shares = shares;
c09595f6
PZ
9359 for_each_possible_cpu(i) {
9360 /*
9361 * force a rebalance
9362 */
9363 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9364 set_se_shares(tg->se[i], shares);
c09595f6 9365 }
29f59db3 9366
6b2d7700
SV
9367 /*
9368 * Enable load balance activity on this group, by inserting it back on
9369 * each cpu's rq->leaf_cfs_rq_list.
9370 */
8ed36996 9371 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9372 for_each_possible_cpu(i)
9373 register_fair_sched_group(tg, i);
f473aa5e 9374 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9375 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9376done:
8ed36996 9377 mutex_unlock(&shares_mutex);
9b5b7751 9378 return 0;
29f59db3
SV
9379}
9380
5cb350ba
DG
9381unsigned long sched_group_shares(struct task_group *tg)
9382{
9383 return tg->shares;
9384}
052f1dc7 9385#endif
5cb350ba 9386
052f1dc7 9387#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9388/*
9f0c1e56 9389 * Ensure that the real time constraints are schedulable.
6f505b16 9390 */
9f0c1e56
PZ
9391static DEFINE_MUTEX(rt_constraints_mutex);
9392
9393static unsigned long to_ratio(u64 period, u64 runtime)
9394{
9395 if (runtime == RUNTIME_INF)
9a7e0b18 9396 return 1ULL << 20;
9f0c1e56 9397
9a7e0b18 9398 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9399}
9400
9a7e0b18
PZ
9401/* Must be called with tasklist_lock held */
9402static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9403{
9a7e0b18 9404 struct task_struct *g, *p;
b40b2e8e 9405
9a7e0b18
PZ
9406 do_each_thread(g, p) {
9407 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9408 return 1;
9409 } while_each_thread(g, p);
b40b2e8e 9410
9a7e0b18
PZ
9411 return 0;
9412}
b40b2e8e 9413
9a7e0b18
PZ
9414struct rt_schedulable_data {
9415 struct task_group *tg;
9416 u64 rt_period;
9417 u64 rt_runtime;
9418};
b40b2e8e 9419
9a7e0b18
PZ
9420static int tg_schedulable(struct task_group *tg, void *data)
9421{
9422 struct rt_schedulable_data *d = data;
9423 struct task_group *child;
9424 unsigned long total, sum = 0;
9425 u64 period, runtime;
b40b2e8e 9426
9a7e0b18
PZ
9427 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9428 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9429
9a7e0b18
PZ
9430 if (tg == d->tg) {
9431 period = d->rt_period;
9432 runtime = d->rt_runtime;
b40b2e8e 9433 }
b40b2e8e 9434
98a4826b
PZ
9435#ifdef CONFIG_USER_SCHED
9436 if (tg == &root_task_group) {
9437 period = global_rt_period();
9438 runtime = global_rt_runtime();
9439 }
9440#endif
9441
4653f803
PZ
9442 /*
9443 * Cannot have more runtime than the period.
9444 */
9445 if (runtime > period && runtime != RUNTIME_INF)
9446 return -EINVAL;
6f505b16 9447
4653f803
PZ
9448 /*
9449 * Ensure we don't starve existing RT tasks.
9450 */
9a7e0b18
PZ
9451 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9452 return -EBUSY;
6f505b16 9453
9a7e0b18 9454 total = to_ratio(period, runtime);
6f505b16 9455
4653f803
PZ
9456 /*
9457 * Nobody can have more than the global setting allows.
9458 */
9459 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9460 return -EINVAL;
6f505b16 9461
4653f803
PZ
9462 /*
9463 * The sum of our children's runtime should not exceed our own.
