[PATCH] sched: no aggressive idle balancing
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169static inline unsigned int task_timeslice(task_t *p)
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263#define for_each_domain(cpu, domain) \
264 for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
267#define this_rq() (&__get_cpu_var(runqueues))
268#define task_rq(p) cpu_rq(task_cpu(p))
269#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
270
271/*
272 * Default context-switch locking:
273 */
274#ifndef prepare_arch_switch
275# define prepare_arch_switch(rq, next) do { } while (0)
276# define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
277# define task_running(rq, p) ((rq)->curr == (p))
278#endif
279
280/*
281 * task_rq_lock - lock the runqueue a given task resides on and disable
282 * interrupts. Note the ordering: we can safely lookup the task_rq without
283 * explicitly disabling preemption.
284 */
285static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
286 __acquires(rq->lock)
287{
288 struct runqueue *rq;
289
290repeat_lock_task:
291 local_irq_save(*flags);
292 rq = task_rq(p);
293 spin_lock(&rq->lock);
294 if (unlikely(rq != task_rq(p))) {
295 spin_unlock_irqrestore(&rq->lock, *flags);
296 goto repeat_lock_task;
297 }
298 return rq;
299}
300
301static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
302 __releases(rq->lock)
303{
304 spin_unlock_irqrestore(&rq->lock, *flags);
305}
306
307#ifdef CONFIG_SCHEDSTATS
308/*
309 * bump this up when changing the output format or the meaning of an existing
310 * format, so that tools can adapt (or abort)
311 */
312#define SCHEDSTAT_VERSION 11
313
314static int show_schedstat(struct seq_file *seq, void *v)
315{
316 int cpu;
317
318 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
319 seq_printf(seq, "timestamp %lu\n", jiffies);
320 for_each_online_cpu(cpu) {
321 runqueue_t *rq = cpu_rq(cpu);
322#ifdef CONFIG_SMP
323 struct sched_domain *sd;
324 int dcnt = 0;
325#endif
326
327 /* runqueue-specific stats */
328 seq_printf(seq,
329 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
330 cpu, rq->yld_both_empty,
331 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
332 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
333 rq->ttwu_cnt, rq->ttwu_local,
334 rq->rq_sched_info.cpu_time,
335 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
336
337 seq_printf(seq, "\n");
338
339#ifdef CONFIG_SMP
340 /* domain-specific stats */
341 for_each_domain(cpu, sd) {
342 enum idle_type itype;
343 char mask_str[NR_CPUS];
344
345 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
346 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
347 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
348 itype++) {
349 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
350 sd->lb_cnt[itype],
351 sd->lb_balanced[itype],
352 sd->lb_failed[itype],
353 sd->lb_imbalance[itype],
354 sd->lb_gained[itype],
355 sd->lb_hot_gained[itype],
356 sd->lb_nobusyq[itype],
357 sd->lb_nobusyg[itype]);
358 }
359 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
360 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
361 sd->sbe_pushed, sd->sbe_attempts,
362 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
363 }
364#endif
365 }
366 return 0;
367}
368
369static int schedstat_open(struct inode *inode, struct file *file)
370{
371 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
372 char *buf = kmalloc(size, GFP_KERNEL);
373 struct seq_file *m;
374 int res;
375
376 if (!buf)
377 return -ENOMEM;
378 res = single_open(file, show_schedstat, NULL);
379 if (!res) {
380 m = file->private_data;
381 m->buf = buf;
382 m->size = size;
383 } else
384 kfree(buf);
385 return res;
386}
387
388struct file_operations proc_schedstat_operations = {
389 .open = schedstat_open,
390 .read = seq_read,
391 .llseek = seq_lseek,
392 .release = single_release,
393};
394
395# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
396# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
397#else /* !CONFIG_SCHEDSTATS */
398# define schedstat_inc(rq, field) do { } while (0)
399# define schedstat_add(rq, field, amt) do { } while (0)
400#endif
401
402/*
403 * rq_lock - lock a given runqueue and disable interrupts.
404 */
405static inline runqueue_t *this_rq_lock(void)
406 __acquires(rq->lock)
407{
408 runqueue_t *rq;
409
410 local_irq_disable();
411 rq = this_rq();
412 spin_lock(&rq->lock);
413
414 return rq;
415}
416
1da177e4
LT
417#ifdef CONFIG_SCHEDSTATS
418/*
419 * Called when a process is dequeued from the active array and given
420 * the cpu. We should note that with the exception of interactive
421 * tasks, the expired queue will become the active queue after the active
422 * queue is empty, without explicitly dequeuing and requeuing tasks in the
423 * expired queue. (Interactive tasks may be requeued directly to the
424 * active queue, thus delaying tasks in the expired queue from running;
425 * see scheduler_tick()).
426 *
427 * This function is only called from sched_info_arrive(), rather than
428 * dequeue_task(). Even though a task may be queued and dequeued multiple
429 * times as it is shuffled about, we're really interested in knowing how
430 * long it was from the *first* time it was queued to the time that it
431 * finally hit a cpu.
432 */
433static inline void sched_info_dequeued(task_t *t)
434{
435 t->sched_info.last_queued = 0;
436}
437
438/*
439 * Called when a task finally hits the cpu. We can now calculate how
440 * long it was waiting to run. We also note when it began so that we
441 * can keep stats on how long its timeslice is.
442 */
443static inline void sched_info_arrive(task_t *t)
444{
445 unsigned long now = jiffies, diff = 0;
446 struct runqueue *rq = task_rq(t);
447
448 if (t->sched_info.last_queued)
449 diff = now - t->sched_info.last_queued;
450 sched_info_dequeued(t);
451 t->sched_info.run_delay += diff;
452 t->sched_info.last_arrival = now;
453 t->sched_info.pcnt++;
454
455 if (!rq)
456 return;
457
458 rq->rq_sched_info.run_delay += diff;
459 rq->rq_sched_info.pcnt++;
460}
461
462/*
463 * Called when a process is queued into either the active or expired
464 * array. The time is noted and later used to determine how long we
465 * had to wait for us to reach the cpu. Since the expired queue will
466 * become the active queue after active queue is empty, without dequeuing
467 * and requeuing any tasks, we are interested in queuing to either. It
468 * is unusual but not impossible for tasks to be dequeued and immediately
469 * requeued in the same or another array: this can happen in sched_yield(),
470 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
471 * to runqueue.
472 *
473 * This function is only called from enqueue_task(), but also only updates
474 * the timestamp if it is already not set. It's assumed that
475 * sched_info_dequeued() will clear that stamp when appropriate.
476 */
477static inline void sched_info_queued(task_t *t)
478{
479 if (!t->sched_info.last_queued)
480 t->sched_info.last_queued = jiffies;
481}
482
483/*
484 * Called when a process ceases being the active-running process, either
485 * voluntarily or involuntarily. Now we can calculate how long we ran.
486 */
487static inline void sched_info_depart(task_t *t)
488{
489 struct runqueue *rq = task_rq(t);
490 unsigned long diff = jiffies - t->sched_info.last_arrival;
491
492 t->sched_info.cpu_time += diff;
493
494 if (rq)
495 rq->rq_sched_info.cpu_time += diff;
496}
497
498/*
499 * Called when tasks are switched involuntarily due, typically, to expiring
500 * their time slice. (This may also be called when switching to or from
501 * the idle task.) We are only called when prev != next.
502 */
503static inline void sched_info_switch(task_t *prev, task_t *next)
504{
505 struct runqueue *rq = task_rq(prev);
506
507 /*
508 * prev now departs the cpu. It's not interesting to record
509 * stats about how efficient we were at scheduling the idle
510 * process, however.
511 */
512 if (prev != rq->idle)
513 sched_info_depart(prev);
514
515 if (next != rq->idle)
516 sched_info_arrive(next);
517}
518#else
519#define sched_info_queued(t) do { } while (0)
520#define sched_info_switch(t, next) do { } while (0)
521#endif /* CONFIG_SCHEDSTATS */
522
523/*
524 * Adding/removing a task to/from a priority array:
525 */
526static void dequeue_task(struct task_struct *p, prio_array_t *array)
527{
528 array->nr_active--;
529 list_del(&p->run_list);
530 if (list_empty(array->queue + p->prio))
531 __clear_bit(p->prio, array->bitmap);
532}
533
534static void enqueue_task(struct task_struct *p, prio_array_t *array)
535{
536 sched_info_queued(p);
537 list_add_tail(&p->run_list, array->queue + p->prio);
538 __set_bit(p->prio, array->bitmap);
539 array->nr_active++;
540 p->array = array;
541}
542
543/*
544 * Put task to the end of the run list without the overhead of dequeue
545 * followed by enqueue.
546 */
547static void requeue_task(struct task_struct *p, prio_array_t *array)
548{
549 list_move_tail(&p->run_list, array->queue + p->prio);
550}
551
552static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
553{
554 list_add(&p->run_list, array->queue + p->prio);
555 __set_bit(p->prio, array->bitmap);
556 array->nr_active++;
557 p->array = array;
558}
559
560/*
561 * effective_prio - return the priority that is based on the static
562 * priority but is modified by bonuses/penalties.
563 *
564 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
565 * into the -5 ... 0 ... +5 bonus/penalty range.
566 *
567 * We use 25% of the full 0...39 priority range so that:
568 *
569 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
570 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
571 *
572 * Both properties are important to certain workloads.
573 */
574static int effective_prio(task_t *p)
575{
576 int bonus, prio;
577
578 if (rt_task(p))
579 return p->prio;
580
581 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
582
583 prio = p->static_prio - bonus;
584 if (prio < MAX_RT_PRIO)
585 prio = MAX_RT_PRIO;
586 if (prio > MAX_PRIO-1)
587 prio = MAX_PRIO-1;
588 return prio;
589}
590
591/*
592 * __activate_task - move a task to the runqueue.
593 */
594static inline void __activate_task(task_t *p, runqueue_t *rq)
595{
596 enqueue_task(p, rq->active);
597 rq->nr_running++;
598}
599
600/*
601 * __activate_idle_task - move idle task to the _front_ of runqueue.
602 */
603static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
604{
605 enqueue_task_head(p, rq->active);
606 rq->nr_running++;
607}
608
609static void recalc_task_prio(task_t *p, unsigned long long now)
610{
611 /* Caller must always ensure 'now >= p->timestamp' */
612 unsigned long long __sleep_time = now - p->timestamp;
613 unsigned long sleep_time;
614
615 if (__sleep_time > NS_MAX_SLEEP_AVG)
616 sleep_time = NS_MAX_SLEEP_AVG;
617 else
618 sleep_time = (unsigned long)__sleep_time;
619
620 if (likely(sleep_time > 0)) {
621 /*
622 * User tasks that sleep a long time are categorised as
623 * idle and will get just interactive status to stay active &
624 * prevent them suddenly becoming cpu hogs and starving
625 * other processes.
626 */
627 if (p->mm && p->activated != -1 &&
628 sleep_time > INTERACTIVE_SLEEP(p)) {
629 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
630 DEF_TIMESLICE);
631 } else {
632 /*
633 * The lower the sleep avg a task has the more
634 * rapidly it will rise with sleep time.
635 */
636 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
637
638 /*
639 * Tasks waking from uninterruptible sleep are
640 * limited in their sleep_avg rise as they
641 * are likely to be waiting on I/O
642 */
643 if (p->activated == -1 && p->mm) {
644 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
645 sleep_time = 0;
646 else if (p->sleep_avg + sleep_time >=
647 INTERACTIVE_SLEEP(p)) {
648 p->sleep_avg = INTERACTIVE_SLEEP(p);
649 sleep_time = 0;
650 }
651 }
652
653 /*
654 * This code gives a bonus to interactive tasks.
655 *
656 * The boost works by updating the 'average sleep time'
657 * value here, based on ->timestamp. The more time a
658 * task spends sleeping, the higher the average gets -
659 * and the higher the priority boost gets as well.
660 */
661 p->sleep_avg += sleep_time;
662
663 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
664 p->sleep_avg = NS_MAX_SLEEP_AVG;
665 }
666 }
667
668 p->prio = effective_prio(p);
669}
670
671/*
672 * activate_task - move a task to the runqueue and do priority recalculation
673 *
674 * Update all the scheduling statistics stuff. (sleep average
675 * calculation, priority modifiers, etc.)
676 */
677static void activate_task(task_t *p, runqueue_t *rq, int local)
678{
679 unsigned long long now;
680
681 now = sched_clock();
682#ifdef CONFIG_SMP
683 if (!local) {
684 /* Compensate for drifting sched_clock */
685 runqueue_t *this_rq = this_rq();
686 now = (now - this_rq->timestamp_last_tick)
687 + rq->timestamp_last_tick;
688 }
689#endif
690
691 recalc_task_prio(p, now);
692
693 /*
694 * This checks to make sure it's not an uninterruptible task
695 * that is now waking up.
696 */
697 if (!p->activated) {
698 /*
699 * Tasks which were woken up by interrupts (ie. hw events)
700 * are most likely of interactive nature. So we give them
701 * the credit of extending their sleep time to the period
702 * of time they spend on the runqueue, waiting for execution
703 * on a CPU, first time around:
704 */
705 if (in_interrupt())
706 p->activated = 2;
707 else {
708 /*
709 * Normal first-time wakeups get a credit too for
710 * on-runqueue time, but it will be weighted down:
711 */
712 p->activated = 1;
713 }
714 }
715 p->timestamp = now;
716
717 __activate_task(p, rq);
718}
719
720/*
721 * deactivate_task - remove a task from the runqueue.
722 */
723static void deactivate_task(struct task_struct *p, runqueue_t *rq)
724{
725 rq->nr_running--;
726 dequeue_task(p, p->array);
727 p->array = NULL;
728}
729
730/*
731 * resched_task - mark a task 'to be rescheduled now'.
732 *
733 * On UP this means the setting of the need_resched flag, on SMP it
734 * might also involve a cross-CPU call to trigger the scheduler on
735 * the target CPU.
736 */
737#ifdef CONFIG_SMP
738static void resched_task(task_t *p)
739{
740 int need_resched, nrpolling;
741
742 assert_spin_locked(&task_rq(p)->lock);
743
744 /* minimise the chance of sending an interrupt to poll_idle() */
745 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
746 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
747 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
748
749 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
750 smp_send_reschedule(task_cpu(p));
751}
752#else
753static inline void resched_task(task_t *p)
754{
755 set_tsk_need_resched(p);
756}
757#endif
758
759/**
760 * task_curr - is this task currently executing on a CPU?
761 * @p: the task in question.
762 */
763inline int task_curr(const task_t *p)
764{
765 return cpu_curr(task_cpu(p)) == p;
766}
767
768#ifdef CONFIG_SMP
769enum request_type {
770 REQ_MOVE_TASK,
771 REQ_SET_DOMAIN,
772};
773
774typedef struct {
775 struct list_head list;
776 enum request_type type;
777
778 /* For REQ_MOVE_TASK */
779 task_t *task;
780 int dest_cpu;
781
782 /* For REQ_SET_DOMAIN */
783 struct sched_domain *sd;
784
785 struct completion done;
786} migration_req_t;
787
788/*
789 * The task's runqueue lock must be held.
790 * Returns true if you have to wait for migration thread.
791 */
792static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
793{
794 runqueue_t *rq = task_rq(p);
795
796 /*
797 * If the task is not on a runqueue (and not running), then
798 * it is sufficient to simply update the task's cpu field.
799 */
800 if (!p->array && !task_running(rq, p)) {
801 set_task_cpu(p, dest_cpu);
802 return 0;
803 }
804
805 init_completion(&req->done);
806 req->type = REQ_MOVE_TASK;
807 req->task = p;
808 req->dest_cpu = dest_cpu;
809 list_add(&req->list, &rq->migration_queue);
810 return 1;
811}
812
813/*
814 * wait_task_inactive - wait for a thread to unschedule.
815 *
816 * The caller must ensure that the task *will* unschedule sometime soon,
817 * else this function might spin for a *long* time. This function can't
818 * be called with interrupts off, or it may introduce deadlock with
819 * smp_call_function() if an IPI is sent by the same process we are
820 * waiting to become inactive.
821 */
822void wait_task_inactive(task_t * p)
823{
824 unsigned long flags;
825 runqueue_t *rq;
826 int preempted;
827
828repeat:
829 rq = task_rq_lock(p, &flags);
830 /* Must be off runqueue entirely, not preempted. */
831 if (unlikely(p->array || task_running(rq, p))) {
832 /* If it's preempted, we yield. It could be a while. */
833 preempted = !task_running(rq, p);
834 task_rq_unlock(rq, &flags);
835 cpu_relax();
836 if (preempted)
837 yield();
838 goto repeat;
839 }
840 task_rq_unlock(rq, &flags);
841}
842
843/***
844 * kick_process - kick a running thread to enter/exit the kernel
845 * @p: the to-be-kicked thread
846 *
847 * Cause a process which is running on another CPU to enter
848 * kernel-mode, without any delay. (to get signals handled.)
849 *
850 * NOTE: this function doesnt have to take the runqueue lock,
851 * because all it wants to ensure is that the remote task enters
852 * the kernel. If the IPI races and the task has been migrated
853 * to another CPU then no harm is done and the purpose has been
854 * achieved as well.
855 */
856void kick_process(task_t *p)
857{
858 int cpu;
859
860 preempt_disable();
861 cpu = task_cpu(p);
862 if ((cpu != smp_processor_id()) && task_curr(p))
863 smp_send_reschedule(cpu);
864 preempt_enable();
865}
866
867/*
868 * Return a low guess at the load of a migration-source cpu.
869 *
870 * We want to under-estimate the load of migration sources, to
871 * balance conservatively.
872 */
7897986b 873static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
874{
875 runqueue_t *rq = cpu_rq(cpu);
876 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
877 if (type == 0)
878 return load_now;
1da177e4 879
7897986b 880 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
881}
882
883/*
884 * Return a high guess at the load of a migration-target cpu
885 */
7897986b 886static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
887{
888 runqueue_t *rq = cpu_rq(cpu);
889 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
890 if (type == 0)
891 return load_now;
1da177e4 892
7897986b 893 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
894}
895
896#endif
897
898/*
899 * wake_idle() will wake a task on an idle cpu if task->cpu is
900 * not idle and an idle cpu is available. The span of cpus to
901 * search starts with cpus closest then further out as needed,
902 * so we always favor a closer, idle cpu.