9464 */
9a7e0b18
PZ
9465 list_for_each_entry_rcu(child, &tg->children, siblings) {
9466 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9467 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9468
9a7e0b18
PZ
9469 if (child == d->tg) {
9470 period = d->rt_period;
9471 runtime = d->rt_runtime;
9472 }
6f505b16 9473
9a7e0b18 9474 sum += to_ratio(period, runtime);
9f0c1e56 9475 }
6f505b16 9476
9a7e0b18
PZ
9477 if (sum > total)
9478 return -EINVAL;
9479
9480 return 0;
6f505b16
PZ
9481}
9482
9a7e0b18 9483static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9484{
9a7e0b18
PZ
9485 struct rt_schedulable_data data = {
9486 .tg = tg,
9487 .rt_period = period,
9488 .rt_runtime = runtime,
9489 };
9490
9491 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9492}
9493
d0b27fa7
PZ
9494static int tg_set_bandwidth(struct task_group *tg,
9495 u64 rt_period, u64 rt_runtime)
6f505b16 9496{
ac086bc2 9497 int i, err = 0;
9f0c1e56 9498
9f0c1e56 9499 mutex_lock(&rt_constraints_mutex);
521f1a24 9500 read_lock(&tasklist_lock);
9a7e0b18
PZ
9501 err = __rt_schedulable(tg, rt_period, rt_runtime);
9502 if (err)
9f0c1e56 9503 goto unlock;
ac086bc2
PZ
9504
9505 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9506 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9507 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9508
9509 for_each_possible_cpu(i) {
9510 struct rt_rq *rt_rq = tg->rt_rq[i];
9511
9512 spin_lock(&rt_rq->rt_runtime_lock);
9513 rt_rq->rt_runtime = rt_runtime;
9514 spin_unlock(&rt_rq->rt_runtime_lock);
9515 }
9516 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9517 unlock:
521f1a24 9518 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9519 mutex_unlock(&rt_constraints_mutex);
9520
9521 return err;
6f505b16
PZ
9522}
9523
d0b27fa7
PZ
9524int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9525{
9526 u64 rt_runtime, rt_period;
9527
9528 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9529 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9530 if (rt_runtime_us < 0)
9531 rt_runtime = RUNTIME_INF;
9532
9533 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9534}
9535
9f0c1e56
PZ
9536long sched_group_rt_runtime(struct task_group *tg)
9537{
9538 u64 rt_runtime_us;
9539
d0b27fa7 9540 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9541 return -1;
9542
d0b27fa7 9543 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9544 do_div(rt_runtime_us, NSEC_PER_USEC);
9545 return rt_runtime_us;
9546}
d0b27fa7
PZ
9547
9548int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9549{
9550 u64 rt_runtime, rt_period;
9551
9552 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9553 rt_runtime = tg->rt_bandwidth.rt_runtime;
9554
619b0488
R
9555 if (rt_period == 0)
9556 return -EINVAL;
9557
d0b27fa7
PZ
9558 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9559}
9560
9561long sched_group_rt_period(struct task_group *tg)
9562{
9563 u64 rt_period_us;
9564
9565 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9566 do_div(rt_period_us, NSEC_PER_USEC);
9567 return rt_period_us;
9568}
9569
9570static int sched_rt_global_constraints(void)
9571{
4653f803 9572 u64 runtime, period;
d0b27fa7
PZ
9573 int ret = 0;
9574
ec5d4989
HS
9575 if (sysctl_sched_rt_period <= 0)
9576 return -EINVAL;
9577
4653f803
PZ
9578 runtime = global_rt_runtime();
9579 period = global_rt_period();
9580
9581 /*
9582 * Sanity check on the sysctl variables.
9583 */
9584 if (runtime > period && runtime != RUNTIME_INF)
9585 return -EINVAL;
10b612f4 9586
d0b27fa7 9587 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9588 read_lock(&tasklist_lock);
4653f803 9589 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9590 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9591 mutex_unlock(&rt_constraints_mutex);
9592
9593 return ret;
9594}
54e99124
DG
9595
9596int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9597{
9598 /* Don't accept realtime tasks when there is no way for them to run */
9599 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9600 return 0;
9601
9602 return 1;
9603}
9604
6d6bc0ad 9605#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9606static int sched_rt_global_constraints(void)
9607{
ac086bc2
PZ
9608 unsigned long flags;
9609 int i;
9610
ec5d4989
HS
9611 if (sysctl_sched_rt_period <= 0)
9612 return -EINVAL;
9613
ac086bc2
PZ
9614 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9615 for_each_possible_cpu(i) {
9616 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9617
9618 spin_lock(&rt_rq->rt_runtime_lock);
9619 rt_rq->rt_runtime = global_rt_runtime();
9620 spin_unlock(&rt_rq->rt_runtime_lock);
9621 }
9622 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9623
d0b27fa7
PZ
9624 return 0;
9625}
6d6bc0ad 9626#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9627
9628int sched_rt_handler(struct ctl_table *table, int write,
9629 struct file *filp, void __user *buffer, size_t *lenp,
9630 loff_t *ppos)
9631{
9632 int ret;
9633 int old_period, old_runtime;
9634 static DEFINE_MUTEX(mutex);
9635
9636 mutex_lock(&mutex);