903 *
904 * Returns the CPU we should wake onto.
905 */
906#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
907static int wake_idle(int cpu, task_t *p)
908{
909 cpumask_t tmp;
910 struct sched_domain *sd;
911 int i;
912
913 if (idle_cpu(cpu))
914 return cpu;
915
916 for_each_domain(cpu, sd) {
917 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 918 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
919 for_each_cpu_mask(i, tmp) {
920 if (idle_cpu(i))
921 return i;
922 }
923 }
e0f364f4
NP
924 else
925 break;
1da177e4
LT
926 }
927 return cpu;
928}
929#else
930static inline int wake_idle(int cpu, task_t *p)
931{
932 return cpu;
933}
934#endif
935
936/***
937 * try_to_wake_up - wake up a thread
938 * @p: the to-be-woken-up thread
939 * @state: the mask of task states that can be woken
940 * @sync: do a synchronous wakeup?
941 *
942 * Put it on the run-queue if it's not already there. The "current"
943 * thread is always on the run-queue (except when the actual
944 * re-schedule is in progress), and as such you're allowed to do
945 * the simpler "current->state = TASK_RUNNING" to mark yourself
946 * runnable without the overhead of this.
947 *
948 * returns failure only if the task is already active.
949 */
950static int try_to_wake_up(task_t * p, unsigned int state, int sync)
951{
952 int cpu, this_cpu, success = 0;
953 unsigned long flags;
954 long old_state;
955 runqueue_t *rq;
956#ifdef CONFIG_SMP
957 unsigned long load, this_load;
7897986b 958 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
959 int new_cpu;
960#endif
961
962 rq = task_rq_lock(p, &flags);
963 old_state = p->state;
964 if (!(old_state & state))
965 goto out;
966
967 if (p->array)
968 goto out_running;
969
970 cpu = task_cpu(p);
971 this_cpu = smp_processor_id();
972
973#ifdef CONFIG_SMP
974 if (unlikely(task_running(rq, p)))
975 goto out_activate;
976
7897986b
NP
977 new_cpu = cpu;
978
1da177e4
LT
979 schedstat_inc(rq, ttwu_cnt);
980 if (cpu == this_cpu) {
981 schedstat_inc(rq, ttwu_local);
7897986b
NP
982 goto out_set_cpu;
983 }
984
985 for_each_domain(this_cpu, sd) {
986 if (cpu_isset(cpu, sd->span)) {
987 schedstat_inc(sd, ttwu_wake_remote);
988 this_sd = sd;
989 break;
1da177e4
LT
990 }
991 }
1da177e4 992
7897986b 993 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
994 goto out_set_cpu;
995
1da177e4 996 /*
7897986b 997 * Check for affine wakeup and passive balancing possibilities.
1da177e4 998 */
7897986b
NP
999 if (this_sd) {
1000 int idx = this_sd->wake_idx;
1001 unsigned int imbalance;
1da177e4 1002
a3f21bce
NP
1003 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1004
7897986b
NP
1005 load = source_load(cpu, idx);
1006 this_load = target_load(this_cpu, idx);
1da177e4 1007
7897986b
NP
1008 new_cpu = this_cpu; /* Wake to this CPU if we can */
1009
a3f21bce
NP
1010 if (this_sd->flags & SD_WAKE_AFFINE) {
1011 unsigned long tl = this_load;
1da177e4 1012 /*
a3f21bce
NP
1013 * If sync wakeup then subtract the (maximum possible)
1014 * effect of the currently running task from the load
1015 * of the current CPU:
1da177e4 1016 */
a3f21bce
NP
1017 if (sync)
1018 tl -= SCHED_LOAD_SCALE;
1019
1020 if ((tl <= load &&
1021 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1022 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1023 /*
1024 * This domain has SD_WAKE_AFFINE and
1025 * p is cache cold in this domain, and
1026 * there is no bad imbalance.
1027 */
1028 schedstat_inc(this_sd, ttwu_move_affine);
1029 goto out_set_cpu;
1030 }
1031 }
1032
1033 /*
1034 * Start passive balancing when half the imbalance_pct
1035 * limit is reached.
1036 */
1037 if (this_sd->flags & SD_WAKE_BALANCE) {
1038 if (imbalance*this_load <= 100*load) {
1039 schedstat_inc(this_sd, ttwu_move_balance);
1040 goto out_set_cpu;
1041 }
1da177e4
LT
1042 }
1043 }
1044
1045 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1046out_set_cpu:
1047 new_cpu = wake_idle(new_cpu, p);
1048 if (new_cpu != cpu) {
1049 set_task_cpu(p, new_cpu);
1050 task_rq_unlock(rq, &flags);
1051 /* might preempt at this point */
1052 rq = task_rq_lock(p, &flags);
1053 old_state = p->state;
1054 if (!(old_state & state))
1055 goto out;
1056 if (p->array)
1057 goto out_running;
1058
1059 this_cpu = smp_processor_id();
1060 cpu = task_cpu(p);
1061 }
1062
1063out_activate:
1064#endif /* CONFIG_SMP */
1065 if (old_state == TASK_UNINTERRUPTIBLE) {
1066 rq->nr_uninterruptible--;
1067 /*
1068 * Tasks on involuntary sleep don't earn
1069 * sleep_avg beyond just interactive state.
1070 */
1071 p->activated = -1;
1072 }
1073
1074 /*
1075 * Sync wakeups (i.e. those types of wakeups where the waker
1076 * has indicated that it will leave the CPU in short order)
1077 * don't trigger a preemption, if the woken up task will run on
1078 * this cpu. (in this case the 'I will reschedule' promise of
1079 * the waker guarantees that the freshly woken up task is going
1080 * to be considered on this CPU.)
1081 */
1082 activate_task(p, rq, cpu == this_cpu);
1083 if (!sync || cpu != this_cpu) {
1084 if (TASK_PREEMPTS_CURR(p, rq))
1085 resched_task(rq->curr);
1086 }
1087 success = 1;
1088
1089out_running:
1090 p->state = TASK_RUNNING;
1091out:
1092 task_rq_unlock(rq, &flags);
1093
1094 return success;
1095}
1096
1097int fastcall wake_up_process(task_t * p)
1098{
1099 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1100 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1101}
1102
1103EXPORT_SYMBOL(wake_up_process);
1104
1105int fastcall wake_up_state(task_t *p, unsigned int state)
1106{
1107 return try_to_wake_up(p, state, 0);
1108}
1109
1110#ifdef CONFIG_SMP
1111static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1112 struct sched_domain *sd);
1113#endif
1114
1115/*
1116 * Perform scheduler related setup for a newly forked process p.
1117 * p is forked by current.
1118 */
1119void fastcall sched_fork(task_t *p)
1120{
1121 /*
1122 * We mark the process as running here, but have not actually
1123 * inserted it onto the runqueue yet. This guarantees that
1124 * nobody will actually run it, and a signal or other external
1125 * event cannot wake it up and insert it on the runqueue either.
1126 */
1127 p->state = TASK_RUNNING;
1128 INIT_LIST_HEAD(&p->run_list);
1129 p->array = NULL;
1130 spin_lock_init(&p->switch_lock);
1131#ifdef CONFIG_SCHEDSTATS
1132 memset(&p->sched_info, 0, sizeof(p->sched_info));
1133#endif
1134#ifdef CONFIG_PREEMPT
1135 /*
1136 * During context-switch we hold precisely one spinlock, which
1137 * schedule_tail drops. (in the common case it's this_rq()->lock,
1138 * but it also can be p->switch_lock.) So we compensate with a count
1139 * of 1. Also, we want to start with kernel preemption disabled.
1140 */
1141 p->thread_info->preempt_count = 1;
1142#endif
1143 /*
1144 * Share the timeslice between parent and child, thus the
1145 * total amount of pending timeslices in the system doesn't change,
1146 * resulting in more scheduling fairness.
1147 */
1148 local_irq_disable();
1149 p->time_slice = (current->time_slice + 1) >> 1;
1150 /*
1151 * The remainder of the first timeslice might be recovered by
1152 * the parent if the child exits early enough.
1153 */
1154 p->first_time_slice = 1;
1155 current->time_slice >>= 1;
1156 p->timestamp = sched_clock();
1157 if (unlikely(!current->time_slice)) {
1158 /*
1159 * This case is rare, it happens when the parent has only
1160 * a single jiffy left from its timeslice. Taking the
1161 * runqueue lock is not a problem.
1162 */
1163 current->time_slice = 1;
1164 preempt_disable();
1165 scheduler_tick();
1166 local_irq_enable();
1167 preempt_enable();
1168 } else
1169 local_irq_enable();
1170}
1171
1172/*
1173 * wake_up_new_task - wake up a newly created task for the first time.
1174 *
1175 * This function will do some initial scheduler statistics housekeeping
1176 * that must be done for every newly created context, then puts the task
1177 * on the runqueue and wakes it.
1178 */
1179void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1180{
1181 unsigned long flags;
1182 int this_cpu, cpu;
1183 runqueue_t *rq, *this_rq;
1184
1185 rq = task_rq_lock(p, &flags);
1186 cpu = task_cpu(p);
1187 this_cpu = smp_processor_id();
1188
1189 BUG_ON(p->state != TASK_RUNNING);
1190
1191 /*
1192 * We decrease the sleep average of forking parents
1193 * and children as well, to keep max-interactive tasks
1194 * from forking tasks that are max-interactive. The parent
1195 * (current) is done further down, under its lock.
1196 */
1197 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1198 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1199
1200 p->prio = effective_prio(p);
1201
1202 if (likely(cpu == this_cpu)) {
1203 if (!(clone_flags & CLONE_VM)) {
1204 /*
1205 * The VM isn't cloned, so we're in a good position to
1206 * do child-runs-first in anticipation of an exec. This
1207 * usually avoids a lot of COW overhead.
1208 */
1209 if (unlikely(!current->array))
1210 __activate_task(p, rq);
1211 else {
1212 p->prio = current->prio;
1213 list_add_tail(&p->run_list, &current->run_list);
1214 p->array = current->array;
1215 p->array->nr_active++;
1216 rq->nr_running++;
1217 }
1218 set_need_resched();
1219 } else
1220 /* Run child last */
1221 __activate_task(p, rq);
1222 /*
1223 * We skip the following code due to cpu == this_cpu
1224 *
1225 * task_rq_unlock(rq, &flags);
1226 * this_rq = task_rq_lock(current, &flags);
1227 */
1228 this_rq = rq;
1229 } else {
1230 this_rq = cpu_rq(this_cpu);
1231
1232 /*
1233 * Not the local CPU - must adjust timestamp. This should
1234 * get optimised away in the !CONFIG_SMP case.
1235 */
1236 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1237 + rq->timestamp_last_tick;
1238 __activate_task(p, rq);
1239 if (TASK_PREEMPTS_CURR(p, rq))
1240 resched_task(rq->curr);
1241
1242 /*
1243 * Parent and child are on different CPUs, now get the
1244 * parent runqueue to update the parent's ->sleep_avg:
1245 */
1246 task_rq_unlock(rq, &flags);
1247 this_rq = task_rq_lock(current, &flags);
1248 }
1249 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1250 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1251 task_rq_unlock(this_rq, &flags);
1252}
1253
1254/*
1255 * Potentially available exiting-child timeslices are
1256 * retrieved here - this way the parent does not get
1257 * penalized for creating too many threads.
1258 *
1259 * (this cannot be used to 'generate' timeslices
1260 * artificially, because any timeslice recovered here
1261 * was given away by the parent in the first place.)
1262 */
1263void fastcall sched_exit(task_t * p)
1264{
1265 unsigned long flags;
1266 runqueue_t *rq;
1267
1268 /*
1269 * If the child was a (relative-) CPU hog then decrease
1270 * the sleep_avg of the parent as well.
1271 */
1272 rq = task_rq_lock(p->parent, &flags);
1273 if (p->first_time_slice) {
1274 p->parent->time_slice += p->time_slice;
1275 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1276 p->parent->time_slice = task_timeslice(p);
1277 }
1278 if (p->sleep_avg < p->parent->sleep_avg)
1279 p->parent->sleep_avg = p->parent->sleep_avg /
1280 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1281 (EXIT_WEIGHT + 1);
1282 task_rq_unlock(rq, &flags);
1283}
1284
1285/**
1286 * finish_task_switch - clean up after a task-switch
1287 * @prev: the thread we just switched away from.
1288 *
1289 * We enter this with the runqueue still locked, and finish_arch_switch()
1290 * will unlock it along with doing any other architecture-specific cleanup
1291 * actions.
1292 *
1293 * Note that we may have delayed dropping an mm in context_switch(). If
1294 * so, we finish that here outside of the runqueue lock. (Doing it
1295 * with the lock held can cause deadlocks; see schedule() for
1296 * details.)
1297 */
1298static inline void finish_task_switch(task_t *prev)
1299 __releases(rq->lock)
1300{
1301 runqueue_t *rq = this_rq();
1302 struct mm_struct *mm = rq->prev_mm;
1303 unsigned long prev_task_flags;
1304
1305 rq->prev_mm = NULL;
1306
1307 /*
1308 * A task struct has one reference for the use as "current".
1309 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1310 * calls schedule one last time. The schedule call will never return,
1311 * and the scheduled task must drop that reference.
1312 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1313 * still held, otherwise prev could be scheduled on another cpu, die
1314 * there before we look at prev->state, and then the reference would
1315 * be dropped twice.
1316 * Manfred Spraul <manfred@colorfullife.com>
1317 */
1318 prev_task_flags = prev->flags;
1319 finish_arch_switch(rq, prev);
1320 if (mm)
1321 mmdrop(mm);
1322 if (unlikely(prev_task_flags & PF_DEAD))
1323 put_task_struct(prev);
1324}
1325
1326/**
1327 * schedule_tail - first thing a freshly forked thread must call.
1328 * @prev: the thread we just switched away from.
1329 */
1330asmlinkage void schedule_tail(task_t *prev)
1331 __releases(rq->lock)
1332{
1333 finish_task_switch(prev);
1334
1335 if (current->set_child_tid)
1336 put_user(current->pid, current->set_child_tid);
1337}
1338
1339/*
1340 * context_switch - switch to the new MM and the new
1341 * thread's register state.
1342 */
1343static inline
1344task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1345{
1346 struct mm_struct *mm = next->mm;
1347 struct mm_struct *oldmm = prev->active_mm;
1348
1349 if (unlikely(!mm)) {
1350 next->active_mm = oldmm;
1351 atomic_inc(&oldmm->mm_count);
1352 enter_lazy_tlb(oldmm, next);
1353 } else
1354 switch_mm(oldmm, mm, next);
1355
1356 if (unlikely(!prev->mm)) {
1357 prev->active_mm = NULL;
1358 WARN_ON(rq->prev_mm);
1359 rq->prev_mm = oldmm;
1360 }
1361
1362 /* Here we just switch the register state and the stack. */
1363 switch_to(prev, next, prev);
1364
1365 return prev;
1366}
1367
1368/*
1369 * nr_running, nr_uninterruptible and nr_context_switches:
1370 *
1371 * externally visible scheduler statistics: current number of runnable
1372 * threads, current number of uninterruptible-sleeping threads, total
1373 * number of context switches performed since bootup.
1374 */
1375unsigned long nr_running(void)
1376{
1377 unsigned long i, sum = 0;
1378
1379 for_each_online_cpu(i)
1380 sum += cpu_rq(i)->nr_running;
1381
1382 return sum;
1383}
1384
1385unsigned long nr_uninterruptible(void)
1386{
1387 unsigned long i, sum = 0;
1388
1389 for_each_cpu(i)
1390 sum += cpu_rq(i)->nr_uninterruptible;
1391
1392 /*
1393 * Since we read the counters lockless, it might be slightly
1394 * inaccurate. Do not allow it to go below zero though:
1395 */
1396 if (unlikely((long)sum < 0))
1397 sum = 0;
1398
1399 return sum;
1400}
1401
1402unsigned long long nr_context_switches(void)
1403{
1404 unsigned long long i, sum = 0;
1405
1406 for_each_cpu(i)
1407 sum += cpu_rq(i)->nr_switches;
1408
1409 return sum;
1410}
1411
1412unsigned long nr_iowait(void)
1413{
1414 unsigned long i, sum = 0;
1415
1416 for_each_cpu(i)
1417 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1418
1419 return sum;
1420}
1421
1422#ifdef CONFIG_SMP
1423
1424/*
1425 * double_rq_lock - safely lock two runqueues
1426 *
1427 * Note this does not disable interrupts like task_rq_lock,
1428 * you need to do so manually before calling.
1429 */
1430static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1431 __acquires(rq1->lock)
1432 __acquires(rq2->lock)
1433{
1434 if (rq1 == rq2) {
1435 spin_lock(&rq1->lock);
1436 __acquire(rq2->lock); /* Fake it out ;) */
1437 } else {
1438 if (rq1 < rq2) {
1439 spin_lock(&rq1->lock);
1440 spin_lock(&rq2->lock);
1441 } else {
1442 spin_lock(&rq2->lock);
1443 spin_lock(&rq1->lock);
1444 }
1445 }
1446}
1447
1448/*
1449 * double_rq_unlock - safely unlock two runqueues
1450 *
1451 * Note this does not restore interrupts like task_rq_unlock,
1452 * you need to do so manually after calling.
1453 */
1454static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1455 __releases(rq1->lock)
1456 __releases(rq2->lock)
1457{
1458 spin_unlock(&rq1->lock);
1459 if (rq1 != rq2)
1460 spin_unlock(&rq2->lock);
1461 else
1462 __release(rq2->lock);
1463}
1464
1465/*
1466 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1467 */
1468static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1469 __releases(this_rq->lock)
1470 __acquires(busiest->lock)
1471 __acquires(this_rq->lock)
1472{
1473 if (unlikely(!spin_trylock(&busiest->lock))) {
1474 if (busiest < this_rq) {
1475 spin_unlock(&this_rq->lock);
1476 spin_lock(&busiest->lock);
1477 spin_lock(&this_rq->lock);
1478 } else
1479 spin_lock(&busiest->lock);
1480 }
1481}
1482
1483/*
1484 * find_idlest_cpu - find the least busy runqueue.