9637 old_period = sysctl_sched_rt_period;
9638 old_runtime = sysctl_sched_rt_runtime;
9639
9640 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9641
9642 if (!ret && write) {
9643 ret = sched_rt_global_constraints();
9644 if (ret) {
9645 sysctl_sched_rt_period = old_period;
9646 sysctl_sched_rt_runtime = old_runtime;
9647 } else {
9648 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9649 def_rt_bandwidth.rt_period =
9650 ns_to_ktime(global_rt_period());
9651 }
9652 }
9653 mutex_unlock(&mutex);
9654
9655 return ret;
9656}
68318b8e 9657
052f1dc7 9658#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9659
9660/* return corresponding task_group object of a cgroup */
2b01dfe3 9661static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9662{
2b01dfe3
PM
9663 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9664 struct task_group, css);
68318b8e
SV
9665}
9666
9667static struct cgroup_subsys_state *
2b01dfe3 9668cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9669{
ec7dc8ac 9670 struct task_group *tg, *parent;
68318b8e 9671
2b01dfe3 9672 if (!cgrp->parent) {
68318b8e 9673 /* This is early initialization for the top cgroup */
68318b8e
SV
9674 return &init_task_group.css;
9675 }
9676
ec7dc8ac
DG
9677 parent = cgroup_tg(cgrp->parent);
9678 tg = sched_create_group(parent);
68318b8e
SV
9679 if (IS_ERR(tg))
9680 return ERR_PTR(-ENOMEM);
9681
68318b8e
SV
9682 return &tg->css;
9683}
9684
41a2d6cf
IM
9685static void
9686cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9687{
2b01dfe3 9688 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9689
9690 sched_destroy_group(tg);
9691}
9692
41a2d6cf
IM
9693static int
9694cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9695 struct task_struct *tsk)
68318b8e 9696{
b68aa230 9697#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9698 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9699 return -EINVAL;
9700#else
68318b8e
SV
9701 /* We don't support RT-tasks being in separate groups */
9702 if (tsk->sched_class != &fair_sched_class)
9703 return -EINVAL;
b68aa230 9704#endif
68318b8e
SV
9705
9706 return 0;
9707}
9708
9709static void
2b01dfe3 9710cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9711 struct cgroup *old_cont, struct task_struct *tsk)
9712{
9713 sched_move_task(tsk);
9714}
9715
052f1dc7 9716#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9717static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9718 u64 shareval)
68318b8e 9719{
2b01dfe3 9720 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9721}
9722
f4c753b7 9723static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9724{
2b01dfe3 9725 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9726
9727 return (u64) tg->shares;
9728}
6d6bc0ad 9729#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9730
052f1dc7 9731#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9732static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9733 s64 val)
6f505b16 9734{
06ecb27c 9735 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9736}
9737
06ecb27c 9738static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9739{
06ecb27c 9740 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9741}
d0b27fa7
PZ
9742
9743static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9744 u64 rt_period_us)
9745{
9746 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9747}
9748
9749static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9750{
9751 return sched_group_rt_period(cgroup_tg(cgrp));
9752}
6d6bc0ad 9753#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9754
fe5c7cc2 9755static struct cftype cpu_files[] = {
052f1dc7 9756#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9757 {
9758 .name = "shares",
f4c753b7
PM
9759 .read_u64 = cpu_shares_read_u64,
9760 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9761 },
052f1dc7
PZ
9762#endif
9763#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9764 {
9f0c1e56 9765 .name = "rt_runtime_us",
06ecb27c
PM
9766 .read_s64 = cpu_rt_runtime_read,
9767 .write_s64 = cpu_rt_runtime_write,
6f505b16 9768 },
d0b27fa7
PZ
9769 {
9770 .name = "rt_period_us",
f4c753b7
PM
9771 .read_u64 = cpu_rt_period_read_uint,
9772 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9773 },
052f1dc7 9774#endif
68318b8e
SV
9775};
9776
9777static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9778{
fe5c7cc2 9779 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9780}
9781
9782struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9783 .name = "cpu",
9784 .create = cpu_cgroup_create,
9785 .destroy = cpu_cgroup_destroy,
9786 .can_attach = cpu_cgroup_can_attach,
9787 .attach = cpu_cgroup_attach,
9788 .populate = cpu_cgroup_populate,
9789 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9790 .early_init = 1,
9791};
9792
052f1dc7 9793#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9794
9795#ifdef CONFIG_CGROUP_CPUACCT
9796
9797/*
9798 * CPU accounting code for task groups.
9799 *
9800 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9801 * (balbir@in.ibm.com).