1485 */
1486static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1487 struct sched_domain *sd)
1488{
1489 unsigned long load, min_load, this_load;
1490 int i, min_cpu;
1491 cpumask_t mask;
1492
1493 min_cpu = UINT_MAX;
1494 min_load = ULONG_MAX;
1495
1496 cpus_and(mask, sd->span, p->cpus_allowed);
1497
1498 for_each_cpu_mask(i, mask) {
7897986b 1499 load = target_load(i, sd->wake_idx);
1da177e4
LT
1500
1501 if (load < min_load) {
1502 min_cpu = i;
1503 min_load = load;
1504
1505 /* break out early on an idle CPU: */
1506 if (!min_load)
1507 break;
1508 }
1509 }
1510
1511 /* add +1 to account for the new task */
7897986b 1512 this_load = source_load(this_cpu, sd->wake_idx) + SCHED_LOAD_SCALE;
1da177e4
LT
1513
1514 /*
1515 * Would with the addition of the new task to the
1516 * current CPU there be an imbalance between this
1517 * CPU and the idlest CPU?
1518 *
1519 * Use half of the balancing threshold - new-context is
1520 * a good opportunity to balance.
1521 */
1522 if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1523 return min_cpu;
1524
1525 return this_cpu;
1526}
1527
1528/*
1529 * If dest_cpu is allowed for this process, migrate the task to it.
1530 * This is accomplished by forcing the cpu_allowed mask to only
1531 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1532 * the cpu_allowed mask is restored.
1533 */
1534static void sched_migrate_task(task_t *p, int dest_cpu)
1535{
1536 migration_req_t req;
1537 runqueue_t *rq;
1538 unsigned long flags;
1539
1540 rq = task_rq_lock(p, &flags);
1541 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1542 || unlikely(cpu_is_offline(dest_cpu)))
1543 goto out;
1544
1545 /* force the process onto the specified CPU */
1546 if (migrate_task(p, dest_cpu, &req)) {
1547 /* Need to wait for migration thread (might exit: take ref). */
1548 struct task_struct *mt = rq->migration_thread;
1549 get_task_struct(mt);
1550 task_rq_unlock(rq, &flags);
1551 wake_up_process(mt);
1552 put_task_struct(mt);
1553 wait_for_completion(&req.done);
1554 return;
1555 }
1556out:
1557 task_rq_unlock(rq, &flags);
1558}
1559
1560/*
1561 * sched_exec(): find the highest-level, exec-balance-capable
1562 * domain and try to migrate the task to the least loaded CPU.
1563 *
1564 * execve() is a valuable balancing opportunity, because at this point
1565 * the task has the smallest effective memory and cache footprint.
1566 */
1567void sched_exec(void)
1568{
1569 struct sched_domain *tmp, *sd = NULL;
1570 int new_cpu, this_cpu = get_cpu();
1571
1572 /* Prefer the current CPU if there's only this task running */
1573 if (this_rq()->nr_running <= 1)
1574 goto out;
1575
1576 for_each_domain(this_cpu, tmp)
1577 if (tmp->flags & SD_BALANCE_EXEC)
1578 sd = tmp;
1579
1580 if (sd) {
1581 schedstat_inc(sd, sbe_attempts);
1582 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1583 if (new_cpu != this_cpu) {
1584 schedstat_inc(sd, sbe_pushed);
1585 put_cpu();
1586 sched_migrate_task(current, new_cpu);
1587 return;
1588 }
1589 }
1590out:
1591 put_cpu();
1592}
1593
1594/*
1595 * pull_task - move a task from a remote runqueue to the local runqueue.
1596 * Both runqueues must be locked.
1597 */
1598static inline
1599void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1600 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1601{
1602 dequeue_task(p, src_array);
1603 src_rq->nr_running--;
1604 set_task_cpu(p, this_cpu);
1605 this_rq->nr_running++;
1606 enqueue_task(p, this_array);
1607 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1608 + this_rq->timestamp_last_tick;
1609 /*
1610 * Note that idle threads have a prio of MAX_PRIO, for this test
1611 * to be always true for them.
1612 */
1613 if (TASK_PREEMPTS_CURR(p, this_rq))
1614 resched_task(this_rq->curr);
1615}
1616
1617/*
1618 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1619 */
1620static inline
1621int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
81026794 1622 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1da177e4
LT
1623{
1624 /*
1625 * We do not migrate tasks that are:
1626 * 1) running (obviously), or
1627 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1628 * 3) are cache-hot on their current CPU.
1629 */
1da177e4
LT
1630 if (!cpu_isset(this_cpu, p->cpus_allowed))
1631 return 0;
81026794
NP
1632 *all_pinned = 0;
1633
1634 if (task_running(rq, p))
1635 return 0;
1da177e4
LT
1636
1637 /*
1638 * Aggressive migration if:
cafb20c1 1639 * 1) task is cache cold, or
1da177e4
LT
1640 * 2) too many balance attempts have failed.
1641 */
1642
cafb20c1 1643 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1644 return 1;
1645
1646 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1647 return 0;
1da177e4
LT
1648 return 1;
1649}
1650
1651/*
1652 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1653 * as part of a balancing operation within "domain". Returns the number of
1654 * tasks moved.
1655 *
1656 * Called with both runqueues locked.
1657 */
1658static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1659 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1660 enum idle_type idle, int *all_pinned)
1da177e4
LT
1661{
1662 prio_array_t *array, *dst_array;
1663 struct list_head *head, *curr;
81026794 1664 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1665 task_t *tmp;
1666
81026794 1667 if (max_nr_move == 0)
1da177e4
LT
1668 goto out;
1669
81026794
NP
1670 pinned = 1;
1671
1da177e4
LT
1672 /*
1673 * We first consider expired tasks. Those will likely not be
1674 * executed in the near future, and they are most likely to
1675 * be cache-cold, thus switching CPUs has the least effect
1676 * on them.
1677 */
1678 if (busiest->expired->nr_active) {
1679 array = busiest->expired;
1680 dst_array = this_rq->expired;
1681 } else {
1682 array = busiest->active;
1683 dst_array = this_rq->active;
1684 }
1685
1686new_array:
1687 /* Start searching at priority 0: */
1688 idx = 0;
1689skip_bitmap:
1690 if (!idx)
1691 idx = sched_find_first_bit(array->bitmap);
1692 else
1693 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1694 if (idx >= MAX_PRIO) {
1695 if (array == busiest->expired && busiest->active->nr_active) {
1696 array = busiest->active;
1697 dst_array = this_rq->active;
1698 goto new_array;
1699 }
1700 goto out;
1701 }
1702
1703 head = array->queue + idx;
1704 curr = head->prev;
1705skip_queue:
1706 tmp = list_entry(curr, task_t, run_list);
1707
1708 curr = curr->prev;
1709
81026794 1710 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1711 if (curr != head)
1712 goto skip_queue;
1713 idx++;
1714 goto skip_bitmap;
1715 }
1716
1717#ifdef CONFIG_SCHEDSTATS
1718 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1719 schedstat_inc(sd, lb_hot_gained[idle]);
1720#endif
1721
1722 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1723 pulled++;
1724
1725 /* We only want to steal up to the prescribed number of tasks. */
1726 if (pulled < max_nr_move) {
1727 if (curr != head)
1728 goto skip_queue;
1729 idx++;
1730 goto skip_bitmap;
1731 }
1732out:
1733 /*
1734 * Right now, this is the only place pull_task() is called,
1735 * so we can safely collect pull_task() stats here rather than
1736 * inside pull_task().
1737 */
1738 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1739
1740 if (all_pinned)
1741 *all_pinned = pinned;
1da177e4
LT
1742 return pulled;
1743}
1744
1745/*
1746 * find_busiest_group finds and returns the busiest CPU group within the
1747 * domain. It calculates and returns the number of tasks which should be
1748 * moved to restore balance via the imbalance parameter.
1749 */
1750static struct sched_group *
1751find_busiest_group(struct sched_domain *sd, int this_cpu,
1752 unsigned long *imbalance, enum idle_type idle)
1753{
1754 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1755 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
7897986b 1756 int load_idx;
1da177e4
LT
1757
1758 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1759 if (idle == NOT_IDLE)
1760 load_idx = sd->busy_idx;
1761 else if (idle == NEWLY_IDLE)
1762 load_idx = sd->newidle_idx;
1763 else
1764 load_idx = sd->idle_idx;
1da177e4
LT
1765
1766 do {
1767 unsigned long load;
1768 int local_group;
1769 int i;
1770
1771 local_group = cpu_isset(this_cpu, group->cpumask);
1772
1773 /* Tally up the load of all CPUs in the group */
1774 avg_load = 0;
1775
1776 for_each_cpu_mask(i, group->cpumask) {
1777 /* Bias balancing toward cpus of our domain */
1778 if (local_group)
7897986b 1779 load = target_load(i, load_idx);
1da177e4 1780 else
7897986b 1781 load = source_load(i, load_idx);
1da177e4
LT
1782
1783 avg_load += load;
1784 }
1785
1786 total_load += avg_load;
1787 total_pwr += group->cpu_power;
1788
1789 /* Adjust by relative CPU power of the group */
1790 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1791
1792 if (local_group) {
1793 this_load = avg_load;
1794 this = group;
1795 goto nextgroup;
1796 } else if (avg_load > max_load) {
1797 max_load = avg_load;
1798 busiest = group;
1799 }
1800nextgroup:
1801 group = group->next;
1802 } while (group != sd->groups);
1803
1804 if (!busiest || this_load >= max_load)
1805 goto out_balanced;
1806
1807 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1808
1809 if (this_load >= avg_load ||
1810 100*max_load <= sd->imbalance_pct*this_load)
1811 goto out_balanced;
1812
1813 /*
1814 * We're trying to get all the cpus to the average_load, so we don't
1815 * want to push ourselves above the average load, nor do we wish to
1816 * reduce the max loaded cpu below the average load, as either of these
1817 * actions would just result in more rebalancing later, and ping-pong
1818 * tasks around. Thus we look for the minimum possible imbalance.
1819 * Negative imbalances (*we* are more loaded than anyone else) will
1820 * be counted as no imbalance for these purposes -- we can't fix that
1821 * by pulling tasks to us. Be careful of negative numbers as they'll
1822 * appear as very large values with unsigned longs.
1823 */
1824 /* How much load to actually move to equalise the imbalance */
1825 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1826 (avg_load - this_load) * this->cpu_power)
1827 / SCHED_LOAD_SCALE;
1828
1829 if (*imbalance < SCHED_LOAD_SCALE) {
1830 unsigned long pwr_now = 0, pwr_move = 0;
1831 unsigned long tmp;
1832
1833 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1834 *imbalance = 1;
1835 return busiest;
1836 }
1837
1838 /*
1839 * OK, we don't have enough imbalance to justify moving tasks,
1840 * however we may be able to increase total CPU power used by
1841 * moving them.
1842 */
1843
1844 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1845 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1846 pwr_now /= SCHED_LOAD_SCALE;
1847
1848 /* Amount of load we'd subtract */
1849 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1850 if (max_load > tmp)
1851 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1852 max_load - tmp);
1853
1854 /* Amount of load we'd add */
1855 if (max_load*busiest->cpu_power <
1856 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1857 tmp = max_load*busiest->cpu_power/this->cpu_power;
1858 else
1859 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1860 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1861 pwr_move /= SCHED_LOAD_SCALE;
1862
1863 /* Move if we gain throughput */
1864 if (pwr_move <= pwr_now)
1865 goto out_balanced;
1866
1867 *imbalance = 1;
1868 return busiest;
1869 }
1870
1871 /* Get rid of the scaling factor, rounding down as we divide */
1872 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
1873 return busiest;
1874
1875out_balanced:
1da177e4
LT
1876
1877 *imbalance = 0;
1878 return NULL;
1879}
1880
1881/*
1882 * find_busiest_queue - find the busiest runqueue among the cpus in group.
1883 */
1884static runqueue_t *find_busiest_queue(struct sched_group *group)
1885{
1886 unsigned long load, max_load = 0;
1887 runqueue_t *busiest = NULL;
1888 int i;
1889
1890 for_each_cpu_mask(i, group->cpumask) {
7897986b 1891 load = source_load(i, 0);
1da177e4
LT
1892
1893 if (load > max_load) {
1894 max_load = load;
1895 busiest = cpu_rq(i);
1896 }
1897 }
1898
1899 return busiest;
1900}
1901
1902/*
1903 * Check this_cpu to ensure it is balanced within domain. Attempt to move
1904 * tasks if there is an imbalance.
1905 *
1906 * Called with this_rq unlocked.
1907 */
1908static int load_balance(int this_cpu, runqueue_t *this_rq,
1909 struct sched_domain *sd, enum idle_type idle)
1910{
1911 struct sched_group *group;
1912 runqueue_t *busiest;
1913 unsigned long imbalance;
81026794
NP
1914 int nr_moved, all_pinned;
1915 int active_balance = 0;
1da177e4
LT
1916
1917 spin_lock(&this_rq->lock);
1918 schedstat_inc(sd, lb_cnt[idle]);
1919
1920 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1921 if (!group) {
1922 schedstat_inc(sd, lb_nobusyg[idle]);
1923 goto out_balanced;
1924 }
1925
1926 busiest = find_busiest_queue(group);
1927 if (!busiest) {
1928 schedstat_inc(sd, lb_nobusyq[idle]);
1929 goto out_balanced;
1930 }
1931
db935dbd 1932 BUG_ON(busiest == this_rq);
1da177e4
LT
1933
1934 schedstat_add(sd, lb_imbalance[idle], imbalance);
1935
1936 nr_moved = 0;
1937 if (busiest->nr_running > 1) {
1938 /*
1939 * Attempt to move tasks. If find_busiest_group has found
1940 * an imbalance but busiest->nr_running <= 1, the group is
1941 * still unbalanced. nr_moved simply stays zero, so it is
1942 * correctly treated as an imbalance.
1943 */
1944 double_lock_balance(this_rq, busiest);
1945 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794
NP
1946 imbalance, sd, idle,
1947 &all_pinned);
1da177e4 1948 spin_unlock(&busiest->lock);
81026794
NP
1949
1950 /* All tasks on this runqueue were pinned by CPU affinity */
1951 if (unlikely(all_pinned))
1952 goto out_balanced;
1da177e4 1953 }
81026794 1954
1da177e4
LT
1955 spin_unlock(&this_rq->lock);
1956
1957 if (!nr_moved) {
1958 schedstat_inc(sd, lb_failed[idle]);
1959 sd->nr_balance_failed++;
1960
1961 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
1962
1963 spin_lock(&busiest->lock);
1964 if (!busiest->active_balance) {
1965 busiest->active_balance = 1;
1966 busiest->push_cpu = this_cpu;
81026794 1967 active_balance = 1;
1da177e4
LT
1968 }
1969 spin_unlock(&busiest->lock);
81026794 1970 if (active_balance)
1da177e4
LT
1971 wake_up_process(busiest->migration_thread);
1972
1973 /*
1974 * We've kicked active balancing, reset the failure
1975 * counter.
1976 */
39507451 1977 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 1978 }
81026794 1979 } else
1da177e4
LT
1980 sd->nr_balance_failed = 0;
1981
81026794 1982 if (likely(!active_balance)) {
1da177e4
LT
1983 /* We were unbalanced, so reset the balancing interval */
1984 sd->balance_interval = sd->min_interval;
81026794
NP
1985 } else {
1986 /*
1987 * If we've begun active balancing, start to back off. This
1988 * case may not be covered by the all_pinned logic if there
1989 * is only 1 task on the busy runqueue (because we don't call
1990 * move_tasks).
1991 */
1992 if (sd->balance_interval < sd->max_interval)
1993 sd->balance_interval *= 2;
1da177e4
LT
1994 }
1995
1996 return nr_moved;
1997
1998out_balanced:
1999 spin_unlock(&this_rq->lock);
2000
2001 schedstat_inc(sd, lb_balanced[idle]);
2002
16cfb1c0 2003 sd->nr_balance_failed = 0;
1da177e4
LT
2004 /* tune up the balancing interval */
2005 if (sd->balance_interval < sd->max_interval)
2006 sd->balance_interval *= 2;
2007
2008 return 0;
2009}
2010
2011/*
2012 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2013 * tasks if there is an imbalance.
2014 *
2015 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2016 * this_rq is locked.
2017 */
2018static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2019 struct sched_domain *sd)
2020{
2021 struct sched_group *group;
2022 runqueue_t *busiest = NULL;
2023 unsigned long imbalance;
2024 int nr_moved = 0;
2025
2026 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2027 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2028 if (!group) {
1da177e4 2029 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2030 goto out_balanced;
1da177e4
LT
2031 }
2032
2033 busiest = find_busiest_queue(group);
db935dbd 2034 if (!busiest) {
1da177e4 2035 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2036 goto out_balanced;
1da177e4
LT
2037 }
2038
db935dbd
NP
2039 BUG_ON(busiest == this_rq);
2040
1da177e4
LT
2041 /* Attempt to move tasks */
2042 double_lock_balance(this_rq, busiest);
2043
2044 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2045 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2046 imbalance, sd, NEWLY_IDLE, NULL);
1da177e4
LT
2047 if (!nr_moved)
2048 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2049 else
2050 sd->nr_balance_failed = 0;
1da177e4
LT
2051
2052 spin_unlock(&busiest->lock);
1da177e4 2053 return nr_moved;
16cfb1c0
NP
2054
2055out_balanced:
2056 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2057 sd->nr_balance_failed = 0;
2058 return 0;
1da177e4
LT
2059}
2060
2061/*
2062 * idle_balance is called by schedule() if this_cpu is about to become
2063 * idle. Attempts to pull tasks from other CPUs.
2064 */
2065static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2066{
2067 struct sched_domain *sd;
2068
2069 for_each_domain(this_cpu, sd) {
2070 if (sd->flags & SD_BALANCE_NEWIDLE) {
2071 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2072 /* We've pulled tasks over so stop searching */
2073 break;
2074 }
2075 }
2076 }
2077}
2078
2079/*
2080 * active_load_balance is run by migration threads. It pushes running tasks
2081 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2082 * running on each physical CPU where possible, and avoids physical /
2083 * logical imbalances.
2084 *
2085 * Called with busiest_rq locked.
2086 */
2087static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2088{
2089 struct sched_domain *sd;
1da177e4 2090 runqueue_t *target_rq;
39507451
NP
2091 int target_cpu = busiest_rq->push_cpu;
2092
2093 if (busiest_rq->nr_running <= 1)
2094 /* no task to move */
2095 return;
2096
2097 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2098
2099 /*
39507451
NP
2100 * This condition is "impossible", if it occurs
2101 * we need to fix it. Originally reported by
2102 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2103 */
39507451 2104 BUG_ON(busiest_rq == target_rq);
1da177e4 2105
39507451
NP
2106 /* move a task from busiest_rq to target_rq */
2107 double_lock_balance(busiest_rq, target_rq);
2108
2109 /* Search for an sd spanning us and the target CPU. */
2110 for_each_domain(target_cpu, sd)
2111 if ((sd->flags & SD_LOAD_BALANCE) &&
2112 cpu_isset(busiest_cpu, sd->span))
2113 break;
2114
2115 if (unlikely(sd == NULL))
2116 goto out;
2117
2118 schedstat_inc(sd, alb_cnt);
2119
2120 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2121 schedstat_inc(sd, alb_pushed);
2122 else
2123 schedstat_inc(sd, alb_failed);
2124out:
2125 spin_unlock(&target_rq->lock);
1da177e4
LT
2126}
2127
2128/*
2129 * rebalance_tick will get called every timer tick, on every CPU.
2130 *
2131 * It checks each scheduling domain to see if it is due to be balanced,
2132 * and initiates a balancing operation if so.
2133 *
2134 * Balancing parameters are set up in arch_init_sched_domains.
2135 */
2136
2137/* Don't have all balancing operations going off at once */
2138#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2139
2140static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2141 enum idle_type idle)
2142{
2143 unsigned long old_load, this_load;
2144 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2145 struct sched_domain *sd;
7897986b 2146 int i;
1da177e4 2147
1da177e4 2148 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2149 /* Update our load */
2150 for (i = 0; i < 3; i++) {
2151 unsigned long new_load = this_load;
2152 int scale = 1 << i;
2153 old_load = this_rq->cpu_load[i];
2154 /*
2155 * Round up the averaging division if load is increasing. This
2156 * prevents us from getting stuck on 9 if the load is 10, for
2157 * example.
2158 */
2159 if (new_load > old_load)
2160 new_load += scale-1;
2161 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2162 }
1da177e4
LT
2163
2164 for_each_domain(this_cpu, sd) {
2165 unsigned long interval;
2166
2167 if (!(sd->flags & SD_LOAD_BALANCE))
2168 continue;
2169
2170 interval = sd->balance_interval;
2171 if (idle != SCHED_IDLE)
2172 interval *= sd->busy_factor;
2173
2174 /* scale ms to jiffies */
2175 interval = msecs_to_jiffies(interval);
2176 if (unlikely(!interval))
2177 interval = 1;
2178
2179 if (j - sd->last_balance >= interval) {
2180 if (load_balance(this_cpu, this_rq, sd, idle)) {
2181 /* We've pulled tasks over so no longer idle */
2182 idle = NOT_IDLE;
2183 }
2184 sd->last_balance += interval;
2185 }
2186 }
2187}
2188#else
2189/*
2190 * on UP we do not need to balance between CPUs:
2191 */
2192static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2193{
2194}
2195static inline void idle_balance(int cpu, runqueue_t *rq)
2196{
2197}
2198#endif
2199
2200static inline int wake_priority_sleeper(runqueue_t *rq)
2201{
2202 int ret = 0;
2203#ifdef CONFIG_SCHED_SMT
2204 spin_lock(&rq->lock);
2205 /*
2206 * If an SMT sibling task has been put to sleep for priority
2207 * reasons reschedule the idle task to see if it can now run.
2208 */
2209 if (rq->nr_running) {
2210 resched_task(rq->idle);
2211 ret = 1;
2212 }
2213 spin_unlock(&rq->lock);
2214#endif
2215 return ret;
2216}
2217
2218DEFINE_PER_CPU(struct kernel_stat, kstat);
2219
2220EXPORT_PER_CPU_SYMBOL(kstat);
2221
2222/*
2223 * This is called on clock ticks and on context switches.
2224 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2225 */
2226static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2227 unsigned long long now)
2228{
2229 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2230 p->sched_time += now - last;
2231}
2232
2233/*
2234 * Return current->sched_time plus any more ns on the sched_clock
2235 * that have not yet been banked.
2236 */
2237unsigned long long current_sched_time(const task_t *tsk)
2238{
2239 unsigned long long ns;
2240 unsigned long flags;
2241 local_irq_save(flags);
2242 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2243 ns = tsk->sched_time + (sched_clock() - ns);
2244 local_irq_restore(flags);
2245 return ns;
2246}
2247
2248/*
2249 * We place interactive tasks back into the active array, if possible.
2250 *
2251 * To guarantee that this does not starve expired tasks we ignore the
2252 * interactivity of a task if the first expired task had to wait more
2253 * than a 'reasonable' amount of time. This deadline timeout is
2254 * load-dependent, as the frequency of array switched decreases with
2255 * increasing number of running tasks. We also ignore the interactivity
2256 * if a better static_prio task has expired:
2257 */
2258#define EXPIRED_STARVING(rq) \
2259 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2260 (jiffies - (rq)->expired_timestamp >= \
2261 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2262 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2263
2264/*
2265 * Account user cpu time to a process.
2266 * @p: the process that the cpu time gets accounted to
2267 * @hardirq_offset: the offset to subtract from hardirq_count()
2268 * @cputime: the cpu time spent in user space since the last update
2269 */
2270void account_user_time(struct task_struct *p, cputime_t cputime)
2271{
2272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2273 cputime64_t tmp;
2274
2275 p->utime = cputime_add(p->utime, cputime);
2276
2277 /* Add user time to cpustat. */
2278 tmp = cputime_to_cputime64(cputime);
2279 if (TASK_NICE(p) > 0)
2280 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2281 else
2282 cpustat->user = cputime64_add(cpustat->user, tmp);
2283}
2284
2285/*
2286 * Account system cpu time to a process.
2287 * @p: the process that the cpu time gets accounted to
2288 * @hardirq_offset: the offset to subtract from hardirq_count()
2289 * @cputime: the cpu time spent in kernel space since the last update
2290 */
2291void account_system_time(struct task_struct *p, int hardirq_offset,
2292 cputime_t cputime)
2293{
2294 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2295 runqueue_t *rq = this_rq();
2296 cputime64_t tmp;
2297
2298 p->stime = cputime_add(p->stime, cputime);
2299
2300 /* Add system time to cpustat. */
2301 tmp = cputime_to_cputime64(cputime);
2302 if (hardirq_count() - hardirq_offset)
2303 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2304 else if (softirq_count())
2305 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2306 else if (p != rq->idle)
2307 cpustat->system = cputime64_add(cpustat->system, tmp);
2308 else if (atomic_read(&rq->nr_iowait) > 0)
2309 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2310 else
2311 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2312 /* Account for system time used */
2313 acct_update_integrals(p);
2314 /* Update rss highwater mark */
2315 update_mem_hiwater(p);
2316}
2317
2318/*
2319 * Account for involuntary wait time.
2320 * @p: the process from which the cpu time has been stolen
2321 * @steal: the cpu time spent in involuntary wait
2322 */
2323void account_steal_time(struct task_struct *p, cputime_t steal)
2324{
2325 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2326 cputime64_t tmp = cputime_to_cputime64(steal);
2327 runqueue_t *rq = this_rq();
2328
2329 if (p == rq->idle) {
2330 p->stime = cputime_add(p->stime, steal);
2331 if (atomic_read(&rq->nr_iowait) > 0)
2332 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2333 else
2334 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2335 } else
2336 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2337}
2338
2339/*
2340 * This function gets called by the timer code, with HZ frequency.
2341 * We call it with interrupts disabled.
2342 *
2343 * It also gets called by the fork code, when changing the parent's
2344 * timeslices.
2345 */
2346void scheduler_tick(void)
2347{
2348 int cpu = smp_processor_id();
2349 runqueue_t *rq = this_rq();
2350 task_t *p = current;
2351 unsigned long long now = sched_clock();
2352
2353 update_cpu_clock(p, rq, now);
2354
2355 rq->timestamp_last_tick = now;
2356
2357 if (p == rq->idle) {
2358 if (wake_priority_sleeper(rq))
2359 goto out;
2360 rebalance_tick(cpu, rq, SCHED_IDLE);
2361 return;
2362 }
2363
2364 /* Task might have expired already, but not scheduled off yet */
2365 if (p->array != rq->active) {
2366 set_tsk_need_resched(p);
2367 goto out;
2368 }
2369 spin_lock(&rq->lock);
2370 /*
2371 * The task was running during this tick - update the
2372 * time slice counter. Note: we do not update a thread's
2373 * priority until it either goes to sleep or uses up its
2374 * timeslice. This makes it possible for interactive tasks
2375 * to use up their timeslices at their highest priority levels.
2376 */
2377 if (rt_task(p)) {
2378 /*
2379 * RR tasks need a special form of timeslice management.
2380 * FIFO tasks have no timeslices.
2381 */
2382 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2383 p->time_slice = task_timeslice(p);
2384 p->first_time_slice = 0;
2385 set_tsk_need_resched(p);
2386
2387 /* put it at the end of the queue: */
2388 requeue_task(p, rq->active);
2389 }
2390 goto out_unlock;
2391 }
2392 if (!--p->time_slice) {
2393 dequeue_task(p, rq->active);
2394 set_tsk_need_resched(p);
2395 p->prio = effective_prio(p);
2396 p->time_slice = task_timeslice(p);
2397 p->first_time_slice = 0;
2398
2399 if (!rq->expired_timestamp)
2400 rq->expired_timestamp = jiffies;
2401 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2402 enqueue_task(p, rq->expired);
2403 if (p->static_prio < rq->best_expired_prio)
2404 rq->best_expired_prio = p->static_prio;
2405 } else
2406 enqueue_task(p, rq->active);
2407 } else {
2408 /*
2409 * Prevent a too long timeslice allowing a task to monopolize
2410 * the CPU. We do this by splitting up the timeslice into
2411 * smaller pieces.
2412 *
2413 * Note: this does not mean the task's timeslices expire or
2414 * get lost in any way, they just might be preempted by
2415 * another task of equal priority. (one with higher
2416 * priority would have preempted this task already.) We
2417 * requeue this task to the end of the list on this priority
2418 * level, which is in essence a round-robin of tasks with
2419 * equal priority.
2420 *
2421 * This only applies to tasks in the interactive
2422 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2423 */
2424 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2425 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2426 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2427 (p->array == rq->active)) {
2428
2429 requeue_task(p, rq->active);
2430 set_tsk_need_resched(p);
2431 }
2432 }
2433out_unlock:
2434 spin_unlock(&rq->lock);
2435out:
2436 rebalance_tick(cpu, rq, NOT_IDLE);
2437}
2438
2439#ifdef CONFIG_SCHED_SMT
2440static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2441{
2442 struct sched_domain *sd = this_rq->sd;
2443 cpumask_t sibling_map;
2444 int i;
2445
2446 if (!(sd->flags & SD_SHARE_CPUPOWER))
2447 return;
2448
2449 /*
2450 * Unlock the current runqueue because we have to lock in
2451 * CPU order to avoid deadlocks. Caller knows that we might
2452 * unlock. We keep IRQs disabled.
2453 */
2454 spin_unlock(&this_rq->lock);
2455
2456 sibling_map = sd->span;
2457
2458 for_each_cpu_mask(i, sibling_map)
2459 spin_lock(&cpu_rq(i)->lock);
2460 /*
2461 * We clear this CPU from the mask. This both simplifies the
2462 * inner loop and keps this_rq locked when we exit:
2463 */
2464 cpu_clear(this_cpu, sibling_map);
2465
2466 for_each_cpu_mask(i, sibling_map) {
2467 runqueue_t *smt_rq = cpu_rq(i);
2468
2469 /*
2470 * If an SMT sibling task is sleeping due to priority
2471 * reasons wake it up now.
2472 */
2473 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2474 resched_task(smt_rq->idle);
2475 }
2476
2477 for_each_cpu_mask(i, sibling_map)
2478 spin_unlock(&cpu_rq(i)->lock);
2479 /*
2480 * We exit with this_cpu's rq still held and IRQs
2481 * still disabled:
2482 */
2483}
2484
2485static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2486{
2487 struct sched_domain *sd = this_rq->sd;
2488 cpumask_t sibling_map;
2489 prio_array_t *array;
2490 int ret = 0, i;
2491 task_t *p;
2492
2493 if (!(sd->flags & SD_SHARE_CPUPOWER))
2494 return 0;
2495
2496 /*
2497 * The same locking rules and details apply as for
2498 * wake_sleeping_dependent():
2499 */
2500 spin_unlock(&this_rq->lock);
2501 sibling_map = sd->span;
2502 for_each_cpu_mask(i, sibling_map)
2503 spin_lock(&cpu_rq(i)->lock);
2504 cpu_clear(this_cpu, sibling_map);
2505
2506 /*
2507 * Establish next task to be run - it might have gone away because
2508 * we released the runqueue lock above:
2509 */
2510 if (!this_rq->nr_running)
2511 goto out_unlock;
2512 array = this_rq->active;
2513 if (!array->nr_active)
2514 array = this_rq->expired;
2515 BUG_ON(!array->nr_active);
2516
2517 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2518 task_t, run_list);
2519
2520 for_each_cpu_mask(i, sibling_map) {
2521 runqueue_t *smt_rq = cpu_rq(i);
2522 task_t *smt_curr = smt_rq->curr;
2523
2524 /*
2525 * If a user task with lower static priority than the
2526 * running task on the SMT sibling is trying to schedule,
2527 * delay it till there is proportionately less timeslice
2528 * left of the sibling task to prevent a lower priority
2529 * task from using an unfair proportion of the
2530 * physical cpu's resources. -ck
2531 */
2532 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2533 task_timeslice(p) || rt_task(smt_curr)) &&
2534 p->mm && smt_curr->mm && !rt_task(p))
2535 ret = 1;
2536
2537 /*
2538 * Reschedule a lower priority task on the SMT sibling,
2539 * or wake it up if it has been put to sleep for priority
2540 * reasons.
2541 */
2542 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2543 task_timeslice(smt_curr) || rt_task(p)) &&
2544 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2545 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2546 resched_task(smt_curr);
2547 }
2548out_unlock:
2549 for_each_cpu_mask(i, sibling_map)
2550 spin_unlock(&cpu_rq(i)->lock);
2551 return ret;
2552}
2553#else
2554static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2555{
2556}
2557
2558static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2559{
2560 return 0;
2561}
2562#endif
2563
2564#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2565
2566void fastcall add_preempt_count(int val)
2567{
2568 /*
2569 * Underflow?
2570 */
be5b4fbd 2571 BUG_ON((preempt_count() < 0));
1da177e4
LT
2572 preempt_count() += val;
2573 /*
2574 * Spinlock count overflowing soon?
2575 */
2576 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2577}
2578EXPORT_SYMBOL(add_preempt_count);
2579
2580void fastcall sub_preempt_count(int val)
2581{
2582 /*
2583 * Underflow?
2584 */
2585 BUG_ON(val > preempt_count());
2586 /*
2587 * Is the spinlock portion underflowing?
2588 */
2589 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2590 preempt_count() -= val;
2591}
2592EXPORT_SYMBOL(sub_preempt_count);
2593
2594#endif
2595
2596/*
2597 * schedule() is the main scheduler function.
2598 */
2599asmlinkage void __sched schedule(void)
2600{
2601 long *switch_count;
2602 task_t *prev, *next;
2603 runqueue_t *rq;
2604 prio_array_t *array;
2605 struct list_head *queue;
2606 unsigned long long now;
2607 unsigned long run_time;
2608 int cpu, idx;
2609
2610 /*
2611 * Test if we are atomic. Since do_exit() needs to call into
2612 * schedule() atomically, we ignore that path for now.
2613 * Otherwise, whine if we are scheduling when we should not be.
2614 */
2615 if (likely(!current->exit_state)) {
2616 if (unlikely(in_atomic())) {
2617 printk(KERN_ERR "scheduling while atomic: "
2618 "%s/0x%08x/%d\n",
2619 current->comm, preempt_count(), current->pid);
2620 dump_stack();
2621 }
2622 }
2623 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2624
2625need_resched:
2626 preempt_disable();
2627 prev = current;
2628 release_kernel_lock(prev);
2629need_resched_nonpreemptible:
2630 rq = this_rq();
2631
2632 /*
2633 * The idle thread is not allowed to schedule!
2634 * Remove this check after it has been exercised a bit.
2635 */
2636 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2637 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2638 dump_stack();
2639 }
2640
2641 schedstat_inc(rq, sched_cnt);
2642 now = sched_clock();
238628ed 2643 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2644 run_time = now - prev->timestamp;
238628ed 2645 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2646 run_time = 0;
2647 } else
2648 run_time = NS_MAX_SLEEP_AVG;
2649
2650 /*
2651 * Tasks charged proportionately less run_time at high sleep_avg to
2652 * delay them losing their interactive status
2653 */
2654 run_time /= (CURRENT_BONUS(prev) ? : 1);
2655
2656 spin_lock_irq(&rq->lock);
2657
2658 if (unlikely(prev->flags & PF_DEAD))
2659 prev->state = EXIT_DEAD;
2660
2661 switch_count = &prev->nivcsw;
2662 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2663 switch_count = &prev->nvcsw;
2664 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2665 unlikely(signal_pending(prev))))
2666 prev->state = TASK_RUNNING;
2667 else {
2668 if (prev->state == TASK_UNINTERRUPTIBLE)
2669 rq->nr_uninterruptible++;
2670 deactivate_task(prev, rq);
2671 }
2672 }
2673
2674 cpu = smp_processor_id();
2675 if (unlikely(!rq->nr_running)) {
2676go_idle:
2677 idle_balance(cpu, rq);
2678 if (!rq->nr_running) {
2679 next = rq->idle;
2680 rq->expired_timestamp = 0;
2681 wake_sleeping_dependent(cpu, rq);
2682 /*
2683 * wake_sleeping_dependent() might have released
2684 * the runqueue, so break out if we got new
2685 * tasks meanwhile:
2686 */
2687 if (!rq->nr_running)
2688 goto switch_tasks;
2689 }
2690 } else {
2691 if (dependent_sleeper(cpu, rq)) {
2692 next = rq->idle;
2693 goto switch_tasks;
2694 }
2695 /*
2696 * dependent_sleeper() releases and reacquires the runqueue
2697 * lock, hence go into the idle loop if the rq went
2698 * empty meanwhile:
2699 */
2700 if (unlikely(!rq->nr_running))
2701 goto go_idle;
2702 }
2703
2704 array = rq->active;
2705 if (unlikely(!array->nr_active)) {
2706 /*
2707 * Switch the active and expired arrays.