9802 */
9803
934352f2 9804/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9805struct cpuacct {
9806 struct cgroup_subsys_state css;
9807 /* cpuusage holds pointer to a u64-type object on every cpu */
9808 u64 *cpuusage;
934352f2 9809 struct cpuacct *parent;
d842de87
SV
9810};
9811
9812struct cgroup_subsys cpuacct_subsys;
9813
9814/* return cpu accounting group corresponding to this container */
32cd756a 9815static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9816{
32cd756a 9817 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9818 struct cpuacct, css);
9819}
9820
9821/* return cpu accounting group to which this task belongs */
9822static inline struct cpuacct *task_ca(struct task_struct *tsk)
9823{
9824 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9825 struct cpuacct, css);
9826}
9827
9828/* create a new cpu accounting group */
9829static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9830 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9831{
9832 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9833
9834 if (!ca)
9835 return ERR_PTR(-ENOMEM);
9836
9837 ca->cpuusage = alloc_percpu(u64);
9838 if (!ca->cpuusage) {
9839 kfree(ca);
9840 return ERR_PTR(-ENOMEM);
9841 }
9842
934352f2
BR
9843 if (cgrp->parent)
9844 ca->parent = cgroup_ca(cgrp->parent);
9845
d842de87
SV
9846 return &ca->css;
9847}
9848
9849/* destroy an existing cpu accounting group */
41a2d6cf 9850static void
32cd756a 9851cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9852{
32cd756a 9853 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9854
9855 free_percpu(ca->cpuusage);
9856 kfree(ca);
9857}
9858
720f5498
KC
9859static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9860{
9861 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9862 u64 data;
9863
9864#ifndef CONFIG_64BIT
9865 /*
9866 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9867 */
9868 spin_lock_irq(&cpu_rq(cpu)->lock);
9869 data = *cpuusage;
9870 spin_unlock_irq(&cpu_rq(cpu)->lock);
9871#else
9872 data = *cpuusage;
9873#endif
9874
9875 return data;
9876}
9877
9878static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9879{
9880 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9881
9882#ifndef CONFIG_64BIT
9883 /*
9884 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9885 */
9886 spin_lock_irq(&cpu_rq(cpu)->lock);
9887 *cpuusage = val;
9888 spin_unlock_irq(&cpu_rq(cpu)->lock);
9889#else
9890 *cpuusage = val;
9891#endif
9892}
9893
d842de87 9894/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9895static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9896{
32cd756a 9897 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9898 u64 totalcpuusage = 0;
9899 int i;
9900
720f5498
KC
9901 for_each_present_cpu(i)
9902 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9903
9904 return totalcpuusage;
9905}
9906
0297b803
DG
9907static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9908 u64 reset)
9909{
9910 struct cpuacct *ca = cgroup_ca(cgrp);
9911 int err = 0;
9912 int i;
9913
9914 if (reset) {
9915 err = -EINVAL;
9916 goto out;
9917 }
9918
720f5498
KC
9919 for_each_present_cpu(i)
9920 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9921
0297b803
DG
9922out:
9923 return err;
9924}
9925
e9515c3c
KC
9926static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9927 struct seq_file *m)
9928{
9929 struct cpuacct *ca = cgroup_ca(cgroup);
9930 u64 percpu;
9931 int i;
9932
9933 for_each_present_cpu(i) {
9934 percpu = cpuacct_cpuusage_read(ca, i);
9935 seq_printf(m, "%llu ", (unsigned long long) percpu);
9936 }
9937 seq_printf(m, "\n");
9938 return 0;
9939}
9940
d842de87
SV
9941static struct cftype files[] = {
9942 {
9943 .name = "usage",
f4c753b7
PM
9944 .read_u64 = cpuusage_read,
9945 .write_u64 = cpuusage_write,
d842de87 9946 },
e9515c3c
KC
9947 {
9948 .name = "usage_percpu",
9949 .read_seq_string = cpuacct_percpu_seq_read,
9950 },
9951
d842de87
SV
9952};
9953
32cd756a 9954static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9955{
32cd756a 9956 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9957}
9958
9959/*
9960 * charge this task's execution time to its accounting group.
9961 *
9962 * called with rq->lock held.
9963 */
9964static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9965{
9966 struct cpuacct *ca;
934352f2 9967 int cpu;
d842de87 9968
c40c6f85 9969 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9970 return;
9971
934352f2 9972 cpu = task_cpu(tsk);
d842de87 9973 ca = task_ca(tsk);
d842de87 9974
934352f2
BR
9975 for (; ca; ca = ca->parent) {
9976 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9977 *cpuusage += cputime;
9978 }
9979}
9980
9981struct cgroup_subsys cpuacct_subsys = {
9982 .name = "cpuacct",
9983 .create = cpuacct_create,
9984 .destroy = cpuacct_destroy,
9985 .populate = cpuacct_populate,
9986 .subsys_id = cpuacct_subsys_id,
9987};
9988#endif /* CONFIG_CGROUP_CPUACCT */
This page took 1.585854 seconds and 5 git commands to generate.