2708 */
2709 schedstat_inc(rq, sched_switch);
2710 rq->active = rq->expired;
2711 rq->expired = array;
2712 array = rq->active;
2713 rq->expired_timestamp = 0;
2714 rq->best_expired_prio = MAX_PRIO;
2715 }
2716
2717 idx = sched_find_first_bit(array->bitmap);
2718 queue = array->queue + idx;
2719 next = list_entry(queue->next, task_t, run_list);
2720
2721 if (!rt_task(next) && next->activated > 0) {
2722 unsigned long long delta = now - next->timestamp;
238628ed 2723 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2724 delta = 0;
2725
2726 if (next->activated == 1)
2727 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2728
2729 array = next->array;
2730 dequeue_task(next, array);
2731 recalc_task_prio(next, next->timestamp + delta);
2732 enqueue_task(next, array);
2733 }
2734 next->activated = 0;
2735switch_tasks:
2736 if (next == rq->idle)
2737 schedstat_inc(rq, sched_goidle);
2738 prefetch(next);
2739 clear_tsk_need_resched(prev);
2740 rcu_qsctr_inc(task_cpu(prev));
2741
2742 update_cpu_clock(prev, rq, now);
2743
2744 prev->sleep_avg -= run_time;
2745 if ((long)prev->sleep_avg <= 0)
2746 prev->sleep_avg = 0;
2747 prev->timestamp = prev->last_ran = now;
2748
2749 sched_info_switch(prev, next);
2750 if (likely(prev != next)) {
2751 next->timestamp = now;
2752 rq->nr_switches++;
2753 rq->curr = next;
2754 ++*switch_count;
2755
2756 prepare_arch_switch(rq, next);
2757 prev = context_switch(rq, prev, next);
2758 barrier();
2759
2760 finish_task_switch(prev);
2761 } else
2762 spin_unlock_irq(&rq->lock);
2763
2764 prev = current;
2765 if (unlikely(reacquire_kernel_lock(prev) < 0))
2766 goto need_resched_nonpreemptible;
2767 preempt_enable_no_resched();
2768 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2769 goto need_resched;
2770}
2771
2772EXPORT_SYMBOL(schedule);
2773
2774#ifdef CONFIG_PREEMPT
2775/*
2776 * this is is the entry point to schedule() from in-kernel preemption
2777 * off of preempt_enable. Kernel preemptions off return from interrupt
2778 * occur there and call schedule directly.
2779 */
2780asmlinkage void __sched preempt_schedule(void)
2781{
2782 struct thread_info *ti = current_thread_info();
2783#ifdef CONFIG_PREEMPT_BKL
2784 struct task_struct *task = current;
2785 int saved_lock_depth;
2786#endif
2787 /*
2788 * If there is a non-zero preempt_count or interrupts are disabled,
2789 * we do not want to preempt the current task. Just return..
2790 */
2791 if (unlikely(ti->preempt_count || irqs_disabled()))
2792 return;
2793
2794need_resched:
2795 add_preempt_count(PREEMPT_ACTIVE);
2796 /*
2797 * We keep the big kernel semaphore locked, but we
2798 * clear ->lock_depth so that schedule() doesnt
2799 * auto-release the semaphore:
2800 */
2801#ifdef CONFIG_PREEMPT_BKL
2802 saved_lock_depth = task->lock_depth;
2803 task->lock_depth = -1;
2804#endif
2805 schedule();
2806#ifdef CONFIG_PREEMPT_BKL
2807 task->lock_depth = saved_lock_depth;
2808#endif
2809 sub_preempt_count(PREEMPT_ACTIVE);
2810
2811 /* we could miss a preemption opportunity between schedule and now */
2812 barrier();
2813 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2814 goto need_resched;
2815}
2816
2817EXPORT_SYMBOL(preempt_schedule);
2818
2819/*
2820 * this is is the entry point to schedule() from kernel preemption
2821 * off of irq context.
2822 * Note, that this is called and return with irqs disabled. This will
2823 * protect us against recursive calling from irq.
2824 */
2825asmlinkage void __sched preempt_schedule_irq(void)
2826{
2827 struct thread_info *ti = current_thread_info();
2828#ifdef CONFIG_PREEMPT_BKL
2829 struct task_struct *task = current;
2830 int saved_lock_depth;
2831#endif
2832 /* Catch callers which need to be fixed*/
2833 BUG_ON(ti->preempt_count || !irqs_disabled());
2834
2835need_resched:
2836 add_preempt_count(PREEMPT_ACTIVE);
2837 /*
2838 * We keep the big kernel semaphore locked, but we
2839 * clear ->lock_depth so that schedule() doesnt
2840 * auto-release the semaphore:
2841 */
2842#ifdef CONFIG_PREEMPT_BKL
2843 saved_lock_depth = task->lock_depth;
2844 task->lock_depth = -1;
2845#endif
2846 local_irq_enable();
2847 schedule();
2848 local_irq_disable();
2849#ifdef CONFIG_PREEMPT_BKL
2850 task->lock_depth = saved_lock_depth;
2851#endif
2852 sub_preempt_count(PREEMPT_ACTIVE);
2853
2854 /* we could miss a preemption opportunity between schedule and now */
2855 barrier();
2856 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2857 goto need_resched;
2858}
2859
2860#endif /* CONFIG_PREEMPT */
2861
2862int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2863{
c43dc2fd 2864 task_t *p = curr->private;
1da177e4
LT
2865 return try_to_wake_up(p, mode, sync);
2866}
2867
2868EXPORT_SYMBOL(default_wake_function);
2869
2870/*
2871 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2872 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2873 * number) then we wake all the non-exclusive tasks and one exclusive task.
2874 *
2875 * There are circumstances in which we can try to wake a task which has already
2876 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2877 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2878 */
2879static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2880 int nr_exclusive, int sync, void *key)
2881{
2882 struct list_head *tmp, *next;
2883
2884 list_for_each_safe(tmp, next, &q->task_list) {
2885 wait_queue_t *curr;
2886 unsigned flags;
2887 curr = list_entry(tmp, wait_queue_t, task_list);
2888 flags = curr->flags;
2889 if (curr->func(curr, mode, sync, key) &&
2890 (flags & WQ_FLAG_EXCLUSIVE) &&
2891 !--nr_exclusive)
2892 break;
2893 }
2894}
2895
2896/**
2897 * __wake_up - wake up threads blocked on a waitqueue.
2898 * @q: the waitqueue
2899 * @mode: which threads
2900 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2901 * @key: is directly passed to the wakeup function
1da177e4
LT
2902 */
2903void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2904 int nr_exclusive, void *key)
2905{
2906 unsigned long flags;
2907
2908 spin_lock_irqsave(&q->lock, flags);
2909 __wake_up_common(q, mode, nr_exclusive, 0, key);
2910 spin_unlock_irqrestore(&q->lock, flags);
2911}
2912
2913EXPORT_SYMBOL(__wake_up);
2914
2915/*
2916 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2917 */
2918void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2919{
2920 __wake_up_common(q, mode, 1, 0, NULL);
2921}
2922
2923/**
67be2dd1 2924 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
2925 * @q: the waitqueue
2926 * @mode: which threads
2927 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2928 *
2929 * The sync wakeup differs that the waker knows that it will schedule
2930 * away soon, so while the target thread will be woken up, it will not
2931 * be migrated to another CPU - ie. the two threads are 'synchronized'
2932 * with each other. This can prevent needless bouncing between CPUs.
2933 *
2934 * On UP it can prevent extra preemption.
2935 */
2936void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2937{
2938 unsigned long flags;
2939 int sync = 1;
2940
2941 if (unlikely(!q))
2942 return;
2943
2944 if (unlikely(!nr_exclusive))
2945 sync = 0;
2946
2947 spin_lock_irqsave(&q->lock, flags);
2948 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2949 spin_unlock_irqrestore(&q->lock, flags);
2950}
2951EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2952
2953void fastcall complete(struct completion *x)
2954{
2955 unsigned long flags;
2956
2957 spin_lock_irqsave(&x->wait.lock, flags);
2958 x->done++;
2959 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2960 1, 0, NULL);
2961 spin_unlock_irqrestore(&x->wait.lock, flags);
2962}
2963EXPORT_SYMBOL(complete);
2964
2965void fastcall complete_all(struct completion *x)
2966{
2967 unsigned long flags;
2968
2969 spin_lock_irqsave(&x->wait.lock, flags);
2970 x->done += UINT_MAX/2;
2971 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2972 0, 0, NULL);
2973 spin_unlock_irqrestore(&x->wait.lock, flags);
2974}
2975EXPORT_SYMBOL(complete_all);
2976
2977void fastcall __sched wait_for_completion(struct completion *x)
2978{
2979 might_sleep();
2980 spin_lock_irq(&x->wait.lock);
2981 if (!x->done) {
2982 DECLARE_WAITQUEUE(wait, current);
2983
2984 wait.flags |= WQ_FLAG_EXCLUSIVE;
2985 __add_wait_queue_tail(&x->wait, &wait);
2986 do {
2987 __set_current_state(TASK_UNINTERRUPTIBLE);
2988 spin_unlock_irq(&x->wait.lock);
2989 schedule();
2990 spin_lock_irq(&x->wait.lock);
2991 } while (!x->done);
2992 __remove_wait_queue(&x->wait, &wait);
2993 }
2994 x->done--;
2995 spin_unlock_irq(&x->wait.lock);
2996}
2997EXPORT_SYMBOL(wait_for_completion);
2998
2999unsigned long fastcall __sched
3000wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3001{
3002 might_sleep();
3003
3004 spin_lock_irq(&x->wait.lock);
3005 if (!x->done) {
3006 DECLARE_WAITQUEUE(wait, current);
3007
3008 wait.flags |= WQ_FLAG_EXCLUSIVE;
3009 __add_wait_queue_tail(&x->wait, &wait);
3010 do {
3011 __set_current_state(TASK_UNINTERRUPTIBLE);
3012 spin_unlock_irq(&x->wait.lock);
3013 timeout = schedule_timeout(timeout);
3014 spin_lock_irq(&x->wait.lock);
3015 if (!timeout) {
3016 __remove_wait_queue(&x->wait, &wait);
3017 goto out;
3018 }
3019 } while (!x->done);
3020 __remove_wait_queue(&x->wait, &wait);
3021 }
3022 x->done--;
3023out:
3024 spin_unlock_irq(&x->wait.lock);
3025 return timeout;
3026}
3027EXPORT_SYMBOL(wait_for_completion_timeout);
3028
3029int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3030{
3031 int ret = 0;
3032
3033 might_sleep();
3034
3035 spin_lock_irq(&x->wait.lock);
3036 if (!x->done) {
3037 DECLARE_WAITQUEUE(wait, current);
3038
3039 wait.flags |= WQ_FLAG_EXCLUSIVE;
3040 __add_wait_queue_tail(&x->wait, &wait);
3041 do {
3042 if (signal_pending(current)) {
3043 ret = -ERESTARTSYS;
3044 __remove_wait_queue(&x->wait, &wait);
3045 goto out;
3046 }
3047 __set_current_state(TASK_INTERRUPTIBLE);
3048 spin_unlock_irq(&x->wait.lock);
3049 schedule();
3050 spin_lock_irq(&x->wait.lock);
3051 } while (!x->done);
3052 __remove_wait_queue(&x->wait, &wait);
3053 }
3054 x->done--;
3055out:
3056 spin_unlock_irq(&x->wait.lock);
3057
3058 return ret;
3059}
3060EXPORT_SYMBOL(wait_for_completion_interruptible);
3061
3062unsigned long fastcall __sched
3063wait_for_completion_interruptible_timeout(struct completion *x,
3064 unsigned long timeout)
3065{
3066 might_sleep();
3067
3068 spin_lock_irq(&x->wait.lock);
3069 if (!x->done) {
3070 DECLARE_WAITQUEUE(wait, current);
3071
3072 wait.flags |= WQ_FLAG_EXCLUSIVE;
3073 __add_wait_queue_tail(&x->wait, &wait);
3074 do {
3075 if (signal_pending(current)) {
3076 timeout = -ERESTARTSYS;
3077 __remove_wait_queue(&x->wait, &wait);
3078 goto out;
3079 }
3080 __set_current_state(TASK_INTERRUPTIBLE);
3081 spin_unlock_irq(&x->wait.lock);
3082 timeout = schedule_timeout(timeout);
3083 spin_lock_irq(&x->wait.lock);
3084 if (!timeout) {
3085 __remove_wait_queue(&x->wait, &wait);
3086 goto out;
3087 }
3088 } while (!x->done);
3089 __remove_wait_queue(&x->wait, &wait);
3090 }
3091 x->done--;
3092out:
3093 spin_unlock_irq(&x->wait.lock);
3094 return timeout;
3095}
3096EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3097
3098
3099#define SLEEP_ON_VAR \
3100 unsigned long flags; \
3101 wait_queue_t wait; \
3102 init_waitqueue_entry(&wait, current);
3103
3104#define SLEEP_ON_HEAD \
3105 spin_lock_irqsave(&q->lock,flags); \
3106 __add_wait_queue(q, &wait); \
3107 spin_unlock(&q->lock);
3108
3109#define SLEEP_ON_TAIL \
3110 spin_lock_irq(&q->lock); \
3111 __remove_wait_queue(q, &wait); \
3112 spin_unlock_irqrestore(&q->lock, flags);
3113
3114void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3115{
3116 SLEEP_ON_VAR
3117
3118 current->state = TASK_INTERRUPTIBLE;
3119
3120 SLEEP_ON_HEAD
3121 schedule();
3122 SLEEP_ON_TAIL
3123}
3124
3125EXPORT_SYMBOL(interruptible_sleep_on);
3126
3127long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3128{
3129 SLEEP_ON_VAR
3130
3131 current->state = TASK_INTERRUPTIBLE;
3132
3133 SLEEP_ON_HEAD
3134 timeout = schedule_timeout(timeout);
3135 SLEEP_ON_TAIL
3136
3137 return timeout;
3138}
3139
3140EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3141
3142void fastcall __sched sleep_on(wait_queue_head_t *q)
3143{
3144 SLEEP_ON_VAR
3145
3146 current->state = TASK_UNINTERRUPTIBLE;
3147
3148 SLEEP_ON_HEAD
3149 schedule();
3150 SLEEP_ON_TAIL
3151}
3152
3153EXPORT_SYMBOL(sleep_on);
3154
3155long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3156{
3157 SLEEP_ON_VAR
3158
3159 current->state = TASK_UNINTERRUPTIBLE;
3160
3161 SLEEP_ON_HEAD
3162 timeout = schedule_timeout(timeout);
3163 SLEEP_ON_TAIL
3164
3165 return timeout;
3166}
3167
3168EXPORT_SYMBOL(sleep_on_timeout);
3169
3170void set_user_nice(task_t *p, long nice)
3171{
3172 unsigned long flags;
3173 prio_array_t *array;
3174 runqueue_t *rq;
3175 int old_prio, new_prio, delta;
3176
3177 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3178 return;
3179 /*
3180 * We have to be careful, if called from sys_setpriority(),
3181 * the task might be in the middle of scheduling on another CPU.
3182 */
3183 rq = task_rq_lock(p, &flags);
3184 /*
3185 * The RT priorities are set via sched_setscheduler(), but we still
3186 * allow the 'normal' nice value to be set - but as expected
3187 * it wont have any effect on scheduling until the task is
3188 * not SCHED_NORMAL:
3189 */
3190 if (rt_task(p)) {
3191 p->static_prio = NICE_TO_PRIO(nice);
3192 goto out_unlock;
3193 }
3194 array = p->array;
3195 if (array)
3196 dequeue_task(p, array);
3197
3198 old_prio = p->prio;
3199 new_prio = NICE_TO_PRIO(nice);
3200 delta = new_prio - old_prio;
3201 p->static_prio = NICE_TO_PRIO(nice);
3202 p->prio += delta;
3203
3204 if (array) {
3205 enqueue_task(p, array);
3206 /*
3207 * If the task increased its priority or is running and
3208 * lowered its priority, then reschedule its CPU:
3209 */
3210 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3211 resched_task(rq->curr);
3212 }
3213out_unlock:
3214 task_rq_unlock(rq, &flags);
3215}
3216
3217EXPORT_SYMBOL(set_user_nice);
3218
e43379f1
MM
3219/*
3220 * can_nice - check if a task can reduce its nice value
3221 * @p: task
3222 * @nice: nice value
3223 */
3224int can_nice(const task_t *p, const int nice)
3225{
3226 /* convert nice value [19,-20] to rlimit style value [0,39] */
3227 int nice_rlim = 19 - nice;
3228 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3229 capable(CAP_SYS_NICE));
3230}
3231
1da177e4
LT
3232#ifdef __ARCH_WANT_SYS_NICE
3233
3234/*
3235 * sys_nice - change the priority of the current process.
3236 * @increment: priority increment
3237 *
3238 * sys_setpriority is a more generic, but much slower function that
3239 * does similar things.
3240 */
3241asmlinkage long sys_nice(int increment)
3242{
3243 int retval;
3244 long nice;
3245
3246 /*
3247 * Setpriority might change our priority at the same moment.
3248 * We don't have to worry. Conceptually one call occurs first
3249 * and we have a single winner.
3250 */
e43379f1
MM
3251 if (increment < -40)
3252 increment = -40;
1da177e4
LT
3253 if (increment > 40)
3254 increment = 40;
3255
3256 nice = PRIO_TO_NICE(current->static_prio) + increment;
3257 if (nice < -20)
3258 nice = -20;
3259 if (nice > 19)
3260 nice = 19;
3261
e43379f1
MM
3262 if (increment < 0 && !can_nice(current, nice))
3263 return -EPERM;
3264
1da177e4
LT
3265 retval = security_task_setnice(current, nice);
3266 if (retval)
3267 return retval;
3268
3269 set_user_nice(current, nice);
3270 return 0;
3271}
3272
3273#endif
3274
3275/**
3276 * task_prio - return the priority value of a given task.
3277 * @p: the task in question.
3278 *
3279 * This is the priority value as seen by users in /proc.
3280 * RT tasks are offset by -200. Normal tasks are centered
3281 * around 0, value goes from -16 to +15.
3282 */
3283int task_prio(const task_t *p)
3284{
3285 return p->prio - MAX_RT_PRIO;
3286}
3287
3288/**
3289 * task_nice - return the nice value of a given task.
3290 * @p: the task in question.
3291 */
3292int task_nice(const task_t *p)
3293{
3294 return TASK_NICE(p);
3295}
3296
3297/*
3298 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3299 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3300 * Therefore, task_nice is needed if there is a compat_mode.
3301 */
3302#ifdef CONFIG_COMPAT
3303EXPORT_SYMBOL_GPL(task_nice);
3304#endif
3305
3306/**
3307 * idle_cpu - is a given cpu idle currently?
3308 * @cpu: the processor in question.
3309 */
3310int idle_cpu(int cpu)
3311{
3312 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3313}
3314
3315EXPORT_SYMBOL_GPL(idle_cpu);
3316
3317/**
3318 * idle_task - return the idle task for a given cpu.
3319 * @cpu: the processor in question.
3320 */
3321task_t *idle_task(int cpu)
3322{
3323 return cpu_rq(cpu)->idle;
3324}
3325
3326/**
3327 * find_process_by_pid - find a process with a matching PID value.
3328 * @pid: the pid in question.
3329 */
3330static inline task_t *find_process_by_pid(pid_t pid)
3331{
3332 return pid ? find_task_by_pid(pid) : current;
3333}
3334
3335/* Actually do priority change: must hold rq lock. */
3336static void __setscheduler(struct task_struct *p, int policy, int prio)
3337{
3338 BUG_ON(p->array);
3339 p->policy = policy;
3340 p->rt_priority = prio;
3341 if (policy != SCHED_NORMAL)
3342 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3343 else
3344 p->prio = p->static_prio;
3345}
3346
3347/**
3348 * sched_setscheduler - change the scheduling policy and/or RT priority of
3349 * a thread.
3350 * @p: the task in question.
3351 * @policy: new policy.
3352 * @param: structure containing the new RT priority.
3353 */
3354int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3355{
3356 int retval;
3357 int oldprio, oldpolicy = -1;
3358 prio_array_t *array;
3359 unsigned long flags;
3360 runqueue_t *rq;
3361
3362recheck:
3363 /* double check policy once rq lock held */
3364 if (policy < 0)
3365 policy = oldpolicy = p->policy;
3366 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3367 policy != SCHED_NORMAL)
3368 return -EINVAL;
3369 /*
3370 * Valid priorities for SCHED_FIFO and SCHED_RR are
3371 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3372 */
3373 if (param->sched_priority < 0 ||
3374 param->sched_priority > MAX_USER_RT_PRIO-1)
3375 return -EINVAL;
3376 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3377 return -EINVAL;
3378
3379 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
e43379f1 3380 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
1da177e4
LT
3381 !capable(CAP_SYS_NICE))
3382 return -EPERM;
3383 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3384 !capable(CAP_SYS_NICE))
3385 return -EPERM;
3386
3387 retval = security_task_setscheduler(p, policy, param);
3388 if (retval)
3389 return retval;
3390 /*
3391 * To be able to change p->policy safely, the apropriate
3392 * runqueue lock must be held.
3393 */
3394 rq = task_rq_lock(p, &flags);
3395 /* recheck policy now with rq lock held */
3396 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 policy = oldpolicy = -1;
3398 task_rq_unlock(rq, &flags);
3399 goto recheck;
3400 }
3401 array = p->array;
3402 if (array)
3403 deactivate_task(p, rq);
3404 oldprio = p->prio;
3405 __setscheduler(p, policy, param->sched_priority);
3406 if (array) {
3407 __activate_task(p, rq);
3408 /*
3409 * Reschedule if we are currently running on this runqueue and
3410 * our priority decreased, or if we are not currently running on
3411 * this runqueue and our priority is higher than the current's
3412 */
3413 if (task_running(rq, p)) {
3414 if (p->prio > oldprio)
3415 resched_task(rq->curr);
3416 } else if (TASK_PREEMPTS_CURR(p, rq))
3417 resched_task(rq->curr);
3418 }
3419 task_rq_unlock(rq, &flags);
3420 return 0;
3421}
3422EXPORT_SYMBOL_GPL(sched_setscheduler);
3423
3424static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3425{
3426 int retval;
3427 struct sched_param lparam;
3428 struct task_struct *p;
3429
3430 if (!param || pid < 0)
3431 return -EINVAL;
3432 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3433 return -EFAULT;
3434 read_lock_irq(&tasklist_lock);
3435 p = find_process_by_pid(pid);
3436 if (!p) {
3437 read_unlock_irq(&tasklist_lock);
3438 return -ESRCH;
3439 }
3440 retval = sched_setscheduler(p, policy, &lparam);
3441 read_unlock_irq(&tasklist_lock);
3442 return retval;
3443}
3444
3445/**
3446 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3447 * @pid: the pid in question.
3448 * @policy: new policy.
3449 * @param: structure containing the new RT priority.
3450 */
3451asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3452 struct sched_param __user *param)
3453{
3454 return do_sched_setscheduler(pid, policy, param);
3455}
3456
3457/**
3458 * sys_sched_setparam - set/change the RT priority of a thread
3459 * @pid: the pid in question.
3460 * @param: structure containing the new RT priority.
3461 */
3462asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3463{
3464 return do_sched_setscheduler(pid, -1, param);
3465}
3466
3467/**
3468 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3469 * @pid: the pid in question.
3470 */
3471asmlinkage long sys_sched_getscheduler(pid_t pid)
3472{
3473 int retval = -EINVAL;
3474 task_t *p;
3475
3476 if (pid < 0)
3477 goto out_nounlock;
3478
3479 retval = -ESRCH;
3480 read_lock(&tasklist_lock);
3481 p = find_process_by_pid(pid);
3482 if (p) {
3483 retval = security_task_getscheduler(p);
3484 if (!retval)
3485 retval = p->policy;
3486 }
3487 read_unlock(&tasklist_lock);
3488
3489out_nounlock:
3490 return retval;
3491}
3492
3493/**
3494 * sys_sched_getscheduler - get the RT priority of a thread
3495 * @pid: the pid in question.
3496 * @param: structure containing the RT priority.
3497 */
3498asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3499{
3500 struct sched_param lp;
3501 int retval = -EINVAL;
3502 task_t *p;
3503
3504 if (!param || pid < 0)
3505 goto out_nounlock;
3506
3507 read_lock(&tasklist_lock);
3508 p = find_process_by_pid(pid);
3509 retval = -ESRCH;
3510 if (!p)
3511 goto out_unlock;
3512
3513 retval = security_task_getscheduler(p);
3514 if (retval)
3515 goto out_unlock;
3516
3517 lp.sched_priority = p->rt_priority;
3518 read_unlock(&tasklist_lock);
3519
3520 /*
3521 * This one might sleep, we cannot do it with a spinlock held ...
3522 */
3523 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3524
3525out_nounlock:
3526 return retval;
3527
3528out_unlock:
3529 read_unlock(&tasklist_lock);
3530 return retval;
3531}
3532
3533long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3534{
3535 task_t *p;
3536 int retval;
3537 cpumask_t cpus_allowed;
3538
3539 lock_cpu_hotplug();
3540 read_lock(&tasklist_lock);
3541
3542 p = find_process_by_pid(pid);
3543 if (!p) {
3544 read_unlock(&tasklist_lock);
3545 unlock_cpu_hotplug();
3546 return -ESRCH;
3547 }
3548
3549 /*
3550 * It is not safe to call set_cpus_allowed with the
3551 * tasklist_lock held. We will bump the task_struct's
3552 * usage count and then drop tasklist_lock.
3553 */
3554 get_task_struct(p);
3555 read_unlock(&tasklist_lock);
3556
3557 retval = -EPERM;
3558 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3559 !capable(CAP_SYS_NICE))
3560 goto out_unlock;
3561
3562 cpus_allowed = cpuset_cpus_allowed(p);
3563 cpus_and(new_mask, new_mask, cpus_allowed);
3564 retval = set_cpus_allowed(p, new_mask);
3565
3566out_unlock:
3567 put_task_struct(p);
3568 unlock_cpu_hotplug();
3569 return retval;
3570}
3571
3572static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3573 cpumask_t *new_mask)
3574{
3575 if (len < sizeof(cpumask_t)) {
3576 memset(new_mask, 0, sizeof(cpumask_t));
3577 } else if (len > sizeof(cpumask_t)) {
3578 len = sizeof(cpumask_t);
3579 }
3580 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3581}
3582
3583/**
3584 * sys_sched_setaffinity - set the cpu affinity of a process
3585 * @pid: pid of the process
3586 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3587 * @user_mask_ptr: user-space pointer to the new cpu mask
3588 */
3589asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3590 unsigned long __user *user_mask_ptr)
3591{
3592 cpumask_t new_mask;
3593 int retval;
3594
3595 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3596 if (retval)
3597 return retval;
3598
3599 return sched_setaffinity(pid, new_mask);
3600}
3601
3602/*
3603 * Represents all cpu's present in the system
3604 * In systems capable of hotplug, this map could dynamically grow
3605 * as new cpu's are detected in the system via any platform specific
3606 * method, such as ACPI for e.g.
3607 */
3608
3609cpumask_t cpu_present_map;
3610EXPORT_SYMBOL(cpu_present_map);
3611
3612#ifndef CONFIG_SMP
3613cpumask_t cpu_online_map = CPU_MASK_ALL;
3614cpumask_t cpu_possible_map = CPU_MASK_ALL;
3615#endif
3616
3617long sched_getaffinity(pid_t pid, cpumask_t *mask)
3618{
3619 int retval;
3620 task_t *p;
3621
3622 lock_cpu_hotplug();
3623 read_lock(&tasklist_lock);
3624
3625 retval = -ESRCH;
3626 p = find_process_by_pid(pid);
3627 if (!p)
3628 goto out_unlock;
3629
3630 retval = 0;
3631 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3632
3633out_unlock:
3634 read_unlock(&tasklist_lock);
3635 unlock_cpu_hotplug();
3636 if (retval)
3637 return retval;
3638
3639 return 0;
3640}
3641
3642/**
3643 * sys_sched_getaffinity - get the cpu affinity of a process
3644 * @pid: pid of the process
3645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3647 */
3648asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3649 unsigned long __user *user_mask_ptr)
3650{
3651 int ret;
3652 cpumask_t mask;
3653
3654 if (len < sizeof(cpumask_t))
3655 return -EINVAL;
3656
3657 ret = sched_getaffinity(pid, &mask);
3658 if (ret < 0)
3659 return ret;
3660
3661 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3662 return -EFAULT;
3663
3664 return sizeof(cpumask_t);
3665}
3666
3667/**
3668 * sys_sched_yield - yield the current processor to other threads.
3669 *
3670 * this function yields the current CPU by moving the calling thread
3671 * to the expired array. If there are no other threads running on this
3672 * CPU then this function will return.
3673 */
3674asmlinkage long sys_sched_yield(void)
3675{
3676 runqueue_t *rq = this_rq_lock();
3677 prio_array_t *array = current->array;
3678 prio_array_t *target = rq->expired;
3679
3680 schedstat_inc(rq, yld_cnt);
3681 /*
3682 * We implement yielding by moving the task into the expired
3683 * queue.
3684 *
3685 * (special rule: RT tasks will just roundrobin in the active
3686 * array.)
3687 */
3688 if (rt_task(current))
3689 target = rq->active;
3690
3691 if (current->array->nr_active == 1) {
3692 schedstat_inc(rq, yld_act_empty);
3693 if (!rq->expired->nr_active)
3694 schedstat_inc(rq, yld_both_empty);
3695 } else if (!rq->expired->nr_active)
3696 schedstat_inc(rq, yld_exp_empty);
3697
3698 if (array != target) {
3699 dequeue_task(current, array);
3700 enqueue_task(current, target);
3701 } else
3702 /*
3703 * requeue_task is cheaper so perform that if possible.
3704 */
3705 requeue_task(current, array);
3706
3707 /*
3708 * Since we are going to call schedule() anyway, there's
3709 * no need to preempt or enable interrupts:
3710 */
3711 __release(rq->lock);
3712 _raw_spin_unlock(&rq->lock);
3713 preempt_enable_no_resched();
3714
3715 schedule();
3716
3717 return 0;
3718}
3719
3720static inline void __cond_resched(void)
3721{
3722 do {
3723 add_preempt_count(PREEMPT_ACTIVE);
3724 schedule();
3725 sub_preempt_count(PREEMPT_ACTIVE);
3726 } while (need_resched());
3727}
3728
3729int __sched cond_resched(void)
3730{
3731 if (need_resched()) {
3732 __cond_resched();
3733 return 1;
3734 }
3735 return 0;
3736}
3737
3738EXPORT_SYMBOL(cond_resched);
3739
3740/*
3741 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3742 * call schedule, and on return reacquire the lock.
3743 *
3744 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3745 * operations here to prevent schedule() from being called twice (once via
3746 * spin_unlock(), once by hand).
3747 */
3748int cond_resched_lock(spinlock_t * lock)
3749{
6df3cecb
JK
3750 int ret = 0;
3751
1da177e4
LT
3752 if (need_lockbreak(lock)) {
3753 spin_unlock(lock);
3754 cpu_relax();
6df3cecb 3755 ret = 1;
1da177e4
LT
3756 spin_lock(lock);
3757 }
3758 if (need_resched()) {
3759 _raw_spin_unlock(lock);
3760 preempt_enable_no_resched();
3761 __cond_resched();
6df3cecb 3762 ret = 1;
1da177e4 3763 spin_lock(lock);
1da177e4 3764 }
6df3cecb 3765 return ret;
1da177e4
LT
3766}
3767
3768EXPORT_SYMBOL(cond_resched_lock);
3769
3770int __sched cond_resched_softirq(void)
3771{
3772 BUG_ON(!in_softirq());
3773
3774 if (need_resched()) {
3775 __local_bh_enable();
3776 __cond_resched();
3777 local_bh_disable();
3778 return 1;
3779 }
3780 return 0;
3781}
3782
3783EXPORT_SYMBOL(cond_resched_softirq);
3784
3785
3786/**
3787 * yield - yield the current processor to other threads.
3788 *
3789 * this is a shortcut for kernel-space yielding - it marks the
3790 * thread runnable and calls sys_sched_yield().
3791 */
3792void __sched yield(void)
3793{
3794 set_current_state(TASK_RUNNING);
3795 sys_sched_yield();
3796}
3797
3798EXPORT_SYMBOL(yield);
3799
3800/*
3801 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3802 * that process accounting knows that this is a task in IO wait state.
3803 *
3804 * But don't do that if it is a deliberate, throttling IO wait (this task
3805 * has set its backing_dev_info: the queue against which it should throttle)
3806 */
3807void __sched io_schedule(void)
3808{
39c715b7 3809 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3810
3811 atomic_inc(&rq->nr_iowait);
3812 schedule();
3813 atomic_dec(&rq->nr_iowait);
3814}
3815
3816EXPORT_SYMBOL(io_schedule);
3817
3818long __sched io_schedule_timeout(long timeout)
3819{
39c715b7 3820 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3821 long ret;
3822
3823 atomic_inc(&rq->nr_iowait);
3824 ret = schedule_timeout(timeout);
3825 atomic_dec(&rq->nr_iowait);
3826 return ret;
3827}
3828
3829/**
3830 * sys_sched_get_priority_max - return maximum RT priority.
3831 * @policy: scheduling class.
3832 *
3833 * this syscall returns the maximum rt_priority that can be used
3834 * by a given scheduling class.
3835 */
3836asmlinkage long sys_sched_get_priority_max(int policy)
3837{
3838 int ret = -EINVAL;
3839
3840 switch (policy) {
3841 case SCHED_FIFO:
3842 case SCHED_RR:
3843 ret = MAX_USER_RT_PRIO-1;
3844 break;
3845 case SCHED_NORMAL:
3846 ret = 0;
3847 break;
3848 }
3849 return ret;
3850}
3851
3852/**
3853 * sys_sched_get_priority_min - return minimum RT priority.
3854 * @policy: scheduling class.
3855 *
3856 * this syscall returns the minimum rt_priority that can be used
3857 * by a given scheduling class.
3858 */
3859asmlinkage long sys_sched_get_priority_min(int policy)
3860{
3861 int ret = -EINVAL;
3862
3863 switch (policy) {
3864 case SCHED_FIFO:
3865 case SCHED_RR:
3866 ret = 1;
3867 break;
3868 case SCHED_NORMAL:
3869 ret = 0;
3870 }
3871 return ret;
3872}
3873
3874/**
3875 * sys_sched_rr_get_interval - return the default timeslice of a process.
3876 * @pid: pid of the process.
3877 * @interval: userspace pointer to the timeslice value.
3878 *
3879 * this syscall writes the default timeslice value of a given process
3880 * into the user-space timespec buffer. A value of '0' means infinity.
3881 */
3882asmlinkage
3883long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3884{
3885 int retval = -EINVAL;
3886 struct timespec t;
3887 task_t *p;
3888
3889 if (pid < 0)
3890 goto out_nounlock;
3891
3892 retval = -ESRCH;
3893 read_lock(&tasklist_lock);
3894 p = find_process_by_pid(pid);
3895 if (!p)
3896 goto out_unlock;
3897
3898 retval = security_task_getscheduler(p);
3899 if (retval)
3900 goto out_unlock;
3901
3902 jiffies_to_timespec(p->policy & SCHED_FIFO ?
3903 0 : task_timeslice(p), &t);
3904 read_unlock(&tasklist_lock);
3905 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3906out_nounlock:
3907 return retval;
3908out_unlock:
3909 read_unlock(&tasklist_lock);
3910 return retval;
3911}
3912
3913static inline struct task_struct *eldest_child(struct task_struct *p)
3914{
3915 if (list_empty(&p->children)) return NULL;
3916 return list_entry(p->children.next,struct task_struct,sibling);
3917}
3918
3919static inline struct task_struct *older_sibling(struct task_struct *p)
3920{
3921 if (p->sibling.prev==&p->parent->children) return NULL;
3922 return list_entry(p->sibling.prev,struct task_struct,sibling);
3923}
3924
3925static inline struct task_struct *younger_sibling(struct task_struct *p)
3926{
3927 if (p->sibling.next==&p->parent->children) return NULL;
3928 return list_entry(p->sibling.next,struct task_struct,sibling);
3929}
3930
3931static void show_task(task_t * p)
3932{
3933 task_t *relative;
3934 unsigned state;
3935 unsigned long free = 0;
3936 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3937
3938 printk("%-13.13s ", p->comm);
3939 state = p->state ? __ffs(p->state) + 1 : 0;
3940 if (state < ARRAY_SIZE(stat_nam))
3941 printk(stat_nam[state]);
3942 else
3943 printk("?");
3944#if (BITS_PER_LONG == 32)
3945 if (state == TASK_RUNNING)
3946 printk(" running ");
3947 else
3948 printk(" %08lX ", thread_saved_pc(p));
3949#else
3950 if (state == TASK_RUNNING)
3951 printk(" running task ");
3952 else
3953 printk(" %016lx ", thread_saved_pc(p));
3954#endif
3955#ifdef CONFIG_DEBUG_STACK_USAGE
3956 {
3957 unsigned long * n = (unsigned long *) (p->thread_info+1);
3958 while (!*n)
3959 n++;
3960 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3961 }
3962#endif
3963 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3964 if ((relative = eldest_child(p)))
3965 printk("%5d ", relative->pid);
3966 else
3967 printk(" ");
3968 if ((relative = younger_sibling(p)))
3969 printk("%7d", relative->pid);
3970 else
3971 printk(" ");
3972 if ((relative = older_sibling(p)))
3973 printk(" %5d", relative->pid);
3974 else
3975 printk(" ");
3976 if (!p->mm)
3977 printk(" (L-TLB)\n");
3978 else
3979 printk(" (NOTLB)\n");
3980
3981 if (state != TASK_RUNNING)
3982 show_stack(p, NULL);
3983}
3984
3985void show_state(void)
3986{
3987 task_t *g, *p;
3988
3989#if (BITS_PER_LONG == 32)
3990 printk("\n"
3991 " sibling\n");
3992 printk(" task PC pid father child younger older\n");
3993#else
3994 printk("\n"
3995 " sibling\n");
3996 printk(" task PC pid father child younger older\n");
3997#endif
3998 read_lock(&tasklist_lock);
3999 do_each_thread(g, p) {
4000 /*
4001 * reset the NMI-timeout, listing all files on a slow
4002 * console might take alot of time:
4003 */
4004 touch_nmi_watchdog();
4005 show_task(p);
4006 } while_each_thread(g, p);
4007
4008 read_unlock(&tasklist_lock);
4009}
4010
4011void __devinit init_idle(task_t *idle, int cpu)
4012{
4013 runqueue_t *rq = cpu_rq(cpu);
4014 unsigned long flags;
4015
4016 idle->sleep_avg = 0;
4017 idle->array = NULL;
4018 idle->prio = MAX_PRIO;
4019 idle->state = TASK_RUNNING;
4020 idle->cpus_allowed = cpumask_of_cpu(cpu);
4021 set_task_cpu(idle, cpu);
4022
4023 spin_lock_irqsave(&rq->lock, flags);
4024 rq->curr = rq->idle = idle;
4025 set_tsk_need_resched(idle);
4026 spin_unlock_irqrestore(&rq->lock, flags);
4027
4028 /* Set the preempt count _outside_ the spinlocks! */
4029#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4030 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4031#else
4032 idle->thread_info->preempt_count = 0;
4033#endif
4034}
4035
4036/*
4037 * In a system that switches off the HZ timer nohz_cpu_mask
4038 * indicates which cpus entered this state. This is used
4039 * in the rcu update to wait only for active cpus. For system
4040 * which do not switch off the HZ timer nohz_cpu_mask should
4041 * always be CPU_MASK_NONE.
4042 */
4043cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4044
4045#ifdef CONFIG_SMP
4046/*
4047 * This is how migration works:
4048 *
4049 * 1) we queue a migration_req_t structure in the source CPU's
4050 * runqueue and wake up that CPU's migration thread.
4051 * 2) we down() the locked semaphore => thread blocks.
4052 * 3) migration thread wakes up (implicitly it forces the migrated
4053 * thread off the CPU)
4054 * 4) it gets the migration request and checks whether the migrated
4055 * task is still in the wrong runqueue.
4056 * 5) if it's in the wrong runqueue then the migration thread removes
4057 * it and puts it into the right queue.
4058 * 6) migration thread up()s the semaphore.
4059 * 7) we wake up and the migration is done.
4060 */
4061
4062/*
4063 * Change a given task's CPU affinity. Migrate the thread to a
4064 * proper CPU and schedule it away if the CPU it's executing on
4065 * is removed from the allowed bitmask.
4066 *
4067 * NOTE: the caller must have a valid reference to the task, the
4068 * task must not exit() & deallocate itself prematurely. The
4069 * call is not atomic; no spinlocks may be held.
4070 */
4071int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4072{
4073 unsigned long flags;
4074 int ret = 0;
4075 migration_req_t req;
4076 runqueue_t *rq;
4077
4078 rq = task_rq_lock(p, &flags);
4079 if (!cpus_intersects(new_mask, cpu_online_map)) {
4080 ret = -EINVAL;
4081 goto out;
4082 }
4083
4084 p->cpus_allowed = new_mask;
4085 /* Can the task run on the task's current CPU? If so, we're done */
4086 if (cpu_isset(task_cpu(p), new_mask))
4087 goto out;
4088
4089 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4090 /* Need help from migration thread: drop lock and wait. */
4091 task_rq_unlock(rq, &flags);
4092 wake_up_process(rq->migration_thread);
4093 wait_for_completion(&req.done);
4094 tlb_migrate_finish(p->mm);
4095 return 0;
4096 }
4097out:
4098 task_rq_unlock(rq, &flags);
4099 return ret;
4100}
4101
4102EXPORT_SYMBOL_GPL(set_cpus_allowed);
4103
4104/*
4105 * Move (not current) task off this cpu, onto dest cpu. We're doing
4106 * this because either it can't run here any more (set_cpus_allowed()
4107 * away from this CPU, or CPU going down), or because we're
4108 * attempting to rebalance this task on exec (sched_exec).
4109 *
4110 * So we race with normal scheduler movements, but that's OK, as long
4111 * as the task is no longer on this CPU.
4112 */
4113static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4114{
4115 runqueue_t *rq_dest, *rq_src;
4116
4117 if (unlikely(cpu_is_offline(dest_cpu)))
4118 return;
4119
4120 rq_src = cpu_rq(src_cpu);
4121 rq_dest = cpu_rq(dest_cpu);
4122
4123 double_rq_lock(rq_src, rq_dest);
4124 /* Already moved. */
4125 if (task_cpu(p) != src_cpu)
4126 goto out;
4127 /* Affinity changed (again). */
4128 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4129 goto out;
4130
4131 set_task_cpu(p, dest_cpu);
4132 if (p->array) {
4133 /*
4134 * Sync timestamp with rq_dest's before activating.
4135 * The same thing could be achieved by doing this step
4136 * afterwards, and pretending it was a local activate.
4137 * This way is cleaner and logically correct.
4138 */
4139 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4140 + rq_dest->timestamp_last_tick;
4141 deactivate_task(p, rq_src);
4142 activate_task(p, rq_dest, 0);
4143 if (TASK_PREEMPTS_CURR(p, rq_dest))
4144 resched_task(rq_dest->curr);
4145 }
4146
4147out:
4148 double_rq_unlock(rq_src, rq_dest);
4149}
4150
4151/*
4152 * migration_thread - this is a highprio system thread that performs
4153 * thread migration by bumping thread off CPU then 'pushing' onto
4154 * another runqueue.
4155 */
4156static int migration_thread(void * data)
4157{
4158 runqueue_t *rq;
4159 int cpu = (long)data;
4160
4161 rq = cpu_rq(cpu);
4162 BUG_ON(rq->migration_thread != current);
4163
4164 set_current_state(TASK_INTERRUPTIBLE);
4165 while (!kthread_should_stop()) {
4166 struct list_head *head;
4167 migration_req_t *req;
4168
4169 if (current->flags & PF_FREEZE)
4170 refrigerator(PF_FREEZE);
4171
4172 spin_lock_irq(&rq->lock);
4173
4174 if (cpu_is_offline(cpu)) {
4175 spin_unlock_irq(&rq->lock);
4176 goto wait_to_die;
4177 }
4178
4179 if (rq->active_balance) {
4180 active_load_balance(rq, cpu);
4181 rq->active_balance = 0;
4182 }
4183
4184 head = &rq->migration_queue;
4185
4186 if (list_empty(head)) {
4187 spin_unlock_irq(&rq->lock);
4188 schedule();
4189 set_current_state(TASK_INTERRUPTIBLE);
4190 continue;
4191 }
4192 req = list_entry(head->next, migration_req_t, list);
4193 list_del_init(head->next);
4194
4195 if (req->type == REQ_MOVE_TASK) {
4196 spin_unlock(&rq->lock);
4197 __migrate_task(req->task, cpu, req->dest_cpu);
4198 local_irq_enable();
4199 } else if (req->type == REQ_SET_DOMAIN) {
4200 rq->sd = req->sd;
4201 spin_unlock_irq(&rq->lock);
4202 } else {
4203 spin_unlock_irq(&rq->lock);
4204 WARN_ON(1);
4205 }
4206
4207 complete(&req->done);
4208 }
4209 __set_current_state(TASK_RUNNING);
4210 return 0;
4211
4212wait_to_die:
4213 /* Wait for kthread_stop */
4214 set_current_state(TASK_INTERRUPTIBLE);
4215 while (!kthread_should_stop()) {
4216 schedule();
4217 set_current_state(TASK_INTERRUPTIBLE);
4218 }
4219 __set_current_state(TASK_RUNNING);
4220 return 0;
4221}
4222
4223#ifdef CONFIG_HOTPLUG_CPU
4224/* Figure out where task on dead CPU should go, use force if neccessary. */
4225static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4226{
4227 int dest_cpu;
4228 cpumask_t mask;
4229
4230 /* On same node? */
4231 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4232 cpus_and(mask, mask, tsk->cpus_allowed);
4233 dest_cpu = any_online_cpu(mask);
4234
4235 /* On any allowed CPU? */
4236 if (dest_cpu == NR_CPUS)
4237 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4238
4239 /* No more Mr. Nice Guy. */
4240 if (dest_cpu == NR_CPUS) {
b39c4fab 4241 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4242 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4243
4244 /*
4245 * Don't tell them about moving exiting tasks or
4246 * kernel threads (both mm NULL), since they never
4247 * leave kernel.
4248 */
4249 if (tsk->mm && printk_ratelimit())
4250 printk(KERN_INFO "process %d (%s) no "
4251 "longer affine to cpu%d\n",
4252 tsk->pid, tsk->comm, dead_cpu);
4253 }
4254 __migrate_task(tsk, dead_cpu, dest_cpu);
4255}
4256
4257/*
4258 * While a dead CPU has no uninterruptible tasks queued at this point,
4259 * it might still have a nonzero ->nr_uninterruptible counter, because
4260 * for performance reasons the counter is not stricly tracking tasks to
4261 * their home CPUs. So we just add the counter to another CPU's counter,
4262 * to keep the global sum constant after CPU-down:
4263 */
4264static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4265{
4266 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4267 unsigned long flags;
4268
4269 local_irq_save(flags);
4270 double_rq_lock(rq_src, rq_dest);
4271 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4272 rq_src->nr_uninterruptible = 0;
4273 double_rq_unlock(rq_src, rq_dest);
4274 local_irq_restore(flags);
4275}
4276
4277/* Run through task list and migrate tasks from the dead cpu. */
4278static void migrate_live_tasks(int src_cpu)
4279{
4280 struct task_struct *tsk, *t;
4281
4282 write_lock_irq(&tasklist_lock);
4283
4284 do_each_thread(t, tsk) {
4285 if (tsk == current)
4286 continue;
4287
4288 if (task_cpu(tsk) == src_cpu)
4289 move_task_off_dead_cpu(src_cpu, tsk);
4290 } while_each_thread(t, tsk);
4291
4292 write_unlock_irq(&tasklist_lock);
4293}
4294
4295/* Schedules idle task to be the next runnable task on current CPU.
4296 * It does so by boosting its priority to highest possible and adding it to
4297 * the _front_ of runqueue. Used by CPU offline code.
4298 */
4299void sched_idle_next(void)
4300{
4301 int cpu = smp_processor_id();
4302 runqueue_t *rq = this_rq();
4303 struct task_struct *p = rq->idle;
4304 unsigned long flags;
4305
4306 /* cpu has to be offline */
4307 BUG_ON(cpu_online(cpu));
4308
4309 /* Strictly not necessary since rest of the CPUs are stopped by now
4310 * and interrupts disabled on current cpu.
4311 */
4312 spin_lock_irqsave(&rq->lock, flags);
4313
4314 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4315 /* Add idle task to _front_ of it's priority queue */
4316 __activate_idle_task(p, rq);
4317
4318 spin_unlock_irqrestore(&rq->lock, flags);
4319}
4320
4321/* Ensures that the idle task is using init_mm right before its cpu goes
4322 * offline.
4323 */
4324void idle_task_exit(void)
4325{
4326 struct mm_struct *mm = current->active_mm;
4327
4328 BUG_ON(cpu_online(smp_processor_id()));
4329
4330 if (mm != &init_mm)
4331 switch_mm(mm, &init_mm, current);
4332 mmdrop(mm);
4333}
4334
4335static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4336{
4337 struct runqueue *rq = cpu_rq(dead_cpu);
4338
4339 /* Must be exiting, otherwise would be on tasklist. */
4340 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4341
4342 /* Cannot have done final schedule yet: would have vanished. */
4343 BUG_ON(tsk->flags & PF_DEAD);
4344
4345 get_task_struct(tsk);
4346
4347 /*
4348 * Drop lock around migration; if someone else moves it,
4349 * that's OK. No task can be added to this CPU, so iteration is
4350 * fine.
4351 */
4352 spin_unlock_irq(&rq->lock);
4353 move_task_off_dead_cpu(dead_cpu, tsk);
4354 spin_lock_irq(&rq->lock);
4355
4356 put_task_struct(tsk);
4357}
4358
4359/* release_task() removes task from tasklist, so we won't find dead tasks. */
4360static void migrate_dead_tasks(unsigned int dead_cpu)
4361{
4362 unsigned arr, i;
4363 struct runqueue *rq = cpu_rq(dead_cpu);
4364
4365 for (arr = 0; arr < 2; arr++) {
4366 for (i = 0; i < MAX_PRIO; i++) {
4367 struct list_head *list = &rq->arrays[arr].queue[i];
4368 while (!list_empty(list))
4369 migrate_dead(dead_cpu,
4370 list_entry(list->next, task_t,
4371 run_list));
4372 }
4373 }
4374}
4375#endif /* CONFIG_HOTPLUG_CPU */
4376
4377/*
4378 * migration_call - callback that gets triggered when a CPU is added.
4379 * Here we can start up the necessary migration thread for the new CPU.
4380 */
4381static int migration_call(struct notifier_block *nfb, unsigned long action,
4382 void *hcpu)
4383{
4384 int cpu = (long)hcpu;
4385 struct task_struct *p;
4386 struct runqueue *rq;
4387 unsigned long flags;
4388
4389 switch (action) {
4390 case CPU_UP_PREPARE:
4391 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4392 if (IS_ERR(p))
4393 return NOTIFY_BAD;
4394 p->flags |= PF_NOFREEZE;
4395 kthread_bind(p, cpu);
4396 /* Must be high prio: stop_machine expects to yield to it. */
4397 rq = task_rq_lock(p, &flags);
4398 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4399 task_rq_unlock(rq, &flags);
4400 cpu_rq(cpu)->migration_thread = p;
4401 break;
4402 case CPU_ONLINE:
4403 /* Strictly unneccessary, as first user will wake it. */
4404 wake_up_process(cpu_rq(cpu)->migration_thread);
4405 break;
4406#ifdef CONFIG_HOTPLUG_CPU
4407 case CPU_UP_CANCELED:
4408 /* Unbind it from offline cpu so it can run. Fall thru. */
4409 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4410 kthread_stop(cpu_rq(cpu)->migration_thread);
4411 cpu_rq(cpu)->migration_thread = NULL;
4412 break;
4413 case CPU_DEAD:
4414 migrate_live_tasks(cpu);
4415 rq = cpu_rq(cpu);
4416 kthread_stop(rq->migration_thread);
4417 rq->migration_thread = NULL;
4418 /* Idle task back to normal (off runqueue, low prio) */
4419 rq = task_rq_lock(rq->idle, &flags);
4420 deactivate_task(rq->idle, rq);
4421 rq->idle->static_prio = MAX_PRIO;
4422 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4423 migrate_dead_tasks(cpu);
4424 task_rq_unlock(rq, &flags);
4425 migrate_nr_uninterruptible(rq);
4426 BUG_ON(rq->nr_running != 0);
4427
4428 /* No need to migrate the tasks: it was best-effort if
4429 * they didn't do lock_cpu_hotplug(). Just wake up
4430 * the requestors. */
4431 spin_lock_irq(&rq->lock);
4432 while (!list_empty(&rq->migration_queue)) {
4433 migration_req_t *req;
4434 req = list_entry(rq->migration_queue.next,
4435 migration_req_t, list);
4436 BUG_ON(req->type != REQ_MOVE_TASK);
4437 list_del_init(&req->list);
4438 complete(&req->done);
4439 }
4440 spin_unlock_irq(&rq->lock);
4441 break;
4442#endif
4443 }
4444 return NOTIFY_OK;
4445}
4446
4447/* Register at highest priority so that task migration (migrate_all_tasks)
4448 * happens before everything else.
4449 */
4450static struct notifier_block __devinitdata migration_notifier = {
4451 .notifier_call = migration_call,
4452 .priority = 10
4453};
4454
4455int __init migration_init(void)
4456{
4457 void *cpu = (void *)(long)smp_processor_id();
4458 /* Start one for boot CPU. */
4459 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4460 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4461 register_cpu_notifier(&migration_notifier);
4462 return 0;
4463}
4464#endif
4465
4466#ifdef CONFIG_SMP
4467#define SCHED_DOMAIN_DEBUG
4468#ifdef SCHED_DOMAIN_DEBUG
4469static void sched_domain_debug(struct sched_domain *sd, int cpu)
4470{
4471 int level = 0;
4472
4473 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4474
4475 do {
4476 int i;
4477 char str[NR_CPUS];
4478 struct sched_group *group = sd->groups;
4479 cpumask_t groupmask;
4480
4481 cpumask_scnprintf(str, NR_CPUS, sd->span);
4482 cpus_clear(groupmask);
4483
4484 printk(KERN_DEBUG);
4485 for (i = 0; i < level + 1; i++)
4486 printk(" ");
4487 printk("domain %d: ", level);
4488
4489 if (!(sd->flags & SD_LOAD_BALANCE)) {
4490 printk("does not load-balance\n");
4491 if (sd->parent)
4492 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4493 break;
4494 }
4495
4496 printk("span %s\n", str);
4497
4498 if (!cpu_isset(cpu, sd->span))
4499 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4500 if (!cpu_isset(cpu, group->cpumask))
4501 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4502
4503 printk(KERN_DEBUG);
4504 for (i = 0; i < level + 2; i++)
4505 printk(" ");
4506 printk("groups:");
4507 do {
4508 if (!group) {
4509 printk("\n");
4510 printk(KERN_ERR "ERROR: group is NULL\n");
4511 break;
4512 }
4513
4514 if (!group->cpu_power) {
4515 printk("\n");
4516 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4517 }
4518
4519 if (!cpus_weight(group->cpumask)) {
4520 printk("\n");
4521 printk(KERN_ERR "ERROR: empty group\n");
4522 }
4523
4524 if (cpus_intersects(groupmask, group->cpumask)) {
4525 printk("\n");
4526 printk(KERN_ERR "ERROR: repeated CPUs\n");
4527 }
4528
4529 cpus_or(groupmask, groupmask, group->cpumask);
4530
4531 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4532 printk(" %s", str);
4533
4534 group = group->next;
4535 } while (group != sd->groups);
4536 printk("\n");
4537
4538 if (!cpus_equal(sd->span, groupmask))
4539 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4540
4541 level++;
4542 sd = sd->parent;
4543
4544 if (sd) {
4545 if (!cpus_subset(groupmask, sd->span))
4546 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4547 }
4548
4549 } while (sd);
4550}
4551#else
4552#define sched_domain_debug(sd, cpu) {}
4553#endif
4554
4555/*
4556 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4557 * hold the hotplug lock.
4558 */
4559void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4560{
4561 migration_req_t req;
4562 unsigned long flags;
4563 runqueue_t *rq = cpu_rq(cpu);
4564 int local = 1;
4565
4566 sched_domain_debug(sd, cpu);
4567
4568 spin_lock_irqsave(&rq->lock, flags);
4569
4570 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4571 rq->sd = sd;
4572 } else {
4573 init_completion(&req.done);
4574 req.type = REQ_SET_DOMAIN;
4575 req.sd = sd;
4576 list_add(&req.list, &rq->migration_queue);
4577 local = 0;
4578 }
4579
4580 spin_unlock_irqrestore(&rq->lock, flags);
4581
4582 if (!local) {
4583 wake_up_process(rq->migration_thread);
4584 wait_for_completion(&req.done);
4585 }
4586}
4587
4588/* cpus with isolated domains */
4589cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4590
4591/* Setup the mask of cpus configured for isolated domains */
4592static int __init isolated_cpu_setup(char *str)
4593{
4594 int ints[NR_CPUS], i;
4595
4596 str = get_options(str, ARRAY_SIZE(ints), ints);
4597 cpus_clear(cpu_isolated_map);
4598 for (i = 1; i <= ints[0]; i++)
4599 if (ints[i] < NR_CPUS)
4600 cpu_set(ints[i], cpu_isolated_map);
4601 return 1;
4602}
4603
4604__setup ("isolcpus=", isolated_cpu_setup);
4605
4606/*
4607 * init_sched_build_groups takes an array of groups, the cpumask we wish
4608 * to span, and a pointer to a function which identifies what group a CPU
4609 * belongs to. The return value of group_fn must be a valid index into the
4610 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4611 * keep track of groups covered with a cpumask_t).
4612 *
4613 * init_sched_build_groups will build a circular linked list of the groups
4614 * covered by the given span, and will set each group's ->cpumask correctly,
4615 * and ->cpu_power to 0.
4616 */
4617void __devinit init_sched_build_groups(struct sched_group groups[],
4618 cpumask_t span, int (*group_fn)(int cpu))
4619{
4620 struct sched_group *first = NULL, *last = NULL;
4621 cpumask_t covered = CPU_MASK_NONE;
4622 int i;
4623
4624 for_each_cpu_mask(i, span) {
4625 int group = group_fn(i);
4626 struct sched_group *sg = &groups[group];
4627 int j;
4628
4629 if (cpu_isset(i, covered))
4630 continue;
4631
4632 sg->cpumask = CPU_MASK_NONE;
4633 sg->cpu_power = 0;
4634
4635 for_each_cpu_mask(j, span) {
4636 if (group_fn(j) != group)
4637 continue;
4638
4639 cpu_set(j, covered);
4640 cpu_set(j, sg->cpumask);
4641 }
4642 if (!first)
4643 first = sg;
4644 if (last)
4645 last->next = sg;
4646 last = sg;
4647 }
4648 last->next = first;
4649}
4650
4651
4652#ifdef ARCH_HAS_SCHED_DOMAIN
4653extern void __devinit arch_init_sched_domains(void);
4654extern void __devinit arch_destroy_sched_domains(void);
4655#else
4656#ifdef CONFIG_SCHED_SMT
4657static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4658static struct sched_group sched_group_cpus[NR_CPUS];
4659static int __devinit cpu_to_cpu_group(int cpu)
4660{
4661 return cpu;
4662}
4663#endif
4664
4665static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4666static struct sched_group sched_group_phys[NR_CPUS];
4667static int __devinit cpu_to_phys_group(int cpu)
4668{
4669#ifdef CONFIG_SCHED_SMT
4670 return first_cpu(cpu_sibling_map[cpu]);
4671#else
4672 return cpu;
4673#endif
4674}
4675
4676#ifdef CONFIG_NUMA
4677
4678static DEFINE_PER_CPU(struct sched_domain, node_domains);
4679static struct sched_group sched_group_nodes[MAX_NUMNODES];
4680static int __devinit cpu_to_node_group(int cpu)
4681{
4682 return cpu_to_node(cpu);
4683}
4684#endif
4685
4686#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4687/*
4688 * The domains setup code relies on siblings not spanning
4689 * multiple nodes. Make sure the architecture has a proper
4690 * siblings map:
4691 */
4692static void check_sibling_maps(void)
4693{
4694 int i, j;
4695
4696 for_each_online_cpu(i) {
4697 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4698 if (cpu_to_node(i) != cpu_to_node(j)) {
4699 printk(KERN_INFO "warning: CPU %d siblings map "
4700 "to different node - isolating "
4701 "them.\n", i);
4702 cpu_sibling_map[i] = cpumask_of_cpu(i);
4703 break;
4704 }
4705 }
4706 }
4707}
4708#endif
4709
4710/*
4711 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4712 */
4713static void __devinit arch_init_sched_domains(void)
4714{
4715 int i;
4716 cpumask_t cpu_default_map;
4717
4718#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4719 check_sibling_maps();
4720#endif
4721 /*
4722 * Setup mask for cpus without special case scheduling requirements.
4723 * For now this just excludes isolated cpus, but could be used to
4724 * exclude other special cases in the future.
4725 */
4726 cpus_complement(cpu_default_map, cpu_isolated_map);
4727 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4728
4729 /*
4730 * Set up domains. Isolated domains just stay on the dummy domain.
4731 */
4732 for_each_cpu_mask(i, cpu_default_map) {
4733 int group;
4734 struct sched_domain *sd = NULL, *p;
4735 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4736
4737 cpus_and(nodemask, nodemask, cpu_default_map);
4738
4739#ifdef CONFIG_NUMA
4740 sd = &per_cpu(node_domains, i);
4741 group = cpu_to_node_group(i);
4742 *sd = SD_NODE_INIT;
4743 sd->span = cpu_default_map;
4744 sd->groups = &sched_group_nodes[group];
4745#endif
4746
4747 p = sd;
4748 sd = &per_cpu(phys_domains, i);
4749 group = cpu_to_phys_group(i);
4750 *sd = SD_CPU_INIT;
4751 sd->span = nodemask;
4752 sd->parent = p;
4753 sd->groups = &sched_group_phys[group];
4754
4755#ifdef CONFIG_SCHED_SMT
4756 p = sd;
4757 sd = &per_cpu(cpu_domains, i);
4758 group = cpu_to_cpu_group(i);
4759 *sd = SD_SIBLING_INIT;
4760 sd->span = cpu_sibling_map[i];
4761 cpus_and(sd->span, sd->span, cpu_default_map);
4762 sd->parent = p;
4763 sd->groups = &sched_group_cpus[group];
4764#endif
4765 }
4766
4767#ifdef CONFIG_SCHED_SMT
4768 /* Set up CPU (sibling) groups */
4769 for_each_online_cpu(i) {
4770 cpumask_t this_sibling_map = cpu_sibling_map[i];
4771 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4772 if (i != first_cpu(this_sibling_map))
4773 continue;
4774
4775 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4776 &cpu_to_cpu_group);
4777 }
4778#endif
4779
4780 /* Set up physical groups */
4781 for (i = 0; i < MAX_NUMNODES; i++) {
4782 cpumask_t nodemask = node_to_cpumask(i);
4783
4784 cpus_and(nodemask, nodemask, cpu_default_map);
4785 if (cpus_empty(nodemask))
4786 continue;
4787
4788 init_sched_build_groups(sched_group_phys, nodemask,
4789 &cpu_to_phys_group);
4790 }
4791
4792#ifdef CONFIG_NUMA
4793 /* Set up node groups */
4794 init_sched_build_groups(sched_group_nodes, cpu_default_map,
4795 &cpu_to_node_group);
4796#endif
4797
4798 /* Calculate CPU power for physical packages and nodes */
4799 for_each_cpu_mask(i, cpu_default_map) {
4800 int power;
4801 struct sched_domain *sd;
4802#ifdef CONFIG_SCHED_SMT
4803 sd = &per_cpu(cpu_domains, i);
4804 power = SCHED_LOAD_SCALE;
4805 sd->groups->cpu_power = power;
4806#endif
4807
4808 sd = &per_cpu(phys_domains, i);
4809 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4810 (cpus_weight(sd->groups->cpumask)-1) / 10;
4811 sd->groups->cpu_power = power;
4812
4813#ifdef CONFIG_NUMA
4814 if (i == first_cpu(sd->groups->cpumask)) {
4815 /* Only add "power" once for each physical package. */
4816 sd = &per_cpu(node_domains, i);
4817 sd->groups->cpu_power += power;
4818 }
4819#endif
4820 }
4821
4822 /* Attach the domains */
4823 for_each_online_cpu(i) {
4824 struct sched_domain *sd;
4825#ifdef CONFIG_SCHED_SMT
4826 sd = &per_cpu(cpu_domains, i);
4827#else
4828 sd = &per_cpu(phys_domains, i);
4829#endif
4830 cpu_attach_domain(sd, i);
4831 }
4832}
4833
4834#ifdef CONFIG_HOTPLUG_CPU
4835static void __devinit arch_destroy_sched_domains(void)
4836{
4837 /* Do nothing: everything is statically allocated. */
4838}
4839#endif
4840
4841#endif /* ARCH_HAS_SCHED_DOMAIN */
4842
4843/*
4844 * Initial dummy domain for early boot and for hotplug cpu. Being static,
4845 * it is initialized to zero, so all balancing flags are cleared which is
4846 * what we want.
4847 */
4848static struct sched_domain sched_domain_dummy;
4849
4850#ifdef CONFIG_HOTPLUG_CPU
4851/*
4852 * Force a reinitialization of the sched domains hierarchy. The domains
4853 * and groups cannot be updated in place without racing with the balancing
4854 * code, so we temporarily attach all running cpus to a "dummy" domain
4855 * which will prevent rebalancing while the sched domains are recalculated.
4856 */
4857static int update_sched_domains(struct notifier_block *nfb,
4858 unsigned long action, void *hcpu)
4859{
4860 int i;
4861
4862 switch (action) {
4863 case CPU_UP_PREPARE:
4864 case CPU_DOWN_PREPARE:
4865 for_each_online_cpu(i)
4866 cpu_attach_domain(&sched_domain_dummy, i);
4867 arch_destroy_sched_domains();
4868 return NOTIFY_OK;
4869
4870 case CPU_UP_CANCELED:
4871 case CPU_DOWN_FAILED:
4872 case CPU_ONLINE:
4873 case CPU_DEAD:
4874 /*
4875 * Fall through and re-initialise the domains.
4876 */
4877 break;
4878 default:
4879 return NOTIFY_DONE;
4880 }
4881
4882 /* The hotplug lock is already held by cpu_up/cpu_down */
4883 arch_init_sched_domains();
4884
4885 return NOTIFY_OK;
4886}
4887#endif
4888
4889void __init sched_init_smp(void)
4890{
4891 lock_cpu_hotplug();
4892 arch_init_sched_domains();
4893 unlock_cpu_hotplug();
4894 /* XXX: Theoretical race here - CPU may be hotplugged now */
4895 hotcpu_notifier(update_sched_domains, 0);
4896}
4897#else
4898void __init sched_init_smp(void)
4899{
4900}
4901#endif /* CONFIG_SMP */
4902
4903int in_sched_functions(unsigned long addr)
4904{
4905 /* Linker adds these: start and end of __sched functions */
4906 extern char __sched_text_start[], __sched_text_end[];
4907 return in_lock_functions(addr) ||
4908 (addr >= (unsigned long)__sched_text_start
4909 && addr < (unsigned long)__sched_text_end);
4910}
4911
4912void __init sched_init(void)
4913{
4914 runqueue_t *rq;
4915 int i, j, k;
4916
4917 for (i = 0; i < NR_CPUS; i++) {
4918 prio_array_t *array;
4919
4920 rq = cpu_rq(i);
4921 spin_lock_init(&rq->lock);
7897986b 4922 rq->nr_running = 0;
1da177e4
LT
4923 rq->active = rq->arrays;
4924 rq->expired = rq->arrays + 1;
4925 rq->best_expired_prio = MAX_PRIO;
4926
4927#ifdef CONFIG_SMP
4928 rq->sd = &sched_domain_dummy;
7897986b
NP
4929 for (j = 1; j < 3; j++)
4930 rq->cpu_load[j] = 0;
1da177e4
LT
4931 rq->active_balance = 0;
4932 rq->push_cpu = 0;
4933 rq->migration_thread = NULL;
4934 INIT_LIST_HEAD(&rq->migration_queue);
4935#endif
4936 atomic_set(&rq->nr_iowait, 0);
4937
4938 for (j = 0; j < 2; j++) {
4939 array = rq->arrays + j;
4940 for (k = 0; k < MAX_PRIO; k++) {
4941 INIT_LIST_HEAD(array->queue + k);
4942 __clear_bit(k, array->bitmap);
4943 }
4944 // delimiter for bitsearch
4945 __set_bit(MAX_PRIO, array->bitmap);
4946 }
4947 }
4948
4949 /*
4950 * The boot idle thread does lazy MMU switching as well:
4951 */
4952 atomic_inc(&init_mm.mm_count);
4953 enter_lazy_tlb(&init_mm, current);
4954
4955 /*
4956 * Make us the idle thread. Technically, schedule() should not be
4957 * called from this thread, however somewhere below it might be,
4958 * but because we are the idle thread, we just pick up running again
4959 * when this runqueue becomes "idle".
4960 */
4961 init_idle(current, smp_processor_id());
4962}
4963
4964#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4965void __might_sleep(char *file, int line)
4966{
4967#if defined(in_atomic)
4968 static unsigned long prev_jiffy; /* ratelimiting */
4969
4970 if ((in_atomic() || irqs_disabled()) &&
4971 system_state == SYSTEM_RUNNING && !oops_in_progress) {
4972 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4973 return;
4974 prev_jiffy = jiffies;
4975 printk(KERN_ERR "Debug: sleeping function called from invalid"
4976 " context at %s:%d\n", file, line);
4977 printk("in_atomic():%d, irqs_disabled():%d\n",
4978 in_atomic(), irqs_disabled());
4979 dump_stack();
4980 }
4981#endif
4982}
4983EXPORT_SYMBOL(__might_sleep);
4984#endif
4985
4986#ifdef CONFIG_MAGIC_SYSRQ
4987void normalize_rt_tasks(void)
4988{
4989 struct task_struct *p;
4990 prio_array_t *array;
4991 unsigned long flags;
4992 runqueue_t *rq;
4993
4994 read_lock_irq(&tasklist_lock);
4995 for_each_process (p) {
4996 if (!rt_task(p))
4997 continue;
4998
4999 rq = task_rq_lock(p, &flags);
5000
5001 array = p->array;
5002 if (array)
5003 deactivate_task(p, task_rq(p));
5004 __setscheduler(p, SCHED_NORMAL, 0);
5005 if (array) {
5006 __activate_task(p, task_rq(p));
5007 resched_task(rq->curr);
5008 }
5009
5010 task_rq_unlock(rq, &flags);
5011 }
5012 read_unlock_irq(&tasklist_lock);
5013}
5014
5015#endif /* CONFIG_MAGIC_SYSRQ */
This page took 0.290046 seconds and 5 git commands to generate.